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Zusammenfassung 

  
IP Multicast ist eine effiziente Lösung für Gruppenkommunikation über das Internet. 
Sowohl die Serverressourcen als auch die Netzbandbreite werden durch diese neue 
Technologie entlastet. Spezielle Probleme und Herausforderungen entstehen allerdings, 
wenn die Gruppenkommunikation Sicherheitsanforderungen erfüllen muss. Ein wichtiger 
Aspekt bezieht sich auf die gemeinsame Nutzung eines Kommunikationsschlüssels. Dieser 
Schlüssel muss nämlich jedes Mal aktualisiert und verteilt werden, wenn die Gruppen-
zusammensetzung sich ändert. Dieser Prozess, der als Rekeying bezeichnet wird, wirft ein 
Skalierbarkeitsproblem für große dynamische Gruppen auf: Das Rekeying basiert auf 
rechenaufwendigen kryptographischen Operationen und erfordert die Übertragung von 
Rekeyingnachrichten. Das Skalierbarkeitsproblem zeichnet sich daher durch ein 
Rechenoverhead auf der Serverseite und durch ein Kommunikationsoverhead im Über-
tragungsnetzwerk aus. 

In der Literatur wurden zahlreiche Architekturen, Algorithmen und Protokolle publiziert, 
die dieses Skalierbarkeitsproblem adressieren. Lösungen zur Optimierung der Rekeying-
performanz konzentrieren sich auf die Minimierung der Anzahl der erforderlichen krypto-
graphischen Operationen und somit der Länge der Rekeyingnachrichten. Eine akzeptierte 
Strategie zur Reduzierung der Rekeyingkosten verwendet eine Stapelverarbeitung von 
Rekeyinganfragen, die innerhalb eines festgelegten Rekeyingintervalls gesammelt werden. 
Eine Spezifizierung der maximalen Länge dieses Intervalls fehlt jedoch in der Literatur 
bisher. Zu lange Rekeyingintervalle verursachen längere Wartezeiten für neue Mitglieder 
und längere Zugriffszeiten für Verlassende. Folglich ist die Stapelverarbeitung von Rekey-
inganfragen stets verbunden mit einem Verlust an Dienstgüte einerseits und an der 
Systemsicherheit andererseits. Aufgrund der Neuigkeit und der Komplexität dieses 
Forschungsgebiets vermissen die präsentierten Lösungen eine einheitliche Methode zur 
Abschätzung der Rekeyingperformanz. In den meisten Fällen wird dadurch eine Evaluie-
rung von verschiedenen Rekeyingalgorithmen enorm erschwert.  

Die vorliegende Dissertation erörtert die oben erwähnten drei Probleme des 
Gruppenrekeying. Erstens wird eine Methode präsentiert, die die Probleme der Dienstgüte 
und der Sicherheit im Stapelrekeying adressiert. Diese Methode wird als Ereignis-
gesteuertes Stapelrekeying bezeichnet. Zweitens wird ein Rekeyingbenchmark eingeführt, 
der einen einheitlichen zuverlässigen Weg zur Abschätzung der Rekeyingperformanz 
verschiedener Rekeyingalgorithmen darstellt. Drittens werden drei innovative Hardware- 
und HW/SW-Architekturen zur Optimierung der Rekeyingperformanz präsentiert. Im 
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Unterschied zu bisherigen Lösungen wird die Rekeyingperformanz durch diese Architek-
turen nicht nur auf der algorithmischen Rekeyingebene optimiert, sondern auf der kypto-
graphischen Ebene und auf der Plattformebene. Die neuen Architekturen werden als der 
Real-Time Rekeying Processor, der Batch Rekeying Processor und der High-Flexibility 
Rekeying Processor bezeichnet. 
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Preface 

  
IP multicast is an efficient solution for group communication over the Internet, as both the 
sender resources and the network bandwidth are relieved with the aid of this emerging 
technology. However, this superiority suffers, when the group communication must fulfill 
some security requirements. An essential issue relates to sharing the communication key. 
Particularly, this key must be updated and securely distributed, every time the group 
membership changes. This process, which is denoted as group rekeying, raises a scalability 
problem in large dynamic groups: Rekeying is based on computationally extensive 
cryptographic operations and on the dissemination of rekeying messages. Thus, the 
scalability problem presents itself by a computation overhead on both the sender and the 
receiver sides, and by a communication overhead in the network. 

Numerous architectures, algorithms, and protocols have been proposed in the literature to 
cope with this scalability problem. Related work on optimizing rekeying performance 
mostly concentrates on minimizing the number of required cryptographic operations and 
thus the length of the rekeying message. An accepted strategy to reduce rekeying costs 
utilizes batch processing of rekeying requests, which are summed up during a rekeying 
interval. However, a specification of the maximal length of this rekeying interval is not 
provided, so far. Too long rekeying intervals cause longer waiting times for new members 
and longer access times for removed ones. Consequently, a problem of QoS and security is 
associated with batch rekeying. Because of its novelty and complexity, the work on 
rekeying optimization lacks a unified way to estimate rekeying performance. In most cases, 
therefore, an evaluation of different algorithms is impossible.   

The presented dissertation addresses the above three problems of group rekeying. Firstly, 
an approach, denoted as Even-Driven Batch Rekeying, is proposed to tackle the QoS and 
security problems caused by long rekeying intervals in batch rekeying. Secondly, to enable 
a reliable evaluation of rekeying algorithms, a Rekeying Benchmark is introduced, which 
provides a unified way to estimate the performance of different rekeying algorithms on the 
system level. Thirdly, three novel hardware and hardware/software architectures are 
presented for optimizing the rekeying performance. In contrast to related work, these 
architectures, denoted as the Real-Time Rekeying Processor, the Batch Rekeying Processor, 
and the High-Flexibility Rekeying Processor, optimize rekeying not only on the rekeying 
algorithm level, but also on the cryptography and platform levels.  
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1 Introduction 

 

1.1 Overview  
This chapter introduces to the scope of the presented dissertation, specifies its objectives, 
and outlines it. Section 1.2 illustrates some basics of IP multicast and its advantages. 
Section 1.3 briefly highlights the role of security in information systems and explains 
cryptographic methods as essential security means. Section 1.4 represents the problems 
resulting from applying security models of unicast communication to IP multicast. An 
essential issue relates to the group key management which is detailed as well in this section 
with an overview of related work. Section 1.5 lastly depicts the three main objectives of 
this work and outlines the methods and solutions to attain these objectives. The structure of 
the dissertation is provided in this concluding section, too. 

1.2 IP Multicast  
Various Internet applications rely on group communication in either one-to-many or in 
many-to-many mode. One way to support this communication relates to sending data 
packets from the sender to all receivers using the well-known unicast technique. However, 
this approach does not scale and results in overloading both the sender resources and the 
network. Figure 1.1 represents an example for this communication mode, where the hosts 
H1 to H5 build a group and H1 is trying to deliver a data packet to other group members. 
As can be seen, the data packet is duplicated 17 times before it arrives the destination hosts. 
Note that the packets are transferred over the shortest path to destinations. This is achieved 
by the different network routers (R) which execute a routing algorithm based on the line 
cost values depicted in this figure. Some solutions hand over the task of data duplication 
from the sender host to a dedicated server, which is denoted as multipoint control unit 
(MCU) in the scope of video conferencing. By this means the sender resources are relieved 
but the network traffic does not ease as data packets are still transmitted in multiple copies.  

A scalable group communication demands the dissemination of just one copy of the data 
packet over the network. IP Multicast represents a technique that fulfills this requirement as 
depicted in Figure 1.2. Based on its special address class a multicast data packet is 
recognized by multicast routers (MR), which duplicate this packet as necessary. Multicast 
IP-addresses belong to class-D, which assigns 28 bits (from a total of 32 bits) to identify 
different groups. Thus, IP multicast can support up to 250 million different groups. When 
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investigating this routing technology, two questions arise. Firstly, how do multicast routers 
learn the hosts belonging to some group? This question results from the fact that class-D 
addresses do not contain a field, which specifies the subnet to which a host belongs, as it is 
the case in other IP-address classes for unicast communication. Secondly, how does routing 
perform? These two questions are first answered in the next section briefly. Afterwards, 
some application scenarios of IP multicast are described and the associated difficulties in 
employing this communication technology are outlined.       

 

Figure 1.1. Example for unicast-based group communication 

1.2.1 IP Multicast Protocols 
For an efficient multicast routing each router must be kept informed about all the running 
multicast groups and about the belonging of other multicast routers to these groups. A 
multicast router is said to belong to some multicast group, if it has at least one host in its 
local network, which is a member of this group. This information is saved in form of a 
multicast address table (MAT). In the example shown in Figure 1.2 the multicast routers 
MR1 to MR5 manage the MAT depicted in Table 1.1. In this example hosts H1 to H5 and 
H6 to H8 build two multicast groups, which are called A and B, respectively. The first 
entry in this table, for instance, indicates that the router MR1 has one or more hosts in its 
subnet, which are members in the multicast groups A and B. Remember that a multicast 
group is identified by its IP address. The establishment of the MAT is supported by two 
multicast protocols:  

1. The Internet group management protocol (IGMP) which is executed between each 
multicast router and the hosts in its local network to check which of these hosts belong 
to which multicast group. 

2. A routing protocol, e.g. the distance vector multicast routing protocol (DVMRP), 
which enables multicast routers to exchange data obtained from executing the IGMP 
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protocol, so that all routers have the up-to-date MAT. Note that a routing protocol is 
originally used to route useful data from a sender to all group members.    

Besides the MAT, each multicast router manages a routing table (RT). In the DVMRP 
protocol, for instance, these tables contain information on the distance (D) to each other 
router and how to reach it. Table 1.2 depicts the RTs for the example of Figure 1.2. The 
left-most table relates to MR1 and states, for instance, that the shortest path from MR1 to 
MR4 has a distance of 5 and that this router can be accessed through MR2.  

 

Figure 1.2. Example for multicast-based group communication 
 

Both the IGMP and the DVMRP belong to the IP layer of the Internet layer model and were 
first defined as RFC (request for comment) in the late eighties. Current specifications of 
these protocols can be found as Internet Drafts in [Ca97] and [Pu98], respectively. 

 

Table 1.1. MAT for the example of Figure 1.2 
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Table 1.2. Routing tables for the example of Figure 1.2 

  

1.2.2 IP Multicast Applications 
The transport control protocol TCP of the transport layer supports only point-to-point 
services. Therefore, multicast applications must utilize the user datagram protocol UDP, 
which offers unreliable connectionless services on the transport layer. However, this does 
not restrict multicast to error-tolerant applications such as multimedia streaming. Reliable 
multicast applications can be supported, for example, by adding a special layer between the 
application and the transport layers, which emulates the TCP.  Accordingly, multicast 
applications can be classified into four categories [Mi99]: 

1. Real-time multimedia applications, e.g. video conferencing, internet radio, and 
multimedia events. These applications are error-tolerant but demand low timing jitter 
characteristics for correct synchronization.  

2. Real-time data applications, such as the distribution of stock quotes and interactive 
gaming. The requirements of scalability and reliability for these applications differ 
depending on the particular data. Text news, for instance, must be delivered error-free 
to very large groups as a rule. Some latency in the transmission of these data, however, 
can be tolerated.    

3. Non real-time multimedia applications, e.g. remote class rooms with high reliability 
but low or moderate scalability requirements. 

4. Non real-time data applications, such as database replication and software 
distribution, with both high reliability and high scalability demands. 

Despite its scalability and usability in a vast number of current and new Internet 
applications, IP multicast technology is not yet exploited to large extent. Several economic 
and technical reasons are responsible regarding both private and public networks. Some 
examples for the deployment barriers of IP multicast in private networks relate to the 
limited application software and administration tools supporting this technology. One 
essential obstacle in the usage of this communication technique over the public Internet is 
attributed to the fact that not all current IP routers are multicast-able.  

For further reading on networking and IP multicast the following publications are 
recommended [Ha01], [Ta00], [Mi99], and [Go99].  
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1.3 Information Security 

1.3.1 Threats, Requirements, and Solutions 
An information system is regarded as secure if it ensures the delivery of the right 
information to the right party at the right time. The meaning of the terms right information, 
right party, and right time in the context of security is illustrated as follows. To ensure the 
delivery of right information, the representing data must be able to be checked on their 
integrity and their source. Data integrity means that no manipulation has been performed 
on these data en route. Data source authentication guarantees that data stem from the 
source claiming or denying to be the sender. The protection against denying is known as 
non-repudiation property of a secure system. Supplying information to the right party 
implicates the hiding of this information against unauthorized parties which requires 
applying mechanisms for data confidentiality. Providing data with integrity, authentication, 
and confidentiality is only reasonable if these data are available at the right time. Data 
availability is regarded as security goal, since several attack schemes aim this property.   

Figure 1.3. Visualization of security requirements, threats, and solutions 

 
The decision on required security objectives for an information system and on the measures 
to attain these goals is a largely sophisticated task, which is defined as a security policy for 
that system. The specification of a security policy relies on an in-depth analysis of the 
criticality of the information to be exchanged, the data delivery system, and the threats it is 
exposed to. Receivers of Pay-TV data, for instance, do not need to verify that video 
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contents originate from the Pay-TV provider, as a rule. Thus, data source authentication is 
not a requirement in this case. In contrast, for a commercial site it is indispensable to verify 
the client identity before executing its order. Only by applying a non-repudiation strategy a 
possible denying can be disproved. Inspired by the graphical representation of Gajski’s 
diagram [Ga92], the relation between security requirements, well-known threats, and 
possible countermeasures can be depicted schematically by means of a Y-Diagram as 
illustrated in Figure 1.3. The hierarchical representation reflects to large extent the 
dependency of the different security requirements. In this respect, data availability is an 
essential aspect, which all other requirements are based upon. The non-repudiation 
property, however, assumes data availability, authentication, and integrity. In some cases, 
furthermore, non-repudiation largely relies on data confidentiality.             

1.3.2 Cryptography 
Regardless of solutions to the availability requirement, all other countermeasures on the 
solution axis of Figure 1.3 rely on cryptographic operations. Cryptography is defined in 
[Me96] as the study of mathematical techniques related to aspects of information security 
such as confidentiality, data integrity, entity authentication, and data origin authentication. 
The mathematical techniques are applied to data representing the information to be 
protected from eavesdropping, manipulation, etc. All cryptographic methods rely on using 
some information denoted as key. The way how to exchange and manage this key 
represents the most important criterion to classify cryptographic algorithms. According to 
this criterion two main categories are present: the symmetric-key and the public-key 
cryptography. In symmetric-key cryptography both communication parties use the same 
key, denoted as symmetric key, to apply cryptographic operations to encipher or decipher 
data. Cryptographic enciphering and deciphering are referred to as encryption and 
decryption, respectively. The Data Encryption Standard (DES) [Ni81] and the Advanced 
Encryption Standard (AES) [Ni01] are the most known examples for this cryptography 
class. Besides encryption and decryption for the purpose of confidentiality, symmetric-key 
cryptography may be employed to realize secure hash functions and message authentication 
code, which support data integrity and source authentication, respectively, see Figure 1.3. 
For the functionality of symmetric-key cryptography, however, a secret key must be agreed 
and delivered over a secure channel. This hard requirement is avoided by the public-key 
cryptography, which exploits two different keys for encryption and decryption. These keys 
are denoted as the public and the private key. For a communication party A to send an 
encrypted message to another party B, it uses the public-key of B. Getting the encrypted 
message, B can decrypt it with its private key. The idea of public-key cryptography was 
first published in [Di76]. RSA [Ri78], ElGamal [El85], and Elliptic Curve Cryptography 
(ECC) [Ko87, Mi86] represent the most known public-key cryptosystems. As the 
mathematically inverse function of encryption, decryption is based on a relation between 
the private and public keys. The security of public-key cryptography is based on the fact 
that this relation is so complex that an extraction of the private key from the public one is 
impossible during defensible time. This is realized by using complex mathematical 
problems to generate key pairs such as the factorization of large prime numbers, e.g. in the 
case of RSA, or the determination of the discrete logarithm, e.g. in the cases of ElGamal 
and ECC. The security of public-key cryptography does not only rely on the complex 
relation between the private and the public key, but also on complicating the encryption and 
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decryption processes themselves. This fact negatively affects the performance of these 
algorithms and makes them unsuitable to encrypt large data under hard timing constraints. 
In practice, therefore, public-key cryptography is mainly used to process small amounts of 
data such as in the following two cases. First, public-key encryption can be used to agree on 
a symmetric key which can then be employed for secure communication based on 
symmetric-key encryption. The second application relates to the digitally signing of short 
data. In this case a sender uses its private key to sign a message and the receiver access the 
public key of the sender to verify that the message stems from this sender. Digital signing is 
a measure to ensure non-repudiation as depicted in Figure 1.3. Note that public-key 
cryptography depends on the availability of authentic public keys. The resources, policies, 
protocols, and procedures demanded to create, distribute, manage, and revoke public keys 
construct a framework denoted as public-key infrastructure (PKI). The task of distributing 
certified keys in PKI is assigned to an entity which is trusted by every one and referred to 
as certification authority. Consequently, key management represents an essential issue in 
both symmetric-key and public-key cryptography.  

In the scope of this work several cryptographic algorithms are utilized. These include the 
Advance Encryption Standard (AES) as a symmetric-key encryption primitive, the secure 
Meyer hash function [Ma85], and the Message Authentication Code MAC [Is89]. Both the 
Meyer hash function and MAC are based on symmetric-key encryption. In addition, for 
generating secure keys, an algorithm specified in ANSI X9.17 is exploited, which also 
relies on symmetric-key cipher. For building digital signatures the Elliptic Curve Digital 
Signature Algorithm (ECDSA) [Ie00] is employed. All these algorithms are briefly 
described in Chapter 5 with focus on their hardware realization. For further reading on 
these topics it is referred to the related literature and to text books on security and 
cryptography, e.g. [Da01], [Ec06], [Me96], and [Sc96].    

1.4 Secure Multicast 
Various multicast applications demand data delivery under security conditions such as 
confidentiality, integrity, and data source authentication. A collaborative group of company 
employees, for instance, may use Internet conferencing to exchange information and need 
to keep their communication secret. Another example from the multimedia streaming field 
relates to a multicast Pay-TV scenario, where the access should only be granted to those 
members, who already have paid the charge. Applying security strategies to multicast 
communication poses special problems, which are unfamiliar in the one-to-one 
communication mode. These special issues are attributed to the following properties: 

1. Secure communication is based on sharing a secret, i.e. a key, between communicating 
parties. The more parties learn the secret, the higher the risk to disclose it.  

2. In general, multicast groups are large-scale and characterized by highly dynamic 
membership. To restrict access to authorized members, the group communication key 
must be changed after every change in the group membership. This increases the 
complexity of key management.     

3. Based on the fact that symmetric key in one-to-one communication is shared by only 
two partners, data source authentication can be easily verified by encrypting these data 
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with the shared symmetric key. Unfortunately, this so-called message authentication 
code (MAC) can not be employed in secure multicast, since the secret key is shared by 
a large number of members. 

4. As mentioned previously, to communicate securely, a security policy must be defined 
and negotiated between communication parties. Such an agreement in multicast mode 
is much more sophisticated than in the unicast case, because a security policy must be 
found which satisfies the requirements of many parties, instead of just two.  

1.4.1 Secure Multicast Problem Areas 

These and other difficulties in applying security issues to IP multicast have been recognized 
by research and industry institutions and resulted in establishing the research group Secure 
Multicast Group (SMuG) within the Internet Research Task Force (IRTF) in early 1998 
[Sm98] and the working group Multicast Security (MSEC) within the Internet Engineering 
Task Force (IETF) in early 2000 [Ms00]. A main contribution of SMuG and MSEC relates 
to identifying the following three problem areas in secure multicast [Ha03]: 

1. Secure multicast data handling: In this problem area secure data transmission 
including data confidentiality, integrity, and source authentication is treated. 
Investigating the adaptability of available security protocols to secure multicast 
presents an essential issue in this problem area. One example relates to the Multicast 
Encapsulating Secure Payload (MESP) as an extension to the known ESP protocol in 
IP security [Ca00]. Furthermore, in the scope of this area the concept of group 
authentication [Ca99] is introduced as a simple form of data source authentication. 
Some groups are trustful and only need to protect themselves against non-member 
parties. In this case, group authentication can be employed, which relies on simple 
symmetric-key cryptography. In contrast, if group members do not trust each other, an 
exact data source authentication must be used. This kind of authentication in multicast 
can not be performed on the base of symmetric-key cryptography as in the unicast case. 
Instead, solutions based on public-key cryptography such as digital signatures must be 
employed.   

2. Management of keying material: This problem area concerns the generation and 
distribution of the group communication key. This process is performed both during 
registration in static groups and after every membership change in dynamic groups. The 
generation and distribution of a new communication key as an effect of joining new 
members or removing old ones in dynamic multicast groups is denoted as Group 
Rekeying. This process represents the focus of this dissertation and will be detailed in 
next section.  

3. Multicast security policies: In secure multicast different members may have different 
capabilities and responsibilities. One task of the security policy is to define the roles of 
group members, e.g., as a sender, a receiver, or as a group controller and key server 
(GCKS). Besides, the security policy specifies, for instance, which encryption 
algorithm should be used for data confidentiality. As policy negotiation among large 
groups is in practice impossible, a mechanism for policy enforcement by the GCKS 
must be employed [Di00].   
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1.4.2 Group Rekeying  
Consider the multicast Pay-TV system illustrated in Figure 1.4. A video server (VS) 
encrypts video packets with a group key kg and sends them using IP-multicast. Members 
m0, m1, and m3 aim to buy the service. For this purpose, they connect to a registration and 
authentication server (RAS), pay the charge, and get each an individual identity key k0, k1, 
and k3. In a following step the RAS encrypts the group key kg with each of the identity keys 
and sends it to the corresponding member per unicast. The notation Eka(kb) in Figure 1.4 
refers to the encryption of key kb with key ka. Each authorized member accordingly receives 
the encrypted kg, decrypts it with its identity key and gets thereby the group key kg. 
Members m0, m1, and m3 in this scenario can now use kg to decipher the encrypted video 
data and watch the movie. Member m2, however, is excluded: he or she can download 
encrypted movies, but cannot enjoy them. Note that referring to m2 as a group member 
relates to the multicast group, not to the secure multicast group. As mentioned before, 
joining a multicast group is loose and is performed between a host and the multicast router 
in the corresponding network based on the Internet Group Management Protocol (IGMP). 
The video provider in this scenario does not know who is currently a group member, 
therefore, it uses encryption to control access. The way how the registration works and the 
identity keys are distributed is not in the focus of this work. It is assumed that the task of 
generation and distribution of identity keys is covered by the RAS. 

 
Figure 1.4. Pay-TV: Potential scenario for secure multicast  

1.4.2.1 Scalability Problem 
If m2 decides to buy the service later on, then this member registers at the RAS and gets its 
own identity key k2. To keep backward access control, i.e., to prevent m2 from decrypting 
old videos, the RAS generates a new group key kg

new, encrypts it with the current group key 
kg, and multicasts it. By this means kg

new becomes available to all current members of the 
group. In addition, the RAS encrypts kg

new with k2 and sends it to m2 per unicast. 
Consequently, joining a new member in this scheme causes two encryptions on the server 
side, which is fairly acceptable. In contrast, the process of disjoining a member is highly 
inefficient. Assume for example that m1 has to leave the group, because his or her 
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subscription period ended. To keep forward access control, i.e., to prevent m1 from 
decrypting future video material, the RAS again has to generate a new group key, but this 
must NOT be encrypted with the current group key like in the join case. Instead, the RAS 
encrypts the new group key with each of the identity keys of the remaining members, i.e. 
with k0, k2, and k3. Thereafter every remaining member gets the kg

new encrypted with its 
identity key. In other words, disjoining a member from a group having n participants costs 
a total of n-1 encryptions on the server side.  

Assuming that there are as much join as disjoin requests, then the average cost of a 
join/disjoin operation is nearly equal to n/2. Obviously, this scheme is not scalable for large 
groups. In the sequel this rekeying scheme is denoted as simple rekeying.  

1.4.2.2 Related Work on Group Rekeying 
Several solutions have been proposed in literature to cope with the scalability problem in 
multicast group rekeying. In the Iolus scheme [Mi97] the group is divided into several 
subgroups. Each subgroup is controlled by a trusted third-party proxy, whereas these 
proxies are controlled by the group owner. The rekeying within a subgroup occurs as in the 
simple scheme, which means that Iolus approach becomes unscalable for large subgroups, 
apart from the drawback of the need of trusted third-party agents. Similar decentralized 
rekeying schemes are presented in [Do00] and [Bi00]. MARKS [Br99] is a mechanism for 
efficient key distribution. In this mechanism the group controller knows each member’s 
disjoin time and performs rekeying at fixed time instances, which restricts system 
dynamics. The Logical Key Hierarchy scheme (LKH) proposed in [Ha99] and [Wo00] 
allows an efficient rekeying for large groups without a-priori knowledge of group joins or 
leaves. Many improvements for LKH were proposed to enhance performance. Originally, 
LKH performs rekeying in real-time mode, i.e. rekeying is executed immediately for each 
join or disjoin request. One performance improvement relies on processing rekeying 
requests in batch. In this mode several requests are summed up during a rekeying interval 
and then processed simultaneously, see, e.g., [Li01], [Ji02], and [Ma04]. Other 
improvements to LKH deal with tree rebalancing to keep a logarithmic relationship 
between rekeying costs and group size, see, e.g., [Mo99], [Ra01], [Go04]. Because of its 
relevance for this work, the next section is dedicated to illustrating the LKH rekeying 
approach. Another rekeying scheme relies on One-way Function Trees (OFT). This scheme 
reduces the communication overhead for disjoin rekeying at the expense of additional 
computations on both the server and the member side [Ba00], [Sh03]. Recently, the interest 
in group key management exceeded the scope of typical IP multicast. Thus, several 
solutions for group key management are proposed for Ad-Hoc networks [Se04], [Li06], 
mobile multicast [Ro06], satellite multicast [Ho04], and wireless cellular networks [Um06].  

1.4.2.3 Logical Key Hierarchy  
The basic idea behind the LKH is to divide the group into hierarchical subgroups and to 
provide the members of each subgroup with a shared key, which is called the help-key. 
Consider the example illustrated in Figure 1.5 for an eight-member group. In this model 
members m0 and m1 build a subgroup with the help-key k0-1, members m0, m1, m2, and m3 
build a larger subgroup, whose help-key is k0-3. All members compose the largest subgroup 
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with the help-key k0-7. This key represents the group key which is used to encrypt useful 
data. Consequently, a member now holds several instead of just two keys. These keys are 
the identity key kd, which is known only to this member and to the server, the group key kg 
known to all group members, and some help-keys kx-y corresponding to the subgroups, 
which the member belongs to. Member m6, for example, has kd = k6,  kg = k0-7  and two help-
keys, which are  k6-7 and k4-7. 

 
Figure 1.5. LKH example  

 
Disjoin Rekeying 
Assume that the member m2 wants to leave the group. How many encryptions have to be 
computed by the server to rekey the group? 

Except for the identity key all the keys held by m2 (i.e. k2-3, k0-3 and k0-7) have to be 
changed. After removing m2, however, the help-key k2-3 can be destroyed, as this key is 
only known by one member, i.e. m3. Therefore, only two keys, k0-3

new
 and k0-7

new are 
generated, encrypted, and sent to the remaining members needing these keys. Figure 1.6 
represents the key tree after this processing: 

 
Figure 1.6. LKH example after disjoining m2  

 
Using the notation Eka(kb) to refer to a rekeying submessage representing the encryption of 
the key kb with the key ka, the server has to generate the following rekeying submessages in 
order to disjoin m2: 
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A Rekeying Message is composed of all rekeying submessages and other related 
information, e.g., the rekeying submessage identification illustrated later on in this work. 

The server has to compute just 4 encryptions to rekey the group. In contrast, in the simple 
scheme a total of 7 encryptions would be necessary. The gain of LKH becomes more 
obvious in the case of large group sizes. Table 1.3 details this comparison. 

Join Rekeying 
Assume now that another member will be joined at the tree position of m2. The new 
member will be called m2, too. How many encryptions have to be performed by the server 
to rekey the group? 

All keys from the join point of m2 to the root (kg) have to be updated and encrypted. The 
following rekeying submessages are constructed: 

Ek3
(k2-3

new), Ek2
(k2-3

new), Ek0-1
(k0-3

new), Ek2-3
new(k0-3

new), Ek0-3
new(k0-7

new), Ek4-7
(k0-7

new) 

In contrast to the simple scheme, where just two encryptions would be needed for join 
rekeying, the LKH requires more encryptions. Nevertheless, considering both join and 
disjoin processes, the LKH is clearly superior to the simple scheme, as visible from Table 
1.3. While the average encryption costs increase linearly with n in the simple scheme, LKH 
unveils a logarithmic dependence.  

Table 1.3. LKH vs. simple rekeying scheme 

#  Encryptions 
 

Simple scheme LKH 

Join 2 2*log2n 

Disjoin n-1 2*(log2n -1) 

Average value O(n) O(log2n) 

 

1.5 Work Objectives and Outline 
This dissertation makes three main contributions to multicast group rekeying. Thus, 
solutions, algorithms, and architectures presented in this work can mainly be assigned to 
the second problem area in secure multicast, see Section 1.4.1. As rekeying results in 
multicasting rekeying messages, which must be authenticated to prevent manipulation, this 
work deals also with corresponding authentication issues which belong to the first problem 
area. Figure 1.7 illustrates schematically the three objectives followed in this work as big 
bubbles surrounded by related solutions. This figure can be used as a reference in this 
dissertation. 

1. QoS and Access Control Aware Batch Rekeying: As mentioned previously, batch 
rekeying aims at optimizing the rekeying performance by processing several requests at 
the same time. By this means some key generations and encryptions are saved. Refer to 
the discussed disjoin and join requests in the example of last section and to Figure 1.5 
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and Figure 1.6. Note that the separate handling of these requests required the 
generation of 5 new keys and the execution of 10 encryptions, in total. In contrast, if 
these two requests are processed simultaneously, then only 3 generations and 6 
encryptions will be needed. This batch rekeying mode, however, demands that former 
requests have to wait on later ones. Consequently, new members must wait longer to be 
granted access, and members who must be removed keep access for longer time 
periods. Related work on batch rekeying assumes a fixed rekeying interval or defines a 
lower bound for this parameter. In this work an upper bound is introduced, which 
assures that the quality of service for joining members and the access control against 
leaving ones always remains within system specific limits. Besides the necessary 
metrics for this solution, an algorithm, denoted as Event-driven Batch Rekeying, is 
presented which considers this issue. Two simulation case studies illustrate the 
significance of the proposed method. Chapter 2 is dedicated to this work objective.  

 
Figure 1.7. Work objectives and solution structure 

 

2. Reliable Rekeying Performance Evaluation: The reader of related work on group 
rekeying misses up to now a way to compare proposed solutions to each other. This 
comparison is impeded by a wide spectrum of non-unified performance metrics and by 
largely different ways to estimate these metrics in literature. For a reliable rekeying 
performance evaluation this work presents a novel Rekeying Benchmark as a unified 
way for estimating unified metrics expressing rekeying performance. The reliable 
evaluation origins from defining new metrics to estimate performance, which are 
system-specific and independent of both rekeying algorithms and the underlying 
cryptographic operations and execution platforms. The rekeying benchmark is the 
subject of Chapter 3.  

Reliable 
Rekeying 

Performance 
Evaluation 

LKH 
Performance 
Optimization 

QoS and  
Access Control 

Aware Batch 
Rekeying  

Event-
driven 
Batch  

Rekeying  

Batch 
Rekeying 
Processor  

Rekeying 
Benchmark  

Real-Time 
Rekeying 
Processor  

Chapter 6  Chapter 6  

High- 
Flexibility 
Rekeying 
Processor  

Chapter 2  Chapter 3  

Chapter 7  



1.5   WORK OBJECTIVES AND OUTLINE 

 

14 

3. LKH Performance Optimization: All previous work on optimizing the performance of 
rekeying algorithms concentrates on reducing the number of time-consuming 
operations, which are needed to perform rekeying such as the number of key 
generations or the number of encryptions. In this work novel architectures are 
proposed, which optimize rekeying performance on a lower level. By means of 
hardware acceleration, not only the amount of cryptographic operations is reduced, but 
also the execution time of these operations. In the course of this work two hardware-
only processors and one hardware/software processor were designed and implemented 
on reconfigurable platforms. These are the Real-Time Rekeying Processor (RTRP), the 
Batch Rekeying Processor (BRP), and the High Flexibility Rekeying Processor 
(HiFlexRP). Each of these architectures may be used as a coprocessor in the server 
environment of a multicast group owner, e.g. as a coprocessor for the registration and 
authentication server to accelerate rekeying in the Pay-TV scenario presented in Figure 
1.4. Because of several similarities between the rekeying processors and to avoid 
repeating similar facts Chapter 4 highlights the employed implementation platforms 
and Chapter 5 describes the common features of these architectures. Chapter 6 then 
details both the RTRP and the BRP. Chapter 7 is devoted to the HiFlexRP. 

 
Remarks and notation: 
This work treats the key management problem in secure multicast with an emphasis on the 
server side. As for the network, only the dynamic group behavior is investigated which is 
reflected by member join and leave rates. Neither communication overhead nor protocol 
issues are considered. The dissertation can be read either in the order of its chapters or in a 
different way taking the following points into account. Chapter 3 is completely 
independent. Chapter 4 represents an introduction to reconfigurable architectures and some 
commercial devices and tools. Therefore, this chapter may be skipped by experts in this 
field. Chapter 6 and Chapter 7 depend strongly on Chapter 5, but are themselves 
independent of each other. Furthermore, Chapter 6 is slightly based on some points 
presented in Chapter 2.  

As a quick reference, Table 1.4 summarizes some important terms, which were presented 
in this chapter and will be used frequently in next chapters.    

Table 1.4. Notation  

Term Meaning 

Identity key kd A key which is known to the server and one member md 

Group key kg 
A key which is known to the server and to all group 
members. kg is used to encrypt useful data 

Help-key kx-y 
A key shared between the server and some group members. 
kg is regarded as a special help-key 

Rekeying Submessage (RSM) An encrypted key kb with a key ka: Eka(kb) 

Rekeying Message (RM) The set of all RSMs and some auxiliary data 
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2 QoS and Access Control Aware Batch Rekeying 

 

2.1 Overview  
This chapter represents a solution to the batch rekeying problem resulting from long 
rekeying intervals. Section 2.2 describes the batch rekeying and compares it with the real 
time rekeying based on the LKH algorithm. The problems of batch rekeying are then 
presented and specified by new metrics in Section 2.3. Section 2.4 uses these metrics to 
provide different methods for optimizing batch rekeying. Section 2.5 represents two case 
studies and Section 2.6 concludes the chapter with some design hints for batch rekeying 
solutions. 

2.2 Batch Rekeying 
Group rekeying based on the algorithm of logical key hierarchy LKH presented in Section 
1.4 features a real time characteristic. According to this algorithm each rekeying request is 
granted separately. However, a performance improvement can be achieved, if several 
requests are processed simultaneously. This processing mode is denoted as batch rekeying 
[Li01]. Different rekeying requests demand an update of several keys. Some of these keys, 
however, are likely to be processed several times if these requests are treated separately. 
The performance gain in batch rekeying relies on avoiding this multiple processing by 
reducing the number of updates of some key to one, maximally. To illustrate this point 
consider the left key tree in Figure 2.1 and assume that the rekeying server receives three 
rekeying requests in the following order: join m7, disjoin m3, and disjoin m0. The right key 
tree in Figure 2.1 represents the state after performing rekeying for these three requests. 

k0 k1 k2 k3 k4 k5 

k0-1 k2-3 k4-5 k6 

k0-3 k4-7 

k0-7 

k4 k5 k6 k7 

k1 k2 k4-5 k6-7 

k0-3 k4-7 

k0-7 
Join m7 

Disjoin m3 
Disjoin m0 

Figure 2.1. Batch rekeying example 
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Table 2.1 summarizes how often each of the help-keys is processed in both real-time and 
batch rekeying. Processing a key in this context means an update of this key and two 
following encryptions of it with the left and the right son keys. From this table it is obvious 
that processing rekeying requests in batch is more efficient than real-time rekeying.  

Table 2.1. Batch vs. real-time rekeying for the previous example 

 k0-1 k2-3 k4-5 k6-7 k0-3 k4-7 k0-7 

Real-time rekeying 0 0 0 1 2 1 3 

Batch rekeying 0 0 0 1 1 1 1 

 

Batch rekeying proceeds in two phases which are repeated frequently. Figure 2.2 depicts 
this point: 

1. Marking: In this phase rekeying requests are collected and the help-keys, which need to 
be processed, are marked. The marked keys build a so-called rekeying subtree.  

2. Processing: In this phase all keys in the rekeying subtree are regenerated and encrypted 
by the corresponding keys to build the rekeying message. 

Figure 2.2. Batch rekeying 
 

The marking is performed within regular time slots called rekeying intervals T. The 
processing takes differently long according to the built subtree. Figure 2.3 depicts this 
situation, where BPTi denotes the batch processing time of the i-th batch.  

Figure 2.3. Timing in batch rekeying 

2.3 Problems of Batch Rekeying 
The analysis given in the previous section on batch rekeying performance is optimistic 
because it does not consider the waiting times of requests before they are served. The 
longer the rekeying interval the higher the probability for some requests to wait longer. Too 
long rekeying intervals in batch rekeying have two drawbacks with regard to Quality of 
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Service and Access Control. A new member, on the one hand, gets the group key in batch 
rekeying later than in real-time rekeying which means that only a worse QoS can be offered 
by batch rekeying. On the other hand, a leaving member remains to have a valid group key 
in batch mode for a longer time period than in immediate rekeying which corresponds to 
degradation in the access control. To quantify these items two new metrics are introduced: 
these are the Join Batch Delay (JBD) and the Disjoin Batch Delay (DBD). 

2.3.1 Join Batch Delay  
Definition 2.1: 
Join Batch Delay is defined as the additional waiting time for a joining member to get the 
group key in batch rekeying compared to the real-time case, see Figure 2.4. Within a 
rekeying interval T a join request appears delayed by taJ from the end point of last interval. 
An immediate processing of this request, i.e., without batching, would take tpJ. However, 
through batch processing the corresponding member will be joined at the end of the 
processing of the (i+1)-th batch. Accordingly, JBD can be estimated using the following 
formula. 

JBD = T + BPTi +BPTi+1 – (taJ + tpJ)            (2.1) 

Figure 2.4. JBD in batch rekeying 

2.3.2 Disjoin Batch Delay  
Definition 2.2: 
Disjoin Batch Delay is defined as the additional time needed to deactivate the help-keys 
and the group key of a leaving member in batch rekeying compared to the real-time case, 
see Figure 2.5. Similarly to JBD, DBD can be estimated as follows. 

DBD = T + BPTi +BPTi+1 – (taD + tpD)            (2.2) 

 

Figure 2.5. DBD in batch rekeying 
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Note 2.1: 
Because of the analogies in the behavior of JBD and DBD, the analysis in next sections is 
sometimes limited to JBD to avoid repetition. 

2.4 Optimized Batch Rekeying 
As a rule, the processing time of a join request in real-time rekeying tpJ is short compared to 
the other terms of equation (2.1) and can therefore be neglected. In addition, considering all 
joining members in one rekeying interval, the worst-case JBD must be investigated. This 
case occurs for the earliest join request in the interval, in other words for the join request 
with the minimal appearance time taJ

min. The JBD equation, accordingly, can be rewritten as 
follows. 

JBDworst = T + BPTi +BPTi+1 – taJ
min   (2.3) 

In general, optimizing the QoS for joining members is based on minimizing JBDworst which 
can be achieved by means of elimination or minimization of the contributing terms in (2.3). 
These terms are: 

T:  Rekeying interval 

BPTi:  Batch processing time of the current batch 

BPTi+1: Batch processing time of the next batch 

2.4.1 Optimized Cryptographic Algorithms and Platforms 

The batch processing time BPT in (2.3) is mainly affected by four parameters:  

1. G: Number of new keys needed for processing the corresponding subtree. 

2. E: Number of encryptions needed for processing the corresponding subtree. 

3. Cg: Cost of the generation of one key in time units (generation cost factor). 

4. Ce: Cost of one encryption in time units (encryption cost factor). 

Thus, BPT can be estimated as follows. 

BPT = CeּE + CgּG           (2.4) 

The encryption/generation cost factors Ce and Cg depend, on the one hand, on the used 
algorithms for encryption and key generation. On the other hand, they are affected by the 
performance of the underlying platform. The more efficient the encryption/generation 
algorithms and the more high-performance the executing platform is, the smaller BPT and 
therefore the smaller JBD will be. The number of encryptions and generations, E and G, 
however, is much more complex to estimate because of its dependency on the current state 
of the key tree and on the following indeterministic factors: 
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1. The number of join/disjoin requests NJ/ND in the corresponding rekeying interval, 
which is a function of the temporal request distribution and of the rekeying interval.  

2. The logical (spatial) distribution of disjoin requests in the tree. (In contrast, join 
requests have no indeterministic contribution, because the server decides on the join 
points in the tree). 

In general, both E and G increase with higher request rates, with higher dispersion of 
disjoin requests and with higher group sizes. To keep the number of encryptions/ 
generations small, an appropriate rekeying algorithm must be chosen, e.g., LKH [Wo00] or 
One-way Function Trees [Sh03], etc. 

Optimizing the QoS and access control in batch rekeying by means of BPT minimizing can 
be classified as hard QoS/AC management, because it demands essential improvements of 
algorithms and/or platforms which is expensive and can not be performed in real time, as a 
rule.  

2.4.2 Pipelined Batch Rekeying 
In addition to performance enhancements, parallelizing the marking and processing phases 
of batch rekeying results in a smaller JBD and consequently a higher QoS. During the 
processing of the i-th batch the (i+1)-th subtree can be generated as depicted in Figure 2.6. 
The suffix p in JBDp stays for pipelining. See Figure 2.4 for a comparison.  

Figure 2.6. JBD in pipelined batch rekeying 
 
From this figure it is obvious, that the contribution of BPTi to JBD is eliminated. 

     JBDp
worst = T + BPTi+1 – taJ

min         (2.5) 

Similarly to BPT minimizing, pipelining can be seen as hard QoS/AC management. This 
strategy, however, optimizes QoS/AC independent of the underlying algorithms for 
rekeying, encryption and key generation, and without relation to the network situation, 
which is mirrored by the request rate.   

2.4.3 Event-driven Batch Rekeying 
Related work on batch rekeying assumes either a constant rekeying interval, e.g. [Li01] and 
[Zh01], or defines a lower bound on this interval to limit communication overhead, e.g. 
[Ya01] and [Ji02]. For the purpose of QoS/AC improvement an upper bound on T has to be 
introduced as follows. 

    T < min {Tmax1, Tmax2}     (2.6) 

time 

BPTi+1 BPTi 
T T 

JBDp taJ 

tpJ 
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Tmax1 and Tmax2 correspond to the maximal allowable join and disjoin batch delays in the 
system specification JBDmax and DBDmax, respectively. Using (2.5) Tmax1 can be estimated as 
follows. The pipelining suffix p is neglected, for clarity. 

     Tmax1 = JBDmax - BPTi+1 + taJ
min             (2.7) 

Similarly, for Tmax2 the following can be written. 

    Tmax2 = DBDmax - BPTi+1 + taD
min             (2.8) 

Secure multicast applications differ according to their sensitivity to the QoS and access 
control associated with batch processing. While Pay-TV, for example, emphasizes high 
QoS values and accepts as a rule some loss of access control, other applications, e.g., in 
military fields, do not tolerate any sacrifice of these parameters. Furthermore, the demands 
on QoS and access control can vary from time to time for the same application depending 
on some scenario-specific parameters. A Pay-TV provider, for example, can tolerate longer 
values of DBD to guarantee the required JBD at times of high join rates, e.g., shortly before 
starting the streaming of a sport event.  

T < min {Tmax1, Tmax2} ? 

Processing old 
batch finished? 

No 

Yes 

Start new interval 

No 

Yes 

Start marking
a new batch 

Start processing 
prepared batch 

Start interval 
timer 

Get new request
Save taJ

min for first join 
Save taD

min for first disjoin 

Update
Tmax1, Tmax2  

Mark keys 
Update BPTi+1  

Wait 

Figure 2.7. Pipelined event-driven batch rekeying 
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The application of (2.6) results in an event-driven batch rekeying which is activated by the 
events of exceeding Tmax1 and Tmax2. These events cause the concluding of the current 
rekeying interval and the starting of a new one. 

Figure 2.7 illustrates the new batch rekeying algorithm which supports both pipelining and 
event-driven operation modes to optimize QoS and access control. Note that, because of 
pipelining, a new interval can only be started if the processing of the old batch is already 
finished which is true in most cases. As depicted in Figure 2.7, event driven rekeying relies 
on estimating the batch processing time BPTi+1 during marking. This task assumes knowing 
the encryption and the generation cost factors Ce and Cg according to (2.4).  

The Batch Rekeying Processor presented in Chapter 6 realizes an event-driven batch 
rekeying [Sh05]. In this hardware implementation the factors Ce and Cg are well defined 
and a real-time functionality guarantees an accurate estimation of BPTi+1 because of the 
common time base for all hardware modules. The module Batch Delay Monitor of this 
processor is integrated to a preprocessing unit which performs the marking to prepare the 
rekeying subtree.   

In contrast to the other optimization strategies, event-driven rekeying provides a real-time 
control of QoS and access control in each rekeying interval and can, therefore, be classified 
as soft QoS/AC management which keeps QoS/AC within desirable values during the 
system operation.  

2.5 Case Studies 
Though the JBD behaviour given in (2.5) appears to be simple to evaluate, a comprehensive 
analysis of this quantity is almost impossible. This is particularly because of the highly 
complex dependencies of the batch processing time. To illustrate this point, this 
characteristic is represented as a set of functional relationships, where NJ and ND refer to the 
number of join and disjoin requests summed up in a rekeying interval, respectively. 

1. JBDp
worst  = f1 (T , BPTi+1 , taJ

min)   

2. BPTi+1  = f2 (Ce , E , Cg,  G ) 

3. Ce ,Cg  = f3 (encryption/generation algorithms,  platform)  

4. E , G   = f4 (NJ  , ND , tree state, spatial request distribution in the tree) 

5. NJ  , ND   = f5 (T, temporal request distribution)  

Note that the rekeying interval T affects JBDp
worst not only directly according to f1, but also 

indirectly corresponding to f5 depending on the current distribution function of join/disjoin 
requests.  

Almost all the related work on batch rekeying only consider the relation f4 for E based on 
borderline cases. A few papers [Ya01, Zh03] investigate the relation f5 assuming an 
exponential request distribution. Based on these approaches, a form for the function f1 is 
derived, which can be evaluated by means of simulation. For this purpose, borderline 
conditions are introduced for the different relations f1, f2, f4, and f5 to ease the analysis. The 
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steps outlined in this derivation can be used as a general guideline for other cases and 
conditions. 

1. taJ
min = 0, which means that the first join request appears at the beginning of a rekeying 

interval. Accordingly, JBDp
worst can be written as follows. 

 
    JBDp

worst = T + BPTi+1   (2.9) 

2. Binary trees: In this case a help-key needing to be updated is generated once and 
encrypted twice, thus,  

E = 2·G    (2.10) 

3. Based on the key generator specified in [An00], the generation of one key costs two 
encryptions, i.e.,  

Cg = 2·Ce   (2.11)  

Setting (2.10) and (2.11) in (2.4): 

                   BPTi+1 = 2.Ce.E   (2.12)  

4. Exponential distribution of the inter-arrival times of disjoin requests [Al96]. According 
to [Ya01, Zh01], the number of disjoin requests in a rekeying interval T is given by the 
following formula, where n denotes the group size. μ is the disjoin request rate. 

 
            ND = n(1-e -μT)            (2.13) 

5. Balanced trees and an equal number of join and disjoin requests in the rekeying 
interval, NJ = ND. The number of encryptions needed to process this batch can be 
calculated according to [Li01] as follows, where h represents the tree depth, h= log2n. 

 
          

(2.14) 
 
 
Setting (2.13) in (2.14),  (2.14) in (2.12), and (2.12) in (2.9):  

 

(2.15) 

 
 

The resulting JBD is a function of the rekeying interval, the request rate, the encryption cost 
factor and the group size: 

JBDp
worst = f1(T, μ, Ce, n) 
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The following two case study simulations illustrate the hard and soft management of QoS 
introduced in the previous sections.  

Case study 1 
If the rekeying interval has a pre-specified value, e.g., for communication overhead reasons, 
then JBD can only be controlled by the encryption cost factor Ce for some group size n. 
Figure 2.8 shows JBD as a function of the request rate μ with Ce as a parameter and with: 

n = 524.288    T = 1 sec 

Figure 2.8. JBDp
worst = f(µ,Ce);  T, n = const. 

 

The diagram of Figure 2.8 can be viewed as a representation of the design space which can 
be used to decide on the minimal performance of the encryption algorithm and/or the 
minimal performance of the underlying platform. If the maximal acceptable join batch 
delay equals 10 sec, for example, and the maximal request rate in the multicast group is μ = 
0.4 sec-1, then Ce must be chosen equal to 6.10-6 sec as a maximum. The sought value of Ce 
can then be obtained by means of selecting an appropriate encryption algorithm, or by 
using a sufficiently powerful runtime platform, or both.  

Case study 2 
For a given encryption algorithm and a given runtime platform the JBD can be optimized 
softly by the rekeying interval according to the request rate. Figure 2.9 shows the 
simulation results for JBD as a function of T and μ with: 

n = 524.288    Ce = 1.5.10-6 sec 

By exploiting this representation it can be decided on the rekeying interval appropriate to 
some value of the request rate in order to satisfy the QoS specification. The algorithm 
presented in Section 2.4.3 provides without loss of generality an automatic selection of the 
rekeying interval according to both the network situation and the tree state in real-time. 
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Figure 2.9. JBDp
worst = f(µ,T);   Ce , n = const. 

2.6 Summary 
In this chapter the problems of quality of service and access control associated with batch 
rekeying were investigated. The analysis has resulted in several improvement possibilities 
of the rekeying system which can be summarized in form of the following hints: 

1. Arrange for a high-performance execution platform. 

2. Provide efficient algorithms for encryption and key generation. 

3. Provide efficient key management algorithms. 

4. Exploit a pipelined batch rekeying algorithm. 

5. Use event-driven batch rekeying with a variable rekeying interval. 

Case studies have demonstrated the two generic methods of QoS management for batch 
rekeying: (1) hard, and (2) soft QoS management. Event-driven batch rekeying assumes 
given values for system-specific parameters JBDmax and DBDmax. 
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3 Rekeying Benchmark  

 

3.1 Overview 
This chapter presents a novel approach to performance evaluation of rekeying algorithms. 
First, Section 3.2 illustrates the problem of rekeying performance evaluation. Section 3.3 
introduces the design concept of a rekeying benchmark as a solution to this problem. New 
performance metrics and relating simulation modes are then discussed in Section 3.4. The 
design of the rekeying benchmark and its components is detailed in Section 3.5. Section 3.6 
depicts some implementation issues of the benchmark. Lastly, Section 3.7 illustrates the 
application of the benchmark by means of a simulation case study.     

3.2 Rekeying Performance Evaluation Problem 
A typical problem in scientific work relates to the analysis and evaluation of own results 
and comparing them with those of related work. This problem, on the one hand, can be 
attributed to the increasing number of scientific institutions and the vast publication 
possibilities such as journals, conferences and workshops. This trend hinders a 
comprehensive overview of the state-of-the-art situation in some scientific field. On the 
other hand, some research areas – because of their novelty, complexity, or both – lack a 
unified way to draw these comparisons. This situation, for instance, does not apply to the 
work on performance optimization of the new encryption algorithm AES. Since its release 
in 2001 by NIST [Ni01], an enormous amount of work is published. However, the 
recognized way to describe the performance of a block cipher in terms of throughput and 
latency allows for a reliable comparison between these solutions. On the contrary, such 
unified metrics are still missing for estimating the performance of rekeying algorithms, 
which is caused by both the novelty of this problem area and its complexity.   

This complexity, however, did not only result in largely different metrics to express 
rekeying performance, but also in diverse ways of estimating these metrics. In this respect, 
the reader of proposed work on multicast group rekeying is not only confronted with 
different performance quantities, but also with various estimation methods such as 
analytical modeling, simulation based approaches, and real-time measurement using 
provisional prototypes. Each one of these techniques has specific constraints and 
drawbacks, which can be outlined in the following points: 
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1. Analytical approaches are always based on simplified models and relate to special 
cases such as full balanced trees. As a rule, rekeying performance can only be 
expressed by abstract numbers of some primitive operations, e.g. the number of 
encryptions, for borderline cases, e.g. a worst-case analysis or a best-case analysis.  

2. Simulation based approaches are mostly used to prove a presented analytical investi-
gation without model enhancement and without including sophisticated effects such as 
group dynamics. 

3. Measurement approaches deliver results, which are strongly dependent of the depl-
oyed cryptographic primitives, their implementation, and of the platform they run on. 

Furthermore, the performance of group rekeying is influenced by a couple of factors 
reflecting the group state and dynamics, on the one hand, and by some algorithm specific 
parameters such as the tree degree in LKH, on the other. Accordingly, two questions arise 
for performance estimation: which factors must be taken into consideration, and how 
should they be included, as variables or as parameters? Again, the largely different answers 
to these questions in related work make a large contribution to the performance evaluation 
problem. In summary, the difficulty of evaluating different rekeying algorithms is attributed 
to the following three points: 

1. Non-unified performance estimation methods.  

2. Non-unified consideration of the input quantities affecting the performance.  

3. Non-unified definition of output metrics representing the performance.  

Table 3.1 delivers a representative view of this situation in related work. Note that an input 
quantity can be considered either as a variable or as a parameter. This differentiation is 
needed when the corresponding performance metric is a function of several variables. For 
some estimation, a variable, which is kept constant, is called a parameter.  

The diverse ways of looking at rekeying performance do not only obstruct an objective 
assessment of the corresponding algorithms, but also give an explanation of some 
inconsistencies in the conclusions drawn by some related work. The following two 
examples illustrate this point: 

Example 3.1: Tree Degree 
Though many publications on tree-based rekeying do not address the effect of tree degree, 
some work investigates its value, which results in optimized rekeying costs. While [Wo00] 
states a value of 4 as an optimal tree degree, [Go03] proves that trees with variable degree 
between 2 und 3 are more efficient.  

 Example 3.2: Tree Rebalancing 
A lot of related work on LKH has commented that the logarithmic relation of rekeying 
costs to group size may be easily violated if the tree gets out of balance as an effect of 
multiple disjoin operations. In extreme cases rekeying costs can even grow linearly to the 
group size which makes a rebalancing of the tree indispensable.  
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Table 3.1. Dissimilarity in rekeying performance estimation in related work  

Input Quantities 
Work 

Performance 
estimation 

method 

Performance 
estimation mode 
and constraints Variable Parameter 

Performance 
metric 

Analytical Worst-case  
Average costs 

# Join, # disjoins, Tree degree 
Group size # Encryptions 

[Li01] 
Simulation Worst-case  

Average costs 

# Joins,   
 # Disjoins 

0-1000 
0-4000 

Tree degree 
2,4,8,16,32 
Group size 
1024, 4096 

# Encryptions 

[Wa99] Measurement 

Group grows 
from 5000 to 

20000 with 1% 
probability for 
join and  0.1 % 

for disjoin  

Time 
0-600 Sec 

0-8000 Sec 

# Messages per 
minute 

# Tree levels 

[Sh03] Analytical Full balanced 
binary trees 

Group size, 
Parameters for encryption, 

key generation, and hashing 
costs 

Abstract cost per 
join/disjoin, per 

multiple 
joins/disjoins 

Analytical Full balanced 
trees Tree height and degree # encryptions per 

request  
[Wo00] 

Measurement Join rate = disjoin 
rate = 50% 

Group size 0-
8192 

Tree degree 
2-16 

Request processing 
time  

[Lu05] Simulation 

Join rate =     
disjoin rate = 50% 

n0 = 10000. 
Worst-case, 
average cost 

Operation number 
0-10000 

Rekeying message 
cost per 2000 

operations 

[Pe03] Simulation 
Statistically 

generated join/ 
disjoin patterns 

Time 
0-70 Min 

0–700 Min  

Batch period 
0-40 Min 
0–50 Min 

Tree height 

Analytical Worst-case,    
best-case analysis 

Group size, tree degree, 
highest layer [Ng05] 

Simulation Full balanced 
trees 

Group size 
0-8192 

# Cumulative 
layers  

# Keys per request 

Analytical  
Group size 

# merging members  
# leaving members 

# Exponentiation 
# Signatures 

# Verification 
[Am04] 

Measurement 

Average 
communication 
and client delay 

included 

Group size 
0-50 

RSA module 
512 Bit, 1024 

Bit 

Time per 
join/disjoin.  

Time per 
merging/partition 

Analytical 1 join / 1 disjoin 

Group size 
All potential members 

Potential members not in the 
group currently [Ch02] 

Simulation  
Dedicated for 
some MBone 

sessions 

Time 
0-400 hours 

Group sizes 
4096, 64 K. 
Batch period 
20-240 Min 

# Encrypted 
messages 

[Mi97] Measurement  Payload size in bytes Time 
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The first contribution on tree rebalancing has been made by Moyer [Mo99] who introduced 
two methods: an immediate and a periodic rebalancing. The immediate rebalancing results 
in worst-case rekeying costs of 4ּlog2n encryptions instead of 2ּlog2n in the case without 
rebalancing. For the periodic rebalancing, however, no information is provided about the 
overall performance. Moharrum et al. [Mo04] presented another method for rebalancing 
based on sub-trees. A comparison with the solution of Moyer is drawn, but not with the 
original LKH. Rodeh et al. [Ro00] applied rebalancing methods known in AVL trees to 
rebalance multicast key trees. However, no backward access control is guaranteed in this 
solution. Goshi et al. [Go03] proposed three algorithms for tree rebalancing. The analytical 
analysis in this work does include rebalancing costs and the simulation results only relate to 
equally likely join and disjoin behavior, which does not disturb the tree structure as a rule. 
The same remark applies to the simulation results provided by Lu [Lu05], who presented a 
rebalancing method without node splitting. Section 3.7 provides a detailed case study, 
which illustrates that rebalancing costs exceed the gain associated with it, which does not 
satisfy the usage of this tree management strategy.    

This chapter presents a solution to the performance evaluation problem in multicast group 
rekeying [Sh07a]. The proposed benchmark provides a simulation environment, which can 
be used to evaluate different rekeying algorithms in a unified way. The study presented in 
this chapter is limited to the computational overhead on the server side of a group manager. 
This component, however, dominates the overall rekeying costs in many cases. An 
inclusion of communication costs and of the computational overhead on the client side is 
planed in future work.   

3.3 Rekeying Benchmark Design Concept 

3.3.1 Benchmark Abstraction Model 
Rekeying presents a solution for group key management in secure multicast. As an essential 
step in the process of joining and removing members, rekeying performance directly 
influences the efficiency of this process with major effects on the system behavior. The 
faster a member can be removed the higher is the system security. The faster a member can 
be joined the higher is the system quality of service. The more efficient the rekeying the 
larger the groups, which can be supported and the more members may be joined and 
removed per time unit. Accordingly, the importance of rekeying performance estimation 
results from the significant effects of this performance on the system behavior in respect of 
the following items: 

1. The amount of quality of service, which can be offered to a joining member. 

2. The amount of security against a removed member. 

3. Scalability in terms of supportable group sizes. 

4. Group dynamics in terms of maximal supportable join and disjoin rates. 

A representation of rekeying performance using these items allows a more understandable 
and reliable means to evaluate different rekeying algorithms. The advantage of this 
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Benchmark Layer

Rekeying Layer 

Cryptography Layer 

Platform Layer 

presentation stems from the abstraction associated with it. This can be illustrated as 
follows. To enable a reliable evaluation of rekeying algorithms, metrics must be estimated, 
which are independent of these algorithms. Thus, an abstraction of the performance 
estimation from rekeying algorithms is required. Figure 3.1 represents the task of 
evaluating rekeying algorithms as a four-layer abstraction model. The highest layer, 
denoted as the benchmark layer, takes the responsibility for performance evaluation of 
rekeying algorithms which are executed on the following rekeying layer. The introduction 
of the two lower layers, the cryptography and the platform layers, originates from the 
following analysis. The rekeying layer performs join and disjoin requests based on 
cryptographic operations such as encryption and digital signing. For each cryptographic 
primitive a wide selection is available. Taking symmetric-key encryption as an example, 
rekeying may employ DES, 3DES, AES, IDEA or other algorithms. The same rekeying 
algorithm behaves differently according to the utilized cryptographic primitives. Further 
more, the same cryptographic primitive features different performance according to the 
platform it runs on. This fact remains, even if public-domain libraries such as CryptoLib 
[Cl07] are utilized to realize cryptographic functions. Consequently, a reliable rekeying 
benchmark does not only rely on an abstraction from the details of the analyzed rekeying 
algorithms. Rekeying itself must be decoupled from the underlying cryptographic 
primitives and from the executing platform. 

 

 
Figure 3.1. Rekeying benchmark abstraction model 

The representation of the task of rekeying performance evaluation as an abstraction model 
provides several advantages and introduces essential design aspects for the benchmark: 

1. Due to the abstraction of the benchmark from the rekeying task, a reliable und 
understandable mechanism for comparing different rekeying algorithms is provided. 

2. The translation of rekeying costs into a system level permits the combination of these 
costs with other system costs such as those of user registration and authentication. 

3. The separation of rekeying algorithms from the cryptographic layer and from the 
execution platform leads to a substantial acceleration of the evaluation process. This 
gain is based on the fact that rekeying algorithms to be evaluated do not need to execute 
any cryptographic algorithms. Instead, they just provide information on the required 
number of these operations. The actual rekeying costs are then determined by the 



3.3   REKEYING BENCHMARK DESIGN CONCEPT 

 

30 

Benchmark Layer 

Rekeying Layer 

Cryptography Layer 

Rekeying  
requests 

Rekeying  
cost data 

Timing 
parameters 

Platform Layer 

benchmark with the aid of timing parameters of the used primitives and the execution 
platform. This point will be detailed in the next section. 

4. From the last point it is obvious that the demand for a reliable rekeying benchmark can 
not be fulfilled by real-time measurements on prototypes or final products, since these 
measurements can not be performed independently of the cryptographic primitives and 
the platform. Instead, for rekeying algorithms to be evaluated fairly and efficiently 
some kind of simulation has to be employed.    

3.3.2 Benchmark Data Flow  
A good understanding of the benchmark abstraction model can be delivered by 
investigating the data exchange between its different layers. Figure 3.2 shows a refinement 
of this model which presents the data flow between the different layers based on the 
following aspects: 

1. The rekeying layer receives rekeying requests and executes pseudo rekeying, which 
means that rekeying algorithms only decide on the cryptographic operations needed for 
these requests without executing them. This issue is illustrated by the gap between the 
rekeying and the cryptography layers. 

2. The rekeying requests are delivered without any timing information. This means that 
the rekeying layer is not informed about the temporal distribution of the rekeying 
requests. This task is assigned to the benchmark layer.  

3. The rekeying cost data provide information on the number of the needed cryptographic 
operations for each rekeying request or request batch.  

4. The timing parameters hide the cryptographic primitives and the executing platform to 
provide a unified cost estimation, which can be used by the benchmark layer for all 
rekeying algorithms in the same way. 

5. To estimate the cost of a rekeying request the benchmark sums the products of the 
rekeying cost data and the corresponding timing parameters.  

  
Figure 3.2. Data flow in the benchmark abstraction model 
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3.4 Rekeying Benchmark as a Simulation Environment 

3.4.1 Cost metrics and Evaluation Criteria  
As mentioned in the previous section it is necessary for the benchmark to translate rekeying 
costs into system-level metrics, which can be estimated for each rekeying algorithm and, 
thus, allow for a reliable comparison between different ones. In the following, these metrics 
are defined and some associated evaluation criteria are introduced. These criteria depict 
how the particular metric can be employed to evaluate different rekeying algorithms. 

3.4.1.1 Rekeying Quality of Service (RQoS) 
To define this metric two auxiliary quantities are introduced first: 

Definition 3.1: 
A Required Join Time TJ sys specifies a rekeying system and is defined as the maximal 
allowable rekeying time needed to join a member.  

Definition 3.2: 
An Actual Join Time TJ specifies a join request and is defined as the sum of the waiting 
time WJ of the join request in the system queue and the rekeying time RTJ consumed by a 
rekeying algorithm to grant this request: 

JJJ RTWT +=     (3.1) 

Definition 3.3: 
Rekeying Quality of Service RQoS specifies a join request and is defined as the difference 
between the required join time of the system and the actual join time of this request:  

J
sys

J TTRQoS −=    (3.2) 

Evaluation Criterion 1: 

 For a rekeying algorithm to join members correctly it must feature a RQoS which is 
equal to or higher than zero, i.e. 

0≥RQoS     (3.3) 

 Considering two rekeying algorithms with RQoS1 and RQoS2, the algorithm with the 
higher RQoS delivers a better join behavior.    

3.4.1.2 Rekeying Access Control (RAC) 
Similarly to RQoS, the rekeying access control depends on two other quantities which are 
defined first: 
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Definition 3.4: 
A Required Disjoin Time TD sys specifies a rekeying system and is defined as the maximal 
allowable rekeying time needed to disjoin a member.  

Definition 3.5: 
An Actual Disjoin Time TD specifies a disjoin request and is defined as the sum of the 
waiting time WD of the disjoin request in the system queue and the rekeying time RTD 
consumed by a rekeying algorithm to grant this request: 

DDD RTWT +=     (3.4) 

Definition 3.6: 
Rekeying Access Control specifies a disjoin request and is defined as the difference between 
the required disjoin time of the system and the actual disjoin time of this request:  

D
sys

D TTRAC −=    (3.5) 

Evaluation Criterion 2: 

 For a rekeying algorithm to disjoin members correctly it must feature a RAC which is 
equal to or higher than zero, i.e. 

0≥RAC     (3.6) 

 Considering two rekeying algorithms with RAC1 and RAC2, the algorithm with the 
higher RAC delivers a better member disjoin behavior. 

3.4.1.3 Maximal Group Size nmax 
This metric represents the maximal group size which can be supported without 
deterioration of the system requirements of QoS and access control.  

Evaluation Criterion 3: 

 For a rekeying algorithm to join and disjoin members correctly a maximal group size 
must be chosen which fulfills both criteria (3.3) and (3.6). 

 Considering two rekeying algorithms, which fulfill criteria (3.3) and (3.6), the 
algorithm, that supports a higher nmax, features higher scalability.  

3.4.1.4 Maximal Join and Disjoin Rates 
The total rekeying time depends on group dynamics. The higher the request rate the higher 
is the rekeying algorithm occupancy and the higher is the probability for new requests to 
wait in the system queue. According to related work on modeling the multicast member 
dynamics, e.g. [Al96], the benchmark assumes the following model: 
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1. The arrival process of new members underlies a Poisson distribution. The inter-arrival 
times, accordingly, are exponentially distributed with the parameter λ, which indicates 
the number of join requests per time unit.  

2. The duration of members in the group is a random variable which also features an 
exponential distribution with the parameter μ, which represents the number of disjoin 
requests per time unit.  

Evaluation Criterion 4: 

 For a rekeying algorithm to join and disjoin members correctly maximal join/disjoin 
rates λmax /μmax must be chosen, so that both criteria (3.3) and (3.6) are fulfilled. 

 Considering two rekeying algorithms, which fulfill both criteria (3.3) and (3.6), the 
algorithm, that supports higher λmax /μmax, features higher dynamics.  

3.4.2 Simulation Modes 
The benchmark provides a way to verify the evaluation criteria defined above by means of 
simulation. For this purpose four simulation modes are proposed. The next sections provide 
a general description of these modes and their utilization goals. An in-depth description of 
the simulation process will be provided in Section 3.5. As a quick reference, Figure 3.3 and 
Table 3.2 provide an overview of the supported simulation modes and the associated 
parameters and settings.  

 
Figure 3.3. Simulation modes in the rekeying benchmark 

Note 3.1: 
The system parameter Nmax given in Table 3.2 represents the desired maximal group size. 
This parameter is required by some rekeying algorithms for set-up. It differs from nmax, 
which is the actually supportable group size by a rekeying algorithm, see Section 3.4.1.3.  

3.4.2.1 Transient Simulation 
This simulation estimates the current group size n(t), the rekeying Quality of Service 
RQoS(t), and the rekeying access control RAC(t) as functions of time. With the help of this 
simulation mode the behavior of rekeying algorithms can be observed over long time 
periods and in some interesting intervals such as the ones shortly before and after an 
important event in multicast communication. For this purpose, the transient simulation 
allows the setting of an initial group size n0, a join rate λ, a disjoin rate μ, and the desired 
simulation time tsim. Like all other simulation modes, the transient simulation receives the 
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system parameters TJ sys and TD sys, which refer to the required rekeying times from the 
system point of view. In addition, to estimate the rekeying times RTJ and RTD, the timing 
parameters must be entered, see Definition 3.21. Similarly to the system parameters, the 
timing parameters are independent of the simulation mode, as can be seen in Table 3.2. The 
transient simulation builds the foundation for all the other three simulation modes.  

Table 3.2. Simulation parameters and metrics  

3.4.2.2 Scalability Simulation 
The importance of this simulation mode results from the significance of the scalability 
problem in group rekeying. The scalability simulation investigates the effect of the group 
size on the system behavior. Group size influences the RQoS and RAC through the rekeying 
time terms RTJ and RTD in (3.1) and (3.4). Each group size n of a user-definable range 
serves as an initial group size for a new scalability simulation point. Scalability simulation 
differs from transient simulation in two points. First, for each scalability simulation point a 
transient simulation is started over a fixed observation interval To with the current group 
size as initial value (n0) for the transient simulation. The second specialty of scalability 
simulation relates to estimating the worst-case values of the performance metrics RQoS and 
RAC, i.e. RQoSmin and RACmin. In other words, from all requests collected in the observation 
interval To only the join request with the worst RQoS and the disjoin request with the worst 
RAC are considered. The scalability simulation helps to estimate the maximal group size 
nmax which can be supported by some rekeying algorithm for certain group dynamics. The 
maximal group size nmax can be estimated graphically as the lower group size at the 
intersection of the curves of RQoSmin and RACmin with the x-axis. This issue is 
schematically illustrated in Figure 3.4.    

3.4.2.3 Join Dynamics Simulation 
High join rates result in short inter-arrival times of join requests and more rekeying 
computations. This causes longer waiting times for new join and disjoin requests. 
Accordingly, higher join rates does not only affect the rekeying QoS, but also the rekeying 
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access control because of the waiting time terms in (3.1) and (3.4). The join dynamics 
simulation represents a way to investigate theses dependencies. The user defines an initial 
group size n0, a disjoin rate μ, and a fixed observation interval To. In addition, a simulation 
range for the join rate λ is entered. For each value of λ a transient simulation over To is 
started which is similar to the one described in the scalability simulation. With the help of 
join dynamics simulation the maximal allowable join rate λmax for a rekeying algorithm can 
be estimated. λmax corresponds to the lower λ-value of the intersection points of the curves 
of RQoSmin and RACmin with the x-axis.  

Figure 3.4. Scalability simulation to estimate nmax  

 
Another interesting knowledge, which can be gained on the base of this simulation mode, 
relates to the investigation of the rekeying algorithm behavior in the case of unbalanced 
group dynamics. Unbalanced group dynamics means that the join request rate exceeds the 
disjoin request rate, or wise versa. The significance of this analysis is based on the fact that 
the performance of some rekeying algorithms differs considerably according to the request 
type dominating the group dynamics. While the Star Graph rekeying [Wo00], for instance, 
scales well for join requests, it performs largely inefficient in the case of high disjoin 
request rates. To investigate the effect of unbalanced group dynamics a vertical line is 
drawn at the join rate, which equals the defined disjoin rate µ, and the RQoSmin/RACmin 
behavior is observed on the both sides of this line. Figure 3.5 schematically illustrates this 
point. The RQoSmin of two rekeying algorithms A1 and A2 is estimated. For join rates, 
which are lower than the given disjoin rate, algorithm A1 features higher performance than 
algorithm A2. This advantage, however, decreases with increasing join rates, which 
becomes evident after exceeding the disjoin rate.  

Figure 3.5. Join dynamics simulation to investigate unbalanced dynamics  
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3.4.2.4 Disjoin Dynamics Simulation 
This simulation can be utilized to estimate the maximal disjoin rate μmax. All other 
properties of the join dynamics simulation apply to this simulation and are not repeated 
here, for brevity.  

3.5 Rekeying Benchmark Design 

3.5.1 General Architecture 
The rekeying benchmark is mainly composed of two interfaces and three components, as 
depicted in Figure 3.6: 

 
Figure 3.6. Rekeying benchmark architecture  

 

1. User Interface (UI): This interface enables benchmark users to evaluate different 
rekeying algorithms by selecting these algorithms and setting the desired parameters for 
the system, group, timing and simulation runs. Simulation results can be captured in a 
tabular form or graphically.    

2. Programming Interface (PI): For designers of rekeying algorithms this interface 
enables the integration of new algorithms into the benchmark environment. In addition, 
groups with special dynamic behavior, which does not follow a Poisson distribution, 
can be supported with the aid of a special programming interface. 

3. Request Generator: Depending on the entered group and simulation parameters the 
request generator builds a request list. An entry of this list keeps information on the 
request type, join or disjoin, the identity of the member to be joined or disjoined, and 
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the arrival time of this request. The request generator deals with the difficult task of 
modeling the group dynamics. Group dynamics includes two indeterministic 
contributions. The first component relates to the stochastic process of request arrivals. 
The second indeterministic contribution represents the task of choosing the member to 
be removed. This item results from the fact that most rekeying algorithms feature 
member-dependent rekeying performance. Removing a member located on a higher 
level in a key tree, for instance, does not cost as much as removing another, whose leaf 
belongs to a lower level. Choosing identities for joining members, in contrast, is 
deterministic because the group manager has control of the join point, as a rule. 

4. Algorithm Manager: This component selects and configures the rekeying algorithms to 
be evaluated according to user settings. It coordinates the functions of the benchmark 
and the rekeying algorithms.  

5. Performance Evaluator: Based on the rekeying cost data delivered from the rekeying 
algorithms, the entered timing parameters, and on the selected simulation, the rekeying 
performance of each algorithm in terms of RQoS and RAC is estimated and prepared 
for display. 

The algorithm manager plays a central role in the benchmark architecture. Its functionality 
can be illustrated by the process described in Algorithm 3.1. After reading the user settings 
of the desired parameters, the simulation mode, and the algorithms to be evaluated, the 
algorithm manager executes the corresponding simulation process. Simulation processes on 
their part call the request generator and pass the rekeying requests to the selected rekeying 
algorithms. As a result, a simulation process provides abstraction rekeying costs, i.e. 
without timing information. This information is first supplied to the performance evaluator 
which combines the timing parameters with the abstract rekeying costs to determine the 
RQoS and RAC metrics.  

Algorithm 3.1 Benchmark evaluation process 
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For clarity, next sections detail the three benchmark components in an order corresponding 
to the benchmark architecture as depicted Figure 3.6.   

3.5.2 Request Generator 
The request generator (RG) produces a rekeying request list RRL(T) by executing the 
Request Generator Process based on three subprocesses: the Arrival Process, which 
generates join/disjoin arrival lists AJ(T)/AD(T) and the Join/Disjoin Identity Selection 
Processes, which generate a member identity for a join/disjoin request. For a formal 
description, a terminology specific to the RG is presented first.  

3.5.2.1 Request Generator Terminology 
Definition 3.7: 
A Rekeying Request is 3-tuple (type, ID, ta), where type indicates the request type which 
can be join (J) or disjoin (D). ID represents the member identity to be joined (IDJ) or 
disjoined (IDD). ta describes the arrival time of a join request (taJ ) or a disjoin request (taD) 
measured from the start point of the simulation run.  

Definition 3.8: 
A Rekeying Request List over T, RRL(T), is an ordered set of rekeying requests, which 
arrive during a defined time interval T. The requests in the list are ordered according to 
their arrival times.  

Example 3.3: RRL(T)  
An RRL(T) can be represented in tabular form, Table 3.3 depicts an example. 

Table 3.3. Example for a rekeying request list RRL(T)  

Request Type Member Identity Arrival Time (ms) 
D 1099 0 
J 50 0.1 
J 178 2 
D 22657 5.3 

 
Definition 3.9: 
A join arrival list over T, AJ(T), is an ordered list of inter-arrival times, which relate to all 
join requests generated during a given time interval T: 

AJ(T)  = (∆tJ(1), ∆tJ(2),… ∆tJ(i),… , ∆tJ(h)), 

where ∆tJ(i) indicates the inter-arrival time of the i-th join request in the interval T and 
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Definition 3.10: 
A Disjoin arrival list over T, AD(T), is an ordered list of inter-arrival times, which relate to 
all disjoin requests generated during a given time interval T: 

AD(T)  = (∆tD(1), ∆tD(2),… ∆tD(i),… , ∆tD(k)), 

where ∆tD(i) indicates the inter-arrival time of the i-th disjoin request in the interval T and 

Tit
ki

i
D ≤Δ∑

=

=1
)(    (3.8) 

Definition 3.11: 
A member identity (ID) is defined as a natural number which takes any value between 0 and 
Nmax – 1, where Nmax represents the maximal desired group size, see Note 3.1. 

Definition 3.12: 
From the view point of the request generator a complete multicast group M is defined as a 
set of all member identities. 

M = {ID(i)}, i = 0 ÷ (Nmax -1) 
Definition 3.13: 
A joined multicast subgroup (MJ) is defined as the subset of M which includes all given 
identities.  

At the start of a simulation with initial group size n0, MJ is defined as follows: 

MJ= {ID(i)}, i = 0 ÷ (n0 -1) 
Definition 3.14: 
A potential multicast subgroup (MD) is defined as the subset of M which includes all free 
identities, i.e. the identities which can still be given to new members.  

At the start of a simulation with initial group size n0, MD is defined as follows: 

MD = {ID(i)}, i = n0 ÷ (Nmax -1) 

3.5.2.2 Request Generator Process (GenReqList) 
This process generates a rekeying request list RRL(T) according to Definition 3.8. 
Algorithm 3.2 illustrates this process as pseudo code. First, the arrival process 
GetArrivalLists is called to produce join and disjoin arrival lists AJ(T) and AD(T), see 
Definition 3.9 and Definition 3.10. According to their inter-arrival times in these lists, the 
arrival times for the individual requests are then determined. Depending on the request 
type, the member identity is obtained by calling the processes GetJoinID or GetDisjoinID. 
Afterwards, the RRL(T) is updated by the new rekeying request 3-tuple. After processing 
all entries of AJ(T) and AD(T), the RRL(T) is sorted by increasing arrival time. Note that 
the request generator is transparent to the simulation mode. Utilizing the generator for 
different simulation modes will be described later in the scope of the algorithm manager.  
Example 3.4 illustrates this code in more details. 
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Algorithm 3.2 GenReqList 
Input: T 
Output: RRL(T)      -- Definition 3.8 
1. GetArrivalLists(T) → AJ(T) and AD(T)  -- Section 3.5.2.3 
2. i := 1, j := 1, taJ := 0, taD := 0; 
3. do  
4. if ΔtJ(i) ≥ ΔtD(j) then 
5. taD := taD + ΔtD(j);    -- Equation (3.8) 
6. GetDisjoinID → IDD    -- Section 3.5.2.5 
7. j := j + 1; 
8. Add (D, IDD, taD) into RRL(T) 
9. else 
10. taJ := taJ + ΔtJ(i);    -- Equation (3.7) 
11. GetJoinID → IDJ    -- Section 3.5.2.4 
12. i := i + 1; 
13. Add (J, IDJ, taJ) into RRL(T) 
14. end if 
15. while (i≤h or j≤k)     -- h/k: number of AJ(T)/AD(T) entries 
16. Sort RRL(T) 
17. return RRL(T) 
 
Example 3.4: Request Generator Process 
The following example illustrates Algorithm 3.2. 

Input: A group of maximal 8 members. 5 members are currently joined as follows.  

M = {0, 1, 2, 3, 4, 5, 6, 7}, MJ = {0, 1, 2, 3, 4},  MD = {5, 6, 7} 

See definitions 3.12, 3.13, and 3.14 for M, MJ and MD, respectively. 

Assume that calling the process GetArrivalLists(T) on some interval T results in: 

AJ(T)  =  (10, 25), AD(T)  =  (11, 5, 7) 

The contents of the inter-arrival time lists AJ(T) and AD(T)  indicate that during the given 
interval 2 join requests and 3 disjoin requests are collected, i.e. h = 2, k = 3. In addition, the 
requests feature the following inter-arrival times: 

ΔtJ(1) = 10, ΔtJ(2) = 25, ΔtD(1) = 11, ΔtD(2) = 5, ΔtD(3) = 7.   

In the first run of the do-while loop, the if-condition in Algorithm 3.2 is false because 
ΔtJ(1) < ΔtD(1). Therefore, the first join request is processed by determining its arrival time 
in Step 10, which results in taJ := 0 + 10 = 10, as taJ = 0 initially. Assuming that executing 
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the process GetJoinID in Step 11 results in a member identity IDJ = 5, a first entry is 
written into the rekeying request list RRL(T), Step 13, as depicted in the first row of Table 
3.4 which represents the RRL(T) for his example. 

In the second iteration the if-condition is true because ΔtJ(2) > ΔtD(1). Therefore, the next 
request to be written to the RRL(T) is of a disjoin type and has an arrival time taD := 0 + 11 
= 11, as taD = 0 initially. Assuming that GetDisjoinID returns an IDD which is equal to 3, 
the RRL(T) is extended by the second entry of Table 3.4. 

In the third iteration the if-condition is also true because ΔtJ(2) = ΔtD(2). Therefore, the next 
request to be written to the RRL(T) is of a disjoin type and has an arrival time taD := 11 + 5 
=16. If GetDisjoinID returns an IDD which is equal to 1, the request list is updated by the 
third row of Table 3.4. The other two entries can be estimated in the same way. 
 

Table 3.4. RRL(T) of Example 3.4  

Request Type Member Identity Arrival Time (ms) 

J 5 10 
D 3 11 
D 1 16 
D 4 23 
J 1 35 

 
 
Figure 3.7 illustrates the relation between the inter-arrival times generated by the process 
GetArrivalList(T) and the estimated arrival times in the given example.  
 

Figure 3.7. Arrival times and inter-arrival times for Example 3.4 
 
After the request generation in this example, the joined and the potential multicast 
subgroups are given now as follows:  

MJ = {0, 1, 2, 5},  MD = {3, 4, 6, 7} 

Note 3.2:  
The benchmark prototype optionally allows the user to skip the request generator and to 
enter a rekeying request list freely. This provides a means to construct a RRL(T) 
independently of the distribution function of rekeying requests. Therefore, typical errors, 

ΔtJ(1)=10 ΔtJ(2)=25 

ΔtD(1)=11 ΔtD(2)=5 ΔtD(3)=7 

taJ(1)=10 taJ(2)=35 taD(1)=11 taD(2)=16 taD(3)=23 

time 
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which result from choosing some distribution function based on network traffic analysis, 
can be avoided by using this approach.   

3.5.2.3 Arrival Process (GetArrivalLists) 
The arrival process fulfills the task of generating the join and disjoin arrival lists AJ(T) and 
AD(T) according to Definition 3.9 and Definition 3.10, respectively. As default, request 
inter-arrival times are assumed to follow an exponential distribution for both the join and 
disjoin cases with the request rates λ and μ, respectively. The corresponding probability 
density functions (pdf) and the cumulative distribution functions (cdf) can be given by: 

Jt
JJ etf Δ−=Δ λλ)(  Jt

JJ etF Δ−−=Δ λ1)(   (3.9) 

Dt
DD etf Δ−=Δ μμ)(  Dt

DD etF Δ−−=Δ μ1)(   (3.10) 

To generate an exponentially distributed random variate – here the inter-arrival times – 
based on uniform random numbers in the interval [0 - 1], the inverse transformation 
technique can be used [Le04]. Accordingly, if r represents a random number between zero 
and one the inter-arrival time of a join or disjoin request can be estimated as follows: 

)ln(1 rtJ λ
−=Δ     (3.11) 

 
)ln(1 rtD μ

−=Δ    (3.12) 

Algorithm 3.3 describes the arrival process as pseudo code. The process GetArrivalLists 
generates join requests, as long as the sum of their inter-arrival times lower than or equal to 
T. The same applies to disjoin requests.  

Algorithm 3.3 GetArrivalLists 
Input: T 
Output: AJ(T), AD(T)     -- Definitions 3.9 and 3.10 
1. ΣΔtJ := 0, ΣΔtD := 0     
2. while ΣΔtJ ≤ T do  
3. Generate r 
4. Determine ΔtJ according to Eq. (3.11)  
5. ΣΔtJ := ΣΔtJ + ΔtJ; 
6. Add ΔtJ to AJ(T) 
7. while ΣΔtD ≤ T do  
8. Generate r 
9. Determine ΔtD according to Eq. (3.12)  
10. ΣΔtD := ΣΔtD + ΔtD; 
11. Add ΔtD to AD(T)     
12. return AJ(T), AD(T)  
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3.5.2.4 Join Identity Selection Process (GetJoinID) 
To join a member the group manager can select any available identity number from the 
potential multicast subgroup MD, see Definition 3.14. A possible strategy may rely on 
selecting the smallest available ID. This strategy naturally allows some order in the group 
management. This order, for example, represents itself in tree-based rekeying algorithms by 
filling in the tree gaps and, thus, keeping the tree balance to some extent. Accordingly, 
GetJoinID is a deterministic process which can be illustrated by the pseudo code in 
Algorithm 3.4. A selected IDJ must be added to MJ, i.e. to the set of given identities, see 
Definition 3.13.  

Algorithm 3.4 GetJoinID 
Input: n/a 
Output: IDJ            
1. Get IDJ

min from MD    -- Definitions 3.14 
2. Add IDJ

min to MJ    -- Definitions 3.13 
3. return IDJ

min  
 

3.5.2.5 Disjoin Identity Selection Process (GetDisjoinID) 
In contrast to the join case, a rekeying system does not have prior knowledge of the 
member to be disjoined, in general. Therefore, selecting an identity for a leaving member 
from the joined multicast subgroup MJ, is a random process. Tow selection modes are 
proposed: 

Trial Selection: 
The leave identity IDD can be modelled as a random variable which is uniform distributed 
in the general case. IDD accepts any value of MJ. Calling the minimal and the maximal 
available identities in MJ as IDD

min and IDD
max, respectively, and assuming that the range 

[IDD
min, IDD

max] is continuous, i.e. all identity numbers higher than IDD
min and lower than 

IDD
max are available in MJ, then an IDD can be selected by applying the following formula:  

IDD = IDD
min + (IDD

max -IDD
min)ּr,   (3.13) 

where r is a uniform zero-one random number. However, due to membership changes MJ 
does not have necessarily a continuous range of member identities. Therefore, applying 
(3.13) can result in an IDD which does not belong to MJ. In this case a new zero-one 
random number is generated and a new IDD is tried. This improper situation occurs more 
likely if the range [IDD

min, IDD
max] is lightly occupied.   

Certain Selection: 
To avoid the problem of trial selection mentioned above, the IDD's of MJ are associated 
with continuous successive indices from 0 to m-1, where m represents the number of all 
IDD's in MJ. One way to achieve this is to save the elements of MJ as an array with the 
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index i. To select an IDD, a uniform zero-one random number r is generated first. Then an 
index i is estimated using (3.14). In a last step, the IDD is selected which is indexed by i. 

i = mּr     (3.14)   

Accordingly, certain selection does not suffer from useless trying. However, it demands a 
re-indexing of the IDD's after selecting one disjoin identity. The costs of this re-indexing 
increase with larger MJ. 

Trial Selection vs. Certain Selection: 
Selecting an appropriate selection mode with respect to efficiency is a hard problem which 
will be investigated in future work. For the purpose of the benchmark prototype, a 
switching strategy between the two selection modes is deployed. This switching depends on 
the occupancy of the joined multicast subgroup MJ. To describe this occupancy, the 
following concept is proposed. 

Definition 3.15: 
An occupancy factor (OF) is a real quantity which describes the occupancy of the joined 
multicast subgroup MJ and is given as follows:   

 
%100.

1 minmax
DD IDID

mOF
−+

=    (3.15) 

 
The benchmark prototype switches to a trial selection for OF values larger than 50%, 
otherwise the certain selection mode is applied. Algorithm 3.5 illustrates the disjoin 
identity selection process as pseudo code: 

Algorithm 3.5 GetDisjoinID 
Input: n/a 
Output: IDD            
1. Determine OF according to Eq. (3.15) 
2. if OF > 50% then     
3. do       -- trial selection 
4. Generate r 
5. Determine a potential IDD according to Eq. (3.13) 
6. while (IDD does not belong to MJ) 
7. else       -- certain selection 
8. Generate r 
9. Determine the index for an IDD according to Eq. (3.14) 
10. Get corresponding IDD 
11. Re-index MJ 
12. Add IDD

 to MD   
13. return IDD  
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3.5.3 Algorithm Manager  
This component acts as a coordinator in the benchmark and fulfills the main tasks of user 
interface management, algorithm control, and simulation execution. For this purpose the 
algorithm manager reads in the user settings and calls the request generator. It then passes 
the request list to the selected rekeying algorithms and collects the rekeying cost data. 
These data are then sent to the performance evaluator, see Figure 3.6. The benchmark 
functionality was presented as flow chart in Algorithm 3.1 in brief. In this section the 
underlying simulation processes DoTranSim, SoScalSim, DoJoinDynSim, and 
DoDisjoinDynSim will be illustrated. For this, three basic concepts are introduced first. 

Definition 3.16: 
Abstract Rekeying Cost (ARC) is a 5-tuple (G, E, H, M, S), which specifies the costs of a 
rekeying request or request batch in terms of the amount of cryptographic operations 
needed to grant this request or request batch by a rekeying algorithm. The elements of the 
ARC are specified in Table 3.5.   

Table 3.5. Abstract rekeying cost notation  
 

 

 

 
Definition 3.17: 
A Rekying Cost List RCL(T) is a rekeying request list RRL(T), see Definition 3.8,  which is 
extended by the abstract rekeying cost ARC for each request.  

Example 3.5: RCL(T) 
Table 3.6 shows an example for an RCL(T) which is an extension of the rekeying request 
list given in Table 3.3. This example results from executing the LKH algorithm with binary 
trees. This can be seen from the fact that each generated key is encrypted twice to 
determine the rekeying submessages. Note that the rekeying algorithm in this example does 
not apply group authentication, therefore, no message authentication codes are needed. 
Instead, rekeying submessages are hashed and the final hash value is signed once for each 
request.  

Table 3.6. RCL(T) example  
Rekeying 

Cost List RCL(T) Request 
Type 

Member 
Identity 

Arrival 
Time (ms) 

G E H M S 
D 1099 0 6 12 12 0 1 
J 50 0.1 3 6 6 0 1 
J 178 2 8 16 16 0 1 
D 22657 5.3 2 4 4 0 1 

 

ARC Element  Meaning 

G Number of generated cryptographic keys 
E Number of symmetric encryptions 
H Number of cryptographic hash operations 
M Number of message authentication code operations  
S Number of digital signatures 
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Because of its simultaneous processing of all rekeying requests arriving in an interval T, 
batch rekeying results in the same abstract rekeying costs for all requests of the RRL(T). A 
batch processing of the rekeying request list given in Table 3.3 may result in the rekeying 
cost list shown in Table 3.7.   

Table 3.7. RCL(T) example in batch rekeying 
Rekeying 

Cost List RCL(T) Request 
Type 

Member 
Identity 

Arrival 
Time (ms) 

G E H M S 
D 1099 0 20 40 40 0 2 
J 50 0.1 20 40 40 0 2 
J 178 2 20 40 40 0 2 
D 22657 5.3 20 40 40 0 2 

 

Definition 3.18: 
A Complex Rekeying Cost List CRCL(T) is a set of rekeying cost lists generated over the 
same interval under different group conditions:  

CRCL(T) = {RCL1(T), RCL2(T), …RCLm(T)}. 

The concept of CRCL(T) is used to support the three complex simulation modes, the 
scalability, the join dynamics and the disjoin dynamics simulations. For these simulation 
modes an RCL(T) is generated for each n, λ or μ value in the desired simulation range, 
respectively.  

Example 3.6: 
For a scalability simulation with nstart = 1000, nend = 2000 and ∆n = 100 a CRCL(T) is 
produced, which contains 11 RCL(T).   

Based on this terminology the different simulation processes can now be described. First 
the transient simulation is illustrated. Because of the large similarity between the other 
simulation modes, only the scalability simulation is presented, for brevity. An adapting of 
this description to a join/disjoin dynamics simulation is straightforward. For an overview, it 
is referred to Algorithm 3.1, which illustrates the context of these simulation processes in 
the overall benchmark process.    

3.5.3.1 Transient Simulation Process (DoTranSim) 
Algorithm 3.6 represents the process of transient simulation. Initially, the request generator 
process is resumed to generate a request list RRL(tsim) over the entered simulation time tsim. 
For each selected rekeying algorithm, the algorithm manager performs then two main steps. 
First, the rekeying algorithm is requested to initialize the group with n0 members. n0 can 
accept any value between 0 and Nmax, see Tabel 3.2. Second, each rekeying request of 
RRL(tsim) is sent to the rekeying algorithm, which then returns the corresponding abstract 
rekeying cost ARC for that request. 
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Algorithm 3.6 DoTranSim 
Input:  All settings for a transient simulation as given in Table 3.2.  

Set of rekeying algorithms to be evaluated.  
Output: A RCL(tsim) for each rekeying algorithm   -- Definition 3.17   
1. GenReqList(tsim) → RRL(tsim)    -- Algorithm 3.2 
2. for each rekeying algorithm do     
3. Initialize the group with n0 members 
4. while RRL(tsim) is not empty do      
5. Send a rekeying request to the algorithm 
6. Get corresponding ARC    -- Definition 3.16  
7. Add ARC to RCL(tsim)      
8. return RCL(tsim) of all algorithms  
 

3.5.3.2 Scalability Simulation Process (DoScalSim) 
Algorithm 3.7 represents the process of scalability simulation. As mentioned in Section 
3.2, this simulation mode relies on the transient simulation. For each group size value n of 
the desired simulation range [nstart, nend], a transient simulation is performed over the 
entered observation time To. Recall that this simulation mode provides a rekeying cost list 
RCL(To) for each simulation point. Selecting the request with the maximal cost from 
RCL(To) is a task of the performance evaluator as will be seen in the next section. 

Algorithm 3.7 DoScalSim 
Input:  All settings for a scalability simulation as given in Table 3.2.  

Set of rekeying algorithms to be evaluated.  
Output: A CRCL(To) for each rekeying algorithm   -- Definition 3.18  
1. for each rekeying algorithm do     
2. n := nstart;    
3. while n ≤ nend do      
4. DoTranSim for To and n0 := n → RCL(To)  -- Algorithm 3.6 
5. Add RCL(To) to CRCL(To)        
6. n := n + Δn; 
7. return CRCL(To) of all algorithms  
 

3.5.4 Performance Evaluator 
This component receives a set of RCL(T) or CRCL(T) and calculates the system metrics 
RQoS and RAC with respect to time, group size, or join/disjoin request rate, depending on 
the simulation mode. First, three concepts are introduced, which are necessary for a formal 
description of the functionality of this component.  
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Definition 3.19: 
A Performance Simulation Point (PSP) is 3-tuple (x, RQoS, RAC), where x represents the 
variable to which the RQoS and RAC are related.  

Depending on simulation mode x, RQoS and RAC are interpreted as already illustrated in 
Table 3.2. Recall that RQoS is not defined for a disjoin request. Similarly, RAC is not 
available for a join request.  

Definition 3.20: 
A Rekeying Performance List (RPL) is a set of performance simulation points.  

RPL ={PSP}={(x1, RQoS1, RAC1), (x2, RQoS2, RAC2),…} 

Definition 3.21: 
A Timing Parameter List (TPL) is a 5-tuple (Cg, Ce, Ch, Cm, Cs), where the tuple elements 
are defined as depicted in Table 3.8.  

As mentioned in Section 3.3.2, the timing parameters reflect the performance of employed 
cryptographic algorithms and of the platform to the benchmark layer, which allows for a 
reliable evaluation of different rekeying algorithms. Timing parameters are entered by the 
user independently of the simulation mode as was illustrated in Table 3.2.  

Table 3.8. Timing parameters meaning 
 

 

 
 
 
 
The performance evaluator executes processes, which combine a rekeying cost list RCL(T) 
or a complex rekeying cost list CRCL(T) with a timing parameter list TPL to produce a 
rekeying performance list PRL for each rekeying algorithm. 

For each rekeying request in RCL(T)/CRCL(T) the actual join and disjoin time is 
determined according to equations (3.1) and (3.4), respectively. For this purpose, the 
rekeying time for a join or disjoin request consumed by a rekeying algorithm is estimated 
first according to:  

smhegDJ CSCMCHCECGRT ...../ ++++=    (3.16) 

Second, the waiting time of a request is estimated as follows: 

   ∑
=

=
m

i
iDJ RTW

1
/  for m ≥ 1   (3.17) 

   0/ =DJW   for m = 0,   (3.18) 

ARC Element  Meaning 

Cg Cost of generating one cryptographic key in time units 
Ce Cost of one symmetric encryption in time units 
Ch Cost of one cryptographic hash operation in time units 
Cm Cost of one message authentication code in time units  
Cs Cost of one digital signature in time units  
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where m represents the number of all requests waiting in the system queue or being 
processed at the arrival of the request at hand. Note that equation (3.17) is approximate 
since it does not consider the time part of RT1 (the request being processed), which has 
passed before appearing the considered request. 

Knowing the waiting times and the rekeying times, the actual rekeying times can be 
estimated using (3.1) and (3.4). Afterwards, RQoS and RAC can be calculated for a join or 
disjoin request according to (3.2) or (3.5), respectively. 

3.5.4.1 Transient Evaluation Process (EvalTranSimResults) 
In the case of a transient simulation the performance evaluator executes the process 
EvalTranSimResults according to Algorithm 3.8. For each join and disjoin request in the 
RCL(T), a performance simulation point PSP is determined. The symbol ∞ in the pseudo 
code indicates an undefined metric for the current state. For example, RQoS is not defined 
for a disjoin request. taJ and taD represent the arrival times of the corresponding join and 
disjoin requests, respectively. Remember that these time values are determined from the 
arrival lists by the request generator process according to Algorithm 3.2.   

Algorithm 3.8 EvalTranSimResults 
Input:  A RCL(tsim) for each rekeying algorithm, TJ

sys, TD
sys  

Output: A PRL for each rekeying algorithm       
1. for each RCL(tsim) do 
2. for each request in RCL(tsim) do       
3. Determine RTJ/D     -- Equation 3.16 
4. Determine WJ/D    -- Equation 3.17 or 3.18 
5. if request type = J then 
6. Determine TJ    -- Equation 3.1 
7. Determine RQoS   -- Equation 3.2 
8. PSP = (taJ, RQoS , ∞) 
9. else  
10. Determine TD    -- Equation 3.4 
11. Determine RAC    -- Equation 3.5 
12. PSP = (taD, ∞, RAC) 
13. end if 
14. Add PSP to PRL 
15. return PRL of all algorithms  
 

3.5.4.2 Complex Evaluation Process (EvalComplexSimResults) 
Other simulation modes deliver a CRCL(T). The performance evaluator generates one 
performance simulation point PSP for each RCL(T) of CRCL(T). The first element of the 
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PSP tuple represents a n, λ or µ value for scalability, join dynamics or disjoin dynamics 
simulation, respectively. The second element represents the minimal rekeying quality of 
service RQoSmin of all join requests in the observation time for the corresponding n, λ or µ 
value. Similarly, the third element represents RACmin of all disjoin requests. Algorithm 3.9 
depicts the process EvalComplexSimResults for evaluating non-transient simulation results. 
The symbol ∞ in this pseudo code indicates an initial very large value of the corresponding 
metric. 

Algorithm 3.9 EvalComplexSimResults 
Input:  A CRCL(To) for each rekeying algorithm, TJ

sys, TD
sys  

Output: A PRL for each rekeying algorithm   
1. for each rekeying algorithm do 
2. for each RCL(To) of CRCL(To)do 
3. RQoSmin := ∞, RACmin := ∞;    
4. for each request in RCL(To) do       
5. Determine RTJ/D     -- Equation 3.16 
6. Determine WJ/D     -- Equation 3.17 or 3.18 
7. if request type = J then 
8. Determine TJ    -- Equation 3.1 
9. Determine RQoS    -- Equation 3.2 
10. if RQoS < RQoSmin  then  RQoSmin := RQoS 
11. else  
12. Determine TD    -- Equation 3.4 
13. Determine RAC    -- Equation 3.5 
14. if RAC < RACmin  then RACmin := RAC  
15. end if 
16. PSP = (n/λ/µ, RQoSmin, RACmin) 
17. Add PSP to PRL 
18. return PRL of all algorithms  
 

3.6 Implementation 
The rekeying benchmark was implemented in Java using the Eclipse Environment [Ec05]. 
The software architecture consists of two main components: the Graphical User Interface 
(GUI) and the actual simulation kernel, as depicted in Figure 3.8. In this figure the 
benchmark software is illustrated as a simplified class diagram according to the Unified 
Modelling Language (UML) [Ke05]. Note the assigning of the different classes to two 
packages denoted as gui and kernel. BenchmarkAndAlgorithmManager represents the 
central class in the package kernel and includes the main function. This class is associated 
with the class SimulationSettings, which receives its attribute values from the GUI class 
SimulationSetup. The execution of the benchmark causes the opening of a framework, 
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where several simulations can be executed. This point is indicated by the association 
relation between the classes SimulationSetup and MainFrame. Simulation is an abstract 
class, which is inherited by two different simulation classes: TransientSimulation and 
ComplexSimulation. Note that the class ComplexSimulation is also abstract and builds the 
base class for the other three simulation classes ScalabilitySimulation, JoinDynSimulation, 
and DisjoinDynSimulation. The association relation between the classes 
TransientSimulation and ComplexSimulation reflects the fact that each complex simulation 
is based on a frequented execution of the transient simulation.  

 

 
Figure 3.8. Rekeying benchmark class diagram   
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After program start, the simulation setup window displays default parameters. Changing 
these values is stored for a next simulation in the same session. See Figure 3.9 for an 
overview of the simulation setup window. The set of all parameters belonging to one 
simulation are managed as a parameter list using the library class LinkedHashMap. This 
class is not shown in Figure 3.8 for simplicity. 

 

 Figure 3.9. Simulation Setup window  
   

3.7 Case Study (LKH Tree Rebalancing) 
This case study relates to Example 3.2 presented at the start of this chapter, which depicted 
some divergence proposals in the literature regarding tree rebalancing for the logical key 
hierarchy algorithm. From investigating the related work given in this example it is obvious 
that a comprehensive analysis is needed to justify the employment of rebalancing, which is 
associated with additional rekeying costs resulting from shifting members between tree 
leaves. The rekeying benchmark offers this possibility by allowing a simultaneous 
evaluation of two LKH algorithms (with and without rebalancing) under complex 
conditions. Especially, the effect of disjoin rate is of interest in case of rebalancing, because 

sim 
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members leave the group in random manner, which disturbs the tree balance as a rule. 
Therefore, a disjoin dynamics simulation is performed under the following conditions:  

TJ
sys = TD

sys= 100 ms, Nmax= 65.536,  

Cg=Ce=Ch=Cm= 1 µs, Cs=15 ms,  

n0 =4096, λ=10 s-1, To=1s, µstart=1s-1, µstop=20s-1, Δµ=1s-1.  

The simulation result clearly unveils that rebalancing degrades both RQoS and RAC 
values. This performance deterioration increases with an increasing disjoin rate.  Simulation 
results are depicted in Figure 3.10 and Figure 3.11. 

The results of this case study unambiguously demonstrate that additional rekeying costs 
associated with rebalancing exceed the performance gain achieved by it. Consequently, 
rebalancing is not advantageous for LKH trees, at least under the given simulation 
conditions.  

Currently, related work argues for rebalancing as a way to prevent tree degradation, which 
results in linear rekeying costs with respect to the group size in the rather extreme case of a 
very high disjoin rate. The main point, which is disregarded in this argumentation, is that 
the group size in such rare cases is very small and almost equal to the LKH tree height in 
the balanced case. 

 

 

 Figure 3.10. RQoS in rebalanced vs. non-rebalanced LKH  
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Figure 3.11. RAC in rebalanced vs. non-rebalanced LKH  
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4 Reconfigurable Architectures 

 

4.1 Overview  
This chapter presents an overview of reconfigurable architectures. Section 4.2 illustrates the 
current trends in chip design and the role of field programmable gate arrays. In Section 4.3 
a brief overview of the FPGA architecture and configuration technologies is provided. 
Section 4.4 outlines both the hardware and the HW/SW design processes for FPGAs. 
Section 4.5 concludes this chapter with a summary of the hardware platforms and the 
design tools, which were utilized in the scope of this work. 

4.2 Introduction 
The advanced progress in semiconductor technology, coined by Moore’s Law [Mo65], 
allows an ever-increasing integration scale and, thus, enables ever-newer and more 
sophisticated applications which can be realized on one chip. To follow this trend, 
innovative design and manufacturing strategies are required, which cope with the 
increasing complexity and allow short time-to-market (TTM) as one of the most important 
economic factors. The TTM of an integrated circuit consists of two components: the Time-
to-Design (TTD) and the Time-to-Production (TTP). The design process of an integrated 
circuit begins with the problem specification and goes through several steps for design 
entry, synthesis, place & route, and different simulation and verification processes. At the 
end, the chip layout is provided, e.g., in form of data for the fabrication of lithographic 
masks. The production part TTP includes the time consumed by all the steps in the 
semiconductor manufacturing process beginning with the mask creation and ending with 
the chip packaging and test. While optimizing the TTM in the last decade was mostly 
driven by decreasing the TTD through optimizing the computer-aided specification and 
design tools [Mu00] and partially by reducing the TTP through semi-custom design 
strategies, the current decade is characterised by a unique and rather radical trend. Based on 
enhancing hardware with configurability properties, the whole TTP and the major part of 
TTD for layout design are canceled. Taking, additionally, the advances in the CAD for 
configurable design into account, TTM values are reached which are widely under those 
required for the competitive ASIC technology. This trend seems to conform to the 
prognosis made by Makimoto in 1986 about the progress in the semiconductor technology. 
Makimoto observed this development since the middle of last century and discovered a 10-
year regularity regarding the standardization and customization in the IC market. This result 
was formulated in the form of a wave known as Makimoto’s Wave [Ma00], which is 
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depicted in Figure 4.1. An illustration of this wave and an overview of future trends in chip 
design can be found in [Ma00] and [So06]. In spite of various kinds of programmed ICs the 
Field Programmable Gate Arrays (FPGA) represent the most known and utilized class of 
configurable architectures.   

 

Figure 4.1. Makimoto’s Wave 

 
However, short time-to-market is not the only reason why designers currently start 81 
percent of their projects using FPGA, see e.g. [Bu06] and [Dp06]. Other advantages of 
using these architectures include the lower development costs, the lower non-recurring 
engineering costs, the lower design risks, the providing of correctable and expendable 
designs, and the enabling of rapid prototyping [Bi06]. 

4.3 Field Programmable Gate Arrays 
The concept Field Programmable Gate Array (FPGA) reflects two essential aspects of this 
IC technology. These relate to the electrical post-production configuration of these chips, 
on the one hand, and to the regular organization of the different components of these 
architectures, on the other.  

Figure 4.2 illustrates a generic architecture of a fine-granular FPGA, which includes an 
array of configurable logical cells, input/output blocks, and routing resources. Modern 
FPGAs feature much more sophisticated architectures and include pre-manufactured 
coarse-granular components such as processors, high-performance multipliers, and 
dedicated memory blocks. Configurable logical cells provide both combinatorial function 
generators and registers to realize sequential circuits. The combinatorial function generators 
are either multiplexer based such as many products from Actel [Ac07], for instance, or 
look-up table based which are provided by Xilinx [Xi07] and other FPGA vendors. 
Multiplexer based FPGAs rely on the Shannon’s expansion theorem which allows the 
implementation of any Boolean function using 2:1 multiplexers [Jo97]. Look-up table 
based FPGAs, in contrast, rely on the fact that memories are able to realize Boolean 
functions if the input variables and the function are connected to the address bus and the 
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output data bus of the memory, respectively. Depending on the saved data, different 
functions can be implemented.   

     
Figure 4.2. FPGA generic architecture 

 
Regarding the configuration technologies three main FPGA classes can be identified: the 
SRAM-based, the EEPROM-based, and the Antifuse-based FPGAs. Table 4.1 summarizes 
the advantages and disadvantage of these different technologies [Wa98]:  

Table 4.1. Comparison between different FPGA configuration technologies 

 Antifuse-based FPGA SRAM-base FPGA EEPROM-based FPGA 

A
dv

an
ta

ge
s 

 Good copy protection 
 

 No configuration memory 
 No reloading of configuration 

after start-up 
 Small size and efficient 

 No programming device 
 

 Reconfigurability 
 

 In-system programming 

 Good copy protection 
 

 No configuration memory 
 

 No reloading of configuration 
after start-up 

D
is

ad
va

nt
ag

es
 

 Programming device needed 
 

 No reconfigurability 
 

 No In-system programming 

 Problematic copy protection 
 

 Configuration memory needed 
 

 Reloading of configuration 
after start-up 

 Programming device needed 
 

 Complex reconfigurability 
 

 Conditional In-system 
programming 

4.4 FPGA Design Process 
Figure 4.3 depicts a typical hardware design process for FPGA. After an in-depth 
specification of the system requirements and constraints the design is entered as a 
functional model using a hardware description language such as VHDL [Ie93] or Verilog 
[Ie01]. Afterwards, a functional simulation is performed to validate the created model. In 
the case of functional correctness, a RTL-synthesis is applied to the model, which provides 
with the aid of vendor libraries a structural description of the design denoted as netlist. At 
this stage a pre-layout simulation can be performed to validate system timing. However, the 
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timing results provided by this simulation are approximated since the netlist has not yet 
been mapped to the target hardware and, therefore, no accurate information on routing 
delays is available. These delays can count for more than 75% of the total delay in modern 
FPGAs [Ku04]. In a next step the netlist components are placed onto the target architecture 
and connected using the FPGA routing resources. First at this stage an accurate timing 
simulation is possible. Provided that the timing results satisfy the system requirements, the 
bit stream can now be generated and written to the FPGA.  Electronic Design Automation 
(EDA) such as synthesis and place & route relies on executing computer heuristics to find 
optimal solutions for several NP-hard problems [Ge05]. A typical example for these 
problems relates to finding the shortest route between two placed gates.      

 

Figure 4.3. FPGA hardware design process 
 

However, FPGA platforms do not only support hardware design. With the aid of several 
hardwired processor cores or using IP software processors, complete hardware/software 
solutions are facilitated. IP stands for Intellectual Property which can be seen as a product 
of the “design for reuse” paradigm, which wins an increasing recognition nowadays 
[Ke99], [Dr06].  
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For a HW/SW co-design, most FPGA vendors provide specific tools, which support 
separate hardware and software design processes to produce both a hardware and a software 
bit stream. In a last step both bit streams are merged and written to the FPGA. A 
verification of the applied HW/SW partition can first be performed at this late stage in the 
design process, which is highly inefficient. This design approach, which is mainly enforced 
by using the intellectual property, must be extended by the methods of high-level synthesis 
[Ga92], [Ga94]. Starting from high-level specification languages such as System-C [Gr02], 
an exploration of the design space can be applied to decide on a HW/SW partition with 
optimal resource allocation, and task scheduling and binding [Kl06]. Figure 4.4 presents a 
simplified HW/SW design process, which starts with an executable specification of the 
system behavior followed by HW/SW partitioning phase. After a first cost estimation in 
this phase, the architecture components are allocated. Based on the system specification, the 
different tasks are then scheduled and bound to the different hardware and software 
resources. This step is evaluated by means of an objective function, which supplies an 
overall estimation of the selected partition based on predefined metrics such as performance 
and resource usage costs. If the values estimated by the cost function do not meet system 
requirements, another partition is searched and evaluated. Otherwise, the implementation 
phase is started, which is composed of both hardware and software design synthesis steps. 
In the end, two bit streams for the hardware and the software parts are generated and 
written to the FPGA. 

 
Figure 4.4. A possible FPGA hardware/software co-design process 
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4.5 Deployed Hardware Platforms 

4.5.1 Virtex-II Pro  
Xilinx Inc. launched the Virtex-II Pro family at the early 2002 with ten products of 
different size [Xi02]. Table 4.2 summarizes some features of two members of this family 
which are used for the design of the rekeying processors described in next sections.   

Table 4.2. Virtex-II Pro family members employed in the rekeying processors 

 Configurable 
Logical Blocks 

Block Select 
RAMs 18 Kb 

PowerPC 
Processors 

18*18 bit 
Multipliers 

RocketIO 
Transceivers 

XC2VP20 2320 88 2 88 8 

XC2VP30 3424 136 2 136 8 

 

A configurable logical block (CLB) is composed of four slices, where a slice mainly 
includes two look-up tables (LUT) as combinatorial function generators, two registers for 
sequential logics, large multiplexers, and fast carry look-ahead chain.   

The block SelectRAM (BRAM) resources support synchronous single and dual port modes 
and can operate in several configurations ranging from 16K x 1 bit to 512 x 36 bit. The 
actual data size of a BRAM equals 16 Kbit, as each ninth bit is reserved for parity check.      

Virtex-II Pro embeds up to 4 hardwired processor cores from the type IBM PowePC 405 
(PPC405) [Xi05].  This 32-bit processor is characterised by a Harvard architecture and 
includes the functional blocks illustrated in Figure 4.5. With a clock frequency of about 
300 MHz, instructions are executed in a five stage pipeline. Both the instruction and the 
data cache arrays are 16 KB with two-way set association, where a way includes 256 lines 
of 32 bytes each. The data cache unit supports both write-back and write-through modes. 
The memory management unit (MMU) executes several tasks including the translation of 
the 4 GB effective address space into physical addresses. MMU can be enabled or disabled 
according to system requirements. To improve the performance of virtual address 
translation the PPC405 includes dedicated hardware translation look-aside buffers (TLB), 
which contain parts of the page table.  

PPC405 is compatible with the CoreConnect bus architecture [Ib99], which contains among 
other things two busses to connect the processor block with other system components. 
These are the Processor Local Bus (PLB) and the On-Chip Peripheral Bus (OPB). The PLB 
bus consists of 32-bit address, 64-bit data read, 64-bit data write, and 64-bit instruction 
buses and can operate at clock frequencies up to 100 MHz. The OPB bus is a simpler bus, 
which is used to connect slower peripheral cores such as a serial URAT interface. OPB bus 
is connected to PLB bus through a bus bridge which is specified in the CoreConnect 
architecture.  
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Figure 4.5. Embedded PPC405 Core block diagram 
 
Furthermore, PPC405 has a dedicated memory interface, denoted as On-Chip Memory bus 
(OCM). The data side OCM bus (DOCM) has 32-bit data read bus, 32-bit data write bus, 
and 22-bit address bus. The instruction side OCM bus (IOCM) has 64-bit read only bus and 
21-bit address bus. In contrast to PLB, memories connected to OCM bus can not be cached. 
The decision on OCM or PLB to connect system memory is generally difficult and strongly 
depends on the application. In general, different design alternatives are tested before 
deciding on the appropriate memory interface [Xi04]. Chapter 7 details this point for the 
design of the High-Flexibility Rekeying Processor.        

4.5.2 Hardware Cards 
In this work three different hardware cards were used, which are equipped with a Virtex-II 
Pro FPGA XC2VP20 or XC2VP30.  

4.5.2.1 ADM-XRC-II Pro and ADM-XPL  
Both cards are of PCI Mezzanine type and provided by Alpha Data Inc. [Al07]. ADM-XPL 
is equipped with XC2VP30. ADM-XRC-II Pro supports XC2VP20 and is specified as 
follows, see Figure 4.6. 

1. Physically conformant to IEEE P1386 Common Mezzanine Card standard, 

2. High performance PCI and asynchronous local bus, 

3. Local bus speeds of up to 80MHz, 

4. One bank of 256k or 512k x 64 pipelined ZBT SSRAM, 

5. One bank of 64MB DDR SDRAM, 
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6. Two flash devices of 16MB each for bridge and target devices, 

7. User clock programmable between 5MHz and 200MHz, 

8. User front panel adapter with up to 146 free IO signals, 

9. Support of 3.3V PCI or PCIX at 64 bits, 

10. On board 125MHz LVPECL oscillator, 

11. 4 x RocketIO Multi-Gigabit Transceiver connections. 

 

Figure 4.6. ADM-XRC-II Pro [Al07] 

 

4.5.2.2 XUP 
 
This borad is delivered by Digilent Inc. [Di07] and supported by Xilinx within the Xilinx 
University Program. It features, among other things, the following properties. See Figure 
4.7.  

1.  Support of DDR SDRAM DIMM up to 2 Gbytes 

2. 10/100 Ethernet port 

3. USB2 port 

4. Compact Flash card slot 

5. XSGA video port 

6. Audio Codec 
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Figure 4.7. XUP Card [Di07] 
 
 
Table 4.3 depicts the tools and programs, which were employed in the design of the 
rekeying processors. 

 

Table 4.3. CAD tools employed for the rekeying processor design  

Usage Tool 

VHDL functional simulation ActiveHDL [Ad07] 

VHDL RTL synthesis Synplify Pro [Sy07]+ XST [Xi07] 

Place & Route and bit stream generation ISE [Xi07] 

Software development GNU [Gn07] 

HW/SW co-design EDK [Xi07], hCDM [Kl06] 

Measurement, data preparation, and display Mathematica [Wo07] 
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5 New Architectures for Group Rekeying 

 

5.1 Overview 
Because of several similarities between the hardware and HW/SW rekeying architectures 
presented in next chapters, this chapter presents a general introduction to these architectures 
and describes their common features. Section 5.2 depicts the deployment scope of the new 
solutions and how they distinguish themselves from others. Section 5.3 points out the 
rekeying security requirements. All rekeying processors are specified by a generic 
architecture consisting of four main components. This generic architecture is presented in 
Section 5.4. The different components and several associated aspects are then illustrated in 
the last four sections   

5.2 Introduction 
As mentioned in Chapter 1, research work on secure multicast began in the late nineties and 
crystallized by establishing the Secure Multicast Group (SMuG) in 1999 and the working 
group Multicast Security (MSEC) in 2000 at the IETF, see [Sm98] and [Ms00]. To 
overcome the complexity of secure multicast, these groups defined a reference framework, 
which classifies the different subjects in secure multicast into three problem areas. In 
addition, each problem area is associated with one or more functional blocks to facilitate a 
modular design and standardization process. For the problem area of key management, a 
functional block denoted as Key Server was suggested [Ha03]. This block takes the 
responsibility for the group rekeying task.  

The introduction of new rekeying architectures in this work is oriented towards this 
reference framework. Each of the hardware and hardware/software solutions proposed in 
the next chapters can be regarded as a realization variant of the key server defined by the 
multicast working groups. The proposed architectures include: 

1. The Real-Time Rekeying Processor (RTRP), see [Sh04]. 

2. The Batch Rekeying Processor (BRP), see [Sh05]. 

3. The High-Flexibility Rekeying Processor (HiFlexRP), see [Sh07b] and [Sh07c]. 

As a generic name for all these architectures the term Rekeying Processor (RP) will be used 
in this chapter, as long as no differentiation is needed. Furthermore, it is assumed that the 



5.2   INTRODUCTION 

 

66 

rekeying processor operates in the server environment of a group owner, which provides 
secure multicast content using a dedicated Data Server (DS), e.g. a video server in the case 
of Pay-TV multicast, see Figure 5.1. In addition, a dedicated Registration and Authent-
ication Server (RAS) is employed to register members, to provide identity keys, and to 
manage rekeying with the aid of the rekeying processor as follows. The RAS sends 
rekeying requests to the RP in form of instructions, e.g. “join a member”. The RP executes 
these instructions and writes rekeying messages back to the RAS, which sends them to the 
group members. Alternatively, the RP can send rekeying messages directly to the members, 
if it supports a networking interface. Most rekeying requests result in a new group key, 
which is provided by the RP to the data server DS, which uses this key to encrypt data. See 
Figure 1.4 for a comparison and Table 1.4 for the definition of some important terms such 
as identity key and rekeying message.  

 
Figure 5.1. Rekeying processor in a server environment 

 
Related work on rekeying optimization relies on minimizing the number of rekeying 
submessages, i.e. the number of cryptographic operations needed to build these messages. 
The rekeying processor presented in this work, however, optimizes rekeying performance 
mainly on the cryptography and the platform layers. In addition, several improvements on 
the rekeying layer are proposed. This aspect is illustrated in Figure 5.2, which represents 
group rekeying as a three-layer abstraction model. The RP performance optimization on the 
rekeying layer includes, for instance, the pipelined batch rekeying and the event-driven 
batch rekeying illustrated in Chapter 2. Another example relates to the key tree 
management: the presented architectures cause the key tree to grow up from the root side 
and avoid leaf splitting in the case of full trees. This results in major performance 
improvement.  

Rekeying optimization on the lower layers relies on dedicating a hardware platform for the 
rekeying task and optimizing the cryptographic operations on this platform. Some 
cryptographic algorithms, such as the Advanced Encryption Standard AES, feature inherent 
parallelism and can operate on hardware highly efficiently. Other cryptographic algorithms, 
like the elliptic curve algorithms, are not designed with parallelism properties. An efficient 
realization on a hardware platform can be based on segmentation and reassembling of data 
before and after processing, respectively [Er02], [La06]. 
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Figure 5.2. Rekeying processor operation layers 

5.3 Rekeying Security Requirements  
Group Rekeying is a mechanism for access control to ensure data confidentiality. Rekeying 
data themselves must be protected against manipulation. In total, group rekeying is 
associated with three security requirements:   

1. Access control: This requirement represents the original demand for backward and 
forward access control to prevent new members from decrypting old data and leaving 
members from eavesdropping on future communication, respectively. Together with 
data encryption, access control ensures the confidentiality of delivered data. 

2. Group authentication: Rekeying data are largely crucial and must be protected against 
manipulation. Group authentication is the security requirement, which ensures that 
rekeying data originate from a group member and not from outside. The exact identity 
of the data sender, however, can not be determined by this authentication mode. The 
reason is that group authentication employs methods, which are based on Message 
Authentication Code (MAC). MAC relies on encrypting the rekeying data with a key 
shared by all members. Group authentication is used in multicast groups where 
members trust each other, e.g. in collaborative working groups, which use secure 
multicast for video conferencing.   

3. Data source authentication: Groups with lower trust between members need to exactly 
identify the sender of rekeying messages. Furthermore, in highly secure systems 
rekeying messages must be provided with a non-repudiation property to enable a legal 
authority to verify the data source in the case of denying. MAC-based approaches are 
not able to fulfil any of these two security requirements for group communication, 
because the authentication key is shared between all members. One way to realize 
source authentication for rekeying data relies on using digital signatures, which can be 
applied to the hash value of a rekeying message.  

Section 5.6 presents the security modules deployed in the rekeying processors to realize 
these security requirements. Figure 5.3 depicts the three security levels and the supporting 
architectures. While the Real-Time Rekeying Processor and the Batch Rekeying Processor 
only fulfil the access control requirement because of the historical development of this 
work, the High-Flexibility Rekeying Processor satisfies all the security requirements. 
Higher security, however, comes at the expense of performance, as can be seen in this 
figure. 
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Figure 5.3. Security levels of rekeying architectures 

5.4 General Architecture  
The proposed rekeying processors are characterized by the general architecture depicted in 
Figure 5.4. The input and output units construct the interface of the rekeying processors to 
the registration and authentication server according to Figure 5.1. Generally, the security 
unit includes cryptographic primitives for key generation, encryption, secure hashing, 
message authentication code, and digital signature. The security primitives are implemented 
as hardware modules in the case of the RTRP and the BRP. The HiFlexRP, however, 
realizes the security functions partially in software according to the selected HW/SW 
partitioning [Sh07c]. LKH rekeying is a data-intensive task, where data elements are 
represented by the tree keys. To reduce data transfer between the RAS and the RP, all keys 
are generated, saved, and managed on the hardware. In addition to the performance gain, 
this approach enhances system security due to the hardware storage of these secure data. 
Except for the group key, which is needed by the data server to encrypt useful data, all 
other keys are transferred from the RP to the RAS only in an encrypted form. The key tree 
unit includes both the key storage and the necessary functions to mange the key tree. Two 
tree management modes are used: the static and the dynamic tree management. The static 
tree management is specific to the rekeying processors and uses hardware features for this 
purpose. In contrast, the dynamic tree management is similar to known software solutions. 
Therefore, this mode is only supported by the HiFlexRP.   

 
Figure 5.4. General architecture for the rekeying processors 
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5.5 Key Tree Management 
In this section some issues of the key tree management are illustrated. The description is 
limited to the static tree management, which is used in all rekeying processors. As the 
dynamic tree management is only specific to some design alternatives of the HiFlexRP, this 
tree management mode will be first described in Chapter 7.  

5.5.1 Key Memory Architecture  
All proposed architectures in this work perform group rekeying based on the LKH 
algorithm with binary trees. The LKH was described in Section 1.4. In principle, trees 
represent dynamic data structures, which expand and contract according to the current 
amount of data to be represented. Adapting the tree size to available data reduces the 
demand for physical memory, which may be shared with other applications. Using a 
hardware platform for the rekeying task, however, allows allocating some amount of mem-
ory dedicated to the key tree. By this means a tree structure can be associated with the 
statically allocated memory. This association follows the following rules, which are 
illustrated schematically for a group of 8 members in Figure 5.5. 

1. The size of allocated memory Msize depends on the key length Klength and on the 
maximal group size Nmax. For binary trees, Nmax is always assumed to be a power of 
two, thus: 

                                                        Msize =(2Nmax -1)ּKlength   (5.1) 
 

2. The lower half of the memory space is dedicated to member identity keys belonging to 
the first tree level.   

3. The upper half is reserved to store the help-keys and the group key, level by level. 

 
 

 
Figure 5.5. Memory architecture for key trees 

 

Level Address Key 

0000 k0 
0001 k1 
0010 k2 
0011 k3 
0100 k4 
0101 k5 
0110 k6 

0 

0111 k7 
1000 k0-1 
1001 k2-3 
1010 k4-5 

1 

1011 k6-7 
1100 k0-3 2 
1101 k4-7 

3 1110 k0-7 
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Dynamic tree management using software techniques relies on operations to insert or 
remove a tree node or leaf. Therefore, in this management mode the key tree has as many 
nodes and leaves as the number of keys used currently. In contrast, the insertion and 
remove of nodes and leaves are not defined in the static tree management since a memory 
place is allocated for all nodes and leaves all the time. However, in general case not all 
nodes and leaves contain valid keys. To address this point, additional specification is 
required to indicate whether a tree node or leaf is in operation or not in the static tree 
management. This specification is given as follows. Refer to Example 5.1 and Figure 5.6 
below for an illustration of the following terms. 

Definition 5.1: 
A valid key is an identity key, a help-key, or a group key, which is used by at least one 
group member. 

Definition 5.2: 
An active leaf is a tree leaf which contains a valid identity key. 

Definition 5.3: 
A suspended leaf is a tree leaf which does not contain a valid identity key.  

Definition 5.4: 
An active node is a tree node which contains a valid key. 

Definition 5.5: 
A suspended node is a tree node, which does not contain a valid help-key and there are no 
members whose paths to the root pass this node.   

Definition 5.6: 
A right suspended node is a node, which does not contain a valid help-key, however, there 
is at least one member whose path to the root passes this node from the left.  

Definition 5.7: 
A left suspended node is a node, which does not contain a valid help-key, however, there is 
at least one member, whose path to the root passes this node from the right. 

Note 5.1: 
In the schematic representation of a tree in this work, active nodes and leaves appear grey, 
all other nodes and leaves are drawn transparent. This notation applies to the case of static 
tree management only. 

Example 5.1: 
Figure 5.6 shows an example for the specification of tree nodes and leaves in static tree 
management. In this example three suspended leaves, one suspended node representing k0-1 
and two left suspended nodes representing k0-3 and k6-7 are currently available. 
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Figure 5.6. Node/leaf type example 

5.5.2 Key State Memory 
Specifying a tree node as active, suspended, right or left suspended is essential for tree 
traversing and for the decision on the appropriate operations to be performed on the 
corresponding key. In the rekeying processors a dedicated memory denoted as Key State 
Memory (KSM) is employed to save information on the state of all tree nodes. The word 
width of this memory is 2 bit as a node can have one of four modes according to the 
previous section. Table 5.1 illustrates the coding of these words which are denoted as LR 
words.       

Table 5.1. LR word code for a tree node 

LR word State of corresponding node 

00 Suspended 

01 Left suspended 

10 Right suspended 

11 Active 

 

The depth of the key state memory equals the number of the help-keys represented by the 
key memory. For efficient traversing the address space of the key state memory 
corresponds to that of the help-keys in the key memory after neglecting the most significant 
bit. Table 5.2 shows the key state memory for the tree presented in Figure 5.6.   

Note 5.2: 
Tree leaves can be active or suspended. For a rekeying algorithm, this information can be 
extracted from the LR word of the corresponding father. Due to this property the state of a 
key leaf does not need to be saved. 

k0 k1 k2 k3 k4 k5 k6 k7 

k0-1 k2-3 k4-5 k6-7 

k0-3 k4-7 

k0-7 

Suspended Leaves Active Leaves 

Suspended Node 

Left Suspended 
Node 

Left Suspended
Node 

Active Nodes 
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Table 5.2. Key state memory of the tree in Figure 5.6  
 

 

 

 

 
Note 5.3: KSM Implementation 
The rekeying processors are implemented on hardware platforms with FPGAs and DDR-
SDRAM memories, among other things. To support large groups the key memory is 
mapped to the DDR-SDRAM. In contrast, because of the long access times of this DDR-
SDRAM the KSM is implemented using the Block RAMs (BRAMs) of the FPGA. By this 
means, LR words can be proved earlier and the decision on the next operation can be made 
faster. However, because of their limited number and size, BRAMs set a constraint on the 
maximal group size, as will be seen in the next chapters. 

5.5.3 Tree Traversing 
In the presented static tree management, traversing relies on the physical tree structure, 
which allows an efficient node visiting based on simple logical or arithmetic operations on 
memory addresses. As will be seen in Section 5.5.4, each key in the tree is identified by its 
physical memory address. This means that for a tree traversing a starting key address is 
always required to find the relatives of this key in the tree. Table 5.3 illustrates how to find 
the father, the sons and the brother of a node identified by a memory address A. See Figure 
5.5 for some examples. 

Table 5.3. Estimation a relative node of a node with address A  

Relative node Address of the relative node  

Father Right shift of A with 1 insertion from left 

Left Son Left shift of A with 0 insertion from right 

Right Son Left shift of A with 1 insertion from right 

Brother A + 1 

 

Note5.4: 
The traversing strategies apply both to the key memory and to the key state memory. As the 
processing of a key relies on its LR word, the KSM memory is traversed to decide on the 
corresponding key state. If this key need to be updated, for example, then the address of the 
corresponding help-key is estimated from the address of the LR word by extending it with 
logical ‘1’ from the left side. The key k0-3, for example, is saved at the address 1100, its LR 
word at the address 100, see Figure 5.5 and Table 5.2.   

Level Address Help-key LR 

000 k0-1 00 
001 k2-3 11 
010 k4-5 11 

1 

011 k6-7 01 
100 k0-3 01 2 
101 k4-7 11 

3 110 k0-7 11 
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For the functionality of the rekeying processors, three traversing modes are introduced: 

Definition 5.8: Path Traversing 
Path Traversing is a visiting of all nodes locating on a tree path from a leaf to the root. The 
next node in this traversing is called a father.  

In the RTRP and the HiFlexRP this traversing mode is used to determine the keys to be 
updated. In the BRP path traversing is performed in the marking step of batch rekeying to 
mark the keys to be processed later.  

Definition 5.9: Reverse Path Traversing 
Reverse Path Traversing is a traversing from the root or a node to the next active node or 
leaf. The next node/leaf in this traversing is called a right or a left son.  

This traversing mode is used only by the RTRP and the HiFlexRP. While path traversing 
determines a key kx-y to be updated, reverse path traversing is performed to find the keys, 
with which the new kx-y must be encrypted to build the rekeying submessages. Reverse path 
traversing may result in a help-key or in an identity key.    

Example 5.2: 
Assume that member m3 must be removed from the group presented in the left tree of 
Figure 5.7. A path traversing started at k3 shows that only the group key k0-7 must be 
updated, as k2-3 will not be used any more. To find the keys, with which k0-7

new must be 
updated, two reverse path traversing processes are executed beginning with k0-7. The 
inverse traversing results in the keys k2 and k4-7, see the right tree. Thus the following 
rekeying submessages are constructed: RSM1 = Ek2

 (k0-7
new) and RSM2 = Ek4-7

 (k0-7
new). 

 
Figure 5.7. Tree traversing example 

 
Definition 5.10: Level Traversing 
Level Traversing is a visiting of all nodes belonging to some tree level from left to right. 
The next node in this traversing is called a brother. This traversing mode is used in batch 
rekeying during processing to find out the marked keys. Level traversing ensures that the 
help-keys of some level are only processed after updating the keys of lower levels. This 
traversing mode will be detailed in the scope of the BRP in next chapter. 
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5.5.4 Rekeying Submessage Identification  
Rekeying messages are sent per multicast. As a result, each member gets all rekeying sub-
messages. In the last example the rekeying submessages RSM1 and RSM2 are received by 
all members. However, member m2, for instance, is only interested in RMS1. For this 
member to only decrypt this rekeying submessage, a kind of identification for these 
messages must be provided. The proposed architectures use an identification mechanism 
for rekeying submessages, which relies on identifying all tree keys as follows. 

Definition 5.11 
A Key Identity (KEYID) is defined as the address of this key in the physical memory.  

Definition 5.12 
A Member Identity (MEMID) is defined as the address of the identity key of this member in 
the physical memory. 

Note that the MEMID of a member corresponds to the KEYID of the identity key of that 
member.  

Definition 5.13 
A Rekeying Submessage Identity (RSMID) is a pair (x, y), where x represents the KEYID of 
the encrypted key and y refers to the KEYID of the encrypting key. 

The rekeying message identification mechanism can now be summarized as follows: 

1. During registration, each member is supplied with the KEYIDs of all keys on the path 
from the corresponding leaf of that member to the root, even if some help-keys on this 
path are not active. 

2. During rekeying, each rekeying submessage is associated with the corresponding 
RSMID.   

3. Getting a rekeying submessage, a group member extracts x from the corresponding 
RSMID and decrypts the message only if x belongs to the KEYIDs saved by this 
member.    

Example 5.3: 
Referring to Example 5.2, the rekeying submessages RSM1 and RSM2 are delivered with 
the RSMIDs depicted in Table 5.3. 

  Table 5.3. Rekeying submessage identity  

RSM Ek2(k0-7
new) Ek4-7(k0-7

new) 

RSMID (1110,0010) (1110,1101) 
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5.6 Hardware Security Modules 
As mentioned in Section 5.3 the Real-Time Rekeying Processor and the Batch Rekeying 
Processor fulfil the security requirement of access control. The High Flexibility Rekeying 
Processor ensures, in addition, group authentication or data source authentication, 
depending on the system requirements. Table 5.4 summarizes the used cryptographic 
primitives for the different security levels.  

    Table 5.4. Cryptographic primitives used in the rekeying processors 

Security level Utilization in 
Cryptographic 

method 
Cryptographic 

primitive 

Encryption AES-128 
Back- and forward 

access control 
RTRP, BRP, 

HiFlexRP 
Key generation 

AES-based PRNG, 
ANSI X9.17 

Group 
authentication 

HiFlexRP 
Message Authen-

tication Code (MAC) 
AES-based MAC 

Secure hash function 
AES-based Meyer 

hash function Data source 
authentication 

HiFlexRP 
Digital signature ECDSA 

 

Regardless of the digital signature, all other cryptographic operations are based on the 
Advanced Encryption Standard (AES) with a key length of 128 bits. As will be seen in the 
next sections, a key generation using the Pseudo Random Number Generator (PRNG) 
specified in ANSI X9.17 is based on two encryptions. Meyer hash function executes an 
encryption to each block of data to be hashed. The same applies to block cipher-based 
MAC. This design strategy has the following advantages depending on the underlying 
executing platform: 

Platforms with constrained resource usage: 
All the listed block-cipher based primitives for key generation, MAC and hash value 
determination rely on encryption as a central operation and some XOR operations which 
are inexpensive. In resource-limited platforms this enables a considerable hardware saving, 
if only one encryption primitive is implemented and shared by all rekeying cryptographic 
tasks, excluding digital signature. 

Platforms with unconstrained resource usage: 
Using a dedicated encryption module to each cryptographic primitive is largely convenient 
for the rekeying task, if the resource usage is not constrained. This results from the fact that 
in LKH-based rekeying the number of generated keys equals the half of the number of 
rekeying submessages. In addition, the processing of a rekeying submessage in the hash or 
MAC function costs each one encryption. Consequently, using AES-based key generation, 
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encryption, hash function and MAC for LKH-based rekeying results in the same number of 
AES executions for each of these operations which enables an efficient rekeying pipelining.  

To illustrate this point the case of rekeying with data source authentication is considered. 
An LKH-based rekeying can be considered as an iterative update of some tree keys, 
followed by a calculation of a digital signature. In this respect, a key update operation 
includes: 

1. a generation of a new key,  

2. two encryptions of the new key with both its sons, and  

3. two hash operations on the two resulting rekeying submessages. 

Example 5.4: 
Referring to Figure 5.7, two key updates are required if member m5 has to be disjoined. For 
this purpose two key generations are performed with two encryptions each. To build the 
rekeying submessages four encryptions are also needed. Each rekeying submessage is then 
entered to the hash module and operates as a key for one encryption, see Section 5.6.3. 
Accordingly the hash function executes four encryptions, too. Figure 5.8 illustrates 
schematically the schedule of the different tasks for this example, where the labels are 
interpreted as follows.   

G: Generating a key 

E: Encrypting of a key with one of its sons 

H: Hashing of a rekeying submessage 

S: Signing the hash value of the rekeying message 

Figure 5.8. Pipelined key update 
Note 5.3: 
The previous investigation does not consider the rekeying submessage identities. These 
data are critical and their protection against manipulation is as essential as for rekeying 
submessages themselves. A RSMID, however, is shorter than a rekeying submessage. To 
hash these data two RSMIDs are concatenated and entered into the hash module as one data 
block, see Table 5.6 for the widths of the different RP data words. This can be done 
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between the hashing stages of the rekeying submessages or at the end of this directly before 
the digital signing. The last alternative preserves the pipeline structure.  

5.6.1 Encryption Module 
All the proposed rekeying processors use the Advanced Encryption Standard (AES) with a 
key length of 128-bit [Da02], [Ni01].  AES is a block cipher which processes 128-bit data 
blocks. Each data block is organized as a matrix of 4x4 bytes and processed in nine 
identical iterations and a last slightly different one. Except for this, each iteration, denoted 
as round, includes four processing steps of byte substitution, row shift, column mixing, and 
adding a round key. In the last round the step of column mixing is omitted. Round keys are 
expanded keys which, are derived from the original key by applying a key schedule 
process.  

Figure 5.9 provides a general view of the encryption module. To perform an encryption the 
data and the key are first written on the inputs DATA_IN and KEY, respectively, followed 
by activating the control signal START. The module performs encryption and sets the 
encrypted data on the output DATA_OUT and signalizes this by setting the signal RDY. 
During encryption the module does not react to other requests. The inputs DATA_IN and 
KEY and the output DATA_OUT have all a length of 128 bit.    

 

Figure 5.9. Encryption module overview 
 
In the course of this work several realizations of the AES module have been designed with 
different resource usage and performance figures. In general, the AES module is 
implemented using an iterative looping architecture with sub-pipelining. Iterative looping 
means that only one round is implemented in hardware. To perform an encryption a data 
block is entered into this round 10 times. The purpose of sub-pipelining is to shorten the 
critical path of the round, which enables higher clock frequencies. One design alternative of 
the AES relies on two pipelining stages, as depicted in Figure 5.10. Note that the missing 
of the pipeline register behind the Block RAM of Virtex-II Pro is justified by the 
synchronous functionality of these memories. The module Key Schedule operates 
synchronously with the encryption path to provide a round key for each iteration on the fly. 
In total, an encryption using this architecture lasts about 25 clock cycles. For other 
hardware realization possibilities of the AES refer to [Ma03], [Zh04], and [Go05]. 
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Figure 5.10. AES architecture in HiFlex RP 

 
Block ciphers used for rekeying solutions in related work, e.g. [Wo00], run in complex 
modes such as the Cipher Block Chaining (CBC), which operates as follows. Before its 
encryption, a data block is mixed with the encryption result of the previous block to prevent 
that the same data block results in the same cipher block.   
In contrast, the rekeying processors deploy the AES in the simple Electronic Code Book 
Mode (ECB), i.e. data blocks (tree keys, actually) are encrypted independent of each other. 
This decision on the operation mode for AES in the rekeying processors is justified as 
follows: 

1. The security problems of ECB do not appear in rekeying encryption. This is because 
the encrypted data are keys, which are randomly generated and not plain text with 
known patterns allowing for cryptological analysis. 

2. Using other encryption modes causes that each member has to decrypt all rekeying 
submessages, even if not all these submessages are interesting for that member, see 
Section 5.5.4 

5.6.2 Key Generator 

ANSI X9.17 is a key management standard for financial institutions published by the 
American National Standard Institute [Ni85]. Among other things this standard specifies a 
key generator based on symmetric-key encryption such as 3DES. However, other block 
ciphers are allowed according to the generator specification. Therefore, the rekeying 
processors use AES-128 for this task. For the functionality of this generator three data are 
needed, which are denoted as the generator initialization data in the scope of this work. 
These data are the key generator Kgen, the timestamp D and the initial seed S0. Because of 
using AES-128 all these data words have a length of 128 bit. The generation process relies 
on an initial encryption of the timestamp D with the key Kgen and then two encryptions to 
generate a key and to determine the next seed as depicted in the following steps, where Si = 
S0 for the first generated key: 
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2. ki
new = EKgen (I xor Si) 

3. Si+1 = EKgen (I xor ki
new) 

 
Figure 5.11. Key generator Overview 

 
Figure 5.11 presents an overview of the realized key generator. After the system start-up 
the generator waits for the initialization data. These parameters are sent to the generator on 
the 128-bit input DATA_IN in the order: D, Kgen, and S0, where the availability of each 
parameter on this input is signalized by a logical ‘1’ on the control input INIT. Upon 
reading these values the generator executes the initial encryption to determine I and 
switches to the state “ready”. From this state a new key can be requested, which is 
generated in the state “generate”. A new initialization can only be performed from the state 
“ready”. A new key is provided on the output DATA_OUT and announced by setting the 
signal RDY. 

   
Figure 5.12. Key generator data path 

 

Figure 5.12 represents the data path of the key generator. As mentioned before, the key 
generator uses one encryption core, which builds the most expensive operation in the 
generation algorithm. Neglecting the encryption cost to calculate the internal word I, which 
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is determined only once, it can be seen that a key generation costs approximately two 
encryptions. This estimation assumes full loading of the generator. Otherwise the 
determination of the next seed Si can occur after delivering the new key, which corresponds 
to generation costs of about one encryption.   

5.6.3 Hash Module 
Rekeying submessages are hashed using the Meyer hash function [Ma85]. If it is employed 
alone, secure hashing ensures data integrity. For the purpose of source authentication of 
rekeying messages the hash value is digitally signed, see Section 5.6.5. Originally, Meyer 
hash function was defined with DES as a compression function. However, this scheme can 
be expanded to other block ciphers [Sc96]. Thus, in the scope of this work AES-128 
operates as the compression function. A rekeying submessage (RSM) is entered as a data 
block to be hashed and appears as a key for the internal encryption function. As data, the 
encryption module takes the hash value of the previous RSM. The encryption result is then 
xored with the old hash value to deliver the new one. For the first rekeying message RSM a 
random value H0 is required. This value has a length of 128 bits and is entered as an initial 
word. For each further rekeying submessage RSMi the following relation is applied: 

Hi = ERSMi(Hi-1) xor Hi-1   

 
Figure 5.13. Hash module overview 

 

Figure 5.13 provides an overview of the used hash module in the rekeying processors. 
After the system start-up the initial value H0 is written to the hash module through the input 
DATA_IN by setting the control signal INIT. The hash module needs information on the 
last rekeying submessage to provide the final hash value and to return to the ready state. 
This is realized by the signals HASH and HASH_LAST. Figure 5.14 represents the data 
path of the hash module. As can be seen from this algorithm, hashing a rekeying 
submessage costs nearly one encryption. 
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Figure 5.14. Hash module data path 

5.6.4 MAC Module 
For group authentication the MAC function specified in ISO 9797 with AES-128 instead of 
DES is used. For this function an authentication key KMAC is required. The first rekeying 
submessage is encrypted with KMAC directly. Each following rekeying submessage is first 
xored with the last encryption result and then encrypted with KMAC. The final message 
authentication code is the encryption result of the last rekeying submessage. The interface 
and the functionality of the MAC module are largely similar to those of the hash module, 
therefore, only the data path is presented here for brevity, see Figure 5.15.   

 

Figure 5.15. MAC module data path 

5.6.5 Digital Signature Module 
The HiFlexRP uses the Elliptic Curve Digital Signature Algorithm (ECDSA) to sign the 
hash value of the rekeying message [Ie00]. ECDSA was first proposed by Vanstone in 1992 
[Va92]. In 1998 this algorithm was accepted as an ISO standard (14888-3), in 1999 as an 
ANSI standard (ANSI X9.62), and in 2000 as an IEEE standard (P1363).  

To set up the ECDSA the registration and authentication server decides first on a finite field 
GF(p) and on an elliptic curve over this field EC(GF(p)) of the form:  
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y2 = x3 +ax +b 

where,             4a3 + 27b2 ≠ 0 

A base point G of the order n is then selected to define the cyclic subgroup. For 
cryptographic purposes the cyclic subgroup must be large enough. In the best case the 
cofactor h should equals one where, 

h = |E|/n 

In summary, the EC domain parameters are given as a 6-tuple (p, a, b, G, n, h). These 
parameters must be agreed with all group members.  

In a next step the RAS selects a private key d as a random integer in the interval [1, n-1] 
and calculates the public key Q as a scalar multiplication: 

Q = dG 

All the domain parameters and the private key are initially written to the rekeying 
processor, which performs the ECDSA on the hash value h of the rekeying message. The 
ECDSA proceeds in the four steps illustrated in Algorithm 5.1 to estimate the pair (r,s), 
which represents the digital signature. 

Algorithm 5.1 ECDSA  
Input: h 
Output: (r, s) 
1. Select a random integer k from the interval [1, n-1]  
2. Calculate P(x1, y1) = kG 
3. Calculate r = x1(mod n), if r = 0, go to 1 
4. Calculate s = k-1(h + dr)(mod n), if s = 0, go to 1 
 
For its realization the ECDSA is divided into several tasks with different granularities. The 
most expensive task is the scalar multiplication in Step 2 of the algorithm. This task is 
executed on a dedicated hardware component, denoted by ECMULT. Another expensive 
task is the modular inversion in Step 4. Similarly a hardware module, FFINV, is used to 
implement this operation. Chapter 7 details the design of the ECDSA.  

5.7 Input/Output Units 
Rekeying processors communicate with the registration and authentication server RAS over 
the input and output units, see Figure 5.1 and Figure 5.4. In this section the input and 
output data formats are illustrated without considering the underlying communication 
protocol between the RP and the RAS. For this purpose, the input and output units are 
represented as First-In-First-Out storages, denoted as Instruction FIFO and Output FIFO, 
respectively. The rekeying instructions are written into the Instruction FIFO by the RAS 
and read from it for execution by the rekeying processor. Rekeying messages are written 
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into the output FIFO by the RP and read from it by the RAS. The word width of both FIFOs 
equals 32 bit.  

5.7.1 Instruction Set and Input Format 
The rekeying processors support a total of ten instructions, where six thereof are present in 
all architectures. Table 5.5 summarizes these instructions and the relating parameters and 
return values.  

  Table 5.5. Instruction set 

Instruction Utilization Parameters Return 

InitGen All RPs Kgen, D, S0 None 

InitHash HiFlexRP H0 None 

InitMAC HiFlexRP KMAC None 

InitECDSA HiFlexRP p, a, b, G, n, d None 

InitSysParam BRP JBDmax, DBDmax None 

Join All RPs MEMID, kd Rekeying Message, kg 

Disjoin All RPs MEMID Rekeying Message, kg 

Resynchronize All RPs MEMID Rekeying Message, kg 

UpdateKg All RPs None Rekeying Message, kg 

DeliverKg All RPs None kg 

 

Referring to Section 5.6, the first four instructions InitGen, InitHash, InitMAC, and 
InitECDSA are required to set up the security modules by initializing the key generator, the 
hash module, the MAC module, and the digital signature module, respectively. In normal 
operation mode one or some of these instructions can be executed separately, e.g. to update 
the generator key Kgen for security purposes.  

In Chapter 2 an algorithm was introduced to manage the quality of service and access 
control in batch rekeying. The Batch Rekeying Processor presented in next chapter 
implements this algorithm. The instruction InitSysParam is defined for this processor to 
provide the maximal allowable join and disjoin batch delays JBDmax and DBDmax as system 
parameters. 

The instructions Join and Disjoin are used to perform rekeying after joining or removing a 
member, respectively. In the join case the member identity is provided to the rekeying 
processor as a parameter. As mentioned previously, the generation of identity keys is a task 
of the registration and authentication server. 

LKH is a state-full rekeying algorithm, which means that a member must remain on-line to 
have the up-to-date keys. Going off-line, the member can lose some of his keys and, thus, 
need to be resynchronized. The instruction Resynchronize is intended for this purpose. The 
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execution of this operation is simpler than that of the instructions Join and Disjoin, as no 
new keys must be generated. In addition the required keys are only encrypted with the 
identity key of the member to be resynchronized.  

The instruction UpdateKg is executed to enhance security in the case that a multicast group 
remains steady for a long period. Only the group key is changed, encrypted with its old 
value and sent to all the group members. 

Executing each of the instructions Join, Disjoin, Resynchronize and UpdateKg results in a 
rekeying message for the group members and in a new group key, which is provided to the 
data server for data encryption. Besides, the rekeying processors can deliver the group key 
separately by executing the instruction DeliverKg. 

The instruction size varies between 32 bits, e.g. for UpdateKg, and 800 bits for InitECDSA. 
The operation code is represented by the six most-significance bits of each instruction. The 
member identity MEMID used in some instructions is represented in the remaining 26 bits 
of the first instruction word, which allows for group sizes up to 67 million members. As an 
example, Figure 5.16 illustrates the structure of the instruction Join and how this 
instruction is written into the Instruction FIFO: 

 

Figure 5.16. Join instruction structure 
 

5.7.2 Rekeying Message Format 
The rekeying processors write the rekeying messages into the Output FIFO. Table 5.6 
summarizes the widths of the different data words used in the rekeying processors. 

Example 5.5 
Referring to Example 5.4, a rekeying processor supporting data source authentication 
produces a total of 1184 bits to remove the member m5. This can be detailed as follows.  
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32 bits (for an identifier which indicates the number of the rekeying submessages included 
in the rekeying message) + 4*128 bits (four RSMs) + 4*64 bits (four RSMIDs) + 256 bits 
(digital signature) + 128 bits (for the unencrypted group key) = 1184 bits. 

 

Table 5.6. Widths of the different data words in the RPs 

Word Width (bit) 

Tree keys 128 

Rekeying submessage 128 

Hash value 128 

MAC 128 

Digital signature 256 

Rekeying sub-message identity 64 

 

These data are written into the Output FIFO in the order depicted in Figure 5.17 from left 
to right. In addition Figure 5.17 illustrates the output format for the case of group 
authentication, for comparison. In this case the digital signature is replaced by a MAC.  

 

   

 Figure 5.17. Output format 
 
 
 
 
 
 
 
 

# RSM (32 bit) 

RSMID (64 bit) 

RSM (128 bit) 
Digital signature 

(256 bit)
kg (128 bit) 

MAC (128 bit) 



5.7   INPUT/OUTPUT UNITS 

 

86 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 6   REAL-TIME AND BATCH REKEYING PROCESSORS 

 

87

6 Real-Time and Batch Rekeying Processors 

 

6.1 Overview 
In this chapter the real-time and the batch rekeying processors are presented. Section 6.1 
demonstrates first the general architecture of the RTRP. Then the specific instruction set 
and the rekeying algorithms of this processor are illustrated. Lastly, implementation results 
in terms of resource usage and performance features are presented. Section 6.2 provides a 
similar description of the BRP. This chapter is largely based on the concepts introduced in 
the Chapter 5 and assumes an understanding of these concepts.  

6.2 Real-Time Rekeying Processor (RTRP) 
The RTRP performs rekeying requests as soon as they arrive, provided that no other 
requests are in processing.  

6.2.1 Architecture 
The RTRP is characterized by the architecture depicted in Figure 6.1. This processor 
receives rekeying requests from the registration and authentication server (RAS), which 
writes these requests into the Instruction FIFO. Fetching, decoding and executing these 
requests are all tasks managed by the processor controller. As mentioned in the previous 
chapter, the RTRP fulfills the security requirement for access control in group rekeying. 
Therefore, the security module of this processor includes two functions for key generation 
and encryption. As a resource-saving version, the RTRP integrates both these functions into 
one module, denoted as GenEnc, which relies on one AES core. To reduce conflicts caused 
by this source sharing the GenEnc unit generates keys in advance and saves them into a 
special FIFO, as long as no rekeying encryptions are required. This FIFO, denoted as Key 
FIFO, allows the storage of 512 keys of the length 128 bits and uses 4 Block RAMs for this 
purpose. The unit Key Tree Memory includes the following two components: 

1. The actual Key Memory (KM) to save tree keys. This memory is realized using an off-
chip SDRAM and an on-chip memory controller. 

2. The Key State Memory (KSM) used for the static tree management. This memory is 
realized using on-chip Block RAMs.    
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Figure 6.1. RTRP Architecture 

 
The Controller is responsible for executing the rekeying algorithms. Because of the 
complexity of this task, the controller is characterised by a hierarchical architecture of three 
levels, as illustrated in Figure 6.2. 

1. On the first level, the main controller accepts instructions, decodes them, and activates 
one of the controllers on the second level. 

2. The second level, referred to as the instruction level, includes six sub-controllers to 
support the instruction set of this processor. Note that the RTRP only supports a subset 
of the instructions, which were explained in the last chapter, see Table 5.5. Specifying 
a sub-controller for each instruction provides an efficient way to modify or add one or 
more instructions without affecting the basic architecture of the controller. In addition, 
the modularity on this level enables a pipelining in the instruction execution. 

3. The interface with the data path is mainly realized by sub-controllers belonging to the 
third level, which is called the hardware level. Three functional tasks are integrated 
into this level to process the key addresses, the rekeying submessage identities 
(RSMID), and the key state words (LR words). 

6.2.2 Instruction Set and Rekeying Algorithms 
Because of its historical development, the RTRP assumes that each member is supplied 
with a number of keys, which corresponds to the maximal tree height, regardless of the 
current group size. Therefore, the concept of suspended keys, introduced in Section 5.5.1 
does not apply to this processor. Accordingly, the RTRP relies on a coding mode of LR 
words, which deviates from that given in Table 5.1. In this respect, a LR value of 00 
indicates an unused key. A value of 10, 01, or 11 refers to a key, which is used from left, 
right, or from both sides, respectively.  
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 Figure 6.2. RTRP controller hierarchy 
     

The RTRP executes a total of six instructions as seen in Figure 6.2. In the following, the 
execution of the instruction Join is presented in some detail. The instructions Disjoin and 
Resynchronize are then illustrated briefly. In contrast, other instructions are straightforward 
and independent of the processor type. For a description of these instructions it is referred 
to Section 5.7.1 in the last chapter. 

6.2.2.1 Join Instruction 
The instruction Join is associated with two parameters: the member identity MEMID and 
the identity key kd of the new member. Algorithm 6.1 illustrates the processing of this 
request after its decoding by the main controller. First, the identity key kd is saved at the 
memory address MEMID. Afterwards, the join controller starts a path traversing, which is 
an iterative process to find all keys to be updated. This traversing is based on bit operations 
on the addresses of these keys as described in the previous chapter. In the RTRP, a new 
help-key may be encrypted once or twice depending on the corresponding LR value. As can 
be seen from Algorithm 6.1, only those keys, which have an LR value of 11, are encrypted 
with both sons. Otherwise one encryption is required. To find the keys to be encrypted 
with, a reverse path traversing is performed. In the case of the RTRP, this traversing always 
results in the direct sons because of the missing of suspended keys, as mentioned before.  

6.2.2.2  Disjoin Instruction 
The instruction Disjoin includes only a member identity MEMID as a parameter. The 
execution of this instruction is similar to the join case. However, the LR check and update 
is performed before key generation, as a disjoin operation can result in an LR value, which 
equals 00. In this case the corresponding key does not need to be updated or encrypted. 

6.2.2.3 Resynchronize Instruction   
To resynchronize a member only its MEMID is required. The execution of this instruction 
is simple, as no key generation is necessary. The keys on the path from the member leaf to 
the root are only encrypted with the member identity key, which is already known. 
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Algorithm 6.1 RTRP Member Join 
Input: MEMID, kd 
Output: Rekeying Message (RM) 
 

  
         
 

6.2.3 Implementation and Results 
A prototype of the RTRP was realized on the PCI card ADM-XRC-II Pro, which was 
described in Chapter 4. The FPGA includes all the RTRP components except for the key 
memory, which is realized using the DDR SDRAM as another component of the ADM-
XRC-II Pro card.  
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6.2.3.1 Resource Usage and Maximal group size 
Table 6.1 outlines the resource usage for the individual RTRP components on the FPGA. 
These values, except for SDRAM size, are obtained by a technology-dependent synthesis of 
the design using Synplify Pro 7.3.3 from Synplicity, Inc. [Sy07]. 

Table 6.1. Resource usage in RTRP 

Area usage 
Component 

CLBs % # BRAMs SDRAM 
Notes 

GenEnc 3 14 -- 
10 BRAMs for AES + 4 for key 
FIFO of the generator 

Key tree memory 5 -- 16 MB CLBs for SDRAM controller  

Key state memory -- 66 -- For LR word storage 

Controller 7 -- -- Excluding SDRAM controller 

In/Out FIFOs &  
PCI interface 

5 8 --  

 
The available resources directly affect the supportable group size by the rekeying processor. 
The external SDRAM of the card ADM-XRC has a capacity of 64 MB which allows the 
storage of the following number of 128-bit keys: 

64*1,024*1,024*8/128 = 4,1943,04 keys 

This number corresponds to group size of more than 2 million users according to (5.1). 
However this estimation is optimistic because it does not consider the memory size needed 
for the 2-bit LR words. For the storage of this data, the block RAMs of the FPGA are used 
because of their high performance, which facilitates early reading of LR words and, 
consequently, a timely decision on the next step. However, the limited number of available 
BRAMs restricts the group size. This point can be explained as follows. 2VP20 contains a 
total of 88 BRAMs, where 22 blocks thereof are required for the GenEnc and the FIFOs 
according to Table 6.1. Thus, a rest of 66 BRAMs can be used to save LR words. A BRAM 
has an effective capacity of 16 Kb. By exploiting all these remaining BRAMs for the Key 
State Memory the following number of LR words can be saved: 

66*16Kbit / 2 = 540.672 LR words 

Recall that LR words are only defined for help-keys and that a complete binary key tree 
contains as many help-keys as the user number minus one. In addition, the user number is 
always a power of two in complete binary trees. Therefore, the actual maximal group size, 
which can be supported by the RTRP, is equal to the largest power-of-2, which is smaller 
than 540.672, i.e. 

Nmax = 524.288 = members. 
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6.2.3.2 RTRP Performance  
Table 6.2 summarizes the basic performance figures of the proposed RTRP expressed in 
terms of clock cycles needed for a particular operation. The value 19 in this table 
corresponds to the number of tree levels occupied by help-keys for the maximal group size 
Nmax. The term 19 Gen. represents the number of clock cycles needed for the generation of 
19 new keys. 38 AES denotes the number of clock cycles, which are required to perform 38 
AES encryptions. The term X indicates the number of cycles consumed by different control 
tasks such as the instruction fetch and decode, and the processing of LR words. As 
mentioned previously, the processor controller features a modular architecture, which 
enables a concurrent execution of different tasks such as encryption and memory access 
operations. Due to this modularity, X is small compared to the cycle numbers needed by 
encryption and key generation and can remain out of consideration in most cases. 
Differently, X in best-case disjoin (last row in Table 6.2) represents the total time needed in 
this special case, since neither key generations nor encryptions are needed.  
 

Table 6.2. Performance figures of the  RTRP 

Performance feature # Clock cycles 

AES encryption 25 

Key generation 55 

Worst-case join 19 Gen. + 38 AES + X 

Best-case join 19 AES + X 

Worst-case disjoin 19 Gen. + 37 AES + X 

Best-case disjoin 201 

 

The worst case join/disjoin occurs when all help keys from the join/disjoin point to the root 
have to be updated and encrypted twice and the key FIFO of the key generator is empty. 
The best case join occurs when all help-keys from the join point to the root are not used by 
any current member and the key generator has sufficient keys in its FIFO storage. The best 
case disjoin occurs when all help-keys from the disjoin point to the root will not be used by 
any remaining group member.  

The RTRP was implemented by exploiting the placement and routing tools ISE 6.1 from 
Xilinx. A clock frequency of 133 MHz was chosen to control the RTRP. This value 
corresponds to the maximal clock frequency of the external SDRAM.  

In order to compare the RTRP performance to other solutions, a software model was built 
for the rekeying processor with AES encryption, ANSI X9.17 key generation, and LKH 
rekeying, which is improved by a semi-LR mechanism. The software model was executed 
on the following two machines: 
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SW1: AMD Duron 750 MHz, 64 KB (cache), 256 MB (RAM)      

SW2: Intel XEON 1.8 GHz, 512 KB (cache), 1GB (RAM). 

Table 6.3 depicts a performance comparison between the software and the RTRP solutions. 

Table 6.3. RTRP performance vs. software solution 

Operation 
SW1 
(ms) 

SW2 
(ms) 

RTRP 
(ms) 

Worst-case join 1.13 0.6 0.015 

Best-case join 0.278 0.144 0.004 

Worst-case disjoin 1.115 0.616 0.015 

Best-case disjoin 0.836 0.453 0.002 

 

The following example illustrates the advantage of the RTRP solution. Consider the Pay-
TV scenario from Chapter 1 and assume that the video provider advertises its service by 
providing short join times. (Short disjoin times are beneficial for the video provider to keep 
forward access control, but normally not stated in the advertisement). Join time consists of 
several slices including the time needed for the calculation of the rekeying submessages. 
Assume that this time slice equals 1 sec. Under this condition and assuming a worst-case 
join, the software solution SW1 will be able to join 1s/1.13ms = 885 members under 
adherence to the offered property in the advertisement. SW2 results in serving 1666 
members, and the RTRP features the support of 66,666 members. Obviously, the RTRP can 
serve considerably more user requests without agreement violation. 

6.3 Batch Rekeying Processor (BRP) 
The BRP collects a number of rekeying requests within a rekeying interval, marks the keys 
to be updated, and process these keys together. For detailed description of batch rekeying 
refer to Chapter 2. 

6.3.1 Architecture 
The BRP is mainly composed of five units as depicted in Figure 6.3. Batch rekeying is a 
two-step process. In the first step rekeying requests are collected and keys, which need to 
be updated, are marked. In the next step the marked keys are updated and encrypted to 
build rekeying submessages. The key marking is a task achieved by the Preprocessing Unit 
of the BRP. Key update and encryption is performed in the Processing Unit. In [Li01] the 
concept of subtree is used to denote all marked keys in one rekeying interval. For the BRP 
this concept is used to refer to the data generated by the Preprocessing Unit to provide 
information on keys to be processed, the kind of processing, and the order of processing. 
The first two information are provided by assigning a Marking Flag (MF) and a Left-Right 
Word (LR) to each help-key, respectively. The processing order is appointed with the aid of 
the Processing FIFO (PF). The interaction between the Preprocessing, the Subtree and the 
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Processing Units will be illustrated in Section 6.3.2. In the sequel, some functional units 
specific to this BRP are described briefly. 

 

 

Figure 6.3. BRP Architecture 

6.3.1.1 Main Controller 
This subunit controls the whole BRP by fetching instructions from the Instruction FIFO, 
decoding them, and by activating the Batch Scheduler to execute the marking algorithm. In 
addition, the Main Controller starts the Processing Unit to process an already prepared 
batch. The Main Controller interacts with the Batch Delay Monitor to control the rekeying 
interval according the event-driven rekeying algorithm presented in Chapter 2.   

6.3.1.2 Batch Scheduler 
This module performs the two important tasks of key marking and estimating the batch 
processing time BPT, see Chapter 2. For the first task the Batch Scheduler receives a 
rekeying request with some member identity MEMID and marks the help-keys needing to 
be processed according to the marking algorithm detailed in Section 6.3.2. To estimate BPT 
the Batch Scheduler gets during marking information on the number of needed key 
generations and encryptions. Accordingly, it updates the batch processing time BPT for 
each new request and delivers it to the Batch Delay Monitor.  

6.3.1.3 Batch Delay Monitor 
This module supports the event-driven rekeying algorithm. For this purpose it measures the 
actual rekeying interval and compares it with the values Tmax1 and Tmax2, see inequality (2.6) 
in Chapter 2. When exceeding one of these values, this unit interrupts the Main Controller 
to stop marking and start a new rekeying interval. Figure 6.4 illustrates the architecture of 
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the Batch Delay Monitor. For this realization the inequality (2.6) is expanded to two 
inequalities using the formula (2.7) and (2.8) as follows: 

 T < JBDmax - BPTi+1 + taJ
min  (6.1) 

            T <  DBDmax - BPTi+1 + taD
min  (6.2) 

Recall that taJ
min and taD

min represent the appearance times of the first join and disjoin 
requests in a rekeying interval, respectively. The batch processing time BPTi+1 is provided 
by the Batch Scheduler. JBDmax and DBDmax represent the maximal allowable join and 
disjoin batch delays, respectively. These system parameters are written to the BRP by 
executing the instruction InitSysParam as depicted in Chapter 5. Rearranging (6.1) and 
(6.2) results in 

T- taJ
min < JBDmax - BPTi+1    (6.3) 

  T- taD
min <  DBDmax - BPTi+1  (6.4) 

Obviously, the left side of inequality (6.3) can be realized by a timer, which is started at the 
appearance time of the first join request. This timer is denoted as Join Timer in Figure 6.4. 
Similarly a Disjoin Timer is employed to implement the left side of (6.4). 

 
Figure 6.4. Batch Delay Monitor 

6.3.1.4 MF Memory 
This memory saves a 1-bit marking flag for each help-key. The MF is set by the 
Preprocessing Unit if the corresponding key needs to be processed. The Processing Unit 
resets this flag after processing the related key. 

6.3.1.5 LR Memory  
This unit saves the 2-bit LR words for the help-keys as specified in Section 5.5.2. During 
marking, an LR word is checked and possibly updated by the Batch Scheduler. Depending 
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on the LR value of some key, the Processing Unit decides on the kind of processing it must 
undergo. 

6.3.1.6 Processing FIFO (PF) 
The Processing FIFO enables an efficient level traversing, which was defined in the 
previous chapter, see Definition 5.10. During marking the Batch Scheduler pushes the 
KEYIDs of all level-1 help-keys, which need to be processed, into this FIFO. The 
Processing Unit pulls these KEYIDs and pushes the KEYIDs of the next-level help-keys 
needing to be processed in a successive way until all keys have been processed. This 
mechanism ensures that the processing of a help-key of some level can only take place, 
after the keys of lower levels have already been handled. Recall that the identity of a key in 
the rekeying processor corresponds to its physical address, as depicted in Chapter 5, see 
Definition 5.11.   

6.3.1.7 Processing Controller  
This module pulls the KEYIDs of keys to be processed from the Processing FIFO, resets 
their MF-flags, and orders the GenEnc module to build rekeying submessages according to 
the corresponding LR values. 

6.3.1.8 GenEnc 
This unit performs both the encryption – to set-up rekeying submessages – and the key 
generation based on a shared AES-128 core. A dedicated Key FIFO saves pre-generated 
keys as long as no rekeying encryption is needed. 

6.3.2 Instruction Set and Rekeying Algorithms 
The BRP supports all instructions known in the RTRP. In addition, the instruction 
InitSysParam is specific to the BRP to initialize the Batch Delay Monitor with the system 
parameters JBDmax and DBDmax. In contrast to the RTRP, which performs a rekeying 
algorithm for each instruction of the type Join, Disjoin, and Resynchronize, the BRP 
performs two algorithms for a batch of these instructions. These are the marking algorithm 
and the processing algorithm. Note that the BRP treats the instruction Resynchronize as a 
Join instruction with the difference that no identity key is saved.    

In the following, the batch rekeying algorithms will be illustrated assuming a sequential 
proceeding of the marking and processing tasks, i.e. without pipelining. First, the marking 
and processing algorithms are presented. An example illustrates then the proceeding of 
these algorithms. A special problem of applying pipelined batch rekeying is treated in 
Section 6.3.3.  

6.3.2.1 Marking Algorithm 
The marking algorithm is performed by the Preprocessing Unit. While starting and ending 
the marking process is a task of the Main Controller and the Batch Delay Monitor, the 
actual marking algorithm is executed by the Batch Scheduler. Algorithm 6.2 depicts the 
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proceeding of marking for one rekeying instruction such as Join, Disjoin or Resynchronize. 
The description in Algorithm 6.2 is highly abstract. More details will be provided in 
Example 6.1. Note that the marking algorithm only pushes identities of help-keys from the 
first level into the Processing FIFO. The processing algorithm, later on, pulls these KEYIDs 
and pushes the KEYIDs of their fathers. By this means it ensured that a key is only 
encrypted with keys of lower levels, which have already been updated. 

Algorithm 6.2 Marking for one instruction 
Input: MEMID, instruction type 
Output: Updated subtree data          
1. Perform path traversing starting with MEMID      
2. Push the KEYID of the help-key of level-1 into the Processing FIFO,  

      if this was not yet done by other marking steps in the same interval. 
3. Set the marking flags of all help-keys on the path. 
4. Update the LR words according to the instruction type.   -- Table 5.1 
5. return   
 

6.3.2.2 Processing Algorithm 
The processing algorithm is performed by an interaction of the Processing Controller and 
the GenEnc module in the Processing Unit. This algorithm is started once in each rekeying 
interval and stopped when all marked keys for this interval have been processed. The 
processing algorithm is an iterative task, which consists of repeated execution of level 
traversing. The processing algorithm gets information on the level-1 help-keys, which need 
to be visited, from the marking algorithm in terms of KEYIDs saved in the Processing 
FIFO (PF). During processing the corresponding keys, the processing algorithm prepares 
the level-2 help-keys, which need processing, by writing their KEYIDs into the Processing 
FIFO. This procedure is repeated for all tree levels. Algorithm 6.3 illustrates the processing 
task, in brief.  

Algorithm 6.3 Processing 
Input: Subtree data 
Output: Rekeying message         
1. repeat      
2. Pull a KEYID from the PF. 
3. Reset the marking flags of the corresponding key and its father. 
4. Push the KEYID of the father into the PF, if this was not yet done.  
5. Update/Encrypt the corresponding help-key according to its LR word. 
6. until PF is empty  
7. return   
 
Two main remarks can be made to this pseudo code:  
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1. In this description, the level traversing including the change from level to level is 
hidden. By means of the Processing FIFO, a part of the processing algorithm, which is 
responsible for level traversing, is realized using the topological structure of this 
hardware storage. Consequently, a largely efficient level traversing is provided, as not 
all keys belonging to some level must be visited, but only those, which were pushed 
into the Processing FIFO. 

2. The if-condition in Step 4 is based on verifying the marking flag of the father. 
Therefore this flag is reset a priori in Step 3.     

Example 6.1: Marking and Processing Algorithms 
Consider the left key tree in Figure 6.5 and assume that five rekeying requests appear in the 
current rekeying interval in the following order: Join m1, Disjoin m3, Disjoin m0, Join m5, 
and Disjoin m2. The processing of these requests results in the right tree in the same figure.   

 

Figure 6.5. Batch rekeying example 
Marking 
In this example five marking steps are performed, one for each rekeying request. For an 
illustration of the effect of these preprocessing Tables 6.4, 6.5 and 6.6 show the 
development of the marking flags, the LR words, and the PF content in the course of 
marking, respectively. The following points provide an explanation of some items in these 
tables. 

1. The tables should be considered column-wise from left to right. This order corresponds 
to the progress of the marking steps. 

2. At the start of marking, the marking flags of all help-keys are zero, the Processing 
FIFO is empty, and the LR words correspond to the left tree in Figure 6.5.  

3. In Table 6.5, LR words, which are updated in some marking step, appear with grey 
background in the corresponding column.  

4. During marking, the LR words of the help-keys k0-1 and k2-3 are updated twice. 
Nevertheless, the KEYIDs of these keys are pushed into the PF only once. This is 
realized by checking the marking flag: A KEYID is pushed into the PF only if the 
corresponding MF is zero.   
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k0-1 k2-3 k4-5 k6-7 

k0-3 k4-7 
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k1 k4 k5 k6 k7 
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Table 6.4. MF Memory during marking 
  

 
 
 
 
 
 
 
 

Table 6.5. LR Memory during marking 
LR 

Help 
Key Current 

Value 
Join   
m1 

Disjoin 
m3 

Disjoin 
m0 

Join   
m5 

Disjoin 
m2 

k0-1 10 11 11 01 01 01 
k2-3 11 11 10 10 10 00 
k4-5 10 10 10 10 11 11 
k6-7 11 11 11 11 11 11 
k0-3 11 11 11 11 11 10 
k4-7 11 11 11 11 11 11 
k0-7 11 11 11 11 11 11 

 

Table 6.6. PF during marking 
PF 

Current 
Entries 

Join   
m1 

Disjoin 
m3 

Disjoin 
m0 

Join   
m5 

Disjoin 
m2 

   KEYID   
( k4-5 ) 

KEYID    
( k4-5 ) 

 KEYID   
( k2-3 ) 

KEYID   
( k2-3 ) 

KEYID   
( k2-3 ) 

KEYID    
( k2-3 ) Empty 

KEYID   
( k0-1 ) 

KEYID   
( k0-1 ) 

KEYID   
( k0-1 ) 

KEYID   
( k0-1 ) 

KEYID    
( k0-1 ) 

 

5. The final LR value of k2-3 equals 00, this means that k2-3 will become suspended and 
does not need to be updated or encrypted. Nevertheless, its KEYID remains in the 
Processing FIFO to avoid expensive data rearrangement in this FIFO. The processing 
algorithm, later on, early detects this situation and ignores this key.  

6. The KEYID of a help-key represents the address of this help-key in the key memory, 
the address of the corresponding LR word in the LR Memory, and the address of the 
corresponding marking flag in the MF Memory.     

 

 

 

MF 
Help 
Key Current 

Value 
Join    
m1 

Disjoin 
m3 

Disjoin 
m0 

Join    
m5 

Disjoin 
m2 

k0-1 0 1 1 1 1 1 
k2-3 0 0 1 1 1 1 
k4-5 0 0 0 0 1 1 
k6-7 0 0 0 0 0 0 
k0-3 0 1 1 1 1 1 
k4-7 0 0 0 0 1 1 
k0-7 0 1 1 1 1 1 
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Processing 

The Processing Unit receives the final sub-tree data, which appear in the right-most 
columns of Table 6.4, 6.5, and 6.6. The last column of Table 6.4 unveils six marked keys. 
Three of these keys – more accurately, their KEYIDs – are already kept in the Processing 
FIFO. The other three are pushed into the FIFO during processing. Recall that using PF, on 
the one hand, releases the Processing Unit from looking for marked keys. On the other 
hand, PF keeps the order of processing, as keys are written into the PF level by level. This 
enforces the processing of keys of lower levels before those of higher levels.  

In this example, the Processing Unit initially pulls the first KEYID entry from the PF which 
corresponds to k0-1. The LR value is then checked. Since LR(k0-1) = 01, i.e. the key is left 
suspended, this key is not to be updated or encrypted. The KEYID of the father is 
determined and pushed into the processing FIFO. In addition, both the marking flags of k0-1 
and its father are reset. This early resetting of MF(k0-3) helps to avoid a second pushing of 
KEYID(k0-3) into the PF during the processing of k2-3. Tables 6.7 illustrates the 
development of the PF contents during processing. In this table, KEYIDs belonging to the 
same level have the same shade of gray.   

Table 6.7. PF content during processing 
PF content during the processing of:  PF after 

marking k0-1 K2-3 k6-7 k0-3 k4-7 k0-7 
KEYID 
( k4-5 ) 

KEYID      
( k0-3 )     

KEYID 
( k2-3 ) 

KEYID     
( k4-5 ) 

KEYID      
( k0-3 ) 

KEYID     
( k4-7 ) 

KEYID 
( k0-7 )  

KEYID 
( k0-1 ) 

KEYID     
( k2-3 ) 

KEYID     
( k4-5 ) 

KEYID     
( k0-3 ) 

KEYID     
( k4-7 ) 

KEYID 
( k0-7 ) 

Empty 

6.3.3 Pipelined Batch Rekeying 
Pipelined batch rekeying is characterized by a simultaneous execution of the marking and 
the processing algorithms, see Chapter 2. Accordingly, a simultaneous access to the Subtree 
Unit by both the Preprocessing Unit and the Processing Unit must be enabled. From the last 
section, however, it is obvious that such access may cause a data incoherency problem. 
Table 6.8 illustrates the access modes to the data of the Subtree Unit. The first row, for 
instance, indicates that the MF Memory is accessed for write and read operations by both 
the Preprocessing Unit and the Processing Unit. 

      Table 6.8. Access modes on Subtree Unit 

Access mode 
Memory 

Preprocessing Unit Processing Unit 
MF Memory Read, Write Read, Write 
LR Memory Read, Write Read 

Processing FIFO Push Push, Pop 
 

A first solution of this incoherence problem can be achieved by dividing rekeying intervals 
into even and odd intervals and using two subtree units: 
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1. an Even Subtree Unit, which is used by the Preprocessing Unit in even intervals and by 
the Processing Unit in odd intervals, and 

2. an Odd Subtree Unit, which is used by the Preprocessing Unit in odd intervals and by 
the Processing Unit in even intervals.  

While this solution is sufficient to tackle the incoherency of the MF and PF data, it does not 
solve this problem for the LR words. This can be illustrated as follows. The MF and PF 
data relate to a set of marked keys in some rekeying interval. Therefore, these data return to 
their reset values at the end of processing. In contrast, LR words represent the state of all 
help-keys including the marked ones and are not allowed to be written by the Processing 
Unit. Assume that the LR word of a help-key kx-y is initially 00. In an even rekeying interval 
this value is updated to the value LR(kx-y) = 10. This new value is written into the Even 
Subtree Unit. Assume, furthermore, that this key is addressed again in the next interval, 
which is odd. Preprocessing Unit tries to update the LR(kx-y) based its value in the Odd 
Subtree Unit which is still 00, not 01. In summary, doubling the LR Memory does not solve 
the incoherency problem. Therefore, the BRP uses a third LR memory which is read and 
written in both even and odd rekeying intervals to keep up-to-date LR values.  

6.3.4 Implementation and Results 
A prototype of the BRP was realized on the PCI card ADM-XPL equipped with the FPGA 
2VP30, which was described in Chapter 4. The FPGA implements all of the BRP 
components except for the key memory, which is realized using the DDR SDRAM as 
another component of the ADM-XPL card.  

6.3.4.1 Resource Usage and Maximal group size 
Table 6.9 outlines the area usage for the individual BRP components on the FPGA. These 
values, except for the SDRAM size, are obtained by a technology-dependent synthesis of 
the design using the program Synplify Pro 7.3.3 from Synplicity, Inc. [Sy07]. 

The available resources directly affect the supportable group size. For each help-key a total 
of 8 auxiliary bits are needed for saving the MF and LR data, according to the previous 
analysis of pipelined batch rekeying in the last section. For the BRP prototype, 64 BRAMs 
are used to store these data. Accordingly, the following number of help-keys can be 
managed by the BRP: 64 * 16 Kbit /8 = 131,072. This corresponds to a group size of Nmax = 
131,072 members and a level number of 17. The maximal batch size is limited by the 
maximal number of KEYIDs, which can be pushed into the Processing FIFO during 
marking. In the current BRP prototype the PF has a capacity of 512, which allows for a 
maximal batch size of 1024 requests. 

6.3.4.2 BRP Performance  
Though the BRP uses the same encryption and key generation modules as the RTRP, a 
performance comparison between these processors is not proper. This is attributed to the 
fact that the RTRP and the BRP support largely different operations modes.  
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Table 6.9. Resource usage in BRP 

Area usage 

Component 
CLBs % ~ # BRAMs SDRAM 

Instruction FIFO 0 4 -- 

PCI Controller 3 0 -- 
Interface 

Unit 
Output FIFO 0 4 -- 

Main Controller 0.26 0 -- 

Batch Scheduler 0.69 0 -- 
Preprocessing

Unit 
Batch Delay Monitor 0.86 0 -- 

Processing FIFO 0 2 -- Subtree 
Unit LR & MF Memories  0 64 -- 

Processing Controller 1.12 0 -- 

SDRAM Controller 4 0 -- 
Processing 

Unit 
GenEnc 3 14 -- 

Key Tree SDRAM -- -- 4 MB 

 

While the RTRP performs rekeying requests immediately, the BRP allows some waiting 
time under some system constraints. Therefore, using absolute timing figures to compare 
these processors is not meaningful. Furthermore, a reliable comparing of the BRP 
performance with a software solution for batch rekeying is impossible because of the 
difficulty of realizing pipelined batch rekeying using software, among other reasons.  

Nevertheless, the BRP can be operated in a semi-immediate rekeying mode, if it is 
initialized with zero values for both the maximal join and disjoin batch delays JBDmax and 
DBDmax. Recall that this initialization can be performed by executing the instruction 
InitSysParam. In this case the marking break condition will always be fulfilled for the first 
join or disjoin request. In this operation mode, the BRP was compared with the software 
solution, which was described in Section 6.2.3.2. Table 6.10 provides an overview of the 
measurement results of the worst-case join and worst-case disjoin operations.   

 

Table 6.10. BRP performance vs. SW solution 

Operation 
SW1 
(ms) 

SW2 
(ms) 

BRP 
(ms) 

Worst-case join 1.01 ms 0.537 ms ~ 0.016  

Worst-case disjoin 0.998 ms 0.551 ms ~ 0.016 
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7 High-Flexibility Rekeying Processor 

 

7.1 Overview 
This chapter introduces the HW/SW rekeying solution denoted as High-Flexibility 
Rekeying Processor. Section 7.2 motivates the new solution. The generic architecture of the 
HiFlexRP is presented in Section 7.3. The execution of the rekeying algorithms on this 
architecture is then demonstrated in Section 7.4. Section 7.5 illustrates the co-design 
process followed to partition the task onto hardware and software resources and to schedule 
the rekeying subtasks. Section 7.6 concludes the chapter with a comparison to related work.  

7.2 Introduction 
The hardware-only architectures proposed in Chapter 6 provide high rekeying performance 
in comparison to software solutions. However, they lack flexibility. Because of their hard-
wiring, the Real-Time and Batch Rekeying Processors offer low adaptability to various sys-
tem requirements and group conditions. The new architecture proposed in this chapter 
combines the hardware performance with the software flexibility to provide highly efficient 
and, at the same time, high-flexible multicast group rekeying. The flexibility feature of the 
HiFlexRP relates to several aspects. First, for a rekeying system it is desired to add, 
remove, extend, or exchange a cryptographic primitive without affecting the overall system 
functionality. The HiFlexRP supports this feature by means of its modular architecture. 
Second, a multicast group may be specified by some amount of trustability. For a highly 
trustable group, rekeying messages only need to be authenticated against non-members. 
This kind of authentication is denoted as group authentication and can be supported by 
using a simple message authentication code (MAC). In contrast, data source authentication 
must be enabled, if group members do not trust each other and, therefore, need to exactly 
verify the sender of rekeying messages. A means to achieve this tight authentication mode 
relies on digital signing of the rekeying message. For the sake of high flexibility the 
HiFlexRP supports both these authentication modes. Third, in group situations with high 
dynamics it is recommended to reduce rekeying costs by utilizing batch processing, as long 
as certain requirements of security and quality of service are fulfilled. The HiFlexRP allows 
a straightforward switching between real-time and batch rekeying. The functionality of 
batch rekeying mainly differs from real-time rekeying in the tree management, not in the 
underlying cryptographic operations. Since the HiFlexRP performs the tree management 
task as software functions, a switching between these rekeying modes can be supported 
without effect on the processor architecture. 
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7.3 HiFlexRP Architecture  
A key question in the design of complex systems concerns the relationship between the 
algorithm to be performed and the architecture as an execution environment. This 
relationship largely affects the cost, the performance, and the flexibility of the resulting 
system. The main aspect in this algorithm-architecture relationship relates to the cause-
effect direction between algorithm and architecture in the design process. Naturally, an 
algorithm represents the starting point, i.e. the cause, which leads to the design of an 
architecture, i.e. the effect, as an executing platform. However, a strict following of this 
direction enforces a top-down design process which can not deliver optimal results without 
including architectural features such as the execution times of some tasks on some 
resources. Since these features are not available, because the architecture does not yet exist, 
they are included in the design process just in an estimated form. Another problem with this 
design strategy relates to the fact that the resulting architecture is dedicated to a specific 
algorithm and, thus, obstructs future adapting. The opposite direction in the cause-effect 
relationship between algorithm and architecture appears in various forms. The most 
advanced case relies on using prefabricated general-purpose processors and corresponding 
tools for compiling and linking. In this case, the designer totally abstracts from the 
underlying architecture and operates on the algorithm level only. This top-only design 
strategy represents the most straightforward method and is largely employed for software 
development. General-purpose processors, however, only refer a sequential processing of 
tasks, which is not suitable for computationally intensive algorithms with inherent or 
required parallelism. To support this kind of algorithms purpose-specific architectures must 
be developed. The most utilized design strategy in practice is specified by a bottom-up 
nature. After a coarse system partitioning, the design team works on the system hardware 
and software components separately. The complete system is built up when all components 
are available. A verification of the applied HW/SW partition, for instance, can first be 
performed at this late stage in the design process, which is highly inefficient.   

For the design of the HiFlexRP an approach is utilized, which is a mix of both the top-down 
and the bottom-up design strategies. On the bottom level, which is encouraged by the reuse 
of several available components such as the AES and the key generator units, a generic 
architecture is developed. This architecture supports all computation-intensive operations in 
hardware. On the top level, the complete functionality is developed in software which can 
run on the embedded PowerPC processor. In contrast to known top-down approaches, the 
final HW/SW partition and scheduling are determined depending on actual timing features, 
which are provided by means of on-chip measurements of the execution times of different 
tasks on different resources. The partition process will be detailed in Section 7.5.   

Figure 7.1 depicts the generic architecture of the HiFlexRP, which differs from previous 
architectures in Chapter 6 in the following points: 

1. The control-intensive tasks such as tree management are assigned to the PowerPC 
processor. Note that the data and instruction memories can be connected to the 
processor either using the On-Chip Memory bus (DOCM and IOCM), or using the 
Processor Local Bus (PLB), as depicted in Chapter 4. The effect of bus selection will 
be investigated in Section 7.5. 
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 Figure 7.1.  General architecture of HiFlexRP 

 

2. The HiFlexRP supports both static and dynamic management of the key tree. The static 
tree management depends on using a Key State Memory (KSM), as was illustrated in 
Chapter 5. Dynamic tree management utilizes methods, which are similar to those 
known in the field of software data structures. The static tree management was 
investigated thoroughly in the last two chapters. Therefore, the description of the 
HiFlexRP in this chapter will be limited to the dynamic tree management. Nevertheless, 
a comparison between these two modes regarding resource usage and rekeying 
performance will be provided in Section 7.4 and Section 7.5, respectively. 

3. In addition to the forward and backward access control, the new architecture supports 
both group authentication using the message authentication code module (MAC), and 
data source authentication using the modules Secure Hash and ECDSA Sign. All 
considerations in this chapter, however, relate to the complex form of authentication, 
i.e. to the data source authentication. The simple group authentication is omitted, for 
brevity.   

 
Based on this architecture, the HiFlexRP functionality can be described using a 4-layer 
model as depicted in Figure 7.2. This presentation is generic in the sense that some 
elements of the different layers may be absent depending on the design alternatives. For 
example, in the case of dynamic tree management the Key State Memory and, thus, the 
corresponding KSM driver are omitted. On the top layer, rekeying instructions are fetched 
from the Instruction FIFO. After their decoding, the necessary functions for key tree 
management and secure data handling are called. The rekeying results are then prepared 
and written to the Output FIFO. The intensive operations for tree management and security 
are embedded to a dedicated layer to enable modularity. The driver layer supports the 
HW/SW interface and includes functions to initialize the different hardware modules, to 
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load data, to initiate computation, and to fetch processing results. The various hardware 
modules settle on the lowest layer. 

   

Figure 7.2.  Functional layers in HiFlexRP 

7.4 Rekeying Algorithms 
The concept of rekeying algorithm, in this chapter, refers to the processing steps performed 
by the PowerPC processor to execute one of the instructions Join, Disjoin and 
Resynchronize, which were outlined in Chapter 5, see Table 5.5. The execution of the 
instruction Join is the most expensive operation and will be employed, therefore, to 
illustrate the HiFlexRP functionality, representatively. Before detailing the join algorithm, 
the next section depicts the data structure used for dynamic tree management. 

7.4.1 Tree Data Structure 
Key trees differ from search trees in several points, which affect their management mode. 
The most significant difference relates to the fact that key trees are unordered, i.e. there is 
no relation between data saved in the different nodes of the tree. Recall that data stored in 
LKH trees represent keys, which are generated randomly. Therefore, the access to some 
node or leaf in the tree can not rely on the key data. This matter raises some special 
management issues of the key tree during joining, disjoining, or resynchronizing a member:  

1. Finding a position to add a leaf in the join case is independent of the data to be stored at 
this leaf, i.e. the identity key of the member. Therefore, additional information must be 
provided to indicate the addition position. In the case of the HiFlexRP, each node saves 
information on both the shallowest left leaf and the shallowest right leaf in the subtree 
with the corresponding node as a root. By Using this information, a rekeying algorithm 
decides on the join point of a new leaf by looking for the shallowest leaf in the tree 
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Figure 7.4. Member Leaf Map Array (MLMA) 

starting at the root. In addition, the HiFlexRP employs a tree management strategy, 
which expands the tree from the root side to join a member in the case of full trees. By 
this means, the new group key must be encrypted only with the old group key and with 
the identity key of the new member. Not only the relating join request profits from this 
strategy, which is denoted as bottom-up tree growing in this work, but also following 
join and disjoin requests. An in-depth investigation of the advantage of this tree 
management strategy was provided in a student thesis under the author’s supervision 
[Ab05]. This strategy, however, demands a means to check the tree for fullness. For 
this purpose, each node contains additional information on both the deepest left leaf and 
deepest right leaf in the subtree with the corresponding node as a root. Accordingly, 
each node of the key tree is specified as depicted in Figure 7.3. Note that tree leaves 
are special nodes with a zero value for DSLL, DDLL, DSRL and DDRL. In addition 
the pointers LS and RS are initialized with NULL all the time. In contrast to static tree 
management, a tree leaf is not associated with a member identity MEMID. Otherwise, 
complex search operations must be performed to find tree leaves in the case of member 
disjoin or resynchronization. To avoid this, another solution is proposed as illustrated in 
the next point.   

Figure 7.3.  Key node structure in dynamic tree management 

2. In the case of disjoin or resynchronize requests, the HiFlexRP receives the related 
member identity MEMID. To update keys, the corresponding member leaf must be 
found first. For this purpose, an array of pointers to tree leaves is deployed, which is 
indexed by the member identity MEMID. This array is denoted as Member Leaf Map 
Array (MLMA) in this work. Thus, a join request causes, besides setting up a new leaf, 
the creation of a pointer to this leaf, which is inserted into the MLMA at the array 
position indexed by the MEMID of the new member. By this means, an efficient access 
to the leaf is possible, if the related member has to be disjoined or resynchronized in 
future. To avoid data rearranging, the length of MLMA is assumed to be equal to the 
maximal group size. Figure 7.4 illustrates a MLMA for a group of 4 members.  
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Obviously, dynamic tree management demands larger memory space to store auxiliary data 
in comparison to the static tree management, which uses only two bits (LR word) to 
describe the state of a help-key, whereas for identity keys no auxiliary data are required. 
This sparing characteristic of static tree management is attributed to using the physical 
structure of the key memory to keep information on the logical tree topology, as was 
illustrated in Chapter 5. To support a group of 131,072 members, a total of 32 KB is 
required to save the needed LR words. In contrast, a memory size of 4.5 MB is demanded 
to support the same member number using dynamic tree management. This memory size 
can be estimated as follows. A binary LKH tree with 131,072 members includes 131,072 
identity keys and 131,071 help-keys. According to the previous analysis, each key is 
associated with three pointers and four auxiliary data. Furthermore, a MLMA of the size 
131,072 must be created to store pointers to all identity keys. Based on the PowerPC 
architecture, all the pointers have a length of 32 bits. For the tree topology information such 
as the DSLL, a character type of the length 8 bits is used. Thus, the following memory size 
is estimated for the tree auxiliary data: 

131,072 * 32 (for the MLMA) + 262,143 [ 3*32 (for pointers to father, left and right sons) 
+ 4*8 (for the DSLL, DDLL, DSRL, and DDRL) ]= 4.5 MB. 

However, the low memory usage is not the only advantage of static tree management. This 
mode enables, furthermore, higher rekeying performance compared to dynamic tree 
management, as will be depicted by the measurement results in Section 7.5.   

7.4.2 Join Algorithm 
Algorithm 7.1 represents the execution of a join request by the HiFlexRP. This process 
expects the member identity MEMID and the identity key kd of the member to be joined, 
and results in a rekeying message, which is written to the Output FIFO. To tackle the 
complexity of this algorithm, it is divided into four coarse steps, which will be explained in 
the next four sections. Consider, first, the following points regarding the pseudo-code of 
Algorithm 7.1: 

1. The description of this algorithm assumes normal operation, i.e. the initialization of 
data structures, e.g. the key tree, and other software and hardware components is 
proposed to be already done.   

2. The algorithm abstracts from the fetch and decode phase of the rekeying instruction, 
which is performed by the PowerPC processor. 

3. The algorithm abstracts from the tree management mode. However, the underlying 
algorithms perform dynamic tree management. Note that Step 4 is completely 
independent of the tree management mode. 

4. Rekeying messages are digitally signed for the purpose of data source authentication. 
However, no specific cryptographic primitives are predefined at this stage.  

5. This pseudo-code indicates a sequential execution of the different steps of the join 
algorithm. Performance improvements by means of parallelizing different subtasks will 
be treated in Section 7.5.  
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Algorithm 7.1 Join a Member 
Input: MEMID, kd 
Output: Rekeying message RM 
1. Add new leaf (MEMID, kd)      --  Algorithm 7.1.A 
2. Update tree topology data (MEMID)   --  Algorithm 7.1.B 
3. Update keys on the join path (MEMID) → Hash value h --  Algorithm 7.1.C 
4. Sign hash value (h)      --  Algorithm 7.1.D 
 

7.4.2.1 Add new leaf (MEMID, kd)  
Algorithm 7.1.A represents the processing of Step 1 of Algorithm 7.1, which is 
responsible for creating a new leaf with the corresponding identity key kd and appending it 
to the right position in the tree. To allow an efficient access in future, a pointer to this leaf 
is created and inserted into the member leaf map array (MLMA) at the index MEMID, as 
illustrated in the last section. This point is presented in the 4th step of Algorithm 7.1.A 
(counting started from the top of the flowchart). 

To find an insertion point for the new leaf, the HiFlexRP first checks whether the tree is 
full, or not. This is realized by verifying the equality of the four parameters DSLL, DDLL, 
DSRL, and DDRL of the root. A full tree is specified by equal values of all these 
parameters. In such a case, the leaf insertion is straightforward, as depicted on the right side 
of the first conditional branching in the flowchart. This case corresponds to the bottom-up 
tree growing followed by the HiFlexRP, as mentioned in Section 7.4.1. In contrast, for 
incomplete trees, a tree traversing starting from the root must be performed to find out the 
shallowest leaf. In both cases, adding a new leaf demands the creation of a new node, which 
is inserted as a new root in the case of full trees, or at the position of the shallowest leaf, 
otherwise. 

As can be seen from the flowchart, adding a new leaf to the tree is quite complex if 
compared with the case of static tree management. In this case, this task is trivial, as all tree 
leaves have predefined positions in the key memory and a member identity MEMID 
corresponds to the physical address of the corresponding leaf. Thus, adding a new leaf is 
limited to a memory access to write the identity key kd at the memory address MEMID.  

7.4.2.2 Update tree topology data (MEMID) 
After adding a new leaf, the auxiliary data of all nodes on the join path, i.e. DDLL, DDRL, 
DSLL and DSRL, must be updated, see Figure 7.3. This procedure is presented in 
Algorithm 7.1.B for the case of incomplete trees, for clarity. In the case of full trees, only 
the auxiliary data of the new root must be determined. Note that for one node, either the left 
data (DDLL and DSLL) or the right data (DDRL and DSRL) must be updated, depending 
on whether the son of this node on the join path is a left or a right son, respectively. This is 
realized by using the LeftSonFlag, which is initialized with 0, because a new leaf is always 
added as a right son. Updating this flag is not detailed in Algorithm 7.1.B, for simplicity. 
This algorithm assumes, furthermore, that the auxiliary data of a leaf are always equal to 
zero. Example 7.1 provides a brief illustration of this algorithm.   
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Algorithm 7.1.A Add new leaf 
Input: MEMID, kd  
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Algorithm 7.1.B Update tree topology data 
Input: MEMID 
1. node := MLMA[MEMID].F     -- help-key of level 1 
2. LeftSonFlag := 0; 
3. while (node != NULL) do     -- traverse to root  
4. switch LeftSonFlag 
5. case 0: 
6. if node.RS.DDLL > node.RS.DDRL then 
7. node.DDRL := node.RS.DDLL + 1 
8. else node.DDRL := node.RS.DDRL + 1 
9. if node.RS.DSLL > node.RS.DSRL then 
10. node.DSRL := node.RS.DSRL + 1 
11. else node.DSRL := node.RS.DSLL + 1 
12. case 1: 
13. if node.LS.DDLL > node.LS.DDRL then 
14. node.DDLL := node.LS.DDLL + 1 
15. else node.DDLL := node.LS.DDRL + 1 
16. if node.LS.DSLL > node.LS.DSRL then 
17. node.DSLL := node.LS.DSRL + 1 
18. else node.DSLL := node.LS.DSLL + 1 
19. node := node.F 
20. Update LeftSonFlag 
21. end while 
 
Example 7.1 
This example illustrates, how the auxiliary data of the node Root are updated after joining a 
member in the left tree depicted in Algorithm 7.1.A. Assuming that NewNode has already 
updated its data, as depicted in the first row of Table 7.1. As NewNode is a right son of 
Root, case 0 (Step 5 in Algorithm 7.1.B) will be selected, i.e. only the right auxiliary data 
of Root will be updated. Both if-conditions in steps 6 and 9 are false, thus, the statements in 
steps 8 and 11 are executed, which results in a value of 2 for both DDRL and DSRL of 
Root, as depicted in Table 7.1.    

Table 7.1. Updating root auxiliary data for example 7.1 
 DDLL DSLL DDRL DSRL 

NewNode 1 1 1 1 
Root before join 2 2 1 1 
Root after join 2 2 2 2 

 
Again, this procedure in dynamic tree management is more complex than the case of static 
tree management, where only 2 LR bits of each help-key on the join path must be updated. 
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7.4.2.3 Update keys on the join path (MEMID) 
This step of Algorithm 7.1 deals with the actual rekeying including key generation, 
encryption, hashing, and writing the rekeying message into the output FIFO. Algorithm 
7.1.C illustrates the execution of this step by the HiFlexRP. The function Encrypt (ka, kb) 
indicates the encryption of the key ka with the key kb. The function Push takes the 
responsibility of writing rekeying submessages into the Output FIFO. For simplicity, some 
details relating to the output message format are neglected.      

Algorithm 7.1.C Update keys on the join path  
Input: MEMID 
Output: Hash value h    -- hash value of last rekeying submessage 
1. node := MLMA[MEMID].F   -- help-key of level 1 
2. while (node != NULL) do   -- traverse to root 
3. Generate new key kx-y

new 
4. node.key := kx-y

new     
5. RSMl := Encrypt(kx-y

new, node.LS.key) 
6. Push RSMl  
7. Hash RSMl 
8. RSMr := Encrypt(kx-y

new, node.RS.key) 
9. Push RSMr 
10. Hash RSMr 
11. node := node.F 
12. end while 
13. return h      
 

7.4.2.4 Sign hash value (h) 
Signing the hash value represents the most time-consuming step in the join algorithm. The 
HiFlexRP uses the Elliptic Curve Digital Signature Algorithm (ECDSA), which was 
described in Chapter 5. For the further analysis in this chapter, the ECDSA approach is 
given again in Algorithm 7.1.D.   

Algorithm 7.1.D Sing hash value  
Input: h 
Output: Digital signature (r, s) 
1. Select a random integer k from the interval [1, n-1]  
2. Calculate P(x1, y1) = kG 
3. Calculate r = x1(mod n), if r = 0, go to 1 
4. Calculate s = k-1(h + dr)(mod n), if s = 0, go to 1 
5. Push (r, s) 
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7.5 Design Approach and Performance Features 
As introduced in Section 7.2, for the design of the HiFlexRP an approach is employed, 
which relies on a mix of the bottom-up and the top-down design strategies. On the bottom 
level, a generic architecture is designed which allows a comprehensive evaluation of differ-
ent implementation alternatives. On the top level, a software-only solution is produced, 
which runs on the generic architecture. Depending on a real-time measurement of the 
execution times of critical software parts, different tasks are migrated to the hardware 
resources to optimize rekeying performance. After this task migration, a new measurement 
of the execution times is performed to provide information on further task scheduling and 
binding. Consequently, the decision on the final design alternative is based on actual timing 
features of the underlying architecture and not on estimated values, such as in the case of 
system-level design methods. Nevertheless, as will be seen at the end of this section, the 
system-level design tool hCDM [Kl06] was used to verify the performed selection of 
design alternatives, which are illustrated in the next sections. A conformation was proved to 
large extent.   

The design approach in this section will be explained using the example of member join 
task as given in Algorithm 7.1. According to its granularity and data dependencies, this 
task can be divided into two main subtasks denoted as Update and Sign:    

1. Update: This subtask gets a rekeying request RREQ, builds the rekeying submessages 
RSMs, and determines the hash value h of these submessages. Thus, the first three steps 
of Algorithm 7.1 are combined to the Update subtask.  

2. Sign: This subtask represents Step 4, which signs the hash value h resulted from the 
subtask Update to provide data source authentication.  

Figure 7.5 represents the join operation as a task graph. Recall that a RREQ originates 
from the Instruction FIFO. RSMs and the digital signature (r, s) are written into the Output 
FIFO.  The following three sections are organized as follows. First, the test environment 
used to estimate the timing features of the HiFlexRP is presented. Second, several 
implementation alternatives of the subtask Update are investigated. Third, the subtask Sign 
is partitioned into fine-granular subtasks to optimize rekeying performance.  

 

Figure 7.5. Rekeying DFG 
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7.5.1 HiFlexRP Test Environment 
Figure 7.6 illustrates the test environment, which was used to estimate execution time 
values of different subtasks, as a basis for design decisions. For simplicity, this figure only 
depicts the components, which directly relate to the test task. The timing values are 
measured by a special timer, which is connected to the PLB bus. This timer is started and 
stopped by the test software running on the PowerPC processor. With a word width of 32 
bits and a clock frequency of 100 MHz, as a PLB peripheral, time periods up to 4.3 sec can 
be measured by this component.  

 

Figure 7.6. Test environment 
 

For the purpose of visualization, the measured timing values are sent to the host over a 
UART interface. The Instruction and Output FIFOs are included to the test environment to 
consider the time intervals elapsed by fetching and decoding of new requests and by writing 
of rekeying data, respectively. As can be seen in Figure 7.6, these FIFOs are bypassed to 
accelerate the measurement: Instead of loading from the host, the rekeying requests are 
written from the test software into the Output FIFO and from there they are directed into 
the Instruction FIFO. The write of rekeying instructions is performed before starting the 
time measurement and, therefore, does not affect timing results. Rekeying submessages are 
also directed into Instruction FIFO. By this means, the test software can read these data and 
perform on-chip functional verification, depending on defined test vectors. This verification 
is performed after stopping the timer to keep reliable timing results. 

Algorithm 7.2 illustrates the measurement approach followed to estimate the time elapsed 
by some rekeying request. First the tree is initialized with a desired member number n0. 
Afterwards, a rekeying request according to the format defined in Chapter 5 is written to 
the Output FIFO, where this request is bypassed to the Instruction FIFO. As following 
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steps, the timer is triggered, the rekeying is executed, and the timer is stopped immediately 
at the end of rekeying execution. Next, the rekeying message is fetched from the Instruction 
FIFO and is verified by comparing with predefined test vectors. In the case of functional 
correctness, the time values are read from the timer, scaled to the desired time units and 
sent to display on the host over the UART interface. Otherwise, an error is notified by 
sending a corresponding message.      

Algorithm 7.2. Rekeying performance measurement   
Output: Timing values 
1. Initialize tree with n0 members   
2. Initialize the Instruction FIFO with the rekeying request. 
3. Start timer 
4. Initiate rekeying      -- e.g. Algorithm 7.1 in join case 
5. Stop timer 
6. Verify rekeying result 
7. if rekeying result is correct then  
8. Estimate performance 
9. return timing values 
10. else 
11. return “Rekeying error” 
 
Note that the test environment enables also the measurement of subtask execution times 
such as the subtasks Update, Sign, or even partial subtasks thereof. In such cases, Step 4 of 
Algorithm 7.2 is split and the timer starts and stops are inserted at the appropriate points of 
the data flow graph.      

7.5.2 Update Subtask Design Alternatives 
As mentioned before, the subtask Update includes all the processing steps starting with the 
instruction decoding and ending at determining the hash value of the last rekeying 
submessage. This subtask is both control-intensive, regarding the tree management, and 
computation-intensive, regarding the cryptographic key generation, encryption, and secure 
hashing. The realization of the subtask Update is affected by numerous factors, e.g.: 

1. The tree management mode: static or dynamic. 

2. The realization of cryptographic primitives: software, hardware, or hardware with 
resource sharing. 

3. Memory and caching, BRAM or SDRAM, with or without caching. 

4. Bus structure, PLB, OPB or OCM.  

Finding the optimal design alternative is a hard problem because of the high interaction 
among these factors. For a comprehensive analysis, 108 design alternatives for the subtask 
Update were realized and evaluated. For each solution, the execution times of the worst-
case disjoin and worst-case join operations were measured as a function of the group size, 
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which ranges from 0 to 131,072. The estimation of execution times is based on Algorithm 
7.2. For an efficient measurement, the test software (see Figure 7.6) performs a routine, 
which initializes the group with 131,072 members stepwise, and interrupts this initialization 
at the points corresponding to a worst-case join or worst-case disjoin. At these points, the 
join or disjoin operation is executed and measured, before the initialization is continued. 
Lastly, the test software prepares the measured timing data for a presentation using 
Mathematica [Wo07] and sends these data to the host over the UART interface. In the 
following some design alternatives are discussed representatively, which depicts some 
interesting issues in the design of the HiFlexRP: 

7.5.2.1 Bus selection and caching 
As mentioned in Chapter 4, the embedded processor PPC405 features a Harvard 
architecture with dedicated data and instruction memory interfaces. System memories can 
be connected either to the Processor Local Bus (PLB) or to the On-Chip Memory bus 
(OCM). The decision on the appropriate memory bus must take the overall system and the 
running application into consideration. While the PLB offers 64-bit data busses, compared 
to 32-bit in the case of OCM, the last is dedicated for memories, i.e. it is not shared by 
other system components like the PLB. Another decision criterion relates to the 
cacheability of these memories. Because of dedicating the OCM bus to storage resources, 
memories connected to this bus do not support caching, in contrast to PLB memories. 
Therefore, several design alternatives with different memory and bus configurations are 
evaluated for the HiFlexRP design. Particularly, the worst-case join costs were measured 
for three systems with OCM memories, with cached PLB memories, and with non-cached 
PLB memories. All these systems were tested in two cases: 

1. Hardware-only realizations of the cryptographic primitives for key generation, 
encryption, and secure hashing, see Figure 7.7. 

2. Software-only realizations of these operations, see Figure 7.8. 

All these design alternatives use static tree management. Other implementations with 
dynamic tree management, which delivers comparable results, are not reported here for 
brevity. 

Recall that the measured execution times here only relate to the subtask Update, i.e. the 
time elapsed for determining the digital signature of the hash value is not included. The 
diagrams presented in Figure 7.7 and Figure 7.8 conform the logarithmic relation of 
rekeying costs to the group size in the LKH algorithm. Note that the x-axis in these 
diagrams has a half-logarithmic scale.  

Obviously, the best performance of the subtask Update can be obtained by using PLB 
instruction and data memories with caching, regardless of the implementation of the 
security modules and the tree management mode. In contrast, OCM memories are superior 
to PLB memories, if the last are used without caching. Therefore, the next experiments 
were performed on systems with cached PLB memories.  
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Figure 7.7. Worst-case join cost with hardware security modules 

 

 

 
Figure 7.8. Worst-case join costs with software security functions 

  

7.5.2.2 Hardware vs. software security modules  
An essential design issue for the HiFlexRP relates to accelerating the time-consuming 
cryptographic operations. Figure 7.9 compares the performance of the subtask Update for 
three realizations of the cryptographic primitives: a software-only, a hardware-only, and a 
mixed HW/SW realization. The HW/SW alternative, referred to as HS in Figure 7.9, is 
based on a shared AES core for the different security functions. All these system 
realizations are based on dynamic tree management. Obviously, the hardware-only 
implementation provides the highest performance compared to the other two design 
alternatives. Recall that this performance substantially influences the system security and 
QoS. Furthermore, lower join and disjoin costs enable supporting larger dynamic groups. In 
spite of its high performance compared to software, the HS alternative restricts the design 
flexibility, e.g. in the case of using different hardware key generation module.  
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Figure 7.9. Worst-case join costs (HW vs. SW vs. HS) 

7.5.2.3 Static vs. dynamic tree management 
In Section 7.4.1, a quantitative comparison between static and dynamic tree management 
modes regarding memory utilization was given. With 4.5 MB needed to store tree auxiliary 
data in the dynamic case compared to 32 KB in the static case, the superiority of the last is 
evident. Regarding performance, Section 7.4.2 illustrated the dynamic tree management 
and qualitatively outlined the differences to the static management mode. To evaluate this 
pre-estimation, a timing measurement was performed for two design alternatives with pure 
hardware security modules, see Figure 7.10. Obviously, the static tree management is 
superior to the dynamic tree management in respect of rekeying performance, too.    

 

 

Figure 7.10. Worst-case join costs (static vs. dynamic tree management) 
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7.5.3 Sign Subtask and HW/SW Partitioning 
In this section, the complete join process will be treated with both the subtasks Update and 
Sign, see Figure 7.5. The following time values were measured for a software-only 
implementation of these two subtasks. 

Update (SW) Sign (SW) 

2,108 µs 52,574 µs 

 
From this table it is obvious that the subtask Sign dominates the rekeying costs. Conse-
quently, hardware acceleration for this task seems to be beneficial. For this purpose, the 
ECDSA algorithm is analyzed in more detail. When investigating the data dependencies in 
Algorithm 7.1.D, the subtask Sign can be divided into the following four subtasks, which 
are depicted in Figure 7.11.  

1. PreEcMult: This subtask includes the generation and reduction of the random number 
k and represents Step 1 in Algorithm 7.1.D.  

2. EcMult: The scalar multiplication – Step 2 in the ECDSA algorithm – is realized by 
this subtask. 

3. ModInv: This subtask performs the modular inversion of k needed in Step 4. 

4. PostEcMult: Steps 3 and 4 in the algorithm - except for the modular inversion - are 
associated with this subtask. 

Note that the modular inversion is the second most expensive operation next to the scalar 
multiplication. Therefore, a dedicated subtask is assigned to this operation. 

  
Figure 7.11. Extended rekeying DFG 
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The extended data flow graph (DFG) in Figure 7.11 highlights a considerable amount of 
inherent parallelism in the rekeying task. The Update subtask, for example, may be 
executed in parallel to the subtasks PreEcMult, EcMult, and/or ModInv. For an accurate 
decision about a suitable parallelization, timing information on the different subtasks is 
required. For this purpose, new measurements of the software implementation according to 
the refined assignments given above were performed, which resulted in the following 
execution times of these five atomic subtasks. 

 
Update (SW) PreEcMult (SW) EcMult (SW) ModInv (SW) PostEcMult (SW) 

2,108 µs 210 µs 49,517 µs 2,449 µs 399 µs 

7.5.3.1 HW/SW-Realization 1 (HW/SW-1) 
From the previous table it can be seen that the scalar multiplication is by far the most 
expensive subtask and, therefore, lends itself to hardware acceleration. 

The hardware implementation is based on the architecture proposed in [La06]. This 
architecture employs a hierarchy of three abstraction levels to manage the complexity of the 
EC point multiplication. The upper two levels mainly consist of finite state machines, 
which perform the control tasks necessary for the point multiplication (based on a variant of 
Lim/Lee exponentiation [Li94]) and the underlying operations for point doubling and 
addition (according to the algorithms specified in IEEE P1363 [Ie00]). The lowest level 
realizes the actual computations in the finite field. For the most critical operation, i.e. the 
modular multiplication, the Montgomery algorithm was employed [Mo85]. 

The hardware realization does not only improve the performance of EcMult considerably, 
but also enables the exploitation of the inherent parallelism in the rekeying task shown in 
Figure 7.11. By using this hardware module, a new time measurement was performed for 
this partitioning variant, which resulted in the following timing values. 

 
Update (SW) PreEcMult (SW) EcMult (HW) ModInv (SW) PostEcMult (SW) 

2,108 µs 210 µs 3,302 µs 2,449 µs 399 µs 

 

Based on these timing values and the DFG presented in Figure 7.11, a task scheduling can 
now be employed as depicted in Figure 7.12. To avoid that the software has to wait for the 
EcMult result, this subtask must be started as soon as possible. This demands the execution 
of PreEcMult as the first subtask in the task profile in order to supply EcMult with the input 
value k. In contrast, when starting with Update, EcMult would be forced to start at the same 
time as ModInv at the earliest. This causes the software subtasks to wait for about 853 µs 
(= 3,302 µs - 2,449 µs). Note that Figure 7.12 and subsequent schedules are not to scale. 
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Figure 7.12. Task scheduling for design variant HW/SW-1 

The design alternative HW/SW-1 results in a worst-case join time of 5,164 µs. Compared to 
the software-only solution this corresponds to a performance improvement of about 10.6 
times. However, the parallelization possibilities in the rekeying task are not completely 
exploited yet. ModInv is data-independent of Update and EcMult and can therefore be 
executed in parallel to them. For this purpose, an additional hardware resource is necessary 
to execute either ModInv or Update, as depicted in the next design alternatives. 

7.5.3.2 HW/SW-Realization 2 (HW/SW-2) 
For this design alternative a dedicated hardware module for modular inversion was 
implemented, which resulted in an inversion time of just 1,091 µs. The relatively small 
speed-up is attributed to using a different modular inversion scheme in hardware (based the 
Fermat’s little theorem [Me96]) than the one employed in software (based on the extended 
Euclidean algorithm [Me96]), for reuse reasons. Nevertheless, the overall execution time 
for the worst-case join operation equals now 3,850 µs, which corresponds to performance 
improvement of about 14.2 times compared to the software-only implementation. Figure 
7.13 depicts the scheduling for this design alternative.  

 

 
Figure 7.13. Task scheduling for design variant HW/SW-2 
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7.5.3.3 HW/SW-Realization 3 (HW/SW-3) 
This design alternative accelerates the Update task using hardware components for key 
generation, encryption, and hash function. In this case, the ModInv subtask runs on the 
PowerPC processor. The scheduling for this design alternative is depicted in Figure 7.14. 
The performance improvement in this case equals the one resulting from the HW/SW-2 
variant. Note that the part of the subtask Update regarding key tree management is still 
executed on software. This does not affect the scheduling because of the free gap in the 
software resources between the execution of ModInv and PostEcMult.   

 
Figure 7.14. Task scheduling for design variant HW/SW-3 

 
Resource usage consideration  
So far, the resource usage in the different realizations was not taken into account, just their 
execution time. From this point of view, variants HW/SW-2 and HW/SW-3 seem to be 
fully equivalent. However, taking a look at the resource usage of these solutions, as detailed 
in Table 7.2, it can be seen that HW/SW-2 is more efficient in terms of resource usage. 
Nevertheless, the system designer may prefer the alternative HW/SW-3 in case that the 
system’s flexibility and expandability are of high interest. In this case, the dedicated 
hardware modules for key generation, symmetric encryption and hash functions can be 
reused for other cryptographic applications beyond rekeying.  

Table 7.2. Resource usage and overall performance 

Resource Usage on Virtex-II Pro Implementation 
Variant BRAMs Slices 

Worst-case 
Join Time 

SW 50 ≈ 36% 2,347 ≈ 18% 54,679 µs 
HW/SW-1 53 ≈ 38% 4,667 ≈ 34%   5,164 µs 
HW/SW-2 54 ≈ 39% 5,225 ≈ 38%   3,910 µs 
HW-SW-3 83 ≈ 62% 8,420 ≈ 61%   3,910 µs 
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Remark on automated design approaches 
The design task of the HiFlexRP was coined by a small design space because of the 
availability of already implemented hardware modules, such as AES-core. Therefore, a 
pure top-down design process was not applicable. Nevertheless, the design space 
exploration tool hCDM [Kl06] was used afterwards for comparison. This tool expects as 
input a task graph and some constraints to define which tasks may be executed on which 
resources. Based on this information the design space is explored and different Pareto-
optimal solutions are proposed to the designer, who can decide on one thereof. 

For the HiFlexRP case, this tool generated the variants SW-only, HW/SW-1, and HW/SW-
2. The variant HW/SW-3, which offers higher flexibility for future expandability, was not 
generated automatically, since flexibility is not represented as a metric in the objective 
function of this tool.  

7.6 HiFlexRP vs. Related Work 
The overall execution time of the worst-case join rekeying was measured to be 3.91ms as 
shown in Figure 7.14. Note that the worst-case disjoin time equals this value, too. This is 
because of the high similarity of these two operations, on the one hand. The whole Update 
subtask is executed parallel to other subtasks with longer execution times, on the other. To 
point out the advantage of the HiFlexRP with regard to performance, Table 7.3 depicts a 
comparison with related work, which provides timing information on rekeying costs based 
on prototype measurements including data source authentication [Wo00], [Am04]. Note 
that the extremely large timing value given in [Am04] represents the “total elapsed time 
from the moment the group membership event happens until the time when the group key 
agreement finishes and the application is notified about the group change and the new 
key.” 

  Table 7.3. Performance comparison 

 [Am04] [Wo00] HiFlexRP 

Encryption n/a DES-CBC AES-128 

Key generation n/a n/a ANSI X9.17 

Secure hashing n/a MD5 AES-based Meyer hash

Cryptographic
primitives 

Digital signing RSA-1024 RSA-512 ECDSA-128 

Group size 50 8,192 131,072 

Execution time Up to 640 ms 12 ms – 16.2 ms 3.91 ms 

Measurement conditions 
Total elapsed time 
for disjoin inclu-

ding protocol costs 

Average-case 
disjoin, server 

processing time only

Worst case disjoin, 
HiFlexRP processing 

time only 
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8 Conclusion 

 
This dissertation presented several novel solutions for the group key management in secure 
multicast. To keep clarity, the subjects were illustrated with rather high abstraction from 
details, which are not of fundamental significance for the general understanding. Thus, 
neither considerations to optimize the simulation process of the rekeying benchmark, nor 
details on the driver functionality of the HiFlexRP were addressed, for instance. At 
different points of this document it was referred to special constraints for some performed 
studies and it was pointed to future work to complete or refine these subjects.  

Several items for the further development of this work are scheduled or already being 
treated. Three points thereof are mentioned in the following.  

Extending the rekeying benchmark  
The current benchmark prototype only considers the costs of cryptographic operations. 
Future development will take other cost factors on the server side and the communication 
overhead into account. In addition, further rekeying algorithms will be included and 
evaluated to allow more insight into proposed rekeying solutions in related work. 

Networking the rekeying processors 
The XUP card provides a 10/100 Ethernet port and the embedded design kit (EDK) from 
Xilinx provides an Ethernet controller as IP core for evaluation purposes. The controller 
can be run on the FPGA for eight hours free of licence, which is sufficient for prototyping. 
At the moment it is being tried to connect the rekeying processor to the network over this 
interface. By this means, the rekeying messages can be sent to group members without 
involving the registration and authentication server.  

Automatic reduction of bus transactions 
The design process of the HiFlexRP has raised a highly important and sophisticated 
problem. The background of this problem and the objective of its solution are presented in 
the following, in brief. 

Neglecting the digital signing, it can be seen that the performance of the Real-Time 
Rekeying Processor exceeds that of the High-Flexibility Rekeying Processor. For the worst 
case join, 15 µs are necessary in the RTRP compared to 140 µs in the HiFlexRP. Note, 
however, that different group sizes are supported by these processors and that hashing costs 
are only included in the case of HiFlexRP. Nevertheless, the HiFlexRP offers lower 
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rekeying performance because of the high data transfer between the hardware modules and 
the software resources over the PLB bus. Based on the followed design strategy, the 
hardware modules for key generation, encryption, and hashing are realized separately and 
then connected to the PLB bus. The data dependencies between these modules were not 
considered in this design approach. When investigating the subtask Update, it can be seen 
that every generated key must be encrypted and every encrypted key must be hashed. Thus, 
the subtask Update is specified by a high data dependency between its subtasks. In the 
current realization, this results in high bus transfer overhead, which deteriorates the overall 
performance of the Update operation.  

An evident solution to this problem relates to reducing the bus transactions over the PLB by 
replacing them by transfers over internal channels between the different modules. A manual 
transformation of the current design to a new design with lower bus transaction overhead, 
however, is largely time-consuming since a considerable part of the software functionality 
must be migrated to hardware.  

An essential research work in the near future will address this transformation by means of 
computer-aided methods. For this purpose, an approach will be developed, which generates 
an optimized design alternative, based on a first variant, which can be the result of a 
bottom-up design process enforced by using IP cores. The desired approach includes three 
main steps. First, the input design is entered and analyzed. Second, based on the analyzed 
input an optimized alternative is searched by applying system-level design methods. 
Thirdly, the selected design alternative is synthesized for implementation on the same 
platform. An essential advantage of this approach relates to its performance because of the 
starting with an actual solution und due to the availability of several blocks, which remain 
unchanged or are just lightly modified. By these means the synthesis process can be 
accelerated considerably.  
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