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Boredom and impatience are the most immoral emotions there can be. For man

sets time as real in them: he wants it to pass without him having to fill it,

without it being mere phenomenal form of his inner liberation and extension,

mere form in which he must strive to be realised, but rather independent from

him, and he dependent on it. Boredom is at the same time the need to annul

time from outside, and the longing for the devil’s work.

Otto Weininger (1880-1903)





Summary

The principal aim of the study of ultrarelativistic nucleus-nucleus collisions

is the search for evidence of a transient state of deconfined quarks and gluons

in the early, dense and hot stage of the reaction. Non-statistical event-by-event

fluctuations of mean transverse momentum, pT , have been proposed as a possible

signature for the QCD phase transition, in particular for the critical point. How-

ever, the magnitude of the measured fluctuations is not as large as anticipated.

Since fluctuations were characterized so far by one single (integral) number, it

was difficult to estimate the many possible contributions to them.

Taking into account the high available statistics offered by the CERES ex-

periment combined with the full azimuthal acceptance, a differential study of

mean pT fluctuations is performed, which provides the sensitivity to discriminate

among various correlation sources. For the first time at SPS energy, the charge-

dependent mean pT fluctuations have been analyzed as a function of the angular

pair separation, ∆φ, and of the separation in pseudorapidity, ∆η. Thus, we are

able to show that the overall fluctuations are dominated by the short range corre-

lation peak at small opening angles (‘near-side’), most probably originating from

Bose-Einstein and Coulomb effects between pairs of particles emitted with simi-

lar velocities. Another important contribution is a broad maximum at ∆φ=180o

(‘away-side’) originating from back-to-back (jet-like) correlations. Since the fluc-

tuations related to the critical point should be present for all opening angles the

best strategy is to focus on the fluctuations in the region of 30o < ∆φ < 60o,

free of the influence of the two mentioned components, and where the elliptic

flow cancels out. Concerning the observed away-side peak, we demonstrate that

it comes from high-pT correlations that cannot be attributed to the elliptic flow.

The second part of the thesis is dedicated to studies of gas properties for the

ALICE experiment at the CERN LHC. Drift velocity and gain measurements

have been performed for a number of gas mixtures in order to assess the effect of

nitrogen which is expected to accumulate in the gas volume over long periods of

running. The ALICE Transition Radiation Detector (TRD) is designed to work

with a gas of 85 % Xe and 15 % CO2. Some of the nine isotopes of Xe have very



high neutron capture cross-section leading to multi-gamma deexcitation cascades

which produce background for the physical signals. An exhaustive study of this

issue based on Monte Carlo simulations is presented, demonstrating that the level

of this background is low enough not to cause deterioration in the performance of

the detector. In addition, the resulting radioactivity and dose rate of the active

gas system of ALICE TRD activated by slow neutrons is investigated and appear

to be low and safe.
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Zusammenfassung

Für stark wechselwirkende Materie wird bei hoher Temperatur und/oder Dichte

die Existenz einer Phase erwartet, in welcher der Einschluss von Quarks und

Gluonen in Hadronen (Confinement) aufgehoben ist. Erzeugung und Nachweis

dieses Materiezustands soll durch das Studium von Kollisionen schwerer Ionen

erbracht werden. Als mögliche Signatur für den Phasenübergang, insbesondere

für einen möglichen kritischen Punkt, wurden nicht-statistische event-by-event

Fluktuationen des mittleren Transversalimpulses pT diskutiert. Die Stärke des

beobachteten Signals ist allerdings geringer als erwartet. Bisher wurden Fluktu-

ationen nur durch gemittelte Grössen charakterisiert, so dass eine systematische

Untersuchung unterschiedlicher Beiträge nur schwer durchführbar war.

In dieser Arbeit werden Fluktuationen des mittleren Transversalimpulses an-

hand von Daten des CERES Experiments untersucht. Die volle azimuthale

Akzeptanz des Experiments sowie die hohe Anzahl an erfassten Kollisionsereignis-

sen erlaubt es, im Rahmen einer differentiellen Analyse verschiedene Beiträge

zu den gemessenen Korrelationen zu identifizieren. Wir präsentieren, zum er-

sten Mal für SPS Energien, eine Studie der Transversalimpulsflukutationen in

Abhängigkeit vom Öffnungswinkel ∆φ, der Separation in Pseudorapidität ∆η

und der Ladung der korrelierten Paare. Wie sich herausstellt sind die gemessenen

Fluktuationen durch kurzreichweitige Korrelationen bei kleinem Öffnungswinkel

dominiert, in denen sich höchstwahrscheinlich Bose-Einstein Korrelationen und

Coulomb-Wechselwirkung zwischen Teilchenpaaren ähnlicher Geschwindigkeit man-

ifestieren. Weiterhin finden wir ein breites Maximum für ∆φ=180o, deren Ur-

sprung in ’back-to-back’ (jetartigen) Korrelationen liegt. Da Fluktuationen in

Zusammenhang mit dem Phasenübergang für beliebige Öffnungswinkel erwartet

werden, schlagen wir als Signatur für den kritischen Punkt Transversalimpuls-

fluktuationen im Winkelbereich 30o < ∆φ < 60o vor, da für diese Öffnungswinkel

die diskutierten Komponenten nicht beitragen, ebensowenig wie Korrelationen

durch kollektive Effekte im Feuerball (elliptischer Fluss). Weiterhin wird demon-

striert, dass die Korrelation für ∆φ=180o bei hohem Transversalimpuls nicht auf

elliptischen Fluss zurückzuführen ist.



Der zweite Teil der vorliegenden Arbeit widmet sich der Untersuchung von

Eigenschaften von Gasen, die im ALICE Detektor am CERN LHC eingesetzt wer-

den sollen. Für eine Reihe von Gasmischungen wurden Messungen der Ladungsverstärkung

und Driftgeschwindigkeiten von Elektronen durchgeführt, um den Einfluss der

Anreicherung von Stickstoff über längere Strahlzeitperioden zu untersuchen.

Der ALICE Transition Radiation Detector (TRD) operiert mit einem Gas-

gemisch aus Xe(85 %) und CO2(15 %). Einige der insgesamt neun stabilen

Xenon-Isotope haben hohe Wirkungsquerschnitte für Neutroneneinfang, der zu

Gamma-Kaskaden beim Übergang der angeregten Tochterkerne in den Grundzu-

stand führt. Solche Gammastrahlung stellt störenden Untergrund für den De-

tektor dar. Mittels umfangreicher Monte-Carlo Simulationen können wir demon-

strieren, dass der Beitrag durch solchen Untergrund gering ist und die Funk-

tion des Detektors nicht beeinträchtigt ist. Darüberhinaus wird die Dosisrate

durch langsame Neutronen innerhalb des ALICE TRD Gassystems bestimmt

und gezeigt, dass diese als gering und ungefährlich einzustufen ist.
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Chapter 1

Preface

Quantum Chromodynamics (QCD) predicts that strongly interacting matter can

exist in different phases. The expectation is that at high enough temperature

and/or density hadrons dissolve into a new form of elementary particle matter,

the Quark-Gluon Plasma (QGP), where quarks and gluons are deconfined. At this

phase transition it is expected that chiral symmetry is restored, with significant

consequences on particle properties. The goal of heavy-ion collision experiments

is to shed light on the thermodynamic properties of strongly interacting matter

under these conditions and to investigate the QCD phase diagram.

As fluctuations are sensitive to the dynamics of the system, the analysis of

event-by-event fluctuations of the mean transverse momentum has been proposed

as a tool to search for the phase transition, especially the QCD critical point via

their non-monotonic variation with control parameters such as beam energy and

centrality.

In fact, significant non-statistical event-by-event fluctuations and a character-

istic centrality dependence have been observed over a wide range of beam energies

at different experiments. However, the magnitude of the measured fluctuations

is not as large as anticipated.

This work extends the previous study [45] of the CERES experiment of event-

by-event transverse momentum fluctuations. The main objective is to resolve

them as a function of the angular pair separation, ∆φ, and of the separation

in pseudo-rapidity, ∆η. This ‘differential’, scale-dependent analysis, which is

presented for the first time at SPS energy, will be compared with two-particle
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2 Preface

transverse momentum correlations in order to extract complete information that

will be studied to shed light on their origin.

The thesis is structured as follows: Chapter 2 introduces the physics topics

discussed in this work. In Chapter 3 the statistical tools used in this analysis are

introduced and briefly discussed. The previously published results on fluctuations

are presented in Chapter 4. The experimental set-up of CERES as well as the

data analysis is decribed in Chapter 5. In Chapter 6 we present and discuss the

results of the scale dependence of mean transverse momentum fluctuations.

The second part of the thesis is dedicated to studies of gas properties for the

ALICE experiment. A short description of the ALICE experiment is given in

Chapter 7. Measurements of drift velocities and gains in gas mixtures based

on Ar and Xe, with CO2, CH4, and N2 as quenchers, are presented in Chapter

8. Finally, the radiation background which will be present in the real LHC

environment as well as an estimate of the activity levels of the gas system of the

ALICE TRD (Transition Radiation Detector) as calculated by detailed Monte

Carlo simulations are discussed in Chapter 9.



Part I
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Chapter 2

Introduction

Ultra-relativistic heavy ion collisions offer the unique opportunity to probe highly

excited (dense) nuclear matter under controlled laboratory conditions. The com-

pelling driving force for such studies is the expectation that at high enough tem-

perature and/or density hadrons dissolve into a new form of elementary particle

matter, the Quark Gluon Plasma (QGP), where quarks and gluons are decon-

fined. Besides this deconfinement, chiral symmetry is expected to be restored in

a QGP, which means that the quark masses will approach zero. This phase tran-

sition is predicted by Quantum Chromodynamics (QCD), the theory of strong

interactions. The opposite phase transition, from quarks and gluons to hadronic

matter, took place about 10−5 s after the Big Bang, the primeval event which

is at the origin of our Universe. The study of phase transitions is of crucial im-

portance for our understanding of the early evolution of the Universe. The QCD

phase transition can only be accessible to laboratory experiments in high energy

heavy ion collisions [1].

2.1 Hot and Dense Nuclear Matter

We know (since at least 40 years) that hadrons, the particles participating in the

strong interaction, such as protons, neutrons and pions, are not elementary, but

are made of quarks. Quarks are fermions (spin 1
2
) and come in six varieties, or

flavors; These are u (up), d (down), c (charm), s (strange), b (bottom) and t (top).

According to QCD, quarks carry a strong interaction charge (colour) which comes
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6 Introduction

in three types (red, green and blue), while antiquarks carry anticolour. Quarks

interact among themselves via the exchange of the colour field quanta (gluons).

Gluons themselves carry a colour charge, unlike the photon in QED (Quantum

Electrodynamics), which carries no electric charge. All known hadron states

are colour singlets (white). These white objects can be constructed by either

combining three different colours or a colour with its anticolour (baryons: qqq

states; mesons qq states). In particular, no free quark has ever been detected and

quarks seem to be permanently confined within hadrons.

What if we compress/heat the system so much that the individual hadrons

start to interpenetrate? Lattice QCD, which is used to address the non-

perturbative aspects of QCD [2], predicts that if a system of hadrons is brought

to sufficiently large density and/or temperature a deconfinement phase transition

should occur. In the new phase, called Quark Gluon Plasma (QGP), quarks

and gluons are not longer confined within individual hadrons, but are free to

move around over a larger volume. Confined quarks acquire an additional mass

(∼ 350 MeV) dynamically through the confining effect of strong interactions.

Deconfinement is expected to be accompanied by a restoration of the masses to

the ‘bare’ values they have in the Langrangian.

The transition to free quarks and gluons is accompanied by the sudden increase

of the energy density as a function of temperature, shown in Fig. 2.1 for two and

three degenerate flavours [3, 4]. For the 2-flavor case, the transition occurs at

a critical temperature Tc '170 MeV with critical energy density εc '0.7 GeV,

while for the 3-flavor case Tc is smaller by about 20 MeV. A result for the case

of two degenerate flavors and a heavier strange quark (physical values) is also

included. The values according to the law of Stefan-Boltzmann for an ideal

gas of non-interacting quarks and gluons are indicated at the right edge of the

figure. As strange quarks have mass ms < Tc they will not contribute to the

thermodynamics close to Tc, but will do so at higher temperatures. Since all

heavier quarks do not contribute in the temperature range accessible in present

or forseable future heavy-ion experiments, the bulk thermodynamic observables

of QCD with a realistic quark mass spectrum will essentially be given by massless

2-flavour QCD close to Tc and will rapidly switch over to the thermodynamics of

massless 3-flavour QCD in the plasma phase. This is indicated by the crosses of
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Fig.2.1. The transition is second order in the chiral limit of 2-flavour QCD and

first order for 3-flavour QCD and it is likely to be a rapid crossover in the case of

the physically realized quark mass spectrum. The crossover, however, does take

place in a narrow temperature interval, which means that the transition between

the hadronic and plasma phase is still well localized. This is reflected in a rapid

rise of energy density (ε ) in the vicinity of the crossover temperature. This leads

to large correlation lengths and a rapid rise in susceptibilities. These might be

detectable experimentally through the event-by-event analysis of fluctuations in

particle yields.
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Figure 2.1: Energy density as a function of temperature calculated with lattice

QCD (taken from ref.[4])

2.2 Experimental program and global observ-

ables

By colliding heavy ions at ultrarelativistic energies, one expects to create matter

under conditions that are sufficient for deconfinement [5].

In 1985, the program has started with fixed target experiments at the CERN’s

Super Proton Synchrotron (SPS) which is just being concluded and at Brookhaven’s
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Alternating Gradient Synchrotron (AGS) which is essentially completed. The

only operational heavy-ion collider is the Relativistic Heavy Ion Collider (RHIC)

at Brookhaven National Laboratory (BNL) [6]. The Large Hadron Collider

(LHC) will start operating at CERN in 2007 and will provide (in addition to

proton beams) heavy ion beams, which will be used in the research program of

the dedicated ALICE experiment.

The temporal evolution of a (central) nucleus-nucleus collision at ultrarelativis-

tic energies is understood to proceed through the following stages: i) liberation

of quarks and gluons due to the high energy deposited in the overlap region of

the two nuclei; ii) equilibration of quarks and gluons; iii) crossing of the phase

boundary and hadronization; iv) freeze-out.

Even if QGP is formed, as the system expands and cools down it will hadronize

again, as it did at the beginning of the life of Universe: we end up with confined

matter again. This is the experimental challenge: to observe in the final state

the signatures of the phase transition, physical effects which are consequences of

the phase transition or cannot be explained otherwise.

2.2.1 Collision Characteristics

In accordance with the spectator-participant model [7] of a heavy-ion collision,

the participating nucleons from overlapping nuclear parts create a volume of

high temperature and density, while the spectators move basically undisturbed

through the collision. The impact parameter b determines the centrality of the

collision. The impact parameter is not directly measurable in the collisions. To

determine the collision geometry, measurements of quantities which are strongly

correlated to the number of participants are used, such as the transverse and

forward energy and the number of produced particles. The transverse energy, ET

, is defined as:

ET = c2
N
∑

i=1

(mT )i (2.1)

where i runs over all N particles detected in an event and the transverse mass

mT is given by:

mT =
√

m2 + (pT/c)2 (2.2)
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where pT is the momentum component perpendicular to the beam direction de-

fined as:

pT = p sin θ (2.3)

where θ is the polar angle of particle track. In practice, ET is measured with a

segmented calorimeter and calculated as the sum of the energy Ei at polar angle

θi in each segment (i):

ET =
N
∑

i=1

Ei sin θi (2.4)

The rapidity y is a very useful variable for description of the longitudinal motion of

particles with non zero rest mass. If the particle has an energy E and momentum

component along the beam axis pz, we can define its rapidity as:

y =
1

2
ln
E + pz
E − pz

(2.5)

A frequently used approximation to the rapidity is the pseudorapidity η given

by:

η = −ln(tan θ
2
) (2.6)

for which it is enough to measure the polar angle θ of the particle track.

2.2.2 Quark-Gluon Plasma Signatures

Quarks and gluons coexisting in the short-lived QGP state cannot be measured

directly and information from the early stages of the collision may get lost when

the system hadronizes. Various kinds of measurements have to be combined to

get reliable proof of the formation of a QGP. Specific probes of QGP (taken from

ref.[3]) have been proposed [8, 9] and are currently being studied experimen-

tally: i) direct photons [10]; ii) low-mass dileptons [11]; iii) strangeness [12, 13];

iv) charmonium suppression [14]; v) jet-quenching [15]; vi) fluctuations [16, 45].

Other global observables, like the distribution of particles over momentum space,

collective flow, and the measurements of effective source sizes via particle inter-

ferometry, have also been studied in detail. A description of the ideas behind

some of the most promising signatures that will be used in this work is given

below.
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• Jet Quenching

The propagation of partons through a hot and dense medium modifies their

transverse momentum due to induced radiative energy loss, a phenomenon

called jet quenching [17, 18]. This can be studied by measuring the pT

distribution of hadrons coming from high-pT jets. When a hard collision,

producing two jets, occurs near the surface of the nuclear overlap region, jet

quenching might lead to complete absorption of one of the jets, while the

other escapes. This signature can be found by studying azimuthal back-to-

back correlations of jets. In general, high-pT partons traveling through the

dense medium is probably one of the best probes that can be used to study

the medium.

• Flow

As the created particles are pushed away from the hot collision region, they

acquire a flow velocity pointing outwards. Their momentum increases and

the transverse momentum distribution is altered. Since the flow builds up

throughout the evolution of the system, it contains information on both

the partonic and the hadronic stages. Anisotropic flow [19] appears in a

non-central nucleus-nucleus collision. It is most conveniently quantified by

the Fourier coefficients in the expansion:

d2N

dpTdφ
=

dN

dpT
(1 + 2v1cos(φ) + 2v2cos(2φ) + 2v4cos(4φ) + ...) (2.7)

displaying only the most contributing terms. Here, the φ angle is measured

with respect to the reaction plane. The v2 coefficient is often referred to as

elliptic flow.

• Event-by-Event Fluctuations

Making use of high particle multiplicities in the heavy systems at SPS and

higher energies, we can extract thermodynamic properties of the system

by studying several observables on an event-by-event basis. Such mea-

surements present a clear advantage over the averaging of many events.

They enable categorization of individual events into groups according to
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thermodynamic properties and could potentially lead to the isolation of

events with special properties associated with quark-gluon plasma forma-

tion. Phase transitions are normally associated with large fluctuations.

The QGP phase transition may yield anomalous fluctuations in e.g. par-

ticle multiplicities, ratios and transverse momenta. This signature will be

discussed in detail in section 2.4.

2.3 Searching for the QCD critical point

Thermodynamical information is often presented in the form of a phase dia-

gram, in which the different manifestations or phases of a substance occupy

different regions of a plot whose axes are calibrated in terms of the external

conditions or control parameters [20]. The system under consideration is a re-

gion occupied by strongly interacting matter, described by QCD, in thermal and

chemical equilibrium, characterized by the given values of temperature T and

baryo-chemical potential µb.

Our present understanding [23] of the phases of strongly interacting matter is

sketched as a T − µb diagram in Fig. 2.2. The exotic region of low temperatures

and high densities (high µb) is of relevance to astrophysical phenomena (neutron

star physics). The region of high temperatures is the part which is being explored

in ultrarelativistic nucleus-nucleus collisions. Theorists expect that this region

has an interesting feature: the end point of the first order phase transition line.

The critical point is marked as triangle in Fig. 2.2. The arguments leading to

such picture can be summarized as follows: 1) First-principle lattice simulations

indicate that no phase transition (in a strict thermodynamic sense) occurs as a

function of temperature at zero baryo-chemical potential. 2) Non-lattice models

indicate that transition from nuclear fluid to quark-matter (with approximate

chiral symmetry restored) occurs via a strong first order transition. 3) The last

step of the argument is a logical consequence of the previous two. Since the first

order line originating at zero T cannot end at the vertical axis µb = 0, the line

must end somewhere in the midst of the phase diagram [24].

The location of this endpoint is not yet known since the lattice predictions

vary wildly. Nevertheless, the available theoretical estimates strongly indicate
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Figure 2.2: Phase diagram of nuclear matter in the temperature - baryon chemical

potential plane. Experimental points for hadro-chemical freeze-out are shown

together with a recent lattice QCD calculation [21] and a curve of constant total

baryon density. Figure taken from ref. [22].

that the point is within the region of the phase diagram probed by the heavy-

ion collision experiments. The strategy is to scan the QCD phase diagram by

changing the beam energy
√
s. It is known empirically [22] that with increasing

collision energy,
√
s, the resulting fireballs tend to freezeout at decreasing values

of the chemical potential, since the amount of generated entropy (heat) grows

with
√
s while the net baryon number is limited by that number in the initial

nuclei. The freeze-out points for different heavy-ion collision experiments with a

recent lattice calculation superimposed can also be seen in Fig. 2.2.
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2.4 Transverse momentum fluctuations

In general, every physical system fluctuates and in many cases these fluctuations

reveal important information about the properties of the system. The magni-

tude of fluctuations is given by the so-called susceptibilities, which control the

response of the system to the application of small external forces. Fluctuations

are also closely related to phase transitions. Considering the richness of the QCD

phase-diagram the study of fluctuations [25] in heavy ions physics could lead to

a rich set of phenomena. The most efficient way to address fluctuations of a sys-

tem created in a heavy ion collision is via the study of event-by-event (E-by-E)

fluctuations, where a given observable is measured on an event-by-event basis

and the fluctuations are studied over the ensemble of the events. In most cases

(namely when the fluctuations are Gaussian) this analysis is equivalent to the

measurement of two particle correlations over the same region of acceptance.

The passage of a system through a second order transition or close to a critical

point may lead to critical phenomena, long range correlations and large fluctua-

tions. The study of event-by-event fluctuations therefore provides a novel probe

to explore the QCD phase diagram, searching for the quark-gluon plasma (QGP)

and the QCD critical point. Such measurements became possible with large ac-

ceptance experiments at SPS and RHIC, where the high multiplicity of charged

particles produced in collisions of lead and gold nuclei allows a precise determi-

nation of global observables on an event-by-event basis.

Transverse momentum fluctuations (pT fluctuations) should be sensitive to

temperature/ energy fluctuations. These in turn provide a measure of the heat

capacity of the system. Since the QCD phase transition is associated with a maxi-

mum of the specific heat, the temperature fluctuations should exhibit a minimum

in the excitation function. It has also been argued that these fluctuations may

provide a signal for the long range fluctuations associated with the critical point

of the QCD phase diagram. In the vicinity of the critical point the transverse mo-

mentum fluctuations should increase, leading to a maximum of the fluctuations

in the excitation function. It was predicted that mean pT fluctuations can be

enhanced if the system passes through the QCD critical point, where long wave

length fluctuations of the sigma field develop, leading to fluctuations of pions
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through the strong σ − π − π coupling [26].

In the next two Chapters 3 and 4, the proposed measures of mean pT fluctua-

tions and the latest published results will be discussed.



Chapter 3

Measures of Mean pT

Fluctuations

When measuring event-by-event fluctuations in heavy ion collisions, one should

consider the influence of trivial sources of fluctuations. Even for tight centrality

cuts there are fluctuations in the impact parameter (event-by-event fluctuations

of the collision geometry) which may mask the fluctuations of interest. In the

thermal language, these impact parameter fluctuations correspond to volume

fluctuations. The way out is to study so called intensive variables, i.e. variables

which do not scale with the volume, such as temperature, energy density etc.

Another issue is the presence of statistical fluctuations due to the finite num-

ber of particles observed. These need to be subtracted in order to access the

dynamical fluctuations of the system. Finally, there are fluctuations induced by

the measurement/detector, which also contribute to the signal. Those need to be

understood and removed/subtracted as well. In this situation, a suitable choice

of statistical tools for the study of event-by-event fluctuations is really important.

3.1 ΦpT and σ2
pT ,dyn

There are numerous observables which can be used to quantify pT fluctuations in

high energy collisions. A natural one is the distribution of the average transverse

15
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momentum of the events defined as:

M(pT ) =

∑N
i=1 pT i
N

, (3.1)

where N is the multiplicity of accepted particles in a given event and pT i is the

transverse momentum of the i-th particle. The distribution of M(pT ) is usually

compared to the corresponding distribution obtained for mixed events in which

the particles are independent from each other and follow the experimental inclu-

sive spectra (mixed events are constructed such that the multiplicity distribution

is the same as for the data). A difference between the two distributions signals

the presence of dynamical fluctuations.

In the following, we briefly review quantities which have been proposed as

measures for event-wise mean pT fluctuations and summarize notations used in

this study.

The notations of various means and variances are defined as follows. With a

measure x of each particle, the mean of x over particles within the acceptance in

an event is defined as:

[x] ≡
∑N

i=1 xi
N

, (3.2)

where i and N indicate the particle index and the multiplicity, respectively.

With a measure defined in each event, X, the mean over all the events is

defined as:

〈X〉 ≡
∑n

j=1wjXj

n
, (3.3)

where j and n indicate the event index and the number of events, respectively.

The weighting factor for each event, wj is defined to be Nj for X = [x] (see

below), and 1 otherwise.

The event-by-event variance of X is defined as:

〈∆X2〉 ≡ 〈X2〉 − 〈X〉2. (3.4)

The inclusive mean (the mean over all particles in all events) and variance of

the measure x of each particle are defined as:

x ≡
∑n

j=1

∑Nj

i=1 xi
∑n

j=1Nj

, (3.5)
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and

∆x2 ≡ x2 − x2, (3.6)

where Nj represents N in event j. The mean and the variance of [x] are defined by

replacing X with [x] in the above equations and including the event multiplicities

as appropriate weighting factors:

〈[x]〉 ≡
∑n

j=1Nj

∑Nj
i=1 xi

Nj

n〈N〉 = x (3.7)

and

〈∆[x]2〉 ≡
∑n

j=1Nj
([x]−〈[x]〉)2

N2
j

n〈N〉 . (3.8)

This weighting procedure provides the most precise estimate of the variance of

the parent distribution in case of finite mean multiplicity [35].

In the present event-by-event analysis, we search for dynamical mean pT fluc-

tuations beyond those expected in a purely statistical scenario. Dynamical mean

[pT ] fluctuations would therefore result in an event-by-event distribution of M(pT )

which is wider than that expected from the inclusive pT distribution and the fi-

nite event multiplicity. Measures for the mean pT fluctuations are constructed as

a difference or a quadratic difference between the standard deviation of the [pT ]

distribution and the inclusive pT distribution normalized with the square-root of

mean multiplicity.

In previous analyses, the measure ΦpT
has been used to quantify non-statistical

mean pT fluctuations, defined as [36]:

ΦpT
≡

√

〈Z2〉
〈N〉 −

√

z2, (3.9)

where z and Z are defined as z ≡ pT − pT for each particle, and Z ≡
M
∑

i=1

zi for

each event, respectively. There is an approximate expression for ΦpT
in terms

of the variances of the event-wise M(pT ) and the r.m.s. of the inclusive [pT ]

distributions [37]:

ΦpT
∼=

√

〈N〉
√

〈∆[pT ]2〉 −
√

∆p2T . (3.10)
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A different measure for dynamical mean pT fluctuation has been proposed

in [37]:

σ2pT ,dyn
≡ 〈∆[pT ]

2〉 − ∆p2T
〈N〉 . (3.11)

This expression provides a direct relation between the variance of the inclusive

[pT ] distribution, the mean multiplicity and the variance of the event-by-event

mean [pT ] distribution. In case of vanishing non-statistical fluctuations and cor-

relations, σ2pT ,dyn
is equal to zero.

There is an important relation between the above two measures [37]:

σ2pT ,dyn
∼= 2ΦpT

∆p2T
〈N〉 . (3.12)

It has also been shown that σ2pT ,dyn
is the mean of covariances of all the possible

pairs between two different particles [37]:

σ2pT ,dyn
∼= 1

nevents

nevents
∑

k=1

[

1

Nk(Nk − 1)

Nk
∑

i6=j

(pT i − pT )(pTj − pT )

]

. (3.13)

3.2 The average momentum correlator 〈∆pt,1∆pt,2〉
The second part of the equation 3.13, provides the main measure that is used in

the present study. The average momentum correlator 〈∆pt,1∆pt,2〉 is defined
as:

〈∆pt,1∆pt,2〉 ≡
1

nevents

nevents
∑

k=1

[

1
1
2
Nk(Nk − 1)

Nk
∑

i6=j

(pT i − pT )(pTj − pT )

]

∼= σ2pT ,dyn

(3.14)

where pT is the inclusive mean pT , nevents is the number of analyzed events, Nk

is the number of particles from the event ‘k’, pT i and pTj are the transverse

momentums of the ith and jth particle in an event, respectively.

The average momentum correlator is a covariance [38] and an integral of 2-

body correlations [67]. Due to the central limit theorem [39], in a pure statistical

distribution it equals zero in the absence of dynamical fluctuations and is defined

to be positive for correlation and negative for anticorrelation. We define the sign

of the fluctuation as the sign of the measure. It is also considered to be inde-

pendent of random detection inefficiencies. The main advantage of that measure
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is that it allows to select pairs by charge sign, as well as to make differential

studies as a function of the angular pair separation, ∆φ, and of the separation in

pseudo-rapidity, ∆η.

The transverse momentum covariance 〈〈δptiδptj〉i6=j〉 [38] is defined as:

〈〈δptiδptj〉i6=j〉 ≡
∑nevents

k=1

[

∑Nk

i6=j(pT i − pT )(pTj − pT )
]

∑nevents

k=1
1
2
Nk(Nk − 1)

(3.15)

The two aforementioned measures are approximately equal:

〈∆pt,1∆pt,2〉 ∼= 〈〈δptiδptj〉i6=j〉 (3.16)

In addition to the transverse momentum fluctuations given by the previous

equation 3.14 for all charged particles, one can investigate the pT fluctuations of

the negative and positive charges independently, as well as the cross correlation

between them. For like-sign particles, the average momentum correlation is:

〈∆p±t,1∆p±t,2〉 ≡
1

nevents

nevents
∑

k=1





1
1
2
N±
k (N

±
k − 1)

N±
k

∑

i6=j

(p±T i − p±T )(p
±
Tj − p±T )



 (3.17)

For the unlike-sign pairs we get:

〈∆p+t,1∆p−t,2〉 ≡
1

nevents

nevents
∑

k=1





1

N+
k N

−
k

N+
k
,N−

k
∑

i,j

(p+T i − p+T )(p
−
Tj − p−T )



 (3.18)

3.3 The normalized dynamical fluctuation ΣpT

In order to account for a possible change of mean pT at different beam energies,

we define a dimensionless measure, the ”normalized dynamical fluctuation” ΣpT

[40], as:

ΣpT
= σpT ,dyn/pT ≡ sgn(σ2pT ,dyn

)

√

|σ2pT ,dyn
|

pT
. (3.19)

where sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(x) = 0 if x = 0.

The measure ΣpT
expresses the magnitude of non-statistical fluctuations in

percent of the inclusive mean transverse momentum pT .
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The best way for a quantitative determination of mean pT fluctuations is the

use of a dimensionless measure. In addition, a comparison between different ex-

periments should be possible. In this context ΦpT
is neither dimensionless nor

independent of the event multiplicity. This makes a comparison between exper-

iments and to theory difficult because multiplicity depends on the acceptance

window of the experiment and on beam energy. Since different contributions to

the fluctuation signal have different multiplicity dependences, the multiplicity

dependence of ΦpT
is a priori unknown.
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Figure 3.1: The ΦpT
[MeV/c] (left panel), and σpT ,dyn/pT [%] (right panel) at 40,

80, and 158 A·GeV/c in the 6.5 % most central events as a function of η bin size

∆η with the η center fixed to 2.45 [45].

Fig. 3.1 [45] shows ΦpT
and σpT ,dyn/pT as a function of η bin size ∆η at 40,

80, and 158 A·GeV/c. The ΦpT
increases as a function of ∆η, while σpT ,dyn/pT

decreases at small ∆η and tends to saturate at ∆η ≥ 0.5. The σpT ,dyn/pT roughly

agrees among the three beam energies at all ∆η bins, while ΦpT
varies among

the beam beam energies, which can be understood due to the scaling with mean

multiplicity shown in Eq. 3.12. This clearly shows σpT ,dyn/pT (=ΣpT
) is a universal

measure independent of multiplicity within the acceptance.
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3.4 ∆σ〈pT 〉 and FpT

Another measure is ∆σ〈pT 〉 [39], defined as:

∆σ〈pT 〉 ≡
√

〈N〉σ〈pT 〉 − σpT
, (3.20)

where σ〈pT 〉 is the r.m.s. of the event-by-event 〈pT 〉 distribution, σpT
is the r.m.s.

of the inclusive(track-by-track) pT distribution. There is an approximation

ΦpT
∼= ∆σ〈pT 〉 (3.21)

The last measure, introduced by Stephanov et. al. [35], is defined as follows:

F ≡
〈N〉σ2〈pT 〉

σ2pT

. (3.22)

F can be related to a 2-particle correlation function;

F =
1

〈N〉

Nbin
∑

p

Nbin
∑

k

〈∆np∆nk〉
(pT − pT )(kT − kT )

σ2pT

, (3.23)

where p, k are indices for a bin (e.g. η bin).

F − 1 =
1

〈N〉
∑

p6=k

〈∆np∆nk〉′
∆pT∆kT
σ2pT

(3.24)

The relation between F and ΦpT
is as follows:

ΦpT
= σpT

(
√
F − 1) (3.25)

3.5 Discussion

A quantitative event-by-event study requires an appropriate formalism which

facilitates a comparison of results among different experiments and to theory.

Unfortunately, most of the experiments use different measures for fluctuations.

These measures have very different sensitivities to particular experimental con-

ditions, such as track quality cuts, tracking efficiency and acceptance. In this

sense, measures which are most closely related to single- and two-particle densi-

ties appear preferable since they are the least sensitive to trivial efficiency effects
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[41]. In this case, it is mandatory that experiments provide all the information

necessary for an approximative conversion of one measure into another.

In this work, the measures σ2pT ,dyn
, ΣpT

, and 〈∆pt,1∆pt,2〉 are used to study

mean pT fluctuations.

When studying the centrality dependence, the following approximate relations

can be used:

〈N〉σ2pT ,dyn
∝ FpT

∝ ΦpT
. (3.26)

Implying that particle production at SPS is approximately proportional to the

number of participating nucleons, the multiplicity 〈N〉 can be replaced by the

mean number of participating nucleons 〈Npart〉 which can be calculated much

easier and does not depend on the acceptance.



Chapter 4

Previous Results on

Event-by-Event Mean pT

Fluctuations at SPS energies

4.1 Introduction

In this chapter, results obtained previously by the CERES collaboration from

Pb-Au collisions at 40, 80, and 158 A·GeV/c [46] are presented.

Fig. 4.1 shows a comparison between event-by-event mean pT distributions

obtained from real and mixed Pb-Au events at 40, 80, and 158 A·GeV/c. Both

distributions exhibit very similar Gamma distribution shapes [47]. However, the

ratio of real to mixed events in the tails of the distributions shows enhancement

at extreme-pT regions. This is an evidence for the non-statistical fluctuations

and wider distributions of real compared to statistical distributions. Their small

difference demonstrates that dynamical fluctuations are small compared to sta-

tistical ones. Moreover, no distinct class of events with unusual fluctuations is

observed.

The main objectives are to quantify magnitudes of the observed pT fluctua-

tions, and to observe how the fluctuation pattern changes with increasing number

of nucleons participating in a collision, i.e. with system size, and what is the col-

lision energy dependence.

23
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Figure 4.1: Top : event-by-event mean pT distributions for 40 (left), 80 (middle),

and 158 A·GeV/c (right) data. Circles show real data, and solid lines show mixed

events. Bottom: ratio of distributions from real events to those from mixed events

for 40 (left), 80 (middle), and 158 A·GeV/c (right) data.
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4.2 Beam energy dependence

The robust measure ΣpT
(see section 3.19) is used to investigate the collision

energy dependence. As it was pointed out previously, the measure ΣpT
is di-

mensionless and specifies the dynamical contribution to event-by-event M(pT )

fluctuations in fractions of pT . In the case of independent particle emission from

single parent distribution, ΣpT
is zero.

The finite two-track separation of the TPC leads to a suppression of par-

ticle pairs with small momentum difference and consequently to a slight anti-

correlation of particles in momentum space. In the case of CERES-TPC, the

effect on ΣpT
is negligible [45], hence no correction has been applied. Positive

correlations may arise due to quantum statistics, flow, jets and other physics

effects which have also not been corrected for.
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Figure 4.2: The normalized dynamical fluctuation, ΣpT
[%], as a function of

nucleon-nucleon center-of-mass energy
√
sNN [GeV].

A compilation of the normalized dynamical fluctuation, ΣpT
, measured at mid-

rapidity and at different beam energies is shown in Fig. 4.2. The upper scale

indicates the baryon chemical potential µB at chemical freeze-out, related to
√
sNN via a phenomenological parametrization given in [48]. The ΣpT

that are
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measured by CERES at beam energy of 40, 80 and 158 A·GeV/c, in 2.2 < η < 2.9

and 0.1 < pT < 2 GeV/c in 6.5 % cental events are compared to RHIC data at
√
sNN = 130 GeV [49, 50] and 200 GeV [51].

The observed fluctuations at SPS and at RHIC are similarly about 1 %. The

evolution of ΣpT
with beam energy looks smooth and does not show any indication

of unusually large fluctuations at any beam energy.

Models predict enhanced mean pT fluctuations if the system has passed close

to the critical point of the QCD phase diagram. At SPS energies and for the finite

rapidity acceptance window of the CERES experiment, the fluctuations should

reach values of about 2 %, i.e. more than two times larger than observed in the

present data [35, 52] . However, no indication for a non-monotonic behaviour as

function of the beam energy has been observed. This suggests that the critical

point may not be located in the µB regime below 450 MeV.

4.3 Centrality dependence

As a reference for the centrality dependence of ΣpT
, the measurements in hadron-

hadron collisions are employed. In p-p interactions, particles are produced in a

correlated way which leads to large non-statistical fluctuations. At the ISR,

dynamical mean pT fluctuations have been measured in p-p reactions at
√
sNN

= 30.8-63.0 GeV [53]. Independent of beam energy, a value of 12 % of pT was

observed for ΣpT
. In α − α reactions, the observed dynamical fluctuation is

reduced to about 9 % of pT . If particle production in α−α collisions acts like an

independent superposition of p-p collisions, the fluctuations may scale with the

multiplicity of produced particles:

ΣAA
pT

= Σpp
pT
(
〈Npp〉
〈NAA〉

)1/2. (4.1)

Since the number of charged particles was found to scale close to linear with the

number of participants 〈Npart〉 at SPS [54, 55, 56], the ratio of multiplicities in

Eq. 4.1 can be replaced:

ΣAA
pT

= Σpp
pT
(〈Npart〉)−1/2. (4.2)

As demonstrated in Fig. 4.3 [57], the data agree with this extrapolation for

very peripheral and central events. In contast, a pronounced deviation is observed
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Figure 4.3: Centrality dependence of ΣpT
at 40, 80 and 158 A·GeV/c [57]

in semi-peripheral events. In the right panel of Fig. 4.3, the product 〈Npart〉Σ2pT

is plotted as function of 〈Npart〉. In this representation, the p-p extrapolation

becomes a constant (=0.03), while the data exhibit a broad maximum around

Npart = 120. This observation is in qualitative agreement with previous findings

at SPS and RHIC. Other experiments like NA49, PHENIX and STAR [50, 51, 58,

59] also observe M(pT ) fluctuations which are significantly increased over the p-

p extrapolation in semi-central events. PHENIX attributed the non-monotonic

centrality dependence of the measure FpT
[51] to jet production in peripheral

events, combined with jet suppression in more central events, causing a decrease

of fluctuations. Other intepretations were given in terms of thermalization effects

[60, 61], or in the framework of a string percolation model [62, 63].

4.4 Conclusions

The existence of non-statistical event-by-event fluctuations of the mean transverse

momentum M(pT ) at SPS and RHIC is by now well established. However, these

dynamical fluctuations are small in central collisions, typically about 1 % of the
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inclusive mean transverse momentum pT and only weakly depend on
√
sNN . In

particular, no indication for a non-monotonic beam energy dependence has been

found so far. The pT fluctuations also violate the trivial 1/N scaling expected for

nuclear collisions consisting of independent nucleon-nucleon interactions.

Despite the absence of a ‘smoking gun’ signature for the phase transition or the

critical point, the systematic study of M(pT ) fluctuations gives valuable insight

into the particle production mechanism and the dynamic evolution of the system

which cannot be extracted from inclusive distributions.

Although the mean pT fluctuations are not as large as anticipated, there re-

mains the possibility that the observed fluctuations are reduced from their ex-

pected value due to some final thermal effects, or because only a small fraction

of the system actually produces a QGP. A ‘differential’, scale-dependent analysis

of M(pT ) fluctuations is an essential tool that could shed light on their origin,

providing more information.



Chapter 5

The CERES Experiment and the

Data Analysis

5.1 The CERES Experiment

The CERES/NA45 experiment is optimized for di-electron measurements in pro-

ton and ion induced collisions at CERN-SPS [27, 28]. The spectrometer covers

a broad range of pT close to midrapidity. Until 1996 the experiment consisted

of two Ring Imaging Cherenkov detectors (RICH’s) for electron identification,

two silicon radial drift detectors (SDD’s), and a pad chamber. A superconduct-

ing magnet (solenoid) between the RICHes provided a deflection field for the

determination of the particle’s charge and momentum. The silicon detectors to-

gether with the pad chamber were used as tracking devices. With this setup

CERES measured a significant enhancement of low-mass e+e− pairs in heavy ion

collisions compared to contributions from hadronic decays, extrapolated from

nucleon-nucleon collisions. In 1998 the spectrometer was upgraded by a track-

ing detector downstream of the existing setup, a cylindrical Time Projection

Chamber (TPC) with radial drift field, which replaced the pad chamber in order

to improve the di-electron invariant mass resolution [29]. The addition allowed

CERES to serve as a hadron spectrometer.

All subdetectors have a common acceptance in the polar angle range of 8◦ <

θ < 15◦ at full azimuth, corresponding to a pseudorapidity acceptance of 2.1 <

η < 2.65. Fig. 5.1 shows a sketch of the setup.

29
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In this analysis, only the two SDD’s and the TPC were used for charged particle

track reconstruction. The SDD’s are located about 12 cm downstream of the

target system. Each SDD has uniform drift field in the radial direction, with 360

anodes at the out-most radial position arranged azimuthally in 1o pitch. The TPC

is located at 3.8 m downstream of the target system. In the TPC, the ionization

electrons drift outward in the radial direction, with a drift field changing as

∼ 1/r. Electron signals are detected in the Multi-Wire Proportional Chambers

(MWPC’s) at the outer radial position [29]. The magnetic field formed by two

opposite-polarity solenoidal coils, which are placed around the TPC, deflects

charged particle trajectories in the φ direction. The position resolutions are

about 40 µm both in r and rφ directions in the cylindrical coordinate system.

The momentum resolution of the spectrometer reached after the final calibration

is
∆p

p
= 2%⊕ 1% · p/GeV (5.1)

both from residuals of hits with respect to fitted tracks, and from invariant mass

of Λ and K0
s . Such resolution results in ∆m

m
= 0.038 for the φ meson in the e+e−

channel. Particle identification is possible to a certain degree using the energy

loss in the TPC gas with ∆(dE/dx)
(dE/dx)

= 0.10 [30]. The following sections of this

chapter describe the main features of all detectors.

5.1.1 Target Area, Trigger and the Two Silicon Drift De-

tectors

The target system used during the beam-time 2000 (158 A·GeV/c Pb-beam pe-

riod) consists of thirteen 25-µm thick Au discs, separated by 2 mm in beam

direction, with a total thickness of 1.33% of a hadronic interaction length. The

distance between the discs was chosen such that particles coming from a collision

in a given target disc and falling into the spectrometer acceptance do not hit any

other of the discs. This helps to minimize the conversion of γ’s into e+e− -pairs

which is essential for the analysis of electron pairs.

To start the read-out sequence of the detectors the occurence of a collision

has to be detected. This is done with a system of beam/trigger detectors, shown

in Fig. 5.2 in a simplified view. The beam counters BC1 to BC3 are used to
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Figure 5.1: Schematic view CERES spectrometer.

detect collisions between projectile and target nuclei. These detectors are gas

Cherenkov-counters with air as radiator, located on the beam-line. The beam

trigger (BEAM) is defined by the coincidence of two beam counters (BC1 and

BC2) located in front of the target, and the minimum bias trigger (MINB) is

defined as BEAM and no signal in the beam counter (BC3) located after the

target (TMINB = BC1×BC2×BC3). The charged particle multiplicity is often

used as a measure for the centrality of the collision. The MC or the MD detector

can be used to select events with a certain multiplicity. These detectors are

scintillation detectors and their output signal is approximately proportional to

the number of ionizing particles passing through them. The central collision

trigger is defined as CENT=MINB×MC.

The veto detectors VW and VC are both plastic scintillators. They can be

used to discard interactions which happened before the target.

The silicon drift detectors(SDD’s) are placed approximately 10 cm behind the

target. Both detectors are realized on 4 inch silicon wafers with a thickness of
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Figure 5.2: Schematic view of the target region with the trigger detectors.

280 µm. The sensitive area covers the region between the radii 4.5 mm and

42 mm with full azimuthal acceptance. They form a vertex telescope, which is

a central part of the event and track reconstruction. These detectors provide a

very precise reconstruction of an interaction vertex, a measurement of energy loss

and coordinates of hundreds of charged particles with high spatial resolution and

interaction rate, a track segment reconstruction before the magnetic field. The

principle of operation, as well as details about the silicon drift detectors used in

CERES and their performance, can be found in [32].

5.1.2 The RICH Detectors

Two Ring Imaging Cherenkov counters (RICH) are used to measure the velocity

of the particle and their trajectory. If the momentum of the particle is known

the mass can be determined. These detectors are invented by Seguinot and

Ypsilantis [31] and rely on the position sensitive measurement of the emitted

Cherenkov light. Inside a radiator Cherenkov-light is emitted under a constant

angle θC with respect to the trajectory of the charged particle.

A ring imaging Cherenkov detector is schematically shown in Fig. 5.3. A spher-

ical mirror reflects the emitted Cherenkov photons into ring images at the focal

plane of the mirror. The diameter of these rings then corresponds to a certain

Cherenkov angle and thus to the velocity of the particle. Both, the ring radius

and the number of Cherenkov photons, depend on particle momentum and mass.

Knowing the particle momentum, such detector can be used for particle identi-



5.1. THE CERES EXPERIMENT 33

θc particle
charged

spherical mirror

gas radiator

p
h

o
to

se
n

si
ti

ve
 g

as
 d

et
ec

to
r

Figure 5.3: Schematic view of a RICH detector with a spherical mirror. The par-

ticle enters from the left, the emitted Cherenkov photons are reflected backward

into a photon detector.

fication, or the other way around, knowing the particle mass, we can measure

its momentum. The RICH detectors in the CERES spectrometer operate with

CH4 at atmospheric pressure as radiator gas. The threshold for light emission is

thereby fixed to γth = 32. Practically all electrons produce light at the asymp-

totic angle whereas most hadrons, except pions with a momentum of more than

4.5 GeV, produce no signal at all. The detector is therefore practically hadron

blind, which is very important for the dilepton measurement and also offers an

excellent tool to study high-pT pions. The UV detectors used for the position

sensitive measurement of the photons are gas counters with a gas composition of

94% helium and 6% methane. They are located at the focal plane of the mirrors.

5.1.3 The Time Projection Chamber

In 1998, the spectrometer was upgraded by an additional tracking detector, a

Time Projection Chamber (TPC) with radial drift field, which replaced the pad

chamber. The aim of the upgrade was to achieve the mass resolution of ∆m
m

=

2% at m∼1 GeV which would allow a precise spectroscopy of ρ/ω and φ vector

mesons. The CERES TPC (shown in a perspective view in Fig. 5.4) is a cylin-
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drical drift chamber filled with Ne/CO2 gas mixture in ratio 80/20. This com-

position was chosen after optimization on diffusion, multiple scattering, Lorentz

angle, primary ionization and drift velocity. The sensitive volume is about 9 m3

and the length 2 m. It has 16 readout chambers with segmented pad-readout

placed in a polygonal structure. Along the beam axis, the TPC is divided into

20 planes, each with 16 × 48 = 768 readout channels on the circumference. In

total, 15360 individual channels with 256 time samples each can be read out, al-

lowing a three-dimensional reconstruction of particle tracks. The electric field is

approximately radial and is defined by the inner electrode, which is an aluminum

cylinder at a potential of -30 kV, and the cathode wires of the readout chambers

at ground potential. The avalanche produced close to the anode wires induces a

signal in the chevron-type cathode pads [29].

The magnetic field in the sensitive detection volume is generated by two warm

coils with current flowing in opposite directions. The radial component of this

field is maximal between the two coils and the deflection of charged particles is

mainly in azimuthal direction.

Principle of Operation

The Time Projection Chamber [33] is an essentially three-dimensional tracking

detector capable of providing information on many points of a particle track along

with information on the specific energy loss, dE/dx, of the particle.

A charged particle produces electron ion pairs along its path through the

detector. The electrons drift in the electric field towards a plane of proportional

wires close to the pad plane. At distances of a few wire diameters the electron

starts an avalanche process which creates free charges. Because the electrons

are created very close to the wire they are captured by it and neutralized in

a very short time. The movement of the much slower ions is responsible for

the creation of the induced signal which is detected by the readout electronics.

Moving charges lead to an induced current on the pads. This current is detected

and recorded with the help of charge sensitive amplifiers attached to each pad.

The measurement of the time between the start of the drift (which is essentially

the time of the collision between a projectile and a target nucleus) and the arrival

of the charge cloud at the wires combined with the knowledge of the drift velocity
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enables the reconstruction of the radial coordinate of the tracks. The other two

spatial coordinates are determined by the location of the pad. Due to the chevron

shape of the pads the charge cloud is shared between adjacent pads. This allows

for a precise reconstruction of the charge centroid in the azimuthal direction.

Since the collected charge is proportional to the energy loss of the particle, the

signal amplitudes from the anode also provide information on the dE/dx of the

particle. If the momentum of the particle is known from the curvature of its

trajectory in the magnetic field, for example, then this information can be used

to identify the particle.

Details about the TPC used in CERES as well as the readout system with the

Figure 5.4: Perspective view of the TPC.
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front-end, control and back-end electronics, can be found in [34].

5.2 Data Analysis

In the framework of this thesis, data samples of Pb-Au collisions taken at beam

energy of 158 AGeV/c at the CERN SPS have been analyzed. A typical Pb beam

intensity was 1 × 106 particles per burst. About 30 million Pb+Au collisions at

158 AGeV/c having a centrality of the upper 8 % of the total geometric cross

section, and 3 million of 20 % have been collected during the beam period of the

year 2000. In this analysis, we use 2 SDD’s and a TPC for charged particle track

reconstruction. The data taking rate in 2000 was 300 ∼ 500 events/burst.

5.2.1 Event Selection

The following event selection cuts were applied to exclude two superimposed Pb-

Au collisions (pile-up events) or a collision of Pb-beam with non-target nucleus,

which could have very different multiplicity and pT distributions compared to a

single Pb+Au collision and could change magnitude of event-by-event fluctua-

tions.

• Rejection of events with the number of TPC tracks less than 30 (defined

below) to reject non-target interactions.

• Before- and after-protection cuts. In the trigger logic, a minimum time

separation to another beam particle with respect to the triggered beam

particle was required. It was set to ± 2 µs at 158 AGeV/c.

• Requirement of dE/dx of 2 beam counters (BC1, BC2) to be within ±4σ
from the peak values.

5.2.2 Centrality Determination

The collision centrality was determined via the charged particle multiplicity

around midrapidity ybeam/2=2.91. Two variables, the amplitude of the Multi-

plicity Counter (MC) (single scintillator covering 2.3< η <3.4) and the track



5.2. DATA ANALYSIS 37

multiplicity in the TPC (2.1< η <2.8), were alternatively used as the centrality

measure (Fig. 5.5). Knowing the DAQ dead time factor (which describes the

loss of events due to a busy DAQ) and the target thickness, and assuming that

all beam particles were hitting the target, the event counts can be translated

to the cross section for collisions with a given multiplicity. The integrated cross

section, divided by the geometrical cross section σG = 6.94 barn, is shown as the

additional axis in Fig. 5.5.
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Figure 5.5: Distributions of the pulse height of the MC scintillator detector (top)

and the TPC track multiplicity (bottom) used for centrality determination. The

MC detector was used in the trigger. The distributions shown are before the

run-by-run correction.

The centrality calibration of the CERES’ 2000 data was done in two steps.

First, a low beam-intensity minimum bias run is used to find the relation between

the MC counter amplitude and the centrality. Second, the run-by-run variations
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of the MC amplitude are corrected. Details can be found in [64].

In the present analysis we have applied an offline centrality selection of the

upper 50 % of the total geometric cross section. The corresponding mean number

of participating nucleons 〈Npart〉 and mean number of nucleon-nucleon collisions

〈Ncoll〉 was derived from a geometric nuclear overlap model using b =
√

σ/π and

resulting, with σNN = 30 mb, in a total cross section of σG = 6.94 b [66]. Our

classification of central events comprises the 8 % most central fraction of the total

geometric cross section. For the centrality dependent studies we have subdivided

our sample into five centrality classes (see Table 5.1).

σ/σgeo [%] 0− 8 10− 20 20− 30 30− 40 40− 50

〈Npart〉 328 221 153 102 64

〈Ncoll〉 754 454 280 163 88

Table 5.1: Definition of centrality classes

5.2.3 Track Selection

A TPC track is reconstructed as an array of TPC hits on subsequent TPC

z−planes, where the initial track-seed vector is required to point to the vertex.

Depending on the polar angle, a TPC track consists of up to 20 hits. An initial

track seed is reconstructed in middle planes, and it is extended to outer planes.

In ρ − z plane in the cylindrical coordinate system, hits are required to be on a

straight line originating from the main vertex. In φ − z plane, a hit position on

a plane is predicted from the projection of a local vector with previously found

planes. Momentum is calculated as a fit parameter of hit positions of a track

in the rφ − z plane to a track template which is generated with a Monte Carlo

simulation. The vertex is reconstructed from all SDD1 hits and SDD2 hits, whose

position resolution is about 6 µm. A SDD-track is required to have a SDD1 hit

and a SDD2 hit which are on a straight line passing through the vertex. Asso-

ciation of a TPC track with a SDD track is done using the projections of the 2
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tracks on the spherical surface of the RICH2 mirror where the multiple scattering

is most probable. This inclusion of SDD track information leads to a powerful

rejection of non-vertex tracks, if only TPC tracks with a match to the SDD are

used in the analysis. The matching window is set to 10 mrad in a calibrated

function of both θ and φ, respectively.

In addition, a number of fiducial and quality cuts have been applied to provide

stable tracking conditions and to reject tracks from secondary particles:

• The pseudo-rapidity cut of 2.2 < η < 2.7, which corresponds to full-length

TPC track acceptance, is applied in the mean pT fluctuations analysis to

keep high momentum resolutions.

• The transverse momentum cut is defined as 0.1 < pT < 1.5 GeV/c for pT

fluctuation analysis to keep high momentum resolutions. The minimum pT

cut is set to exclude soft tracks with low efficiency and large contamination

from non-vertex tracks. The maximum pT cut is necessary to suppress

high momentum tracks which would dominate the calculation of the mean

momentum and for which the momentum resolution is poor.

• The minimum number of fitted hits per track is 12 in the full-length TPC

track acceptance.

• To suppress secondary particles it is required that the back-extrapolation

of the particle trajectory into the target plane, given by r0, misses the

interaction point by no more than 10 cm in transverse direction. More

technical information about the tracking in the CERES TPC can be found

in [65].

Fig. 5.6 shows the inclusive pT distribution, the η distribution, as well as those

of the number of fitted hits in the TPC and r0.

The results shown in the following chapter refer to accepted particles , i.e.,

particles that are accepted by the detector and pass all kinematic cuts and track

selection criteria.



40 The CERES Experiment and the Data Analysis

Figure 5.6: Distributions of pT , η, number of fitted hits in the TPC and r0.



Chapter 6

Scale dependence of Mean

Transverse Momentum

Fluctuations in ∆η-∆φ space

Significant non-statistical event-by-event fluctuations and a characteristic central-

ity dependence have been observed over a wide range of beam energies. These

results have been discussed in the context of QGP formation and the possibility

to observe the QCD critical point.

It is important to note, that observation of a large magnitude of fluctuations

would not by itself constitute the signal of the critical point. Since fluctations

were characterized so far by one single number, it was difficult to estimate the

many possible contributions to them.

Taking into account the high available statistics offered by the CERES ex-

periment combined with the full azimuthal acceptance, we perform a differential

study of mean pT fluctuations. Here, we present recent results of our analysis of

data from the CERES collaboration on event-by-event fluctuations of the mean

transverse momentum in Pb-Au collisions at 158 AGeV/c, obtained with a sam-

ple of about 10 million central events. For the first time at SPS energy, the

charge-dependent mean pT fluctuations have been analyzed as a function of the

angular pair separation, ∆φ, and of the separation in pseudorapidity, ∆η. Apart

from (expected) HBT correlations the data show a significant dependence on ∆η

and ∆φ that will be studied to shed light on their origin.

41
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6.1 Inclusive results

Ten million central events are analyzed after all the quality cuts that are described

in the previous chapter.

The resulting average momentum correlator 〈∆pt,1∆pt,2〉, the normalized dy-

namical fluctuation ΣpT
, the σ2pT ,dyn

, the mean multiplicity 〈Npart〉, and the in-

clusive mean transverse momentum pT for all pairs, as well as for different charge

combinations are given in Table 6.1. The fluctuations are not corrected for two-

track resolution and HBT/Coulomb correlations.

For the calculation of ΣpT
, the σ2pT ,dyn

was used, via the equations 3.11 and 3.19.

The average momentum correlator 〈∆pt,1∆pt,2〉 is calculated using the formula

3.14.

We find that the expected approximation 〈∆pt,1∆pt,2〉 ∼= σ2pT ,dyn
holds very

well. In addition, the measured ΣpT
is about 1 % and agrees with the previous

measurements of finite non-statistical fluctuations of transverse momentum that

are reported in chapter 4.2. Since 〈∆pt,1∆pt,2〉 and ΣpT
are global observables,

a small value of them does not neccessarily imply the absence of any strong

correlation. It is also possible that contributions of two effects just cancel out

each other.

After these consistency checks which verify the measures we use to study mean

pT fluctuations, we perform a ‘differential’ scale-dependent analysis in order to

re-evaluate our need for more sensitivity.
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Beam energy [A·GeV/c] 158

All pairs

〈∆pt,1∆pt,2〉[MeV 2] 22.71± 0.32

ΣpT
[%] 1.04± 0.01

σ2pT ,dyn
[MeV 2] 21.98± 0.44

n 10003672

〈N〉 154.83± 0.01

pT [MeV/c] 449.82± 0.01

Positive pairs

〈∆pt,1∆pt,2〉[MeV 2] 21.59± 0.63

σ2pT ,dyn
[MeV 2] 20.65± 0.61

n 9009425

〈N〉 84.21± 0.01

pT [MeV/c] 479.78± 0.01

Negative pairs

〈∆pt,1∆pt,2〉[MeV 2] 26.63± 0.61

σ2pT ,dyn
[MeV 2] 26.16± 0.54

n 9009425

〈N〉 70.63± 0.01

pT [MeV/c] 414.10± 0.01

Unlike-sign pairs

〈∆pt,1∆pt,2〉[MeV 2] 24.71± 0.43

n 9009425

Table 6.1: Summary of mean pT fluctuations for all pairs and different charge

combinations at 0.1 < pT < 1.5 GeV/c, 2.2 < η < 2.7 and full φ acceptance

at 158 A·GeV/c in the 8 % most central events. Errors are statistical only.

The fluctuations are not corrected for two-track resolution and HBT/Coulomb

correlations.
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6.2 Differential analysis

A central goal in Event-by-Event analysis has been to develop global comparison

measures sensitive to excess variance which might signal residual correlations due

to incomplete equilibration − possibly structure remaining from a phase transi-

tion. The present treatment makes it clear that global-variables analysis based on

average values (integrals) is rather limited in its sensitivity, interpretability and

power to discriminate among various correlation sources. Thus, there is a need

to resolve these global measures in a way that could provide us more information

related to the ‘origin’ of the observed fluctuations.

It was pointed out in the previous chapter, that the pseudo-rapidity of accepted

particles is restricted to the interval 2.2 < η < 2.7 and there is a full azimuthal

acceptance.

Particle pairs (i, j) can be separated on axial difference variables as follows:

0 ≤ ∆φ = |φi − φj| ≤ 180◦ (6.1)

and:

0 ≤ ∆η = |ηi − ηj| ≤ 0.5 (6.2)

Where i and j are the particle indices.

The bin size in ∆φ should be approximately equal to that in ∆η, in terms of

solid angle. In our case, this means:

Our θ acceptance is about 120 mrad, corresponding to ∆η about 0.5. Making

a bin size of ∆η=0.1, this corresponds to about 24 mrad. At this θ, the Jacobian

is about 5 (∼ 1/sinθ), leading to a ∆φ of 120 mrad, or 7 degrees.

Therefore, we divide the ∆η-∆φ space into 120 bins in total. 5 bins in ∆η and

24 in ∆φ corresponding to an angle of 7.5 degrees.

6.2.1 Mixed event analysis

As a baseline of the statistical distribution, and also for a consistency check of

our analysis procedure for statistical distributions, we construct mixed events.

To ensure that there is no correlation between any pair of particles, we pick

up every track randomly from a different real event, using exactly the same
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multiplicity distributions as the real data. The 〈∆pt,1∆pt,2〉 value calculated for

the sample of mixed events was consistent with zero. The obtained average value

is 〈∆pt,1∆pt,2〉mixed = −0.049± 0.314 MeV 2.

In the second step, for each bin in ∆η-∆φ space, we calculate the 〈∆pt,1∆pt,2〉
value.

In order to visualize the full correlation structure for all charged pairs in the

four-dimensional momentum subspace (ηi, ηj, φi, φj) we construct the 〈∆pt,1∆pt,2〉
map as it can be seen in Fig.6.1.
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Figure 6.1: The 〈∆pt,1∆pt,2〉 map in ∆η-∆φ space for all mixed pairs.

We observe a declination of the 〈∆pt,1∆pt,2〉 values with increasing ∆η, lead-

ing to negative values (anticorrelation), showing a rather trivial effect of pT (η)

dependence. As it can be seen in Fig.6.2, tracks with large separation in η are

anticorrelated in mean pT .

Constructing the 〈∆pt,1∆pt,2〉 and the ΣpT
map for true pairs, as it is shown

in Fig. 6.3, we also note the declination of the signal at finite ∆η which was

reproduced with event mixing. The 〈∆pt,1∆pt,2〉 map was transformed to a ΣpT

map using the equations 3.14 and 3.19.

Thus, we should correct the maps taking into account the abovementioned

pT (η) dependence by subtracting the map of the mixed pairs from that of true

pairs. The results that will follow in the next sections present corrected 〈∆pt,1∆pt,2〉
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and ΣpT
maps.
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Figure 6.2: The dependence of the inclusive mean pT of positive particles, on η

and φ respectively.
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Error estimates

For each bin, we calculate the average momentum correlator 〈∆pt,1∆pt,2〉 using
the formula 3.14, because it provides a relatively easy way of estimating the

statistical error compared to the transverse momentum covariance 〈〈δptiδptj〉i6=j〉
which is a pair-measure (Eq. 3.15).

The statistical error on 〈∆pt,1∆pt,2〉 was estimated as follows. The value of

〈∆pt,1∆pt,2〉 was evaluated for each event of the whole sample of analyzed events

and the dispersion (D) of the results was then calculated. The statistical error

of 〈∆pt,1∆pt,2〉 was taken to be equal to D/
√
Nevents.

In Fig. 6.4 we see the distributions of the 〈∆pt,1∆pt,2〉 taken from a sample

of 3.5 million events and obtained using the mixed event analysis. We note that

the obtained mean value is the one we use in the maps and the number of entries

is the number of analyzed events.
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Figure 6.4: Distributions of the 〈∆pt,1∆pt,2〉 obtained using mixed events. The

average value (left panel) and the correlator value at 0 < ∆η < 0.1 and 0 < ∆φ <

7.5 deg. (right panel) are given by the means of the distributions respectively.

Based on our results we find that the relation 3.16 holds extremely well.
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Two-track resolution

Detector effects such as the finite two-track resolution influences the measured

〈∆pt,1∆pt,2〉 values. In order to estimate this contribution, an application of a

cut in the opening angle distribution of true particle pairs detected in the TPC is

needed. The exclusion of pairs with opening angle α ≤ 10 mrad affects only the

magnitude of the signal placed at 0 ≤ ∆φ ≤ 7.5 and 0 ≤ ∆η ≤ 0.1. The value

of the correlator in this region drops from 608 MeV2 (Fig. 6.3) to 370 MeV2,

resulting to an average value of 19.03 ± 0.7 MeV2. The results that will follow,

are not corrected for two-track resolution and HBT/Coulomb correlations.

6.2.2 Same event analysis

The 〈∆pt,1∆pt,2〉 map in ∆η-∆φ space for all pairs is shown in Fig.6.5.
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Figure 6.5: The 〈∆pt,1∆pt,2〉 map in ∆η-∆φ space for all true-mixed pairs.

The same 〈∆pt,1∆pt,2〉 map can be plotted in a different way as the ∆φ depen-

dence of the 〈∆pt,1∆pt,2〉 in 5 slices of ∆η, as can be seen in Fig.6.6. The line is a

constant fit which provides the average value of the 〈∆pt,1∆pt,2〉 in the total mo-

mentum subspace (η, φ). The average value is consistent with the 〈∆pt,1∆pt,2〉 in
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the total subspace as well as with the σ2pT ,dyn
, as it can be calculated according to

the Eq.3.11 (presented in section 6.1). Statistical errors for the 〈∆pt,1∆pt,2〉 map

are uniform on ∆φ (periodic variable) but as ∆η increases from 0.1 to 0.5 (finite

η acceptance), they get values from 3.5 to 11.5 MeV2. The error of the corrected

〈∆pt,1∆pt,2〉 for each bin was calculated by adding in squares the statistical error

of the real and the statistical error of the mixed value.
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Figure 6.6: The ∆φ dependence of the 〈∆pt,1∆pt,2〉 in 5 slices of ∆η, for all pairs.

The line is a constant fit.

The number of pairs depends strongly on the ∆η while is uniform on ∆φ, as

it can be seen in Fig. 6.7. We note that in the bin of the map at 0 < ∆η < 0.1

and 0 < ∆φ < 7.5 deg., there are more pairs than in the other bins at the same

η range, indicating a correlation.

The 〈∆pt,1∆pt,2〉 map contains two features: a rather narrow near-side com-

ponent (∆φ ≤ 30 and ∆η ≤ 0.3) and a broad away-side component (135 ≤
∆φ ≤ 180 and ∆η ≤ 0.4). The near-side peak is probably dominated by HBT

(quantum) and Coulomb correlations. Bose and Fermi statistics, final state in-

teractions and experimental effects such as the finite two-track resolution are

the origin of short-range (anti-) correlations (SRC). SRC correlations show up
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at small momentum differences q and contribute significantly in the part of the

map where ∆φ ≤ 45 (this has been confirmed by applying a cut at pairs with

qinv < 70 MeV/c, where the four-momentum difference qinv ≡
√

q2 − q02, is the

momentum difference in the pair rest frame, q and q0, are the differences in

three-momentum and energy of a particle pair assuming the pion mass for each

particle).
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Figure 6.7: The number of pairs in ∆η-∆φ space.

Long-range correlations (LRC) occur as a consequence of energy and momen-

tum conservation and they are not localized at the origin. In the observed away-

side peak, contribution by mini-jets and elliptic flow [70] is expected.

Fig.6.8 shows how the normalized fluctuation ΣpT
looks like in ∆η-∆φ space

for all pairs. Thus, the observed fluctuations at SPS which are about 1 % on

average, have also a rich structure in momentum subspace, providing a signal

that varies from -1 to 5.5 %. The landscape is dominated by a near-side peak

symmetric about ∆η = ∆φ = 0 and a broad ∆η independent away-side ridge.

Since particles from jet fragmentation cluster together in phase space, the two-

particle correlation is expected to be enhanced. In particular, two-particle corre-

lation at large pT in the azimuthal angle difference ∆φ should be strongly peaked
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Figure 6.8: The ΣpT
map in ∆η-∆φ space for all pairs.

at both forward (‘near-side’) ∆φ = 0, and backward (‘back-to-back’) ∆φ = π

directions. That mini-jet component should be invariant on ∆η (characteristic of

back-to-back jet fragments).

〈∆pt,1∆pt,2〉 maps for different charge combinations.

The inclusive results of mean pT fluctuations for different charge combinations

were presented in Table 6.1 (section 6.1).

In order to visualize the full correlation structure for like-sign and unlike-sign

pairs in the four-dimensional momentum subspace (ηi, ηj, φi, φj), we construct the

〈∆pt,1∆pt,2〉 map as it can be seen in Fig. 6.9. For the calculation of 〈∆pt,1∆pt,2〉
we used the Eq.3.17 and 3.18

The fact that the maps of positively and negatively charged particles look sim-

ilar in strenght and shape at small ∆φ and ∆η, can be related to their common

origin (HBT/Coulomb correlations). On the contrary, unlike-sign pairs have a

peak at that region which is weaker and narrower, where we can expect contri-

bution from Coulomb, resonances and e+e− decays (conversion electron pairs).
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Figure 6.9: The 〈∆pt,1∆pt,2〉 map in ∆η-∆φ space for positive, negative and

unlike-sign pairs respectively.
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6.2.3 Centrality dependence

Fig.6.10 (left panel) presents our measurement of 〈∆pt,1∆pt,2〉 in 158 A·GeV/c

Pb-Au collisions as function of the mean number of participating nucleons 〈Npart〉.
One observes that the correlator 〈∆pt,1∆pt,2〉 is finite and positive at this energy

and that it exhibits a qualitative inverse proportionality to 〈Npart〉. This qualita-
tive dependence is known to arise from the progressive dilution of the correlation

with increased number of particle sources.

Figure 6.10: Measured correlator 〈∆pt,1∆pt,2〉 versus centrality and 〈∆pt,1∆pt,2〉
scaled by number of participating nucleons.

We next study the monotonic decrease of the correlator 〈∆pt,1∆pt,2〉 with in-

creasing number of participating nucleons. As it was discussed in section 4.3,

considering that if Pb-Au collisions consisted of a superposition of independent

nucleon-nucleon interactions, with no rescattering of secondaries, the correlator

measured at a given centrality in A-A should be proportional to the correlator

measured in p-p and inversely proportional to the number of nucleon-nucleon in-

teractions at the given centrality. In such collision scenario, the produced particle

multiplicity should be stricly proportional to the number of interactions.

Thus, we scale the measured correlator 〈∆pt,1∆pt,2〉 by 〈Npart〉 to remove the

1/N correlation dilution, implying the assumption that the number of produced

particles is roughly proportional to 〈Npart〉. Fig.6.10 (right panel) presents the

scaled correlation 〈Npart〉〈∆pt,1∆pt,2〉 as a function of participating nucleons. As a

first observation, we note that, at variance with expectations based on an indepen-
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dent nucleon-nucleon collision scenario, the scaled correlator 〈Npart〉〈∆pt,1∆pt,2〉
varies strongly with collision centrality. Therefore, violation of the ‘1/N ’ scaling

has been established and reveals a dramatic change that occurs in the collision

dynamics of central Pb-Au collisions relative to peripheral Pb-Au and p-p col-

lisions. This observation is in qualitative aggreement with previous findings at

RHIC using the same measure [67].

A summary of mean pT fluctuations for all pairs at 0.1 < pT < 1.5 GeV/c,

2.2 < η < 2.7 and full φ acceptance at 158 A·GeV/c for five centrality classes is

presented in Table 6.2.

The 〈∆pt,1∆pt,2〉 maps in ∆η-∆φ space for these centrality classes are shown

in Fig.6.11. We note that the peak structure is enhanced with centrality but

the poor statistics of the data that come from the minimum bias run lead to

a large fluctuation of the signal. Therefore, we examine the ∆φ dependence of

the correlator 〈∆pt,1∆pt,2〉 at ∆φ = 30 degrees and 0 < ∆η < 0.5, for true and

mixed pairs respectively, as it can be seen in Fig.6.12. At 0 < ∆φ < 30 and

120 < ∆φ < 180, we observe a positive increase of the measured correlator with

centrality (using mixed pairs there is a consistency to zero).

The centrality dependence of the measured correlator 〈∆pt,1∆pt,2〉, scaled by

number of participating nucleons, for several regions of ∆φ is shown in Fig.6.13.

Since the overall fluctuations seem to be dominated by the short range and the

away-side two-particle correlations, we can analyse separately these two compo-

nents and observe their non-monotonic centrality dependence (two upper sets of

points in Fig. 6.13).

The region of 30o < ∆φ < 60o is free of the influence of the two mentioned

components and elliptic flow does not matter. The pT fluctuations in this region

turn out to be close to zero and independent on centrality within the error bars.

We also note an anticorrelation for all centrality classes in the region of 60o <

∆φ < 90o.

It has been shown that 〈∆pt,1∆pt,2〉 is a nonmonotonic function of centrality.

Such a behavior strongly resembles the dependence of the magnitude of collec-

tive flow −directed(v1) and elliptic(v2)− on 〈Npart〉. Thus, there is a natural

suggestion that the pT fluctuations measured by 〈∆pt,1∆pt,2〉 may be caused by

the collective flow. This suggestion is checked in the next subsection 6.2.4.
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Figure 6.11: 〈∆pt,1∆pt,2〉 maps in ∆η-∆φ space for five centrality classes.
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Centrality[%] 0− 8

〈∆pt,1∆pt,2〉[MeV 2] 22.71± 0.32

σ2pT ,dyn
[MeV 2] 21.98± 0.44

n 10003672

〈N〉 154.83± 0.01

pT [MeV/c] 449.82± 0.01

Centrality[%] 10− 20

〈∆pt,1∆pt,2〉[MeV 2] 36.74± 6.39

σ2pT ,dyn
[MeV 2] 35.52± 8.61

n 40146

〈N〉 104.81± 0.1

pT [MeV/c] 448.52± 0.14

Centrality[%] 20− 30

〈∆pt,1∆pt,2〉[MeV 2] 81.61± 9.99

σ2pT ,dyn
[MeV 2] 68.62± 12.7

n 39496

〈N〉 73.37± 0.08

pT [MeV/c] 445.31± 0.17

Centrality[%] 30− 40

〈∆pt,1∆pt,2〉[MeV 2] 114.81± 14.41

σ2pT ,dyn
[MeV 2] 95.81± 18.81

n 39763

〈N〉 50.07± 0.07

pT [MeV/c] 441.57± 0.2

Centrality[%] 40− 50

〈∆pt,1∆pt,2〉[MeV 2] 145.79± 29.73

σ2pT ,dyn
[MeV 2] 129.62± 35.69

n 38197

〈N〉 32.72± 0.06

pT [MeV/c] 436.17± 0.25

Table 6.2: Summary of mean pT fluctuations for all pairs at 0.1 < pT <

1.5 GeV/c, 2.2 < η < 2.7 and full φ acceptance at 158 A·GeV/c for five cen-

trality classes. Errors are statistical only. The fluctuations are not corrected for

two-track resolution and HBT/Coulomb correlations.
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Figure 6.12: The ∆φ dependence of the correlator 〈∆pt,1∆pt,2〉 for five centrality

classes, for real and mixed pairs respectively.

Figure 6.13: Centrality dependence of the measured correlator 〈∆pt,1∆pt,2〉,
scaled by number of participating nucleons, for several regions of ∆φ.
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6.2.4 Elliptic flow contribution

In addition to correlations due to SRC and jets, the two-particle azimuthal dis-

tributions expressed via the momentum correlator in MeV 2, exhibit a structure

attributable to an elliptic flow anisotropy of single particle production relative to

the reaction plane [68, 69]. This leads to a two-particle azimuthal distribution of

the form of the Eq. 6.3

dN

d∆φ
≡ B[1 + 2v22cos(2∆φ)] (6.3)

where v2 is the elliptic flow parameter and B a normalization constant [70].

Previous measurements [69] using several methods have shown that sizable v2

values persist to high pT .

The value of v2 as a function of centrality and pT has been measured by the

CERES experiment [71].
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Figure 6.14: π elliptic flow measured by CERES at 〈σ/σgeo〉 = 8.9 % [72].

The elliptic flow of pions measured by CERES at 〈σ/σgeo〉 = 8.9 % [72] is

shown in Fig. 6.14. Since v2 can be expressed as a function of pT , we introduce

the measure fi,j as:
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fi,j ≡ 1 + 2v2(pT i)v2(pTj)cos(2|φ(i)− φ(j)|) (6.4)

Then, we calculate the average momentum correlator 〈∆pt,1∆pt,2〉 for mixed

events , multiplying the pT covariance with fi,j and weighting the numbers of

pairs [73] as follows:

〈∆pt,1∆pt,2〉mixed+flow ≡
1

nevents

nevents
∑

k=1

[

∑Nk

i6=j(pT i − pT )(pTj − pT )fi,j
∑Nk

i6=j fi,j

]

(6.5)
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Figure 6.15: The 〈∆pt,1∆pt,2〉 map in ∆η-∆φ space for all pairs assuming there

is only flow, as can be obtained by subtracting the corresponding map of mixed

pairs from the map of mixed pairs that have elliptic flow.

Subtracting the corresponding map of mixed pairs in the momentum subspace,

from the map of mixed pairs that have elliptic flow calculated by Eq. 6.5, we

can evaluate the elliptic flow expressed in units of MeV 2 as it can be seen in

Fig. 6.15. The cos(2∆φ) modulation introduced by the elliptic flow obtained at

0 < ∆η < 0.1 where the statistical error is smaller, is shown in the left panel

of Fig. 6.16. In case the average value of v2 (∼ 1.5 % at this pT range and

centrality) is used for the evaluation of fi,j and not the parametrized one, the

〈∆pt,1∆pt,2〉 does not change. The expected cos(2∆φ) modulation comes through

the pT dependence.
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In order to confirm this effect, a Monte Carlo analysis was performed [74] ,

generating events with independent particles, following the measured inclusive

pT distribution where the uniform azimuthal angle distribution of the events was

modified by the elliptic flow expected by CERES according to the parametrization

of v2(pT ) shown in Fig. 6.14 (right panel of Fig. 6.16). Both methods are in a good

agreement but for our study we will use the value of the elliptic flow obtained by

the calculation of 〈∆pt,1∆pt,2〉mixed+flow.

Fig. 6.17 shows the ∆φ dependence of the 〈∆pt,1∆pt,2〉 at 0 < ∆η < 0.1 with

the expected elliptic flow superimposed, for all pairs. We can subtract the CERES

flow from the 〈∆pt,1∆pt,2〉 map as it can be seen in Fig. 6.18 and correct as well

as the normalized fluctuation ΣpT
(see Fig. 6.19).

Thus, one concludes that the effect of the azimuthal anisotropy caused by the

elliptic flow is not responsible for the observed dynamical pT fluctuations. The

question that remains is what is the origin of the observed broad away-side peak

and whether is a low or a high pT effect.
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Figure 6.16: Estimation of the elliptic flow expected by CERES using mixed-

event analysis (left panel) and Monte Carlo evaluation [74] (right panel).
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Figure 6.17: The ∆φ dependence of the 〈∆pt,1∆pt,2〉 at 0 < ∆η < 0.1 with the

expected elliptic flow superimposed, for all pairs.
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Figure 6.18: The ∆φ dependence of the 〈∆pt,1∆pt,2〉 at 0 < ∆η < 0.1, for all

pairs, after subtraction of the expected elliptic flow.
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Figure 6.19: The ΣpT
map in ∆η-∆φ space for all pairs, when only elliptic flow

is present (top panel) and the total ΣpT
, after subtraction of the expected elliptic

flow (bottom panel).
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6.3 Two-particle correlation analysis using the

cumulant pT variable x

In order to achieve a better understanding of the fluctuation structure one needs

to apply a more differential method. The correlations can be studied by plotting

the cumulative pT variables of particle pairs. Namely, for a given particle, instead

of its pT one introduces the variable x defined as [42, 43, 44]:

x(pT ) =

pT
∫

0

ρ(p
′

T )dp
′

T (6.6)

where ρ(p
′

T ) is the inclusive pT distribution, normalized to unity, which is obtained

from all particles used in the analysis. By construction, the x variable varies

between 0 and 1 with a flat probability distribution. The Fig.6.20 shows the

inclusive pT distribution and the corresponding pT variable x, for all pairs. Thus,

a high pT value corresponds to a high x (close to 1). We have also prepared the

cumulant pT variable x for different charge combinations.
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Figure 6.20: The inclusive pT distribution (left panel) and the corresponding pT

variable x (right panel), for all pairs.

The two-particle correlation plots, as presented in this work, are obtained by

plotting (x1, x2) points for all possible particle pairs within the same event. The

number of pairs in each (x1, x2) bin is divided by the mean number of pairs in a
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bin (averaged over all (x1, x2) bins). This two-dimensional plot is uniform when

no inter-particle correlations are present in the system. Correlations due to the

Bose statistics produce a ridge along the diagonal of the (x1, x2) plot, which

starts at (0, 0) and ends at (1, 1), whereas temperature fluctuations lead to a

saddle shaped structure [39]. As will be seen in this section, the distribution of x1

or x2 obtained from the two-dimensional (x1, x2) plots by projecting on the x1 or

x2 axis is not flat. This is due to the method by which the plots are constructed.

Namely, each pair of particles is represented by a point on the plot. Therefore,

the events with higher multiplicities are represented by a larger number of pairs

than those with smaller multiplicities. It should be stressed that in the absence

of any correlations the (x1, x2) plot is uniformly populated and the x1 and x2

projections are flat.

6.3.1 Two-particle correlation plots in several ∆φ regions

A study of two-particle correlation plots from a sample of about seven millions

events, having a centrality of the upper 8 % of the total geometric cross section,

is performed in several ∆φ regions.
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Figure 6.21: The two-particle correlation plots for all pairs, mixed pairs and true

versus mixed, at 0 < ∆η < 0.5 and 142.5 < ∆φ < 150 deg.).

The two-particle correlation plots for mixed pairs as it can be seen in Fig.

6.21 are not completely flat as it is expected by definition. Therefore, to mini-
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mize instrumental effects and to reveal possibly the origin of the away-side peak

that was observed using the 〈∆pt,1∆pt,2〉 measure, we construct the two-particle

correlation plots for all pairs corrected, by dividing real versus mixed.

After each charged particle pair (x1, x2) was entered into the plot, the bin

contents were normalized by diving with the average number of entries per bin.

The data in these figures, are plotted with same colour scales and are symmetric

about the diagonal by construction. All the next plots are corrected after a

division with the corresponding mixed ones.

Two-particle correlation plots using the cumulant pT variable x for all pairs,

in several ∆φ regions, are given in Fig. 6.22. We note that the plots are not

uniformly populated. Contributions to them include, but are not limited to,

quantum statistics, Coulomb effects, resonances decays, instrumental effects and

‘dynamical’ fluctuations. At 0o < ∆φ < 30o, one observes a prominent ridge

along the main diagonal. At 30o < ∆φ < 120o, the plots seem to be rather flat.

At 120o < ∆φ < 180o, we see a high-pT correlation given as a sharp narrow peak

as an enhancement in the region close to x1 = x2 = 1. It was already presented

before (see Fig. 6.12 for 0-8 % centrality) that the average momentum correlator

〈∆pt,1∆pt,2〉 in the same region (120o < ∆φ < 180o) is positive. This observation

attributes the away-side peak of the 〈∆pt,1∆pt,2〉 in that ∆φ region to high-pT

correlations.

A separate treatment of positive, negative and unlike-signed pairs is generally

necessary in order to extract complete information, since different physics may

affect each combination. Two-particle correlation plots for all charged combina-

tions are presented in Figs. 6.23, 6.24, 6.25. One oberves a ridge along the main

diagonal for the like-signed pairs corresponding to quantum correlations and a

peak in the unlike-signed pairs (x1 = x2 = 0) due to the Coulomb interaction.

In order to see how the elliptic flow influences the two-particle correlation

plots, we use the same procedure described in 6.2.4. Thus, the flow is evaluated

by giving a weight to mixed particle pairs equal to fi,j according to Eq. 6.4

and divide the resulting plots with the corresponding ones of mixed pairs. The

results are presented in Fig. 6.26. The plots are flat indicating that the elliptic

flow that is measured at CERES, is too weak to be visible. An abnormally large

value of 3v2, where v2 gets the measured by CERES parametrized value [72],
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results to two-particle correlation plots with much bigger high-pT enhancement

at x1 = x2 = 1, as can be seen in Fig. 6.27,

Two-particle correlation plots for all pairs in smaller ∆φ bins, 24 in total,

corresponding to an angle of 7.5 degrees (the bin index follows the increase of ∆φ,

i.e., 1 bin corresponds to 0 < ∆φ < 7.5, 2 bin corresponds to 7.5 < ∆φ < 15, 24

bin corresponds to 172.5 < ∆φ < 180, allowing a comparison with the measured

〈∆pt,1∆pt,2〉) can be found in appendix A.
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Figure 6.22: Two-particle correlation plots using the cumulant pT variable x for

all pairs, in several ∆φ regions.



68 Scale Dependence of Mean Transverse Momentum Fluctuations...

0 0.10.20.30.40.50.60.70.80.9 1

00.10.20.30.40.50.60.70.80.91

0.996

0.998

1

1.002

1.004

Φ∆Total 

0 0.10.20.30.40.50.60.70.80.9 1

00.10.20.30.40.50.60.70.80.91

0.996

0.998

1

1.002

1.004

 < 30 deg.  Φ∆0 < 

0 0.10.20.30.40.50.60.70.80.9 1

00.10.20.30.40.50.60.70.80.91

0.996

0.998

1

1.002

1.004

 < 60 deg.Φ∆30 < 

0 0.10.20.30.40.50.60.70.80.9 1

00.10.20.30.40.50.60.70.80.91

0.996

0.998

1

1.002

1.004

 < 90 deg.  Φ∆60 < 

0 0.10.20.30.40.50.60.70.80.9 1

00.10.20.30.40.50.60.70.80.91

0.996

0.998

1

1.002

1.004

 < 120 deg.  Φ∆90 < 

0 0.10.20.30.40.50.60.70.80.9 1

00.10.20.30.40.50.60.70.80.91

0.996

0.998

1

1.002

1.004

 < 150 deg.  Φ∆120 < 

0 0.10.20.30.40.50.60.70.80.9 1

00.10.20.30.40.50.60.70.80.91

0.996

0.998

1

1.002

1.004

 < 180 deg.  Φ∆150 < 

Figure 6.23: Two-particle correlation plots using the cumulant pT variable x for

positive pairs, in several ∆φ regions.
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Figure 6.24: Two-particle correlation plots using the cumulant pT variable x for

negative pairs, in several ∆φ regions.
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Figure 6.25: Two-particle correlation plots using the cumulant pT variable x for

unlike-sign pairs, in several ∆φ regions.
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Figure 6.26: Two-particle correlation plots using the cumulant pT variable x

for all pairs that have only the elliptic flow expected by CERES (corrected by

dividing mixed with flow versus mixed), in diferent ∆φ regions.
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Figure 6.27: Two-particle correlation plots using the cumulant pT variable x for

all pairs that have only elliptic flow with 3v2, where v2 gets the expected by

CERES value (corrected by dividing mixed with flow versus mixed), in several

∆φ regions.
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6.4 Discussion

Enhanced event-by-event fluctuations of transverse momenta are considered to

be one of the signatures of the vicinity to the critical point of the QCD phase

transition. The fluctuations observed so far turned out to be rather independent

of beam energy [45]. On the other hand, the fluctuations seem to be a non-

monotonic function of centrality.

More insight into the origin of the observed fluctuations is gained by study-

ing the average momentum correlator 〈∆pt,1∆pt,2〉 between pairs of tracks of a

given opening angle. The covariance map (Fig. 6.5) reveals several structures

and demonstrates that if the fluctuations were to be characterized by one single

number the result would depend on the experiment’s acceptance. The observed

nonzero pT fluctuations indicate that particle pT is drawn event-wise from an ef-

fective parent distribution which deviates , as a function of ∆φ,∆η and differently

in each event, from the inclusive pT distribution.

The landscape is dominated by the short range correlation peak at small open-

ing angles, most probably originating from Bose-Einstein and Coulomb effects

between pairs of particles emitted with similar velocities, and the broad maxi-

mum at ∆φ=180o which contains back-to-back correlations like those observed

at RHIC and the SPS [75]. The elliptic flow measured by CERES cannot explain

the observed dynamical pT fluctuations. The non-monotonic centrality depen-

dence of the overall fluctuations is indeed visible in the separate analysis of these

two components. Since the critical point fluctuations should be present for all

opening angles the best strategy seems to be to focus on the fluctuations in the

region of 30o < ∆φ < 60o, free of the influence of the two mentioned components,

and where the elliptic flow cancels out.The pT fluctuations in this region turn out

to be close to zero and independent on centrality.

Concerning the observed away-side peak, we demonstrated that it comes from

high-pT correlations that cannot be attributed to the elliptic flow. The cumulative

two-particle correlation study provides results that are consistent with those of

the average momentum correlator 〈∆pt,1∆pt,2〉. Thus, we incline to consider the

event-by-event fluctuations of mean transverse momentum mostly related to two-

particle correlations.
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The event and track selection criteria reduce the possible systematic bias of

the measured 〈∆pt,1∆pt,2〉 values. Anyway, the remaining systematic uncertainty

should be estimated varying the values of cut parameters within a reasonable

range. It would also be interesting to analyze the beam energy dependence of

this quantity, as well as following a similar procedure, like in case of elliptic flow,

to remove Bose-Einstein and Coulomb effects and provide a ‘clean’ map from

known correlations.


