
Decentralized establishment of
consistent, multi-lateral collaborations

Vom Fachbereich 20 - Informatik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

vorgelegte

Dissertation

von
Diplom-Informatiker

Andreas Wombacher
geboren in Aschaffenburg

Referenten: Prof. Dr. Erich Neuhold
Prof. Dr. Karl Aberer

Tag der Einreichung: 24. Juni 2005
Tag der Disputation: 26. August 2005

Darmstadt 2005
Hochschulkennziffer: D17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/11680013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

Multi-lateral collaborations are based on the interaction of several parties. In particular, each
party contributes different tasks to the execution of the collaboration. The coordination of these
different tasks, that is, the handling of the dependencies between the different tasks, is known
as a workflow. When this coordination ensures a successful interaction between the different
parties the workflow is called consistent, guaranteeing deadlock-freeness. Currently, a multi-
lateral collaboration is set up by people meeting and discussing the collaboration, specifying the
workflow (also called the global workflow) and checking its consistency. Afterwards the global
workflow is split into parts (also called local workflows) performed by the individual parties.
Following this top-down approach, the combination of the local workflow guarantees consis-
tency of the global workflow. Applying a bottom up approach, that is, deriving global properties
from local ones is known to be hard in distributed systems. Thus, the issue is to provide an
approach which can determine global consistency based on local consistency decisions.

Recent technologies such as Service Oriented Architecture (SOA) support decentralized and
loosely coupled applications. In particular, parties make the provided functionality available as a
service, which is maintained and controlled completely independent of a centralized coordinator.
Further, the loose coupling supports the late binding of services, that is, a service requestor
may decide at run-time which service provider to use for that particular collaboration. As a
consequence of these decentralized decisions and the lack of a centralized coordinator, the top-
down approach is not applicable to SOA, but requires a bottom up approach.

Deciding consistency of a global workflow in a decentralized way requires additional local
information which is provided by the method proposed in this thesis. In particular, information
on parameter constraints and execution sequences between local workflows has to be exchanged
and propagated through the collaboration to gather sufficient information. It is shown that this
propagated information suffices to determine global workflow consistency in a decentralized
way. Further, Web Services are used as a concrete technology supporting the SOA paradigm
and the theoretical results are applied to this technology as a proof of concept to illustrate the
applicability of the approach presented.

The approach can be applied to synchronous or asynchronous communication models. While
there already exist approaches for asynchronous communication models, there are none avail-
able for the synchronous case. Therefore, a formal model for synchronous communication is
introduced which is called annotated Finite State Automata. This model extends standard Finite
State Automata by annotating states with logical expressions to differentiate between mandatory

iv Abstract

and optional automata transitions. An optional transition can be illustrated by a party provid-
ing the option to receive one of two messages, where the interacting party may use one of the
options. Optional transitions represent standard automata semantics. However, a mandatory
transition can be illustrated by a party sending either one of two messages, where the receiving
party is required to support both options, because supporting only a single option results in a
deadlock if the sender selects the other option. This formal model is introduced and discussed in
detail for bilateral and multi-lateral collaborations. In particular, the propagation of parameter
constraints and execution sequences are defined based on this model and the construction of the
corresponding global workflow is introduced.

For the asynchronous communication model, Workflow Nets are used as a formal model based
on an existing approach to constructing the corresponding global workflow. However, since the
computational complexity of Workflow Nets prevents satisfactory application of the propagation
definitions, the execution sequences of the Workflow Nets involved are represented as annotated
Finite State Automata and thus allow handling of the synchronous and asynchronous communi-
cation model based on a single formal model, that is, annotated Finite State Automata.

Based on the common formal model, it can be shown that the propagation of parameter con-
straints and execution sequence constraints result in a fixed point, where further propagation
will not change the local workflow any further. Based on this fixed point, it can be shown that
if all parties decide locally that the workflow is consistent then the global workflow is also con-
sistent. Therefore, the final consistency decision is based on the consensus of the parties’ local
consistency decisions.

The approach is implemented within the Web Services framework. In particular, a partial
mapping of the Web Service process specification language (Business Process Execution Lan-
guage for Web Services (BPEL)) to annotated Finite State Automata is provided. Based on this
mapping an extension of standard service discovery, considering process descriptions in terms
of BPEL, is implemented. Further, the relevant operations for annotated Finite State Automata
are implemented. Finally, in order to be able to apply the approach presented, a decentralized
collaboration establishment approach is introduced.

Deutsche Zusammenfassung

Multi-laterale Kollaborationen basieren auf Interaktionen zwischen mehreren Parteien. Im Be-
sonderen trägt jede Partei unterschiedliche Funktionen zu der Ausführung der Kollaboration bei.
Die Koordination dieser unterschiedlichen Funktionen ist auch unter dem Begriff Workflow be-
kannt. Falls die Koordination eine erfolgreiche Interaktion zwischen den verschiedenen Parteien
gewährleistet, dann bezeichnet man einen Workflow als konsistent, d.h. eine blockadenfreie Aus-
führung des Workflows ist garantiert. Heutzutage wird eine multi-laterale Kollaboration durch
Personen etabliert, die sich treffen, die Kollaboration besprechen, den Workflow spezifizieren
(dieser wird auch als globaler Workflow bezeichnet) und ihn auf Konsistenz hin prüfen. Nach
dieser Prüfung wird der globale Workflow in Teile - so genannte lokale Workflows - aufgeteilt,
die dann von den einzelnen Parteien ausgeführt werden. Dieser top-down Ansatz gewährleistet,
dass die Kombination der lokalen Workflows die Konsistenz des resultierenden globalen Work-
flows garantiert. Wendet man einen bottom-up Ansatz an, d.h. leitet man globale Eigenschaften
von lokalen ab, so ist dies wesentlich schwerer zu bewerkstelligen, wie man aus dem Bereich
der verteilten Systeme her kennt. Daher ist die Herausforderung einen Ansatz bereitzustellen,
der globale Konsistenz auf Basis lokaler Konsistenzentscheidungen herleiten kann.

Aktuelle Technologien wie z.B. Service Orientierte Architekturen (SOA) unterstützen dezen-
tralisierte und lose gekoppelte Anwendungen. Im Besonderen machen Parteien ihre bereitge-
stellten Funktionen als Services verfügbar, die unabhängig von einem zentralisierten Koordina-
tor gewartet und kontrolliert werden. Weiterhin unterstützt die lose Kopplung das späte Binden
von Services, d.h. die Partei, die einen Service anfordert, kann zur Laufzeit entscheiden, welchen
Serviceanbieter sie für eine spezielle Kollaboration nutzten will. Auf Grund dieser dezentralen
Entscheidungen und des fehlenden zentralen Koordinators ist der top-down Ansatz im Umfeld
von SOA nicht anwendbar und erfordert daher den bottom-up Ansatz.

Die Entscheidung über die Konsistenz eines globalen Workflows in einer dezentralisierten
Weise erfordert zusätzliche lokale Informationen, die durch die vorgestellte Methode verfügbar
werden. Im Besonderen werden Informationen über Parameter-Einschränkungen und Ausfüh-
rungssequenzen zwischen lokalen Parteien ausgetauscht und durch die Kollaboration propagiert.
Es wird gezeigt, dass die propagierten Informationen ausreichen, um globale Workflow Konsi-
stenz in einer dezentralisierten Weise herzuleiten. Weiterhin wird die Methode auf Web Services,
als eine konkrete Technologie basierend auf SOA, angewendet und die Methode prototypisch
implementiert. Die Implementierung dient als Proof of Conceptünd illustriert die Anwendbar-
keit des vorgeschlagenen Ansatzes.

vi Deutsche Zusammenfassung

Der Ansatz kann auf synchrone und asynchrone Kommunikationsmodelle angewendet wer-
den. Es existieren Ansätze für asynchrone Kommunikationsmodelle, wogegen es keine Ansät-
ze für synchrone Kommunikationsmodelle gibt. Daher wird ein formales Model für synchrone
Kommunikation eingeführt, das als annotierte Finite State Automata bezeichnet wird. Dieses
Model erweitert Standard Finite State Automata durch die Annotation von Zuständen mit logi-
schen Ausdrücken, um zwischen optionalen und verbindlichen Automaten Übergängen zu unter-
scheiden. Ein optionaler Übergang kann durch eine Partei veranschaulicht werden, die anbietet
eine von zwei Nachrichten zu empfangen, wobei die interagierende Partei eine dieser Optio-
nen nutzen kann. Optionale Übergänge repräsentieren dabei Standard Automaten Semantik. Ein
verbindlicher Übergang kann durch eine Partei veranschaulicht werden, die eine von zwei Nach-
richten senden kann, wobei die empfangende Partei verpflichtet ist beide Optionen zu unterstüt-
zen. Unterstützt die empfangende Partei nur eine Option, so führt dies zu einer Blockade falls
der Sender die falsche Option sendet. Das formale Model der annotierten Fintie State Automata
wird eingeführt und sowohl bilaterale als auch multi-laterale Kollaborationen werden diskutiert.
Insbesondere wird die Propagierung von Parameter-Einschränkungen und Ausführungssequen-
zen definiert und die Konstruktion des zugehörigen globalen Workflows eingeführt.

Im asynchronen Kommunikationsmodel werden Workflow Nets als formales Model verwen-
det, da auf einen existierenden Ansatz zur Konstruktion des globalen Workflows zurückgegriffen
werden kann. Da jedoch die Workflow Net Operationen eine hohe Komplexität haben, die ei-
ne erfolgreiche Anwendung der Propagierung verhindert, werden die Ausführungssequenzen
der Workflow Nets als annotierte Finite State Automata repräsentiert. Auf diese Weise ist ei-
ne homogene Handhabung des synchronen und asynchronen Kommunikationsmodels in einer
formalen Repräsentation, d.h. annotierte Finite State Automata, möglich.

Basierend auf diesem gemeinsamen formalen Model wird gezeigt, dass die Propagierung von
Parameter-Einschränkungen und Ausführungssequenzen in einem Fixpunkt resultiert, in dem
eine weitere Propagierung keine Änderungen an lokalen Workflows herbeiführt. Basierend auf
diesem Fixpunkt wird gezeigt, dass die lokale Konsistenzentscheidung aller Parteien die Kon-
sistenz des korrespondierenden globalen Workflows garantiert. Daher kann die Konsistenzent-
scheidung nun auf dem Konsens der lokalen Konsistenzentscheidung der einzelnen Parteien
erfolgen.

Der Ansatz wurde innerhalb des Web Services Umgebung implementiert. Insbesondere wur-
de eine partielle Abbildung der Web Service Prozessspezifikationssprache (Business Process
Execution Language for Web Services (BPEL)) auf annotatierete Finite State Automata reali-
siert. Basierend auf dieser Abbildung wurde ein erweitertes Service Discovery entwickelt, das
Prozessbeschreibungen (lokale Workflows) in BPEL Notation berücksichtigt. Weiterhin wurden
die relevanten Operationen für annotierte Finite State Automata implementiert. Letztlich wur-
de eine dezentralisierte Erstellung von Kollaborationen eingeführt, um die Anwendbarkeit des
vorgestellten Ansatzes zu zeigen.

Contents

Abstract iii

Deutsche Zusammenfassung v

1 Introduction 1
1.1 Centralized Establishment of Multi-lateral Collaborations 2
1.2 Web Services . 3
1.3 Decentralized Establishment of Multi-lateral Collaborations 3
1.4 Contributions of the Dissertation . 4
1.5 Outline of the Dissertation . 5

2 Requirements and Overall Approach 7
2.1 Bilateral Consistency . 7

2.1.1 Example . 7
2.1.2 Requirements . 9

2.2 Bilateral Consistency Approach . 9
2.3 Multi-lateral Consistency . 11

2.3.1 Example . 11
2.3.2 Centralized Collaboration Establishment 12
2.3.3 Decentralized Collaboration Establishment 14
2.3.4 Occurrence Graph Constraints . 15
2.3.5 Parameter Constraints . 16
2.3.6 Requirements . 17

2.4 Decentralized Consistency Checking Approach 17
2.4.1 Resolving Cycles . 19
2.4.2 Propagation of Parameter Constraints 21
2.4.3 Propagation of Occurrence Graph Constraints 22
2.4.4 Consensus Making . 24

2.5 Summary . 25

viii Contents

3 Related Work 27
3.1 Task Based Workflow Model . 27
3.2 Communication Based Workflow Model . 28
3.3 Web based Electronic Data Interchange . 29
3.4 Bilateral Consistency . 31

3.4.1 Web Services . 31
3.4.2 Semantic Web . 32

3.5 Multi-lateral Collaboration Consistency . 33
3.5.1 Capacity Sharing . 33
3.5.2 Chained Execution . 34
3.5.3 Subcontracting . 34
3.5.4 Loosely Coupled . 35
3.5.5 Conclusion . 36

4 Local Consistency Checking 39
4.1 Parameter Constraint Model . 40
4.2 Asynchronous Model . 44

4.2.1 Overview of Definitions . 44
4.2.2 Place/Transition Net . 46
4.2.3 Workflow Net . 48
4.2.4 Interorganizational Workflow Net . 49
4.2.5 Parameter Constraints . 52
4.2.6 Constraint Propagation . 53

4.3 Synchronous Model . 57
4.3.1 Overview of Definitions . 58
4.3.2 Finite State Automaton . 60
4.3.3 Annotated Finite State Automaton . 61
4.3.4 Intersection of Annotated Finite State Automaton 64
4.3.5 Emptiness Test of Annotated Finite State Automaton 65
4.3.6 Guarded Annotated Finite State Automaton 67
4.3.7 Consistency of a Multi-lateral Collaboration 71
4.3.8 Resolution of Cycles . 74
4.3.9 Propagation of Parameter Constraints 78
4.3.10 Propagation of Occurrence Graph Constraints 80

4.4 Summary . 82

5 Decentralized Consistency Checking 85
5.1 Mapping Asynchronous Model . 85
5.2 Correctness of the Approach . 90

5.2.1 Convergence of Constraint Propagation 91
5.2.2 Alternative Consistency Definition . 92

Contents ix

5.2.3 Decentralized Consistency . 95
5.3 Consensus Making . 97
5.4 Summary . 102

6 Implementation and Evaluation 103
6.1 Workflow Modeling Language Transformation 103

6.1.1 Example . 104
6.1.2 Model Extension . 106
6.1.3 Transformation Overview . 107
6.1.4 Message Transformation . 108
6.1.5 Process Element Transformation . 110
6.1.6 Internal and Simple Activity Transformation 110
6.1.7 Communication Activity Transformation 110
6.1.8 Structural Activity Transformation . 111
6.1.9 Limitations . 114
6.1.10 Expressiveness of Guarded aFSA . 114

6.2 Bilateral Consistency Checking . 117
6.2.1 Approach . 118
6.2.2 Architecture . 120
6.2.3 Discussion . 124
6.2.4 Performance Measurements . 124

6.3 Decentralized Multi-lateral Collaboration Establishment 125
6.3.1 Example . 126
6.3.2 Finding Relevant Trading Partners . 127
6.3.3 Establishment of Potential Multi-lateral Collaborations 127
6.3.4 Deciding Consistency of a Multi-lateral Collaboration 128
6.3.5 Determination of a Fixed Point . 129

6.4 Summary . 130

7 Conclusion 131
7.1 Achievements of the Thesis . 131
7.2 Additional Application Areas . 132
7.3 Future Research Topics . 134

Bibliography 137

A Appendix 153
A.1 Example Requiring Unique Message Names 153
A.2 Normalization Operation on Guarded Annotated Finite State Automata 157
A.3 List of Figures . 158

1 Introduction

A multi-lateral collaboration is the act of several parties working jointly [Wor04]. Several forms
of collaboration exist covering almost all areas of people’s life like for example at work, where
people are employed by a company involved in creating a product. In this example, the employ-
ees have the same goal of producing something. However, there exist collaborations where each
party has its own goal that can only be achieved by interacting with other people, for example,
people going shopping to a market or companies developing joint ventures.

These two generic types of collaborations also exist in Information Technology. The execution
of such a collaboration usually involves several parties, each contributing different tasks. That
is, a task is a "logical unit of work that is carried out as a single whole by one party" [AH02].
A collaboration can be characterized by a set of tasks that have to be performed and the causal
and temporal dependencies between the different tasks. A model describing the coordination
of tasks, that is, managing dependencies between these tasks [MC94], dependencies between
activities within a collaboration is known as a workflow.

Workflows have been studied in the last few years. Initially, workflows have been carried
out entirely by humans manipulating physical objects [GHS95]. Later, with the introduction of
Information Technology, these processes have been partially or totally automated by informa-
tion systems, which control the execution of tasks and the performance of the tasks themselves.
Thus, the main goal of workflow management systems is not the complete automation of work-
flows but the separation of control logic and logic contained in the tasks, where a task is either
performed by an information system or by a human. Based on this separation, reuse of tasks
in different workflows will be supported [Moh98]. Electronic data interchange (EDI) over the
Internet and the Extensible Markup Language (XML) standard family are key factors for the
emergence of Web-based workflows. Due to these improved and simplified communication and
coordination mechanisms, inter-organizational cooperations and virtual organization structures
are evolving, where the interaction and work performed by several parties forming a multi-lateral
collaboration have to be coordinated and controlled. Establishing such a multi-lateral collabora-
tion is a major challenge, which increases with the number of parties that have to agree on three
aspects:

1. the connectivity, that is, the supported communication protocols (like for example FTP,
HTTP, SMTP,...) as well as the communication languages, which are message formats in
the case of electronic data interchange (EDI).

2. the tasks to be used within the collaboration, that is, the combination of tasks taken from
different parties forming a successful collaboration.

2 Chapter 1. Introduction

3. the coordination of the selected tasks, that is, the order in which the different tasks have
to be executed to guarantee a successful collaboration.

To achieve connectivity the transformation of protocols and messages may be required. An
automated transformation of messages requires an "understanding" of the meaning of a mes-
sage’s content, which is expressed in terms of an ontology and is developed by the Semantic
Web community. The second and third aspect, that is, deriving the set of tasks to be used and the
coordination of those tasks represents a building of a commonly agreed workflow specification.
This thesis focuses on those workflow aspects required to establish a multi-lateral collaboration.

1.1 Centralized Establishment of Multi-lateral Collaborations

Nowadays, multi-lateral collaborations are usually set up by a group of people representing the
different parties involved in the collaboration. In particular, these people meet, discuss the differ-
ent options, and finally decide on the definition of a multi-lateral collaboration: which communi-
cation protocols and messages are going to be used, and what are the workflow options that have
to be supported by a collaboration.1 The agreement on the multi-lateral collaboration derived by
this group specifies a multi-lateral collaboration from a global point of view. Based on this spec-
ification a multi-lateral collaboration can be checked for consistency, that is deadlock-freeness:
A consistent multi-lateral collaboration has to ensure that all potential execution sequences of
the collaboration reach a final state for all involved parties.

The global view specification of a multi-lateral collaboration can be used to derive a speci-
fication of the collaboration from a local point of view, that is, the view of an individual party.
Approaches exist which allow the derivation of the local point of view from the global one,
ensuring that the interaction of the local views implements the global view of a multi-lateral
collaboration [Aal99]. Further, it can be guaranteed that the interaction of the local views is
consistent if the global specification of a multi-lateral collaboration is consistent.

The global view approach described above is also known as the top-down approach to es-
tablishing a collaboration. This approach is quite expensive, because people have to meet to
come to an agreement and the implementation of the local views of a collaboration afterwards
requires a considerable implementation effort. Further, changes to the collaboration require the
parties to go through the whole process again making changes also very expensive. As a con-
sequence, the top-down approach to collaboration establishment works fine for well established
and quite static multi-lateral collaborations. However, current development in IT technology
supports more flexible structures like for example Service Oriented Architectures (SOA), which
are used to realize loosely coupled systems inherently providing a high potential for establishing
collaborations between parties in a quite flexible and dynamic way. This kind of collaboration
establishment is also known as the bottom-up approach. However, the bottom-up establishment

1As a basis for this discussion, the different parties try to ensure that the integration effort needed to adapt the local
infrastructure and processes to the multi-lateral collaboration is minimized.

1.2 Web Services 3

of the collaboration is based on local workflows which hide workflow information for often well
justified business reasons contained in the complete workflow model implemented by a certain
party. In particular, mission critical information as well as internal structures for handling certain
business cases are not made transparent to trading partners.

1.2 Web Services

A Service Oriented Architecture (SOA) is defined as "a set of components which can be invoked,
and whose interface descriptions can be published and discovered" [HB04]. A component is a
"software object interacting with other components, encapsulating certain functionality or a set
of functionalities" [FK04] and maintaining an internal state [Fie00]. Thus, a SOA consists of
components accessible as services, where each service provides a certain functionality, an inter-
nal state, and an interface to publish the provided functionality to potential service requesters.
In contrast to component based architectures, where components are combined during the de-
velopment phase, in SOAs services are combined after the deployment of services, that is, at
run-time [Kay03]. This change can be characterized as a step from supply-driven collaborations
to demand-driven ones [Bus03].

A concrete technology implementing the SOA is Web Services. In particular, the World Wide
Web Consortium (W3C) Web Service Architecture Working Group defines a Web Service as "a
software system designed to support interoperable machine-to-machine interaction over a net-
work. It has an interface described in a machine-processable format (specifically Web Service
Description Language (WSDL)). Other systems interact with the Web service in a manner pre-
scribed by its description using SOAP-messages, typically conveyed using HyperText Transfer
Protocol (HTTP) with an eXtensible Markup Language (XML) serialization in conjunction with
other Web-related standards." [HB04]

The following properties can be derived from the definition of SOA: i) the services are dis-
tributed, since each service can be provided by a different party, and ii) the services are au-
tonomous, because state changes within a service are independent of other service’s states. As a
consequence, a stateless service represents a certain functionality and is comparable to a single
task within a workflow. A stateful service represents contains an implicit definition of a local
workflow, that is, representing dependencies between different tasks. The interaction of several
services results in a multi-lateral collaboration being constructed from a set of pre-existing local
workflows provided by services, resulting in a global workflow. This describes the bottom-up
approach.

1.3 Decentralized Establishment of Multi-lateral Collaborations

Establishing multi-lateral collaborations should always result in a consistent collaboration, that
is, a consistent global workflow. As a consequence, the bottom-up approach has to guarantee

4 Chapter 1. Introduction

that the resulting global workflow is consistent. Because the global workflow is never instanti-
ated explicitly, the decision on the consistency of the global workflow has to be made by local
decisions of the involved parties. Consistency of a multi-lateral collaboration can be decided
locally by a single party in case of a hierarchical structure of services, where a single service
requester centrally coordinates the services, which interact only with the service requester and
are provided by the remaining parties of the multi-lateral collaboration. Due to the limitation
of services to interact with the service requester only, a single party knowing all complete local
workflows exists, which is able to derive the global workflow of the multi-lateral collaboration
and to decide on the global workflow consistency [WMR03].

In contrast to this special case, in all other cases no party knows the global workflow, thus,
the decision on consistency of the global workflow has to be made in a decentralized way based
on partial knowledge of the global workflow. From decentralized system research it is known
that this kind of decision cannot be derived directly from local decisions based only on bilateral
comparisons [Lyn96].

The thesis addresses this issue and presents an approach to determining consistency of a
multi-lateral collaboration in a decentralized way, that is, without instantiating the corresponding
global workflow. The decision then can be made in a decentralized way by deriving additional
consistency properties of the workflows.

1.4 Contributions of the Dissertation

The main contribution of the thesis is the decentralized establishment of consistent, multi-lateral
collaborations. This requires solutions to several subproblems:

• Modeling consistency based on a synchronous communication model namely annotated
Finite State Automata.
Multi-lateral collaborations may rely on different communication infrastructures that can
be generally classified as synchronous, that is, a message sent by a party must be received
by the recipient immediately, and asynchronous, that is, a message sent by a party has to
be received by a party afterwards, but at the latest before completion of the local work-
flow. It will be demonstrated that approaches exist for modeling consistent multi-lateral
collaborations based on an asynchronous communication model, while the synchronous
case has not been addressed so far. Thus, the first aspect of this thesis’ contribution is the
proposal of a workflow modeling approach based on a Annotated Finite State Automata
(aFSA) that supports consistency in a synchronous communication model.

• Mapping WF-Net consistency representing an asynchronous communication model to An-
notated Finite State Automata.
Workflow modeling methods for an asynchronous communication model are already avail-
able, among them, Workflow Nets were selected for this thesis. The evaluation of proper-
ties of a Workflow Net are defined on the derived occurrence graph, which has the same

1.5 Outline of the Dissertation 5

expressiveness as aFSA. Thus, the second aspect of the contribution is a mapping from
Workflow Nets to aFSA, which represents a homomorphism with regard to multi-lateral
consistency, that is, it guarantees a successful business transaction. As a consequence, the
continuing discussion of decentralized consistency checking can be focused on the notion
of aFSA, only.

• Decentralized consistency checking of multi-lateral collaborations based on Annotated
Finite State Automata.
Decentralized consistency checking of a multi-lateral collaboration as a major aspect of
the contribution of this thesis is defined as a fixed point of constraint propagation on
acyclic local workflows forming the collaboration. In particular, algorithms and specifi-
cations are provided for generating acyclic workflow models and propagating constraints
locally as well as to trading partners. Finally, the equivalence of multi-lateral consistency
and the local consistency of a party in a fixed point representation of multi-lateral collab-
orations is shown.

• Implementation of the proposed approach and evaluation in the domain of Web Services.
Combining the three methodological contributions, decentralized multi-lateral collabora-
tions can be realized by decentrally forming a multi-lateral collaboration, next applying
decentralized consistency checking to it, and finally determining whether a fixed point has
already been reached in order to make the final decision on the consistency of the collab-
oration. This last aspect of the contribution of this thesis is the realization of this proposal
in the domain of Web Services and its successful application on workflows constructed
from the Internet Open Trading Protocol specification.

1.5 Outline of the Dissertation

The thesis starts with an analysis of requirements for multi-lateral collaboration establishment
in Chapter 2 and an overview of the approach presented in this thesis. In particular, different
cases are discussed and relevant properties of potential workflow models are identified. Based
on these requirements a solution is outlined illustrating the overall approach presented in detail
in Chapters 4 and 5.

Based on the overall approach and the requirements identified, related work is discussed. The
discussion addresses different workflow models and their corresponding definition of consis-
tency. Besides classical workflow models, workflows realized by web based Electronic Data
Interchange are also discussed. Finally, work related to bilateral and multi-lateral consistency is
investigated in more detail.

A detailed discussion of the relevant definitions follows in Chapter 4. In particular, a common
model for modeling parameters within workflow models is discussed, which is afterwards ap-
plied to Workflow Nets as the workflow model used for asynchronous communication and to the

6 Chapter 1. Introduction

proposed workflow model called annotated Finite State Automata (aFSA) used for synchronous
communication. The operations outlined in the previous chapter are now specified for aFSA.

Based on these formal definitions, a mapping from Workflow Nets to aFSA can be provided
and the equivalence of the notion of multi-lateral consistency is shown. As a consequence, the
further discussion can be limited to prove that the aFSA definitions for decentralized consistency
checking are equivalent to the definition of multi-lateral consistency. This formal discussion is
provided in Chapter 5.

The application of these theoretical results to the domain of Web Services is described in
Chapter 6. In particular, the implementation of the approach is described and the expressiveness
of the proposed aFSA workflow model is investigated by applying it to model all workflows
derivable from the Internet Open Trading Protocol. The implementation is based on a mapping
from the Business Process Execution Language for Web Services to the aFSA workflow model
and an application of this mapping to bilateral consistency checking (also known as service
discovery in the Web Service domain). Finally, the whole approach is summarized and a protocol
for finding potential multi-lateral collaborations based on bilateral consistency is outlined.

The thesis concludes with Chapter 7, where the contributions of this thesis are summarized
and further application domains from the technical and the conceptual point of view are dis-
cussed. The chapter concludes with a discussion of further research topics.

2 Requirements and Overall Approach

In this chapter requirements for decentralized establishment of consistent multi-lateral collabora-
tions are discussed, which are derived from process descriptions illustrated by means of example
scenarios.

As a necessary condition to achieve consistent collaborations it must be ensured that the trad-
ing partners have consistent bilateral collaborations resulting in an initial set of requirements.
In the case of multi-lateral collaborations, additional requirements can be observed forming a
sufficient set of requirements for a decentralized collaboration establishment.

2.1 Bilateral Consistency

Bilateral collaborations involve message exchanges. To visualize message exchanges, an edge
between two nodes represents a concrete message exchange, where a node represents a state of
a message exchange sequence. Final states are identified by a circle with a solid line. Edges are
labeled with messages denoted as s#r#msg, where s represents the message sender, r represents
the message recipient, and msg is the name of the message. This notation is taken from finite
state automata [HMU01] which are a well known formalism used for representing message
sequences.

2.1.1 Example

(a)

V#C#delivery

(b)

C#V#ccPay

C#V#PO

V#C#delivery

C#V#ccPay

C#V#PO

C#V#invoicePay

Figure 2.1: (a) Vendor Message Sequence. (b) Customer Message Sequence.

8 Chapter 2. Requirements and Overall Approach

The example scenario involves two trading parties: a vendor V and a customer C. In par-
ticular, Figure 2.1(a) shows the message sequences supported by the vendor, where the vendor
expects to receive a purchase order (C#V #PO) message, followed by a credit card payment
(C#V #ccPay) and finally sends back a delivery (V #C#delivery) message providing parcel track-
ing information to the respective customer. The message sequences supported by the customer
depicted in Figure 2.1(b) also initiates the process with a purchase order request (C#V #PO).
But then it insists on delivery (V #C#delivery) before payment by credit card (C#V #ccPay) or by
invoice (C#V #invoicePay).

At the level of individual messages these two parties are able to interact, because they share
several messages. However, because they require a different ordering of payment and delivery,
they are incompatible, that is, they cannot have successful business transactions. In order to
guarantee successful transactions message sequences rather than individual messages need to be
taken into account. Based on this criterion, the two process descriptions are not consistent, since
they do not have a single message sequence in common.

Figure 2.2(a) shows the message sequences supported by another vendor. The process starts
with a purchase order (C#V #PO) message, followed by a delivery (V #C#delivery) message, and
either a credit card payment (C#V #ccPay) or an invoice payment (C#V #invoicePay) message. In
case the ordered product is not in stock, the vendor may reject a purchase order by sending a
no stock available (V #C#noStock) message. The vendor process can decide by itself to accept
or decline the purchase order by sending the V #C#noStock or the V #C#delivery message, and
thus can make an active choice. To guarantee consistency the receiving party must support both
of these messages, thus, both messages are considered to be mandatory. On the other hand, the
vendor message sequences support two payment options as genuine alternatives, since it is not
the sender but the receiver of these messages. To guarantee consistency the trading partner has
to support at least one of these messages to ensure at least a single common message sequence,
thus, these messages are considered to be optional.

(a)
 (b)

V#C#delivery

C#V#ccPay

C#V#PO

C#V#invoicePay

V#C#delivery

C#V#ccPay

C#V#PO

C#V#invoicePay

V#C#noStock

(c)

V#C#delivery

C#V#ccPay

C#V#PO

V#C#noStock

Figure 2.2: (a) Vendor Message Sequences Insisting on V #C#noStock and V #C#delivery Mes-
sages. (b) Customer Message Sequences. (c) Customer Message Sequences with
Optional V #C#noStock Message.

2.2 Bilateral Consistency Approach 9

Figure 2.2(b)1 depicts message sequences supported by a customer. While customer and
vendor have a message sequence in common with respect to the delivery payment order, the
customer does not support a message sequence handling the mandatory V #C#noStock message.
Therefore, the two parties have no common message sequence, if an ordered product is not in
stock, thus, they are not consistent.

Conversely, the customer message sequences depicted in Figure 2.2(c) support V #C#noStock
and V #C#delivery messages, whereas it supports only one payment option. This customer now
satisfies all mandatory and optional messages of the vendor. Thus, the vendor and the customer
message sequences are consistent.

2.1.2 Requirements

As a summary the following requirements have been identified so far:

1. The decision making for a consistent collaboration must be performed in a decentralized
way. This is part of the overall problem statement and thus also a requirement for the
modeling approach.

2. Deciding consistency must be based on observable message exchanges under specific con-
sideration of message sequencing. In particular, the trading partners need to share at least
a common message sequence.

3. The modeling of message sequences must differentiate between mandatory and optional
messages. In particular, all messages that may be selected by their sender at a particular
state must be supported by the trading partner resulting in a final state.

4. The comparison of message sequences is based on a notion of message equivalence de-
fined as equivalence of syntactic structure as well as intended semantics. This equivalence
definition allows to focus on the workflow aspects of the collaboration establishment prob-
lem by leaving the issues of schema subsumption and semantic equivalence to the specific
communities.

5. The comparison of message sequences requires a matchmaking definition, where two par-
ties match if the corresponding bilateral collaboration is consistent.

2.2 Bilateral Consistency Approach

Bilateral consistency means that the bilateral collaboration is consistent, that is, fulfilling the
requirements stated in the previous section. A well established approach supporting these re-
quirements is based on Workflow Nets (WF-Nets) [AH02], which are used to represent the
workflow of a single party, called local workflow. In particular, a WF-Net based approach

1This message sequence is equivalent to the one depicted in Figure 2.1(b) and described above.

10 Chapter 2. Requirements and Overall Approach

called interorganizational workflow [Aal99] exists, which characterizes the guarantee for consis-
tency as a WF-Net property called soundness. Due to this property WF-Nets have been selected
for further discussion. Other notations like for example, Petri Nets [Pet81, Jen92], flowcharts
[GAHL00, KWA99], or statecharts [Har87, HN96, Per95] could also have been used. However,
WF-Nets provide better computational complexity because they do not allow recursion.

A Workflow Net (WF-Net) consists of places (circles) representing business tasks and tran-
sitions (rectangles) connecting places representing a message exchange. Again, transitions are
labeled with s#r#msg representing sender s and recipient r of the message as well as its mes-
sage name msg. Messages may in addition contain parameters annotated in brackets. WF-Nets
contain a single final place represented by a circle with a solid line within the graph.

The execution of a workflow is realized by pushing tokens through the WF-Net, which are
depicted as a dot within a place. A transition is enabled if all input places of a transition contain
a token. If a transition is enabled, it may fire, which removes tokens from incoming places and
inserts new tokens to all outgoing places of the transition. The current distribution of tokens over
the places represents the state of the workflow and is called marking. The firing of a transition
can be further constrained by a logical formula on the parameters of the message, which is
annotated in square brackets.2

(a)
 (b)

V#C#delivery

C#V#ccPay

C#V#PO

C#V#invoicePay

V#C#delivery

C#V#ccPay

C#V#PO

C#V#invoicePay

V#C#noStock

V#C#delivery

C#V#ccPay

C#V#PO

V#C#delivery

C#V#ccPay

C#V#PO

C#V#invoicePay

V#C#noStock

V#C#noStock

Figure 2.3: (a) Vendor and Customer WF-Net from Figure 2.2(a) and (b). (b) Vendor and Cus-
tomer WF-Net from Figure 2.2(a) and (c).

Bilateral consistency or the interorganizational soundness of two WF-Nets is decided on be-
half of a WF-Net constructed by combining the two WF-Nets. In particular, two transitions
with the same message and a matching sender and recipient pair are related via an asynchronous

2This extension of the WF-Net model by parameters and constraints is also known as color extension (see e.g.
[Jen92]) and is not contained in the original WF-Net definition.

2.3 Multi-lateral Consistency 11

channel. Each channel is represented by an additional place connected by an incoming arc with
the "sending" transition of a message and an outgoing arc to the "receiving" transition. A token
located in a newly introduced place can be interpreted as a message contained in the channel
waiting for being received by the corresponding party. Finally, new initial and final places are
connected by new transitions tstart and t f inal to the local initial and final places. The constructed
interorganizational WF-Net representing the interaction of the vendor message sequences and
the customer message sequences contained in Figure 2.2(a)+(c) and (a)+(b) respectively are
shown in Figure 2.3(a) and (b).

Such a bilateral workflow can be analyzed for bilateral consistency by constructing a so called
occurrence graph. The vertices of the occurrence graph represent all possible markings of a WF-
Net, and the directed edges represent the transitions leading from one marking to the next. The
WF-Net is consistent, if all vertices in its occurrence graph have either at least one outgoing tran-
sition or are a final marking [Aal99]. On this basis, it can be shown that the bilateral workflow
depicted in Figure 2.2(a) is not consistent, since the vendor sending a V#C#noStock message will
never be removed from the channel place. However, the bilateral workflow depicted in Figure
2.2(a) is consistent, that is, is deadlock free. Based on this interpretation, all messages sent by
a party are considered to be mandatory, that is, they cause inconsistency if not supported by the
corresponding party, while messages received by a party are considered to be optional since the
lack of a corresponding sending transition does not cause inconsistency.

2.3 Multi-lateral Consistency

Consistency of multi-lateral collaborations requires the underlying bilateral collaborations to be
consistent, that is, fulfilling the requirements stated in Section 2.1.2. A well established approach
for bilateral consistency has been introduced in the previous section, which can be extended to
the multi-lateral case as explained with an example in the following sections.

2.3.1 Example

The example scenario used for further discussion is a simple procurement workflow within a
virtual enterprise incorporating a buyer, an accounting department, and a logistics department.

The accounting department checks orders (order message) of buyers and forwards them to the
logistics department (deliver message) to deliver the requested goods. The logistics department
confirms the receipt (deliver_conf message), which is forwarded by the accounting department
to the buyer (delivery message). Further, the buyer may perform parcel tracking (get_status and
status messages) as sometimes offered by logistics companies, where in some cases an additional
authentication (auth message) is required prior to parcel tracking. The overall scenario is shown
in Figure 2.4 representing the global relationships, but not the local workflows of the parties
involved.

12 Chapter 2. Requirements and Overall Approach

logistics

department

accounting

department

deliver_conf

deliver

o
r
d
e
r

d
e

l
i
v

e
r

y

buyer

get_status

status

auth

Figure 2.4: Global Procurement Scenario

The local workflows of the parties involved are shown in Figure 2.5 forming the global work-
flow described above and being consistent. The process is started by the buyer B sending a
B#A#order message to the accounting department A with the parameters item number it, price p,
and amount a, which is restricted to being below 100. The accounting department A informs the
logistics department L via a A#L#deliver message to deliver the ordered goods without forward-
ing the price parameter p of the order. The logistics department L accepts this request from the
accounting department A if the amount a is below 100, and confirms it with a L#A#deliver_conf
message providing an additional tracking number (tn parameter). The accounting department A
forwards the delivery details of the order (A#B#delivery message) to the buyer B. Afterwards, the
buyer B can track parcels directly with the logistics department L by sending a B#L#get_status
message containing a tracking number parameter tn answered by a L#B#status message with
an additional status parameter st. While the buyer B must have sent the A#B#delivery message
before tracking parcels the logistics department L allows parcel tracking at any time after receiv-
ing an authentication message from the accounting department A (A#L#auth message). Finally,
the buyer B terminates the buyer and logistics department process by sending a B#L#terminate
message.

2.3.2 Centralized Collaboration Establishment

The global workflow for these local workflows can be constructed as described in Section 2.2
in accordance to [Aal99] by forming an interorganizational WF-Net now based on more than

2.3 Multi-lateral Consistency 13

logistic (L)

buyer (B)

B#A#order(it, p, a)

[a <100]

B#L#get_status(tn)

L#B#status(tn, st)

A#L#deliver (it, a)

[a <100]
 L#A#deliver_conf (it, a, tn)

A#B#delivery(it, p, a, tn)

B#L#get_status(tn)

L#B#status(tn, st)

B#L#get_status(tn)

B#L#terminate

L#B#status(tn, st)

B#L#terminate

A#L#deliver (it, a)

L#A#deliver_conf (it, a, tn)

accounting (A)

A#B#delivery(it, p, a, tn)

B#A#order(it, p, a)

A#L#auth

Figure 2.5: Local WF-Net Models

two workflows being involved. Applying this approach to the example workflow in Figure 2.5
leads to the global workflow in Figure 2.6. Note that one parcel tracking option of the logistics
department has been discarded because no corresponding sender transition labeled A#L#auth
exists at the accounting workflow, thus it is never used.

Such a global workflow can be analyzed for consistency based on the occurrence graph again
and it can be shown that this global workflow is consistent, that is, fulfills all local constraints on
parameters and is deadlock free. However, the decision on the consistency of the multi-lateral
collaboration is centralized based on the constructed global workflow. As a consequence, at least
one party needs to know the local workflows of all parties involved.

14 Chapter 2. Requirements and Overall Approach

A#L#deliver(it,a)

[a<100]

L#A#deliver_conf(it,a,tn)

A#B#delivery(it,p,a,tn)
B#A#order(it,p,a)

B#L#terminate

B#L#get_status(tn)
 L#B#status(tn,st)

B#L#terminate

t
start
 t
final

B#L#get_status(tn)
 L#B#status(tn,st)
A#B#delivery(it,p,a,tn)
B#A#order(it,p,a)

[a<100]

L#A#deliver_conf(it,a,tn)

A#L#deliver(it,a)

logistic (L)

buyer (B)

accounting (A)

Figure 2.6: Global WF-Net Model

2.3.3 Decentralized Collaboration Establishment

In contrast to the centralized consistency checking based on a global workflow,decentralized
consistency checking must be entirely based on each party’s local knowledge: its own local
workflow and the bilateral communication of the party with its partners. For example the buyer
should only need to know about their own local workflow and individual interaction with lo-
gistics and accounting departments, but not about the entire local workflows of logistics and
accounting departments and not about their possible interaction.

As a consequence, bilateral WF-Nets extend the local workflow by the relevant parts of a trad-
ing party’s local workflow, which can be derived by neglecting those parts of the trading party’s
workflow not being part of this particular bilateral interaction. In particular, those transitions are
omitted, which doe not represent a message exchange with the trading partner. A transition is
omitted by relabeling with a silent message τ subscribed by an index to differentiate different
τs, that is the WF-Net equivalent to ε-transitions in finite state automata. Thus, a silent message
represents an internal state change not resulting in a message exchange between the trading part-
ners. In [Aal02, Aal00, BA99] such a definition on WF-Nets is provided known as abstraction.
Applying this abstraction definition to a trading partner interaction results in the party’s view on
a trading partner’s local workflow. Combining this view and the party’s local workflow results
in a bilateral WF-Net, which is used by the party to decide consistency of the global workflow in
a decentralized way. Figure 2.7 depicts an example bilateral WF-Net of accounting department
and buyer.

Unfortunately, this intuitive approach does not work due to the information loss introduced
by the abstraction. In the following, two scenarios are described illustrating two categories of

2.3 Multi-lateral Consistency 15

B#A#order(it, a, p)

[a<100]

B#A#order(it, p, a)

t
init
 t
final

accounting (A)

buyer (B)

6
 7

8

A#B#delivery(it, p, a, tn)

A#B#delivery(it, p, a, tn)

Figure 2.7: Bilateral WF-Net of Buyer and Accounting Department

information loss during abstraction, which need to be considered for deciding consistency of
multi-lateral collaborations in a decentralized fashion.

2.3.4 Occurrence Graph Constraints

The bilateral WF-Net of logistics department and buyer results in a deadlock, although the ex-
ample global workflow is consistent. Figure 2.8 depicts the bilateral WF-Net, where the logistics
department workflow (grey box) interacts with the view of the buyer workflow (above the grey
box)3.

2

B#L#get_status(tn)
 L#B#status(tn,st)

B#L#terminate

B#L#get_status(tn)
 L#B#status(tn,st)

B#L#terminate

1

B#L#get_status(tn)
 L#B#status(tn,st)

t
start

t

final

14

11
 12

Figure 2.8: Bilateral WF-Net of Logistics Department and Buyer

3The bilateral WF-Net is constructed from the local workflows depicted in Figure 2.5.

16 Chapter 2. Requirements and Overall Approach

The bilateral WF-Net can result in the following execution sequence: B#L#get_status L#B#status
This sequence results in a marking where no other transition is enabled and the final place is not
marked and thus is deadlocked. The detected deadlock in the bilateral WF-Net indicates the
virtual global workflow as not consistent, although it is consistent.

The reason for the detected deadlock is the loss of information introduced by the abstraction
of the buyer workflow. In particular, the local workflow of the accounting department ensures
that the transition τ14 (representing the A#L#auth message) preceding the B#L#get_status mes-
sage is never sent, thus, the occurrence graph of the logistics department does not contain the
branch causing the deadlock in the bilateral WF-Net of logistics department and buyer. As a
consequence the occurrence graph of a party is transitive to all occurrence graphs of bilateral
interactions.

2.3.5 Parameter Constraints

Another type of information loss is related to parameter values within messages, which are
constrained by conditions assigned to transitions. This case can be observed in the bilateral WF-
Net of the logistics and accounting department in Figure 2.9, where the logistics department
workflow (grey box) is combined with the view of the accounting department workflow (below
the grey box)4.

L#A#deliver_conf(it,a,tn)

A#L#deliver(it,a)

[a<100]
t
start

t

final

A#L#auth

L#A#deliver_conf(it,a,tn)
A#L#deliver(it,a)

15
 16

14

5

3

4

Figure 2.9: Bilateral WF-Net of Logistics and Accounting Department

The bilateral WF-Net is not consistent, because all message sequences starting with a A#L#deliver(it,a)
message, where the amount a is greater than 100 result in a deadlock like, e.g., A#L#deliver(120).
The deadlock is due to the limitation of the logistics department workflow to accept order
amounts below 100 only. Again, the deadlock in the constructed workflow indicates that the
virtual global workflow may not be consistent, although this is not the case.

4The bilateral WF-Net is constructed from the local workflows depicted in Figure 2.5.

2.4 Decentralized Consistency Checking Approach 17

Similarly to the previous case, the inherent parameter value constraint of the buyer work-
flow, which has been omitted by the abstraction, causes this deadlock on the bilateral WF-Net.
The observation here is that again neglecting these constraints results in irrelevant options not
applicable to the global workflow, but causing a deadlock in the bilateral WF-Net.

2.3.6 Requirements

The approach used in the previous subsections does not guarantees that only consistent global
workflows will be accepted. Thus, the requirement is to derive a decentralized approach for
deciding consistency of a multi-lateral collaboration, which considers exactly those multi-lateral
collaborations to be consistent, which are consistent based on the centralized approach. In the
previous example it was shown that the decision whether the three local workflows guarantee
successful business interaction cannot be made correctly using only bilateral WF-Nets for the
following reasons:

• The parameter value constraint of the B#A#order and the A#L#deliver message fit each
other, because it is guaranteed by the local workflows that the accounting will never be
able to send an order with an amount higher than 100. This transitivity of parameter
constraints can not be derived by bilateral WF-Nets.

• The occurrence graph constraint that the B#L#get_status message will never be received
before the L#A#deliver_conf message has been sent by the logistics department is guar-
anteed by the local workflows. This transitivity of occurrence graphs cannot be derived
by bilateral WF-Nets.

Based on these requirements, a valid approach for decentralized decision making on consis-
tent multi-lateral collaborations should extend the above outlined approach by propagating the
constraints to enable their local usage. In particular, the transitivity property of these constraints
needs to be exploited.

2.4 Decentralized Consistency Checking Approach

A Workflow Net (WF-Net) as introduced in Section 2.2 provides a definition of interorganiza-
tional soundness, which fulfills the bilateral consistency definition discussed in Section 2.1. Due
to the loss of information, decentralized consistency checking requires use of transitivity prop-
erties on parameter and occurrence graph constraints, where an occurrence graph represents all
possible markings derivable from a WF-Net (see Section 2.2).

Deciding consistency of a multi-lateral collaboration in a decentralized way proceeds in four
steps:

1. Resolving Cycles:
Local workflow models of the parties are made acyclic by representing cycles as iterations
of at most N steps.

18 Chapter 2. Requirements and Overall Approach

2. Propagation:
Parameter constraints and occurrence graph constraints on previous transitions are made
available to all parties involved in the multi-lateral collaboration. This comprises:

a) Propagation of parameter constraints within the local workflows, as well as between
the bilateral interactions until a fixed point has been reached.

b) Propagation of occurrence graph constraints within the local workflows, as well as
between the bilateral interactions until a fixed point has been reached.

3. Decentralized Consistency Checking:
Each party checks consistency of its bilateral interactions and the local workflow. If they
are all consistent, then the party considers the multi-lateral collaboration to be consistent
until any other party proves this decision wrong by considering the multi-lateral collabo-
ration to be inconsistent.

4. Consensus Making
A protocol is required to decentrally check whether all parties consider their bilateral
interactions and local workflows as consistent, and to inform all parties about the final
consensus. This kind of problem is known in distributed systems as a consensus making
problem [Lyn96].

A decentralized decision requires use of the transitivity properties of parameter and occur-
rence graph constraints, which requires the underlying workflow model to support parameter
constraint transitivity. Since cyclic graph structures are not transitive, workflow models used
have to be acyclic. As a consequence, cycles have to be resolved in step 1. With regard to
the example, this affects the buyer and the logistics department WF-Nets representing the local
workflow respectively.

Step 2 is required because the bilateral WF-Nets hide all parameter and occurrence graph
constraints that are not immediately seen by the two involved parties. Without propagating this
information two of the bilateral WF-Nets in the example would be inconsistent:

As discussed in Section 2.3.5 the bilateral WF-Net for the logistics and accounting department
(Figure 2.9) is inconsistent, because a message A#L#deliver(it,a) with an amount a greater than
100 violates the constraint of the "receiving" transition A#L#deliver. However, the guarantee of
this constraint is only provided by the bilateral WF-Net for accounting department and buyer,
which is not seen by the bilateral WF-Net for logistics department and buyer.

The bilateral WF-Net for buyer and logistics department (Figure 2.8) is inconsistent (see also
Section 2.3.4), because the sequence B#L#get_status - L#B#status results in a deadlock. The two
"receiving" transitions B#L#get_status(1,2) are both enabled after the corresponding "sending"
transition in the buyer’s workflow has been fired. Since the selection of the enabled transition is
non-deterministic, both options must be considered for consistency checking. Taking transition
(1) for direct parcel tracking leads to a deadlock since the B#L#terminate transition cannot be
fired afterwards, thus, the final place cannot be reached. Thus, the WF-Net is considered to

2.4 Decentralized Consistency Checking Approach 19

be inconsistent although it is guaranteed by the accounting workflow that the transition (1) that
causes the deadlock will never be fired, because no transition A#L#auth will be sent.

Since the global WF-Net is consistent, the decentralized consistency checking without propa-
gation of constraints derives wrong results. Next, the resolution of cycles is introduced followed
by a description of constraint propagation, and a brief discussion of consensus making.

2.4.1 Resolving Cycles

The approach does not support cyclic local workflows, because parameter constraints of a par-
ticular transition may vary within different steps of a cycle, thus, each step has to be represented
explicitly. In the following an approach is described where cyclic workflows are transformed
into different non-cyclic workflows. Cycles may be loops as contained in the buyer and logis-
tics department workflows depicted in Figure 2.5 or recursions. Next, loops are discussed in
detail, while the approach can similarly be applied to recursions. A loop can be transformed by
simulating it as a sequence of at most N repetitions of a loop step:

• The transitions forming the loop are replaced by two subsequent silent transitions labeled
τloop(1) and τloop′(N + 1), where the first transition initiates the loop and the second one
represents the end of the loop.

• Transitions in a loop step are encapsulated by silent transitions τloop′(i) and τloop(i + 1)
representing the start and end of the i-th step of the loop. To execute the loop not all N
steps have to be performed, thus an additional silent transition τ is added to shortcut a
single step.

• Parameters of transitions within a loop step i are made unique by adding the suffix i to
each parameter.

• The output places of transition τloop(i) and the input places of transition τloop′(i) share a
single state.

Applying this transformation to the buyer workflow results in the acyclic WF-Net in Figure
2.10. All steps of the parcel tracking loop are represented by equivalent WF-Subnets except for
the varying parameter indicating the number of the step. To reduce the complexity of this WF-
Net a shorthand notation of the repetition is introduced, where only a single step is contained
and the maximum number of iterations N is annotated (Figure 2.11). Obviously, the transformed
representation is different from the original local workflow. However, in literature it has been
accepted that research can focus on non-cyclic workflows, because in real business applications
the number of repetitions a party is accepting is usually constrained anyway and non party will
accept infinite loops.

20 Chapter 2. Requirements and Overall Approach

B#A#order(it, p, a)

[a <100]

A#B#delivery(it, p, a, tn)

B#L#terminate

B#L#get_status(tn
1
)

L#B#status(tn
1
, st
1
)

loop
(1)

loop’
(1)

loop
(2)

B#L#get_status(tn
i
)

L#B#status(tn
i
, st
i
)
loop’
(i)

loop
(i+1)

B#L#get_status(tn
N
)

L#B#status(tn
N
, st
N
)
loop’
(N)

loop
(N+1)

.
.
.

.
.
.

loop’
(N+1)

Figure 2.10: Acyclic Buyer WF-Net

B#A#order(it, p, a)

[a <100]

A#B#delivery(it, p, a, tn)

B#L#terminate

B#L#get_status(tn
i
)

L#B#status(tn
i
, st
i
)

loop
(1)

loop’
(i)

loop
(i+1)

N:

loop’
(N+1)

Figure 2.11: Shorthand Notation of the Acyclic Buyer WF-Net (see Figure 2.10)

The loop in the logistics department workflow can be simulated in a similar way. Based on
the constructed acyclic local workflows of the buyer and the logistics department the bilateral
WF-Net depicted in Figure 2.12 can be constructed.

2.4 Decentralized Consistency Checking Approach 21

logistic (L)

buyer (B)

1

L#B#status(tn, st)
B#L#get_status(tn)

B#L#terminate

t
init

t
final

2

B#L#get_status(tn
i
)

L#B#status(tn
i
, st
i
)

loop’
(i)
 loop
(i+1)

N:

loop
(1)

B#L#terminate

B#L#get_status(tn
i
)

L#B#status(tn
i
,st
i
)

loop’
(i)
 loop
(i+1)

N:

loop
(1)

loop’
(N+1)

9
 10

11
 12

loop’
(N+1)

14

Figure 2.12: Shorthand Notation of the Bilateral WF-Net for Buyer and Logistics Department

2.4.2 Propagation of Parameter Constraints

The goal of parameter constraint propagation is to make sure that all parameter constraints can
be met, even though they may not immediately be visible in a bilateral WF-Net. The parame-
ters of transitions are assumed to be immutable, that is, after they have been set initially they
cannot be changed. As a consequence, a parameter constraint holds for all transitions follow-
ing the transition for which it has been specified. On these grounds parameter constraints can
be propagated to all following transitions within a workflow as well as to the workflow of the
partner.

The result of propagating the constraint on amount a annotated to the transition labeled
B#A#order(it,p,a) within the bilateral WF-Net for buyer and accounting department (Figure 2.7)
is depicted in Figure 2.13. The result of propagating this constraint to the accounting department
local workflow (Figure 2.5) is depicted in Figure 2.14. By further propagation the constraint on
the bilateral WF-Net for logistics and accounting department (Figure 2.9) results in Figure 2.15.

Due to the propagation of the parameter constraints the deadlock discussed in Section 2.4 can
no longer occur. As a consequence the bilateral WF-Net is consistent.

22 Chapter 2. Requirements and Overall Approach

B#A#order(it, a, p)

[a<100]

B#A#order(it, p, a)

[a<100]

t
init
 t
final

accounting (A)

buyer (B)

A#B#delivery(it, p, a, tn)

[a<100]

A#B#delivery(it, p, a, tn)

[a<100]

11

3

12

4

13
8

6
 7

Figure 2.13: Extended Bilateral WF-Net Model for Buyer and Accounting Department

A#L#deliver (it, a)

[a<100]

L#A#deliver_conf (it, a, tn)

[a<100]

A#B#delivery(it, p, a, tn)

[a<100]

B#A#order(it, p, a)

[a<100]

Figure 2.14: Extended Accounting Department WF-Net

L#A#deliver_conf(it, a, tn)

[a<100]

A#L#deliver(it,a)

[a<100]

A#L#deliver(it,a)

[a<100]

t
start
 t
final

L#A#deliver_conf(it, a, tn)

[a<100]

logistic (L)

accounting (A)

3

[a<100]

5

4

[a<100]

9
 10

6
 7

Figure 2.15: Extended Bilateral WF-Net Model for Logistics and Accounting Department

2.4.3 Propagation of Occurrence Graph Constraints

The goal of propagating occurrence graph constraints is to discard all those transitions which
cause a deadlock in a bilateral WF-Net but will never fire due to constraints imposed by the
invisible part of the global workflow. An example for such a transition is the B#L#get_status
transition (1) in the bilateral WF-Net between logistics department and buyer in Figure 2.12.

2.4 Decentralized Consistency Checking Approach 23

When the global workflow is known, such spurious transitions can be discarded by analyzing
the occurrence graph of the global WF-Net. A transition can be discarded, if it does not occur in
the occurrence graph.

In the following it is described how the occurrence graph can be constructed only on the basis
of the bilateral workflows without explicating the entire global workflow. The approach consists
of two steps. In the first step for each bilateral WF-Net occurrence graphs are constructed and
used to discard spurious transitions. In the second step these transitions are also discarded in
the other bilateral WF-Nets. As a consequence, the occurrence graph constraints of one bilateral
WF-Net are propagated to the other bilateral WF-Nets. These two steps are repeated until a fixed
point is reached, that is, no further transition can be discarded.

logistic (L)

buyer (B)

1

L#B#status(tn, st)
B#L#get_status(tn)

B#L#terminate

t
init

t
final

2

B#L#get_status(tn
i
)

L#B#status(tn
i
, st
i
)

loop’
(i)
 loop
(i+1)

N:

loop
(1)

B#L#terminate

B#L#get_status(tn
i
)

L#B#status(tn
i
,st
i
)

loop’
(i)
 loop
(i+1)

N:

loop
(1)

loop’
(N+1)

9
 10

11
 12

loop’
(N+1)

Figure 2.16: Shorthand Notion of the Bilateral WF-Net for Buyer and Logistics Department after
Discarding Transition A#L#auth

In the example, the "receiving" transition A#L#auth within the bilateral WF-Net for account-
ing and logistics department (Figure 2.9) does not appear in the occurrence graph, since the
corresponding "sending" transition does not exist. Thus, the transition can be discarded (Figure
2.15). Further, the same transition occurring in the bilateral WF-Net for logistics department
and buyer (Figure 2.12) labeled τ14 can also be discarded resulting in Figure 2.16. Next, the
occurrence graphs of the modified bilateral WF-Nets involving logistics department have to be
recalculated. Analyzing the occurrence graph of the modified bilateral WF-Net between buyer

24 Chapter 2. Requirements and Overall Approach

and logistics department reveals that the transition B#L#get_status (1) and the subsequent tran-
sition L#B#status of the logistics department local workflow will never be fired, thus it can be
discarded resulting in the final bilateral WF-Net for buyer and logistics department shown in
Figure 2.17. The resulting bilateral WF-Nets (Figures 2.13, 2.15, and 2.17) represent a fixed
point.

The removal of the A#L#auth transition of the bilateral WF-Net for logistics and accounting
department has been propagated to the bilateral WF-Net for logistics department and buyer by
removing the corresponding transition labeled τ14. Due to the propagation of the occurrence
graph constraints the deadlock discussed in Section 2.4 can no longer occur. As a consequence
the bilateral WF-Net is consistent.

logistic (L)

buyer (B)

B#L#terminate

t
init

t
final

2

L#B#status(tn
i
, st
i
)

loop’
(i)
 loop
(i+1)

N:

loop
(1)
 loop’
(N)

B#L#terminate

B#L#get_status(tn)

L#B#status(tn,st)

loop’
(i)
 loop
(i+1)

N:

loop
(1)

loop’
(N)
11
 12

B#L#get_status(tn
i
)

9
 10

Figure 2.17: Extended Bilateral WF-Net for Buyer and Logistics Department

2.4.4 Consensus Making

Consensus making aims to make an agreement between a set of parties having reached a fixed
point with regard to parameter and occurrence graph constraint propagation, and forming a
multi-lateral collaboration. Since no party knows all parties involved in the collaboration none
can act as a coordinator of the collaboration. In particular, the following tasks must be per-
formed:

• collect the local consistency decision of each party,

2.5 Summary 25

• check whether all parties consider the collaboration to be consistent, and finally

• inform all parties being involved of the final decision.

This generic consensus making problem is addressed by the distributed systems and algo-
rithms community (see for example [Lyn96]). However, due to the fact that a fixed point on
constraint propagation of constraints is required anyway, the aim is to define multi-lateral con-
sistency as a kind of propagation to overcome the consensus making problem. The underlying
idea is to reflect mandatory and optional messages as structural workflow model aspects effect-
ing the occurrence graph, thus, being propagated via the corresponding propagation mechanism
as discussed above. However, the modification of the occurrence graph with respect to manda-
tory and optional messages has to be performed via an explicit operation. As a consequence,
a fixed point can be reached, where either none or all local workflows of the collaboration are
consistent.

2.5 Summary

In this chapter example scenarios have been used to discuss issues observed during decentral-
ized collaboration establishment. As a basis for multi-lateral consistency, bilateral consistency
checking relies on a comparison of message sequences under the assumption of structural sub-
sumption and semantic equivalence of equally named messages. Further, bilateral consistency
checking must differentiate between mandatory and optional messages, that is, all messages sent
by a party must be supported by a recipient party and thus are called mandatory messages, while
messages received by a party are called optional messages, because they are not necessarily sent
by another party. An approach based on Workflow Nets (WF-Nets) has been outlined realizing
the bilateral consistency for asynchronous communication.

Deciding multi-lateral consistency based on bilateral consistency decisions turned out to be
incorrect, because of information loss introduced by having only a partial view on the multi-
lateral collaboration. Especially, information loss has been observed for message parameter
constraints, that is, parameter values are considered which have been excluded by other parts of
the global workflow already, and occurrence graph constraints, that is, message sequences are
considered although the execution of a message contained in this message sequence has been
excluded already by another part of the global workflow. Again, an approach based on WF-Nets
has been outlined, which provides the same notion of consistency as provided by the centralized
approach. The formal specification and discussion of the equivalence relation follows in the next
sections.

26 Chapter 2. Requirements and Overall Approach

3 Related Work

Based on the requirements derived and the approach outlined in the previous chapter the state
of the art is discussed starting with local consistency of workflow modeling. In accordance to
[GHS95] workflow models are differentiated by task based and communication based models. In
addition to scientific workflow models, several industrial standards have emerged on the Internet
providing specific use cases being an alternative to flexible distributed workflows. Starting with
local consistency, a discussion of bilateral consistency and multi-lateral collaborations follows.

3.1 Task Based Workflow Model

A task based workflow model consists of tasks as basic building blocks representing basic units
of work, which can exemplary be performed by humans, agents, computers, or sensors. A task
might be called primitive, that is, can be performed in a single step, or complex, that is, can
be decomposed into simpler tasks [Mar02]. In particular, the critical principle in the study of
workflow has been identified by Winograd and Flores [WF86] as coordination in general within
organizations. Malone and Crowston [MC94] defined "coordination as managing dependencies
between tasks" and examined all sorts of scientific domains like social, psychological, econom-
ical and computer science to identify relevant tasks and their dependencies.

In case of a direct, automated coordination of tasks exemplary workflow models are Fi-
nite State Automata (FSA) [HMU01], Place/Transition Nets (P/T-Nets) [Pet62, Pet81, Gen87],
Coloured Place/Transition Nets (CP/T-Nets) [Jen92], Workflow Nets (WF-Nets) [AH02], mes-
sage sequence charts [Uni99], statecharts [Har87, HN96], or flowcharts [GAHL00, KWA99].
However, these models mainly represent a single workflow model processed at a single party,
while the coordination of tasks within a multi-lateral collaboration, which can also be de-
scribed as a distributed workflow model involving several parties requires additional commu-
nication [PL01]. Besides generic event based publish/subscribe protocols like for example de-
ployed in [CD01, EP99] or Internet communication protocols like for example Web Services 1,
specialized communication methods for coordinating workflow systems have been proposed
[HPS+00]. The Workflow Management Coalition [WfM04b] provides a Workflow Interop-
erability Interface within their reference workflow model [Fis04, WfM04a] supporting direct
interaction of workflow systems based on Wf-XML [Coa01]), while the OMG Workflow Man-
agement Facility [OMG04] proposed jointFlow [OMG97]. Independent of the used protocols,
different kinds of coordination can be implemented [Coa99] such as subsequent execution of

1See also Section 3.3.

28 Chapter 3. Related Work

partial processes, nested processes, loosely coupled processes, or processes coordinated by a
centralized workflow system as discussed in Section 3.5. In particular, the interface provides the
mechanism to exchange data between workflow systems, while the realization and coordination
of the different kinds of processes is not addressed.

As opposed to approaches based on message exchanges there exist approaches based on
shared data spaces. A specific data oriented approach to coordination, which is based on a
general indirect, anonymous, undirected and asynchronous communication model, provides op-
erations to insert, read and withdrawn data from a shared multi-set. The so called tuple space
is the basis for coordination languages like for example Linda [Gel85] describing coordination
models by rules specified on a tuple space. Different extensions of the tuple space exist, like
for example allowing several potentially distributed tuple spaces (PeerSpace [BMMZ03]), or
supporting structured data (XMLSpaces [TG01, XML04]).

Coordination theory has been applied on different layers of a generic communication stack:
protocol layer (e.g. especially considering multi-cast [DGLA00]), the message layer (e.g. dis-
cussing different exchange patterns [SSOH95]), and the application layer. Further, these meth-
ods have been applied in different application domains like Computer Supported Cooperative
Work (CSCW) for coordinating objects shared by users [SS96], agent systems (e.g. [PSG02])
realized by coordinating documents containing data, representation, and modeling of behavior
[CTZ02], and workflow coordination [Tol00a].

The workflow coordination is data-driven in contrast to control-driven task based workflow
models [Tol00a]. The WorkSpace approach proposed by Tolksdorf [Tol00b] is based on a no-
tion of steps representing a transformation of one or several documents. There exist automatic
steps doing direct data manipulation, external steps invoking external functionality, user steps
enabling direct user interaction, coordination steps like JOIN and SPLIT known from workflow
modeling, and meta steps modifying the workflow structure itself. Another similar approach
addressing workflow coordination is [Ban96]. However, the shared data space always are based
on a centralized component maintaining the shared data. Hence, such a component does not
exist in a multi-lateral collaboration, thus, these approaches are not applicable. Although for
the different workflow models a definition of local consistency of a single workflow based on a
notion of execution sequences can be provided.

3.2 Communication Based Workflow Model

A communication based workflow model provides a description of the effects of receiving mes-
sages on an internal state as well as the potential ordering of messages exchanged with commu-
nication partners. The theoretical foundation of these approaches is Speech Act Theory (SAT)
[Aus65, BH79], which characterizes the communication between parties by means of the inten-
tion of the speaker, the effect on the listener, and the physical manifestations of an utterance
[Mar02]. One application domain of SAT is a theoretical modeling of interaction between ma-
chines, which is also known as agent communication languages (ACL) [FIP04]. In ACL an

3.3 Web based Electronic Data Interchange 29

internal context/ state of a party is maintained locally, that is, in a decentralized fashion. The
Knowledge Query and Manipulation Language (KQML) [FFMM94] has been one approach
addressing ACL [FLM97]. KQML is data centric representing states in terms of data values,
while state changes are represented by performatives, that is, actions on content exchanged via
a message being constraint by pre-conditions. This approach has been applied to an office com-
munication environment resulting in a language called "Formal Language for Business Com-
munication" (FLBC) [KM97, KH95, Moo00, WvdH98, Kim98]. In particular, the approach is
based on flexible bilateral interactions causing a single party to deal with a high amount of po-
tential message sequences causing high control flow complexity. Based on FLBC Hasselbring
and Weigand proposed a business communication language XLBC [HW01, WH01], which ex-
tends FLBC by introducing ontologies and a notion of aggregated communication patterns being
a hierarchy extension.

An alternative approach represents the semantics of ACL by a logical model, which extends
standard predicate logic with concepts to capture dynamics of processes (dynamic logic), modal-
ities, like for example obligation (deontic logic) [MWD98, LF94], and intention (illocutionary
logic) [WVD96]. Dynamic deontic logic [DW95, Mey88, MWD98] is such a model represent-
ing illocutionary acts. In this approach a transition named action represents a change from one
propositional world to another. In addition, deontic operations express permission, prohibition,
and obligation of actions, that is, corresponding transitions. In particular, dynamic deontic logic
has been applied on modeling integrity constraints in business processes [WMW89] as well as
representing temporal constraints [DWV96].

Another logic based approach is Courteous Logic Programs [GLC+95] being a non-monotonic
logic, that is, allowing changes of predicate truth assignments. An implementation of this con-
cept is the Business Rules Markup Language (BRML) [GLC99, GL00, com04, BRM04]. Alter-
natively, also linear logic has been used for modeling workflows [Sin03] providing a distributed
enactment.

All these different approaches focus on particular properties of workflow modeling like com-
munication aspects, deontic aspects, or logical and time constraints. However, all these ap-
proaches can be used to represent local workflows and a definition and an evaluation of local
consistency based on message sequences can be realized. Further, consistency of multi-lateral
collaborations can be decided if all local specifications are merged, while a decentralized notion
of consistency has not been presented so far.

3.3 Web based Electronic Data Interchange

Contrary to the before mentioned generic workflow models Web based Electronic Data Inter-
change (EDI) standards exist, which focus on a specific domain and specify quite detailed the
involved parties as well as the particular local workflows forming the multi-lateral collaboration.
Examples are

• the Micropayment Markup language [Mic99, HY97], which specifies a pay-per-view busi-

30 Chapter 3. Related Work

ness model including micropayments to access digital content via the Internet

• the Information and Content Exchange (ICE) Protocol [WOH+98, ICE04], which allows
the distribution of digital content on a publish-subscribe pattern

• the Netbill [Tyg98, CTS95] protocol, which supports fair delivery and payment of digital
information atomically. Similar protocols have been proposed supporting anonymity of
the payer [CHTY96] or providing an optimistic approach [ASW98] requiring a third-party
for conflict resolution.

• the Internet Open Trading Protocol (IOTP) [Bur00], which specifies a fixed set of business
cases based on a fixed role model of parties being involved.

All these approaches have in common that local workflows adhering to one of these specifica-
tions can interact with each other without any risk of inconsistency, thus, a successful execution
of the multi-lateral collaboration is guaranteed. Obviously, these protocols are specified by a
consortium and thus are established in a centralized way. Further, they do not provide much
flexibility on modeling workflows.

However, less restrictive Web based EDI standards evolved like for example ebXML [ebX04],
RosettaNet [Ros04], or the Open Travel Alliance (OTA) [OTA04], just to name a few. These
standards are based on predefined, semantically agreed, and static message structures as well
as basic building blocks (sub-processes) for constructing application and domain specific local
workflows. Dependent on the standard or the used communication paradigm, concrete language
proposals exists for constructing local workflows, which are mainly based on the formal work-
flow models introduced above. Examples are the process specification language BPSS [Tea01]
within the ebXML framework or the Business Process Execution Language for Web Services
(BPEL) [ACD+03] related to Web Services Infrastructure. Unfortunately, these languages are
not necessarrily based on a formal model [Aal03], although mappings from a subset of a lan-
guage to a formal model are provided as for example for a subset of BPEL to CP/T-Nets by Yi
and Kochut [YK04] or to Message Sequence Charts (MSC) [Uni99] by Foster et.al. [FUMK03].

Contrary to the initially presented Web based EDI standards, successful execution of a multi-
lateral collaboration can not be guaranteed, but has to be checked explicitly. However, the flexi-
bility in modeling workflows is much higher. Since the outlined approaches are strongly related
to classical workflow models as introduced in Section 3.1 the same holds for these standards:
Local consistency can be defined for a single workflow based on a notion of message sequences.
Further, consistency of a multi-lateral collaboration can be derived if a mapping of the multi-
lateral collaboration to a single workflow model can be provided as outlined in Section 2.3.2 for
Workflow-Nets. A decentralized approach for deciding consistency has not been addressed so
far.

The same applies to the generic workflow models introduced in the previous two sections.

3.4 Bilateral Consistency 31

3.4 Bilateral Consistency

An extension of local consistency to two parties being involved is bilateral consistency as dis-
cussed in Section 2.1. Bilateral consistency is an essential part of establishing a multi-lateral
collaboration, since it can be used for example to find potential trading partners to form a multi-
lateral collaboration, also known as service discovery.

An approach of bilateral consistency based on Workflow Nets for an asynchronous commu-
nication model has been outlined in Section 2.2. Similar approaches exist, like for example
by Molina-Jimenez et.al. [MJSSW03] where bilateral consistency is defined as intersection of
execution sequences in terms of Finite State Machines, that is, a kind of Place/Transition Nets
without support for parallel execution. Another similar approach has been proposed by Me-
cella et.al. [MPC01] also providing concrete algorithms. However, models supporting the syn-
chronous communication model like for example based on Finite State Automata do not provide
means to distinguish between mandatory and optional messages. In particular, it turned out, that
there exist no appropriate notion of bilateral consistency for the synchronous communication
model. However, in the next chapter such a model is introduced as an extension of Finite State
Automata.

In contrast to the theoretical workflow models a technology oriented proposal is for example
the matchmaking tool developed in the openXchange project [php04], which matches two col-
laboration protocol profiles belonging to different business partners and creates an agreement
(collaboration protocol agreement) [FK03, Kru03] under the ebXML framework. However, this
approach does not distinguish between mandatory and optional messages and, thus, does not
meet the bilateral consistency requirements.

3.4.1 Web Services

In the following the discussion focuses on concrete Web Service related technologies. The W3C
Web Service architecture working group note [W3C04a] states service discovery as an essential
part of the architecture, which can be implemented as a registry like UDDI [IMH+02], an index
like Web Service Inspection Language (WSIL) [BBM+01], or a peer-to-peer system like Meteor-
S WSDI [VSS+04, ESAA04]. However, the underlying matchmaking approach is orthogonal
to the storage and query infrastructure, thus, the further discussion focuses on the matchmaking
itself.

Overhage and Thomas [OT02] propose a framework, named WS-specification, which catego-
rizes Web Services into white, yellow, blue, and green pages. The terms, white, yellow, blue, and
green pages are adopted from UDDI, but extended and sometimes redefined in WS-specification.
White pages for example contain information about general and technological (architecture spec-
ification, performance, security) information about services. Yellow pages contain classification
information (like in UDDI), blue pages contain conceptual information (process-related, seman-
tics), and green pages contain interface information. Among the observations made in [OT02] is
the deficiency of UDDI specification for not describing process-related information of services.

32 Chapter 3. Related Work

Process-related information is thus provided for in the blue pages of WS-specification. They
propose BPEL as a possible formal definition language for business process descriptions, but
they do not give any hint on how querying of Web Services based on process information can be
realized.

Alternatively, Ali et.al. [ARAAW03] proposed UDDIe as an extension to UDDI as an open
source implementation [udd03]. UDDIe extends UDDI in three main ways: (i) service leasing
support, (ii) introducing properties for describing services and the ability to search on these
properties and (iii) extending the UDDI find API with the ability to support numeric and logical
AND/OR operators. This extension provides a more expressive way to describe and query
services than originally provided by UDDI. Further, Field et.al. [FH03, FFH+03] extended the
classical UDDI search capabilities by allowing a scripting option to express the queries.However,
again the representation of workflows is not covered by these approaches.

A concrete consideration of workflow aspects has been addressed by different language pro-
posals like for example Web Service Conversation Language (WSCL) [BBB+02], Conversation
Policy XML (cpXML) [HNL02, Han], Web Service Choreography Interface (WSCI) [W3C02],
or Web Services Choreography Description Language (WS-CDL) [W3C04b]. However, these
different language proposals allow to specify bilateral collaborations syntactically, but they do
not provide an algorithm for the calculation of a bilateral collaboration on behalf of two local
workflows nor a consistency criterion.

3.4.2 Semantic Web

Semantic [BLHL01, MSZ01] approaches have also been applied on matchmaking based on local
workflows. In particular, OWL-S [Coa04] (formerly DAML-S [ABH+02]) provides a semantic
markup for Web Services. A Web Service is characterized by the following dimensions [Coa04]:

• What the service does: a description of the input and output of the service as well as its
preconditions and effects denoted in the service profile

• How the service works: a description of the composition of the service by other services
denoted in the service model

• How to access it: a specification of the communication protocols, message formats, and
other service specific details denoted in the service grounding

As a consequence, semantic matchmaking can be based on service profiles and service models.
Up to now, semantic service discovery focuses on the service profiles as for example done by
Srinivasan et.al. [SPS04, PKPS02] where an advertised service profile matches a requested ser-
vice profile, if "all outputs of the request are matched by the outputs of the advertisement, and all
inputs of the advertisement are matched by the inputs of the request." [PKPS02]. Since this ap-
proach extends a UDDI registry, again the application to P2P infrastructures has been proposed
as for example by Paolucci et.al. [PSNS03]. A detailed analysis of potential matchmaking def-
initions based on OWL-S is provided by Li and Horrocks in [LH03]. In particular, the different

3.5 Multi-lateral Collaboration Consistency 33

definitions represent kinds of similarities ranging from exact match, subsumption, and intersec-
tion up to disjointness, that is, no match at all. However, no matchmaking definition has been
applied to service models so far, which somehow needs exact match on control structures, while
less restrictive matches for the different tasks are required.

A much simpler semantic approach has been proposed by Bernstein et.al. [BK02, KB01]
being based on a process ontology, where each potential workflow model is represented by a
concept in the ontology. Thus, querying can be realized as a key word based search. The main
draw back of semantic annotation is the necessity of a common ontology used for annotating and
querying services. However, this kind of approach requires a very detailed and specific ontology
of processes to achieve the required precision, which makes the ontology quite complex and
potentially unusable.

Other kinds of logic based approaches addressing service discovery are Web Service Request
Language (WSRL) and Product Lifecycle Management PLM f low. WSRL [PAPY02, APY+02]
addresses planning of an orchestration and composition of services to fulfill user requirements.
While WSRL performs service discovery on behalf of temporal and linear constraints, PLM f low
[ZFCJ02] is based on rule inferencing using the specified business rules rather than a fixed
workflow. Thus, PLM f low is characterized as a rule-based non-deterministic workflow engine
aiming to establish cooperation based on local decidability of the trading partners involvement.
These approaches are based on the fact that local workflow models are provided to trading
partners without hiding business critical information, which makes the approach less applicable
to real world scenarios.

3.5 Multi-lateral Collaboration Consistency

A multi-lateral collaboration representing a distributed workflow, is based on communication
between several parties each providing its own local workflow. However, several interaction
structures of distributed workflows can be differentiated. In accordance to v.d.Aalst [Aal99] in
the further discussion capacity sharing, chained execution, subcontracting, and loosely coupled
interactions are distinguished. The additionally proposed case transfer interaction is neglected,
because it represents a kind of workload balancing rather than a distributed execution.

3.5.1 Capacity Sharing

Capacity sharing means the centralized coordination of a workflow, while the execution of tasks
is distributed.

One such approach is OSIRIS, which has been proposed by Schuler et.al.[SWSS04]. The
workflow management system requires a centralized deployment of the coordinating global
workflow, which is split into several distributed execution units each assigned an execution party
at run-time. The control of the workflow execution, however, is not done by a centralized work-
flow engine but by the local parties themselves. That is, after completion of an execution unit,

34 Chapter 3. Related Work

the local party derives another party to continue the execution and forwards the process state to
this party. The persistent maintenance of the state is based on a distributed higher order database
called hyperdatabase [SBG+00, SSSW02].

An agent based approach has been presented by Zeng et.al. [ZBNN01, ZNBO01], where
the different tasks are implemented by agents, supervised by monitor agents. The centralized
coordination has been slightly weakened to avoid single point of failure.

Due to the existence of a global workflow at initialization time of a workflow, consistency
can easily be checked in advance. Thus, there is no need and hence no solution to decentralized
establishment of consistent multi-lateral collaborations.

3.5.2 Chained Execution

Chained execution means the global workflow is split into several disjoint sub-processes which
are executed by different parties in a sequential order. One such approach is based on a container
including a specification of the global workflow and an assignment of a single sub-process for
each task of the global workflow. The approach called DigiBox [SBW95] proposed by Intertrust
[Int04] addresses the superdistribution [Cox96] of digital content. Since the application domain
of this proposal has been limited to trading digital goods, the supported workflow models are
focused on digital right management processes [GWW01].

A more flexible approach similar to the DigiBox approach is the XML contracting containers
introduced by Greunz et.al. [SGH00]. Their container maintains information flow representing
a workflow, legally relevant information, interface specification of the services to be incorpo-
rated, and security specifications. In addition, the container maintains the execution state of the
process, thus, the container is subsequently passed from one service to another each executing
the corresponding local workflow.

Since the different local workflows represent a chained execution, consistency is guaranteed
if and only if all local workflows are consistent. The first party of the chained execution can
be used as a coordinator for consistency checking in accordance to the linear 2-Phase-Commit
protocol [ÖV99]. Thus, no decentralized consistency checking is required.

3.5.3 Subcontracting

Subcontracting means that there exists a coordinator of a multi-lateral collaboration, who del-
egates execution and coordination of complex tasks to other parties. However, the execution
dependencies are hierarchical, thus, representing a tree rather than a graph. In particular, based
on a specification of the sub-process, potential partners have to be found, a particular one has to
be selected, and the execution/enactment can be started.

One example of such an architecture has been proposed by Merz et.al. [MGT+98], where
sub-processes are characterized by parameters and maintained in a hierarchical structure of spe-
cialization and generalization, called service types. Sub-processes can be combined by so called

3.5 Multi-lateral Collaboration Consistency 35

service type templates to model application specific composite services involving several ser-
vices. These templates are used for bilateral consistency checking to find service providers,
which finally can be executed.

Casati et.al. [CIJ+00b, CIJ+00a] proposed the eFlow approach as a very dynamic hierarchi-
cally organized composition of simple or composite services, thus, representing a nested work-
flow execution. Due to the late binding of a service to a concrete service instance either at
process initialization time or at process run-time the service instances need to be stateless to
guarantee successful business interactions.

In the CrossFlow project [GAHL00, Cro04] sub-processes are specified in terms of Quality
of Service, price of the service, other attributive constraints, and a set of tasks that can be out-
sourced. Thus, the matching of sub-processes drills down to matching of parameters and finding
adequate sub-processes on a level of tasks [KWA99]. Bilateral consistency of workflows requires
a complete match of the requested tasks that is known as the exact set cover problem [GJ79,
Bea87] meaning to find a set of sub-processes, where each task is assigned exactly one sub-
process. Due to the complexity of the service description, templates are used since application
specific workflows provide quite flexible interfaces to trading partners [HLGA01].

Georgakopoulos et.al. [GSCB99] used a notion of conversation, that is, explicating only ex-
changed coordination activities to potential trading partners rather than the complete local work-
flow. By hiding business critical information from trading partners this approach is applicable to
real world scenarios, although the loss of information may result in failing business transactions.
Another approach to derive a conversation has been proposed by Martens [Mar04], where the
original workflow model is Coloured Place/Transition Nets.

Due to the tree-based dependency structure of a collaboration, consistency can be guaranteed
if and only if all local workflows are consistent. Consistency checking can be realized by a
classical 2-Phase Commit protocol [ÖV99], where the top-level node of the dependency tree is
the coordinator of the protocol. Thus, a decentralized consistency checking is not required.

3.5.4 Loosely Coupled

Loosely coupled execution of a global workflow is based on several parties where each party is
coordinating its own local workflow, while the combination of the local workflows results in a
global workflow. Since consistency of a workflow model can usually be defined based an the
set of potential execution sequences, a straight forward approach is to check consistency on a
centralized global workflow model, which has to be split afterwards into several local ones form-
ing the multi-lateral collaboration. This approach has been applied to several workflow models,
like for example by v.d.Aalst and Weske [AW01a] to Workflow Nets (WF-Nets), by Fu et.al. to
guarded Finite State Automata [FBS04], by Yi and Kochut [YK04] to Coloured Place/Transition
Nets, or by Wodtke and Weikum [WW97] to statecharts. However, this represents the top-down
approach based on a centralized consistency checking, which is not addressed in this thesis.

The bottom-up approach of constructing the global workflow based on several local workflows
has been investigated to a lesser extend. An approach based on WF-Nets has been proposed by

36 Chapter 3. Related Work

v.d.Aalst [Aal02, Aal99] as informally introduced in Section 2.3.2 and formally specified later
on in Section 4.2.4. However, the proposed approach is based on deciding consistency of a
multi-lateral collaboration based on the constructed global workflow, which requires a single
party knowing the local workflows of all parties involved, thus, being a centralized consistency
checking.

An alternative approach has been proposed by Kindler, Martens, and Reisig in [KMR00]. In
particular, local consistency criteria are specified to decide global consistency based on an asyn-
chronous communication model. However, local consistency is decidable only with regard to
a globally defined "specification", where a specification is a set of execution sequences. Thus,
the approach allows to locally check consistency of several local workflows with a predefined
abstract global workflow, which represents all exchanged message sequences. It is another ap-
proach of abstracting local workflows opposed to the inheritance proposed by v.d.Aalst. This
work has also been applied to calculate abstract representations of local workflows as presented
by Martens in [Mar04].

The approach proposed by Fu et.al. [FBS04, Fu04] is based on FSA with an unbounded FIFO
queue to store incoming messages based on a reliable communication infrastructure (no loss of
messages). Consistency of a multi-lateral collaboration is based on a globally defined "conver-
sation protocol", that is, the set of potentially exchanged message sequences in the multi-lateral
collaboration, and a set of conditions to ensure consistency called realizablity of the conversa-
tion protocol. To represent message parameters, FSA are extended by guards, which are used
to limit parameters as well as to assign values to parameters, called Guarded Automata. The
proposed set of conditions is quite restrictive since for example parallel execution of tasks can
not be represented by serialization of execution sequences.

However, the approaches [Aal99, KMR00, FBS04] require a centralized decision making and
are not constructive, that is, they only specify criteria for various notions of consistency but
do not provide an approach to adapt local workflows to make the collaboration consistent. In
addition, neither of the approaches addresses the synchronous communication model, nor allows
for decentralized consistency checking.

3.5.5 Conclusion

Based on these observations, different consistency definitions have been investigated. The dis-
cussion starts with local consistency of different workflow models, continues with multi-lateral
consistency definitions under specific consideration of the decentralization aspect, and concludes
with bilateral consistency definitions. It turns out, that local consistency can be defined on every
workflow model in terms of execution sequences of a workflow. However, multi-lateral con-
sistency is based on a centralized aspect, that is, either the decision making is centralized or a
global specification of the message exchanges within the multi-lateral collaboration has to be
provided. Thus, a proposal of a decentralized multi-lateral consistency checking has not been
found.

Due to the decentralization aspect multi-lateral consistency checking has to rely on bilateral

3.5 Multi-lateral Collaboration Consistency 37

consistency checking of parties being involved in the multi-lateral collaboration. The discus-
sion of bilateral consistency definitions can be summarized as follows: Most bilateral con-
sistency definitions are based on asynchronous communication models supporting mandatory
and optional messages. A potential approach realizing bilateral consistency on a synchronous
communication model is based on standard Finite State Automata not supporting mandatory
and optional messages. As a consequence, decentralized multi-lateral consistency based on
a synchronous communication model requires a definition of a sufficient bilateral consistency
definition, while sufficient definitions for an asynchronous communication model are already
available.

38 Chapter 3. Related Work

4 Local Consistency Checking

The WF-Net approach presented so far supports an asynchronous communication model as illus-
trated in the example depicted in Figure 4.1. The example involves party A and party B, where
party A is sending two messages (A#B#msg2 before A#B#msg1), which are received by party B
in reverse order. However, the bilateral WF-Net is consistent, since after sending A#B#msg2 to
the channel the second message can be sent to another channel. Party B picks up the messages
from the channels, while message A#B#msg1 is picked up first, followed by message A#B#msg2.
As a consequence no deadlock can occur, thus, the WF-Net is consistent. The communication is
asynchronous due to placing messages on channels without knowing when the receiving party
will pick them up. As a consequence the order of receiving messages might be different from the
initial sending of messages, which is not possible within synchronous communication models,
since a sent message has to be received immediately.

party A

A#B#msg2
A#B#msg1

t
init

t
final

A#B#msg2
 A#B#msg1

party B

Figure 4.1: Asynchronous WF-Net Example

Service Oriented Architectures may be asynchronous or synchronous dependent on the un-
derlying communication protocol like for example SMTP or HTTP respectively. To prove the
correctness of the presented approach for decentralized collaboration establishment, a formal
specification of the underlying workflow model is required. For asynchronous communication
WF-Nets have been studied extensively, thus, further discussion focuses on recalling existing
results. However, synchronous communication is not adequately covered by WF-Nets and no
adequate formal model exists. Thus, annotated finite state automata are introduced and discussed
in detail.

Independent of the underlying communication model, a formal model of parameter constraints
is needed, which supports reasoning on the satisfiability and subsumption of parameter con-
straints. In particular, parameters may be of different types like, for example, integer or string,

40 Chapter 4. Local Consistency Checking

and individual constraints can be used to construct more complex logical expressions which are
used afterwards in the formal workflow models to decide local consistency.

4.1 Parameter Constraint Model

Modeling of parameter constraints within a less restrictive form of WF-Nets known as Place/Transition
Nets (P/T-Nets) is well known from Predicate/Transition Nets [Gen87] or colored Place/Transition
Nets [Jen92], where arcs connecting transitions and places are labeled with colors, that is, assign-
ing a finite data type. At execution time of a colored P/T-Net tokens are associated with concrete
values in accordance with the data type assigned to the arc a token moves along. The value
assigned to a token is further used to constrain the enabling of transitions during the execution
of the net, where the constraints are related to transitions via a so called guard function. In par-
ticular, a guard function associates a transition with a guarded expression, that is, a conjunction
of constraints on values assigned to tokens expressed by comparison operations corresponding
to the data type of the token value.

Obviously, the color extension is evaluated at execution time of a net. Further, the color
extension is a shorthand notation of a more complex classical P/T-Net, where all combinations
of parameters and their satisfaction of constraints is modeled explicitly. In particular, it can be
shown that for every non-hierarchical colored P/T-Net an equivalent P/T-Net can be constructed,
which ensures that equivalent markings are reachable by both nets [Jen92].

The modeling of parameter constraints for decentralized collaboration establishment requires
reasoning capabilities on the satisfiability of guard expressions. Due to the equivalence of col-
ored P/T-Nets to classical P/T-Nets token values and guard expressions are translated into a
structural representation, which can be analyzed by consistency checking. Since the approach
is applicable only to finite domains and the complexity of the equivalent P/T-Net can be quite
great, this approach is not feasible.

Alternatively, guard expressions are modeled by means of description logic [BCM+03], where
a complex decidable reasoner on satisfiability of parameter constraints exists which is dependent
on the data types used. Description logic is based on a terminology representing an application
domain representing the "world" and the representation of properties of the terminology repre-
senting the description of the "world". A terminology called TBox is based on concepts repre-
senting the vocabulary of the terminology and on roles representing relations between concepts
to create a classification of concepts. While concepts and roles are relevant at specification time
of a model and thus relevant to the collaboration establishment phase, the description of the
"world" in terms of concrete assertions on concepts and roles called ABox is related to the exe-
cution time of a multi-lateral collaboration. In the following basic definitions and explanations
to Description Logic are provided as far as they are relevant to this thesis. An overview of the
different definitions and their interdependencies is depicted in Figure 4.2, where arcs have the
semantics "is based on".

The set of definitions is based on an Attributive Language including Complement ALC (Defi-

4.1 Parameter Constraint Model 41

-concepts (Def 4.1)

TBoxes (concept

equations Def 4.2)

(concept language Def 4.4)

concrete domain (Def 4.3)

history domain (Def 4.34)

relabeling

(Def 4.36)

relabeling

(Def 4.37)

Figure 4.2: Map of Description Logic Definitions

nition 4.1), which is the basis for expressing static (so called TBox (Definition 4.2)) and dynamic
(so called ABox) constraints. Since the consistency checking of collaborations is based on the
workflow specifications as opposed to the workflow execution, TBoxes representing the concepts
are used instead of ABoxes instantiating the concepts at execution time. Thus, ABoxes are not
used in the course of this thesis and therefore are not formally introduced. A formal definition
of ABoxes can be found in [BCM+03]. Since ALC does not provide the possibility to consider
domain specific constraints, concrete domains D (Definition 4.3) are introduced being compa-
rable to abstract data types providing constraint predicates, which are introduced as a generic
extension of ALC resulting in the concept language ALC (D) (Definition 4.4). Later on in this
thesis, these basic definitions are extended by a relabeling operation τg() (Definitions 4.36 and
4.37), which are defined on the concept language ALC (D) and therefore must also be defined
on concrete domains D themselves. Further, a specific concrete domain, the history domain (H)
(Definition 4.34), is introduced later on to overcome the problem of cyclic interdependencies.

Next, detailed definitions are given. In particular, a language used to define concepts is intro-
duced and a formal definition of TBoxes is provided based on [Lut02, BCM+03].

To describe TBoxes and ABoxes the attributive language including complement ALC is used
to specify concepts and is formally defined as follows [Lut02]:

Definition 4.1
Let NC and NR be disjoint and countably infinite sets of concept names and role names. The set
of ALC -concepts is the smallest set such that

• every concept name A ∈ NC is an ALC -concept and

• if C and D are ALC -concepts and R ∈ NR a role name, then ¬C,CuD,CtD,∃R.C, and
∀R.C are ALC -concepts.

The following abbreviations are used for some fixed propositional tautologies such as > for
At¬A, ⊥ for ¬>, C → D for ¬CtD, and C ↔ D for (C → D)u (D→C).

42 Chapter 4. Local Consistency Checking

Based on this language the terminology of description logic known as TBox can be formally
defined [Lut02].

Definition 4.2
An expression of the form C=̇D, where C and D are concepts, is called a concept equation. A
finite set T of concept equations is called general TBox (or TBox for short).

An example of such a concept equation is the classical definition of the concept "Mother" as
a person having at least one child, which can formally expressed as

Mother=̇Personu∃hasChild.Person

The reasoning performed on a TBox is checking subsumption and satisfiability of the con-
cepts, that is, are the concept equations non-contradictory. In either case well established algo-
rithms exist [BCM+03].

So far, concepts and relations between these concepts have been introduced. With regard
to representing parameter constraints within description logic, a potential approach is to model
data types explicitly in a TBox. This approach turned out to be impractical due to the large
number of order relations that have to be modeled explicitly. An alternative approach is to
extend the ALC -language by a data type such as, for example, non-negative integer values
N and functional roles, that is, relations associating concepts with a data type. Based on this
extension, the concept language is extended by a data type and the predicates provided by it.
Exemplary data types and related predicates are numerical data types providing predicates like
"less-than" or "greater-than", while a lexical data type provides predicates like "starts-with"
or "contains". This extension of description logic is known as description logic with concrete
domains [BH91, BCM+03]. A concrete domain D representing a data type consists of a set of
symbols and a set of predicates defined as follows [Lut02]:

Definition 4.3
A concrete domain D is a pair (∆D ,ΦD), where ∆D is a set and (∆D ,ΦD) is a set of predicate
names. Each predicate name P ∈ ΦD is associated with an arity n and an n-ary predicate PD ⊆
∆n

D .

An example of a concrete domain is the set of all non-negative integers N supporting the
binary predicates <,≤,≥,> to compare two numerical values, as well as the unary predicates
<n,≤n,≥n,>n, where n represents the numerical value of the right hand side of the comparison
predicate with n∈N [Lut03]. An additional example is the domain of strings S, where predicates
like "contains" and "substring-of" are relevant [HS01, PH02].

To be able to extend the reasoning algorithms of description logic to concrete domains, the
concrete domains must be closed under negation, since the reasoning algorithms are based on

4.1 Parameter Constraint Model 43

a normal form of concepts requiring negation operation. In addition, finite conjunctions of
predicates have to be evaluated on their satisfiability, that is, deciding whether there exists at
least a single value in the domain fulfilling the logical expression. Thus, the concrete domain
requires the satisfiability of finite conjunctions of predicates to be decidable. It can be shown
that the set of real numbers is a concrete domain, although the set of rational numbers is not
[BCM+03].

Definition 4.4
The concept language ALC (D) with a concrete domain D is constructed by extending Defini-
tion 4.1 of ALC by

• adding a disjoint set of functional roles N f R to the set NR of roles, where the right hand
side of a functional role belongs to the domain D and

• adding the following production rule C,D −→ ∃(u1, . . . ,un).P, where C and D are con-
cepts, u1, . . . ,un functional roles, and P be an n-ary predicate within the domain D.

With regard to the example (see Section 2.3.1), the data types used within the example are N,
representing positive integers and S, representing the concrete domain of strings. In particular,
parameters used within the different messages are considered to be semantically equivalent if
they are named equally. This simplification rules out mappings of parameter names without
limiting the general approach. As a consequence, only a single base concept is needed called
"self" meaning the transition itself, while binary functional roles are used to relate a message
parameter with the concrete domain of a single numerical or lexical parameter. Thus, the single
concept used is self, while the functional roles are: has_a,has_it,has_p,has_tn,has_st. Thus,
for example the deliver confirmation message (see Section 2.3.1) deliver_conf(it,a,tn) has the
parameters item number it, amount a, and tracking number tn. Representing the constraint of
the amount a being below 100 can be expressed as

∃hasa. < 100

where the predicate < is the unary predicate in the concrete domain of natural numbers meaning
that the value following the predicate is bigger than the one derived from the binary functional
role.

These concept and functional roles can be used to construct a TBox representing a single con-
straint, which is assigned by the guard function to a particular transition. For example, the con-
straint of the amount being below 100 assigned to the transition labeled B#A#order at the buyer
workflow is represented in ALC (N) by the TBox containing the single line ∃(has_a).≤100. In
general, a parameter constraint has the form of an existential quantification on the functional role
referencing the parameter followed by a predicate on the parameter value. Additional parameter
constraints can be added using conjunction or disjunction. In contrast to the current example, the

44 Chapter 4. Local Consistency Checking

combination of several concrete domains representing different data types is possible as shown
by [BH91],for example.

The reasoning on the satisfiability of a TBox is provided by standard algorithms, which are
often based on the tableau algorithm [BCM+03]. The computational complexity of the rea-
soning strongly depends on the used concrete domains and the complexity of the TBoxes. A
general computational complexity result is that satisfiability of general ALC -concepts with re-
gard to general TBoxes is EXPTIME-complete1 [Lut02]. Extending ALC by concrete domains
increases complexity. In particular, Lutz showed that satisfiability of general ALC (D)-concepts
with regard to general TBoxes is undecidable. However, the ALC (D)-concept satisfiability with
regard to acyclic TBoxes for a concrete domain deciding satisfiability of conjunctions in poly-
nomial time is NEXPTIME-hard1[Lut02]. Thus, the general modeling approach has quite high
computational complexity, however, the subsumption problem in description logic with concrete
domains is decidable. Due to the fact that companies do not provide many details about internal
decisions and constraints, the complexity of the workflows provided by them as a basis for de-
centralized consistency checking is not complex. Thus, an approach based on description logic
with concrete domains is applicable.

Based on this representation of parameter constraints, the formal models for asynchronous
and synchronous communication can be introduced.

4.2 Asynchronous Model

The formal model to represent asynchronous communication is based on Workflow Nets (WF-
Nets), while description logic as introduced in the previous section is used to specify parameter
constraints. The following definitions, which are based on [Mar02, Pet81, Jen92, Aal99], are
required to provide a clear semantics of the extensions of WF-Nets and the effects on the cor-
responding operations. Then, an overview of the definitions and their interdependencies is pro-
vided without explaining the different concepts in detail but referencing them. Afterwards, basic
definitions for WF-Nets are introduced as far as needed later on for the definition of constraint
propagation and consistency. In particular, WF-Nets are a specific form of Place/Transition Nets
(P/T-Nets) introduced previously.

4.2.1 Overview of Definitions

In the following an overview of the different definitions and their interdependencies is given and
summarized in Figure 4.3 containing a graphical representation including definition numbers,
where arcs have the semantics of "is based on". Local consistency based on an asynchronous
communication model is based on labeled Place/Transition Nets (labeled P/T-Nets) (Definition
4.5) representing a workflow model and its execution model called marked labeled P/T-Nets

1The used relations between the different complexity classes are
P⊆ NP⊆ PSPACE ⊆ EXPT IME ⊆ NEXPT IME ⊆ EXPSPACE .

4.2 Asynchronous Model 45

(Definition 4.6). The marking of a labeled P/T-Net represents the current "execution state" of a
P/T-Net. Relevant properties on marked labeled P/T-Nets are (i) the enabling (Definition 4.7) of
a transition within a P/T-Net, that is, when a transition can be performed, and (ii) the reachable
markings (Definition 4.8) being a set of transition sequences which can be derived from a par-
ticular marking of a labeled P/T-Net. An alternative graph based representation of the reachable
markings derived from an initial marking of a labeled P/T-Net is the so called occurrence graph
(Definition 4.10), where the vertices represent a specific marking of a marked labeled P/T-Net
and an arc represents performing a single transition.

labeled P/T Net (Def 4.5)

marked labeled P/T Net (Def 4.6)

enabling (Def 4.7)

reachable marking (Def 4.8)

directed graph

(Def 4.9)

occurrence graph

(Def 4.10)

Workflow Net (WF-

Net) (Def 4.11)

Interorganizational WF-Net

(IOWF-Net) (Def 4.13)

soundness

(Def 4.12)

flat() operation

(Def 4.14)

IO-soundness

(Def 4.15)

guarded WF-Net (Def 4.16)

normalization

(Def 4.19)

enabling (Def 4.17)

reachable marking

(Def 4.18)

equivalence

(Lemma 4.1)

reachable marking

(Def 4.20)

guarded occurrence

graph (Def 4.21)

(concept

language

 Def 4.4)

Figure 4.3: Map of Definitions for the Asynchronous Model

Based on these basic definitions of P/T-Nets, the restirctions to Workflow Nets (WF-Nets)
(Definition 4.11) are introduced in Section 4.2.3. In particular, a WF-Net is a P/T-Net restricted
by having a single start and final place, and containing only transitions which are contained in
at least one transition sequence within the reachable markings. Since WF-Nets are a restriction
of P/T-Nets, the properties of P/T-Nets remain valid, while an additional property is soundness
(Definition 4.12), which means that the workflow does not contain any recursion and is deadlock
free. Extending WF-Nets to multi-lateral collaborations results in an interorganizational WF-Net
(IOWF-Net) (Definition 4.13) (see Section 4.2.4), where asynchronous channels between the
different local workflows represented each by a WF-Net are introduced. In particular, such an
IOWF-Net can be transformed into a WF-Net by the flat() operation (Definition 4.14). Further,
an IO-soundness property (Definition 4.15) can be defined on IOWF-Net which is based on
soundness of the local WF-Nets contained in the IOWF-Net and soundness on the WF-Net
derived by the flat() operation.

In the next step (see Section 4.2.5) guarded WF-Nets (Definition 4.16) are introduced, which

46 Chapter 4. Local Consistency Checking

allow the modeling of parameters and constraints on executing transitions. These constraints are
based on a conceptual language with concrete domains ALC (D) (Definition 4.4) as introduced
in Section 4.1. Since the additional constraints affect the enabling of transitions due to the con-
straints, the definitions of enabling (Definition 4.17) and reachable marking (Definition 4.18) as
known from P/T-Nets have to be adapted. However, the modified enabling definition requires
an evaluation of constraints, thus, an analysis based on structural properties does not suffice.
Therefore, a normalization of guarded WF-Nets (Definition 4.19) is introduced in Section 4.2.6,
where the reachable marking of the normalized guarded WF-Net is equivalent to the reachable
marking of the original guarded WF-Net. As a consequence, a guarded occurrence graph (Defi-
nition 4.21) based on normalized guarded WF-Nets is defined in accordance with the structural
reachable marking definition.

4.2.2 Place/Transition Net

A Place/Transition Net consists of places and transitions and connections between them, where
transitions are labeled with message names. The formal definition is as follows [Mar02]:

Definition 4.5
Let U be a universe of identifiers and L a set of labels. A labeled Place/Transition Net (P/T-Net)
is a tuple N = (P,T,F, `) such that:

• P⊆U is a finite set of places,

• T ⊆U is a finite set of transitions,

• F ⊆ (P×T)∪ (T ×P) is a set of directed arcs, called flow relations, and

• ` : T → L∪{τ} is a labeling function, where τ represents a silent transition and all other
labels are of the form s#r#msg with sender s sending message msg to recipient r.

A P/T-Net specifies the structure of a workflow, while an execution requires an additional
notion of state. States are known as markings in P/T-Nets. A marking is a distribution of tokens
on the set of places. In particular, a marking is formally represented as a bag of places, that
is, a multiset of symbols (here places) and therefore represents a function from the set of sym-
bols (here places P) to the set of natural numbers indicating the number of symbol occurrences
[Mar02]. The set of all bags over a set A is denoted as B(A). The bag of places from which input
tokens are removed by a transition t is noted as •t, while t• represents the bag of places where
output tokens are added. Additional operations available on bags are + and − , that is, adding
and removing tokens from a bag [Mar02].

4.2 Asynchronous Model 47

Definition 4.6
A marked, labeled P/T-Net is a pair (N,s), where N = (P,T,F, `) is a labeled P/T-Net and where
s ∈ B(P) is a bag over places P denoting the marking (also called state) of the net.

Based on the marking the enabling of transitions can be defined as follows [Aal00]:

Definition 4.7
Let (N,s) be a marked, labeled P/T-Net, where N = (P,T,F, `) is a labeled P/T-Net and s a
marking. A transition t ∈ T is enabled, denoted (N,s)[t〉, if and only if each of its input places p
contains a token. That is, (N,s)[t〉 ⇔ •t ≤ s.

If a transition is enabled, it can be fired, that is, the marking is changed in the sense that tokens
of the input places of the transition are removed and tokens are added to the output places of
the transition. Formally, the firing of a transition is expressed for a label a of a transition t by
(N,s)[a〉(N,s′) with s′ = s−•t + t•.

Due to the fact that equivalence of P/T-Nets is undecidable [Hac76], similarity of P/T-Nets
is analyzed with regard to the sequence of fired transitions supported by a P/T-Net, called fir-
ing sequences. Two P/T-Nets are considered to be similar, if they have the same set of firing
sequences, which are represented via an occurrence graph. To formally introduce occurrence
graphs, the set of all states that may occur during the execution of the P/T-Net has to be defined
as the set of reachable markings [Aal00].

Definition 4.8
The set of reachable markings of a marked, labeled P/T-Net (N,s) with N = (P,T,F, `), denoted
[N,s〉, is defined as the set {s′ ∈ B(P) | ∃σ ∈ T ∗.(N,s)[σ〉(N,s′)}.

An occurrence graph is a directed graph, where markings are represented as vertices and arcs
connect vertices via a node function representing transition labels. A directed graph is formally
defined by [Jen92] as follows:

Definition 4.9
A directed graph is a tuple DG = (V,A,Node) such that V is a set of vertices, A is a disjoint set
of arcs (V ∪A = /0), and Node is a node function assigning an arc the source and target vertices.

The relation of a P/T-Net and the directed graph is formalized by the following definition
[Jen92]:

48 Chapter 4. Local Consistency Checking

Definition 4.10
An occurrence graph of a labeled P/T-Net N = (P,T,F, `) derived from an initial marking s0 is a
directed graph OG = (V,A,Node), where

• the set of vertices V is V = (N,s0〉,

• the set of arcs A is A = {(s1, t,s2) ∈V ×T ×V | s1[t〉s2},

• and the node function Node is defined by ∀a = (s1, t,s2) ∈ A.Node(a) = (s1,s2),

B#A#msg2

A#B#msg1

B#A#msg3

i

o

1

o

2

z

{ i }

{ z }

{ o
1
 }
 { o
2
 }

(a)
 (b)

Figure 4.4: Example P/T-Net: (a) P/T-Net (b) corresponding Occurrence Graph

To illustrate the above definitions, Figure 4.4(a) depicts a simple P/T-Net representing two
potential execution sequences A#B#msg1 - B#A#msg2 and A#B#msg1 - B#A#msg3. The corre-
sponding occurrence graph derived from this P/T-Net is depicted in Figure 4.4(b) where each
marking is a vertex and the transitions between the markings are arcs.

4.2.3 Workflow Net

Based on the definition of P/T-Net, the actions of a Workflow Net (WF-Net) of having a single
start place, a single final place, and the requirement of having no transitions, which cannot be
fired in any reachable marking, can be introduced formally [AH02].

Definition 4.11
Let N = (P,T,F, `) be a labeled P/T-Net. Net N is a Workflow Net (WF-Net) if and only if the
following conditions are satisfied:

1. instance creation: P contains an input (source) place i ∈U such that this input place i is
not an output place of any transition, that is, ∀t ∈ T.i 6∈ t•,

4.2 Asynchronous Model 49

2. instance completion: P contains an output (sink) place o ∈U such that this output place i
is not an input place of any transition, that is, ∀t ∈ T.o 6∈ •t,

3. connectedness: every node x ∈ P∪T is on a path from i to o.

Based on this WF-Net definition consistency as informally introduced in Section 2 can be
defined formally equivalently to soundness in WF-Nets. In particular, a WF-Net is consistent, if
no deadlock can occur, that is, there exists no firing sequence resulting in a marking not being
a final marking and no further transition is enabled. The formal definition is as follows, where
[i] and [o] represent a marking where a single token resides in source and sink place respectively
[Aal00]:

Definition 4.12
A WF-Net N with source(N) = i and sink(N) = o is said to be weakly sound if and only if the
following conditions are satisfied:

1. safeness: (N, [i]) is safe, if and only if, for any reachable marking s′ ∈ [N, [i]〉 and any
place p ∈ P, the place p within the reachable marking s′ contains at most one token2, that
is, s′(p)≤ 1,

2. proper completion: for any reachable marking s ∈ (N, [i]〉, o ∈ s implies s = [o], and

3. completion option: for any reachable marking s ∈ (N, [i]〉, [o] ∈ [N,s〉.
N is said to be strongly sound, or simply sound, if and only if, in addition there are no dead
transitions, that is, (N, [i]) contains no dead transitions.

It can be shown that each weakly sound WF-Net can be transformed into a sound WF-Net by
removing dead transitions [Aal99].

4.2.4 Interorganizational Workflow Net

Interorganizational Workflow Nets (IOWF-Nets) represent the interaction of several WF-Nets
within a single WF-Net via asynchronous communication. In particular, a single communi-
cation channel per message transmitted between different WF-Nets is introduced, which are
connected with sending transitions by an incoming arc and with receiving transitions by an out-
going arc. In case of several equally labeled receiving transitions the selection of a transition
is non-deterministic. An Interorganizational Workflow Net represents the global workflow, that
is, the global view of a multi-lateral collaboration as discussed in Section 2.3.2. The formal
definition is as follows [Aal00]:

2This property excludes recursion to be modeled in WF-Nets although it can be modeled in P/T-Nets.

50 Chapter 4. Local Consistency Checking

Definition 4.13
An Interorganizational Workflow Net (IOWF-Net) is a tuple (C,FC,n,N0,N1, . . . ,Nn−1) where:

• C ⊆U is a finite set of channels,

• N0,N1, . . . ,Nn−1 are n WF-Nets such that:

– each defined by a set of places, a set of transitions, a flow relation, and a labeling
function, that is, ∀0≤ k < n.Nk = (Pk,Tk,Fk, `k),

– where the sets of places and transitions of all WF-Nets are pairwise disjoint, that is,
∀0≤ k < l < n.(Pk∪Tk)∩ (Pl ∪Tl) = /0, and

– where the set of places and tranisitions of all WF-Nets are disjoint to the used chan-
nels, the input and output places, and the transitions ti and to, that is,
∀0≤ k < n.(Pk∪Tk)∩ (C∪{i,o, ti, to}) = /0,

• FC ⊆ (C× (
S

0≤k<n Tk))∪ ((
S

0≤k<n Tk)×C) is a set of directed arcs, called the channel
flow relation.

In the above definition it is assumed that the WF-Nets being involved in the IOWF-Net have
pairwise disjoint places and transitions and non of them contains the IOWF-Net source place i
and sink place o. Further, the transitions ti and to connecting the source and sink places of all WF-
Nets with i and o respectively are not used by the WF-Nets already. The WF-Net representation
of the IOWF-Net can be constructed by applying the flat operation [Aal00].

Definition 4.14
Let Q = (C,FC,n,N0,N1, . . . ,Nn−1) be an IOWF-Net with ∀0 ≤ k < n.Nk = (Pk,Tk,Fk, `k). The
WF-Net N = (P,T,F, `) can be derived by N = f lat(Q) by taking the union of the WF-Nets
contained in the IOWF-Net and combining it with the additional constructs needed such as new
input and output place. Thus,

• the set of places P is P = C∪{i,o}∪ (
S

0≤k<n Pk),

• the set of transitions T is T = {ti, to}∪S0≤k<n Tk,

• the labeling function ` is ` = {(ti,τ),(to,τ)}∪S0≤k<n `k, and

• the flow relation F is
F = FC ∪ (

S
0≤k<n Fk) ∪ {(i, ti),(to,o)} ∪ {(ti,source(Nk)) | 0≤ k < n} ∪

∪ {(sink(Nk), to) | 0≤ k < n}

Since the flat operation transforms an IOWF-Net to a WF-Net, soundness of an IOWF-Net,
called IO-soundness, is defined as soundness of each WF-Net being involved and soundness of
the flattened IOWF-Net [Aal00].

4.2 Asynchronous Model 51

Definition 4.15
An IOWF-Net Q = (C,FC,n,N0,N1, . . . ,Nn−1) is IO-sound, if and only if it is locally and globally
sound. IOWF-Net is locally sound, if and only if each of its local Workflow Nets Nk with
0≤ k < n is sound. IOWF-Net is globally sound, if and only if flat(Q) is sound.

Based on this definition, global consistency of a multi-lateral collaboration can be expressed as
IO-soundness of the corresponding IOWF-Net. With regard to the example in Section 2.3.1 the
IOWF-Net as depicted in Figure 2.6 is IO-sound, that is, consistent. In addition, the construction
of IOWF-Nets can be used to check consistency of a bilateral collaboration by forming an IOWF-
Net with two parties involved and checking IO-soundness. An example of such a bilateral WF-
Net with regard to the example in Section 2.3.1 again, is the bilateral WF-Net of buyer and
accounting department depicted in Figure 4.5 3.

B#A#order(it, a, p)

[a<100]

B#A#order(it, p, a)

t
init
 t
final

accounting (A)

buyer (B)

A#B#delivery(it, p, a, tn)

A#B#delivery(it, p, a, tn)

B#L#get_status(tn)

L#B#status(tn, st)

B#L#terminate

A#L#deliver(it,a)
 L#A#deliver_conf(it,a,tn)

Figure 4.5: Bilateral WF-Net of Buyer and Accounting Department without Abstraction

Based on this interpretation, the requirements for bilateral consistency stated in Section 2.1.2
with regard to deciding consistency under specific consideration of message exchange sequences
and differentiating mandatory and optional messages are fulfilled. By introducing channels and
relating transitions to the channel places, a final marking can be reached, if and only if all mes-
sages sent by one party are received by the corresponding party. As a consequence, message
exchange sequences supported by the two trading parties are taken into account. In particular,
sending a message inserts a token into a channel, where the lack of a receiving party makes
the WF-Net inconsistent. As a consequence, sending messages represent mandatory messages,
while receiving messages are optional messages, because receiving of a message enables the re-
ceiving transition only if the corresponding message has been sent before, thus, has no influence

3This figure represents the same bilateral WF-Net as depicted in Figure 2.7 without abstraction and cycle resolution.
However, this bilateral WF-Net is sound if and only if the abstracted WF-Net used in Section 2.3.3 and depicted
in Figure 2.7 is sound.

52 Chapter 4. Local Consistency Checking

on the consistency of the WF-Net.
Next, the expressiveness of WF-Nets with regard to handling parameter constraints is ex-

tended.

4.2.5 Parameter Constraints

Parameter constraints are introduced to WF-Nets via a guard function similar to colored P/T-
Nets, where logical guard expressions assigned to transitions are provided in terms of description
logic as introduced in Section 4.1. The original color extension assigns each place a single color
as opposed to tuples of colors in the following definition.

Definition 4.16
A guarded WF-Net N = (P,T,F, `,C ,G,E) is based on a WF-Net (P,T,F, `), a color function
C : P → Di1 × . . .×Dim assigning a tuple of concrete domains to a place, a guard function
G : T → ALC (D0, . . . ,Dn−1) for a set of concrete domains D0, . . .Dn−1, and a flow relation
function E : F → Di1 × . . .×Dim assigning each flow relation a variable related to a tuple of
concrete data types with 0≤ i1 < .. . < im < n.

All guard expressions, that is, the description logic TBox representing constraints, have to
be bounded, that is, the variables used in the expression are either quantified within the guard
expression or bound by the incoming or outgoing flow relation of the transition.

As a consequence of the data types introduced, the standard semantics of colored P/T-Nets
adapts the definition of marking by associating data types with tokens called token elements. In
particular, a token element is a tuple of a token and a value of the data type related to a place. In
accordance, the enabling of transitions must be redefined using binding elements, that is, a pair
of a transition and a binding, where a binding is a function providing possible values for tokens
fulfilling the guard expression of the transition [Jen92].

Definition 4.17
Let N = (P,T,F, `,C ,G,E) be a guarded WF-Net, then

• a binding b is a function assigning all variables {v0, . . . ,vm−1} = Var(G(t)) contained in
a guard expression G(t) related to a transition t a concrete value ci of the corresponding
data type D where the concrete values fulfill the guard expression G(t), thus, a binding is
a set of variable assignments b := {v0 = c0, . . . ,vm−1 = cm−1};

• B(t) denotes the set of all bindings for a transition t;

• a binding element is a pair (t,b) of a transition t and a corresponding binding b;

4.2 Asynchronous Model 53

• a token element is a pair (p,c) of a place p and a concrete value c of a domain D or a
variable;

• a marking is a bag over token elements.

As a consequence of this extension, a transition t is enabled for a binding element
b = {v0 = c0, . . . ,vm−1 = cm−1} ∈ B(t) denoted as (N,s)[b〉, if the bag of token elements
{(p0,c′0), . . . ,(pn−1,c′n−1)} evaluated from the binding element b of transition t is contained in
the current marking s, that is,

S
0≤i<n(pi,c′i)[b]≤ s, where

(pi,c′i)[b] :=
{

c j i f c′i = v j ∧ (v j = c j) ∈ b
c′i otherwise

The guard function has to be checked for satisfiability to determine the binding elements,
which is supported by description logic algorithms, as described in Section 4.1. In accordance
to P/T-Nets using the definition of an enabled transition, reachable markings can be defined as
follows:

Definition 4.18
The set of reachable markings of a guarded WF-Net (N,s) denoted [N,s〉, is defined as the set
{s′ ∈ B(P×D) | (∃σ ∈ B(T)∗.(N,s)[σ〉(N,s′))}.

In case of cyclic guarded WF-Nets or usage of infinite domains, this semantics based on
binding elements results in an infinite set of markings, which causes the soundness check to
be undecidable. However, the restrictions on acyclic guarded WF-Nets allows a declarative
modeling of bindings within a marking resulting in a finite and less complex set of reachable
markings.

4.2.6 Constraint Propagation

Since the approach presented in Section 2.4 is based on acyclic WF-Nets, the following discus-
sion focuses on acyclic guarded WF-Nets. The introduced markings are based on representing
the distribution of tokens and the constraints collected along the path to reach the marking. This
requires to exclude alternatives by introducing a normalized form of guarded WF-Nets, that
is, WF-Nets with guard expressions consisting of conjunctions only. This can be achieved by
transforming guard expressions in disjunctive normal form and replicating the corresponding
transition once per conjunction in the disjunctive normal form of the guard expression.

Definition 4.19
An acyclic guarded WF-Net N = (P,T,F, `,C ,G,E) can be represented as a normalized acyclic
guarded WF-Net N′ = (P,

S
t∈T T ′t ,

S
t∈T F ′t ,

S
t∈T `′t ,C ,

S
t∈T G′

t ,
S

t∈T E ′t), where for a transition

54 Chapter 4. Local Consistency Checking

t ∈ T , the corresponding guard expression e = G(t), and the disjunctive normal form of e given
as e′ := e1∨ . . .∨ en, the following definitions hold:

• T ′t := {t1, . . . , tn} being unique new transitions each representing one disjunction of the
guard expression of transition t,

• F ′t :=
S

ti∈T ′t {(p, ti) | p ∈ •t}∪Sti∈T ′t {(ti, p) | p ∈ t•} is the new flow relation ensuring that
the newly introduced transitions in T ′t have the same input and output places as transition
t,

• ∀ti ∈ T ′t .`′(ti) = `(t) is the new labeling function ensuring that the newly introduced tran-
sitions in T ′t have the same labels as transition t ,

• ∀ti ∈ T ′t .G′(ti) = ei is the new guard function assigning each newly introduced transition in
T ′t a conjunctive guard expression taking from the disjunctive normal form e′ of transitions
t’s guard expression e,

• ∀ti ∈ T ′t , p∈ •t.E ′(p, ti) = E(p, t) and ∀ti ∈ T ′t , p∈ t • .E ′(ti, p) = E(t, p) is the new flow re-
lation function ensuring that the newly introduced transitions in T ′t have the same variable
assignment at the arcs as transition t.

The above definition is illustrated in Figure 4.6(a) by a WF-Net with a guard expression
e1(x,y,z)∨ e2(x,y,z), where ei(x,y,z) are conjunctions of predicates, and a similar normalized
WF-Net depicted in Figure 4.6(b). The transition is replicated and the conjunctions of the guard
expression are assigned as new guard expressions.

x

e

1

(x,y,z)
 e

2

(x,y,z)

z

y
 x

e

2

(x,y,z)

z

y
x

z

y

e

1

(x,y,z)

(a)
 (b)

t
init
 t
init

Figure 4.6: (a) WF-Net with Guard Function in Disjunctive Normal Form (b) Normalized WF-
Net Equivalent to (a).

4.2 Asynchronous Model 55

Based on this definition, a marking is defined as a marking of a P/T-Net in combination with a
conjunction of all guard expressions along the path of transitions resulting in a marking. Further,
in case of two transitions contained in the firing sequence, which are equally labeled representing
the sending and receiving of a message within a single firing sequence, the guard expression
of the transition performed first (representing a sending transition) must be subsumed by the
guard expression of the later transition (representing the receiving transition). This additional
constraint has to be added to the definition to ensure that no markings are accepted, which are
causing deadlocks during the execution of the WF-Net. The initial marking is denoted as ([i],>),
where > is the tautology within description logic (see also Definition 4.1).

Definition 4.20
The set of reachable markings of a normalized acyclic guarded WF-Net (N,s) denoted [N,s〉, is
defined as the set

{(s′,e′) ∈ B(P)×ALC (D) | ∃σ ∈ T ∗.(N,s)[σ〉(N,s′)∧ e′ = ut∈σG(t)∧ e′ is satis f iable∧
∀t ′, t ∈ σ.t ′ < t ∧ (`(t) 6= `(t ′)∨ (`(t) = `(t ′)∧G(t)v G(t ′)))}

This definition of marking on normalized acyclic guarded WF-Nets is equivalent to the one
based on binding elements with regard to soundness of the WF-Net. The following Lemma
formalizes this equivalence.

Lemma 4.1 A normalized acyclic guarded WF-Net is sound, based on the declarative marking
defined in Definition 4.20, if and only if it is sound based on the marking defined in Definition
4.18.

Proof: Soundness as defined in Definition 4.12 is based on safeness, proper completion and
a completion option. Since the first two properties are related to the structure of the WF-Net
they are independent of the introduced notion of constraints. The proper completion may further
restrict the structural firing sequences, thus the introduction of constraints has an impact.

It has to be shown that the effects of both notions of markings are equivalent. Based on the
notion of binding elements, the guard function of a transition fires, if the input places contain
token elements which fulfill the guard function. In particular, token elements are omitted which
do not fulfill the guard function and therefore are not available for the further processing of the
firing sequence. As a consequence, within a marking of a firing sequence, only those token ele-
ments are contained, which fulfill all guard functions along the transitions of the guard function.
That’s exactly the construction of the second marking representation, thus, they are equivalent.
In particular, the normalization is needed to have a strict conjunction along a firing sequence. ¤

56 Chapter 4. Local Consistency Checking

Standard algorithms for deciding soundness of WF-Nets can no longer be used, since they
rely on a special cyclic extension of a WF-Net, which does not work on the above definitions
because of the guard expressions. As a consequence, soundness has to be decided on behalf of
the occurrence graph derived from the corresponding WF-Net.

Based on the notion of reachable markings introduced in Definition 4.20, the finite occurrence
graph can be constructed and soundness can be decided by traversing all paths of the occurrence
graph. Since the WF-Net is acyclic, the occurrence graph is also acyclic, thus, the number of
paths is finite. Therefore the computational complexity of deriving the occurrence graph is sim-
ilar to tree traversal algorithms while the computational complexity of deciding the satisfiability
of the leaf nodes of the occurrence graph depends on the concrete domains used as discussed in
Section 4.1. The observations made so far apply also to a IOWF-Net and its soundness definition,
since it can be represented as a WF-Net.

The relation of a normalized acyclic guarded WF-Net and the directed graph is formalized as
follows:

Definition 4.21
A guarded occurrence graph of a normalized acyclic guarded WF-Net N = (P,T,F, `,C ,G,E) is
a directed graph OG = (V,A,Node,Guard), where

• the set of vertices V is V = (N,([i],>)〉,
• the set of arcs A is A = {(s1, t,s2) ∈V ×T ×V | s1[t〉s2},

• the node function Node is ∀a = (s1, t,s2) ∈ A.Node(a) = (s1,s2), and

• the guard function Guard is ∀(s1, t,s2) ∈ A.Guard((s1, t,s2)) := G(t).

To illustrate the above definitions, the example discussed in Figure 4.6(b) is reused, which
is depicted in Figure 4.7 representing a normalized WF-Net. The occurrence graph constructed
from that WF-Net is depicted in Figure 4.7(b) where the vertices are the reachable markings
and the guard expressions are assigned to the arcs representing the conjunction of the guard
expressions resulting in that particular marking.

Since subsumption and satisfiability of description logic with concrete domains is decidable,
the occurrence graph defined above can be constructed. Further, due to the restrictions on acyclic
WF-Nets, the occurrence graph is finite. As a consequence, an acyclic guarded WF-Net is sound
(in accordance to Definition 4.12), if all path of the finite occurrence graph result in a marking
([o], p), where p is a satisfiable predicate, and each marking contains at most one token per
place. In addition, the calculation of the occurrence graph provides the propagation of parameter
constraints within a normalized acyclic guarded WF-Net.

Due to the undecidability of equivalence in P/T-Nets, they are lacking a minimization theory.
As a consequence, modifications performed on the occurrence graph as a consequence of propa-
gation of parameter or occurrence graph constraints cannot be fed back to changes in the WF-Net

4.3 Synchronous Model 57

x

e

2

(x,y,z)

z

y
x

z

y

e

1

(x,y,z)

(a)
 (b)

t
init

i

o

k
 l

{ i }

{ k, l }

{ o }

e

2

(x,y,z)
e

1

(x,y,z)

true

Figure 4.7: (a) Normalized WF-Net (b) Guarded Occurrence Graph of (a).

structure. Thus, after the initial specification of the workflows in terms of guarded WF-Nets, the
propagation of constraints and the decentralized decision making on multi-lateral collaboration
consistency has to be performed on an occurrence graph representation.

These propagation operations and the corresponding definition of consistency are quite similar
to the ones of the synchronous communication model introduced next. In particular, the model
is based on finite state automata. This mapping is possible, because occurrence graphs have the
same expressiveness as finite state automata. The discussion of the concrete mapping is provided
in Section 5.1.

4.3 Synchronous Model

In the previous section a model based on Workflow Nets (WF-Nets) was introduced and ex-
tended by parameter constraints called guarded WF-Nets. Further, interorganizational WF-Nets
(IOWF-Nets) have been introduced to model multi-lateral collaborations. In particular, the
soundness property of WF-Nets has been introduced, which has been extended to IOWF-Nets as
a notion of local consistency of a multi-lateral collaboration. Since guarded WF-Nets require an
evaluation of constraints during soundness checking, a normalization has been proposed, where
the normalized WF-Net can be evaluated with regard to soundness based on structural properties
only. This kind of evaluation can be performed based on an occurrence graph representing all ex-
ecutable transition sequences represented in a WF-Net. So far, parameter constraint propagation
has been addressed, while resolution of cycles and propagation of occurrence graph constraints
(as the remaining conceptual steps of the approach presented in Section 2.4) are not addressed.
They will be addressed in the next chapter after the asynchronous model, namely the occurrence
graph representation, has been mapped to the formal model for synchronous communication
introduced in this section.

58 Chapter 4. Local Consistency Checking

As a starting point for a synchronous communication model Finite State Automata [HMU01]
are considered to be suitable for modeling multi-lateral collaborations. They can represent (pos-
sibly infinite) sets of message sequences without considering branching conditions and parallel
execution capabilities as provided by more expressive approaches such as Place/Transition Nets
(P/T-Nets). While P/T-Nets are also closed under intersection [Pet81], they require a much
higher computational and space complexity compared to Finite State Automata. In particular,
P/T-Nets allowing concurrent execution are non-polynomial for reachability and liveness prob-
lems [EN94]. If the P/T-Net class is restricted to bounded 4 nets several polynomial results exist.
In the case of bounded nets the occurrence graph can be represented as a Finite State Automaton
which can get very large but finite. The occurrence graph does not exceed the expressiveness
of Finite State Automata. A major advantage of Finite State Automata compared to P/T-Nets is
the decidability of equivalence and the corresponding minimization theory. Similar to P/T-Nets,
the representation of parameter constraints requires an extension based on guard functions using
description logic with concrete domains. In addition, Finite State Automata do not distinguish
between mandatory and optional transitions as required for deciding multi-lateral consistency.
As a consequence, the Finite State Automaton model is extended by annotations of states expli-
cating which transitions are mandatory and which are optional, being evaluated by the emptiness
test.

The introduction of the formalism starts with an overview of the definitions introduced, fol-
lowed by the introduction of classical Finite State Automata and their extension by annotations.
Afterwards parameter constraints are introduced as guard functions, and the local consistency of
multi-lateral collaborations is defined. Based on this foundation, the definition of cycle resolu-
tion and constraint propagation follows.

4.3.1 Overview of Definitions

In the following an overview of the different definitions and their interdependencies is given and
summarized in Figure 4.8 containing a graphical representation including definition numbers.
Local consistency based on a synchronous communication model is based on Finite State Au-
tomata (FSA) (Definition 4.22) as already illustrated above. Thus, first the formal definition of
a FSA is introduced, followed by the intersection operation (Definition 4.23) and the emptiness
test. As illustrated in Section 2.1, the expressiveness of FSA does not suffice to consistency of
bilateral collaborations, thus, an extension is introduced fulfilling the requirements. In particular,
states of a FSA are annotated by propositional formulas, where the variables used correspond to
transition labels. The resulting approach is called annotated FSA (aFSA) (Definition 4.24), and
the effects of the extension on the intersection operation (Definition 4.26) and the emptiness test
are specified.

Similar to the approach used in the asynchronous model, aFSA are extended by parameter
constraints resulting in guarded aFSA (Definition 4.27). The parameter constraints are expressed

4A net is bounded if it is has a finite set of possible markings.

4.3 Synchronous Model 59

multi-lateral

collaboration (Def 4.33)

acyclic normalized

guarded aFSA (Def 4.38)

n

o
r

m

a

l
i
z

a

t
i
o

n

guarded aFSA (Def 4.27)

intersection (Def 4.23)

emptiness

Finite State Automata

(FSA) (Def 4.22)

annotated FSA

(aFSA) (Def 4.24)

intersection (Def 4.26)

emptiness

(concept language

 Def 4.4)

propositional

formulas

(Def 4.25)

relabeling

(Def 4.35)

occurrence graph constraint

propagation (Def 4.42)

fixed point with regard

to (Def 4.43)

relabeling

(Def 4.36)

relabeling

(Def 4.37)

fixed point with regard

to and

(Def 4.40)

history domain

 (Def 4.34)

intersection (Def 4.29)

emptiness (Def 4.30)

parameter constraint propagation (Def 4.28)

clean() (Def 4.31)

shuffle product & (Def 4.32)

bilateral parameter constraint propagation (Def 4.39)

abstraction (Def 4.41)

Figure 4.8: Map of Definitions for the Synchronous Model

in the concept language with concrete domains ALC (D) (Definition 4.4) as introduced in Sec-
tion 4.1. Since the additional constraints affect the usage of transitions due to the constraints,
the definitions of intersection (Definition 4.29) and emptiness test (Definition 4.30) have to be
adapted. Further, a clean() operation (Definition 4.31) to reduce the number of transitions con-
tained in a guarded aFSA is introduced. This operation takes into account the parameter con-
straints used and removes those, which can never be validated to true. This operation is later on
used to realize emptiness testing based on structural aspects without an evaluation of parameter
constraints called normalization (Definition 4.38) in accordance to the approach described for
the asynchronous model.

To be able to express multi-lateral collaborations, the shuffle operation & (Definition 4.32) is
required in accordance to the standard shuffle product definition in FSA extended by specifics of
guarded aFSA. In particular, the shuffle product allows us to vary different execution sequences
represented by FSA involved in a multi-lateral collaboration. The shuffle product is used to con-
struct the execution sequences of a multi-lateral collaboration (Definition 4.33). In particular,
the multi-lateral collaboration is locally consistent, if the constructed multi-lateral collaboration
is not empty. Since this initial representation of a multi-lateral collaboration requires a lot of
information on all FSA, the basis for an equivalent definition is provided by introducing abstrac-
tions of guarded aFSA τp() (Definition 4.41), of propositional formulas τa() (Definition 4.35),
and constraints τg() (Definitions 4.36 and 4.37) based on the concept language ALC (D).

Finally, based on the formally introduced model of guarded aFSA, the steps outlined in Sec-
tion 2.4 describing the overall approach are introduced. The first step is the resolution of cycles

60 Chapter 4. Local Consistency Checking

resulting in a acyclic normalized guarded aFSA. The second step is the propagation of param-
eter constraints, which is formalized in operations Φ() (Definition 4.28) and Φb() (Definition
4.39) realizing parameter constraint propagation within a single guarded aFSA and between two
guarded aFSA respectively. The third step is the propagation of occurrence graph constraints,
formalized in operation Ψ() (Definition 4.42). Further, the fixed points are defined on these
constraint propagation operations (Definitions 4.40 and 4.43).

4.3.2 Finite State Automaton

Finite State Automata (FSA) are well studied. Formally, Finite State Automata can be repre-
sented as follows [HMU01]:

Definition 4.22
A Finite State Automaton A is represented as a tuple A = (Q,Σ,∆,q0,F) where :

• Q is a finite set of states,

• Σ is a finite set of messages denoted s#r#msg with sender s ∈ P sending message msg to
recipient r ∈ P , with P being the set of all parties,

• ∆ : Q×Σ×Q represents labeled transitions,

• q0 a start state with q0 ∈ Q, and

• F ⊆ Q a set of final states.

The only difference to the standard definition of FSAs [HMU01] is that the alphabet Σ con-
sists of messages constructed by a sender, a recipient, and a message name. However, for the
purpose of consistency checking of business processes, these triples can be treated like atomic
tokens: Two message triples are equal, if their sender, their recipient, and the message (with its
parameters) are equal.

A FSA A generates a language L(A) which enumerates the (possibly infinite) set of all message
sequences supported by a business process. Two FSAs are consistent, if their languages have a
non-empty intersection. The intersection of two FSAs is again a FSA, which can be determined
with the usual cross product construction [HMU01] :

Definition 4.23
The intersection A1∩A2 of two automata A1 = (Q1,Σ1,∆1,q10,F1), and A2 = (Q2,Σ2,∆2,q20,F2)
is A = (Q,Σ,∆,q0,F), with

• Q = Q1×Q2,

4.3 Synchronous Model 61

• Σ = Σ1∩Σ2,

• ∆((q11,q21),α,(q12,q22)) with ∆1(q11,α,q12)∧∆2(q21,α,q22),

• q0 = (q10,q20), and

• F = F1×F2.

If the resulting automaton does not contain at least one path (possibly of zero length) between
the start state and an end state, its language is the empty language /0. In this case, the business
processes modeled by the FSAs are inconsistent, because they do not share a common message
sequence.

An emptiness test algorithm like in [HMU01] is based on the reachability of states within an
automaton starting from the start state q0. The automaton accepts an empty language, if and
only if no final state is within the set of reachable states.

A functional definition of an emptiness test is based on a recursive reachability function,
where curP represents the current path of the recursion and qi represents the current state. The
function terminates, if a final state has been reached (first line of definition) or no further non-
cyclic transition is available (third line). The function traverses the automaton in a depth-first
manner (second line) searching for at least one path to a final state. An automaton is empty, that
is, Empt(A) := ¬Reach(/0,q0), if no final state is reachable. A formal definition is given below:

Reach(curP,qi) :=





true i f qi ∈ FW
{ql |∆(qi,l,ql)}

Reach(curP.qi,ql) i f qi /∈ F ∧ql /∈ curP

f alse otherwise

As discussed in Section 2.1,a standard automaton can not distinguish between mandatory
and optional messages. Usually, a message in a standard FSA is regarded as an optional one.
However, modeling business processes requires both mandatory and optional messages. It is not
possible to represent this semantics in message sequences or FSA directly. Thus, an annotation
containing this additional meta information is required relevant only for consistency checking.

4.3.3 Annotated Finite State Automaton

Based on the above observation, annotated FSA (aFSA) are introduced as a standard FSA (see
Definition 4.22), where each state might be assigned a propositional logical term.

Definition 4.24
An annotated FSA A is represented as a tuple A = (Q,Σ,∆,q0,F,QA) where

• Q is a finite set of states,

62 Chapter 4. Local Consistency Checking

• Σ is a finite set of messages denoted s#r#msg with sender s ∈ P sending message msg to
recipient r ∈ P , with P being the set of all parties,

• ∆ : Q×Σ×Q represents transitions,

• q0 a start state with q0 ∈ Q,

• F ⊆ Q a set of final states, and

• QA : Q×E is a finite relation of states and logical terms within the set E of propositional
logic terms.

The terms in E are standard Boolean formulas, adapting the definition in [CS98] 5:

Definition 4.25
The syntax of the supported logical formulas is given as follows:

• the constants true and f alse are formulas,

• the variables v ∈ Σ are formulas,

• if φ is a formula, so is ¬φ,

• if φ and ψ are formulas, so is φ∧ψ and φ∨ψ.

The set of all propositional formulas is denoted as B.

The standard semantics of automata is an optional execution of transitions. This is observable
also in the functional emptiness test definition given above: a single path to a final state returns
a true causing the whole disjunction to return true in the reachability function. Thus, the logical
mapping of automata to annotated automata is an annotation containing a disjunctive expres-
sion including all transition labels as depicted in Figure 4.9. For reasons of simplicity, the OR
annotations are neglected in the following.

The definition of terms does not force a term to contain all labels of outgoing transitions of the
associated state. Thus, annotations may be incomplete, that is, not containing all outgoing transi-
tion labels. Such incomplete annotations can be completed by extending them with a disjunction
of all labels not contained yet. This method is explained on behalf of an example being an ex-
tension of the example introduced in Section 2.1.1 and being depicted in Figure 4.10(a). The
process starts with a purchase order (C#V#PO message) sent by a customer, which is answered
by the vendor via V#C#delivery message or an out of stock notification (V#C#noStock message)

5The description logic ALC (D) is not used due to the later extension of the approach on a three valued logic (see
also Section 4.3.5).

4.3 Synchronous Model 63

A B

(a)
 (b)

A
 B
 A
 B

Figure 4.9: (a) Automaton (b) Annotated Automaton Equivalent to (a).

or can directly be canceled again by the customer sending a C#V#cancel message. Finally, the
payment can be provided by credit card (C#V#ccPay message). The annotation provided rep-
resents that the vendor insists on having V#C#delivery and V#C#noStock messages supported.
Message C#V#cancel is unrelated to messages V#C#delivery and V#C#noStock, thus, represents
an independent alternative,which is combined with the existing term by a disjunction as depicted
in Figure 4.10(b).

 V#C#delivery

 V#C#noStock

(a)
 (b)

V#C#delivery

C#V#ccPay

C#V#PO

V

#

C

#

n

o
S

t
o

c
k

C

#

V

#

c
a

n
c

e

l

(V#C#delivery

 V#C#noStock)

 C#V#cancel

V#C#delivery

C#V#ccPay

C#V#PO

V

#

C

#

n

o
S

t
o

c
k

C

#

V

#

c
a

n
c

e

l

Figure 4.10: (a) Incomplete aFSA (b) Completely Annotated aFSA Equivalent to (a).

Extending terms of annotated automata is quite important for defining the emptiness test later
on. The set of variables Xqi corresponding to state qi is defined as the set of outgoing transition
labels of state qi. Formally expressed as:

Xqi := {xqi | ∃q′ ∈ Q.∆(qi,xqi ,q′)}

Similar to standard Boolean logic definitions Var is the set of all variables bound in a term tqi

associated with a state qi with (qi, tqi) ∈ QA. Be aware, that the formula

Var(tqi)⊆ Xqi

is not necessarily true. There might exist variables in a term associated to a state qi without a
counterpart in outgoing transition labels. An example is depicted in Figure 4.11(a) and explained

64 Chapter 4. Local Consistency Checking

in Section 4.3.4 later on. As stated above, a term tqi might be incomplete, that is

Xqi\Var(tqi) 6= /0

and must be extended. The completed term t̃qi is defined as a disjunction of the annotated
term tqi associated to state qi and all outgoing transition labels not used in the term tqi so far. A
formal definition is given below:

t̃qi := tqi ∨ (
_

x∈Xqi\Var(tqi)

x)

4.3.4 Intersection of Annotated Finite State Automaton

Matchmaking business processes has been defined as a non-empty intersection. The intersection
automaton of two automata contains the language accepted by both automata. Therefore, the
annotation of the result automaton must support the annotation of the first and the annotation of
the second automaton. The intersection definition is given below:

Definition 4.26
The intersection A1∩A2 of two annotated automata A1 = (Q1,Σ1,∆1,q10,F1,QA1), and
A2 = (Q2,Σ2,∆2,q20,F2,QA2) is A = (Q,Σ,∆,q0,F,QA), with

• Q = Q1×Q2,

• Σ = Σ1∩Σ2,

• ∆((q11,q21),α,(q12,q22)) with ∆1(q11,α,q12)∧∆2(q21,α,q22),

• q0 = (q10,q20),

• F = F1×F2, and

• QA =
[

q1 ∈ Q1,

q2 ∈ Q2





((q1,q2),e1∧ e2) i f (q1,e1) ∈ QA1,(q2,e2) ∈ QA2

((q1,q2),e1) i f (q1,e1) ∈ QA1, 6 ∃e′.(q2,e′) ∈ QA2

((q1,q2),e2) i f (q2,e2) ∈ QA2, 6 ∃e′.(q1,e′) ∈ QA1

/0 otherwise

The intersection definition above is a slight extension of standard automaton intersection def-
inition (see Definition 4.23). In particular, the annotations are maintained independently of the
automaton structure itself. The evaluation of the resulting annotated automaton with regard to
matchmaking is done in the emptiness test.

4.3 Synchronous Model 65

To illustrate this definition the example in Section 2.1.1 is reconsidered. The minimized in-
tersection automaton of the vendor and customer process in Figure 2.2(a) and (b) is depicted
in Figure 4.11(a). The resulting automaton is the standard automaton intersection plus the cor-
responding annotation. The annotation of the intersection automaton requires a V #C#noStock
message, although the intersection automaton structure does not provide this transition. Fig-
ure 4.11(b) depicts the intersection automaton of the vendor and the customer process given in
Figure 2.2(a) and (c). The resulting intersection automaton contains both required messages:
V #C#delivery and V #C#noStock.

 V#C#delivery

 V#C#noStock

 V#C#delivery

 V#C#noStock

(a)
 (b)

V#C#delivery

C#V#ccPay

C#V#PO

V#C#noStock

V#C#delivery

C#V#ccPay

C#V#PO

C#V#invoicePay

Figure 4.11: (a) Intersection of Vendor and Customer Process with Missing V #C#noStock Mes-
sage. (b) Intersection of Vendor and Customer Process with V #C#noStock Mes-
sage.

4.3.5 Emptiness Test of Annotated Finite State Automaton

So far, state annotations have been maintained, but not yet been evaluated. Within the emptiness
test the annotated terms are now evaluated. The evaluation of annotated terms is done in ac-
cordance with standard logical interpretation as, e.g., defined in [CS98] where an interpretation
is based on a valuation ν of variables. A variable is evaluated as true if and only if the target
state of the transition labeled with the variable name can reach a final state. Thus, the word
associated with the current state concatenated with the variable name is a prefix of at least one
word accepted by the language of the automaton.

Based on this definition of truth of variables within annotated terms it is required to first
determine whether the target state of outgoing transitions of a state can reach a final state be-
fore evaluating the annotated term. This may result in cyclic dependencies, like for example
observable in a self-loop, where the truth value of a state can not be determined, because the
result depends on its own (not yet defined) truth value. This issue can be resolved by using a
three-valued logic providing the standard truth values true t and f alse f , and in addition a value

66 Chapter 4. Local Consistency Checking

¬3

f t
t f
i i

∨3 f t i
f f t f
t t t t
i f t i

∧3 f t i
f f f f
t f t t
i f t i

Table 4.1: Truth Tables of Three-valued Logic

intermediate i used in case of recursion. This issue is well known from primitive recursive func-
tion theory. The formal definition of the emptiness test is based on a three-valued logic similar
to Kleene’s system of "strong connectives" [Pan98]6. The corresponding operations of the three
valued logic are negation ¬3, disjunction ∨3, and conjunction ∧3. The corresponding truth tables
is depicted in Table 4.1.

The standard interpretation ‖.‖ of the logic is based on the operations defined above, but must
consider the current path curP of the evaluation to enable cycle detection. The characters t, t1, t2,
and c represent terms and a constant respectively, while x represents a variable symbol.

‖¬t‖ν
curP := ¬3‖t‖ν

curP
‖t1∨ t2‖ν

curP := ‖t1‖ν
curP∨3 ‖t2‖ν

curP
‖t1∧ t2‖ν

curP := ‖t1‖ν
curP∧3 ‖t2‖ν

curP
‖true‖ν

curP := t;‖ f alse‖ν
curP := f

‖x‖ν
curP := vI with vI ∈ {t, f , i};x ∈ Σ

As stated above, the truth value of variables are derived by checking whether there exists a
path to a final state starting from the current path curP extended by the current state qi and
following the transition labeled with the name of the variable xqi

j . The value intermediate i
is returned if the transition labeled xqi

j has a target state contained in the current path curP
concatenated with the current state qi. This is, because the evaluation of the variable xqi

j depends
on its own evaluation. In case the target state of the transition labeled xqi

j is not in the current
path nor the current state qi, the evaluation of xqi

j is done by a function called R() checking the
reachability of a final state. The function is quite similar to the Reach() function specified in
Section 4.3.2 and is defined in more detail later on. In case no transition labeled with xqi

j exists
the evaluation is f alse f . The formal definition of the valuation of variables is given below:

‖xqi
j ‖ν

curP :=





f i f 6 ∃q′ ∈ Q.∆(qi,x
qi
j ,q′)

W
∆(qi,x

qi
j ,q′)

{
i i f q′ ∈ curP.qi

R(curP.qi,q′) otherwise

Based on this valuation definition emptiness in annotated automata denoted as Empt ′() is
f alse if and only if the modified reachability function R′() returns truth value t. Emptiness is

6The special definition of implications of this system is not required in the presented approach.

4.3 Synchronous Model 67

defined by a comparison to ensure a Boolean result rather than a three-value logical result.

Empt ′(A) := R′(curP,qi) 6= t

R′(curP,qi) :=
{

t i f qi ∈ F
‖t̃qi‖ν

curP otherwise

The reachability function R′() terminates with true t if the current state qi is a final state. If
the current state qi is not a final state the completed annotation must be valuated.

4.3.6 Guarded Annotated Finite State Automaton

The current definition of annotated Finite State Automata lacks the possibility to represent pa-
rameter constraints. Similar to the introduction of guard functions in WF-Nets (see Definition
4.16) the aFSA definition can be extended by guard functions to represent parameter constraints
within an aFSA. The guard function is used to introduce additional constraints on the enabling
of transitions, thus, guard functions are annotated to transitions rather than to states as done by
the annotations contained in aFSA already. A guarded aFSA is defined as follows:

Definition 4.27
A guarded aFSA Ag := (Q,Σ,∆,q0,F,QA,G,P), where (Q,Σ,∆,q0,F,QA) represents an anno-
tated Finite State Automaton, P ∈ P a set of parties 7 whose local workflows are represented
in Ag, and G : ∆→ ALC (D) a guard function assigning each transition a guard expression de-
noted in description logic with concrete domain D. The default guard expression assigned to a
transition by a guard function is the tautology >, which is not explicitly represented.

With regard to the example described in Section 2.3.1, the local workflows denoted as guarded
aFSA are depicted in Figure 4.12, where WF-Net places are represented as automaton states
and WF-Net transitions become automaton transitions8. The annotation for the buyer workflow
represents the notion that the buyer has a choice of sending a message, where both options are
mandatory and thus must be supported by a trading partner.

Similar to WF-Nets, the guard function is used to check satisfiability of guard expressions
aggregated along a path, where unsatisfiable transitions can be omitted. The guard expressions
are evaluated by every automaton operation. In particular, within the intersection calculation
the guard expression of a transition, which does not fulfill the subsumption relation of a guard
expression associated with an equally labeled transition within an intersection calculation is set
to false⊥ and can be omitted afterwards. Further, guard expressions are evaluated during the re-
cursive traversal within an emptiness test of a guarded aFSA. In either case, the basis for the op-
erations are propagated guard expressions, that is, guard expressions along a message sequence

7Party names corresponds to the names of senders and recipients of messages (see Definition 4.22 and 4.24).
8This direct mapping is possible due to equivalence of the WF-Net model with the corresponding occurrence graph.

68 Chapter 4. Local Consistency Checking

logistic (L)

buyer (B)

B#A#order(it, p, a)

[a <100]
 B#L#get_status(tn)

L#B#status(tn, st)

A#L#deliver (it, a)

[a <100]

L#A#deliver_conf (it, a, tn)

A#B#delivery(it, p, a, tn)

B#L#get_status(tn)

L#B#status(tn, st)

B#L#get_status(tn)

B#L#terminate

L#B#status(tn, st)

B#L#terminate

A#L#deliver (it, a)

L#A#deliver_conf (it, a, tn)

accounting (A)

A#B#delivery(it, p, a, tn)

B#A#order(it, p, a)

A#L#auth

 B#L#terminate

 B#L#get_status(tn)

Figure 4.12: Guarded aFSA Representation of the Local Workflows

of the guarded automaton are combined by conjunction, while different message sequences are
represented as disjunctions. The formal definition of parameter constraint propagation is:

Definition 4.28
The parameter constraints contained in a guarded aFSA A = (Q,Σ,∆,q0,F,QA,G,P) can be
propagated resulting in a guarded aFSA A′ := Φ(A) with A′ = (Q,Σ,∆,q0,F,QA,G′,P). In
particular, the guard expression of a transition (q, α̃, q̃) is the disjunction of the conjunctions of
guard expressions, which correspond to transitions being part of a path, where the last transition
is (q, α̃, q̃).

∀(q, α̃, q̃) ∈ ∆.G′((q, α̃, q̃)) :=
G

σ:=〈(q0,α′,q′),(q′,α′′,q′′),...,(q,α̃,q̃)〉
ut∈σG(t)

Applying the parameter constraint propagation on the buyer workflow depicted in Figure 4.12
results in the guarded aFSA depicted in Figure 4.13.

Further, the intersection definition of aFSA (see Definition 4.26) can be extended to guarded
aFSA. Intersection is based on the cross product of transitions and states, which means that two
transitions are combined resulting in a single transition, thus, two guard expressions must be

4.3 Synchronous Model 69

B#A#order(it, p, a)

[a <100]

B#L#get_status(tn)

[a<100]

A#B#delivery(it, p, a, tn)

[a<100]

L#B#status(tn, st)

[a<100]

B#L#terminate

[a<100]

 B#L#terminate

 B#L#get_status(tn)

Figure 4.13: Parameter Constraint Propagated Buyer Workflow

aggregated to a single one. However, there exists a subsumption relation between the guard ex-
pression of the sender of a message and the corresponding guard expression of the recipient, that
is, the recipient must at least support those parameter combinations, which might be provided
by the sender of the message. If this subsumption is not provided, the guard expression is set to
false ⊥, thus, the transition can be omitted.

Definition 4.29
The intersection A1 ∩A2 of two guarded aFSA with A1 = (Q1,Σ1,∆1,q10,F1,QA1,G1,P1) and
A2 =(Q2,Σ2,∆2,q20,F2,QA2,G2,P2) is a guarded automaton A =(Q,Σ,∆,q0,F,QA,G,P), where
the intersection of the annotated automata is defined as in Definition 4.26 and the intersection
of the set of parties is P := P1∪P2, while the intersection of the guard functions is defined for a
transition t ∈ ∆ with t := ((q1,1,q2,1),s#r#msg,(q1,2,q2,2)) as

G(t) :=





(t,G1(t)) i f s ∈ P1∧ r ∈ P2∧G1((q1,1,s#r#msg,q1,2))v G2((q2,1,s#r#msg,q2,2))
(t,G1(t)) i f (s ∈ P1∧ r 6∈ P2)∨ (s 6∈ P2∧ r ∈ P1)
(t,G2(t)) i f s ∈ P2∧ r ∈ P1∧G2((q2,1,s#r#msg,q2,2))v G1((q1,1,s#r#msg,q1,2))
(t,G2(t)) i f (s ∈ P2∧ r 6∈ P1)∨ (s 6∈ P1∧ r ∈ P2)
(t,>) i f s 6∈ P1∪P2∧ r 6∈ P1∪P2

(t,⊥) otherwise

To illustrate the intersection definition, the exemplary guarded aFSA depicted in Figure 4.12
are simplified by only containing two messages each directly corresponding to the trading part-
ner. Figure 4.14(a) contains the A#L#deliver() and L#A#deliver_conf() messages, where receiv-
ing the A#L#deliver() message is constraint to an amount below 100 by the logistics department.
In accordance to the intersection definition, the guard expression of the received message is not
subsumed by the guard expression of the sending message, thus, the guard expression is changed
to false. However, in Figure 4.14(b) the parameter constraint is specified by the sending party,
which keeps the constraint in the intersection automaton.

70 Chapter 4. Local Consistency Checking

logistic (L)

a)

B#A#order(it, p, a)

[a <100]

A#L#deliver (it, a)

A#B#delivery

(it, p, a, tn)

L#A#deliver_conf

(it, a, tn)

accounting (A)

A#L#deliver (it, a)

[a <100]

L#A#deliver_conf

(it, a, tn)

L#A#deliver_conf

(it, a, tn)

L#A#deliver_conf

(it, a, tn)

clean()

buyer (B)

b)
 clean()

accounting (A)

A#L#deliver (it, a)

[]

A#B#delivery

(it, p, a, tn)

A#B#delivery

(it, p, a, tn)

A#B#delivery

(it, p, a, tn)

B#A#order(it, p, a)
 B#A#order(it, p, a)

[a <100]

B#A#order(it, p, a)

[a <100]

Figure 4.14: Guarded aFSA Intersection Examples: (a) Direct Accounting and Logistic Inter-
section (b) Direct Buyer and Accounting Intersection

Further, the emptiness test definition is adapted. In particular, the definition given in Section
4.3.5 has to be extended by following a transition only, if the corresponding guard expression is
satisfiable.

Definition 4.30
Emptiness of a guarded aFSA A denoted as Empt ′′(A) is f alse if and only if the modified
reachability function R′′() returns truth value t, where Empt ′′(A) := R′′(/0,q0) 6= t and

R′′(curP,qi) :=
{

t i f qi ∈ F
‖t̃qi‖ν

curP otherwise

with

‖xqi
j ‖ν

curP :=





f i f 6 ∃q′ ∈ Q.∆(qi,x
qi
j ,q′)

W
∆(qi,x

qi
j ,q′)





i i f q′ ∈ curP.qi∧G((qi,x
qi
j ,q′)) is satsifiable

R(curP.qi,q′) i f q′ 6∈ curP.qi∧G((qi,x
qi
j ,q′)) is satsifiable

f otherwise

4.3 Synchronous Model 71

As a consequence, transitions assigned with unsatisfiable guard expressions can be omitted,
thus, after calculating the intersection, a scan on the satisfiability of guard expressions assigned
to a transition can remove irrelevant transitions.

Definition 4.31
A guarded aFSA A = (Q,Σ,∆,q0,F,QA,G,P) can be transformed into an equivalent guarded
aFSA A′ = (Q,Σ,∆′,q0,F,QA,G′,P) with A′ = clean(A) by the operation clean(), where all
unsatisfiable transitions are removed and the guard function is adapted to the changed set of
transitions. Thus, ∆′ := {t ∈ ∆ | G(t) is satisfiable} and G′ := G∩ (∆′×ALC (D)).

Based on the clean() operation, the emptiness test of guarded aFSA can be represented as an
emptiness test of aFSA introduced in Section 4.3.5 by Empt ′′(Φ(A)) = Empt ′(clean(Φ(A))).
With regard to the intersection example depicted in Figure 4.14(a), the intersection is empty,
although the structural emptiness test (Empt ′()) applied to the intersection result derives a non-
empty automaton, while Empt ′′() derives the correct result of an empty automaton. However,
applying the clean() operation on the intersection result results in the last automaton in the row
depicted in Figure 4.14(a), where also the structural emptiness test Empt ′() derives the correct
result. In the case of non-empty automata the clean() operation does not modify the automaton
as depicted in Figure 4.14(b).

4.3.7 Consistency of a Multi-lateral Collaboration

Consistency of a multi-lateral collaboration can be specified as the non-empty intersection of
the local workflows forming the collaboration. A message sequence accepted by an intersection
automaton must be contained in each local workflow. However, a local workflow contains only
messages, where the party providing the local workflow is either sender or recipient. As a
consequence, the local workflows have to be extended by messages for which the local party
is neither sender nor recipient to get an intersection result at all, where the additional messages
might occur in arbitrary order.

The regular expression representing an arbitrary order of messages ΣM contained in a multi-
lateral collaboration AM without the set of messages Σk contained in the local workflow Ak is
specified by (ΣM \Σk)∗, which corresponds to an automaton with a single start state being also
a final state having one transition per message α ∈ ΣM \Σk from the start state to the start state.
In the following, the regular expression notation (ΣM \Σk)∗ is used to specify the equivalent
automaton.

To combine the additional messages with the local workflow, the automaton theoretic shuffle
product operation is used. In particular, the shuffle product of two message sequences results in
a set of message sequences, where the order of messages contained in two message sequences
remains unchanged in all constructed message sequences, while the interleaving of the message

72 Chapter 4. Local Consistency Checking

sequences is in arbitrary order. The formal definition of the shuffle product based on a standard
definition [MMP+95] is:

Definition 4.32
The shuffle product A := A1&A2 of A1 = (Q1,Σ1,∆1,q10,F1,QA1,G1,P1), and
A2 = (Q2,Σ2,∆2,q20,F2,QA2,G2,P2) is A = (Q,Σ,∆,q0,F,QA,G,P) with Q := Q1×Q2, Σ :=
Σ1∪Σ2, q0 := q10×q20, F := F1×F2, P := P1∪P2,
∆ := {((p,q1),α,(p,q2)) ∈ (Q1×Q2)×Σ2× (Q1×Q2) | (q1,α,q2) ∈ ∆2}

∪ {((p1,q),α,(p2,q)) ∈ (Q1×Q2)×Σ1× (Q1×Q2) | (p1,α, p2) ∈ ∆1}

QA =
[

q1 ∈ Q1,

q2 ∈ Q2





((q1,q2),e1∧ e2) i f (q1,e1) ∈ QA1 ∧ (q2,e2) ∈ QA2

((q1,q2),e1) i f (q1,e1) ∈ QA1 ∧ 6 ∃e′.(q2,e′) ∈ QA2

((q1,q2),e2) i f (q2,e2) ∈ QA2 ∧ 6 ∃e′.(q1,e′) ∈ QA1

/0 otherwise

G = (∆×ALC (D))∩G′ where t is the transition constructed from t1 and t2 and

G′ =
[

t1 ∈ ∆1,

t2 ∈ ∆2





(t,e1u e2) i f (t1,e1) ∈ G1 ∧ (t2,e2) ∈ G2

(t,e1) i f (t1,e1) ∈ G1 ∧ 6 ∃e′.(t2,e′) ∈ G2

(t,e2) i f (t2,e2) ∈ G2 ∧ 6 ∃e′.(t1,e′) ∈ G1

/0 otherwise

Based on the shuffle product definition, the workflow of the multi-lateral collaboration can
be defined as the intersection of the local workflows extended by all messages, where the local
party is neither sender nor recipient.

Definition 4.33
Let A0, . . . ,An−1 be a set of guarded aFSA representing local workflows respectively, then the
workflow AM of the multi-lateral collaboration M is defined as

AM :=
\

0≤ j<n

Φ(A j)&(ΣM \Σ j)∗

where & is the shuffle product (see Definition 4.32), ∗ is the Kleene Operator known from
regular expressions, and ΣM :=

S
0≤ j<n Σ j with Σ j being the alphabet of automaton A j and Σ j

is complete, that is, it contains all messages occurring in the multi-lateral collaboration. In
particular, all messages of the collaboration are contained, which are sent or received by a party
being involved in messages used by automaton A j, that is, Σ j = {s#r#msg∈ ΣM | s∈Pj∨r ∈Pj}.

4.3 Synchronous Model 73

The multi-lateral collaboration is consistent if the multi-lateral workflow is non-empty, that is,
L(AM) 6= /0.

With regard to the example described in Section 2.3.1, the local workflows denoted as guarded
aFSA are depicted in Figure 4.12, while the corresponding non-empty minimized multi-lateral
workflow is depicted in Figure 4.15, which is consistent.

B#L#get_status(tn)

[a<100]

L#B#status(tn, st)

[a<100]

B#L#terminate

[a<100]

A#L#deliver (it, a)

[a<100]

L#A#deliver_conf (it, a, tn)

[a<100]

A#B#delivery(it, p, a, tn)

[a<100]

B#A#order(it, p, a)

[a<100]

 B#L#terminate

 B#L#get_status(tn)

Figure 4.15: Minimized Guarded aFSA Representation of the Multi-lateral Collaboration

According to the consistency definition of multi-lateral workflows, bilateral consistency can
be defined quite similarly. In particular, bilateral consistency checking can be realized by ex-
tending the local party’s workflow and that of the trading partner, calculating the intersection,
and checking the result for emptiness. The local workflow is consistent, if the intersection au-
tomaton is non-empty. This bilateral consistency definition fulfills the requirements stated in
Section 2.1.2 by representing message sequences in terms of Finite State Automata and expli-
cating optional and mandatory messages within annotations of states.

A#B#msg1

party A

A#B#msg3

party B

A#Bmsg3

party C

B#C#msg2
B#C#msg2

A#B#msg1

Figure 4.16: Guarded aFSA Representation of Local Workflows

However, the current consistency definition is not yet complete as illustrated by the following
example. Let’s consider a three party scenario as depicted in Figure 4.16, where the multi-lateral

74 Chapter 4. Local Consistency Checking

workflow is equivalent to the local workflow of party B. Although, the multi-lateral workflow is
non-empty, it expects message B#C#msg2 to be sent by party B before message A#B#msg3 is re-
ceived by party B. Due to party A being independent of party B for sending message A#B#msg3,
party A might send the message before party B has sent message B#C#msg2, thus, in this case
the execution of the multi-lateral collaboration fails. In particular, such unsynchronized depen-
dencies of message exchanges make a multi-lateral collaboration inconsistent, thus, must result
in an empty multi-lateral workflow.

To take this observation into account for locally checking consistency, a notion of history
is introduced in terms of a history domain integrated in the description logic framework via a
functional role history h, where the history domain represents the alphabet of the multi-lateral
collaboration. The history functional roles are added to the guard expressions of each transition,
where initially the guard expression of each transition is conjuncted with the functional role
history ∃h.α, where α is the transition label. Via propagation of guard expressions using Φ(),
the guard expression is extended by a conjunction of history predicates representing the list of
transition labels (messages) that have been passed to reach the current transition. Formally,
the concrete history domain H is defined to be used via the history functional role h within
description logic based guard expressions.

Definition 4.34
The history domain H consists of a set of constants, where each constant represents a single
message, thus, the set of constants is the union of all alphabets.

Applying this extension to the above example results in the automaton depicted in Figure
4.17. The intersection of the aFSA of party A and B results in a falsified ⊥ guard expression of
the transition labeled A#B#msg3, because

∃h.A#B#msg1u∃h.A#B#msg3 6v ∃h.A#B#msg1u∃h.B#C#msg2t∃h.A#B#msg3

Thus, the multi-lateral workflow is empty, that is, is now classified correctly.
Based on the definition of consistency of multi-lateral collaborations, the operations needed

to decentrally decide on consistency of the multi-lateral collaboration in accordance with the
approach described in Section 2.4 are introduced next, that is, resolution of cycles, propagation
of parameter and occurrence graph constraints.

4.3.8 Resolution of Cycles

Cycles have to be removed since parameter constraints within different steps of a cycle may vary.
An illustrative example is discussed in Appendix A.1. Thus, the goal of the resolution of cycles
is to make the language accepted by the automata finite and to ensure that a message occurring
several times within a message sequence are distinguishable, that is, to make messages unique
on a path, while all paths are finite. To achieve this there exist two possibilities: the first one

4.3 Synchronous Model 75

party A
 party B
 party C

A#B#msg1

[h . A#B#msg1]

E

A#B#msg3

[h . A#B#msg1

 h . A#B#msg3]

E

E

A#B#msg1

[h . A#B#msg1]

E

B#C#msg2

[h . B#C#msg2]

E

B#C#msg2

[h . A#B#msg1

 h . B#C#msg2]

E

E

A#B#msg3

[h . A#B#msg1

 h . B#C#msg2

 h . A#B#msg3]

E

E

E

Figure 4.17: Guarded aFSA Representation of Local Workflows Extended by History Annota-
tion and Propagated Guard Expressions

keeps the parameter names and changes the message name, while the second approach changes
parameters and leaves message names unchanged. In either case guard functions as well as
annotations have to be changed. While the first approach assumes that parameters named equally
on a global level are considered to be equivalent, the second case considers each variable to be
unique, while relations between the different parameters have to be made explicit by equivalence
relations. In either case messages are unique, although the first case is easier to handle, which
will be followed in the further discussion.

As stated above, changing the message name also implies changing the annotations. Thus,
a definition of replacing a variable, that is, a message name by a new message name has to
be provided. Since it might be necessary to change several messages during the traversal of
an annotation or guard expression respectively, the required replacements are represented by a
substitution defined as θ := {α0 → β0, . . . ,αm−1 → βm−1}

Definition 4.35
The recursive operation τa based on the substitution θ := {α0 → β0, . . . ,αm−1 → βm−1} sub-
stitutes the variable αi by another variable βi within a three-valued logical expression e ∈ B in
accordance with Definition 4.25 to an expression e′ := τa(e,θ) as follows:

• τa(e∧ e′,θ) := τa(e,θ)∧ τa(e′,θ),

• τa(e∨ e′,θ) := τa(e,θ)∨ τa(e′,θ),

• τa(¬e,θ) := ¬τa(e,θ),

76 Chapter 4. Local Consistency Checking

• τa(true,θ) := true, τa(f alse,θ) := f alse, τa(intermediate,θ) := intermediate,

• τa(γ,θ) := γ if ∀α→ β ∈ θ.γ 6= α

• τa(α,θ) := β where α→ β ∈ θ

A similar definition is provided for renaming the constants of the history domain within the
functional roles of a guard expression denoted in description logic with concrete domains as
follows:

Definition 4.36
The recursive operation τg based on the substitution θ := {α0 → β0, . . . ,αm−1 → βm−1} sub-
stitutes occurrences of αi within a guard expression e ∈ ALC (D) by βi in accordance with
Definition 4.4 to a guard expression e′ := τg(e,θ) as follows:

• τg(et e′,θ) := τg(e,θ)t τg(e′,θ),

• τg(eu e′,θ) := τg(e,θ)u τg(e′,θ),

• τg(¬e,θ) := ¬τg(e,θ),

• τg(>,θ) :=>, τg(⊥,θ) :=⊥
• τg(∀r.e,θ) := ∀τg(r,θ).τg(e,θ),

• τg(∃r.e,θ) := ∃τg(r,θ).τg(e,θ),

• τg(∃(u1, . . . ,un).e,θ) := ∃(τg(u1,θ), . . . ,τg(un,θ)).τg(e,θ),

The substitution of messages within the history domain is specified as follows:

Definition 4.37
The recursive operation τg based on the substitution θ := {α0 → β0, . . . ,αm−1 → βm−1} substi-
tutes the element αi ∈H of the history domain H by another element βi ∈H as follows:

τg(γ,θ) :=
{

γ i f ∀α→ β ∈ θ.γ 6= α
β i f γ→ β ∈ θ

Based on these definitions the construction of a acyclic automaton derived from a cyclic one
can be defined by limiting the maximum number of iterations of a cycle to a constant N and
explicitly enumerating all remaining execution sequences of the cycle. The construction process
of the acyclic automaton subscribes each message name by the occurrence of that message name

4.3 Synchronous Model 77

in the path that has been traversed to reach the transition. Further, the construction process
ensures that the guard expressions of each transition of the constructed automaton consists of
conjunctions only, that is, one transition is introduced per disjunction taken from the disjunctive
normal form of the original guard expression of the transition. This construction results in
a normalized acyclic tree-structured automaton accepting a reasonable subset of the language
accepted by the original automaton 9. A definition of the normalization operation Θ is given
in Appendix A.2. In the following, the properties of an acyclic normalized guarded aFSA are
defined.

Definition 4.38
A normalized guarded aFSA A = (Q,Σ,∆,q0,F,QA,G,P) provides the following properties:

• it is acyclic, that, is, cycles are resolved by at most N iteration steps, and

• all guard expressions are conjunctions only.

buyer (B)

B#A#order
1
 (it
, p
, a
)

[a
 <100]

A#B#delivery
1
 (it
, p
, a
, tn
)

B#L#get_status
1
(tn
)

L#B#status
1
(tn
, st
)

B#L#terminate
1

B#L#get_status
2
(tn
)

L#B#status
2
(tn
, st
)
 B#L#terminate
1

B#L#terminate
1

B#L#get_status
2
(tn
)

L#B#status

2

(tn
, st
)
 B#L#terminate

1

 B#L#terminate
1

 B#L#get_status
1
(tn)

 B#L#terminate
1

 B#L#get_status
2
(tn)

 B#L#terminate
1

 intermediate

 B#L#terminate
1

 intermediate

Figure 4.18: Buyer Acyclic Workflow with a Maximum Iteration of 2.

With regard to the example described in Section 2.3.1, the local workflows depicted in Figure
4.12 of the buyer and the logistics department have been used as the the basis for constructing
normalized guarded aFSAs depicted in Figure 4.18 and 4.19 respectively. To make the figures
less complex, the history functional roles as introduced in the previous section are not shown. In
particular, within this example, the history functional roles are not required to derive a correct
consistency decision.

9A similar approach of representing parameter constraints as automaton structure has been used by [FBS04] called

78 Chapter 4. Local Consistency Checking

logistic (L)

L#B#status
1
(tn, st)

A#L#deliver
1
 (it
, a
)

[a <100]

L#A#deliver_conf
1
(it, a, tn)

B#L#get_status
1
(tn)

A#L#auth
1

B#L#get_status
1
(tn)

L#B#status
1
(tn, st)

B#L#terminate
1

B#L#get_status
2
(tn)

L#B#status
2
(tn, st)
 B#L#terminate
1

B#L#terminate
1

B#L#get_status
2
(tn)

L#B#status

2

(tn, st)
 B#L#terminate

1

Figure 4.19: Logistics Department Acyclic Workflow with a Maximum Iteration of 2.

4.3.9 Propagation of Parameter Constraints

Based on the acyclic aFSA the parameter constraint propagation can be performed resulting in a
fixed point as outlined in Section 2.4.2. Parameter constraint propagation consists of the propa-
gation of constraints within the local workflow, which has already been defined in Section 4.3.6
(see Definition 4.28), and the propagation of parameter constraints from one local workflow to
another local workflow. This bilateral parameter constraint propagation collects all parameter
constraints, which are introduced by the trading partner sending a message being received by
the local party. Because only constraints of sending messages are propagated while constraints
of receiving messages are ignored, the propagation operation is asymmetric. In particular, the
asymmetry is the consequence of the asymmetry of a message exchange, that is, one party sends
the message, while it is received by another party. The formal definition is given below.

Definition 4.39
Let A1 and A2 be two guarded aFSA with Ai = (Qi,Σi,∆i,q0i,Fi,QAi,Gi,Pi) with i = 1,2. Then,
the bilateral parameter constraint propagation Φb transforming A1 into A′1 with A′1 := Φb(A1,A2)
where the guarded aFSA A′1 = (Q1,Σ1,∆1,q01,F1,QA1,G′

1,P1) redefines the guard expressions
of the guarded aFSA A1 as follows:

"determinization". However, the approach seems to be too restrictive, since for a single state either sending
transitions or receiving ones are allowed, but not a combination of both.

4.3 Synchronous Model 79

G′
1 :=

[

((q1,α,q′1),e1)∈G1

{(
(q1,α,q′1),e1u (

G

((q2,α,q′2),e2) ∈ G2

α = s#r#msg∧ r ∈ P1

e2)
)}

where G2 is the guard function of A2.

The combination of local and bilateral parameter constraint propagation results in a fixed point
formally specified as follows:

Definition 4.40
Let AM be a multi-lateral collaboration AM consisting of A0, . . . ,An−1 local workflows, then AM

is a fixed point, if and only if

∀0≤ k < n.∀0≤ j < n, j 6= k.Ak = Φ(Φb(Ak,A j))

A#L#deliver

1

 (it, a)

L#A#deliver_conf

1

 (it, a, tn)

accounting (A
)

A#B#delivery

1

(it, p, a, tn)

B#A#order

1

(it, p, a)

[a<100]

A#L#deliver

1

 (it, a)

[a<100]

L#A#deliver_conf
 1
(it, a, tn)

[a<100]

accounting (A
)

A#B#delivery

1

(it, p, a, tn)

[a<100]

B#A#order
 1
(it, p, a)

[a<100]

(a)

(b)

Figure 4.20: Accounting Department Workflow with Propagation - (a)A := Φb(A,B) With A and
B From Figure 4.12 and (b)A := Φ(A) With A From (a)

With regard to the example described in Section 2.3.1 and in accordance to the local workflows
depicted in Figure 4.12, constraint propagation is performed on acyclic normalized guarded
aFSA. The acyclic normalized guarded aFSA of buyer and logistics department are depicted in
Figure 4.18 and 4.19 respectively. Since the accounting department workflow is already acyclic,
the normalized guarded aFSA equals the guarded aFSA depicted in Figure 2.3.1 except that
every message is subscribed by a one since every message occurs exactly once.

The bilateral propagation of accounting and logistics departments applied in either direction
keeps the local workflows unchanged. Also the buyer workflow remains unchanged in the bi-
lateral propagation with the accounting department. However, the bilateral propagation of ac-
counting department and buyer assigns the transition labeled B#A#order1(it, p,a) a parameter

80 Chapter 4. Local Consistency Checking

constraint on restricting the amount to at most 99, that is, a < 100. The resulting accounting de-
partment workflow is depicted in Figure 4.20(a). Applying local propagation on this accounting
department workflow results in a workflow depicted in Figure 4.20(b). The application of local
propagation on the buyer and logistics department workflow spreads the constraint on the amount
a, that is, a < 100, to all transitions following B#A#order1(it, p,a) and A#L#deliver1(it,a) re-
spectively.

After this parameter constraint propagation, the fixed point has already been reached, because
further propagation of parameter constraints does not change any workflow further. Thus, the
next step can be applied, that is, occurrence graph constraint propagation.

4.3.10 Propagation of Occurrence Graph Constraints

Propagation of occurrence graph constraints as outlined in Section 2.4.3 means that only those
message sequences are considered by the trading parties which are supported by both trading
partners. This is exactly the definition of intersection. Thus, the definition introduced for con-
sistency checking are reused for propagation of occurrence graph constraints.

In particular, propagation of occurrence graph constraints is based on the intersection of the
extended local workflows of trading partners of a local party p and a final removal of all mes-
sages, which are unrelated to the party p’s local workflow, which has been informally introduced
in Section 2.4.3 as abstraction τp. The abstraction can formally be defined as a replacement of
transition labels (messages) not related to party p by an silent transition ε 10. In particular, the ex-
tension of the silent transition ε by the transition label is required to enable ε-removal operation
on an aFSA effecting annotation.

Definition 4.41
A guarded aFSA A′ = (Q,Σ′,∆′,q0,F,QA′,P) with A′ = τp(A) is an abstraction of a guarded
aFSA A = (Q,Σ,∆,q0,F,QA,P) with regard to a party p, where

τp(s#r#msg) :=
{

s#r#msg i f (s = p)∨ (r = p)
εs#r#msg otherwise

and Σ′ := {τp(α) |α∈ Σ}, ∆′ := {(q,τp(α),q′) | (q,α,q′)∈ ∆}, QA′ := {(q,τp(e)) | (q,e)∈QA}
with
τp(e∧ e′) := τp(e)∧ τp(e′),
τp(e∨ e′) := τp(e)∨ τp(e′),
τp(¬e) := ¬τp(e),
τp(true) := true, τp(f alse) := f alse, τp(intermediate) := intermediate

10In WF-Net theory the silent transition is τ, while automata theory uses ε to represent silent transitions [HMU01].

4.3 Synchronous Model 81

Due to the introduction of silent transitions ε the definition of intersection (see Definition 4.29)
has to be slightly extended by copying the ε transitions of each guarded aFSA to the intersection
automaton, such that, the resulting transition ∆ is defined as

∆ := {((q11,q21),α,(q12,q22)) | (q11,α,q12) ∈ ∆1∧ (q21,α,q22) ∈ ∆2}
∪ {((q11,q),α,(q12,q)) | (q11,α,q12) ∈ ∆1∧q ∈ Q2}
∪ {((q,q21),α,(q,q22)) | q ∈ Q1∧ (q21,α,q22) ∈ ∆2}

Based on the definition of abstraction the propagation of occurrence graph constraints can be
defined as follows:

Definition 4.42
Let AM be a multi-lateral collaboration consisting of A0, . . . ,An−1, where each Ai is a normalized
acyclic guarded aFSA with Ai being fixed point with regard to parameter constraint propaga-
tion. Further, let party p having the local workflow Ak and {Aip(0), . . . ,Aip(mp)} := {A j | 0≤ j <

n ∧ Σ j ∩Σp 6= /0} be the set of party p’s trading partner workflows. The propagated occurrence
graph constraints of Ak result in an acyclic guarded aFSA A′k = Ψ(Ak) with

A′k := τp(
\

0≤ j<mp

Aip(j)&(ΣMp \Σip(j))
∗)

where & is the shuffle product (see Definition 4.32), ∗ is the Kleene Operator known from regular
expressions, and ΣMp :=

S
0≤ j<mp

Σip(j) with Σip(j) being the alphabet of automaton Aip(j).

The propagation definition requires normalization to ensure that the handling of the guard
expressions within the intersection operation is in accordance with the intended semantics as
discussed in Section 4.2.6. The iterative application of occurrence graph constraint propagation
results finally in a fixed point defined as:

Definition 4.43
Let AM be a multi-lateral collaboration AM consisting of A0, . . . ,An−1 local workflows, where
each Ai is a normalized acyclic guarded aFSA with Ai being fixed point with regard to parameter
constraint propagation. Then AM is fixed point, if and only if

∀0≤ k < n.Ak = Ψ(Ak)

Returning to the example from the previous section, the buyer and accounting department
workflow are already fixed point, however, the logistics workflow as depicted in Figure 4.19 but
with propagated parameter constraints of a < 100 is not fixed point for occurrence graph con-
straint propagation. The intersection automaton of the extended buyer, logistics and accounting

82 Chapter 4. Local Consistency Checking

B#L#get_status
1
(tn
)

[a<100]

L#B#status
1
(tn
, st
)

[a<100]

B#L#terminate
1

[a<100]

B#L#get_status
2
(tn
)

[a<100]

L#B#status
2
(tn
, st
)

[a<100]

B#L#terminate
1

[a<100]

B#L#terminate
1

[a<100]

B#L#get_status
2
(tn)

[a<100]

L#B#status

2

(tn, st)

[a<100]

B#L#terminate

1

[a<100]

 B#L#terminate
1

 B#L#get_status
1
(tn)

 B#L#terminate

1

 B#L#get_status
2
(tn)

 B#L#terminate
1

 intermediate

 B#L#terminate
1

 intermediate

A#L#deliver
1
 (it
, a
)

[a <100]

L#A#deliver_conf
1
 (it
, a
, tn
)

[a<100]

Figure 4.21: Minimized Logistics Department Propagated Occurrence Graph Constraints

department workflow does not contain the transition labeled A#L#auth1 since the accounting de-
partment workflow does not provide an equally labeled transition. Thus, the message sequence
starting with this transition is not contained in the intersection automaton. Applying the ab-
straction to the intersection automaton results in the propagated logistics department workflow
depicted in Figure 4.21, where the branch providing the parcel tracking option after authenti-
cation by the accounting department has been removed. After this occurrence graph constraint
propagation, the fixed point has already been reached. The fixed point workflows of the three
parties are localy consistent, thus, the multi-lateral collaboration is also consistent.

4.4 Summary

Local consistency checking as introduced in this chapter can be investigated based on an asyn-
chronous or synchronous communication model. While there exist sufficient proposals for the
asynchronous communication model like, for example, Workflow Nets (WF-Nets), none are
available for the synchronous case (see also Chapter 3). In either case, a representation of mes-
sage parameters and constraints on these parameters is required, which must be extendable to
support domain specific predicates. The selected logical model is description logic with concrete
domains, because subsumption in description logic is decidable and the extensibility by domain
specific predicates via concrete domains is provided.

Local consistency checking on an asynchronous communication model is based on guarded
WF-Nets, that is, a WF-Net extended by parameter constraints denoted in description logic with
concrete domains. To apply standard WF-Net consistency definition on guarded WF-Nets, pa-

4.4 Summary 83

rameter constraints have to be structurally represented as normalized guarded occurrence graphs,
thus, consistency checking does not require evaluation of parameter constraints anymore.

Local consistency checking on a synchronous communication model is based on a Finite
State Automaton (FSA) workflow model. Since no sufficient bilateral consistency definition
exists for FSA, the model is extended to annotated FSA by an explicit notion of mandatory and
optional messages. In particular, states are annotated by logical expressions containing outgoing
message names as predicates, where mandatory messages are combined by conjunctions and
optional message names are combined by disjunction. In accordance with the extension of WF-
Nets, annotated FSA are also extended to guarded annotated FSA, that is, annotated FSA where
transitions are assigned with parameter constraints denoted in description logic with concrete
domains. Based on this formal model the required operations are formally defined:

• propagation of parameter constraints within a single local workflow as well as between
two local workflows,

• bilateral and multi-lateral consistency as non-empty intersection of local workflows ex-
tended by messages the local party is neither sender nor receiver,

• resolution of cycles by at most N iteration steps of a cycle,

• propagation of occurrence graph constraints as intersection of local workflows extended
by messages the local party is neither sender nor receiver

Based on these definitions the approach presented in Section 2.4 can be implemented.
So far, guarded WF-Nets and guarded annotated FSA have been defined for asynchronous and

synchronous communication models respectively, while the necessary proofs for convergence
and correctness of the proposed approach are addressed in the next chapter.

84 Chapter 4. Local Consistency Checking

5 Decentralized Consistency Checking

In the previous chapter workflow models for asynchronous and synchronous communications
were introduced, that is, Workflow Nets (WF-Nets) and annotated Finite State Automata (aFSA)
respectively. Based on these workflow models multi-lateral collaborations have been introduced
and local consistency has been defined. Further, operations for the resolution of cycles, the
propagation of parameter and occurrence graph constraints have been specified for the aFSA in
accordance with the basic steps outlined in the description of the overall approach in Section 2.4.
However, these steps have not been defined on WF-Nets. Further, it has not been shown so far
that local consistency checking derives the same results as decentralized consistency checking.
The further discussion remains quite informal to improve readability in contrast to the formal
definitions in the previous chapter, where the aim was to provide a clear semantics of the intro-
duced models.

In the following, a guarded WF-Net model representing asynchronous communication is
mapped to guarded annotated Finite State Automata as introduced in Section 4.3.6 due to non-
constructive operations in WF-Nets. Based on this mapping, the aFSA definitions specified for
the synchronous communication model providing the cycle resolution and constraint propaga-
tion operations also apply to the asynchronous case.

Another issue is the formal proof based on the aFSA operations of the equivalence of lo-
cal multi-lateral collaboration consistency. The consistency of the multi-lateral collaboration is
derived from the fixed point of the parameter and occurrence graph constraint propagation.

5.1 Mapping Asynchronous Model

The formal specification of the asynchronous communication introduced in Section 4.2 is based
on guarded Workflow Nets (WF-Nets). However, checking of WF-Net properties is performed
on an occurrence graph (see Definition 4.21), that is, a graph representing all message sequences
supported by the WF-Net. Due to the notion of message sequences, the mapping of an occur-
rence graph to an aFSA is straightforward. The formal definition is given as

Definition 5.1
Let N be a normalized acyclic guarded WF-Net with N = (P,T,F, `,C ,G,E) (see Definition
4.16) representing party p’s local workflow and OG = (V,A,Node,Guard) (see Definition 4.21)
the corresponding guarded occurrence graph. The mapping of the guarded occurrence graph OG
to a guarded aFSA Ã = (Q,Σ,q0,F,∆,QA,G,P) is as follows:

86 Chapter 5. Decentralized Consistency Checking

• the set of states Q equals the set of vertices V , that is, Q = V ,

• the alphabet Σ comprises the transition labels `(t) of all transitions T , that is,
Σ = {`(t) | t ∈ T},

• the start state q0 is the initial marking of the guarded WF-Net ([i],>) where [i] represents
a single token in the initial place of the WF-Net and>means that there are no constraints,
that is, q0 = ([i],>),

• the set of final states F consists of all leaf vertices of the occurrence graph, that is,
F = {s ∈V |6 ∃s′ ∈V, t ∈ T.(s, t,s′) ∈ A},

• the set of transitions ∆ equals the arcs of the occurrence graph, that is,
∆ = {(s, `(t),s′) | (s, t,s′) ∈ A′},

• the set of annotations QA is the conjunction of all outgoing transitions of a vertex, that is,
QA =

S
s∈V{(s,

V
(s,t,s′)∈A `(t)} ,

• the guard expressions G are taken from the WF-Net guard expressions, that is,
G =

S
t∈T{((s, `(t),s′),G(t)) | (s, t,s′) ∈ A}, and

• the set of parties P is the local part p, that is, P = {p}.

Based on this mapping it has to be shown that the definition of soundness as defined on WF-
Nets corresponds to the consistency of aFSA, that is, the non-emptiness of aFSA.

Lemma 5.1 A normalized acyclic guarded WF-Net is sound if and only if the corresponding
guarded aFSA is non-empty.

Proof: In accordance with WF-Net soundness (see Definition 4.12) a WF-Net is sound if
it is safe and each path has a proper completion. Safeness is guaranteed by the structure of
an acyclic WF-Net since no recursion can occur and the fact that a transition and a place are
at most connected by a single arc. As a consequence the corresponding occurrence graph (see
Definition 4.21) of an acyclic guarded WF-Net is sound if each path of the occurrence graph ends
in a final marking containing a single token in the output place o and a satisfiable expression,
which corresponds to a final place.

As a result of the construction of the aFSA, each path of the occurrence graph OG corresponds
to a path in the aFSA A. Due to the annotations of the guarded aFSA the automaton is non-empty
if all transitions of a source state support a path to a final state. Because each state is annotated
by a conjunction of all outgoing transitions, the automaton is non-empty if and only if all paths
result in a final state. ¤

5.1 Mapping Asynchronous Model 87

In addition to consistency of a WF-Net as stated in the lemma above, consistency of a multi-
lateral collaboration is based on IO-soundness of an Interorganizational Workflow Net in the
notion of WF-Nets and non-empty intersection in the notion of aFSAs. Thus, in the case of a
multi-lateral collaboration different requirements exist on the occurrence graph mapping to the
aFSA. In particular, it is common to both representations that transitions sent by the local party
are considered to be mandatory, while receiving transitions are considered optional.

Definition 5.2
Let N be a normalized acyclic guarded WF-Net with N = (P,T,F, `,C ,G,E) representing party
p’s local workflow and OG = (V,A,Node,Guard) the corresponding guarded occurrence graph.
The mapping of the guarded occurrence graph OG to a guarded aFSA Ã = Occ(OG) with Ã =
(Q,Σ,q0,F,∆,QA,G,P) is as follows:

• the set of states Q equals the set of vertices V , that is, Q = V ,

• the alphabet Σ equals the transition labels `(t) of all transitions T , that is,
Σ = {`(t) | t ∈ T},

• the start state q0 is the initial marking of the guarded WF-Net ([i],>) where [i] represents
a single token in the initial place of the WF-Net and>means that there are no constraints,
that is, q0 = ([i],>),

• the set of final states F consists of all leaf vertices of the occurrence graph, that is,
F = {s ∈V |6 ∃s′ ∈V, t ∈ T.(s, t,s′) ∈ A},

• the set of transitions ∆ equals the arcs of the occurrence graph, that is,
∆ = {(s, `(t),s′) | (s, t,s′) ∈ A′},

• the set of annotations QA is the conjunction of all outgoing transitions of a vertex send by
the local party, that is, QA =

S
s∈V{(s,

V
t∈QAs

t)} with
QAs := {t ∈ T | (s, t,s′) ∈ A∧ t = p#r#msg} and p is the local party name,

• the guard expressions G are taken from the WF-Net guard expressions, that is,
G =

S
t∈T{((s, `(t),s′),G(t)) | (s, t,s′) ∈ A}, and

• the set of parties P is the local part p, that is, P = {p}.

Though, the mapping seems to be appropriate, the consistency of aFSA is not yet equivalent
to soundess of an interorganizational workflow as illustrated by the following example.

The example is based on a party B’s local workflow depicted in Figure 5.1(b) used within the
asynchronous WF-Net example depicted in Figure 4.1. In particular, party B receives message
A#B#msg1 before message A#B#msg2, however, due to the asynchronous communication model

88 Chapter 5. Decentralized Consistency Checking

A#B#msg2

A#B#msg1

(d)

A#B#msg2

A#B#msg1

A#B#msg2

A#B#msg1
 A#B#msg2

A#B#msg1

(b)
 (c)

A#B#msg2

A#B#msg1

(a)

Figure 5.1: (a) WF-Net of Party A, (b) WF-Net of Party B, (c) aFSA Representation of the Oc-
currence Graph of (b), (d) aFSA Representation of the Complete Occurrence Graph
of (b)

the bilateral WF-Net is consistent if party A sends these messages either in same or in reverse
order.

A mapping of the WF-Net to aFSA in accordance to Definition 5.2 results in the aFSA de-
picted in Figure 5.1(c). The intersection automaton of party B’s local workflow with party A’s
(equal to the one depicted in Figure 5.1(b)) having the same order of messages is non-empty,
that is, the bilateral collaboration is consistent. If the party A sends the messages in reverse or-
der (depicted in Figure 5.1(a)) the intersection result is empty, making the bilateral collaboration
inconsistent, while it should be consistent. As a consequence, the aFSA representing occurrence
graphs must be extended by additional paths, where the order of two messages subsequently
received by the local party is inverted. The complete aFSA representing an occurrence graph
of a WF-Net is depicted in 5.1(d). Since only receiving messages are used for the restructuring
of the aFSA and the fact that receiving messages are considered to be optional, the annotations
remain unchanged. A formal definition of a complete aFSA is given as follows:

Definition 5.3
An aFSA is complete, if and only if for any two preceding transitions (q,α,q′),(q′,α′,q′′) ∈ ∆
with α = s#r#msg and α′ = s′#r′#msg′, where r ∈ P and r′ ∈ P, the inverse order of messages is
also contained in ∆, that is, there exist also transitions (q,α′, q̃),(q̃,α,q′′) ∈ ∆.

Every aFSA representing an occurrence graph can be transformed into a complete aFSA by
shuffling the relevant transitions. This is comparable to parallel processing of receiving tran-
sitions in the corresponding WF-Net, that is, not considering the order in which the different
messages are received.

Based on these definitions, the consistency of a multi-lateral collaboration consisting of N0, . . . ,Nn−1
WF-Nets can be represented as global soundness of an Interorganizational Workflow Net (IOWF-

5.1 Mapping Asynchronous Model 89

Net) IOWF = (C,FC,n,N0, . . . ,Nn−1) in accordance with Definition 4.13. In particular, the set
of channels C corresponds to the set of messages exchanged between the WF-Nets N0, . . . ,Nn−1.
Each channel represents a single message exchange, thus the channels are named cs#r#msg where
the character c is subscripted by the corresponding message name. Finally, each channel is rep-
resented by a place with the same label as the channel itself and arcs connecting the place with
the sending and receiving transitions of the local workflows. Hence, the directed arcs specified
by FC connect the place representing the channel with two WF-Nets Nk and Nl related to party
pk and pl exchanging the message. This can be formalized as C := {c`(t) | t ∈ T} and

FC :=
[

0≤k<l<n

{(t,c`(t)),(c`(t), t ′) | c`(t) ∈C∧Nk = (P,T,F, `)∧Nl = (P′,T ′,F ′, `′)∧
t ∈ T ∧ t ′ ∈ T ′∧ `(t) = `′(t ′) = s#r#msg∧ s = pk∧ r = pl}

Based on this representation of a multi-lateral collaboration as an IOWF-Net consistency of
the collaboration can be specified as soundness of the flattened IOWF-Net constructed via the
f lat() operation (see Definition 4.14).

Lemma 5.2 Let IOWF = (C,FC,n,N0, . . . ,Nn−1) be an acyclic interorganizational workflow
with OGk being the occurrence graph of WF-Net Nk (0 ≤ k < N), and Ak be a complete aFSA
representation of OGk with Σk being the alphabet of Ak ΣM :=

S
0≤k<n Σk, then

/0 6=
\

0≤k<n

Φ(Ak)&(ΣM \Σi)∗←→ f lat(IOWF)is sound

where & is the shuffle product (see Definition 4.32) and ∗ the Kleene operator known from
regular expressions.

Proof: By the definition of f lat(), a sending transition labeled with message α inserts a
token in place cα, which can only be removed by a receiving transition labeled with message α
again. Should the receiving transition be missing, the place cα contains a token until the end of
the firing sequence, making the WF-Net non-sound. Thus, in a sound WF-Net constructed by
f lat(IOWF) every sending transition has to be followed by a receiving transition.

Let’s assume that the WF-Net f lat(IOWF) is not sound, that is, there exists a path where no
receiving message α follows the corresponding sending message α. Thus, the local workflow
does not support receiving of α in this particular firing sequence.

If and only if this is the case, then the recipient’s completed local workflow does not contain
message α in the corresponding firing sequences and, thus, the intersection calculation removes
α within this path at the intersection automaton. Due to the annotations introduced by Occ()
of a sending message being mandatory, there exists a state in the intersection automaton anno-
tated with α being mandatory, although the corresponding transition has been removed. As a
consequence the emptiness test evaluates to true indicating a non-consistent workflow.

90 Chapter 5. Decentralized Consistency Checking

If the WF-Net f lat(IOWF) is sound, no such firing sequence exists where a receiving mes-
sage is missing, thus the intersection will not remove the corresponding message in the automa-
ton of the receiving party and the emptiness test will be false.

The correct order of sending and receiving messages is guaranteed, since the definition of FC

is such that in a firing sequence of a bilateral communication, all messages sent from a party A
to another party B have to be received before party B can respond to party A. Thus, the order in
which messages can be received may vary in a firing sequence, however, before sending another
message all messages in the firing sequence waiting to be received must be received first. This
observation corresponds to the definition of completed aFSAs representing occurrence graphs
introduced in Definition 5.3 and covers the variation of message order provided by the f lat()
operation. ¤

The above lemma also explains the relation of the two mapping Definitions 5.1 and 5.2. Def-
inition 5.2 specifies a mapping of each WF-Net to an aFSA, where the intersection of these
extended aFSAs is equivalent to the aFSA generated by Definition 5.1 applied on the WF-Net
resulting from f lat(IOWF). Thus, the second mapping is relevant for the decentralized collab-
oration establishment addressed in this thesis.

An additional consequence of the previous lemma is that consistency of both communica-
tion models can be represented as the non-empty intersection of extended aFSA. Thus, further
discussion is based on the notion of aFSA.

5.2 Correctness of the Approach

The overall goal is to decide consistency of multi-lateral collaborations in a decentralized way. In
the previous chapter several definitions were provided and illustrated with the help of examples,
however, a formal proof is missing. In particular, the following statements have to be proven:

• The propagation of constraints guarantees convergence, thus, the fixed point can always
be reached.

• The local workflow Ak can be constructed by those parties having direct interaction with
Ak as specified in Definition 4.42. Thus, the constructed workflow is equivalent to corre-
sponding workflow projected from the global workflow.

• The definition of multi-lateral consistency as defined in Definition 4.33 has to be mapped
to the consensus of all parties on consistency of the fixed point local workflows.

These issues are addressed in the following sections.

5.2 Correctness of the Approach 91

5.2.1 Convergence of Constraint Propagation

In the following, it is shown that the definition of parameter constraint propagation as defined
in Definition 4.28 and 4.39 guarantees convergence, such that the fixed point definition (see
Definition 4.40) can always be reached.

Lemma 5.3 For all AM being a multi-lateral collaboration consisting of A0, . . . ,An−1 local work-
flows AM always reaches the fixed point

∀0≤ k < n.∀0≤ j < n, j 6= k.Ak = Φ(Φb(Ak,A j))

Proof: Local propagation of parameter constraints changes the resulting automaton if there
exists a transition in the former version of the automaton, which does not contain a guard ex-
pression provided by a transition passed on the message sequence already. In case of bilateral
parameter constraint propagation, the resulting automaton changes, if there exists a transition in
the previous version of the automaton, which does not contain a guard expression provided by
the corresponding transition of a trading partners local workflow.

In either case, guard expressions are not created, but existing ones are used to extend the
ones assigned to a transition already. In particular, the resulting guard expression subsumes
the former guard expression due to the construction of the propagation via conjunctions (see
Definition 4.28 and 4.39). As a consequence the change of the local workflow Ak is monotonic,
because within a multi-lateral collaboration the set of potential guard expressions is finite and
the guard expressions from one propagation step to another are subsumed, thus, the propagation
converges. ¤

In addition to the convergence of parameter constraint propagation, it can be shown that the
propagation of occurrence graph constraints as defined in Definition 4.42 based on the fixed point
of parameter constraint propagation guarantees convergence, such that fixed point definition (see
Definition 4.43) can always be reached.

Lemma 5.4 For all AM being a multi-lateral collaboration consisting of A0, . . . ,An−1 local work-
flows, where each Ai is a normalized acyclic guarded aFSA with Ai being a fixed point with
regard to parameter constraint propagation, AM always reaches the fixed point

∀0≤ k < n.∀0≤ j < n, j 6= k.Ak = Ψ(Ak)

Proof: Propagation of occurrence graph constraints is based on the intersection of extended
automata of a local workflow and the trading partners corresponding local workflows. Since
intersection of an automaton with other automata guarantees that the original one subsumes the

92 Chapter 5. Decentralized Consistency Checking

intersection automaton, the propagation operation Ψ is monotonic, thus, the occurrence graph
constraint propagation converges. ¤

5.2.2 Alternative Consistency Definition

The propagation results in a fixed point as stated above. However, it has to be shown that the
fixed point local workflows of a multi-lateral collaboration are equivalent to the corresponding
party’s projection of the multi-lateral collaboration. This proof requires an intermediate step of
showing that a party p’s projection of the intersection of the multi-lateral collaborations extended
local workflows is equivalent to the intersection of party p’s local workflow with the shuffle
product of party p’s projection of the remaining local workflows of the collaboration. To show
this equivalence, the two implications forming the equivalence are separated by the following
two lemmas.

Lemma 5.5 Let AM be a multi-lateral collaboration consisting of A0, . . . ,An−1 with A j being
the local workflow of party j and A j being parameter and occurrence graph constraint fixed
point, then for every 0≤ k < n and for every message sequence ω accepted by Ak, the message
sequence can be represented as the shuffle product of the projections τ j(ω) with 0 ≤ j < n and
j 6= k, that is,

∀0≤ k < n.∀ω ∈ L(Ak).ω ∈ L(&0≤ j<n, j 6=kτ j(ω))

Proof: Since ω contains messages, which are exchanged between Ak and another party A j,
the messages used by different j in τ j(ω) are disjoint. As a consequence, ω is in the language
created by the combination of these messages, where a potential order per trading partner is
already considered, that is, ω ∈ L(&0≤ j<n, j 6=kτ j(ω)). ¤

While the above lemma is quite straightforward, the following has to show that each word
which can be created by the shuffle product providing non-contradicting guard expressions im-
plies that the word is contained in the local workflow.

Lemma 5.6 Let AM be a multi-lateral collaboration consisting of A0, . . . ,An−1 with A j being the
local workflow of party j and A j being parameter and occurrence graph constraint fixed point,
then for every 0≤ k < n and for every message sequence ω accepted by
A′k := τk

(T
0≤ j<n Φ(A j)&(ΣM \Σ j)∗

)
, all message sequences ω′, which can be constructed by

the shuffle product of the projections τ j(ω) with 0≤ j < n and j 6= k fulfilling the local parameter
constraint propagation, that is, ω′ = clean(ω′), are contained in L(A′k). That is,

∀0≤ k < n.∀ω ∈ L(A′k).∀ω′ ∈ L
(

Φ(&0≤ j<n, j 6=kτ j(ω))
)
.ω′ = clean(ω′)→ ω′ ∈ L(A′k)

5.2 Correctness of the Approach 93

Proof: Due to the definition of A′k being the projection τk of the multi-lateral workflow (see
Definition 4.33), that is,

A′k := τk

(\

0≤ j<n

Φ(A j)&(ΣM \Σ j)∗
)

(5.1)

and the requirement of ω ∈ L(A′k) every local workflow A j with 0 ≤ j < n accepts a message
sequence ω j, which shares the same order of messages exchanged between Ak and A j, that is,

∀0≤ j < n.∃ω j ∈ L(Φ(A j)).τk(ω j) = τ j(ω) (5.2)

If this condition is not fulfilled, then the intersection in equation 5.1 would be empty and, thus, ω
would not be contained in L(A′k) as stated in the requirement. As a consequence, such a message
sequence ω j exists for every local workflow A j in the multi-lateral collaboration.

Each message used in ω has a sender and a recipient, where party k is either but not both of
them. As a consequence, the set of messages used in message sequences τk(ω j) and τk(ωi) are
disjoint, where 0≤ j < i < n, i 6= k, j 6= k. Based on the construction of ω′ (see equation 5.3) by
the shuffle product of the disjoint message sequences τ j(ω)

ω′ ∈ L
(

Φ(&0≤ j<n, j 6=kτ j(ω))
)

(5.3)

the requirement of ω′ = clean(ω′), that is, having satisfiable guard expressions within ω′, and
the fact that τ j(ω) equals τk(ω j) by equation 5.2 it follows that

ω′ ∈ L
(

Φ(&0≤ j<n, j 6=kτk(ω j))
)

(5.4)

Since τk(ω j) are pairwise disjoint, the following equation can be stated:

∀0≤ j < n, j 6= k.τk(ω j) = τ j(ω′) (5.5)

Due to the construction of ω′ (see equation 5.3) the parameter constraint propagation has
already been applied, thus, with the assumption of the lemma that all automata are fixed points
with parameter constraints ω′ = Φ(ω′) it follows that this equation also holds for the projection
of ω′ such that τ j(ω′) = Φ(τ j(ω′)), which can be rephrased by using equation 5.5 as

∀0≤ j < n.τk(ω j) = Φ(τk(ω j)) (5.6)

Let’s assume equation 5.6 is not valid, then ω j can not be accepted by A j, which contradicts
equation 5.2. Thus, the above equation is valid. As a consequence of this argumentation, the
following equation is valid, too:

∀0≤ j < n, j 6= k.ω j = Φ(ω j) (5.7)

ω j is contained in L(A j), which is constructed in the same way as Ak, that is, recursively via
the intersection calculation. Since ω j ∈ L(A j) the intersection of A j with the remaining parties as

94 Chapter 5. Decentralized Consistency Checking

specified in equation 5.1 accept the message sequence ω j due to the fixed point assumption, oth-
erwise ω j would not be contained in L(A j). As a consequence, the intersection of the extended
ω j cannot be empty, thus,

ω′ :=
\

0≤ j<n, j 6=k

Φ(ω j&(ΣM \Σ j)∗) (5.8)

which by requirement ω′ = clean(ω′) and equation 5.1 means that ω′ ∈ L(A′k), while ω′ has been
constructed by the shuffle product (see equation 5.3). ¤

Based on the previous lemmas, the initial aim of this section can be formally stated as a
theorem:

Theorem 5.1
Let AM be a multi-lateral collaboration consisting of A0, . . . ,An−1 with A j being the local work-
flow of party j and A j being parameter and occurrence graph constraint fixed point, then the
local workflow resulting from the projection of the multi-lateral workflow is equivalent to the
one constructed by the intersection of the local workflow with the shuffle product of the local
party’s projection of the remaining local workflows, that is,

τk

(\

0≤ j<n

Φ(A j&(ΣM \Σ j)∗)
)
≡ clean

(
Φ(Ak)∩Φ

(
&0≤ j<n, j 6=kτk(A j)

))

Proof: Two automata are equivalent if the corresponding languages are equivalent. Thus, every
message sequence is accepted by the right hand side if and only if the message sequence is also
accepted by the left hand side.

The implication from left to right can easily be shown, since ω ∈ L(Ak) with ω = clean(ω)
and by Lemma 5.5 ω ∈ L

(
Φ(&0≤ j<n, j 6=kτk(A j))

)
. As a consequence of ω ∈ L(Ak), ω is also

contained in the language resulting from clean
(

Φ(Ak)∩Φ
(

&0≤ j<n, j 6=kτk(A j)
))

.
The implication from right to left can be shown using Lemma 5.6. Since ω is contained in the

intersection language of Φ(Ak) and Φ(&0≤ j<n, j 6=kτk(A j)) with ω = clean(ω), ω is contained in
either language. Further, since ω is contained in Φ(Ak) the equation ω = Φ(ω) is also valid.

As a consequence, it has been shown that ω∈Φ(Ak) and ω = Φ(ω) which are the prerequisites
for Lemma 5.6, implying that ω ∈ τk(L(

T
0≤ j<n Φ(A j&(ΣM \Σ j)∗))) ¤

The current definition of the fixed point calculation requires a local workflow Ap to recognize
all messages of the trading partners to be able to extend its local workflow before doing the
intersection calculation (see also Definition 4.42). This seems inappropriate since the decen-
tralization requirement forces us to stick to local knowledge. As a consequence, an equivalent
representation of this propagation rule is introduced.

5.2 Correctness of the Approach 95

Lemma 5.7 Let AM be a multi-lateral collaboration consisting of A0, . . . ,An−1 with A j being the
local workflow of party j and A j being parameter and occurrence graph constraint fixed point.
The trading partner’s workflows of a party k are the subset of all local workflows, where the
corresponding alphabets have at least a single message in common, that is, {Aik(0), . . . ,Aik(mk)} :=
{A j | 0≤ j < n ∧ j 6= k ∧ Σ j ∩Σk 6= /0}. The following equivalence holds:

&0≤ j<n, j 6=kτk(A j)≡&0≤l<mk,l 6=kτk(Aik(l))

Proof: Based on &0≤ j<n, j 6=kτk(A j) two cases have to be distinguished: In the first case, A j

represents a local workflow of a trading partner, that is, Σ j ∩Σk 6= /0 which maps to a workflow
contained in the subset {Aik(0), . . . ,Aik(mk)} with j = ik(l). Thus, the automaton is represented at
either side of the equivalence.

In the second case, A j represents a local workflow of a party being not a trading partner, that
is, Σ j ∩ Σk = /0. Thus, there exists no mapping of A j to a workflow contained in the subset
{Aik(0), . . . ,Aik(mk)} with j = ik(l). Therefore, the workflow A j appears only on the left hand side
of the equivalence. However, due to Σ j ∩Σk = /0 the abstraction τk(A j) of the local workflow A j

results in an empty message sequence. Thus, the projection does not contribute any messages to
the construction of the workflow by the shuffle product and therefore can be neglected.

In case the language of the local workflow A j is empty, the multi-lateral collaboration AM

must also be empty since A j = τ j(AM). Thus, all automata A j are empty making the right hand
side also empty. ¤

Based on this lemma and the above Theorem 5.1 it follows that the fixed point local workflows
A j are equivalent to τ j(AM).

5.2.3 Decentralized Consistency

The overall goal of this thesis is to decide consistency of multi-lateral collaborations in a de-
centralized way. The definition of consistency of a multi-lateral collaboration has been stated in
Definition 4.33 1. In addition, the relation between multi-lateral workflow and fixed point local
workflows was discussed in the previous section. As a consequence, the decentralization aspect
of deciding consistency has to be addressed next.

In Definition 4.33 consistency of a multi-lateral collaboration has been defined as the non-
empty intersection of the local workflows extended by all messages that the party is not directly
involved in. Due to this definition, it can be shown that in case of a single automaton being
empty, that is, inconsistent, the multi-lateral collaboration is also empty, that is, inconsistent.
The first lemma shows that a single local workflow being empty implies that also the multi-
lateral workflow is empty.

1While this definition specifies consistency for the synchronous communication model based on aFSA, the asyn-
chronous case has also been mapped to aFSA as discussed in Section 5.1.

96 Chapter 5. Decentralized Consistency Checking

Lemma 5.8 Let AM be a multi-lateral collaboration based on the local workflows A0, . . . ,An−1

with A j being the local workflow of party j and A j being parameter and occurrence graph con-
straint fixed point. The multi-lateral collaboration AM is empty, if at least one local workflow A j

is empty, that is
∃0≤ j < n.L(A j) = /0−→ L(AM) = /0

Proof: Since the multi-lateral workflow is defined as the intersection of the extended local
workflows, an empty local workflow can not be extended, thus, the intersection of languages
where one is empty results in an empty intersection language. ¤

The second lemma shows the opposite direction by proving that in case all automata are non-
empty, also the multi-lateral workflow is non-empty.

Lemma 5.9 Let AM be a multi-lateral collaboration based on the local workflows A0, . . . ,An−1

with A j being the local workflow of party j and A j being parameter and occurrence graph con-
straint fixed point. The multi-lateral collaboration AM is non-empty, if all local workflows A j are
non-empty, that is

∀0≤ j < n.L(A j) 6= /0−→ L(AM) 6= /0

Proof: Based on Theorem 5.1 and the fixed point of A j each A j is equivalent to the projec-
tion τ j(AM) of the multi-lateral workflow. Since all workflows are non-empty, the multi-lateral
collaboration AM is also non-empty. ¤

As a consequence of these two lemma, the following theorem can be shown:

Theorem 5.2
Let AM be a multi-lateral collaboration based on the local workflows A0, . . . ,An−1 with A j being
the local workflow of party j and A j being parameter and occurrence graph constraint fixed
point. The multi-lateral collaboration AM is consistent, if and only if all local workflows A j with
0≤ j < n are consistent.

Proof: Since consistency is non-emptiness of the corresponding automaton and based on
Lemma 5.8 and 5.9 the theorem is valid. ¤

Since non-emptiness is not a structural property of FSA, it does not propagate like the guard
expressions do. Thus, finally the consensus making step is needed to decide consistency of a
multi-lateral collaboration in a decentralized way.

5.3 Consensus Making 97

5.3 Consensus Making

Consensus making describes the problem of eliciting all parties involved in the process whether
all of them agree on a certain fact. With regard to decentralized collaboration establishment,
the consensus has to be achieved between the parties involved in the multi-lateral collaboration,
while the fact they have to agree on is local consistency. However, local consistency is based
on an emptiness test of fixed point local workflows. In particular,the emptiness test evaluates
annotations of a guarded aFSA, which can only be locally checked and do not influence the
structure of an automaton.

To avoid explicitly introducing a protocol implementing consensus making, the evaluation of
annotations must also affect the structure of an automaton, thus being propagated during the
fixed point calculation. In particular, an annotation normalized form of an automaton is intro-
duced, where a state annotation is represented in disjunctive normal form and in the normalized
automaton one state per conjunction is introduced. Thus, annotations in an annotation normal-
ized guarded aFSA contain only conjunctions. Based on this annotation for normalized aFSA
a clean operation can be defined, removing those states which are annotated with an unsatisfi-
able expression, thus affecting the structure of the aFSA. By applying the propagation it can be
shown that either all local workflows are empty or none of them are.

Definition 5.4
A normalized acyclic guarded aFSA A = (Q,Σ,∆,q0,F,QA,G,P) can be transformed into an
equivalent annotation normalized acyclic guarded aFSA A′ = (Q∪{q̄},Σ,∆, q̄,F ,QA,G,P) with
A := ϒ(A,q0,ε, q̄,ε) with q̄ being a new unique state and using the recursive definition of ϒ
defined as follows:

ϒ(A,qcur,αlast ,qlast , ẽ) :=
[

e′i




{q′}∪S{(qcur,α,q)∈∆|α∈Var(e′i)}Q′′

Σ
{(qlast ,αlast ,q′)}∪

S
{(qcur,α,q)∈∆|α∈Var(e′i)}∆′′

q̄(S
{(qcur,α,q)∈∆|α∈Var(e′i)}F ′′

)
∪

{ {q′} i f qcur ∈ F
/0 otherwise

{(q′,e′i)}∪
S
{(qcur,α,q)∈∆|α∈Var(e′i)}QA′′

{((qlast ,αlast ,q′), ẽ)}∪
S
{(qcur,α,q)∈∆|α∈Var(e′i)}G

P




T

where qcur is the current state of the original automaton A being represented in the result
automaton as a new unique state q′. Further, the state qlast represents the state within the result
automaton calling this recursion via a transition labeled αlast with guard expression ẽ. The
current state qcur’s annotation e can be normalized in disjunctive normal form resulting in a

98 Chapter 5. Decentralized Consistency Checking

disjunction of conjunctions e′ = e′1∨ . . .∨ e′n, while each e′i is treated explicitly. The automaton
A′′ = (Q′′,Σ,∆′′, q̄,F ′′,QA′′,G′′,P) is derived by the recursion A′′ = ϒ(A,q,α,q′, ẽ′) with ẽ′ =
G((qcur,α,q)).

This definition ensures that annotations used within an automaton consists of conjunctions
only. It is achieved by transforming annotations in disjunctive normal form and introducing a
new state for each conjunction. As a consequence, due to the newly introduced states a deter-
ministic automaton may result in an annotation normalized non-deterministic automaton.

A#B#msg0
1

A#B#msg1
1

A#C#msg2
1

B#A#msg3
1

party A

A#B#msg0
1

A#B#msg1
1

party B

B#A#msg3
1

A#C#msg2
1

party C

 A#B#msg1
1

 A#C#msg2
1

Figure 5.2: Normalized Acyclic Guarded aFSA Example

To illustrate the definition an example depicted in Figure 5.2 is introduced. The example
consists of a multi-lateral collaboration of party A, B, and C, where the process starts with party
A sending message A#B#msg0 to party B, followed by party A sending either message A#B#msg1
or A#C#msg2 resulting in the annotation at party A. However, party A alternatively may receive
message B#A#msg3. It can easily be shown that the multi-lateral collaboration is inconsistent.

Applying the annotation normalization definition to party A’s workflow results in the guarded
aFSA depicted in Figure 5.3(a). The ε transition has been introduced to allow normalization
of annotations at the start state. The annotation A#B#msg1∧A#C#msg2 must been extended
to (A#B#msg1∧A#C#msg2)∨B#A#msg3 because the transition B#A#msg3 is not already con-
tained in the annotation and therefore must be added by a disjunction (see also Section 4.3.3).
Since the extended annotation (A#B#msg1∧A#C#msg2)∨B#A#msg3 is already in disjunctive
normal form it can be split into two "conjunctive parts", that is, A#B#msg1∧A#C#msg2 and
B#A#msg3 each associated to a state on its own.

The occurrence graph constraint propagation requires part A’s workflow to intersect with the
shuffle product of party A’s trading partners workflows projected for party A (see also Theorem
5.1). Figure 5.3(b) depicts the shuffle product of A’s projection on the workflows of party B
and C. Intersecting the aFSA depicted in Figure 5.3(a) and (b) results in the aFSA depicted

5.3 Consensus Making 99

A#B#msg0

1

A#B#msg1

1

A#C#msg2

1

B#A#msg3

1

(a)

A#B#msg0

1

 A#B#msg1
1

 A#C#msg2
 1

A#B#msg0
 1

A#B#msg1

1

A#C#msg2

1

B#A#msg3

1

(b)

A#B#msg0
 1

A#C#msg2

1

A#B#msg1
 1

B#A#msg3
 1

A#C#msg2
 1

A#C#msg2
 1

Figure 5.3: Normalized Acyclic Guarded aFSA: (a) Annotation Normalization of Party A (b)
Shuffle Product of A’s Projection on Party B’s and C’s Workflow

in Figure 5.4(a). Due to the occurrence graph constraint propagation, the target state of the
transition labeled A#C#msg2 is not final any more. As a consequence, the evaluation of the
annotation A#B#msg1∧A#C#msg2 is false, thus, the transitions following the annotated state
can be omitted as depicted in Figure 5.4(b). The operation for cleaning the automaton is cleana()
formally defined as:

A#B#msg0

1

A#B#msg1

1

A#C#msg2

1

B#A#msg3

1

(a)

A#B#msg0

1

B#A#msg3

1

(b)

A#B#msg0

1
A#B#msg0

1

 A#B#msg1

1

 A#C#msg2
 1

Figure 5.4: Normalized Acyclic Guarded aFSA: (a) Occurrence Graph Constraint Propagation
on Party A’s Workflow (b) cleana()o f (a)

Definition 5.5
An annotation normalized acyclic guarded aFSA A = (Q,Σ,∆,q0,F,QA,G,P) can be trans-

100 Chapter 5. Decentralized Consistency Checking

formed into an equivalent annotation normalized acyclic guarded aFSA A′ =(Q,Σ,∆′,q0,F,QA,G′,P)
with A′ := cleana(A) by the operation cleana(), where all transitions are omitted which leave a
state with a falsified annotation, that is, an annotation which can never be evaluated to true. The
guard function is adapted to the changed set of transitions. Thus, ∆′ := cleana(q0) with

cleana(q) :=
{ S

(q,α,q′)∈∆{(q,α,q′)}∪ cleana(q′) i f ‖t̃q‖ν
/0 = t

/0 otherwise

and G′ := G∩ (∆′×ALC (D)).

Continuing the fixed point calculation based on party A’s workflow depicted in Figure 5.4(b)
makes the remaining final state of party A non final. This is due to the intersection with the
shuffle product of the projections on party B’s and C’s workflow. Finally, applying occurrence
graph constraint propagation to party B and C again results in local workflows not containing
any final state, too, as depicted in Figure 5.5.

party A

A#B#msg0
 1

party B

B#A#msg3

1

A#C#msg2

1

party C

B#A#msg3

1

A#B#msg0

1
A#B#msg0

1

Figure 5.5: Fixed Point Local Workflows of Multi-lateral Collaboration

Applying cleana() again, each local workflow consists of a single state, which is not a final
state. This is because all states are removed which have an annotation which cannot be evaluated
to true. In the example none of the automata has a final state anyway, thus there is no path at all
resulting in a final state, which results in removing all states except the start state (by definition).
As a consequence, an automaton containing only a single state which is not a final one, indicates
that the workflow is inconsistent. Changing the original workflow of Party C by making the start
state also a final state results in a consistent collaboration, where the local workflows are not
drilled down to a single state.

In the following, it is proven that the observed behavior always works, thus, being an alterna-
tive to introducing a consensus making protocol.

5.3 Consensus Making 101

Lemma 5.10 Let Ak be an annotation normalized acyclic guarded aFSA, then

L(Ak) = /0←→ L(cleana(clean(Ak))) = /0

where the emptiness test on the left hand side is based on Definition 4.30 considering annota-
tions, and where the emptiness test on the right hand side is a standard automaton emptiness test
as introduced in Section 4.3.2 without consideration of annotations.

Proof: Applying the clean() operation on Ak removes all transitions with unsatisfiable guard
expressions, thus, all transitions contained in the resulting automaton have to be considered for
emptiness testing. This fits the emptiness test used on the left hand side, since by this definition
unsatisfiable transitions are also ruled out.

Since Ak is annotation normalized, every annotation associated with a state is a conjunction
of transition labels. Thus, based on the emptiness definition on the left hand side, the annotation
evaluates to true if and only if all transitions are on a path to a final state and no additional
transition labels are contained in the annotation. Because an annotation associated to a state not
evaluating to true results in omitting all outgoing transitions of the state, thus, the state does not
provide any transition afterwards ensuring that the state is only on a path to a final state if the
annotation is valid. As a consequence, the left and the right hand side are equivalent. ¤

Using this lemma it can be shown that multi-lateral consistency is equivalent to consistency
of fixed point local workflows. As a consequence no consensus making protocol is required.

Theorem 5.3
Let AM be a multi-lateral collaboration based on the local workflows A0, . . . ,An−1 with A j being
the local workflow of party j and each A j being a fixed point annotation normalized acyclic
guarded aFSA. The multi-lateral collaboration is inconsistent if and only if all local workflows
are inconsistent.

Proof: It has to be shown that the multi-lateral workflow is empty if and only if all local
workflows are empty. Based on Theorem 5.2 the multi-lateral collaboration is consistent if and
only if all local workflows are consistent. Thus, the multi-lateral collaboration is inconsistent,
if and only if at least a single workflow is inconsistent. Based on Lemma 5.10 the evaluation of
annotations within the emptiness test has been represented on structural properties of the aFSA.
Thus, let’s assume a local workflow Ak is empty in accordance with the standard automaton
emptiness test, that is, L(Ak) = /0. Then, for every local workflow A j within the multi-lateral
collaboration L(A j) = /0 due to A j =

T
0≤l<n Σl which also includes Ak. ¤

102 Chapter 5. Decentralized Consistency Checking

5.4 Summary

Multi-lateral collaborations may be based on asynchronous or synchronous communication
models. In the synchronous case guarded annotated Finite State Automata (guarded aFSA)
were introduced in the previous chapter, while guarded Workflow Nets (WF-Nets) are used in
the asynchronous case. Since checking guarded WF-Nets properties is based on analyzing the
corresponding occurrence graph, which has the same expressiveness as guarded FSA, a map-
ping from guarded WF-Nets to guarded FSA is provided, thus, the further analysis and required
definitions have to be provided only on the guarded FSA workflow model. In particular, a proof
for the equivalence of guarded WF-Net consistency with guarded FSA consistency is provided.

To validate the correctness of the proposed approach the convergence of the constraint prop-
agation to a fixed point and the equivalence of multi-lateral consistency and the consensus of
all parties on local consistency is shown. Since multi-lateral consistency checking is based on
local workflows extended with messages not used by a trading partner himself, each party has
to know all messages used within the multi-lateral collaboration. An alternative approach has
been presented, where multi-lateral consistency is defined as the non-empty intersection of a
party P’s local workflow and the combination of the trading partners abstracted local workflows,
where those messages are represented as silent transitions which are neither sent nor received by
party P. This definition increases the applicability of the approach presented because informa-
tion not related to trading partners is kept private. It has been shown that these two definitions
of multi-lateral consistency are equivalent.

Finally, it is shown that the evaluation of state annotations of a guarded aFSA performed dur-
ing an emptiness test can also be represented within FSA structure by omitting those transitions
leaving a state and being related to an annotation not evaluating to true. Based on this structural
representation of state annotations, emptiness of a single local workflow results in emptiness
of all local workflows of a multi-lateral collaboration within a fixed point. Thus, a multi-lateral
collaboration is inconsistent, if and only if a fixed point has been reached and a party’s own local
workflow is consistent.

6 Implementation and Evaluation

The aim of this chapter is twofold: (i) to describe the implementation of the approach presented
for the synchronous communication model based on annotated Finite State Automata (aFSA) as
introduced in Section 5.1, and (ii) to evaluate the implementation and the formal model based
on a set of realistic workflow models derived from the Internet Open Trading Protocol (IOTP)
workflows. The entire evaluation is performed in the domain of Web Services.

The description of the implementation starts with the introduction of a mapping from a work-
flow modeling language called Business Process Execution Language for Web Services (BPEL)
to the annotated Finite State Automata (aFSA) model. This section includes an evaluation of the
expressiveness of aFSA by showing that all workflows derivable from the IOTP specification can
be represented. Next, the implementation of the bilateral consistency checking is implemented,
which uses the previously introduced mapping component. Finally, the complete process of
establishing consistent multi-lateral collaborations in a decentralized way is described.

6.1 Workflow Modeling Language Transformation

As stated above, the following discussion is based on Web Service technology. The main stan-
dards in this domain at present are

• XML as a common alphabet,

• SOAP as a common interface to communication protocols (like e.g. HTTP),

• WSDL as an interface definition language,

• UDDI as a service repository interface, and

• BPEL as a workflow model specification language.

To illustrate the applicability of the approach presented in the thesis, a mapping of the work-
flow modeling language BPEL to annotated Finite State Automata is presented and explained
following an example.1

1Major parts of this section have been published in [WFN04].

104 Chapter 6. Implementation and Evaluation

6.1.1 Example

With regard to the example in Section 2.3.1 the interface definition provided by WSDL is simpli-
fied by neglecting the concrete message structure and simplifying the message names. Concrete
message structures could, for example, be taken from the RosettaNet Partner Interface Processes
(PIPs) 3A4 (Request Purchase Order), 3A7 (Notify of Purchase Order Update), 3B2 (Notify of
Advanced Shipment) [Ros04] or from the Internet Open Trading Protocol (IOTP) [Bur00].

Figure 6.1: WSDL Porttype Definition

Within Web Service specifications one or more messages specify an operation representing
a potential message exchange. If an operation contains only a single input message, then the
operation is asynchronous, otherwise the operation is synchronous2. A portType contains a set
of operations supported by a service provider which is specified in the corresponding WSDL
file. Figure 6.1 depicts the operations and the related messages used in the example logistics
department BPEL description, where the messages are labeled in accordance with messages in
the global workflow depicted in Figure 2.4. The buyer and the accounting portTypes represent
the operations provided by the corresponding department service, that is, contain messages that
are received by the buyer and accounting department respectively. Consequently, the logBuyer
and logAccounting portTypes contain operations received by the logistics department and sent
by the buyer and the accounting department respectively. The partnerLinkType is a WSDL
extension introduced by BPEL relating partTypes to roles. In particular, the partnerLinkType

2Synchronous and asynchronous messages specify the behavior of the process execution rather than the underlying
communication protocol. In particular, synchronous messages mean that the execution of the process is pending
until the response message has been received.

6.1 Workflow Modeling Language Transformation 105

BuyLog represents communication between buyer and logistics department, where the messages
received by the buyer are specified in portType buyer associated with role buyer, while the
portType logBuyer is associated with role logistics. The partnerLinkType accordingly specifies
the communication between accounting and logistics department.

As stated above, the description of local workflows is based on these portType definitions by
directly referencing them. Local workflows are denoted in BPEL [ACD+03], where a workflow
is specified in terms of tasks (named activities in BPEL terminology) representing basic pieces
of work to be performed by potentially nested services. The control flow of a BPEL process
constrains the performance of tasks by selective (switch and pick activities), sequence (sequence
activity), and parallel (flow activity) execution. In addition, a BPEL process also defines the data
flow (variable handling and assign activity) of the business process regardless of concrete imple-
mentation of tasks. Based on this understanding, a workflow model includes activities realizing
the interaction with partners represented by exchanging messages (receive, reply, invoke, and
pick activities).

Figure 6.2: BPEL Notation of the Logistics Department Workflow

The BPEL specification of the logistics department workflow described in Section 2.3.1 is
depicted in Figure 6.2. The partnerLink definition associates a partner name with a bilateral
interaction between two roles. In particular, a partnerLink references a corresponding part-
nerLinkType within the related WSDL document. The roles can be derived from the WSDL
document by checking the partnerLinkType using the portType information.

106 Chapter 6. Implementation and Evaluation

BPEL is a specification evolving from a standardization process. However, the specification
is informal and there is no formal model underlying the BPEL specification [Aal03]. Thus, to
provide a matchmaking definition for service discovery, or to enable decentralized collabora-
tion establishment a subset of a BPEL specification is mapped to a guarded aFSA representa-
tion. Since BPEL specifies an executable business process, the workflow specification that is
published by a service provider is limited. In particular, business critical information such as
conditions under which a customer is willing to perform a payment, or the number of negotia-
tion steps a party is willing to accept have to remain private. As a consequence, the following
transformation approach omits this kind of information, that is, does not transform conditions in
BPEL representation to guard expressions in aFSA representation.

The transformation from BPEL to aFSA notation is quite similar to transformations, for exam-
ple, from regular expressions to finite state automata (see for example the Berry-Sethi Algorithm
[BS86]). The approach performs the structural traversal of the BPEL XML document and recur-
sively transforms an activity by interrelating the already transformed child activities. Thus, an
activity is transformed by representing it in a partial structure combined with the partial struc-
tures of the child activities. These partial structures must maintain an input state qin representing
the state to enter the partial structure and an output state qout representing the state to leave the
partial structure finally. This partial structure is called partial aFSA and is formally defined in
the next section.

The recursion has to start with the first activity within the BPEL document being a child
element of the <process> element. So, the transformation of the <process> is different from
that of the activity elements, because here the recursion is initiated by creating a start and final
state passed to the partial structure used in the recursion as input and output places. Finally, the
mapping from the partial aFSA to an aFSA structure is performed.

6.1.2 Model Extension

The partial aFSA is defined based on the definition of aFSA (see Section 4.3.3). As stated above,
this structure is used by the recursive transformation of the BPEL description to aFSA notation,
where the input state and the output state represent the states for entering/leaving the partial
structure used within the recursion step.

Definition 6.1
A partial aFSA PA is an aFSA extended by an output state qout ∈ Q and an input state qin by not
passing the start state q0. The resulting signature is PA = (Q,Σ,∆,qin,qout ,F,QA).

When constructing a partial aFSA by combining lower level partial aFSAs, the corresponding
input and output states must for example be interrelated to form a sequence. In case of the
sequence, the output state of the preceding partial aFSA is equivalent to the input state of the
succeeding partial aFSA, thus, one of them need to be renamed by another one. So, a renaming

6.1 Workflow Modeling Language Transformation 107

function τ̃ : (Q∪ {ε})× (Q×Q) → (Q∪ {ε}) of states on partial aFSAs is defined, where ε
represents a non-existent state.

Definition 6.2
A state q is renamed q′ by function τ̃ defined for a state q̃ with

τ̃(q̃,q→ q′) :=
{

q′ i f q̃ = q
q̃ otherwise

Extending the above definition to partial automata results in a renaming function τ̃ : PA×
(Q×Q) → PA which renames a state of the input annotated automaton PA resulting in a new
automaton PA′ by renaming the set of states of PA′, all source and target states in transitions of
PA′, and the corresponding variables within annotations of PA′.

Definition 6.3
Let PA = (Q,Σ,∆,qin,qout ,F,QA) and PA′ = (Q′,Σ,∆′,q′in,q′out ,F

′,QA′) be partial automata.
Then, PA′ := τ̃(PA,q→ q′) where

• the set of states Q′ where Q′ := {τ̃(q̃,q→ q′) | q̃ ∈ Q},

• the set of transitions ∆′ where ∆′ := {(τ̃(q1,q→ q′), l, τ̃(q2,q→ q′)) | (q1, l,q2) ∈ ∆},

• the input state q′in where q′in := τ̃(qin,q→ q′),

• the output state q′out where q′out := τ̃(qout ,q→ q′),

• the set of final states F ′ where F ′ := {τ̃(q̃,q→ q′) | q̃ ∈ F}, and

• the annotations QA′ where QA′ :=
S

(q̃,ẽ)∈QA\{(q′,e′)}




{(q′,e′∧ ẽ)} i f q̃ = q
/0 i f q̃ = ε
{(q̃, ẽ)} otherwise

6.1.3 Transformation Overview

The transformation translates BPEL syntax to aFSA. In particular, the transformation represents
messages that might be sent by a party at a particular state as messages that must be supported by
the corresponding receiving party. This is because the sender has the choice to select a particular
message to be sent, while the receiving party must be able to handle all possible choices of the
sender. This is modeled by the sender workflow annotating each choice of sending messages
as mandatory transitions, that is a conjunction of message labels. In contrast, a receiving party
represents all supported options as genuine alternatives via a disjunction of message labels.

For example, the logistics department workflow as depicted in Figure 6.2 can be translated
into an aFSA by the following mapping of BPEL activities:

108 Chapter 6. Implementation and Evaluation

• represent send, receive, pick, and invoke activities as transitions

• switch and pick activities represent choices, that is modeled as several transitions each
connected with the current place by an input arc

• a flow activity represents a parallel execution, that is modeled by enumerating all possible
execution sequences of the parallel execution

• a sequence activity connects is modeled by renaming the input state by the output state of
a preceding activity

• a while activity represents a repeated execution, that is modeled by renaming the output
state by the input state of the included partial activity forming a loop

• data management operations like assign are neglected

AccLog#

logAccounting#

deliverOp#in

AccLog#

accounting#

deliverConfOp#out

BuyLog#

buyer#

statusOp#out

BuyLog#

logBuyer#

get_statusOp#in

BuyLog#

logBuyer#

terminateOp#in

BuyLog#

buyer#

statusOp#out

BuyLog#

logBuyer#

getStatusOp#in

AccLog#

logAccounting#

authOp#in

Figure 6.3: aFSA Notation of Logistics Department Workflow

The aFSA model derived by this transformation without resolution of message names is de-
picted in Figure 6.3 where transition labels pl#pt#op#dir represent partnerLink pl, portType pt,
operation op, and direction dir of the message flow. The final aFSA model after message name
resolution Γ is depicted in Figure 6.4, where the annotation of transitions s#r#msg contains
sender, recipient and message name.

A detailed formal description of the transformation is given below.

6.1.4 Message Transformation

The representation of interactions in BPEL and aFSA differ, because BPEL is based on com-
munication activities while aFSA is based on messages exchanged between trading partners.

6.1 Workflow Modeling Language Transformation 109

L#B#status

A#L#deliver

L#A#deliver_conf

B#L#get_status

B#L#get_status

B#L#terminate

L#B#status

A#L#auth

Figure 6.4: aFSA Notation with Message Name Resolution

Communication activities are either synchronous or asynchronous, and the specification is done
in terms of partnerLink, portType and operation, which are specified in a corresponding WSDL
file (as already discussed in section 6.1.1). While asynchronous communication can be char-
acterized by portType and operation executed via a partnerLink, synchronous communication
requires a differentiation between outgoing and incoming message. This is because a receiv-
ing trading partner models synchronous communication by two separate activities (receive and
reply). Thus, an additional parameter ‘in’ or ‘out’ expressing the direction of the sender of the
synchronous exchange is added to the corresponding message. Thus, an exchange within a bilat-
eral interaction is characterized by: partnerLink, portType, operation, and direction. However,
the message format s#r#msg with sender s, recipient r and message name msg as used in aFSA
can be derived based on the above information. In particular, the resolution of message names
s#r#msg = Γ(pl, pt,op,dir) can be informally specified as:

• The sender and recipient can be derived by following the partnerLink to the corresponding
partnerLinkType in the WSDL document, which has two role child elements representing
sender r and recipient r of the message, while the recipient is the role having the portType
with name pt as a child element.

• The message name is derived from the WSDL document again, where the portType spec-
ification is used. In particular, the portType element named pt is selected, where the child
element operation is named op. The message name msg is the message attribute of the
input element in the case of input direction dir=in, or is the message attribute of the output
element otherwise.

The underlying assumption here is that the two processes to be compared reference the same
WSDL document, thus guaranteeing that partnerLinkType, portType and operation are referenc-
ing to commonly agreed messages by the bilateral trading parties.

110 Chapter 6. Implementation and Evaluation

6.1.5 Process Element Transformation

The recursive transformation starts at the top level element <process> of BPEL resulting in a
partial aFSA representing the child activity.

<process> activity </process>

The recursion starts by transforming the activity by the rules below resulting in a partial aFSA
PA, which can be represented as an aFSA A by adding the output state qout to the set of final states
and assigning the input state qin as the start state q0 resulting in an aFSA A = (Q,Σ,∆,qin,F ∪
{qout},QA) with PA := (Q,Σ,∆,qin,qout ,F,QA).

6.1.6 Internal and Simple Activity Transformation

Internal activities do not need to be represented in a description of the bilateral interaction. Such
activities are: scope, assign, or wait. To provide a full composability of the transformation,
internal activities are represented by an empty activity.

Simple activities are related to a single state without having a transition, thus, the correspond-
ing annotation to the state is true. Simple activities are empty and termination activity.

empty activity denoted in BPEL as <empty/> is represented as a partial aFSA by a single
state only:

PA = ({s0}, /0, /0,s0,s0, /0,{(s0, true)})

terminate activity denoted in BPEL as <terminate/> is modeled by a single state, where no
further activity can be appended, thus, the output state is an non-existent state ε. Further, the
input state is marked final.

PA = ({s0}, /0, /0,s0,ε,{s0},{(s0, true)})

6.1.7 Communication Activity Transformation

Communication activities exchange messages with trading parties. They are represented as par-
tial aFSAs with a single transition per exchanged message, while the corresponding state is
annotated with the transition label in the case of sending activities, or with true in the case of
receiving activities. The output state is the state reached after the last message has been ex-
changed.

reply and asynchronous invocation activities denoted in BPEL as

<reply partnerLink="pl" portType="pt" operation="op" variable="var"/>
<invoke partnerLink="pl" portType="pt" operation="op" inputVariable="var"/>

6.1 Workflow Modeling Language Transformation 111

are modeled as a single transition with an message label at the transition source state represented
as

PA = ({s0,s1},{Γ(pl, pt,op,out)},{(s0,Γ(pl, pt,op,out),s1)},
s0,s1, /0,{(s0,Γ(pl, pt,op,out)),(s1, true)})

receive activity denoted in BPEL as

<receive partnerLink="pl" portType="pt" operation="op" variable="var"/>

is modeled as a single transition annotated with true represented as

PA = ({s0,s1},{Γ(pl, pt,op, in)},{(s0,Γ(pl, pt,op, in),s1)},s0,s1, /0,{(s0, true),(s1, true)})

synchronous invoke activity denoted in BPEL as

<invoke partnerLink="pl" portType="pt" operation="op" inputVariable="var" outputVariable="var2"/>

is modeled by two transitions, while the first one is a sending transition annotated with the
message name, the second one is a receiving transition annotated with true. The resulting partial
aFSA is represented as

PA = ({s0,s1,s2},{Γ(pl, pt,op, in),Γ(pl, pt,op,out)},
{(s0,Γ(pl, pt,op, in),s1),(s1,Γ(pl, pt,op,out),s2)},
s0,s2, /0,{(s0,Γ(pl, pt,op, in)),(s1, true),(s2, true)})

The remaining communication activity pick will be discussed later, because it is a mix of
structural and communication activities.

6.1.8 Structural Activity Transformation

Structural activities are sequence, while, switch, and flow. They take some partial automata
PA0, . . . ,PAn and combine them into a new partial automaton PA with PAi :=(Qi,Σi,∆i,qin,i,qout,i,Fi,QAi)
for i = 0, . . . ,n and PA = (Q,Σ,∆,qin,qout ,F,QA).

while activity denoted in BPEL by <while condition="cond"> PA1 </while> allows a single
activity inside the while activity only. The loop is created in the partial aFSA by replacing the
output state with the input state, formally denoted as

PA = τ̃(PA1,qout,1 → qin,1)

The previous output state qout,1 is disabled. As discussed in Section 6.1.1, the termination con-
dition of the loop is not represented in the aFSA to ensure that business critical information is
not published. As a consequence, the loops modeled in aFSA are infinite loops which have to be
terminated by explicitly sending a message.

112 Chapter 6. Implementation and Evaluation

sequence activity denoted in BPEL by <sequence> PA1 PA2 . . . PAn </sequence> connects
the independent partial aFSAs by renaming the input state of PAi+1 with the output state of PAi

of all partial aFSAs except the last one, that is, PAn which remains unchanged. The formal
specification is

PA = PAn∪ (
n−1[

i=1

τ̃(PAi,qout,i → qin,i+1))

flow activity denoted in BPEL by <flow> PA1 PA2 . . . PAn </flow> specifies parallel exe-
cution of the partial automata PA1, . . . ,PAn. Automata do not provide means to model parallel
execution, thus, the resulting execution sequences must be enumerated. A well known operation
to generate these enumeration is the shuffle product as introduced in Section 4.3.7. In particular,
the shuffle product keeps the message order within each message sequence, but combines two
message sequences in all possible combinations. The adaptation of the provided definition to
partial aFSA is:

Definition 6.4
The shuffle product PA := PA1&PA2 of two partial aFSA PA1 and PA2 is defined as

• the set of states Q where Q := Q1×Q2,

• the alphabet Σ where Σ := Σ1∪Σ2,

• the input state qin where qin := qin,1×qin,2,

• the output state qout where qout := qout,1×qout,2,

• the set of final states F where F := F1×F2,

• the set of transitions ∆ where
∆ := {((p,q1),α,(p,q2)) ∈ (Q1×Q2)×Σ2× (Q1×Q2) | (q1,α,q2) ∈ ∆2}

∪ {((p1,q),α,(p2,q)) ∈ (Q1×Q2)×Σ1× (Q1×Q2) | (p1,α, p2) ∈ ∆1}

• the set of annotations QA where QA =
S

(q1,e1)∈QA1,(q2,e2)∈QA2
((q1,q2),e1∧ e2)

Based on the shuffle product definition the flow activity can easily be transformed into partial
aFSA by shuffling all partial automata and finally renaming the combination of the input states
of all automata with a new input state, and the combination of all output states with a new output
state respectively. The formal definition is given below

PA = τ̃
(

τ̃(&n
i=1PAi,(qin,1, . . . ,qin,n)→ qin),(qout,1, . . . ,qout,n)→ qout

)

6.1 Workflow Modeling Language Transformation 113

switch activity denoted in BPEL by

<switch>

<case condition="cond1"> PA1 </case>
<case condition="cond2"> PA2 </case>
...
<case condition="condn"> PAn </case>
<otherwise> PA0 </otherwise>

</switch>

specifies an internal choice performed by evaluating the condition statements which are XPath
1.0 Boolean expressions. This choice is represented in partial aFSAs by introducing a new input
state qin and an output state qout , and renaming input and output states of PA0, . . . ,PAn by qin and
qout respectively. Again, the conditions of the choice are not represented in aFSA to ensure that
business critical information is not published. The formal definition is

PA =
n[

i=0

τ̃(τ̃(PAi,qin,i → qin),qout,i → qout)

The approach presented is based on the assumption that all conditions are pairwise disjoint.
If this condition is not fulfilled the disjoint partitioning of the conditions are represented as a
conjunction in the state annotations, while the different partitions are combined by disjunctions.
Due to the incomplete representation of relations between parameters within a BPEL document,
pairwise disjointness becomes a requirement.

pick activity denoted in BPEL as

<pick>
<onMessage partnerLink="pl1" portType="pt1"

operation="op1" variable="var1"> PA1 </onMessage>
...

<onMessage partnerLink="pln" portType="ptn"
operation="opn" variable="varn"> PAn </onMessage>

<onAlarm> PA′′0 </onAlarm>

</pick>

is a combination of a switch activity applied to several sequences of a receive activity and a
partial automaton PAi. In the current modeling the time constraints which might be expressible
in onAlarm, that is for and until , are not considered.

Each onMessage element is modeled as a single receive transition formally described as

PA′j := ({s0,s1},{Γ(pl j, pt j,op j, in)},{(s0, j,Γ(pl j, pt j,op j, in),s1, j)},s0, j,s1, j, /0,

{(s0, j, true),(s1, j, true)})

114 Chapter 6. Implementation and Evaluation

Each of these receive transitions is sequentially combined with the corresponding PA j in ac-
cordance with the sequence activity formally described as

PA′′j := τ̃(PA′j ∪PA j,q′out, j → qin, j)

Finally, the above constructed sequences are combined by a choice resulting in the final partial
automaton formally denoted as

PA :=
n[

i=0

τ̃(τ̃(PA′′i ,q
′′
in,i → qin),q′′out,i → qout)

6.1.9 Limitations

The transformation defined above is partial, in particular, the attributes joinCondition and sup-
pressJoinFailure, as well as the elements link and throw have not been considered. The first
ones are relevant to process execution only and thus do not affect the matchmaking. The lat-
ter ones are introducing additional dependencies between the different activities, which cannot
be resolved in a recursive traversal of the BPEL, but require post-processing to reflect these
additional constraints.

The structural activity while supports the termination of a loop based on an internal global
variable, that is, a counter or a flag. This kind of predetermined loop termination can be rep-
resented in guarded aFSA by combining the states derived by the defined mapping with the
potential values of the global variable. Since a change of the global variable is effected by send-
ing or receiving a message, the change of the global variable is reflected by a corresponding
state change in the guarded aFSA. As a consequence the guarded aFSA model complexity in-
creases dramatically. However, time dependent changes of a global variable cannot be encoded
in guarded aFSA due to the lack of a representation of time. Further, the automatic mapping
of such a loop construction to guarded aFSA requires a very good understanding of changes
of the global variable. As a consequence of this discussion it is impractical to automatically
transform loop conditions, therefore the mapping process from BPEL to aFSA can be realized
semi-automatically if conditioned loops are used. From a pragmatic point of view, an explicit
modeling of time as for example in timed Petri-Nets [Jen92] introduces very high computational
complexity, which makes these approaches impractical. Further, the usage of loop termination
conditions in workflows executed by a party is quite common, although these conditions are usu-
ally not provided to trading partners, because they contain business critical information. There-
fore, the impact of this limitation in general to concrete applications of the proposed mapping is
low.

6.1.10 Expressiveness of Guarded aFSA

The evaluation of the expressiveness of the aFSA model is based on a data set of local workflows
in accordance with the Internet Open Trading Protocol (IOTP) [Bur00]. The IOTP specification

6.1 Workflow Modeling Language Transformation 115

is provided by the Network Working Group of the Internet Engineering Task Force (IETF) [IET],
in which companies like IBM, Commerce One, HP, Oracle, MasterCard, Modex, Motorola, and
Sun have been involved. It describes a framework for e-commerce supporting classical trad-
ing scenarios, like purchase, deposit, refund, withdrawal, monetary exchange, and inquiry. To
describe these trading scenarios, IOTP provides three generic roles, that is, merchant, payment
and delivery handler, which are used to construct concrete scenarios on behalf of a set of so
called "basic message exchanges". Each "basic message exchange" consists of several messages
exchanged between different parties, where

• the authentication exchange supports the authentication of one trading partner,

• the brand dependent/independent offer exchange represents signing an offer with/without
a predefined payment method,

• the payment exchange and delivery exchange represent exchange of payment and delivery
information respectively, and

• the payment and delivery exchange is a shortcut for the payment exchange followed by a
delivery exchange.

S

E

Authentication

Exchange

Brand Independent

Offere Exchange

Brand Dependent

Offere Exchange

Payment

Exchange (first)

Payment with

Delivery Exchange

Payment

Exchange (second)

Delivery

Exchange

Figure 6.5: IOTP Message Exchange Structure

The way in which the different exchanges can be combined is depicted in Figure 6.5. The
circle labeled with S represents the start state, while that labeled with E represents the end state.
A valid workflow has at least one path starting from the start state and terminating in the end
state. The total number of workflows that can be constructed by the combination of the different

116 Chapter 6. Implementation and Evaluation

path is 726 workflows. However, to check the expressiveness of aFSA it suffices to check each
individual path on its own and to check the combination of two example paths.

As described in detail in [Sch04], the IOTP workflows have been formally specified in terms
of colored P/T-Nets and subsequently mapped to BPEL. Finally, the BPEL transformation de-
scribed in the previous section has been used to represent workflows as guarded annotated finite
state automata and the correctness of the mapping has been manually checked.

As an outcome of this analysis, no single workflow can be constructed based on the IOTP
specification resulting in a local workflow that is not expressible as guarded annotated finite
state automata. Thus, the model has shown its applicability to real world e-commerce scenarios.
In particular, a total of 726 workflows has been generated, where in total 23 different messages
have been used per workflow. The complexity of the constructed workflows with regard to
number of transitions is depicted in Figure 6.6.

n
u

m

b

e

r

o
f

w

o

r
k

f
l
o

w

s

Figure 6.6: Plot of Number of Workflows versus Number of Transitions

The figure shows that most workflows have between 13 and 40 transitions, with the simplest
workflow having five transitions and the most complex having nearly 70 transitions3. The high-
est number of workflows having the same number of transitions was 38, with 14 transitions.

To get an impression of the structure of the automata constructed, Figure 6.7 shows a plot of
the number of states against number of transitions. The plot shows an almost linear relationship
between the number of states and number of transitions. Two lines with different slopes can be
observed. The line with a steeper slope represents those workflows without cycles, due to the

3Be aware, that for example the IOTP delivery exchange represents several message exchanges in the sense of the
automata model used in this thesis.

6.2 Bilateral Consistency Checking 117

Figure 6.7: Plot of Number of States versus Number of Transitions

reuse of states by cyclic transitions. The line whose slope is less steep represents workflows with
cycles. The length of the cycles in the IOTP workflows used is always one or two, accounting
for the small difference in the slopes.

Figure 6.8 shows a plot of the number of workflows against the number of messages. Most
workflows have between 9 and 20 messages. The workflow with the smallest number of mes-
sages has five messages, while that with the highest number of messages has 23. A total of
104 workflows comprised 13 messages. The much higher number of transitions compared to
the number of messages used in a single workflow indicates a high reuse of messages within a
single workflow.

6.2 Bilateral Consistency Checking

Based on the transformation from BPEL to annotated Finite State Automata and the creation of a
concrete data set, bilateral consistency checking can be implemented and used to search for and
find potential trading partners that might be involved in a multi-lateral collaboration later on.4

In particular, bilateral consistency checking can be understood as a specific case of multi-lateral
consistency checking as introduced in Section 4.3.7. In addition, bilateral consistency checking,
that is checking for the non-empty intersection of automata has been the basis for decentralized

4Major parts of this work have been published in [WMN04].

118 Chapter 6. Implementation and Evaluation

n
u

m

b

e

r

o

f

w

o

r
k

f
l
o

w

s

Figure 6.8: Plot of Number of Workflows versus Number of Messages

consistency checking as discussed in Section 5.2.2.
Bilateral consistency is discussed in the application domain of Web Services, thus, the ex-

ample in Section 6.1.1 is picked up again. In particular, the logistics department workflow was
introduced, which interacts with a buyer and an accounting department. To establish a potential
collaboration, the logistics department has to query potential trading partners at a service repos-
itory, which is performed on a bilateral basis. As discussed in Section 6.1.1, the local workflow
of the logistics department is specified in BPEL with a corresponding WSDL file. An example
query issued by the logistics department constrains the list of potential service providers to those
which

1. support the role of an accounting department represented by the value accounting in the
categorization de.ipsi.oasys.ipsi-pf:IOTP:Role,

2. are provided by a business entity located in Germany represented by the value de in the
categorization iso-ch:3166-1999, and

3. are consistent with the logistics local workflow specified by a BPEL process and the cor-
responding WSDL document.

6.2.1 Approach

Analyzing the above query shows that the first two constraints can already be served by a UDDI
repository being the proposed service repository within a standard Web Service infrastructure.
The last constraint cannot be handled by a UDDI repository, because the required comparison
operation is more complex than string comparison as provided by a UDDI repository. The

6.2 Bilateral Consistency Checking 119

IPSI Process Finder matchmaking engine (IPSI-PF) extends a UDDI repository by a feature for
matching workflow descriptions. In particular, a query posed to IPSI-PF is split (decomposed)
into a UDDI and a local workflow sub-query. The UDDI subquery is processed by a classical
UDDI and the local workflow subquery by the IPSI-PF matchmaking engine. The final query
result is derived by combining the partial results which is known in the database community
as a natural join, where the business service key maintained by a UDDI and being unique for
each service instance within a UDDI is used to relate the partial results to each other (primary
key). The local workflow sub-query uses the business service key for referencing the service
description (foreign key). In addition to querying IPSI-PF provides also a publish functionality,
which is not discussed in detail within this thesis. In particular, the publish process is neglected,
because it is performed only once per service instance, while querying a service is performed
much more often and is much more performance critical.

UDDI Sub-query

The UDDI query is based on the standard UDDI API, that is a find_service SOAP call [IMH+02].
The call related to the above example is depicted in Figure 6.9. In this example, the categoriza-
tion of the service providers geographical location is realized by the common taxonomy based
on ISO 3166-1999 which is predefined in the UDDI repository. The taxonomy of roles is imple-
mented as a ’private’ taxonomy described in more detail in Section 6.2.2.

Figure 6.9: UDDI Query

Local Workflow Sub-query

BPEL [ACD+03] and the corresponding WSDL document specify a workflow in terms of tasks
(activities in BPEL terminology) representing basic pieces of work to be performed by poten-
tially nested services. A more detailed discussion on BPEL can be found in Section 6.1. When
searching for potential service providers from the workflow point of view, it is necessary that
the exchanged message sequences of the query process are consistent with a potential trading
partner’s message sequences derived from his local workflow. To be able to check consistency,
the following aspects must be considered:

120 Chapter 6. Implementation and Evaluation

• Due to the fact that BPEL lacks a formal model [Aal03], a definition of a compatibility
operation might be quite vague. It is preferable to have the match operation defined on a
solid formal model based on sets of message sequences.

• Testing consistency is a binary operation, that is all elements contained in a message
sequence not related to the opponent must be omitted. Thus, a partner specific view on his
own supported message sequence must be calculated.

• The match operation compares the set of message sequences provided by a service provider
and contained in the database with the relevant set of message sequences related to the
query process.

6.2.2 Architecture

This section describes the architecture and implementation of the IPSI Process Finder (IPSI-
PF), realizing a service discovery for state dependent Web Services supporting UDDI queries
extended by workflow descriptions. As stated in the previous section, the input query has two
parts: (i) the BPEL [ACD+03] with corresponding WSDL part and (ii) the UDDI [IMH+02]
part. The BPEL part contains process-related descriptions of the query and the UDDI part
provides information that is traditionally provided via the UDDI repository, e.g., business service
categories.

Framework

Processing the query is initiated by submitting a form as depicted in the example in Figure
6.10. Triggered by this page, the data flow of the architecture depicted in Figure 6.11 is started,
which is realized as an Apache Cocoon pipeline. Apache Cocoon was chosen since the data
flow between the different processing steps is XML based and thus allows for good support by
Cocoon. In particular, the pipeline realizes the query decomposition as well as the result list
merge component depicted in Figure 6.11. A query decomposition component separates the
three parts as follows:the BPEL part is sent to the matchmaking engine via a transformation
component, BPEL→formal model, while the UDDI part is sent to the category matchmaking
component being realized by a Cocoon LogicalSheet in the pipeline calling the Web Services
based UDDI API. Finally, the merging of the results is also part of this pipeline and is realized
by using XSLT.

A more expressive framework such as Struts or a workflow engine is not appropriate, because
the remaining user interactions within the IPSI-PF are much simpler.

The implementation is based on Apache Cocoon 2.1.2. The above described pipeline uses
cinclude, XSLT and session transformers. A cinclude transformer allows the loading of content
from different web resources into a single document. An XSLT transformer applies a specified
XSLT stylesheet to the intermediate version of the document passed through the pipeline and a

6.2 Bilateral Consistency Checking 121

Figure 6.10: Example Query Form

session transformer grants access to data contained in an HTTP request and stores intermediate
results in a session container.

BPEL→Formal Model Component

The role of the BPEL→formal model component is to transform the BPEL and the correspond-
ing WSDL document into a formal model suitable for calculating process matches. The un-
derlying formal model is annotated Finite State Automata (aFSA) (see also Section 4.3.3) and
the mapping used is described in detail in Section 6.1. The resulting aFSA is used as input to
the matchmaking engine for deciding the match of processes. This component has been imple-
mented in Java and is part of the process matchmaking engine component described next.

Process Matchmaking Engine Component

The Process Matchmaking Engine Component is in charge of performing the comparison of the
query workflow with the workflows stored in the IPSI-PF. Based on the constructed aFSA, the
component performs a sequential scan on all stored aFSA and returns those being bilaterally
consistent as defined in Section 4.3.7.

Each business process in the collection is associated with category data in the UDDI repository
via a business service UUID used as a foreign key (see also Figure 6.11) to join the partial results
as described above.

122 Chapter 6. Implementation and Evaluation

query

decomposition

BPEL

WSDL

UDDI

categories

query

BPEL+

WSDL

UDDI

categories

BPEL ->

formal model

formal

model

process matchmaking

engine (J2EE)

formal model

persistence

UDDI

persistency

business

service

UUID

category

matchmaking

engine (servlet)

result list

merge

business

service

UUIDs

jUDDI

UDDI

API msg

business

service

UUIDs

business

service

UUIDs

Figure 6.11: Architecture

The matchmaking engine is implemented based on J2EE architecture. The application server
used is JBoss. The main matchmaking component is an Enterprise Java Bean (EJB) and a web
client (not included in Figure 6.11) is used for administering the server. Persistence is achieved
by J2EE container managed persistence relying on a MySQL database system.

UDDI Category Matchmaking Engine Component

The Category Matchmaking component relies on a UDDI repository, which maintains most
of the information queried by a UDDI subquery as categorization bags. A categorization is a
name-value pair assigned to a service entity, where the name is the name of the taxonomy used
and the value is a taxonomy value. The UDDI specification provides a number of predefined,
common taxonomies, like for example ISO 3166-1999, a taxonomy for geographical locations.
To establish such a taxonomy within a UDDI repository, a publication process has been specified
[IMH+02] to ensure that only those taxonomies are published which are relevant to the user
group of the UDDI repository. In particular, the registrar has to approve the relevance of the
taxonomy for the UDDI repository.

With regard to the example, a taxonomy representing the roles within the fictional procure-
ment scenario will not get approval for a global taxonomy, because it is used only by a specific
virtual enterprise. To allow users to introduce private categorization of services within a local
UDDI repository the UDDI specification provides an alternative approach named "General Key-
words taxonomy". Similar to the general taxonomy approach name-value pairs are maintained,
where the names must be prefixed with the organization’s own namespace and the supported

6.2 Bilateral Consistency Checking 123

values must be published in the virtual organization internally. In the prototype implementation
the open source UDDI repository jUDDI [jud] has been used.

Figure 6.12: Benchmark Tool

Administration Tool

The administration tool (Figure 6.12) has been developed as part of the IPSI-PF project to sup-
port the testing and evaluation of the IPSI-PF. The functionality provided by this tools is

• the construction of example data sets, which is based on a general specification of potential
message sequences and assigned probabilities on different branches,

• the analysis of the constructed data sets,

• the performance of a bunch of queries, measuring the individual results, and providing
different analysis of the response times, and

• the maintenance of the database, that is, the bulk up-load of data into IPSI-PF, the clean-up
of IPSI-PF, and providing status information on the number of stored objects in IPSI-PF.

The architecture described above has been implemented and tests have been performed. In the
following, a discussion of the applicability of the concept and the implementation is presented
as well as performance test results.

124 Chapter 6. Implementation and Evaluation

6.2.3 Discussion

The conceptual approach presented requires robust local workflows, that is, local workflows
which are unconstrained in receiving messages. This limitation ensures that no explicit handling
of conditions has to be established for checking consistency of bilateral interaction of services.
Finally, the approach is based on a subsumption relation on message names. In particular, the
subsumption relation used in the proposed approach is string equivalence, although other ap-
proaches are possible, such as those addressed by the Semantic Web community.

An advantage of the concept is that it relies on existing UDDI infrastructure extended by
querying of workflow models. In particular, the provided match operation increases the precision
of the query results and avoids false matches - that is finding service providers which claim to
be consistent without being it - and without having false misses - that is not returning service
providers, which are consistent but have not been found by the match operation.

As stated in Section 6.2.2 the persistence implementation of the process matchmaking engine
is based on container managed persistence. This design decision has been made for ease of
use and in the knowledge that the persistence model will have to be re-implemented in the next
release after gaining initial experience with the process matchmaking component.

6.2.4 Performance Measurements

The main goal of the evaluation was to find out the major factors influencing performance.
Measurements were conducted on a Dell machine, with a 2.00GHz clock speed Pentium 4 pro-
cessor and 512 MB RAM. The total disk space was 74 GB. The machine was running under
the Windows XP operating system. MySQL server version 4.0 was the used database engine.
The machine was also running the JBOSS 3.2.3 application server which provided the J2EE
environment for the IPSI-PF process matchmaking engine. The matchmaking engine is imple-
mented on the same data model and level of abstraction using container managed persistence.
All tests are performed without buffering/caching of results, thus, all tests were run under cold
start conditions.

The performance measurement is based on the data set generated based on the IOTP specifi-
cation as described in Section 6.1.10 consisting of 726 workflow models. During the evaluation
of the proposed system, the highest measured response time for the UDDI part was about 2.7
seconds, while the matchmaking engine component required 40 seconds. As a consequence, the
UDDI part is considered to be less critical and thus the further description of performance results
focuses on the evaluation on the matchmaking engine component. The minimum response time
for the data set was about three seconds, the maximum 40 seconds, and the mean response time
was almost 18 seconds.

Figure 6.13 shows the distribution of response times on workflows. The figure shows that
most workflows had a response time between 6 and 32 seconds. The pattern of this distribution is
very similar to the distribution of number of transitions on workflows (Figure 6.6), suggesting a
possible influence of the number of transitions in a workflow on the response time. As discussed

6.3 Decentralized Multi-lateral Collaboration Establishment 125

n
u

m

b

e

r

o
f

w

o

r
k

f
l
o

w

s

Figure 6.13: Query Response Time

in more detail in [WMN04], the performance of the matchmaking engine component linearly
depends on the number of transitions of the query automaton in case of a fixed data set.

However, this performance evaluation shows that the performance of the matchmaking engine
is not sufficient for online service discovery, thus, future work requires an indexing mechanism
to speed up the consistency checking.

6.3 Decentralized Multi-lateral Collaboration Establishment

Multi-lateral collaboration establishment as described in Section 2.4 is based on a set of local
workflows forming a multi-lateral collaboration. Based on this collaboration, cycles can be re-
solved (see Section 4.3.8) and constraint propagation can be applied resulting in a fixed point de-
termining whether the multi-lateral collaboration is consistent or not (see Sections 4.3.9, 4.3.10,
5.2.2 and 5.2.3). However, since a single local workflow might be involved in several multi-
lateral collaborations, a unique collaboration identification can be used to resolve concurrency
of a local workflow. Because none of the parties involved in a collaboration know all trading
parties due to the decentralization requirement, an additional processing step is required to con-
struct potential collaborations and assign unique identifications to them, which are known by all
parties involved in the collaboration. Based on a single collaboration, the resolution of cycles
and the propagation of constraints can be performed resulting in a fixed point. The determina-

126 Chapter 6. Implementation and Evaluation

tion of a fixed point, that is checking and informing the involved parties is another step. In the
following, a concrete example in the application domain of Web Services is introduced before
the different steps of decentralized establishment of multi-lateral collaborations are described.

6.3.1 Example

The scenario illustrating the concurrency effect of collaborations is based on the one introduced
in Section 2.3.1 and its application to the Web Service domain in Section 6.1.1 extended by
having several service providers for accounting and logistics department as well as buyers. In
particular, the scenario consists of two accounting departments A1 and A2, two buyers B1 and
B2, and three logistics departments L1, L2, and L3, where the local workflows of A2, L2, L3, and
B2 require parcel tracking, and the local workflows of L1 and B1 do not support parcel tracking
at all, while the local workflow A1 support both options. Further, let the service providers of A1,
L1, L2, and B1 be located in Germany, while the service providers of A2, L3, and B2 are located
in the US. In addition, buyer B1 wants to interact only with local service providers, that is,
service providers located in Germany, while B2 does not have this restriction. The collaborations
which can be constructed based on these requirements are depicted in Figure 6.14.

buyer

B1

accounting

department

A2

logistics

department

L1

accounting

department

A1

buyer

B2

logistics

department

L2

logistics

department

L3

A

1

-
L

1

-
B

1

 A
2
-
L
3
-
B
2

A
1
-
L
2
-
B
2

Figure 6.14: Concurrent Example with Three Collaborations

The collaboration A1− L1− B1 does not support parcel tracking and consists of service
providers all located in Germany. In contrast, the remaining two collaborations A1−L2−B2
and A2−L3−B2 support parcel tracking, while the location of the service provider is irrelevant.
In the following, the approach to deriving these three collaborations is discussed informally.

6.3 Decentralized Multi-lateral Collaboration Establishment 127

party role: matching service providers role: matching service providers
B1 accounting: A1 logistics: L1
B2 accounting: A1,A2 logistics: L2,L3
A1 buyer: B1,B2 logistics: L1,L2
A2 buyer: B2 logistics: L3
L1 accounting: A1 buyer: B1
L2 accounting: A1 buyer: B2
L3 accounting: A2 buyer: B2

Table 6.1: Bilateral Service Discovery Results

6.3.2 Finding Relevant Trading Partners

Establishing multi-lateral collaborations is based on bilateral collaborations, which are con-
structed between two trading partners. Thus, the first step is to find potential trading partners,
which is known as bilateral service discovery introduced in Section 6.2 and based on Sections
4.3.7 and 5.2.2. With regard to the above example, the buyer B1 needs to interact only with
service providers located in Germany. As a consequence, A1 can be used as an accounting de-
partment, and L1 and L2 can be used as logistics departments. In addition, B1’s workflow does
not support parcel tracking, which limits the potential trading partners to A1 for the accounting
department, and L1 for the logistics department. With regard to buyer B2, no regional constraint
is specified, but the local workflow requires parcel tracking, which is supported by A1 and A2 as
accounting department, L2 and L3 as logistics department.

In particular, buyer B1 and B2 have to perform bilateral service discovery for each role in-
volved in the local workflow, that is, the accounting and logistics department respectively. In
Section 6.2 IPSI-PF has been introduced as an implementation of bilateral service discovery
based on annotated Finite State Automata. Applying this tool to the different parties’ results in
Table 6.1 containing the list of matching service providers for each local party and role.

6.3.3 Establishment of Potential Multi-lateral Collaborations

Based on the determined bilaterally matching services, a collaboration has to be established in
a decentralized way. In particular, all parties involved in the collaboration need to know the
identification of the collaboration and it has to be ensured that each party guarantees that each
role is assigned exactly one service. Further, it is assumed that the underlying communication
is asynchronous but reliable, while services are always available. These assumptions ease the
approach, while it remains applicable for example in virtual enterprise scenarios. More general
requirements result quite rapidly in impossible consensus problems (see also [Lyn96]).

The generic problem description is to calculate a spanning tree of services forming a potential
multi-lateral collaboration. For each of these constructed trees representing a collaboration a
consensus has to be achieved on whether each service involved has exactly one assignment of a

128 Chapter 6. Implementation and Evaluation

trading partner role to an external service. While a spanning tree is constructed step by step via
the services derived in the bilateral service discovery, the consensus is realized by forwarding
local decisions similar to a simple flooding approach.

During the construction of the spanning trees several concurrent instances have to be handled
by the different parties. To differentiate the collaborations each is assigned with a unique set
of globally unique IDs, each representing a bilateral collaboration. Thus, the construction of a
spanning tree is based on bilaterally matching services representing a bilateral collaboration (see
Sections 6.2, 4.3.7 and 5.2.2), which is identified by a set containing a single globally unique
ID. A spanning tree can be extended by a party, if the party contains a role, which has not been
assigned to a bilateral collaboration contained in spanning tree right now.

With regard to the example, the bilateral collaboration of accounting department A1 and lo-
gistics department L1 is represented as {(A1,L1)} being a tuple of the two service providers
being equivalent to {(L1,A1)}. Based on bilateral collaborations accounting department A1
can combine the two bilateral collaborations {(A1,L1)} and {(A1,B1)} to the collaboration
{(A1,L1),(A1,B1)}, which can be extended by buyer B1 via the bilateral collaboration {(B1,L1)}
to the multi-lateral collaboration A1− L1− B1 represented as {(A1,L1),(A1,B1),(B1,L1)}.
This collaboration has exactly one service assigned to each party’s roles. In contrast, the collab-
oration {(B1,L1),(L1,A1),(A1,B2),(B2,L3),(L3,A2)} can be constructed which is still invalid
because the logistics role for buyer B1 and the buyer role for accounting department A2 are still
unspecified. However, extending the spanning tree by an additional bilateral collaboration re-
sults in an over-specification of a party’s role. For example, adding the bilateral collaboration
{A2,B2} results in the buyer B2’s accounting role being assigned with accounting department
A1 and A2 making the collaboration invalid.

Based on this specification all multi-lateral collaborations can be constructed and the con-
struction process terminates due to the finite set of combinations that can be created from the
bilateral service discovery. Due to the lack of a coordinator of the collaboration establishment,
the number of potential collaborations to be checked is exponential with the number of avail-
able services. However, the number of relevant combinations is much lower. As a consequence,
strategies must be developed which help to prune away irrelevant combinations as soon as pos-
sible, which are out of the scope of this thesis. A framework for testing and comparing different
strategies has been proposed in [Wom05a] based on the implementation of the Web Services
based specification described in more detail in [Wom05b].

6.3.4 Deciding Consistency of a Multi-lateral Collaboration

After multi-lateral collaborations have been established, the decentralized consistency checking
can be applied by first resolving cycles, continued by propagating parameter constraints, and
finally propagating occurrence graph constraints as introduced in Section 2.4.

Since the current scenario has been defined in the domain of Web Services specifying work-
flows in terms of BPEL documents, a formal representation in terms of guarded annotated Finite
State Automaton (aFSA) A has to be derived in accordance with the mapping introduced in

6.3 Decentralized Multi-lateral Collaboration Establishment 129

Section 6.1. As a consequence, the following steps can be performed locally by each party on
guarded aFSA. Due to the concurrency of collaborations handled by each party the ambiguities
of communication with trading parties is resolved by using the globally unique collaboration ID.

The processing starts with a normalized acyclic guarded aFSA A′ in accordance with Defini-
tion 4.38 (see Section 4.3.8). Based on this acyclic guarded aFSA parameter constraint propa-
gation as given below

∀0≤ k < n.∀0≤ j < n, j 6= k.A′k = Φ(Φb(Ak,A j))

in accordance with Definitions 4.39 and 4.28 (see Sections 4.3.9 and 4.3.6)is applied repeatedly
until a fixed point has been reached.

The parameter constraint fixed point acyclic guarded aFSA is normalized again to ensure that
the parameter constraints are simple conjunctions enabling occurrence graph constraint propa-
gation defined as

∀0≤ k < n.Ak = Ψ(Ak)

in accordance with Definition 4.42. Based on Theorem 5.1 (see Section 5.2.2) occurrence graph
constraint propagation can be restated as

A′k = clean
(

Φ(Ak)∩Φ
(

&0≤ j<n, j 6=kτk(A j)
))

which keeps more information of trading partner’s workflows private and reduces the complexity
of the automata. Combining the above statement with the structural representation of emptiness
in accordance with Lemma 5.10 (see Section 5.3) adds the cleana operation (see Definition 4.31
in Section 4.3.6) to the propagation operation resulting in

A′k = cleana

(
clean

(
Φ(Ak)∩Φ

(
&0≤ j<n, j 6=kτk(A j)

)))

This propagation operation is performed until a fixed point has been reached. If the resulting
guarded aFSA representing the fixed point local workflow is empty, the multi-lateral collabora-
tion is inconsistent.

If the multi-lateral collaboration is consistent, the process can be started and a successful
business interaction is guaranteed.

6.3.5 Determination of a Fixed Point

The current description of the approach lacks a confident decentralized decision making as to
whether a fixed point has already been reached or additional steps are necessary. In particular,
this issue can be understood as a kind of a distributed transaction of changing all local states
of the fixed point calculation from running to terminated. A common approach to solving this
problem is the linear 2-Phase-Commit (2PC) protocol [ÖV99], which assumes a linear ordering

130 Chapter 6. Implementation and Evaluation

of parties involved in the collaboration 5. However, the collaboration does not explicitly pro-
vide such a structure of parties, although, the collaboration ID can be used to define a linear
ordering of parties. Since the collaboration ID consists of bilateral collaboration IDs, these IDs
can be sorted resulting in a linear order due to the global uniqueness of each ID. In addition, a
bilateral collaboration is initiated by one of the parties being involved, while it is accepted by
the corresponding trading partner. As a consequence, the initiator of a collaboration ID is listed
before the accepting party resulting in a linear ordering of parties. Since initiator and the ac-
cepting party of two preceding collaboration IDs may not be trading partners, a routing protocol
based on subsets of collaboration IDs, as for example known from prefix based routing in static
peer-to-peer networks such as in [PRR97], has to be realized. Based on this communication
extension, the linear 2PC protocol can be implemented determining whether all parties consider
the fixed point to have been reached already.

6.4 Summary

Decentralized establishment of consistent, multi-lateral collaborations as proposed in this thesis
requires a mapping from a workflow model used in the application domain to the formal model
used of annotated Finite State Automata (aFSA). Based on this transformation, a component has
been implemented providing bilateral consistency checking which has been integrated into an
application domain specific search environment. Finally, this search and bilateral consistency
checking component is used to describe the realization of the overall approach of decentralized
consistency checking for multi-lateral collaborations including the determination of potential
multi-lateral collaborations, the constraint propagation, and the final decision making. The proof
of concept of the ideas contained in this thesis is implemented on the basis of Web Services, a
realization of a service oriented architecture. Finally, the evaluation of the approach uses the
Internet Open Trading Protocol since it specified a set of workflows which are derived from
classical business processes. It has been illustrated that the expressiveness of aFSA suffices
to represent all potential workflows, thus, aFSA are a usable workflow model as a basis for
decentralized establishment of consistent multi-lateral consistency.

5The linear 2PC protocol is quite similar to hierarchical 2PC [CDK01] or nested 2PC [Gra78].

7 Conclusion

The conclusions of this thesis start with a short summary of the presented achievements, a dis-
cussion of additional application scenarios, and finally gives an outlook on open issues and
future directions for research.

7.1 Achievements of the Thesis

The contribution of this thesis is a uniform representation of workflows based on synchronous
or asynchronous communication model in terms of guarded annotated Finite State Automata
(aFSA) being an extension of standard Finite State Automata. In particular, aFSA support a
differentiation of transitions as mandatory or optional, which has been identified as an essential
workflow modeling property to realize bilateral consistency checking. Further, aFSA have been
extended by a notion of parameters called guarded aFSA, which constrains the execution of tran-
sitions by parameter values. While guarded aFSA have been directly used to represent workflows
based on a synchronous communication model, an approach based on v.d.Aalst’s Workflow Nets
(WF-Nets) has been used as a basis for the asynchronous communication model. Consistency
checking for WF-Nets is performed on the occurrence graph derived from the WF-Net. Such an
occurrence graph has equivalent expressiveness to guarded aFSA. Using this equivalence a map-
ping between WF-Nets and aFSA has been defined, and the equivalence of the corresponding
consistency definitions has been presented. Hence, a uniform modeling of workflows indepen-
dent of the underlying communication model has been achieved.

Based on this uniform model, decentralized consistency checking has been addressed. In
particular, a definition of bilateral and multi-lateral consistency has been defined. Bilateral con-
sistency specifies whether two trading partners can interact successfully given the assumption
of a successful interaction with the remaining trading partners. Initially, bilateral consistency
has been defined as the non-empty intersection of two local workflows extended by messages
where the corresponding local workflow is neither sender nor receiver of the message. Because
this definition entails informing a trading partner about all messages used in the local workflow,
information not directly related to the trading partner is provided to him, which might give him
a competitive advantage. An equivalent definition of bilateral consistency has therefore been
proposed which is based on the non-empty intersection of the local workflow and the work-
flow constructed from the local parties’ view on the trading partner’s workflow. Thus, only the
relevant information is provided by a party to its trading partners hiding more business critical
information. In particular, it has been shown that these definitions are equivalent.

132 Chapter 7. Conclusion

Multi-lateral consistency specifies whether several local workflows forming a multi-lateral
collaboration guarantee successful interaction. Initially, multi-lateral consistency has been de-
fined in a centralized way, since it is used for as a reference to proof equivalence with the
decentralized multi-lateral consistency approach. In particular, centralized multi-lateral consis-
tency has been defined similar to the initial bilateral consistency definition as the non-empty
intersection of the local workflows extended by messages where the corresponding local work-
flow is neither sender nor receiver of the message. The decentralized multi-lateral consistency
checking can not be decided by a single party, but requires a repetitive process of consolidating
the local workflows by performing constraint propagation resulting in a fixed point. In partic-
ular, the required constraints to be propagated are parameter and occurrence graph constraints.
While the first is needed to ensure a correct subsumption decision on parameter constraints re-
lated to a sent and received message, the second guarantees the omission of transitions within
a local workflow that are unreachable within the multi-lateral collaboration. Within this thesis
it has been shown that constraint propagation always converges and hence decentralized and
centralized multi-lateral consistency are equivalent.

Finally, the theoretical approach presented has been applied to the concrete domain of Web
Services, where a mapping from a workflow modeling language to aFSA has been introduced,
the applicability of the expressiveness of the aFSA workflow model has been illustrated, and the
different parts needed to realize decentralized establishment of multi-lateral collaborations have
been described. In particular, an implementation of a service discovery involving the previously
mentioned mapping has been presented, a protocol to derive multi-lateral collaborations based
on bilateral ones in a decentralized way has been outlined, constraint propagation definitions
have been summarized, and determining whether a fixed point has already been reached has
been discussed.

7.2 Additional Application Areas

The main contribution of this thesis is demonstrating that decentralized consistency checking is
an essential part of establishing multi-lateral collaborations in a decentralized way. In keeping
with the application of this approach to the domain of Web Services, it can also be applied to
similar technologies such as ebXML, Grid, or Peer-to-Peer (P2P) environments, which all have
a necessity of forming multi-lateral collaborations in common. However, the approach can also
be applied on other conceptual levels to, for example software engineering or e-contracting.

Technology

The electronic business XML initiative (ebXML) [ebX04] is one potential additional technology
where decentralized collaboration establishment is applied. The ebXML specification provides
a framework supporting XML based exchange of business data [Bus03]. In particular, Col-
laboration Partner Profiles (CPP) and Collaboration Partner Agreements (CPA) are part of this

7.2 Additional Application Areas 133

framework which reflect the description of a party and the subset of this description to be used
within a concrete collaboration. Although Patil and Newcomer [PN03] consider ebXML as a
top-down collaboration establishment approach, this is not enforced by the framework since no
centralized coordinator of a collaboration has to be specified and the assignment of potential
trading partners supports late binding similar to the service discovery phase in Web Service.

Another technology is a Grid infrastructure. Foster defines in [FKT01] the Grid as "coor-
dinated resource sharing and problem solving in dynamic, multi-institutional virtual organiza-
tions". In particular, different organizations provide resources and request capacities for solving
problems. However, the different parties are independent of each other although they agreed to
participate in the Grid, which is currently a quite static relationship with centralized coordination
of the job owner and high availability of the different participants. Due to this structure, there
is no need for a more flexible handling of relationships. But the Grid community has started
to think about more flexible relationships, where the availability of different parties is lower
and more flexible and short to mid-term relationships have to be established and managed as
for example addressed by the Diligent project [dc04]. Additional dynamics are introduced into
Grids by an increasing integration of Web Services. In particular, there are currently efforts go-
ing on to apply Web Service technologies to Grid infrastructure [Glo05] implicitly introducing
the concepts of loose coupling at least to the lower Grid layers. However, the increasing size
of Grids and their stronger interrelations will increase the difficulties for a job owner to assign
the resources efficiently guaranteeing good quality of service, thus an automated decentralized
establishment of a job initiated by the job owner becomes more relevant.

A further example of a potential technology are Peer-to-Peer (P2P) systems. One definition of
P2P considered suitable for this discussion is provided by the Intel P2P working group: "P2P is
the sharing of computer resources and services by direct exchange between systems" [MKL+02].
In P2P environments every party (peer in P2P terminology) is considered to be independent.
This means that a peer offers services or resources to a community, but at the same time, it
can consume services/resources from others in the community. An important property of P2P
systems is the lack of a central administration, the flexibility of the set of peers forming the
community, and the decentralized organization of the community. As illustrated by Risse et
al. [RKW04], P2P systems are on the move from familiar file sharing applications to large scale
decentralized and reliable systems relying on decentrally coordinated and established multi-
lateral collaborations.

All these technologies have in common that they provide a description of services/resources
and the corresponding requests. Further, all of them have partitioned work into services, which
might be based on a locally maintained state. As a consequence, these technologies are potential
application areas for the decentralized establishment of multi-lateral collaborations presented in
this thesis.

134 Chapter 7. Conclusion

Conceptual

Conceptually, the presented approach can be applied to decentralized systems based on compo-
nents/services maintained autonomously by different parties that have to be combined to reach
a specific goal. Two examples are e-contracting and component based software engineering.

E-contracting means setting up a contract electronically, where a contract is "a binding agree-
ment between two or more persons that is enforceable by law" [Wor04]. Thus a contract specifies
legal aspects as well as technical ones like for example quality of service, duration, the agree-
ment on the corresponding offer [MB03]. While deontic logic has been used to model legal and
normative systems it turned out that only parts of a relevant normative system can be modeled.
However, it is more likely to formally describe the technical aspects also known as Service Level
Agreements (SLA) as for example discussed in [LKD+03]. In particular, the modeling of the
conversation supported by the trading partners as a basis for bilateral and multi-lateral consis-
tency checking during the establishment phase of a SLA can be used as a subset of the SLA,
while additional constraints like for example quality of service and semantic aspects have to be
added.

In the domain of software engineering component based architectures have been introduced
to improve the re-use of code encapsulated in components. Different components are bundled
in libraries and are provided to other people to reuse the code. Unfortunately, the description
of the components is informally written down and to get familiar with a library takes quite a
long time. In particular finding relevant components is quite difficult when starting with a new
library. Bilateral consistency checking may be used in such a scenario to improve the re-use
of components. This entails describing the behavior of components in more detail in terms of
annotated Finite State Automata, that is, the required execution sequences of methods of a com-
ponent guaranteeing exception free execution of the component. Further, dependencies between
different components can be represented, thereby treating the usage of several components by a
programmer as a multi-lateral collaboration, where consistency checking helps to improve the
pre-selection of relevant components and provides static checking of their correct usage.

7.3 Future Research Topics

Several issues are raised within this thesis, but could not be addressed in detail. In the following
some of these issues are discussed and directions for further research are described.

Message Equivalence

The comparison of message sequences is based on a notion of message equivalence that has
been defined as equivalence of syntactical structure as well as intended semantics. However,
this definition can be relaxed to a subsumption relation between messages. Applying this to
the semantic aspect means that ontological knowledge can be used to propose an automatic
mapping of messages. With regard to the modeling of workflows this can introduce bundling or

7.3 Future Research Topics 135

aggregation of several messages into a single one. An example illustrating such an aggregation
is for example provided in the MiniPay payment protocol, where several micro-payments are
performed, collected by the clearing house, and after a certain threshold has been reached the
customer is charged. Thus, several small payments are aggregated into a single bigger one,
where the single payment subsumes several of the smaller ones. Another example of aggregated
messages can be found in [AW01b], where a logic based workflow model has been proposed
[ADDW03].

Time-based Parameter Constraints

Modeling business processes involves quite often a notion of time and in particular has specific
constraints which are based on this notion of time, like for example "the offer is valid within
the next three weeks". In the current model presented in this thesis there is no notion of time,
because the focus has been on decentralized consistency checking rather then a complete mod-
eling approach for business models. However, to extend the aFSA model a notion of time as
for example used in Timed Petri Nets [Jen92] could be added. The difficulties which may arise
are due to the complexity of modeling time. As a consequence, the complexity for a normalized
aFSA model is expected to be much higher than without a time extension.

Similarity based Service Discovery

Bilateral service discovery as introduced in Section 6.2 requires a non-empty intersection of the
local workflows resulting in a list of service providers. Based on this definition, two extreme
cases can be observed: the list is empty or the list contains too many service providers.

If the list does not contain any service providers at all the query seems to be too restrictive.
Thus, it could be helpful to be able to relax the query by allowing not only exactly matching
message sequences, but also accepting similar message sequences. A similarity measure of
message sequences has not been discussed in this thesis. A potential starting point for such an
investigation could be similarity measures on strings such as Levenshtein’s edit distance [Lev66].

However, if the list contains too many service providers, it would be convenient for the user
to have a ranking of the retrieved service providers. Again, a similarity measure of automata is
needed serving as a ranking value, such as the overall length of shared message sequences.

Dynamic in Workflows

Multi-lateral collaborations in a Web Services or Peer-to-Peer environment have to face a certain
dynamic with regard to the local workflows of a service as well as the availability of a service
itself. These issues become more critical when a multi-lateral collaboration represents a long
running business relationship increasing the probability of such changes.

The first issue is known from classical workflow management theory by the term dynamic
workflow management, that is, change of a workflow model during its run-time. A dynamic

136 Chapter 7. Conclusion

change requires a special treatment only when the change is applied to a running process itself.
Issues addressed within this area are which changes to the local workflow are allowed without
affecting the running process and in which cases the running process gets corrupted requiring
for example a manual compensation of the process. With regard to multi-lateral collaborations
the effects of a change on the consistency of the running collaboration have to be addressed
explicitly, because this might cause an unexpected termination of the collaboration.

The second issue of an unavailable service might also result in an unexpected termination of
a collaboration. A multi-lateral collaboration is only allowed to terminate when a finite state
in the multi-lateral/global workflow has been reached. In the case of a termination in a non
final state a notion of roll-back or compensation to the nearest final state of the global workflow
is required. These issues are addressed by the decentralized systems community in the area
of consensus making and are also related to the distributed data management community in
the area of transactions. An alternative approach instead of compensation might be to replace
individual parties to guarantee a proper execution of the multi-lateral collaboration, although
synchronization of the decentrally stored state information with the newly assigned party is
considered to be challenging.

Bibliography

[Aal99] W.M.P. van der Aalst. Interorganizational workflows: An approach based on mes-
sage sequence charts and petri nets. Systems Analysis - Modelling - Simulation,
34(3):335–367, 1999.

[Aal00] W.M.P. van der Aalst. Inheritance of Interorganizational Workflows: How to
agree to disagree without loosing control? Technical Report, CU-CS-899-00,
University of Colorado, Department of Computer Science, Boulder, USA, 2000.

[Aal02] W.M.P. van der Aalst. Inheritance of Interorganizational Workflows to Enable
Business-to-Business E-commerce. Electronic Commerce Research, 2(3):195–
231, 2002.

[Aal03] W.M.P. van der Aalst. Don’t go with the flow: Web services composition stan-
dards exposed. IEEE Intelligent Systems, pages 72–76, Jan/Feb 2003.

[ABH+02] DAML-S Coalition: A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Mc-
Dermott, D. Martin, S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and
K. Sycara. DAML-S: Web service description for the semantic web, 2002.
http://citeseer.nj.nec.com/ankolekar02damls.html.

[ACD+03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug
Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.
Business process execution language for web services. version
1.1. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbiz2k2/html/BPEL1-1.asp, May 2003.

[ADDW03] Karl Aberer, Anwitaman Datta, Zoran Despotovic, and Andreas Wombacher.
Separating business process from user interaction in web-based information.
Electronic Commerce Research: Special Issue on Business Process Integration
and E-Commerce Infrastructure, 3(1-2):83–111, January - April 2003.

[AH02] W.M.P. van der Aalst and Kees van Hee. Workflow Management - Models, Meth-
ods, and Systems. MIT Press, 2002.

138 Bibliography

[APY+02] M. Aiello, M. Papazoglou, J. Yang, M. Pistore, M. Carman, L. Serafini, and
P. Traverso. A request language for web services based on planning and constraint
satisfaction. In Proceedings of 3rd International Workshop on Technologies for
E-Services (TES), LNCS 2444, pages 76–85. Springer, 2002.

[ARAAW03] A. Shaikh Ali, O. F. Rana, R. Al-Ali, and D. W. Walker. UDDIe: An extended
registry for web services. In Proceedings of the 2003 Symposium on Applications
and the Internet Workshops (SAINT-w). IEEE Computer Society, 2003.

[ASW98] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic
fair exchange. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 86–99, Oakland, California, 1998.

[Aus65] J. L. Austin. How to do things with words. Oxford University Press, 1965.

[AW01a] W.M.P. van der Aalst and M. Weske. The P2P approach to interorganizational
workflows. In Proceedings of 13. International Conference on Advanced Infor-
mation Systems Engeneering (CAISE), Interlaken, Switzerland, 2001.

[AW01b] K. Aberer and A. Wombacher. A language for information commerce processes.
In Proceedings of the Third International Workshop on Advanced Issues of E-
Commerce and Web-based Information Systems, San Jose, California, USA, June
2001.

[BA99] T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Computing Science
Report 99/17, Eindhoven University of Technology, Eindhoven, 1999.

[Ban96] M. Banville. SONIA: an adaptation of linda for coordination of activities in orga-
nizations. In P. Ciancarini and C. Hankin, editors, Coordination Languages and
Models, volume 1061 of LNCS, pages 57–74. Springer-Verlag, Berlin, Germany,
1996.

[BBB+02] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan,
A. Karp, H. Kuno, M. Lemon, G. Pogossiants, S. Sharma, and S. Williams.
Web services conversation language (WSCL) 1.0 W3C note, March 2002.
http://www.w3.org/TR/wscl10/.

[BBM+01] K. Ballinger, P. Brittenham, A. Malhotra, W. A. Nagy, and S. Pharies. Specifi-
cation: Web services inspection language (ws-inspection) 1.0, November 2001.
http://www.ibm.com/developerworks/library/ws-wsilspec.html.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook - Theory, Implemen-
tation and Applications. Cambridge University Press, 2003.

Bibliography 139

[Bea87] J.E. Beasley. An algorithm for set covering problem. European Journal of Oper-
ational Research, 31:85–93, 1987.

[BH79] Kent Bach and Robert M. Harnish. Linguistic Communication and Speech Acts.
The MIT Press, Cambridge, Massachusetts, 1979.

[BH91] F. Baader and P. Hanschke. A scheme for integrating concrete domains into con-
cept languages. In Proceedings of the 12th International Joint Conference on
Artificial Intelligence (IJCAI), pages 452–457, Sydney (Australia), 1991.

[BK02] Abraham Bernstein and Mark Klein. Discovering services: Towards high-
precision service retrieval. In Proceedings of CAiSE International Workshop, Web
Services, E-Business, and the Semantic Web (WES), LNCS 2512, pages 260–275.
Springer, 2002.

[BLHL01] T. Berbers-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific America,
284(5):34–43, 2001.

[BMMZ03] Nadia Busi, Cristian Manfreedini, Alberto Montresor, and Gianluigi Zavattaro.
Peerspaces: Data-driven coordination in peer-topeer networks. In Proceedings of
the 2003 ACM symposium on Applied computing, pages 380–386. ACM Press,
2003.

[BRM04] BRML. BRML: Business rules markup language.
http://xml.coverpages.org/brml.html, Sept 2004.

[BS86] G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48(1):117–126, 1986.

[Bur00] D. Burdett. Internet open trading protocol - IOTP - version 1.0.
http://www.ietf.org/rfc/rfc2801.txt, 2000.

[Bus03] Christoph Bussler. B2B Integration - Concepts and Architecture. Springer, 2003.

[CD01] F. Casati and A. Discenza. Modeling and managing interactions among business
processes. Journal of Systems Integration - Special Issue: Coordination as a
Paradigm for Systems Integration, 10(2):145–168, April 2001.

[CDK01] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems -
Concepts and Design. Addison-Wesley, 3 edition, 2001.

[CHTY96] J. Camp, M. Harkavy, J.D. Tygar, and B. Yee. Anonymous atomic transactions.
In Proceedings of the 2nd USENIX Workshop on Electronic Commerce, pages
123–133, 1996.

140 Bibliography

[CIJ+00a] Fabio Casati, Ski Ilnicki, Li-Jie Jin, Vasudev Krishnamoorthy, and Ming-Chien
Shan. Adaptive and dynamic service composition in eFlow. Technical Report
HPL-2000-39, HP Labs, 2000.

[CIJ+00b] Fabio Casati, Ski Ilnicki, Li-Jie Jin, Vasudev Krishnamoorthy, and Ming-Chien
Shan. eFlow: a platform for developing and managing composite e-services.
Technical Report HPL-2000-36, HP Labs, 2000.

[Coa99] Workflow Management Coalition. Workflow standard - interoperability abstract
specification. http://www.wfmc.org/standards/docs/TC-1012_Nov_99.pdf, Nov
1999.

[Coa01] Workflow Management Coalition. Workflow standard - interoperability Wf-XML
binding version 1.1. http://www.wfmc.org/standards/docs/Wf-XML-11.pdf, Nov
2001.

[Coa04] OWL Service Coalition. OWL-S: Semantic markup for web services.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2004.

[com04] commonRules. IBM commonRules. http://www.research.ibm.com/rules/home.html,
Sept 2004.

[Cox96] B. Cox. Superdistribution. Addison-Wesley, 1996.

[Cro04] CrossFlow. CrossFlow home page. http://www.crossflow.org/, 2004.

[CS98] Jan Chomicki and Gunter Saake, editors. Logics for Database and Information
Systems. Kluwer, 1998.

[CTS95] Benjamin Cox, J. D. Tygar, and Marvin Sirbu. NetBill security and transaction
protocol. In Proceedings of the First USENIX Workshop on Electronic Commerce,
pages 77–88, July 1995.

[CTZ02] Paolo Ciancarini, Robert Tolksdorf, and Franco Zambonelli. Coordination mid-
dleware for XML-centric applications. In Proceedings of the 2002 ACM Sympo-
sium on Applied Computing (ACM-SAC), pages 336–343. ACM Press, 2002.

[dc04] diligent consortium. A digital library infrastructure on grid enabled technology.
http://diligentproject.org/, 2004.

[DGLA00] H.-P. Dommel and J. J. Garcia-Luna-Aceves. A coordination archi-
tecture for internet groupwork. In Proceedings 26th EUROMICRO
Conference - Informatics:, Maastricht, Netherlands, Sep 2000. IEEE.
http://citeseer.nj.nec.com/dommel00coordination.html.

Bibliography 141

[DW95] F. Dignum and H. Weigand. Communication and deontic logic. In R. Wieringa
and R. Feenstra, editors, Information Systems, Correctness and Reusability, pages
242–260. World Scientific, 1995.

[DWV96] Frank Dignum, Hans Weigand, and Egon Verharen. Meeting the deadline: On
the formal specification of temporal deontic constraints. In Zbigniew W. Ras and
Maciej Michalewicz, editors, Proceedings of the 9th International Symposium
of Foundations of Intelligent Systems (ISMIS), volume 1079 of Lecture Notes in
Computer Science. Springer, June 1996.

[ebX04] ebXML. ebXML home page. http://www.ebxml.org/, 2004.

[EN94] J. Esparza and M. Nielsen. Decibility issues for Petri nets - a survey. Journal of
Informatik Processing and Cybernetics, 30(3):143–160, 1994.

[EP99] J. Eder and E. Panagos. Towards distributed workflow process management. In
Proceedings of the Workshop on Cross-Organisational Workflow Management
and Co-ordination, San Francisco, USA, Feb 1999.

[ESAA04] Fatih Emekci, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. A peer-
topeer framework for web service discovery with ranking. In Proceedings IEEE
International Conference on Web Services (ICWS), pages 192–199. IEEE Com-
puter Society, 2004.

[FBS04] Xiang Fu, Telfik Bultan, and Jianwen Su. Realizability of conversation protocols
with message contents. In Proceedings IEEE International Conference on Web
Services (ICWS), pages 96–103. IEEE Computer Society, 2004.

[FFH+03] C. Facciorusso, S. Field, R. Hauser, Y. Hoffner, R. Humbel, R. Pawlitzek,
W. Rjaibi, and C. Siminitz. A web services matchmaking engine for web services.
In Proceedings of the 5nd International Conference on Electronic Commerce and
Web Technologies (EC-WEB), pages 37–49. Springer, Sept 2003.

[FFMM94] T. W. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent com-
munication language. In Proceedings of International Conference on Information
and Knowledge Management (CIKM), pages 456–463, 1994.

[FH03] S. Field and Y. Hoffner. Web services and matchmaking. International Journal
of Networking and Virtual Organisations (IJNVO), 1(3):16–32, 2003.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of Calivornia, Irvine, 2000.

[FIP04] FIPA. Foundation for intelligent pysical agents. FIPA spefcifications.
http://www.fipa.org, 2004.

142 Bibliography

[Fis04] Layna Fischer, editor. The Workflow Handbook 2004. Future Strategies Inc.,
2004.

[FK03] E. Folmer and D. Krukkert. openXchange as ebXML implementation and valida-
tion; the first results. In Proceeding of XML Europe 2003 Conference & Exposi-
tion, May 2003.

[FK04] CCA Forum and Kate Keahey. CCA terms and definitions. http://www.cca-
forum.org/glossary.shtml, 2004.

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the Grid: En-
abling scalable virtual organization. The International Journal of High Perfor-
mance Computing Applications, 15(3):200–222, Fall 2001.

[FLM97] Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communica-
tion language. In Jeffrey M. Bradshaw, editor, Software Agents, chapter 14, pages
291–316. AAAI Press / The MIT Press, 1997.

[Fu04] Xiang Fu. Formal Specification and Verification of Asynchronously Communi-
cating Web Services. PhD thesis, University of California Santa Barbara, Sept
2004.

[FUMK03] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Krame. Model-based ver-
ification of web service compositions. In Proceedings of 18th IEEE International
Conference Automated Software Engineering (ASE), pages 152–161, 2003.

[GAHL00] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-
organizational workflow management in dynamic virtual enterprises. Interna-
tional Journal of Computer Systems Science & Engineering, 15(5):277–290, Sep.
2000.

[Gel85] D. Gelernter. Generative communication in linda. ACM Transactions on Pro-
gramming Languages und Systems, 7(1):80–112, 1985.

[Gen87] Hartmann J. Genrich. Predicate/Transition Nets. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Central Models and Their Properties, Ad-
vances in Petri Nets 1986 Part I, volume 254 of Lecture Notes in Computer Sci-
ence, pages 207–247. Springer-Verlag, Berlin, Germany, 1987.

[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Man-
agement: From Process Modelling to Workflow Automation Infrastructure. Dis-
tributed and Parallel Databases, 3(2):119–153, April 1995.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness. W.H. Freeman, New York, 1979.

Bibliography 143

[GL00] Benjamin N. Grosof and Yannis Labrou. An approach to using XML and a
rule-based content language with an agent communication language. In Frank
Dignum and Mark Greaves, editors, Issues in Agent Communication, pages 96–
117. Springer-Verlag: Heidelberg, Germany, 2000.

[GLC+95] Benjamin N. Grosof, David W. Levine, Hoi Y. Chan, Colin J. Parris, and Joshua S.
Auerbach. Reusable architecture for embedding rule-based intelligence in infor-
mation agents. In Tim Finin and James Mayfield, editors, Proceedings of the
CIKM Workshop on Intelligent Information Agents, Baltimore, MD, USA, 1995.

[GLC99] Benjamin N. Grosof, Yannis Labrou, and Hoi Y. Chan. A declarative approach
to business rules in contracts: courteous logic programs in XML. In Proceedings
of the 1st ACM Conference on Electronic Commerce, pages 68–77. ACM Press,
1999.

[Glo05] Globus. Open grid services architecture. http://www.globus.org/ogsa/, 2005.

[Gra78] Jim Gray. Notes on data base operating systems. In Michael J. Flynn, Jim Gray,
Anita K. Jones, Klaus Lagally, Holger Opderbeck, Gerald J. Popek, Brian Ran-
dell, Jerome H. Saltzer, and Hans-Rüdiger Wiehle, editors, Operating Systems,
An Advanced Course, volume 60 of Lecture Notes in Computer Science, pages
393–481. Springer, 1978.

[GSCB99] Dimitrios Georgakopoulos, Hans Schuster, Andrzej Chichocki, and Donald
Baker. Managing process and service fusion in virtual enterprises. Information
Systems, 24(6):429–456, Sept 1999.

[GWW01] C. Gunter, S. Weeks, and A. Wright. Models and languages for digital rights.
In Proceedings of the 34th Hawaii International Conference on System Sciences
(HICSS), page 9076. IEEE Computer Society, 2001.

[Hac76] M.H.T. Hack. The equality problem for vector addition systems is undeciadable.
Theoretical Computer Science, 2:77–95, 1976.

[Han] J. E. Hanson. cpXML: Conversation policy XML version 1.0.
http://www.research.ibm.com/convsupport/papers/index.html.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, June 1987.

[HB04] Hugo Haas and Allen Brown. Web services gloassary.
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/, Feb 2004.

[HLGA01] Y. Hoffner, H. Ludwig, P. Grefen, and K. Aberer. CrossFlow: integrating work-
flow management and electronic commerce. ACM SIGecom Exchanges, 2(1):1–
10, 2001.

144 Bibliography

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 2001.

[HN96] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293–333, 1996.

[HNL02] James E. Hanson, Prabir Nandi, and David W. Levine. Conversation-enabled web
services for agents and e-business. In Proceedings of the International Confer-
ence on Internet Computing (IC), pages 791–796. CSREA Press, 2002.

[HPS+00] James G. Hayes, Effat Peyrogvian, Sunil Sarin, Marc-Thomas Schmidt, Keith D.
Swenson, and Rainer Weber. Workflow interoperability standards for the internet.
IEEE Internet Computing, 4(3):37–45, 2000.

[HS01] Ian Horrocks and Ulrike Sattler. Ontology reasoning for the SHOQ(D) description
logic. In Bernhard Nebel, editor, Proceedings of the seventeenth International
Conference on Artificial Intelligence (IJCAI), pages 199–204, San Francisco, CA,
Aug 2001. Morgan Kaufmann.

[HW01] W. Hasselbring and H. Weigand. Languages for electronic business communica-
tion: State of the art. Industrial Management & Data Systems, 101(5):217–227,
2001.

[HY97] Amir Herzberg and Hilik Yochai. MiniPay: charging per click on the web. In
Selected papers from the sixth international conference on World Wide Web, pages
939–951. Elsevier Science Publishers Ltd., 1997.

[ICE04] ICE. Information and content exchange protocol home page.
http://www.icestandard.org/, 2004.

[IET] IETF. Internet engineering task force. http://www.ietf.org/.

[IMH+02] IBM, Microsoft, HP, Oracle, Intel, and SAP. Universal description, discovery and
integration, July 2002. http://www.uddi.org/.

[Int04] Intertrust. Intertrust home page. http://www.intertrust.com/, 2004.

[Jen92] K. Jensen. Coloured Petri Nets. Springer Verlag, Heidelberg, 1992.

[jud] juddi. jUDDI. http://ws.apache.org/juddi.

[Kay03] Doug Kaye. Loosely Coupled - The Missing Pieces of Web Services. RDS Press,
2003.

[KB01] Mark Klein and Abraham Bernstein. Searching for services on the semantic web
using process ontologies. In Proceedings of 1st Semantic Web Working Sympo-
sium (SWWS), Stanford, 2001.

Bibliography 145

[KH95] Daniel Kuokka and Larry Harada. On using KQML for matchmaking. In Vic-
tor Lesser, editor, Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS), pages 239–245, San Francisco, CA, USA, 1995. The
MIT Press: Cambridge, MA, USA.

[Kim98] S. Kimbrough. Formal language for business communication (FLBC): Sketch of
a basic theory. International Journal of Electronic Commerce, 3(2):23ff, 1998.

[KM97] Steven O. Kimbrough and Scott A. Moore. On automated message processing in
electronic commerce and work support systems: Speech act theory and expressive
felicity. ACM Transactions on Information Systems, 15(4):321–367, 1997.

[KMR00] Ekkart Kindler, Axel Martens, and Wolfgang Reisig. Inter-operability of work-
flow applications: Local criteria for global soundness. In Business Process Man-
agement, Models, Techniques, and Empirical Studies, pages 235–253. Springer-
Verlag, 2000.

[Kru03] Dennis Krukkert. Matchmaking of ebXML business processes. Technical Report
IST-28584-OX_D2.3_v.2.0, openXchange Project, Oct 2003.

[KWA99] J. Klingemann, J. Wäsch, and K. Aberer. Adaptive outsourcing in cross-
organizational workflows. In Proceedings of the the 11th Conference on Ad-
vanced Information Systems Engineering (CAiSE), pages 417–421, Heidelberg,
Germany, June 1999.

[Lev66] L. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals,. Soviet Physics–Doklady, 10(8):707–710, 1966.

[LF94] Y. Labrou and T. W. Finin:. A semantics approach for KQML - a general purpose
communication language for software agents. In Proceedings of International
Conference on Information and Knowledge Management (CIKM), pages 447–
455, 1994.

[LH03] Lei Li and Ian Horrocks. A software framework for matchmaking based on se-
mantic web technology. In Proceedings of the twelfth international conference
on World Wide Web, pages 331–339. ACM Press, 2003.

[LKD+03] Heiko Ludwig, Alexander Keller, Asit Dan, Richard King, and Richard Franck.
A service level agreement language for dynamic electronic services. Electronic
Commerce Research, 3(1-2):43–59, 2003.

[Lut02] Carsten Lutz. The Complexity of Description Logics with Concrete Domains. PhD
thesis, Teaching and Research Area for Theoretical Computer Science, RWTH
Aachen, 2002.

146 Bibliography

[Lut03] C. Lutz. Description logics with concrete domains—a survey. In Advances in
Modal Logics Volume 4. King’s College Publications, 2003.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[Mar02] Dan C. Marinescu. Internet-Based Workflow Management - Towards a Semantic
Web. John Wiley, 2002.

[Mar04] Axel Martens. Analysis and re-engineering of web services. In Proceedings of
6th International Conference on Enterprise Information Systems (ICEIS), pages
419–426, 2004.

[MB03] L. G. Meredith and Steve Bjorg. Contracts and types. Communications of the
ACM, 46(10):41–47, 2003.

[MC94] Thomas W. Malone and Kevin Crowston. The interdisciplinary study of coordi-
nation. ACM Computing Surveys (CSUR), 26(1):87–119, 1994.

[Mey88] J.-J. CH. Meyer. A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. Notre Dame Journal of Formal Logic, 29(1):109–136,
1988.

[MGT+98] Michael Merz, Frank Griffel, M. T. Tu, Stefan Muller-Wilken, Harald Weinre-
ich, Marko Boger, and Winfried Lamersdorf. Supporting electronic commerce
transactions with contracting services. International Journal of Cooperative In-
formation Systems, 7(4):249–274, 1998.

[Mic99] Thierry Michel. Common markup for micropayment per-fee-links.
http://www.w3.org/TR/WD-Micropayment-Markup/, 1999.

[MJSSW03] Carlos Molina-Jimenez, Santosh Shrivastava, Ellis Solaiman, and John Warne.
Contract representation for run-time monitoring and enforcement. In Proceedings
of Conference on Electronic Commerce (CEC), pages 103–110. IEEE, 2003.

[MKL+02] Dejan Milojičić, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-peer computing. Techni-
cal report, HP Labs Technical Report, HPL-2002-57, 2002.

[MMP+95] O. Matz, A. Miller, A. Podtthoff, W. Thomas, and E. Valkema. Report on the
program AMoRE. Technical Report 9507, Christian-Albrechts Universtaet, 1995.

[Moh98] C. Mohan. Workflow management in the internet age. In Witold Litwin, Tadeusz
Morzy, and Gottfried Vossen, editors, Proceedings of the Second East European
Symposium on Advances in Databases and Information Systems (ADBIS), pages
26–34. Springer LNCS 1475, Sept 1998.

Bibliography 147

[Moo00] Scott A. Moore. KQML and FLBC: Contrasting agent communication languages.
International Journal of Electronic Commerce, 5(1):109ff, 2000.

[MPC01] M. Mecella, B. Pernici, and P. Craca. Compatibility of e-services in a cooperative
multi-platform environment. In F. Casati, D. Georgakopoulos, and M. Shan, ed-
itors, Proceedings of 2rd International Workshop on Technologies for E-Services
(TES), pages 44–57. Springer LNCS 2193, 2001.

[MSZ01] S. McIlraith, T. Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems (Special Issue on the Semantic Web), April 2001.

[MWD98] J. Meyer, R. Wieringa, and F. Dignum. The role of deontic logic in the specifi-
cation of information systems. In J. Chomicki and G. Saake, editors, Logics for
Databases and Information Systems. Kluwer, 1998.

[OMG97] OMG. Omg business object domain task force BODTF-RFP 2 sub-
mission workflow management facility, jFlow - joint RFP submission.
http://www.omg.org/docs/bom/97-08-05.pdf, Aug 1997.

[OMG04] OMG. Object management group. http://www.omg.org, 2004.

[OT02] S. Overhage and P. Thomas. Ws-specification: Specifying web services using
UDDI improvements. In A.B. Chaudhri, M. Jeckle, E. Rahm, and R. Unland,
editors, Web, Web-Services, and Database Systems: NODe, Web- and Database-
Related Workshops, Erfurt, Germany, volume 2593, pages 100 – 119. Springer
LNCS, 2002.

[OTA04] OTA. Open travel alliance (OTA). http://www.opentravel.org, 2004.

[ÖV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Sys-
tems. Prentice Hall, 2 edition, 1999.

[Pan98] Giovanni Panti. Multi-valued logics. In Dov Gabbay and Philippe Smets, edi-
tors, Handbook of Defeasible Reasoning and Uncertainty Management Systems,
volume 1: Quantified Representation of Uncertainty and Imprecision, chapter 2,
pages 25–74. Kluwer, Dordrecht, October 1998.

[PAPY02] Mike Papazoglou, Marco Aiello, Marco Pistore, and Jian Yang. Planning for
requests against web services. Bulletin of the Technical Commitee on Data Engi-
neering, 25(4):41–46, Dec 2002.

[Per95] A. Peron. Statecharts, transition structures and transformations. In Proceed-
ings International Conference Colloquium on Trees in Algebra and Programming
(CAAP- TAPSOFT’95, Springer, LNCS 915), pages 454–468, 1995.

148 Bibliography

[Pet62] C. A. Petri. Kommunikation mit Automaten. Schriften des Institutes fur Instru-
mentelle Mathematik, Bonn, 1962.

[Pet81] James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall,
1981.

[PH02] Jeff Z. Pan and Ian Horrocks. Extending datatype support in Web ontology rea-
soning. In International Conference on Ontologies, Databases and Applications
of Semantics (ODBASE), volume 2519 of LNCS. Springer, 2002.

[php04] openXchange project home page. http://www.openxchange.org/, 2004.

[PKPS02] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In First International Semantic Web Conference, volume
2342 of LNCS, pages 333–347. Springer, 2002.

[PL01] Randall Perrey and Mark Lycett. Workflow standards and XML. In Americas
Conference on Information Systems, 2001.

[PN03] Sanjay Patil and Eric Newcomer. ebxml and web services. IEEE Internet Com-
puting, 7(3):74–82, 2003.

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In ACM Symposium on
Parallel Algorithms and Architectures, pages 311–320, 1997.

[PSG02] Anna Perini, Angelo Susi, and Fausto Giunchiglia. Coordination specification in
multi-agent systems. from requirements to architecture with tropos methodology.
In Proceedings of SEKE. ACM, 2002.

[PSNS03] Massimo Paolucci, Katia Sycara, Takuya Nishimura, and Naveen Srinivasan. Us-
ing DAML-S for P2P discovery. In Proceedings of the First International Con-
ference on Web Services (ICWS), pages 203–207, 2003.

[RKW04] Thomas Risse, Predrag Knezevic, and Andreas Wombacher:. P2P evolution:
From file-sharing to decentralized workflows. it-Information Technology, 4:193–
199, 2004.

[Ros04] RosettaNet. RosettaNet home page. http://www.rosettanet.org, 2004.

[SBG+00] Hans-Jorg Schek, Klemens Böhm, Torsten Grabs, Uwe Rohm, Heiko Schuldt,
and Roger Weber. Hyperdatabases. In Web Information Systems Engineering,
pages 14–25, 2000.

Bibliography 149

[SBW95] Olin Sibert, David Bernstein, and David Van Wie. The DigiBox: A self-protecting
container for information commerce. In Proceedings 1st USENIX workshop on
Electronic Commerce, pages 171–183, 1995.

[Sch04] Jens Schiedung. Analysing and modelling of IOTP business transactions using
coloured petri nets and BPEL. Master’s thesis, Technical University of Darmstadt,
2004.

[SGH00] Bernd Schopp, Markus Greunz, and Joachim Haes. Supporting market transac-
tions through XML contracting container. In Proceedings of the Sixth Americas
Conference on Information Systems (AMCISS), Long Beach, CA„ Aug 2000.

[Sin03] Munindar P. Singh. Distributed enactment of multiagent workflows. In Pro-
ceedings of the 2nd International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 907–914. ACM Press, July 2003.

[SPS04] Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. Adding OWL-S to
UDDI, implementation and throughput. In First International Workshop on Se-
mantic Web Services and Web Process Composition (SWSWPC), 2004.

[SS96] Kjeld Schmidt and Carla Simone. Coordination mechanisms: Towards a con-
ceptual foundation of CSCW systems design. Computer Supported Cooperative
Work - The Journal of Collaborating Computing, 5(2/3):155–200, 1996.

[SSOH95] T. Stricker, J. Stichnoth, D. O’Hallaron, and S. Hinrichs. Decoupling synchro-
nization and data transfer in message passing systems of parallel computers. In
ACM, editor, Proceedings of the 9th International Conference on Supercomput-
ing, pages 1–10. ACM Press, Jul 1995.

[SSSW02] H. Schek, H. Schuldt, C. Schuler, and R. Weber. Infrastructure for information
spaces. In Proceedings of the 6 th East-European Conference on Advances in
Databases and Information Systems (ADBIS), pages 22–36, Bratislava, Slovakia,
Sept 2002. Springer LNCS 2435.

[SWSS04] C. Schuler, R. Weber, H. Schuldt, and H.J. Schek. Scalable peer-to-peer pro-
cess management - the OSIRIS approach. In Proceedings of IEEE International
Conference on Web Services (ICWS), pages 26–34. IEEE Computer Society, July
2004.

[Tea01] Business Process Team. Business process specification schema v1.01, May 2001.

[TG01] Robert Tolksdorf and Dirk Glaubitz. Coordinating Web-based systems with doc-
uments in XMLSpaces. Lecture Notes in Computer Science, 2172:356ff, 2001.

150 Bibliography

[Tol00a] R. Tolksdorf. Coordinating work on the web with workspaces. In Proceedings
9th IEEE International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE). IEEE Computer Society, 2000.

[Tol00b] R. Tolksdorf. Coordination Technology for Workflows on the Web: Workspaces.
In Proceedings 4th International Conference on Coordination Models and Lan-
guages, Lecture Notes in Computer Science, pages 36–50. Springer-Verlag,
Berlin, 2000.

[Tyg98] J. D. Tygar. Atomicity versus anonymity: Distributed transactions for electronic
commerce. In Proceedings of International Conference on Very Large Databases
(VLDB), pages 1–12, 1998.

[udd03] uddie. UDDIe homepage, 2003.

[Uni99] International Telecommunication Union. Message sequence charts. ITU-T Rec-
ommendation Z.120, Nov 1999.

[VSS+04] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.
METEOR-S WSDI: A scalable infrastructure of registries for semantic publi-
cation and discovery of web services. Journal of Information Technology and
Management, 2004.

[W3C02] W3C. Web service choreography interface (WSCI) 1.0.
http://www.w3.org/TR/wsci/, Aug 2002.

[W3C04a] W3C. Web services architecture - W3C working group note.
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211, Feb 2004.

[W3C04b] W3C. Web services choreography description language version 1.0.
http://www.w3.org/TR/ws-cdl-10/, Oct 2004.

[WF86] T. Winograd and F. Flores. Understanding Computers and Cognition. Addison-
Wesley, Boston, 1986.

[WfM04a] WfMC. WfMC workflow reference model.
http://www.wfmc.org/standards/model.htm, 2004.

[WfM04b] WfMC. Workflow management coalition. http://www.wfmc.org, 2004.

[WFN04] A. Wombacher, P. Fankhauser, and E. Neuhold. Transforming BPEL into anno-
tated deterministic finite state automata enabling process annotated service dis-
covery. In Proceedings of International Conference on Web Services (ICWS),
pages 316–323, 2004.

Bibliography 151

[WH01] Hans Weigand and Wilhelm Hasselbring. An extensible business communication
language. International Journal of Cooperative Information Systems, 10(4):423–
441, 2001.

[WMN04] Andreas Wombacher, Bendick Mahleko, and Erich Neuhold. IPSI-PF: A busi-
ness process matchmaking engine. In Proceedings of Conference on Electronic
Commerce (CEC), pages 137–145, 2004.

[WMR03] Andreas Wombacher, Bendick Mahleko, and Thomas Risse. Classification of ad
hoc multi-lateral collaborations based on workflow models. In Proceedings of
Symposium on Applied Computing (ACM-SAC), pages 1185–1190, 2003.

[WMW89] R. Wieringa, J-J. Meyer, and H. Weigand. Specifying dynamic and deontic in-
tegrity constraints. Data and Knowledge Engineering, N-H, 4(2), 1989.

[WOH+98] Neil Webber, Conleth O’Connell, Bruce Hunt, Rick Levine, Laird Popkin,
and Gord Larose. The information and content exchange (ICE) protocol.
http://www.w3.org/TR/1998/NOTE-ice-19981026, 1998.

[Wom05a] Andreas Wombacher. Competition proposal for decentralized service composi-
tion. In Proceedings of Conference on Electronic Commerce (CEC), 2005. sub-
mitted.

[Wom05b] Andreas Wombacher. Decentralized decision making protocol for service compo-
sition. In Proceedings IEEE International Conference on Web Services (ICWS).
IEEE Computer Society, 2005. submitted.

[Wor04] WordNet. a lexical database for the english language.
http://wordnet.princeton.edu, 2004.

[WVD96] H. Weigand, E. Verharen, and F. Dignum. Integrated semantics for information
and communication systems. In Proceedings of the Sixth IFIP TC-2 Working
Conference on Data Semantics, pages 500–525. Chapman & Hall, Ltd., 1996.

[WvdH98] Hans Weigand and Willem-Jan van den Heuvel. Meta-patterns for electronic
commerce based on FLBC. In Proceedings of the 31nd Hawaii International
Conference on System Sciences (HICSS), page 261ff. IEEE Press, 1998.

[WW97] Dirk Wodtke and Gerhard Weikum. A formal foundation for distributed workflow
execution based on state charts. In Foto N. Afrati and Phokion Kolaitis, editors,
Proceedings of the 6th International Conference on Database Theory (ICDT),
pages 230–246. Springer LNCS 1186, jan 1997.

[XML04] XMLSpaces. homepage. http://www.inf.fu-berlin.de/inst/ag-
nbi/research/xmlspaces/, 2004.

152 Bibliography

[YK04] Xiaochuan Yi and Krys J. Kochut. Process composition of web services with
complex conversation protocols: a colored petri nets based approach. In Proceed-
ings of the Design, Analysis, and Simulation of Distributed Systems Symposium
at Adavanced Simulation Technology Conference, pages 141–148, 2004.

[ZBNN01] L. Zeng, B. Benatallah, P. Nguyen, and A. H. H. Ngu. AGFlow: Agent-based
cross-enterprise workflow management system. In P. M. G. Apers, P. Atzeni,
S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T. Snodgrass, editors, Pro-
ceedings of 27 International Conference on Very Large Databases (VLDB), pages
697–699, 2001.

[ZFCJ02] Liangzhao Zeng, David Flaxer, Henry Chang, and Jun-Jang Jeng. PLMflow - dy-
namic business process composition and execution by rule inference. In Proceed-
ings of 3rd International Workshop, Technologies for E-Services (TES), LNCS
2444, pages 141–150. Springer, 2002.

[ZNBO01] Liangzhao Zeng, Anne Ngu, Boualem Benatallah, and Milton O’Dell. An agent-
based approach for supporting cross-enterprise workflows. In Proceedings of the
12th Australasian conference on Database technologies, pages 123–130. IEEE
Computer Society, 2001.

A Appendix

A.1 Example Requiring Unique Message Names

In the following, an example of a multi-lateral workflow is presented which is considered to be
consistent if message names are not unique, although the multi-lateral collaboration is consid-
ered to be inconsistent if message names are not disambiguated. The representation of an au-
tomaton with disambiguated message names as a normalized automaton is discussed in Section
4.3.8. The reason for the wrong consistency decision is that history constraints are represented
as sets, thus disregarding order and multiple occurrence of messages. To illustrate the effect,
let’s discuss the example depicted in Figure A.1.

B#A#msg1

party A

A#C#msg3

B#C#msg2

party B

B#A#msg1

A#C#msg3

party C

B#C#msg2

B#C#msg2
 B#C#msg2

B#A#msg1

B#C#msg2

Figure A.1: Guarded aFSA Representation of Local Workflows

Three parties A, B, and C are involved in a multi-lateral collaboration. The workflow starts
with B sending message B#C#msg2 to party C. Afterwards, party B has to decide to continue the
process either by sending message B#C#msg2 to party C again, or sending message B#A#msg1
to party A. However, party A finally has to send message A#C#msg3 to party C. Constructing
the multi-lateral workflow by the intersection of the extended local workflows results in the
automaton depicted in Figure A.2. Since the multi-lateral workflow is empty, the multi-lateral
collaboration is inconsistent.

Applying the parameter constraint propagation on the local workflows resulting in a fixed
point as discussed in Section 4.3.9 and applying the occurrence graph constraint propagation
the first time as introduced in Section 4.3.10, while the identically labeled messages are not

154 Chapter A. Appendix

B#C#msg2
B#A#msg1

B#C#msg2

B#A#msg1

B#C#msg2

Figure A.2: Guarded aFSA Representation of Multi-lateral Workflow

disambiguated results in the automata depicted in Figure A.3. This representation of the local
workflows is already a fixed point.

party A
 party B

A#C#msg3

[h . B#C#msg2

 h . A#C#msg3]

party C

B#A#msg1

B#C#msg2

B#A#msg1

[h . B#C#msg2

 h . B#A#msg1]

E

E

A#C#msg3

[h . B#C#msg2

 h . B#A#msg1

 h . A#C#msg3]

E

E

E

B#A#msg1

[h . B#C#msg2

 h . B#A#msg1]

E

E

B#C#msg2

[h . B#C#msg2]

E
 B#C#msg2

[h . B#C#msg2]

E

B#C#msg2

[h . B#C#msg2]

E
B#C#msg2

[h . B#C#msg2]

E

E

E

Figure A.3: Fixed Point Local Workflows Without Disambiguated Messages

Since each local workflow is consistent, the multi-lateral collaboration is considered to be
consistent, although it is not. Wrong decision making is caused by the duplicate usage of mes-
sage B#C#msg2. In particular, the history role cannot distinguish between the first and second
occurrence of message B#C#msg2, thus, it seems to suffice if the message has been exchanged at
least once. However, the number of a message that has been exchanged has to be equal in every
path. As a consequence, different occurrences of identically labeled messages are annotated by a
subscripted number of occurrence of this message in a path to reach the message. Applying pa-
rameter constraint propagation again, resulting in a fixed point, and applying the first occurrence
graph constraint propagation results in the automata depicted in Figure A.4.

The last transition in party A’s workflow is false ⊥, because the subsumption

B#A#msg11uB#C#msg21uA#C#msg31⊆B#A#msg11uB#C#msg21uB#C#msg22uA#C#msg31

is not fulfilled, thus, the guard expression is set to ⊥. This is similar for the last transition in

A.1 Example Requiring Unique Message Names 155

B#A#msg1
1

[h . B#C#msg2
1

 h . B#A#msg1
1
]

party A

A#C#msg3
1

[
]

party B

A#C#msg3

[]

party C

B#C#msg2
1

[h . B#C#msg2
1
]

B#C#msg2
1

[h . B#C#msg2
1
]

B#A#msg1
1

B#C#msg2
2

B#A#msg1
1

[h . B#C#msg2
1

 h . B#A#msg1
1
]

B#C#msg2
2

[h . B#C#msg2
1

 h . B#C#msg2
2
]

B#C#msg2
2

[h . B#C#msg2
1

 h . B#C#msg2
2
]

E

E

E

E

E

E

E

E

E

E

Figure A.4: Fixed Point Local Workflows With Disambiguated Messages

party B’s workflow, where

B#C#msg21uB#C#msg22uA#C#msg31⊆B#A#msg11uB#C#msg21uB#C#msg22uA#C#msg31

is not fulfilled.
As a consequence, party A and C are empty, therefore the multi-lateral collaboration is con-

sidered to be inconsistent.

A.2 Normalization Operation on Guarded Annotated Finite State Automata 157

A.2 Normalization Operation on Guarded Annotated Finite State
Automata

In the following a procedure is specified, which allows the derivation of an acyclic normalized
guarded aFSA in accordance with Definition 4.38 from a guarded aFSA.

Definition A.1
A guarded aFSA A = (Q,Σ,∆,q0,F,QA,G,P) can be transformed into a normalized acyclic
guarded aFSA A′ where A′ := Θ(A, /0,>,q0,q0, /0, /0) which models a finite subset of the language
of a guarded aFSA using the definition of Θ defined as follows:

Θ




A
path

e′i
qcur

qnew

tnew

θ




T

:=




{qnew}∪S(qcur,α,q)∈∆,e′′i Q′′

{αnew}∪S(qcur,α,q)∈∆,e′′i Σ′′

{tnew}∪S(qcur,α,q)∈∆,e′′i ∆′′

q0(S
(qcur,α,q)∈∆,e′′i F ′′

)
∪

{ {qnew} i f qcur ∈ F
/0 otherwise

{(qnew,τa(ẽ, θ̃))}∪S(qcur,α,q)∈∆,e′′i QA′′

{(tnew,τg(e′i,θ)}∪S(qcur,α,q)∈∆,e′′i G′′

P




T

where path is the path of transitions already traversed to reach the current state qcur of the
original automaton A. Further, the state qnew represents the equivalent of qcur within the re-
sult automaton, while transition tnew = (q′new,αnew,qnew) is the equivalent of the last transition
contained in path. The last transition’s guard expression e can be normalized in disjunctive nor-
mal form resulting in a disjunction of conjunctions e′ = e′1 t . . .t e′n, while each e′i is treated
explicitly. e′′i represents a conjunction of the disjunctive normal form of the guard expres-
sion e′′ associated to transition (qcur,α,q) ∈ ∆ being a transition reachable from the current
state qcur. The annotation of state qcur is given by ẽ, that is, (qcur, ẽ) ∈ QA. The automaton
A′′ = (Q′′,Σ′′,∆′′,q0,F ′′,QA′′,G′′,P) is derived by the following recursion:

A′′ :=
{

Θ(A, path.(qcur,α,q),e′′i ,q,q′,(qnew,α j,q′),θ∪{α→ α j}) i f Occ((qcur,α,q), path)≤ N
(/0, /0, /0,q0, /0, /0, /0,P) otherwise

where q′ is a new unique identifier of a new state in the result automaton corresponding to q
of the original automaton and α j is the j-th occurrence of α in path. The relevant substitutions
θ̃ for the annotations are constructed as follows:

θ̃ :=
[

(q,α,q′)∈∆

{ {α→ α j} i f Occ((q,α,q′), path)≤ N
{α→ intermediate} otherwise

where j in α j represents the number of occurrences of α in path.

158 Chapter A. Appendix

A.3 List of Figures

2.1 (a) Vendor Message Sequence. (b) Customer Message Sequence. 7
2.2 (a) Vendor Message Sequences Insisting on V #C#noStock and V #C#delivery

Messages. (b) Customer Message Sequences. (c) Customer Message Sequences
with Optional V #C#noStock Message. 8

2.3 (a) Vendor and Customer WF-Net from Figure 2.2(a) and (b). (b) Vendor and
Customer WF-Net from Figure 2.2(a) and (c). 10

2.4 Global Procurement Scenario . 12
2.5 Local WF-Net Models . 13
2.6 Global WF-Net Model . 14
2.7 Bilateral WF-Net of Buyer and Accounting Department 15
2.8 Bilateral WF-Net of Logistics Department and Buyer 15
2.9 Bilateral WF-Net of Logistics and Accounting Department 16
2.10 Acyclic Buyer WF-Net . 20
2.11 Shorthand Notation of the Acyclic Buyer WF-Net (see Figure 2.10) 20
2.12 Shorthand Notation of the Bilateral WF-Net for Buyer and Logistics Department 21
2.13 Extended Bilateral WF-Net Model for Buyer and Accounting Department . . . 22
2.14 Extended Accounting Department WF-Net . 22
2.15 Extended Bilateral WF-Net Model for Logistics and Accounting Department . 22
2.16 Shorthand Notion of the Bilateral WF-Net for Buyer and Logistics Department

after Discarding Transition A#L#auth . 23
2.17 Extended Bilateral WF-Net for Buyer and Logistics Department 24

4.1 Asynchronous WF-Net Example . 39
4.2 Map of Description Logic Definitions . 41
4.3 Map of Definitions for the Asynchronous Model 45
4.4 Example P/T-Net: (a) P/T-Net (b) corresponding Occurrence Graph 48
4.5 Bilateral WF-Net of Buyer and Accounting Department without Abstraction . . 51
4.6 (a) WF-Net with Guard Function in Disjunctive Normal Form (b) Normalized

WF-Net Equivalent to (a). 54
4.7 (a) Normalized WF-Net (b) Guarded Occurrence Graph of (a). 57
4.8 Map of Definitions for the Synchronous Model 59
4.9 (a) Automaton (b) Annotated Automaton Equivalent to (a). 63

160 A.3 List of Figures

4.10 (a) Incomplete aFSA (b) Completely Annotated aFSA Equivalent to (a). 63
4.11 (a) Intersection of Vendor and Customer Process with Missing V #C#noStock

Message. (b) Intersection of Vendor and Customer Process with V #C#noStock
Message. 65

4.12 Guarded aFSA Representation of the Local Workflows 68
4.13 Parameter Constraint Propagated Buyer Workflow 69
4.14 Guarded aFSA Intersection Examples: (a) Direct Accounting and Logistic In-

tersection (b) Direct Buyer and Accounting Intersection 70
4.15 Minimized Guarded aFSA Representation of the Multi-lateral Collaboration . . 73
4.16 Guarded aFSA Representation of Local Workflows 73
4.17 Guarded aFSA Representation of Local Workflows Extended by History Anno-

tation and Propagated Guard Expressions . 75
4.18 Buyer Acyclic Workflow with a Maximum Iteration of 2. 77
4.19 Logistics Department Acyclic Workflow with a Maximum Iteration of 2. 78
4.20 Accounting Department Workflow with Propagation - (a)A := Φb(A,B) With A

and B From Figure 4.12 and (b)A := Φ(A) With A From (a) 79
4.21 Minimized Logistics Department Propagated Occurrence Graph Constraints . . 82

5.1 (a) WF-Net of Party A, (b) WF-Net of Party B, (c) aFSA Representation of the
Occurrence Graph of (b), (d) aFSA Representation of the Complete Occurrence
Graph of (b) . 88

5.2 Normalized Acyclic Guarded aFSA Example 98
5.3 Normalized Acyclic Guarded aFSA: (a) Annotation Normalization of Party A

(b) Shuffle Product of A’s Projection on Party B’s and C’s Workflow 99
5.4 Normalized Acyclic Guarded aFSA: (a) Occurrence Graph Constraint Propaga-

tion on Party A’s Workflow (b) cleana()o f (a) 99
5.5 Fixed Point Local Workflows of Multi-lateral Collaboration 100

6.1 WSDL Porttype Definition . 104
6.2 BPEL Notation of the Logistics Department Workflow 105
6.3 aFSA Notation of Logistics Department Workflow 108
6.4 aFSA Notation with Message Name Resolution 109
6.5 IOTP Message Exchange Structure . 115
6.6 Plot of Number of Workflows versus Number of Transitions 116
6.7 Plot of Number of States versus Number of Transitions 117
6.8 Plot of Number of Workflows versus Number of Messages 118
6.9 UDDI Query . 119
6.10 Example Query Form . 121
6.11 Architecture . 122
6.12 Benchmark Tool . 123
6.13 Query Response Time . 125

A.3 List of Figures 161

6.14 Concurrent Example with Three Collaborations 126

A.1 Guarded aFSA Representation of Local Workflows 153
A.2 Guarded aFSA Representation of Multi-lateral Workflow 154
A.3 Fixed Point Local Workflows Without Disambiguated Messages 154
A.4 Fixed Point Local Workflows With Disambiguated Messages 155

