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IntrodutionA simpliial omplex of dimension d is foldable if it admits a non-degeneratesimpliial map to the d-simplex. This is equivalent to the property thatits 1-skeleton is olorable in the graph-theoreti sense with the minimallypossible number of d+1 olors. We apply foldable triangulations to onstrutsimpliial omplexes with a spei� odd subomplex, the subomplex de�nedby all o-dimension 2-faes with a non-bipartite link (and their proper faes).The odd subomplex ontrols the behavior of the unfoldings introdued byIzmestiev & Joswig [36℄. The unfoldings mirror the topologial onept ofa branhed over with the odd subomplex as branhing set. Hene we areinterested in the topology of the odd subomplex, but ertain group theoretiaspets do matter as well. In partiular the partial unfolding K̂ of a simpliialomplex K proves to be the apt gadget for the onstrution of ombinatorialmanifolds.If we onsider only simpliial omplexes whih meet ertain onnetiv-ity onditions, then �foldability� and �empty odd subomplex� are equiva-lent. We make use of this equivalene in the onstrution of a simpliialomplex K with presribed odd subomplex by omposing K from foldablebuilding bloks. Finally we are able to onstrut triangulations of losedoriented PL 4-manifolds via unfolding simpliial 4-spheres with presribedodd subomplex. One may read this result as a ombinatorial analog ofthe topologial onstrution of losed oriented PL 4-manifolds as branhedovers by Piergallini [54℄. The onstrution of losed oriented ombinatorial4-manifolds is the �rst main result presented here; see Theorem 3.12.Theorem. For every losed oriented PL 4-manifold M there is a ombi-natorial manifold S homeomorphi to S4 suh that one of the onnetedomponents of the partial unfolding Ŝ of S is a ombinatorial 4-manifoldPL-homeomorphi to M . The anonial projetion Ŝ → S is a simple 4-foldbranhed over branhed over a PL surfae with a �nite number of usp andnode singularities.In a di�erent ontext we onstrut foldable triangulations with ertainadditional properties of produts of lattie polytopes. A triangulation of1



2 Introdutiona d-dimensional lattie polytope P is regular if it an be lifted to m + 1dimensions as a lower onvex hull. The baryentri subdivision of any regulartriangulation is an example of a triangulation whih is both regular andfoldable. A lattie triangulation of P is dense if its verties are all the lattiepoints inside P , and, for the sake of brevity, we refer to a regular, dense, andfoldable triangulation as an rdf-triangulation.It is known that a triangulation of a polytope (or, more generally, ofany simply onneted manifold) is foldable if and only if its dual graph isbipartite; see [37℄. From an rdf-triangulation K of a lattie polytope P So-prunova & Sottile [62℄ onstrut sparse polynomial systems with non-triviallower bounds for the number of real roots. The polytope P is the ommonNewton polytope of the polynomials in the system, and the weighted sizedi�erene of the bipartition of the dual graph of K is a lower bound for thenumber of real roots. The size di�erene is alled the signature of K, and thepolynomial systems onstruted by Soprunova & Sottile are alled Wronskisystems.Given rdf-triangulations of lattie polytopes P and Q, we onstrut thesimpliial produt, an rdf-triangulation of the produt P×Q, and ompute itssignature. Here the natural ingredient is the stairase triangulation of a prod-ut of two simplies, studied by Billera, Cushman & Sanders [6℄, Gel′fand,Kapranov & Zelevinsky [24℄, and others. The simpliial produt alreadyours in the work of Eilenberg & Steenrod [18, Setion II.8℄; see also San-tos [58℄. The simpliial produt of rdf-triangulations of two lattie polytopesyields our seond main result; see Theorem 4.17.Theorem. Let P λ and Qµ be rdf-triangulations of an m-dimensional lattiepolytope P ⊂ Rm and an n-dimensional lattie polytope Q ⊂ Rn, respe-tively. For spei� vertex orderings of the fators (to be explained later) thesimpliial produt P λ ×stc Q
µ is an rdf-triangulation of the polytope P ×Qwith signature

σ(P λ ×stc Q
µ) = σm,n σ(P λ) σ(Qµ) ,where σm,n is the signature of the stairase triangulation of the produt ofsimplies ∆m × ∆n.For the algebrai appliations it is essential that Theorem 4.17 an furtherbe improved. In Theorem 4.29 we show that (with a mild additional assump-tion) the simpliial produt P λ ×stc Q

µ meets the geometri requirements ofSoprunova & Sottile, provided that both fators do.This exposition is organized as follows. Chapter 1 reviews the theoryof (branhed) overs and presents the unfoldings. In partiular we examinehow the onepts of branhing set and monodromy translate to the partial



Introdution 3unfolding. This provides us with the key tool for the onstrution of losedoriented ombinatorial 4-manifolds in Chapter 3.We proeed by introduing the notion of olor equivalene of simpli-ial omplexes, an equivalene with respet to the partial unfolding: Let Kand L be olor equivalent simpliial omplexes, then the anonial proje-tions K̂ → K and L̂ → L are equivalent branhed overs. We then useolor equivalene to reover (and slightly improve) a result by Izmestiev &Joswig [36℄, stating that the partial unfolding of the anti-prismati subdivi-sion of a simpliial omplex K is equivalent to the partial unfolding of K. Inthe last setion of Chapter 1 we examine what kind of singularities in the oddsubomplex are allowed if we want to obtain a ombinatorial manifold as theunfolding of a ombinatorial manifold. This improves a result by Fox [19℄ forthe unfoldings.The onstrution of foldable simpliial omplexes is studied in Chapter 2.Here the key question is the following: Given a (d + 1)-olorable ombi-natorial (d− 1)-sphere, how to extend the triangulation and oloring to afoldable ombinatorial d-ball? This question is answered in Theorem 2.3.Additionally we are interested in preserving further properties like regularityand prove an upper bound for the expeted size of the extended triangu-lation. Theorem 2.3 is then generalized to extending partial triangulationsand olorings of CW-omplexes and relative handlebody deompositions ofdimension at most 4.On the other hand Chapter 2 examines the odd subomplex, or rather,we develop tehniques to onstrut some lasses of odd subomplexes. Thesetwo tehniques, extending partial triangulations and onstruting odd sub-omplexes, are put to use in the onstrution of ombinatorial 4-manifolds.Chapter 3 is mostly devoted to the onstrution of losed oriented ombi-natorial 4-manifolds. In Setion 3.1 we review the topologial onstrution ofa losed oriented PL-manifold M as a branhed over p : M → S4 branhedover an embedded PL-surfae with a �nite number of usp and node sin-gularities. This onstrution is due to Piergallini [54℄ and earlier results byMontesinos [47, 48℄, and provides the �blue print� of our onstrution of om-binatorial 4-manifolds. We then onstrut a triangulation S of the 4-spheresuh that the projetion Ŝ → S is a branhed over equivalent to p. Inpartiular, Ŝ ∼= M holds. The onstrution of S involves a lot of tehnialdetails, and it takes up the entire Setion 3.2.We onlude Chapter 3 by applying the tehniques developed in the on-strution of ombinatorial 4-manifolds to the onstrution of ombinatorial3-manifolds. The question how to onstrut a ombinatorial 3-sphere S suhthat Ŝ ∼= M holds for a given losed oriented 3-manifold M is answered byIzmestiev & Joswig [36℄. In Setion 3.3 we give an alternative onstrution



4 Introdutionof S, whih, starting with an arbitrary triangulation of S3, relies only on thestellar subdivision of faes and the operation of twisting.The �nal Chapter 4 is motivated by an appliation in algebrai geometry,the searh for lower bounds for the number of real roots of a sparse polyno-mial system. Hene it somehow di�ers from the rather topologially �avored�rst three hapters. The exat number of omplex solutions of a sparse sys-tem of polynomials with generi oe�ients is known from Kushnirenko'sTheorem [40℄. To bound the number of real roots from below is signi�antlymore di�ult. The 1-dimensional ase, that is, a system of one polynomialin one variable, already illustrates the di�ulty to bound the number of realroots ompared to �nding the exat number of omplex roots. However, So-prunova & Sottile [62℄ onstrut sparse polynomial systems with non-triviallower bounds from an rdf-triangulation of a lattie polytope P , where P andits rdf-triangulation have to meet additional requirements imposed by thealgebrai geometry involved.We disuss the stairase triangulation of two simplies and the simpliialprodut, an rdf-triangulation of the produt P ×Q of the lattie polytopes Pand Q obtained from rdf-triangulations of the fators. Further we prove thatthe rdf-triangulation of P × Q meets the algebrai geometry requirementsprovided both fators do, and ompute its signature, whih is a lower boundfor the number of real roots of the assoiated sparse polynomial systems.In the last Setion 4.4 we apply our results to obtain triangulations of the
d-ube with large signature. For d 6≡ 2 mod4 we give expliit triangulations ofthe d-ube with signature at least ⌊d/2⌋! whih meet the algebrai geometryrequirements. The Wronski systems assoiated to these ube triangulationsare sparse polynomial systems in d unknowns, whih have at least ⌊d/2⌋! realroots ompared to exatly d! omplex roots by Kushnirenko's Theorem.The lower bound for the signature of the d-ube partially relies on ompu-tational results obtained with TOPCOM [55℄, polymake [21, 22, 23℄, MAGMA [13℄,and QEPCAD [30℄.Chapter 4 is a joint work with Mihael Joswig to appear in Advanes inMathematis.



Chapter 1Covering and UnfoldingBranhed overs form a major tool for the study, onstrution and lassi�a-tion of d-manifolds. First results are by Alexander [2℄ in 1920, who observedthat any losed oriented PL d-manifoldM is a branhed over of the d-sphere.Let T be a triangulation of M , and let b(T ) be the baryentri subdivision.Then the dual graph Γ∗(b(T )) is bipartite, and we obtain a bipartition of thefaets of b(T ) into �blak� and �white� faets suh that no faets of the sameolor interset in a ridge. Now a branhed over p : M → Sd is de�ned bymapping the blak faets to the d-simplex ∆d ⊂ Rd ⊂ Rd ∪ ∞ ∼= Sd, andmapping the white faets to the topologial losure of the omplement of ∆d,that is, the white faets are mapped to cl(Sd \ ∆d).Unfortunately Alexander's proof does not allow for any (reasonable) on-trol over the number of sheets of the branhed over, nor over the topologyof the branhing set: The branhing set of p is the o-dimension 2-skeletonof ∆d, and the number of sheets of p depends on the size of the triangula-tion T . Further, p is not a simple branhed over.At least to our knowledge, there are no non-trivial upper bounds for thenumber of sheets of suh a branhed over for d > 4. On the ontrary,Bernstein & Edmonds [4℄ showed that at least d sheets are neessary ingeneral (for example the d-torus (S1)d exhibits suh a behavior), and thatthe branhing set an not be required to be non-singular for d ≥ 8.However, in dimension d ≤ 4, the situation is fairly well understood; seealso Chapter 3. The 2-dimensional ase is simple sine any losed orientedsurfae Fg of genus g is a 2-fold (simple) branhed over of S2 branhed over
2g + 2 isolated points.By results of Hilden [29℄ and Montesinos [45℄ any losed oriented 3-manifold M arises as 3-fold simple branhed over of S3 branhed over alink L. Labeling eah bridge b of a diagram of L with the orrespondingmonodromy ation of a meridian around b, we an represent M as a labeled(olored) link diagram. 5



6 Covering and UnfoldingIn dimension 4 the situation beomes inreasingly di�ult. First Pier-gallini [54℄ proved that eah losed oriented PL 4-manifold is a 4-fold simplebranhed over of S4 branhed over a transversally immersed surfae. ThenIori & Piergallini [33℄ eliminated the singularities, but had to add a �fth sheetto the overing. The question whether eah losed oriented PL 4-manifold isa 4-fold branhed over of S4 branhed over a loally �at PL surfae is stillopen.The main e�ort of this hapter is dediated to the topologial onept ofa branhed over and its ombinatorial analog, the unfoldings of a simpliialomplex. In partiular, we de�ne ombinatorial models of the key featuresof a branhed over, the branhing set and the monodromy homomorphism.The idea is to onstrut a simpliial omplex K, suh that the anonialprojetion of the unfolding toK is equivalent to a given branhed over of |K|.In partiular, the equivalene of the branhed overs implies homeomorphyof the overing spaes. The latter is the key tool in the onstrution ofombinatorial 4-manifolds in Chapter 3.Finally we try to give some insight into what kind of singularities areallowed in the branhing set for the overing spae to be a manifold, providedthe base spae is a manifold. Here we improve a result by Fox [19℄ for theunfoldings.Combinatorial Manifolds. We larify some basi de�nitions and nota-tions. Given some topologial manifold M , we all a simpliial omplex Khomeomorphi to M a triangulation of M , or a simpliial manifold. A sim-pliial omplex K is a ombinatorial d-sphere or ombinatorial d-ball if itis pieewise linear homeomorphi to the boundary of the (d + 1)-simplex,respetively to the d-simplex. Equivalently, K is a ombinatorial d-sphereor d-ball if there is a ommon re�nement of K and the boundary of the
(d + 1)-simplex, respetively the d-simplex. A simpliial omplex K is aombinatorial manifold if the vertex link of eah vertex of K is a ombina-torial sphere or a ombinatorial ball. Note that ombinatorial spheres andballs are ombinatorial manifolds.A manifoldM where all harts are pieewise linear is alled a PL-manifold.Up to dimension 3 there is no di�erene between topologial, PL-, and dif-ferential manifolds, that is, every topologial manifold allows for a PL- ordi�erential atlas (or struture). The existene of a triangulation of M as aombinatorial manifold is equivalent to the existene of a PL-atlas for M .For an introdution to PL-topology see Björner [7, Part II℄, Hudson [31℄, andRourke & Sanderson [56℄.



7Similarly to the topologial situation, there is no di�erene between thenotion of a simpliial and a ombinatorial manifold in dimension d ≤ 3, thatis, every simpliial manifold (or sphere, or ball) is a ombinatorial manifold(or sphere, or ball). But in dimension 4 the situation beomes more ompli-ated. Freedman & Quinn [20℄ onstrut a 4-manifold whih does not havea triangulation as a ombinatorial manifold. In fat, there are 4-manifoldswhih an not be triangulated at all [42, p. 9℄. The following unansweredquestion illustrates the subtleties of the 4-dimensional ase like no other: Isa ombinatorial manifold homeomorphi to the 4-sphere neessarily a om-binatorial 4-sphere? Surprisingly, the answer to this question is a�rmativein all dimensions d 6= 4; see Moise [43℄ and Kirby & Siebenmann [39℄.Neither baryentri subdivision nor anti-prismati subdivision (of a fae)hange the PL-type of a simpliial manifold, that is, the subdivision of asimpliial omplex K is a ombinatorial manifold if and only if K is a om-binatorial manifold. The one of a ombinatorial sphere is a ombinatorialball and the suspension of a ombinatorial sphere is again a ombinatorialsphere.Connetivity Properties of Simpliial Complexes. The simpliial om-plexes onsidered in the following (and throughout this exposition) are al-ways pure, that is, all the inlusion maximal faes, alled the faets, have thesame dimension. We all a o-dimension 1-fae of a pure simpliial omplexa ridge, and the dual graph Γ∗(K) of a pure simpliial omplex K has thefaets as its node set, and two nodes are adjaent if the orresponding faetsshare a ridge. Further it is often neessary to restrit ourselves to simpliialomplexes with ertain onnetivity properties.The onnetivity properties in question are as follows: A pure simpliialomplex K is strongly onneted if its dual graph Γ∗(K) is onneted, andloally strongly onneted if stK(f) is strongly onneted for eah fae f ∈ K.If K is loally strongly onneted, then onneted and strongly onnetedoinide. Further we all K loally strongly simply onneted if for eahfae f ∈ K with o-dimension ≥ 2 the link of f is simply onneted, and�nally, K is t-nie if it is strongly onneted, loally strongly onneted, andloally strongly simply onneted. Here we di�er slightly from [36℄, where anie simpliial omplex is not required to be strongly onneted. However,strongly onneted is only a mild additional ondition, sine one may treatthe strongly onneted omponents individually. Further, to avoid onfusionwith the onept of a nie triangulation of a lattie polytope introdued inChapter 4, we resort to the name t-nie to stress the topologial �avor ofits de�nition. Observe that onneted ombinatorial manifolds are alwayst-nie.



8 Covering and UnfoldingBasi Construtions. The star
stK(f) = {g ⊂ σ | f ⊂ σ ∈ K}of a fae f of a simpliial omplex K is de�ned by all faets (and their properfaes) ontaining f . The link
lkK(f) = {g \ f | g ∈ stK(f)}of f is the set of all faes in stK(f) not interseting f . The star and thelink of f are simpliial omplexes, and we sometimes omit the omplex K inthe notation. Further we make use repeatedly of the following onstrutions.The join K ∗ L of two simpliial omplexes K and L is given by

K ∗ L = {f ∪ g | f ∈ K and g ∈ L} .The one cone(K) = {a} ∗ K over K with apex a is the join of K with asingle vertex {a}, and the suspension susp(K) = {{a1}, {a2}} ∗K is the joinof K with the 0-dimensional sphere {{a1}, {a2}}.1.1 CoveringsA ontinuous surjetive map p : X → Y is a overing if there is an openneighborhood Uy ⊂ Y for eah y ∈ Y suh that the preimage p−1(Uy) isa pairwise disjoint union of open subsets in X, and p maps eah of thesesubsets homeomorphially to Uy. We all X the overing spae, and Y thebase spae. Two overings p : X → Y and p′ : X ′ → Y ′ are equivalent if thereare homeomorphisms ϕ : X → X ′ and ψ : Y → Y ′ suh that ψ ◦ p = p′ ◦ ϕholds.It is essential for a satisfatory theory of overings to make ertain on-netivity assumption for X and Y . The spaes mostly onsidered are Haus-dor�, path onneted, and loally path onneted; see Bredon [12, III.3.1℄.Throughout we will restrit our attention to overings of manifolds, and weassume X and Y to be onneted, hene they meet the onnetivity assump-tions in [12℄. If the base spae Y is a d-manifold, then also the overingspae X is a d-manifold and the preimage of any point y ∈ Y has the sameardinality. In the ase k = |p−1(y)| < ∞ we all p a k-fold overing. Fromnow on we assume X and Y to be onneted manifolds and p : X → Y tobe a k-fold overing.Let y0 ∈ Y be an arbitrary but �xed point with preimage p−1(y0) =
{xi}0≤i≤k−1, and let α : [0, 1] → Y be a losed path based at y0 representinga given element [α] ∈ π1(Y, y0). For eah xi ∈ p−1(y0) there is a unique



1.1 Coverings 9lifted path αi : [0, 1] → X with αi(0) = xi and p ◦ αi = α; see Munkres [49,Lemma 79.1℄. Its end point αi(1) is again a point in p−1(y0), and it dependssolely on the homotopy lass [α] of α. Thus π1(Y, y0) ats on the set p−1(y0)by [α] · xi = αi(1), whih yields the monodromy homomorphism
mp : π1(Y, y0) → Sym(p−1(y0)) ,where Sym(p−1(y0)) is the symmetri group on the point set p−1(y0). Theimage of mp is denoted by Mp, the monodromy group of p; see Seifert &Threlfall [60, � 58℄. If Y is onneted the isomorphism type of Mp does notdepend on the hoie of y0.Example 1.1. The basi example of a overing is the k-fold overing of the1-sphere S1 by itself. For k ≥ 1 let pk be the omplex map

pk : C→ C : z 7→ zk .If we view S1 as a subset of the omplex numbers then the restrition pk |S1is a k-fold overing of S1 by itself with the yli group of order k as itsmonodromy group; see Figure 1.1.
X

p

YFigure 1.1. The 4-fold over p4 |S1 : S1 → S1 on the left. By oning one obtains the 4-foldbranhed over p4 |D2 : D2 → D2 with branhing set {0} on the right.The overings p : X → Y of a onneted manifold Y are lassi�ed (upto equivalene) by the onjugation lasses of the subgroups of π1(Y ): Theindued group homomorphism p∗ : π1(X, x0) → π1(Y, y0) for any x0 ∈ p−1(y0)is injetive, and hene π1(X, x0) is isomorphi to a subgroup of π1(Y, y0). Ingeneral the subgroup p∗(π1(X, x0)) depends on the hoie of x0 ∈ p−1(y0), yetwe have p∗(π1(X, x0)) = g p∗(π1(X, x
′
0)) g

−1 for any x0, x
′
0 ∈ p−1(y0), where



10 Covering and Unfolding
g ∈ π1(Y, y0) orresponds to the losed path obtained as the image of a pathfrom x0 to x′0. (A overing where p∗(π1(X, x0)) is independent of the hoieof x0 ∈ p−1(y0), or equivalently, where p∗(π1(X, x0)) is a normal subgroup,is alled regular.) Conversely, for every subgroup H of π1(Y ) there exists aovering p : X → Y suh that p∗(π1(X)) lies in the onjugation lass of H .Alternatively, for a �xed onneted manifold Y as the base spae, themonodromy homomorphism mp lassi�es the overings p : X → Y . For
k ≥ 1 and any group homomorphism m : π1(Y ) → Σk there is a k-foldovering p : X → Y with mp = m. Here Σk denotes the symmetri group oforder k. The overing p is unique up to equivalene, but the overing spae Xneed not be onneted. Moreover, onjugation in Σk does not hange thehomeomorphy type of X.The lassi�ations of overings of Y via the subgroups of π1(Y ), andvia the group homomorphisms m : π1(Y ) → Σk, k ≥ 1, hold for a widerlass of topologial spaes than assumed here, but we will not elaborate; seeMunkres [49, � 79, � 82℄, and Seifert & Threlfall [60, � 58℄ for a substantialdisussion.Throughout this exposition we will reur to the monodromy group forthe lassi�ation, sine we have the group of projetivities to be introduedin Setion 1.2.1 as a ombinatorial equivalent of the monodromy group.1.1.1 Branhed CoversThe onept of a overing of a spae Y by another spae X is generalized byFox [19℄ to the notion of the branhed over. Here a ertain subset of Y mayviolate the onditions of a overing map. This allows for a wider appliationin the onstrution of topologial spaes.Example 1.2. For k ≥ 1 onsider the map pk : C → C, and the k-foldovering pk |S1 of S1 by itself from Example 1.1. The 2-ball D2 does notadmit suh non-trivial overings, sine D2 has a trivial fundamental group,hene any overing has a trivial monodromy group. However, if we onsiderthe restrition of pk to the unit disk then pk |D2 is a k-fold overing exeptfor the origin: D2 \ {0} is homotopy equivalent to S1. The map pk |D2 is a
k-fold branhed over with the single branh point {0}; see Figure 1.1.Branhed overs an be desribed in terms of �loal models� as in Ex-ample 1.2 above: In the ase of branhed overs of losed surfaes, a map
f : F̃ → F between losed surfaes is a branhed over if it is �nite-to-one,and if for every x ∈ F̃ there exists a neighborhood Ux ⊂ F̃ suh that therestrition f |Ux is homeomorphi to pk(x) for some k(x) ≥ 1. In the aseof branhed overs of d-manifolds for d ≥ 3 more omplex loal models are



1.1 Coverings 11needed. We reommend Piergallini [53℄ for a substantial and easy to readintrodution to branhed overs.A di�erent approah is pursued by Fox [19℄. Consider a ontinuous map
h : Z → Y , and assume the restrition h : Z → h(Z) to be a overing.If h(Z) is dense in Y (and meets ertain additional onnetivity onditions)then there is a surjetive map p : X → Y with Z ⊂ X and p |Z = h. Themap p is alled a ompletion of h, and any two ompletions p : X → Y and
p′ : X ′ → Y are equivalent in the sense that there exists a homeomorphism
ϕ : X → X ′ satisfying p′ ◦ ϕ = p and ϕ |Z = Id. The map p : X → Yobtained this way is a branhed over, and we all the unique minimal subset
Ysing ⊂ Y suh that the restrition of p to the preimage of Y \Ysing is a over,the branhing set of p. The restrition of p to p−1(Y \ Ysing) is alled theassoiated over of p. If h : Z → Y is a over, then X = Z, and p = h is abranhed over with empty branhing set. In this sense the branhed overgeneralizes the notion of a over.We de�ne the monodromy homomorphism

mp : π1(Y \ Ysing, y0) → Sym(p−1(y0))of a branhed over for a point y0 ∈ Y \ Ysing as the monodromy homomor-phism of the assoiated over. Similarly, the monodromy group Mp is de�nedas the image of mp.Two branhed overs p : X → Y and p′ : X ′ → Y ′ are equivalent if thereare homeomorphisms ϕ : X → X ′ and ψ : Y → Y ′ with ψ(Ysing) = Y ′
sing,suh that p′ ◦ ϕ = ψ ◦ p holds. The well known Theorem 1.3 is due to theuniqueness of Ysing, and hene the uniqueness of the assoiated over; see [53,p. 2℄.Theorem 1.3. Let p : X → Y be a branhed over of a onneted mani-fold Y . Then p is uniquely determined up to equivalene by the branhingset Ysing, and the monodromy homeomorphismmp. In partiular, the overingspae X is determined up to homeomorphy.Let Y be a onneted manifold and Ysing a o-dimension 2 submanifold,possibly with a �nite number of singularities. A meridian around a point

y ∈ Ysing is a non-ontratable, losed path m : [0, 1] → Y \ Ysing whihis ontratable in (Y \ Ysing) ∪ {y}. If y is not a singular point, one maypiture m as the boundary of a 2-ball embedded transversally to Ysing, andinterseting Ysing in y only. A meridial loop around a point y ∈ Ysing isa path γ mγ− representing an element in π1(Y \ Ysing, y0), where m is ameridian around y, and γ is a path in Y \ Ysing from y0 to m(0) = m(1).Here γ− is the inverse path of γ given by γ−(t) = γ(1 − t), and γ γ′ denotes



12 Covering and Unfoldingthe onatenation of two paths γ : [0, 1] → Y and γ′ : [0, 1] → Y with
γ′(0) = γ(1), that is,

γ γ′(t) =

{
γ(2t) if 0 ≤ t ≤ 1

2

γ′(2t− 1) if 1
2
< t ≤ 1 .We all a branhed over p simple if the image mp(m) of any meridialloop m around a non-singular point of the branhing set is a transpositionin Mp. Note that the k-fold (branhed) overs pk |S1 and pk |D2 of S1, respe-tively D2, over themselves presented in Examples 1.1 and 1.2 are not simplefor k ≥ 3.1.2 UnfoldingsIn this setion we introdue the notions of the omplete K̃ and partial un-folding K̂ of a simpliial omplex K. Unfoldings �rst appeared in a paperby Izmestiev & Joswig [36℄, with some of the basi notions already devel-oped in Joswig [37℄. Unfoldings are geometri objets de�ned entirely bythe ombinatorial struture of K, and ome along with anonial projetions

r : K̃ → K and p : K̂ → K.However, K̃ and K̂ may not be simpliial omplexes. In general theunfoldings are pseudo-simpliial omplexes: Let Σ be a olletion of pairwisedisjoint geometri simplies, and simpliial attahing maps for some pairs
(σ, τ) ∈ Σ × Σ, mapping a subomplex of σ isomorphially to a subomplexof τ . Identifying the subomplexes aordingly yields the quotient spae Σ/∼,whih is alled a pseudo-simpliial omplex if the quotient map Σ → Σ/∼restrited to any σ ∈ Σ is bijetive. The last ondition ensures that thereare no self-identi�ations within eah simplex σ ∈ Σ.1.2.1 The Group of ProjetivitiesLet σ and τ be neighboring faets of a �nite, pure simpliial omplex K, thatis, σ∩τ is a ridge. Then there is exatly one vertex in σ whih is not a vertexof τ and vie versa, hene a natural bijetion 〈σ, τ〉 between the vertex setsof σ and τ is given by

〈σ, τ〉 : V (σ) → V (τ)

v 7→

{
v if v ∈ σ ∩ τ

τ \ σ if v = σ \ τ .The bijetion 〈σ, τ〉 is alled a perspetivity from σ to τ .
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σ τ

γ

v0

v1

v2

〈γ〉(v0)

〈γ〉(v1)

〈γ〉(v2)

Figure 1.2. A projetivity from σ to τ along the faet path γ.A faet path in K is a sequene γ = (σ0, σ1, . . . , σk) of faets, suh thatthe orresponding nodes in Γ∗(K) form a path, that is, σi ∩ σi+1 is a ridgefor all 0 ≤ i < k; see Figure 1.2. Now a projetivity 〈γ〉 along γ is de�ned asthe omposition of perspetivities 〈σi, σi+1〉, thus 〈γ〉 maps V (σ0) to V (σk)bijetively via
〈γ〉 = 〈σk−1, σk〉 ◦ · · · ◦ 〈σ1, σ2〉 ◦ 〈σ0, σ1〉 .Again, we write γ γ′ = (σ0, σ1, . . . , σk, . . . , σk+l) for the onatenation oftwo faet paths γ = (σ0, σ1, . . . , σk) and γ′ = (σk, σk+1, . . . , σk+l), denoteby γ− = (σk, σk−1, . . . , σ0) the inverse path of γ, and we all γ a losed faetpath based at σ0 if σ0 = σk. The set of losed faet paths based at σ0 to-gether with the onatenation form a group, and a losed faet path γ basedat σ0 ats on the set V (σ0) via γ · v = 〈γ〉(v) for v ∈ V (σ0). Via this a-tion we obtain the group of projetivities Π(K, σ0) given by all permutations

〈γ〉 of V (σ0). The group of projetivities is a subgroup of the symmetrigroup Sym(V (σ0)) on the verties of σ0.The projetivities along null-homotopi losed faet paths based at σ0generate the subgroup Π0(K, σ0)<Π(K, σ0), whih is alled the redued groupof projetivities. Finally, if K is strongly onneted then Π(K, σ0) and
Π(K, σ′

0), respetively Π0(K, σ0) and Π0(K, σ
′
0), are isomorphi for any twofaets σ0, σ

′
0 ∈ K. In this ase we usually omit the base faet in the nota-tion of the (redued) group of projetivities, and write Π(K) = Π(K, σ0),respetively Π0(K) = Π0(K, σ0).



14 Covering and UnfoldingThe odd subomplex. Let K be loally strongly onneted; in partiu-lar, K is pure. The link of a o-dimension 2-fae f is a graph whih is on-neted sine K is loally strongly onneted, and f is alled even if lkK(f)is bipartite, and odd otherwise. We de�ne the odd subomplex of K as allodd o-dimension 2-faes (together with their proper faes), and denote itby Kodd or odd(K).Assume thatK is pure and admits a (d+1)-oloring of its 1-skeleton Γ(K)in the graph theoreti sense, that is, we assign one olor of a set of d+1 olorsto eah vertex of Γ(K) suh that the two verties of any edge arry di�erentolors. Observe that the (d+1)-oloring of K is minimal with respet to thenumber of olors, and is unique up to renaming the olors if K is stronglyonneted. Simpliial omplexes that are (d+1)-olorable are alled foldable,sine a (d+1)-oloring de�nes a non-degenerated simpliial map of K to the
(d+ 1)-simplex.Lemma 1.4. The odd subomplex of a foldable simpliial omplex K isempty, and the group of projetivities Π(K, σ0) is trivial. In partiular wehave 〈α〉 = 〈β〉 for any two faet paths α and β from σ to τ .Proof. Assume f is an odd o-dimension 2-fae. Then lk(f) is not bipartiteand requires at least three olors for oloring. The d− 1 verties of f induea d-lique in Γ(st(f)), and eah of the verties of f is adjaent to eah vertexin lk(f). Hene st(f) is not (d+ 1)-olorable.As for Π(K, σ0), onsider the strongly onneted omponent of σ0. Ob-serve that the (d+1)-oloring of the strongly onneted omponent is uniqueup to permuting the olors. Hene the equivalene lasses of verties ol-ored the same orrespond one-to-one to the orbits of the ation of Π(K, σ0)on V (σ0). Sine there are d + 1 equivalene lasses of verties, eah of theorbits of Π(K, σ0) is trivial. Finally, assume 〈α〉 6= 〈β〉 for some faet paths αand β from σ to τ , and let γ be any faet path from σ0 to σ. Now 〈α〉 6= 〈β〉implies that 〈γ α β− γ−〉 is non-trivial, ontraditing that Π(K, σ0) is triv-ial.Here the odd subomplex is of interest in partiular for its relation to
Π0(K, σ0) for a t-nie simpliial omplex K. A projetivity around an oddfae f is a projetivity along a faet path γ l γ−, where l is a losed faetpath in stK(f) based at some faet σ ∈ stK(f), and γ is a faet path from σ0to σ. The path γ l γ− is null-homotopi sine K is loally strongly simplyonneted.Theorem 1.5. (Izmestiev & Joswig [36, Theorem 3.2.2℄). The redued groupof projetivities Π0(K, σ0) of a t-nie simpliial omplex K is generated by



1.2 Unfoldings 15projetivities around the odd o-dimension 2-faes. In partiular, Π0(K, σ0)is generated by transpositions.Consider a geometri realization |K| of K. Reall that suh a geometrirealization always exists if K is �nite by assigning one unit vetor to eahvertex of K. To a given faet path γ = (σ0, σ1, . . . , σk) in K we assoiatea (pieewise linear) path γ in |K| by onneting the baryenter of σi to thebaryenters of σi ∩ σi−1 and σi ∩ σi+1 by a straight line for 1 ≤ i < k, andonneting the baryenters of σ0 and σ0 ∩ σ1, respetively σk and σk ∩ σk−1.The fundamental group π1(|K| \ |Kodd|, y0) of a t-nie simpliial omplex Kis generated by paths γ, where γ is a losed faet path based at σ0, and y0is the baryenter of σ0; see [36, Proposition A.2.1℄. Furthermore, due toTheorem 1.5 we have the group homomorphism
hK : π1(|K| \ |Kodd|, y0) → Π(K, σ0) : [γ] 7→ 〈γ〉 , (1.1)where [γ] is the homotopy lass of the path γ orresponding to a faet path γ.1.2.2 The Complete UnfoldingLet K be a pure simpliial d-omplex with �xed base faet σ0 ∈ K, let

Σ(K) denote the olletion of faets of K, and set K = Σ(K) × Π(K, σ0).Eah pair (σ, g) ∈ K is a opy of the geometri simplex |σ| labeled by theelement g ∈ Π(K, σ0). For eah faet σ hoose a �xed faet path γσ from σ0to σ, and let σ and τ be neighboring faets of K with f = σ ∩ τ . Nowde�ne the equivalene relation ∼ by identifying (f, g) ⊂ (σ, g) ∈ K and
(f, h) ⊂ (τ, h) ∈ K if the equation

gh−1 = 〈γσ〉〈σ, τ〉〈γ
−
τ 〉holds. The resulting pseudo-simpliial omplex

K̃ = K/∼is alled the omplete unfolding of K. The anonial map r : K̃ → K is givenby the fatorization of the mapK → K : (σ, g) 7→ σ. For an easy example seeFigure 1.3, and for simpliial omplexes with non-simpliial omplete (andpartial) unfoldings see Figure 1.4.Alternatively �x a (d+1)-oloring of the verties of σ0, and all a (d+1)-oloring of an arbitrary faet σ admissible if there is a faet path γ from σ0to σ suh that eah vertex v ∈ σ is olored with the same olor as its preim-age 〈γ〉−1(v) in the �xed (d+ 1)-oloring of σ0. Set K as the set of all pairs
(σ, c), where c is an admissible oloring of σ. Let σ and τ be neighboringfaets ofK. Now we de�ne the equivalene relation∼ by attahing (σ, c) ∈ Kand (τ, c′) ∈ K along their ommon ridge σ ∩ τ if c and c′ oinide on σ ∩ τ .



16 Covering and Unfolding
v0

v1 v2

v3

v1

v2

v3

v1

v2

v3

Figure 1.3. The starred triangle and its unfoldings: The omplex on the right is theomplete unfolding (indiated by the admissible vertex olorings of the faets), as well asthe non-trivial onneted omponent of the partial unfolding (indiated by the labeling ofthe faets by the verties v1, v2, and v3). The seond onneted omponent of the partialunfolding is a opy of the starred triangle with all faets labeled v0.1.2.3 The Partial UnfoldingThe onstrution of the partial unfolding is similar to the seond de�nitionof the omplete unfolding desribed in the previous paragraph. Here weset K as the set of all pairs (σ, v), where v ∈ σ is a vertex. Let σ and τ beneighboring faets of K. We de�ne the equivalene relation ∼ by attahing
(σ, v) ∈ K and (τ, w) ∈ K along their ommon ridge σ ∩ τ if 〈σ, τ〉(v) = wholds. Now the partial unfolding K̂ is de�ned as the quotient spae K/∼.The anonial map p : K̂ → K is given by the fatorization of the map
K → K : (σ, v) 7→ σ; see Figures 1.3 and 1.4.In ontrast to the omplete unfolding, the partial unfolding of a onnetedsimpliial omplex is not onneted in general. We denote by K̂(σ,v) theonneted omponent ontaining the labeled faet (σ, v). Clearly, K̂(σ,v) =

K̂(τ,w) holds if and only if there is a faet path γ from σ to τ in K with
〈γ〉(v) = w. It follows that the onneted omponents of K̂ orrespondto the orbits of the ation of Π(K, σ0) on V (σ0). Note that the ompleteunfolding, as well as eah onneted omponent of the partial unfolding isstrongly onneted and loally strongly onneted [65, Satz 3.2.2℄. Thereforewe do not distinguish between onneted and strongly onneted omponentsof an unfolding.The problem that K̃ and K̂ may not be simpliial omplexes an be ad-dressed in several ways. Izmestiev & Joswig [36℄ suggest baryentrially sub-
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Figure 1.4. Two simpliial omplexes with non-simpliial omplete and partial unfoldings.The omplex on the left has a trivial fundamental group, and the omplete unfolding isobtained by dupliating the marked enter edge. The partial unfolding onsists of fourpairwise disjoint opies of the omplete unfolding. On the right a ombinatorial 3-ballwhih exhibits a similar pathologial unfolding behavior.dividing the unfoldings, or anti-prismatially subdividing K: The Baryen-tri subdivision of any pseudo-simpliial omplex is a simpliial omplex, andthe unfoldings of the anti-prismati subdivision of K are PL-homeomorphito the unfoldings of K (see [36, Corollary A.1.6, Proposition A.1.7℄, or Corol-lary 1.13), while the unfoldings of any anti-prismatially subdivided omplexare simpliial [36, Proposition A.1.4, Proposition A.1.7℄. The anti-prismatisubdivision is de�ned in Setion 1.3.1.A more e�ient solution (with respet to the size of the resulting tri-angulations) is given in [65℄: Rather than subdividing all faes of the un-foldings, only the faes neessary to ensure simpliiality are (stellarly oranti-prismatially) subdivided. This tehnique relies on the fat that theunfoldings are loally strongly onneted as, mentioned before.1.2.4 Branhed Covers and the UnfoldingsThe main e�ort of this setion is to relate the topologial onept of thebranhed over to the anonial maps r : K̃ → K and p : K̂ → K ofthe unfoldings. As preliminaries to this setion we state two Theorems byFox [19℄ and Izmestiev & Joswig [36℄. Together they imply that under the�usual onnetivity assumptions� unfoldings of simpliial omplexes are in-deed branhed overs as suggested in the heading of this setion. For simpli-ial omplexes the analog of these topologial onnetivity requirements (seeSetion 1.1.1) are t-nie simpliial omplexes.



18 Covering and UnfoldingTheorem 1.6. (Izmestiev & Joswig [36, Theorem 3.3.2℄). The restritionof the omplete unfolding of a simpliial omplex to the preimage of theomplement of the odd subomplex is a overing. The same is true for eahomponent of the partial unfolding.Theorem 1.7. (Fox [19, p. 251℄; Izmestiev & Joswig [36, Proposition 4.1.2℄).Let f : J → K be a simpliial map, and let J and K be strongly onnetedand loally strongly onneted. The map f is a branhed over if and only if
codimKsing ≥ 2 .Sine the omplete unfolding and eah onneted omponent of the partialunfolding is strongly onneted and loally strongly onneted Corollary 1.8follows.Corollary 1.8. The omplete unfolding of a strongly onneted and loallystrongly onneted simpliial omplex is a branhed over with the odd sub-omplex as its branhing set. The same is true for eah omponent of thepartial unfolding.For the rest of this setion let K be a t-nie simpliial omplex. Also, werestrit ourselves from now on to the partial unfolding K̂. Assume that theation of Π(K, σ0) on V (σ0) has only one non-trivial orbit. In this ase werefer to the non-trivial onneted omponent of K̂, that is, the unique non-trivial onneted omponent orresponding to the non-trivial orbit, as thepartial unfolding. Further let y0 be the baryenter of |σ0|. Now p : K̂ → Kis a branhed over by Corollary 1.8, and Izmestiev & Joswig [36℄ proved that

Ksing = Kodd holds, and that there is a bijetion ı : p−1(y0) → V (σ0) thatindues a group isomorphism ı∗
∣∣
Mp : Mp → Π(S, σ0) suh that the followingDiagram (1.2) ommutes.

π1(|K| \ |Kodd|, y0)
mp

))SSSSSSSSSSSSSSSSS

hK

��

Π(S, σ0)� _

��

Mp

ı∗|Mp
oo

� _

��

Sym(V (σ0)) Sym(p−1(y0))
ı∗oo

(1.2)
In the ase that the Π(K, σ0)-ation has more than one non-trivial orbit,�x a set of generators of π1(|K| \ |Kodd|, y0) orresponding to losed (faet)paths around odd o-dimension 2-faes, and possibly further generators of

π1(|K|, y0). Now eah odd o-dimension 2-faes orresponds to exatly one



1.2 Unfoldings 19non-trivial orbit of the Π(K, σ0)-ation, and Kodd deomposes orrespond-ingly. In this spirit we an think of the empty set as the odd subomplexorresponding to a trivial orbit. As mentioned above, the onneted ompo-nents of K̂ orrespond one-to-one to the orbits of the Π(K, σ0)-ation. There-fore, in the ase where the Π(K, σ0)-ation has more than one (non-trivial)orbit, Diagram (1.2) has to be restrited to eah orbit of the Π(K, σ0)-ation,its orresponding omponent of the odd subomplex, and its orrespondingonneted omponent of K̂.Consider a t-nie simpliial omplex K, and a branhed over r : X → Z.Assume that there is a homomorphism of pairs ϕ : (Z,Zsing) → (|K|, |Kodd|),that is, ϕ : Z → |K| is a homomorphism with ϕ(Zsing) = |Kodd|. ThenTheorem 1.9 gives su�ient onditions for p : K̂ → K and r : X → Z to beequivalent branhed overs. It is the key tool in the onstrution of losedoriented ombinatorial 4-manifolds in Chapter 3.Theorem 1.9. Let K be a t-nie simpliial omplex, and let r : X → Z bea branhed over. Further assume that there is a homomorphism of pairs
ϕ : (Z,Zsing) → (|K|, |Kodd|), and let z0 ∈ Z be a point suh that y0 = ϕ(z0)is the baryenter of |σ0| for some faet σ0 ∈ K. The branhed overs p : K̂ →
K and r : X → Z are equivalent if there is a bijetion ι : r−1(z0) → V (σ0)that indues a group isomorphism ι∗ : Mr → Π(K, σ0) suh that the diagram

π1(Z \ Zsing, z0)

mr

��

ϕ∗
// π1(|K| \ |Kodd|, y0)

hK

��

Mr
ι∗ // Π(K, σ0)

(1.3)
ommutes. Here ϕ∗ is the group isomorphisms indued by ϕ. In partiular,we have K̂ ∼= X.Proof. Corollary 1.8 ensures that p : K̂ → K is indeed a branhed over, andommutativity of Diagram (1.2) and Diagram (1.3) proves ommutativity oftheir omposition:

π1(Z \ Zsing, z0)

mr

��

ϕ∗
// π1(|K| \ |Kodd|, y0)

mp

��

Mr

ı−1
∗ ◦ι∗

// MpTheorem 1.3 ompletes the proof.



20 Covering and Unfolding1.3 Color Equivalene of Simpliial ComplexesConsider two t-nie simpliial omplexes K and K ′. The (partial) unfoldingsof two homeomorphi simpliial omplexes need not to be homeomorphi ingeneral. Here we present su�ient riteria for K̂ ∼= K̂ ′ to hold. We remarkthat what follows are by no means neessary onditions. Assume K ∼= K ′and that the odd subomplexes Kodd and K ′
odd are equivalent, that is, thereis a homeomorphism of pairs ϕ : (|K|, |Kodd|) → (|K ′|, |K ′

odd|). In partiular,we have ϕ(|Kodd|) = |K ′
odd|. Let σ0 ∈ K be a faet, and y0 the baryenterof σ0, and assume that the image y′0 = ϕ(y0) is the baryenter of |σ′

0| forsome faet σ′
0 ∈ K ′. Now K and K ′ are olor equivalent if there is a bijetion

ψ : V (σ0) → V (σ′
0), suh that

ψ∗ ◦ hK = hK ′ ◦ ϕ∗ (1.4)holds, where the maps ϕ∗ : π1(|K| \ |Kodd|, y0) → π1(|K
′| \ |K ′

odd|, y
′
0) and

ψ∗ : Sym(V (σ0)) → Sym(V (σ′
0)) are the group isomorphisms indued by ϕand ψ, respetively. Observe that this is indeed an equivalene relation. Thename �olor equivalent� suggests that the pairs (K,Kodd) and (K ′, K ′

odd) areequivalent, and that the �olorings� of Kodd and K ′
odd by the Π(K, σ0)-ationof projetivities around odd faes are equivalent. Proposition 1.10 justi�esthis name.Proposition 1.10. Let K and K ′ be olor equivalent simpliial omplexes.Then the branhed overs p : K̂ → K and p′ : K̂ ′ → K ′ are equivalent.Proof. With the notation of Equation (1.4) we have that

π1(|K| \ |Kodd|, y0)
ϕ∗

//

mp

wwooooooooooooo

hK

��

π1(|K
′| \ |K ′

odd|, y
′
0)
mp′

''PPPPPPPPPPPPP

hK′

��

Mp
ı∗ // Π(K, σ0)

ψ∗
// Π(K ′, σ′

0) Mp′
ı′
∗ooommutes, sine the Diagram (1.2) ommutes and Equation (1.4) holds. The-orem 1.3 ompletes the proof.1.3.1 The Anti-prismati SubdivisionLet ck be the simpliial omplex obtained from the boundary omplex ofthe (k+ 1)-dimensional ross polytope by removing one faet. Alternatively,de�ne ck as the simpliial omplex arising from the Shlegel diagram of the

(k + 1)-dimensional ross polytope; see Ziegler [66℄. To be more expliit,



1.3 Color Equivalene of Simpliial Complexes 21let σ = {+vi}0≤i≤k be the verties of the k-simplex. Then the faets of ckare de�ned as all subsets σ′ 6= σ of {±vi}0≤i≤k suh that either +vi ∈ σ′or −vi ∈ σ′ holds. The omplex ck and the k-simplex are PL-homeomorphiwith isomorphi boundaries, and ck is (k + 1)-olorable by assigning thesame olor to +vi and −vi, as {+vi,−vi} is not an edge. The anti-prismatisubdivision af(K) of a k-fae f of a simpliial d-omplex K is obtainedfrom K by replaing stK(f) by the join of ck with lkK(f), that is
af (K) = (K \ stK(f)) ∪ (ck ∗ lkK(f)) .Observe that for a subomplex L ⊂ K the anti-prismati subdivision

af (L) equals the union of all faes of af (K) arising by subdividing faesof L. For an example of a 2-omplex with a subdivided edge and triangle seeFigure 1.5.Lemma 1.11. The anti-prismati subdivision af (K) of a fae f of any fold-able simpliial omplex K is again foldable.Proof. Fix a (d + 1)-oloring of the verties of K. Let {+v0,+v1, . . . ,+vk}denote the vertex set of f , and let σ = {+v0, . . . ,+vk, wk+1, . . . , wd} be afaet in stK(f) with +vi, respetively wi, olored by its index. Now assigningolor i to the verties ±vi, respetively wi, in af(σ) yields a (d+ 1)-oloringof af (σ). If σ 6∈ stK(f) olor the verties of the opy of σ in af(K) in thesame way as the verties of σ. (If one thinks of af(K) as an re�nement of K,then a faet σ ∈ K whih is not subdivided appears as a faet in af (K).However, here we onsider K and af (K) as distint objets and refer to theopy of σ in af(K).) The olorings of any two faets σ, τ ∈ K oinide in
σ ∩ τ , sine K is foldable. Thus the olorings of af (σ) and af (τ) oinide on
af (σ ∩ τ).Let σ ∈ stK(f) be a faet, and (with the notation from the proof above)
+vi ∈ f a vertex of σ. Then we de�ne −vi ∈ af(K) as the orrespondingvertex of +vi. The orresponding vertex of wi ∈ σ \ f is its opy in af (K).For a vertex w ∈ σ of a faet σ 6∈ stK(f) de�ne its orresponding vertex as itsopy in af(K). The orresponding vertex of a vertex v is denoted by v∗. Notethat if af(σ) is olored as in the proof of Lemma 1.11, v and v∗ are oloredthe same. Indued by the de�nition of the orresponding verties we obtainthe orresponding faet σ∗ ∈ af (K) for eah faet σ ∈ K; see Figure 1.5.The anti-prismati subdivision a(K) of a simpliial omplex K is de-�ned by reursively anti-prismatially subdividing all faes of K from thefaets down to the edges. Observe that af(K), and hene a(K), are PL-homeomorphi to K, and that af (K) and a(K) inherit t-nieness from K.
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+v0 +v1

w2

+v0

−v0
+v1−v1
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Figure 1.5. Choosing a orresponding faet path after anti-prismati subdivision of theedge {+v0, +v1} and a triangle. The orresponding faets are marked.Proposition 1.12. Let K be a t-nie simpliial omplex. The simpliialomplexes af(K), a(K) and K are olor equivalent.Proof. It su�es to prove that af(K) and K are olor equivalent. Firstobserve that odd(af (K)) = af (Kodd) holds: There are no odd o-dimension2-faes in af (σ ∪ τ) for any neighboring faets σ, τ ∈ K by Lemma 1.4, sine
af(σ ∪ τ) is (d + 1)-olorable by Lemma 1.11. As for a o-dimension 2-fae
g′ ∈ af (K) arising by subdivision of a o-dimension 2-fae g ∈ K, we have

lkaf (σ)(g
′) = c(f \ g) ∗ ((σ \ f) \ g) ,for eah faet σ ∈ stK(g). Here c(f \ g) denotes cdim(f\g) on the vertexset f \ g. Inspetion of the three ases f \ g is empty, a vertex, or an edge (gis a o-dimension 2-fae) yields that lkaf (σ)(g

′) is either an edge (in the �rsttwo ases) or c1. Thus the parity of lkaf (σ)(g
′) equals the parity of lkσ(g),and g′ is odd if and only if g is odd.This establishes the homeomorphism of pairs

ϕ : (|K|, |Kodd|) → (|af(K)|, | odd(af (K))|) ,sine af(K) and K are PL-homeomorphi.It remains to prove ommutativity of Equation (1.4). Choose σ0 ∈ K and
ψ : V (σ0) → V ((σ0)∗) : v 7→ v∗ .



1.4 Manifolds as Unfoldings 23For two neighboring faets σ, τ ∈ K, and any faet path γ(σ∗,τ∗) in af (σ ∪ τ)from σ∗ to τ∗, we have
(〈σ, τ〉(v))∗ = 〈γ(σ∗,τ∗)〉(v∗)by Lemma 1.11 and 1.4. Reall that the map v 7→ v∗ is de�ned for eah faetindividually: On the right-hand side of the equation above the star denotesthe image of the map V (τ) → V (τ∗), and on the left-hand side the image ofthe map V (σ) → V (σ∗).For a given faet path γ = (σ0, σ1, . . . , σl) hoose a orresponding path

γ∗ = γ((σ0)∗,(σ1)∗) γ((σ1)∗,(σ2)∗) . . . γ((σl−1)∗,(σl)∗) ,and we have ommutativity of the following diagram:
V (σ0)

〈σ0,σ1〉
//

∗

��

V (σ1)
〈σ1,σ2〉

//

∗

��

. . . 〈σl−1,σl〉
// V (σl)

∗

��

V ((σ0)∗)
〈γ((σ0)∗,(σ1)∗)〉

// V ((σ1)∗)
〈γ((σ1)∗,(σ2)∗)〉

// . . .
〈γ((σl−1)∗,(σl)∗)〉

// V ((σl)∗)Here the down arrows indiate the maps v 7→ v∗. Composition of the �rstrow yields the projetivity 〈γ〉, and omposition of the seond row yields theprojetivity 〈γ∗〉. For an example of a orresponding path see Figure 1.5.For any losed faet path based at σ0 ommutativity of the diagram aboveompletes the proof.Corollary 1.13 is an immediate onsequene of Proposition 1.12 and Propo-sition 1.10. It slightly generalizes an earlier result by Izmestiev & Joswig [36,Corollary A.1.6℄.Corollary 1.13. We have âf(K) ∼= K̂ for any t-nie simpliial omplex K.1.4 Manifolds as UnfoldingsFox [19℄ shows that the overing spae X of a branhed over p : X → Yis a PL-manifold, provided that Y is a PL-manifold, Ysing is a loally �atsubmanifold of o-dimension 2, and the index of branhing is �nite every-where. However, in the ourse of this exposition we will enounter branhingsets with singularities. In fat, for an arbitrary dimension d there are PL d-manifolds whih an not be obtained as branhed overs of the d-sphere overa loally �at submanifold of o-dimension 2; see Bernstein & Edmunds [4℄.Lemma 1.14 and Proposition 1.15 shed some light on the question, whatkind of singularities are allowed suh that the overing spae is a PL-manifold.



24 Covering and UnfoldingLemma 1.14. Coning and unfolding ommute, that is, for the ompleteunfolding of a simpliial omplexK, and for eah onneted omponent K̂(σ,w)of the partial unfolding we have
˜cone(K) = cone(K̃) and ̂cone(K)(σ,w) = cone(K̂(σ,w)) .Proof. A faet path γ = (σ0, σ1, . . . , σk) in K lifts uniquely to the faetpath γ∗ = (a ∗ σ0, a ∗ σ1, . . . , a ∗ σk) in cone(K) = a ∗ K with apex a.Furthermore, for any losed faet paths γ∗ in cone(K) based at a ∗ σ0 wehave 〈γ∗〉(v) = 〈γ〉(v) ∈ σ0 for any vertex v ∈ σ0, and 〈γ∗〉(a) = a. Ifone realls the relation ∼ in the onstrution of K̃, respetively K̂, it isimmediate that two (labeled) simplies σ, τ ∈ K are identi�ed if and onlyif a ∗ σ and a ∗ τ are identi�ed.Proposition 1.15. Let K be a ombinatorial d-manifold. Then K̃ is aombinatorial d-manifold if and only if l̃k(v) is a ombinatorial (d−1)-spherefor eah vertex v ∈ K. Similarly, a onneted omponent K̂(σ,w) of thepartial unfolding is a ombinatorial d-manifold if and only if l̂k(v)(σ,w) is aombinatorial (d− 1)-sphere for eah vertex v ∈ K.Proof. As a diret onsequene of Lemma 1.14 we have

lk eK
(w) = l̃kK(v) and lk bK(σ,w)

(w) = l̂kK(v)(σ,w)for eah vertex w in the preimage of v under the projetion K̃ → K, respe-tively K̃ → K.Remark 1.16. The omplete and partial unfolding of the vertex link of
v 6∈ Kodd is always a disjoint union of opies of lkK(v). Hene it su�es toverify the onditions of Proposition 1.15 for verties v ∈ Kodd.In the ase of the partial unfolding, reall that the odd subomplex de-omposes aording to the orbit struture of the Π(K)-ation, and that theonneted omponents of K̂ orrespond one-to-one to the orbits of the Π(K)-ation; see Setion 1.2.4. Hene it su�es to verify the onditions of Propo-sition 1.15 for verties in the omponent of Kodd orresponding to K̂(σ,w).If the odd subomplex Kodd of a ombinatorial d-manifold K is loally�at, then lk(v) is a ombinatorial (d−1)-sphere with a ombinatorial (d−3)-sphere as odd subomplex. From π1(|K| \ |Kodd|) ∼= Σ2 and the lassi�ationof the overing spaes via the subgroups of the fundamental group of thebase spae (see Setion 1.1), one dedues that l̃k(v) ∼= Sd−1 is the onneted



1.4 Manifolds as Unfoldings 25sum of two ombinatorial (d−1)-spheres (thus again a ombinatorial (d−1)-sphere), and l̂k(v) is the union of l̃k(v) and d − 1 opies of lk(v). HeneProposition 1.15 implies Fox's statement [19℄ for the unfoldings.To onlude this setion we examine the ase d = 3. For d = 4 there aretwo spei� singularities whih are essential for the onstrution of ombi-natorial 4-manifolds in Chapter 3, and they will be disussed therein. Westart the analysis of the ase d = 3 by remarking that following an easydouble ounting argument any ombinatorial 2-sphere has an even numberof odd verties. Thus any singular vertex v ∈ Kodd is inident to an evennumber ≥ 4 of odd edges.We �rst lassify the singular verties with four inident odd edges, thatis, singularities of the form cone(C), where C is a ombinatorial 2-spherewith four verties as its odd subomplex. Up to olor equivalene, there areonly two types Ca and Cb of ombinatorial 2-spheres with four odd verties,whih are lassi�ed by their group of projetivities: We have Π(Ca) ∼= Σ2and Π(Cb) ∼= Σ3; see Figure 1.6 and [36, Setion 5.3℄.

Figure 1.6. Triangulations of S2 of type Ca and Cb. The odd subomplex is marked.Proposition 1.17. Let K be a ombinatorial 3-manifold. Then K̃ is aombinatorial 3-manifold if and only if Kodd is loally �at. Eah onnetedomponent of K̂ is a ombinatorial 3-manifold if and only if the orrespond-ing omponent of Kodd is loally �at exept for singularities of the type
cone(Cb).Proposition 1.17 in not essential for the understanding of the rest of thisexposition, and will only motivate its result. Via omputation by hand or



26 Covering and Unfoldingaided by polymake [21℄, one establishes C̃a ∼= Ĉa ∼= C̃b are homeomorphito the torus, and Ĉb is again a 2-sphere. A triangulation of type Ca anbe obtained from the boundary omplex of the bipyramid over the 8-gon bystellar subdividing two opposite edges, eah adjaent to one of the apies.The boundary omplex of the 3-simplex is of type Cb; see Figure 1.6. The un-foldings of the boundary of the 3-simplex are disussed in [36, Setion 3.3.3℄.Now Proposition 1.15 proves Proposition 1.17 for singularities of the types
cone(Ca) and cone(Cb).As for a singular vertex v inident to six or more odd edges, there isalways a subsingularity of the type cone(Ca) ontained in st(v). Thus theunfoldings of lk(v) are not homeomorphi to S2.



Chapter 2Foldability and ObstrutionsFoldable simpliial omplexes are relevant in various �elds of mathematis.Here they are of interest sine foldable triangulations of lattie polytopes(with some additional properties) yield lower bounds for the number of realroots of ertain polynomial systems by Soprunova & Sottile [62℄. Their ap-proah and how to onstrut foldable triangulations of produts of lattiepolytopes from foldable triangulations of the fators are disussed in Chap-ter 4.In Chapter 3 foldable simpliial omplexes form the building bloks inthe onstrution of triangulations with a presribed odd subomplex. Theresulting omplexes are not foldable, and the main obstrution to foldabilityis their odd subomplex. In general, �foldable� and �empty odd subomplex�are equivalent for a simply onneted, t-nie simpliial omplex, hene thetitle of this hapter.After realling some fats about foldability and introduing basi de�ni-tions and notations, Setion 2.1 provides tehniques for extending foldable(partial) triangulations of various representations of topologial spaes. Firsta triangulation S and oloring of the (d − 1)-sphere is extended to a trian-gulation and oloring of the d-ball in Theorem 2.3. Here speial attention ispayed to regular extensions of regular triangulations, that is, S is the bound-ary omplex of a (simpliial) polytope. Further, we examine extensions oflattie triangulations. We also give upper bounds for the size of the extendedtriangulation. We proeed by extending Theorem 2.3 to partial triangula-tions of CW-omplexes and relative handlebody deompositions of dimensionat most 4. These tehniques are ruial in the onstrution of losed orientedombinatorial 4-manifolds in Chapter 3.Next we present a tool for the onstrution of simpliial omplexes with apresribed odd subomplex. The onstrution begins with a foldable simpli-ial omplex and uses stellar subdivision of edges. The simpliial omplexes27



28 Foldability and Obstrutions(and their odd subomplexes) obtained this way are not the ones used in theonstrution of ombinatorial 4-manifolds via the partial unfolding, but theysu�e for the onstrution of oriented PL 4-manifolds with a handlebodyrepresentation of the form H0 ∪ λ1H
1 ∪ λ2H

2.Finally we examine the onnetion between k-olorability and the groupof projetivities of a t-nie simpliial omplexes further. Here the questionarises whether (d+ 2)-olorability of a simply onneted, t-nie simpliial d-omplex K yields non-trivial upper bounds for the size of Π(K)? Conversely,does Π(K) ∼= Σ2 bound the hromati number of Γ(K) from above? Wepresent ounterexamples to both questions.Foldable simpliial omplexes. In Chapter 1 we de�ned a pure simpliial
d-omplex K to be foldable if K admits a non-degenerate simpliial map tothe d-simplex. Equivalently, the 1-skeleton Γ(K) of K is (d+ 1)-olorable inthe graph-theoreti sense: that is, there is a map c from the vertex set V (K)to the set [d + 1] suh that for eah edge {u, v} ∈ K we have c(u) 6= c(v).Here [k] = {0, . . . , k − 1} denotes the set of the �rst k integers. Notie thatthere is no oloring of the verties of K with less than d + 1 olors, sinethe d+ 1 verties of any faet form a lique. If K is strongly onneted andfoldable then the (d+ 1)-oloring of K is unique up to renaming the olors.Goodman & Onishi [27℄ observed that the 4-Color-Theorem [57℄ is equiv-alent to the property that eah simpliial 3-polytope admits a foldable tri-angulation (with or without additional verties in the interior).Remark 2.1. Other soures, inluding Billera & Björner [5℄, Stanley [63℄,Soprunova & Sottile [62℄, Izmestiev & Joswig [36℄, and Joswig [37℄, all fold-able simpliial omplexes �balaned.� However, this seems to reate on�itswith other onepts: A triangulation of a polygon whose dual graph is abalaned tree is sometimes alled �balaned�, and a minimal set of a�nelydependent verties of a polytope with an equal number of positive and neg-ative oe�ients is alled a �balaned� iruit in Bayer [3℄. Goodman &Onishi all foldable triangulations (of balls and spheres) �even.� However,this does not desribe the situation in the non-simply onneted ase. Forthese reasons we suggest the name �foldable� instead.Reall that Lemma 1.4 proves that the odd subomplex Kodd of a loallystrongly onneted and foldable simpliial omplex K is empty, and that thegroup of projetivities Π(K, σ0) is trivial. Conversely, for t-nie simpliialomplexes, we have that K is foldable if Π(K) = Π(K, σ0) is trivial. If,additionally, K is simply onneted, then Kodd = ∅ implies foldability; seeTheorem 1.5.



29Let K be a strongly onneted and foldable simpliial omplex of dimen-sion d, and �x a (d + 1)-oloring using the olors [d + 1] = {0, 1, . . . , d}.Then the {i0, i1, . . . , ik}-skeleton is the subomplex of K indued by the ver-ties olored {i0, i1, . . . , ik}. Observe that the {i0, i1, . . . , ik}-skeleton is apure simpliial omplex of dimension k. This de�nition of the {i0, i1, . . . , ik}-skeleton is not to be onfused with the k-skeleton, the olletion of all faesof dimension ≤ k.A triangulation K of the d-sphere is regular, if there is a (simpliial)
(d + 1)-polytope with K as its boundary omplex. In the ase that K is atriangulation of a d-polytope P , we all K regular if K an be lifted to d+1dimensions as a lower onvex hull. That is, if there is a onvex funtion
λ : Rd → R suh that K oinides with the polyhedral subdivision of Pindued by the lower onvex hull of the set

{
(v, λ(v)) ∈ Rd+1

∣∣ v ∈ V (K)
}
.In this ase λ is alled a lifting funtion for K. Regular triangulations areused widely in Chapter 4, and will be disussed therein.Consider two simpliial omplexes K and L, and a ontinuous map h :

|K| → |L| from a geometri realization |K| ofK to a geometri realization |L|of L. A simpliial approximation of h is a simpliial map h′ : K → L, whihfor eah vertex v ∈ K maps the open vertex star of v into the open vertexstar of h′(v). Although suh a simpliial approximation does not exist ingeneral, there is always a simpliial approximation h′ : K ′ → L, where K ′is a re�nement of K. If K is �nite, then the (�nitely) iterated baryentrisubdivision of K su�es; see Munkres [50, � 16℄. Alternatively, the anti-prismati subdivision an be used to re�ne K if K is �nite [36, A.1.1℄.Representations of Topologial Spaes. We de�ne a CW-omplex fol-lowing Hather [28, p. 5℄. The de�nition is indutively: The 0-skeleton X0is a disrete set of points, alled the 0-ells. The k-skeleton Xk is on-struted from the (k − 1)-skeleton Xk−1 by attahing k-balls Ck
α via maps

ϕα : ∂Ck
α → Xk−1. Here ∂Ck

α denotes the boundary of Ck
α. That is, Xk is thequotient spae obtained from the disjoint union of Xk−1 and the olletionof k-balls {Ck

α}α by the identi�ations x ∼ ϕα(x) for x ∈ ∂Ck
α. Thus

Xk = Xk−1 ·∪
⋃

α

· ekαis the disjoint union of Xk−1 and an open k-ball ekα for eah k-ball in {Ck
α}α.The open k-balls {ekα}α are alled the k-ells, and the k-balls {Ck

α = cl(ekα)}αare the losed k-ells. The dimension of the highest non-empty skeleton



30 Foldability and Obstrutionsdetermines the dimension of X, that is, if all ells are of dimension d orless, then X = Xd is of dimension d. From now on we only onsider CW-omplexes X with a �nite number of ells. In partiular the dimension of Xis de�ned.A CW-omplex is regular if eah attahing map ϕα : ∂Ck
α → Xk−1 isa homeomorphism, and the image ϕα(∂Ck

α)
∼= Sk−1 is ontained in a �nitenumber of ells of a lower dimension. A (regular) CW-omplex X home-omorphi to a given spae |X| is alled a (regular) ell deomposition. Asan example onsider the ell deomposition of Sk obtained by attahing two

k-ells to a ell deomposition of Sk−1.We present a di�erent deomposition of topologial spaes. Let N be atopologial spae and R ⊂ N a subspae. A relative handlebody deomposi-tion of the pair (N,R) is a sequene
R = N−1 ⊂ N0 ⊂ N1 ⊂ · · · ⊂ Nd = Nof subspaes, where Nk is obtained from Nk−1 by attahing a �nite num-ber of k-handles {Hk

α}α; see Glaser [25, Vol. II, p. 49℄. Eah k-handle
Hk
α = Dk ×Dd−k is attahed to the boundary of Nk−1 via a PL-embedding

fα : ∂Dk ×Dd−k → ∂Nk−1, and we require the images of the maps {fα}α tobe pairwise disjoint:
Nk = Nk−1 ∪

⋃

fα

· Hk
αWe all a relative handlebody deomposition of the pair (N, ∅) a handlerepresentation of N .Example 2.2. Eah �nite PL d-manifoldM admits a handle representation

M = H0 ∪ λ1H
1 ∪ λ2H

2 ∪ · · · ∪ λd−1H
d−1 ∪Hd .Here we suppressed the attahing maps of the handles in the notation. Thespae Nk = H0 ∪ λ1H

1 ∪ · · · ∪ λkH
k is obtained from Nk−1 by attahing λkopies of a k-handle via their attahing maps. A handle representation maybe obtained from any triangulation T of M by hoosing an i-handle for eah

i-faes of T . In order to get a handle representation with a single 0-handle,hoose a spanning tree of the 1-skeleton of T . The edges of T ontainedin the spanning tree together with the verties of T orrespond to a single0-handle. We then attah the 1-, 2-, . . . , d-handles as before. Similarly, allthe ridges of T orresponding to edges in a spanning tree of the dual graphof T together with the faets of T orrespond to a single d-handle.



2.1 Extending Triangulations 312.1 Extending TriangulationsIn this setion we address the following problem: Given a partial triangula-tion of some spae T , how an we �nd a triangulation of the entire spae Twhile preserving ertain properties. We are interested in partiular in pre-serving k-olorability, whih proves ruial in the onstrution of ombinato-rial 4-manifolds in Chapter 3, and regularity. The triangulated part mightbe low dimensional, e.g. parts of the boundary of a PL-manifold. The keyexample is the extension of a triangulation of Sd−1 to a triangulation of Dd;see Theorem 2.3. Here we are interested in preserving (or bounding) thehromati number of the graph of the extended triangulation, that is, wewant to extend the partial triangulation and a given oloring to a triangula-tion and oloring of T . Additionally we are interested in extending boundaryomplexes of simpliial polytopes to regular triangulations.A �rst assault on this question is by Goodman & Onishi [27℄, who provedthat a 4-olorable triangulation of S2 may be extended to a 4-olorable trian-gulation of D3. Their result was improved independently by Izmestiev [35℄and [65℄ to arbitrary dimensions. The proofs in [35℄ and [65℄ are similar,and we only give a sketh of the onstrution here sine Theorem 2.3 is astronger result. Let S be a k-olored ombinatorial (d − 1)-sphere, and wewant to extend S to a max{k, d+1}-olored triangulation B of Dd. We have
k ≥ d and in the ase k = d set B = cone(S). Otherwise observe that thelink lkS(v) of a vertex v ∈ S is a (k−1)-olored ombinatorial (d−2)-sphere,and we may extend the triangulation of lkS(v) to a max{k − 1, d}-oloredtriangulation Bv of Dd−1 by indution. Choose one olor c0, and let C bethe set of all c0-olored verties. Note that the interiors of stS(v) and stS(w)are disjoint for any two distint verties v, w ∈ C, sine v and w are oloredthe same. Now we �over� eah vertex v ∈ C by adding v ∗ Bv to S, and Ban be ompleted by oning, that is,

B = cone
((
S \

⋃

v∈C

stS(v)
)
∪

⋃

v∈C

Bv

)
∪

⋃

v∈C

v ∗Bv .The apex is olored c0; see Figure 2.1 (�rst row).2.1.1 Extending Regular Triangulations of the SphereIn Theorem 2.3 we assume S to be the boundary of a simpliial polytopeand require B to be a regular triangulation. Surprisingly, the onstrution inthe proof of Theorem 2.3 yields the same triangulation as the proofs in [35℄and [65℄.
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eτe

Figure 2.1. Two ways to extend a triangulation S of S1 and its oloring to D2. In the�rst row verties with one �xed olor are �overed�. The triangulation in the seond rowis obtained by stellar subdivision of on�iting edges in cone(S). A on�iting edge e andits orresponding fae τe are marked.Theorem 2.3. Let S be a k-olored ombinatorial (d − 1)-sphere. Thenthere exists a ombinatorial d-ball B with boundary ∂B equal to S suh thatthe oloring of S may be extended to a max{k, d+ 1}-oloring of B.The d-ball B an be derived from the one over S by a �nite sequene ofstellar subdivisions of edges. In partiular, if S is regular then B is regular.Proof. The d-ball B is onstruted from the one v0 ∗ S over S with apex v0by a �nite series of stellar subdivisions of edges. If S is regular then B isregular sine v0∗S is regular, and stellar subdivision of an edge is a polytopaloperation; see Ziegler [66℄. Similarly, B is a ombinatorial d-ball, sine v0 ∗Sis a ombinatorial d-ball and stellar subdivision of edges does not hange thePL-type.It remains to show how to suessively subdivide edges of v0 ∗ S suhthat the resulting triangulation B is olorable using max{k, d + 1} olors,suh that ∂B = S, and the oloring of ∂B and S oinide. Note that thease k = d is trivial as we may assign a new olor to v0. Hene we assume
k ≥ d+ 1, and we hoose any d+ 1 olors from the k olors used to olor S.Without loss of generality we assume these d+ 1 olors to be 0, 1, . . . , d.



2.1 Extending Triangulations 33We assign the olor 0 to v0, and subdivide on�iting edges, that is,edges with their both verties olored the same, in a sequene of d steps
v0 ∗ S = B0, B1, . . . , Bd = B. To obtain Bi from Bi−1 we stellarly subdivideall on�iting edges with verties olored i − 1 of Bi−1 and olor the newverties i. Let the set of verties introdued in the onstrution of Bi be Vi,and let V0 = {v0}. For the rest of this proof �x a geometri realization |B0|of B0. In the ase S, and hene B0, is regular, hoose |B0| to be onvex.A geometri realization of Bi is obtained by assigning the baryenter of eto a new vertex introdued when subdividing an edge e, and we hoose theindued geometri realization for any subomplex of Bi. Further let ‖K‖be the set union of all geometri simplies of a geometri realization |K| ofa simpliial omplex K. We prove by indution on i = 0, 1, . . . , d that thefollowing holds:(1) S = ∂Bi and the oloring of ∂Bi and S oinide.(2) The verties of a on�iting edge {v, w} ∈ Bi are olored i, and v ∈ Viand w ∈ S. In partiular there are no on�iting edges in S.(3) For eah on�iting edge e ∈ Bi there is a (i + 1)-fae τe ∈ B0, suhthat ‖ stB0(τe)‖ = ‖ stBi

(e)‖ holds, and τe is olored 0, 0, 1, . . . , i in theoloring of B0. We all τe the orresponding fae of e.(4) The interiors of | stBi
(e)| and | stBi

(e′)| of two on�iting edges e and e′are disjoint.We �rst remark, that (3) implies that B = Bd has no on�iting edges,sine the orresponding fae τe ∈ B0 of a on�iting edge e would havedimension d+1, yet B0 is only d-dimensional. In order to make this onlusionmore transparent, onsider the seond to last step Bd−1. A on�iting edge
e ∈ Bd−1 has a faet of B0 as its orresponding fae τe, and τe is olored
0, 0, 1, . . . , d− 1. By (3) we have

‖ stB0(τe)‖ = ‖τe‖ = ‖ stBi
(e)‖ ,thus all edges {v, w} arising when stellarly subdividing e (in the last step)have a d-olored vertex v ∈ Vd, and w is either in V0∪V1∪ . . . Vd−1 or a vertexof τe. Yet all verties in V0 ∪ V1 ∪ . . . Vd and in τe are olored with a olorless than d, and no on�its arise in the last step. Thus B is max{k, d+ 1}-olorable, and is an extension of S by (1).Conditions (1) and (2) are immediate for B0 = v0 ∗ S by onstrution,and for a on�iting edge e we set τe = e, hene (3) holds. The link ofa on�iting edge {v, w} ∈ B0 with w ∈ S equals lkS(w), thus there are



34 Foldability and Obstrutionsno further 0-olored verties in lkS(w), and no other on�iting edge areontained in stB0({v, w}) = {v, w} ∗ lkS(w). This establishes (4) for B0.Now let i ≥ 1. By (4) we an perform the stellar subdivisions of on�itingedges in Bi−1 independently. Sine there are no on�iting edges in S ⊂ Bi−1by indution, (1) is valid for Bi. In partiular Vi ∩ S = ∅ holds. Eahon�iting edge e of Bi−1 is subdivided introduing a new vertex ve ∈ Violored i. Introduing ve only auses on�its with verties in S, sine theverties in V0 ∪ V1 ∪ . . . Vi−1 are olored with olors less than i by indution,thus (2) holds for Bi.Let {v, w} be a on�iting edge with v ∈ Vi and w ∈ S. The vertex v wasintrodued by stellar subdivision of an edge ev ∈ Bi−1 in the onstrutionof Bi, and we set τ{v,w} = w ∗ τev . The fae τ{v,w} is olored 0, 0, 1, . . . , i− 1by indution, and w is olored i. Further we have
‖ stBi

({v, w})‖ = ‖ stBi
(v)‖ ∩ ‖ stBi

(w)‖ = ‖ stB0(τev)‖ ∩ ‖ stBi
(w)‖

= ‖ stB0(w ∗ τev)‖ = ‖ stB0(τ{v,w})‖
(2.1)by indution, whih settles (3). Finally, let {v, w} and {v′, w′} be two on-�iting edges in Bi. Then by Equation 2.1 | stBi

({v, w})| ⊂ | stB0(τev)| =
| stBi−1

(ev)| and | stBi
({v′, w′})| ⊂ | stB0(τev′

)| = | stBi−1
(ev′)|. It followsthat the interiors of | stBi

({v, w})| and | stBi
({v′, w′})| are disjoint, sine

| stBi−1
(ev)| and | stBi−1

(ev′)| are disjoint by indution. Thus (4) holds for Bi,and the proof is omplete. For an illustration of the ase d = 2 see Figure 2.1(seond row) and Figure 2.2.
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Figure 2.2. Convex hull of the extended triangulation of a 7-gon and its Shlegel diagram.Remark 2.4. In the ase that S is the boundary omplex of some simpliialpolytope P , then the triangulation B of P is atually shlegel, that is, thereexists a onvex lifting of B suh that the verties of ∂B lie in a hyperplane.



2.1 Extending Triangulations 35Remark 2.5. Algorithmially the onstrution omes down to onseutivestellar subdivision of all on�iting edges of cone(S) while taking are whiholor is assigned to the new vertex. Theorem 2.3 proves termination of thealgorithm.2.1.2 Regular Triangulations of Lattie PolytopesRegular triangulations of lattie polytopes are instrumental for various appli-ations. Here we would like to point out the algebrai appliation disussedin Chapter 4. Additionally onditions like ertain oloring restritions maybe requested as well. We will apply Theorem 2.3 to vertex olored simpliiallattie polytopes suh that triangulation and oloring may be extended tothe interior of the polytope using only lattie points as new verties.Theorem 2.6. Let P be a simpliial lattie d-polytope with a k-oloredgraph, that is, we assume that its vertex oordinates are integral. If all ver-ties of the baryentri subdivision of cone(∂P ) are lattie points, then thereexists a regular lattie triangulation of P whih is max{k, d + 1}-olorable,and the triangulation and the oloring of P extend the triangulation and theoloring of ∂P .The maximal denominator of the vertex oordinates of the baryentrisubdivision of a rational d-polytope P is at most 2d times as large as themaximal denominator of the vertex oordinates of P . Hene the followingorollary.Corollary 2.7. If P is obtained from a simpliial lattie d-polytope by multi-pliation with 2d, then there exists a regular lattie triangulation of P whihis max{k, d+1}-olorable, and the triangulation and the oloring of P extendthe triangulation and the k-oloring of ∂P .Proof of Theorem 2.6. We prove that under the onditions of Theorem 2.6the verties introdued in the proof of Theorem 2.3 an be realized as lattiepoints, and we refer to the notation of the proof of Theorem 2.3. Let e bea on�iting edge, and reall the de�nition of its orresponding fae τe ∈
cone(∂P ). Conversely, any fae τ ∈ cone(∂P ) orresponds to at most oneritial edge: Let e and e′ be ritial edges in some Bi and Bj. First notethat if i 6= j the faes τe and τe′ have di�erent dimensions by (3). In the ase
i = j the interiors of ‖ stBi

(e)‖ = ‖ stB0(τe)‖ and ‖ stBi
(e′)‖ = ‖ stB0(τe′)‖ aredisjoint by (4) and (5).Choosing the baryenter of τe as oordinates for the vertex introdued tosubdivide a on�iting edge e ompletes the proof.



36 Foldability and Obstrutions2.1.3 Size of the Extended TriangulationThe triangulation onstruted in the proof of Theorem 2.3 is small in thesense that the expeted number f0(B) of verties of the triangulated d-ball Bis bounded by the number f1(S) of edges of the original (d − 1)-sphere Sfor d ≥ 4. Again we refer to the notation in the proof of Theorem 2.3. In thease d < 4 the expeted value of f0(B) is bounded asymptotially by f1(S).The triangulation of B depends on the order of the d+ 1 olors assignedto the verties in V0, V1, . . . , Vd. Coloring the verties in Vi with σ(i) for somepermutation σ of [d+ 1] is an ordering of the olors.Theorem 2.8. The expeted number E(f0(B)) (with respet to di�erentorderings of the olors) of verties of the extended triangulation B of S isbounded by
E(f0(B)) ≤ 1 + f0(S)

d+ 2

d+ 1
+ f1(S)

2(d− 1)

d(d+ 1)
.For d ≥ 4 the expeted number E(f0(B)) of verties of B is bounded by thenumber of edges of S

E(f0(B)) ≤ f1(S) .Rather than proving Theorem 2.8 diretly, we will reformulate the prob-lem as a ounting problem for weighted edges of a graph. We want to estimatethe number of on�iting edges arising in the onstrution of Bi from Bi−1for 1 ≤ i ≤ d − 1. Reall that no on�iting edges arise in the onstrutionof Bd, and the on�iting edges in B0 will be taken are of later.Let σ be an ordering of the olors [d + 1], let e ∈ Bi−1 be a on�itingedge, and let u be the end point of e ontained in S. Further let v ∈ Vibe the new vertex introdued when subdividing e, and let {v, w} ∈ Bi be aon�iting edge resulting from the subdivision of e. Then w is olored σ(i)and w ∈ lkS(u) ⊂ S, hene there is an edge in S olored {σ(i − 1), σ(i)}for eah on�iting edge in Bi. Conversely, for eah edge e ∈ S olored
{σ(i−1), σ(i)} there is at most one new vertex introdued in the onstrutionof Bi: Let w be the σ(i)-olored vertex of e. Sine w ∈ S = ∂Bi and sinethe interiors of the stars of two on�iting edges in Bi are disjoint, w annotbe inident to two on�iting edges.This observation motivates the following assignment of weights to theedges E(Γ(S)) of the graph Γ(S) of S. Let c(v) ∈ [d+ 1] denote the olor of



2.1 Extending Triangulations 37a vertex v ∈ S and let σ be a �xed permutation of [d+ 1].
wσ : E(Γ(S)) → {0, 1}

{v, w} 7→





1
if |σ−1(c(v)) − σ−1(c(w))| = 1and (c(v)) 6= σ(d) 6= (c(w))

0 otherwise.Lemma 2.9. The expeted value E of the sum of all edge weights wσ of Γ(S)for a permutation σ of [d+ 1] is
E

( ∑

e∈E(GS)

wσ(e)

)
= |E(GS)|

2(d− 1)

d(d+ 1)
.Proof. The expeted value of ∑

e∈E(GS) wσ(e) for some ordering σ equals theaverage over all orderings
1

(d+ 1)!

∑

σ

∑

e∈E(GS)

wσ(e) =
1

(d+ 1)!

∑

e∈E(GS)

∑

σ

wσ(e) . (2.2)Note that the two sums are both �nite, hene the equality.For an edge {v, w} ∈ E(GS) we ount all permutations σ suh that
wσ({v, w}) = 1 holds. There are d hoies for σ−1(c(v)) and another twofor σ−1(c(w)), unless σ−1(c(v)) = 0 or σ−1(c(v)) = d, summing up to
2d − 2 = 2(d − 1) hoies for σ−1(c(v)) and σ−1(c(w)). This �xes two ofthe d+ 1 hoies of σ, hene there is a total of 2(d− 1)(d− 1)! permutationswith wσ({v, w}) = 1, and Equation 2.2 yields the desired result
E

( ∑

e∈E(GS)

wσ(e)

)
=

1

(d+ 1)!

∑

e∈E(GS)

2(d− 1)(d− 1)! = |E(GS)|
2(d− 1)

d(d+ 1)
.Proof of Theorem 2.8. We assume that the (d− 1)-sphere S is olored withexatly d+ 1 olors sine the expeted number of verties of B dereases forolorings using less or more than d+1 olors. There is one new vertex inB0 forthe apex and some expeted f0(S)/(d+ 1) on�iting edges arise in the on-strution of B0 regardless of the ordering σ of the olors. In the onstrutionof the triangulations B we add another expeted 2f1(S) (d− 1)/(d(d+ 1))on�iting edges by Lemma 2.9. This proves the �rst statement of Theo-rem 2.8:

E(f0(B)) ≤ 1 +
f0(S)

d+ 1
+ f1(S)

2(d− 1)

d(d+ 1)
+ f0(S)

= 1 + f0(S)
d+ 2

d+ 1
+ f1(S)

2(d− 1)

d(d+ 1)
.



38 Foldability and ObstrutionsSine S is a (d− 1)-sphere the vertex degree of eah vertex in Γ(S) is atleast d, hene d f0(S) ≤ 2f1(S), and
E(f0(B)) ≤ 1 + f1(S)

2(d+ 2)

d(d+ 1)
+ f1(S)

2(d− 1)

d(d+ 1)

= 1 + f1(S)
4d+ 2

d(d+ 1)
.We want to bound the right hand side of the equation above by f1(S), whihis equivalent to

1 ≤ f1(S)

(
1 −

4d+ 2

d(d+ 1)

)
. (2.3)The expression 1− (4d+ 2)/(d(d+ 1)) is positive for all integers d ≥ 4 (andnegative for all positive integers d ≤ 3).PSfrag replaements 5 10 15 200.5-0.5-1-1.5-2Reall that f1(S) ≥

(
d+1
2

) holds (with equality in the ase that S is theboundary of the d-simplex), thus for d ≥ 4 Equation 2.3 yields
1 ≤ f1(S)

(
1 −

4d+ 2

d(d+ 1)

)
≤

(d+ 1)(d)

2

(
1 −

4d+ 2

d(d+ 1)

)

=
d(d+ 1)(d2 − 3d− 2)

2d(d+ 1)
=

1

2
(d2 − 3d− 2) .The equation above holds for d ≥ 4, and hene proves the seond statementof Theorem 2.8.Remark 2.10. The seond statement of Theorem 2.8 does not hold for d ≤ 3.Let S be the boundary of d-simplex, then B is the anti-prismati subdivisionof the d-simplex, where only the d-simplex itself and no low-dimensional faes



2.1 Extending Triangulations 39are subdivided, thus f0(B) = 2(d + 1). The number of edges of S is (
d+1
2

)and the bound of the �rst statement is tight for any ordering σ of the olors:
2(d+ 1) = f0(B) ≤ 1 + (d+ 1)

d+ 2

d+ 1
+

(d+ 1)d

2
·
2(d− 1)

d(d+ 1)
= 2(d+ 1) .Thus B has six verties for d = 2 and eight verties for d = 3, yet S hasonly three, respetively six edges. Nevertheless, beause of f0(S) ≤ f1(S) wealways have the asymptoti behavior E(f0(B)) = O(f1(S)).2.1.4 Partial Triangulations of Regular CW-ComplexesIn this setion Theorem 2.3 is exploited to extend partial triangulations andolorings of more general spaes. The main e�ort is dediated to extendingpartial triangulations of regular CW-omplexes of dimension at most 4, sinethis tehnique is essential in the onstrution of ombinatorial 4-manifoldsin Chapter 3. Further we investigate how to extend a partial triangulationalong a relative handlebody deomposition of a pair (N,R), that is, givena triangulation and oloring of R, extend the triangulation and oloring toeah of the handles of the handlebody deomposition, and subsequently to atriangulation of N .Let X be a CW-omplex of dimension d with l-ells {elα}α and losedells {C l

α}α = {cl(elα)}α. We all a simpliial omplex K ∼= X a triangulationof X, if K re�nes the ell struture of X, that is, the (d−1)-skeleton of K isa triangulation of the CW-omplex Xd−1. A triangulation of a 0-dimensionalCW-omplex is the set of 0-ells.A subset Y ⊂ {elα}α is alled a subomplex if for eah losed ell C l
α ∈ Yall ells in the image of fα : C l

α → X l−1 are also in Y . Hene Y is also a CW-omplex, and Y is regular if X is regular. For example, any l-skeleton X l isa subomplex of X. We all a triangulation of a subomplex Y ⊂ X a partialtriangulation of X.Proposition 2.11. Let X be a regular CW-omplex of dimension at most 4,and let Y ⊂ X be a subomplex. Then any triangulation and k-oloring of Y lan be extended to a triangulation and max{k, l + 1}-oloring of X l.Proof. We prove by indution on 1 ≤ i ≤ l that there exists a triangulationof the i-skeleton X i whih an be olored with max{k, i+1} olors suh thatthe triangulation and oloring of X i extend the triangulation and oloringof Y i. This learly holds for i = 0, and for i = l we get Proposition 2.11.Let i ≥ 1 and let eiα be an i-ell of X i not ontained in Y i. By indu-tion X i−1 is triangulated and olored using max{k, i + 1} olors, and the



40 Foldability and Obstrutionstriangulation of X i−1 extends triangulation and oloring of Y i−1. Sine X isregular, the image of the attahing map fα : Ci
α → X i−1 is a (i−1)-sphere in-dued by the triangulation of X i−1. Sine i ≤ d is at most 4, every simpliial

(i − 1)-sphere is a ombinatorial (i − 1)-sphere. Now Theorem 2.3 extendstriangulation and oloring to the entire i-ball Ci
α. Sine the i-balls {Ci

α}αinterset pairwise only in X i−1, extending the triangulation of the bound-ary of Ci
α to its interior for eah i-ell eiα yields the desired triangulationof X i.Partial triangulation of a relative handlebody deomposition. Thetehnique of extending a triangulation and oloring along a relative han-dlebody representation will not be applied in the ourse of this exposition.However, it is a useful tool in onstruting triangulations with ertain olor-ing properties and is applied in the onstrution of ombinatorial 3-manifoldsby Izmestiev & Joswig [36℄. In the following we generalize this tehnique todimension 4.Proposition 2.12. For d ≤ 4 onsider a relative handle deomposition

|R| = N−1 ⊂ N0 ⊂ · · · ⊂ Nd = Nof the pair (N, |R|) and let R be a triangulation of |R|. Then the trian-gulation R and a k-oloring of R may be extended to a triangulation and
k-oloring of N .Proof. Observe that we may have to re�ne the triangulation of ∂N i−1 whenattahing an i-handle H i

α via its attahing map fα : ∂Di ×Dd−i → ∂Ni−1 inorder to �nd a simpliial approximation of fα. In general this an be attainedby anti-prismati subdivision of faes in ∂Ni−1 by Lemma 1.11 and [36, A.1.1℄,but problems arise if the fae to be subdivided is in ∂R, sine we do not wantto hange the triangulation R. To remedy this inonveniene we extend thetriangulation ∂R to a triangulation of the CW-omplex ∂R × [0, 1] withprisms over (d− 1)-simplies as d-ells. Now the handles are attahed to the(possible re�ned) triangulation ∂R × {1}.To this end let σ be a non-trivial, yli permutation of the olors of theoloring of ∂R. The verties in ∂R×{0} are olored as in ∂R and the vertexolors in ∂R× {1} are permuted aording to σ, de�ning a k-oloring of the1-skeleton Γ(∂R × [0, 1]). Proposition 2.11 extends the triangulation and k-oloring of Γ(∂R× [0, 1]) to ∂R× [0, 1], only we do not subdivide g×{0} forany faet g ∈ ∂R (it is a simplex after all). Hene we assume the embeddings
{fα}α to be ompatible with the triangulation of ∂Ni−1 from now on.



2.2 The Odd Subomplex 41The rest of the proof is by indution on the dimension d of N . Notethat �attahing� a 0-handle is always trivial sine we may use any foldabletriangulation of Dd, e.g. the d-simplex. Proposition 2.12 holds for d = 0sine there are only 0-handles to attah: N (and R) is a olletion of disretepoints, and all points in N \R may be olored using the same olor.Let d ≥ 1, and let H i
α be an i-handle attahed to Ni−1 via some embed-ding fα. Sine the images of the maps {fα}α are pairwise disjoint, we mayonsider eah i-handle in {H i

α}α individually. Now f−1
α indues a triangula-tion of ∂Di×Dd−i ⊂ ∂H i

α, and triangulation and oloring of ∂Di×Dd−i maybe extended to a k-olored triangulation of ∂H i
α along a relative handle de-omposition of the pair (∂H i

α, ∂Di×Dd−i) by indution. Theorem 2.3 extendsthe triangulation and oloring of ∂H i
α to H i

α and ompletes the proof.Remark 2.13. Propositions 2.11 and 2.12 are not appliable in higher di-mensions. For example, let H be a triangulation of the Poinaré homologysphere; see Björner & Lutz [9, 8℄ and [65℄. The double suspension susp2(H)is homeomorphi to S5, yet not a ombinatorial sphere: There are two ver-ties with susp(H) 6∼= S4 as vertex links. Consider the ell deomposition,respetively handlebody deomposition of the 6-ball given by the triangula-tion susp2(H) of S5 plus an additional 6-ell, respetively 6-handle. Now, ifTheorem 2.3 is used when attahing the �nal 6-ell, respetively 6-handle,one an not apply the indutive argument for the two verties with susp(H)as vertex links.
2.2 The Odd SubomplexThe odd subomplex plays a ruial role in the study and lassi�ation of theunfoldings; see Setion 1.2. In a simply onneted, t-nie simpliial omplexthe odd subomplex is the key obstrution to foldability by Theorem 1.5and the observations about the group of projetivities and foldability at thebeginning of this hapter.Reall the de�nition from Chapter 1 of an odd fae: A o-dimension 2-fae f ∈ K of a loally strongly onneted simpliial omplex K is odd, if
Γ(lk(f)) is not bipartite. The odd subomplex is the olletion of all odd faestogether with their proper faes.



42 Foldability and Obstrutions2.2.1 Presribing the Odd SubomplexTheorem 1.9 made it lear, that it is essential to ontrol the odd subomplexif one tries to determine the unfoldings, e.g. in the onstrution of ombina-torial manifolds as partial unfolding of a triangulation of the sphere. In thefollowing we present the two tehniques used in Chapter 3. Additionally wepresent one negative result onerning the odd subomplex of the boundary.Proposition 2.14. Let K be a foldable ombinatorial manifold of dimen-sion d and let F be a o-dimension 1-manifold (possibly with more than oneonneted omponent) embedded in the {i0, i1, . . . , id−1}-skeleton of K. Fur-ther assume that all faets (and their proper faes) of ∂F not ontainedentirely in ∂K, for short the losure cl(∂F \ ∂K), are embedded in the
{i0, i1, . . . , id−2}-skeleton. Then cl(∂F \ ∂K) an be realized as the oddsubomplex of some simpliial omplex K ′, that arises from K by stellarsubdivision of edges in the {id−1, id}-skeleton. The omplex K ′ is (d + 2)-olorable by extending the oloring of K, and the odd subomplex lies in the
{i0, i1, . . . , id−2}-skeleton.Proof. Every (d−1)-simplex in F has exatly one id−1-olored vertex sine Fis foldable. Hene the vertex stars of all id−1-olored verties over F , that is,

F =
⋃

v is id−1-olored stF (v), (2.4)and the vertex stars interset in the {i0, i1, . . . , id−2}-skeleton. Further, a
(d − 2)-fae g ∈ F (a ridge in F ) is ontained in an odd number of vertexstars of id−1-olored verties of F if and only if g ∈ ∂F sine F is an embeddedombinatorial manifold.Observe that stellar subdivision of an edge e hanges the parity of lkK(g)of eah o-dimension 2-fae g ∈ lkK(e) \ ∂K: First, a o-dimension 2-faein the boundary of a ombinatorial manifold is never odd. Sine K is aombinatorial manifold, the link of any o-dimension 2-fae g 6∈ ∂K is atriangulation of S1. Hene g is odd if and only if lkK(g) has an odd numberof edges. Stellar subdivision of e inreases the number of edges in lkK(g) forany o-dimension 2-fae g ∈ lkK(e)\∂K by one, and an odd fae will beomeeven and vise-versa. The odd subomplex resulting from a series of stellarsubdivisions of edges is the symmetri di�erene of the edge links.Sine K is a ombinatorial manifold the vertex star stK(v) of an id−1-olored vertex v ∈ F is a d-ball, whih is the join of v with an (i0, i1, . . . , id−2, id)-olored (d−1)-ball if v ∈ ∂K, and whih is the join with an (i0, i1, . . . , id−2, id)-olored (d− 1)-sphere otherwise. The vertex star stF (v) divides stK(v) intotwo onneted omponents, and we will all these two onneted ompo-nents of | stK(v)| \ | stF (v)| the two sides of stF (v), mimiking the topologial



2.2 The Odd Subomplex 43onept of a two-sided manifold (embedded in an orientable spae); see Fig-ure 2.3 for a 2-dimensional example. The link lkK({v, w}) of an {id−1, id}-olored edge {v, w} ∈ stK(v) is a (d − 2)-sphere in the {i0, i1, . . . , id−2}-skeleton of ∂ stK(v). Moreover, the vertex stars of all {id−1, id}-olored edges
{v, w} ∈ stK(v) over lkK(v). Thus if we stellar subdivide all {id−1, id}-edgesin one side of stF (v) we obtain lkF (v) as the odd subomplex.
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Figure 2.3. Vertex star of an 0-olored vertex v ∈ F , on the right after stellar subdivisionsof all {0, 1}-edges in one side of stF (v). The parity of the edges in lkF (v) hanges.Finally we onstrut the desired odd subomplex cl(∂F \ ∂K) as thesymmetri di�erene of vertex links of all id−1-olored verties in F .The resulting omplex K ′ is (d + 2)-olorable by assigning a new olorto the verties introdued by stellar subdivision of edges. If an edge e getssubdivided twie, use the original olors of e to olor the two new verties;see also Lemma 1.11.Observe that a projetivity based at σ0 around an odd fae exhanges thetwo verties of σ0 olored id−1 and id.We onlude this setion with a haraterization of some o-dimension2-manifolds whih by Proposition 2.14 an be realized as an odd subomplexin the {i0, i1, . . . , id−2}-skeleton.Lemma 2.15. Let |K| be some geometri realization of a foldable ombina-torial d-manifold K. An orientable PL (d−1)-manifold F may be embeddedin the {i0, i1, . . . , id−2, d − 1}-skeleton of (a re�nement of) K with ∂F em-bedded in the {i0, i1, . . . , id−2}-skeleton if there is an embedding F → |K|.Note that we require the last olor in the oloring of the embedding of F tobe d− 1.



44 Foldability and ObstrutionsProof. Simpliial approximation of the embedding F → |K| yields an em-bedding of F in the o-dimension 1-skeleton of some re�nement K ′ of K.Let b(K ′) be the baryentri subdivision of K ′ with eah vertex olored bythe dimension of its originating fae. The embedding F → K ′ yields an em-bedding ıF → b(K ′) of F in the {0, 1, . . . , d− 1}-skeleton of b(K ′), with ∂Fembedded in the {0, 1, . . . , d− 2}-skeleton. Further we have that the vertexstars of all (d− 1)-olored verties over F ; see Equation (2.4).It remains to show, how to �push� F into the desired skeleton. The
{0, 1, . . . , d−2, d−1}-skeleton of b(K ′) di�ers from the {i0, i1, . . . , id−2, d−1}-skeleton by one olor c = {0, 1, . . . , d−2}\{i0, i1, . . . , id−2}, that is, replaing cby d in {0, 1, . . . , d−2, d−1} yields {i0, i1, . . . , id−2, d−1}. For eah (d−1)-olored vertex v ∈ F hoose one of the two sides of stF (v) onsistent withthe orientation of F . This may be done sine F is orientable. Let v ∈ F be
(d− 1)-olored, let Dv be the hosen side of stF (v), and let Vc denote the setof all c-olored verties in lkF (v); see Figure 2.3. Now we obtain the desiredembedding ı′ : F → b(K ′) by replaing stF (v) with

⋃

w∈Vc

v ∗ (lkb(K ′)({v, w}) ∩Dv) ∼= Dd−1 .Here it is important that the triangulation of b(K ′) may have to be re�nedfurther. The map ı′ : F → b(K ′) is an embedding of F sine we replae
(d − 1)-balls by (d − 1)-balls, and two (d − 1)-balls in ı′(F ) interset asin ı(F ) due to the onsistent hoie of the sides of stF (v).The odd subomplex of the boundary. LetM be a ombinatorial man-ifold. In general, neither odd(∂M) ⊂Modd∩∂M norModd∩∂M ⊂ odd(∂M)holds: Consider a triangulation S of Sd obtained from a foldable simpliialomplex by Proposition 2.14. Then Sodd is non-empty, and S is (d + 2)-olorable. Applying Theorem 2.3 yields a (d + 2)-olorable (foldable) trian-gulation B of Dd+1 (thus with an empty odd subomplex), yet odd(∂B) =
Sodd 6= ∅. Conversely, let B be a foldable triangulation of Dd, and stellarsubdivide an edge e 6∈ ∂B with lk(e) ∩ ∂B 6= ∅. Let B′ be the resultingsimpliial omplex. Then B′

odd ∩ ∂B
′ is non empty, yet odd(∂B′) = ∅.However, in the ase when M is the one over a triangulation of thesphere, the following Lemma 2.16 proves that the odd subomplex of theboundary equals the odd subomplex interseted with the boundary.



2.2 The Odd Subomplex 45Lemma 2.16. The odd subomplex of cone(K) of a simpliial omplex Kequals cone(Kodd).Proof. For a fae a ∗ f of cone(K) = a ∗K we have
lka∗K(a ∗ f) = lkK(f) .

2.2.2 Coloring and the Group of ProjetivitiesThere are several onnetions between the group of projetivities Π(K) ofa strongly onneted simpliial d-omplex K, the hromati number of itsgraph Γ(K), and its odd subomplex Kodd. If Γ(K) is (d + 1)-olorable,that is, if K is foldable, then Π(K) is trivial. The onverse is not true ingeneral, but holds if K is loally strongly onneted. If additionally, K ist-nie then the redued group of projetivities Π0(K) is trivial if and onlyif the odd subomplex is empty; see Lemma 1.4 and Theorem 1.5. If K issimply onneted then Π(K) = Π0(K), and Π(K) is trivial if and only if theodd subomplex is empty.Thus for a simply onneted, t-nie simpliial omplex K the properties�Kodd = ∅�, �Π(K) is trivial�, and �K is foldable� are equivalent. Unfortu-nately this equivalene does not arry through to a weaker notion of foldabil-ity in the following sense: Does Π(K) ∼= Σ2 yield a bound for the hromatinumber of the graph Γ(K)? Conversely, does (d + 2)-olorability imply anynon trivial restritions on Π(K)?The answer to both of these questions is negative. Let C be a foldableombinatorial d-sphere, and hoose for k ≤ d a set of edges {ei}1≤i≤k with eiin the {0, i}-skeleton. If the stars of the edges {ei}1≤i≤k are pairwise dis-joint, then stellarly subdividing the edges {ei}1≤i≤k yields a (d+2)-olorableomplex with Π(K) ∼= Σk; see Proposition 2.14. This answers the seondquestion. The �rst question is answered by the following Proposition 2.17and Example 2.20.Proposition 2.17. Let K be a t-nie simpliial omplex of dimension d ≥ 2.Then stellar subdivision of all faes of dimension d, d−1, . . . , 2 yields a t-niesimpliial omplex K ′ with Π0(K
′) ∼= Σ2, and Γ(K) is a subgraph of Γ(K ′)indued by the verties originating from the verties of K. The odd sub-omplex is the union of all o-dimension 2-faes whih orrespond to partial�ags of K starting with a triangle, that is, the odd subomplex indued byall �new� verties.



46 Foldability and ObstrutionsStellar subdivision of all faes exept the edges is alled the generalizedbaryentri subdivision by Munkres [50, p. 90℄ with 0 assigned to all edgesand 1 to all other positive-dimensional simplies.Corollary 2.18. The odd subomplex of K ′ is homotopy equivalent to agraph GK with a node for eah faet of K, and an edge if two faets share atriangle. If K is 3-dimensional then GK is the dual graph Γ∗(K), and K ′
odd ishomeomorphi to Γ∗(K). In the ase that K is a losed pseudo 3-manifold,the odd subomplex of K ′ is the baryentri subdivision of the dual graphof K.Proof of Proposition 2.17. Let b(K) be the baryentri subdivision of K.The baryentri subdivision b(K) is foldable, and we olor eah vertex bythe dimension of the fae it originated from. Stellarly subdividing an edge etwie equals the anti-prismati subdivision of e, hene K ′ is olor equivalentto the omplex obtained from b(K) as follows: For eah vertex v ∈ b(K)olored 2 we stellarly subdivide one of the two inident edges in the {0, 1}-skeleton. In other words, for eah edge in K one of the two orrespondingedges in b(K) is stellarly subdivided. Thus the odd subomplex of K ′ equalsthe union of the links of all edges in the {0, 1}-skeleton of b(K), that is, theodd subomplex of K ′ equals the {2, 3, . . . , d}-skeleton of b(K).The redued group of projetivities Π0(K

′) is non trivial sine the oddsubomplex of K ′ is non-empty. It remains to show that there are d− 1trivial orbits, hene Π0(K
′) is generated by a single transposition. To thisend olor eah new vertex of K ′ by the dimension of the fae it originatedfrom. These olors mark the d−1 trivial orbits, sine eah faet ofK ′ ontainsexatly one vertex olored c for eah olor c ∈ {2, 3, . . . , d} by onstrutionof K ′.Example 2.19. The group of projetivities of a 1-dimensional simpliialomplex is either trivial or isomorphi to Σ2. Hene d = 2 is the �rst in-teresting ase where to searh for a ombinatorial d-sphere with a group ofprojetivities isomorphi to Σ2, whih is not (d + 2)-olorable. An exam-ple for d ≥ 3 is given in Example 2.20. In the ase d = 2, any 2-spherehas a planar graph, thus it is 4-olorable; see [57℄. Yet if we allow other2-manifolds than spheres, we may hoose Möbius torus as our omplex K.The graph of Möbius' torus is the omplete graph on seven nodes, thus K ′is not 4-olorable; see Figure 2.4. (In fat, the hromati number of Γ(K ′)is 7.)Example 2.20. Let K be the boundary omplex of a 2-neighborly simpliial

(d + 1)-polytope on n ≥ d + 2 verties, hene Γ(K) is the omplete graph
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Figure 2.4. Subdivision of Möbius torus with a group of projetivities isomorphi to Σ2,and a graph with hromati number 7. The �new� verties orrespond to the trivial orbitof the group of projetivities.on n nodes. For example, the yli (d + 1)-polytope on n ≥ d + 2 vertiesis in partiular 2-neighborly for d ≥ 3. Then K ′ is a ombinatorial d-sphere(it is even regular) with Π(K ′) ∼= Σ2, and the hromati number of Γ(K ′)is at least n sine it ontains the omplete graph on n nodes as a (indued)subgraph.





Chapter 3Construting Combinatorial4-ManifoldsManifolds of dimension four have been studied widely. Most prominentlySimon Donaldson and Mihael H. Freedman essentially lassi�ed all ompatand simply-onneted 4-manifolds, winning them the Fields Medal [26℄. Pier-gallini [54℄ shows how to obtain any losed oriented PL 4-manifold as a 4-foldbranhed over of the 4-sphere branhed over an immersed PL surfae witha �nite number of node and usp singularities. Prior to Piergallini's workMontesinos [47℄ gave a desription of oriented 4-manifolds omposed of 0-, 1-,and 2-handles only as a branhed over of the 4-ball. Montesinos' result isessential for Piergallini's onstrution of losed oriented PL 4-manifolds asbranhed overs. These two onstrutions are the �blue print� for the mainresult of this hapter, the onstrution of losed oriented ombinatorial 4-manifolds obtained as unfoldings of ombinatorial 4-spheres, and they arereviewed in Setion 3.1. This provides the �topologial view� of the situa-tion.Piergallini [54℄ and later Iori & Piergallini [33℄ improved the results on theonstrution of losed oriented PL 4-manifolds further. First Piergallini [54℄eliminated the usp singularities of the branhing set. This yields a branhedover with a transversally immersed PL surfae as its branhing set. Iori &Piergallini [33℄ then proved that the branhing set may be realized loally�at if one allows for a �fth sheet for the branhed over, thus proving a long-standing onjeture by Montesinos [47℄. The question whether any losedoriented PL 4-manifold an be obtained as 4-fold over of S4 branhed overa loally �at PL-surfae is still open. Although these later developmentsertainly ask for a ombinatorial equivalent, we will not investigate thesehere, nor make use of these observations, sine we are primarily interested inthe onstrution of losed oriented ombinatorial 4-manifolds.49



50 Construting Combinatorial 4-ManifoldsIn the ase of 3-dimensional manifolds Hilden [29℄ and Montesinos [45℄show independently that any losed oriented 3-manifold is a 3-fold branhedover of the 3-sphere. On the other hand, any 3-manifoldM3 may be triangu-lated, that is, there is a (abstrat) simpliial omplex homeomorphi to M3;see E. E. Moise [44℄. Izmestiev & Joswig [36℄ show how to obtain any losedoriented 3-manifold as the partial unfolding of a ombinatorial 3-sphere S3and desribed how to onstrut the triangulation S3. Their result providesa ombinatorial version of the work of Hilden and Montesinos sine the par-tial unfolding is a (simpliial) branhed over of S3, and gives an expliitonstrution of a triangulation for a given losed oriented 3-manifold.Returning to the ase of 4-dimensional manifolds, it is natural to askwhether any losed oriented PL 4-manifolds may similarly be onstrutedas partial unfoldings of triangulated 4-spheres. In Setion 3.2 we prove thatthis is indeed possible: For any given losed oriented PL 4-manifoldM4 thereis a triangulated 4-sphere S suh that one of the onneted omponents ofthe partial unfolding Ŝ is PL-homeomorphi to M . For simpliity, we willrefer to the onneted omponent of Ŝ PL-homeomorphi toM as the partialunfolding. We proeed by giving an expliit onstrution of the triangulated
4-sphere S with Ŝ ∼= M .In ontrast to the 3-dimensional ase we restrit our attention to losedoriented PL 4-manifolds, sine there are 4-manifolds whih an not be trian-gulated; see [42, p. 9℄. Again, as previously shown by Izmestiev & Joswig [36℄for losed oriented 3-manifolds, Theorem 3.12 is a ombinatorial version ofthe result of Piergallini in the sense that we give a ombinatorial desriptionof the branhed over p : M → S4 for any losed oriented PL 4-manifoldM .In Setion 3.3 we return to the 3-dimensional ase. Essentially the prob-lem of how to obtain a given losed oriented 3-manifold M3 as the par-tial unfolding of a ombinatorial 3-sphere S3 is answered by Izmestiev &Joswig [36℄ as mentioned above. We revisit this problem and apply thetehniques learned from the onstrution of losed oriented PL 4-manifoldsto the onstrution of the ombinatorial 3-sphere S3 with Ŝ3 ∼= M3. Thisapproah di�ers from the one desribed in [36℄, as starting with any ombi-natorial 3-sphere it uses only stellar subdivision of faes, and the operationof �twisting�, whih will be explained later. In this sense this new approahis a simpli�ation of the onstrution by Izmestiev & Joswig [36℄.The onstrutions presented in this hapter are at times tehnially in-volved, and we try to learly separate the ideas from the nitty gritty details ofthe onstrution, leaving it to the reader to whih extent he exposes himselfto the tehnialities. Of ourse, it is a question of personal taste where todraw the line between �ideas� and �tehnialities�, and we use our own dis-retion. Nevertheless, we hope the reader �nds this struturing of the texthelpful in navigating through the sometimes lengthy proofs.



3.1 4-Manifolds as Branhed Covers 513.1 4-Manifolds as Branhed CoversThe main result of this hapter, the onstrution of a ombinatorial 4-sphere S suh that the partial unfolding Ŝ of S is PL-homeomorphi toa given losed oriented PL 4-manifold M , is developed in Setion 3.2. Priorto giving a ombinatorial onstrution of M , we will review the topologi-al situation. The following onstrution of a losed oriented PL 4-manifoldas a branhed over of S4 is due to Piergallini [54℄ and earlier results byMontesinos [47, 48℄.Let M be a losed oriented PL 4-manifold, and following Example 2.2 let
M = H0 ∪ λH1 ∪ µH2 ∪H3 ∪ γH4be a handle representation of M . With MA = H0 ∪ λH1 ∪ µH2, and MB =

H0 ∪ γH1 by duality, we obtain M as the union MA ∪h MB, where h isthe attahing map. That is, we paste MA and MB together along theirommon boundary γ ♯ S1 × S2, the onneted sum of γ opies of S1 × S2.In fat, Montesinos [46℄ proved that H0 ∪ λH1 ∪ µH2 already topologiallydetermines M . Therefore any attahing map h identifying the boundariesof MA and MB yields the same manifold.Cobordism and a trivial sheet. Let W 3 be a 3-manifold. FollowingMontesinos [48℄, we all two given branhed overings p1, p2 : W 3 → S3branhed over links L1 and L2, respetively, obordant if there exists abranhed overing p : W 3×[0, 1] → S3×[0, 1] whih is equal to p1 inW 3×{0},and equal to p1 inW 3×{1}, and is branhed over an immersed PL 2-manifoldwith a boundary equal to the disjoint union L1 ∪ L2. The branhed over pis alled a obordism.A (surprisingly) useful tehnique is to attah a trivial sheet. Given a k-fold branhed over pDd : X → Dd (with sheets numbered 0, 1, . . . , k − 1),respetively pSd : X → Sd, of a d-manifold over Dd or Sd, we want to addanother sheet without hanging the topology of the overing spae X. Inthe ase of pDd we add a (d − 2)-ball D to the branhing set of pDd suhthat D ∩ ∂Dd = ∂D, and let a meridial loop around D orrespond to thetransposition (1, k). The overing spae X ′ of the branhed over obtainedthis way is the union of X and a d-ball attahed to ∂X along a (d− 1)-ball,thus X ′ ∼= X.In the ase of pSd we add a (d− 2)-sphere S to the branhing set. Againlet a meridial loop around S orrespond to the transposition (1, k). Theovering spae X ′ of the branhed over obtained this way is the diret sumof X and a d-sphere, thus X ′ ∼= X.



52 Construting Combinatorial 4-ManifoldsConstrution of the branhed over. The onstrution of the branhedover p
M

: M → S4 proeeds in two steps. As desribed above we have
M = MA ∪MB with MA = H0 ∪ λH1 ∪ µH2, and MB = H0 ∪ γH1. In the�rst step we will onstrut the 4-manifolds MA and MB as 3-fold branhedovers p

A
and p

B
of the 4-ball D4. Sine MB = H0 ∪ γH1 is of the form

H0 ∪ λH1 ∪ µH2 it su�es to show how to onstrut MA.Although ∂MA = ∂MB holds, the branhing sets of p
A
and p

B
restrited tothe ommon boundary γ ♯ S1×S2 ofMA andMB may not be equivalent, and

MA ∪Id MB is not the overing spae of a branhed overing p
M

: M → S4 ingeneral. Hene in the seond step we onstrut a obordism between p
A
|∂MAand p

B
|∂MB

, that is, a branhed over p
H

: H → S3 × [0, 1] with overingspae H ∼= (γ ♯ S1 × S2) × [0, 1] whih satis�es
p

H
|(γ ♯ S1×S2)×{0}= p

A
|∂MA

and p
H
|(γ ♯ S1×S2)×{1}= p

B
|∂MB

. (3.1)The obordism p
H
is branhed over an immersed PL 2-manifold with a bound-ary equal to the disjoint union of the branhing sets of p

A
|∂MA

and p
B
|∂MB

.The boundary of the overing spae H is homeomorphi to two disjoint opiesof γ ♯ S1 ×S2, and we have M ∼= MA ∪Id H ∪Id MB. Note that pH is a 4-foldover in general and we must add a fourth, trivial sheet to p
A
and p

B
.The existene of suh a obordism, and hene the representation of Mas a branhed over of S4, was �rst observed by Piergallini [54℄. One animagine this situation as shrinking the two 4-manifolds MA and MB and�lling the spae obtained by the shrinkage with the 4-manifold H . Thefollowing diagram illustrates this approah.

M

p
M

��

∼= MA

p
A

��

∪ H

p
H

��

∪ MB

p
B

��S4 ∼= D4 ∪ S3 × [0, 1] ∪ D4Finally the losed oriented PL 4-manifold M is obtained by the 4-foldbranhed over
p

M
: M ∼= MA ∪H ∪MB → D4 ∪ S3 × [0, 1] ∪ D4 ∼= S4

x 7→





p
A
(x) if x ∈MA

p
H
(x) if x ∈ H

p
B
(x) if x ∈MB.The overing map p

M
is well de�ned sine the overing maps p

A
and p

Hoinide onMA∩MH , and the overing maps p
B
and p

H
oinide onMH∩MBby the onstrution of the obordism p

H
.



3.1 4-Manifolds as Branhed Covers 53Constrution of MA. In the following we will sketh a onstrution of
p

A
: MA → D4 as a 3-fold branhed over branhed over a ribbon manifold.This onstrution is due to Montesinos, and we omit the proofs; refer to [47℄for further details.First, onsider the 4-manifoldW = H0∪λH1 ∼= λ ♯ S1×D3 whih onsistsof a single 4-ball and 1-handles only. It arises as the standard branhed over

p
W

: W → D4 branhed along λ + 2 unlinked and unknotted opies of D2.We give a sketh of an expliit onstrution of p
W
.Let u : R4 → R4 be the re�etion on the hyperplane given by x1 = 0,that is, u maps (x1, x2, x3, x4) to (−x1, x2, x3, x4). The overing spae W isobtained from [−1, 1]3 × [−1, 2] by the following identi�ations on its bound-ary. Consider the subset A of [−1, 1]3 onsisting of 2λ disjoint retanglesgiven by

A =

λ⋃

i=1

{
(x1, x2, x3) ∈ [−1, 1]3

∣∣∣∣x3 = 1 and x1 ∈ ±

[
2i− 1

2λ+ 1
,

2i

2λ+ 1

]}
.Now identify a point x ∈ [−1, 1]3 × [−1, 2] with its image u(x) if x lies inthe top or bottom faet, that is, if x4 = −1 or x4 = 2, or if (x1, x2, x3) ∈ Aand x4 ∈ [−1

2
, 1

2
]∪ [3

2
, 2]. If R denotes the equivalene relation given by theseidenti�ations, we have ([−1, 1]3 × [−1, 2])/R ∼= W .Similarly we obtain the base spae of p

W
from [−1, 1]3×[0, 1] by identifyinga point x ∈ [−1, 1]3 × [0, 1] with its image u(x) if x lies in the top or bottomfaet, that is, if x4 = 0 or x4 = 1, or if (x1, x2, x3) ∈ A and x4 ∈ [0, 1

2
].Hene we have ([−1, 1]3 × [0, 1])/R′ ∼= D4 , where R′ is the equivalenerelation given by the identi�ations desribed above. Figure 3.1 illustratesthe 3-dimensional ase.Now we are ready to de�ne the overing map p

W
. For simpliity we iden-tify W and D4 with ([−1, 1]3 × [−1, 2])/R, respetively ([−1, 1]3 × [0, 1])/R′,and let [x] denote the equivalene lass of x in the quotient spaesW andD4,respetively.

p
W

: W → D4

[(x1, x2, x3, x4)] 7→





[(−x1, x2, x3,−x4)] if − 1 ≤ x4 ≤ 0

[(−x1, x2, x3, x4)] if 0 < x4 ≤ 1

[(−x1, x2, x3, 2 − x4)] if 1 < x4 ≤ 2 ,The overing map p
W

is well de�ned sine it is ompatible with R and R′,and p
W

is a branhed over. Note that the third sheet ([−1, 1]3 × [1, 2])/Ris homeomorphi to D4 and does not ontribute to the onstrution of the
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Figure 3.1. W = H0∪2H1 as 3-fold branhed over of D4, illustrated by the 3-dimensionalase (with oordinate diretions x1, x3, and x4). The areas A × ([−1/2, 1/2] ∪ [3/2, 2]),respetively A× [0, 1/2] are shaded, and the arrows on the edges indiate the orientationsof the image of an edge under p
W
.1-handles; it is trivial so far. Yet it will be needed in the proess of attahingthe 2-handles.We will distinguish the onneted omponents of the branhing set of p

Was follows. The branhing set onsists of λ + 1 pairwise disjoint unknotted2-balls {Pi}0≤i≤λ, and a single unknotted 2-ball Q disjoint to any of the Pi.We denote the λ+ 1 disjoint unknotted 2-balls by P, and they are given by
P = P0 ∪ P1 ∪ · · · ∪ Pλ = ({0} × [−1, 1]2 × {0}) ∪ ((A/R′) × {0}) .The single unknotted 2-ball Q is given by

Q = {0} × [−1, 1]2 × {1} .The 2- balls P∪Q interset the boundary ofD4 in a system of λ+2 unknottedand unlinked 1-spheres.



3.1 4-Manifolds as Branhed Covers 55The preimage of a meridian m ⊂ D4 \ (P ∪Q) passing around any P ∈ Plies in the �rst and seond sheet of p
W
, that is, p−1

W
(m) is ontained in

([−1, 1]3 × [−1, 1])/R. On the other hand, if a meridian m′ ⊂ D4 \ (P ∪ Q)passes around Q we have p−1
W

(m′) ⊂ ([−1, 1]3 × [0, 2])/R, and the preimageof m′ lies in the seond and third sheet of p
W
. Therefore m and m′ orre-spond to the generators of the monodromy group Mp

W

∼= Σ3 of pW
, where Σkdenotes the symmetri group on k elements. In the following we label the thesheets 0, 1, and 2, and assume m and m′ to orrespond to the transpositions

(0, 1) ∈ Σ3 and (0, 2) ∈ Σ3, respetively.Attahing 2-handles. A 2-handle H2 ∼= D4 is attahed toW = H0∪λH1along a solid 3-torus S1 × D2 in the boundary of H2. To be more preise,a solid 3-torus S1 × D2 ⊂ ∂H2 is embedded into the boundary ∂W of Wvia the attahing map h : S1 ×D2 → ∂W , that is, h is an homeomorphismif restrited to its image. The attahing map h is determined by the imageof the meridian S1 × {0} ⊂ S1 × D2, a knot K in ∂W . Using isotopythe knot K may be plaed in ∂W suh that its image A = p
W

(K) ⊂ ∂D4under p
W
is an ar whih intersets the branhing set P ∪Q of p

W
as follows:The ar A intersets the λ + 1 onneted omponents P in its end pointsonly and does not interset Q at all. Conversely, the preimage p−1

W
(A) of A isthe knot K and a disjoint ar A′. The restrition p

W
|K is a 2-fold branhedover of A, and p

W
|A′ is a homeomorphism orresponding to the third, trivialsheet of p

W
.In order to represent W ∪h H

2 as a 3-fold branhed over p
W∪H2

of D4,we attah another 4-ball D to D4 along the 3-dimensional neighborhood
p

W
◦ h(S1 × D2) of A ⊂ ∂D4. This neighborhood of A is homeomorphito D3 if the domain S1 ×D2 ⊂ ∂H2 of h is hosen su�iently small, and theresulting base spae remains homeomorphi to D4. The preimage of D underany 3-fold over p with p |W = pW is a olletion of three �opies� of D, two ofwhih form the 2-handle H2 attahed to W via h. The third �opy� D′ ∼= D4is attahed toW via an attahing map h′ along a 3-dimensional neighborhoodof A′, that is, we attah D′ to W along a 3-ball, and attahing D′ does notalter the homeomorphi type ofW ∪hH

2. To be a little more expliit: Ratherthen attahing the 2-handle H2 via h we attah the disjoint union H2 ·∪D′via the attahing map
h ·∪h′ : H2 ·∪D′ ⊃ (S1 ×D2) ·∪D3 → W : x 7→

{
h(x) if x ∈ H2

h′(x) if x ∈ D′ .



56 Construting Combinatorial 4-ManifoldsSine p
W
|K ·∪A′ is a 3-fold branhed over of A, also the map

p
W
◦ (h ·∪h′) : (S1 ×D2) ·∪D3 → D4 ∩D ∼= D3is a 3-fold branhed over, whih may be extended to a 3-fold branhed over

p′ : H2 ·∪D′ → D. Finally we are ready to de�ne p
W∪H2

as
p

W∪H2 : W ∪h ·∪h′ (H2 ·∪D′) → D4 ∪D : [x] 7→

{
[p

W
(x)] if x ∈W

[p′(x)] if x ∈ H2 ·∪D′ .The branhed over p
W∪H2

is well de�ned, sine p
W

and p′ oinide on W ∩
(H2 ∪D′) due to the onstrution of p′.The resulting branhing set is the union of the branhing set of pW , the2-balls P ∪Q, and a 2-ball A ⊃ A attahed to P along two ars a and a′ inthe boundary of P, a ribbon manifold ; see Figure 3.2. The two ars a and a′are neighborhoods in ∂P of the two endpoints A ∩ P of A. Note that p

W∪H2in general is a �proper� 3-fold branhed over (the third sheet is non-trivial),sine although A does not interset Q, it might �weave around� Q (and infat also around any P ∈ P).
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Figure 3.2. Immersion of a ribbon manifold with two ribbons A1 and A2. Additionally thear A1 ⊂ A1 is pitured.Fix a set of meridial loops as generators of π1(D4 \ (P ∪Q), y0), that is,hoose one meridial loop around eah of the 2-balls in P, and one meridial



3.1 4-Manifolds as Branhed Covers 57loop around Q. Let P, P ′ ∈ P with a ⊂ P and a′ ⊂ P ′, and let β, β ′ ∈
π1(D4 \ (P ∪ Q), y0) be the generators orresponding to the meridial loopsaround P and P ′, respetively. Then adding the ribbon A to the branhingset introdues a new relation to the fundamental group, that is, the group
π1(D4 \ (P ∪Q ∪A), y0) di�ers from π1(D4 \ (P ∪Q), y0) by the relation

βα = β ′ , (3.2)where the element α ∈ π1(D4 \ (P ∪Q), y0) orresponds to the way A weavesaround P ∪Q.We summarize the onstrution above by the following Theorem 3.1 dueto Montesinos [45℄. Note the (non-trivial) fat that the 2-handles {H2
i }1≤i≤µmay be attahed independently to MA = H0 ∪ λH1.Theorem 3.1. (Montesinos [47, Theorem 6℄). Eah 4-manifold MA = H0 ∪

λH1∪µH2 is a 3-fold branhed over of D4, the branhing set being a ribbonmanifold.Constrution of H. The onstrution of the obordism p
H

: H → S3 ×
[0, 1] is rather straight forward one we have established its existene, whihis provided by the Theorems 3.2 and 3.3. Note that the branhed over p

H
:

H → S3 × [0, 1] is already de�ned on the boundary of H by the restritionsgiven in Equation (3.1). The boundary of H is the disjoint union of twoopies of the 3-manifold γ ♯ S1×S2, and the branhing sets of the restritions
p

A
|∂MA

and p
B
|∂MB

are two links LA and LB, respetively.In general, any 3-manifold W 3 arises as a simple 3-fold branhed overof S3 branhed over a link L, and the monodromy group M of the branhedover is isomorphi to a subgroup of Σ3 (generated by transpositions); see [29,45℄. Consider a generi projetion of L to the plane with marked over andunder rossings. Suh a projetion is alled a diagram of L, and we all astrand whih is not rossed by other strands of the diagram a bridge. Fix a setof meridial loops around the bridges of the diagram as generators of π1(S3\L),and we identify the meridians around the bridges with transpositions in Mvia the monodromy homomorphism m : π1(S3 \ L) → M. Hene we anthink of L as a olored link : A bridge b of the diagram is olored (i, j) if themeridian around b orresponds to the transposition (i, j) ∈ Σ3. Further wede�ne the moves C± and N± on a olored link as in Figure 3.3.Theorem 3.2. (Montesinos [48, p. 345℄). Let p1, p2 : W 3 → S3 be 4-foldbranhed overs (oming from 3-fold overs by the addition of a trivial sheet)suh that it is possible to pass from the branhing set L1 of p1 to the branhingset L2 of p2 by a sequene of moves C± andN±. Then p1 and p2 are obordant
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(k, l)(k, l)(k, l) Figure 3.3. The moves C± and N±.and the branhing set of the obordism is an embedded PL 2-manifold witha usp singularity (a one over the trefoil) for eah C±-move and a nodesingularity (a one over the Hopf link) for eah N±-move; see Figure 3.4.To understand the main idea of the proof it su�es to look at twobranhed overs p1, p2 : W 3 → S3 suh that their branhing sets L1 and L2di�er by exatly one C±- or N±-move m. Let U ⊂ S3 be a losed neigh-borhood of the move m, that is, L1 \ U ⊂ S3 \ U and L2 \ U ⊂ S3 \ U areequivalent, and replaing L1 ∩ U by L2 ∩ U is the move m. The branhingset in (S3 \U)× [0, 1] is (L1 \U)× [0, 1] ∼= (L2 \U)× [0, 1]. If m is a C±-movethen the intersetion of the branhing set (L1 \U)× [0, 1] with the boundaryof U× [0, 1] is the trefoil, otherwise the intersetion is the Hopf link. In orderto omplete the base spae of our obordism, we replae U× [0, 1] by a 4-ballwith a one over the trefoil or the Hopf link, respetively, as a branhingset.Theorem 3.2 together with the following Theorem 3.3 establish the exis-tene of the obordism p
H
, and ompletes the onstrution of the branhedover p

M
: M → S4. As observed by Montesinos [48℄, Theorem 3.4 thenfollows immediately.
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Figure 3.4. A usp and a node singularity.Theorem 3.3. (Piergallini [54, Theorem A℄). Any two branhing sets of 4-fold branhed overs p1, p2 : W 3 → S3 obtained from 3-fold branhed oversby adding a fourth, trivial sheet, whih represent the same 3-manifold W 3,are related by a �nite sequene of moves C± and N±.The proof extends over two papers by Piergallini. In [52℄ the numberof di�erent moves needed to relate any two suh branhing sets via a �nitesequene of moves is brought down to four. Then in [54℄ eah of these fourmoves is realized by a �nite sequene of C±- and N±-moves, and the usageof a fourth, trivial sheet, thus establishing Theorem 3.3.Theorem 3.4. Every losed oriented PL 4-manifold is a simple 4-fold branhedover of S4 branhed over a immersed PL surfae with a �nite number of uspand node singularities.3.2 4-Manifolds as Partial UnfoldingsLetM be a losed oriented PL 4-manifold, and let p
M

: M → S4 be the 4-foldbranhed over with branhing set F desribed in Setion 3.1. Hene F isan immersed PL surfae with a �nite number of usp and node singularitiesby Theorem 3.4. In Theorem 3.12 we onstrut a triangulation S of S4 suhthat the branhed over given by the natural projetion of the partial un-folding p
S

: Ŝ → S is equivalent to p
M
. In partiular, Ŝ is PL-homeomorphito M . Reall that we refer to the (unique non-trivial) onneted omponentof the partial unfolding PL-homeomorphi to M as the partial unfolding.We outline the onstrution of S. The branhed over p

M
is haraterizedby F and the monodromy isomorphism mpM

: π1(S4\F, y0) → Sym(p−1(y0)),where y0 is a point in S4 \ F ; see Setion 1.1.1 and Theorem 1.3. Therefore



60 Construting Combinatorial 4-Manifoldswe onstrut S suh that there is a homeomorphism of pairs ϕ : (S4, F ) →
(|S|, |Sodd|), hene in partiular ϕ(F ) = |Sodd|, and ϕ indues a group iso-morphism ϕ∗ : π1(S4 \ F, y0) → π1(|S| \ |Sodd|, ϕ(y0)). Further, assume that
ϕ(y0) is the baryenter of some faet σ0 ∈ S. We onstrut S suh that thefollowing Diagram (3.3) ommutes for some bijetion ι : p−1

M
(y0) → V (σ0)and the indued group isomorphism ι∗ : Mp

M
→ Π(S, σ0).

π1(S4 \ F, y0)
ϕ∗

//

mp
M

��

π1(|S| \ |Sodd|, ϕ(y0))

hS

��

Mp
M

ι∗ // Π(S, σ0)

(3.3)
This establishes Theorem 3.12, sine the (partial) unfolding of a t-niesimpliial omplex is a branhed over by Corollary 1.8, and sine ϕ(F ) = |Sodd|and ommutativity of Diagram (3.3) ensures that p

S
and p

M
are indeed equiv-alent by Theorem 1.9. The PL-properties follow one we proved S to be aombinatorial manifold. The following Diagram illustrates the proof of The-orem 3.12.

M

p
M

��

Ŝ

p
S

��

(S4, F )
ϕ

// (|S|, |Sodd|)The onstrution of S follows losely the onstrution of the branhedover p
M

: M = MA ∪ H ∪ MB → D4 ∪ (S3 × [0, 1]) ∪ D4 reviewed inSetion 3.1: First the ombinatorial 4-balls DA and DB are onstruted suhthat D̂A
∼= MA and D̂B

∼= MB, respetively. The resulting omplex T1 is thedisjoint union of DA and DB, and |T1| ⊂ S4. For eah C±- and N±-move mneeded to relate the odd subomplexes of ∂DA and ∂DB we then attaha 4-ball Dm to DA suh that the partial unfolding of DA ∪
⋃
mDm is PL-homeomorphi to MA ∪ H . We refer to the simpliial omplex onstrutedas T2, and we have T1 ⊂ T2 and |T2| ⊂ S4. In a last step we triangulate theremaining spae S4 \ |T2| ∼= S3 × [0, 1], attahing DB to DA ∪

⋃
mDm. Thisyields T3 = S. In eah step T1, T2, and T3 of the onstrution of S we haveto ensure(1) that ϕ(F ) ∪ |Ti| = | odd(Ti)|, and(2) that Diagram (3.3) restrited to Ti ommutes. (3.4)Note that eah of the omplexes Ti has to be t-nie for hTi
to be wellde�ned. Finally we may assume Ti to be a su�iently �ne triangulation. A�ne triangulation may be obtained by anti-prismati subdivision of faes atany stage of the onstrution by Proposition 1.12.



3.2 4-Manifolds as Partial Unfoldings 61Constrution of T1 = DA ·∪DB. We begin with onstruting a triangula-tion DW of the base spae of the branhed over p
W

: W = H0 ∪ λH1 → D4,that is, D̂W
∼= W . Then we modify odd(DW ) by adding the branhing setwhih produes the µ 2-handles in order to onstrut a triangulation DA ofthe base spae of p

A
: MA = H0 ∪ λH1 ∪ µH2 → D4, that is D̂A

∼= MA. Tothis end let C be a su�iently �ne triangulated foldable ombinatorial 4-ballobtained via the iterated baryentri subdivision of a 4-simplex. Sine Carises as a baryentri subdivision there is a natural 5-oloring of the ver-ties of C by oloring eah vertex v ∈ C by the dimension of the originalfae subdivided by v. Therefore ∂C lies in the {0, 1, 2, 3}-skeleton, and ver-ties olored 4 appear only in the interior of C. The triangulation DW of D4(and later the triangulation DA) is obtained from C by a series of stellarsubdivisions of edges. To ut down on notation we keep referring to ouromplex by C throughout all stages of the onstrution, and C is 6-olorableassigning a new olor to all new verties while preserving the original oloringotherwise; see Proposition 2.14.In order to speify the isomorphism ι∗ : Mp
M

→ Π(S, σ0) in Equa-tion (3.3) �x a faet σ0 ∈ C and let ι map the element xi ∈ p−1(y0) ontainedin the i-th sheet of p
M
to the vertex of σ0 olored j ∈ {0, . . . , 4} via the per-mutation (

0 1 2 3 4
3 1 2 4 0

)We will keep σ0 �xed throughout the onstrution of S. Although the hoiefor ι may seem arbitrary, it turns out to be useful when applying Lemma 2.15in the onstrution of DW .Reall that subdividing an edge e in the {i, j}-skeleton yields lk(e) as theodd subomplex in the omplementary skeleton, that is, in the ({0, . . . , 4} \
{i, j})-skeleton; see Proposition 2.14. A projetivity around a triangle in lk(e)exhanges the two verties of σ0 olored i and j. Via ι−1 suh a projetivityorresponds to exhanging the elements of p−1

M
(y0) ontained in the sheetsof p

M
labeled ι−1(i) and ι−1(j).We �rst realize the 2-balls in P as the odd subomplex in the {0, 2, 4}-skeleton, sine they orrespond via ι−1 to the transposition (0, 1) in Mp

W
. Tothis end we embed for eah P ∈ P a 3-ball FP in the {0, 2, 3, 4}-skeleton with

∂FP in the {0, 2, 4}-skeleton, and P ∼= cl(∂FP \∂C). Suh an embedding of FPexists by Lemma 2.15 sine we assume C to be su�iently �nely triangulated,and we hoose the {FP}P∈P pairwise disjoint. Now we obtain P as the oddsubomplex by stellar subdivision of {1, 3}-edges following Proposition 2.14.The odd subomplex representing Q is built in a similar fashion in the
{0, 1, 4}-skeleton, sine Q orresponds via ι−1 to the transposition (0, 2)



62 Construting Combinatorial 4-Manifoldsin Mp
W
. The 3-ball FQ with Q ∼= cl(∂FQ\∂C) is embedded in the {0, 1, 3, 4}-skeleton with ∂FQ in the {0, 1, 4}-skeleton. Proposition 2.14 is appliablesine P and FQ are disjoint. Now Q is realized as the odd subomplex inthe {0, 1, 4}-skeleton by subdividing {2, 3}-edges. This ompletes the on-strution of DW . The odd subomplex intersets ∂C in a system of λ + 1unknotted and unlinked S1 in the {0, 2}-skeleton representing ∂P, and asingle unknotted and unlinked S1 in the {0, 1}-skeleton representing ∂Q.Finally we have to add the µ ribbons to the odd subomplex in orderto onstrut DA. To this end let y0 be the baryenter of σ0, and �x aset of meridial loops as generators of π1(C \ (P ∪ Q), y0), that is, hooseone meridial loop around eah of the 2-balls in P, and one meridial looparound Q. Further assume that the generators do not interset the olletionof 3-balls {FP}P∈P ∪ FQ. Then a projetivity along the image under hC ofa generator around a 2-ball P ∈ P exhanges the verties olored 1 and 3of σ0, and a projetivity along the image under hC of the generator aroundthe 2-ball Q exhanges the verties olored 2 and 3.Now let A ∈ ∂C be the ar orresponding to a ribbon A and let a ⊂ Pand a′ ⊂ P ′ be the intersetion of A with P as desribed in Setion 3.1.Further let β and β ′ be the elements of π1(C \ (P ∪ Q), y0) orrespondingto the meridial loops around P and P ′. In order to apply Proposition 2.14hoose a simpliial 4-dimensional neighborhood UA of A in C. (A simpliialneighborhood of a subomplex L of a simpliial omplex K is a subomplex

NL ⊂ K suh that |NL| is a regular neighborhood of |L| in |K|. Providedthat K is su�iently �ne triangulated one may hoose NL =
⋃
v∈L stK(v) asthe union of all stars of verties in L.) The neighborhood UA is 5-olorablesine odd(UA) = ∅, and we may hoose the oloring suh that it oinideswith the oloring of C in neighborhoods of a and a′, respetively. The laterassumption holds sine βα = β ′ holds due to Equation (3.2), where α ∈

π1(C \ (P ∪Q), y0) orresponds to the way A weaves around P ∪Q. Observethat the 5-oloring UA does not oinide with the oloring of C in general.It hanges orresponding to the way A weaves around the 2-balls P ∪Q.Now hoose a 3-ball FA aording to Proposition 2.14 in the {0, 2, 3, 4}-skeleton of UA with ∂FA in the {0, 2, 4}-skeleton, and A ∼= cl(∂FA \ ∂C).If we olor the verties of UA by the oloring of C, then in general ∂FA ispartly embedded in the {0, 2, 4}-, {0, 1, 4}-, and {0, 3, 4}-skeleton, re�etingthe fat that di�erent parts of the ribbon orrespond to di�erent transposi-tion (0, 1), (0, 2), and (1, 2). The intersetion of A with P however is alwaysontained in the {0, 2}-skeleton.The ribbon A is added to the odd subomplex by stellar subdividing edgesin the {1, 3}-skeleton of UA by Proposition 2.14. Adding all ribbons ⋃µ
i=1Aito the odd subomplex ompletes the onstrution of DA.



3.2 4-Manifolds as Partial Unfoldings 63The simpliial 4-balls DA and DB are indeed ombinatorial 4-balls (andhene t-nie) sine they are onstruted by subdivision of faes from the4-simplex, and they meet onditions (1) and (2) from Equation (3.4) byonstrution. We have T1 = DA ·∪DB, and we summarize the onstrutionof DA by the following proposition.Proposition 3.5. For eah PL 4-manifold MA = H0 ∪ λH1 ∪ µH2 there isa ombinatorial 4-ball DA suh that one of the onneted omponents of thepartial unfolding D̂A is PL-homeomorphi to MA. The anoni projetion
D̂A → DA is a simple 3-fold branhed over with a ribbon manifold as abranhing set.Constrution of T2 = DA ∪ DH ·∪DB. For the onstrution of the obor-dism pH → S3 × [0, 1] we need p

A
and p

B
to be 4-fold branhed oversobtained from a 3-fold branhed over by adding a trivial sheet. The fourthsheet is obtained by adding a 2-ball in the {0, 1, 2}-skeleton to the odd sub-omplex via stellarly subdividing edges in the {3, 4}-skeleton by Proposi-tion 2.14 and Lemma 2.15. A projetivity along a losed faet path basedat σ0 around a triangle of the newly added odd subomplex exhanges theverties of σ0 olored 3 and 4, and orresponds via ι−1 to the transposi-tion (0, 3) in Mp

M
.We �rst onstrut DA∪DH suh that its partial unfolding yieldsMA∪H .In partiular the odd subomplex of the boundary ofDA∪DH is equivalent tothe odd subomplex ofDB. To this end a ombinatorial 4-ballDm is attahedto ∂DA suessively for eah of the C±- and N±-moves required to relate theodd subomplex of ∂DA and ∂DB . The 4-ball Dm realizes m in the sensethat the odd subomplexes of ∂DA and ∂(DA ∪ Dm) di�er by the move m.This produes the triangulation T2. We then identify the boundaries of DBand DA ∪ (∂DA × [0, 1]), thus ompleting the triangulation S = T3. Keep inmind that we have to ensure onditions (1) and (2) from Equation (3.4) tobe valid throughout the onstrution.The ombinatorial 4-ball Dm is onstruted as the one over a ombina-torial 3-sphere Sm with a trefoil knot or Hopf link as (olored!) odd subom-plex, respetively. In general, the sphere Sm may be obtained following theonstrution by Izmestiev & Joswig [36℄.In both ases the partial unfolding Ŝm is again a triangulation of S3, henea ombinatorial 3-sphere. With Proposition 1.15 this explains why the partialunfolding of DA ∪ DH , and subsequently Ŝ are ombinatorial 4-manifolds,although the odd subomplex is not loally �at.
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Figure 3.5. Constrution of Sm with the trefoil knot as odd subomplex and Π(Sm) ∼=
Σ3 <Σ4. The odd subomplex is marked.Example 3.6. Alternatively, in the ase where m is a C±-move, that is,
odd(Sm) is the trefoil knot with the appropriate oloring of the edges (seeFigure 3.3), and Π(Sm) ∼= Σ3<Σ4, an expliit triangulation with an f -vetor(the vetor with the number of i-faes as i-th entry) equal to (68, 430, 724, 362)is available as an eletroni model (polymake [21℄ �le) by [65℄. We give asketh of the onstrution.The 3-omplex depited in Figure 3.5 is homeomorphi to D3, has twopairs of edges as odd subomplex, and a group of projetivities isomorphito Σ3. The triangulation Sm is obtained by �rst identifying the verties
A,B, . . . , H with a twist of 3π, thus onstruting a solid torus with an trefoilknot as odd subomplex. Now a 2-handle is attahed to the area shaded



3.2 4-Manifolds as Partial Unfoldings 65in Figure 3.5, reating a 3-ball B with a trefoil knot as odd subomplex.(Convine yourself that after identi�ation with the 3π twist, a 2-handle maybe attahed to the shaded area.) Here Proposition 2.12 is used to extend a4-oloring of a simpliial neighborhood of the shaded area to a 4-oloredtriangulation of the 2-handle in order to ensure that no new odd edges arise.Adding a �nal 3-handle to B ompletes Sm by extending a 4-oloring of asimpliial neighborhood of ∂B to a 4-oloring of the 3-handle by Theorem 2.3.Example 3.7. In the ase where m is an N±-move, a triangulation of Smwith the Hopf link as odd subomplex and Π(Sm) ∼= Σ2 × Σ2 <Σ4 may beobtained from any foldable triangulation of S3 by �rst stellar subdividingan arbitrary edge e, and then stellar subdividing an edge in lk(e). A moree�ient triangulation of Sm is obtained by taking the one over the (unique)triangulation of the bipyramid over the triangle onsisting of three tetrahe-dra grouped around one edge; see Figure 3.6 (left). The resulting triangula-tion Sm has f -vetor (6, 15, 18, 9), and Sm is the same triangulation as theboundary omplex of the diret-sum of two triangles; see Figure 3.6 (right).
A A
Figure 3.6. Constrution of Sm with the Hopf link as odd subomplex and Π(Sm) ∼= Σ2 ×
Σ2 <Σ4 as the one (with apex A) over the triangulated bipyramid, and as the boundaryomplex of the diret-sum of two triangles, pitured as its Shlegel diagram. The oddsubomplex is marked.Now Dm is obtained as the one over Sm. The resulting odd subomplex
odd(Dm) is a usp or a node singularity depending on whether m is a C±-or N±-move by Lemma 2.16.It remains to show how to attah Dm to DA. Choose 3-dimensionalneighborhoods U ⊂ ∂DA and U ′ ⊂ ∂Dm = Sm, suh that replaing U by
Sm \ U ′ realizes the move m. Now the move m is realized by identifying |U |and |U ′|. Sine the triangulations U and U ′ are non-equal in general, we



66 Construting Combinatorial 4-Manifoldstriangulate the spae |U | × [0, 1], suh that U triangulates |U | × {0} and U ′triangulates |U | × {1}, and suh that the odd subomplex is equivalent tothe prism over |Uodd|.Attahing Dm to DA by identifying |U | to |U ′| is similar to the last re-maining step in the onstrution of S, where MB is attahed to MA ∪H viaidentifying |∂(MA ∪H)| and |∂MB |. We explain how to realize the identi�-ation of |U | and |U ′|, respetively of |∂(MA ∪H)| and |∂MB |, via extendingthe triangulations U and U ′, respetively ∂MB and ∂(MA ∪ H) in a moregeneral setting, thus ompleting the onstrution of S.Attahing along olor equivalent subomplexes. Consider two om-binatorial manifolds K and K ′ of dimension d ∈ {3, 4}, and ombinato-rial (d − 1)-manifolds (possibly with boundary) U ⊂ ∂K and U ′ ⊂ ∂K ′with U ∼= U ′. Assume that there are olor equivalent simpliial neighbor-hoodsN andN ′ of U , respetively U ′, suh that |Nodd| (and hene also |N ′
odd|)is equivalent to |U ∪ Nodd| × [0, 1], and Nodd is a loally �at ombinatorial

(d − 2)-manifold. Reall that Uodd = U ∩ Nodd does not hold in general;see Setion 2.2.1. Further let ϕ : |N | → |N ′|, σ0 ∈ N , σ′
0 ∈ N ′, and

ψ : V (σ0) → V (σ′
0) as in Equation (1.4), de�ning the olor equivalene of Nand N ′.Proposition 3.8. There is a triangulation T of |U |× [0, 1] with |Todd| equiv-alent to |U ∩ Nodd| × [0, 1], suh that T equals U on |U | × {0} and U ′ on

|U |×{1}, and suh that odd(K ∪T ∪K ′) = Kodd∪Todd∪K
′
odd, thus in e�etattahingK ′ to K via identi�ation of U and U ′. Here K∪T ∪K ′ denotes theunion of K, K ′, and T , attahing T to K and K ′ along U , respetively U ′.The simpliial omplex K ∪ T ∪K ′ is a ombinatorial d-manifold.In order to make the proof digestible it is split into the three Lem-mas 3.9, 3.10, and 3.11. We denote a fae f ∈ N whih intersets U inall exept one vertex by f = {g, xg}, where g is a fae of U and xg theone remaining vertex. Faes of N ′ interseting U ′ in all exept one vertexare denoted similarly. Throughout, τ ∈ U will be a faet of U , that is, a

(d− 1)-fae of N .After possible re�nements of N and N ′ via anti-prismati subdivisionthere is a simpliial approximation ϕ′ : N → N ′ of ϕ whih does not degen-erate σ0. Note that any simpliial approximation of ϕ maps Nodd to N ′
odd,and U to U ′; see [50, Lemma 14.4, Theorem 16.1℄. Let σ ∈ N be a faet, γa faets path in n from σ0 to σ, and let γ′ be the faet path in N ′ de�nedby the non-degenerated images of faets in γ. Let κσ be the last faet of γ′,hene σ′ = ϕ′(σ) ⊂ κσ in general, and σ′ = κσ if ϕ′ does not degenerate σ.



3.2 4-Manifolds as Partial Unfoldings 67We de�ne the bijetive map ψσ : V (σ) → V (κσ) by
ψσ = 〈γ′〉 ◦ ψ ◦ 〈γ〉−1 .Sine N and N ′ are olor equivalent, ψσ is independent of the hoie of γand hene well de�ned. Further note that ψ−1

σ |σ′ is injetive, and that
ψσ(σ ∩Nodd) ⊂ N ′

odd sine N and N ′ are olor equivalent.Consider the following regular ell deomposition of |U |× [0, 1]. First the
i-faes of U and U ′ form losed i-ells in the natural way. In partiular, theverties of U and U ′ are the 0-ells. Now we add a losed (i + 1)-ell Ci+1

ffor eah i-fae f ∈ U . The (i + 1)-ell Ci+1
f is attahed to the union of all

i-ells along the ell deomposition of Si given by the ells f (and its properfaes), ϕ′(f) (and its proper faes), and all ells Cj+1
g with g ⊂ f is a j-fae.The top dimensional ells are the d-ells {Cd

τ }τ∈U orresponding to faetsof U . Any two ells Ci+1
f and Cj+1

g interset properly, that is, in the ommonell orresponding to f ∩ g, and the union of all ells equals |U | × [0, 1].We desribe how to triangulate Cd
τ for eah faet τ ∈ U . Note that apartfrom τ and τ ′ = ϕ′(τ) there might be already a triangulation indued onsome ells of ∂Cd

τ via the triangulation of neighboring ells of Cd
τ . Fix a

(d + 1)-oloring on the verties of {τ, xτ} ∈ N , and olor eah vertex of τ ′with the olor of its preimage under ψ{τ,xτ}.Lemma 3.9. The (d+ 1)-oloring of τ and τ ′ an be extended to a (d+ 1)-oloring of the ells of ∂Cd
τ already triangulated.Proof. Let us all any strongly onneted subomplex of N with trivial groupof projetivities whih ontains a faet σ ∈ N a trivial domain of σ, andonsider the trivial domain of {τ, xτ}
O =

⋃

v∈{τ,xτ}\Nodd

stN(v) ,de�ned by the union of the stars of all verties of {τ, xτ} not ontainedin Nodd. This is indeed a trivial domain if N is triangulated su�iently �ne(there are no identi�ations in ∂O), sine no star of an odd o-dimension 2-fae is ontained in O, and sine any faet path in O is ontratable. For eahell Ci+1
f of ∂Cd

τ already triangulated there is a faet ρ ∈ U in with f = τ ∩ρ,and in the ase f 6∈ Nodd we have {ρ, xρ} ∈ O. Hene the (d + 1)-oloringof {τ, xτ} extends uniquely to the triangulation of Ci+1
f . Furthermore, ifthere are two faets ρ and ρ with f = τ ∩ ρ = τ ∩ ρ, both faets ρ and ρprodue the same oloring of the triangulation of Ci+1

f sine stN(f) ⊂ O, andsine O is a trivial domain.



68 Construting Combinatorial 4-ManifoldsIn the ase where f ∈ Nodd onsider the subomplex O =
⋃
v∈{τ,xτ}

stN(v),a simpliial neighborhood of {τ, xτ}. Assuming a su�iently �ne triangula-tion of N and that Nodd is loally �at, we have O ∼= Dd, Oodd
∼= Dd−2 with

Oodd ∩ ∂O ∼= Sd−3, and Π(O) ∼= Σ2. Therefore d − 1 olors of the (d + 1)-oloring of {τ, xτ} orresponding to the d − 1 trivial orbits of Π(O), and letus all these d − 1 olors the stable olors. Propagating the (d+ 1)-oloringof {τ, xτ} along any faets path in O from {τ, xτ} to any faet {ρ, xρ} ∈ Owith f = τ ∩ ρ yields the same oloring for the triangulation of Ci+1
f usingonly the d−1 stable olors, sine the verties of {f, xf} orrespond to trivialorbits of Π(O).Now the partial triangulation and (d+1)-oloring of ∂Cd

τ is extended to atriangulation and (d+1)-oloring of the entire ell Cd
τ using Proposition 2.11.The triangulation and (d+ 1)-oloring of Cd

τ is extended in two steps. First,let f = τ ∩Nodd, and triangulate Ci+1
f applying Proposition 2.11 using onlythe d − 1 stable olors, unless, of ourse, Ci+1

f is already triangulated; seeFigure 3.7 for an example in d = 4. Then using Proposition 2.11 one more,the triangulation and (d+ 1)-oloring is extended to the entire ell Cd
τ .

Figure 3.7. Extending the triangulation to ⋃
f∈U∩Nodd

Ci+1
f using only the three stableolors.Lemma 3.10. The odd subomplex of K ∪ T ∪K ′ is Kodd ∪K

′
odd, and theunion of all o-dimension 2-faes in ⋃

f∈U∩Kodd
Ci+1
f .Proof. We �rst prove that a o-dimension 2-fae t in the interior of a ell Ci+1

fis even if f 6∈ Kodd. To this end let τ ∈ U be a faet with f ∈ τ and let O bethe trivial domain of {τ, xτ} as desribed above. By onstrution of T thereis a (d+ 1)-oloring of the triangulation of ⋃
τ∈O C

d
τ ⊃ stT (t), thus t is even.Any o-dimension 2-fae t in U , respetively U ′, is even in K ∪ T ∪K ′, sine



3.2 4-Manifolds as Partial Unfoldings 69for any faet τ ∈ U the (d + 1)-oloring of the ell Cd
τ extends the (d + 1)-oloring of {τ, xτ} and {τ ′, xτ ′} by onstrution of T , hene stK∪T∪K ′(t) is

(d+ 1)-olorable and t is even.It remains to determine the parity of the o-dimension 2-faes in theunion ⋃
f∈U∩Nodd

Ci+1
f , whih form a PL (d − 2)-manifold (with boundary)equivalent to |U ∩ Nodd| × [0, 1], and we denote the o-dimension 2-faes inquestion suggestively by TO. Let e be an interior o-dimension 3-fae of aombinatorial manifold, hene we have lk(e) ∼= S2. It is immediate by doubleounting faet-ridge inidenes in any simpliial pseudo manifold withoutboundary, that the number of faets is even, thus lk(e), and onsequently

st(e) has an even number of faets. We double ount the number of inidenesof o-dimension 2-faes {e, x} ∈ st(e) inident to e, and faets of st(e)

∑

{e,x}∈st(e)

♯ {σ ∈ st(e) | {e, x} ⊂ σ} =
∑

σ∈st(e)

3 .The left hand side equals the number of odd o-dimension 2-faes inidentto e modulo 2, and the right hand side is even sine there is an even numberof faets σ ∈ st(e).Returning to our triangulationK∪T ∪K ′, we have that any o-dimension3-fae e 6∈ ∂TO is ontained in none or two odd o-dimension 2-faes (e is aridge of the (d− 2)-manifold TO). Therefore if there is one odd o-dimension2-fae in a (strongly) onneted omponent of TO, then all o-dimension 2-faes in the onneted omponent of TO must be odd faes of T , and eahonneted omponent of TO intersets Kodd in at least one o-dimension 3-fae. Thus all o-dimension 2-faes in ⋃
f∈U∩Kodd

Ci+1
f are odd, and we proved

TO = Todd.Lemma 3.11. The simpliial omplex K ∪ T ∪ K ′ is a ombinatorial d-manifold. In partiular, K ∪ T ∪K ′ is a t-nie simpliial omplex.Proof. It su�es to prove that the vertex link of eah vertex in T is a (d−1)-sphere or (d− 1)-ball (in K ∪ T ∪K ′). The ombinatorial properties followfrom d − 1 ≤ 3. Let f ∈ U be an i-fae, Ci+1
f the orresponding losedell of the regular ell deomposition of |U | × [0, 1], and let v ∈ T be avertex ontained in the triangulation of Ci+1

f . Further let g ∈ U be an j-faeontaining f (thus i ≤ j). In the ase v ∈ U ⊂ T (or v ∈ U ′ ⊂ T ) we have
D(v, g) =

∣∣ lkT (v)
∣∣ ∩ Cj+1

g
∼= cone

(
∂ stU(f) ∩ g

)
,and otherwise

D(v, g) =
∣∣ lkT (v)

∣∣ ∩ Cj+1
g

∼= susp
(
∂ stU(f) ∩ g

)
.



70 Construting Combinatorial 4-ManifoldsObserve that if i = d− 1, that is, f is a (d− 1)-fae (a faet of U), then
lkT (v) is a (d − 1)-ball (if v ∈ ∂T ) or (d − 1)-sphere ompletely ontainedin Cd

f . Otherwise D(v, g) is a (d − 1)-ball in the ase v ∈ U ∪ U ′ as well asin the ase v 6∈ U ∪U ′ for j 6= 0. In the remaining ase v 6∈ U ∪U ′ and j = 0we have D(v, g) ∼= S0. (Reall that cone(∅) ∼= D0 and susp(∅) ∼= S0 holds byde�nition.)For i < d − 1 let τ, τ ′ ∈ stU(f) be faets interseting in g = τ ∩ τ ′ ⊃ f .Then the two (d− 1)-balls D(v, τ) and D(v, τ ′) interset in D(v, g). Assumethat f 6∈ ∂U holds. Sine stU(f) is a ombinatorial (d−1)-ball (and ∂ stU(f)a ombinatorial (d− 2)-sphere) we have
lkT (v) ∼=

⋃

τ∈stU (f)

D(v, τ) ∼= cone(∂ stU(f))if v ∈ U ∪ U ′, and
lkT (v) ∼=

⋃

τ∈stU (f)

D(v, τ) ∼= susp(∂ stU(f))otherwise. The ase f ∈ ∂U is treated similarly, exept we onsider the
(d−2)-ball cl(∂ stU(f) \ ∂U) instead of the entire boundary of stU(f). Thus Tis a ombinatorial d-manifold.It remains to prove that lkK∩T∩K ′(v) is a (d−1)-sphere or (d−1)-ball fora vertex v ∈ U ⊂ T (or v ∈ U ′ ⊂ T ). This follows sine lkK∩T∩K ′(v) is theunion of the two ombinatorial (d− 1)-balls lkT (v) and lkK(v), respetively
lkK ′(v).It remains to verify onditions (1) and (2) from Equation (3.4). As forondition (1), Todd is homotopy equivalent to Uodd. Further, any path aroundan odd triangle in the triangulation of some ell Ci+1

f , where f is an edgein U ∩Nodd, is homotopy equivalent to a path around the (unique) triangle
{f, xf} ∈ Nodd. This settles ondition (2).Attahing ⋃

mDm to DA produing DA ∪ DH , and then attahing DBto DA ∪DH as desribed above ompletes the onstrution of S, a ombina-torial manifold homeomorphi to S4 (note the di�erene to a ombinatorial4-sphere) with Ŝ ∼= M for a given losed oriented PL 4-manifold M . Thepartial unfolding Ŝ is a ombinatorial manifold by Proposition 1.15, thus Ŝis PL-homeomorphi to M .We summarize the onstrution in the following Theorem 3.12 whihstates the main result of this hapter.



3.3 Construting Combinatorial 3-Manifolds 71Theorem 3.12. For every losed oriented PL 4-manifoldM there is a om-binatorial manifold S homeomorphi to S4 suh that one of the onnetedomponents of the partial unfolding Ŝ of S is a ombinatorial 4-manifoldPL-homeomorphi to M . The anonial projetion Ŝ → S is a simple 4-foldbranhed over branhed over a PL surfae with a �nite number of usp andnode singularities.Remark 3.13. Let M be a simpliial manifold obtained as the partial un-folding of a ombinatorial sphere. In general, we an not assume M to be aombinatorial manifold. As an example onsider a ombinatorial 3-sphere Swith H = Ŝ is a triangulation of the Poinaré homology sphere, see [65,Setion 5.2.2℄ and [36℄. The double suspension susp2(S) is again a ombina-torial sphere, yet its partial unfolding is the double suspension susp2(H), asimpliial 5-sphere whih is not a ombinatorial manifold.3.3 Construting Combinatorial 3-ManifoldsIzmestiev & Joswig [36℄ show how to onstrut ombinatorial 3-manifoldsas partial unfoldings of ombinatorial 3-spheres. Apart from de�ning thepartial unfolding, they show how to onstrut the base spae, a ombinatorial3-sphere with a olored link as its odd subomplex. We want to reonsiderthe onstrution of the base spae, applying the new tehniques used in theonstrution of 4-manifolds above.We will prove that the desired odd subomplex an be onstruted bystellar subdivision of faes and twisting, whih will be introdued in thefollowing.The branhing set. Reall the de�nition of a diagram of a link fromSetion 3.1. A diagram is 3-olored, if eah bridge is olored with oneolor, and the three bridges meeting at a rossing are either olored thesame or no two of them have the same olor; see Figure 3.8. For an in-trodution to knot theory see Adams [1℄. The notion of 3-oloring of alink diagram presented here di�ers from [1℄, sine we allow at most threeolors, rather then exatly three olors. Thus every diagram of a link hasa (trivial) 3-oloring in our sense by using the same olor for all bridges,whih is not true if one requires all three olors to be used. In partiu-lar no diagram of the trivial knot allows for a 3-oloring using all threeolors [1, p. 25℄.Consider a losed oriented 3-manifold M3, and a simple 3-fold branhedover p
M3 : M3 → S3 branhed over a link L. The branhed over p

M3 ex-ists by Hilden [29℄ and Montesinos [45℄. Fixing a diagram of L yields a set



72 Construting Combinatorial 4-Manifolds
PSfrag replaements

(0, 1)

(0, 2) (1, 2)

(1, 2)(1, 2) (1, 2)

Figure 3.8. Crossing of strands in a 3-olored link diagram.of meridial loops around bridges of the diagram as generators of π(S3 \ L).Thus we obtain a 3-oloring of L, oloring eah bridge b by the monodromyation of the meridial loop around b. We will use the olor red for a bridgeorresponding to the transposition (0, 1) in Mp
M3
, green for a bridge orres-ponding to the transposition (0, 2), and blue for a bridge orresponding tothe transposition (1, 2).In addition to the moves C± and N± from Setion 3.1, we de�ne themoveM± in Figure 3.9. Further we allow olored Reidemeister moves; see [1℄.The following Lemma 3.14 is probably known.
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(i, j)(i, j)

(i, j)

(i, j)

(i, j) Figure 3.9. The M±-move.Lemma 3.14. Every 3-olored diagram of a link L an be onstruted froma olletion of unlinked and unknotted S1 olored red and green by a �nitesequene of moves C±, M±, and Reidemeister moves.Proof. First we eliminate all rossings using only one olor by applying an
M−-move to eah rossing. Then the blue olored bridges are removed,eliminating remaining rossings, and all blue olored strands.



3.3 Construting Combinatorial 3-Manifolds 73Applying olored Reidemeister moves we isotopy all unlinked and unknot-ted S1 suh that they neither ross or are rossed by any other strand. Ifany one of these S1 is olored blue, we isotopy it underneath a red or greenolored strand, hene hanging its olor. We are left with the task of elim-inating the blue bridges. Without loss of generality we may assume that ablue bridge does not ross any other strand of the diagram (Figure 3.10),and eliminate blue bridges whih are rossed by bridges of the same olor attheir ends using isotopy, one M+-, and one M−-move (Figure 3.11).
Figure 3.10. Using isotopy to ensure that no blue bridges ross other strands.

Figure 3.11. Removing a blue bridge rossed by bridges of the same olor at its ends usingisotopy, one M+-, and one M−-move.
Figure 3.12. The three ases of a pair of blue bridges.The hard part is to eliminate the blue bridges whih are rossed by agreen bride at the one end, and by a red one at the other end. But thesituation has been simpli�ed by the previous steps. The olors of a strand inthe diagram of L appear in the yli order blue, red, blue, green, and againblue. This is due to the fat that there are no rossings using only one olor,that the blue bridges do not ross any strand, and that eah blue bridge is



74 Construting Combinatorial 4-Manifoldsrossed by di�erent olored bridges at its ends. Further this implies thatthe number of blue bridges is even, and we eliminate pairs of blue bridgesusing C± and M±-moves.Choose any blue bridge b. There are three di�erent ases to onsider.First the red bridge rossing b does not ross any other strands. Otherwiseonsider a strand next to b rossed by the red bridge. There are two wayshow this strand an hange its olor: either from blue to green or vie versa,whih yields the ases two and three; see Figure 3.12.In the �rst ase the diagram may be transformed using isotopy and M±-moves to the diagram in Figure 3.13, �rst row. Then isotopy and a �nal C−-move eliminate the pair of blue bridges. The seond ase is easily redued(using isotopy andM±-moves) to two blue bridges whih are rossed at bothends by bridges of the same olor; Figure 3.13, seond row. Finally, reduethe third ase to one blue bridge with a single red and green olored strandrunning underneath it, again using isotopy and M±-moves. The remainingblue bridge is eliminated by a single C−-move; Figure 3.13, third row.

Figure 3.13. Eliminating pairs of blue bridges.The olletion of red and green unlinked and unknotted 1-spheres anbe simpli�ed further. For example, we may use M±-moves and isotopy tohange it to one unknotted and unlinked 1-sphere for eah olor red, greenand blue.



3.3 Construting Combinatorial 3-Manifolds 75The twisting operation. Consider a simpliial neighborhood Um ⊂ Sof a C±- or M±-move. The odd subomplex of Um onsists of two disjointstrands, whih in the ase of a C−-move wind around eah other by a twistof 3π (see Figure 3.3), and in the ase of anM−-move wind around eah otherby a twist of π (see Figure 3.9). Now the move m is realized by removing Umfrom S, and gluing Um bak in with a twist of ±3π, respetively ±π. Thatis, in the ase of a C+- or M+-move the odd subomplex of Um is twistedby 3π, respetively π, and in the ase of a C−- or M−-move the twist of theodd subomplex of Um is annihilated.To this end hoose simpliial neighborhoods N and N ′ of the boundariesof cl(S \ Um) and Um, respetively. If there is a homeomorphism of pairs
ϕα : (|N |, |Nodd|) → (|N ′|, |N ′

odd|) whih twists odd(Um) by an angle of α,and N and N ′ are olor equivalent with respet to ϕα, then cl(S \ Um)and Um may be attahed along their boundaries via ϕα by Proposition 3.8.The operation of removing Um and replaing it with a twist of α is alled an
α-twist. Observe that N and N ′ are olor equivalent with respet to ϕα if wehoose α = ±3π in ase of a C±-move, and α = ±π in ase of an M±-move;see Figure 3.9.Theorem 3.15. LetM3 be a losed oriented 3-manifold. Then a ombinato-rial 3-sphere S with Ŝ ∼= M3 an be onstruted from any triangulation of S3using only �nitely many stellar subdivisions of faes, ±3π-, and ±π-twists.Proof. Starting with a su�iently �ne and foldable triangulation S of the3-sphere, e.g. obtained by baryentri subdivision, we �rst onstrut theolletion of red and green 1-spheres required by Lemma 3.14 as odd sub-omplex. To this end hoose any 4-oloring of S, and stellarly subdivide anedge in the {0, 1}-skeleton for eah red 1-sphere, and stellarly subdivide anedge in the {0, 2}-skeleton for eah green 1-sphere. Then the triangulation Sis ompleted using a ±3π-twist for eah C±-move, and a ±π-twist for eah
M±-move.Problem 3.16. The question if stellar subdivision of faes alone su�es toonstrut a ombinatorial 3-sphere S with Ŝ ∼= M3 for a given losed oriented3-manifold M3 remains open.





Chapter 4Produts of FoldableTriangulationsA lattie triangulation of a lattie m-polytope P is dense if its verties areall the lattie points inside P , and, for the sake of brevity, we refer to aregular, dense, and foldable triangulation as an rdf-triangulation. It is knownthat a triangulation of a polytope (or more generally, any simply onnetedmanifold) is foldable if and only if its dual graph is bipartite; see [37℄. Fromrdf-triangulations of lattie polytopes Soprunova and Sottile [62℄ onstrutsparse polynomial systems with non-trivial lower bounds for the number ofreal roots.For generi oe�ients the exat number of omplex solutions of a sparsesystem of polynomials is known from Kushnirenko's Theorem [40℄. To es-timate the number of real solutions however, is onsiderably more deliate.The lower bound in the approah of Soprunova and Sottile is the degree ofa map on the oriented double over of the real part YP of the tori varietyassoiated with the lattie polytope P , where P omes in as the ommonNewton polytope of the polynomials in the system. In ombinatorial termsthis map degree translates into the size di�erene of the two olor lasses offaets of an rdf-triangulation K of P . More preisely, only those faets of Kount in the size di�erene, alled the signature, whih have odd normalizedvolume. We sketh this approah in Setion 4.3.1.We fous mainly on the ombinatorial aspets, but apply our results tosparse polynomial systems in Setion 4.3.2. We form rdf-triangulations ofproduts of lattie polytopes from rdf-triangulations of the fators. As anappliation we onstrut triangulations of the d-ube Cd = [0, 1]d, whihis the produt of d line segments. Here we �nd rdf-triangulations of Cdwith a super exponentially large signature. Optimizing triangulations ofubes for ombinatorial parameters is often di�ult, and basi questions77



78 Produts of Foldable Triangulationsare still open: Most prominently, for the minimal number of faets in a d-ube triangulation for d > 7 only partial asymptoti results are known; seeAnderson & Hughes [32℄, Smith [61℄, Orden & Santos [51℄, Bliss & Su [10℄,and Zong [67℄. The question whether the onstruted triangulations of the
d-ube have maximal signature is not addressed.We start out with studying produts of simplies beause these naturallyform the building bloks in our produt triangulations. The key player hereis the stairase triangulation studied by Billera, Cushman, & Sanders [6℄,Gel′fand, Kapranov, & Zelevinsky [24℄, and others. Then we fous on prod-uts of arbitrary simpliial omplexes. These simpliial produts, whih de-pend on linear orderings of the verties of the fators, already our in thework of Eilenberg & Steenrod [18, Setion II.8℄; see also Santos [58℄. It turnsout that the produt of two foldable simpliial omplexes again has a fold-able triangulation, and we ompute the signature of the simpliial produt(Theorem 4.17). Here it is important that there are still some hoies left, afat whih plays a role in the onstrution of the ube triangulations. Fur-ther more, if the fators of the simpliial produt are rdf-triangulations oflattie polytopes P andQ, then the simpliial produt is a rdf-triangulationsof P × Q, provided we hoose spei� vertex orderings of the fators (to beexplained later).For the algebrai appliations it is essential to improve these results fur-ther. In Theorem 4.29 we show that (with a mild additional assumption) thesimpliial produt K ×stc L meets the geometri requirements of Soprunovaand Sottile, provided that both fators do.As an appliation of our Produt Theorems Setion 4.4 ontinues withan expliit onstrution of rdf-triangulations of the d-ube with signaturein Ω(⌊d/2⌋!). This lower bound partially relies on omputational resultsobtained with TOPCOM [55℄, polymake [21, 22, 23℄, MAGMA [13℄, and QEPCAD [30℄.This hapter is a joint work with Mihael Joswig to appear in Advanesin Mathematis.4.1 Produts of Simpliial ComplexesLet ∆m = conv(0, e1, . . . , em) be the standard m-simplex, where ei denotesthe i-th unit vetor of Rm. We de�ne its normalized volume ν(∆m) as
ν(∆m) = vol(∆m)m! = 1.The produt ∆m × ∆n is an (m + n)-dimensional onvex polytope with
(m+ 1)(n + 1) verties and m+ n + 2 faets. As one key feature ∆m × ∆nhas the property that it is totally unimodular, that is, eah faet of anytriangulation whih uses no additional verties has normalized volume 1. As



4.1 Produts of Simpliial Complexes 79a onsequene the size of an arbitrary suh triangulation of ∆m × ∆n is
ν(∆m × ∆n) = vol(∆m) vol(∆n) (m+ n)! =

(
m+ n

m

)
.The stairase triangulation. We are interested in one partiular trian-gulation of ∆m × ∆n, the stairase triangulation stcm,n = stc(∆m × ∆n),whih an be desribed as follows. Consider a retangular grid of size m+ 1by n+ 1. Eah node in the grid orresponds to one vertex of ∆m ×∆n. Thefaets of stcm,n, desribed as subsets of these nodes, orrespond to the non-desending and not-returning paths from the lower left node to the upperright node. These paths, whih go only right or up, but never left nor down,look like stairases, and hene the name; see Figure 4.1 (left).

10001 01001 00101 00011
0,3 1,3 2,3 3,3

10010 01010 00110
0,2 1,2 2,2

10100 01100
0,1 1,1

11000
0,0Figure 4.1. The faet 01001 of stc(∆2 × ∆3) and the dual graph of stc(∆2 × ∆3) with thefaet 01001 marked.The hoie of �right� and �up� in the de�nition of stcm,n impliitly assumesan ordering of the verties of both fators. Throughout this hapter we willkeep this ordering �xed. The stairase triangulation of ∆m × ∆n is thesame as the plaing triangulation indued by the lexrev ordering, that is,the lexiographi ordering of the verties with the reversed ordering of theverties of the seond fator. In partiular, stcm,n is a regular triangulation.Eah suh stairase an be enoded as a shu�e of �up� and �right� moves.The name �shu�e� re�ets the fat that the number of �up� and �right�moves is always the same, but their order is all that matters. We write theshu�e in Figure 4.1 as the bit-string 01001, where 0 means �up� and 1 means�right�. The stairase triangulations ourred in Eilenberg & Steenrod [18,



80 Produts of Foldable TriangulationsSetion II.8℄; see also Billera, Cushman, & Sanders [6℄, Gel′fand, Kapranov, &Zelevinsky [24, �7.D℄, and Santos [58℄.Yet another way to enode a faet F of stcm,n is to assign a vetor s(F ) ∈
Nm as follows. The bit-string 11 . . . 100 . . . 0 orresponds to the origin, and foran arbitrary faet F the k-th entry s(F )k measures the di�erene betweenthe position of the k-th one in the bit-representation of F and k. Thisdi�erene may be viewed as the number of �shifts to the right� of the k-thone, starting with the bit-string orresponding to the origin. For example,the bit-string 01001 in Figure 4.1 is mapped to (1, 3).Via the map s the faets of stcm,n orrespond to the integer points in thepolytope

Sm,n =

{
s ∈ Rm

∣∣∣∣∣
0 ≤ sk ≤ n for 1 ≤ k ≤ m

sk ≤ sl for k < l

}
.This provides us with a onvenient desription of the dual graph of stcm,n;see Figures 4.1 (right) and 4.2. Let Lm be the m-dimensional ubi grid, thatis, the in�nite graph with node set Zm, and two nodes are adjaent if theydi�er in exatly one oordinate by one.

Figure 4.2. The dual graph of stc3,4 as the subgraph of L3 indued by S3,4 ∩ Z3.



4.1 Produts of Simpliial Complexes 81Proposition 4.1. The dual graph Γ∗(stcm,n) is the subgraph of Lm induedby the node set Sm,n ∩ Zm. In partiular, this graph is bipartite.To onlude this setion we mention further aspets of the stairase tri-angulations, whih are however, inessential for the understanding of the restof this hapter.Bit-strings of lengthm+n with preiselym ones orrespond to the vertiesof the hypersimplex
H(m+ n,m) =

{
x ∈ [0, 1]m+n

∣∣∣
∑

xi = m
}
.The graph Γ∗(stcm,n) is a (not indued) subgraph of the vertex-edge graphof H(m+ n,m). See Figure 4.3 (left) for the ase Γ∗(stc2,3).The Cayley trik establishes a one-to-one orrespondene between the reg-ular triangulations of ∆m×∆n and the �ne mixed subdivisions of (n+ 1)∆m;see Santos [59℄. For an example see Figure 4.3 (enter).

As a node of Γ∗(stc2,3)in the Shlegel diagramof H(5, 2). As a ell in a �nemixed subdivisionof 4∆2. As a pseudo-vertex ina tropial ylipolytope.Figure 4.3. The faet 01001 of stc(∆2 × ∆3) from Figure 4.1.In a di�erent ontext regular triangulations of ∆m × ∆n reently re-appeared as the tropial onvex hulls of n+1 points in the tropial projetivespae TPm; see Develin & Sturmfels [17℄. The stairase triangulations ariseas the tropial yli polytopes of Blok & Yu [11℄.Example 4.2. The stairase triangulation stc2,3 is dual to the tropial onvexhull of the four points (0, 0, 0), (0, 1, 2), (0, 2, 4), and (0, 3, 6) in TP2. Thefaet F = 01001 with s(F ) = (1, 3) from Figure 4.1 orresponds to thepseudo-vertex (−s(F, 2), 0, s(F, 1)) = (−3, 0, 1) = (0, 3, 4); see Figure 4.3(right).



82 Produts of Foldable Triangulations4.1.1 The Simpliial ProdutLet K and L be two abstrat simpliial omplexes. Then the produt spae
|K| × |L| is equipped with the struture of a ell omplex whose ells are theproduts f × g, where f is a fae of K and g is a fae of L. This setion isabout the study of triangulations of |K| × |L| whih re�ne this natural ellstruture.Assume that dimK = m and dimL = n, and denote the vertex sets of
K and L by VK and VL, respetively. We hoose a linear ordering OK of VKand another linear ordering OL of VL. The produt OK ×OL, de�ned by

(v, w) ≥ (v′, w′) ⇔ v ≥ v′ and w ≥ w′ ,is a partial ordering of the set VK × VL. Let πK : VK × VL → VK and
πL : VK × VL → VL be the anonial projetions.We de�ne the simpliial produt (with respet to the vertex orderings OKand OL) of K and L as

K ×stc L =

{
F ⊂ VK × VL

∣∣∣∣
πK(F ) ∈ K and πL(F ) ∈ L ,and O |F is a total ordering} .The simpliial produt K ×stc L appeared earlier in Eilenberg and Steen-rod [18, Setion II.8℄ as the �Cartesian produt�, and in Santos [58℄, who allsit the �stairase re�nement�. Both soures prove the stairase triangulationto be a triangulation of the spae |K| × |L| on the vertex set VK × VL.

Figure 4.4. A faet de�ning path of the simpliial produt of two di�erent triangulationsof the square. On the right two faets interseting in a low dimensional fae.Let k = |VK | and l = |VL| denote the number of verties of K and L,respetively. There is a onvenient way to visualize the simpliial produtin the (k × l)-grid R: We label the olumns of R with the verties of K



4.1 Produts of Simpliial Complexes 83aording to the vertex order OK , and we label the rows of R with theverties of L aording to the vertex order OL. For eah f ∈ K and g ∈ Llet Rf,g be the minor of R indued by f and g. Then we may think of thefaets of the simpliial produt as the olletion of all asending paths inRf,gstarting bottom-left and �nishing top-right. This is a diret generalizationof the stairase triangulation of the produt of two simplies; see Figure 4.4.More preisely, we may view the simpliial produt K×stcL as a subomplexof the stairase triangulation of the produt of a (k − 1)-simplex and an
(l − 1)-simplex.

a

b

1 0 3 2

a

b

1 2 0 3

a

b

0 1 2 3

(3, a)
(2, a)

(0, a)

(3, b)

(1, b)

(0, b)Figure 4.5. Three di�erent orderings of the verties of the triangulated square
{{0, 1, 2}, {1, 2, 3}} and the resulting regular triangulations of the 3-ube. The verties
0 and 3 of the square are olored the same, and the top-front vertex of the 3-ube is labeled
(1, a), and the bottom-bak vertex is labeled (2, b). The seond and third 3-ube are labeledthe same.The ordering of the verties of K and L are ruial to K×stcL. Figure 4.5depits the produt of the triangulated unit square with the unit interval.The three distint orderings of the verties of the triangulated square yieldthree pairwise non-isomorphi triangulations of the 3-ube C3 deomposedas C2 × I.The multi stairase triangulation. The stairase triangulation general-izes naturally to a triangulation of the produt of �nitely many simplies. Let
∆1,∆2, . . . ,∆k be simplies of dimensionm1, m2, . . . , mk, and identify the in-teger points of the uboid C(m1, . . . , mk) = [0, m1] × [0, m2] × · · · × [0, mk]with the verties of ∆1×∆2×· · ·×∆k: For 1 ≤ i ≤ k assign the verties of ∆i



84 Produts of Foldable Triangulationsto the integer points in [0, mi]. Now the faes of the multi stairase triangu-lation mstc(∆1 ×∆2 × · · · ×∆k) are given by all monotone asending pathsin the subgraph of Lk indued by the node set C(m1, . . . , mk)∩Zk. In parti-ular, the faets orrespond to monotone asending paths from the origin tothe point (m1, m2, . . . , mk). (Note that for simpliity we hoose the integerpoints in C(m1, . . . , mk) rather then unit ubes in C(m1 + 1, . . . , mk + 1) torepresent the verties of ∆1 × ∆2 × · · · × ∆k.) The multi stairase triangu-lation appears in Orden & Santos [51, p. 516℄; see Figure 4.6 for a faet of
mstc(∆4 × ∆3 × ∆2).

∆4

∆2

∆3

Figure 4.6. A faet of mstc(∆4 × ∆3 × ∆2) = mstc(∆4 × ∆3) ×stc ∆2, and its projetionto mstc(∆4 × ∆3).Proposition 4.3. The multi stairase triangulation may be obtained as aniterated simpliial produt, that is,
mstc(∆1 × ∆2 × · · · × ∆k) = mstc(∆1 × ∆2 × · · · × ∆k−1) ×stc ∆k .Proof. Assigning the verties Vi of ∆i to the integer points in [0, mi] �xes anordering of Vi for 1 ≤ i ≤ k, and we hoose the lexiographi ordering forthe verties of mstc(∆1 × ∆2 × · · · × ∆k−1).



4.1 Produts of Simpliial Complexes 85The numbers of faets of mstc(∆1 ×∆2 × · · · ×∆k) and mstc(∆1 ×∆2 ×
· · · × ∆k−1) ×stc ∆k are easily alulated to be the same:
(∑k

i=1mi

)
!

∏k
i=1mi!
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(∑k−1
i=1 mi

)
!

∏k−1
i=1 mi!

·

(∑k
i=1mi

)
!

mk!
(∑k−1

i=1 mi

)
!

=

(∑k−1
i=1 mi

)
!

∏k−1
i=1 mi!

·

(∑k
i=1mi

mk

)It remains to show that eah faet f of mstc(∆1×∆2×· · ·×∆k) appears as afaet in mstc(∆1×∆2×· · ·×∆k−1)×stc∆k. The verties of f ome in a naturalorder, and f projets to a faet f ′ of mstc(∆1×∆2×· · ·×∆k−1). The orderingof the verties of f ′ inherited from f oinides with the vertex ordering of f ′indued by lexiographi ordering of the verties ofmstc(∆1×∆2×· · ·×∆k−1).Hene f appears as a faet in the stairase triangulation of f ′ × ∆k.Remark 4.4. Sine we may hoose di�erent vertex orderings for the fators,iterating the simpliial produt produes many triangulations of ∆1 × ∆2 ×
· · · × ∆k di�erent from the multi stairase triangulation. In partiular, notall triangulations obtained by iterating the simpliial produt are foldable,but it is easily seen that the multi stairase triangulation is foldable.4.1.2 Foldable Simpliial ComplexesLet [k] = {0, . . . , k−1} be the vertex set of a foldable simpliialm-omplexK.Assume that there is a oloring of K given by a weakly monotone map
cK : [k] → [m+1]. Then we all the natural ordering on [k] olor onseutive.Any foldable omplex admits (many) olor onseutive orderings.Proposition 4.5. If K and L are foldable simpliial omplexes with oloronseutive orderings of their verties then the orresponding simpliial prod-ut K ×stc L is foldable.Proof. Let the vertex sets of K and L be [k] and [l], respetively, with weakmonotone oloring maps cK : [k] → [m+ 1] and cL : [l] → [n+ 1]. We de�ne

c : [k] × [l] → [m+ n + 1] : (v, w) 7→ cK(v) + cL(w) .In order to show that c is a oloring of K×stc L it su�es to hek that eahfaet ontains eah olor at most one. Eah faet F of K×stcL is ontainedin a unique ell f × g where f is a faet of K and g is a faet of L. Let v×wand v′ × w′ be distint verties of F . We may assume v < v′; then w ≤ w′sine F is a faet of the stairase triangulation of f × g. As the restritions
cK |f and cL |g are stritly monotone we have c(v, w) = cK(v) + cL(w) <
cK(v′) + cL(w′) = c(v′, w′). For an example see Figure 4.7.



86 Produts of Foldable TriangulationsIn what follows below it is essential that it is not neessary to have oloronseutive orderings for the fators in order to obtain a foldable simpliialprodut triangulation.Example 4.6. Let Bn be the triangulation of the bipyramid over the (n−1)-simplex ∆n−1 formed of two n-simplies sharing a faet. Combinatorially, Bnis the join of ∆n−1 with the zero-dimensional sphere S0 onsisting of twoisolated points. The triangulation Bn is obviously foldable. The symmetrivertex ordering Sn on Bn starts with one of the two apies and ends withthe other apex, the verties of ∆n−1 ome in between. That is to say, wetake [n + 2] as the vertex set of Bn, where 0 and n + 1 are the apies, anda oloring map sn : [n + 2] → [n + 1] : w 7→ wmod(n + 1). Beause ofthe symmetry properties of Bn the preise ordering of the verties 1, 2, . . . , ndoes not matter. Likewise it is not neessary to distinguish the two apies.The triangulation Bn with the symmetri vertex ordering will be used inthe onstrution of ertain ube triangulations in Setion 4.4.Proposition 4.7. Let K be a foldable simpliial omplex with a olor on-seutive ordering OK. Then the simpliial produt K ×stc Bn with respetto OK and Sn is foldable.Proof. We use almost the same oloring sheme as in Proposition 4.5. Let [k]be the vertex set ofK, and let cK : [k] → [m+1] be a weak monotone oloringmap. We de�ne
c : [k] × [n+ 2] → [m+ n+ 1] : (v, w) 7→ cK(v) + wmod(m+ n+ 1).This, indeed, is a oloring sine there is no faet of K ×stc Bn ontainingboth, a vertex of the type (v, 0) and a vertex of the type (v, n+ 1).We refer to Figure 4.5 for the three di�erent simpliial produts of an in-terval with a square arising from the two olor onseutive and the symmetrivertex ordering of the square (whih is a bipyramid over a 1-simplex).4.1.3 Regular Triangulations of PolytopesLet P be an m-dimensional onvex polytope in Rm, and let K be a trian-gulation of P with vertex set V . Reall that the triangulation K is regularif there is a onvex funtion λ : Rm → R suh that K oinides with thepolyhedral subdivision of P indued by the lower onvex hull of the set

{(v, λ(v)) ∈ Rm+1 | v ∈ V }. In this ase λ is alled a lifting funtion for K.Sine we want to stress that a regular triangulation only depends on P and λwe denote suh a triangulation as P λ.



4.1 Produts of Simpliial Complexes 87Choose points p1, . . . , pk in P suh that conv{p1, . . . , pk} = P , and assume
p1, . . . , pk to be pairwise distint. This implies that the verties of P ouramong the hosen points. Then the plaing triangulation of P with respet tothe hosen points in the given ordering is the regular triangulation of P withvertex set {p1, . . . , pk} and a lifting funtion λ suh that (pl, λ(pl)) is aboveall a�ne hyperplanes spanned by points in {(p1, λ(p1)), . . . , (pl−1, λ(pl−1))}.A point (p, λ(p)) lies above the a�ne hyperplane H ⊂ Rm+1 spanned by thepoints {(p1, λ(p1)), . . . , (pm+1, λ(pm+1))} if and only if the unique λ′ ∈ R with

det




1 1 1 . . . 1
p p1 p2 . . . pm+1

λ′ λ(p1) λ(p2) . . . λ(pm+1)


 = 0 (4.1)satis�es λ′ < λ(p).Example 4.8. Consider the standard simplies ∆m = conv{0, e1, . . . , em}and ∆n = conv{0, e1, . . . , en}. To simplify the formulae below we set e0 = 0.Then the lexrev ordering on the verties of the produt ∆m ×∆n is given as

O : {e0, . . . , em}×{e0, . . . , en} → [(m+1)(n+1)] : (ei, ej) 7→ (n+1)i+(n−j) .A lifting funtion ω of stcm,n orresponding to (any) plaing order O is givenby
ω : {e0, . . . , em} × {e0, . . . , en} → R : (v, w) 7→ 2O(v,w) ,that is, (∆m × ∆n)

ω = stcm,n holds. Let x ∈ Rm+n be a vertex of ∆m × ∆n,and let the verties {x1, x2, . . . , xm+n+1} ⊂ ∆m×∆n appear prior to x in theplaing ordering O, that is, O(x) > O(xi) for 1 ≤ i ≤ m + n + 1. We provethat Equation 4.1 holds for some λ′ < 2O(x). We have
A =




1 1 1 . . . 1
x x1 x2 . . . xm+n+1

λ′ 2O(x1) 2O(x2) . . . 2O(xm+n+1)


and we want to ompute the value λ′ for whih detA vanishes. To this endlet A′ be any o-dimension 1-minor of A not involving the last row of A. Theabsolute value of the determinant of A′ equals the volume of a simplex insome triangulation of ∆m × ∆n. Sine ∆m × ∆n is totally unimodular wehave detA′ = ±1. Laplae expansion with respet to the last row yields

λ′ ± 2O(x1) ± 2O(x2) ± · · · ± 2O(xm+n+1) = 0 ,and solving for λ′ gives the following estimate
λ′ ≤ 2O(x1) + 2O(x2) + · · ·+ 2O(xm+n+1) ≤

O(x)−1∑

k=1

2k = 2O(x) − 1 < 2O(x) .



88 Produts of Foldable TriangulationsThis shows that the point (x, λ(x)) lies above the hyperplane spanned by anyset of m+ n+ 1 previous points.Proposition 4.9. Let P λ and Qµ be regular triangulations of an m-polytope
P ⊂ Rm and an n-polytope Q ⊂ Rn, respetively. Then the simpliial prod-ut P λ×stcQ

µ is a regular triangulation of the polytope P ×Q for any vertexorderings OPλ and OQµ.Proof. Let VPλ be the vertex set of P λ equipped with a linear ordering OPλ ,and let VQµ be the vertex set of Qµ with a linear ordering OQµ. The simpliialprodut P λ ×stc Q
µ (with respet to OPλ and OQµ) is a triangulation of theprodut P ×Q on the vertex set VPλ × VQµ.Let λ : VPλ → R and µ : VQµ → R be lifting funtions of P λ and Qµ. Weonstrut a lifting funtion ω : VPλ × VQµ → R of P λ ×stc Q

µ in two steps.First onsider the map
ω0 : VPλ × VQµ → R : (x, y) 7→ λ(x) + µ(y) ,whih is a lifting funtion for the polytopal omplex P λ×Qµ. In the seondstep ω0 has to be perturbed suh that it indues a stairase triangulationon eah ell of P λ ×Qµ. To this end reall that the stairase triangulationsare plaing, and that the lexrev ordering O on VPλ × VQµ indues a plaingorder on eah produt of simplies f × g where f ∈ P λ and g ∈ Qµ. Nowde�ne ω as an ǫ-perturbation of ω0 by the lifting funtion from Example 4.8orresponding to O:

ω : VPλ × VQµ → R : (v, w) 7→ λ(v) + µ(w) + ǫ2O(v,w) , (4.2)for a su�iently small ǫ > 0. Viewing the simpliial produt again as sub-omplex of the stairase triangulation of two large simplies, shows that,indeed (P ×Q)ω = P λ ×stc Q
µ. For an example see Figure 4.7.In general, there may be several perturbations whih lead to di�erentlifting funtions but whih indue the same triangulations. An importantspeial ase ours if the triangulations P λ and Qλ additionally are foldable.In this ase it is possible to de�ne a perturbation whih only depends on theolor lasses of the verties of the fators:Example 4.10. Let cPλ : VPλ → [m + 1] and cQµ : VQµ → [n + 1] beoloring maps. Using olor onseutive vertex orderings for VPλ and VQµ andthe resulting lexrev ordering O for the verties of P ×stc Q we may hoose
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Figure 4.7. Simpliial produt of a path I of length 3 with itself, using olor onseutivevertex orderings. The verties of the produt are olored aording to the olor shemefrom the proof of Proposition 4.5 and are labeled in lexrev order.



90 Produts of Foldable Triangulationsa di�erent perturbation than in Equation (4.2). This yields the followinglifting funtion
ω : VPλ × VQµ → R : (v, w) 7→ λ(v) + ν(w) + ǫ 2(n+1)c

Pλ (v)+(n−cQµ (w)) , (4.3)for ǫ > 0 hosen su�iently small. Note that we use the same perturbation
ǫ2(n+1)i+(n−j) for all verties (v, w) with cPλ(v) = i and cQµ(w) = j. Let usrestrit our attention to a ell f × g for faets f ∈ P λ and g ∈ Qµ. Sineany olor i ∈ [m+ 1] appears exatly one in the oloring of f and any olor
j ∈ [n + 1] appears exatly one in the oloring of g, respetively, there isexatly one vertex (v, w) ∈ f × g with cPλ(v) = i and cQµ(w) = j for eah
(i, j) ∈ [m + 1] × [n + 1]. Hene ω restrited to f × g indues the stairasetriangulation f×stcg from Example 4.8, and ω indues the simpliial produttriangulation (P ×Q)ω = P λ ×stc Q

µ on P λ ×Qµ.
4.2 Triangulations of Lattie PolytopesLet P be an m-dimensional lattie polytope, that is, we assume that its vertexoordinates are integral. Sine the determinant of an integral matrix is aninteger it follows that the normalized volume ν(P ) = m! vol(P ) is an integer,where vol(P ) is the usual m-dimensional volume of P . A lattie simplexis alled even or odd depending on the parity of its normalized volume. Atriangulation K of a lattie polytope P is dense if it uses all lattie pointsinside P , that is, its vertex set is P ∩ Zm. In the ase that K is additionallyregular, say with lifting funtion λ, we again write P λ for K sine it onlydepends on P and λ.Let P λ be an rdf-triangulation of P , that is, P λ is regular, dense, andfoldable. In partiular P λ is a lattie triangulation. Reall that P λ is foldableif and only if its dual graph is bipartite. Usually we refer to the two olorlasses as �blak� and �white�. Then the signature σ(P λ) of P λ is de�ned asthe absolute value of the di�erene of the odd blak and the odd white faetsin P λ. Note that the even faets are not aounted for in any way. Moreover,in the important speial ase where P λ is unimodular, that is, where all thefaets have a normalized volume equal to 1, all faets are odd. For examplesof unimodular triangulations of the 3-ube with signatures equal to 0 and 2see Figure 4.5; note that all triangulations of the 3-ube without additionalverties are regular.
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Figure 4.8. Dense and foldable triangulation of the retangular grid G4,6.Example 4.11. Consider the retangular grid Gk,l = [0, k] × [0, l]. Notethat eah triangulation of the grid is unimodular if and only if it is dense.Triangulations of the retangular grid Gk,l = [0, k] × [0, l] are an interest-ing subjet on their own; see, for instane, Kaibel & Ziegler [38℄ and thereferenes therein.Proposition 4.12. Even without the assumption of regularity there are nodense and foldable triangulation of Gk,l with a positive signature.The following surprisingly simple proof is by Günter M. Ziegler, personalommuniation. See Figure 4.8 for an example of a dense and foldable tri-angulation of G4,6.Proof. Let K be a dense triangulation of Gk,l. Label eah edge of K with xif the di�erene of the x-oordinates of its endpoints is odd. Similarly, labeleah edge of K with y if the di�erene of the y-oordinates of its endpointsis odd. All edges are labeled sine K is dense, and onvine yourself that theedges of eah triangle are labeled x, y, and xy. No edges in the boundaryof Gk,l are labeled xy, hene we math triangles whih share an xy-labelededge. In the ase that K is foldable, eah blak triangle is mathed via its
xy-labeled edge to a white one, and we have σ(K) = 0.Example 4.13. Dense and foldable triangulations do not exist for all lattiepolytopes. For instane, in any dimensionm ≥ 2 there are lattie simplies ofarbitrarily large volume whih admit exatly one dense triangulation (whihis regular), but whih is not foldable.



92 Produts of Foldable TriangulationsFor k ≥ 1 let ∆2(k) = conv{(0, 1), (1, 0), (2k, 2)}, a triangle with nor-malized volume ν(∆2(k)) = 2k + 1; see Figure 4.9. For m ≥ 3 we de�ne
∆m(k) as the one over ∆m−1(k) with the m-th unit vetor as its apex; thisis an m-simplex with normalized volume ν(∆m(k)) = ν(∆m−1(k)) = . . . =
ν(∆2(k)) = 2k + 1.

PSfrag replaements
(1, 0)

(0, 1)

(2k, 2)

Figure 4.9. A lattie triangle without a dense and foldable triangulation.The interior point (k, 1) ∈ ∆2(k) is a degree-3-vertex in the unique (reg-ular and) dense triangulation of ∆2(k), hene there is no dense and foldabletriangulation of ∆2(k). The one over a triangulation K of ∆m−1(k) is fold-able if and only if K is foldable, and any triangulation of ∆m(k) arises as aone over a triangulation of ∆m−1(k). Therefore there is no rdf-triangulationof ∆m(k) by indution.Example 4.14 (Signature of the Stairase Triangulation). Let ∆m and ∆nbe odd simplies of dimension m and n, respetively. From the desriptionof Γ∗(stcm,n) as the subgraph of Lm indued by the node set Sm,n ∪ Zm (seeProposition 4.1) one an read o� that Γ∗(stcm,n) is bipartite and extrata reursive formulae for the signature of stcm,n. Remember that stcm,n isunimodular, hene σm,0 = σ0,n = 1 and
σm,n =

∣∣∣∣∣
n∑

i=0

(−1)i σm−1,i

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑

i=0

(−1)i σm−1,i + (−1)n σm−1,n

∣∣∣∣∣
= | σm,n−1 + (−1)n σm−1,n | = σm,n−1 + (−1)n σm−1,n .A areful inspetion of the four ases arising from the two hoies eah forthe parities of m and n gives the last equation. This reursion then yields the



4.2 Triangulations of Lattie Polytopes 93expliit formulae for σm,n given by White [64℄ and stated in Proposition 4.15.Observe that ∆m × ∆n is the order polytope of the poset of the disjointunion of a path of length m + 1 and a path of length n + 1. The stairasetriangulation stcm,n oinides with the anonial triangulation of the orderpolytope; see Soprunova and Sottile [62, Setion 4℄.Proposition 4.15. The signature of the stairase triangulation of the prod-ut of two simplies of odd normalized volume is
σ2k,2l =

(
k + l

k

)
, σ2k,2l+1 =

(
k + l

k

) and σ2k+1,2l+1 = 0 .If at least one of the simplies is even then this signature vanishes.Throughout the rest of the setion let P ⊂ Rm and Q ⊂ Rn be an m-and n-dimensional lattie polytopes, respetively. Further we assume thatthere are rdf-triangulations P λ and Qµ. Suppose now that we have linearorderings OP and OQ of the vertex sets VP = P ∩Zm and VQ = Q∩Zn suhthat the orresponding simpliial produt P λ×stc Q
µ is again foldable. Notethat suh orderings always exist due to Proposition 4.5. By Proposition 4.9,

P λ ×stc Q
µ is also regular and dense.The rest of this setion is devoted to omputing the signature of P λ ×stc Q

µ.The dual graph Γ∗ of the ell omplex P λ × Qµ is the produt of the dualgraphs of P λ and Qµ. Further the dual graph of the simpliial produt
P λ ×stc Q

µ arises from Γ∗ by replaing eah node by a opy of Γ∗(stcm,n) ina suitable way.Reall that only odd simplies ontribute to the signature. Sine thestairase triangulation is unimodular for eah faet F of stc(f × g) we have
ν(F ) = ν(f)ν(g). Therefore we have

σ(P λ ×stc Q
µ) = σm,n

∣∣∣∣∣∣
∑

f × g faet of Pλ ×Qµ

δ(f, g) ν(f) ν(g)

∣∣∣∣∣∣
, (4.4)where δ(f, g) = ±1 and ν(h) = ν(h) mod 2 denotes the parity of the nor-malized volume of h. So it remains to determine the sign δ(f, g). This onlydepends on the vertex orderings OP and OQ.As a point of referene inside stc(f × g) we hoose the faet F0(f, g)orresponding to the origin in the notation from Setion 4.1; this orrespondsto the stairase F0 = 11 . . . 100 . . . 0 whih �rst goes all the way to the rightand then all the way up in Figure 4.1. To determine the sign δ(f, g) amountsto determining the olor of the faet F0(f, g) in P λ ×stc Q

µ.



94 Produts of Foldable TriangulationsWe �rst onsider the ase where P λ is a lattie m-simplex ∆m (with-out interior lattie points) and Qµ onsists of two neighboring n-simplies(without interior lattie points), that is, Qµ is the rdf-triangulation Bn ofthe bipyramid over the (n− 1)-simplex from Example 4.6. Note that ∆m isan rdf-triangulation of itself. Further, the signature of ∆m vanishes if thenormalized volume of ∆m is even and equals 1 otherwise.Lemma 4.16. The simpliial produt ∆m ×stc Bn is an rdf-triangulation ofthe produt of ∆m and a lattie bipyramid over the (n − 1)-simplex withsignature
σ(∆m×stcBn) =





σm,n σ(∆m) σ(Bn)
if the vertex ordering on Bn isolor onseutive or if m is even,

σm,n σ(∆m) ω
if the vertex ordering on Bnis symmetri and m is odd.Here ω ∈ {0, 1, 2} ounts the number of odd simplies in Bn.Proof. It is a onsequene of Propositions 4.5 and 4.9 that ∆m ×stc Bn is anrdf-triangulation.Let g and g′ be the two faets of Bn. In both ases we get a ontribution of

δ(∆m, g) σm,n σ(∆m) to σ(∆m×stcBn) if g is odd, and similarly a ontributionof δ(∆m, g
′) σm,n σ(∆m) to σ(∆m ×stc Bn) if g′ is odd; see Equation (4.4).It remains to ompare δ(∆m, g) and δ(∆m, g

′), whih depends on the ver-tex ordering of Bn. We have δ(∆m, g) = −δ(∆m, g
′) if and only if F0(∆m, g)and F0(∆m, g

′) are olored di�erently whih in turn holds if and only if thedistane between F0(∆m, g) and F0(∆m, g
′) in Γ∗(∆m ×stc Bn) is odd.Sine Γ∗(∆m×stcBn) is bipartite, eah path from F0(∆m, g) to F0(∆m, g

′)has the same parity, and we may hoose any path to determine the parity ofthe distane. Let F̃0(∆m, g) ∈ stc(∆m × g) and F̃0(∆m, g
′) ∈ stc(∆m × g′)be neighboring faets. Then the distane between F0(∆m, g) and F0(∆m, g

′)is odd if and only if the distane between F0(∆m, g) and F̃0(∆m, g) has thesame parity as the distane between F0(∆m, g
′) and F̃0(∆m, g

′) (keep in mindthat the distane between F̃0(∆m, g) and F̃0(∆m, g
′) is 1).We �rst onsider the ase where the vertex ordering of Bn is olor on-seutive. Let c be the olor of the unique vertex v ∈ g \ g′ (whih is the sameas the olor of the unique vertex v′ ∈ g′ \ g). All olumns in the lattie gridde�ning ∆m ×stc Bn orresponding to verties olored c are onseutive andhene v and v′ follow one after another in the vertex ordering of Bn. Wedistinguish the two ases where v and v′ appear somewhere in the middleor at the beginning of the vertex ordering of Bn and where v and v′ appear
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∆m

g ∩ g′ g ∩ g′v v′

∆m

g ∩ g′ v v′Figure 4.10. Distane of the faets of referene F0(∆m, g) and F0(∆m, g′) in Γ∗(∆m ×stc

Bn) for olor onseutive orderings of Bn. The faets F̃0(∆m, g) and F̃0(∆m, g′) and theirintersetion is shaded. On the left the two apies v, v′ our somewhere in the middle orat the beginning of the vertex ordering of Bn, on the right at the end.
∆m

g ∩ g′v v′Figure 4.11. Distane of the faets of referene F0(∆m, g) and F0(∆m, g′) in Γ∗(∆m ×stc

Bn) for the symmetri ordering of the verties of Bn. The faets F̃0(∆m, g) and F̃0(∆m, g′)and their intersetion is shaded.at the end of the vertex ordering; see Figure 4.10. In the �rst ase we mayhoose F0(∆m, g) = F̃0(∆, g) and F0(∆m, g
′) = F̃0(∆m, g

′) and the distanebetween F0(∆m, g) and F0(∆, g
′) is 1. In the seond ase the distane be-tween F0(∆m, g) and F̃0(∆m, g) equals the distane between F0(∆m, g

′) and
F̃0(∆m, g

′). Therefore we obtain δ(∆m, g) = −δ(∆m, g
′) in the olor onse-utive ase.Let the vertex ordering on Bn be symmetri. We have F0(∆m, g) =

F̃0(∆m, g) and the distane of F0(∆m, g
′) and F̃0(∆m, g

′) ism, hene δ(∆m, g) =
−δ(∆m, g

′) if and only if m is even; see Figure 4.11.We refer to Figure 4.5 for an example of three triangulations of [0, 1]×B2resulting from di�erent vertex orders of B2.



96 Produts of Foldable TriangulationsTheorem 4.17 (Combinatorial Produt Theorem). Let P λ and Qµ be rdf-triangulations of an m-dimensional lattie polytope P ⊂ Rm and an n-di-mensional lattie polytope Q ⊂ Rn, respetively. For olor onseutive vertexorderings OP and OQ the simpliial produt P λ×stcQ
µ is an rdf-triangulationof the polytope P ×Q with signature

σ(P λ ×stc Q
µ) = σm,n σ(P λ) σ(Qµ) .Proof. Again, by Propositions 4.5 and 4.9, P λ×stcQ

µ is an rdf-triangulation.Let f, f ′ ∈ P λ and g, g′ ∈ Qµ be faets suh that f × g and f ′ × g′ areneighboring ells of P λ × Qµ. We may assume that f = f ′ and g ∩ g′ is aridge. Hene g ∪ g′ is a bipyramid over the ommon ridge g ∩ g′. ApplyingLemma 4.16 to f ×stc (g ∪ g′) yields δ(f, g) = −δ(f, g′), and we may labelthe ells of P λ × Qµ with δ(f, g) by assigning +1 (blak) and −1 (white)aording to the bipartition of the dual graph Γ∗(P λ ×Qµ) of P λ ×Qµ.We may think of Γ∗(P λ×Qµ) as a opy of Γ∗(P λ) for eah node of Γ∗(Qµ).Eah opy of Γ∗(P λ) may be 2-olored using the bipartition of Γ∗(P λ), butwe must use the inverse oloring for a opy of Γ∗(P λ) if the orrespondingnode of Γ∗(Qµ) is olored white. Therefore a node f × g of Γ∗(P λ × Qµ) islabeled +1 if and only if the faets f ∈ P λ and g ∈ Qµ are olored the same,and using Equation (4.4) we have
σ(P λ ×stc Q

µ)

= σm,n

∣∣∣∣∣∣
∑

f ∈ Pλ blak( ν(f)
∑

g ∈ Qµ blakν(g) )
+

∑

f ∈ Pλ white( ν(f)
∑

g ∈ Qµ whiteν(g) )

−
∑

f ∈ Pλ blak( ν(f)
∑

g ∈ Qµ whiteν(g) )
−

∑

f ∈ Pλ white( ν(f)
∑

g ∈ Qµ blakν(g) )
∣∣∣∣∣∣

= σm,n

∣∣∣∣∣∣
∑

f ∈ Pλ blakν(f) −
∑

f ∈ Pλ whiteν(f)

∣∣∣∣∣∣

∣∣∣∣∣
∑

g ∈ Qµ blakν(g) −
∑

g ∈ Qµ whiteν(g)∣∣∣∣∣
= σm,n σ(P λ) σ(Qµ) .Finally we onsider the ase where Qµ is the rdf-triangulation Bn of thebipyramid over the (n − 1)-simplex from Example 4.6. While this seems toover a very speial ase only, the result is instrumental for the onstrutionof triangulations of the d-ube with non-trivial signature in Setion 4.4.



4.2 Triangulations of Lattie Polytopes 97Proposition 4.18. Let P λ be an rdf-triangulation of an m-dimensional lat-tie polytope P ⊂ Rm with a olor onseutive ordering on its vertex set
VP = P ∩ Zm. Then P λ ×stc Bn is an rdf-triangulation of the produt of Pwith a lattie bipyramid over the (n− 1)-simplex with signature
σ(P λ×stcBn) =





σm,n σ(P λ) σ(Bn)
if the vertex ordering on Bn isolor onseutive or if m is even,

σm,n σ(P λ) ω
if the vertex ordering on Bnis symmetri and m is odd.Here ω ∈ {0, 1, 2} ounts the number of odd simplies in Bn.One an show that for other vertex orderings of Bn the simpliial produt

P λ ×stc Bn is not foldable. In this sense the two ases listed exhaust all thepossibilities.Proof. Propositions 4.5 and 4.9 ensure that P λ×stcQ
µ is an rdf-triangulation.Let g and g′ be the two faets of Bn, and let us think of P λ × Bn as theunion of two opies of P λ × ∆n, whih we denote as P λ × g and P λ × g′.Further let f ∈ P λ be an arbitrary but �xed faet. We get a ontribution of

δ(f, g) σ(P λ) σm,n to σ(P λ ×stc Bn) if g is odd by Theorem 4.17. Similarlywe get a ontribution of δ(f, g′) σ(P λ) σm,n to σ(P λ ×stc Bn) if g′ is odd. Itremains to ompare δ(f, g) and δ(f, g′). The simpliial produt f ×stc (g∪g′)is a triangulation of the produt of an m-simplex and Bn and by Lemma 4.16we have δ(f, g) = −δ(f, g′) in the �rst and δ(f, g) = δ(f, g′) in the seondase.A referee suggested the following generalization of Proposition 4.18, whihwe state without a proof. Let P λ and Qµ be rdf-triangulations of the fulldimensional lattie polytopes P ⊂ Rm and Q ⊂ Rn, respetively. Further letthe verties of P λ be ordered olor onseutive, and let the verties of Qµ bepartitioned into subsets V0, V1, . . . , Vn aording to their olors. An almostolor onseutive ordering of the verties of Qµ is obtained by splitting V0into two subsets V ′
0 and V ′′

0 and taking any vertex ordering ompatible with
V ′

0 < V1 < · · · < Vn < V ′′
0 . The vertex sets V ′

0 and V ′′
0 indue a bipartition onthe faets ofQµ denoted by L′ and L′′, and let the faets of L′, respetively L′′be olored �blak� and �white� aording to the oloring of the faets of Qµ(neither L′ nor L′′ is strongly onneted in general). Finally we set the signedsignature σ̃(L) of a geometri simpliial omplex L with faets olored �blak�and �white� as the number of odd �blak� faets minus the number of odd�white� faets.



98 Produts of Foldable TriangulationsProposition 4.19. The simpliial produt P λ ×stc Q
µ (with respet to theolor onseutive vertex ordering of P λ and the almost olor onseutivevertex ordering of Qµ) is a rdf-triangulation of P ×Q with signature

σ(P λ ×stc Q
µ) =

{
σm,n σ(P λ) σ(Qµ) if m is even,
σm,n σ(P λ) |σ̃(L′) − σ̃(L′′)| if m is odd.4.3 Lower Bounds for the Number of Real Rootsof Polynomial SystemsTriangulations whih are regular, dense, and foldable are interesting sinethey yield non-trivial lower bounds for the number of real roots of assoi-ated polynomial systems, provided that a number of additional geometrionditions are met. To disuss these issues we �rst review the onstrutionof Soprunova and Sottile [62℄.4.3.1 Triangulations and Lower BoundsLet P ⊂ Rm

≥0 be a lattie m-polytope ontained in the positive orthant, andlet λ : P ∩ Zm → R be a lifting funtion suh that the indued triangu-lation P λ is an rdf-triangulation. Further let the verties P ∩ Zm of P λ beolored by the map c : P ∩Zm → [m+1]. We de�ne the oe�ient polynomial
FPλ,i,s ∈ R[t1, . . . , tm] of a olor i and an additional parameter s ∈ (0, 1] as

FPλ,i,s(t) =
∑

v ∈ c−1(i)

sλ(v) tv, (4.5)where t = (t1, . . . , tm) and tv = tv11 . . . tvm
m . Choosing a real number ai foreah olor i ∈ [m+ 1] de�nes a Wronski polynomial

FPλ,s(t) = a0FPλ,0,s(t) + a1FPλ,1,s(t) + . . . + amFPλ,m,s(t) ∈ R[t1, . . . , tm] ,for �xed s ∈ (0, 1]. A Wronski system assoiated with P λ is a sparse systemof mWronski polynomials whih is generi in the sense that it attains Kush-nirenko's bound [40℄, that is, it has exatly ν(P ) distint omplex solutions.Let M = |P ∩ Zm| denote the number of integer points in P and let
CPM−1 be the omplex projetive spae with oordinates {xv | v ∈ P ∩ Zm}.The tori projetive variety XP ⊂ CPM−1 parameterized by the monomials
{tv | v ∈ P ∩ Zm} is given by the losure of the image of the map

ϕP : (C×)m → CPM−1 : t 7→ [tv | v ∈ P ∩ Zm] , (4.6)



4.3 On the Number of Real Roots of Polynomial Systems 99where [tv1 , . . . , tvm ] is a point in CPM−1 written in homogeneous oordinates.Via ϕP a Wronski system on (C×)m orresponds to a system of m linearequations on the tori variety XP ⊂ CPM−1.Let YP = XP ∩RPM−1 be the real points of the variety XP . For s ∈ (0, 1]the s-deformation s.YP is obtained as the losure of the image of the deformedmap
s.ϕP : (C×)m → CPM−1 : t 7→ [sλ(v) tv | v ∈ P ∩ Zm]interseted with RPM−1. The s-deformation s.YP interpolates between YP =

1.YP and its homotopi image 0.YP , whih is de�ned as the initial variety
inλ(YP ); the whole family {s.YP | s ∈ [0, 1]} is alled the tori degenerationof YP ; for the details see [62, Setion 3℄. A Wronski polynomial orrespondsto the image of s.YP under the linear Wronski projetion

πE :

CPM−1 \ E → CPm

[xv | v ∈ P ∩ Zm] 7→ [
∑

v ∈ c−1(i)

xv | i = 0, 1, . . . , m ]with enter
E =



x ∈ CPM−1

∣∣∣∣∣∣
∑

v ∈ c−1(i)

xv = 0 for i = 0, 1, . . . , m



 .The tori degeneration meets the enter of the projetion πE if there are

s ∈ (0, 1] and t ∈ Rm suh that
FPλ,0,s(t) = FPλ,1,s(t) = . . . = FPλ,m,s(t) = 0 .The sphere SM−1 is a double over of RPM−1. Let Y +

P ⊂ SM−1 be thepre-image of YP under the overing map. Note that Y +
P is not neessarilysmooth nor onneted. Nonetheless, its orientability is well de�ned. Thefollowing theorem is a slightly simpli�ed version of what is proved in [62℄.Theorem 4.20 (Soprunova & Sottile). Let P ⊂ Rm

≥0 be a non-negative lat-tie m-polytope suh that Y +
P is oriented, and let P λ be an rdf-triangulationof P indued by the lifting funtion λ. Suppose that there is a number

s0 ∈ (0, 1] suh that the s-deformation s.YP does not meet the enter ofthe Wronski projetion πE for all s ∈ (0, s0] and all t ∈ Rm. Then for all
s ∈ (0, s0] the number of real solutions of any assoiated Wronski system in
R[t1, . . . , tm] is bounded from below by the signature σ(P λ).In general, it seems di�ult to deide the orientability of Y +

P . To this endSoprunova and Sottile suggest to onsider the following su�ient ondition:



100 Produts of Foldable TriangulationsLet (A, b) be an integral faet desription of P = {x ∈ Rm |Ax+ b ≥ 0} suhthat the i-th row of the matrix A is the unique inward pointing primitivenormal vetor of the i-th faet of P . This way, up to a re-ordering of thefaets, A and b are uniquely determined. Denote by ΛA the lattie spannedby the olumns of A. Suppose that the lattie spanned by P ∩ Zm has oddindex in Zm and that ΛA has odd index in its saturation ΛA ⊗Z Q, thatis, A has a maximal minor Ã with det Ã odd. If these two parity onditionsare satis�ed and if, additionally, there is a vetor v with only odd entries inthe integer olumn span of (A, b) then Soprunova and Sottile all the doubleover Y +
P Cox-oriented.We all the rdf-triangulation P λ geometrially nie or g-nie for thevalue s0 if all the onditions of Theorem 4.20 are satis�ed. (This de�ni-tion of a g-nie rdf-triangulation di�ers from the topologially motivatedde�nition of a t-nie simpliial omplex in Setion 1.2.) Note that the(Cox-)orientability of Y +

P solely depends on the polytope P .Example 4.21. The unique rdf-triangulation of the line segment [k, l], where
0 ≤ k < l, is g-nie for s0 = 1 (and any lifting funtion) if and only if k = 0.We have σ([0, l]) ∈ {0, 1} depending on l being even or odd. This is a sharplower bound for the number of real roots in the one-dimensional ase.Example 4.22. The stairase triangulation of ∆m×∆n is g-nie for s0 = 1.This is true if at least one of the two verties whose olor ours only oneis loated at the origin.Example 4.23. Let P λ be an rdf-triangulation of a lattie polytope P ⊂
Rm

≥0, and let Y +
P be Cox-oriented. The one 0 ∗ P λ of the triangulation P λ(embedded into Rm+1 via the map (v1, . . . , vm) 7→ (1, v1, . . . , vm)) with apex

0 ∈ Rm+1 is g-nie for s0 = 1. The signature of 0 ∗ P λ equals the signatureof P λ.4.3.2 Produts of Tori VarietiesLet us onsider the Segre embedding
ι :

CPM−1 × CPN−1 → CPMN−1

([x1, . . . , xM ], [y1, . . . , yN ]) 7→ [x1y1, . . . , xiyj, . . . , xMyN ] ,whih is the tensor produt. The restrition ι : RPM−1 ×RPN−1 → RPMN−1lifts to the double overs ι+ : SM−1 × SN−1 → SMN−1.



4.3 On the Number of Real Roots of Polynomial Systems 101Proposition 4.24. Let P be an m-dimensional lattie polytope with Mlattie points, and let Q be an n-dimensional lattie polytope with N lattiepoints. Then we have
ι(YP × YQ) = YP×Q and ι+(Y +

P × Y +
Q ) = YP+×Q+ .Proof. Let ϕP : (C×)m → CPM−1 denote the map in Equation (4.6) whihde�nes the tori variety XP . Observe that ϕP×Q = ι ◦ (ϕP , ϕQ). This readilyimplies ι(XP×XQ) = XP×Q and also ι(YP×YQ) = YP×Q. Now ι+(Y +

P ×Y +
Q ) =

YP+×Q+ follows sine the map ι lifts to the overings.Corollary 4.25. Let P and Q be lattie polytopes suh that Y +
P and Y +

Qare oriented. Then Y +
P×Q is oriented.Proof. The orientability of Y +

P×Q depends on the orientability of its smoothpart, whih is the ι+-image of the produt of the smooth parts of Y +
P and

Y +
Q . The produt of orientable manifolds is orientable.Remark 4.26. As a further onsequene, if Y +

P and Y +
Q are Cox-oriented,then Y +

P×Q is oriented. However, Y +
P×Q does not have to be Cox-orienteditself. For an example onsider produts ∆m × ∆n of standard simplies for

m even and n odd.The question under whih onditions the tori degeneration of YP×Qmeetsthe enter of the Wronski projetion is a little harder to answer. The liftingfuntion ω determines the triangulation of P ×Q and we write (P ×Q)ω =
P λ ×stc Q

µ if we want to emphasize the partiular lifting funtion ω de�nedin Equation (4.2). Reall that a vertex (v, w) of (P × Q)ω is olored k =
cPλ(v) + cQµ(w) where cPλ : P ∩ Zm → [m + 1] and cQµ : Q ∩ Zn → [n + 1]denote the oloring maps; see Proposition 4.5. Therefore for s ∈ (0, 1] theoe�ient polynomial (Equation (4.5)) of (P × Q)ω for k ∈ [m+ n + 1] hasthe form
F(P×Q)ω ,k,s(t) =

∑

c
Pλ (v)+cQµ (w)=k

sλ(v)+µ(w)+ǫ(v,w) t(v,w)

=
∑

c
Pλ (v)+cQµ (w)=k

sλ(v)(t1, . . . , tm)v sµ(w)(tm+1, . . . , tm+n)
w sǫ(v,w) .As in Example 4.8 we may hoose the same perturbation ǫ(i, j) = ǫ2(n+1)i+(n−j)(for su�iently small ǫ > 0) for all verties (v, w) with cPλ(v) = i and

cQµ(w) = j if we hoose olor onseutive orderings of the verties of P λand Qµ; see Equation (4.3). Summing over all olors i of P λ and all olors jof Qµ with i+ j = k yields
F(P×Q)ω ,k,s =

∑

i+j=k

FPλ,i,s FQµ,j,s s
ǫ(i,j) . (4.7)



102 Produts of Foldable TriangulationsThe s-degeneration s.YP meets the enter of the Wronski projetion inthe points
Vs(P

λ) =
{
t ∈ Rm

∣∣FPλ,i,s(t) = 0 for all i ∈ [m+ 1]
}
,the real variety generated by the oe�ient polynomials of P λ. Treating theparameter s as an additional indeterminate we arrive at

V (P λ) =
{
(s, t) ∈ R1+m

∣∣FPλ,i,s(t) = 0 for all i ∈ [m+ 1] and s ∈ (0, 1]
}
.Lemma 4.27. Choose olor onseutive orderings of the verties of P λ and

Qµ. Then there is a lifting funtion ω of P λ ×stc Q
µ = (P × Q)ω, suhthat the points in the variety Vs((P ×Q)ω) are exatly the points (t, t′) =

(t1, . . . , tm+n) ∈ Rm+n with t ∈ Vs(P
λ) or t′ ∈ Vs(Q

µ), that is,
Vs((P ×Q)ω) = (Vs(P

λ) × Rn) ∪ (Rm × Vs(Q
µ)) .Remark 4.28. The variety Vs(P λ) may be in�nite, in general.Proof of Lemma 4.27. For a point t ∈ Vs(P

λ) we have (t, t′) ∈ Vs((P ×Q)ω)for all t′ ∈ Rn by Equation (4.7). Similarly we have (t, t′) ∈ Vs((P ×Q)ω)for (s, t′) ∈ Vs(Q
µ) and all t ∈ Rm.For the reverse, let us assume there is a point (t, t′) ∈ Vs((P ×Q)ω) but

t 6∈ Vs(P
λ) and t′ 6∈ Vs(Q

µ). Choose i0 ∈ [m + 1] and j0 ∈ [n + 1] minimalsuh that FPλ,i0,s(t) 6= 0 and FQµ,j0,s(t
′) 6= 0. Further let us assume i0 ≥ j0.We prove by indution on i that i0 > m, or alternatively that FPλ,i,s(t) = 0for all i ∈ [m+ 1], ontraditing our assumption t 6∈ Vs(P

λ).We have FPλ,i,s(t) = 0 for all i < j0. Note that this is also true for j0 = 0.Now let FPλ,i′,s(t) = 0 for all i′ < i. Equation (4.7) yields for k = i+ j0

F(P×Q)ω ,i+j0,s(t, t
′) =

∑

i′+j′=i+j0

FPλ,i′,s(t) FQµ,j′,s(t
′) sǫ(i

′,j′)

=
∑

i′+j′=i+j0,i′<i

FPλ,i′,s(t) FQµ,j′,s(t
′) sǫ(i

′,j′)

+ FPλ,i,s(t) FQµ,j0,s(t
′) sǫ(i,j0)

+
∑

i′+j′=i+j0,i′>i

FPλ,i′,s(t) FQµ,j′,s(t
′) sǫ(i

′,j′)

= 0 ,sine we assumed (t, t′) ∈ Vs((P ×Q)ω).We have FPλ,i′,s(t) = 0 for i′ < i by indution and i′ > i implies j < j0hene FQµ,j,s(t
′) = 0 for i′ > i. We are left with FPλ,i,s(t)FQµ,j0,s(t

′) sǫ(i,j0) = 0whih in turn yields FPλ,i,s(t) = 0 sine sǫ(i,j0) > 0 and FQµ,j0,s(t
′) 6= 0; seeFigure 4.12.
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∑
= 0Figure 4.12. The indutive step in the proof of Lemma 4.27. Here ∗ denotes the non-zerovalue of FQµ,j0,s(t

′).Now we are ready to state and prove our main result.Theorem 4.29 (Algebrai Produt Theorem). Let P ⊂ Rm
≥0 and Q ⊂ Rn

≥0be non-negative full-dimensional lattie polytopes with rdf-triangulations P λand Qµ whih are g-nie for some value s0 ∈ (0, 1]. Further hoose any oloronseutive vertex orderings for P λ and Qµ. Then there is a lifting funtion
ω : (P × Q) ∩ Zm+n → R suh that (P × Q)ω = P λ ×stc Q

µ is g-nie for s0.Moreover, the number of real solutions of any Wronski polynomial systemassoiated with (P ×Q)ω is bounded from below by
σ ((P ×Q)ω) = σm,n σ(P λ) σ(Qµ) .Proof. The orientability of Y +

P×Q is a onsequene of Corollary 4.25. NowLemma 4.27 provides a lifting funtion ω : (P ×Q)∩Zm+n → R of P λ×stcQ
µsuh that the s-degeneration s.Y(P×Q)ω does not meet the enter of the Wron-ski projetion for s ∈ (0, s0] and (t, t′) ∈ Rm+n: Sine Vs(P λ) = Vs(Q

µ) = ∅for all s ∈ (0, s0] we have Vs((P ×Q)ω) = (Vs(P
λ)×Rn)∪ (Rm×Vs(Q

µ)) = ∅for all s ∈ (0, s0]. The laim hene follows from Theorem 4.20 and ourCombinatorial Produt Theorem 4.17.Remark 4.30. The deomposition σ(P λ ×stc Q
µ) = σm,n σ(P λ) σ(Qµ) fromTheorems 4.17 and 4.29 re�ets the geometri situation in the following sense:Let M = |P ∩ Zm| and N = |Q ∩ Zn| denote the number of lattie pointsof P and Q, respetively. The Wronski projetion πE : CPM−1 \ E → CPm(and its enter E) depends solely on the lifting funtion λ : Rm → R whihindues the rdf-triangulation P λ on P . Hene we will denote the Wronski



104 Produts of Foldable Triangulationsprojetion πE assoiated with P λ by πPλ , and its lifting to SM−1 by π+
Pλ .To give a lower bound on the number of real roots of the Wronski systemassoiated with (P × Q)ω = P λ ×stc Q

µ we have to bound the topologialdegree of the map π+
(P×Q)ω restrited to Y +

P×Q. A deomposition of π+
(P×Q)ωby the maps π+

Pλ , π+
Qµ, π+

∆m×stc∆n
, and the overs of the Segre embeddingsis given by the following diagram whih ommutes provided that the liftingfuntions math as in Equation (4.3). Here the vertial arrows indiate theovers of the Segre embeddings of the appropriate dimensions.SM−1 × SN−1

ι+

��

Y +
P × Y +

Q
? _oo

π+

Pλ
×π+

Qµ
//

ι+

��

Y +
∆m

× Y +
∆n

ι+

��

Sm × Sn
ι+

��SMN−1 Y +
P×Q

? _oo
π+
(P×Q)ω

// Sm+n Y +
∆m×∆n

π+
stcm,n

oo � � // Smn+m+nThis deomposition of π+
(P×Q)ω yields the deomposition of σ(P λ ×stc Q

µ)given in the Theorems 4.17 and 4.29.4.4 CubesWe de�ne the signature of a lattie polytope P , denoted as σ(P ), as themaximum of the signatures of all rdf-triangulations of P . The signature isunde�ned if P does not admit any suh triangulation as in Example 4.13.However, here we are onerned with ubes, whih do have rdf-triangulations:This is an immediate onsequene of the Produt Theorem 4.17 sine Cd =
[0, 1]d = I × · · · × I an be triangulated as the d-fold simpliial produt
I ×stc . . .×stc I with zero signature.Sine Cd does not ontain any non-vertex lattie points, eah lattie tri-angulation of Cd is dense. Note that Cd does have non-regular triangulationsfor d ≥ 4; see De Loera [16℄.4.4.1 Triangulations with Large SignatureSine the simpliial produt of unimodular triangulations is again unimodu-lar it follows that eah d-fold simpliial produt I ×stc . . .×stc I has d! faets,whih is the maximum that an be obtained for the d-ube without intro-duing new verties. On the other hand the minimal number of faets in atriangulation of Cd is known only for d ≤ 7; see Anderson and Hughes [32℄.The best urrently known upper and lower bounds are due to Smith [61℄,Orden & Santos [51℄, and Bliss & Su [10℄. For a reent survey on ubes, theirtriangulations, and related issues see Zong [67℄. Rambau's program TOPCOM



4.4 Cubes 105allows to enumerate all regular triangulations of Cd for d ≤ 4 [55℄. This thenyields the following result.Proposition 4.31. We have the signatures σ(C1) = 1, σ(C2) = 0, σ(C3) = 4,and σ(C4) = 2.The ases of C1 = I and C2 are trivial. The unique (regular and) foldabletriangulation of C3 with the maximal signature 4 is the unique minimaltriangulation; it has one (blak) faet of normalized volume 2 and four (white)faets of normalized volume 1.There is one further ingredient whih relies on an expliit onstrution,a triangulation of C6 with a non-trivial signature. We give more details onour experiments in Setion 4.4.3 below.Proposition 4.32. We have σ(C6) ≥ 4.Theorem 4.33. The signature of Cd for d ≥ 3 is bounded from below by
σ(Cd) ≥





2
d+1
2

(
d−1
2

)
! if d ≡ 1 mod 2(

d
2

)
! if d ≡ 0 mod 4

2
3

(
d
2

)
! if d ≡ 2 mod 4 .Proof. Let us start with the ase d odd. Here for C3 we hoose the rdf-triangulation with signature 4 from Proposition 4.31. For d ≥ 5 we fator-ize Cd as C2 ×Cd−2 and hoose a olor onseutive vertex ordering for Cd−2.There is only one triangulation to hoose for C2, but we take the symmetriordering of the verties; see Example 4.6. The signature of stc2,d−2 equals

(d− 1)/2 by Proposition 4.15 and the seond ase of Proposition 4.18 indu-tively gives
σ(Cd) ≥ 2 σd−2,2 σ(Cd−2) ≥ 2

d− 1

2
2

d−3
2

(
d− 3

2

)
! = 2

d+1
2

(
d− 1

2

)
! .If d ≡ 0 mod 4 then we indutively prove that σ(Cd) ≥

(
d
2

)
!. The indu-tion starts with d = 4 by Proposition 4.31. For d ≥ 8 we deompose Cd as

C4 × Cd−4. The signature of stc4,d−4 equals d(d − 2)/8 by Proposition 4.15.Choosing olor onseutive orderings for C4 and Cd−4 Theorem 4.17 nowyields
σ(Cd) ≥ σ4,d−4 σ(C4) σ(Cd−4) ≥

d(d− 2)

8
2

(
d− 4

2

)
! =

(
d

2

)
! .In the remaining ase where d ≡ 2 mod 4 we onstrut Cd as a simpliialprodut of C6 and Cd−6. By the expliit onstrution in Proposition 4.32



106 Produts of Foldable Triangulationsthe signature of C6 is at least 4. The signature of Cd−6 is bounded frombelow by (d− 6)/2! as just proved. Proposition 4.15 yields σ6,d−6 =
(d

2
3

), andTheorem 4.17 ompletes the proof:
σ(Cd) ≥ σ6,d−6σ(C6)σ(Cd−6) ≥

d
2

(
d
2
− 1

) (
d
2
− 2

)

3!
4

(
d

2
− 3

)
! =

2

3

(
d

2

)
! .

4.4.2 Nie TriangulationsOur main result, the Algebrai Produt Theorem 4.29, asserts that the simpli-ial produt of two g-nie triangulations P λ and Qµ is again g-nie, providedthat the vertex ordering of P λ and Qµ are olor onseutive. So what aboutthe triangulations of the d-ube with signature in Ω(⌈d/2⌉!) onstruted inSetion 4.4.1 above? Sine the onstrution for d odd was based on thesymmetri vertex ordering for the square, whih is not olor onseutive,Theorem 4.29 does not apply. The goal of this setion is thus to onstrutg-nie ube rdf-triangulations from a deomposition into di�erent fators.The geometri signature σ+(P ) of a lattie polytope P is de�ned as themaximum of the signatures of all rdf-triangulations of P whih are g-nie forsome parameter s ∈ (0, 1]. Clearly, σ+(P ) ≤ σ(P ). Note that Y +
Cd

is alwaysoriented by Corollary 4.25 sine Cd = I × I × · · · × I, and I is Cox-oriented.Let us examine two ases of low dimension expliitly: There is a liftingfuntion C3 ∩ Z3 → N suh that the indued triangulation is the uniqueminimal triangulation of the 3-ube from Proposition 4.31, and the tori de-generation meets the enter only for s = 1; see [62℄. This implies σ+(C3) = 4.In the subsequent Setion 4.4.3 a triangulation Cλ
4 of the 4-ube with signa-ture equal to 2 is onstruted expliitly via a lifting funtion λ : C4∩Z4 → N.The variety V (Cλ

4 ) (see Setion 4.3.2), desribing the values of s for whihthe enter of the projetion is met, onsists of two isolated points for some
s1 > 1 and some s2 < 0, hene Cλ

4 is g-nie for any s0 ∈ (0, 1]. A ompleteenumeration of all regular triangulation of C4 shows that σ+(C4) = 2.We want to avoid splitting o� fators whih are squares, sine neitherof its two vertex orderings an be used for our purposes: The olor onse-utive vertex ordering has signature zero, and produts with respet to thesymmetri vertex ordering are not known to be g-nie. Hene we fatorize
Cd =

{
C1 × Cd−1 if d ≡ 1 mod4

C3 × Cd−3 if d ≡ 3 mod4 ,



4.4 Cubes 107whih means that we redued the ases d ≡ 1 mod 4 and d ≡ 3 mod 4 to thease d ≡ 0 mod 4. Proposition 4.15 and Theorem 4.17 yield for d ≡ 1 mod 4

σ+(Cd) ≥ σ1,d−1 σ
+(C1) σ

+(Cd−1) = σ+(Cd−1) ≥

(
d− 1

2

)
! .For d ≡ 3 mod 4 we have

σ+(Cd) ≥ σ3,d−3 σ
+(C3) σ

+(Cd−3) ≥
d− 1

2
4

(
d− 3

2

)
! = 4

(
d− 1

2

)
! ,and we obtain an overall lower bound in Ω(⌊d/2⌋!) for the geometri signatureof the d-ube. Observe that this lower bound for the signature in the ase of dodd is signi�antly weaker than the bound given in Theorem 4.33, whih doesnot take the geometri properties of the Wronski projetion into aount.Corollary 4.34. For d 6≡ 2 mod 4 there are rdf-triangulations of the d-ubewith signature at least ⌊d/2⌋! whih are g-nie for any s0 ∈ (0, 1).Proving that the triangulation of the 6-ube with signature 4 from Propo-sition 4.32 (together with its generating lifting funtion) is g-nie for some

s0 ∈ (0, 1] would also settle the d ≡ 2 mod 4 ase. However, with the teh-niques of Setion 4.4.3 one needs to solve a system of seven polynomials in theseven unknowns s, x1, . . . , x6 of maximal total degree 386; see Problem 4.37.This is beyond the sope of this investigation.4.4.3 Construtions and Computer ExperimentsWe ompletely enumerated all regular triangulations of the d-ube C4 up tosymmetry using TOPCOM [55℄. These 235,277 triangulations were then hekedwhether they are foldable by polymake [21, 22, 23℄; it turns out that theirtotal number is 454. For all the foldable ones we omputed the signature,and we found 36 triangulations with signature 2, all other foldable triangula-tions of C4 have a vanishing signature. The regularity of Example 4.35 wasindependently veri�ed by the expliit onstrution of a lifting funtion.Example 4.35. We now give an expliit desription of an rdf-triangula-tion Cλ
4 of the 4-ube with signature two. To this end we enode the ver-ties of C4, that is, the 0/1-vetors of length 4 as the hexadeimal digits

0, 1, . . . , 9, a, b, c, d, e, f . The lifting funtion λ and the vertex 5-oloring isgiven in Table 4.1. The faets of Cλ
4 are listed in Table 4.2, and the f -vetorreads (16, 64, 107, 81, 23).As mentioned before, the double over Y +

Cd
of the assoiated real torivariety of the d-ube is indeed oriented for all dimensions d. To prove that Cλ

4



108 Produts of Foldable TriangulationsTable 4.1. The vertex 5-oloring c and a lifting funtion λ for Cλ
4 desribed in Exam-ple 4.35. The verties of the �rst faet 01248 are hosen as the olors.

v 0 1 2 3 4 5 6 7 8 9 a b c d e f

λ(v) 0 0 0 4 0 2 8 8 10 11 19 19 10 19 24 31
c(v) 0 1 2 4 4 0 0 1 8 2 1 0 2 4 4 8Table 4.2. Faets of the triangulation Cλ

4 .
01248 12358 12458 13589 2378b 23578 24578 24678
2678e 278be 28abe 35789 3789b 4578c 4678c 5789d
578cd 678ce 789bd 78bcd 78bce 7bcef 7bcdfis g-nie for any s0 ∈ (0, 1] we examine the variety V (Cλ

4 ), desribing thevalues of s for whih the enter of the projetion is met; see Setion 4.3.2.The variety V (Cλ
4 ) is the solution set of the ideal I(Cλ

4 ) generated by the �veoe�ient polynomials
FCλ

4 ,0,s
= 1 + s2x1x3 + s8x2x3 + s19x1x2x4 ,

FCλ
4 ,1,s

= x1 + s8x1x2x3 + s19x2x4 ,

FCλ
4 ,2,s

= x2 + s10x3x4 + s11x1x4 ,

FCλ
4 ,3,s

= x3 + s4x1x2 + s19x1x3x4 + s24x2x3x4 , and
FCλ

4 ,4,s
= x4 + s31x1x2x3x4 .For the lexiographial ordering x4 > x3 > x2 > x1 > s a Gröbner basisof I(Cλ

4 ) reads (omputed by MAGMA [13℄)
{ x4 + g4(s), x3 + g3(s), x2 + g2(s), x1 + g1(s), g(s) } ,for ertain polynomials g, g1, . . . , g4 ∈ Q[s]. The polynomial g(s) is displayedin Figure 4.13, and the others are by far too large to be listed. The es-sential feature of this Gröbner basis is that knowing the (real) roots of thepolynomial g(s) of degree 444 allows to ompute the values for x1, . . . , x4diretly.It turns out that g(s) has exatly two real roots s1 and s2 with s1 > 1 and

−1 < s2 < 0. Given g(s) this an be veri�ed with any standard omputeralgebra program by omputing all 444 distint (omplex) solutions. Addi-tionally, this was ounter-heked via Collins' method of ylindrial algebraideomposition [15℄, as implemented in QEPCAD [30℄. Approximate values forthe two real zeroes of g(s) are given in Table 4.3. It follows that Cλ
4 is g-niefor any s0 ∈ (0, 1].
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s444−2s418−4s417−4s415−2s412−6s401+s400−s399−5s398+5s397+3s396−6s394+

3s393+3s392−4s391+5s390+10s389+10s388+12s386+8s385+5s383+13s380+4s379−

15s375 +31s374−8s373 +14s372 +29s371−32s370 +19s369 +29s368−28s367 +4s366 +

45s365−18s364−8s363 +42s362−12s361−20s360−6s359−13s358−26s357−12s356 +

24s355 − 17s354 − 87s353 + 21s352 + 5s351 − 59s350 + 131s349 + 36s348 − 125s347 +

142s346 − 36s345 − 86s344 + 46s343 − 113s342 − 4s341 + 20s340 − 131s339 + 43s338 +

43s337 − 142s336 − 55s335 − 7s334 − 60s333 + 124s332 + 56s331 − 54s330 + 23s329 +

13s328−202s327 +84s326 +185s325−292s324 +32s323 +191s322−189s321−20s320−

77s319−147s318+104s317−188s316−93s315+467s314−50s313−269s312+236s311 +

29s310−433s309+349s308 +203s307−449s306 +74s305+178s304 +69s303−165s302−

260s301 + 625s300 − 455s299 − 430s298 + 1018s297 − 661s296 − 493s295 + 1170s294 −

790s293 − 411s292 + 1222s291 − 432s290 − 201s289 + 605s288 − 624s287 + 243s286 +

938s285 −352s284−553s283 +1328s282 −560s281−1343s280 +1506s279 −1263s278 −

826s277 +1988s276−1423s275 +828s274 +2093s273−1779s272 +1129s271 +686s270−

2280s269 +1292s268 +938s267 −1279s266 −48s265 +1606s264 −595s263−1445s262 +

1409s261 − 876s260 − 1256s259 + 1340s258 + 325s257 + 1433s256 + 29s255 + 571s254 +

1933s253−3175s252+181s251+1768s250−3124s249+1204s248+432s247−1215s246+

2103s245 −683s244 −521s243 +786s242 −1184s241 −355s240 +1889s239 +1888s238 −

2616s237+3311s236+2553s235−6876s234+3628s233+886s232−6562s231+4543s230−

1364s229−2218s228+5371s227−2353s226+292s225+2304s224−2830s223+540s222+

1685s221+641s220−2651s219+3260s218+2777s217−6771s216+3916s215+837s214−

6602s213+4239s212−2085s211−611s210+4945s209−3172s208+3461s207+978s206−

4176s205 +3841s204−909s203−2110s202 +416s201 +789s200 +1019s199−2635s198 +

1849s197 +595s196−3099s195 +859s194−1946s193 +2463s192 +870s191−2980s190 +

6933s189−1758s188−4228s187+6606s186−2718s185−4392s184+2695s183−875s182−

1806s181 +455s180 +1139s179−1102s178−156s177 +846s176−2773s175 +2989s174 +

43s173−3244s172+5688s171−1833s170−3051s169+5638s168−2460s167−3614s166+

2791s165−1135s164−2479s163+796s162+1119s161−1792s160−403s159+1850s158−

1662s157+756s156+588s155−1355s154+2376s153−1103s152−1312s151+3206s150−

1518s149−2313s148+1869s147−343s146−1914s145+575s144+1203s143−1568s142−

506s141 + 1542s140 − 753s139 − 540s138 + 759s137 − 254s136 + 119s135 + 24s134 −

68s133+692s132−463s131−306s130+156s129−209s128−127s127+94s126+215s125−

444s124+15s123+274s122−211s121−339s120+240s119−159s118−132s117+133s116+

127s115+49s114−173s113+197s112−114s111−180s110+203s109+78s108−109s107−

53s106 +191s105−80s104−20s103−160s102 +s101−191s100−75s99+15s98 +61s97−

57s96 +43s94 +2s93 −34s92 +43s91 +10s90 −27s89 −2s88 +44s87 −38s86 +70s85 −

105s84−16s83−83s82−31s81−25s80+44s79−89s78+28s77−15s76+16s75−23s74+

24s73−11s72−9s71+14s70−s69+2s68+20s67−29s66−8s65−16s64−20s63+6s62+

18s61−42s60 +10s59−s57−18s56 +16s55−19s54−3s53 +3s52+5s51 +3s49−5s48+

s47 − 2s46 − 3s45 + 2s44 + 6s43 − 9s42 + 2s41 − 6s38 + 4s37 − 15s36 + 2s33 − 6s18 − 1Figure 4.13. The polynomial g(s) of the Gröbner basis of I(Cλ
4 ).



110 Produts of Foldable TriangulationsTable 4.3. Approximate oordinates for the two points in the variety V (Cλ
4 ).

s -0.9955941875452 1.0003839818262
x1 1.3469081499925 -1.1340421741317
x2 0.7663015145691 -1.8447577233888
x3 1.1109881050869 -0.4723488390037
x4 3.4823714929884 -1.1436761629897While, with urrent omputers, it seems to be out of reah to ompletelyenumerate all triangulations of most polytopes in dimension 5 and beyond,TOPCOM an still be used to enumerate large numbers of triangulations. Welet TOPCOM ompute altogether 59,083 di�erent triangulations whih originatefrom randomly hosen plaing triangulations by suessive �ipping. Not asingle triangulation among these was foldable. Next we took the triangulationof C5 with signature 16 that omes from Theorem 4.33 and we inspeted

102,184 triangulations by random �ipping. This way we found only twomore foldable triangulations, one with signature 14 and a seond one withsignature 16.For C6 the situation is more ompliated. None of our results so fardiretly yields any foldable triangulation with a positive signature: All thesimpliial produt triangulations of C6 arising from deomposing C6 as aprodut of two (or more) ubes of smaller dimensions do not yield a non-trivial lower bound sine at least one fator vanishes in the orrespondingexpressions in Proposition 4.18 and Theorem 4.17. And, as an be expetedfrom the 5-dimensional ase, TOPCOM did not �nd a foldable triangulationwith a positive signature either. Therefore we took a detour in that weused TOPCOM to study triangulations of the produt of the 4-simplex andthe square. This time we were luky to �nd a foldable triangulation withsignature 2, whih also turned out to be regular.Proposition 4.36. We have σ(∆4 × C2) ≥ 2In the sequel we denote this rdf-triangulation of ∆4×C2 with signature 2by S, and let Cλ
4 be the rdf-triangulation of C4 with signature 2 from Propo-sition 4.31. Then the produt C6 = C4 ×C2 inherits a polytopal subdivisioninto faets of type ∆4×C2 from Cλ

4 . Eah of these faets an now be triangu-lated using S in suh a way that one obtains an rdf-triangulation of C6 withsignature 4. Its f -vetor equals (64, 656, 2640, 5298, 5676, 3115, 690). Thisestablishes Proposition 4.32.Problem 4.37. In order to deide whether the triangulation of C6 fromProposition 4.32 (together with its generating lifting funtion) is g-nie for



4.4 Cubes 111some s0 ∈ (0, 1], it su�es to prove that the real variety generated by
FC6,0,s = 1 + s2x5x6 + s8x1x6 + s55x1x3 + s57x1x3x5x6 + s124x2x3

+ s151x2x3x5x6 + s157x1x2x3x6 + s197x1x2x4 + s218x2x4x6

+ s224x1x2x4x5x6,

FC6,1,s = x6 + s4x1x5 + s41x2x5x6 + s55x1x3x6 + s122x1x4x5x6

+ s128x1x2x3x5 + s149x2x3x6 + s167x3x4x5x6 + s189x2x4x5

+ s222x1x2x4x6,

FC6,2,s = x5 + s8x1x5x6 + s55x1x3x5 + s124x2x3x5 + s157x1x2x3x5x6

+ s197x1x2x4x5 + s218x2x4x5x6,

FC6,3,s = x1 + s8x2x5 + s35x3x6 + s55x4x5x6 + s89x1x4x5 + s92x1x2x6

+ s124x1x2x3 + s134x3x4x5 + s185x2x4 + s218x1x3x4x6

+ s311x2x3x4x6 + s380x1x2x3x4x5x6,

FC6,4,s = x2 + s10x3x5 + s39x4x6 + s67x1x2x5 + s81x1x4 + s126x3x4

+ s193x1x3x4x5 + s286x2x3x4x5 + s364x1x2x3x4x6,

FC6,5,s = x3 + s12x4x5 + s37x2x6 + s57x1x2 + s118x1x4x6 + s163x3x4x6

+ s183x1x3x4 + s276x2x3x4 + s337x1x2x3x4x5, and
FC6,6,s = x4 + s49x3x5x6 + s106x1x2x5x6 + s325x1x2x3x4

+ s325x2x3x4x5x6 + s232x1x3x4x5x6is empty for all s ∈ (0, s0]. We leave this as an open problem.





Conluding RemarksIn Theorem 3.12 we stated a ombinatorial analog of the Piergallini [54℄ re-sult, in the sense that the partial unfolding Ŝ of the simpliial 4-sphere Sonstruted is PL-homeomorphi to a given losed oriented PL 4-manifold,and the anonial projetion Ŝ → S is a simple 4-fold branhed over of S4branhed over a PL surfae with a �nite number of usp and node singulari-ties.The Piergallini [54℄ result an be improved suh that the branhing setis loally �at, if one allows for a �fth sheet [33℄. In general the number ofsheets of the branhed over K̂ → K of a ombinatorial d-manifold K is atmost d + 1, sine the sheets orrespond to the verties of an arbitrary but�xed faet σ0 ∈ K. Thus it is possible to obtain a 5-fold branhed overvia the partial unfolding of a triangulation of S4. The results of Iori & Pier-gallini [33℄ suggest that branhed overs obtained via the partial unfoldingindeed produe all losed oriented PL 4-manifolds as 5-fold branhed oversof S4 branhed over a loally �at PL surfae.In the ase of 3-manifolds it remains unlear whether stellar subdivisionof faes su�es to onstrut a triangulation S of S3 with Ŝ ∼= M for any givenlosed oriented 3-manifold M . An a�rmative answer to the following prob-lem would allow us to onstrut S by stellar subdivision of faes only, sinethe moves C± and M± from Lemma 3.14 may be realized as the symmetridi�erene with the boundary of an embedded 2-ball; see Proposition 2.14.Problem. Starting with the boundary of the 4-simplex, is it possible toonstrut a triangulation of S3 with the trefoil knot as odd subomplex andgroup of projetivities isomorphi to Σ3 via stellar subdivision of faes only?Proposition 1.15 may be exploited further to understand what kind ofsingularities may appear in the odd subomplex if we require the unfoldingto be a ombinatorial manifold. Conversely it might be useful in �nding aombinatorial proof of the Edwards result [41, 14℄, stating that suspendinga homology 3-sphere twie yields a 5-sphere.113



114 Conluding RemarksThe simpliial produt of g-nie rdf-triangulations (with olor onseutivevertex orderings) of lattie polytopes P and Q provides means to onstrutsparse polynomial systems with non-trivial lower bounds for the number ofreal roots following Soprunova & Sottile [62℄. Further we gained inside inthe produt struture of the topologial degrees of the maps involved in theSoprunova & Sottile bound for the simpliial produt, see Remark 4.30.We gave expliit g-nie rdf-triangulations of the d-ube Cd with signatureat least ⌊d/2⌋! for the ase d 6≡ 2 mod 4. The assoiated Wronski systemsof d polynomials in d unknowns have at least ⌊d/2⌋! real roots omparedto d! omplex roots. The ase of 3 ≤ d ≡ 2 mod 4 remains open sinewe are unable to verify g-nieness for our expliit rdf-triangulation of C6with positive signature. Construting any g-nie rdf-triangulation of C6 withpositive signature would yield g-nie rdf-triangulation of Cd with signaturein O(⌊d/2⌋!) for all dimensions d ≥ 3.Finally there is the quest for lower bounds for the number of positive realroots of a sparse polynomial system. Here it might be possible to ombineresults by Itenberg & Roy [34℄ with the work of Soprunova & Sottile [62℄ toonstrut sparse polynomial systems with non-trivial lower bounds for thenumber of positive real roots.



ZusammenfassungEin simplizialer Komplex der Dimension d ist faltbar, wenn es eine nihtdegenerierte simpliziale Abbildung in den d-Simplex gibt. Wir verwendenfaltbare Triangulierungen zur Konstruktion simplizialer Komplexe mit einemvorgegebenen ungeraden Teilkomplex. Letzterer ist der durh alle Kodimen-sion 2-Seiten mit niht bipartitem Link gegebene Teilkomplex. Der ungera-de Teilkomplex kontrolliert das Verhalten der von Izmestiev & Joswig [36℄eingeführten Entfaltungen. Die Entfaltungen de�nieren simpliziale Abbildun-gen, die im topologishen Sinne verzweigte Überlagerungen mit dem ungera-den Teilkomplex als Verzweigungsmenge sind. Somit gilt unser Interesse derTopologie des ungeraden Teilkomplexes, aber gewisse gruppentheoretisheÜberlegungen sind darüber hinaus von Bedeutung.Im Fall simplizialerKomplexe mit gewissen zusätzlihen Zusammenhangs-bedingungen sind die Eigenshaften �faltbar� und �leerer ungerader Teilkom-plex� äquivalent. Wir verwenden diese Äquivalenz in der Konstruktion ei-nes simplizialen Komplexes K mit vorgeshriebenem ungeraden Teilkomplex,indem K aus faltbaren Triangulierungen als Bausteinen zusammen gesetztwird. Dies ermögliht die Konstruktion aller geshlossenen, orientierbaren PL4-Mannigfaltigkeitenmit Hilfe der (partiellen) Entfaltung. In diesem Sinne istunser Resultat eine kombinatorishe Version der Arbeit von Piergallini [54℄.An anderer Stelle konstruieren wir faltbare Triangulierungen von Produk-ten ganzzahliger Polytope. Insbesondere werden reguläre und dihte Triangu-lierungen konstruiert. Eine Triangulierung eines ganzzahligen d-Polytops Pist regulär, wenn sie sih als untere konvexe Hülle in den Rd+1 heben läÿt,und diht, wenn die Ekenmenge der Triangulierung mit den ganzzahligenPunkten in P übereinstimmt. Reguläre, dihte und faltbare Triangulierun-gen benennen wir der Kürze halber als rdf-Triangulierungen.Eine TriangulierungK eines ganzzahligen Polytops P ist genau dann falt-bar, wenn der duale Graph von K bipartit ist; siehe [37℄. Soprunova & Sot-tile [62℄ konstruieren Polynomsysteme ausgehend von rdf-Triangulierungenvon P , und geben eine niht triviale untere Shranke für die Anzahl der re-ellen Nullstellen. Das Polytop P ist das gemeinsame Newton Polytop der115



116 ZusammenfassungPolynome des Systems. Die Anzahl der reellen Nullstellen ist gröÿer als diegewihtete Gröÿendi�erenz der zwei Klassen der Bipartition des dualen Gra-phen der rdf-Triangulierung. Die Gröÿendi�erenz ist die Signatur der Trian-gulierung.Gegeben seien rdf-Triangulierungen zweier ganzzahliger Polytope P undQ.Wir konstruieren das simpliziale Produkt, eine rdf-Triangulierung des Poly-tops P ×Q, und berehnen dessen Signatur.Das simpliziale Produkt wird angewandt, um für d 6≡ 2 mod 4 Trian-gulierungen des d-Würfels mit Signatur mindestens ⌊d/2⌋! zu erhalten. Diekorrespondierenden Polynomsysteme sind Systeme in d Unbekannten, welhemindestens ⌊d/2⌋! reellen Nullstellen im Gegensatz zu d! komplexen Nullstel-len haben.
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Notation Index
N set of natural numbersZ set of integer numbersR set of real numbersC set of omplex numbersC× set of omplex numbers without zeroRPd d-dimensional real projetive spaeCPd d-dimensional omplex projetive spaeSd d-dimensional sphereDd d-dimensional ball
∆d d-simplex
∞ in�nity
∅ empty set
[a, b] interval {x ∈ R | a ≤ x ≤ b}

A \ B set minus, all elements in A and not in B

A ·∪B disjoint union of A and B

f = O(g) O-notation
conv(V ) onvex hull of a set V

vol(P ) d-dimensional volume of a polytope P ⊂ Rd

V (K) vertex set of a simpliial omplex K

dim(f) dimension of a fae f

codim(f) o-dimension of a fae f

∂X boundary (omplex) of X

cl(X) topologial losure of X
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