

Group Key Management:
Algorithms, Benchmarking, and Reconfigurable

Architectures

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

von

Dipl.-Ing. Abdulhadi Shoufan

aus Homs-Syrien

Referenten der Arbeit: Prof. Dr.-Ing. Sorin A. Huss
 Prof. Dr.-Ing. Klaus D. Müller-Glaser

Tag der Einreichung: 06.02.2007
Tag der mündlichen Prüfung: 30.03.2007

Darmstadt 2007
D17

ii

iii

To Mother & Father
and to

Madieha

iv

ZUSAMMENFASSUNG

v

Zusammenfassung

IP Multicast ist eine effiziente Lösung für Gruppenkommunikation über das Internet.
Sowohl die Serverressourcen als auch die Netzbandbreite werden durch diese neue
Technologie entlastet. Spezielle Probleme und Herausforderungen entstehen allerdings,
wenn die Gruppenkommunikation Sicherheitsanforderungen erfüllen muss. Ein wichtiger
Aspekt bezieht sich auf die gemeinsame Nutzung eines Kommunikationsschlüssels. Dieser
Schlüssel muss nämlich jedes Mal aktualisiert und verteilt werden, wenn die Gruppen-
zusammensetzung sich ändert. Dieser Prozess, der als Rekeying bezeichnet wird, wirft ein
Skalierbarkeitsproblem für große dynamische Gruppen auf: Das Rekeying basiert auf
rechenaufwendigen kryptographischen Operationen und erfordert die Übertragung von
Rekeyingnachrichten. Das Skalierbarkeitsproblem zeichnet sich daher durch ein
Rechenoverhead auf der Serverseite und durch ein Kommunikationsoverhead im Über-
tragungsnetzwerk aus.

In der Literatur wurden zahlreiche Architekturen, Algorithmen und Protokolle publiziert,
die dieses Skalierbarkeitsproblem adressieren. Lösungen zur Optimierung der Rekeying-
performanz konzentrieren sich auf die Minimierung der Anzahl der erforderlichen krypto-
graphischen Operationen und somit der Länge der Rekeyingnachrichten. Eine akzeptierte
Strategie zur Reduzierung der Rekeyingkosten verwendet eine Stapelverarbeitung von
Rekeyinganfragen, die innerhalb eines festgelegten Rekeyingintervalls gesammelt werden.
Eine Spezifizierung der maximalen Länge dieses Intervalls fehlt jedoch in der Literatur
bisher. Zu lange Rekeyingintervalle verursachen längere Wartezeiten für neue Mitglieder
und längere Zugriffszeiten für Verlassende. Folglich ist die Stapelverarbeitung von Rekey-
inganfragen stets verbunden mit einem Verlust an Dienstgüte einerseits und an der
Systemsicherheit andererseits. Aufgrund der Neuigkeit und der Komplexität dieses
Forschungsgebiets vermissen die präsentierten Lösungen eine einheitliche Methode zur
Abschätzung der Rekeyingperformanz. In den meisten Fällen wird dadurch eine Evaluie-
rung von verschiedenen Rekeyingalgorithmen enorm erschwert.

Die vorliegende Dissertation erörtert die oben erwähnten drei Probleme des
Gruppenrekeying. Erstens wird eine Methode präsentiert, die die Probleme der Dienstgüte
und der Sicherheit im Stapelrekeying adressiert. Diese Methode wird als Ereignis-
gesteuertes Stapelrekeying bezeichnet. Zweitens wird ein Rekeyingbenchmark eingeführt,
der einen einheitlichen zuverlässigen Weg zur Abschätzung der Rekeyingperformanz
verschiedener Rekeyingalgorithmen darstellt. Drittens werden drei innovative Hardware-
und HW/SW-Architekturen zur Optimierung der Rekeyingperformanz präsentiert. Im

vi

Unterschied zu bisherigen Lösungen wird die Rekeyingperformanz durch diese Architek-
turen nicht nur auf der algorithmischen Rekeyingebene optimiert, sondern auf der kypto-
graphischen Ebene und auf der Plattformebene. Die neuen Architekturen werden als der
Real-Time Rekeying Processor, der Batch Rekeying Processor und der High-Flexibility
Rekeying Processor bezeichnet.

PREFACE

vii

Preface

IP multicast is an efficient solution for group communication over the Internet, as both the
sender resources and the network bandwidth are relieved with the aid of this emerging
technology. However, this superiority suffers, when the group communication must fulfill
some security requirements. An essential issue relates to sharing the communication key.
Particularly, this key must be updated and securely distributed, every time the group
membership changes. This process, which is denoted as group rekeying, raises a scalability
problem in large dynamic groups: Rekeying is based on computationally extensive
cryptographic operations and on the dissemination of rekeying messages. Thus, the
scalability problem presents itself by a computation overhead on both the sender and the
receiver sides, and by a communication overhead in the network.

Numerous architectures, algorithms, and protocols have been proposed in the literature to
cope with this scalability problem. Related work on optimizing rekeying performance
mostly concentrates on minimizing the number of required cryptographic operations and
thus the length of the rekeying message. An accepted strategy to reduce rekeying costs
utilizes batch processing of rekeying requests, which are summed up during a rekeying
interval. However, a specification of the maximal length of this rekeying interval is not
provided, so far. Too long rekeying intervals cause longer waiting times for new members
and longer access times for removed ones. Consequently, a problem of QoS and security is
associated with batch rekeying. Because of its novelty and complexity, the work on
rekeying optimization lacks a unified way to estimate rekeying performance. In most cases,
therefore, an evaluation of different algorithms is impossible.

The presented dissertation addresses the above three problems of group rekeying. Firstly,
an approach, denoted as Even-Driven Batch Rekeying, is proposed to tackle the QoS and
security problems caused by long rekeying intervals in batch rekeying. Secondly, to enable
a reliable evaluation of rekeying algorithms, a Rekeying Benchmark is introduced, which
provides a unified way to estimate the performance of different rekeying algorithms on the
system level. Thirdly, three novel hardware and hardware/software architectures are
presented for optimizing the rekeying performance. In contrast to related work, these
architectures, denoted as the Real-Time Rekeying Processor, the Batch Rekeying Processor,
and the High-Flexibility Rekeying Processor, optimize rekeying not only on the rekeying
algorithm level, but also on the cryptography and platform levels.

viii

ACKNOWLEDGMENTS

ix

Acknowledgments

This work developed during my activity as scientific assistant in the Integrated Circuits and
Systems Laboratory at the University of Technology Darmstadt. Though a doctorial thesis
is related to its author, I can not forget the great support of other people, estimable people.

A grateful word of thanks to

Prof. Dr. Sorin A. Huss, my advisor. Only with his directing, without to enforce, his
advices, without to restrict, and with his energy, without to disturb, it was possible to
accomplish this work in the best working atmosphere and in the right time.

Prof. Dr. Klaus D. Mueller-Glaser, my co-referee for taking the time and making the effort
to read this work and comment it constructively.

All my colleagues for the nice time and the friendly cooperation, Maxim Anikeev, Tom
Assmuth, Markus Ernst, Prih Hastono, Stephan Hermanns, Dan Honciuc, Elisabeth
Hudson, Adeel Israr, Michael Jung, Andreas Kuehn, Joseph Laschgari, Ralf Laue, Steffen
Klupsch, Stephan Klaus, Tim Sander, Maria Tiedemann, Juergen Weber, Song Yuan, and
Kaiping Zeng.

All the students, who substantially supported the realizations presented in this thesis and
other research work, Mujtaba Abrooy, Peter Bungert, Murtuza Cutleriwala, Zhaoming Dai,
Torsten Hahn, Nico Hubert, Marcus Lindner, Dominik Litzinger, Felix Madlener, Joana
Otetelisanu, Sven Rettig, Abdeloahid Tadoo, Bieanvenu Tatsi, and Tobias Teichner.

My teacher and role model Zaki Ramdoun.

My mother and my father for their love, generosity, patience, and stamina. Despite the
modest means, they managed to bring four of five sons and the only daughter to complete
study.

My wife Madieha for the wonderful years with her, for her advices and her comments
regarding this work.

Syria, which produced me, and Germany, which refined me.

x

CONTENT

xi

Content

Zusammenfassung... v
Preface.. vii
Acknowledgments.. ix
Content.. xi
1 Introduction ... 1

1.1 Overview .. 1
1.2 IP Multicast... 1

1.2.1 IP Multicast Protocols.. 2
1.2.2 IP Multicast Applications .. 4

1.3 Information Security... 5
1.3.1 Threats, Requirements, and Solutions.. 5
1.3.2 Cryptography ... 6

1.4 Secure Multicast ... 7
1.4.1 Secure Multicast Problem Areas.. 8
1.4.2 Group Rekeying ... 9

1.5 Work Objectives and Outline ... 12
2 QoS and Access Control Aware Batch Rekeying ... 15

2.1 Overview .. 15
2.2 Batch Rekeying... 15
2.3 Problems of Batch Rekeying .. 16

2.3.1 Join Batch Delay .. 17
2.3.2 Disjoin Batch Delay... 17

2.4 Optimized Batch Rekeying... 18
2.4.1 Optimized Cryptographic Algorithms and Platforms 18
2.4.2 Pipelined Batch Rekeying.. 19
2.4.3 Event-driven Batch Rekeying .. 19

2.5 Case Studies.. 21
2.6 Summary... 24

3 Rekeying Benchmark .. 25
3.1 Overview .. 25
3.2 Rekeying Performance Evaluation Problem... 25
3.3 Rekeying Benchmark Design Concept ... 28

3.3.1 Benchmark Abstraction Model .. 28
3.3.2 Benchmark Data Flow ... 30

xii

3.4 Rekeying Benchmark as a Simulation Environment .. 31
3.4.1 Cost metrics and Evaluation Criteria ... 31
3.4.2 Simulation Modes .. 33

3.5 Rekeying Benchmark Design ... 36
3.5.1 General Architecture .. 36
3.5.2 Request Generator.. 38
3.5.3 Algorithm Manager.. 45
3.5.4 Performance Evaluator... 47

3.6 Implementation ... 50
3.7 Case Study (LKH Tree Rebalancing) ... 52

4 Reconfigurable Architectures .. 55
4.1 Overview... 55
4.2 Introduction... 55
4.3 Field Programmable Gate Arrays ... 56
4.4 FPGA Design Process... 57
4.5 Deployed Hardware Platforms.. 60

4.5.1 Virtex-II Pro... 60
4.5.2 Hardware Cards.. 61

5 New Architectures for Group Rekeying.. 65
5.1 Overview... 65
5.2 Introduction... 65
5.3 Rekeying Security Requirements.. 67
5.4 General Architecture... 68
5.5 Key Tree Management.. 69

5.5.1 Key Memory Architecture ... 69
5.5.2 Key State Memory ... 71
5.5.3 Tree Traversing .. 72
5.5.4 Rekeying Submessage Identification ... 74

5.6 Hardware Security Modules ... 75
5.6.1 Encryption Module... 77
5.6.2 Key Generator .. 78
5.6.3 Hash Module .. 80
5.6.4 MAC Module ... 81
5.6.5 Digital Signature Module... 81

5.7 Input/Output Units .. 82
5.7.1 Instruction Set and Input Format.. 83
5.7.2 Rekeying Message Format... 84

6 Real-Time and Batch Rekeying Processors... 87
6.1 Overview... 87
6.2 Real-Time Rekeying Processor (RTRP)... 87

6.2.1 Architecture.. 87
6.2.2 Instruction Set and Rekeying Algorithms .. 88
6.2.3 Implementation and Results ... 90

6.3 Batch Rekeying Processor (BRP) ... 93
6.3.1 Architecture.. 93
6.3.2 Instruction Set and Rekeying Algorithms .. 96
6.3.3 Pipelined Batch Rekeying .. 100
6.3.4 Implementation and Results ... 101

CONTENT

xiii

7 High-Flexibility Rekeying Processor .. 103
7.1 Overview .. 103
7.2 Introduction .. 103
7.3 HiFlexRP Architecture ... 104
7.4 Rekeying Algorithms.. 106

7.4.1 Tree Data Structure .. 106
7.4.2 Join Algorithm ... 108

7.5 Design Approach and Performance Features.. 113
7.5.1 HiFlexRP Test Environment.. 114
7.5.2 Update Subtask Design Alternatives.. 115
7.5.3 Sign Subtask and HW/SW Partitioning ... 119

7.6 HiFlexRP vs. Related Work ... 123
8 Conclusion... 125
Bibliography .. 127
List of Publications .. 135
List of Supervised Theses .. 137

CHAPTER 1 INTRODUCTION

1

1 Introduction

1.1 Overview
This chapter introduces to the scope of the presented dissertation, specifies its objectives,
and outlines it. Section 1.2 illustrates some basics of IP multicast and its advantages.
Section 1.3 briefly highlights the role of security in information systems and explains
cryptographic methods as essential security means. Section 1.4 represents the problems
resulting from applying security models of unicast communication to IP multicast. An
essential issue relates to the group key management which is detailed as well in this section
with an overview of related work. Section 1.5 lastly depicts the three main objectives of
this work and outlines the methods and solutions to attain these objectives. The structure of
the dissertation is provided in this concluding section, too.

1.2 IP Multicast
Various Internet applications rely on group communication in either one-to-many or in
many-to-many mode. One way to support this communication relates to sending data
packets from the sender to all receivers using the well-known unicast technique. However,
this approach does not scale and results in overloading both the sender resources and the
network. Figure 1.1 represents an example for this communication mode, where the hosts
H1 to H5 build a group and H1 is trying to deliver a data packet to other group members.
As can be seen, the data packet is duplicated 17 times before it arrives the destination hosts.
Note that the packets are transferred over the shortest path to destinations. This is achieved
by the different network routers (R) which execute a routing algorithm based on the line
cost values depicted in this figure. Some solutions hand over the task of data duplication
from the sender host to a dedicated server, which is denoted as multipoint control unit
(MCU) in the scope of video conferencing. By this means the sender resources are relieved
but the network traffic does not ease as data packets are still transmitted in multiple copies.

A scalable group communication demands the dissemination of just one copy of the data
packet over the network. IP Multicast represents a technique that fulfills this requirement as
depicted in Figure 1.2. Based on its special address class a multicast data packet is
recognized by multicast routers (MR), which duplicate this packet as necessary. Multicast
IP-addresses belong to class-D, which assigns 28 bits (from a total of 32 bits) to identify
different groups. Thus, IP multicast can support up to 250 million different groups. When

1.2 IP MULTICAST

2

investigating this routing technology, two questions arise. Firstly, how do multicast routers
learn the hosts belonging to some group? This question results from the fact that class-D
addresses do not contain a field, which specifies the subnet to which a host belongs, as it is
the case in other IP-address classes for unicast communication. Secondly, how does routing
perform? These two questions are first answered in the next section briefly. Afterwards,
some application scenarios of IP multicast are described and the associated difficulties in
employing this communication technology are outlined.

Figure 1.1. Example for unicast-based group communication

1.2.1 IP Multicast Protocols
For an efficient multicast routing each router must be kept informed about all the running
multicast groups and about the belonging of other multicast routers to these groups. A
multicast router is said to belong to some multicast group, if it has at least one host in its
local network, which is a member of this group. This information is saved in form of a
multicast address table (MAT). In the example shown in Figure 1.2 the multicast routers
MR1 to MR5 manage the MAT depicted in Table 1.1. In this example hosts H1 to H5 and
H6 to H8 build two multicast groups, which are called A and B, respectively. The first
entry in this table, for instance, indicates that the router MR1 has one or more hosts in its
subnet, which are members in the multicast groups A and B. Remember that a multicast
group is identified by its IP address. The establishment of the MAT is supported by two
multicast protocols:

1. The Internet group management protocol (IGMP) which is executed between each
multicast router and the hosts in its local network to check which of these hosts belong
to which multicast group.

2. A routing protocol, e.g. the distance vector multicast routing protocol (DVMRP),
which enables multicast routers to exchange data obtained from executing the IGMP

R1

R2

R3

R5 R4

H1

H2
H3

H4

H5

2

3 4 2 2

5

1

H7

H6

H8

CHAPTER 1 INTRODUCTION

3

protocol, so that all routers have the up-to-date MAT. Note that a routing protocol is
originally used to route useful data from a sender to all group members.

Besides the MAT, each multicast router manages a routing table (RT). In the DVMRP
protocol, for instance, these tables contain information on the distance (D) to each other
router and how to reach it. Table 1.2 depicts the RTs for the example of Figure 1.2. The
left-most table relates to MR1 and states, for instance, that the shortest path from MR1 to
MR4 has a distance of 5 and that this router can be accessed through MR2.

Figure 1.2. Example for multicast-based group communication

Both the IGMP and the DVMRP belong to the IP layer of the Internet layer model and were
first defined as RFC (request for comment) in the late eighties. Current specifications of
these protocols can be found as Internet Drafts in [Ca97] and [Pu98], respectively.

Table 1.1. MAT for the example of Figure 1.2

MR1

MR2

MR3

MR5 MR4

H1

H2
H3

H4

H5

2 1

2

5

4 3
2

H8

H7

H6

Multicast Router Multicast address

MR1 A, B
MR2 A
MR3 A, B
MR4 A
MR5 B

1.2 IP MULTICAST

4

Table 1.2. Routing tables for the example of Figure 1.2

1.2.2 IP Multicast Applications
The transport control protocol TCP of the transport layer supports only point-to-point
services. Therefore, multicast applications must utilize the user datagram protocol UDP,
which offers unreliable connectionless services on the transport layer. However, this does
not restrict multicast to error-tolerant applications such as multimedia streaming. Reliable
multicast applications can be supported, for example, by adding a special layer between the
application and the transport layers, which emulates the TCP. Accordingly, multicast
applications can be classified into four categories [Mi99]:

1. Real-time multimedia applications, e.g. video conferencing, internet radio, and
multimedia events. These applications are error-tolerant but demand low timing jitter
characteristics for correct synchronization.

2. Real-time data applications, such as the distribution of stock quotes and interactive
gaming. The requirements of scalability and reliability for these applications differ
depending on the particular data. Text news, for instance, must be delivered error-free
to very large groups as a rule. Some latency in the transmission of these data, however,
can be tolerated.

3. Non real-time multimedia applications, e.g. remote class rooms with high reliability
but low or moderate scalability requirements.

4. Non real-time data applications, such as database replication and software
distribution, with both high reliability and high scalability demands.

Despite its scalability and usability in a vast number of current and new Internet
applications, IP multicast technology is not yet exploited to large extent. Several economic
and technical reasons are responsible regarding both private and public networks. Some
examples for the deployment barriers of IP multicast in private networks relate to the
limited application software and administration tools supporting this technology. One
essential obstacle in the usage of this communication technique over the public Internet is
attributed to the fact that not all current IP routers are multicast-able.

For further reading on networking and IP multicast the following publications are
recommended [Ha01], [Ta00], [Mi99], and [Go99].

MR1

MR MR D

1 1 0
2 2 2
3 2 3
4 2 5
5 5 2

MR2

MR MR D

1 1 2
2 2 0
3 3 1
4 3 3
5 5 3

MR3

MR MR D

1 2 3
2 2 1
3 3 0
4 4 2
5 2 4

MR4

MR MR D

1 3 5
2 3 3
3 3 2
4 4 0
5 5 5

MR5

MR MR D

1 1 2
2 2 3
3 2 4
4 4 5
5 5 0

CHAPTER 1 INTRODUCTION

5

1.3 Information Security

1.3.1 Threats, Requirements, and Solutions
An information system is regarded as secure if it ensures the delivery of the right
information to the right party at the right time. The meaning of the terms right information,
right party, and right time in the context of security is illustrated as follows. To ensure the
delivery of right information, the representing data must be able to be checked on their
integrity and their source. Data integrity means that no manipulation has been performed
on these data en route. Data source authentication guarantees that data stem from the
source claiming or denying to be the sender. The protection against denying is known as
non-repudiation property of a secure system. Supplying information to the right party
implicates the hiding of this information against unauthorized parties which requires
applying mechanisms for data confidentiality. Providing data with integrity, authentication,
and confidentiality is only reasonable if these data are available at the right time. Data
availability is regarded as security goal, since several attack schemes aim this property.

Figure 1.3. Visualization of security requirements, threats, and solutions

The decision on required security objectives for an information system and on the measures
to attain these goals is a largely sophisticated task, which is defined as a security policy for
that system. The specification of a security policy relies on an in-depth analysis of the
criticality of the information to be exchanged, the data delivery system, and the threats it is
exposed to. Receivers of Pay-TV data, for instance, do not need to verify that video

Eavesdropping
Integrity

Encryption

Confidentiality

Manipulation

Secure Hash Functions

Source
AuthenticationMasquerade

Message Authentication
Code

Non-Repudiation Denying

Denial of Service Availability

Digital Signature

Syn Cookies

Solution

Requirement Threat

/Access Control

1.3 INFORMATION SECURITY

6

contents originate from the Pay-TV provider, as a rule. Thus, data source authentication is
not a requirement in this case. In contrast, for a commercial site it is indispensable to verify
the client identity before executing its order. Only by applying a non-repudiation strategy a
possible denying can be disproved. Inspired by the graphical representation of Gajski’s
diagram [Ga92], the relation between security requirements, well-known threats, and
possible countermeasures can be depicted schematically by means of a Y-Diagram as
illustrated in Figure 1.3. The hierarchical representation reflects to large extent the
dependency of the different security requirements. In this respect, data availability is an
essential aspect, which all other requirements are based upon. The non-repudiation
property, however, assumes data availability, authentication, and integrity. In some cases,
furthermore, non-repudiation largely relies on data confidentiality.

1.3.2 Cryptography
Regardless of solutions to the availability requirement, all other countermeasures on the
solution axis of Figure 1.3 rely on cryptographic operations. Cryptography is defined in
[Me96] as the study of mathematical techniques related to aspects of information security
such as confidentiality, data integrity, entity authentication, and data origin authentication.
The mathematical techniques are applied to data representing the information to be
protected from eavesdropping, manipulation, etc. All cryptographic methods rely on using
some information denoted as key. The way how to exchange and manage this key
represents the most important criterion to classify cryptographic algorithms. According to
this criterion two main categories are present: the symmetric-key and the public-key
cryptography. In symmetric-key cryptography both communication parties use the same
key, denoted as symmetric key, to apply cryptographic operations to encipher or decipher
data. Cryptographic enciphering and deciphering are referred to as encryption and
decryption, respectively. The Data Encryption Standard (DES) [Ni81] and the Advanced
Encryption Standard (AES) [Ni01] are the most known examples for this cryptography
class. Besides encryption and decryption for the purpose of confidentiality, symmetric-key
cryptography may be employed to realize secure hash functions and message authentication
code, which support data integrity and source authentication, respectively, see Figure 1.3.
For the functionality of symmetric-key cryptography, however, a secret key must be agreed
and delivered over a secure channel. This hard requirement is avoided by the public-key
cryptography, which exploits two different keys for encryption and decryption. These keys
are denoted as the public and the private key. For a communication party A to send an
encrypted message to another party B, it uses the public-key of B. Getting the encrypted
message, B can decrypt it with its private key. The idea of public-key cryptography was
first published in [Di76]. RSA [Ri78], ElGamal [El85], and Elliptic Curve Cryptography
(ECC) [Ko87, Mi86] represent the most known public-key cryptosystems. As the
mathematically inverse function of encryption, decryption is based on a relation between
the private and public keys. The security of public-key cryptography is based on the fact
that this relation is so complex that an extraction of the private key from the public one is
impossible during defensible time. This is realized by using complex mathematical
problems to generate key pairs such as the factorization of large prime numbers, e.g. in the
case of RSA, or the determination of the discrete logarithm, e.g. in the cases of ElGamal
and ECC. The security of public-key cryptography does not only rely on the complex
relation between the private and the public key, but also on complicating the encryption and

CHAPTER 1 INTRODUCTION

7

decryption processes themselves. This fact negatively affects the performance of these
algorithms and makes them unsuitable to encrypt large data under hard timing constraints.
In practice, therefore, public-key cryptography is mainly used to process small amounts of
data such as in the following two cases. First, public-key encryption can be used to agree on
a symmetric key which can then be employed for secure communication based on
symmetric-key encryption. The second application relates to the digitally signing of short
data. In this case a sender uses its private key to sign a message and the receiver access the
public key of the sender to verify that the message stems from this sender. Digital signing is
a measure to ensure non-repudiation as depicted in Figure 1.3. Note that public-key
cryptography depends on the availability of authentic public keys. The resources, policies,
protocols, and procedures demanded to create, distribute, manage, and revoke public keys
construct a framework denoted as public-key infrastructure (PKI). The task of distributing
certified keys in PKI is assigned to an entity which is trusted by every one and referred to
as certification authority. Consequently, key management represents an essential issue in
both symmetric-key and public-key cryptography.

In the scope of this work several cryptographic algorithms are utilized. These include the
Advance Encryption Standard (AES) as a symmetric-key encryption primitive, the secure
Meyer hash function [Ma85], and the Message Authentication Code MAC [Is89]. Both the
Meyer hash function and MAC are based on symmetric-key encryption. In addition, for
generating secure keys, an algorithm specified in ANSI X9.17 is exploited, which also
relies on symmetric-key cipher. For building digital signatures the Elliptic Curve Digital
Signature Algorithm (ECDSA) [Ie00] is employed. All these algorithms are briefly
described in Chapter 5 with focus on their hardware realization. For further reading on
these topics it is referred to the related literature and to text books on security and
cryptography, e.g. [Da01], [Ec06], [Me96], and [Sc96].

1.4 Secure Multicast
Various multicast applications demand data delivery under security conditions such as
confidentiality, integrity, and data source authentication. A collaborative group of company
employees, for instance, may use Internet conferencing to exchange information and need
to keep their communication secret. Another example from the multimedia streaming field
relates to a multicast Pay-TV scenario, where the access should only be granted to those
members, who already have paid the charge. Applying security strategies to multicast
communication poses special problems, which are unfamiliar in the one-to-one
communication mode. These special issues are attributed to the following properties:

1. Secure communication is based on sharing a secret, i.e. a key, between communicating
parties. The more parties learn the secret, the higher the risk to disclose it.

2. In general, multicast groups are large-scale and characterized by highly dynamic
membership. To restrict access to authorized members, the group communication key
must be changed after every change in the group membership. This increases the
complexity of key management.

3. Based on the fact that symmetric key in one-to-one communication is shared by only
two partners, data source authentication can be easily verified by encrypting these data

1.4 SECURE MULTICAST

8

with the shared symmetric key. Unfortunately, this so-called message authentication
code (MAC) can not be employed in secure multicast, since the secret key is shared by
a large number of members.

4. As mentioned previously, to communicate securely, a security policy must be defined
and negotiated between communication parties. Such an agreement in multicast mode
is much more sophisticated than in the unicast case, because a security policy must be
found which satisfies the requirements of many parties, instead of just two.

1.4.1 Secure Multicast Problem Areas

These and other difficulties in applying security issues to IP multicast have been recognized
by research and industry institutions and resulted in establishing the research group Secure
Multicast Group (SMuG) within the Internet Research Task Force (IRTF) in early 1998
[Sm98] and the working group Multicast Security (MSEC) within the Internet Engineering
Task Force (IETF) in early 2000 [Ms00]. A main contribution of SMuG and MSEC relates
to identifying the following three problem areas in secure multicast [Ha03]:

1. Secure multicast data handling: In this problem area secure data transmission
including data confidentiality, integrity, and source authentication is treated.
Investigating the adaptability of available security protocols to secure multicast
presents an essential issue in this problem area. One example relates to the Multicast
Encapsulating Secure Payload (MESP) as an extension to the known ESP protocol in
IP security [Ca00]. Furthermore, in the scope of this area the concept of group
authentication [Ca99] is introduced as a simple form of data source authentication.
Some groups are trustful and only need to protect themselves against non-member
parties. In this case, group authentication can be employed, which relies on simple
symmetric-key cryptography. In contrast, if group members do not trust each other, an
exact data source authentication must be used. This kind of authentication in multicast
can not be performed on the base of symmetric-key cryptography as in the unicast case.
Instead, solutions based on public-key cryptography such as digital signatures must be
employed.

2. Management of keying material: This problem area concerns the generation and
distribution of the group communication key. This process is performed both during
registration in static groups and after every membership change in dynamic groups. The
generation and distribution of a new communication key as an effect of joining new
members or removing old ones in dynamic multicast groups is denoted as Group
Rekeying. This process represents the focus of this dissertation and will be detailed in
next section.

3. Multicast security policies: In secure multicast different members may have different
capabilities and responsibilities. One task of the security policy is to define the roles of
group members, e.g., as a sender, a receiver, or as a group controller and key server
(GCKS). Besides, the security policy specifies, for instance, which encryption
algorithm should be used for data confidentiality. As policy negotiation among large
groups is in practice impossible, a mechanism for policy enforcement by the GCKS
must be employed [Di00].

CHAPTER 1 INTRODUCTION

9

1.4.2 Group Rekeying
Consider the multicast Pay-TV system illustrated in Figure 1.4. A video server (VS)
encrypts video packets with a group key kg and sends them using IP-multicast. Members
m0, m1, and m3 aim to buy the service. For this purpose, they connect to a registration and
authentication server (RAS), pay the charge, and get each an individual identity key k0, k1,
and k3. In a following step the RAS encrypts the group key kg with each of the identity keys
and sends it to the corresponding member per unicast. The notation Eka(kb) in Figure 1.4
refers to the encryption of key kb with key ka. Each authorized member accordingly receives
the encrypted kg, decrypts it with its identity key and gets thereby the group key kg.
Members m0, m1, and m3 in this scenario can now use kg to decipher the encrypted video
data and watch the movie. Member m2, however, is excluded: he or she can download
encrypted movies, but cannot enjoy them. Note that referring to m2 as a group member
relates to the multicast group, not to the secure multicast group. As mentioned before,
joining a multicast group is loose and is performed between a host and the multicast router
in the corresponding network based on the Internet Group Management Protocol (IGMP).
The video provider in this scenario does not know who is currently a group member,
therefore, it uses encryption to control access. The way how the registration works and the
identity keys are distributed is not in the focus of this work. It is assumed that the task of
generation and distribution of identity keys is covered by the RAS.

Figure 1.4. Pay-TV: Potential scenario for secure multicast

1.4.2.1 Scalability Problem
If m2 decides to buy the service later on, then this member registers at the RAS and gets its
own identity key k2. To keep backward access control, i.e., to prevent m2 from decrypting
old videos, the RAS generates a new group key kg

new, encrypts it with the current group key
kg, and multicasts it. By this means kg

new becomes available to all current members of the
group. In addition, the RAS encrypts kg

new with k2 and sends it to m2 per unicast.
Consequently, joining a new member in this scheme causes two encryptions on the server
side, which is fairly acceptable. In contrast, the process of disjoining a member is highly
inefficient. Assume for example that m1 has to leave the group, because his or her

k0

k1

k3

m0

m1

m2

m3

Registration &
Authentication
Server (RAS)

Video Server
(VS)

Encrypted
Video

Ek0(kg)
Ek1(kg)

Ek3(kg)

Video Provider (VP)

Multicast
Network

1.4 SECURE MULTICAST

10

subscription period ended. To keep forward access control, i.e., to prevent m1 from
decrypting future video material, the RAS again has to generate a new group key, but this
must NOT be encrypted with the current group key like in the join case. Instead, the RAS
encrypts the new group key with each of the identity keys of the remaining members, i.e.
with k0, k2, and k3. Thereafter every remaining member gets the kg

new encrypted with its
identity key. In other words, disjoining a member from a group having n participants costs
a total of n-1 encryptions on the server side.

Assuming that there are as much join as disjoin requests, then the average cost of a
join/disjoin operation is nearly equal to n/2. Obviously, this scheme is not scalable for large
groups. In the sequel this rekeying scheme is denoted as simple rekeying.

1.4.2.2 Related Work on Group Rekeying
Several solutions have been proposed in literature to cope with the scalability problem in
multicast group rekeying. In the Iolus scheme [Mi97] the group is divided into several
subgroups. Each subgroup is controlled by a trusted third-party proxy, whereas these
proxies are controlled by the group owner. The rekeying within a subgroup occurs as in the
simple scheme, which means that Iolus approach becomes unscalable for large subgroups,
apart from the drawback of the need of trusted third-party agents. Similar decentralized
rekeying schemes are presented in [Do00] and [Bi00]. MARKS [Br99] is a mechanism for
efficient key distribution. In this mechanism the group controller knows each member’s
disjoin time and performs rekeying at fixed time instances, which restricts system
dynamics. The Logical Key Hierarchy scheme (LKH) proposed in [Ha99] and [Wo00]
allows an efficient rekeying for large groups without a-priori knowledge of group joins or
leaves. Many improvements for LKH were proposed to enhance performance. Originally,
LKH performs rekeying in real-time mode, i.e. rekeying is executed immediately for each
join or disjoin request. One performance improvement relies on processing rekeying
requests in batch. In this mode several requests are summed up during a rekeying interval
and then processed simultaneously, see, e.g., [Li01], [Ji02], and [Ma04]. Other
improvements to LKH deal with tree rebalancing to keep a logarithmic relationship
between rekeying costs and group size, see, e.g., [Mo99], [Ra01], [Go04]. Because of its
relevance for this work, the next section is dedicated to illustrating the LKH rekeying
approach. Another rekeying scheme relies on One-way Function Trees (OFT). This scheme
reduces the communication overhead for disjoin rekeying at the expense of additional
computations on both the server and the member side [Ba00], [Sh03]. Recently, the interest
in group key management exceeded the scope of typical IP multicast. Thus, several
solutions for group key management are proposed for Ad-Hoc networks [Se04], [Li06],
mobile multicast [Ro06], satellite multicast [Ho04], and wireless cellular networks [Um06].

1.4.2.3 Logical Key Hierarchy
The basic idea behind the LKH is to divide the group into hierarchical subgroups and to
provide the members of each subgroup with a shared key, which is called the help-key.
Consider the example illustrated in Figure 1.5 for an eight-member group. In this model
members m0 and m1 build a subgroup with the help-key k0-1, members m0, m1, m2, and m3
build a larger subgroup, whose help-key is k0-3. All members compose the largest subgroup

CHAPTER 1 INTRODUCTION

11

with the help-key k0-7. This key represents the group key which is used to encrypt useful
data. Consequently, a member now holds several instead of just two keys. These keys are
the identity key kd, which is known only to this member and to the server, the group key kg
known to all group members, and some help-keys kx-y corresponding to the subgroups,
which the member belongs to. Member m6, for example, has kd = k6, kg = k0-7 and two help-
keys, which are k6-7 and k4-7.

Figure 1.5. LKH example

Disjoin Rekeying
Assume that the member m2 wants to leave the group. How many encryptions have to be
computed by the server to rekey the group?

Except for the identity key all the keys held by m2 (i.e. k2-3, k0-3 and k0-7) have to be
changed. After removing m2, however, the help-key k2-3 can be destroyed, as this key is
only known by one member, i.e. m3. Therefore, only two keys, k0-3

new
 and k0-7

new are
generated, encrypted, and sent to the remaining members needing these keys. Figure 1.6
represents the key tree after this processing:

Figure 1.6. LKH example after disjoining m2

Using the notation Eka(kb) to refer to a rekeying submessage representing the encryption of
the key kb with the key ka, the server has to generate the following rekeying submessages in
order to disjoin m2:

Ek3
(k0-3

new), Ek0-1
(k0-3

new), Ek0-3
new(k0-7

new), Ek4-7
 (k0-7

new)

k0 k1 k2 k3 k4 k5

k0-1 k2-3 k4-5

k0-3 k4-7

k0-7

k6 k7

k6-7

m0 m1 m2 m3 m4 m5 m6 m7

k0 k1 k3 k4 k5

k0-1 k4-5

k0-3
new k4-7

k6 k7

k6-7

m0 m1 m3 m4 m5 m6 m7

k0-7
new

1.5 WORK OBJECTIVES AND OUTLINE

12

A Rekeying Message is composed of all rekeying submessages and other related
information, e.g., the rekeying submessage identification illustrated later on in this work.

The server has to compute just 4 encryptions to rekey the group. In contrast, in the simple
scheme a total of 7 encryptions would be necessary. The gain of LKH becomes more
obvious in the case of large group sizes. Table 1.3 details this comparison.

Join Rekeying
Assume now that another member will be joined at the tree position of m2. The new
member will be called m2, too. How many encryptions have to be performed by the server
to rekey the group?

All keys from the join point of m2 to the root (kg) have to be updated and encrypted. The
following rekeying submessages are constructed:

Ek3
(k2-3

new), Ek2
(k2-3

new), Ek0-1
(k0-3

new), Ek2-3
new(k0-3

new), Ek0-3
new(k0-7

new), Ek4-7
(k0-7

new)

In contrast to the simple scheme, where just two encryptions would be needed for join
rekeying, the LKH requires more encryptions. Nevertheless, considering both join and
disjoin processes, the LKH is clearly superior to the simple scheme, as visible from Table
1.3. While the average encryption costs increase linearly with n in the simple scheme, LKH
unveils a logarithmic dependence.

Table 1.3. LKH vs. simple rekeying scheme

Encryptions

Simple scheme LKH

Join 2 2*log2n

Disjoin n-1 2*(log2n -1)

Average value O(n) O(log2n)

1.5 Work Objectives and Outline
This dissertation makes three main contributions to multicast group rekeying. Thus,
solutions, algorithms, and architectures presented in this work can mainly be assigned to
the second problem area in secure multicast, see Section 1.4.1. As rekeying results in
multicasting rekeying messages, which must be authenticated to prevent manipulation, this
work deals also with corresponding authentication issues which belong to the first problem
area. Figure 1.7 illustrates schematically the three objectives followed in this work as big
bubbles surrounded by related solutions. This figure can be used as a reference in this
dissertation.

1. QoS and Access Control Aware Batch Rekeying: As mentioned previously, batch
rekeying aims at optimizing the rekeying performance by processing several requests at
the same time. By this means some key generations and encryptions are saved. Refer to
the discussed disjoin and join requests in the example of last section and to Figure 1.5

CHAPTER 1 INTRODUCTION

13

and Figure 1.6. Note that the separate handling of these requests required the
generation of 5 new keys and the execution of 10 encryptions, in total. In contrast, if
these two requests are processed simultaneously, then only 3 generations and 6
encryptions will be needed. This batch rekeying mode, however, demands that former
requests have to wait on later ones. Consequently, new members must wait longer to be
granted access, and members who must be removed keep access for longer time
periods. Related work on batch rekeying assumes a fixed rekeying interval or defines a
lower bound for this parameter. In this work an upper bound is introduced, which
assures that the quality of service for joining members and the access control against
leaving ones always remains within system specific limits. Besides the necessary
metrics for this solution, an algorithm, denoted as Event-driven Batch Rekeying, is
presented which considers this issue. Two simulation case studies illustrate the
significance of the proposed method. Chapter 2 is dedicated to this work objective.

Figure 1.7. Work objectives and solution structure

2. Reliable Rekeying Performance Evaluation: The reader of related work on group
rekeying misses up to now a way to compare proposed solutions to each other. This
comparison is impeded by a wide spectrum of non-unified performance metrics and by
largely different ways to estimate these metrics in literature. For a reliable rekeying
performance evaluation this work presents a novel Rekeying Benchmark as a unified
way for estimating unified metrics expressing rekeying performance. The reliable
evaluation origins from defining new metrics to estimate performance, which are
system-specific and independent of both rekeying algorithms and the underlying
cryptographic operations and execution platforms. The rekeying benchmark is the
subject of Chapter 3.

Reliable
Rekeying

Performance
Evaluation

LKH
Performance
Optimization

QoS and
Access Control

Aware Batch
Rekeying

Event-
driven
Batch

Rekeying

Batch
Rekeying
Processor

Rekeying
Benchmark

Real-Time
Rekeying
Processor

Chapter 6 Chapter 6

High-
Flexibility
Rekeying
Processor

Chapter 2 Chapter 3

Chapter 7

1.5 WORK OBJECTIVES AND OUTLINE

14

3. LKH Performance Optimization: All previous work on optimizing the performance of
rekeying algorithms concentrates on reducing the number of time-consuming
operations, which are needed to perform rekeying such as the number of key
generations or the number of encryptions. In this work novel architectures are
proposed, which optimize rekeying performance on a lower level. By means of
hardware acceleration, not only the amount of cryptographic operations is reduced, but
also the execution time of these operations. In the course of this work two hardware-
only processors and one hardware/software processor were designed and implemented
on reconfigurable platforms. These are the Real-Time Rekeying Processor (RTRP), the
Batch Rekeying Processor (BRP), and the High Flexibility Rekeying Processor
(HiFlexRP). Each of these architectures may be used as a coprocessor in the server
environment of a multicast group owner, e.g. as a coprocessor for the registration and
authentication server to accelerate rekeying in the Pay-TV scenario presented in Figure
1.4. Because of several similarities between the rekeying processors and to avoid
repeating similar facts Chapter 4 highlights the employed implementation platforms
and Chapter 5 describes the common features of these architectures. Chapter 6 then
details both the RTRP and the BRP. Chapter 7 is devoted to the HiFlexRP.

Remarks and notation:
This work treats the key management problem in secure multicast with an emphasis on the
server side. As for the network, only the dynamic group behavior is investigated which is
reflected by member join and leave rates. Neither communication overhead nor protocol
issues are considered. The dissertation can be read either in the order of its chapters or in a
different way taking the following points into account. Chapter 3 is completely
independent. Chapter 4 represents an introduction to reconfigurable architectures and some
commercial devices and tools. Therefore, this chapter may be skipped by experts in this
field. Chapter 6 and Chapter 7 depend strongly on Chapter 5, but are themselves
independent of each other. Furthermore, Chapter 6 is slightly based on some points
presented in Chapter 2.

As a quick reference, Table 1.4 summarizes some important terms, which were presented
in this chapter and will be used frequently in next chapters.

Table 1.4. Notation

Term Meaning

Identity key kd A key which is known to the server and one member md

Group key kg
A key which is known to the server and to all group
members. kg is used to encrypt useful data

Help-key kx-y
A key shared between the server and some group members.
kg is regarded as a special help-key

Rekeying Submessage (RSM) An encrypted key kb with a key ka: Eka(kb)

Rekeying Message (RM) The set of all RSMs and some auxiliary data

CHAPTER 2 QOS AND ACCESS CONTROL AWARE BATCH REKEYING

15

2 QoS and Access Control Aware Batch Rekeying

2.1 Overview
This chapter represents a solution to the batch rekeying problem resulting from long
rekeying intervals. Section 2.2 describes the batch rekeying and compares it with the real
time rekeying based on the LKH algorithm. The problems of batch rekeying are then
presented and specified by new metrics in Section 2.3. Section 2.4 uses these metrics to
provide different methods for optimizing batch rekeying. Section 2.5 represents two case
studies and Section 2.6 concludes the chapter with some design hints for batch rekeying
solutions.

2.2 Batch Rekeying
Group rekeying based on the algorithm of logical key hierarchy LKH presented in Section
1.4 features a real time characteristic. According to this algorithm each rekeying request is
granted separately. However, a performance improvement can be achieved, if several
requests are processed simultaneously. This processing mode is denoted as batch rekeying
[Li01]. Different rekeying requests demand an update of several keys. Some of these keys,
however, are likely to be processed several times if these requests are treated separately.
The performance gain in batch rekeying relies on avoiding this multiple processing by
reducing the number of updates of some key to one, maximally. To illustrate this point
consider the left key tree in Figure 2.1 and assume that the rekeying server receives three
rekeying requests in the following order: join m7, disjoin m3, and disjoin m0. The right key
tree in Figure 2.1 represents the state after performing rekeying for these three requests.

k0 k1 k2 k3 k4 k5

k0-1 k2-3 k4-5 k6

k0-3 k4-7

k0-7

k4 k5 k6 k7

k1 k2 k4-5 k6-7

k0-3 k4-7

k0-7
Join m7

Disjoin m3
Disjoin m0

Figure 2.1. Batch rekeying example

2.3 PROBLEMS OF BATCH REKEYING

16

Table 2.1 summarizes how often each of the help-keys is processed in both real-time and
batch rekeying. Processing a key in this context means an update of this key and two
following encryptions of it with the left and the right son keys. From this table it is obvious
that processing rekeying requests in batch is more efficient than real-time rekeying.

Table 2.1. Batch vs. real-time rekeying for the previous example

 k0-1 k2-3 k4-5 k6-7 k0-3 k4-7 k0-7

Real-time rekeying 0 0 0 1 2 1 3

Batch rekeying 0 0 0 1 1 1 1

Batch rekeying proceeds in two phases which are repeated frequently. Figure 2.2 depicts
this point:

1. Marking: In this phase rekeying requests are collected and the help-keys, which need to
be processed, are marked. The marked keys build a so-called rekeying subtree.

2. Processing: In this phase all keys in the rekeying subtree are regenerated and encrypted
by the corresponding keys to build the rekeying message.

Figure 2.2. Batch rekeying

The marking is performed within regular time slots called rekeying intervals T. The
processing takes differently long according to the built subtree. Figure 2.3 depicts this
situation, where BPTi denotes the batch processing time of the i-th batch.

Figure 2.3. Timing in batch rekeying

2.3 Problems of Batch Rekeying
The analysis given in the previous section on batch rekeying performance is optimistic
because it does not consider the waiting times of requests before they are served. The
longer the rekeying interval the higher the probability for some requests to wait longer. Too
long rekeying intervals in batch rekeying have two drawbacks with regard to Quality of

Marking Processing
Rekeying

Subtree

time

BPTi+1 BPTi

T T

CHAPTER 2 QOS AND ACCESS CONTROL AWARE BATCH REKEYING

17

Service and Access Control. A new member, on the one hand, gets the group key in batch
rekeying later than in real-time rekeying which means that only a worse QoS can be offered
by batch rekeying. On the other hand, a leaving member remains to have a valid group key
in batch mode for a longer time period than in immediate rekeying which corresponds to
degradation in the access control. To quantify these items two new metrics are introduced:
these are the Join Batch Delay (JBD) and the Disjoin Batch Delay (DBD).

2.3.1 Join Batch Delay
Definition 2.1:
Join Batch Delay is defined as the additional waiting time for a joining member to get the
group key in batch rekeying compared to the real-time case, see Figure 2.4. Within a
rekeying interval T a join request appears delayed by taJ from the end point of last interval.
An immediate processing of this request, i.e., without batching, would take tpJ. However,
through batch processing the corresponding member will be joined at the end of the
processing of the (i+1)-th batch. Accordingly, JBD can be estimated using the following
formula.

JBD = T + BPTi +BPTi+1 – (taJ + tpJ) (2.1)

Figure 2.4. JBD in batch rekeying

2.3.2 Disjoin Batch Delay
Definition 2.2:
Disjoin Batch Delay is defined as the additional time needed to deactivate the help-keys
and the group key of a leaving member in batch rekeying compared to the real-time case,
see Figure 2.5. Similarly to JBD, DBD can be estimated as follows.

DBD = T + BPTi +BPTi+1 – (taD + tpD) (2.2)

Figure 2.5. DBD in batch rekeying

time

BPTi+1 BPTi

T T

JBD taJ

tpJ

time

BPTi+1 BPTi

T T

LBD taD

tpD

2.4 OPTIMIZED BATCH REKEYING

18

Note 2.1:
Because of the analogies in the behavior of JBD and DBD, the analysis in next sections is
sometimes limited to JBD to avoid repetition.

2.4 Optimized Batch Rekeying
As a rule, the processing time of a join request in real-time rekeying tpJ is short compared to
the other terms of equation (2.1) and can therefore be neglected. In addition, considering all
joining members in one rekeying interval, the worst-case JBD must be investigated. This
case occurs for the earliest join request in the interval, in other words for the join request
with the minimal appearance time taJ

min. The JBD equation, accordingly, can be rewritten as
follows.

JBDworst = T + BPTi +BPTi+1 – taJ
min (2.3)

In general, optimizing the QoS for joining members is based on minimizing JBDworst which
can be achieved by means of elimination or minimization of the contributing terms in (2.3).
These terms are:

T: Rekeying interval

BPTi: Batch processing time of the current batch

BPTi+1: Batch processing time of the next batch

2.4.1 Optimized Cryptographic Algorithms and Platforms

The batch processing time BPT in (2.3) is mainly affected by four parameters:

1. G: Number of new keys needed for processing the corresponding subtree.

2. E: Number of encryptions needed for processing the corresponding subtree.

3. Cg: Cost of the generation of one key in time units (generation cost factor).

4. Ce: Cost of one encryption in time units (encryption cost factor).

Thus, BPT can be estimated as follows.

BPT = CeּE + CgּG (2.4)

The encryption/generation cost factors Ce and Cg depend, on the one hand, on the used
algorithms for encryption and key generation. On the other hand, they are affected by the
performance of the underlying platform. The more efficient the encryption/generation
algorithms and the more high-performance the executing platform is, the smaller BPT and
therefore the smaller JBD will be. The number of encryptions and generations, E and G,
however, is much more complex to estimate because of its dependency on the current state
of the key tree and on the following indeterministic factors:

CHAPTER 2 QOS AND ACCESS CONTROL AWARE BATCH REKEYING

19

1. The number of join/disjoin requests NJ/ND in the corresponding rekeying interval,
which is a function of the temporal request distribution and of the rekeying interval.

2. The logical (spatial) distribution of disjoin requests in the tree. (In contrast, join
requests have no indeterministic contribution, because the server decides on the join
points in the tree).

In general, both E and G increase with higher request rates, with higher dispersion of
disjoin requests and with higher group sizes. To keep the number of encryptions/
generations small, an appropriate rekeying algorithm must be chosen, e.g., LKH [Wo00] or
One-way Function Trees [Sh03], etc.

Optimizing the QoS and access control in batch rekeying by means of BPT minimizing can
be classified as hard QoS/AC management, because it demands essential improvements of
algorithms and/or platforms which is expensive and can not be performed in real time, as a
rule.

2.4.2 Pipelined Batch Rekeying
In addition to performance enhancements, parallelizing the marking and processing phases
of batch rekeying results in a smaller JBD and consequently a higher QoS. During the
processing of the i-th batch the (i+1)-th subtree can be generated as depicted in Figure 2.6.
The suffix p in JBDp stays for pipelining. See Figure 2.4 for a comparison.

Figure 2.6. JBD in pipelined batch rekeying

From this figure it is obvious, that the contribution of BPTi to JBD is eliminated.

 JBDp
worst = T + BPTi+1 – taJ

min (2.5)

Similarly to BPT minimizing, pipelining can be seen as hard QoS/AC management. This
strategy, however, optimizes QoS/AC independent of the underlying algorithms for
rekeying, encryption and key generation, and without relation to the network situation,
which is mirrored by the request rate.

2.4.3 Event-driven Batch Rekeying
Related work on batch rekeying assumes either a constant rekeying interval, e.g. [Li01] and
[Zh01], or defines a lower bound on this interval to limit communication overhead, e.g.
[Ya01] and [Ji02]. For the purpose of QoS/AC improvement an upper bound on T has to be
introduced as follows.

 T < min {Tmax1, Tmax2} (2.6)

time

BPTi+1 BPTi
T T

JBDp taJ

tpJ

2.4 OPTIMIZED BATCH REKEYING

20

Tmax1 and Tmax2 correspond to the maximal allowable join and disjoin batch delays in the
system specification JBDmax and DBDmax, respectively. Using (2.5) Tmax1 can be estimated as
follows. The pipelining suffix p is neglected, for clarity.

 Tmax1 = JBDmax - BPTi+1 + taJ
min (2.7)

Similarly, for Tmax2 the following can be written.

 Tmax2 = DBDmax - BPTi+1 + taD
min (2.8)

Secure multicast applications differ according to their sensitivity to the QoS and access
control associated with batch processing. While Pay-TV, for example, emphasizes high
QoS values and accepts as a rule some loss of access control, other applications, e.g., in
military fields, do not tolerate any sacrifice of these parameters. Furthermore, the demands
on QoS and access control can vary from time to time for the same application depending
on some scenario-specific parameters. A Pay-TV provider, for example, can tolerate longer
values of DBD to guarantee the required JBD at times of high join rates, e.g., shortly before
starting the streaming of a sport event.

T < min {Tmax1, Tmax2} ?

Processing old
batch finished?

No

Yes

Start new interval

No

Yes

Start marking
a new batch

Start processing
prepared batch

Start interval
timer

Get new request
Save taJ

min for first join
Save taD

min for first disjoin

Update
Tmax1, Tmax2

Mark keys
Update BPTi+1

Wait

Figure 2.7. Pipelined event-driven batch rekeying

CHAPTER 2 QOS AND ACCESS CONTROL AWARE BATCH REKEYING

21

The application of (2.6) results in an event-driven batch rekeying which is activated by the
events of exceeding Tmax1 and Tmax2. These events cause the concluding of the current
rekeying interval and the starting of a new one.

Figure 2.7 illustrates the new batch rekeying algorithm which supports both pipelining and
event-driven operation modes to optimize QoS and access control. Note that, because of
pipelining, a new interval can only be started if the processing of the old batch is already
finished which is true in most cases. As depicted in Figure 2.7, event driven rekeying relies
on estimating the batch processing time BPTi+1 during marking. This task assumes knowing
the encryption and the generation cost factors Ce and Cg according to (2.4).

The Batch Rekeying Processor presented in Chapter 6 realizes an event-driven batch
rekeying [Sh05]. In this hardware implementation the factors Ce and Cg are well defined
and a real-time functionality guarantees an accurate estimation of BPTi+1 because of the
common time base for all hardware modules. The module Batch Delay Monitor of this
processor is integrated to a preprocessing unit which performs the marking to prepare the
rekeying subtree.

In contrast to the other optimization strategies, event-driven rekeying provides a real-time
control of QoS and access control in each rekeying interval and can, therefore, be classified
as soft QoS/AC management which keeps QoS/AC within desirable values during the
system operation.

2.5 Case Studies
Though the JBD behaviour given in (2.5) appears to be simple to evaluate, a comprehensive
analysis of this quantity is almost impossible. This is particularly because of the highly
complex dependencies of the batch processing time. To illustrate this point, this
characteristic is represented as a set of functional relationships, where NJ and ND refer to the
number of join and disjoin requests summed up in a rekeying interval, respectively.

1. JBDp
worst = f1 (T , BPTi+1 , taJ

min)

2. BPTi+1 = f2 (Ce , E , Cg, G)

3. Ce ,Cg = f3 (encryption/generation algorithms, platform)

4. E , G = f4 (NJ , ND , tree state, spatial request distribution in the tree)

5. NJ , ND = f5 (T, temporal request distribution)

Note that the rekeying interval T affects JBDp
worst not only directly according to f1, but also

indirectly corresponding to f5 depending on the current distribution function of join/disjoin
requests.

Almost all the related work on batch rekeying only consider the relation f4 for E based on
borderline cases. A few papers [Ya01, Zh03] investigate the relation f5 assuming an
exponential request distribution. Based on these approaches, a form for the function f1 is
derived, which can be evaluated by means of simulation. For this purpose, borderline
conditions are introduced for the different relations f1, f2, f4, and f5 to ease the analysis. The

2.5 CASE STUDIES

22

steps outlined in this derivation can be used as a general guideline for other cases and
conditions.

1. taJ
min = 0, which means that the first join request appears at the beginning of a rekeying

interval. Accordingly, JBDp
worst can be written as follows.

 JBDp

worst = T + BPTi+1 (2.9)

2. Binary trees: In this case a help-key needing to be updated is generated once and
encrypted twice, thus,

E = 2·G (2.10)

3. Based on the key generator specified in [An00], the generation of one key costs two
encryptions, i.e.,

Cg = 2·Ce (2.11)

Setting (2.10) and (2.11) in (2.4):

 BPTi+1 = 2.Ce.E (2.12)

4. Exponential distribution of the inter-arrival times of disjoin requests [Al96]. According
to [Ya01, Zh01], the number of disjoin requests in a rekeying interval T is given by the
following formula, where n denotes the group size. μ is the disjoin request rate.

 ND = n(1-e -μT) (2.13)

5. Balanced trees and an equal number of join and disjoin requests in the rekeying
interval, NJ = ND. The number of encryptions needed to process this batch can be
calculated according to [Li01] as follows, where h represents the tree depth, h= log2n.

(2.14)

Setting (2.13) in (2.14), (2.14) in (2.12), and (2.12) in (2.9):

(2.15)

The resulting JBD is a function of the rekeying interval, the request rate, the encryption cost
factor and the group size:

JBDp
worst = f1(T, μ, Ce, n)

)

2/

1(22
1

0
∑
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−=
h

i

D

D

i

i

N
n

N
nn

E

)

)1(

)1(
2/

1(24
1

0
∑
−

=
−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

−+=
h

i
T

T

i

i
eworst

p

en
n
en
nn

CTJBD

μ

μ

CHAPTER 2 QOS AND ACCESS CONTROL AWARE BATCH REKEYING

23

The following two case study simulations illustrate the hard and soft management of QoS
introduced in the previous sections.

Case study 1
If the rekeying interval has a pre-specified value, e.g., for communication overhead reasons,
then JBD can only be controlled by the encryption cost factor Ce for some group size n.
Figure 2.8 shows JBD as a function of the request rate μ with Ce as a parameter and with:

n = 524.288 T = 1 sec

Figure 2.8. JBDp
worst = f(µ,Ce); T, n = const.

The diagram of Figure 2.8 can be viewed as a representation of the design space which can
be used to decide on the minimal performance of the encryption algorithm and/or the
minimal performance of the underlying platform. If the maximal acceptable join batch
delay equals 10 sec, for example, and the maximal request rate in the multicast group is μ =
0.4 sec-1, then Ce must be chosen equal to 6.10-6 sec as a maximum. The sought value of Ce
can then be obtained by means of selecting an appropriate encryption algorithm, or by
using a sufficiently powerful runtime platform, or both.

Case study 2
For a given encryption algorithm and a given runtime platform the JBD can be optimized
softly by the rekeying interval according to the request rate. Figure 2.9 shows the
simulation results for JBD as a function of T and μ with:

n = 524.288 Ce = 1.5.10-6 sec

By exploiting this representation it can be decided on the rekeying interval appropriate to
some value of the request rate in order to satisfy the QoS specification. The algorithm
presented in Section 2.4.3 provides without loss of generality an automatic selection of the
rekeying interval according to both the network situation and the tree state in real-time.

0.2 0.4 0.6 0.8 1
μ

2.5

5

7.5

10

12.5

15

JBD
7.5 μs

6 μs

4.5 μs

3 μs

1.5 μs

2.6 SUMMARY

24

Figure 2.9. JBDp
worst = f(µ,T); Ce , n = const.

2.6 Summary
In this chapter the problems of quality of service and access control associated with batch
rekeying were investigated. The analysis has resulted in several improvement possibilities
of the rekeying system which can be summarized in form of the following hints:

1. Arrange for a high-performance execution platform.

2. Provide efficient algorithms for encryption and key generation.

3. Provide efficient key management algorithms.

4. Exploit a pipelined batch rekeying algorithm.

5. Use event-driven batch rekeying with a variable rekeying interval.

Case studies have demonstrated the two generic methods of QoS management for batch
rekeying: (1) hard, and (2) soft QoS management. Event-driven batch rekeying assumes
given values for system-specific parameters JBDmax and DBDmax.

0.2

0.4

0.6

0.8

1

T
0.2

0.4

0.6

0.8

1

μ

0

1

2

3

4

JBD

0.2

0.4

0.6

0.8
T

CHAPTER 3 REKEYING BENCHMARK

25

3 Rekeying Benchmark

3.1 Overview
This chapter presents a novel approach to performance evaluation of rekeying algorithms.
First, Section 3.2 illustrates the problem of rekeying performance evaluation. Section 3.3
introduces the design concept of a rekeying benchmark as a solution to this problem. New
performance metrics and relating simulation modes are then discussed in Section 3.4. The
design of the rekeying benchmark and its components is detailed in Section 3.5. Section 3.6
depicts some implementation issues of the benchmark. Lastly, Section 3.7 illustrates the
application of the benchmark by means of a simulation case study.

3.2 Rekeying Performance Evaluation Problem
A typical problem in scientific work relates to the analysis and evaluation of own results
and comparing them with those of related work. This problem, on the one hand, can be
attributed to the increasing number of scientific institutions and the vast publication
possibilities such as journals, conferences and workshops. This trend hinders a
comprehensive overview of the state-of-the-art situation in some scientific field. On the
other hand, some research areas – because of their novelty, complexity, or both – lack a
unified way to draw these comparisons. This situation, for instance, does not apply to the
work on performance optimization of the new encryption algorithm AES. Since its release
in 2001 by NIST [Ni01], an enormous amount of work is published. However, the
recognized way to describe the performance of a block cipher in terms of throughput and
latency allows for a reliable comparison between these solutions. On the contrary, such
unified metrics are still missing for estimating the performance of rekeying algorithms,
which is caused by both the novelty of this problem area and its complexity.

This complexity, however, did not only result in largely different metrics to express
rekeying performance, but also in diverse ways of estimating these metrics. In this respect,
the reader of proposed work on multicast group rekeying is not only confronted with
different performance quantities, but also with various estimation methods such as
analytical modeling, simulation based approaches, and real-time measurement using
provisional prototypes. Each one of these techniques has specific constraints and
drawbacks, which can be outlined in the following points:

3.2 REKEYING PERFORMANCE EVALUATION PROBLEM

26

1. Analytical approaches are always based on simplified models and relate to special
cases such as full balanced trees. As a rule, rekeying performance can only be
expressed by abstract numbers of some primitive operations, e.g. the number of
encryptions, for borderline cases, e.g. a worst-case analysis or a best-case analysis.

2. Simulation based approaches are mostly used to prove a presented analytical investi-
gation without model enhancement and without including sophisticated effects such as
group dynamics.

3. Measurement approaches deliver results, which are strongly dependent of the depl-
oyed cryptographic primitives, their implementation, and of the platform they run on.

Furthermore, the performance of group rekeying is influenced by a couple of factors
reflecting the group state and dynamics, on the one hand, and by some algorithm specific
parameters such as the tree degree in LKH, on the other. Accordingly, two questions arise
for performance estimation: which factors must be taken into consideration, and how
should they be included, as variables or as parameters? Again, the largely different answers
to these questions in related work make a large contribution to the performance evaluation
problem. In summary, the difficulty of evaluating different rekeying algorithms is attributed
to the following three points:

1. Non-unified performance estimation methods.

2. Non-unified consideration of the input quantities affecting the performance.

3. Non-unified definition of output metrics representing the performance.

Table 3.1 delivers a representative view of this situation in related work. Note that an input
quantity can be considered either as a variable or as a parameter. This differentiation is
needed when the corresponding performance metric is a function of several variables. For
some estimation, a variable, which is kept constant, is called a parameter.

The diverse ways of looking at rekeying performance do not only obstruct an objective
assessment of the corresponding algorithms, but also give an explanation of some
inconsistencies in the conclusions drawn by some related work. The following two
examples illustrate this point:

Example 3.1: Tree Degree
Though many publications on tree-based rekeying do not address the effect of tree degree,
some work investigates its value, which results in optimized rekeying costs. While [Wo00]
states a value of 4 as an optimal tree degree, [Go03] proves that trees with variable degree
between 2 und 3 are more efficient.

 Example 3.2: Tree Rebalancing
A lot of related work on LKH has commented that the logarithmic relation of rekeying
costs to group size may be easily violated if the tree gets out of balance as an effect of
multiple disjoin operations. In extreme cases rekeying costs can even grow linearly to the
group size which makes a rebalancing of the tree indispensable.

CHAPTER 3 REKEYING BENCHMARK

27

Table 3.1. Dissimilarity in rekeying performance estimation in related work

Input Quantities
Work

Performance
estimation

method

Performance
estimation mode
and constraints Variable Parameter

Performance
metric

Analytical Worst-case
Average costs

Join, # disjoins, Tree degree
Group size # Encryptions

[Li01]
Simulation Worst-case

Average costs

Joins,
 # Disjoins

0-1000
0-4000

Tree degree
2,4,8,16,32
Group size
1024, 4096

Encryptions

[Wa99] Measurement

Group grows
from 5000 to

20000 with 1%
probability for
join and 0.1 %

for disjoin

Time
0-600 Sec

0-8000 Sec

Messages per
minute

Tree levels

[Sh03] Analytical Full balanced
binary trees

Group size,
Parameters for encryption,

key generation, and hashing
costs

Abstract cost per
join/disjoin, per

multiple
joins/disjoins

Analytical Full balanced
trees Tree height and degree # encryptions per

request
[Wo00]

Measurement Join rate = disjoin
rate = 50%

Group size 0-
8192

Tree degree
2-16

Request processing
time

[Lu05] Simulation

Join rate =
disjoin rate = 50%

n0 = 10000.
Worst-case,
average cost

Operation number
0-10000

Rekeying message
cost per 2000

operations

[Pe03] Simulation
Statistically

generated join/
disjoin patterns

Time
0-70 Min

0–700 Min

Batch period
0-40 Min
0–50 Min

Tree height

Analytical Worst-case,
best-case analysis

Group size, tree degree,
highest layer [Ng05]

Simulation Full balanced
trees

Group size
0-8192

Cumulative
layers

Keys per request

Analytical
Group size

merging members
leaving members

Exponentiation
Signatures

Verification
[Am04]

Measurement

Average
communication
and client delay

included

Group size
0-50

RSA module
512 Bit, 1024

Bit

Time per
join/disjoin.

Time per
merging/partition

Analytical 1 join / 1 disjoin

Group size
All potential members

Potential members not in the
group currently [Ch02]

Simulation
Dedicated for
some MBone

sessions

Time
0-400 hours

Group sizes
4096, 64 K.
Batch period
20-240 Min

Encrypted
messages

[Mi97] Measurement Payload size in bytes Time

3.3 REKEYING BENCHMARK DESIGN CONCEPT

28

The first contribution on tree rebalancing has been made by Moyer [Mo99] who introduced
two methods: an immediate and a periodic rebalancing. The immediate rebalancing results
in worst-case rekeying costs of 4ּlog2n encryptions instead of 2ּlog2n in the case without
rebalancing. For the periodic rebalancing, however, no information is provided about the
overall performance. Moharrum et al. [Mo04] presented another method for rebalancing
based on sub-trees. A comparison with the solution of Moyer is drawn, but not with the
original LKH. Rodeh et al. [Ro00] applied rebalancing methods known in AVL trees to
rebalance multicast key trees. However, no backward access control is guaranteed in this
solution. Goshi et al. [Go03] proposed three algorithms for tree rebalancing. The analytical
analysis in this work does include rebalancing costs and the simulation results only relate to
equally likely join and disjoin behavior, which does not disturb the tree structure as a rule.
The same remark applies to the simulation results provided by Lu [Lu05], who presented a
rebalancing method without node splitting. Section 3.7 provides a detailed case study,
which illustrates that rebalancing costs exceed the gain associated with it, which does not
satisfy the usage of this tree management strategy.

This chapter presents a solution to the performance evaluation problem in multicast group
rekeying [Sh07a]. The proposed benchmark provides a simulation environment, which can
be used to evaluate different rekeying algorithms in a unified way. The study presented in
this chapter is limited to the computational overhead on the server side of a group manager.
This component, however, dominates the overall rekeying costs in many cases. An
inclusion of communication costs and of the computational overhead on the client side is
planed in future work.

3.3 Rekeying Benchmark Design Concept

3.3.1 Benchmark Abstraction Model
Rekeying presents a solution for group key management in secure multicast. As an essential
step in the process of joining and removing members, rekeying performance directly
influences the efficiency of this process with major effects on the system behavior. The
faster a member can be removed the higher is the system security. The faster a member can
be joined the higher is the system quality of service. The more efficient the rekeying the
larger the groups, which can be supported and the more members may be joined and
removed per time unit. Accordingly, the importance of rekeying performance estimation
results from the significant effects of this performance on the system behavior in respect of
the following items:

1. The amount of quality of service, which can be offered to a joining member.

2. The amount of security against a removed member.

3. Scalability in terms of supportable group sizes.

4. Group dynamics in terms of maximal supportable join and disjoin rates.

A representation of rekeying performance using these items allows a more understandable
and reliable means to evaluate different rekeying algorithms. The advantage of this

CHAPTER 3 REKEYING BENCHMARK

29

Benchmark Layer

Rekeying Layer

Cryptography Layer

Platform Layer

presentation stems from the abstraction associated with it. This can be illustrated as
follows. To enable a reliable evaluation of rekeying algorithms, metrics must be estimated,
which are independent of these algorithms. Thus, an abstraction of the performance
estimation from rekeying algorithms is required. Figure 3.1 represents the task of
evaluating rekeying algorithms as a four-layer abstraction model. The highest layer,
denoted as the benchmark layer, takes the responsibility for performance evaluation of
rekeying algorithms which are executed on the following rekeying layer. The introduction
of the two lower layers, the cryptography and the platform layers, originates from the
following analysis. The rekeying layer performs join and disjoin requests based on
cryptographic operations such as encryption and digital signing. For each cryptographic
primitive a wide selection is available. Taking symmetric-key encryption as an example,
rekeying may employ DES, 3DES, AES, IDEA or other algorithms. The same rekeying
algorithm behaves differently according to the utilized cryptographic primitives. Further
more, the same cryptographic primitive features different performance according to the
platform it runs on. This fact remains, even if public-domain libraries such as CryptoLib
[Cl07] are utilized to realize cryptographic functions. Consequently, a reliable rekeying
benchmark does not only rely on an abstraction from the details of the analyzed rekeying
algorithms. Rekeying itself must be decoupled from the underlying cryptographic
primitives and from the executing platform.

Figure 3.1. Rekeying benchmark abstraction model

The representation of the task of rekeying performance evaluation as an abstraction model
provides several advantages and introduces essential design aspects for the benchmark:

1. Due to the abstraction of the benchmark from the rekeying task, a reliable und
understandable mechanism for comparing different rekeying algorithms is provided.

2. The translation of rekeying costs into a system level permits the combination of these
costs with other system costs such as those of user registration and authentication.

3. The separation of rekeying algorithms from the cryptographic layer and from the
execution platform leads to a substantial acceleration of the evaluation process. This
gain is based on the fact that rekeying algorithms to be evaluated do not need to execute
any cryptographic algorithms. Instead, they just provide information on the required
number of these operations. The actual rekeying costs are then determined by the

3.3 REKEYING BENCHMARK DESIGN CONCEPT

30

Benchmark Layer

Rekeying Layer

Cryptography Layer

Rekeying
requests

Rekeying
cost data

Timing
parameters

Platform Layer

benchmark with the aid of timing parameters of the used primitives and the execution
platform. This point will be detailed in the next section.

4. From the last point it is obvious that the demand for a reliable rekeying benchmark can
not be fulfilled by real-time measurements on prototypes or final products, since these
measurements can not be performed independently of the cryptographic primitives and
the platform. Instead, for rekeying algorithms to be evaluated fairly and efficiently
some kind of simulation has to be employed.

3.3.2 Benchmark Data Flow
A good understanding of the benchmark abstraction model can be delivered by
investigating the data exchange between its different layers. Figure 3.2 shows a refinement
of this model which presents the data flow between the different layers based on the
following aspects:

1. The rekeying layer receives rekeying requests and executes pseudo rekeying, which
means that rekeying algorithms only decide on the cryptographic operations needed for
these requests without executing them. This issue is illustrated by the gap between the
rekeying and the cryptography layers.

2. The rekeying requests are delivered without any timing information. This means that
the rekeying layer is not informed about the temporal distribution of the rekeying
requests. This task is assigned to the benchmark layer.

3. The rekeying cost data provide information on the number of the needed cryptographic
operations for each rekeying request or request batch.

4. The timing parameters hide the cryptographic primitives and the executing platform to
provide a unified cost estimation, which can be used by the benchmark layer for all
rekeying algorithms in the same way.

5. To estimate the cost of a rekeying request the benchmark sums the products of the
rekeying cost data and the corresponding timing parameters.

Figure 3.2. Data flow in the benchmark abstraction model

CHAPTER 3 REKEYING BENCHMARK

31

3.4 Rekeying Benchmark as a Simulation Environment

3.4.1 Cost metrics and Evaluation Criteria
As mentioned in the previous section it is necessary for the benchmark to translate rekeying
costs into system-level metrics, which can be estimated for each rekeying algorithm and,
thus, allow for a reliable comparison between different ones. In the following, these metrics
are defined and some associated evaluation criteria are introduced. These criteria depict
how the particular metric can be employed to evaluate different rekeying algorithms.

3.4.1.1 Rekeying Quality of Service (RQoS)
To define this metric two auxiliary quantities are introduced first:

Definition 3.1:
A Required Join Time TJ sys specifies a rekeying system and is defined as the maximal
allowable rekeying time needed to join a member.

Definition 3.2:
An Actual Join Time TJ specifies a join request and is defined as the sum of the waiting
time WJ of the join request in the system queue and the rekeying time RTJ consumed by a
rekeying algorithm to grant this request:

JJJ RTWT += (3.1)

Definition 3.3:
Rekeying Quality of Service RQoS specifies a join request and is defined as the difference
between the required join time of the system and the actual join time of this request:

J
sys

J TTRQoS −= (3.2)

Evaluation Criterion 1:

 For a rekeying algorithm to join members correctly it must feature a RQoS which is
equal to or higher than zero, i.e.

0≥RQoS (3.3)

 Considering two rekeying algorithms with RQoS1 and RQoS2, the algorithm with the
higher RQoS delivers a better join behavior.

3.4.1.2 Rekeying Access Control (RAC)
Similarly to RQoS, the rekeying access control depends on two other quantities which are
defined first:

3.4 REKEYING BENCHMARK AS A SIMULATION ENVIRONMENT

32

Definition 3.4:
A Required Disjoin Time TD sys specifies a rekeying system and is defined as the maximal
allowable rekeying time needed to disjoin a member.

Definition 3.5:
An Actual Disjoin Time TD specifies a disjoin request and is defined as the sum of the
waiting time WD of the disjoin request in the system queue and the rekeying time RTD
consumed by a rekeying algorithm to grant this request:

DDD RTWT += (3.4)

Definition 3.6:
Rekeying Access Control specifies a disjoin request and is defined as the difference between
the required disjoin time of the system and the actual disjoin time of this request:

D
sys

D TTRAC −= (3.5)

Evaluation Criterion 2:

 For a rekeying algorithm to disjoin members correctly it must feature a RAC which is
equal to or higher than zero, i.e.

0≥RAC (3.6)

 Considering two rekeying algorithms with RAC1 and RAC2, the algorithm with the
higher RAC delivers a better member disjoin behavior.

3.4.1.3 Maximal Group Size nmax
This metric represents the maximal group size which can be supported without
deterioration of the system requirements of QoS and access control.

Evaluation Criterion 3:

 For a rekeying algorithm to join and disjoin members correctly a maximal group size
must be chosen which fulfills both criteria (3.3) and (3.6).

 Considering two rekeying algorithms, which fulfill criteria (3.3) and (3.6), the
algorithm, that supports a higher nmax, features higher scalability.

3.4.1.4 Maximal Join and Disjoin Rates
The total rekeying time depends on group dynamics. The higher the request rate the higher
is the rekeying algorithm occupancy and the higher is the probability for new requests to
wait in the system queue. According to related work on modeling the multicast member
dynamics, e.g. [Al96], the benchmark assumes the following model:

CHAPTER 3 REKEYING BENCHMARK

33

1. The arrival process of new members underlies a Poisson distribution. The inter-arrival
times, accordingly, are exponentially distributed with the parameter λ, which indicates
the number of join requests per time unit.

2. The duration of members in the group is a random variable which also features an
exponential distribution with the parameter μ, which represents the number of disjoin
requests per time unit.

Evaluation Criterion 4:

 For a rekeying algorithm to join and disjoin members correctly maximal join/disjoin
rates λmax /μmax must be chosen, so that both criteria (3.3) and (3.6) are fulfilled.

 Considering two rekeying algorithms, which fulfill both criteria (3.3) and (3.6), the
algorithm, that supports higher λmax /μmax, features higher dynamics.

3.4.2 Simulation Modes
The benchmark provides a way to verify the evaluation criteria defined above by means of
simulation. For this purpose four simulation modes are proposed. The next sections provide
a general description of these modes and their utilization goals. An in-depth description of
the simulation process will be provided in Section 3.5. As a quick reference, Figure 3.3 and
Table 3.2 provide an overview of the supported simulation modes and the associated
parameters and settings.

Figure 3.3. Simulation modes in the rekeying benchmark

Note 3.1:
The system parameter Nmax given in Table 3.2 represents the desired maximal group size.
This parameter is required by some rekeying algorithms for set-up. It differs from nmax,
which is the actually supportable group size by a rekeying algorithm, see Section 3.4.1.3.

3.4.2.1 Transient Simulation
This simulation estimates the current group size n(t), the rekeying Quality of Service
RQoS(t), and the rekeying access control RAC(t) as functions of time. With the help of this
simulation mode the behavior of rekeying algorithms can be observed over long time
periods and in some interesting intervals such as the ones shortly before and after an
important event in multicast communication. For this purpose, the transient simulation
allows the setting of an initial group size n0, a join rate λ, a disjoin rate μ, and the desired
simulation time tsim. Like all other simulation modes, the transient simulation receives the

time n λ

RQoS(t)
RAC(t)

n(t)

RQoSmin
RACmin

RQoSmin
RACmin

Transient
Simulation

Scalability
Simulation

Join Dynamics
Simulation

μ

RQoSmin
RACmin

Disjoin Dynamics
Simulation

3.4 REKEYING BENCHMARK AS A SIMULATION ENVIRONMENT

34

system parameters TJ sys and TD sys, which refer to the required rekeying times from the
system point of view. In addition, to estimate the rekeying times RTJ and RTD, the timing
parameters must be entered, see Definition 3.21. Similarly to the system parameters, the
timing parameters are independent of the simulation mode, as can be seen in Table 3.2. The
transient simulation builds the foundation for all the other three simulation modes.

Table 3.2. Simulation parameters and metrics

3.4.2.2 Scalability Simulation
The importance of this simulation mode results from the significance of the scalability
problem in group rekeying. The scalability simulation investigates the effect of the group
size on the system behavior. Group size influences the RQoS and RAC through the rekeying
time terms RTJ and RTD in (3.1) and (3.4). Each group size n of a user-definable range
serves as an initial group size for a new scalability simulation point. Scalability simulation
differs from transient simulation in two points. First, for each scalability simulation point a
transient simulation is started over a fixed observation interval To with the current group
size as initial value (n0) for the transient simulation. The second specialty of scalability
simulation relates to estimating the worst-case values of the performance metrics RQoS and
RAC, i.e. RQoSmin and RACmin. In other words, from all requests collected in the observation
interval To only the join request with the worst RQoS and the disjoin request with the worst
RAC are considered. The scalability simulation helps to estimate the maximal group size
nmax which can be supported by some rekeying algorithm for certain group dynamics. The
maximal group size nmax can be estimated graphically as the lower group size at the
intersection of the curves of RQoSmin and RACmin with the x-axis. This issue is
schematically illustrated in Figure 3.4.

3.4.2.3 Join Dynamics Simulation
High join rates result in short inter-arrival times of join requests and more rekeying
computations. This causes longer waiting times for new join and disjoin requests.
Accordingly, higher join rates does not only affect the rekeying QoS, but also the rekeying

Simulation
Modes

System
Parameters

Timing
Parameters

Group
Parameters

Simulation
Parameters Variable Output

Metrics

Transient
Simulation

n0
λ
μ

tsim time
RQoS(t)
RAC(t)

n(t)

Scalability
Simulation

λ
μ

To
[nstart-nend]

∆n
n RQoSmin

RACmin

Join
Dynamics
Simulation

n0
μ

To
[λstart-λend]

∆λ
λ RQoSmin

RACmin

Disjoin
Dynamics
Simulation

TJ
sys

TD

sys

Nmax

Cg

Ce

Ch

Cm

Cs

n0
λ

To
[μstart-μend]

∆μ
μ RQoSmin

RACmin

CHAPTER 3 REKEYING BENCHMARK

35

access control because of the waiting time terms in (3.1) and (3.4). The join dynamics
simulation represents a way to investigate theses dependencies. The user defines an initial
group size n0, a disjoin rate μ, and a fixed observation interval To. In addition, a simulation
range for the join rate λ is entered. For each value of λ a transient simulation over To is
started which is similar to the one described in the scalability simulation. With the help of
join dynamics simulation the maximal allowable join rate λmax for a rekeying algorithm can
be estimated. λmax corresponds to the lower λ-value of the intersection points of the curves
of RQoSmin and RACmin with the x-axis.

Figure 3.4. Scalability simulation to estimate nmax

Another interesting knowledge, which can be gained on the base of this simulation mode,
relates to the investigation of the rekeying algorithm behavior in the case of unbalanced
group dynamics. Unbalanced group dynamics means that the join request rate exceeds the
disjoin request rate, or wise versa. The significance of this analysis is based on the fact that
the performance of some rekeying algorithms differs considerably according to the request
type dominating the group dynamics. While the Star Graph rekeying [Wo00], for instance,
scales well for join requests, it performs largely inefficient in the case of high disjoin
request rates. To investigate the effect of unbalanced group dynamics a vertical line is
drawn at the join rate, which equals the defined disjoin rate µ, and the RQoSmin/RACmin
behavior is observed on the both sides of this line. Figure 3.5 schematically illustrates this
point. The RQoSmin of two rekeying algorithms A1 and A2 is estimated. For join rates,
which are lower than the given disjoin rate, algorithm A1 features higher performance than
algorithm A2. This advantage, however, decreases with increasing join rates, which
becomes evident after exceeding the disjoin rate.

Figure 3.5. Join dynamics simulation to investigate unbalanced dynamics

n

RQoSmin

n2 n1

nmax = n1

RACmin

λ

RQoSmin

λ =μ

A1

A2

3.5 REKEYING BENCHMARK DESIGN

36

3.4.2.4 Disjoin Dynamics Simulation
This simulation can be utilized to estimate the maximal disjoin rate μmax. All other
properties of the join dynamics simulation apply to this simulation and are not repeated
here, for brevity.

3.5 Rekeying Benchmark Design

3.5.1 General Architecture
The rekeying benchmark is mainly composed of two interfaces and three components, as
depicted in Figure 3.6:

Figure 3.6. Rekeying benchmark architecture

1. User Interface (UI): This interface enables benchmark users to evaluate different
rekeying algorithms by selecting these algorithms and setting the desired parameters for
the system, group, timing and simulation runs. Simulation results can be captured in a
tabular form or graphically.

2. Programming Interface (PI): For designers of rekeying algorithms this interface
enables the integration of new algorithms into the benchmark environment. In addition,
groups with special dynamic behavior, which does not follow a Poisson distribution,
can be supported with the aid of a special programming interface.

3. Request Generator: Depending on the entered group and simulation parameters the
request generator builds a request list. An entry of this list keeps information on the
request type, join or disjoin, the identity of the member to be joined or disjoined, and

Algorithm Manager

System
Parameters

Algorithm
Selection

Simulation
Parameters

Graphical
diagrams

Tabular
data

A1

Programming Interface
for new algorithms

Programming Interface
for new group

dynamics models

Request Generator

A2 An

Performance Evaluator

Group
Parameters

Timing
Parameters

Rekeying
requests

Rekeying
cost data

….

PI

UI

CHAPTER 3 REKEYING BENCHMARK

37

the arrival time of this request. The request generator deals with the difficult task of
modeling the group dynamics. Group dynamics includes two indeterministic
contributions. The first component relates to the stochastic process of request arrivals.
The second indeterministic contribution represents the task of choosing the member to
be removed. This item results from the fact that most rekeying algorithms feature
member-dependent rekeying performance. Removing a member located on a higher
level in a key tree, for instance, does not cost as much as removing another, whose leaf
belongs to a lower level. Choosing identities for joining members, in contrast, is
deterministic because the group manager has control of the join point, as a rule.

4. Algorithm Manager: This component selects and configures the rekeying algorithms to
be evaluated according to user settings. It coordinates the functions of the benchmark
and the rekeying algorithms.

5. Performance Evaluator: Based on the rekeying cost data delivered from the rekeying
algorithms, the entered timing parameters, and on the selected simulation, the rekeying
performance of each algorithm in terms of RQoS and RAC is estimated and prepared
for display.

The algorithm manager plays a central role in the benchmark architecture. Its functionality
can be illustrated by the process described in Algorithm 3.1. After reading the user settings
of the desired parameters, the simulation mode, and the algorithms to be evaluated, the
algorithm manager executes the corresponding simulation process. Simulation processes on
their part call the request generator and pass the rekeying requests to the selected rekeying
algorithms. As a result, a simulation process provides abstraction rekeying costs, i.e.
without timing information. This information is first supplied to the performance evaluator
which combines the timing parameters with the abstract rekeying costs to determine the
RQoS and RAC metrics.

Algorithm 3.1 Benchmark evaluation process

Simulation
Mode?

Enable Simulation Setup

Enter User Settings

DoDisjoinDynSim

Evaluate Simulation Results

Output Evaluation Results

DoJoinDynSim DoScalSim DoTranSim

3.5 REKEYING BENCHMARK DESIGN

38

For clarity, next sections detail the three benchmark components in an order corresponding
to the benchmark architecture as depicted Figure 3.6.

3.5.2 Request Generator
The request generator (RG) produces a rekeying request list RRL(T) by executing the
Request Generator Process based on three subprocesses: the Arrival Process, which
generates join/disjoin arrival lists AJ(T)/AD(T) and the Join/Disjoin Identity Selection
Processes, which generate a member identity for a join/disjoin request. For a formal
description, a terminology specific to the RG is presented first.

3.5.2.1 Request Generator Terminology
Definition 3.7:
A Rekeying Request is 3-tuple (type, ID, ta), where type indicates the request type which
can be join (J) or disjoin (D). ID represents the member identity to be joined (IDJ) or
disjoined (IDD). ta describes the arrival time of a join request (taJ) or a disjoin request (taD)
measured from the start point of the simulation run.

Definition 3.8:
A Rekeying Request List over T, RRL(T), is an ordered set of rekeying requests, which
arrive during a defined time interval T. The requests in the list are ordered according to
their arrival times.

Example 3.3: RRL(T)
An RRL(T) can be represented in tabular form, Table 3.3 depicts an example.

Table 3.3. Example for a rekeying request list RRL(T)

Request Type Member Identity Arrival Time (ms)
D 1099 0
J 50 0.1
J 178 2
D 22657 5.3

Definition 3.9:
A join arrival list over T, AJ(T), is an ordered list of inter-arrival times, which relate to all
join requests generated during a given time interval T:

AJ(T) = (∆tJ(1), ∆tJ(2),… ∆tJ(i),… , ∆tJ(h)),

where ∆tJ(i) indicates the inter-arrival time of the i-th join request in the interval T and

Tit
hi

i
J ≤Δ∑

=

=1
)((3.7)

CHAPTER 3 REKEYING BENCHMARK

39

Definition 3.10:
A Disjoin arrival list over T, AD(T), is an ordered list of inter-arrival times, which relate to
all disjoin requests generated during a given time interval T:

AD(T) = (∆tD(1), ∆tD(2),… ∆tD(i),… , ∆tD(k)),

where ∆tD(i) indicates the inter-arrival time of the i-th disjoin request in the interval T and

Tit
ki

i
D ≤Δ∑

=

=1
)((3.8)

Definition 3.11:
A member identity (ID) is defined as a natural number which takes any value between 0 and
Nmax – 1, where Nmax represents the maximal desired group size, see Note 3.1.

Definition 3.12:
From the view point of the request generator a complete multicast group M is defined as a
set of all member identities.

M = {ID(i)}, i = 0 ÷ (Nmax -1)
Definition 3.13:
A joined multicast subgroup (MJ) is defined as the subset of M which includes all given
identities.

At the start of a simulation with initial group size n0, MJ is defined as follows:

MJ= {ID(i)}, i = 0 ÷ (n0 -1)
Definition 3.14:
A potential multicast subgroup (MD) is defined as the subset of M which includes all free
identities, i.e. the identities which can still be given to new members.

At the start of a simulation with initial group size n0, MD is defined as follows:

MD = {ID(i)}, i = n0 ÷ (Nmax -1)

3.5.2.2 Request Generator Process (GenReqList)
This process generates a rekeying request list RRL(T) according to Definition 3.8.
Algorithm 3.2 illustrates this process as pseudo code. First, the arrival process
GetArrivalLists is called to produce join and disjoin arrival lists AJ(T) and AD(T), see
Definition 3.9 and Definition 3.10. According to their inter-arrival times in these lists, the
arrival times for the individual requests are then determined. Depending on the request
type, the member identity is obtained by calling the processes GetJoinID or GetDisjoinID.
Afterwards, the RRL(T) is updated by the new rekeying request 3-tuple. After processing
all entries of AJ(T) and AD(T), the RRL(T) is sorted by increasing arrival time. Note that
the request generator is transparent to the simulation mode. Utilizing the generator for
different simulation modes will be described later in the scope of the algorithm manager.
Example 3.4 illustrates this code in more details.

3.5 REKEYING BENCHMARK DESIGN

40

Algorithm 3.2 GenReqList
Input: T
Output: RRL(T) -- Definition 3.8
1. GetArrivalLists(T) → AJ(T) and AD(T) -- Section 3.5.2.3
2. i := 1, j := 1, taJ := 0, taD := 0;
3. do
4. if ΔtJ(i) ≥ ΔtD(j) then
5. taD := taD + ΔtD(j); -- Equation (3.8)
6. GetDisjoinID → IDD -- Section 3.5.2.5
7. j := j + 1;
8. Add (D, IDD, taD) into RRL(T)
9. else
10. taJ := taJ + ΔtJ(i); -- Equation (3.7)
11. GetJoinID → IDJ -- Section 3.5.2.4
12. i := i + 1;
13. Add (J, IDJ, taJ) into RRL(T)
14. end if
15. while (i≤h or j≤k) -- h/k: number of AJ(T)/AD(T) entries
16. Sort RRL(T)
17. return RRL(T)

Example 3.4: Request Generator Process
The following example illustrates Algorithm 3.2.

Input: A group of maximal 8 members. 5 members are currently joined as follows.

M = {0, 1, 2, 3, 4, 5, 6, 7}, MJ = {0, 1, 2, 3, 4}, MD = {5, 6, 7}

See definitions 3.12, 3.13, and 3.14 for M, MJ and MD, respectively.

Assume that calling the process GetArrivalLists(T) on some interval T results in:

AJ(T) = (10, 25), AD(T) = (11, 5, 7)

The contents of the inter-arrival time lists AJ(T) and AD(T) indicate that during the given
interval 2 join requests and 3 disjoin requests are collected, i.e. h = 2, k = 3. In addition, the
requests feature the following inter-arrival times:

ΔtJ(1) = 10, ΔtJ(2) = 25, ΔtD(1) = 11, ΔtD(2) = 5, ΔtD(3) = 7.

In the first run of the do-while loop, the if-condition in Algorithm 3.2 is false because
ΔtJ(1) < ΔtD(1). Therefore, the first join request is processed by determining its arrival time
in Step 10, which results in taJ := 0 + 10 = 10, as taJ = 0 initially. Assuming that executing

CHAPTER 3 REKEYING BENCHMARK

41

the process GetJoinID in Step 11 results in a member identity IDJ = 5, a first entry is
written into the rekeying request list RRL(T), Step 13, as depicted in the first row of Table
3.4 which represents the RRL(T) for his example.

In the second iteration the if-condition is true because ΔtJ(2) > ΔtD(1). Therefore, the next
request to be written to the RRL(T) is of a disjoin type and has an arrival time taD := 0 + 11
= 11, as taD = 0 initially. Assuming that GetDisjoinID returns an IDD which is equal to 3,
the RRL(T) is extended by the second entry of Table 3.4.

In the third iteration the if-condition is also true because ΔtJ(2) = ΔtD(2). Therefore, the next
request to be written to the RRL(T) is of a disjoin type and has an arrival time taD := 11 + 5
=16. If GetDisjoinID returns an IDD which is equal to 1, the request list is updated by the
third row of Table 3.4. The other two entries can be estimated in the same way.

Table 3.4. RRL(T) of Example 3.4

Request Type Member Identity Arrival Time (ms)

J 5 10
D 3 11
D 1 16
D 4 23
J 1 35

Figure 3.7 illustrates the relation between the inter-arrival times generated by the process
GetArrivalList(T) and the estimated arrival times in the given example.

Figure 3.7. Arrival times and inter-arrival times for Example 3.4

After the request generation in this example, the joined and the potential multicast
subgroups are given now as follows:

MJ = {0, 1, 2, 5}, MD = {3, 4, 6, 7}

Note 3.2:
The benchmark prototype optionally allows the user to skip the request generator and to
enter a rekeying request list freely. This provides a means to construct a RRL(T)
independently of the distribution function of rekeying requests. Therefore, typical errors,

ΔtJ(1)=10 ΔtJ(2)=25

ΔtD(1)=11 ΔtD(2)=5 ΔtD(3)=7

taJ(1)=10 taJ(2)=35 taD(1)=11 taD(2)=16 taD(3)=23

time

3.5 REKEYING BENCHMARK DESIGN

42

which result from choosing some distribution function based on network traffic analysis,
can be avoided by using this approach.

3.5.2.3 Arrival Process (GetArrivalLists)
The arrival process fulfills the task of generating the join and disjoin arrival lists AJ(T) and
AD(T) according to Definition 3.9 and Definition 3.10, respectively. As default, request
inter-arrival times are assumed to follow an exponential distribution for both the join and
disjoin cases with the request rates λ and μ, respectively. The corresponding probability
density functions (pdf) and the cumulative distribution functions (cdf) can be given by:

Jt
JJ etf Δ−=Δ λλ)(Jt

JJ etF Δ−−=Δ λ1)((3.9)

Dt
DD etf Δ−=Δ μμ)(Dt

DD etF Δ−−=Δ μ1)((3.10)

To generate an exponentially distributed random variate – here the inter-arrival times –
based on uniform random numbers in the interval [0 - 1], the inverse transformation
technique can be used [Le04]. Accordingly, if r represents a random number between zero
and one the inter-arrival time of a join or disjoin request can be estimated as follows:

)ln(1 rtJ λ
−=Δ (3.11)

)ln(1 rtD μ

−=Δ (3.12)

Algorithm 3.3 describes the arrival process as pseudo code. The process GetArrivalLists
generates join requests, as long as the sum of their inter-arrival times lower than or equal to
T. The same applies to disjoin requests.

Algorithm 3.3 GetArrivalLists
Input: T
Output: AJ(T), AD(T) -- Definitions 3.9 and 3.10
1. ΣΔtJ := 0, ΣΔtD := 0
2. while ΣΔtJ ≤ T do
3. Generate r
4. Determine ΔtJ according to Eq. (3.11)
5. ΣΔtJ := ΣΔtJ + ΔtJ;
6. Add ΔtJ to AJ(T)
7. while ΣΔtD ≤ T do
8. Generate r
9. Determine ΔtD according to Eq. (3.12)
10. ΣΔtD := ΣΔtD + ΔtD;
11. Add ΔtD to AD(T)
12. return AJ(T), AD(T)

CHAPTER 3 REKEYING BENCHMARK

43

3.5.2.4 Join Identity Selection Process (GetJoinID)
To join a member the group manager can select any available identity number from the
potential multicast subgroup MD, see Definition 3.14. A possible strategy may rely on
selecting the smallest available ID. This strategy naturally allows some order in the group
management. This order, for example, represents itself in tree-based rekeying algorithms by
filling in the tree gaps and, thus, keeping the tree balance to some extent. Accordingly,
GetJoinID is a deterministic process which can be illustrated by the pseudo code in
Algorithm 3.4. A selected IDJ must be added to MJ, i.e. to the set of given identities, see
Definition 3.13.

Algorithm 3.4 GetJoinID
Input: n/a
Output: IDJ
1. Get IDJ

min from MD -- Definitions 3.14
2. Add IDJ

min to MJ -- Definitions 3.13
3. return IDJ

min

3.5.2.5 Disjoin Identity Selection Process (GetDisjoinID)
In contrast to the join case, a rekeying system does not have prior knowledge of the
member to be disjoined, in general. Therefore, selecting an identity for a leaving member
from the joined multicast subgroup MJ, is a random process. Tow selection modes are
proposed:

Trial Selection:
The leave identity IDD can be modelled as a random variable which is uniform distributed
in the general case. IDD accepts any value of MJ. Calling the minimal and the maximal
available identities in MJ as IDD

min and IDD
max, respectively, and assuming that the range

[IDD
min, IDD

max] is continuous, i.e. all identity numbers higher than IDD
min and lower than

IDD
max are available in MJ, then an IDD can be selected by applying the following formula:

IDD = IDD
min + (IDD

max -IDD
min)ּr, (3.13)

where r is a uniform zero-one random number. However, due to membership changes MJ
does not have necessarily a continuous range of member identities. Therefore, applying
(3.13) can result in an IDD which does not belong to MJ. In this case a new zero-one
random number is generated and a new IDD is tried. This improper situation occurs more
likely if the range [IDD

min, IDD
max] is lightly occupied.

Certain Selection:
To avoid the problem of trial selection mentioned above, the IDD's of MJ are associated
with continuous successive indices from 0 to m-1, where m represents the number of all
IDD's in MJ. One way to achieve this is to save the elements of MJ as an array with the

3.5 REKEYING BENCHMARK DESIGN

44

index i. To select an IDD, a uniform zero-one random number r is generated first. Then an
index i is estimated using (3.14). In a last step, the IDD is selected which is indexed by i.

i = mּr (3.14)

Accordingly, certain selection does not suffer from useless trying. However, it demands a
re-indexing of the IDD's after selecting one disjoin identity. The costs of this re-indexing
increase with larger MJ.

Trial Selection vs. Certain Selection:
Selecting an appropriate selection mode with respect to efficiency is a hard problem which
will be investigated in future work. For the purpose of the benchmark prototype, a
switching strategy between the two selection modes is deployed. This switching depends on
the occupancy of the joined multicast subgroup MJ. To describe this occupancy, the
following concept is proposed.

Definition 3.15:
An occupancy factor (OF) is a real quantity which describes the occupancy of the joined
multicast subgroup MJ and is given as follows:

%100.

1 minmax
DD IDID

mOF
−+

= (3.15)

The benchmark prototype switches to a trial selection for OF values larger than 50%,
otherwise the certain selection mode is applied. Algorithm 3.5 illustrates the disjoin
identity selection process as pseudo code:

Algorithm 3.5 GetDisjoinID
Input: n/a
Output: IDD
1. Determine OF according to Eq. (3.15)
2. if OF > 50% then
3. do -- trial selection
4. Generate r
5. Determine a potential IDD according to Eq. (3.13)
6. while (IDD does not belong to MJ)
7. else -- certain selection
8. Generate r
9. Determine the index for an IDD according to Eq. (3.14)
10. Get corresponding IDD
11. Re-index MJ
12. Add IDD

 to MD
13. return IDD

CHAPTER 3 REKEYING BENCHMARK

45

3.5.3 Algorithm Manager
This component acts as a coordinator in the benchmark and fulfills the main tasks of user
interface management, algorithm control, and simulation execution. For this purpose the
algorithm manager reads in the user settings and calls the request generator. It then passes
the request list to the selected rekeying algorithms and collects the rekeying cost data.
These data are then sent to the performance evaluator, see Figure 3.6. The benchmark
functionality was presented as flow chart in Algorithm 3.1 in brief. In this section the
underlying simulation processes DoTranSim, SoScalSim, DoJoinDynSim, and
DoDisjoinDynSim will be illustrated. For this, three basic concepts are introduced first.

Definition 3.16:
Abstract Rekeying Cost (ARC) is a 5-tuple (G, E, H, M, S), which specifies the costs of a
rekeying request or request batch in terms of the amount of cryptographic operations
needed to grant this request or request batch by a rekeying algorithm. The elements of the
ARC are specified in Table 3.5.

Table 3.5. Abstract rekeying cost notation

Definition 3.17:
A Rekying Cost List RCL(T) is a rekeying request list RRL(T), see Definition 3.8, which is
extended by the abstract rekeying cost ARC for each request.

Example 3.5: RCL(T)
Table 3.6 shows an example for an RCL(T) which is an extension of the rekeying request
list given in Table 3.3. This example results from executing the LKH algorithm with binary
trees. This can be seen from the fact that each generated key is encrypted twice to
determine the rekeying submessages. Note that the rekeying algorithm in this example does
not apply group authentication, therefore, no message authentication codes are needed.
Instead, rekeying submessages are hashed and the final hash value is signed once for each
request.

Table 3.6. RCL(T) example
Rekeying

Cost List RCL(T) Request
Type

Member
Identity

Arrival
Time (ms)

G E H M S
D 1099 0 6 12 12 0 1
J 50 0.1 3 6 6 0 1
J 178 2 8 16 16 0 1
D 22657 5.3 2 4 4 0 1

ARC Element Meaning

G Number of generated cryptographic keys
E Number of symmetric encryptions
H Number of cryptographic hash operations
M Number of message authentication code operations
S Number of digital signatures

3.5 REKEYING BENCHMARK DESIGN

46

Because of its simultaneous processing of all rekeying requests arriving in an interval T,
batch rekeying results in the same abstract rekeying costs for all requests of the RRL(T). A
batch processing of the rekeying request list given in Table 3.3 may result in the rekeying
cost list shown in Table 3.7.

Table 3.7. RCL(T) example in batch rekeying
Rekeying

Cost List RCL(T) Request
Type

Member
Identity

Arrival
Time (ms)

G E H M S
D 1099 0 20 40 40 0 2
J 50 0.1 20 40 40 0 2
J 178 2 20 40 40 0 2
D 22657 5.3 20 40 40 0 2

Definition 3.18:
A Complex Rekeying Cost List CRCL(T) is a set of rekeying cost lists generated over the
same interval under different group conditions:

CRCL(T) = {RCL1(T), RCL2(T), …RCLm(T)}.

The concept of CRCL(T) is used to support the three complex simulation modes, the
scalability, the join dynamics and the disjoin dynamics simulations. For these simulation
modes an RCL(T) is generated for each n, λ or μ value in the desired simulation range,
respectively.

Example 3.6:
For a scalability simulation with nstart = 1000, nend = 2000 and ∆n = 100 a CRCL(T) is
produced, which contains 11 RCL(T).

Based on this terminology the different simulation processes can now be described. First
the transient simulation is illustrated. Because of the large similarity between the other
simulation modes, only the scalability simulation is presented, for brevity. An adapting of
this description to a join/disjoin dynamics simulation is straightforward. For an overview, it
is referred to Algorithm 3.1, which illustrates the context of these simulation processes in
the overall benchmark process.

3.5.3.1 Transient Simulation Process (DoTranSim)
Algorithm 3.6 represents the process of transient simulation. Initially, the request generator
process is resumed to generate a request list RRL(tsim) over the entered simulation time tsim.
For each selected rekeying algorithm, the algorithm manager performs then two main steps.
First, the rekeying algorithm is requested to initialize the group with n0 members. n0 can
accept any value between 0 and Nmax, see Tabel 3.2. Second, each rekeying request of
RRL(tsim) is sent to the rekeying algorithm, which then returns the corresponding abstract
rekeying cost ARC for that request.

CHAPTER 3 REKEYING BENCHMARK

47

Algorithm 3.6 DoTranSim
Input: All settings for a transient simulation as given in Table 3.2.

Set of rekeying algorithms to be evaluated.
Output: A RCL(tsim) for each rekeying algorithm -- Definition 3.17
1. GenReqList(tsim) → RRL(tsim) -- Algorithm 3.2
2. for each rekeying algorithm do
3. Initialize the group with n0 members
4. while RRL(tsim) is not empty do
5. Send a rekeying request to the algorithm
6. Get corresponding ARC -- Definition 3.16
7. Add ARC to RCL(tsim)
8. return RCL(tsim) of all algorithms

3.5.3.2 Scalability Simulation Process (DoScalSim)
Algorithm 3.7 represents the process of scalability simulation. As mentioned in Section
3.2, this simulation mode relies on the transient simulation. For each group size value n of
the desired simulation range [nstart, nend], a transient simulation is performed over the
entered observation time To. Recall that this simulation mode provides a rekeying cost list
RCL(To) for each simulation point. Selecting the request with the maximal cost from
RCL(To) is a task of the performance evaluator as will be seen in the next section.

Algorithm 3.7 DoScalSim
Input: All settings for a scalability simulation as given in Table 3.2.

Set of rekeying algorithms to be evaluated.
Output: A CRCL(To) for each rekeying algorithm -- Definition 3.18
1. for each rekeying algorithm do
2. n := nstart;
3. while n ≤ nend do
4. DoTranSim for To and n0 := n → RCL(To) -- Algorithm 3.6
5. Add RCL(To) to CRCL(To)
6. n := n + Δn;
7. return CRCL(To) of all algorithms

3.5.4 Performance Evaluator
This component receives a set of RCL(T) or CRCL(T) and calculates the system metrics
RQoS and RAC with respect to time, group size, or join/disjoin request rate, depending on
the simulation mode. First, three concepts are introduced, which are necessary for a formal
description of the functionality of this component.

3.5 REKEYING BENCHMARK DESIGN

48

Definition 3.19:
A Performance Simulation Point (PSP) is 3-tuple (x, RQoS, RAC), where x represents the
variable to which the RQoS and RAC are related.

Depending on simulation mode x, RQoS and RAC are interpreted as already illustrated in
Table 3.2. Recall that RQoS is not defined for a disjoin request. Similarly, RAC is not
available for a join request.

Definition 3.20:
A Rekeying Performance List (RPL) is a set of performance simulation points.

RPL ={PSP}={(x1, RQoS1, RAC1), (x2, RQoS2, RAC2),…}

Definition 3.21:
A Timing Parameter List (TPL) is a 5-tuple (Cg, Ce, Ch, Cm, Cs), where the tuple elements
are defined as depicted in Table 3.8.

As mentioned in Section 3.3.2, the timing parameters reflect the performance of employed
cryptographic algorithms and of the platform to the benchmark layer, which allows for a
reliable evaluation of different rekeying algorithms. Timing parameters are entered by the
user independently of the simulation mode as was illustrated in Table 3.2.

Table 3.8. Timing parameters meaning

The performance evaluator executes processes, which combine a rekeying cost list RCL(T)
or a complex rekeying cost list CRCL(T) with a timing parameter list TPL to produce a
rekeying performance list PRL for each rekeying algorithm.

For each rekeying request in RCL(T)/CRCL(T) the actual join and disjoin time is
determined according to equations (3.1) and (3.4), respectively. For this purpose, the
rekeying time for a join or disjoin request consumed by a rekeying algorithm is estimated
first according to:

smhegDJ CSCMCHCECGRT/ ++++= (3.16)

Second, the waiting time of a request is estimated as follows:

 ∑
=

=
m

i
iDJ RTW

1
/ for m ≥ 1 (3.17)

 0/ =DJW for m = 0, (3.18)

ARC Element Meaning

Cg Cost of generating one cryptographic key in time units
Ce Cost of one symmetric encryption in time units
Ch Cost of one cryptographic hash operation in time units
Cm Cost of one message authentication code in time units
Cs Cost of one digital signature in time units

CHAPTER 3 REKEYING BENCHMARK

49

where m represents the number of all requests waiting in the system queue or being
processed at the arrival of the request at hand. Note that equation (3.17) is approximate
since it does not consider the time part of RT1 (the request being processed), which has
passed before appearing the considered request.

Knowing the waiting times and the rekeying times, the actual rekeying times can be
estimated using (3.1) and (3.4). Afterwards, RQoS and RAC can be calculated for a join or
disjoin request according to (3.2) or (3.5), respectively.

3.5.4.1 Transient Evaluation Process (EvalTranSimResults)
In the case of a transient simulation the performance evaluator executes the process
EvalTranSimResults according to Algorithm 3.8. For each join and disjoin request in the
RCL(T), a performance simulation point PSP is determined. The symbol ∞ in the pseudo
code indicates an undefined metric for the current state. For example, RQoS is not defined
for a disjoin request. taJ and taD represent the arrival times of the corresponding join and
disjoin requests, respectively. Remember that these time values are determined from the
arrival lists by the request generator process according to Algorithm 3.2.

Algorithm 3.8 EvalTranSimResults
Input: A RCL(tsim) for each rekeying algorithm, TJ

sys, TD
sys

Output: A PRL for each rekeying algorithm
1. for each RCL(tsim) do
2. for each request in RCL(tsim) do
3. Determine RTJ/D -- Equation 3.16
4. Determine WJ/D -- Equation 3.17 or 3.18
5. if request type = J then
6. Determine TJ -- Equation 3.1
7. Determine RQoS -- Equation 3.2
8. PSP = (taJ, RQoS , ∞)
9. else
10. Determine TD -- Equation 3.4
11. Determine RAC -- Equation 3.5
12. PSP = (taD, ∞, RAC)
13. end if
14. Add PSP to PRL
15. return PRL of all algorithms

3.5.4.2 Complex Evaluation Process (EvalComplexSimResults)
Other simulation modes deliver a CRCL(T). The performance evaluator generates one
performance simulation point PSP for each RCL(T) of CRCL(T). The first element of the

3.6 IMPLEMENTATION

50

PSP tuple represents a n, λ or µ value for scalability, join dynamics or disjoin dynamics
simulation, respectively. The second element represents the minimal rekeying quality of
service RQoSmin of all join requests in the observation time for the corresponding n, λ or µ
value. Similarly, the third element represents RACmin of all disjoin requests. Algorithm 3.9
depicts the process EvalComplexSimResults for evaluating non-transient simulation results.
The symbol ∞ in this pseudo code indicates an initial very large value of the corresponding
metric.

Algorithm 3.9 EvalComplexSimResults
Input: A CRCL(To) for each rekeying algorithm, TJ

sys, TD
sys

Output: A PRL for each rekeying algorithm
1. for each rekeying algorithm do
2. for each RCL(To) of CRCL(To)do
3. RQoSmin := ∞, RACmin := ∞;
4. for each request in RCL(To) do
5. Determine RTJ/D -- Equation 3.16
6. Determine WJ/D -- Equation 3.17 or 3.18
7. if request type = J then
8. Determine TJ -- Equation 3.1
9. Determine RQoS -- Equation 3.2
10. if RQoS < RQoSmin then RQoSmin := RQoS
11. else
12. Determine TD -- Equation 3.4
13. Determine RAC -- Equation 3.5
14. if RAC < RACmin then RACmin := RAC
15. end if
16. PSP = (n/λ/µ, RQoSmin, RACmin)
17. Add PSP to PRL
18. return PRL of all algorithms

3.6 Implementation
The rekeying benchmark was implemented in Java using the Eclipse Environment [Ec05].
The software architecture consists of two main components: the Graphical User Interface
(GUI) and the actual simulation kernel, as depicted in Figure 3.8. In this figure the
benchmark software is illustrated as a simplified class diagram according to the Unified
Modelling Language (UML) [Ke05]. Note the assigning of the different classes to two
packages denoted as gui and kernel. BenchmarkAndAlgorithmManager represents the
central class in the package kernel and includes the main function. This class is associated
with the class SimulationSettings, which receives its attribute values from the GUI class
SimulationSetup. The execution of the benchmark causes the opening of a framework,

CHAPTER 3 REKEYING BENCHMARK

51

where several simulations can be executed. This point is indicated by the association
relation between the classes SimulationSetup and MainFrame. Simulation is an abstract
class, which is inherited by two different simulation classes: TransientSimulation and
ComplexSimulation. Note that the class ComplexSimulation is also abstract and builds the
base class for the other three simulation classes ScalabilitySimulation, JoinDynSimulation,
and DisjoinDynSimulation. The association relation between the classes
TransientSimulation and ComplexSimulation reflects the fact that each complex simulation
is based on a frequented execution of the transient simulation.

Figure 3.8. Rekeying benchmark class diagram

gui

kernel

MainFrame

+getLastSimulationSettings (): SimulationSettings
+setLastSimulationSettings (settings: SimulationSettings) : void

SimulationResultsviewer

+addSimulation (simulation: Simulation, show : boolean): void SimulationSetup

1

0 . . *

BenchmarkAndAlgorithmManager

+benchmarkMain (): void

SimulationSettings

DefaultSimulationSettings

0 . . *

1

1 1

ScalabilitySimulation

ComplexSimulation

#addTransientSimulationParameters(x: Double, T_o: Double
 lambda: Double,
 mu: Double, n0: Integer,
 algorithm: Algorithm): void

JoinDynSimulation DisjoinDynSimulation

Simulation

#doSim(algorithm: Algorithm): void
+getLastRQoSPoints (): List<RQoSimulationPoint>
+getLastRACPoints (): List<RACSimulationPoint>

TransientSimulation

#doTranSim(t_sim: Double, lambda: Double,
 mu: Double, n0: Integer,
 algorithm: Algorithm)

1 1.. *

Algorithm

3.7 CASE STUDY (LKH TREE REBALANCING)

52

After program start, the simulation setup window displays default parameters. Changing
these values is stored for a next simulation in the same session. See Figure 3.9 for an
overview of the simulation setup window. The set of all parameters belonging to one
simulation are managed as a parameter list using the library class LinkedHashMap. This
class is not shown in Figure 3.8 for simplicity.

 Figure 3.9. Simulation Setup window

3.7 Case Study (LKH Tree Rebalancing)
This case study relates to Example 3.2 presented at the start of this chapter, which depicted
some divergence proposals in the literature regarding tree rebalancing for the logical key
hierarchy algorithm. From investigating the related work given in this example it is obvious
that a comprehensive analysis is needed to justify the employment of rebalancing, which is
associated with additional rekeying costs resulting from shifting members between tree
leaves. The rekeying benchmark offers this possibility by allowing a simultaneous
evaluation of two LKH algorithms (with and without rebalancing) under complex
conditions. Especially, the effect of disjoin rate is of interest in case of rebalancing, because

sim

CHAPTER 3 REKEYING BENCHMARK

53

members leave the group in random manner, which disturbs the tree balance as a rule.
Therefore, a disjoin dynamics simulation is performed under the following conditions:

TJ
sys = TD

sys= 100 ms, Nmax= 65.536,

Cg=Ce=Ch=Cm= 1 µs, Cs=15 ms,

n0 =4096, λ=10 s-1, To=1s, µstart=1s-1, µstop=20s-1, Δµ=1s-1.

The simulation result clearly unveils that rebalancing degrades both RQoS and RAC
values. This performance deterioration increases with an increasing disjoin rate. Simulation
results are depicted in Figure 3.10 and Figure 3.11.

The results of this case study unambiguously demonstrate that additional rekeying costs
associated with rebalancing exceed the performance gain achieved by it. Consequently,
rebalancing is not advantageous for LKH trees, at least under the given simulation
conditions.

Currently, related work argues for rebalancing as a way to prevent tree degradation, which
results in linear rekeying costs with respect to the group size in the rather extreme case of a
very high disjoin rate. The main point, which is disregarded in this argumentation, is that
the group size in such rare cases is very small and almost equal to the LKH tree height in
the balanced case.

 Figure 3.10. RQoS in rebalanced vs. non-rebalanced LKH

3.7 CASE STUDY (LKH TREE REBALANCING)

54

Figure 3.11. RAC in rebalanced vs. non-rebalanced LKH

CHAPTER 4 RECONFIGURABLE ARCHITECTURES

55

4 Reconfigurable Architectures

4.1 Overview
This chapter presents an overview of reconfigurable architectures. Section 4.2 illustrates the
current trends in chip design and the role of field programmable gate arrays. In Section 4.3
a brief overview of the FPGA architecture and configuration technologies is provided.
Section 4.4 outlines both the hardware and the HW/SW design processes for FPGAs.
Section 4.5 concludes this chapter with a summary of the hardware platforms and the
design tools, which were utilized in the scope of this work.

4.2 Introduction
The advanced progress in semiconductor technology, coined by Moore’s Law [Mo65],
allows an ever-increasing integration scale and, thus, enables ever-newer and more
sophisticated applications which can be realized on one chip. To follow this trend,
innovative design and manufacturing strategies are required, which cope with the
increasing complexity and allow short time-to-market (TTM) as one of the most important
economic factors. The TTM of an integrated circuit consists of two components: the Time-
to-Design (TTD) and the Time-to-Production (TTP). The design process of an integrated
circuit begins with the problem specification and goes through several steps for design
entry, synthesis, place & route, and different simulation and verification processes. At the
end, the chip layout is provided, e.g., in form of data for the fabrication of lithographic
masks. The production part TTP includes the time consumed by all the steps in the
semiconductor manufacturing process beginning with the mask creation and ending with
the chip packaging and test. While optimizing the TTM in the last decade was mostly
driven by decreasing the TTD through optimizing the computer-aided specification and
design tools [Mu00] and partially by reducing the TTP through semi-custom design
strategies, the current decade is characterised by a unique and rather radical trend. Based on
enhancing hardware with configurability properties, the whole TTP and the major part of
TTD for layout design are canceled. Taking, additionally, the advances in the CAD for
configurable design into account, TTM values are reached which are widely under those
required for the competitive ASIC technology. This trend seems to conform to the
prognosis made by Makimoto in 1986 about the progress in the semiconductor technology.
Makimoto observed this development since the middle of last century and discovered a 10-
year regularity regarding the standardization and customization in the IC market. This result
was formulated in the form of a wave known as Makimoto’s Wave [Ma00], which is

4.3 FIELD PROGRAMMABLE GATE ARRAYS

56

depicted in Figure 4.1. An illustration of this wave and an overview of future trends in chip
design can be found in [Ma00] and [So06]. In spite of various kinds of programmed ICs the
Field Programmable Gate Arrays (FPGA) represent the most known and utilized class of
configurable architectures.

Figure 4.1. Makimoto’s Wave

However, short time-to-market is not the only reason why designers currently start 81
percent of their projects using FPGA, see e.g. [Bu06] and [Dp06]. Other advantages of
using these architectures include the lower development costs, the lower non-recurring
engineering costs, the lower design risks, the providing of correctable and expendable
designs, and the enabling of rapid prototyping [Bi06].

4.3 Field Programmable Gate Arrays
The concept Field Programmable Gate Array (FPGA) reflects two essential aspects of this
IC technology. These relate to the electrical post-production configuration of these chips,
on the one hand, and to the regular organization of the different components of these
architectures, on the other.

Figure 4.2 illustrates a generic architecture of a fine-granular FPGA, which includes an
array of configurable logical cells, input/output blocks, and routing resources. Modern
FPGAs feature much more sophisticated architectures and include pre-manufactured
coarse-granular components such as processors, high-performance multipliers, and
dedicated memory blocks. Configurable logical cells provide both combinatorial function
generators and registers to realize sequential circuits. The combinatorial function generators
are either multiplexer based such as many products from Actel [Ac07], for instance, or
look-up table based which are provided by Xilinx [Xi07] and other FPGA vendors.
Multiplexer based FPGAs rely on the Shannon’s expansion theorem which allows the
implementation of any Boolean function using 2:1 multiplexers [Jo97]. Look-up table
based FPGAs, in contrast, rely on the fact that memories are able to realize Boolean
functions if the input variables and the function are connected to the address bus and the

'57 '67 '77 '87 '97 '07

Memories
Microprocessors

Standard
Discretes

Custom LSIs
for TVs,

Calculators

Custom
ASICs

Field
Programmability

Standardization

Customization
Standardized in
Manufacturing

but Customized in
Application

CHAPTER 4 RECONFIGURABLE ARCHITECTURES

57

output data bus of the memory, respectively. Depending on the saved data, different
functions can be implemented.

Figure 4.2. FPGA generic architecture

Regarding the configuration technologies three main FPGA classes can be identified: the
SRAM-based, the EEPROM-based, and the Antifuse-based FPGAs. Table 4.1 summarizes
the advantages and disadvantage of these different technologies [Wa98]:

Table 4.1. Comparison between different FPGA configuration technologies

 Antifuse-based FPGA SRAM-base FPGA EEPROM-based FPGA

A
dv

an
ta

ge
s

 Good copy protection

 No configuration memory
 No reloading of configuration

after start-up
 Small size and efficient

 No programming device

 Reconfigurability

 In-system programming

 Good copy protection

 No configuration memory

 No reloading of configuration
after start-up

D
is

ad
va

nt
ag

es

 Programming device needed

 No reconfigurability

 No In-system programming

 Problematic copy protection

 Configuration memory needed

 Reloading of configuration
after start-up

 Programming device needed

 Complex reconfigurability

 Conditional In-system
programming

4.4 FPGA Design Process
Figure 4.3 depicts a typical hardware design process for FPGA. After an in-depth
specification of the system requirements and constraints the design is entered as a
functional model using a hardware description language such as VHDL [Ie93] or Verilog
[Ie01]. Afterwards, a functional simulation is performed to validate the created model. In
the case of functional correctness, a RTL-synthesis is applied to the model, which provides
with the aid of vendor libraries a structural description of the design denoted as netlist. At
this stage a pre-layout simulation can be performed to validate system timing. However, the

Switch
Matrix

Routing Configurable
logical unit

Input/Output
Block

4.4 FPGA DESIGN PROCESS

58

timing results provided by this simulation are approximated since the netlist has not yet
been mapped to the target hardware and, therefore, no accurate information on routing
delays is available. These delays can count for more than 75% of the total delay in modern
FPGAs [Ku04]. In a next step the netlist components are placed onto the target architecture
and connected using the FPGA routing resources. First at this stage an accurate timing
simulation is possible. Provided that the timing results satisfy the system requirements, the
bit stream can now be generated and written to the FPGA. Electronic Design Automation
(EDA) such as synthesis and place & route relies on executing computer heuristics to find
optimal solutions for several NP-hard problems [Ge05]. A typical example for these
problems relates to finding the shortest route between two placed gates.

Figure 4.3. FPGA hardware design process

However, FPGA platforms do not only support hardware design. With the aid of several
hardwired processor cores or using IP software processors, complete hardware/software
solutions are facilitated. IP stands for Intellectual Property which can be seen as a product
of the “design for reuse” paradigm, which wins an increasing recognition nowadays
[Ke99], [Dr06].

Specification

Design Entry

Synthesis

VHDL Code

Place & Route

Netlist

Bit Stream Generation

Netlist, Timing
Annotation

Bit Stream

Functional Simulation OK?

Pre-Layout Simulation OK?

Post-Layout Simulation OK?

Vendor
Libraries

FPGA Configuration

Yes

Yes

Yes

No

No

No

CHAPTER 4 RECONFIGURABLE ARCHITECTURES

59

For a HW/SW co-design, most FPGA vendors provide specific tools, which support
separate hardware and software design processes to produce both a hardware and a software
bit stream. In a last step both bit streams are merged and written to the FPGA. A
verification of the applied HW/SW partition can first be performed at this late stage in the
design process, which is highly inefficient. This design approach, which is mainly enforced
by using the intellectual property, must be extended by the methods of high-level synthesis
[Ga92], [Ga94]. Starting from high-level specification languages such as System-C [Gr02],
an exploration of the design space can be applied to decide on a HW/SW partition with
optimal resource allocation, and task scheduling and binding [Kl06]. Figure 4.4 presents a
simplified HW/SW design process, which starts with an executable specification of the
system behavior followed by HW/SW partitioning phase. After a first cost estimation in
this phase, the architecture components are allocated. Based on the system specification, the
different tasks are then scheduled and bound to the different hardware and software
resources. This step is evaluated by means of an objective function, which supplies an
overall estimation of the selected partition based on predefined metrics such as performance
and resource usage costs. If the values estimated by the cost function do not meet system
requirements, another partition is searched and evaluated. Otherwise, the implementation
phase is started, which is composed of both hardware and software design synthesis steps.
In the end, two bit streams for the hardware and the software parts are generated and
written to the FPGA.

Figure 4.4. A possible FPGA hardware/software co-design process

Specification

Common
Bit Stream

Allocation

OK?

Binding

Yes

No

Scheduling

AssessmentH
W

/S
W

 P
ar

tit
io

ni
ng

Hardware Synthesis
+ Place & Route

+ Bit Stream Generation

Software Development
+ Compile & Link

+ Bit Stream Generation

OK?

Estimation

4.5 DEPLOYED HARDWARE PLATFORMS

60

4.5 Deployed Hardware Platforms

4.5.1 Virtex-II Pro
Xilinx Inc. launched the Virtex-II Pro family at the early 2002 with ten products of
different size [Xi02]. Table 4.2 summarizes some features of two members of this family
which are used for the design of the rekeying processors described in next sections.

Table 4.2. Virtex-II Pro family members employed in the rekeying processors

 Configurable
Logical Blocks

Block Select
RAMs 18 Kb

PowerPC
Processors

18*18 bit
Multipliers

RocketIO
Transceivers

XC2VP20 2320 88 2 88 8

XC2VP30 3424 136 2 136 8

A configurable logical block (CLB) is composed of four slices, where a slice mainly
includes two look-up tables (LUT) as combinatorial function generators, two registers for
sequential logics, large multiplexers, and fast carry look-ahead chain.

The block SelectRAM (BRAM) resources support synchronous single and dual port modes
and can operate in several configurations ranging from 16K x 1 bit to 512 x 36 bit. The
actual data size of a BRAM equals 16 Kbit, as each ninth bit is reserved for parity check.

Virtex-II Pro embeds up to 4 hardwired processor cores from the type IBM PowePC 405
(PPC405) [Xi05]. This 32-bit processor is characterised by a Harvard architecture and
includes the functional blocks illustrated in Figure 4.5. With a clock frequency of about
300 MHz, instructions are executed in a five stage pipeline. Both the instruction and the
data cache arrays are 16 KB with two-way set association, where a way includes 256 lines
of 32 bytes each. The data cache unit supports both write-back and write-through modes.
The memory management unit (MMU) executes several tasks including the translation of
the 4 GB effective address space into physical addresses. MMU can be enabled or disabled
according to system requirements. To improve the performance of virtual address
translation the PPC405 includes dedicated hardware translation look-aside buffers (TLB),
which contain parts of the page table.

PPC405 is compatible with the CoreConnect bus architecture [Ib99], which contains among
other things two busses to connect the processor block with other system components.
These are the Processor Local Bus (PLB) and the On-Chip Peripheral Bus (OPB). The PLB
bus consists of 32-bit address, 64-bit data read, 64-bit data write, and 64-bit instruction
buses and can operate at clock frequencies up to 100 MHz. The OPB bus is a simpler bus,
which is used to connect slower peripheral cores such as a serial URAT interface. OPB bus
is connected to PLB bus through a bus bridge which is specified in the CoreConnect
architecture.

CHAPTER 4 RECONFIGURABLE ARCHITECTURES

61

Figure 4.5. Embedded PPC405 Core block diagram

Furthermore, PPC405 has a dedicated memory interface, denoted as On-Chip Memory bus
(OCM). The data side OCM bus (DOCM) has 32-bit data read bus, 32-bit data write bus,
and 22-bit address bus. The instruction side OCM bus (IOCM) has 64-bit read only bus and
21-bit address bus. In contrast to PLB, memories connected to OCM bus can not be cached.
The decision on OCM or PLB to connect system memory is generally difficult and strongly
depends on the application. In general, different design alternatives are tested before
deciding on the appropriate memory interface [Xi04]. Chapter 7 details this point for the
design of the High-Flexibility Rekeying Processor.

4.5.2 Hardware Cards
In this work three different hardware cards were used, which are equipped with a Virtex-II
Pro FPGA XC2VP20 or XC2VP30.

4.5.2.1 ADM-XRC-II Pro and ADM-XPL
Both cards are of PCI Mezzanine type and provided by Alpha Data Inc. [Al07]. ADM-XPL
is equipped with XC2VP30. ADM-XRC-II Pro supports XC2VP20 and is specified as
follows, see Figure 4.6.

1. Physically conformant to IEEE P1386 Common Mezzanine Card standard,

2. High performance PCI and asynchronous local bus,

3. Local bus speeds of up to 80MHz,

4. One bank of 256k or 512k x 64 pipelined ZBT SSRAM,

5. One bank of 64MB DDR SDRAM,

Timers
&

Debug

Data Cache Unit

Instruction Cache
Unit

I-Cache
Array

D-Cache
Array

D-Cache
Controller

I-Cache
Controller

Instruction Shadow
TLB (4 Entry)

Data Shadow
TLB (8 Entry)

Unified TLB
(64 Entry)

Execution Unit (EXU)

32x32
GPR ALU MAC

Fetch
and

Decode
Logic

3-Element
Fetch
Queue

(FB1, FB0,
DCD)

Debug

Logic

Timers

(FIT, PIT,
Watchdog)

Fetch & Decode

Execution Unit

Cache Units

MMU
Instruction

OCM

Data
OCM

PLB Master
Interface

PLB Master
Interface

Instruction
Trace

JTAG

4.5 DEPLOYED HARDWARE PLATFORMS

62

6. Two flash devices of 16MB each for bridge and target devices,

7. User clock programmable between 5MHz and 200MHz,

8. User front panel adapter with up to 146 free IO signals,

9. Support of 3.3V PCI or PCIX at 64 bits,

10. On board 125MHz LVPECL oscillator,

11. 4 x RocketIO Multi-Gigabit Transceiver connections.

Figure 4.6. ADM-XRC-II Pro [Al07]

4.5.2.2 XUP

This borad is delivered by Digilent Inc. [Di07] and supported by Xilinx within the Xilinx
University Program. It features, among other things, the following properties. See Figure
4.7.

1. Support of DDR SDRAM DIMM up to 2 Gbytes

2. 10/100 Ethernet port

3. USB2 port

4. Compact Flash card slot

5. XSGA video port

6. Audio Codec

CHAPTER 4 RECONFIGURABLE ARCHITECTURES

63

Figure 4.7. XUP Card [Di07]

Table 4.3 depicts the tools and programs, which were employed in the design of the
rekeying processors.

Table 4.3. CAD tools employed for the rekeying processor design

Usage Tool

VHDL functional simulation ActiveHDL [Ad07]

VHDL RTL synthesis Synplify Pro [Sy07]+ XST [Xi07]

Place & Route and bit stream generation ISE [Xi07]

Software development GNU [Gn07]

HW/SW co-design EDK [Xi07], hCDM [Kl06]

Measurement, data preparation, and display Mathematica [Wo07]

4.5 DEPLOYED HARDWARE PLATFORMS

64

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

65

5 New Architectures for Group Rekeying

5.1 Overview
Because of several similarities between the hardware and HW/SW rekeying architectures
presented in next chapters, this chapter presents a general introduction to these architectures
and describes their common features. Section 5.2 depicts the deployment scope of the new
solutions and how they distinguish themselves from others. Section 5.3 points out the
rekeying security requirements. All rekeying processors are specified by a generic
architecture consisting of four main components. This generic architecture is presented in
Section 5.4. The different components and several associated aspects are then illustrated in
the last four sections

5.2 Introduction
As mentioned in Chapter 1, research work on secure multicast began in the late nineties and
crystallized by establishing the Secure Multicast Group (SMuG) in 1999 and the working
group Multicast Security (MSEC) in 2000 at the IETF, see [Sm98] and [Ms00]. To
overcome the complexity of secure multicast, these groups defined a reference framework,
which classifies the different subjects in secure multicast into three problem areas. In
addition, each problem area is associated with one or more functional blocks to facilitate a
modular design and standardization process. For the problem area of key management, a
functional block denoted as Key Server was suggested [Ha03]. This block takes the
responsibility for the group rekeying task.

The introduction of new rekeying architectures in this work is oriented towards this
reference framework. Each of the hardware and hardware/software solutions proposed in
the next chapters can be regarded as a realization variant of the key server defined by the
multicast working groups. The proposed architectures include:

1. The Real-Time Rekeying Processor (RTRP), see [Sh04].

2. The Batch Rekeying Processor (BRP), see [Sh05].

3. The High-Flexibility Rekeying Processor (HiFlexRP), see [Sh07b] and [Sh07c].

As a generic name for all these architectures the term Rekeying Processor (RP) will be used
in this chapter, as long as no differentiation is needed. Furthermore, it is assumed that the

5.2 INTRODUCTION

66

rekeying processor operates in the server environment of a group owner, which provides
secure multicast content using a dedicated Data Server (DS), e.g. a video server in the case
of Pay-TV multicast, see Figure 5.1. In addition, a dedicated Registration and Authent-
ication Server (RAS) is employed to register members, to provide identity keys, and to
manage rekeying with the aid of the rekeying processor as follows. The RAS sends
rekeying requests to the RP in form of instructions, e.g. “join a member”. The RP executes
these instructions and writes rekeying messages back to the RAS, which sends them to the
group members. Alternatively, the RP can send rekeying messages directly to the members,
if it supports a networking interface. Most rekeying requests result in a new group key,
which is provided by the RP to the data server DS, which uses this key to encrypt data. See
Figure 1.4 for a comparison and Table 1.4 for the definition of some important terms such
as identity key and rekeying message.

Figure 5.1. Rekeying processor in a server environment

Related work on rekeying optimization relies on minimizing the number of rekeying
submessages, i.e. the number of cryptographic operations needed to build these messages.
The rekeying processor presented in this work, however, optimizes rekeying performance
mainly on the cryptography and the platform layers. In addition, several improvements on
the rekeying layer are proposed. This aspect is illustrated in Figure 5.2, which represents
group rekeying as a three-layer abstraction model. The RP performance optimization on the
rekeying layer includes, for instance, the pipelined batch rekeying and the event-driven
batch rekeying illustrated in Chapter 2. Another example relates to the key tree
management: the presented architectures cause the key tree to grow up from the root side
and avoid leaf splitting in the case of full trees. This results in major performance
improvement.

Rekeying optimization on the lower layers relies on dedicating a hardware platform for the
rekeying task and optimizing the cryptographic operations on this platform. Some
cryptographic algorithms, such as the Advanced Encryption Standard AES, feature inherent
parallelism and can operate on hardware highly efficiently. Other cryptographic algorithms,
like the elliptic curve algorithms, are not designed with parallelism properties. An efficient
realization on a hardware platform can be based on segmentation and reassembling of data
before and after processing, respectively [Er02], [La06].

Registration &
Authentication
Server (RAS)

Multicast
Network

Data Server
(DS)

Rekeying Processor
(RP)

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

67

Figure 5.2. Rekeying processor operation layers

5.3 Rekeying Security Requirements
Group Rekeying is a mechanism for access control to ensure data confidentiality. Rekeying
data themselves must be protected against manipulation. In total, group rekeying is
associated with three security requirements:

1. Access control: This requirement represents the original demand for backward and
forward access control to prevent new members from decrypting old data and leaving
members from eavesdropping on future communication, respectively. Together with
data encryption, access control ensures the confidentiality of delivered data.

2. Group authentication: Rekeying data are largely crucial and must be protected against
manipulation. Group authentication is the security requirement, which ensures that
rekeying data originate from a group member and not from outside. The exact identity
of the data sender, however, can not be determined by this authentication mode. The
reason is that group authentication employs methods, which are based on Message
Authentication Code (MAC). MAC relies on encrypting the rekeying data with a key
shared by all members. Group authentication is used in multicast groups where
members trust each other, e.g. in collaborative working groups, which use secure
multicast for video conferencing.

3. Data source authentication: Groups with lower trust between members need to exactly
identify the sender of rekeying messages. Furthermore, in highly secure systems
rekeying messages must be provided with a non-repudiation property to enable a legal
authority to verify the data source in the case of denying. MAC-based approaches are
not able to fulfil any of these two security requirements for group communication,
because the authentication key is shared between all members. One way to realize
source authentication for rekeying data relies on using digital signatures, which can be
applied to the hash value of a rekeying message.

Section 5.6 presents the security modules deployed in the rekeying processors to realize
these security requirements. Figure 5.3 depicts the three security levels and the supporting
architectures. While the Real-Time Rekeying Processor and the Batch Rekeying Processor
only fulfil the access control requirement because of the historical development of this
work, the High-Flexibility Rekeying Processor satisfies all the security requirements.
Higher security, however, comes at the expense of performance, as can be seen in this
figure.

Rekeying
optimization in

proposed
architectures

Rekeying Layer

Cryptography Layer

Platform Layer

Rekeying
optimization in

related work

5.4 GENERAL ARCHITECTURE

68

Figure 5.3. Security levels of rekeying architectures

5.4 General Architecture
The proposed rekeying processors are characterized by the general architecture depicted in
Figure 5.4. The input and output units construct the interface of the rekeying processors to
the registration and authentication server according to Figure 5.1. Generally, the security
unit includes cryptographic primitives for key generation, encryption, secure hashing,
message authentication code, and digital signature. The security primitives are implemented
as hardware modules in the case of the RTRP and the BRP. The HiFlexRP, however,
realizes the security functions partially in software according to the selected HW/SW
partitioning [Sh07c]. LKH rekeying is a data-intensive task, where data elements are
represented by the tree keys. To reduce data transfer between the RAS and the RP, all keys
are generated, saved, and managed on the hardware. In addition to the performance gain,
this approach enhances system security due to the hardware storage of these secure data.
Except for the group key, which is needed by the data server to encrypt useful data, all
other keys are transferred from the RP to the RAS only in an encrypted form. The key tree
unit includes both the key storage and the necessary functions to mange the key tree. Two
tree management modes are used: the static and the dynamic tree management. The static
tree management is specific to the rekeying processors and uses hardware features for this
purpose. In contrast, the dynamic tree management is similar to known software solutions.
Therefore, this mode is only supported by the HiFlexRP.

Figure 5.4. General architecture for the rekeying processors

Data Source
Authentication

Group
Authentication
For/backward

Access Control

Perform
ance

HiFlexRP

HiFlexRP

RTRP, BRP,
HiFlexRP

Se
cu

rit
y

Key Tree Unit

Security Unit

Output Unit Input Unit

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

69

k0 k1 k2 k3 k4 k5 k6 k7

k0-1 k2-3 k4-5 k6-7

k0-3

k0-7

k4-7

5.5 Key Tree Management
In this section some issues of the key tree management are illustrated. The description is
limited to the static tree management, which is used in all rekeying processors. As the
dynamic tree management is only specific to some design alternatives of the HiFlexRP, this
tree management mode will be first described in Chapter 7.

5.5.1 Key Memory Architecture
All proposed architectures in this work perform group rekeying based on the LKH
algorithm with binary trees. The LKH was described in Section 1.4. In principle, trees
represent dynamic data structures, which expand and contract according to the current
amount of data to be represented. Adapting the tree size to available data reduces the
demand for physical memory, which may be shared with other applications. Using a
hardware platform for the rekeying task, however, allows allocating some amount of mem-
ory dedicated to the key tree. By this means a tree structure can be associated with the
statically allocated memory. This association follows the following rules, which are
illustrated schematically for a group of 8 members in Figure 5.5.

1. The size of allocated memory Msize depends on the key length Klength and on the
maximal group size Nmax. For binary trees, Nmax is always assumed to be a power of
two, thus:

 Msize =(2Nmax -1)ּKlength (5.1)

2. The lower half of the memory space is dedicated to member identity keys belonging to
the first tree level.

3. The upper half is reserved to store the help-keys and the group key, level by level.

Figure 5.5. Memory architecture for key trees

Level Address Key

0000 k0
0001 k1
0010 k2
0011 k3
0100 k4
0101 k5
0110 k6

0

0111 k7
1000 k0-1
1001 k2-3
1010 k4-5

1

1011 k6-7
1100 k0-3 2
1101 k4-7

3 1110 k0-7

5.5 KEY TREE MANAGEMENT

70

Dynamic tree management using software techniques relies on operations to insert or
remove a tree node or leaf. Therefore, in this management mode the key tree has as many
nodes and leaves as the number of keys used currently. In contrast, the insertion and
remove of nodes and leaves are not defined in the static tree management since a memory
place is allocated for all nodes and leaves all the time. However, in general case not all
nodes and leaves contain valid keys. To address this point, additional specification is
required to indicate whether a tree node or leaf is in operation or not in the static tree
management. This specification is given as follows. Refer to Example 5.1 and Figure 5.6
below for an illustration of the following terms.

Definition 5.1:
A valid key is an identity key, a help-key, or a group key, which is used by at least one
group member.

Definition 5.2:
An active leaf is a tree leaf which contains a valid identity key.

Definition 5.3:
A suspended leaf is a tree leaf which does not contain a valid identity key.

Definition 5.4:
An active node is a tree node which contains a valid key.

Definition 5.5:
A suspended node is a tree node, which does not contain a valid help-key and there are no
members whose paths to the root pass this node.

Definition 5.6:
A right suspended node is a node, which does not contain a valid help-key, however, there
is at least one member whose path to the root passes this node from the left.

Definition 5.7:
A left suspended node is a node, which does not contain a valid help-key, however, there is
at least one member, whose path to the root passes this node from the right.

Note 5.1:
In the schematic representation of a tree in this work, active nodes and leaves appear grey,
all other nodes and leaves are drawn transparent. This notation applies to the case of static
tree management only.

Example 5.1:
Figure 5.6 shows an example for the specification of tree nodes and leaves in static tree
management. In this example three suspended leaves, one suspended node representing k0-1
and two left suspended nodes representing k0-3 and k6-7 are currently available.

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

71

Figure 5.6. Node/leaf type example

5.5.2 Key State Memory
Specifying a tree node as active, suspended, right or left suspended is essential for tree
traversing and for the decision on the appropriate operations to be performed on the
corresponding key. In the rekeying processors a dedicated memory denoted as Key State
Memory (KSM) is employed to save information on the state of all tree nodes. The word
width of this memory is 2 bit as a node can have one of four modes according to the
previous section. Table 5.1 illustrates the coding of these words which are denoted as LR
words.

Table 5.1. LR word code for a tree node

LR word State of corresponding node

00 Suspended

01 Left suspended

10 Right suspended

11 Active

The depth of the key state memory equals the number of the help-keys represented by the
key memory. For efficient traversing the address space of the key state memory
corresponds to that of the help-keys in the key memory after neglecting the most significant
bit. Table 5.2 shows the key state memory for the tree presented in Figure 5.6.

Note 5.2:
Tree leaves can be active or suspended. For a rekeying algorithm, this information can be
extracted from the LR word of the corresponding father. Due to this property the state of a
key leaf does not need to be saved.

k0 k1 k2 k3 k4 k5 k6 k7

k0-1 k2-3 k4-5 k6-7

k0-3 k4-7

k0-7

Suspended Leaves Active Leaves

Suspended Node

Left Suspended
Node

Left Suspended
Node

Active Nodes

5.5 KEY TREE MANAGEMENT

72

Table 5.2. Key state memory of the tree in Figure 5.6

Note 5.3: KSM Implementation
The rekeying processors are implemented on hardware platforms with FPGAs and DDR-
SDRAM memories, among other things. To support large groups the key memory is
mapped to the DDR-SDRAM. In contrast, because of the long access times of this DDR-
SDRAM the KSM is implemented using the Block RAMs (BRAMs) of the FPGA. By this
means, LR words can be proved earlier and the decision on the next operation can be made
faster. However, because of their limited number and size, BRAMs set a constraint on the
maximal group size, as will be seen in the next chapters.

5.5.3 Tree Traversing
In the presented static tree management, traversing relies on the physical tree structure,
which allows an efficient node visiting based on simple logical or arithmetic operations on
memory addresses. As will be seen in Section 5.5.4, each key in the tree is identified by its
physical memory address. This means that for a tree traversing a starting key address is
always required to find the relatives of this key in the tree. Table 5.3 illustrates how to find
the father, the sons and the brother of a node identified by a memory address A. See Figure
5.5 for some examples.

Table 5.3. Estimation a relative node of a node with address A

Relative node Address of the relative node

Father Right shift of A with 1 insertion from left

Left Son Left shift of A with 0 insertion from right

Right Son Left shift of A with 1 insertion from right

Brother A + 1

Note5.4:
The traversing strategies apply both to the key memory and to the key state memory. As the
processing of a key relies on its LR word, the KSM memory is traversed to decide on the
corresponding key state. If this key need to be updated, for example, then the address of the
corresponding help-key is estimated from the address of the LR word by extending it with
logical ‘1’ from the left side. The key k0-3, for example, is saved at the address 1100, its LR
word at the address 100, see Figure 5.5 and Table 5.2.

Level Address Help-key LR

000 k0-1 00
001 k2-3 11
010 k4-5 11

1

011 k6-7 01
100 k0-3 01 2
101 k4-7 11

3 110 k0-7 11

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

73

For the functionality of the rekeying processors, three traversing modes are introduced:

Definition 5.8: Path Traversing
Path Traversing is a visiting of all nodes locating on a tree path from a leaf to the root. The
next node in this traversing is called a father.

In the RTRP and the HiFlexRP this traversing mode is used to determine the keys to be
updated. In the BRP path traversing is performed in the marking step of batch rekeying to
mark the keys to be processed later.

Definition 5.9: Reverse Path Traversing
Reverse Path Traversing is a traversing from the root or a node to the next active node or
leaf. The next node/leaf in this traversing is called a right or a left son.

This traversing mode is used only by the RTRP and the HiFlexRP. While path traversing
determines a key kx-y to be updated, reverse path traversing is performed to find the keys,
with which the new kx-y must be encrypted to build the rekeying submessages. Reverse path
traversing may result in a help-key or in an identity key.

Example 5.2:
Assume that member m3 must be removed from the group presented in the left tree of
Figure 5.7. A path traversing started at k3 shows that only the group key k0-7 must be
updated, as k2-3 will not be used any more. To find the keys, with which k0-7

new must be
updated, two reverse path traversing processes are executed beginning with k0-7. The
inverse traversing results in the keys k2 and k4-7, see the right tree. Thus the following
rekeying submessages are constructed: RSM1 = Ek2

 (k0-7
new) and RSM2 = Ek4-7

 (k0-7
new).

Figure 5.7. Tree traversing example

Definition 5.10: Level Traversing
Level Traversing is a visiting of all nodes belonging to some tree level from left to right.
The next node in this traversing is called a brother. This traversing mode is used in batch
rekeying during processing to find out the marked keys. Level traversing ensures that the
help-keys of some level are only processed after updating the keys of lower levels. This
traversing mode will be detailed in the scope of the BRP in next chapter.

k0 k1 k2 k3 k4 k5 k6 k7

k0-1 k2-3 k4-5 k6-7

k0-3 k4-7

k0-7

k0 k1 k2 k3 k4 k5 k6 k7

k0-1 k2-3 k4-5 k6-7

k0-3 k4-7

k0-7
new

Path
traversing

Reverse path
traversing

Reverse path
traversing

5.5 KEY TREE MANAGEMENT

74

5.5.4 Rekeying Submessage Identification
Rekeying messages are sent per multicast. As a result, each member gets all rekeying sub-
messages. In the last example the rekeying submessages RSM1 and RSM2 are received by
all members. However, member m2, for instance, is only interested in RMS1. For this
member to only decrypt this rekeying submessage, a kind of identification for these
messages must be provided. The proposed architectures use an identification mechanism
for rekeying submessages, which relies on identifying all tree keys as follows.

Definition 5.11
A Key Identity (KEYID) is defined as the address of this key in the physical memory.

Definition 5.12
A Member Identity (MEMID) is defined as the address of the identity key of this member in
the physical memory.

Note that the MEMID of a member corresponds to the KEYID of the identity key of that
member.

Definition 5.13
A Rekeying Submessage Identity (RSMID) is a pair (x, y), where x represents the KEYID of
the encrypted key and y refers to the KEYID of the encrypting key.

The rekeying message identification mechanism can now be summarized as follows:

1. During registration, each member is supplied with the KEYIDs of all keys on the path
from the corresponding leaf of that member to the root, even if some help-keys on this
path are not active.

2. During rekeying, each rekeying submessage is associated with the corresponding
RSMID.

3. Getting a rekeying submessage, a group member extracts x from the corresponding
RSMID and decrypts the message only if x belongs to the KEYIDs saved by this
member.

Example 5.3:
Referring to Example 5.2, the rekeying submessages RSM1 and RSM2 are delivered with
the RSMIDs depicted in Table 5.3.

 Table 5.3. Rekeying submessage identity

RSM Ek2(k0-7
new) Ek4-7(k0-7

new)

RSMID (1110,0010) (1110,1101)

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

75

5.6 Hardware Security Modules
As mentioned in Section 5.3 the Real-Time Rekeying Processor and the Batch Rekeying
Processor fulfil the security requirement of access control. The High Flexibility Rekeying
Processor ensures, in addition, group authentication or data source authentication,
depending on the system requirements. Table 5.4 summarizes the used cryptographic
primitives for the different security levels.

 Table 5.4. Cryptographic primitives used in the rekeying processors

Security level Utilization in
Cryptographic

method
Cryptographic

primitive

Encryption AES-128
Back- and forward

access control
RTRP, BRP,

HiFlexRP
Key generation

AES-based PRNG,
ANSI X9.17

Group
authentication

HiFlexRP
Message Authen-

tication Code (MAC)
AES-based MAC

Secure hash function
AES-based Meyer

hash function Data source
authentication

HiFlexRP
Digital signature ECDSA

Regardless of the digital signature, all other cryptographic operations are based on the
Advanced Encryption Standard (AES) with a key length of 128 bits. As will be seen in the
next sections, a key generation using the Pseudo Random Number Generator (PRNG)
specified in ANSI X9.17 is based on two encryptions. Meyer hash function executes an
encryption to each block of data to be hashed. The same applies to block cipher-based
MAC. This design strategy has the following advantages depending on the underlying
executing platform:

Platforms with constrained resource usage:
All the listed block-cipher based primitives for key generation, MAC and hash value
determination rely on encryption as a central operation and some XOR operations which
are inexpensive. In resource-limited platforms this enables a considerable hardware saving,
if only one encryption primitive is implemented and shared by all rekeying cryptographic
tasks, excluding digital signature.

Platforms with unconstrained resource usage:
Using a dedicated encryption module to each cryptographic primitive is largely convenient
for the rekeying task, if the resource usage is not constrained. This results from the fact that
in LKH-based rekeying the number of generated keys equals the half of the number of
rekeying submessages. In addition, the processing of a rekeying submessage in the hash or
MAC function costs each one encryption. Consequently, using AES-based key generation,

5.6 HARDWARE SECURITY MODULES

76

encryption, hash function and MAC for LKH-based rekeying results in the same number of
AES executions for each of these operations which enables an efficient rekeying pipelining.

To illustrate this point the case of rekeying with data source authentication is considered.
An LKH-based rekeying can be considered as an iterative update of some tree keys,
followed by a calculation of a digital signature. In this respect, a key update operation
includes:

1. a generation of a new key,

2. two encryptions of the new key with both its sons, and

3. two hash operations on the two resulting rekeying submessages.

Example 5.4:
Referring to Figure 5.7, two key updates are required if member m5 has to be disjoined. For
this purpose two key generations are performed with two encryptions each. To build the
rekeying submessages four encryptions are also needed. Each rekeying submessage is then
entered to the hash module and operates as a key for one encryption, see Section 5.6.3.
Accordingly the hash function executes four encryptions, too. Figure 5.8 illustrates
schematically the schedule of the different tasks for this example, where the labels are
interpreted as follows.

G: Generating a key

E: Encrypting of a key with one of its sons

H: Hashing of a rekeying submessage

S: Signing the hash value of the rekeying message

Figure 5.8. Pipelined key update
Note 5.3:
The previous investigation does not consider the rekeying submessage identities. These
data are critical and their protection against manipulation is as essential as for rekeying
submessages themselves. A RSMID, however, is shorter than a rekeying submessage. To
hash these data two RSMIDs are concatenated and entered into the hash module as one data
block, see Table 5.6 for the widths of the different RP data words. This can be done

G1 G2

E1 E2 E3 E4

H1 H2 H3 H4

S

Time

Scheduled
Operations

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

77

between the hashing stages of the rekeying submessages or at the end of this directly before
the digital signing. The last alternative preserves the pipeline structure.

5.6.1 Encryption Module
All the proposed rekeying processors use the Advanced Encryption Standard (AES) with a
key length of 128-bit [Da02], [Ni01]. AES is a block cipher which processes 128-bit data
blocks. Each data block is organized as a matrix of 4x4 bytes and processed in nine
identical iterations and a last slightly different one. Except for this, each iteration, denoted
as round, includes four processing steps of byte substitution, row shift, column mixing, and
adding a round key. In the last round the step of column mixing is omitted. Round keys are
expanded keys which, are derived from the original key by applying a key schedule
process.

Figure 5.9 provides a general view of the encryption module. To perform an encryption the
data and the key are first written on the inputs DATA_IN and KEY, respectively, followed
by activating the control signal START. The module performs encryption and sets the
encrypted data on the output DATA_OUT and signalizes this by setting the signal RDY.
During encryption the module does not react to other requests. The inputs DATA_IN and
KEY and the output DATA_OUT have all a length of 128 bit.

Figure 5.9. Encryption module overview

In the course of this work several realizations of the AES module have been designed with
different resource usage and performance figures. In general, the AES module is
implemented using an iterative looping architecture with sub-pipelining. Iterative looping
means that only one round is implemented in hardware. To perform an encryption a data
block is entered into this round 10 times. The purpose of sub-pipelining is to shorten the
critical path of the round, which enables higher clock frequencies. One design alternative of
the AES relies on two pipelining stages, as depicted in Figure 5.10. Note that the missing
of the pipeline register behind the Block RAM of Virtex-II Pro is justified by the
synchronous functionality of these memories. The module Key Schedule operates
synchronously with the encryption path to provide a round key for each iteration on the fly.
In total, an encryption using this architecture lasts about 25 clock cycles. For other
hardware realization possibilities of the AES refer to [Ma03], [Zh04], and [Go05].

ready

encrypt

RDY

DATA_OUT
DATA_IN

KEY

START

START -/RDY

RESET

5.6 HARDWARE SECURITY MODULES

78

Figure 5.10. AES architecture in HiFlex RP

Block ciphers used for rekeying solutions in related work, e.g. [Wo00], run in complex
modes such as the Cipher Block Chaining (CBC), which operates as follows. Before its
encryption, a data block is mixed with the encryption result of the previous block to prevent
that the same data block results in the same cipher block.
In contrast, the rekeying processors deploy the AES in the simple Electronic Code Book
Mode (ECB), i.e. data blocks (tree keys, actually) are encrypted independent of each other.
This decision on the operation mode for AES in the rekeying processors is justified as
follows:

1. The security problems of ECB do not appear in rekeying encryption. This is because
the encrypted data are keys, which are randomly generated and not plain text with
known patterns allowing for cryptological analysis.

2. Using other encryption modes causes that each member has to decrypt all rekeying
submessages, even if not all these submessages are interesting for that member, see
Section 5.5.4

5.6.2 Key Generator

ANSI X9.17 is a key management standard for financial institutions published by the
American National Standard Institute [Ni85]. Among other things this standard specifies a
key generator based on symmetric-key encryption such as 3DES. However, other block
ciphers are allowed according to the generator specification. Therefore, the rekeying
processors use AES-128 for this task. For the functionality of this generator three data are
needed, which are denoted as the generator initialization data in the scope of this work.
These data are the key generator Kgen, the timestamp D and the initial seed S0. Because of
using AES-128 all these data words have a length of 128 bit. The generation process relies
on an initial encryption of the timestamp D with the key Kgen and then two encryptions to
generate a key and to determine the next seed as depicted in the following steps, where Si =
S0 for the first generated key:

1. I = EKgen(D)

DATA_OUT

DATA_IN

KEY

BRAM
SBOX

Shift rows
Mix Columns

Add round key

Key
Schedule

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

79

2. ki
new = EKgen (I xor Si)

3. Si+1 = EKgen (I xor ki
new)

Figure 5.11. Key generator Overview

Figure 5.11 presents an overview of the realized key generator. After the system start-up
the generator waits for the initialization data. These parameters are sent to the generator on
the 128-bit input DATA_IN in the order: D, Kgen, and S0, where the availability of each
parameter on this input is signalized by a logical ‘1’ on the control input INIT. Upon
reading these values the generator executes the initial encryption to determine I and
switches to the state “ready”. From this state a new key can be requested, which is
generated in the state “generate”. A new initialization can only be performed from the state
“ready”. A new key is provided on the output DATA_OUT and announced by setting the
signal RDY.

Figure 5.12. Key generator data path

Figure 5.12 represents the data path of the key generator. As mentioned before, the key
generator uses one encryption core, which builds the most expensive operation in the
generation algorithm. Neglecting the encryption cost to calculate the internal word I, which

Initialize

ready

DATA_IN

GEN

INIT

generate

GEN

-/RDY

RDY

Idle

INIT

RESET

INIT

DATA_OUT

DATA_IN

DATA OUT

K
ge

n kne
w

AES

D
 I

S i

S 0

KEY

DATA_IN

5.6 HARDWARE SECURITY MODULES

80

is determined only once, it can be seen that a key generation costs approximately two
encryptions. This estimation assumes full loading of the generator. Otherwise the
determination of the next seed Si can occur after delivering the new key, which corresponds
to generation costs of about one encryption.

5.6.3 Hash Module
Rekeying submessages are hashed using the Meyer hash function [Ma85]. If it is employed
alone, secure hashing ensures data integrity. For the purpose of source authentication of
rekeying messages the hash value is digitally signed, see Section 5.6.5. Originally, Meyer
hash function was defined with DES as a compression function. However, this scheme can
be expanded to other block ciphers [Sc96]. Thus, in the scope of this work AES-128
operates as the compression function. A rekeying submessage (RSM) is entered as a data
block to be hashed and appears as a key for the internal encryption function. As data, the
encryption module takes the hash value of the previous RSM. The encryption result is then
xored with the old hash value to deliver the new one. For the first rekeying message RSM a
random value H0 is required. This value has a length of 128 bits and is entered as an initial
word. For each further rekeying submessage RSMi the following relation is applied:

Hi = ERSMi(Hi-1) xor Hi-1

Figure 5.13. Hash module overview

Figure 5.13 provides an overview of the used hash module in the rekeying processors.
After the system start-up the initial value H0 is written to the hash module through the input
DATA_IN by setting the control signal INIT. The hash module needs information on the
last rekeying submessage to provide the final hash value and to return to the ready state.
This is realized by the signals HASH and HASH_LAST. Figure 5.14 represents the data
path of the hash module. As can be seen from this algorithm, hashing a rekeying
submessage costs nearly one encryption.

Initialize

ready

DATA_IN

HASH

INIT

hash

HASH

-/RDY

RDY

DATA_OUT Idle

INIT

RESET

INIT

hash_
last

HASH

HASH_
LAST

HASH_
LAST

HASH_LAST

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

81

Figure 5.14. Hash module data path

5.6.4 MAC Module
For group authentication the MAC function specified in ISO 9797 with AES-128 instead of
DES is used. For this function an authentication key KMAC is required. The first rekeying
submessage is encrypted with KMAC directly. Each following rekeying submessage is first
xored with the last encryption result and then encrypted with KMAC. The final message
authentication code is the encryption result of the last rekeying submessage. The interface
and the functionality of the MAC module are largely similar to those of the hash module,
therefore, only the data path is presented here for brevity, see Figure 5.15.

Figure 5.15. MAC module data path

5.6.5 Digital Signature Module
The HiFlexRP uses the Elliptic Curve Digital Signature Algorithm (ECDSA) to sign the
hash value of the rekeying message [Ie00]. ECDSA was first proposed by Vanstone in 1992
[Va92]. In 1998 this algorithm was accepted as an ISO standard (14888-3), in 1999 as an
ANSI standard (ANSI X9.62), and in 2000 as an IEEE standard (P1363).

To set up the ECDSA the registration and authentication server decides first on a finite field
GF(p) and on an elliptic curve over this field EC(GF(p)) of the form:

R
SM

i

DATA OUT

AES
DATA_IN

H
0 H

i

KEY

DATA_IN

K
M

A
C

DATA OUT

AES DATA_IN RSM0 M
A

C

KEY

DATA_IN
RSMi

5.7 INPUT/OUTPUT UNITS

82

y2 = x3 +ax +b

where, 4a3 + 27b2 ≠ 0

A base point G of the order n is then selected to define the cyclic subgroup. For
cryptographic purposes the cyclic subgroup must be large enough. In the best case the
cofactor h should equals one where,

h = |E|/n

In summary, the EC domain parameters are given as a 6-tuple (p, a, b, G, n, h). These
parameters must be agreed with all group members.

In a next step the RAS selects a private key d as a random integer in the interval [1, n-1]
and calculates the public key Q as a scalar multiplication:

Q = dG

All the domain parameters and the private key are initially written to the rekeying
processor, which performs the ECDSA on the hash value h of the rekeying message. The
ECDSA proceeds in the four steps illustrated in Algorithm 5.1 to estimate the pair (r,s),
which represents the digital signature.

Algorithm 5.1 ECDSA
Input: h
Output: (r, s)
1. Select a random integer k from the interval [1, n-1]
2. Calculate P(x1, y1) = kG
3. Calculate r = x1(mod n), if r = 0, go to 1
4. Calculate s = k-1(h + dr)(mod n), if s = 0, go to 1

For its realization the ECDSA is divided into several tasks with different granularities. The
most expensive task is the scalar multiplication in Step 2 of the algorithm. This task is
executed on a dedicated hardware component, denoted by ECMULT. Another expensive
task is the modular inversion in Step 4. Similarly a hardware module, FFINV, is used to
implement this operation. Chapter 7 details the design of the ECDSA.

5.7 Input/Output Units
Rekeying processors communicate with the registration and authentication server RAS over
the input and output units, see Figure 5.1 and Figure 5.4. In this section the input and
output data formats are illustrated without considering the underlying communication
protocol between the RP and the RAS. For this purpose, the input and output units are
represented as First-In-First-Out storages, denoted as Instruction FIFO and Output FIFO,
respectively. The rekeying instructions are written into the Instruction FIFO by the RAS
and read from it for execution by the rekeying processor. Rekeying messages are written

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

83

into the output FIFO by the RP and read from it by the RAS. The word width of both FIFOs
equals 32 bit.

5.7.1 Instruction Set and Input Format
The rekeying processors support a total of ten instructions, where six thereof are present in
all architectures. Table 5.5 summarizes these instructions and the relating parameters and
return values.

 Table 5.5. Instruction set

Instruction Utilization Parameters Return

InitGen All RPs Kgen, D, S0 None

InitHash HiFlexRP H0 None

InitMAC HiFlexRP KMAC None

InitECDSA HiFlexRP p, a, b, G, n, d None

InitSysParam BRP JBDmax, DBDmax None

Join All RPs MEMID, kd Rekeying Message, kg

Disjoin All RPs MEMID Rekeying Message, kg

Resynchronize All RPs MEMID Rekeying Message, kg

UpdateKg All RPs None Rekeying Message, kg

DeliverKg All RPs None kg

Referring to Section 5.6, the first four instructions InitGen, InitHash, InitMAC, and
InitECDSA are required to set up the security modules by initializing the key generator, the
hash module, the MAC module, and the digital signature module, respectively. In normal
operation mode one or some of these instructions can be executed separately, e.g. to update
the generator key Kgen for security purposes.

In Chapter 2 an algorithm was introduced to manage the quality of service and access
control in batch rekeying. The Batch Rekeying Processor presented in next chapter
implements this algorithm. The instruction InitSysParam is defined for this processor to
provide the maximal allowable join and disjoin batch delays JBDmax and DBDmax as system
parameters.

The instructions Join and Disjoin are used to perform rekeying after joining or removing a
member, respectively. In the join case the member identity is provided to the rekeying
processor as a parameter. As mentioned previously, the generation of identity keys is a task
of the registration and authentication server.

LKH is a state-full rekeying algorithm, which means that a member must remain on-line to
have the up-to-date keys. Going off-line, the member can lose some of his keys and, thus,
need to be resynchronized. The instruction Resynchronize is intended for this purpose. The

5.7 INPUT/OUTPUT UNITS

84

execution of this operation is simpler than that of the instructions Join and Disjoin, as no
new keys must be generated. In addition the required keys are only encrypted with the
identity key of the member to be resynchronized.

The instruction UpdateKg is executed to enhance security in the case that a multicast group
remains steady for a long period. Only the group key is changed, encrypted with its old
value and sent to all the group members.

Executing each of the instructions Join, Disjoin, Resynchronize and UpdateKg results in a
rekeying message for the group members and in a new group key, which is provided to the
data server for data encryption. Besides, the rekeying processors can deliver the group key
separately by executing the instruction DeliverKg.

The instruction size varies between 32 bits, e.g. for UpdateKg, and 800 bits for InitECDSA.
The operation code is represented by the six most-significance bits of each instruction. The
member identity MEMID used in some instructions is represented in the remaining 26 bits
of the first instruction word, which allows for group sizes up to 67 million members. As an
example, Figure 5.16 illustrates the structure of the instruction Join and how this
instruction is written into the Instruction FIFO:

Figure 5.16. Join instruction structure

5.7.2 Rekeying Message Format
The rekeying processors write the rekeying messages into the Output FIFO. Table 5.6
summarizes the widths of the different data words used in the rekeying processors.

Example 5.5
Referring to Example 5.4, a rekeying processor supporting data source authentication
produces a total of 1184 bits to remove the member m5. This can be detailed as follows.

Identity key kd
(128 bit)

MEMID
(26 bit)

Opcode
(6 bit)

From RAS Instruction
FIFO

To RP

CHAPTER 5 NEW ARCHITECTURES FOR GROUP REKEYING

85

32 bits (for an identifier which indicates the number of the rekeying submessages included
in the rekeying message) + 4*128 bits (four RSMs) + 4*64 bits (four RSMIDs) + 256 bits
(digital signature) + 128 bits (for the unencrypted group key) = 1184 bits.

Table 5.6. Widths of the different data words in the RPs

Word Width (bit)

Tree keys 128

Rekeying submessage 128

Hash value 128

MAC 128

Digital signature 256

Rekeying sub-message identity 64

These data are written into the Output FIFO in the order depicted in Figure 5.17 from left
to right. In addition Figure 5.17 illustrates the output format for the case of group
authentication, for comparison. In this case the digital signature is replaced by a MAC.

 Figure 5.17. Output format

RSM (32 bit)

RSMID (64 bit)

RSM (128 bit)
Digital signature

(256 bit)
kg (128 bit)

MAC (128 bit)

5.7 INPUT/OUTPUT UNITS

86

CHAPTER 6 REAL-TIME AND BATCH REKEYING PROCESSORS

87

6 Real-Time and Batch Rekeying Processors

6.1 Overview
In this chapter the real-time and the batch rekeying processors are presented. Section 6.1
demonstrates first the general architecture of the RTRP. Then the specific instruction set
and the rekeying algorithms of this processor are illustrated. Lastly, implementation results
in terms of resource usage and performance features are presented. Section 6.2 provides a
similar description of the BRP. This chapter is largely based on the concepts introduced in
the Chapter 5 and assumes an understanding of these concepts.

6.2 Real-Time Rekeying Processor (RTRP)
The RTRP performs rekeying requests as soon as they arrive, provided that no other
requests are in processing.

6.2.1 Architecture
The RTRP is characterized by the architecture depicted in Figure 6.1. This processor
receives rekeying requests from the registration and authentication server (RAS), which
writes these requests into the Instruction FIFO. Fetching, decoding and executing these
requests are all tasks managed by the processor controller. As mentioned in the previous
chapter, the RTRP fulfills the security requirement for access control in group rekeying.
Therefore, the security module of this processor includes two functions for key generation
and encryption. As a resource-saving version, the RTRP integrates both these functions into
one module, denoted as GenEnc, which relies on one AES core. To reduce conflicts caused
by this source sharing the GenEnc unit generates keys in advance and saves them into a
special FIFO, as long as no rekeying encryptions are required. This FIFO, denoted as Key
FIFO, allows the storage of 512 keys of the length 128 bits and uses 4 Block RAMs for this
purpose. The unit Key Tree Memory includes the following two components:

1. The actual Key Memory (KM) to save tree keys. This memory is realized using an off-
chip SDRAM and an on-chip memory controller.

2. The Key State Memory (KSM) used for the static tree management. This memory is
realized using on-chip Block RAMs.

6.2 REAL-TIME REKEYING PROCESSOR (RTRP)

88

Figure 6.1. RTRP Architecture

The Controller is responsible for executing the rekeying algorithms. Because of the
complexity of this task, the controller is characterised by a hierarchical architecture of three
levels, as illustrated in Figure 6.2.

1. On the first level, the main controller accepts instructions, decodes them, and activates
one of the controllers on the second level.

2. The second level, referred to as the instruction level, includes six sub-controllers to
support the instruction set of this processor. Note that the RTRP only supports a subset
of the instructions, which were explained in the last chapter, see Table 5.5. Specifying
a sub-controller for each instruction provides an efficient way to modify or add one or
more instructions without affecting the basic architecture of the controller. In addition,
the modularity on this level enables a pipelining in the instruction execution.

3. The interface with the data path is mainly realized by sub-controllers belonging to the
third level, which is called the hardware level. Three functional tasks are integrated
into this level to process the key addresses, the rekeying submessage identities
(RSMID), and the key state words (LR words).

6.2.2 Instruction Set and Rekeying Algorithms
Because of its historical development, the RTRP assumes that each member is supplied
with a number of keys, which corresponds to the maximal tree height, regardless of the
current group size. Therefore, the concept of suspended keys, introduced in Section 5.5.1
does not apply to this processor. Accordingly, the RTRP relies on a coding mode of LR
words, which deviates from that given in Table 5.1. In this respect, a LR value of 00
indicates an unused key. A value of 10, 01, or 11 refers to a key, which is used from left,
right, or from both sides, respectively.

Controller

GenEnc

Key tree
Memory

Output
FIFO Address / LR

kd kx-y
new

kx-y
new

kx-y

D, Kgen, S0, kd

kg

RSM

RSMID
OP-Code
MEMID

From
PCI Bus

To
PCI Bus

Instruction
FIFO

CHAPTER 6 REAL-TIME AND BATCH REKEYING PROCESSORS

89

 Figure 6.2. RTRP controller hierarchy

The RTRP executes a total of six instructions as seen in Figure 6.2. In the following, the
execution of the instruction Join is presented in some detail. The instructions Disjoin and
Resynchronize are then illustrated briefly. In contrast, other instructions are straightforward
and independent of the processor type. For a description of these instructions it is referred
to Section 5.7.1 in the last chapter.

6.2.2.1 Join Instruction
The instruction Join is associated with two parameters: the member identity MEMID and
the identity key kd of the new member. Algorithm 6.1 illustrates the processing of this
request after its decoding by the main controller. First, the identity key kd is saved at the
memory address MEMID. Afterwards, the join controller starts a path traversing, which is
an iterative process to find all keys to be updated. This traversing is based on bit operations
on the addresses of these keys as described in the previous chapter. In the RTRP, a new
help-key may be encrypted once or twice depending on the corresponding LR value. As can
be seen from Algorithm 6.1, only those keys, which have an LR value of 11, are encrypted
with both sons. Otherwise one encryption is required. To find the keys to be encrypted
with, a reverse path traversing is performed. In the case of the RTRP, this traversing always
results in the direct sons because of the missing of suspended keys, as mentioned before.

6.2.2.2 Disjoin Instruction
The instruction Disjoin includes only a member identity MEMID as a parameter. The
execution of this instruction is similar to the join case. However, the LR check and update
is performed before key generation, as a disjoin operation can result in an LR value, which
equals 00. In this case the corresponding key does not need to be updated or encrypted.

6.2.2.3 Resynchronize Instruction
To resynchronize a member only its MEMID is required. The execution of this instruction
is simple, as no key generation is necessary. The keys on the path from the member leaf to
the root are only encrypted with the member identity key, which is already known.

GenEnc
Interface

Memory
Interface

In/out FIFOs
Interface

Bus
Interface

Address &
RSMID

Key State
Control (LR)

InitGen
Controller

Join
Controller

Disjoin
Controller

Resynchronize
Controller

DeliverKg
Controller

UpdateKg
Controller

Main Controller

Instruction
Level

Hardware
Level

6.2 REAL-TIME REKEYING PROCESSOR (RTRP)

90

Algorithm 6.1 RTRP Member Join
Input: MEMID, kd
Output: Rekeying Message (RM)

6.2.3 Implementation and Results
A prototype of the RTRP was realized on the PCI card ADM-XRC-II Pro, which was
described in Chapter 4. The FPGA includes all the RTRP components except for the key
memory, which is realized using the DDR SDRAM as another component of the ADM-
XRC-II Pro card.

Perform path traversing
starting from MEMID

Update LR
Key state memory LR

Switch LR

Perform reverse path
traversing from right

Generate kx-y
new

Tree memory kx-y
new

Perform reverse path trav-
ersing from left and right

kr

Perform reverse path
traversing from left

kl

Output FIFO RSMIDl
 RSMl = Ekl(kx-y

new)
 Output FIFO RSMl

kl, kr

Output FIFO RSMIDr
 RSMr = Ekr(kx-y

new)
 Output FIFO RSMr

Output FIFO RSMIDr
 RSMr = Ekr(kx-y

new)
 Output FIFO RSMr

Output FIFO RSMIDl
 RSMl = Ekl(kx-y

new)
 Output FIFO RSMl

kx-y = kg ? No

Yes

Proceed path traversing

case 01: case 10:

case 11:

Tree memory kd

CHAPTER 6 REAL-TIME AND BATCH REKEYING PROCESSORS

91

6.2.3.1 Resource Usage and Maximal group size
Table 6.1 outlines the resource usage for the individual RTRP components on the FPGA.
These values, except for SDRAM size, are obtained by a technology-dependent synthesis of
the design using Synplify Pro 7.3.3 from Synplicity, Inc. [Sy07].

Table 6.1. Resource usage in RTRP

Area usage
Component

CLBs % # BRAMs SDRAM
Notes

GenEnc 3 14 --
10 BRAMs for AES + 4 for key
FIFO of the generator

Key tree memory 5 -- 16 MB CLBs for SDRAM controller

Key state memory -- 66 -- For LR word storage

Controller 7 -- -- Excluding SDRAM controller

In/Out FIFOs &
PCI interface

5 8 --

The available resources directly affect the supportable group size by the rekeying processor.
The external SDRAM of the card ADM-XRC has a capacity of 64 MB which allows the
storage of the following number of 128-bit keys:

64*1,024*1,024*8/128 = 4,1943,04 keys

This number corresponds to group size of more than 2 million users according to (5.1).
However this estimation is optimistic because it does not consider the memory size needed
for the 2-bit LR words. For the storage of this data, the block RAMs of the FPGA are used
because of their high performance, which facilitates early reading of LR words and,
consequently, a timely decision on the next step. However, the limited number of available
BRAMs restricts the group size. This point can be explained as follows. 2VP20 contains a
total of 88 BRAMs, where 22 blocks thereof are required for the GenEnc and the FIFOs
according to Table 6.1. Thus, a rest of 66 BRAMs can be used to save LR words. A BRAM
has an effective capacity of 16 Kb. By exploiting all these remaining BRAMs for the Key
State Memory the following number of LR words can be saved:

66*16Kbit / 2 = 540.672 LR words

Recall that LR words are only defined for help-keys and that a complete binary key tree
contains as many help-keys as the user number minus one. In addition, the user number is
always a power of two in complete binary trees. Therefore, the actual maximal group size,
which can be supported by the RTRP, is equal to the largest power-of-2, which is smaller
than 540.672, i.e.

Nmax = 524.288 = members.

6.2 REAL-TIME REKEYING PROCESSOR (RTRP)

92

6.2.3.2 RTRP Performance
Table 6.2 summarizes the basic performance figures of the proposed RTRP expressed in
terms of clock cycles needed for a particular operation. The value 19 in this table
corresponds to the number of tree levels occupied by help-keys for the maximal group size
Nmax. The term 19 Gen. represents the number of clock cycles needed for the generation of
19 new keys. 38 AES denotes the number of clock cycles, which are required to perform 38
AES encryptions. The term X indicates the number of cycles consumed by different control
tasks such as the instruction fetch and decode, and the processing of LR words. As
mentioned previously, the processor controller features a modular architecture, which
enables a concurrent execution of different tasks such as encryption and memory access
operations. Due to this modularity, X is small compared to the cycle numbers needed by
encryption and key generation and can remain out of consideration in most cases.
Differently, X in best-case disjoin (last row in Table 6.2) represents the total time needed in
this special case, since neither key generations nor encryptions are needed.

Table 6.2. Performance figures of the RTRP

Performance feature # Clock cycles

AES encryption 25

Key generation 55

Worst-case join 19 Gen. + 38 AES + X

Best-case join 19 AES + X

Worst-case disjoin 19 Gen. + 37 AES + X

Best-case disjoin 201

The worst case join/disjoin occurs when all help keys from the join/disjoin point to the root
have to be updated and encrypted twice and the key FIFO of the key generator is empty.
The best case join occurs when all help-keys from the join point to the root are not used by
any current member and the key generator has sufficient keys in its FIFO storage. The best
case disjoin occurs when all help-keys from the disjoin point to the root will not be used by
any remaining group member.

The RTRP was implemented by exploiting the placement and routing tools ISE 6.1 from
Xilinx. A clock frequency of 133 MHz was chosen to control the RTRP. This value
corresponds to the maximal clock frequency of the external SDRAM.

In order to compare the RTRP performance to other solutions, a software model was built
for the rekeying processor with AES encryption, ANSI X9.17 key generation, and LKH
rekeying, which is improved by a semi-LR mechanism. The software model was executed
on the following two machines:

CHAPTER 6 REAL-TIME AND BATCH REKEYING PROCESSORS

93

SW1: AMD Duron 750 MHz, 64 KB (cache), 256 MB (RAM)

SW2: Intel XEON 1.8 GHz, 512 KB (cache), 1GB (RAM).

Table 6.3 depicts a performance comparison between the software and the RTRP solutions.

Table 6.3. RTRP performance vs. software solution

Operation
SW1
(ms)

SW2
(ms)

RTRP
(ms)

Worst-case join 1.13 0.6 0.015

Best-case join 0.278 0.144 0.004

Worst-case disjoin 1.115 0.616 0.015

Best-case disjoin 0.836 0.453 0.002

The following example illustrates the advantage of the RTRP solution. Consider the Pay-
TV scenario from Chapter 1 and assume that the video provider advertises its service by
providing short join times. (Short disjoin times are beneficial for the video provider to keep
forward access control, but normally not stated in the advertisement). Join time consists of
several slices including the time needed for the calculation of the rekeying submessages.
Assume that this time slice equals 1 sec. Under this condition and assuming a worst-case
join, the software solution SW1 will be able to join 1s/1.13ms = 885 members under
adherence to the offered property in the advertisement. SW2 results in serving 1666
members, and the RTRP features the support of 66,666 members. Obviously, the RTRP can
serve considerably more user requests without agreement violation.

6.3 Batch Rekeying Processor (BRP)
The BRP collects a number of rekeying requests within a rekeying interval, marks the keys
to be updated, and process these keys together. For detailed description of batch rekeying
refer to Chapter 2.

6.3.1 Architecture
The BRP is mainly composed of five units as depicted in Figure 6.3. Batch rekeying is a
two-step process. In the first step rekeying requests are collected and keys, which need to
be updated, are marked. In the next step the marked keys are updated and encrypted to
build rekeying submessages. The key marking is a task achieved by the Preprocessing Unit
of the BRP. Key update and encryption is performed in the Processing Unit. In [Li01] the
concept of subtree is used to denote all marked keys in one rekeying interval. For the BRP
this concept is used to refer to the data generated by the Preprocessing Unit to provide
information on keys to be processed, the kind of processing, and the order of processing.
The first two information are provided by assigning a Marking Flag (MF) and a Left-Right
Word (LR) to each help-key, respectively. The processing order is appointed with the aid of
the Processing FIFO (PF). The interaction between the Preprocessing, the Subtree and the

6.3 BATCH REKEYING PROCESSOR (BRP)

94

Processing Units will be illustrated in Section 6.3.2. In the sequel, some functional units
specific to this BRP are described briefly.

Figure 6.3. BRP Architecture

6.3.1.1 Main Controller
This subunit controls the whole BRP by fetching instructions from the Instruction FIFO,
decoding them, and by activating the Batch Scheduler to execute the marking algorithm. In
addition, the Main Controller starts the Processing Unit to process an already prepared
batch. The Main Controller interacts with the Batch Delay Monitor to control the rekeying
interval according the event-driven rekeying algorithm presented in Chapter 2.

6.3.1.2 Batch Scheduler
This module performs the two important tasks of key marking and estimating the batch
processing time BPT, see Chapter 2. For the first task the Batch Scheduler receives a
rekeying request with some member identity MEMID and marks the help-keys needing to
be processed according to the marking algorithm detailed in Section 6.3.2. To estimate BPT
the Batch Scheduler gets during marking information on the number of needed key
generations and encryptions. Accordingly, it updates the batch processing time BPT for
each new request and delivers it to the Batch Delay Monitor.

6.3.1.3 Batch Delay Monitor
This module supports the event-driven rekeying algorithm. For this purpose it measures the
actual rekeying interval and compares it with the values Tmax1 and Tmax2, see inequality (2.6)
in Chapter 2. When exceeding one of these values, this unit interrupts the Main Controller
to stop marking and start a new rekeying interval. Figure 6.4 illustrates the architecture of

Processing
Controller

SDRAM
Controller

GenEnc

Processing
FIFO

MF
Memory

Key State
Memory (LR)

Main
Controller

Batch
Scheduler

Batch Delay
Monitor

Instruction
FIFO

PCI
Controller

Output
FIFO

Key Tree
Memory

Processing Unit Preprocessing Unit Interface Unit Subtree Unit Key Tree

CHAPTER 6 REAL-TIME AND BATCH REKEYING PROCESSORS

95

the Batch Delay Monitor. For this realization the inequality (2.6) is expanded to two
inequalities using the formula (2.7) and (2.8) as follows:

 T < JBDmax - BPTi+1 + taJ
min (6.1)

 T < DBDmax - BPTi+1 + taD
min (6.2)

Recall that taJ
min and taD

min represent the appearance times of the first join and disjoin
requests in a rekeying interval, respectively. The batch processing time BPTi+1 is provided
by the Batch Scheduler. JBDmax and DBDmax represent the maximal allowable join and
disjoin batch delays, respectively. These system parameters are written to the BRP by
executing the instruction InitSysParam as depicted in Chapter 5. Rearranging (6.1) and
(6.2) results in

T- taJ
min < JBDmax - BPTi+1 (6.3)

 T- taD
min < DBDmax - BPTi+1 (6.4)

Obviously, the left side of inequality (6.3) can be realized by a timer, which is started at the
appearance time of the first join request. This timer is denoted as Join Timer in Figure 6.4.
Similarly a Disjoin Timer is employed to implement the left side of (6.4).

Figure 6.4. Batch Delay Monitor

6.3.1.4 MF Memory
This memory saves a 1-bit marking flag for each help-key. The MF is set by the
Preprocessing Unit if the corresponding key needs to be processed. The Processing Unit
resets this flag after processing the related key.

6.3.1.5 LR Memory
This unit saves the 2-bit LR words for the help-keys as specified in Section 5.5.2. During
marking, an LR word is checked and possibly updated by the Batch Scheduler. Depending

Join
Timer

Disjoin
Timer

≥

JBDmax

DBDmax

BPTi+1

-

-

>

>

6.3 BATCH REKEYING PROCESSOR (BRP)

96

on the LR value of some key, the Processing Unit decides on the kind of processing it must
undergo.

6.3.1.6 Processing FIFO (PF)
The Processing FIFO enables an efficient level traversing, which was defined in the
previous chapter, see Definition 5.10. During marking the Batch Scheduler pushes the
KEYIDs of all level-1 help-keys, which need to be processed, into this FIFO. The
Processing Unit pulls these KEYIDs and pushes the KEYIDs of the next-level help-keys
needing to be processed in a successive way until all keys have been processed. This
mechanism ensures that the processing of a help-key of some level can only take place,
after the keys of lower levels have already been handled. Recall that the identity of a key in
the rekeying processor corresponds to its physical address, as depicted in Chapter 5, see
Definition 5.11.

6.3.1.7 Processing Controller
This module pulls the KEYIDs of keys to be processed from the Processing FIFO, resets
their MF-flags, and orders the GenEnc module to build rekeying submessages according to
the corresponding LR values.

6.3.1.8 GenEnc
This unit performs both the encryption – to set-up rekeying submessages – and the key
generation based on a shared AES-128 core. A dedicated Key FIFO saves pre-generated
keys as long as no rekeying encryption is needed.

6.3.2 Instruction Set and Rekeying Algorithms
The BRP supports all instructions known in the RTRP. In addition, the instruction
InitSysParam is specific to the BRP to initialize the Batch Delay Monitor with the system
parameters JBDmax and DBDmax. In contrast to the RTRP, which performs a rekeying
algorithm for each instruction of the type Join, Disjoin, and Resynchronize, the BRP
performs two algorithms for a batch of these instructions. These are the marking algorithm
and the processing algorithm. Note that the BRP treats the instruction Resynchronize as a
Join instruction with the difference that no identity key is saved.

In the following, the batch rekeying algorithms will be illustrated assuming a sequential
proceeding of the marking and processing tasks, i.e. without pipelining. First, the marking
and processing algorithms are presented. An example illustrates then the proceeding of
these algorithms. A special problem of applying pipelined batch rekeying is treated in
Section 6.3.3.

6.3.2.1 Marking Algorithm
The marking algorithm is performed by the Preprocessing Unit. While starting and ending
the marking process is a task of the Main Controller and the Batch Delay Monitor, the
actual marking algorithm is executed by the Batch Scheduler. Algorithm 6.2 depicts the

CHAPTER 6 REAL-TIME AND BATCH REKEYING PROCESSORS

97

proceeding of marking for one rekeying instruction such as Join, Disjoin or Resynchronize.
The description in Algorithm 6.2 is highly abstract. More details will be provided in
Example 6.1. Note that the marking algorithm only pushes identities of help-keys from the
first level into the Processing FIFO. The processing algorithm, later on, pulls these KEYIDs
and pushes the KEYIDs of their fathers. By this means it ensured that a key is only
encrypted with keys of lower levels, which have already been updated.

Algorithm 6.2 Marking for one instruction
Input: MEMID, instruction type
Output: Updated subtree data
1. Perform path traversing starting with MEMID
2. Push the KEYID of the help-key of level-1 into the Processing FIFO,

 if this was not yet done by other marking steps in the same interval.
3. Set the marking flags of all help-keys on the path.
4. Update the LR words according to the instruction type. -- Table 5.1
5. return

6.3.2.2 Processing Algorithm
The processing algorithm is performed by an interaction of the Processing Controller and
the GenEnc module in the Processing Unit. This algorithm is started once in each rekeying
interval and stopped when all marked keys for this interval have been processed. The
processing algorithm is an iterative task, which consists of repeated execution of level
traversing. The processing algorithm gets information on the level-1 help-keys, which need
to be visited, from the marking algorithm in terms of KEYIDs saved in the Processing
FIFO (PF). During processing the corresponding keys, the processing algorithm prepares
the level-2 help-keys, which need processing, by writing their KEYIDs into the Processing
FIFO. This procedure is repeated for all tree levels. Algorithm 6.3 illustrates the processing
task, in brief.

Algorithm 6.3 Processing
Input: Subtree data
Output: Rekeying message
1. repeat
2. Pull a KEYID from the PF.
3. Reset the marking flags of the corresponding key and its father.
4. Push the KEYID of the father into the PF, if this was not yet done.
5. Update/Encrypt the corresponding help-key according to its LR word.
6. until PF is empty
7. return

Two main remarks can be made to this pseudo code:

6.3 BATCH REKEYING PROCESSOR (BRP)

98

1. In this description, the level traversing including the change from level to level is
hidden. By means of the Processing FIFO, a part of the processing algorithm, which is
responsible for level traversing, is realized using the topological structure of this
hardware storage. Consequently, a largely efficient level traversing is provided, as not
all keys belonging to some level must be visited, but only those, which were pushed
into the Processing FIFO.

2. The if-condition in Step 4 is based on verifying the marking flag of the father.
Therefore this flag is reset a priori in Step 3.

Example 6.1: Marking and Processing Algorithms
Consider the left key tree in Figure 6.5 and assume that five rekeying requests appear in the
current rekeying interval in the following order: Join m1, Disjoin m3, Disjoin m0, Join m5,
and Disjoin m2. The processing of these requests results in the right tree in the same figure.

Figure 6.5. Batch rekeying example
Marking
In this example five marking steps are performed, one for each rekeying request. For an
illustration of the effect of these preprocessing Tables 6.4, 6.5 and 6.6 show the
development of the marking flags, the LR words, and the PF content in the course of
marking, respectively. The following points provide an explanation of some items in these
tables.

1. The tables should be considered column-wise from left to right. This order corresponds
to the progress of the marking steps.

2. At the start of marking, the marking flags of all help-keys are zero, the Processing
FIFO is empty, and the LR words correspond to the left tree in Figure 6.5.

3. In Table 6.5, LR words, which are updated in some marking step, appear with grey
background in the corresponding column.

4. During marking, the LR words of the help-keys k0-1 and k2-3 are updated twice.
Nevertheless, the KEYIDs of these keys are pushed into the PF only once. This is
realized by checking the marking flag: A KEYID is pushed into the PF only if the
corresponding MF is zero.

k0 k2 k3 k4 k6 k7

k0-1 k2-3 k4-5 k6-7

k0-3 k4-7

k0-7

k1 k4 k5 k6 k7

k0-1 k2-3 k4-5 k6-7

k0-3 k4-7

k0-7

CHAPTER 6 REAL-TIME AND BATCH REKEYING PROCESSORS

99

Table 6.4. MF Memory during marking

Table 6.5. LR Memory during marking
LR

Help
Key Current

Value
Join
m1

Disjoin
m3

Disjoin
m0

Join
m5

Disjoin
m2

k0-1 10 11 11 01 01 01
k2-3 11 11 10 10 10 00
k4-5 10 10 10 10 11 11
k6-7 11 11 11 11 11 11
k0-3 11 11 11 11 11 10
k4-7 11 11 11 11 11 11
k0-7 11 11 11 11 11 11

Table 6.6. PF during marking
PF

Current
Entries

Join
m1

Disjoin
m3

Disjoin
m0

Join
m5

Disjoin
m2

 KEYID
(k4-5)

KEYID
(k4-5)

 KEYID
(k2-3)

KEYID
(k2-3)

KEYID
(k2-3)

KEYID
(k2-3) Empty

KEYID
(k0-1)

KEYID
(k0-1)

KEYID
(k0-1)

KEYID
(k0-1)

KEYID
(k0-1)

5. The final LR value of k2-3 equals 00, this means that k2-3 will become suspended and
does not need to be updated or encrypted. Nevertheless, its KEYID remains in the
Processing FIFO to avoid expensive data rearrangement in this FIFO. The processing
algorithm, later on, early detects this situation and ignores this key.

6. The KEYID of a help-key represents the address of this help-key in the key memory,
the address of the corresponding LR word in the LR Memory, and the address of the
corresponding marking flag in the MF Memory.

MF
Help
Key Current

Value
Join
m1

Disjoin
m3

Disjoin
m0

Join
m5

Disjoin
m2

k0-1 0 1 1 1 1 1
k2-3 0 0 1 1 1 1
k4-5 0 0 0 0 1 1
k6-7 0 0 0 0 0 0
k0-3 0 1 1 1 1 1
k4-7 0 0 0 0 1 1
k0-7 0 1 1 1 1 1

6.3 BATCH REKEYING PROCESSOR (BRP)

100

Processing

The Processing Unit receives the final sub-tree data, which appear in the right-most
columns of Table 6.4, 6.5, and 6.6. The last column of Table 6.4 unveils six marked keys.
Three of these keys – more accurately, their KEYIDs – are already kept in the Processing
FIFO. The other three are pushed into the FIFO during processing. Recall that using PF, on
the one hand, releases the Processing Unit from looking for marked keys. On the other
hand, PF keeps the order of processing, as keys are written into the PF level by level. This
enforces the processing of keys of lower levels before those of higher levels.

In this example, the Processing Unit initially pulls the first KEYID entry from the PF which
corresponds to k0-1. The LR value is then checked. Since LR(k0-1) = 01, i.e. the key is left
suspended, this key is not to be updated or encrypted. The KEYID of the father is
determined and pushed into the processing FIFO. In addition, both the marking flags of k0-1
and its father are reset. This early resetting of MF(k0-3) helps to avoid a second pushing of
KEYID(k0-3) into the PF during the processing of k2-3. Tables 6.7 illustrates the
development of the PF contents during processing. In this table, KEYIDs belonging to the
same level have the same shade of gray.

Table 6.7. PF content during processing
PF content during the processing of: PF after

marking k0-1 K2-3 k6-7 k0-3 k4-7 k0-7
KEYID
(k4-5)

KEYID
(k0-3)

KEYID
(k2-3)

KEYID
(k4-5)

KEYID
(k0-3)

KEYID
(k4-7)

KEYID
(k0-7)

KEYID
(k0-1)

KEYID
(k2-3)

KEYID
(k4-5)

KEYID
(k0-3)

KEYID
(k4-7)

KEYID
(k0-7)

Empty

6.3.3 Pipelined Batch Rekeying
Pipelined batch rekeying is characterized by a simultaneous execution of the marking and
the processing algorithms, see Chapter 2. Accordingly, a simultaneous access to the Subtree
Unit by both the Preprocessing Unit and the Processing Unit must be enabled. From the last
section, however, it is obvious that such access may cause a data incoherency problem.
Table 6.8 illustrates the access modes to the data of the Subtree Unit. The first row, for
instance, indicates that the MF Memory is accessed for write and read operations by both
the Preprocessing Unit and the Processing Unit.

 Table 6.8. Access modes on Subtree Unit

Access mode
Memory

Preprocessing Unit Processing Unit
MF Memory Read, Write Read, Write
LR Memory Read, Write Read

Processing FIFO Push Push, Pop

A first solution of this incoherence problem can be achieved by dividing rekeying intervals
into even and odd intervals and using two subtree units:

CHAPTER 6 REAL-TIME AND BATCH REKEYING PROCESSORS

101

1. an Even Subtree Unit, which is used by the Preprocessing Unit in even intervals and by
the Processing Unit in odd intervals, and

2. an Odd Subtree Unit, which is used by the Preprocessing Unit in odd intervals and by
the Processing Unit in even intervals.

While this solution is sufficient to tackle the incoherency of the MF and PF data, it does not
solve this problem for the LR words. This can be illustrated as follows. The MF and PF
data relate to a set of marked keys in some rekeying interval. Therefore, these data return to
their reset values at the end of processing. In contrast, LR words represent the state of all
help-keys including the marked ones and are not allowed to be written by the Processing
Unit. Assume that the LR word of a help-key kx-y is initially 00. In an even rekeying interval
this value is updated to the value LR(kx-y) = 10. This new value is written into the Even
Subtree Unit. Assume, furthermore, that this key is addressed again in the next interval,
which is odd. Preprocessing Unit tries to update the LR(kx-y) based its value in the Odd
Subtree Unit which is still 00, not 01. In summary, doubling the LR Memory does not solve
the incoherency problem. Therefore, the BRP uses a third LR memory which is read and
written in both even and odd rekeying intervals to keep up-to-date LR values.

6.3.4 Implementation and Results
A prototype of the BRP was realized on the PCI card ADM-XPL equipped with the FPGA
2VP30, which was described in Chapter 4. The FPGA implements all of the BRP
components except for the key memory, which is realized using the DDR SDRAM as
another component of the ADM-XPL card.

6.3.4.1 Resource Usage and Maximal group size
Table 6.9 outlines the area usage for the individual BRP components on the FPGA. These
values, except for the SDRAM size, are obtained by a technology-dependent synthesis of
the design using the program Synplify Pro 7.3.3 from Synplicity, Inc. [Sy07].

The available resources directly affect the supportable group size. For each help-key a total
of 8 auxiliary bits are needed for saving the MF and LR data, according to the previous
analysis of pipelined batch rekeying in the last section. For the BRP prototype, 64 BRAMs
are used to store these data. Accordingly, the following number of help-keys can be
managed by the BRP: 64 * 16 Kbit /8 = 131,072. This corresponds to a group size of Nmax =
131,072 members and a level number of 17. The maximal batch size is limited by the
maximal number of KEYIDs, which can be pushed into the Processing FIFO during
marking. In the current BRP prototype the PF has a capacity of 512, which allows for a
maximal batch size of 1024 requests.

6.3.4.2 BRP Performance
Though the BRP uses the same encryption and key generation modules as the RTRP, a
performance comparison between these processors is not proper. This is attributed to the
fact that the RTRP and the BRP support largely different operations modes.

6.3 BATCH REKEYING PROCESSOR (BRP)

102

Table 6.9. Resource usage in BRP

Area usage

Component
CLBs % ~ # BRAMs SDRAM

Instruction FIFO 0 4 --

PCI Controller 3 0 --
Interface

Unit
Output FIFO 0 4 --

Main Controller 0.26 0 --

Batch Scheduler 0.69 0 --
Preprocessing

Unit
Batch Delay Monitor 0.86 0 --

Processing FIFO 0 2 -- Subtree
Unit LR & MF Memories 0 64 --

Processing Controller 1.12 0 --

SDRAM Controller 4 0 --
Processing

Unit
GenEnc 3 14 --

Key Tree SDRAM -- -- 4 MB

While the RTRP performs rekeying requests immediately, the BRP allows some waiting
time under some system constraints. Therefore, using absolute timing figures to compare
these processors is not meaningful. Furthermore, a reliable comparing of the BRP
performance with a software solution for batch rekeying is impossible because of the
difficulty of realizing pipelined batch rekeying using software, among other reasons.

Nevertheless, the BRP can be operated in a semi-immediate rekeying mode, if it is
initialized with zero values for both the maximal join and disjoin batch delays JBDmax and
DBDmax. Recall that this initialization can be performed by executing the instruction
InitSysParam. In this case the marking break condition will always be fulfilled for the first
join or disjoin request. In this operation mode, the BRP was compared with the software
solution, which was described in Section 6.2.3.2. Table 6.10 provides an overview of the
measurement results of the worst-case join and worst-case disjoin operations.

Table 6.10. BRP performance vs. SW solution

Operation
SW1
(ms)

SW2
(ms)

BRP
(ms)

Worst-case join 1.01 ms 0.537 ms ~ 0.016

Worst-case disjoin 0.998 ms 0.551 ms ~ 0.016

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

103

7 High-Flexibility Rekeying Processor

7.1 Overview
This chapter introduces the HW/SW rekeying solution denoted as High-Flexibility
Rekeying Processor. Section 7.2 motivates the new solution. The generic architecture of the
HiFlexRP is presented in Section 7.3. The execution of the rekeying algorithms on this
architecture is then demonstrated in Section 7.4. Section 7.5 illustrates the co-design
process followed to partition the task onto hardware and software resources and to schedule
the rekeying subtasks. Section 7.6 concludes the chapter with a comparison to related work.

7.2 Introduction
The hardware-only architectures proposed in Chapter 6 provide high rekeying performance
in comparison to software solutions. However, they lack flexibility. Because of their hard-
wiring, the Real-Time and Batch Rekeying Processors offer low adaptability to various sys-
tem requirements and group conditions. The new architecture proposed in this chapter
combines the hardware performance with the software flexibility to provide highly efficient
and, at the same time, high-flexible multicast group rekeying. The flexibility feature of the
HiFlexRP relates to several aspects. First, for a rekeying system it is desired to add,
remove, extend, or exchange a cryptographic primitive without affecting the overall system
functionality. The HiFlexRP supports this feature by means of its modular architecture.
Second, a multicast group may be specified by some amount of trustability. For a highly
trustable group, rekeying messages only need to be authenticated against non-members.
This kind of authentication is denoted as group authentication and can be supported by
using a simple message authentication code (MAC). In contrast, data source authentication
must be enabled, if group members do not trust each other and, therefore, need to exactly
verify the sender of rekeying messages. A means to achieve this tight authentication mode
relies on digital signing of the rekeying message. For the sake of high flexibility the
HiFlexRP supports both these authentication modes. Third, in group situations with high
dynamics it is recommended to reduce rekeying costs by utilizing batch processing, as long
as certain requirements of security and quality of service are fulfilled. The HiFlexRP allows
a straightforward switching between real-time and batch rekeying. The functionality of
batch rekeying mainly differs from real-time rekeying in the tree management, not in the
underlying cryptographic operations. Since the HiFlexRP performs the tree management
task as software functions, a switching between these rekeying modes can be supported
without effect on the processor architecture.

7.3 HIFLEXRP ARCHITECTURE

104

7.3 HiFlexRP Architecture
A key question in the design of complex systems concerns the relationship between the
algorithm to be performed and the architecture as an execution environment. This
relationship largely affects the cost, the performance, and the flexibility of the resulting
system. The main aspect in this algorithm-architecture relationship relates to the cause-
effect direction between algorithm and architecture in the design process. Naturally, an
algorithm represents the starting point, i.e. the cause, which leads to the design of an
architecture, i.e. the effect, as an executing platform. However, a strict following of this
direction enforces a top-down design process which can not deliver optimal results without
including architectural features such as the execution times of some tasks on some
resources. Since these features are not available, because the architecture does not yet exist,
they are included in the design process just in an estimated form. Another problem with this
design strategy relates to the fact that the resulting architecture is dedicated to a specific
algorithm and, thus, obstructs future adapting. The opposite direction in the cause-effect
relationship between algorithm and architecture appears in various forms. The most
advanced case relies on using prefabricated general-purpose processors and corresponding
tools for compiling and linking. In this case, the designer totally abstracts from the
underlying architecture and operates on the algorithm level only. This top-only design
strategy represents the most straightforward method and is largely employed for software
development. General-purpose processors, however, only refer a sequential processing of
tasks, which is not suitable for computationally intensive algorithms with inherent or
required parallelism. To support this kind of algorithms purpose-specific architectures must
be developed. The most utilized design strategy in practice is specified by a bottom-up
nature. After a coarse system partitioning, the design team works on the system hardware
and software components separately. The complete system is built up when all components
are available. A verification of the applied HW/SW partition, for instance, can first be
performed at this late stage in the design process, which is highly inefficient.

For the design of the HiFlexRP an approach is utilized, which is a mix of both the top-down
and the bottom-up design strategies. On the bottom level, which is encouraged by the reuse
of several available components such as the AES and the key generator units, a generic
architecture is developed. This architecture supports all computation-intensive operations in
hardware. On the top level, the complete functionality is developed in software which can
run on the embedded PowerPC processor. In contrast to known top-down approaches, the
final HW/SW partition and scheduling are determined depending on actual timing features,
which are provided by means of on-chip measurements of the execution times of different
tasks on different resources. The partition process will be detailed in Section 7.5.

Figure 7.1 depicts the generic architecture of the HiFlexRP, which differs from previous
architectures in Chapter 6 in the following points:

1. The control-intensive tasks such as tree management are assigned to the PowerPC
processor. Note that the data and instruction memories can be connected to the
processor either using the On-Chip Memory bus (DOCM and IOCM), or using the
Processor Local Bus (PLB), as depicted in Chapter 4. The effect of bus selection will
be investigated in Section 7.5.

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

105

 Figure 7.1. General architecture of HiFlexRP

2. The HiFlexRP supports both static and dynamic management of the key tree. The static
tree management depends on using a Key State Memory (KSM), as was illustrated in
Chapter 5. Dynamic tree management utilizes methods, which are similar to those
known in the field of software data structures. The static tree management was
investigated thoroughly in the last two chapters. Therefore, the description of the
HiFlexRP in this chapter will be limited to the dynamic tree management. Nevertheless,
a comparison between these two modes regarding resource usage and rekeying
performance will be provided in Section 7.4 and Section 7.5, respectively.

3. In addition to the forward and backward access control, the new architecture supports
both group authentication using the message authentication code module (MAC), and
data source authentication using the modules Secure Hash and ECDSA Sign. All
considerations in this chapter, however, relate to the complex form of authentication,
i.e. to the data source authentication. The simple group authentication is omitted, for
brevity.

Based on this architecture, the HiFlexRP functionality can be described using a 4-layer
model as depicted in Figure 7.2. This presentation is generic in the sense that some
elements of the different layers may be absent depending on the design alternatives. For
example, in the case of dynamic tree management the Key State Memory and, thus, the
corresponding KSM driver are omitted. On the top layer, rekeying instructions are fetched
from the Instruction FIFO. After their decoding, the necessary functions for key tree
management and secure data handling are called. The rekeying results are then prepared
and written to the Output FIFO. The intensive operations for tree management and security
are embedded to a dedicated layer to enable modularity. The driver layer supports the
HW/SW interface and includes functions to initialize the different hardware modules, to

Instruction
FIFO

Output
FIFO

Ex
te

rn
al

 K
ey

Tr

ee
 M

em
or

y
(K

TM
)

Interface Unit

Cryptographic Primitives

PowerPC

In
st

ru
ct

io
n

M
em

or
y

D
at

a
M

em
or

y

Key
Generator

Symmetric
Encryption

Secure
Hash

ECDSA
Sign MAC

Key State
Memory (KSM)

SDRAM
Controller

PLB

IC
O

M

D
C

O
M

7.4 REKEYING ALGORITHMS

106

load data, to initiate computation, and to fetch processing results. The various hardware
modules settle on the lowest layer.

Figure 7.2. Functional layers in HiFlexRP

7.4 Rekeying Algorithms
The concept of rekeying algorithm, in this chapter, refers to the processing steps performed
by the PowerPC processor to execute one of the instructions Join, Disjoin and
Resynchronize, which were outlined in Chapter 5, see Table 5.5. The execution of the
instruction Join is the most expensive operation and will be employed, therefore, to
illustrate the HiFlexRP functionality, representatively. Before detailing the join algorithm,
the next section depicts the data structure used for dynamic tree management.

7.4.1 Tree Data Structure
Key trees differ from search trees in several points, which affect their management mode.
The most significant difference relates to the fact that key trees are unordered, i.e. there is
no relation between data saved in the different nodes of the tree. Recall that data stored in
LKH trees represent keys, which are generated randomly. Therefore, the access to some
node or leaf in the tree can not rely on the key data. This matter raises some special
management issues of the key tree during joining, disjoining, or resynchronizing a member:

1. Finding a position to add a leaf in the join case is independent of the data to be stored at
this leaf, i.e. the identity key of the member. Therefore, additional information must be
provided to indicate the addition position. In the case of the HiFlexRP, each node saves
information on both the shallowest left leaf and the shallowest right leaf in the subtree
with the corresponding node as a root. By Using this information, a rekeying algorithm
decides on the join point of a new leaf by looking for the shallowest leaf in the tree

Rekeying

Security Functions Key Tree
Management

Security Module Drivers FIFO
Driver

FIFO
Driver

KTM
Driver

KSM
Driver

Inst.
FIFO

Output
FIFO KTM KSM GEN AES HASH SIGN MAC

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

107

k0 k1 k2 k3

k0-1 k2-3

k0-3

Index =
MEMID

0
1
2
3

Pointer to
corresponding leaf

MLMA

Figure 7.4. Member Leaf Map Array (MLMA)

starting at the root. In addition, the HiFlexRP employs a tree management strategy,
which expands the tree from the root side to join a member in the case of full trees. By
this means, the new group key must be encrypted only with the old group key and with
the identity key of the new member. Not only the relating join request profits from this
strategy, which is denoted as bottom-up tree growing in this work, but also following
join and disjoin requests. An in-depth investigation of the advantage of this tree
management strategy was provided in a student thesis under the author’s supervision
[Ab05]. This strategy, however, demands a means to check the tree for fullness. For
this purpose, each node contains additional information on both the deepest left leaf and
deepest right leaf in the subtree with the corresponding node as a root. Accordingly,
each node of the key tree is specified as depicted in Figure 7.3. Note that tree leaves
are special nodes with a zero value for DSLL, DDLL, DSRL and DDRL. In addition
the pointers LS and RS are initialized with NULL all the time. In contrast to static tree
management, a tree leaf is not associated with a member identity MEMID. Otherwise,
complex search operations must be performed to find tree leaves in the case of member
disjoin or resynchronization. To avoid this, another solution is proposed as illustrated in
the next point.

Figure 7.3. Key node structure in dynamic tree management

2. In the case of disjoin or resynchronize requests, the HiFlexRP receives the related
member identity MEMID. To update keys, the corresponding member leaf must be
found first. For this purpose, an array of pointers to tree leaves is deployed, which is
indexed by the member identity MEMID. This array is denoted as Member Leaf Map
Array (MLMA) in this work. Thus, a join request causes, besides setting up a new leaf,
the creation of a pointer to this leaf, which is inserted into the MLMA at the array
position indexed by the MEMID of the new member. By this means, an efficient access
to the leaf is possible, if the related member has to be disjoined or resynchronized in
future. To avoid data rearranging, the length of MLMA is assumed to be equal to the
maximal group size. Figure 7.4 illustrates a MLMA for a group of 4 members.

Key

Pointer to father (F)

Pointer to
left son (LS)

Pointer to
right son (RS)

Depth of
deepest
left leaf
(DDLL)

Depth of
shallowest

left leaf
(DSLL)

Depth of
deepest
right leaf
(DDRL)

Depth of
shallowest
right leaf
(DSRL)

7.4 REKEYING ALGORITHMS

108

Obviously, dynamic tree management demands larger memory space to store auxiliary data
in comparison to the static tree management, which uses only two bits (LR word) to
describe the state of a help-key, whereas for identity keys no auxiliary data are required.
This sparing characteristic of static tree management is attributed to using the physical
structure of the key memory to keep information on the logical tree topology, as was
illustrated in Chapter 5. To support a group of 131,072 members, a total of 32 KB is
required to save the needed LR words. In contrast, a memory size of 4.5 MB is demanded
to support the same member number using dynamic tree management. This memory size
can be estimated as follows. A binary LKH tree with 131,072 members includes 131,072
identity keys and 131,071 help-keys. According to the previous analysis, each key is
associated with three pointers and four auxiliary data. Furthermore, a MLMA of the size
131,072 must be created to store pointers to all identity keys. Based on the PowerPC
architecture, all the pointers have a length of 32 bits. For the tree topology information such
as the DSLL, a character type of the length 8 bits is used. Thus, the following memory size
is estimated for the tree auxiliary data:

131,072 * 32 (for the MLMA) + 262,143 [3*32 (for pointers to father, left and right sons)
+ 4*8 (for the DSLL, DDLL, DSRL, and DDRL)]= 4.5 MB.

However, the low memory usage is not the only advantage of static tree management. This
mode enables, furthermore, higher rekeying performance compared to dynamic tree
management, as will be depicted by the measurement results in Section 7.5.

7.4.2 Join Algorithm
Algorithm 7.1 represents the execution of a join request by the HiFlexRP. This process
expects the member identity MEMID and the identity key kd of the member to be joined,
and results in a rekeying message, which is written to the Output FIFO. To tackle the
complexity of this algorithm, it is divided into four coarse steps, which will be explained in
the next four sections. Consider, first, the following points regarding the pseudo-code of
Algorithm 7.1:

1. The description of this algorithm assumes normal operation, i.e. the initialization of
data structures, e.g. the key tree, and other software and hardware components is
proposed to be already done.

2. The algorithm abstracts from the fetch and decode phase of the rekeying instruction,
which is performed by the PowerPC processor.

3. The algorithm abstracts from the tree management mode. However, the underlying
algorithms perform dynamic tree management. Note that Step 4 is completely
independent of the tree management mode.

4. Rekeying messages are digitally signed for the purpose of data source authentication.
However, no specific cryptographic primitives are predefined at this stage.

5. This pseudo-code indicates a sequential execution of the different steps of the join
algorithm. Performance improvements by means of parallelizing different subtasks will
be treated in Section 7.5.

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

109

Algorithm 7.1 Join a Member
Input: MEMID, kd
Output: Rekeying message RM
1. Add new leaf (MEMID, kd) -- Algorithm 7.1.A
2. Update tree topology data (MEMID) -- Algorithm 7.1.B
3. Update keys on the join path (MEMID) → Hash value h -- Algorithm 7.1.C
4. Sign hash value (h) -- Algorithm 7.1.D

7.4.2.1 Add new leaf (MEMID, kd)
Algorithm 7.1.A represents the processing of Step 1 of Algorithm 7.1, which is
responsible for creating a new leaf with the corresponding identity key kd and appending it
to the right position in the tree. To allow an efficient access in future, a pointer to this leaf
is created and inserted into the member leaf map array (MLMA) at the index MEMID, as
illustrated in the last section. This point is presented in the 4th step of Algorithm 7.1.A
(counting started from the top of the flowchart).

To find an insertion point for the new leaf, the HiFlexRP first checks whether the tree is
full, or not. This is realized by verifying the equality of the four parameters DSLL, DDLL,
DSRL, and DDRL of the root. A full tree is specified by equal values of all these
parameters. In such a case, the leaf insertion is straightforward, as depicted on the right side
of the first conditional branching in the flowchart. This case corresponds to the bottom-up
tree growing followed by the HiFlexRP, as mentioned in Section 7.4.1. In contrast, for
incomplete trees, a tree traversing starting from the root must be performed to find out the
shallowest leaf. In both cases, adding a new leaf demands the creation of a new node, which
is inserted as a new root in the case of full trees, or at the position of the shallowest leaf,
otherwise.

As can be seen from the flowchart, adding a new leaf to the tree is quite complex if
compared with the case of static tree management. In this case, this task is trivial, as all tree
leaves have predefined positions in the key memory and a member identity MEMID
corresponds to the physical address of the corresponding leaf. Thus, adding a new leaf is
limited to a memory access to write the identity key kd at the memory address MEMID.

7.4.2.2 Update tree topology data (MEMID)
After adding a new leaf, the auxiliary data of all nodes on the join path, i.e. DDLL, DDRL,
DSLL and DSRL, must be updated, see Figure 7.3. This procedure is presented in
Algorithm 7.1.B for the case of incomplete trees, for clarity. In the case of full trees, only
the auxiliary data of the new root must be determined. Note that for one node, either the left
data (DDLL and DSLL) or the right data (DDRL and DSRL) must be updated, depending
on whether the son of this node on the join path is a left or a right son, respectively. This is
realized by using the LeftSonFlag, which is initialized with 0, because a new leaf is always
added as a right son. Updating this flag is not detailed in Algorithm 7.1.B, for simplicity.
This algorithm assumes, furthermore, that the auxiliary data of a leaf are always equal to
zero. Example 7.1 provides a brief illustration of this algorithm.

7.4 REKEYING ALGORITHMS

110

Algorithm 7.1.A Add new leaf
Input: MEMID, kd

Tree full?
No Yes

Create a new leaf NewLeaf

Create a new node NewNode

NewLeaf.key := kd

MLMA[MEMID] := NewLeaf

NewNode.LS := Root

NewNode. RS := NewLeaf

Root.F := NewNode

Temp := Root

Temp.DSLL>Temp.DSRL

Temp.DSLL<Temp.DSRL ShallowestLeaf := Temp

Temp := Temp.RS

Temp := Temp.LS No

No

Yes

Yes

NewLeaf.F := NewNode

NewNode.LS := ShallowestLeaf

NewNode. RS := NewLeaf

NewNode.F := ShallowestLeaf.F

ShallowestLeaf.F.RS := NewNode ShallowestLeaf.F.LS := NewNode

ShallowestLeaf.F:= NewNode

Is ShallowestLeaf right leaf?
YesNo

NewNode

NewLeaf

Root

Shallowest
Leaf

Root
NewNode

NewLeaf

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

111

Algorithm 7.1.B Update tree topology data
Input: MEMID
1. node := MLMA[MEMID].F -- help-key of level 1
2. LeftSonFlag := 0;
3. while (node != NULL) do -- traverse to root
4. switch LeftSonFlag
5. case 0:
6. if node.RS.DDLL > node.RS.DDRL then
7. node.DDRL := node.RS.DDLL + 1
8. else node.DDRL := node.RS.DDRL + 1
9. if node.RS.DSLL > node.RS.DSRL then
10. node.DSRL := node.RS.DSRL + 1
11. else node.DSRL := node.RS.DSLL + 1
12. case 1:
13. if node.LS.DDLL > node.LS.DDRL then
14. node.DDLL := node.LS.DDLL + 1
15. else node.DDLL := node.LS.DDRL + 1
16. if node.LS.DSLL > node.LS.DSRL then
17. node.DSLL := node.LS.DSRL + 1
18. else node.DSLL := node.LS.DSLL + 1
19. node := node.F
20. Update LeftSonFlag
21. end while

Example 7.1
This example illustrates, how the auxiliary data of the node Root are updated after joining a
member in the left tree depicted in Algorithm 7.1.A. Assuming that NewNode has already
updated its data, as depicted in the first row of Table 7.1. As NewNode is a right son of
Root, case 0 (Step 5 in Algorithm 7.1.B) will be selected, i.e. only the right auxiliary data
of Root will be updated. Both if-conditions in steps 6 and 9 are false, thus, the statements in
steps 8 and 11 are executed, which results in a value of 2 for both DDRL and DSRL of
Root, as depicted in Table 7.1.

Table 7.1. Updating root auxiliary data for example 7.1
 DDLL DSLL DDRL DSRL

NewNode 1 1 1 1
Root before join 2 2 1 1
Root after join 2 2 2 2

Again, this procedure in dynamic tree management is more complex than the case of static
tree management, where only 2 LR bits of each help-key on the join path must be updated.

7.4 REKEYING ALGORITHMS

112

7.4.2.3 Update keys on the join path (MEMID)
This step of Algorithm 7.1 deals with the actual rekeying including key generation,
encryption, hashing, and writing the rekeying message into the output FIFO. Algorithm
7.1.C illustrates the execution of this step by the HiFlexRP. The function Encrypt (ka, kb)
indicates the encryption of the key ka with the key kb. The function Push takes the
responsibility of writing rekeying submessages into the Output FIFO. For simplicity, some
details relating to the output message format are neglected.

Algorithm 7.1.C Update keys on the join path
Input: MEMID
Output: Hash value h -- hash value of last rekeying submessage
1. node := MLMA[MEMID].F -- help-key of level 1
2. while (node != NULL) do -- traverse to root
3. Generate new key kx-y

new
4. node.key := kx-y

new
5. RSMl := Encrypt(kx-y

new, node.LS.key)
6. Push RSMl
7. Hash RSMl
8. RSMr := Encrypt(kx-y

new, node.RS.key)
9. Push RSMr
10. Hash RSMr
11. node := node.F
12. end while
13. return h

7.4.2.4 Sign hash value (h)
Signing the hash value represents the most time-consuming step in the join algorithm. The
HiFlexRP uses the Elliptic Curve Digital Signature Algorithm (ECDSA), which was
described in Chapter 5. For the further analysis in this chapter, the ECDSA approach is
given again in Algorithm 7.1.D.

Algorithm 7.1.D Sing hash value
Input: h
Output: Digital signature (r, s)
1. Select a random integer k from the interval [1, n-1]
2. Calculate P(x1, y1) = kG
3. Calculate r = x1(mod n), if r = 0, go to 1
4. Calculate s = k-1(h + dr)(mod n), if s = 0, go to 1
5. Push (r, s)

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

113

(r, s)

h

RREQ

Update

Sign

RSMs

7.5 Design Approach and Performance Features
As introduced in Section 7.2, for the design of the HiFlexRP an approach is employed,
which relies on a mix of the bottom-up and the top-down design strategies. On the bottom
level, a generic architecture is designed which allows a comprehensive evaluation of differ-
ent implementation alternatives. On the top level, a software-only solution is produced,
which runs on the generic architecture. Depending on a real-time measurement of the
execution times of critical software parts, different tasks are migrated to the hardware
resources to optimize rekeying performance. After this task migration, a new measurement
of the execution times is performed to provide information on further task scheduling and
binding. Consequently, the decision on the final design alternative is based on actual timing
features of the underlying architecture and not on estimated values, such as in the case of
system-level design methods. Nevertheless, as will be seen at the end of this section, the
system-level design tool hCDM [Kl06] was used to verify the performed selection of
design alternatives, which are illustrated in the next sections. A conformation was proved to
large extent.

The design approach in this section will be explained using the example of member join
task as given in Algorithm 7.1. According to its granularity and data dependencies, this
task can be divided into two main subtasks denoted as Update and Sign:

1. Update: This subtask gets a rekeying request RREQ, builds the rekeying submessages
RSMs, and determines the hash value h of these submessages. Thus, the first three steps
of Algorithm 7.1 are combined to the Update subtask.

2. Sign: This subtask represents Step 4, which signs the hash value h resulted from the
subtask Update to provide data source authentication.

Figure 7.5 represents the join operation as a task graph. Recall that a RREQ originates
from the Instruction FIFO. RSMs and the digital signature (r, s) are written into the Output
FIFO. The following three sections are organized as follows. First, the test environment
used to estimate the timing features of the HiFlexRP is presented. Second, several
implementation alternatives of the subtask Update are investigated. Third, the subtask Sign
is partitioned into fine-granular subtasks to optimize rekeying performance.

Figure 7.5. Rekeying DFG

7.5 DESIGN APPROACH AND PERFORMANCE FEATURES

114

7.5.1 HiFlexRP Test Environment
Figure 7.6 illustrates the test environment, which was used to estimate execution time
values of different subtasks, as a basis for design decisions. For simplicity, this figure only
depicts the components, which directly relate to the test task. The timing values are
measured by a special timer, which is connected to the PLB bus. This timer is started and
stopped by the test software running on the PowerPC processor. With a word width of 32
bits and a clock frequency of 100 MHz, as a PLB peripheral, time periods up to 4.3 sec can
be measured by this component.

Figure 7.6. Test environment

For the purpose of visualization, the measured timing values are sent to the host over a
UART interface. The Instruction and Output FIFOs are included to the test environment to
consider the time intervals elapsed by fetching and decoding of new requests and by writing
of rekeying data, respectively. As can be seen in Figure 7.6, these FIFOs are bypassed to
accelerate the measurement: Instead of loading from the host, the rekeying requests are
written from the test software into the Output FIFO and from there they are directed into
the Instruction FIFO. The write of rekeying instructions is performed before starting the
time measurement and, therefore, does not affect timing results. Rekeying submessages are
also directed into Instruction FIFO. By this means, the test software can read these data and
perform on-chip functional verification, depending on defined test vectors. This verification
is performed after stopping the timer to keep reliable timing results.

Algorithm 7.2 illustrates the measurement approach followed to estimate the time elapsed
by some rekeying request. First the tree is initialized with a desired member number n0.
Afterwards, a rekeying request according to the format defined in Chapter 5 is written to
the Output FIFO, where this request is bypassed to the Instruction FIFO. As following

Instruction
FIFO

Output
FIFO

PowerPC

Rekeying
Software

Test
Software

Timer UART

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

115

steps, the timer is triggered, the rekeying is executed, and the timer is stopped immediately
at the end of rekeying execution. Next, the rekeying message is fetched from the Instruction
FIFO and is verified by comparing with predefined test vectors. In the case of functional
correctness, the time values are read from the timer, scaled to the desired time units and
sent to display on the host over the UART interface. Otherwise, an error is notified by
sending a corresponding message.

Algorithm 7.2. Rekeying performance measurement
Output: Timing values
1. Initialize tree with n0 members
2. Initialize the Instruction FIFO with the rekeying request.
3. Start timer
4. Initiate rekeying -- e.g. Algorithm 7.1 in join case
5. Stop timer
6. Verify rekeying result
7. if rekeying result is correct then
8. Estimate performance
9. return timing values
10. else
11. return “Rekeying error”

Note that the test environment enables also the measurement of subtask execution times
such as the subtasks Update, Sign, or even partial subtasks thereof. In such cases, Step 4 of
Algorithm 7.2 is split and the timer starts and stops are inserted at the appropriate points of
the data flow graph.

7.5.2 Update Subtask Design Alternatives
As mentioned before, the subtask Update includes all the processing steps starting with the
instruction decoding and ending at determining the hash value of the last rekeying
submessage. This subtask is both control-intensive, regarding the tree management, and
computation-intensive, regarding the cryptographic key generation, encryption, and secure
hashing. The realization of the subtask Update is affected by numerous factors, e.g.:

1. The tree management mode: static or dynamic.

2. The realization of cryptographic primitives: software, hardware, or hardware with
resource sharing.

3. Memory and caching, BRAM or SDRAM, with or without caching.

4. Bus structure, PLB, OPB or OCM.

Finding the optimal design alternative is a hard problem because of the high interaction
among these factors. For a comprehensive analysis, 108 design alternatives for the subtask
Update were realized and evaluated. For each solution, the execution times of the worst-
case disjoin and worst-case join operations were measured as a function of the group size,

7.5 DESIGN APPROACH AND PERFORMANCE FEATURES

116

which ranges from 0 to 131,072. The estimation of execution times is based on Algorithm
7.2. For an efficient measurement, the test software (see Figure 7.6) performs a routine,
which initializes the group with 131,072 members stepwise, and interrupts this initialization
at the points corresponding to a worst-case join or worst-case disjoin. At these points, the
join or disjoin operation is executed and measured, before the initialization is continued.
Lastly, the test software prepares the measured timing data for a presentation using
Mathematica [Wo07] and sends these data to the host over the UART interface. In the
following some design alternatives are discussed representatively, which depicts some
interesting issues in the design of the HiFlexRP:

7.5.2.1 Bus selection and caching
As mentioned in Chapter 4, the embedded processor PPC405 features a Harvard
architecture with dedicated data and instruction memory interfaces. System memories can
be connected either to the Processor Local Bus (PLB) or to the On-Chip Memory bus
(OCM). The decision on the appropriate memory bus must take the overall system and the
running application into consideration. While the PLB offers 64-bit data busses, compared
to 32-bit in the case of OCM, the last is dedicated for memories, i.e. it is not shared by
other system components like the PLB. Another decision criterion relates to the
cacheability of these memories. Because of dedicating the OCM bus to storage resources,
memories connected to this bus do not support caching, in contrast to PLB memories.
Therefore, several design alternatives with different memory and bus configurations are
evaluated for the HiFlexRP design. Particularly, the worst-case join costs were measured
for three systems with OCM memories, with cached PLB memories, and with non-cached
PLB memories. All these systems were tested in two cases:

1. Hardware-only realizations of the cryptographic primitives for key generation,
encryption, and secure hashing, see Figure 7.7.

2. Software-only realizations of these operations, see Figure 7.8.

All these design alternatives use static tree management. Other implementations with
dynamic tree management, which delivers comparable results, are not reported here for
brevity.

Recall that the measured execution times here only relate to the subtask Update, i.e. the
time elapsed for determining the digital signature of the hash value is not included. The
diagrams presented in Figure 7.7 and Figure 7.8 conform the logarithmic relation of
rekeying costs to the group size in the LKH algorithm. Note that the x-axis in these
diagrams has a half-logarithmic scale.

Obviously, the best performance of the subtask Update can be obtained by using PLB
instruction and data memories with caching, regardless of the implementation of the
security modules and the tree management mode. In contrast, OCM memories are superior
to PLB memories, if the last are used without caching. Therefore, the next experiments
were performed on systems with cached PLB memories.

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

117

Figure 7.7. Worst-case join cost with hardware security modules

Figure 7.8. Worst-case join costs with software security functions

7.5.2.2 Hardware vs. software security modules
An essential design issue for the HiFlexRP relates to accelerating the time-consuming
cryptographic operations. Figure 7.9 compares the performance of the subtask Update for
three realizations of the cryptographic primitives: a software-only, a hardware-only, and a
mixed HW/SW realization. The HW/SW alternative, referred to as HS in Figure 7.9, is
based on a shared AES core for the different security functions. All these system
realizations are based on dynamic tree management. Obviously, the hardware-only
implementation provides the highest performance compared to the other two design
alternatives. Recall that this performance substantially influences the system security and
QoS. Furthermore, lower join and disjoin costs enable supporting larger dynamic groups. In
spite of its high performance compared to software, the HS alternative restricts the design
flexibility, e.g. in the case of using different hardware key generation module.

7.5 DESIGN APPROACH AND PERFORMANCE FEATURES

118

Figure 7.9. Worst-case join costs (HW vs. SW vs. HS)

7.5.2.3 Static vs. dynamic tree management
In Section 7.4.1, a quantitative comparison between static and dynamic tree management
modes regarding memory utilization was given. With 4.5 MB needed to store tree auxiliary
data in the dynamic case compared to 32 KB in the static case, the superiority of the last is
evident. Regarding performance, Section 7.4.2 illustrated the dynamic tree management
and qualitatively outlined the differences to the static management mode. To evaluate this
pre-estimation, a timing measurement was performed for two design alternatives with pure
hardware security modules, see Figure 7.10. Obviously, the static tree management is
superior to the dynamic tree management in respect of rekeying performance, too.

Figure 7.10. Worst-case join costs (static vs. dynamic tree management)

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

119

7.5.3 Sign Subtask and HW/SW Partitioning
In this section, the complete join process will be treated with both the subtasks Update and
Sign, see Figure 7.5. The following time values were measured for a software-only
implementation of these two subtasks.

Update (SW) Sign (SW)

2,108 µs 52,574 µs

From this table it is obvious that the subtask Sign dominates the rekeying costs. Conse-
quently, hardware acceleration for this task seems to be beneficial. For this purpose, the
ECDSA algorithm is analyzed in more detail. When investigating the data dependencies in
Algorithm 7.1.D, the subtask Sign can be divided into the following four subtasks, which
are depicted in Figure 7.11.

1. PreEcMult: This subtask includes the generation and reduction of the random number
k and represents Step 1 in Algorithm 7.1.D.

2. EcMult: The scalar multiplication – Step 2 in the ECDSA algorithm – is realized by
this subtask.

3. ModInv: This subtask performs the modular inversion of k needed in Step 4.

4. PostEcMult: Steps 3 and 4 in the algorithm - except for the modular inversion - are
associated with this subtask.

Note that the modular inversion is the second most expensive operation next to the scalar
multiplication. Therefore, a dedicated subtask is assigned to this operation.

Figure 7.11. Extended rekeying DFG

PreEc
-Mult

PostEc
-Mult

EcMult

x1

(r,s)

k

h

Update

ModInv

k

k-1

RREQ

RSMs

7.5 DESIGN APPROACH AND PERFORMANCE FEATURES

120

The extended data flow graph (DFG) in Figure 7.11 highlights a considerable amount of
inherent parallelism in the rekeying task. The Update subtask, for example, may be
executed in parallel to the subtasks PreEcMult, EcMult, and/or ModInv. For an accurate
decision about a suitable parallelization, timing information on the different subtasks is
required. For this purpose, new measurements of the software implementation according to
the refined assignments given above were performed, which resulted in the following
execution times of these five atomic subtasks.

Update (SW) PreEcMult (SW) EcMult (SW) ModInv (SW) PostEcMult (SW)

2,108 µs 210 µs 49,517 µs 2,449 µs 399 µs

7.5.3.1 HW/SW-Realization 1 (HW/SW-1)
From the previous table it can be seen that the scalar multiplication is by far the most
expensive subtask and, therefore, lends itself to hardware acceleration.

The hardware implementation is based on the architecture proposed in [La06]. This
architecture employs a hierarchy of three abstraction levels to manage the complexity of the
EC point multiplication. The upper two levels mainly consist of finite state machines,
which perform the control tasks necessary for the point multiplication (based on a variant of
Lim/Lee exponentiation [Li94]) and the underlying operations for point doubling and
addition (according to the algorithms specified in IEEE P1363 [Ie00]). The lowest level
realizes the actual computations in the finite field. For the most critical operation, i.e. the
modular multiplication, the Montgomery algorithm was employed [Mo85].

The hardware realization does not only improve the performance of EcMult considerably,
but also enables the exploitation of the inherent parallelism in the rekeying task shown in
Figure 7.11. By using this hardware module, a new time measurement was performed for
this partitioning variant, which resulted in the following timing values.

Update (SW) PreEcMult (SW) EcMult (HW) ModInv (SW) PostEcMult (SW)

2,108 µs 210 µs 3,302 µs 2,449 µs 399 µs

Based on these timing values and the DFG presented in Figure 7.11, a task scheduling can
now be employed as depicted in Figure 7.12. To avoid that the software has to wait for the
EcMult result, this subtask must be started as soon as possible. This demands the execution
of PreEcMult as the first subtask in the task profile in order to supply EcMult with the input
value k. In contrast, when starting with Update, EcMult would be forced to start at the same
time as ModInv at the earliest. This causes the software subtasks to wait for about 853 µs
(= 3,302 µs - 2,449 µs). Note that Figure 7.12 and subsequent schedules are not to scale.

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

121

Figure 7.12. Task scheduling for design variant HW/SW-1

The design alternative HW/SW-1 results in a worst-case join time of 5,164 µs. Compared to
the software-only solution this corresponds to a performance improvement of about 10.6
times. However, the parallelization possibilities in the rekeying task are not completely
exploited yet. ModInv is data-independent of Update and EcMult and can therefore be
executed in parallel to them. For this purpose, an additional hardware resource is necessary
to execute either ModInv or Update, as depicted in the next design alternatives.

7.5.3.2 HW/SW-Realization 2 (HW/SW-2)
For this design alternative a dedicated hardware module for modular inversion was
implemented, which resulted in an inversion time of just 1,091 µs. The relatively small
speed-up is attributed to using a different modular inversion scheme in hardware (based the
Fermat’s little theorem [Me96]) than the one employed in software (based on the extended
Euclidean algorithm [Me96]), for reuse reasons. Nevertheless, the overall execution time
for the worst-case join operation equals now 3,850 µs, which corresponds to performance
improvement of about 14.2 times compared to the software-only implementation. Figure
7.13 depicts the scheduling for this design alternative.

Figure 7.13. Task scheduling for design variant HW/SW-2

SW

HW

Update PreEc
Mult

EcMult

Post
EcMult

3302 µs

210 µs 399 µs 2108 µs

ModInv

1091 µs

SW

HW

Update PreEc
Mult

EcMult

PostEc
Mult

3302 µs

210 µs 2449 µs 2108 µs

ModInv

399 µs

7.5 DESIGN APPROACH AND PERFORMANCE FEATURES

122

7.5.3.3 HW/SW-Realization 3 (HW/SW-3)
This design alternative accelerates the Update task using hardware components for key
generation, encryption, and hash function. In this case, the ModInv subtask runs on the
PowerPC processor. The scheduling for this design alternative is depicted in Figure 7.14.
The performance improvement in this case equals the one resulting from the HW/SW-2
variant. Note that the part of the subtask Update regarding key tree management is still
executed on software. This does not affect the scheduling because of the free gap in the
software resources between the execution of ModInv and PostEcMult.

Figure 7.14. Task scheduling for design variant HW/SW-3

Resource usage consideration
So far, the resource usage in the different realizations was not taken into account, just their
execution time. From this point of view, variants HW/SW-2 and HW/SW-3 seem to be
fully equivalent. However, taking a look at the resource usage of these solutions, as detailed
in Table 7.2, it can be seen that HW/SW-2 is more efficient in terms of resource usage.
Nevertheless, the system designer may prefer the alternative HW/SW-3 in case that the
system’s flexibility and expandability are of high interest. In this case, the dedicated
hardware modules for key generation, symmetric encryption and hash functions can be
reused for other cryptographic applications beyond rekeying.

Table 7.2. Resource usage and overall performance

Resource Usage on Virtex-II Pro Implementation
Variant BRAMs Slices

Worst-case
Join Time

SW 50 ≈ 36% 2,347 ≈ 18% 54,679 µs
HW/SW-1 53 ≈ 38% 4,667 ≈ 34% 5,164 µs
HW/SW-2 54 ≈ 39% 5,225 ≈ 38% 3,910 µs
HW-SW-3 83 ≈ 62% 8,420 ≈ 61% 3,910 µs

SW

HW

ModInv PreEc
Mult

EcMult

Post
EcMult

3302 µs

210 µs 399 µs 2449 µs

Update

140 µs

CHAPTER 7 HIGH-FLEXIBILITY REKEYING PROCESSOR

123

Remark on automated design approaches
The design task of the HiFlexRP was coined by a small design space because of the
availability of already implemented hardware modules, such as AES-core. Therefore, a
pure top-down design process was not applicable. Nevertheless, the design space
exploration tool hCDM [Kl06] was used afterwards for comparison. This tool expects as
input a task graph and some constraints to define which tasks may be executed on which
resources. Based on this information the design space is explored and different Pareto-
optimal solutions are proposed to the designer, who can decide on one thereof.

For the HiFlexRP case, this tool generated the variants SW-only, HW/SW-1, and HW/SW-
2. The variant HW/SW-3, which offers higher flexibility for future expandability, was not
generated automatically, since flexibility is not represented as a metric in the objective
function of this tool.

7.6 HiFlexRP vs. Related Work
The overall execution time of the worst-case join rekeying was measured to be 3.91ms as
shown in Figure 7.14. Note that the worst-case disjoin time equals this value, too. This is
because of the high similarity of these two operations, on the one hand. The whole Update
subtask is executed parallel to other subtasks with longer execution times, on the other. To
point out the advantage of the HiFlexRP with regard to performance, Table 7.3 depicts a
comparison with related work, which provides timing information on rekeying costs based
on prototype measurements including data source authentication [Wo00], [Am04]. Note
that the extremely large timing value given in [Am04] represents the “total elapsed time
from the moment the group membership event happens until the time when the group key
agreement finishes and the application is notified about the group change and the new
key.”

 Table 7.3. Performance comparison

 [Am04] [Wo00] HiFlexRP

Encryption n/a DES-CBC AES-128

Key generation n/a n/a ANSI X9.17

Secure hashing n/a MD5 AES-based Meyer hash

Cryptographic
primitives

Digital signing RSA-1024 RSA-512 ECDSA-128

Group size 50 8,192 131,072

Execution time Up to 640 ms 12 ms – 16.2 ms 3.91 ms

Measurement conditions
Total elapsed time
for disjoin inclu-

ding protocol costs

Average-case
disjoin, server

processing time only

Worst case disjoin,
HiFlexRP processing

time only

7.6 HIFLEXRP VS. RELATED WORK

124

CHAPTER 8 CONCLUSION

125

8 Conclusion

This dissertation presented several novel solutions for the group key management in secure
multicast. To keep clarity, the subjects were illustrated with rather high abstraction from
details, which are not of fundamental significance for the general understanding. Thus,
neither considerations to optimize the simulation process of the rekeying benchmark, nor
details on the driver functionality of the HiFlexRP were addressed, for instance. At
different points of this document it was referred to special constraints for some performed
studies and it was pointed to future work to complete or refine these subjects.

Several items for the further development of this work are scheduled or already being
treated. Three points thereof are mentioned in the following.

Extending the rekeying benchmark
The current benchmark prototype only considers the costs of cryptographic operations.
Future development will take other cost factors on the server side and the communication
overhead into account. In addition, further rekeying algorithms will be included and
evaluated to allow more insight into proposed rekeying solutions in related work.

Networking the rekeying processors
The XUP card provides a 10/100 Ethernet port and the embedded design kit (EDK) from
Xilinx provides an Ethernet controller as IP core for evaluation purposes. The controller
can be run on the FPGA for eight hours free of licence, which is sufficient for prototyping.
At the moment it is being tried to connect the rekeying processor to the network over this
interface. By this means, the rekeying messages can be sent to group members without
involving the registration and authentication server.

Automatic reduction of bus transactions
The design process of the HiFlexRP has raised a highly important and sophisticated
problem. The background of this problem and the objective of its solution are presented in
the following, in brief.

Neglecting the digital signing, it can be seen that the performance of the Real-Time
Rekeying Processor exceeds that of the High-Flexibility Rekeying Processor. For the worst
case join, 15 µs are necessary in the RTRP compared to 140 µs in the HiFlexRP. Note,
however, that different group sizes are supported by these processors and that hashing costs
are only included in the case of HiFlexRP. Nevertheless, the HiFlexRP offers lower

126

rekeying performance because of the high data transfer between the hardware modules and
the software resources over the PLB bus. Based on the followed design strategy, the
hardware modules for key generation, encryption, and hashing are realized separately and
then connected to the PLB bus. The data dependencies between these modules were not
considered in this design approach. When investigating the subtask Update, it can be seen
that every generated key must be encrypted and every encrypted key must be hashed. Thus,
the subtask Update is specified by a high data dependency between its subtasks. In the
current realization, this results in high bus transfer overhead, which deteriorates the overall
performance of the Update operation.

An evident solution to this problem relates to reducing the bus transactions over the PLB by
replacing them by transfers over internal channels between the different modules. A manual
transformation of the current design to a new design with lower bus transaction overhead,
however, is largely time-consuming since a considerable part of the software functionality
must be migrated to hardware.

An essential research work in the near future will address this transformation by means of
computer-aided methods. For this purpose, an approach will be developed, which generates
an optimized design alternative, based on a first variant, which can be the result of a
bottom-up design process enforced by using IP cores. The desired approach includes three
main steps. First, the input design is entered and analyzed. Second, based on the analyzed
input an optimized alternative is searched by applying system-level design methods.
Thirdly, the selected design alternative is synthesized for implementation on the same
platform. An essential advantage of this approach relates to its performance because of the
starting with an actual solution und due to the availability of several blocks, which remain
unchanged or are just lightly modified. By these means the synthesis process can be
accelerated considerably.

BIBLIOGRAPHY

127

Bibliography

[Ab05] Abrooy M., “Dynamische Baumverwaltung für den Rekeying Prozessor: Analyse &
Simulation”, Studienarbeit, Technische Universität Darmstadt, May 2005.

[Ac07] http://www.actel.com/

[Ad07] http://www.aldec.com/

[Al07] http://www.alpha-data.com/

[Al96] Almeroth K., and Ammar M., “Collecting and Modeling of Join/Leave Behavior of
Multicast Group Members in the MBone”, in Proc. of High Performance Distributed
Computing Focus Workshop, Syracuse, New York, August 1996.

[Am04] Amir Y., Kim Y., Nita-Rotaru C., and Tsudik G., “On the Performance of Group Key
Agreement Protocols”, ACM Trans. on Information Systems Security, 7(3), 2004, pp.
457-488.

[An00] U.S. Federal Information Processing Standard, ANSI X9.17 Pseudorandom Bit
Generator, 2000.

[Ba00] Balenson D., McGrew D.A., and Sherman A., “Key Management for Large Dynamic
Groups: One-Way Function Trees and Amortized Initialization”, Internet draft, draft-
irtf-smug-groupkeymgmt-oft-00.txt, IRTF, Aug. 2000, work in progress.

[Bi00] Rodeh O., Birman K.P., and Dolev D., “Optimized Group Rekey for Group
Communication Systems”, In Proc. of Network and Distributed System Security
Symposium, San Diego, Ca, Feb. 2000.

[Bi06] Bieser C., and Mueller-Glaser, K.-D., “ Rapid Prototyping Design Acceleration Using
a Novel Merging Methodology for Partial Configuration Streams of Xilinx Virtex-II
FPGAs”, in Proc. of the 17th IEEE International Workshop on Rapid System
Prototyping, p.p. 193-199, Chania, Crete, June 2006.

[Br99] Briscoe B., “MARKS: Zero Side Effect Multicast Key Management Using Arbitrarly
Revealed Key Sequences”, In Proc. of First Int. Workshop on Networked Group
Communication (NGC), Pisa, Italy, November 1999.

[Bu06]

Bursky D., “Study: Field-programmable logic rules”, A survey conducted by A.G.
Edwards & Sons and sponsored by A.G. Edwards, Beacon Technology Partners and

128

EE Times, http://www.eetimes.com/, June 2006.

[Ca00] Canetti R., Rohatgi P., and Cheng P., “Multicast Data Security Transformations:
Requirements, Considerations, and Protocol Design”, draft-irtf-smug-data-trasforms-
00.txt, IRTF, June 2000.

[Ca97] Cain B., Deering S., and Thyagarajan A., “Internet Group Management Protocol”,
Version 3. Internet Draft, Work in Progress, draft-ietf-idmr-igmp-v3-00.txt,
November, 1997.

[Ca99] Canetti R., et al., “Multicast Security: A Taxonomy and Efficient Constructions”, in
Proc. IEEE INFOCOM, New York, March 1999.

[Ch02] Chen W., and Dondeti L.R., “Performance Comparison of Stateful and Stateless
Group Rekeying Algorithms”, in Proc. of Int. Workshop in Networked Group
Communication, 2002.

[Cl07] http://www.cryptopp.com/

[Da01] Davis C.R., “IPSEC Securing VPNs”, McGraw-Hill, 2001.

[Da02] Daemen J., Rijmen V., “The Design of Rijndael”, Springer Verlag, 2002.

[Di00] Dinsmore P.T., et al., “Policy-based Security Management for Large Dynamic
Groups: an Overview of the DCCM Project”, in Proc. of the DAPRA Information
Survivability Conference and Exposition, Vol. I, Hilton Head, pp. 64-73, January
2000.

[Di06] http://www.digilentinc.com/

[Di76] Diffie W., and Hellman R., “Multiusers Cryptographic Techniques” Proceedings of
the AFIPS National Computer Conference, pp. 109-112, June 1976.

[Do00] Dondeti L.R., Mukherjee S., and Samal A., “DISEC: A Distributed Framework for
Scalable Secure Many-to-Many Communication”, In Proc. of IEEE Symposium on
Computers and Communications, Antibes-Juan les Pins, France, July 2000.

[Dp06] D’Paiva S., “Unified FPGA-ASIC Design Flow Provides Designers Versatility in
Meeting Production Goals”, http://www.fpgajournal.com/articles_2006/20061205_
magma.htm, Dec. 2006.

[Dr07] Design & Reuse website: http://www.us.design-reuse.com/.

[Ec05] Eclipse, Open Development Platform, Version 3.1.2, http://www.eclipse.org/.

[Ec06] Eckert C., “IT-Sicherheit Konzepte – Verfahren – Protokolle“, Oldenburg Wissen-
schaftsverlag, 2006.

[El85] ElGamal T., “A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms”, IEEE Trans. on Information Theory, Vol. IT-31, No. 4, pp. 469-472,
1985.

[Er02] Ernst M., Jung M., Madlener F., Huss, S.A., and Bluemel R., “A Reconfigurable
System on Chip Implementation of Elliptic Curve Cryptography over GF(2^n)”, In
Proc. of Workshop on Cryptographic Hardware and Embedded Systems CHES2002,
Redwood City, CA, August 2002.

BIBLIOGRAPHY

129

[Ga92] Gajski, D. D., Wu A., Dutt N., and Lin S., “High-Level Synthesis, Introduction to
Chip and System Design“, Kluwer Academic Publishers, 1992.

[Ga94] Gajski, D. D., Vahid F., Narayan S., and Gong J., “Specification and Design of
Embedded Systems”, Prentice hell, 1994.

[Ge05] Gerenz S.H., “Algorithms for VLSI Design Automation”, John Wiley & Sons, 2005.

[Gn07] http://www.gnu.org/

[Go03] Goshi J., and Ladner R.E., “Algorithms for Dynamic Multicast Key Distribution
Trees”, in Proc. of ACM Symp. on Principles of Distributed Computing, 2003, pp.
243-251.

[Go04] Goodrich M.T., Sun J.Z., and Tamassia R., “Efficient Tree-Based Revocation in
Groups of Low-State Devices”, In Proc. of CRYPTO 2004, LNCS 3152, pp. 511-527,
Santa Barbara, California USA, August 2004.

[Go05] Good T. and Benaissa M., “AES on FPGA from the Fastest to the Smallest”, CHES
2005, LNCS 3659, pp. 427-440, 2005.

[Go99] Goncalves M., Niles K., “IP Multicasting Concepts and Applications”, McGraw-Hill,
1999.

[Gr02] Groetker T., Liao S., Martin G., and Swan S., “System Design with SystemC”,
Kluwer Academic Publishers.2002.

[Ha01] Halsall F., “Multimedia Communications”, Addison-Wesley, 2001.

[Ha03] Hardjono T., and Dondeti L.R., “Multicast and Group Security”, Artech House, 2003.

[Ha99] Wallner D., Harder E., and Agee R., “Key Management for Multicast: Issues and
Architectures”, RFC 2627, IETF, June 1999.

[Ho04] Hoermann W., Leydold J., and Derflinger G., “Automatic Nonuniform Random
Variate Generation“, Spriger, 2004.

[Ho04] Howarth M.P., Iyengar S., Sun Z., and Cruickshank H., “Dynamics of Key
Management in Secure Satellite Multicast”, IEEE Journal on Selected Areas in
Communications, Vol. 22, No. 2, pp. 308-319, Feb. 2004.

[Ib99] http://www-306.ibm.com/chips/techlib/techlib.nsf/productfamilies/
CoreConnect_Bus_Architecture/

[Ie00] IEEE (Institute of Electrical and Electronics Engineers), “Standard Specifications for
Public-Key Cryptography”, Annex A, 2000. http://grouper.ieee.org/groups/1361/.

[Ie01] IEEE (Institute of Electrical and Electronics Engineers), “IEEE Standard Verilog
Hardware Description Language, 1364-2001”.

[Ie93] IEEE (Institute of Electrical and Electronics Engineers), “IEEE Standard VHDL
Language Reference Manual, 1076-1993”.

[Is89] ISO (International Organization for Standardization), “Data Cryptographic
Techniques – Data Integrity Mechanism Using a Cryptographic Check Function
Employing a Block Cipher algorithm”, ISO 9797, 1989.

130

[Ji02] Jin Q., Jianhua G., Ming J., and Zhang Z., “On Batch Rekeying Based Membership
Dynamics Model of Multicast”, In Proc. of IEEE TENCON’02, pp. 145-147, Beijing
China, Oct. 2002.

[Jo97] John M., Smith S., “Application-Specific Integrated Circuits”, Addison-Wesley,
second printing, August 1997.

[Ke05] Kecher C., “UML 2.0“, Galileo Computing, 2005.

[Ke99] Keating M., Bricaudd P., “Reuse Methodology Manual”, second edition, Kluwer
Academic Publishers, 1999.

[Kl06] Klaus S., “System-Level-Entwurfsmethodik eingebetteter Systeme”, Dissertation,
Shaker Verlag, 2006.

[Ko87] Koblitz N., “Elleptic Curve Cryptosystems”, Mathematics of Computation, Vol. 48,
No. 177, pp. 203-209, 1987.

[Ku04] Kumar M., Mentor Graphics Europe, “Using Physical Synthesis Techniques to
Achieve Timing Closure in FPGAs”, in proc. of Sophia Antipolis forum of
Microelectronics SAME 2004, Sophia Anipolis France, Oct. 2004.

[La06] Laue R. and Huss S.A., “A Novel Memory Architecture for Elliptic Curve
Cryptography with Parallel Modular Multipliers”, In Proc. of IEEE Int. Conf. on
Field Programmable Technology, Bangkok Thailand, Dec. 2006.

[Li01] Li X., Yang Y.R., Gouda M., and Lam S.S., “Batch rekeying for Secure Group
communications”, in Proc. of Int. WWW Conf., Hong Kong, May 2001.

[Li06] Li J.H., Levy R., Yu M., and Bhattacharjee B., “A Scalable Key Management and
Clustering Scheme for Ad-Hoc Network”, in proc. of ACM Inter. Conf. on Scalable
Information Systems, Hong Kong, May 2006.

[Li94] Lim C.H., and Lee P.J., “More Flexible Exponentiation with Precomputation”, in
Advances in Cryptography – Crypto’94, LNCS 839, pp. 95-107, August 1994.

[Lu05] Lu H., “ A Novel High-Order Tree for Secure Multicast Key Management”, IEEE
Trans. on Computers, vol. 54, No. 2, February 2005, p. 214-224.

[Ma00] Makimoto T., “The Rising Wave of Field Programmability”, in proc. FPL 2000,
LNCS 1896, pp. 1-6, Villach Austria, August 2000.

[Ma03] Mangard S., Aigner M., and Dominikus S., “A Highly Regular and Scalable AES
Hardware Architecture” IEEE Trans. On Computers, Vol 52, No. 4, pp. 483-491,
April 2003.

[Ma04] Zhang J., Ma F., Bai Y., and Li M., “Performance Analysis of Batch Rekey
Algorithm for Secure Group Communications”, in Proc. PDCAT 2004, LNCS 3320,
pp. 829-832, Singapore, 2004.

[Ma85] Matyas S., Meyer C., and Oseas J., “Generating Strong One-Way Functions with
Cryptographic Algorithm”, IBM Disclosure Bulletine, 27(10A): 5658-6559, March
1985.

[Me96] Menezes A.J., van Oorschot P.C., and Vanstone S.A., “Handbook of Applied

BIBLIOGRAPHY

131

Cryptography”, CRC Press, 1996.

[Mi86] Miller, V., “Use of Elleptic Curves in Cryptography”, Advances in Cryptology,
CRYPTO’85, LNCS, Vol. 218, pp. 417-426, 1986.

[Mi97] Mittra S., “Iolus: A Framework for Scalable Secure Multicasting”, in Proc. of ACM
SIGCOMM, pp. 277-288, Cannes, France, September 1997.

[Mi99] Miller C.K., “Multicast Networking and Application”, Addison Wesley Longman,
1999.

[Mo04] Moharrum M., Mukkamala R., and Eltoweissy M., “Efficient Secure Multicast with
Well-Populated Multicast Key Trees”, in proc. of IEEE ICPADS, pp. 214, July 2004.

[Mo65] http://www.intel.com/technology/mooreslaw/index.htm

[Mo85] Montgomery P.L., “Modular Multiplication Without Trial Division”, in Mathematics
of Computation”, Vol. 44, No. 170, pp. 519-521, 1985.

[Mo99] Moyer M.J., Tech G., Rao J.R., and Rohatgi P., “Maintaining Balanced Key Trees for
Secure Multicast”, Internet draft, June, 1999, http://www.securemulticast.org/draft-
irtf-smug-key-tree-balance-00.txt.

[Ms00] http://www.ietf.org/html.charters/msec-charter.html

[Mu00] Mueller-Glaser, K.-D., and Bortolazzi J., “An Approach to Computer-Aided
Specification“, IEEE Journal of Solid-State Circuits, Vol. 25, No. 2, pp. 335-345,
April 1990.

[Ng05] Ng W.H.D., and Sun Z., “Multi-Layers Balanced LKH”, in Proc. of IEEE Int. Conf.
on Communication ICC, May 2005, pp. 1015-1019.

[Ni01] NIST (National Institute of Standards and Technology), “Advanced Encryption
Standard (AES)”, Federal Information Processing Standard 197, November 2001.

[Ni81] NIST (National Institute of Standards and Technology), “American National Standard
for Data Encryption Algorithm (DEA)”, ANSI X3.92, 1981.

[Ni85] NIST (National Institute of Standards and Technology), ”American National Standard
for Financial Institution Key Management (Wholesale)”, American Banker
Association, 1985.

[Pe03] Pegueroles, and Rico-Novella F., “Balanced Batch LKH: New Proposal,
Implementation and Performance Evaluation”, in Proc. IEEE Symp. on Comupters
and Communications, 2003, pp. 815.

[Pu98] Pusateri T., “Distance Vector Multicast Routing Protocol Specification”. Internet
Draft, Work in Progress, draft-ietf-idmr-dvmrp-v3-06.txt, March, 1998.

[Ra01] Rafaeli S., Mathy L., and Hutchison D., “EHBT: An Efficient Protocol for Group
Key Management”, In Proc. of NGC 2001, LNCS 2233, pp. 159-171, London UK,
Nov. 2001.

[Ri78] Rivest R., Shamir A., and Adleman L., “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems”, Communications of the ACM, Vol. 21, No. 2, pp.
120-126, February 1978.

132

[Ro00] Rodeh O., Birman K.P., and Dolev D., “Using AVL Trees for Fault Tolerant Group
Key Management”, Tech. Rep. 2000-1823, Cornell University, 2000.

[Ro06] Roh J.H., and Lee K.H. “Key Management Scheme for Providing the Confidentiality
in Mobile Multicast”, in proc. of IEEE ICACT’06 , Phoenix Park, Korea, Feb. 2006.

[Sc96] Schneier B., “Applied Cryptography”, John Wiley & Sons, Inc., 1996.

[Se04] Zhu S., Setia S., Xu S., and Jajodia S., “GKMPAN: An Efficient Group Rekeying
Scheme for Secure Multicast in Ad-Hoc Networks”, in Proc. of IEEE/ACM
MobiQuitous, pp. 42-51, Boston, Massachusetts, USA, August 2004.

[Sh03] Sherman A.T., et al., “Key Establishment in Large Dynamic Groups Using One-Way
Function Trees”, IEEE Trans. on Software Engineering, Vol. 29, No. 5, pp. 444-458,
May 2003.

[Sh04] Shoufan A. and Sorin A. Huss, “A Scalable Rekeying Processor for Multicast Pay-
TV on Reconfigurable Platforms”, Workshop on Application Specific Processor,
IEEE/ACM Int. Conf. on Hardware/Software Codesign and System Synthesis,
Stockholm, Sweden, Sep. 2004. Best paper award.

[Sh05] Shoufan A., Huss S., and Cutleriwala M., “A Novel Batch Rekeying Processor
Architecture for Multicast Key Management”, Int. Conf. on High Performance
Embedded Architectures & Compilers, LNCS 3793, pp. 169-183, Barcelona, Spain,
Nov. 2005.

[Sh06] Shoufan A., and Huss S.A., ”Rekeying Prozessor: Eine skalierbare Lösung für die
Schlüsselverwaltung in Gruppenkommunikation”, thema FORSCHUNG, Technische
Universität Darmstadt Ausgabe 1/2006, pp.86-89.

[Sh07a] Shoufan A., Laue R., and Huss S.A., “Reliable Performance Evaluation of Rekeying
Algorithms in Secure Multicast” to appear in IEEE Int. Symposium on a World of
Wireless, Mobile and Multimedia Networks, Helsinki, Finland, June 2007.

[Sh07b] Shoufan A., Laue R., and Huss S.A., “High-Flexibility Rekeying Processor for Key
Management in Secure Multicast” to appear in IEEE Int. Symposium on Embedded
Computing SEC-07, Niagara Falls, Canada, May 2007.

[Sh07c] Shoufan A., Laue R., and Huss S.A., “Secure Multicast Rekeying: A Case Study for
HW/SW-Codesign” 10. Workshop “Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen”, Erlangen Germany,
March 2007.

[Sm98] http://www.securemulticast.org/smug-index.htm

[So06] http://www.sony.net/Products/SC-HP/cx_news/vol33/sideview.html

[Sy07] http://www.synplicity.com

[Ta00] Tannenbaum A.S., “Computernetzwerke”, Prentice Hall, 2000.

[Um06] Um H., and Delp E.J., “A Secure Group Key Management Scheme for Wireless
Cellular Networks”, In Proc. of IEEE Inter. Conf. on Information Technology: New
Generations, Las Vegas, Nevada, USA, April 2006.

BIBLIOGRAPHY

133

[Va92] Vanstone S., „Responses to NIST’s Proposal“, Communication of the ACM, Vol. 35,
pp.50-52, July 1992.

[Wa98] Wannenmacher M., “Das FPGA Kochbuch”, International Thomson Publishing
GmbH, 1998.

[Wa99] Waldvogel M., Caronni G., Sun D., Weiler N., and Plattner B., “The VersaKey
Framework: Versatile Group Key Management”, IEEE J. on Selected Areas in
Communications, Vol. 17, No. 8, august 1999, pp. 1614-1631.

[Wo00] Wong C.K., Gouda M., Lam S.S., “Secure Group Communications Using Key
Graphs”, IEEE/ACM Trans. on Networking, Vol. 8, No. 1, pp. 16-30, February 2000.

[Wo07] http://www.wolfram.com

[Xi02] Xilinx, “Virtex-II Pro Platform FPGA Handbook”, Oct. 2002.

[Xi04] Lund K., “PLB vs. OCM Comparison Using the Packet Processor Software”, Xilinx
Application Note XAPP644 (v1.1), Oct. 2004.

[Xi05] Xilinx, “PowerPC 405 Processor Block Reference Guide”, V2.1, July 2005.

[Xi07] http://www.xilinx.com

[Ya01] Yang Y.R., et al., „Reliable Group Rekeying: Design and Performance Analysis“, in
proc. of ACM SIGCOMM, San Diego, CA, August 2001.

[Zh01] Zhang X. B., et al., “Protocol Design for Scalable and Reliable Group Rekeying“, in
proc. of SPIE Conf. on Scalability and Traffic Control in IP Networks, Denver,
August 2001.

[Zh03] Zhu S., et al., “Performance Optimizations for Group Key Management Schemes for
Secure Multicast”, in proc. of IEEE/ACM Int. conf. on Distributed Computing
Systems, 2003.

[Zh04] Zhang Xi. and Pahri K.K., “High-Speed VLSI Architectures for the AES Algorithm”,
IEEE Trans. on Very Large Scale Integration Systems, Vol. 12, No. 9, pp. 957-967,
Sep. 2004.

134

LIST OF PUBLICATIONS

135

List of Publications

1. Shoufan A. and Sorin A. Huss, “A Scalable Rekeying Processor for Multicast Pay-TV on
Reconfigurable Platforms”, Workshop on Application Specific Processor, IEEE/ACM Int. Conf.
on Hardware/Software Codesign and System Synthesis, Stockholm, Sweden, Sep. 2004. “Best
paper award”.

2. Shoufan A. and Sorin A. Huss, “Interactive Identification and Correction of Structural Modeling
Errors in Conservative VHDL-AMS Models”, IEEJ International Analog VLSI Workshop,
Macao, China Nov. Oct. 2004.

3. Shoufan A. and Sorin A. Huss, “Zur Reduktion des strukturellen Gleichungssatzes konservativer
VHDL-AMS Modelle”, Analog’05, 8. GMM/ITG-Diskussionssitzung. Entwicklung von
Analogschaltungen mit CAE-Methoden, Hannover, März 2005.

4. Shoufan A., Huss S., and Cutleriwala M., “A Novel Batch Rekeying Processor Architecture for
Multicast Key Management”, Int. Conf. on High Performance Embedded Architectures &
Compilers, LNCS 3793, pp. 169-183, Barcelona, Spain, Nov. 2005.

5. Shoufan A. and Huss S.A., ”Rekeying Prozessor: Eine skalierbare Lösung für die
Schlüsselverwaltung in Gruppenkommunikation”, thema FORSCHUNG, Technische
Universität Darmstadt Ausgabe 1/2006, pp.86-89.

6. Shoufan A. and Sorin A. Huss, “Construction of a SPICE-similar Simulator for Education”,
Analog’05, 8. GMM/ITG-Diskussionssitzung. Entwicklung von Analogschaltungen mit CAE-
Methoden, Hannover, Dresden, Germany, Sep. 2006.

7. Shoufan A., Laue R., and Huss S.A., “High-Flexibility Rekeying Processor for Key
Management in Secure Multicast” to appear in IEEE Int. Symposium on Embedded Computing
SEC-07, Niagara Falls, Canada, May 2007.

8. Shoufan A., Laue R., and Huss S.A., “Secure Multicast Rekeying: A Case Study for HW/SW-
Codesign” 10. Workshop “Methoden und Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen”, Erlangen Germany, March 2007.

9. Shoufan A., Laue R., and Huss S.A., “Reliable Performance Evaluation of Rekeying Algorithms
in Secure Multicast” to appear in IEEE Int. Symposium on a World of Wireless, Mobile and
Multimedia Networks, Helsinki, Finland, June 2007.

136

LIST OF SUPERVISED THESES

137

List of Supervised Theses

1. Sven Rettig, “Konzeption, Aufbau und Erprobung eines Projektionsdisplays mit Interner
Redundanzarchitektur für sicherheitskritische Anwendungen”, Diplomarbeit, 2003.

2. Abdelouahid Taadou, “Entwurf eines HW-Moduls zur Verschlüsselung und
Schlüsselgenerierung in einem Rekeying Prozessor auf Rekonfigurierbarer Plattform”
Studienarbeit, 2004.

3. Peter Bungert, “Entwurf und Implementierung eines Controllers für einen Rekeying Prozessor
auf einer FPGA Plattform”, Studienarbeit, 2004.

4. Bienvenu Tatsi, “Beschleunigung des Analogsolvers durch Minimierung der
Strukturgleichungen von VHDL-AMS Modellen” Studienarbeit, 2004.

5. Zhaoming Dai ”Interaktive Fehlersuche durch Extrahierung der Knoten-, und
Maschengleichungen in konservativen VHDL-AMS Modellen”, Diplomarbeit, 2004.

6. Murtuza Cutleriwala, “Batch Rekeying Processor on Reconfigurable Platform”, Master Thesis,
2005.

7. Mojtaba Abrooy, “Dynamische Baumverwaltung für den Rekeying Prozessor, Analyse und
Simulation” Studienarbeit, 2005.

8. Marcus Lindner und Joana Otetelisanu “ Effiziente Hardwareimplementierungen des neuen
Verschlüsselungsstandards AES“, CAE/CAD-Praktikum, 2006.

9. Tobias Teichner, “HW/SW Entwurf für den Rekeying Prozessor”, Diplomarbeit, 2007.

10. Torsten Hahn, “Digitale Kenngrößenerkennung, Messunsicherheitsbetrachtung und Drahtlose
Messwertübertragung von Mehrkomponentenaufnehmern”, Diplomarbeit, 2007.

11. Dominik Litzinger, “Gesteurter Gleichrichter mit Spannungsregler”, Studienarbeit, laufend.

138

	Zusammenfassung
	
	Preface
	

	Acknowledgments
	

	Content
	1 Introduction
	
	1.1 Overview
	1.2 IP Multicast
	1.2.1 IP Multicast Protocols
	1.2.2 IP Multicast Applications

	1.3 Information Security
	1.3.1 Threats, Requirements, and Solutions
	1.3.2 Cryptography

	1.4 Secure Multicast
	1.4.1 Secure Multicast Problem Areas
	1.4.2 Group Rekeying
	1.4.2.1 Scalability Problem
	1.4.2.2 Related Work on Group Rekeying
	1.4.2.3 Logical Key Hierarchy

	1.5 Work Objectives and Outline

	2 QoS and Access Control Aware Batch Rekeying
	
	2.1 Overview
	2.2 Batch Rekeying
	2.3 Problems of Batch Rekeying
	2.3.1 Join Batch Delay
	2.3.2 Disjoin Batch Delay

	2.4 Optimized Batch Rekeying
	2.4.1 Optimized Cryptographic Algorithms and Platforms
	2.4.2 Pipelined Batch Rekeying
	2.4.3 Event-driven Batch Rekeying

	2.5 Case Studies
	2.6 Summary

	3 Rekeying Benchmark
	
	3.1 Overview
	3.2 Rekeying Performance Evaluation Problem
	3.3 Rekeying Benchmark Design Concept
	3.3.1 Benchmark Abstraction Model
	3.3.2 Benchmark Data Flow

	3.4 Rekeying Benchmark as a Simulation Environment
	3.4.1 Cost metrics and Evaluation Criteria
	3.4.1.1 Rekeying Quality of Service (RQoS)
	3.4.1.2 Rekeying Access Control (RAC)
	3.4.1.3 Maximal Group Size nmax
	3.4.1.4 Maximal Join and Disjoin Rates

	3.4.2 Simulation Modes
	3.4.2.1 Transient Simulation
	3.4.2.2 Scalability Simulation
	3.4.2.3 Join Dynamics Simulation
	3.4.2.4 Disjoin Dynamics Simulation

	3.5 Rekeying Benchmark Design
	3.5.1 General Architecture
	3.5.2 Request Generator
	3.5.2.1 Request Generator Terminology
	3.5.2.2 Request Generator Process (GenReqList)
	3.5.2.3 Arrival Process (GetArrivalLists)
	3.5.2.4 Join Identity Selection Process (GetJoinID)
	3.5.2.5 Disjoin Identity Selection Process (GetDisjoinID)

	3.5.3 Algorithm Manager
	3.5.3.1 Transient Simulation Process (DoTranSim)
	3.5.3.2 Scalability Simulation Process (DoScalSim)

	3.5.4 Performance Evaluator
	3.5.4.1 Transient Evaluation Process (EvalTranSimResults)
	3.5.4.2 Complex Evaluation Process (EvalComplexSimResults)

	3.6 Implementation
	3.7 Case Study (LKH Tree Rebalancing)

	4 Reconfigurable Architectures
	
	4.1 Overview
	4.2 Introduction
	4.3 Field Programmable Gate Arrays
	4.4 FPGA Design Process
	4.5 Deployed Hardware Platforms
	4.5.1 Virtex-II Pro
	4.5.2 Hardware Cards
	4.5.2.1 ADM-XRC-II Pro and ADM-XPL
	4.5.2.2 XUP

	5 New Architectures for Group Rekeying
	
	5.1 Overview
	5.2 Introduction
	5.3 Rekeying Security Requirements
	5.4 General Architecture
	5.5 Key Tree Management
	5.5.1 Key Memory Architecture
	5.5.2 Key State Memory
	5.5.3 Tree Traversing
	5.5.4 Rekeying Submessage Identification

	5.6 Hardware Security Modules
	5.6.1 Encryption Module
	5.6.2 Key Generator
	5.6.3 Hash Module
	5.6.4 MAC Module
	5.6.5 Digital Signature Module

	5.7 Input/Output Units
	5.7.1 Instruction Set and Input Format
	5.7.2 Rekeying Message Format

	6 Real-Time and Batch Rekeying Processors
	
	6.1 Overview
	6.2 Real-Time Rekeying Processor (RTRP)
	6.2.1 Architecture
	6.2.2 Instruction Set and Rekeying Algorithms
	6.2.2.1 Join Instruction
	6.2.2.2 Disjoin Instruction
	6.2.2.3 Resynchronize Instruction

	6.2.3 Implementation and Results
	6.2.3.1 Resource Usage and Maximal group size
	6.2.3.2 RTRP Performance

	6.3 Batch Rekeying Processor (BRP)
	6.3.1 Architecture
	6.3.1.1 Main Controller
	6.3.1.2 Batch Scheduler
	6.3.1.3 Batch Delay Monitor
	6.3.1.4 MF Memory
	6.3.1.5 LR Memory
	6.3.1.6 Processing FIFO (PF)
	6.3.1.7 Processing Controller
	6.3.1.8 GenEnc

	6.3.2 Instruction Set and Rekeying Algorithms
	6.3.2.1 Marking Algorithm
	6.3.2.2 Processing Algorithm
	Example 6.1: Marking and Processing Algorithms

	6.3.3 Pipelined Batch Rekeying
	6.3.4 Implementation and Results
	6.3.4.1 Resource Usage and Maximal group size
	6.3.4.2 BRP Performance

	7 High-Flexibility Rekeying Processor
	
	7.1 Overview
	7.2 Introduction
	7.3 HiFlexRP Architecture
	7.4 Rekeying Algorithms
	7.4.1 Tree Data Structure
	7.4.2 Join Algorithm
	7.4.2.1 Add new leaf (MEMID, kd)
	7.4.2.2 Update tree topology data (MEMID)
	7.4.2.3 Update keys on the join path (MEMID)
	7.4.2.4 Sign hash value (h)

	7.5 Design Approach and Performance Features
	7.5.1 HiFlexRP Test Environment
	7.5.2 Update Subtask Design Alternatives
	7.5.2.1 Bus selection and caching
	7.5.2.2 Hardware vs. software security modules
	7.5.2.3 Static vs. dynamic tree management

	7.5.3 Sign Subtask and HW/SW Partitioning
	7.5.3.1 HW/SW-Realization 1 (HW/SW-1)
	7.5.3.2 HW/SW-Realization 2 (HW/SW-2)
	7.5.3.3 HW/SW-Realization 3 (HW/SW-3)

	7.6 HiFlexRP vs. Related Work

	8 Conclusion
	

	Bibliography
	List of Publications
	
	List of Supervised Theses

