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Chapter 1

Motivation and Introduction

“... part of a theory may well be prae facto instead of post factum and hence invite ex-
perimental verification ...” (van Hemmen, 2006, Editorial of “Biological Cybernetics”).

Computational or theoretical neuroscience is a spreading field that is complementary
to traditional techniques in neuroscience. In this field, mathematically explicit theory
helps to understand the mode of operation of systems. Mathematics plays an important
role in the quantitative description of processes in nature as being a clear language to
communicate quantitative information.
Theories without a neurobiological substrate are not relevant. However, a theory need
not be based on experimentally facts alone but can also reveal mathematical principles.
These principles again can lead to a coherent explanation of experiments. Neurobiology
in the 21st century should tightly connect theoretical and experimental neuroscience.

1.1 Neural oscillations

In the last decades scientists found that oscillations are one important feature in brain
processing. Understanding of the synchronization of neuron population activity by
oscillations gives insight in neuronal communication.
By definition, oscillations are temporal periodic changes in the state of a system. In
nonlinear systems like the brain, oscillations define a stable state. Some of theses stable
states are speculated to be the equivalent for short term memories and play a role in
decision making (Basar-Eroglu et al., 1992). Some authors have described a theory of
memory that is equivalent to the optical recording technique that is called holography
(Longuet-Higgins, 1968; Gabor, 1968a,b; Westlake, 1970). In their theories memory
processes are based on the coherent interplay of many neurons, similar to holography
where the coherence of many light waves forms a pattern that is stored.
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Chapter 1. Motivation and Introduction

The history of the description of oscillations in the brain started in the twenties, when
neural oscillation were described by means of the Electroencephalography (EEG), which
was discovered in 1924 by Hans Berger at the University of Jena. These oscillations
were classified according to their frequency as β−, α−, θ−, δ−, and γ-waves. Differ-
ent states of consciousness are accompanied by different pronounced appearance of the
waves (Basar, 1980). But EEG signals show only the summed electrical activity of the
brain, as they are measured at the surface of the head. This averaged activity might
mask the mechanism of generating oscillations by small populations. Invasive record-
ings like single unit recordings (extracellular and intracellular) and local field potentials
with electrodes directly contacting the brain offer a higher resolution of electrical ac-
tivity. In these invasive recordings oscillations are also found.
Oscillations occur in different sensory systems, like the visual, olfactory, motor, and
auditory system.
In the midbrain, the first functional description of neural oscillations in electrophysio-
logical recordings in the auditory system was by Langner (1978), which led to a model
of auditory temporal processing and neural oscillators (Langner, 1981).
Later, sensory segmentation with coupled neural oscillators were described by van der
Malsburg (von der Malsburg and Schneider, 1986; van der Malsburg, 1992). He linked
the binding problem with neural oscillators. In this case binding means that oscillations
of different neural ensembles representing different features of an auditory object like
the timbre or the pitch, synchronize (“Cocktail-Party” effect).
Subsequently, in 1990 neural oscillations became a hot topic in the visual system. Stud-
ies of Gray and Singer (Gray and Singer, 1989; Gray, 1994), and others (Eckhorn et al.,
1988) associated oscillations in the visual system with the binding problem.
For the olfactory system, Gilles Laurent and his colleagues showed in a series of papers
that oscillations exist in mammals and insects. Different odors led to different subsets of
neurons firing on different sets of oscillatory cycles (Wehr and Laurent, 1996). Disrup-
tion of the oscillatory synchronization leads to impairment of behavioral discrimination
of chemically similar odorants in bees (Stopfer et al., 1997).
In the motor system coherent 25- to 35- Hz oscillations have been reported by Murthy
and Fetz (1992). The oscillations occurred often in the sensimotor cortex when the
monkeys retrieved food using somatosensory feedback. The phase of the oscillations
changed continuously from the surface to the deeper layers of the cortex, reversing
their polarity completely at depths exceeding 800 µm. Oscillations (15-20 Hz) were
also observed in motor cortex of monkeys during periods of movement preparation
(Sanes and Donoghue, 1993). In these experiments, the monkeys performed a visually
guided, instructed task and the oscillations occurred preferentially before the visual cue
to initiate movement. The study demonstrates that oscillations in the motor cortex are
not related to the details of movement execution but they play an important role in the
movement preparation.
Also in the somatosensory and in premotor cortex oscillating neurons have been re-
ported (Lebedev and Nelson, 1995; Lebedev and Wise, 2004) The oscillations (20-40
Hz) occure often during periods of attentive immobility and typically disappear during

2



Chapter 1. Motivation and Introduction

movements.
According to a review of Buhusi and Meck (2005) neural oscillations may have different
functional roles in different brain areas and may be also involved in the mechanism of
interval timing.
In medicine, large scale neuronal synchronization was found to be a reason for epileptical
seizures, which are apparently based on the mutual excitation between neurons (Traub
and Wong, 1982). Epileptic seizures can be triggered by various factors. Video screens,
including television, video games, and computer displays, are the most common envi-
ronmental triggers of photosensitive epileptic seizures. Interestingly, in patients with
history of photosensitive epileptic seizures outbreaks occurred when certain flashing or
patterned images have been broadcast (Fylan et al., 1999; Zifkin and Trenite, 2000).

It has always been a dream to interface the brain with a computer in order to record
signals of the brain by a computer and control brain functions with signals from outside.
In a study of Pesaran et al. (2002) neural oscillations were suggested as a control
signal because in monkeys oscillations changed while preparation of movements (see
also Andersen et al., 2004).
In the auditory system computer-brain interfaces have already become reality in the
form of cochlea and brainstem implants. Cochlea implants stimulate the auditory nerve
in the cochlea with electrical impulses, brainstem implants are located in the cochlear
nucleus. The implants are still the aim of research and understanding the role of the
oscillations in the cochlear nucleus might be important to improve the performance of
these medical aids.
Altogether, oscillations are apparent in a variety of brain functions and are worth to
be analyzed for their function. In this work, the neuronal basis of oscillations in the
auditory system is analyzed in experimental data and by means of computer simulations.
Oscillations are found in different auditory nuclei like the cochlear nucleus and the
inferior colliculus and are attributed to a class of neurons in the cochlear nucleus, the
so-called “chopper neurons” (see e.g. Blackburn and Sachs, 1989). Chopper neurons are
outstanding because of their response pattern. They generate oscillations with a distinct
frequency relatively independent of changes of important stimulus parameters (Pfeiffer,
1966; Blackburn and Sachs, 1989; Winter et al., 2001; Wiegrebe and Winter, 2001). It
was hypothesized that they play an important role in pitch perception (Langner, 1981;
Hewitt et al., 1992; Wiegrebe and Winter, 2001).

3



Chapter 1. Motivation and Introduction

1.2 Intention and structure of the thesis

The aim of this work is the investigation of neuronal oscillations and connections in
the auditory brainstem. To achieve this goal neuronal networks of “chopper neurons”
are simulated. Although previous chopper neurons models can reproduce important
aspects of physiological properties, they can not reproduce the special features of real
chopper neurons.
In this thesis a new chopper model is simulated and compared to physiological data.

Following this chapter the thesis starts in Chapter 2 with a general introduction of
oscillations in the auditory system, a description of the oscillator in the periodicity
model according to Langner (1981), and with an introduction in neuronal models.

Chapter 3 describes the experimental basis for the simulation paradigm of chopper
neurons.

Chapter 4 discusses the simulation results of the new chopper topology.

Chapter 5 presents relevant features of the network, which can contribute to pitch
perception.

Chapter 6 demonstrates a detailed analysis of a HH-like chopper neuron model and
tests for its usability in the proposed network.

Chapter 7 discusses particular issues that are not discussed in the previous chapters
but were objective of discussions with other scientists.

Chapter 8 discusses all results of the investigated topics and gives an outlook on po-
tential investigations of the neuronal network.

Chapter 9 concludes the thesis by summarizing all results.

Within the context of this work, several important results were achieved in the field of
modeling the auditory brainstem. These led to a number of relevant and acknowledged
publications in recognized journals and presentations at national and international con-
ferences (see Chapter “List of publications”).
The financial support for this thesis was provided by a scholarship of the “Hessische
Graduiertenförderung”.
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Chapter 2

General Introduction

2.1 Oscillations in the auditory system

In the auditory system oscillations in neural responses are found at different stages of
auditory processing: in the midbrain oscillations occur in electrophysiological recordings
(Langner, 1981, 1983; Langner and Schreiner, 1988) and in the brainstem a class of
neurons, namely chopper neurons, show oscillating response patterns (Pfeiffer, 1966).
Oscillations in the midbrain are assumed to result from the response of the chopper
neurons (Langner, 1992) and they may also play a role in pitch perception (Langner,
1981).
In the following, some anatomical and physiological background is presented, which is
important to understand the generation of auditory oscillations.

2.1.1 The auditory system

In the auditory system, many features of the cochlea-signal have to be extracted by
several nuclei before they can be transferred into the cortex. For example, location of
sound sources or periodicity of sound waves have to be calculated with high temporal
precision. The auditory nerve transmits signals from the cochlea to the cochlear nucleus
(Fig. 2.1), which is the first processing center in the auditory system. The processed
information is then forwarded to the ipsi- and contralateral olives, the nuclei of the
contralateral lemniscus lateralis (LL), and the contralateral colliculus inferior (IC) (Fig.
2.1). The colliculus inferior receives input from different nuclei (ipsi- and contralateral),
the lemniscus lateralis projects to the IC (ipsilateral), and the olives to the IC and LL
(ipsilateral). The colliculus inferior projects via the corpus geniculatum mediale to the
cortex (Fig. 2.1).
The following sections focus on the properties of the cochlear nucleus, which is the
anatomical structure that contains the oscillating chopper neurons.

5



Chapter 2. General Introduction

Figure 2.1: Scheme of the central auditory system. In this scheme the most important
brain structures for auditory processing and the ascending connections from the cochlea
to the cortex are depicted. The cochlear nucleus is the first processing center following
the cochlea.
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Chapter 2. General Introduction

Figure 2.2: Scheme of a sagittal section of the cat cochlear nucleus. The nucleus shows
three subdivisions, which are innervated by a branching auditory nerve fiber. AVCN,
anteroventral cochlear nucleus; PVCN, posteroventral cochlear nucleus; DCN, dorsal
cochlear nucleus (from Evans, 1975).

2.1.2 Cochlear nucleus (CN)

Anatomy

The cochlear nucleus is the exclusive target of the axon terminals of the spiral ganglion
and is therefore the first nucleus of the central auditory pathways and contains the sec-
ondary auditory neurons. The auditory nerve enters the cochlear nucleus from ventral
(Ryugo and Parks, 2003). The cochlear nucleus receives ascending information from
the AN fibers (Fig. 2.2). The anteroventral part of the CN (AVCN) receives ascending
inputs predominantly from the ascending (anterior) branch of AN fibers. Caudal to
the nerve entrance and bifurcation zone is the posteroventral part of the CN (PVCN).
The PVCN receives its ascending inputs principally from die posterior collaterals of AN
fibers. The dorsal cochlear nucleus (DCN) forms the most caudal and dorsal extent of
the CN. The DCN is characterized by a distinct layering pattern, closely resembling
the cortical appearance of the cerebellum, whereas the VCN is not layered (Ryugo and
Parks, 2003).

Auditory nerve input

The auditory nerve consists of bundles of thick and thin fibers. These fibers can be
traced back along the auditory nerve into the cochlea where the thick fibers are found
to arise from type I spiral ganglion neurons and the thin fibers arise from type II spi-

7



Chapter 2. General Introduction

ral ganglion neurons. These fibers can also be traced back centrally into the cochlear
nucleus. The thick fibers are myelinated, whereas the thin fibers are unmyelinated.
The thick fibers give rise to one or several large endings called “endbulbs of Held”,
which are among the largest synaptic endings in the brain. The functional importance
of endbulbs of Held is that they correspond to secure synaptic transmission; when an
action potential reaches such an axon terminal, the probability to generate an action
potential in the postsynaptic cell is very high. Both thick and thin fibers give rise to
short collaterals with many en passant swellings and terminal boutons. These small
endings are roundish and represent approximately 95% of the total endings. Most of
these boutons are distributed within the VCN.
The fibers, whether myelinated or unmyelinated, show a cochleotopic projection pat-
tern. Their distribution is systematically related to their origin. Both, type I and II
fibers send a common branch into the anteroventral cochlear nucleus (AVCN), and a
second branch through the posteroventral cochlear nucleus (PVCN) and into the dorsal
cochlear nucleus (DCN).
In mammals, individual type I auditory nerve fibers may be defined by three funda-
mental properties: 1. frequency selectivity, 2. response threshold, and 3. spontaneous
discharge rate. Frequency selectivity refers to the fibers tendency to be most sensitive
to a single frequency, which is called the characteristic frequency (CF), i.e. the fre-
quency which leads to a neural response for the lowest threshold in dB SPL. The CF
reflects the longitudinal location of fiber termination along the organ of Corti.
Ganglion cells innervating hair cell in the apical region of the cochlea distribute their
axon and terminals in a ventral zone of the nucleus, whereas ganglion cells innervating
progressively more basal hair cells project to progressively more dorsal zones of the
nucleus. The nerve fibers bifurcate into an ascending branch and a descending branch.
The ascending branch has a relatively straight trajectory into the AVCN and terminates
as a large, axosomatic ending. The descending branch has a straight trajectory through
the PVCN before entering the DCN. Fibers of similar CFs form a 3-dimensional sheet
through the nucleus, and these sheets represent isofrequency laminae of the nucleus
(Fig. 2.3). These projections underlie the tonotopic organization of the resident neu-
rons of the cochlear nucleus. Both divisions of the cochlear nucleus are tonotopically
organized.

2.1.3 Neurons in the CN

Cell types

The distribution of CN cells types provides a basis for dividing the CN into distinct
subdivisions (see Fig. 2.4 in Osen, 1969). The anterior part of the AVCN contains large
neurons called spherical cells. Immediately posterior to the spherical cell area globular
neurons are apparent that can be distinguished from spherical cells by the excentric
position of their nucleus in the soma. The location of globular neurons corresponds to

8



Chapter 2. General Introduction

Figure 2.3: Tonotopic organization of cochlear nucleus cells. ANR, auditory nerve
root; AVCN, anteroventral cochlear nucleus; DCN, dorsal cochlear nucleus; PVCN,
posteroventral cochlear nucleus (modified from Ryugo and Parks, 2003).
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Chapter 2. General Introduction

Figure 2.4: Scheme of of the cochlear nucleus indicating its subdivisions (lateral view,
cat) AA = anterior part of the anterior division of AVCN; AP: posterior part of the an-
terior division of AVCN; AVCN: anteroventral cochlear nucleus; DCN: dorsal cochlear
nucleus; MA: multipolar cell area; OA: octopus cell area; PD: dorsal part of the pos-
terior division of AVCN; PV: ventral part of the posterior division of AVCN; PVCN:
posteroventral cochlear nucleus (modified from Osen, 1969).

the zone of entrance and bifurcation of AN fibers referred to as the nerve root region.
The spherical and globular neurons have a similar appearance both belonging to the
class of bushy neurons because of the characteristic aspect of their dendritic trees (Fig.
2.5). Caudal to the nerve root region is the posteroventral part of the CN (PVCN),
which contains two main classes of neurons. First, the multipolar (Fig. 2.4), or stellate
neurons are located preferentially in the rostral part of the PVCN. The multipolar or
stellate neurons are not restricted to the PVCN since some are also present in the
AVCN. Second, the octopus neurons occupy a well-defined location in the caudal part
of the PVCN (Fig. 2.4). The dorsal cochlear nucleus (DCN) also contains several types
of neurons. A layer parallel to the external border of DCN is formed by large cells
called fusiform, or pyramidal neurons (Fig. 2.4). The DCN is also rich in two other
types of neurons, both of smaller size than the other types: small and granular neurons
(Fig. 2.4). The two latter types of neurons are also present in the PVCN, as well as in a
smaller proportion in die AVCN. The large variety of cell types in the CN is correlated
with a wide variety of response types (Bourk, 1976).

10
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Figure 2.5: Cell types and corresponding response types (by PSTH and tuning curves)
in the cochlear nucleus. Dashed portions of the T.C. indicate zones of inhibition, the
white inner portion represents the excitatory area. a: axon; on-i: discharge only to
stimulus onset; on-l: onset response and weak discharge during rest of tone-burst; pri-
like: primary-like; pri-like w.n.: primary-like-with-notch; chopp.: chopper (from Ehret
and Romand, 1997).
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Response types

Various response types have been reported for CN single units on the basis of peri-
stimulus time histograms (PSTH) derived from responses to tone bursts (Pfeiffer, 1966;
Winter et al., 1990, e.g.). In the VCN of the cat, some type of neurons show a response
(as seen in PSTHs) similar to that of auditory nerve fibers. Such VCN units are called
primary-like (Fig. 2.5).
A second type of neurons have a response to tone bursts that is called primary-like
with notch (Fig. 2.5). The envelope of the PSTH is similar to primary-like responses,
except for the presence of a notch (i.e. a short decrease or even absence of discharge)
immediately following the sharp onset peak of activity, which is precisely time locked
to the stimulus onset.
A third category of neurons, the chopper neurons (Fig. 2.5), exhibits a PSTH having
an envelope similar to that of primary-like responses, but with multiple peaks separated
by regular time intervals that are not related to the frequency of the stimulating tone
(Pfeiffer, 1966). In this respect, chopper responses are clearly different from phase-
locked responses illustrated for AN fibers since the peaks in chopper PSTHs are not
synchronized with the stimulus wavefrom.
A fourth type of neurons (Fig. 2.5) show a response, which is defined by an increase
in discharge rate primarily or exclusively at the beginning of each tone burst. On-type
I responses (on-i in Fig. 2.5) are characterized by discharges restricted exclusively to
stimulus onset, whereas on-type responses (on-l in Fig. 2.5) show a weak excitation
during the rest of the tone-burst duration in addition to the main response at onset,
but clearly less than in primary-like or primary-like-with-notch responses.
In addition, a different classification scheme for CN units is based on the presence of
inhibitory components recorded mainly in the DCN. These response types consist of
(see Fig. 2.5):
1. A suppression of activity during the tone burst.
2. A suppression following a first initial peak of activity and preceding a rate activity
during the second half of the tone burst (pauser).
3. An initial suppression followed by a progressive increase in discharge rate until the
end of the tone burst (buildup).
The complexity of responses is greater in the DCN than in the VCN, and a different clas-
sification scheme has been proposed for the DCN, taking into account the importance
of the inhibitory components. Response types in the DCN are significantly different in
anesthetized animals as compared to non-anesthetized preparations.
In contrast, response types in the AVCN and PVCN are not or very little affected by the
level of anesthesia (e.g. see Winter et al., 1990). The large variability of response types
in the CN reflects the transformation of signals from AN fibers to the various types of
CN neurons. The modification is believed to depend both on the spatial arrangement
of synaptic endings from both cochlear and non-cochlear inputs on the CN cells and on
the convergence of excitatory and inhibitory inputs on a given neuron. Therefore, the
generation of responses depends on the timing of various convergent synaptic inputs.

12
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In addition, recent data (Manis and Marx, 1991) derived from intracellular recordings
in in vitro preparations of the guinea pig CN indicate that intrinsic properties of the
membrane of VCN and DCN cells (variation in ion channels) may also contribute to
the observed response to acoustic stimuli.

Correlation between response types and cell types

The different types of response patterns observed in the CN are related to specific areas
(Bourk, 1976). Primary-like responses are observed principally in the most anterior
region of the AVCN and primary-like-with-notch responses predominantly in the pos-
terior part of the AVCN. Chopper responses are widely distributed in the AVCN and
PVCN (also a few in the DCN), but with a relatively high concentration in the posterior
half of the AVCN and the anterior part of the PVCN. Transient responses (on-type I)
are mainly restricted to the posterior region of the PVCN, whereas pauser and buildup
response patterns are typically found in the DCN. These data therefore provide indi-
rect evidence for a correlation between unit type (electrophysiological category) and
neuron type (anatomical category). Primary-like, primary-like-with-notch, chopper,
and on-type I are thought to be associated with spherical, globular, multipolar, and
octopus neurons, respectively (Fig. 2.5). The pauser and buildup responses have been
associated with fusiform neurons of the DCN (Fig. 2.5). There are indications that
these correlations are not strict because it has been shown in the gerbil that response
properties may sometimes be independent of the neuronal structure (Ostapoff et al.,
1994).

Tuning properties

In addition to the differences mentioned above, single units in the CN can differ from
auditory nerve fibers by the shape of their tuning curves (Fig. 2.5).
First, single units characterized by patterns of response to tone bursts as found in
primary-like, primary-like-with-notch, on-type I, and chopper units have a tuning curve
comparable to that of nerve fibers (Bourk, 1976).
Pauser and buildup units have more complex tuning curves with a zone of activation
surrounded by zones of inhibition (Fig. 2.5).
The discharge rate as a function of tone intensity of chopper, primary-like, and primary-
like-with-notch is a monotonic function with a dynamic range comparable to that found
in the auditory nerve (30-40 dB).
In contrast, non-monotonic intensity functions have often been observed for pauser and
buildup units.
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Figure 2.6: Schematic representation of the efferent projections of the cochlear nucleus
(CN). The target nuclei of the axons emitted by die multipolar (m), octopus (o), giant
(g) and fusiform (f) CN neurons are shown.
INF. COLL.: inferior colliculus, SOC: superior olivary complex, DAS: dorsal acoustic
stria (stria of Monakow), IAS: intermediate acoustic stria (stria of Held), VAS: ventral
aoustic stria (trapezoid body), ICC: central nucleus of the inferior colluculus, LL: lem-
niscus lateralis, MNTB: medial nucleus of the trapezoid body, VNTB: ventral nucleus
of the trapezoid body, LNTB: lateral nucleus of the trapezoid body, LSO: lateral supe-
rior olivary nucleus, MSO: medial superior olivary nucleus (from Ehret and Romand,
1997).

Efferent projections

The role of the CN is to receive the information from the AN fibers, to process this
information, and to distribute the modified signals to higher auditory nuclei.
To understand how the auditory system operates, it is therefore essential to know the
projection patterns of their axons from the different types of CN neurons.
CN neurons show a high degree of collateralization of the axons which makes it very
difficult to determine these patterns. Figure 2.6 shows the projection of the multipolar
or stellate, octopus, and fusiform cells schematically.

The CN has three main output pathways:
The first, the ventral acoustic stria (VAS), contains axons originating mainly from the
neurons of the AVCN, namely bushy cells, and PVCN, namely stellate and some octo-
pus cells. The axons of the stellate and octopus cells project via the VAS through the
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Figure 2.7: Left: Point plot of a chopper response (Pfeiffer, 1966). Each dot stands
for a spike of the cell, each row is a recording at the same stimulus condition. Ab-
scissa represents time after presentation of each tone burst (Stimulation frequency at
characteristic frequency of 7 kHz.). Right: Peri-stimulus-time-histogram (PSTH) of a
chopper neuron (Blackburn and Sachs, 1989). Although the peaks of the PSTH vanish,
the interspike intervals stay constant. The small variations of the intervals accumulate
and therefore peaks in the PSTH disappear.

lateral lemniscus (LL) and to the inferior colliculus (IC).
The second output pathway, die intermediate acoustic stria (IAS), or stria of Held,
includes axons originating primarily from the octopus cells of the PVCN, terminating
in the so-called periolivary nuclei (p) and higher in the ventral nucleus of the LL and
the IC.
These two latter structures also receive ascending inputs via the third CN output path-
way, the dorsal acoustic stria (DAS), or stria of Monakow, containing axons from DCN
neurons, which do not project to the SOC.
Finally, the CN has intrinsic connections (Osen, 1969; Adams, 1983) such as projections
between the VCN and DCN.

2.1.4 Oscillators in the CN: Chopper Neurons

The chopper responses are among the most widespread throughout the CN. They are
found in all divisions, although with a higher percentage in the PVCN and a cell layer
of the DCN (Godfrey et al., 1975). Chopper responses are generally well defined for
stimulus levels of at least 20 dB above threshold and show multipeaked temporal pattern
in which the interpeak intervals are not related to stimulus frequency (Pfeiffer, 1966)
(Fig. 2.7).

Several categories of chopper responses have been defined on the basis of PSTH char-
acteristics (Bourk, 1976; Rhode and Smith, 1986), such as responses with long inter-
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vals between peaks, mainly found in the DCN, responses with shorter intervals, and
responses with a chopper part only at the beginning of stimulation. The chopper re-
sponses are related mainly to stellate cells. However, a too strict relationship seems
to be an oversimplification in view of several types of stellate cells in the CN (Oer-
tel, 1983) and because response patterns may be quite independent of cell structure
(Ostapoff et al., 1994). Different stellate cells, membrane properties, and synaptic or-
ganization might be the reason for the differences of chopper responses in the CN. The
interspike intervals of chopper responses have a small standard deviation. Most chopper
responses have a very low coefficient of variation (CV), which is defined as the the ratio
of the standard deviation to the mean of the interspike intervals, of less than 0.5 (Young
et al., 1988; Blackburn and Sachs, 1989; Banks and Sachs, 1991). No large differences
have been found between chopper tuning curves and tuning curves of nerve fibers. The
rate-intensity function of most chopper units are monotonic as in AN fibers, only 14%
are non-monotonic (Rhode and Smith, 1986).

2.1.5 Chopper Neurons in the Periodicity Model according to
Langner (1981)

Langner (1981) proposed a periodicity analyzing model that consists of networks of
neurons and connections that are located in the cochlear nucleus and the inferior col-
liculus. The periodicity model is a bio-inspired neural network. The included neurons
of the cochlear nucleus are depicted in Fig. 2.8.

The model contains a “trigger neuron”, an “oscillator”, an “integrator complex”, and a
“coincidence” neuron. The properties of the trigger neurons are similar to that of onset
cells in the NC, the required oscillator neurons are similar to chopper cells (marked by
a circle in Fig. 2.8), the output of the integrator complex is evident in cells in the DCN
and ascending inhibitory connections project from cells of the ventral nucleus of the
lateral lemniscus (VNLL) to the IC (not shown in Fig. 2.8). In this thesis physiological
relevant oscillatory responses of the stellate cells, which are part of the periodicity
model, are modeled.
The neural network is a correlation network of neurons. For better understanding
a scheme of the model and its function is shown in (Fig. 2.9), where all the parts
described above can be found. Exemplary neuronal potentials describing the function
of the classes of neurons are shown in the right part of the figure.

The function of the network is based upon the correlation of delayed and undelayed
neuronal responses of the depicted neurons to envelopes of AM signals. These responses
converge at neurons acting as coincidence detectors. Each modulation period of an AM
signal activates the trigger neuron, which again activetes a rapid oscillation (oscillator
potential with a predefined frequency). Parallel to that process, the integrator neuron
responds to the same cycle but with a longer delay (integration period of the integrator).
The coincidence neuron will be activated, despite the different delay times of the two
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Figure 2.8: A periodicity analyzing network model including oscillating stellate neurons
(marked by a circle), octopus cells which synronize to envelope modulations. Pauser
neurons in the DCN integrate over its nerve input and other neurons of the cochlear
nucleus. The stellate cells are arranged in a circular network. The oscillating neurons
of the PVCN and the pauser neurons of the DCN are supposed to project in the central
nucleus of the inferior colliculus onto the same neuron (from Langner, 1988). The mode
of operation of this network model is described in the following figure and in the text.
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Figure 2.9: The periodicity analyzing neural model and some exemplary neuronal poten-
tials. The model is driven with a stimulus generating equal oscillation and integration
delay periods and therefore a coincidence for the specific module.
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previous units, provided that the integration period equals the period of the AM signal.
A coincidence neuron will respond more often, when its inputs are synchronized, i.e.
when the spikes of the oscillator and of the integrator converge at the same time.
Thus, modulation periods (periodicities), m×τm, with m = 1, 2, ..., which activate the
oscillations and drive the coincidence unit can be computed from the following linear
equation:

m× τm = n× τc − k × τk (2.1)

where k, m, n are small integers. n×τc is the integration period, which consists of
n carrier periods and which is the time the integrated input signal needs to reach a
certain threshold. 1/τc is the carrier frequency of the AM signal, 1/τk the frequency
of the oscillations. Eq. 2.1 will be refered to as coincidence equation. The parameter
m takes into account the fact that coincidence neurons respond also to harmonics (m
> 1) of the modulation frequency of the AM signal, which implicates ambiguity of IC
neurons with respect to harmonically related signals. A solution to this problem is
proposed by an input from the inhibitor. Because of the cochlear frequency analysis, a
neuron responds strongest at its characteristic frequency (CF). In addition to its CF, a
coincidence neuron is tuned to a certain periodicity, i.e. a certain modulation frequency
of an AM signal, also called the best modulation frequency (BMF). Therefore, different
trigger, oscillator, integrator, and coincidence units are needed to cover the range of
periodicity of AM signals.
The functional details of a computer model simulating such a periodicity analysis net-
work, along with the description of its components is given in Section 2.2.2, in Borst
et al. (2004), and Voutsas et al. (2005).

2.2 Neuron models for the simulation of oscillations

In computational neuroscience different models are used to simulate neurons and neu-
ronal networks. The models differ in their level of abstraction. For simulating large
networks mostly simple neuron models like the leaky integrate-and-fire neuron are used
because they can be calculated in a reasonable time. They simply generate a pulse
if excitation is sufficient. In contrast, in simulating single neurons or micro-circuits
Hodgkin-Huxley-like models are often used. They are related more closely to biological
processes e.g. the ion flux of channels is calculated. The underlying formulas were
developed by Hodgkin and Huxley (1952). Another aspect in modeling is the spatial
dimension of cells. The detailed description in time can therefore be expanded by a de-
tailed description in space. So called compartment models simulate not only the soma,
but the dendritic tree and the axon in any spatial resolution. But again calculation time
rises with higher resolution. The different aspects of models and modeling is depicted
in Fig. 2.10.
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Figure 2.10: Advantages and disadvantages of different neuron models. The higher the
spatial or temporal resolution of a model, the higher the calculation time.

The highest level of abstraction are rate models (rate model for chopper neurons see
Bleeck, 2007). They only simulate the pulse rate of a neuron and not single pulses.
They are used for example in simulating muscle control, which essentially depends on
the pulse rate. Temporal aspects of signal processing are nearly neglected, which makes
these models nearly useless for correlation processes and for our simulation purposes.

2.2.1 Leaky integrate-and-fire (LIF) neuron model

In this section, the most common description of the LIF model is presented. The basic
circuit of the model consists of a parallel circuit of a capacity C with a resistor R, which
is driven by a current I(t)(see Fig. 2.11). This circuit is a leaky integrator, which fulfills
the equation

I(t) =
u(t)

R
+ C

du

dt
(2.2)

u(t) is the current at the capacity. With τ = RC as the time constant of the integrator,
the equation can be written as:

τ
du

dt
= −u(t) + RI(t). (2.3)

Thus, u(t) can be interpreted as the membrane voltage and τ as the membrane time
constant of the cell. If the voltage reaches a threshold Θ, as spike will be elicited and
the membrane voltage is set to a fixed value. After the spike, a fixed refractory period
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Figure 2.11: Circuit diagram of a leaky integrate-and-fire neuron

follows. Some aspects of the behaviour of the LIF model can be approximated to the
HH model by choosing adequate parameters Θ, R, and C.

2.2.2 LIF network of the Periodicity Model

The periodicity analyzing network proposed by Langner (1981) is implemented with LIF
neuron models (Borst et al., 2004; Voutsas et al., 2005). The soma and the synapses
of each neuron are modeled with the help of leaky integrate-and-fire processes. Each
module of the periodicity model is a so-called “block” in Simulink (see Fig. 2.12).
Simulink is a graphical user interface for the simulation environment Matlab that gives
a fast overview of the topology of the network and the network can be easily build
and modified by the user. The LIF neuron models with synapses that are used in this
work are closely related to the implementation in Simulink (see Fig. 2.13) because
parts of this work are planned to be inserted in the Simulink model. In this model
the resting potential of the soma is set to zero, the synapses integrate their input in
a leaky manner and release a transmitter amount that is looked up in a table. The
transfer functions of the synapses have a sigmoidal shape (for details see Voutsas et al.,
2005). Simulations of the periodicity model in Simulink showed that it is possible to
replicate part of responses found in the IC (Voutsas et al., 2005; Langner and Schreiner,
1988). Technically, the periodicity model is able to compute the ratio of modulation
and carrier frequency of harmonic sound signals (Fig. 2.14). In the latest update
of the model (Voutsas et al., 2005) an inhibition module has been integrated that is
physiologically related to the output of the lateral lemniscus. This inhibition suppresses
higher harmonics (see Fig. 2.14, right) as found in Ochse (2004). The periodicity model
may be used in audio signal processing applications, such as sound source separation,
periodicity analysis and a solution to the cocktail party problem.

21



Chapter 2. General Introduction

Figure 2.12: Block diagram of the periodicity model implemented in Matlab Simulink
(from Voutsas et al., 2005).

Figure 2.13: Block diagram of the used leaky integrate-and-fire synapse (left) and LIF
soma (right) in Simulink. The functional principle of this synapse and soma is used
in this work as LIF neuron models. Leakage currents and weights are variable (from
Voutsas et al., 2005).
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Figure 2.14: Simulation results of the periodicity model without (left) and with (right)
an inhibitory connection. The response results from 16 periodicity models tuned to
characteristic frequencies (CF) and best modulation frequencies (BMF) with the ratio
6:1 (CF/BMF). Stimuli are 256 combinations of 16 carrier and 16 modulation frequen-
cies. The carrier frequency axes corresponds to the CF of one periodicity model (from
Voutsas et al., 2005).

2.2.3 Hodgkin-Huxley (HH) model

Experiments of A. L. Hodgkins and A. F. Huxley in the early 1950s with the giant axon
of the squid are the origin of most neuron models, which are described by the dynamic
behaviour of channel kinetics. The work of these english physiologists led to a Nobel
prize award. They developed a model fitting their experimental results, which can be
described by several equations.
One part of their work was the description of the capacitive behaviour of the cell
membrane by

C
du

dt
= −ΣkIk + I(t), (2.4)

with I(t) as an external current and ΣkIk the sum of all ion currents through the cell
membrane. The HH model describes three different channel or currents: a sodium (Na),
a potassium (K) and a leakage current (L).

Thus, if Ohms law is applied (I = g V; g is the conductance) the sum of the currents is
as follows:

ΣkIk = gNa(u− VNa) + gK(u− VK) + gL(u− VL) (2.5)

The parameter gi are the conductances of the corresponding channels and Vi are the
Nernst equilibrium potential of the corresponding ions. u is the membrane voltage.
Depolarization produces a transient increase in gNa, and a slower and sustained increase
in gK . Immediately after a step depolarization gNa is much greater than gK , but after
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Figure 2.15: Voltage dependence of the activation variable m and inactivation variable
h of the sodium channel of the Hodgkin Huxley model. The values are reached at each
voltage after a long time. M and h are both voltage and time dependent.

the cell has been depolarized for a time, gK becomes greater than gNa. Hodgkin and
Huxley introduced the variables m, h, and n to express the time and voltage dependence
of the conductances:

gK = n4GK (2.6)

gNa = m3hGNa (2.7)

GK and GNa are the maximum conductances of the corresponding channel. In the
following, only the mechanism for the sodium channel is described because it is the
most difficult, but analogue to the potassium channel. The time progression of GNa

shows in the beginning a fast increase and then a slow decrease, which is the reason
for choosing two variables m and h. The fast activation part is described by m, the
slower inactivation part by h. Sodium passes the membrane through channel proteins
in the membrane, and these can open and close. The variables m and h each change
between 0 and 1 as functions of time and voltage. The power of the variables stand
for the number of the “gates” in each activation and inactivation part. The functional
role of these gates are described later. The product m3h represents the fraction of the
total sodium conductance at any given time. The graphs in Fig. 2.15 show the val-
ues reached by m and h when the membrane is held at various potentials for long times.

The variables m and h are also time dependent. To illustrate this, the modeled cell is
kept at 0 mV for a long time, then voltage is stepped quickly to -70 mV. The variables
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m and h change to new steady state values with a time progression depicted in Fig.
2.16. An important fact is that m changes quickly while h changes more slowly.

The concept of arbitrary variables might be confusing, but Hodgkin and Huxley sug-
gested a simple physical model which may or may not represent reality. The sodium
channel behaves as if it has two sets of gates. One set, the activation gates, opens fast
when the cell is depolarized above a threshold voltage. The other gates, the inactivation
gates, close slowly when the cell is depolarized.

For a single channel, the variable m described by Hodgkin and Huxley is the probability
that 1 m gate will be in the open position. The variable m cubed is the probability
that all three m gates will be open. When m is near 1, as it is when voltage is near
0 mV, there is a very high probability that all 3 m gates are open. When m equals
0, as it is when voltage is at the resting potential, there is a high probability that
the three m gates are all shut. For a single channel, the variable h is the probability
that the single h gate will be in the open position. When h equals 1 (near the resting
potential), the h gate is likely to be open. When h equals 0, as it does in the steady
state at depolarized voltages, the h gate is likely to be closed. The product m3h is
the probability that all of the gates are open, so that the channel can conduct sodium
across the membrane. The detailed formulas for the variables are highly complex and
nonlinear (see appendix). In Fig. 2.18 the different possible states of these gates at
different times after a suprathreshold current injection are depicted.

2.2.4 HH model from Rothman and Manis (2003c)

Rothman and Manis developed a detailed HH-like model of VCN neurons which is
desribed in three papers (Rothman and Manis, 2003a,b,c). In the first paper (Rothman
and Manis, 2003a) their experimenal results are described, the second paper (Rothman
and Manis, 2003b) explains the fitting of the results with mathematical models, and in
the third paper (Rothman and Manis, 2003c) a HH-like model is presented to simulate
the electrical behaviour of VCN neurons and to give insight in the functional role of
the channels for the physiological response properties of VCN neurons. They found
that there are some currents that all VCN neurons have in common, others differ and
can distinguish response pattern. In particular, they have shown that VCN neurons
possess one or more distinct potassium currents, namely a rapidly inactivating current,
a rapidly activating, slowly inactivating low-threshold current, and a non-inactivating
high-threshold current. The potassium currents play a major role for spike shape, spike
rate, spike adaptation, and regularity of discharge (Rothman and Manis, 2003a). The
low-threshold, slowly non-inactivating potassium current is suggested to be the key for
changing the response pattern from chopper-like to onset-like (Rothman and Manis,
2003c). Cells containing this current enter a high conductance state following an initial
discharge (Rothman and Manis, 2003a) and do not fire any more. The low-threshold
current has a low activation voltage (-70 mV). The high-threshold current is apparent
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Figure 2.16: Time progression of the activation variable m and inactivation variable h
of the sodium channel of the Hodgkin Huxley model after a voltage step (a). M and
h are both voltage and time dependent. The time progression of m and h (b), of m3h
(c), which is the term in the HH model, and of the corresponding sodium conductance
(d) is depicted.
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Figure 2.17: Explanation for the arbitrary variables m and h of the sodium channel. M
is a set of three fast activation gates, and h is one inactivation gate. If the membrane
is at the resting potential, the activation gates are closed and the inactivation gate is
open, whereas if the membrane is depolarized for a long time the activation gates are
open and the inactivation gate has closed.

Figure 2.18: Scheme of the dynamic behaviour of the activation and inactivation vari-
abes m and h of the sodium channel in the HH model after a depolarization. Each step
in the cycle from -70 mV to 0 and back is described in the figure.
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in all VCN neurons (including stellate (choppers) and octopus cells (onset), see Bal and
Oertel (2001)). The characteristics of this current are similar to the channel KCNC1,
which is known to be expressed throughout the VCN and allows to fire at high rates
by a rapid repolarization of their action potentials (Grigg et al., 2000).

The VCN model is described by the following equation:

Cm
dV

dt
= IA + ILT + IHT + INa + Ih + Ilk + IE − Iext (2.8)

with
Cm: membrane capacitance
IA: fast inactivating K+ current
ILT : fast-activating slow-inactivating low-threshold K+ current
IHT : high-threshold K+ current
INa: fast-inactivating Na+ current
Ih: hyperopolarization-activated cation current
Ilk: leakage current
IE: excitatory synaptic current
Iext: external electrode current source

The detailed equations are shown in the appendix. In the following details of the low-
threshold K+ current are demonstrated because the presence of this current determines
mainly the difference between a chopper and onset response pattern. The current is
determined by the activation variable w and the inactivation variable z,

ILT = ḡLT · w4z · (V − VK). (2.9)

As described in Section 2.2.3, w4 can be interpreted as four activation gates and z as one
inactivation gate. The change of each variable is described by the differential equation

dx

dt
= (x∞ − x)/τx (2.10)

with x either w or z. The variables w and z are both voltage and time dependent by

w∞ = [1 + exp(−(V + 48)/6)]−1/4 (2.11)

z∞ = (1− ζ) · [1 + exp((V + 71)/10)]−1 (ζ = 0.5) (2.12)

(2.13)

and

τw ∝ [6 · exp((V + 60)/6) + 16 · exp(−(V + 60)/45)]−1 + 1.5 (2.14)

τz ∝ [exp((V + 60)/20) + exp(−(V + 60)/8)]−1 + 50. (2.15)
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Figure 2.19: Activation and inactivation variables and time constants of the low thresh-
old (LT) and the high threshold (HT) current. Left: The activation variable of the low
threshold current is shifted to lower voltages in comparison to the one of the high thresh-
old current. The inactivation variable of the low threshold current does not reach zero,
that means the channel is never completely closed. Right: The time constant of the
inactivation variable of the low threshold current is much higher than the other time
constants of LT and HT currents.

The latter equations show that the time dependence is again voltage dependent. The
corresponding curves for voltage dependence dependence are depicted in Fig. 2.19
(left) in comparison to high threshold current, and for the time dependences in Fig.
2.19 (right).

The voltage dependence shows that z∞ (the inactivation variable) does not reach zero
if the voltage rises, which means that z gate does not close completely. This is in
contrast to the inactivation variable in Fig. 2.15. The inactivating variable and the low
threshold together with the slow time constant τz of the low threshold current (Fig.
2.19) is the major reason for typical onset behaviour of the cells with this current.

2.2.5 Compartment neuron model

In addition to the detailed description of the ion currents by the Hodgkin and Huxley
model, compartment models introduce the spatial structure of the neurons in the model.
The neuron is no longer a point-like unit, but the neuron and its dendrites and axons
are described by equivalent electrical circuits (Fig. 2.20).

The dendritic tree or any other part of the neuron can be modeled in an optionally
detailed way, but available calculation time limits the depth of simulated details. Com-
partment models are mostly used for simulation of single cells and small networks.
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Figure 2.20: Procedure of building a compartment model. Neuroanatomical and neuro-
physiological data (A) are the basis for a cable model, which is divided in short sections
(B). These sections are described by electrical circuits (C) (from Bower and Beeman,
1994)
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Figure 2.21: Different parts of the simulation modules like the inner ear model, onset
model, and chopper models, which are written in different programming languages like
C or Matlab, can be combined in the Matlab environment. For example, C programs
are interfaced by so-called “mex-files”.

2.3 Simulation environments

The main simulation environment used in this work is Matlab. It combines a high level
graphical abilities with high level programming possibilities.
Different programming languages can be combined such as C, C++, Fortran, Maple,
and others. Many models of the peripheral processing of the auditory system like
cochlear filterbanks are implemented in C. This ensures a fast calculation. These mod-
ules can be inserted in Matlab by means of so-called “mex-files”, which are interfaces
between the Matlab script language and C. In this work, the model of the inner ear
and the onset neuron are mex-files, because they were already implemented in C. An
overview of the used models and their implementation in Matlab is given in Fig. 2.21.
The chopper neurons are implemented in script-files, which contain “function” files.
These files encapsulate the soma and synapses and are similar to classes in C++.

NEURON is the second simulation environment, which is used in this work. It was de-
veloped for simulation in computational neuroscience (Hines, 1993; Hines and Carnevale,

31



Chapter 2. General Introduction

1997). UNIX is the original operating system for NEURON, but it is also possible to
run it on WINDOWS because an emulating software is part of the package. NEU-
RON is often used because it is freeware and it features tools that can easily be used
and fit experimental data mathematically. Besides, it is well-known and established
in the neuroscience community, which means that many models of different cell types
already exist. A great amount of models is stored in a world wide web database, called
“ModelDB” (Migliore et al., 2003; Hines et al., 2004). The model of Rothman and
Manis (2003c), which is also stored in the “ModelDB”, was simulated in this work in
NEURON and Matlab.
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Chapter 3

Oscillating neurons in the cochlear
nucleus: I. Experimental basis of a
simulation paradigm

3.1 Abstract

Anatomical and physiological auditory data and pitch measurements are presented in-
cluding some additional analysis. The data provide the basis for a new computer model
of sustained chopper neurons in the ventral cochlear nucleus. New and old evidence
indicating a preference for multiples of 0.4 ms in oscillations of chopper neurons in
the cochlear nucleus of different species such as man, cat, and Guinea fowl, is summa-
rized. The hypothesis here is that the time constant of 0.4 ms is due to the minimum
synaptic delay of chopper neuron connections. Anatomical findings show that chopper
neurons are indeed connected and can excite each other; thus a model of a circular
network of neurons that are connected via synapses with a delay of 0.4 ms is plausible.
Results concerning frequency tuning and dynamical properties of periodicity encoding
from chopper neurons are reviewed. Furthermore, it is concluded that chopper neurons
receive input both from auditory nerve fibers and onset neurons.

3.2 Introduction

Oscillations are ubiquitous in biological organisms. In neuroscience, describing and un-
derstanding oscillations is crucial because they are a pervasive feature of signal process-
ing in neuronal networks, and neuronal population oscillations are to be found through-
out all kinds of neurobiological systems. Examples are pattern generating circuits in
human and animal physiology (Glass, 2001). Furthermore, oscillations are supposed to
play a role in consciousness and perception (Singer, 1998). Last but not least, high-
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frequency (0.2-1 kHz) oscillations, so-called “intrinsic oscillations,” can be found in
chopper neurons in the cochlear nucleus (CN), which seem to play a role in the process-
ing of fast temporal signals.
Chopper neurons have an oscillating response pattern and multi-peaked PSTHs with
relatively constant interspike intervals unrelated to the stimulus frequency and with the
mean interspike interval and the standard deviation stable over the response time (Pfeif-
fer, 1966; Blackburn and Sachs, 1989; Winter et al., 2001; Wiegrebe and Winter, 2001)
(see Section 3.3 for details). Among neurons in the auditory system, chopper neurons
are outstanding because they show stable interspike intervals even when the amplitude
of the incoming signal changes. As a consequence of findings from electrophysiological
recordings in the auditory midbrain chopper neurons with a preference for interspike
intervals which are multiples of 0.4 ms were included in a model of temporal process-
ing of pitch (Langner, 1981, 1983, 1992; Rees and Langner, 2005). Similarly, a recent
modelling study suggests that chopper neurons are involved in the transformation of a
temporal pitch code into a place code (Wiegrebe and Meddis, 2004). In this chapter,
old and new evidence for a preference for multiples of 0.4 ms in interspike intervals
of chopper neurons will be summarized (see Section 3.5.1). In contrast to the model,
which is introduced here, previous computer simulations can not explain this preference
(e.g. Banks and Sachs, 1991; Hewitt et al., 1992; Wiegrebe and Meddis, 2004). The
time constant of 0.4 ms is related here to the minimum synaptic delay of a chemical
synapse (see Section 3.6.1) as reported by Li and Guinan (1971), Hackett et al. (1982),
and Taschenberger and Gersdorff (2000). Similarly, Ferragamo et al. (1998a) found a
synaptic delay of about 0.5 ms in T-stellate cells excited by interneurons. Accordingly,
a synaptic delay of 0.4 ms was included in my computer simulation. As described in
the following chapter, chopper neurons are set up in a network with excitatory inter-
connections and receive input both from the auditory nerve fibers and onset neurons.
The intention is to test the role of interconnections and synaptic delays in the cochlear
nucleus for the response patterns of these neurons.
Therefore this chapter is organized as follows:
Section 3.3 outlines some anatomical and physiological details of the cochlear nucleus,
including some findings concerning statistics of chopper properties. Section 3.4 de-
scribes the methods used to analyze data from a previously published experiment. In
Section 3.5, some experiments are reviewed and new results are presented to justify
the idea of the simulation paradigm in the following chapter. Section 3.6 discusses the
results of this evaluation and presents the main thesis.
Section 3.7 concludes the chapter with a summary of the main points and the conse-
quences for the computer simulation.
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3.3 Neuroanatomy and physiology of chopper neu-

rons in the cochlear nucleus

The cochlear nucleus (CN) is divided into three sub-nuclei: the anterior ventral cochlear
nucleus (AVCN), the posterior ventral cochlear nucleus (PVCN), and the dorsal cochlear
nucleus (DCN, Osen, 1969). The auditory nerve projects tonotopically into all three
of these areas and bifurcates into a ventral and dorsal branch. The ventral ascending
branch crosses areas of the AVCN and makes contacts with cells via collateral endings,
the dorsal descending branch innervates the PVCN and ends in the DCN (Arnesen
and Osen, 1978). The CN contains a variety of cell types, e.g. stellate, octopus, and
bushy cells (Osen, 1969). Physiological classification of cells in the CN is based on their
different auditory response characteristics (Blackburn and Sachs, 1989). For example,
multipolar stellate cells in the PVCN were characterized as chopper or onset (chopper-)
neurons, and octopus cells as onset neurons (Ostapoff et al., 1994). T-stellate cells, a
subclass of stellate cells named for their axons that run through the trapezoid body,
have also been identified as chopper neurons (Oertel et al., 1990). They receive excita-
tory input from a small number of Type-I auditory nerve fibers and from collaterals of
other T-stellate cells (Ferragamo et al., 1998a). Choppers seem to excite other chop-
pers which are tuned to similar frequencies (Ferragamo et al., 1998a). After electrical
stimulation of the nerve T-stellate cells respond with a delay between 0.48 ms and 0.92
ms (Ferragamo et al., 1998a). Allowing for a short travel time, these results indicate
that the shortest synaptic delay from the AN-synapses is in the range of 0.4 ms which
is here suggested as the minimum synaptic delay. Measurements of the fine-structure
of the EPSP in T-stellate cells led to the conclusion that these cells receive only about
5 monosynaptic inputs from the auditory nerve. This suggests that their input covers
only a small range of the frequency spectrum represented in the auditory nerve (Fer-
ragamo et al., 1998a). These findings are in line with the model introduced here and
suggest, as also stated by Ferragamo et al. (1998a), that other models requiring the
integration of many inputs might be inappropriate (e.g Banks and Sachs, 1991).
Chopper neurons are characterized by spike trains with comparatively constant inter-
spike intervals that are unrelated to the stimulus frequency and level (Pfeiffer, 1966).
According to Blackburn and Sachs (1989), chopper neurons may be divided into the
following subtypes: sustained choppers with constant interspike intervals, transient
choppers with interspike intervals changing over time, and, onset choppers with promi-
nent onset peaks.
Moreover, the authors suggested a further subdivision of choppers into transiently
adapting choppers (a subtype of transient choppers), which show an abrupt increase of
their mean interspike intervals followed by a plateau phase, and slowly adapting chop-
pers (a subtype of transient and sustained choppers), which show a linear increase of
their mean interspike intervals with time.
Although chopper neurons were found to be more sharply tuned than auditory nerve
fibers, they have similar rate functions in response to auditory signals (Frisina et al.,
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1990a).
Furthermore, auditory nerve, onset, and chopper neurons demonstrate a hierarchy both
in the enhancement of encoding amplitude modulation (AM) and their latencies (Frisina
et al., 1990a; Blackburn and Sachs, 1989; Rhode and Smith, 1986). Both auditory nerve
fibers and VCN units show strong synchronous responses to low-intensity, low-frequency
amplitude modulation, which decrease with increasing AM frequency (Frisina et al.,
1990a). The dynamical range of periodicity encoding of VCN units is even larger than
that of auditory nerve fibers. Onset units show the strongest synchronous responses
of all VCN units, followed by chopper neurons, with the largest enhancement at high
intensities (Frisina et al., 1990a). This hierarchy is the same for the encoding of AM
frequencies between 20 and 1000 Hz. In the sample reported by Frisina et al. (1990a)
both onset and chopper neurons tended to be tuned near 150 Hz. At low intensities
chopper as well as onset units show a more low-pass characteristic, which changes into
a more band-pass-like characteristic at high frequencies changes. Onset neurons show
the largest response gain and are the best encoders for AM in the CN (Frisina et al.,
1990a). Latency measurements suggest the following hierarchy: auditory nerve, onset
neurons, onset chopper neurons, and other chopper neurons (Rhode and Smith, 1986;
Young et al., 1988).

3.4 Methods

In this chapter certain data previously reported by Young et al. (1988) will be evaluated.
Relevant details of their methods are therefore presented here. The stimuli used in their
experiments were 25-ms tone bursts at the best frequency of the unit and were presented
once every 200 ms. The rise/fall times of the trapezoidal envelopes tone bursts were
1.6 ms. The units were classified by their PSTH and by regularity analysis. In the
case of chopper neurons, PSTHs showed regularly spaced peaks of discharge with spike
intervals that were not related to the stimulus waveform (no phase locking). Regularity
analysis was performed by measuring the mean and standard deviation of the interspike
intervals. The coefficient of variation, which is a measure for the regularity of interspike
intervals, separates regular (sustained) choppers (CV<0.35) from irregular (transient)
choppers (CV>0.35).
Since the original data of the mean intervals could not be provided by the authors,
results presented in Fig. 7 of their paper were digitised by using a data-thief program.
In order to test that a preference for multiples of 0.4 ms exists in the raw data of the
digitised interspike intervals of the 163 recorded chopper neurons, two classes of test-
intervals were generated. The intervals of the first class were centered at multiples of
0.4 ms with an interval-width of 0.2 ms, and the remaining intervals of the second class
were centered at multiples of 0.4 ms + 0.2 ms. The class centered at multiples of 0.4
ms contained 93 recorded interspike intervals of the chopper neurons, the other class
70 intervals.

36



Chapter 3. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a
simulation paradigm

3.5 Review of experiments on pitch perception and

on the physiology of temporal coding

3.5.1 Evidence for preferred intervals of intrinsic oscillations

Evidence for a time constant of 0.4 ms in the inferior colliculus

Evidence for multiples of 0.4 ms of preferred intervals in intrinsic oscillations was first
found in the central nucleus of the IC of Guinea fowls (Langner, 1981, 1983) and cats
(Langner and Schreiner, 1988). They were described as brief bursts of spikes occurring
at onsets of tones or of modulation cycles of amplitude modulated sounds. In the
cat these oscillations were present in 30% of the samples and showed preferences for
intervals that were multiples of the same base period of 0.4 ms. The intrinsic oscillations
were only weakly influenced by changes of stimulus frequency or intensity (Langner and
Schreiner, 1988). The distribution of single unit intervals with standard deviation of
<10% in their PSTHs is shown in Fig. 3.1. Only the first interval of each oscillation
was considered. As can be seen in Fig. 3.1, peaks are prevalent at intervals of 1.2, 1.6,
2.0, and 2.4 ms, which are all multiples of a base period of 0.4 ms. Since the IC receives
a major input from chopper neurons of the CN (Adams, 1983), it was hypothesized
that the origin of the intrinsic oscillations found in IC is the CN (Langner, 1992). Fig.
3.2 illustrates the responses of 13 units in the auditory midbrain of Guinea fowls to
the onset of pure tones at the center frequencies of the units (Langner, 1983). The
responses of the units reveal that neither the BF nor the frequency of the stimulus
define the periods of the oscillations. The preference of integer multiples of 0.4 ms in
the presented units is obvious.

Evidence for a time constant of 0.4 ms in pitch shift experiments

In a certain range the pitch of a SAM equals the pitch of the modulation frequency
(fm), provided the carrier frequency (fc) is a multiple of it. However, when the carrier
is varied, pitch deviates systematically from the pitch of fm and changes linearly (first
effect of pitch shift), corresponding approximately to the pitch of a subharmonic of
the carrier (Schouten, 1970). The pitch shift effect was studied in detail by varying
fc of SAM signals in small steps ( 1%) and matching their pitch to the pitch of pure
tones (Langner, 1981). The analysis of the pitch shift in terms of carrier and pitch
period instead of the corresponding frequencies gave evidence for an underlying tempo-
ral correlation analysis. As an additional effect, steps with pitch values corresponding
to periodicities in multiples of 0.4 ms were frequently observed in the resulting pitch
curves (Fig. 3.3). A correlation mechanism was proposed as a model for the underlying
neuronal pitch estimation in the time domain (Langner, 1981). It includes neuronal
mechanisms which seem to offer an explanation not only for the pitch shift effect and
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Figure 3.1: Distribution of neurons (IC of the cat) with the first interspike interval
depicted on the x-axis. Peaks at multiples of 0.4 ms are clearly visible (data from
Langner and Schreiner, 1988).

the steps in the pitch curve, but also for the responses of periodicity tuning of neu-
rons in the midbrain. The model consists of an oscillator, a frequency reducer and a
coincidence neuron, which are assumed to have their correlatives in chopper neurons
in the VCN, pauser neurons in the DCN, and disc cells in the IC (Langner, 1992). In
this model the oscillator plays a role as a time reference in pitch perception. It was
postulated that the observed steps in the pitch curve result from a correlation process
that includes the oscillation intervals of chopper neurons as a time reference.

Evidence for a time constant of 0.4 ms in the cochlear nucleus

Responses of units in the VCN of decerebrate cats were recorded by Young et al. (1988).
A scatter plot of the interspike intervals for all the units is shown in Fig. 3.4 (Young
et al., 1988, Fig. 7). The data presented in Fig. 3.4 were analysed for the preference
of certain oscillation intervals. The mean intervals of regular and irregular chopper
neurons are shown as a histogram (Fig. 3.5). Note that the variance of the modes in
Fig. 3.5 seems to increase with the order of the modes.
The null hypothesis, which assumes that interspike intervals of chopper neurons are
equally distributed, was tested statistically for the digitised raw data of Fig. 3.4 (see
Methods for details). For this purpose two classes were generated. One class contained
intervals centered at multiples of 0.4 ms with an interval-width of 0.2 ms, and the other
class contained the remaining intervals, which have the same probability (0.5) for a hit.
The null hypothesis was rejected for the binomial distribution (p = 0.05), indicating
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Figure 3.2: Intrinsic oscillations with periods in multiples of 0.4 ms in the midbrain of
Guinea fowl (Langner, 1983). The scale for all of the x-axes is given by a bar at the
bottom. The scales for the y-axes of the first 7 and the last 6 PSTHs are given by two
bars on the left side. Six columns of numbers specify the units and the experiments: 1.
unit number, 2. oscillation period, 3. best frequency, 4. stimulus frequency, 5. latency
of the first maximum, 6. number of repetitions. The intervals between the dotted lines
are 0.4 ms. The first maximum of each PSTH was adjusted to the first line.
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that there is a significant preference for intervals centered at multiples of 0.4 ms.

3.5.2 Dynamic features of auditory nerve, onset-, and chopper
neurons

Physiological data show that chopper neurons exhibit a dynamic range of periodicity
encoding over up to over 90 dB, whereas auditory nerve fibers show only a dynamic
range of only 30-40 dB (Frisina et al., 1985). There is a hierarchy of periodicity encoding
in auditory nerve fibers, chopper neurons, and onset neurons. The best encoding of
periodicity is by onset neurons (Frisina et al., 1990a). The difference in periodicity
enhancement between onset neurons, chopper neurons, and auditory nerve fibers is
shown in Figs. 3.6 and Fig. 3.7. In contrast to the high dynamic range of periodicity
encoding of chopper neurons, their rate function may saturate within a range of 10 dB
(Fig. 3.8), which is even smaller than the dynamic range of single auditory nerve fibers
(Winter et al., 1990). Palmer et al. (1996) suggested that chopper units may respond
as energy detectors, which have filtering characteristics that can be deduced from their
pure-tone response areas. This sharp frequency tuning may be basically due to the
input of a small number of auditory nerve fibers tuned to a narrow frequency range.
However, the assumption that chopper neurons are involved in periodicity coding raises
a problem: single fibers can not encode periodicity if the fiber is saturated, because in
this situation, the modulation of the amplitude has no effect on the firing rate. Fibers
saturate within a dynamical range of about 30-40 dB. Hence, if chopper neurons receive
input only from sharply tuned auditory nerve fibers, they could only encode periodicity
over a small dynamic range, which is not the case (see above).

3.6 Discussion

3.6.1 Rationale for a synaptic delay of 0.4 ms as a basis for an
auditory time constant

As demonstrated above, evidence for a time constant of 0.4 ms emerges in recordings
of neurons in the IC (Langner, 1981, 1983; Langner and Schreiner, 1988), in psychoa-
coustical experiments (Langner, 1981), and in recordings in the CN (Young et al.,
1988). Consequently, a neuronal model for a temporal correlation analysis was sug-
gested as a basis for pitch perception. This model included multiples of 0.4 ms as
preferred intervals for intrinsic neuronal oscillations (Langner, 1983, 1992). Obviously,
an explanation for the observation is required that the same time constant is appar-
ent in different measurements and in various species such as man, Guinea fowl, and cat.

Several explanations for the observed interval preference may be considered:
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Figure 3.3: Psychophysical pitch measurements of SAM (Langner, 1981). a: Mod-
ulation frequency is 208 Hz, carrier frequency varies from 1100 Hz to 1500 Hz. b:
Modulation frequency is 200 Hz, carrier frequency varies from 950 Hz to 1500 Hz. Both
of the pitch curves show steps at multiples of 0.4 ms. It was proposed that the observed
steps in the pitch curve result from the oscillations of chopper neurons which are part
of a neuronal correlation analysis for pitch estimation.
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Figure 3.4: Regularity data of VCN neurons from Young et al. (1988). The x-axis shows
values of mean interspike intervals, the y-axis shows values of the standard deviation
for times between 12 and 20 ms after stimulation. The dashed line marks the CV
which equals 0.5. A similar analysis of auditory nerve fibers results in data falling
within the solid lines. The data include intervals from regular and irregular chopper
neurons, primary-like and primary-like with notch neurons, unusual and onset neurons
(for classification see: Blackburn and Sachs, 1989).

42



Chapter 3. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a
simulation paradigm

0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

8

9

10

Interspike interval [ms/0.4]

N
um

be
r 

of
 in

te
rv

al
s

Figure 3.5: Histogram of interspike intervals (data from Fig. 3.4). The binwidth is 0.1
ms, the number along the x-axis indicates the lower edge of the interval.

1. The time constants are due to membrane properties.
Since time constants of membranes can be easily varied, it is difficult to under-
stand why a preference for multiples of 0.4 ms would emerge in quite different
species.

2. The time constant is based on axonal or dendritic delays.
Even in the case of slow neuronal velocity of 1 m/s, a time span of 0.4 ms re-
sults in a distance of 400 microns. For larger multiples of 0.4 ms, unrealistically
long distances in neuronal circuits would be required. Again, it is difficult to
understand why and how the same time constant is present in different animals.

3. The basis for the time constant of 0.4 ms is a synaptic delay introduced by a
chemical synapse.
Processing times in the auditory system are the shortest in the brain. It may
therefore be a reasonable assumption that optimization processes for auditory
temporal processing resulted in the same synaptic delay of 0.4 ms in different
species (Li and Guinan, 1971; Hackett et al., 1982; Taschenberger and Gersdorff,
2000).
A time constant based on the minimum synaptic delay would be the same in any
kind of neuronal system working in the same temperature range.
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Figure 3.6: Response surfaces for the neuronal encoding of AM in onset neurons and
auditory nerve fibers of the gerbil. The response of the onset neuron (solid line) is
plotted over a corresponding surface of a typical auditory nerve fiber (dotted line).
Onset neurons show a larger gain than chopper neurons and auditory nerve fibers (CF
= 12.0 kHz, threshold = 33 dB SPL, stimulus modulation depth = 35%; plot copied
from Frisina et al., 1990a).
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Figure 3.7: Response surfaces for the neuronal encoding of AM in chopper neurons and
auditory nerve fibers of the gerbil. The response of the chopper neuron (solid line)
is plotted over a corresponding surface of a typical auditory nerve fiber (dotted line).
Chopper neurons show a larger gain than nerve fibers (CF = 9.9 kHz, threshold = 9
dB SPL, stimulus modulation depth = 35%; plot copied from Frisina et al., 1990a).

Figure 3.8: Rate-intensity function for a chopper unit in the VCN of an adult gerbil in
response to a tone burst at the characteristic frequency (6.3 kHz, threshold 11 dB). The
open circles indicate quasi steady-state rates measured during a 20-ms interval starting
25 ms after onset (redrawn from Frisina et al., 1990b).
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3.6.2 Rationale for the integration of an input from onset neu-
ron to chopper neurons

The high dynamic range of periodicity encoding as well as the rate function of chopper
neurons described above can not be understood unless one assumes that their input
comes from nerve fibers that code only a narrow frequency range. Two different mech-
anisms may provide an explanation of the dynamic features of chopper neurons:

1. Auditory nerve fibers from a broader frequency range around the CF may project
to a chopper neuron.
Even if fibers close to the CF saturate, neighbouring fibers not yet saturated would
still be able to encode periodicity. However, two facts contradict this theoretical
solution:

• Chopper neurons are sharply tuned. If auditory nerve fibers from a wide
frequency range would project to a chopper neuron this would not be the
case. One might assume that lateral inhibition could sharpen the frequency
tuning in spite of a broadband input, but tuning curves of chopper neurons
seem to show no or only minimal lateral inhibition (Bourk, 1976; Caspary
et al., 1994).

• If nerve fibers with different CFs projected to a chopper neuron, it would also
result in a higher dynamic range of the neuron for pure tone responses. This
is because with higher SPL off-CF fibers start to respond and to increase the
firing rate of the chopper neuron. In contrast to this assumption, chopper
neurons show an even smaller dynamic range of their firing rate than single
auditory nerve fibers (Frisina et al., 1990b; Winter et al., 1990).

2. Onset neurons may activate chopper neurons.
Onset neurons show the best periodicity encoding in the VCN. Provided that
they are able to trigger chopper neuron oscillations, they could enhance their
periodicity encoding. The input of onset neurons from a broad frequency range
permits periodicity encoding even if single auditory nerve fibers saturate.

Since chopper neurons code periodicity similarly to that of onset neurons and they are
located close to these neurons, it seems reasonable to assume that they could receive an
input from onset neurons which may be octopus cells. However, an actual connection
between octopus cells and chopper neurons has not yet been demonstrated. Note that
this model is in line with the assumption that onset-chopper neurons which have similar
response properties as octopus cells trigger other chopper neurons.
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3.7 Conclusions

3.7.1 Physiological and psychoacoustical data

• Multiples of 0.4 ms were demonstrated in intrinsic oscillations in the auditory
system and in pitch shift experiments. The time constant of 0.4 ms is explained
by the assumption of a minimum chemical synaptic delay of this size between
chopper neurons.

• The large dynamic range of periodicity coding, the small dynamic range of pure
tone response, and the sharp frequency tuning of chopper neurons can be ex-
plained by simultaneous projections from both the auditory nerve fibers and onset
neurons to chopper neurons.

3.7.2 Simulation paradigm

As a consequence of the above conclusions, the topology of the simulation in the fol-
lowing chapter is as follows:

• To ensure the preference for multiples of 0.4 ms, chopper neurons are arranged in
a circular network. The minimum number of two chopper neurons in this network
corresponds to the proposed minimum refractory period of 0.8 ms.

• Chopper neurons receive input from both auditory nerve fibers and onset neurons.
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Chapter 4

Oscillating neurons in the cochlear
nucleus: II. Simulation results

4.1 Abstract

A computer model of sustained chopper neurons in the ventral cochlear nucleus is pre-
sented and investigated. In the previous chapter, the underlying neurophysiological and
neuroanatomical data are demonstrated. To explain the preference of chopper neurons
for oscillations with periods which are multiples of a 0.4 ms synaptic delay, a model is
suggested of circularly connected chopper neurons. In order to simulate chopper neu-
rons within a physiological dynamic range for periodicity encoding, it is necessary to
assume that they receive an input from onset neurons. My computer analysis of the
resulting simple neuronal network shows that it can produce stable oscillations. The
chopping can be triggered by an amplitude modulated signal (AM). The dynamic range
and the synchronous response of the simulated chopper neurons to AM are enhanced
significantly by an additional input from onset neurons. Physiological properties of
chopper neurons in the cat, such as mean, standard deviation, and coefficient of varia-
tion of the interspike interval are matched precisely by my simulations.

4.2 Introduction

In the previous chapter the physiological properties of chopper neurons are described in
detail. Their outstanding constant interspike intervals, even if frequency and amplitude
of a stimulus are changed, their preference for intervals that are multiples of 0.4 ms,
and their dynamic ranges of both spike-rate in responses to pure tones and periodicity
encoding are features that have to be attributed to neuronal mechanisms. Computer
models based on membrane properties of single neurons (e.g. Banks and Sachs, 1991;
Hewitt et al., 1992; Wiegrebe and Meddis, 2004) have suggested possible mechanisms
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to explain the constant interspike intervals and to match the regularity analysis of
chopper oscillations based on membrane properties of single neurons. However, the
dynamic range and the preference for multiples of 0.4 ms in chopper intervals can
not be explained by these models. Here the time constant of 0.4 ms is related to
the minimum synaptic delay of chemical synapses (see previous chapter for details).
Consequently, this synaptic delay is the basis for my simulation paradigm: chopper
neurons are arranged in a network with excitatory interconnections. They receive input
from both the auditory nerve and an onset neuron to guarantee precise timing, sustained
chopping, and the dynamic range of chopper neurons for periodicity encoding and firing
rate. This topology is an alternative to existing models and a new way to simulate
chopper neurons. It is in line with the periodicity model (Langner, 1992; Rees and
Langner, 2005) referred to in the previous chapter.
The chapter is organized as follows:
Section 4.3 describes the implemented neuronal models and the topology of the network.
Section 4.4 presents the results and compares them to physiological data.
Section 4.5 provides a discussion of the results.
Finally, Section 4.6 presents conclusions and highlights different aspects of the model.

4.3 Neuronal modelling

4.3.1 Methods

Implementation

The commercial software “Matlab” (The MathWorks, Inc.) was used as the simulation
environment because of its visualisation abilities and also because it is in common usage.
The differential equations are numerically realized by the Euler method in “Matlab”.
Time steps of 25 µs were sufficient for the relevant time scales of about 0.1 ms. Signal,
onset neuron, and chopper neurons are implemented as script-files, and ANF response
is calculated within a mex-file in “Matlab”. Programs were executed on a PC with 2.0
GHz and 512 MB RAM.

Signals

In the model, SAMs with different modulation depths and constant carrier and mod-
ulation frequency were used as input signals. They represent the sound pressure of
acoustic signals and were presented directly as an input to a hair cell model. In Fig.
4.1 a typical SAM is plotted.

Mathematically, a SAM is described by

SAM = sin(2πfct) · (1 + m · cos(2πfmt)) (4.1)
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Figure 4.1: SAM as a standard input signal of the simulations. SAM is depicted in
the time domain. The ordinate shows the sound pressure of the signal. The carrier
frequency is 600 Hz, the modulation frequency 100 Hz. The modulation depth is 100%.

= sin(2πfct) +

+
1

2
m · sin(2π(fc + fm)t)

+
1

2
m · sin(2π(fc − fm)t), (4.2)

where fm and fc are the modulation and the carrier frequency, respectively. The fre-
quency of the sidebands are denoted by fc ± fm, the modulation depth by m.

In the following an unmodulated signal is indicated by a modulation depth of 0%. In
the simulations 2 standard signals are mainly used:

• “Standard tone”:

frequency 600 Hz

• “Standard SAM”:

carrier frequency 600 Hz,
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modulation frequency 100 Hz,

modulation depth 100%.

These stimulation parameters are for signals in electrophysiological experiments (Batra
et al., 1989; Heil et al., 1995; Langner and Schreiner, 1988; Mueller-Preuss et al., 1994).

4.3.2 Simulation paradigms: “Circular oscillator” and “Multi-
oscillator”

Physiological and anatomical findings presented in the previous chapter led to the
following simulation paradigm:

1. Chopper neurons are arranged in a circle, where each neuron can activate its
subsequent neighbour.

2. The first of two additional inputs is transmitted via five synapses from auditory
nerve fibers.

3. The second additional input comes from an onset neuron and activates only one
of the choppers in the circle.

4. As an alternative topology, two or three chopper neurons which are connected as
described above operate as a pace-maker and project to other chopper neurons
that have a larger refractory period. This reduces the number of chopper neurons
that are required to produce interspike intervals greater than 0.8 ms (Fig. 4.3).

The two different simulation topologies are shown in Figs. 4.2 and 4.3, referred to
in the following as “circular oscillator” and “multi-oscillator”, respectively. The input
signal of the chopper circuit is a transformation of a sound signal that is processed in
the cochlea and translated into spikes (detailed description in the subsequent sections).
The spikes travel along the auditory nerve which projects to both chopper and onset
neurons. Onset neurons are innervated by a broadband input from the auditory nerve
that is weighted in a Gaussian shape. In accordance with the estimates of Ferragamo
et al. (1998a) chopper neurons receive 5 inputs from the auditory nerve. Chopper
neurons are connected to each other in a circular unidirectional way as shown in Fig.
4.2. Input from the nerve depolarizes the membrane of the chopper neurons. This
change in membrane voltage enables chopping but does not initiate it. The reason is
that the weights of auditory nerve synapses are adjusted in such a way that auditory
nerve input alone can not drive the membrane voltage to threshold. Instead, chopping
is initialized by a spike from the onset neuron. In Fig. 4.3 two or three fast chopper
neurons are again arranged again in a circular network. These neurons act as a pace-
maker with a clock-rate of 0.4 ms and project to slower chopper neurons which, due
to their larger refractory period, skip shorter intervals while leaving intervals which are
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multiples of 0.4 ms. With this topology, the number of neurons required for long ISI
and the redundancy of phase information is diminished in comparison to the previous
topology.

4.3.3 Modelling of inner ear, hair cell, and auditory nerve
fibers

Inner ear

A wave-digital filter model describes the vibrations of the basilar membrane on the basis
of the passive inner ear hydrodynamics; it consists of 125 mass-spring resonators that are
connected by a coupling-mass (Strube, 1985; Zwicker, 1986). In order to simulate outer
hair cell functions, the amplitude of the vibration of the basilar membrane is amplified
and the travelling-wave along the basilar membrane is sharpened at low levels. This is
performed by second-order resonators that are added at the outputs of the cochlear filter
bank. The quality factors of the resonators are altered in every iteration step depending
on the displacement of each resonator. Four stages of resonators are cascaded to achieve
physiological amplification and reasonable filter shapes.

Inner hair cell model and auditory nerve fibers

The stereociliary bundles of the sensory cells are deflected by fluid motion from the
movements of the basilar membrane (Mountain and Cody, 1999). When the hair bun-
dle is deflected, ion channels open and K+-ions diffuse into the cell. The diffusion
depolarizes the inner hair cell membrane. Due to this depolarization, Ca2+-ions enter
the cell through voltage activated Ca-channels. High Ca2+-concentration within the
cell leads to a fusion of synaptic vesicles with the cell membrane (Beutner et al., 2001;
Moser and Beutner, 2000). The neurotransmitter produces an action potential at the
postsynaptic membrane. As there is a depletion of vesicles, spiking probability of the
auditory nerve is diminished after a strong stimulus (adaptation). The model also in-
cludes a refractory period of about 1 ms (Carney, 1993). Randomness of the nerve
action potentials is due to statistical vesicle fusion. One inner hair cell is connected to
20 synapses of the auditory nerve.

4.3.4 Theory of the implemented neuronal models

The implemented neuronal network (Figs. 4.2, 4.3) consists of the following different
types of neurons.
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Onset

neuron

Chopper

 neurons

Signal

Inner ear 

Inner hair cell 

Auditory nerve fibers

...

Figure 4.2: Scheme of the simulation topology I (“circular oscillator”). The signal is
processed by a model of the inner ear, inner hair cells, and auditory nerve fibers. In
the next processing step, 5 inputs from the nerve converge on each chopper neuron,
the onset neuron receives its broadband input from the auditory nerve and excites one
chopper neuron. The chopper neurons are arranged serially in a circle and can excite
each other.
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Figure 4.3: Scheme of the simulation topology II (“multi-oscillator”). The signal is
processed by a model of inner ear, inner hair cells, and auditory nerve fibers. In the
next processing step, 5 inputs from the nerve converge on each chopper neuron, the
onset neuron receives its broadband input from the auditory nerve and excites one
chopper neuron. Two (or three) fast chopper neurons are arranged in an unidirectional
circle. They can excite each other, and project as a pace-maker to slower chopper
neurons.
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gNa 1000 nS
gLTK 200 nS
glk 2 nS
τE 0.1 ms
VNa 55 mV
VLTK -70 mV
Vlk -65 mV
VE 0 mV
Vthreshold -62.2 mV
Vrest -63.6 mV
Cm 12 pF

Table 4.1: Simulation parameters for the onset neuron.

Onset neuron

The onset neuron is a simplified version of the model that was proposed by Rothman
and Manis (2003c) and is based on Hodgkin-Huxley equations. The model consists of
a sodium (INa), a low-threshold potassium (ILTK), an excitatory synaptic (IE) and a
leakage (Ilk) current. The time dependent conductance change gE in response to an
excitatory synaptic input is modelled as described in equation 4.8 (first proposed by
Rall, 1967). Thus the change of the membrane potential is

Cm
dV

dt
= ILTK + INa + Ilk + IE, (4.3)

with

ILTK = ḡLTK · w4z · (V − VLTK), (4.4)

INa = gNa ·m3h · (V − VNa), (4.5)

Ilk = glk · (V − Vlk), (4.6)

IE = gE · (V − VE), (4.7)

gE = ḡE(t/τE)e1−(t/τE), (4.8)

where Cm is the membrane capacitance and V the membrane potential. The reversal
potential of K+, Na+, and of other ions is denoted by VLTK,Na,..., the peak conductance
of the LTK−, Na+−, and of other channels by ḡLTK,Na,..., the time constant by τE.
The activation variables are w and m, and the inactivation variables are z and h.

The low threshold of the potassium current is the major cause of the onset behaviour
(Rothman and Manis, 2003c, see Section 4.4.2). Simulation parameters of the onset
neuron are listed in Table 4.1.
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Chopper neurons

Chopper neurons are modelled as leaky integrate-and-fire neurons with synapses (Bleeck,
2000). The synapses are modelled as follows. Following an action potential in a presy-
naptic neuron, vesicles discharge transmitter into the synaptic cleft. The emission of
vesicles (E, see equation 4.9) is simulated by use of a look-up table. The transmitter
molecules are assumed to diffuse to the postsynaptic neuron. The decay of transmitter
(T, see equation 4.10) is simulated by a leaky integrator. The probability of open chan-
nels for certain ions increases as the concentration of transmitter in the cleft becomes
higher. Different ions constitute either excitatory or inhibitory postsynaptic currents
(PSC, see equation 4.11). A hyperbolic tangent function simulates the conductance.
A time delay with adjustable jitter (parameters: mean and standard deviation) that
stands for the overall transmitter diffusion time was integrated in the simulation (equa-
tion 4.12). The synapse model is described by

E(t) =





Emax · t
tmax/2

if 0 < t ≤ tmax/2

Emax · (1− t
tmax/2

) if tmax/2 < t < tmax

0 else,

(4.9)

τsyn
dT (t)

dt
= T (t) + E(t), (4.10)

PSC(t) = w · (tanh(10 · T (t)− 5) + 1)/2, (4.11)

PSCL(t + L) = PSC(t). (4.12)

In the equations, E(t) is the emission of vesicles, Emax the maximum emission, tmax

the maximum emission time (0.2 ms). τsyn denotes the time constant of the synapse,
T (t) the transmitter concentration, PSC(t) the postsynaptic current, PSCL(t) the
postsynaptic current with latency, L the latency, and w the weight of the synapse.

The soma of the simulated chopper neuron is based on a leaky integrate-and-fire model.
The incoming postsynaptic currents from the synaptic inputs are integrated and build
up a postsynaptic potential while a leakage current diminishes the input. If the poten-
tial reaches a defined threshold, a spike is elicited and the potential is set to zero. An
absolute and relative refractory period (exponentially decreasing) ensures that spike
generation is suppressed or needs stronger input for a selectable period of time. There-
fore, the change of the soma potential is described by
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τ [ms] Weight [a.u.]
Soma c.n. 0.33
Syn. from c.n. 0.25 0.7
Syn. from o.n. 0.1 - 1.3 0.5 - 20
Syn. from a.n. 0.77 0.09 - 0.15
Abs. r.p. 0.6-2 ms
Rel. r.p. 0-0.2 ms

Table 4.2: Simulation parameters for the model of the chopper neurons (c.n.: chopper
neuron, o.n.: onset neuron, a.n.: auditory nerve, Abs. r.p.: absolute refractory period,
Rel. r.p.: relative refractory period. Both periods refer to the soma). The model is a
leaky integrate-and-fire model and consists of a soma and synapses. The time constant
refers to the leakage currents of the soma and synapses. The weights of the auditory
nerve synapses are summed.

τsom
dPSP (t)

dt
= PSP (t) + R · PSC(t) with (4.13)

PSP (t) = 0 if PSP > thrs(t), (4.14)

and the elicited action potentials (APs) are

AP (t) =

{
1 if PSP > thrs(t)
0 else,

(4.15)

where PSP (t) is the postsynaptic potential, τsom the time constant of the soma, R the
resistance of the membrane, and thrs(t) the threshold, which depends on the absolute
and refractory periods.

Simulation parameters are displayed in Table 4.2. In real chopper neurons it is expected
to find a distribution of the refractory period around 0.8 ms in the case of the fast
chopper neurons. The time constant of the soma is set to a relatively low value to
ensure fast chopping. The slow chopper neurons of multi-oscillator can have longer
time constants because their chopping frequency is much lower. The summed weight
of the synapses of the nerve is on average 8 times lower in the simulations than the
weights of the synapses of the chopper and onset neuron. An excitatory postsynaptic
potential just depolarizes the membrane slightly in order to enable chopping. This weak
auditory nerve input does not mean that the overall response of the chopper neuron is
low because the network plays also an important role. The refractory time matches the
adjusted interval of chopping.
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4.4 Results

4.4.1 Simulation of auditory nerve fibers

Fig. 4.4 shows the response of auditory nerve fibers (ANFs) to the “standard SAM”.
The values along the left y-axis indicate the cochlear frequency channels, the right y-axis
shows the mapping of the frequencies to their cochlea location according to Greenwood
(1990). Fig. 4.4 demonstrates that the modulation and the carrier frequencies are
encoded by the response of the auditory nerve. The modulation of the signal is encoded
by the ANFs, provided their response is not saturated. In Fig. 4.5a, the result of
50 responses of the auditory nerve at CF = 600 Hz can be seen. The signal is the
“standard SAM” (Fig. 4.1). The APs of the ANFs reflect the modulation and the carrier
frequency. As expected, the fine-structure of this response shows only the positive
half-waves of the incoming signals. Fig. 4.5a shows the PSC of 5 synapses. The
response to the modulation frequency of 100 Hz is obvious, while the response to the
carrier frequency is slightly blurred. This is due to the combination of the adjusted
time constants of the synapses, carrier frequency, and modulation frequency. Within a
modulation cycle the membrane voltage shows a phase of de- and repolarization (Fig.
4.5c).

4.4.2 Simulation of onset neurons

I modified a model of VCN onset cells with several potassium channels and different
thresholds (Rothman and Manis, 2003c). In order to decrease the number of parame-
ters and calculation time of the simulation, I reduced the number of channels without
influencing the predominant onset behaviour. Each onset neuron in the simulations
(characterized by its CF) receives a Gaussian weighted input (W (channel), equation
4.16) of auditory nerve fibers, which is described by

W (channel) =
1

σ
√

2π
· e− 1

2
(
∆ch

σ
)2 , (4.16)

where ∆ch denotes the distance to CF in number of channels (the curve is centered at
CF of the onset neuron).

The variation of σ changes the width of the integration of frequency channels from the
cochlea. Fig. 4.6 shows the distribution of the weights of the channels next to CF for
σ = 8 and σ = 16 (σ has no dimension).

Real onset neurons may integrate the input over approximately one-third of the tono-
topic array of the auditory nerve fibers (Palmer et al., 1996; Oertel et al., 2000; Golding
et al., 1999). At low levels, the fibers with CF at the carrier frequency can carry pe-
riodicity information by synchronization. At higher levels, these fibers saturate and
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Figure 4.4: Response (APs) of the auditory nerve fibers to the “standard SAM”. On the
left side, the frequency channels are indicated, and on the right side the corresponding
frequencies are indicated. The frequency mapping of the channels is nearly logarithmic
(Greenwood, 1990). Each channel can have several APs at the same time because it
represents several nerve fibers. The number of APs is encoded by the darkness of the
markers at a given location. The stimulus starts at 25 ms, has a duration of 100 ms and
a level of 11 dB SPL. Obviously, the carrier and the modulation frequency are coded by
APs within the range of about 10 frequency channels (65-75). The remaining channels
show only spontaneous activity.
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Figure 4.5: Transfer of the modulation frequency from the auditory nerve to a chopper
neuron. The graphs show the response to 50 repetitions of the signal. a: Response
of a cochlear frequency channel (nerve fiber) at CF = 600 Hz after stimulation with
“standard SAM”. b: PSC of 5 synapses, c: Membrane voltage of chopper neuron. The
membrane voltage is smoother than the PSC of the synapses due to the integration-
function of the membrane.
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Figure 4.6: The onset neurons receive their input from a wide range of frequency
channels. In my simulation the input from the channels is weighted with a Gaussian
shape. The shape is centered at CF of the onset neuron. The simulations are calculated
for two different values of the Gauss-curve parameter sigma. The y-axis shows the
channel range of the incoming fibers (at CF the channel number is 0), the x-axis shows
the weight.
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Figure 4.7: Result of 50 simulations of the response (APs) of onset neurons to the input
of auditory nerve fibers of Fig. 4.4 (response to “standard SAM”). The number of APs
is encoded by the darkness of the markers at a given location. Every horizontal line
shows the response of one onset neuron in time, which receives input from Gaussian
weighted frequency channels (Fig. 4.6). The center of the Gaussian shaped window is
given by the left y-axis.

therefore cannot synchronize any longer while adjacent fibers with CF close to the
carrier frequency start to synchronize. The onset neuron utilizes this information by
integrating the activity of these fibers. With increasing level, the distance of those nerve
fibers that can encode periodicity properly from those with CF at the carrier frequency
increases. Their broad spectral integration input range therefore enables onset neurons
to encode periodicity over a wide dynamic range up to the level where all its fibers are
saturated.
In Fig. 4.7, the sum of 50 simulated responses of onset neurons (σ = 8) integrating over
100 frequency channels can be seen. With the applied input level, the APs of channels
60-73 are strongly phase locked to the modulation frequency.
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4.4.3 Circuit of auditory nerve, onset- , and chopper neurons

The combined action of all components of this model provides a mechanism that gener-
ates stable oscillations that are triggered at the beginning as well as by each modulation
cycle. The onset neuron is able to start the intrinsic oscillations, provided the mem-
brane voltage of the chopper neuron is sufficiently depolarized by the input of the
auditory nerve fibers. As a result, in spite of the broad tuning of the onset neurons, a
narrow frequency tuning comparable to that of an auditory nerve fiber is preserved in
chopper neurons. On the other hand, even if the auditory nerve fiber which provides
input to the chopper neuron is saturated, periodicity may still be encoded because the
input of the onset neuron comes from adjacent non-saturated frequency channels. As
a consequence, this combination of inputs, which includes different filter mechanisms,
has the features that are needed to conserve relevant temporal information concerning
amplitude modulation as well as tuning to CF over a large range of intensity.

4.4.4 Comparison of the simulation results with properties of
real chopper neurons

The model introduced in the last sections provides simulation data that are highly
compatible with physiological data (e.g. Blackburn and Sachs, 1989; Frisina et al.,
1990a). As spikes from the auditory nerve have a statistical component, the Monte-
Carlo method is used for the purpose of comparing my simulation with this data. The
following section compares physiological data from chopper neurons with the statistical
properties of my simulations.

Regularity analysis of pure tone response

Blackburn and Sachs (1989) classified AVCN neurons using regularity analysis of inter-
spike intervals. Important parameters of this analysis were the mean and the standard
deviation (Fig. 4.8b). Introducing the coefficient of variation allows for a comparison
of different units of chopper neurons and different stimulus levels. The CV is the ratio
of the standard deviation to the mean of the interspike interval and is computed as a
function of time. Sustained chopper neurons are a subtype of chopper neurons classified
by their small CV, indicating highly regular interspike intervals. Fig. 4.8a shows the
PSTH of such a sustained chopper (Blackburn and Sachs, 1989) with 4 to 5 response
maxima. The neuron was stimulated with short tone bursts of 25 ms duration with
a 1.6 ms rise and fall time. The frequency of the tone bursts (2.89 kHz) was at the
CF of the neuron, 30 dB above its threshold. The regularity analysis shows a mean
interspike interval of about 2 ms, a standard deviation of nearly 0.25 ms and a resulting
CV of about 0.15. These values are stable in time. The result of my simulation with
the circular oscillator, which in this case includes 5 chopper neurons (see Section 4.3.2),
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msec msec

Figure 4.8: PSTH and regularity analysis of a sustained chopper neuron in the CN of
the cat. a: PSTH, x-axis in ms, 4-5 peaks of the intrinsic oscillations are clearly visible.
b: mean interval µ, standard deviation σ, coefficient of variation CV. Stimuli are short
tone bursts (25 ms, 1.6 ms rise and fall time) with frequency at the CF of the chopper
neuron (2.89 kHz), 30 dB above threshold (from Blackburn and Sachs, 1989).

is shown in Fig. 4.9. The properties of the simulation, such as firing rate, number of
peaks, and ratio of peak heights are nearly the same as in the electrophysiogical results.
Even the regularity analysis could be matched to the analysis of the in vivo recording.
For this purpose a jitter (standard deviation 0.26 ms) had to be added to each synaptic
delay of the 5 interconnected chopper neurons to fit the CV. In the simulation the CV
has a mean value of 0.14 (0.15 in the in vivo recording). Fig. 4.10 shows the simulation
results of the multi-oscillator (see Section 4.3.2). Again, firing rate and ratio of peak
heights match physiological properties. The number of peaks is increased and the reg-
ularity analysis shows smoother results and a lower CV (0.07). The jitter (the same as
in circular oscillator) is added only to the synaptic delay of the interconnections of the
fast chopper neurons.

Synchronization at different sound pressure levels

To verify the conclusion of the previous chapter that chopper neurons need to receive
input from both the auditory nerve and onset neurons in order to conserve both the
dynamic range of periodicity encoding and frequency tuning, I simulate responses of
auditory nerve fibers, onset neurons with different integration widths, and chopper
neurons with and without input from an onset neuron. For the simulation of the
chopper neurons, two chopper neurons are arranged in a circular network. To quantify
the degree of synchronization, the vector strength (see e.g. Langner, 1992) is calculated
for the simulations. For perfect synchronization, VS equals 1, for no synchronization,
VS equals 0. Without the input from the onset neuron, the weights of the synapses of
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Figure 4.9: Response of a simulated chopper neuron (circular oscillator). Stimulus pa-
rameters are the same as in the physiological experiment (Fig. 4.8). a: Response to
500 stimuli are calculated and summed up (binwidth: 0.3 ms). Four to 5 peaks are
clearly visible. The response parameters match the physiological data of Fig. 4.8. Ran-
dom input from the auditory nerve and jitter of the synaptic delay leads to progressive
blurring of the spike pattern. b: µ, σ and CV of the simulation. The graphs match the
physiological data of Fig. 4.8.
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Figure 4.10: Response of simulated chopper neuron (multi oscillator). Stimulus para-
meters are the same as in the physiological experiment (Fig. 4.8). a: Response to 500
stimuli are calculated and summed up (binwidth: 0.3 ms). The response shows more
peaks than the physiological data of Fig. 4.8. b: µ, σ and CV of the simulation.
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Figure 4.11: Comparison of VS of the simulation of auditory nerve fibers and two
onset neurons at different SPL (response to “standard SAM”). The onset neurons have
different bandwidths and show robust synchronization over a wide dynamic range.

the auditory nerve have to be increased to enable chopping.

Simulation of auditory nerve fiber and onset neuron with different integra-
tion widths The simulation of a nerve fiber with a CF at the carrier frequency of
the AM signal (CF = 600 Hz, 50 repetitions) shows that the synchronization to the
modulation (fm = 100 Hz) is small and nearly vanishes above 40 dB SPL (Fig. 4.11).
Because of its broader bandwidth, the onset neuron encodes periodicity much better
than an auditory nerve fiber (see above; Fig. 4.11). For a smaller bandwidth (σ = 8),
the synchronization is better at low levels, while for a broader bandwidth (σ = 16),
synchronization is better at high levels (above 50 dB SPL). As explained above, nerve
fibers away from CF may not yet be saturated and therefore can encode periodicity
information by synchronization.
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Simulation of chopper neurons with and without input from an onset neu-
ron Real chopper neurons have a high frequency resolution, and encode periodicity
information over a wide dynamic range (Frisina et al., 1990a). These are two conflicting
demands. While frequency tuning requires narrow band input, periodicity is best en-
coded by broadband frequency integration. In this model, the solution for this problem
is the combined input from both the auditory nerve and an onset neuron. Fig. 4.12
shows the VS of simulations of chopper neurons with and without onset neuron input.
The different bandwidths of the onset neurons result in chopper responses showing
the same effect as onset neurons, as discussed in the previous paragraph. Moreover,
comparison of the simulation of chopper neurons with and without onset neuron input
supports the theoretical conclusions of the previous chapter. Without input from an
onset neuron, the encoding of periodicity breaks down at levels above 20-30 dB SPL. By
contrast, the input of an onset neuron enables the encoding of periodicity information
over a large dynamic range. The PSTHs in Fig. 4.13 show the responses of a chopper
neuron synchronized to the modulation frequency at three different values of VS (in the
case of integrating an input from an onset neuron). At higher level the neuron shows
a transition from a continuous to a more onset-like response pattern (Fig. 4.12, arrows
at a, b, and c), a behaviour which can also be observed in the responses of real chopper
neurons (see Fig. 22 in Frisina et al., 1990a). It is remarkable that in spite of the input
from the onset neuron, the output (Fig. 4.13d) is mainly related to the input of the
auditory nerve and therefore shows nearly the same saturation behaviour. As expected,
the interspike intervals generated by the chopper neurons closely correspond to twice
the synaptic delay of the two chopper neuron network (Fig. 4.14).

4.5 Discussion

4.5.1 Comparison of the model with previous computer mod-
els

In order to explain the response properties of chopper neurons, previous simulations of
chopper neurons relied exclusively on membrane properties (e.g. Wiegrebe and Meddis,
2004; Hewitt et al., 1992; Arle and Kim, 1991; Banks and Sachs, 1991). Although these
models can reproduce PSTHs of chopper neurons, regularity of intrinsic oscillations
(mean, standard deviation and coefficient of variation), and tuning to frequencies and
periodicities of chopper neurons, they can not reproduce the dynamic ranges of the
spike rate and periodicity encoding or the preference for multiples of 0.4 ms in the
interspike intervals of chopper neurons. Moreover, it is difficult to see how these models
could be used to explain the occurrence of the same time constant of 0.4 ms as observed
in different species. The first attempt to introduce discretized and limited oscillations
intervals is therefore based on spike-to-spike oscillations. The connections between the
chopper neurons are presumed to be chemical synapses with a delay of 0.4 ms (Fig.
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at different SPL (response to “standard SAM”). Chopper neurons with input from an
onset neuron (σ = 8, σ = 16) synchronize to AM signals over a wide dynamic range. By
contrast, synchronization deteriorates above 20 dB SPL without input from an onset
neuron.
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of a. The two peaks are at 0.8 ms (the chopper interval) and at about twice 0.8 ms.

4.2). As a result, the simulations show chopping with constant interspike intervals
(Figs. 4.9, 4.10). Although the model is appropriate for the simulation of the main
properties of chopper neurons, its disadvantage is that the generation of first order
intervals which are multiples of 0.4 ms would require an increasing number of neurons,
as interspike intervals become larger. Moreover, these neurons would have the same
chopping frequency but would be distinguished by different phase information. Since it
is not known if and how this phase information could be used, another more effective
model consisting of a reduced number of neurons in chopper circuits is introduced and
tested (Fig. 4.3).

4.5.2 Regularity and periodicity analysis

In vivo properties of chopper neurons, such as the mean and the standard deviation
of interspike intervals, and the CV, could be simulated after adding a jitter (standard
deviation 0.26 ms) to the synaptic delay of the simulation (Figs. 4.8, 4.9, 4.10). This
appears physiologically plausible because synaptic transmission, like every other diffu-
sion mechanism, has a component of Brownian molecular movement. For this model,
the jitter results in PSTHs that are blurred in time. The responses of irregular chop-
pers can be explained by the assumption of a stronger input from the nerve. This time
dependent input is transmitted into time dependent ISIs.
Physiological data show that the modulation frequency of SAM is encoded in one fre-
quency channel with a small dynamic range of 30-40 dB (Frisina et al., 1985). This
raises the question of how chopper neurons achieve their total dynamic range of about
90 dB. The answer suggested by this model is that chopper neurons receive input from
onset neurons which integrate over a wide frequency range (Palmer et al., 1996; Oertel
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et al., 2000; Golding et al., 1999). In my simulation, this integration window was se-
lected to be Gaussian shaped (Section 4.4.2, Fig. 4.6). However, the optimal range and
shape of the integration window for encoding periodicity information has to be studied
in further simulations. The simulation presented here shows that the difference between
the synchronization of the nerve and the onset neuron is considerable. The auditory
nerve carries information tonotopically, whereas the onset neuron with its broadband
integration utilizes temporal information from many frequency channels at the expense
of spectral information. In line with physiological data (Frisina et al., 1990a), the dy-
namic range of the onset neuron for periodicity coding is much larger than that of
the nerve (Fig. 4.11) and enables phase coding even at the highest levels investigated
(90 dB SPL). The “hierarchy in enhancement”, observed by Frisina et al. (1990a), is
optimally transformed in this model of chopper neurons. A simulated chopper neuron
responds when input from the auditory nerve indicates activity in a frequency channel
and when it is triggered by an onset neuron, which codes periodicity and transients.
The simulations also demonstrate the importance of the width of the frequency channel
integration. Variation of the width shows that the frequency channel integration can
be adapted for encoding periodicity at low or high levels (Fig. 4.11, compare σ = 8
and σ = 16) or other stimulus conditions.
The chopper neuron simulations show a dramatic difference between the results ob-
tained with and without input from an onset neuron. Dynamic ranges differ by at least
70 dB. (Fig. 4.12). Since the effect of different widths of frequency channel integration
for the onset neurons is transferred to the chopper neurons (Figs. 4.11, 4.12, compare
σ = 8 and σ = 16), the adjustment of the integration width has also consequences for
the subsequent processing steps.
The way in which the firing rate of the simulated chopper neurons (Fig. 4.13d) depends
on the input from the auditory nerve, is compatible with the results of Frisina et al.
(1990b). The firing rates of the simulated choppers in response to the “standard SAM”
and the “standard tone” (Fig. 4.13d) differ despite the same sound level. This may be
explained by the fact that in the case of a SAM the energy is distributed over the car-
rier frequency and sidebands, whereas in the case of a tone the energy is concentrated
on one frequency component (see equation 4.2). The interspike interval histograms of
the simulated chopper neurons (Fig. 4.14) show that the chopper period is conserved
even for modulated signals. Therefore, the output of the chopper neuron could serve
as an intensity-independent time reference for a subsequent temporal analysis, as was
proposed in a model for pitch estimation (Langner, 1981, 1983, 1992). The model con-
sists of an oscillator, a frequency reducer, and a coincidence neuron. Chopper neurons
(stellate cells) in the VCN were presumed to be correlatives of oscillator units.
The previous chapter presents the different degrees of synchronization in the nerve, the
onset neuron, and the chopper neuron for different levels. My simulation results match
these data, including the dynamic ranges of the chopper neuron and the nerve (Figs.
4.11, 4.12).
Overall, the conclusion is that the described physiological properties of chopper neu-
rons can be explained by connections as implemented in this model. In particular, spike
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intervals that are multiples of 0.4 ms can be reproduced by a network of interconnected
chopper neurons. My simulations show that input from an onset neuron is needed for
chopper neurons to express a wide dynamic range of periodicity coding, in spite of their
narrow frequency tuning. As already mentioned in previous chapter, lateral inhibition
could indeed enhance frequency tuning in the presence of a broadband input, but tun-
ing curves of chopper neurons seem to show no or only little lateral inhibition (Bourk,
1976; Caspary et al., 1994). In spite of their connections to onset neurons, the dynamic
range of the pure tone response of the simulated chopper neurons is determined solely
by the input from the auditory nerve. This input is mainly responsible for starting and
stopping the response of the choppers and therefore can solve the problem addressed
by Ferragamo et al. (1998a) concerning interconnected chopper neurons: “This circuit
raises the question whether the mutual excitation in choppers could be self-sustaining
and how chopper responses are terminated”.
It is difficult to see how the described features could be realized in models of chopper
neurons that are based exclusively on membrane properties without interconnections
and input from an onset neuron.

4.6 Conclusions

1. A model for chopper neurons is proposed which is composed of a circular network
of neurons activating each other via chemical synapses characterized by a synaptic
delay of 0.4 ms. All of these neurons receive input from the auditory nerve, but
one neuron in the network receives an additional input from an onset neuron.

2. In contrast to previous models, the present model can explain the preference for
multiples of 0.4 ms in oscillations of chopper neurons. It has also the advantage
of explaining their large dynamic range of periodicity encoding in spite of their
narrow frequency tuning.

3. Like the previous models, the present model is able to simulate interspike intervals
of spike trains of the chopper responses with high precision.

4. The simulation can explain essential properties of real chopper neurons by input
from onset neurons.
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Chapter 5

Spectral integration in a simulation
of onset and chopper neurons in the
cochlear nucleus

5.1 Abstract

Chopper neurons in the cochlear nucleus have unique temporal and spectral properties,
which cannot be fully explained by currently popular models (e.g. Banks and Sachs,
1991; Hewitt et al., 1992; Wiegrebe and Meddis, 2004). Therefore, a new model (Bah-
mer and Langner, 2006a) was suggested based on the assumption that chopper neurons
receive input from onset neurons and from the auditory nerve, thereby combining dif-
ferent forms of auditory signal analysis. As a result of the interaction of broadband
input from onset neurons and narrowband input from the auditory nerve, chopper
neurons are characterized by a remarkable combination of sharp frequency tuning and
faithful periodicity coding. My simulations show that the width of the spectral integra-
tion is crucial for both the precision of periodicity coding and the resolution of single
components of sinusoidal amplitude modulated sine waves. While a small integration
width enables chopper neurons to resolve frequency components, it is a disadvantage
for encoding periodicity information at high levels and vice versa. Therefore, one may
hypothesize that it would be expedient if the hearing system was able to adapt spectral
integration of onset neurons to varying stimulus conditions. Furthermore, a preference
for different integration widths in different subjects may account for a corresponding
dichotomy found in pitch perception (Schneider et al., 2005).
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5.2 Introduction

Chopper neurons in the cochlear nucleus are a major input to the inferior colliculus, the
prominent processing station in the midbrain, and a major source of tonotopic infor-
mation. This may be the reason why chopper neurons have outstanding physiological
properties, such as their large dynamic range of periodicity encoding combined with
their narrow tuning. In order to explain how these conflicting demands can be fulfilled
by a single type of neuron, it is proposed that in addition to their input from the au-
ditory nerve chopper neurons receive input from onset neurons (Bahmer and Langner,
2006a). By means of these inputs, chopper neurons may combine two different aspects
of first-order signal processing. While their input from auditory nerve fibers comes from
a narrow frequency range (Ferragamo et al., 1998a), the input from onset neurons pro-
vides integration over a wide range of frequencies. It was shown that onset neurons may
integrate over approximately one-third of the tonotopic array of the cochlea (Palmer
et al., 1996; Oertel et al., 2000; Golding et al., 1999).
The results of my simulation of chopper neurons that are activated by onset neurons
show that it may be of advantage if auditory processing could adapt the width of the
spectral integration for a coding of periodicity information at different levels (see also
Bahmer and Langner, 2006b). This conclusion is supported by a quantification of the
influence of the integration width of onset neurons on the tuning and the periodicity
encoding of the chopper neurons in this model. For this purpose I compare the simu-
lated responses of nerve fibers and chopper neurons to sinusoidal amplitude modulated
sine waves (SAM) at different widths of integration. It is conceivable that the width of
the integration window must also have consequences for consecutive auditory process-
ing steps and especially for different modes of pitch perception. For example, when
asked to judge the pitch of narrow-band harmonic sounds, some subjects indicate the
fundamental pitch (f0), while others perceive the pitch of a low harmonic component
(spectral pitch fSP ). It is remarkable that these individual differences are correlated
with differences in the relative size of the left and right auditory cortices (Schneider
et al., 2005). On the basis of my simulations, it is hypothesized that this dichotomy
in pitch perception may be related to different widths of spectral integration of onset
neurons in different subjects.

5.3 Methods

The environment used in my simulation was MATLAB. Essential parts of this model
are: the inner ear with the basilar membrane, the hair cells, and the auditory nerve.
Resonators provide the correct activation of the membrane (for a detailed descrip-
tion see Bahmer and Langner, 2006b). The frequency-place transition of the cochlea
is mapped nearly logarithmically by 100 simulation channels (Bahmer and Langner,
2006b; Greenwood, 1990), where a channel with a high number is activated by a low
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frequency and a channel with a low number (at the base of the cochlea) is activated by
a high frequency.
The neuron models are a Hodgkin-Huxley-like model (Rothman and Manis, 2003c) for
the onset neuron and leaky integrate-and-fire (LIF) models for the chopper neurons.
The models were described in detail previously (Bahmer and Langner, 2006b). The
integration window of the onset neurons is gaussian shaped with different widths, 2, 4,
8, and 16, which are classified as σ of the gaussian formula and indicate an integration
of 10, 20, 40, and 80 channels of the nerve response, respectively. Pure tones and SAM
were used as stimuli. SAM consisted of a carrier frequency (cf) and two sidebands
(lower and upper harmonics), which together carry the same amount of energy as the
carrier frequency. The graphs of the simulated nerve and chopper responses in Fig.
5.1 are normalized for comparison (corresponding spike rates are listed in the figure
caption).

5.4 Results

Responses of the auditory nerve and chopper neurons were simulated to investigate and
to compare the effect of the spectral integration of onset neurons and the convergence of
information from the nerve and the onset neuron on the tuning properties, the nonlinear
behaviour, and the periodicity encoding of chopper neurons.

5.4.1 Tuning and nonlinear effects of the simulated chopper
neurons

The model of the chopper neurons was stimulated with three different SAM (carrier
frequency (cf) 400, 500, and 600 Hz, modulation frequency (mf) 100 Hz) at 40 dB SPL.
The transition of the carrier frequency from 400 to 600 Hz with the same modulation
frequency of 100 Hz covers the transition from resolved to unresolved harmonics. The
simulation results of the corresponding nerve responses can be seen in Fig. 5.1 in the
first row. The values in percent indicate the resolution of the lower harmonics (lh)
and is calculated by (peakmaxlh − peakminlh)/peakmaxlh. Therefore, the decreasing
numbers in the first row in Fig. 5.1 mark the change from resolved to unresolved lower
harmonics, which corresponds to the less peaky curves.
Rows 2-5 of Fig. 5.1 show the response of the simulated chopper neurons with input from
onset neurons with increasing integration widths of 2, 4, 8, and 16, which correspond
to σ of the gaussian formula. It is remarkable that most of the responses of the chopper
have a higher resolution than the corresponding nerve response (width 2, 4 for all cf;
width 8, 16 for cf 400 and 500 Hz.). In particular, the response of the chopper neuron
with onset integration window 2 at a carrier frequency of 600 Hz shows an enhanced
resolution of 40% of the lower harmonic. With increasing width of the integration
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window, the resolution decreases. This change is exceptionally strong at a carrier
frequency of 600 Hz. For the tested bandwidths and modulation frequency of 100 Hz
it needs a carrier frequency of 600 Hz or more to undercut the resolution of the nerve.
At low harmonic ratios of carrier and modulation frequencies (<6) the model circuit of
onset and chopper neuron enhances the resolution in spite of the spectral integration
by the onset neuron.

The different resolutions in the response of the nerve and the simulated chopper neu-
rons are not only due to network properties, but also to nonlinear interactions of the
frequency components in the cochlea. To investigate these nonlinear effects, simula-
tions of responses to particular SAM signals are compared with the superposition of
the corresponding pure tone responses (total sound pressure level 40 dB SPL, pure tone
at carrier minus 6 dB, pure tone at sidebands minus 12 dB for equal amount of en-
ergy). As a typical example, the simulated responses with integration widths of 2 and
16 at cf 600 Hz are plotted together with the corresponding superimposed pure tone
responses (bold and dashed lines in Fig. 5.2a, b). In addition, to quantify the nonlinear
effects, the pure tones reponses are fitted by weighting each pure tone response to the
response to SAM (dotted line in Fig. 5.2a, b). In order to compensate for the nonlinear
effects for a width of 2, the fitting weights have to be 0.7, 1, 1.45, for a width of 16
the fitting weights are 1.1, 1, 1.35 (see figure caption for details). The superimposed
pure tone response peaks differ more from the corresponding SAM response in the case
of a narrow integration window than in the case of the broader integration window,
which means that the nonlinear effects are greater for the narrow than for the broad
integration window. It is remarkable that the non-linearities also result in shifts of the
spectral representation. In the case of the narrow integration (Fig. 5.2a) the maximum
of the response curve representing the upper harmonic (700 Hz) is shifted to higher
frequencies, whereas the maximum due to the lower harmonic is shifted to lower fre-
quencies, in comparison to the corresponding pure tone responses. This effect is not
present for the broad integration window (Fig. 5.2b).

5.4.2 Periodicity representation of the simulated chopper neu-
rons

The input from the onset neuron provides precise periodicity information, which is
especially important at high levels (see discussion). Therefore, responses of chopper
neurons receiving input from onset neurons with different integration windows at dif-
ferent levels were simulated. To quantify the periodicity encoding, the vector strengths
(VS, for details see e.g. Bahmer and Langner, 2006b) of the responses were calculated
(Fig. 5.3). At low levels (40 dB SPL) an increase of the integration width results in a
decrease of VS. At high levels (70 and 80 dB SPL) the VS decreases until the integration
window reaches a width of 8; from a width of 8 to 16 the VS increases.
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Figure 5.1: Simulation of nerve (first row) and chopper responses (2nd to 5th row) to
SAM (cf 400 Hz first column, cf 500 Hz second column, and 600 Hz third column; mf
100 Hz for all). The choppers receive input from onset neurons with integration widths
σ = 2, 4, 8, and 16 (2nd to 5th row). The values in percent indicate the resolution
of the lower harmonics (lh) [(peakmaxlh − peakminlh)/peakmaxlh]. Frequency chan-
nels correspond to Greenwoods map (Greenwood, 1990, see text). The spike rates are
normalized for comparison (corresponding spike rates for cf 400, 500, 600 Hz: nerve:
99, 108, 113; choppers width 2: 93, 94, 105; choppers width 4: 121, 99, 119; choppers
width 8: 176, 174, 173; choppers width 16: 217, 211, 212).
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Figure 5.2: Quantifying the nonlinear effects of two chopper model responses with inte-
gration width 2 (a) and 16 (b), cf 600 Hz. The corresponding widths σ of the gaussian
shaped integration windows are indicated by the lengths of the double arrows. The
frequency indication on the x-axis is due to the maximum responses in the simulated
nerve channels. Responses to SAM and corresponding pure tone responses are com-
pared.
a: Bold curve: SAM response of a chopper simulation with input integration width
2. Dashed curve: Corresponding superimposed pure tone chopper responses. Dotted
curve: Fit of the superimposed pure tone response to the SAM response; weights 0.7
for 500 Hz, 1 for 600 Hz, 1.45 for 700 Hz. Light curve: Corresponding superimposed
pure tone nerve responses.
b: Bold curve: SAM response of a chopper simulation with input integration width
16. Dashed curve: Corresponding superimposed pure tone chopper responses. Dotted
curve: Fit of the superimposed pure tones to the SAM response; weights 1.1 for 500
Hz, 1 for 600 Hz, 1.35 for 700 Hz.
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Figure 5.3: Vector strength (VS) of the responses of simulated chopper neurons with
different integration widths at different levels. VS was calculated in the frequency
channel of the cf.

5.5 Discussion

5.5.1 Tuning of the simulated chopper neurons

In Fig. 1 the SAM responses of simulated chopper neurons which receive input from
onset neurons with different integration windows show a change in their resolution
of the harmonics. As expected their resolution is better with a narrow than with a
broader integration window. The reason is that broader integration windows of onset
neurons at neighbouring CF overlap more, which smears the frequency information
provided by the onset neurons to the chopper neurons. Looked at the other way round,
decreasing the width of the integration window results in sharper tuning of the chopper
neuron. In some cases, the simulated chopper neurons show a 40% enhancement in
their resolution of harmonics compared to the resolution of the nerve. An explanation
for this enhancement is the fact that two inputs - from the nerve and the onset neuron
- act in this case as two multiplicative filters: the neuron will produce an output only
if both inputs were active at the same time, if only one input or none were active, no
output will be produced. This results in a sharper tuning.

5.5.2 Periodicity representation of the simulated chopper neu-
rons

The results depicted in Fig. 5.3 demonstrate the dependency of the VS of the chopper
neuron on the width of the integration window and on the level. A theoretical expla-
nation (Fig. 5.4a-c) for these results is as follows: at low levels the nerve fiber, which
projects to the chopper neuron, can provide the periodicity information that is neces-
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Figure 5.4: Illustration of periodicity encoding of simulated chopper neurons at low and
high levels.

sary to synchronize the chopper response (Fig. 5.4a). A broader integration window
would result in less synchronized responses because noise from off-CF channels would
decrease VS (Fig. 5.3, declining curve at 40 dB SPL). However, at high levels the inputs
from the nerve fiber saturate, and as chopper neurons receive input only from narrowly
tuned fibers, periodicity information will be lost (Fig. 5.4b). On the other hand, at
high levels periodicity information can still be transferred from non-saturated off-CF
channels via the integration window of the onset neuron (Fig. 5.4c). The simulation
results show that a narrow integration window is always an advantage for spectral cod-
ing. In contrast, a broad integration window is advantageous for periodicity coding at
high levels, while for low levels a narrow integration window may be better. This is
due to two other opposing effects: the correlation of synchronized activity in different
channels is higher when the channels are in close proximity, on the other hand a broad
integration window also includes non-saturated channels.
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5.5.3 Explanation for a dichotomy of pitch perception?

Considering the high dynamic range of our acoustic environment and the fact that the
auditory system has to deal with both narrow and broadband signals, one might hy-
pothesize that it would be advantageous if the hearing system were able to adapt the
spectral integration of onset neurons to different stimulus conditions.
Schneider et al. (2005) found narrow and broadband adaptations in the pitch perception
of different subjects. The pitch of a harmonic sound in some objects may be dominated
by periodicity information, in others by certain resolved harmonics. This model might
provide an explanation for this phenomena at an early stage of auditory signal process-
ing. The hypothesis is that the correlative of the perception of the fundamental is a
dominance of onset neurons with broad integration windows, while a preference for the
perception of the harmonics is a dominance of narrow integration windows. The broad
integration allows for a better encoding of the periodicity of a signal at high levels but
shows a worse resolution of each harmonic component, while the narrow integration
shows a worse ability to encode periodicity over a large dynamic range but results in a
good resolution of components. The preference for the width of the integration might
be an inherited intrinsic property of the neurons or, perhaps more likely, the result of
an individual learning process: in the maturation of the auditory system the formation
of task specialized neuronal structures could adapt to the acoustic environment. One
could also postulate mechanisms that to some extent dynamically control the integra-
tion window of onset neurons, depending on the stimulus or the processing task. The
adaptation of the window could be accomplished by level dependent lateral inhibition or
by inhibition from higher processing centers. It is even possible that frequency channels
which contribute to the integration process could be selected via presynaptic inhibition.

5.6 Conclusions

• In my simulation, variation of the integration widths of onset neurons results in
variation of the spectral resolution of chopper neurons. Smaller widths result in
a higher resolution of frequency components.

• Variation of the integration widths of onset neurons also results in variation of the
periodicity encoding of chopper neurons. Narrow integration widths lead to better
periodicity encoding at low levels. At high levels broader integration widths lead
to better periodicity encoding, which results in a conflicting demand at high levels
for adapting the width of the integration to tuning or to encoding periodicity.

• The pitch dichotomy of individual preferences for either periodicity pitch or the
pitch of spectral components of harmonic sounds can be explained by assuming
adaptations of the width of the integration to either spectral or temporal coding.
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Networks of Hodgkin-Huxley-like
neuron models for the simulation of
oscillating neurons in the cochlear
nucleus

6.1 Abstract

Hodgkin-Huxley-like (HH) models for chopper neurons (e.g. Rothman and Manis, 2003c)
that are not interconnected in a neuronal network show properties which are not in line
with physiological findings. For example, the response of the single models is strongly
dependent on the input strength, whereas real chopper neurons have a response which is
relatively independent of level changes (Pfeiffer, 1966; Blackburn and Sachs, 1989). In
the model, such independence on the input can be achieved by interconnected networks
of HH-like neurons.
Simulated responses of the HH-like model of Rothman and Manis (2003c) show that
short ISI as found in real chopper neurons cannot be provided by the model. In order
to achieve these short ISIs, I optimized the time constants of this model with genetic
algorithms. In addition, ISIs of chopper neurons show a preference for multiples of
0.4 ms. Therefore, a two-neuron interconnected network consisting of the optimized
HH-like neuron models was built with a synaptic delay of 0.4 ms. With this small
circuit it is then possible to build a more complex network that is activated by the
simultaneous input of an onset neuron and auditory nerve and that can provide ISIs,
which are multiples of 0.4 ms.
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6.2 Introduction

In Chapter 4 a network of leaky integrate-and-fire (LIF) neurons was introduced in order
to simulate chopper neurons. In this chapter the LIF neuron models are substituted by
HH-like models. A possible candidate for this purpose - the HH-like chopper model of
Rothman and Manis (2003c) - is tested for its physiological relevance and its usability
in the network introduced previously.

6.2.1 Special features of chopper neurons in the VCN

It is still an open discussion which role chopper neurons play in pitch perception. Chop-
per neurons can indeed represent the fundamental frequency of complex sounds and of
iterated rippled noise and can enhance the representation of SAM in comparison to
their auditory nerve fiber input (Winter et al., 2003; Frisina et al., 1990a; Rhode and
Greenberg, 1994). But they lack to span the whole range of periodicity frequencies of
human pitch perception. In the PAN model of Langner (1981) described in Chapter 2
the choppers need no tuning to a modulation frequency for their functional role in the
periodicity analysis, but the described enhancement of modulation frequency (Winter
et al., 2003; Frisina et al., 1990a; Rhode and Greenberg, 1994) might improve the tem-
poral processing. The enhancement can be achieved in the simulations by integrating
HH-like models in the PAN model. The integration of HH-like models can furthermore
help to understand data of electrophysiological recordings of single chopper neurons and
data from pitch perception experiments. Chopper neurons in the VCN are outstanding
because of their constant interspike intervals (ISI) and their relative independence of
the ISI despite changing level (Pfeiffer, 1966; Blackburn and Sachs, 1989; Wiegrebe
and Winter, 2001). For Winter et al. (2003) the importance of level independence at
such a low level of auditory processing was considered unclear. But for the PAN model
the independence of ISIs is important as the output of the choppers represent a time
reference, which has to be robust. Such robust level independent interspike intervals
were also found in the IC which receive its main input from chopper neurons in the
VCN (Langner and Schreiner, 1988). Therefore, to some extent the level independence
which is found in the CN is transferred to higher processing centers.

6.2.2 VCN neuron models

Stellate and bushy cells of the VCN have already been described by several HH-like
and compartment models (e.g. Banks and Sachs, 1991; Wang and Sachs, 1995; Arle
and Kim, 1991; Hewitt et al., 1992). HH-like models are the most detailed models con-
cerning the dynamic properties of the membrane currents. The currents are modeled by
means of mathematical equations that describe their progression in time (see Chapter
2). The equations are highly complex and nonlinear. Because of this high complexity,
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the time for computer simulations is high in comparison to LIF models (see Chapter 2).
On the other hand, the advantage of the HH-like model is, that more detailed effects
like tuning to modulations can be tested properly (e.g. Wiegrebe and Meddis, 2004).
Furthermore, focusing on the time progression of channel variables in a simulation can
help to gain insight in the mechanism of channel interplay.
The advantage of the LIF model is that some characteristics like the refractory period
of the neuron model is easy to adjust by setting a time constant. The refractory period
determines the maximum firing rate of a cell. The refractory period in the HH-like
models is a complex function of many channels. Because of this, changing the refrac-
tory period is a multidimensional nonlinear problem, which can be solved by the use of
so-called “genetic algorithms”. These algorithms are described in the methods section
of this chapter and in a more detailed way in Chapter 10.
A further subtype of the neuron models is the multi-compartment neuron model in con-
trast to a point neuron. In the case of a point neuron the complex spatial dimensions
are neglected and the soma is simulated as a spheroid, whereas the compartment model
subdivides the cell into soma, dendrites, and axon which can again consist of many
compartments in which the ion flows are simulated. Calculation time increases with
the number of the compartments. Banks and Sachs (1991) presented a VCN stellate
cell model which consists of a somatic and axonal compartment, which integrate active
channels coupled to a passive dendritic tree, which was modified by Wang and Sachs
(1995). Altogether, the described stellate models were successful in that they replicated
many of the response characteristics of stellate cells in vitro and in vivo. For example,
during a depolarizing current pulse, the models exhibited repetitive firing and when
stimulated with auditory-nerve-like synaptic input, the models exhibit a response in
their poststimulus time histograms (PSTHs) which is similar to the response of real
chopping cells in vivo. The models show constant interspike intervals for one stimulus
level, match regularity analysis of chopper neurons and were also successful in replicat-
ing responses to more complex stimuli (Arle and Kim, 1991; Hewitt et al., 1992; Wang
and Sachs, 1995).
The most detailed analysis and modeling of current kinetics of VCN neurons is presented
by Rothman and Manis (2003c).

6.2.3 The HH-like “Rothman chopper”

Many studies have shown that VCN neurons differ in their intrinsic electrical properties
and especially the K+ currents they express (Manis and Marx, 1991). Rothman and
Manis (2003a) examined the K+ currents using whole cell voltage clamp technique on
isolated VCN cells from adult gerbils. The K+ currents are important in controlling
spike shape, spike rate, spike adaptation, and regularity of discharge. Especially, the
high-threshold delayed-rectifier-like K+ current (IHT ) has been found in both bushy
and stellate cells (Manis and Marx, 1991). T-stellate cells are the anatomical correlate
of the chopper neurons. The IHT allows spiking at high frequency because of its fast
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time constants and activation at high voltages. This provides a fast repolarization of
their action potential (Wang et al., 1998).
Rothman and Manis fitted HH-like equations to their data. For this purpose, they
analyzed in detail the kinetics of three potassium currents of VCN cells, namely a
rapidly activating current (IA), a rapidly activating, slowly inactivating low-threshold
current (ILT ), and a non-inactivating high-threshold current (IHT ). But only the IHT

is used in the chopper model of Rothman and Manis (2003c). The properties of this
current will be described in the following.

Kinetic analysis of the high-threshold potassium current (IHT )

According to Rothman and Manis (2003a), all VCN cell types possess IHT , however
only the type I-c cell of their classification, which is their correlative to a stellate cell,
appear to have the high-threshold potassium current IHT as its only outward current at
the membrane voltage V > -80 mV. They found also that the time course of activation
of IHT is more complex than expected from a single current and tried to fit their model
to the current trace of the type I-c cell. The time course of activation of IHT is described
mathematically best by a sum of two arbitrary current components n and p rather than
by one component alone (see Chapter 2 for explanation of activation and inactivation
variables in the HH formalism). The variables n and p - a fast and a slow component -
are both voltage and time dependent. In addition, they found that the best fit is by the
expression n2 + p (Fig 6.1). The corresponding time constants τn of n(t,V) is greater
than τp of p(t,V). The fast and slow component in the activation is apparent in all the
VCN cells of their sample.

A comparison of the voltage dependent time constants between the model and the real
data is depicted in Fig. 6.2A and B. In Fig. 6.2A the data and the mathematical fit
of the fast time constant τn, and in Fig. 6.2B the data and the mathemaitcal fit of the
slow time constant τp is shown. The data from real cells clearly show great variability.
Altogether, Rothman and Manis (2003b) found that the best numerical reconstruction
of IHT is given by

IHT = ḡHT · [ϕn2 + (1− ϕ)p] · (V − VHT ) (ϕ = 0.85). (6.1)

They left ḡHT , which is the maximum conductance, as a free parameter as the found
that the magnitude varied from cell to cell. The fractional parameter ϕ was set to
0.85 and describes the ratio between activation and deactivation (Rothman and Manis,
2003b).
The simulation of the model current traces with ḡHT set to 150 nS can be seen in Fig.
6.2 C, D, and E. In plays the major role in the whole model response In + Ip and the
tail of the curves of In and Ip show that the decay of Ip at the signal ending is slower
than that of In.
Rothman and Manis (2003b) stated that IHT consists of two independent currents
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Figure 6.1: Fitting the time progression of the activation current by different mathe-
matical expressions. The plot shows the difference curves between a real current trace
of the activation of IHT (straight line at current = 0 nA) and different fitting expres-
sions which consist of the sum of two arbitrary activation variables n and p of the HH
formalism (see Chapter 2 for details of the formalism). The variable n has different
exponentials for fitting the curve. The term “n2 + p” fits the IHT the best (redrawn
from Rothman and Manis, 2003b).

because of to significantly voltage dependencies and different reversal potentials. They
saw in the tail of the currents of IHT that sometimes the fast component reversed sign
before the slow component and vice versa. The influence of the slow component on the
length of after-hyperpolarization was tested in the neuron model by removing the slow
component (Rothman and Manis, 2003c). There was no change in interspike timing
or shape of the action potentials and it was concluded that the slow component may
contribute little to shaping the discharge pattern of VCN neurons because of its small
magnitude and slow kinetics (Rothman and Manis, 2003b). The molecular identity of
IHT might be the so-called “KCNC1” channel which is expressed in bushy and stellate
cells (Perney and Kaczmarek, 1997). Like IHT , this channel shows a slow and fast
activation component (Kanemasa et al., 1995).
As an example for the high variability of models in fitting the time constants of the
high threshold current, different time-voltage curves are shown in Fig. 6.3. The high
variability is sometimes due to different samples in the data collection. Rothman and
Manis (2003c) hypothesized that differences in time constants do not lead to dramatic
effects but have effects on subthreshold potentials.

Description of the sodium (INa) and the remaining currents

Rothman and Manis (2003c) modeled the fast-inactivating sodium current INa accord-
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Figure 6.2: Left: Summary of activation and deactivation of IHT . Activation (V > −45
mV) and deactivation (V <-45 mV) analysis of 16 Type I-c cells). A: data of fast time
constants τn and fit. B: data of slow time constants τp and fit. dashed: the same line
of A times 5 . The real data show a great variability. Right: Model IHT . C: model
response trace of IHT (gHT = 150 nS and ϕ = 0.85). Inset: steady-state I-V relations of
In, Ip, and In + Ip (•). D and E: model In and Ip in isolation (redrawn from Rothman
and Manis, 2003b).
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Figure 6.3: Left: Comparison of VCN time constants of the high-threshold current of
different models. Thin lines represent different models, and bold lines represent the
model of Rothman and Manis (2003c). Stellate cell model of Banks and Sachs (1991)
(long dashed line), Wang and Sachs (1995) (short dashed line), Rothman et al. (1993)
(thin line), Perney and Kaczmarek (1997) (dotted line). Time constants τn represent
values at 22oC (redrawn from Rothman and Manis, 2003c). Right: Temperature de-
pendence of the conductance (top) and time constants (bottom) of a K+ channel of
octopus cells in the VCN (redrawn from Cao and Oertel, 2005).
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ing to other voltage-clamp studies in mammalian neurons (Costa, 1996; Belluzzi et al.,
1985).
The hyperpolarization-activated cation current Ih was found to be expressed in the
majority of VCN neurons (Rothman and Manis, 2003a) and was modeled after other
voltage-clamp studies from auditory (Banks et al., 1993; Fu et al., 1997; Forsythe and
Stanfield, 1996) and nonauditory neurons (Huguenard and McCormick, 1992; Travagli
and Gillis, 1994). Rothman and Manis (2003c) decreased the rate constant by a factor
of 3 when investigating the model at higher temperatures. Cao and Oertel (2005) mea-
sured the dependence of the conductances and time constants on the temperature of
low voltage and high voltage K+ channels and found remarkeable differences between
the time constants at 22oC and 33oC (see Fig. 6.3, right). They found a Q10-factor
in some cases up to 4. If the temperature increases by 10o, the velocity of a reac-
tion changes by multiplying it with the Q10 factor. Interestingly, they described that
although activation and inactivation was in both cases sensitive to temperature, the
peak currents of the high-voltage activated channel did not change significantly with
temperature. Furthermore, they stated that their ”experiments indicate that electro-
physiological properties of neurons are distorted when recordings are made at reduced
temperature”.

6.2.4 Substituting LIF neurons by HH-like neurons
in the Multi-oscillator

The models described above simulate single chopper neurons that show oscillations due
to membrane properties. A LIF model of chopper neurons that shows oscillations due
to network properties and is based on anatomical and physiological properties of real
chopper neurons is proposed in Chapter 3. This circuit was tested successfully in Chap-
ter 4 with LIF neuron models.
In order to test other aspects of the model like tuning to modulation or the interplay
between the time constants of the synaptic delay and the channels, the LIF neuron
models are substituted with HH-like models.
The HH-like model of Rothman and Manis (2003c) is capable of simulating VCN chop-
per neurons. Therefore, the model will be tested for its physiological relevance and its
usability in the previously introduced topology. The question raises which parameters
of the model are important and which have to be adjusted to fit in the proposed circuit
of two chopper neurons and how these new parameters can be interpreted.
The chapter is organized as follows:
In Section 6.3 the used models and methods are outlined. In Section 6.4 the results are
presented. Section 6.5 discusses the major points, Section 6.6 concludes the chapter
with the central claims.
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6.3 Methods

6.3.1 NEURON and Matlab

The program NEURON is a common simulation environment in computational neuro-
science. It contains a collection of physiological relevant neuron models (“ModelDB”),
in which Rothman and Manis (2003) have implemented their model of stellate cells.
In this chapter, the model was tested and the simulation results were analyzed and
visualized by importing the data files from NEURON into Matlab.
For the modification of the model, it was implemented in Matlab source code and the
differential equations are numerically realized by the Euler method in Matlab. In the
following, the implementation of the neuronal models and the genetic algorithm for the
modification of the model is described.

6.3.2 Neuronal modeling

HH-like models

The chopper model of Rothman and Manis (2003c) is based on HH equations. The
model contains a sodium current(INa), a high-threshold potassium current(IHT ), a
cation current(Ih), a leakage current(Ilk), an excitatory synaptic (IE) current, and an
external electrode current source (Iext). The time dependent conductance change gE in
response to an excitatory synaptic input is modeled as described in equation 6.8 (first
proposed by Rall, 1967).

Thus the change of the membrane potential is

Cm
dV

dt
= INa + IHT + Ih + Ilk + IE − Iext, (6.2)

with

INa = gNa ·m3h · (V − VNa), (6.3)

IHT = ḡHT · [ϕn2 + (1− ϕ)p] · (V − VHT ), (ϕ = 0.85), (6.4)

Ih = ḡh · r · (V − Vh), (6.5)

Ilk = glk · (V − Vlk), (6.6)

IE = gE · (V − VE), (6.7)

gE = ḡE(t/τE)e1−(t/τE), (6.8)

where Cm is the membrane capacitance and V the membrane potential. The reversal
potential of K+, Na+, and of other ions is denoted by VHT,Na,..., the peak conductance
of the HT−, Na+−, and of other channels by ḡHT,Na,..., the time constant by τE.
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gNa 1000 nS
gHT 150 nS
glk 2 nS
gh 0.5 nS
τE 0.1 ms
VNa 55 mV
VHT -70 mV
Vlk -65 mV
VE 0 mV
Vthreshold -38.3 mV
Vrest -63.9 mV
Cm 12 pF

Table 6.1: Simulation parameters for the chopper neuron. See text for description.

The activation variables are w, m, and r, and the inactivation variables are z and h.
Simulation parameters of the chopper neuron are listed in Table 6.1.

Leaky-integrate-and-fire models

To output various ISIs that are multiples of 0.4 ms, the circuit of two chopper neuron
models triggers several LIF neuron models that have different refractory periods. The
LIF neurons are modeled as neurons with synapses (Bleeck, 2000). The synapses and
the soma are modeled as follows. After an action potential from a presynaptic neuron
a synapse discharges vesicles filled with transmitter in the synaptic cleft. The emis-
sion of vesicles is simulated with a look-up table. The transmitter molecules diffuse to
the postsynaptic neuron. The decay of transmitter is simulated by a leaky-integrator.
The probability of open channels for certain ions increases with higher concentration of
transmitter in the cleft. Different ions constitute either excitatory or inhibitory post-
synaptic currents. A hyperbolic tangent function simulates the conductance. A time
delay with adjustable jitter (parameters: mean and standard deviation) which stands
for the overall time for diffusion of transmitter can be integrated in the simulation.
The soma of the chopper neurons is based on a leaky-integrate-and-fire model. The
incoming postsynaptic currents (PSCs) from the synaptic inputs are integrated and
build up a postsynaptic potential (PSP). A leakage current diminishes the input. If
the potential reaches a defined threshold a spike is elicited and the potential is set to
zero. An absolute and a relative refractory period (exponentially decreasing) ensures
that spike generation is suppressed or needs stronger input for a period of time. The
model parameters are given in Tab. 6.2
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τ [ms] Weight [a.u.]
Soma c.n. 0.33
Syn. from c.n. 0.25 0.7
Syn. from o.n. 0.1 - 1.3 0.5 - 20
Syn. from a.n. 0.77 0.09 - 0.15
Abs. r.p. 0.6-2 ms
Rel. r.p. 0-0.2 ms

Table 6.2: Simulation parameters for the model of the chopper neurons (c.n.: chopper
neuron, o.n.: onset neuron, a.n.: auditory nerve, Abs. r.p.: absolute refractory period,
Rel. r.p.: relative refractory period. Both periods refer to the soma). The model is a
leaky integrate-and-fire model and consists of a soma and synapses. The time constant
refers to the leakage currents of the soma and synapses. The weights of the auditory
nerve synapses are summed.

6.3.3 Genetic algorithm in Matlab

The previously introduced HH-like equations are highly nonlinear. As one of the aim is
to optimize the equations for a faster generation of spikes, an adequate mathematical
tool for the optimization of the nonlinear equations has to be used. Whereas most of
direct and gradient search methods fail in optimization of nonlinear problems, genetic
algorithms are designed for a fast search for an optimized solution of nonlinear prob-
lems. These algorithms imitate genetic evolution by combination of “genes” of so-called
“individuals”. The combination process is partly random. The individuals are scored
by a fitness function and the ones with the highest score survive and can combine again
their genes and produce offsprings. These processes are iterated to find the optimal
individuals (see Section 10.5 for details).
Here, combinations of some coefficients of time constants and of conductances of the
HH-like equations of Rothman and Manis (2003c) form the individuals which were op-
timized by the genetic algorithm. The fitness function is the mean ISI of the output of
the model. If the number of the spikes were less than 20 the function were set to one,
to prevent a break-off of the spike generation before the input ends. The population
contains 20 individuals, which were uniformly distributed. The initial range of the in-
dividuals for variation of conductances (gNa+ , gK+) and time constants (τm, τh, τp, τp) of
the activation/inactivation variables is set from 0 to 1 and from 0.9 to 1.1, respectively.
The following parameters are explained in full length in Section 10.5. Fitness scaling
was due to a rank order, the selection function stochastically uniform, reproduction
factors were elite count 2 and crossover fraction 0.8, mutation was Gaussian (scale 1,
shrink 1), crossover function was a scattered, forward migration (fraction 0.2, interval
20), stopping criteria was either 100 generations or 50 stall generations in the conduc-
tance optimization or fitness limit of 0.8 or 50 stall generations in the time constants
optimization.
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clamp @ first cell second cell
delay 5 ms 10 ms
duration 100 ms 100 ms
temperature 33 ◦ C
connection first with second cell
weights 0.03
delays 1 ms

Table 6.3: Simulation parameters for the network of two chopper models of Fig. 10.2

6.4 Results

6.4.1 Patch clamp simulations of a single “Rothman chopper”

Rothman and Manis (2003c) proposed a HH-like model of onset and chopper neurons
in the cochlear nucleus. The results of their paper (Rothman and Manis, 2003c) can be
reproduced in NEURON. The implemented type I-c model (chopper neuron) simulates
the response to a current clamp. In my simulation, the currents are varied from 0 to
200 pA and the corresponding voltage responses are saved. The voltage responses were
analyzed in Matlab and the ISIs were plotted versus the input strength (Fig. 6.4). A
strong dependence of the ISIs on the input strength can be clearly seen. In addition,
the corresponding spike rate is plotted in the figure. The maximum of the spike rate
curve marks the beginning of the refractory period which inhibits spiking. Therefore,
the spike rate declines after the maximum. The ISIs approach asymptotically 2 ms with
stronger input. In contrast, some real chopper neurons show smaller ISIs (e.g. 1.4 ms
in Young et al., 1988). Moreover, the dynamic range of the spike rate of real chopper
neurons is about 200-300 spikes/s in average Frisina et al. (1990a). If this physiological
dynamic range is applied to the simulation of of Fig. 6.4, the corresponding ISIs in the
simulation would span a range of about 5 to 23 ms, whereas real ISIs differ much less
with varying level (e.g. Frisina et al., 1990b)

6.4.2 Patch clamp simulations of a network of two “Rothman
choppers”

As it is presumed here that a network can stabilize ISIs in the presence of changing input
strength, a network consisting of two chopper neurons, which are equally connected,
was built up in NEURON. The corresponding graphical user interfaces of NEURON
are depicted in the Appendix (Section 10.4). The choppers models are connected with
synapses with an exponential decay of transmitter. The value of the synaptic weights
and delays are displayed in Tab. 6.3.

Fig. 6.5 shows the result of the simulation. In contrast to the simulation of the single
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Figure 6.4: Single Rothman and Manis model: Dependence of the ISI on the input
strength

neuron, the ISIs do nearly not vary when the input strength changes. The variation of
the ISIs of the simulation is in the range of 0.1 milliseconds. The spike rate switches at
40 pA from 0 to 250 spikes/sec abruptly.

6.4.3 “Acceleration” of the “Rothman chopper” using genetic
algorithms (GA)

As described above, the model of Rothman and Manis (2003c) cannot produce ISIs that
are smaller than 2 ms. Furthermore, evidence was found that the smallest ISI is 0.8
ms (see Chapter 3). Therefore I tried to change the membrane model of Rothman and
Manis (2003c) in such a way that it can procuce ISIs of 0.8 ms. The membrane model
of the chopper cell consists of a sodium current, a high threshold potassium current,
a cation current, a leakage current, an external electrode current, and in parallel a
membrane capacity of the cell (see method for details). The current is determined by
the conductances of the specific ion channel. In the HH-like description of the cell the
potassium and sodium channel behaviour is determined by activation and inactivation
variables. The behaviour of the cation channel in this model is only determined by
one activation variable. These variables are dependent on both membrane voltage and
time. The time dependence is due to relaxing time constants, which are again membrane
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Figure 6.5: Network of Rothman and Manis model: Dependence of the ISI on the input
strength.

voltage dependent. For this complexity, the optimization problem was divided into two
subproblems: The first optimization was targeted on the maximum conductances, the
second optimization on the time constants. Optimization focuses on the sodium and
potassium channels at the same time because the interplay of both channels is important
in order to maintain generation of action potentials of the cell.

Minimization of ISI by optimization of the conductances of the sodium and
potassium channel

The smallest ISIs that can be achieved depend strongly and in a quasi-linear way
on the capacity of the cell: decreasing of the capacity leads to decrease of the ISIs.
Anatomically, reducing the capacity can stand for reducing the dimension of the cell
provided that the specific capacity of the membrane remains the same. The dependency
on the conductance and activation variables is more complex. Therefore, in the first
optimization, capacity was set to a fixed value, the genetic algorithm (GA) was started,
which optimized the maximum conductances of the sodium and potassium channel,
the best results for the conductances to achieve a minimum ISI were selected, and this
process was iterated with a smaller fixed capacity (temperature was set to 38o, the
input strength to 180 pF, which is slightly beneath the maximum input at which the
cell stops firing because of refractory period in order to achieve the smallest possible
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Figure 6.6: Single Rothman and Manis model: Optimization of conductances with GA:
The best ISI with varying capacity

ISI). The best ISIs (convergence of the GA) for fixed capacities are plotted in Fig.
6.6 (see methods for details). As expected in general smaller values of the capacity
leads to smaller minimal ISIs. In the simulated range of the capacity the ISI shows
a minimum at 5 pF. The calculation was stopped after 4 pF because smaller values
seem to correlate to unrealistic size of the neurons (see discussion for details). This
optimization procedure produces a minimum ISI of about 1.6 ms. The corresponding
factors for the conductances are shown in Fig. 6.7. In this figure, it is remarkable that
the curve progression of the ISI is mainly determined by the progression of the factor
of the potassium current.

Minimization of ISI by optimization of the time constants of the sodium and
potassium channel

In the second optimization, time constants of the activation/inactivation variables of
the sodium and potassium channel were optimized (see methods). Again capacity
was set to a fixed value and the GA was iterated as described above. The results are
depicted in Fig. 6.8. In contrast to the optimization of the maximum conductances, the
optimization of the time constants converges to smaller ISIs at the same capacity. The
first best ISI of this optimization reaches already the best value of all in the previous
optimization. At 5 pF the goal of an ISI of 0.8 is achieved and as at 4 pF the ISI is
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Figure 6.7: Single Rothman and Manis model: The best conductance-individuals with
varying capacity

only slightly better, the algorithm was stopped. The corresponding factors of the time
constants of the sodium and potassium channels of are shown in Fig. 6.9. Interestingly,
only the time constant τn, which is the time constant of the activation variable of the
potassium channel, shows a globally decreasing progression. This is plausible because
if the activation of the potassium channel is faster the refractory period will be shorter.
But it is difficult to draw further conclusion concerning the remaining time constants
as the dependencies are too complex.

6.4.4 The “fast Rothman chopper” in the Multi-oscillator

The membrane chopper model with a refractory period of 0.8 can be utilized in complex
network of neurons. To test the functionality, the model is integrated in physiologically
inspired networks.

Two “fast Rothman choppers” in a small circuit with input from onset
neuron and from auditory nerve

After optimization of the model of Rothman and Manis (2003c) to achieve an ISI of 0.8
ms, it can be now a part of a network consisting of two choppers with a synaptic delay
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Figure 6.10: Physiologically inspired topology of chopper neurons with input from onset
and ANF.

of 0.4 ms and can elicit spikes in a regular fashion. Evidence for the synaptic delay of
0.4 ms is given in Chapter 3. Further physiological and anatomical evidence (Chapter
3) lead to the simulation paradigm (see Fig. 6.10) that is described in Chapter 4. The
difference to the simulation topology of Chapter 4 is that the nerve input and the input
of the onset neuron are modeled as a signal step and one spike simultaneously with
the beginning of the nerve signal step, respectively. The first input depolarizes the
membrane of the chopper neurons. The change in membrane voltage enables chopping
but does not initiate spikes, because the weights of the input is adjusted in such a way
that the change cannot trigger a spike. Instead, chopping is initialized by an additional
spike of the onset neuron. The fast neurons act as a pace-maker with a clock-rate of 0.4
ms and project to slower chopper neurons which, due to their larger refractory period,
skip shorter intervals while leaving intervals which are multiples of 0.4 ms. With this
topology, the number of neurons required for long ISI and the redundancy of phase
information is diminished in comparison to a simple circular network (see Chapter 4).

The simulation of the fast chopper neurons in the network (Fig. 6.11, left) shows that
spiking starts with the input of the nerve and the onset neuron and stops with one
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Figure 6.11: Left: Response of one fast chopper neuron in the physiologically inspired
topology. Right: Histogram of the ISIs of the response of the fast chopper neuron.

additional spike after the end of the nerve input. The spikes show regular interspike
intervals (Fig. 6.11, right). The histogram shows that the ISIs have a duration of 0.8
ms.

In Fig. 6.12 details of the simulation of a slow LIF chopper neuron with a refractory
period of about 1.2 ms are depicted. The slow chopper neuron skips two of three
incoming spikes, which have a delay of 0.4 ms. This results in ISIs of the slow chopper
neuron of 1.2 ms.

A bank of chopper neurons producing different multiples of 0.4 ms

The fast chopper neurons which are connected as described above operate as a pace-
maker and can also project to a variety of slower chopper neurons (Fig. 6.13). This
yields a bunch of interspike intervals, which can be utilized for example for further time
analysis.

The simulation of such a bank of slow LIF chopper neurons is shown in Fig. 6.14.
The slow chopper neurons receive input from the same fast HH-like pace maker and
have different refractory periods. The histograms show that the the generated ISIs are
multiples of 0.4 ms, which is the clock rate of the pace maker.
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Figure 6.12: The pace maker circuit projects to a chopper neuron that filters multiples
of 0.4 ms, which are appropriate to the refractory period.

6.5 Discussion

6.5.1 Simulations of single chopper neurons and networks of
chopper neurons

The results of the original model of Rothman and Manis (2003c) for a single chopper
neuron show that the results do not cover the physiological response range of real
chopper neurons. The model is developed from measurements of real choppers and
matches their sample. But obviously the sample is a subgroup of the entire chopper
population and the model is fitted to the average of their sample (Rothman and Manis,
2003b). Furthermore, the temperature in their simulations (33oC) was not set to a
physiological value. A strong dependence of the ISI on the input strength might be also
apparent in isolated cells, but the small variation of the ISI apparent in vivo recordings
seems to be a feature of the interconnected cells.
All of the HH-like models (including the model of Rothman and Manis, 2003c) show
an increase of the spike rate and a decrease of the ISI until the refractory period is
reached. Therefore, in order to explain the particular dynamic of the spike rate and
the relatively independence of the ISI of chopper neurons despite level-changes, other
mechanisms like stabilization of ISIs by neuronal networks can be taken into account.
The simulation of the two-chopper network shows that it is possible to achieve the
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Figure 6.13: A bank of chopper neurons providing multiples of 0.4 ms by reducing a
high-frequency input from a pacemaker mikro-circuit.
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Figure 6.14: Different multiples of 0.4 ms can be provided by a small number of chopper
neurons, which receive an input from the same pacemaker.

independence of the ISI from the input strength. The step-like increase of the spike
rate in the simulation discussed in Section 6.4.4 seems not very physiological and is due
to the highly precise synaptic delay. In a more physiologically approach, a small jitter
would be added to the delay of the synapses with the consequence that some spikes
would fall into the refractory period. As a result the step-like spike rate curve would
be then smoothened out.

6.5.2 The optimization of the model using Genetic Algorithms

The HH-equations contain many parameters which can be used for optimization. Al-
though genetic algorithms (GA) are capable to search in a high-dimensional parameter
room, the number of the parameters should be as low as possible to reduce calcula-
tion time and to find fast reasonable solutions. The parameter, capacity of the neuron
model, was taken out of the optimization loops of the GA because it has strong and
nearly linear effect on the ISI that are generated: the lower the capacity the faster the
cell generates spikes. The decrease of the capacity is equivalent to an decrease of the
dimension of the cell. In the simulations of Rothman and Manis (2003c) the membrane
capacity of 12pF yields a radius of 21 µm (neuronal specific membrane capacity of 0.9
µF/cm2). In my simulation the “fast Rothman chopper” holds a capacity of 4 pF. The
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corresponding surface is 444 µm2 and hence the radius of the (spherical) cell

r =
√

444µm2/π ≈ 12µm.

This seems to be a physiological value as in the sample of Rothman and Manis (2003a)
the shortest diameters range from 16 to 30 µm and in the sample Josephson and Morest
(1998) the smallest cell areas are 128 µm2, which is equal to a radius of 6.4 µm.
A further way to lower the dimension of the parameter room in the optimization was
to sort the parameters into groups. These groups are time constants and conductances
and each of them were optimized at the same time. I chose to multiply these parameters
by a factor because variation of them is equal to changing the temperature of a cell.
This modification conserves the ability of the channels to generate action potentials
and conserves the general response characteristics of the channels. Tests of the varia-
tion of the activation/inactivation progression curve x∞(V ) results in a severe change
of the property of channel response characteristics and stops the generation of action
potentials. Therefore this curve was not altered.
The optimization of the time constants resulted in the following multiplicative factors:
τn× 0.2036, τp× 0.0191, τm× 0.5576 , and τh× 0.3667 (“fast Rothman chopper”, re-
fractory period 0.8 ms, see Section 6.4.4). The accuracy of the factors is given by four
digits because small changes of the factors sometimes leads to deterioration of gen-
erating spikes. On one hand, the factors for the three time constants τn,m,h can be
physiologically interpreted by an increase of the temperature: The temperature of the
simulation in Rothman and Manis (2003a) was set to 33oC, whereas the temperature in
vivo is about 38oC and therefore time constants are smaller. Moreover, the Q10 value
of these specific channels was found to be in a range of 2-4 (Cao and Oertel, 2005, see
Fig. 6.3, right), which gives an even stronger decrease of the time constants than with
the standard Q10 factor of 2 (see reaction-velocity-temperature rule by van`t Hoff). On
the other hand, Rothman and Manis (2003b) fitted their model to data by averaging
time constants and conductances that show high variability (see Section 6.2). As shown
in Fig. 6.2 A, the time constant τn sometimes varies by a factor of 4 (see data point at
about -110 mV), in Fig. 6.2 B τp by a factor of 4-5 (data point at about -75 mV). That
means that the original data already contain much lower time constants than they used
for their model, which in turn means that the optimized time constants of my model
partly fall in the range of the measured data.
The fourth factor for τp, which is the slow component of the activation function (see
Section 6.2.3), seems to be very small, but due the fact that discrepancies in the IHT

activation time constants of different models are great (see Section 6.2.3), the integra-
tion of the slow component in the model seems to be still unclear. Rothman and Manis
(2003b) stated that the fast and slow component are probably due to independent
channels, and therefore the slow channel might not be expressed in the fast chopper
cells.
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6.5.3 The “fast Rothman chopper” in the Multi-oscillator

The test of the optimized model with input from an onset neuron (a spike at the
beginning of the signal) and from the nerve (a step-like signal) shows that it is plausible
to assume that the choppers can excite each other. They oscillate with a period of 0.8
ms and a phase delay of 0.4 ms (Fig. 6.11). With the optimized model it is possible to
integrate the HH-like model in the topologies proposed in Chapter 4. Also properties
like tuning to a frequency (see Section 6.2, Winter et al., 2003; Frisina et al., 1990a;
Rhode and Greenberg, 1994) can be incorporated in the model.
Furthermore, a slow chopper neuron can be triggered by the fast pacemaker choppers
with the result that it oscillates with a period that is a multiple of 0.4 ms (Fig. 6.12).
The model allows that a whole population of slower chopper neurons can be triggered
by the pace maker circuit (Figs. 6.13, 6.14), which means a synchronization of a large
network. The whole network requires only an input from the onset neuron at the
peripheral pacemaker chopper neurons. This is in line with anatomical properties of
stellate cells (chopper neurons) and octopus cells (onset neurons), which are adjacent
in the VCN.

6.6 Conclusions

• Single HH-like chopper models (e.g. from Rothman and Manis, 2003c) show a
strong dependency of ISI when changing the input strength. They do not show
any preference for multiples of 0.4 ms, which is in contrast to physiological data.

• In contrast, networks of HH-like chopper neurons with a synaptic delay of 0.4 show
this preference and an independence of ISI when changing the input strength.

• The HH-like model of chopper neurons by Rothman and Manis (2003c) does not
account for short ISIs of real chopper neurons. The model has been modified with
genetic algorithms to generate ISIs as short as 0.8 ms.

• This “fast Rothman chopper” has been successfully integrated in the multi-
oscillator proposed in Chapter 4.

• An enlarged network which is synchronized by a circuit of two “fast Rothman
choppers” can account for a preference of ISIs for multiples of 0.4 ms as found in
physiological data (Chapter 3).
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Chapter 7

Particular Issues

In this chapter particular issues are laid down that are not discussed in the previous
chapters but were objective of discussions with other scientists. These issues may be
relevant for further examinations.

7.1 Input to chopper neurons from onset units:

Octopus or D-stellate cells?

The two inputs of the chopper neuron model which is described in Chapter 3 are
supposed to come from the auditory nerve and an onset neuron. Octopus cells in the
VCN are proposed as anatomical correlate to the onset units in the periodicity model
(Langner, 1981). Ferragamo et al. (1998a) have shown that t-stellate cells (related
to chopper neurons) receive input from d-stellate cells which are referred to onset-
choppers. It was stated that the model seems plausible if onset units are d-stellate cells
(Greenberg, S., pers. communication). There are some differences between d-stellate
and octopus cells concerning their contribution to the enhancement of the dynamic
range of chopper neurons. First d-stellate cells provide an inhibitory input. In our
simulations the dynamic range has bee enhanced by excitatory input that cannot simply
be substituted by inhibition. In the majority of cases, inhibition is accompanied by
a temporal delay and differs from excitation in the temporal contribution to spike
generation and suppression, respectively.
Second, onset neurons (octopus cells) show the largest dynamic range of AM coding
(up to 90-115 dB in Frisina et al., 1990b). It is hard to understand why this specialized
property of onset neurons would not be used. Furthermore, octopus cells are adjacent
to chopper neurons and in the proposed model of this work only a small portion of
chopper neurons need input from onset neurons to be activated and activate a large
network of subsequent chopper neurons.
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7.2 Functional role of inhibition of D-stellate cells

As discussed in the previous section, d-stellate cells are less suitable to enhance AM
encoding than octopus cells. However, it has been shown that t-stellate cells do indeed
receive inhibitory input from d-stellate cells (Ferragamo et al., 1998a). There are sev-
eral possible functional roles for this input.
Inhibition could mute effectively t-stellate cells in order to avoid accidently self-excitation
(without a spike from the onset neuron) or stop oscillations triggered by onset neurons.
Furthermore, the combination of inhibitory and excitatory input might enhance the
signal detection and provide a means of gain control by reducing the noise by inhibition
(Josephson and Morest, 1998; Caspary et al., 1994).
On the other hand, Caspary et al. (1994) found that blockade of inhibitory inputs in-
creased discharge rate primarily within the excitatory response area. That implies that
temporal responses of chopper neurons show no or little change in the bandwidth of
their response.
Furthermore, simulation of stellate cells showed that increasing number of inhibitory
input increases regularity of firing (Josephson and Morest, 1998; Banks and Sachs,
1991).

7.3 Is the nerve input necessary for the

Multi-oscillator?

The multi-oscillator, which was introduced in Chapter 4, consists of a small pacemaker
circuit of two fast neurons and a reducer consisting of slow neurons. The pacemaker
circuit may oscillate with a period of 0.8 ms in response to input from auditory nerve and
an onset neuron. The pacemaker projects to slower neurons which oscillate with a period
that is a multiple of the pace maker’s clockrate of 0.4 ms. All of the chopper neurons of
the multi-oscillator receive also an input from the auditory nerve, as it is in vivo. For
the fast neurons this input enables chopping; it is a condition for starting and stopping
the chopper neurons and necessary in a self-exciting network (Bahmer and Langner,
2007). But, in the context of the model this does not seem to be necessary for the slow
chopper neurons because the functional role is substituted by the projection of the fast
neurons. On the other hand, if an additional inhibition of chopper neurons is included
(see above: functional role of inhibition of d-stellate cells) the input seem reasonable
again: If inhibition mutes the circuit, the onset neuron could not start the chopper
neurons. With the excitatory input from the nerve the inhibition is compensated and
the onset neuron is able to start the oscillation of the chopper neurons. Integration of
inhibition seems reasonable to enhance dynamic processing as mentioned above.
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Figure 7.1: Three classes of rBMF function response patterns (level dependent firing
rate at best modulation frequency) of IC neurons • - with optimum; ¥ - saturating; N
- monotone (modified from Zschau, 2006).

7.4 Comparison of particular simulation results with

experimental results

The simulation results in Chapter 4 and 5 show that the integration of the onset neu-
ron over a wide frequency range has consequences for the periodicity encoding of the
subsequent neurons. The level dependent progression of the synchronization curve of
the onset neuron shows an optimum which depends on the width of the integration of
the onset neuron. The influence of level and depth of modulation on the periodicity
processing in the IC can be found in Zschau (2006), Diploma work at TU Darmstadt.
As neurons in the auditory midbrain can encode periodicity information into their spike
rate (Langner and Schreiner, 1996), it was hypothesized that the mechanism that causes
the optimum in the level dependent VS in the CN neurons (see Chapter 4,5) is trans-
ferred into the midbrain. In the sample of Zschau (2006) three classes of level dependent
firing rate at best modulation frequency (rBMF) were found (Fig. 7.1). According to
Zschau (2006), Semple and Kitzes (1985); Woolley and Casseday (2004); Ehret and
Merzenich (1988); Ferragamo et al. (1998b) have described similar classes of response
pattern with similar dynamic ranges in the rBMF.

One class (20% of the neurons) shows an optimum at 40 dB SPL in the response to SAM,
which is in line with the simulation of the response of the onset neuron in Chapter 4 to
SAM. The other two classes show a saturating (42% of the neurons) and a monotone
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(38%) increasing slope. Saturation started at 40-60 dB over the threshold.
The three classes differ not only in the shape of rBMF curve but consequently also
in their dynamic ranges (Fig. 7.2). “Optimum” cells show a dynamic range between
50 and 90 dB, “monotone” cells in average 90 dB, and “saturation” cells in average
55 dB. Similar results are described in Woolley and Casseday (2004). In addition to
the explanation of the “optimum” cell response in Chapter 4, the “saturation” and
“monotone” cells response in the IC could be explained by a very large integration
window of the onset neuron, but different level of spontaneous activity of the nerve
fibers.
The same basic mechanism for both cell types is as follows: At low levels periodicity
encoding increases with sound level because more frequency channels contain periodicity
information. But at a certain level fibers at CF start to saturate and cancel the effect
of providing periodicity information from fibers which start to fire at the same time.
Therefore encoding of periodicity information remain constant stationary from this
level.
In addition to the “saturation cell”, the “monotone cell” may receive input from onset
neurons that integrate over nerve fibers with high spontaneous activity. The high noise
of the not activated fibers is substituted by signal information with higher level. As noise
is progressively diminished in the input of the onset neuron, periodicity information is
enhanced.
Altogether the three groups might be subclasses of each other. The monotone curve
may be the first part of the saturation curve which may be the first part of the optimum
curve. If this is true, the difference could be determined by the width of the integration
window and the spontaneous activity of the integrated nerve fibers.
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Figure 7.2: The three classes of Fig. 7.1 differ in their dynamic range in rBMF (modified
from Zschau, 2006).
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Chapter 8

General Discussion and Outlook

Each previous chapter of this thesis contains a discussion section. In addition, this
general discussion summarizes the previous results in a broader context of the issues
mentioned in the general introduction. This chapter is divided in two parts. The first
part focuses on the physiological relevance of the simulation models and results, the
second part shows the perspectives of these models.

8.1 General Discussion

8.1.1 Biological background for the Circular Oscillator and the
Multi-oscillator

Evidence for a time constant of 0.4 ms emerges in recordings of neurons in the IC
(Langner, 1981, 1983; Langner and Schreiner, 1988), in psychoacoustical experiments
(Langner, 1981), and in recordings in the CN in Young et al. (1988). Consequently, a
neuronal model for a temporal correlation analysis was suggested as a basis for pitch
perception. This model included multiples of 0.4 ms as preferred intervals for intrinsic
neuronal oscillations (Langner, 1983, 1992). Obviously, an explanation is required for
the observation that the same time constant is apparent in different measurements and
in various species such as man, Guinea fowl, and cat.
The high dynamic range of periodicity encoding as well as the rate function of chopper
neurons can not be understood unless one assumes that their input comes from nerve
fibers that code only a narrow frequency range and that onset neurons may activate
chopper neurons.
Onset neurons show the best periodicity encoding in the VCN. Provided that they are
able to trigger chopper neuron oscillations, they could enhance the periodicity encoding
of chopper neurons. The input of onset neurons from a broad frequency range permits
periodicity encoding even if single auditory nerve fibers saturate. Since chopper neurons
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code periodicity similarly and they are located close to onset neurons, it seems reason-
able to assume that they could receive an input from onset neurons. These neurons
may be octopus cells. However, an actual connection between octopus cells and chopper
neurons has not yet been demonstrated. As a consequence of the above conclusions,
the topology of the simulation is as follows:

• To ensure the preference for multiples of 0.4 ms, chopper neurons are arranged in
a circular network. The minimum number of two chopper neurons in this network
corresponds to the proposed minimum refractory period of 0.8 ms.

• Chopper neurons receive input from both auditory nerve fibers and onset neurons.

In order to explain the response properties of chopper neurons, previous simulations of
chopper neurons relied exclusively on membrane properties (e.g. Wiegrebe and Meddis,
2004; Hewitt et al., 1992; Arle and Kim, 1991; Banks and Sachs, 1991). Although these
models can reproduce PSTHs of chopper neurons, regularity of intrinsic oscillations
(mean, standard deviation and coefficient of variation), and tuning to frequencies and
periodicities of chopper neurons, they can not reproduce the dynamic ranges of the
spike rate and periodicity encoding or the preference for multiples of 0.4 ms in the
interspike intervals of chopper neurons. Our first attempt to introduce discretized and
limited oscillations intervals is based on spike-to-spike oscillations. The connections
between the chopper neurons are presumed to be chemical synapses with a delay of 0.4
ms As a result, the simulations show chopping with constant interspike intervals.

8.1.2 Regularity and periodicity analysis

In vivo properties of chopper neurons, such as the mean and the standard deviation of
interspike intervals, and the coefficient of variation (CV), could be simulated with our
model. The interspike interval histograms of the simulated chopper neurons show that
the chopper period is conserved even for modulated signals. Therefore, the output of
the chopper neuron could serve as an intensity-independent time reference for a sub-
sequent temporal analysis, as was proposed in a model for pitch estimation (Langner,
1981, 1983, 1992).
In spite of their connections to onset neurons, the dynamic range of the pure tone re-
sponse of the simulated chopper neurons is determined solely by the input from the
auditory nerve. This input is mainly responsible for starting and stopping the response
of the choppers and therefore can solve the problem addressed by Ferragamo et al.
(1998a) concerning interconnected chopper neurons: “This circuit raises the question
whether the mutual excitation in choppers could be self-sustaining and how chopper
responses are terminated”.
Physiological data show that the modulation frequency of SAM is encoded in one fre-
quency channel in the nerve with a small dynamic range of 30-40 dB (Frisina et al.,
1985). This raises the question of how chopper neurons achieve their total dynamic
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range of chopper neurons of about 90 dB. The answer which is suggested by our model
is that chopper neurons receive input from onset neurons which integrate over a wide
frequency range (Palmer et al., 1996; Oertel et al., 2000; Golding et al., 1999). In our
simulation, this integration window was selected to be Gaussian shaped. However, the
optimal range and shape of the integration window for encoding periodicity information
is unknown and has to be studied in further simulations. The simulation presented here
shows that the difference between the synchronization of the nerve and the onset neu-
ron is considerable. The auditory nerve carries information tonotopically, whereas the
onset neuron with its broadband integration utilizes temporal information from many
frequency channels at the expense of spectral information. In line with physiological
data (Frisina et al., 1990a), the dynamic range of the onset neuron for periodicity coding
is much larger than that of the nerve and enables phase coding even at the highest levels
investigated (90 dB SPL). The chopper neuron simulations show a dramatic difference
between the results obtained with and without input from an onset neuron. Dynamic
ranges differ by at least 70 dB.

8.1.3 Effects of changing the width of the frequency channel
integration

The simulations also demonstrate the importance of the width of the frequency channel
integration. Variation of the width shows that the frequency channel integration can
be adapted for encoding periodicity at low or high levels.
Since the effect of different widths of frequency channel integration for the onset neu-
rons are transferred to the chopper neurons, the adjustment of the integration width
has also consequences for the subsequent processing steps.
The simulation results show that a narrow integration window is always an advantage
for spectral coding. In contrast, a broad integration window is advantageous for pe-
riodicity coding at high levels, while for low levels a narrow integration window may
be better. This is due to two other opposing effects: the correlation of synchronized
activity in different channels is higher when the channels are in close proximity, on the
other hand at high levels a broader integration window may also include non-saturated
channels.
The SAM responses of simulated chopper neurons which receive input from onset neu-
rons with different integration windows show a change in their resolution of the har-
monics. As expected their resolution is better with a narrow than with a broader
integration window. The reason is that broader integration windows of onset neurons
at neighbouring CF overlap more, which smears the frequency information provided by
the onset neurons to the chopper neurons. The other way round, decreasing the width
of the integration window results in sharper tuning of the chopper neuron. In some
cases, the simulated chopper neurons show a 40% enhancement in their resolution of
harmonics compared to the resolution of the nerve (Chapter 5). An explanation for
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this enhancement is the fact that two inputs - from the nerve and the onset neuron -
act in this case as two multiplicative filters: the neuron will produce an output only
if both inputs were active at the same time, if only one input or none were active, no
output will be produced. This results in a sharper tuning.
Considering the high dynamic range of our acoustic environment and the fact that the
auditory system has to deal with both narrow and broadband signals, one might hy-
pothesize that it would be advantageous if the hearing system were able to adapt the
spectral integration of onset neurons to different stimulus conditions.
Schneider et al. (2005) found narrow and broadband adaptations in the pitch perception
of different subjects. The pitch of a harmonic sound in some objects may be dominated
by periodicity information, in others by certain resolved low harmonics. The proposed
multi-oscillator might provide an explanation for this phenomenon at an early stage of
auditory signal processing: The correlative of the perception of the fundamental results
from a dominance of onset neurons with broad integration windows, while a preference
for the perception of the harmonics results from a dominance of narrow integration
windows. The broad integration allows for a better encoding of the periodicity of a
signal at high levels but shows a bad resolution of each harmonic component, while
the narrow integration shows a bad ability to encode periodicity over a large dynamic
range but results in a good resolution of components. Therefore, the described filtering
mechanism determined by the shape of the integration window of the onset neuron at
a low level of auditory nuclei is transferred to processing of the auditory system at a
high level. An analogue example of such a filtering mechanism is the principle of tono-
topy which is found throughout the auditory system commencing with the frequency
filter mechanism of the cochlea. Cheveigné (2000) therefore called the auditory system
a “separation machine”. A preference for a width of integration might be an inher-
ited intrinsic property of the auditory system or, perhaps more likely, the result of an
individual learning process: in the maturation of the auditory system the formation
of task specialized neuronal structures could adapt to the acoustic environment. One
could also postulate mechanisms that to some extent dynamically control the integra-
tion window of onset neurons, depending on the stimulus or the processing task. The
adaptation of the window could be accomplished by level dependent lateral inhibition or
by inhibition from higher processing centers. It is even possible that frequency channels
which contribute to the integration process could be selected via presynaptic inhibition.
These dynamic control mechanism could help to understand the “Cocktail-party effect”.

8.1.4 Periodicity coding despite saturation of nerve fibers?

As shown in Chapter 4 it is necessary for periodicity coding of chopper neurons that
input from non-saturated nerve fibers project to chopper neurons. But in some cases
auditory nerve fibers show to some extent periodicity coding despite saturation (Frisina
et al., 1996; Winter et al., 2003). Therefore, chopper neurons might not need an
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additional input from onset neurons to enhance their dynamic range of AM coding
(Wiegrebe, L., pers. communication). In order to enhance the dynamic range of chop-
per neurons up to 90 dB, an input must provide a high synchronous response for at least
a dynamic range of 90 dB. In contrast, data of Frisina et al. (1996) shows much smaller
synchronous response to AM from 30 dB over threshold and in this paper it is stated
that the reduction in AM responsiveness with sound level correlates with the limited
dynamic range of nerve fibers concerning the rate-intensity function, Therefore, despite
that the nerve fibers show to some extent AM coding at saturation (30-40 dB over
threshold), this fact cannot explain the large dynamic range of AM coding of chopper
neurons of up to 90 dB.

8.1.5 Experimental basis for the time constants in VCN neu-
rons

The results of Chapter 6 show that it is possible to simulate the topology proposed in
Chapter 3 and 4 not only with LIF models but also with a modified HH-like model of
stellate cells. The modification performed by genetic algorithms was discussed for its
physiological pertinence (see Chapter 6). Calculations and comparison gave evidence
that the modified model can be in the physiological range. The conductances and
time constants of the VCN channels were discussed (Oertel, D., pers. communication).
The results of Cao and Oertel (2005) are in some ways contrdicting to the findings
of Rothman and Manis (2003b) concerning the fittings of the conductances. It was
stated (Oertel, D., personal communication): “It is not always easy to decide how to
fit exponentials to currents. People usually try fitting a single exponential first. If the
fit is terrible, they go to two exponentials. The fit is invariably better but is it good
enough? Those are to some extent arbitrary judgments.”

8.1.6 The “fast Rothman chopper” in the Multi-oscillator

The test of the optimized model with input from onset neuron and from the nerve shows
that it is plausible to assume that the choppers can excite each other and oscillate with
a period of 0.8 ms and a phase delay of 0.4 ms. It is possible to integrate the optimized
HH-like model in the topologies proposed in 4 and properties of chopper neurons like
tuning to a frequency (see Section 6.2, Winter et al., 2003; Frisina et al., 1990a; Rhode
and Greenberg, 1994) can be incorporated.
Furthermore, a slow chopper neuron can be triggered by the fast pace maker choppers
and oscillates with a period that is a multiple of 0.4 ms. Even a whole population
of slower chopper neurons can be triggered by the pace maker circuit, which means a
synchronization of a large network. The whole network requires only an input from
the onset neuron at the peripheral pacemaker neurons, which is in line with anatomical
properties of stellate cells (chopper neurons) and octopus cells (onset neurons), which
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are adjacent in the VCN.

8.2 Outlook

In this section, extensions of the multi-oscillator (Chapter 3 and 4) and of the periodicity
model (Chapter 2 and 3) for further simulations are outlined.

8.2.1 Implementation of inhibition

As described above, chopper neurons receive broadband inhibitory input, which is as-
sumed to play a role rather in gain control than in frequency tuning (see above). For
this purpose, an additional neuron with a negative weight can be integrated in the
topology. Several questions arise: In which way will the input from the auditory nerve
overcome the inhibition and which role plays timing in encoding modulation as in-
hibitory input is delayed? Can the inhibitory input enhance AM coding? Is it possible
to mute a network of several interconnected neurons by inhibition to prohibit undesired
self-activation by spontaneous activity?

8.2.2 Large networks containing the Multi-oscillator

The multi-oscillator, which is discussed in Chapter 4, is a prototype for a building block
in a large network. The small pace maker enslaves all the subsequent neurons which
are supposed to be perhaps hundreds of neurons that are connected. Inhibition as de-
scribed above will therefore play an important to prohibit self-excitation and enhance
exact timing.
Large networks can have some special operation modes. Anninos (1972) showed in a
simulation that a large network consisting of 200-1000 neurons fires at times that are
integer multiples of the synaptic delay. The networks were specified by a number of
parameters like the ratio of inhibitory neurons in the network, cell connections, and sim-
ilar properties. It was found that the neurons of the network can show self-maintaining
cyclic modes with a fixed period (multiples of the synaptic delay), which can be altered
in the period by an external input. Surprisingly, evidence was found that the nets cyling
modes do not depend on the detailed structure of the net.
Considering these results, it would be interesting to simulate such large networks, which
are triggered by the pace maker of the multi-oscillator. Consequently, several questions
arise: How robust will this network be? What will be the effects of the inhibitory
regulation? Which effects has an external input like the nerve input? Simulations can
perhaps help to understand the structure of the VCN and the intra- and interconnec-
tions of chopper neurons.
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8.2.3 Pure tone and AM processing

The periodicity model from Langner (Langner, 1981, 1983, 1992; Rees and Langner,
2005), which is described in Chapter 2 and 3, gives a basis for the explanation for pitch
perception. It is a model, which correlates the carrier and modulation frequency of
a harmonic complex signal. The oscillator is triggered by the modulation and elicits
several spikes for coding every modulation. These spikes coincide with spikes from
integrated responses to the carrier. As a result a coincidence occurs when multiples of
the carrier period fit into the modulation period.
But what happens if the signal is a pure tone? In this case, no modulation is apparent
and the oscillator is only triggered by the signal onset. Therefore the oscillator should
send spikes for at least one period of the pure tone, so that again one spike of the
oscillator and one spike of the delayed pure tone can coincidence.
These are two modes of the model and the pure tone mode has to be tested in further
simulations. Especially the interplay between the inhibitory input and the excitatory
input from the onset neuron in the pure tone mode has to be analyzed.

8.2.4 Integration of the results in the periodicity model from
Langner

The periodicity model described in Chapter 2 and 3, is an abstract model of a neural
network in the central auditory system. As the nerve input and the inhibition of the
chopper neurons apparently play an important role for encoding modulation frequency
the model has to be completed by these inputs. Inhibition has been already integrated
in a newer version of the model, to enable the coincidence neuron to respond only to a
distinct relation between the modulation and the carrier frequency and not to higher
harmonic relations. As it is known that this inhibition is delayed, it seems that in
this case at the beginning of the processing the neurons let pass a higher amount of
information and with time the information amount is “sharpened”. It is interesting
if this principle can be echoed in further simulations of chopper neurons including
inhibition.
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Summary

The aim of this work was to test a new model for oscillating neurons (chopper neurons)
in the cochlear nucleus of the auditory system.

In Chapter 3 is shown that multiples of 0.4 ms are apparent in intrinsic oscillations in
the auditory system and in pitch shift experiments. The existence of a time constant
of 0.4 ms is explained by the assumption of a minimum chemical synaptic delay of
this size between chopper neurons. The large dynamic range of periodicity coding, the
small dynamic range of pure tone response, and the sharp frequency tuning of chopper
neurons can be explained as a functional result of simultaneous projections from both
the auditory nerve fibers and onset neurons to chopper neurons.

As a consequence, the topology of the simulation described in the following Chapter 4
is as follows: To ensure the preference for multiples of 0.4 ms as observed in physiological
and psychophysical experiments, chopper neurons are arranged in a circular network.
The minimum number of two chopper neurons in this network results in a chopper
period of 0.8 ms which corresponds to the proposed minimum refractory period of 0.8
ms. In the topology, chopper neurons receive input from both auditory nerve fibers
and onset neurons. Simulations of the model show that in contrast to previous models,
the present model can explain the preference for multiples of 0.4 ms. The model has
also the advantage of explaining their large dynamic range of periodicity encoding of
chopper neurons in spite of their narrow frequency tuning.
Like the models investigated previously by other authors, the present model is able to
simulate interspike intervals of spike trains of the chopper responses with high precision.
Moreover, the simulation can explain essential properties of real chopper neurons by
input from onset neurons.

As discussed in Chapter 5, the simulations show that variation of the integration
widths of onset neurons results in a corresponding variation of the spectral resolution
of chopper neurons with smaller widths resulting in a higher resolution of frequency
components. Variation of the integration widths of onset neurons also results in varia-
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tion of the periodicity encoding of chopper neurons. Narrow integration widths lead to
better periodicity encoding at low levels. At high levels broader integration widths lead
to better periodicity encoding. Therefore it is a conflicting demand at high levels for to
adapt the width of the integration to tuning or to encoding periodicity. The observed
pitch dichotomy of individual preferences of human subjects for either periodicity pitch
or the pitch of low spectral components of harmonic sounds (Schneider et al., 2005) can
be explained by assuming adaptations of the width of the integration to either spectral
or temporal coding.

In contrast to physiological data, Hodgkin-Huxley(HH)-like models of single chopper
neurons (e.g. from Rothman and Manis, 2003c) show a strong dependency of their
interspike intervals when changing the input strength and do not show any preference
for multiples of 0.4 ms. Simulations in Chapter 6 show that networks of HH-like
chopper neurons with a synaptic delay of 0.4 ms do exhibit this preference and their
chopper intervals are independent of changing the input strength. The HH-like model of
chopper neurons by Rothman and Manis (2003c) does not account for short oscillating
intervals of real chopper neurons. The model has been modified with genetic algorithms
to generate oscillating intervals as short as 0.8 ms. This “fast Rothman chopper” has
been successfully integrated in the multi-oscillator proposed in Chapter 4. An enlarged
network which is synchronized by a circuit of two “fast Rothman choppers” can account
for a preference of ISIs for multiples of 0.4 ms as found in physiological data.
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Zusammenfassung in deutscher
Sprache

Das Ziel dieser Arbeit war, ein Modell für oszillierende Neurone (Chopperneurone) in
der ersten Station der Hörbahn (Nucleus cochlearis) zu entwickeln und zu testen.

In Kapitel 3 werden Vielfache von 0.4 ms in intrinsischen Oszillationen im auditori-
schen System und in sog. “pitch shift” Experimenten beschrieben. Die Zeitkonstante von
0.4 ms wird durch die Annahme einer kleinsten chemischen synaptischen Verzögerung
erklärt. Die in physiologischen Experimenten beschriebene hohe dynamische Breite der
Periodizitätskodierung, die geringe dynamische Breite in der Antwort auf einzelne Töne
und das präzise Tuning von Chopperneuronen kann durch die gleichzeitige Projektion
von sowohl auditorischen Nervenfasern als auch von sog. Onsetneuronen verstanden
werden.

Daraus ergibt sich die Topologie des Choppermodells in Kapitel 4 folgendermassen:
Um die Präferenz für Vielfache von 0.4 ms sicherzustellen, bilden die simulierten Chop-
perneurone ein kreisförmiges Netzwerk. Die kleinste Anzahl von zwei Chopperneuronen
in diesem Netzwerk entspricht der geforderten minimalen Refraktärzeit von 0.8 ms. Die
simulierten Chopperneurone erhalten einen Eingang von Nervenfasern und Onsetneuro-
nen. Simulationen dieses Modells zeigen, dass das hier vorgestellte Modell im Gegensatz
zu den bisherigen Modellen, die Präferenz für Vielfache von 0.4 ms von Chopperneu-
ronen erklären kann. Das Modell ist zusätzlich noch in der Lage, die hohe Dynamik
der Periodizitätskodierung bei gleichzeitigem präzisem Tuning verständlich zu machen.
Darüber hinaus kann das Modell, wie die bisherigen Modell auch, Interspike-Intervalle
präzise simulieren.

In Kapitel 5 wird in Simulationen von Chopperneuronen gezeigt, dass die Änderung
der Integrationsbreiten der projizierenden Onsetneurone eine Veränderung der spektra-
len Auflösung der Chopperneurone nach sich ziehen. Werden die Integrationsbreiten
schmaler, wird die Auflösung von Frequenzkomponenten besser. Außerdem verändert
die Breite auch die Periodizitätskodierung. Schmale Integrationsbreiten führen zu einer
besseren Periodizitätskodierung bei niedrigen Lautstärken. Bei hohen Lautstärken führt
eine breite Integration zur besseren Kodierung. Das ist die Ursache dafür, dass bei hohen
Lautstärken sich die Adaptation der Integrationsbreite an das Tuning und die Adap-
tation an die Periodizätskodierung entgegenstehen. Die beobachtete Zweideutigkeit der
Tonhöhenempfindung, die bestimmt ist durch entweder die Einhüllende oder durch ei-
ne niedrige spektrale Komponente eines harmonischen Klanges (Schneider et al., 2005),
kann durch die Annahme erklärt werden, dass die Integrationsbreite der Onsetneurone
an spektrale oder zeitliche Kodierung angepaßt ist.
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Im Gegensatz zu physiologischen Daten zeigen Hodgkin-Huxley-artige Modelle von ein-
zelnen Chopperneuronen (z.B. von Rothman and Manis, 2003c) eine starke Abhängigkeit
ihrer Interspike-Intervalle bei Veränderungen der Eingangsstärke und zeigen keine Prä-
ferenz der Interspike-Intervalle für Vielfache von 0.4 ms. Simulationen in Kapitel 6
zeigen, dass Netzwerke Hodgkin-Huxley-artiger Neurone mit einer synaptischen Verzö-
gerung von 0.4 ms diese Präferenz und eine Unabhängigkeit von der Eingangsstärke
aufweisen. Mit dem Hodgkin-Huxley-artigen Choppermodell von Rothman and Manis
(2003c) können die kurzen Interspike-Intervalle von physiologischen Chopperneuronen
nicht simuliert werden. Daher wurde das Modell mit Hilfe von genetischen Algorith-
men modifiziert, um Interspike-Intervalle von 0.8 ms zu erzeugen. Dieser “schnelle
Rothman-Chopper” wurde erfolgreich in den “Multi-Oszillator” aus Kapitel 4 inte-
griert. Die Präferenz physiologischer Interspike-Intervalle für Vielfache von 0.4 ms kann
auch durch ein erweitertes Netzwerk, dass durch zwei verschaltete “schnelle Rothman-
Chopper” synchronisiert wird, erklärt werden.
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Appendix

10.1 Leaky integrate-and-fire neuron and synapses

as Matlab function-file

10.1.1 Synapse

function [PSCout]=Synapse(dt,steps,leakage,weight,AP,mu,sigma)

persistent ltime

persistent transmitter

persistent buffer

persistent latencystep

global depletion2

if length(transmitter)==0

transmitter=0;

end

if length(ltime)==0

lzeit=length(depletion2)- steps +1;

latencystep=abs(round(normrnd(mu,sigma)/dt));

end

%-----------Calculation--------------

if AP ==1

ltime=1;

latencystep=abs(round(normrnd(mu,sigma)/dt));

end

transmitter=transmitter+depletion2(ltime)*dt;

transmitter=transmitter-transmitter*dt*leakage;

PSCin=weight*(tanh(abs(transmitter)*10 - 5)+1)/2;
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ltime=ltime+1;

%-----------Latency------------------

if latencystep1>length(buffer)

buffer(latencystep+1)=PSCin;

else

buffer(latencystep+1)=buffer(latencystep+1)+PSCin;

end

PSCout=buffer(1);

buffer(1)=[];

The depletion in the synapse is a look-up table:

function depletion2=depletion(dt,steps);

lengthdep=0.0002; % 0.2ms

if dt>=lengthdep disp(’dt has to be smaller than 0.0002!’)

depletion=0;

else

stepstable=round(lengthdep/dt);

maxvalue=12e3;

x=1:stepstable/2;

table=x*(maxvalue/(stepstable/2));

depletion=[ table fliplr(x(1:end-1))*maxvalue/(stepstable/2) 0];

depletion2=[ depletion zeros(1,Schritte)];

end

10.1.2 Soma

function [APout]=Somanoise(dt,leakage,PSC,threshold,mu,sigma)

persistent ltime

persistent current

if nargin<4

global threshold

end

if length(current)==0

current=0;

end

%----------Threshold----------------------------------

noise=normrnd(mu,sigma)*0.0001;

threshold2=[threshold 0 zeros(1,ltime)]; % with buffer
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if length(ltime)==0

ltime=length(threshold)+1; % outside refractory time

end

%--------------Calculation---------------

current=current+PSC*dt;

current=current-current*dt*leakage;

currentout=current;

if (current+noise)>threshold2(ltime) + 0.0001

APout=1;

current=0;

ltime=1;

else APout=0;

ltime=ltime+1;

end

The threshold for the soma is a look-up table:

function out=threshold(absrefrac,relrefrac,dt)

absz=zeros(1,round(absrefrac/dt));

absz(1,:)=10;

if relrefrac =0

below=round(relrefrac/dt);

x=linspace(0,14,below);

relz=(10)*exp(-x);

out=[absz relz];

else

out=absz;

end

10.2 Hodgkin Huxley Equations of the model of

Rothman and Manis (2003c)

The model currents presented below have voltage and time dependencies similar to
those of the original Hodgkin and Huxley model (1952). In these equations, currents
are governed by an activation/ inactivation variable x whose rate of change is defined
by the following first-order differential equation

dx

dt
= (x∞ − x)/τx (10.1)
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where τs is the time constant of x, x∞ is the steady-state value of x (i.e. the value of
x when t À x), and x itself represents the activation/ inactivation variables a, b, c,
w, z, n, p, m, h, and r in the following text. Although the formalism of the preceding
equation is different from the original HH formalism in which activation/inactivation
variables are expressed in terms of “open” and “close” rate constants α and β, they
are nevertheless mathematically equivalent when x∞ = α/(α + β) and τx = 1/(α + β.
Reversal potentials are: VK = −70 mV, VNa = +55 mV, Vh = −43 mV, and Vlk = −65
mV.

Fast transient K+ current

IA = ḡA · a4bc · (V − Vk) (10.2)

a∞ = [1 + exp(−(V + 31)/6]1/4 (10.3)

b∞ = [1 + exp((V + 66)/7)−1/2 (10.4)

c∞ = b∞ (10.5)

τa = 100 · [7 exp((V + 60)/14) + 29 exp(−(V + 60)/24)−1 + 0.1 (10.6)

τb = 1000 · [14 exp((V + 60)/27) + 29 exp(−(V + 60)/24)]−1 + 1 (10.7)

τc = 90 · [1 + exp(−(V + 66)/17)]−1 + 10 (10.8)

Low-threshold K+ current

ILT = ḡLT · w4z · (V − VK) (10.9)

w∞ = [1 + exp(−(V + 48)/6)]−1/4 (10.10)

z∞ = (1− ζ) · [1 + exp((V + 71)/10)]−1 (ζ = 0.5) (10.11)

τw = 100 · [6 · exp((V + 60)/6) + 16 · exp(−(V + 60)/45)−1 + 1.5 (10.12)

τz = 1000 · [exp((V + 60)/20) + exp(−(V + 60)/8)]−1 + 50 (10.13)

High-threshold K+ current

IHT = ḡHT · [ϕn2 + (1− ϕ)p] · (V − VK) (ϕ = 0.85) (10.14)

n∞ = [1 + exp(−(V + 15)/5)−1/2 (10.15)

p∞ = [1 + exp(−(V + 23)/6)−1 (10.16)

τn = 100 · [11 exp((V + 60)/24) + 21 exp(−(V + 60)/23)]−1 + 0.7 (10.17)

τp = 100 · [4 exp((V + 60)/32) + 5 exp(−(V + 60)/22)−1 + 5 (10.18)
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Fast Na+ current

INa = ḡNa ·m3h · (V − VNa) (10.19)

m∞ = [1 + exp(−(V + 38)/7)]−1 (10.20)

h∞ = [1 + exp((V + 65)/6)]−1 (10.21)

τm = 10 · [5 exp((V + 60)/18) + 36 exp(−(V + 60)/25)]−1 + 0.04 (10.22)

τh = 100 · [7 exp((V + 60)/11) + 10 exp(−(V + 60)/25)]−1 + 0.6 (10.23)

Hyperpolarization-activated cation current

Ih = ḡh · r · (V − Vh) (10.24)

r∞ = [1 + exp((V + 76)/7]−1 (10.25)

τr = 105 · [237 exp((V + 60)/12) + 17 exp(−(V + 60)/14)]−1 + 25 (10.26)

Leak current

Ilk = ḡlk · (V − Vlk) (10.27)

10.3 Programs for NEURON and Matlab

The following script in NEURON is an iteration for different values of IClamp currents.
It can be called from within a NEURON session (file − > load mod-file). Before start-
ing the script a Ro Cell object has to be created within NEURON.

//Andreas Bahmer 25.1.06

objref icur

icur = new Vector (50, 100)

ncur = 2 // normal number of current steps

variable domain(&ncur, 1, 50)

imax = 50

objref w // window, run control and plot window

objref rect, recv, reci, tempmatrix

rect = new Vector()

recv = new Vector()

reci = new Vector()

tempmatrix = new Matrix()

recv.record(&Ro Cell[0].soma.v(0.5)) //assignment of the membrane voltage

rect.record(&t)//assignment of the time
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//loop for different IClamp values and storage of membrane voltages for each

values

// in tempatrix

proc runhere(){
for i=0,ncur-1 {
icur.x[i] = i*imax/(ncur-1)

IClamp[0].amp=icur.x[i]/1000

IClamp[1].amp= icur.x[i]/1000

run()

tempmatrix.resize(ncur+1,rect.size()+1)

tempmatrix.setrow(i+1,recv )

tempmatrix.x[i+1][rect.size()]=icur.x(i)

}
tempmatrix.setrow(0,rect )

}
objref savdata

savdata = new File()

// saves tempmatrix in rothmanmat.txt (first two values are header)

proc matrix() {
n=tempmatrix.ncol

m=tempmatrix.nrow

savdata.wopen("rothmanmat.txt")

tempmatrix.fprint(savdata, "% g")

savdata.close()

}
w = new HBox()

w.intercept(1)

xpanel("")

xbutton("Run ", "runhere()")

xbutton("save matrix", "matrix()") //button for saving tempmatrix

xvalue("IV max (pA)", "imax", 200)

xvalue("# IV steps", "ncur", 2)

xpanel()

w.intercept(0)

w.map("Andreas Bahmer 06",400,50,200,200)

The following script-file in Matlab imports the Rothmanmat.txt file generated by the
previous code in NEURON. The first two values in the file have to be removed by hand.

clear all

close all
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data=load(’rothmanmat.txt’); % erase first line (only 2 elements)

[m,n ]=size(data);

imagesc((1:n-1)*0.025,data(2:end,end),data(2:end,1:end-1))

xlabel(’Time [ms]’)

ylabel(’Input [pA]’)

colormap(1-gray)

%% Action potentials

ap=(data(2:end,1:end-1)>-20);

figure

imagesc((1:n-1)*0.025,data(2:end,end),ap)

colormap(1-gray)

%%--------Analysis

zeit=data(1,1:end-1)*0.001;

%% ap is data without time and input strength!!

for za1=1:m-1

clear isi isi2

isi=diff(zeit(find(ap(za1,:))));

isi2=isi(find(isi>0.0001));

g(za1)=data(za1+1,end);

g2(za1)=mean(isi2);

g3(za1)=length(isi2);

end

figure

p1 = line(g,g2*1000,’Color’,’k’);

ax1 = gca;

set(ax1,’XColor’,’k’,’YColor’,’k’)

set(get(ax1,’YLabel’),’String’,’ISI [ms]’)

ax2 = axes(’Position’,get(ax1,’Position’),...

’XAxisLocation’,’bottom’,...

’YAxisLocation’,’right’,...

’Color’,’none’,...

’XColor’,’k’,’YColor’,’k’);

p2 = line(g,g3*1/0.1,’Color’,’k’,’Parent’,ax2);

ylabel( ’Spikerrate [spikes/s]’)

xlabel(’Input [pA]’)
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The following data is the complete setup of the two membrane chopper network model
in NEURON (call: “forall psection()” in NEURON)

Ro Cell[0].soma {nseg=1 L=19.5441 Ra=150

/*location 0 attached to cell 1*/

/* First segment only */

insert morphology {diam=19.5441}
insert capacitance {cm=0.9}
insert kht {ek kht=-70 gkhtbar kht=0.0125}
insert k ion {}
insert na {ena na=55 gnabar na=0.0833333}
insert na ion {}
insert leak {g leak=0.000166667 erev leak=-65}
insert ih {ghbar ih=4.16667e-05 eh ih=-43}
insert ExpSyn {tau=0.1 e=10}
insert IClamp {del=5 dur=100 amp=0.12}
}
Ro Cell[1].soma {nseg=1 L=19.5441 Ra=150

/*location 0 attached to cell 2*/

/* First segment only */

insert morphology {diam=19.5441}
insert capacitance {cm=0.9}
insert kht {ek kht=-70 gkhtbar kht=0.0125}
insert k ion {}
insert na {ena na=55 gnabar na=0.0833333}
insert na ion {}
insert leak {g leak=0.000166667 erev leak=-65}
insert ih {ghbar ih=4.16667e-05 eh ih=-43}
insert ExpSyn {tau=0.1 e=10}
}

10.4 Graphical User Interface of NEURON simula-

tions in Chapter 6

Figures 10.1-10.4 are screenshots of the graphical user interface in NEURON of simu-
lations in Chapter 6. A reproduction of a simulation of a single chopper neuron from
Rothman and Manis (2003c) can be seen in Fig. 10.1, Figs. 10.2-10.4 illustrate the
implementation of two chopper neuron models of Rothman and Manis (2003c) in a
network.
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Figure 10.1: Single Rothman and Manis chopper model: NEURON graphical user
interface
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Figure 10.2: Network of two Rothman and Manis chopper models: NEURON graphical
user interfaces I. Left window: Topology of the two chopper models. The two neurons
are interconnected (first and second cell are circles with label ro0 and ro1). Right
window: Patch clamp processes are attached to each neuron (blue and red). The
displayed values are from the ro1 cell.
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Figure 10.3: Network of two chopper models Rothman and Manis (2003c): NEURON
graphical user interfaces II. Left window: The simulations are iterated with the help of
a loop control and the results can be saved in a matrix, which is analyzed in Matlab.
Right window: Parameters of the simulation run.
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Figure 10.4: Network of two chopper models Rothman and Manis (2003c): NEURON
graphical user interfaces III. Left window: Time progression of membrane voltage of
both cells (black of the ro0 cell, blue of the ro1 cell). The curves show a phase delay of
half of the period of each neuron. Right window: Spike plots of both cells.
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10.5 Genetic Algorithm for the optimization of the

membrane model of Rothman and Manis (2003c)

The genetic algorithms that was used for the optimization is implemented in the genetic
algorithm toolbox from Matlab. The following outline summarizes how the genetic
algorithm works:

1. The algorithm begins by creating a random initial population.

2. The algorithm then creates a sequence of new populations, or generations.

3. At each step, the algorithm uses the individuals in the current generation to create
the next generation. To create the new generation, the algorithm performs the
following steps:

a. Scores each member of the current population by computing its fitness value.

b. Scales the raw fitness scores to convert them into a more usable range of
values.

c. Selects parents based on their fitness.

d. Produces children from the parents. Children are produced either by making
random changes to a single parent – mutation – or by combining the vector
entries of a pair of parents – crossover.

e. Replaces the current population with the children to form the next genera-
tion.

4. The algorithm stops when one of the stopping criteria is met.

10.5.1 Initial population

In the simulations the size of the initial population is set to 20 individuals, the ini-
tial range lies between [0; 1] and [0.9; 1, 1] for the time constants and conductances
optimization, respectively.

10.5.2 Creating the Next Generation

At each step, the genetic algorithm uses the current population to create the offspring
that make up the next generation. The algorithm selects a group of individuals in the
current population, called parents, who contribute their genes – the entries of their
vectors – to their children. The algorithm usually selects individuals that have better
fitness values as parents. The function that the algorithm uses to select the parents is
called the Selection function. The genetic algorithm creates three types of children for
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Figure 10.5: Genetic algorithm: Three types of children

the next generation: Elite children are the individuals in the current generation with
the best fitness values. These individuals automatically survive to the next generation.
Crossover children are created by combining the vectors of a pair of parents. Mutation
children are created by introducing random changes, or mutations, to a single parent.
The schematic diagram in Fig. 10.5 illustrates the three types of children.

Mutation and Crossover explains how to specify the number of children of each type
that the algorithm generates and the functions it uses to perform crossover and muta-
tion. The following sections explain how the algorithm creates crossover and mutation
children.

Crossover Children: The algorithm creates crossover children by combining pairs of
parents in the current population. At each coordinate of the child vector, the default
crossover function randomly selects an entry, or gene, at the same coordinate from one
of the two parents and assigns it to the child.

Mutation Children: The algorithm creates mutation children by randomly changing
the genes of individual parents. The algorithm adds a random vector from a Gaussian
distribution to the parent.

The type of children the algorithm creates can be chosen as follows:
Elite count, in Reproduction options, specifies the number of elite children.
Crossover fraction, in Reproduction options, specifies the fraction of the population,
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other than elite children, that are crossover children.

For example, if the Population size is 20, the Elite count is 2, and the Crossover fraction
is 0.8, the numbers of each type of children in the next generation is as follows: There
are 2 elite children There are 18 individuals other than elite children, so the algorithm
rounds 0.8× 18 = 14.4 to 14 to get the number of crossover children. The remaining 4
individuals, other than elite children, are mutation children.

10.5.3 Stopping Conditions for the Algorithm

The genetic algorithm uses the following five conditions to determine when to stop:

• Generations – The algorithm stops when the number of generations reaches the
value of Generations.

• Time limit – The algorithm stops after running for an amount of time in seconds
equal to Time limit.

• Fitness limit – The algorithm stops when the value of the fitness function for the
best point in the current population is less than or equal to Fitness limit.

• Stall generations – The algorithm stops if there is no improvement in the objective
function for a sequence of consecutive generations of length Stall generations.

• Stall time limit – The algorithm stops if there is no improvement in the objective
function during an interval of time in seconds equal to Stall time limit.

The algorithm stops as soon as any one of these five conditions is met. It is possible
to specify the values of these criteria in the Stopping criteria options in the Genetic
Algorithm Toolbox. The default values are shown in the figure below. When the genetic
algorithm is running, the Status panel displays the criterion that caused the algorithm
to stop. The options Stall time limit and Time limit prevent the algorithm from running
too long. If the algorithm stops due to one of these conditions, the results might be
improved by increasing the values of Stall time limit and Time limit. The options Stall
time limit and Time limit prevent the algorithm from running too long.

In the simulations, the vector of the individuals for the conductances optimization is
[λNa, λHT ] and the vector for the time constant optimization is [κm, κh, κn, κp].
In the following HH-like equations the entries of each vector form factors:
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Figure 10.6: GA toolbox: GUI for conductances optimization.

Fast Na+ current

INa = λNa · ḡNa ·m3h · (V − VNa)

τm = κm · 10 · [5 exp((V + 60)/18) + 36 exp(−(V + 60)/25)]−1 + 0.04

τh = κh · 100 · [7 exp((V + 60)/11) + 10 exp(−(V + 60)/25)]−1 + 0.6

High-threshold K+ current

IHT = λHT · ḡHT · [ϕn2 + (1− ϕ)p] · (V − VK) (ϕ = 0.85)

τn = κn · 100 · [11 exp((V + 60)/24) + 21 exp(−(V + 60)/23)]−1 + 0.7

τp = κp · 100 · [4 exp((V + 60)/32) + 5 exp(−(V + 60)/22)−1 + 5
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Figure 10.7: Optimization of conductances with GA toolbox: The upper plot displays
the best and mean fitness values in each generation. The lower plot displays the co-
ordinates of the point with the best fitness value in the current generation. Typically,
the objective function values improve rapidly at the early iterations and then level off
as they approach the optimal value.

Figure 10.8: GA toolbox: GUI for time constants optimization
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Figure 10.9: Optimization of time constants with GA toolbox: The upper plot dis-
plays the best and mean fitness values in each generation. The lower plot displays the
coordinates of the point with the best fitness value in the current generation.

10.6 Iteration of Genetic Algorithm for the opti-

mization of the membrane model of Rothman

and Manis (2003c)

Each optimization for the conductances and the time constants was perfomed for de-
creasing capacity of the membrane because the capacity has to highest impact on the
rapidness of the modelled neuron. The corresponding matlab script is as follows:

load gaproblem cond

global za2
stor=[];
stor2=[];
stor3=[];

for za2=12:-1:4
[x, fval]= ga(gaproblem);
stor=[stor; x];
stor2=[stor2;fval]
stor3=za2;
end
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Cheveigné A (2000) The auditory system as a separation machine. In: Houtsma AJM,
Kohlrausch A, Prijs VF, Schoonhoven R (eds) Physiological and Psychophysical
Bases of Auditory Function, Shaker Publishing BV, Maastricht, The Netherlands,
pp 453–460

Costa PF (1996) The kinetic parameters of sodium currents in maturing acutely isolated
rat hippocampal CA1 neurons. Brain Res Dev Brain Res 91:29–40

Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988)
Coherent oscillations: A mechanism of feature linking in the visual cortex? biocyber
60:121–130

Ehret G, Merzenich MMJ (1988) Neuronal discharge rate is unsuitable for encoding
sound intensity at the inferior colliculus level. Hear Res 35:1–7

Ehret G, Romand R (1997) The central auditory system. Oxford Universtity Press,
Oxford

Evans EF (1975) Handbook of sensory physiology, Springer, Berlin, Chapter: Cochlear
nerve and cochlear nucleus, pp 1–108

Ferragamo M, Golding N, Oertel D (1998a) Synaptic inputs to stellate cells in the
ventral cochlear nucleus. J Neurophysiol 79:51–63

Ferragamo MJ, Haresign T, Simmons JA (1998b) Frequency tuning, latencies, an-
dresponses to frequency-modulated sweeps in the inferior colliculus of the echolo-
cating bat, eptesicus fuscus. Journal of Comparative Physiology A: Sensory, Neural
and Behavioral Physiology 182:65–79

Forsythe ZRI, Stanfield P (1996) Characterization of the hyperpolarization activated
nonspecific cation current Ih of bushy neurons from the rat anteroventral cochlear
nucleus studied in a thin brain slice preparation. Neurobiology 4:275–276

Frisina RD, Smith RL, Chamberlain SC (1985) Differential encoding of rapid changes
in sound amplitude by second order auditory neurons. Exp Brain Res 60:417–422

Frisina RD, Smith RL, Chamberlain SC (1990a) Encoding of amplitude modulation in
the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44:99–122

Frisina RD, Smith RL, Chamberlain SC (1990b) Encoding of amplitude modulation in
the gerbil cochlear nucleus: II. Possible neural mechanisms. Hear Res 44:123–142

Frisina RD, Karcich KJ, Tracy TC, Sullivan DM, Walton JP (1996) Preservation of am-
plitude modulation coding in the presence of background noise by chinchilla auditory-
nerve fibers. J Acoust Soc Am 99:475–490

142



Bibliography

Fu XW, Brezden BL, Wu SH (1997) Hyperpolarization-activated inward current in
neurons of the rats dorsal nucleus of the lateral lemniscus in vitro. J Neurophysiol
78:2235–2245

Fylan F, Harding GFA, Edson AS, Webb RM (1999) Mechanisms of video-game
epilepsy. Epilepsia 40:28–30

Gabor D (1968a) Holographic model of temporal recall. Nature 217:584

Gabor D (1968b) Improved holographic model of temporal recall. Nature 217:1288–1289

Glass L (2001) Synchronization and rhythmic processes in physiology. Nature 410:277–
284

Godfrey DA, Kiang NYS, Norris BE (1975) Single unit activity in the dorsal cochlear
nucleus of the cat. J Comp Neurol 162:269–284

Golding NL, Ferragamo M, Oertel D (1999) Role of intrinsic conductances underlying
responses to transients in octopus cells of the cochlear nucleus. J Neurosci 19:2897–
2905

Gray CM (1994) Synchronous oscillations in neuronal systems: Mechanisms and func-
tions. J Comput Neurosci 1:11–38

Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation
columns of cat visual cortex. PNAS 86:1698–1702

Greenwood DD (1990) A cochlear frequency-position function for several species–29
years later. J Acoust Soc Am 87:2592–2605

Grigg JJ, Brew HM, Tempel BL (2000) Differential expression of voltage-gated potas-
sium channel genes in auditory nuclei of the mouse brain stem. Hear Res 140:77–90

Hackett JT, Jackson H, Rubel EW (1982) Synaptic excitation of the second and third
order auditory neurons in the avian brain stem. Neuroscience 7:1455–1469

Heil P, Schulze H, Langner G (1995) Ontogenetic development of periodicity coding in
the inferior colliculus of the mongolian gerbil. Aud Neurosci 1:363–383

van Hemmen JL (2006) Editorial. Biol Cybern 94(1):1–1

Hewitt MJ, Meddis R, Shakleton TM (1992) A computer model of a cochlear-nucleus
stellate cell: Responses to amplitude-modulated and pure-tone stimuli. J Acoust Soc
Am 91:2096–2109

Hines M (1993) Neural Systems: Analysis and Modeling, Kluwer Academic Publishers,
chap NEURON - a program for simulation of nerve equation, pp 127–136

143



Bibliography

Hines ML, Carnevale NT (1997) The neuron simulation environment. Neur Comp
9:1179–1209

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A
database to support computational neuroscience. J Comp Neurosc 17:7–11

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and
its application to conduction and excitation in nerve. J Physiol 117:500–544

Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic
oscillations in thalamic relay neurons. J Neurophysiol 68:1373–1383

Josephson EM, Morest DK (1998) A quantitative profile of the synapses on the stellate
cell body and axon in the cochlear nucleus of the chinchilla. J Neurocyt 27:841–864

Kanemasa T, Gan L, Perney TM, Wang LY, Kaczmarek LK (1995) Electrophysiological
and pharmacological characterization of a mammalian shaw channel expressed in NIH
3T3 fibroblasts. J Neurophysiol 74:207–217

Langner G (1978) The periodicity matrix. A correlation model for central auditory
frequency analysis. Verh Dtsch Zool Ges 71:194

Langner G (1981) Neuronal mechanisms for pitch analysis in the time domain. Exp
Brain Res 44:450–454

Langner G (1983) Evidence for neuronal periodicity detection in the auditory system of
the guinea fowl: Implications for pitch analysis in the time domain. Exp Brain Res
52:333–355

Langner G (1988) Auditory pathway: Structure and function, Plenum Press, New York,
Chapter: Physiological properties in the cochlear nucleus are adequate for a model
of periodicity analysis in the auditory midbrain, pp 207–212

Langner G (1992) Periodicity coding in the auditory system. Hear Res 60:115–142

Langner G, Schreiner C (1988) Periodicity coding in the inferior colliculus of the cat:
I. Neuronal mechanisms. J Neurophysiol 60:1799–1822

Langner G, Schreiner CE (1996) Contributions of the auditory brainstem to periodicity
pitch coding. Adv in Speech, Hearing and Language Proc 3:447–461

Lashley KS (1963) Brain mechanisms and intelligence, a quantitative study of injuries
to the brain. Dover, New York

Lebedev MA, Nelson RJ (1995) Rhythmically firing (2050 hz) neurons in monkey pri-
mary somatosensory cortex: Activity patterns during initiation of vibratory-cued
hand movements. J Comp Neurosc 2:313–334

144



Bibliography

Lebedev MA, Wise SP (2004) Oscillations in the premotor cortex: Single-unit activity
from awake, behaving monkeys. Exp Brain Res 130:195–215

Li RYS, Guinan JJ (1971) Antidromic and orthodromic stimulation of neurons receiving
calyces of held. MIT Q Rpt 100:227–234

Longuet-Higgins HC (1968) Holographic model of temporal recall. Nature 217:104

van der Malsburg C (1992) Sensory segmentation with coupled neural oscillators. Biol
Cybern 67:233–242

von der Malsburg C, Schneider W (1986) A neural cocktail-party processor. Biol Cybern
54:29–40

Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neu-
rons. J Neurosci 11:2865–2880

Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML (2003)
ModelDB: Making models publicly accessible to support computational neuroscience.
Neuroinformatics 1:135–139

Moser T, Beutner D (2000) Kinectics of exocytosis and endocytosis at the cochlear
inner hair cell afferent synapse of the mouse. PNAS 97:11,883–11,888

Mountain DC, Cody AR (1999) Multiple modes of inner hair cell stimulation. Hear Res
132:1–14

Mueller-Preuss P, Flachskamm C, Bieser A (1994) Neural encoding of amplitude mod-
ulation within the auditory midbrain of squirrel monkeys. Hear Res 80:197–208

Murthy VN, Fetz EE (1992) Coherent 25- to 35-Hz oscillations in the sensorimotor
cortex of awake behaving monkeys. PNAS 89:5670–5674

Ochse M (2004) Neuronale kodierung von Tonhoehen und harmonischen Relationen
im auditorischen Mittelhirn der Rennmaus (Meriones unguiculatus). PhD thesis, TU
Darmstadt

Oertel D (1983) Synaptic responses and electrical properties of cells in brain slices of
the mouse anteroventral cochlear nucleus. J Neurosci 3:2043–2053

Oertel D, Wu SH, Garb MW, Dizack C (1990) Morphology and physiology of cells
in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurol
295:136–154

Oertel D, Bal R, Gardner SM, Smith PH, Joris PX (2000) Detection of synchrony in the
activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus.
PNAS 97, 11773-11779

145



Bibliography

Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol
136:453–484

Ostapoff EM, Feng JJ, Morest DK (1994) A physiological and structural study of neuron
types in the cochlear nucleus. II. Neuron types and their structural correlation with
response properties. J Comp Neurol 346:19–42

Palmer A, Jiang D, Marshall DH (1996) Responses of ventral cochlear nucleus onset
and chopper units as a function of signal bandwidth. J Neurophysiol 75:780–794

Perney TM, Kaczmarek LK (1997) Localization of a high threshold potassium channel
in the rat cochlear nucleus. J Comp Neurol 386:178–202

Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure
in neuronal activity during working memory in macaque parietal cortex. Nat Neurosc
5:805–811

Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in
the cochlear nucleus: Tone-burst stimulation. Exp Brain Res 1:220–235

Rall W (1967) Distinguishing theoretical synaptic potentials computed for different
somadendritic distributions of synaptic inputs. J Neurophysiol 30:1138–1168

Rees A, Langner G (2005) The inferior colliculus, Springer, Chapter: Temporal coding
in the auditory midbrain, pp 346–376

Rhode WS, Greenberg SR (1994) Encoding of amplitude modulation in the cochlear
nucleus of the cat. J Neurophysiol 71:1797–1825

Rhode WS, Smith PH (1986) Encoding timing and intensity in the ventral cochlear
nucleus of the cat. J Neurophysiol 56:261–286

Rothman JS, Manis PB (2003a) Differential expression of three distinct potassium
currents in the ventral cochlear nucleus. J Neurophysiol 89:3070–3082

Rothman JS, Manis PB (2003b) Kinetic analyses of three distinct potassium conduc-
tances in ventral cochlear nucleus neurons. J Neurophysiol 89:3083–3096

Rothman JS, Manis PB (2003c) The roles potassium currents play in regulating the
electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89:3097–3113

Rothman JS, Young ED, Manis PB (1993) Convergence of auditory nerve fibers onto
bushy cells in the ventral cochlear nucleus: Implications of a computational model.
J Neurophysiol 70:2562–2583

Ryugo DK, Parks TN (2003) Primary innervation of the avian and mammalian cochlear
nucleus. Brain Res Bull 60:435–456

146



Bibliography

Sanes JN, Donoghue JP (1993) Oscillations in local field potentials of the primate motor
cortex during voluntary movement. PNAS 90:4470–4474

Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck
S, Stippich C, Rupp A (2005) Structural and functional asymmetry of lateral Heschl’s
Gyrus reflects pitch perception preference. Nat Neurosci 8(9):1241–1247

Schouten JF (1970) The residue revisited. In: Plomp R, Smoorenburg GF (eds) Fre-
quency analysis and periodicity detection in hearing, A W Sijthoff, Leiden, pp 41–53

Semple MN, Kitzes LM (1985) Single-unit responses in the inferior colliculus - different
consequences of contralateral and ipsilateral auditory-stimulation. J Neurophysiol
53:1467–1482

Singer W (1998) Consciousness and the structure of neuronal representations. Philos
Trans R Soc Lond B Biol Sci 353:1829–1840

Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination
on desynchronization of odour-encoding neural assemblies. Nature 390:70–74

Strube HW (1985) A computationally efficient basilar-membrane model. Acustica
58:207–214

Taschenberger H, Gersdorff H (2000) Fine tuning an auditory synapse for speed and fi-
delity: Developmental changes in presynaptic waveform, EPSC kinetics, and synaptic
plasticity. J Neurosci 20:9162–9173

Traub RD, Wong RK (1982) Cellular mechanism of neuronal synchronization in
epilepsy. Science 216:745–747

Travagli RA, Gillis RA (1994) Hyperpolarization-activated currents, Ih and IKIR, in
rat dorsal motor nucleus of the vagus neurons in vitro. J Neurophysiol 71:1308–1317

Voutsas K, Langner G, Adamy J, Ochse M (2005) A brain-like neural network for
periodicity analysis. IEEE Trans Syst Man Cybern B Cybern 35:12–22

Wang LY, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the KV3.1 potas-
sium channel to high-frequency firing in mouse auditory neurons. J Physiol 509:183–
194

Wang X, Sachs MB (1995) Transformation of temporal discharge patterns in a ventral
cochlear nucleus stellate cell model: Implications for physiological mechanisms. J
Neurophysiol 73:1600–1616

Wehr M, Laurent G (1996) Odour encoding by temporal sequences of firing in oscillating
neural assemblies. Nature 384:162–166

147



Westlake PR (1970) The possibilities of neural holographic processes within the brain.
Biol Cybern 7:129–153

Wiegrebe L, Meddis R (2004) The representation of periodic sounds in simulated sus-
tained chopper units of the ventral cochlear nucleus. J Acoust Soc Am 115:1207–1218

Wiegrebe L, Winter IM (2001) Temporal representation of iterated rippled noise as
a function of delay and sound level in the ventral cochlear nucleus. J Neurophysiol
85:1206–1219

Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-
intensity functions in guinea pig auditory nerve fibres. Hear Res 45:191–202

Winter IM, Wiegrebe L, Patterson RD (2001) The temporal representation of the delay
of iterated rippled noise in the ventral cochlear nucleus of the guinea-pig. J Physiol
537:553–566

Winter IM, Palmer AR, Patterson LWRD (2003) Temporal coding of the pitch of com-
plex sounds by presumed multipolar cells in the ventral cochlear nucleus. Speech
Communication 41:135–149

Woolley SMN, Casseday JH (2004) Response properties of single neurons in the zebra
finch auditory midbrain: Response patterns, frequency coding, intensity coding, and
spike latencies. J Neurophysiol 91:136–151

Young ED, Robert JM, Shofner WP (1988) Regularity and latency of units in ven-
tral cochlear nucleus: Implications for unit classification and generation of response
properties. J Neurophysiol 60:1–29

Zifkin BJ, Trenite DK (2000) Reflex epilepsy and reflex seizures of the visual system:
A clinical review. Epileptic Disorders 2(3):129–136

Zschau C (2006) Einfluss von Lautstaerke und Modulationstiefe auf die Periodiz-
itaetsverarbeitung im Colliculus inferior der mongolischen Wuestenrennmaus (Meri-
ones unguiculatus). Diplom work, TU Darmstadt

Zwicker E (1986) A hardware cochlear nonlinear preprocessing model with active feed-
back. J Acoust Soc Am 80:146–153

148



Acknowledgements

Here, I want to express my gratitude to all those people who helped this work to become
reality.

First of all I would like to thank Prof. Dr. G. Langner for the kind reception in his
group and the possibility to prepare and finish my dissertation. His open and support-
ive supervision allowed me to induce my own ideas into my work and present them
at several conferences. Especially I would like to acknowledge his encouragement of
scientific discussions.

I would like to thank Prof. Dr. Galuske for the acceptance of the ’Korreferat’ of my
thesis.

Thanks to Prof. Dr. Adamy and Dipl. Ing. Kyriakos Voutsas of the department for
electrical engineering of the TU Darmstadt, who encouraged the interdisciplinary work
of the neuroscience and control theory, to Dr. Werner Hemmert and Dipl. Ing. Marcus
Holmberg from Infineon Technologies for their technical support. Without their help it
would not have been possible to finish the thesis within this time.

My very special goes to Dr. Elisabeth Wallhäuser-Franke, who supported me in the
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