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For a better feedback of the results of the investigations conducted, this work is 

reported in three chapters, accordingly to the research approach used. A 

previous overview on cholinesterases and their novel functions can be found in 

“Literature review”, chapter 1. Chapters 2, 3, and 4 comprise my studies 

addressing novel functions of cholinesterases during development of chick 

pineal and zebrafish, and in human recombinant enzymes. An introduction to 

each new model organism or approach applied for research, with the respective 

description of the methodology used, is at the beginning of each of these three 

chapters. The results of each study are followed by a discussion and a summary 

of the research achievements. The general findings are summarized at the end 

of this work, and in “Concluding remarks” new perspectives of research are 

discussed.  
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1.1 Overview 

At the beginning of the last century, pharmacological investigations of the 

cholinergic nervous system brought to light the existence of cholinesterases 

(Dale, 1914; Loewi and Navratil, 1926; Stedman et al., 1932). On the early 

1940s, the presence of two cholinesterases, with slightly different substrate 

affinities (Mendel and Rudey, 1943), was verified on human blood. The serum 

enzyme, butyrylcholinesterase (BChE; E.C. 3.1.1.8), hydrolyzed preferentially 

butyrylcholine (BuCh) and propionylcholine (PCh), while the red blood cells 

enzyme, acetylcholinesterase (AChE; E.C. 3.1.1.7), displayed high affinity for 

acetylcholine. The following years of research were concentrated on 

understanding the properties, physiological function, pharmacology, localization 

and development of these enzymes. 

1.1.1 The cholinesterase (ChEs) family and homologous proteins 

Higher eukaryotes have many distinct esterases. The cholinesterases belong to 

the lipase/esterase family, beyond other phylogenetically related groups of 

enzymes (carboxylesterases, lipases and hormone-sensitive lipases) sharing a 

similar structure of a central beta-sheet surrounded by alpha-helices.  

Among these proteins, molecules implicated in cell-cell interactions by 

promoting cell adhesion present 42 to 50% of sequence similarities with AChE 

from Torpedo (Schumacher et al., 1986), mouse (Rachinsky et al., 1990), 

human (Soreq et al., 1990) and AChE and BChE from Drosophila (Oslo et al., 

1990; Barthalay et al., 1990; De La Escalara et al., 1990; Darboux et al., 

1996); see dendrogram (Fig. 1.1). In despite of the high homology of sequence 

with AChE, these proteins do not have the catalytic serine and therefore, do not 

display cholinergic activity. Some of these proteins are known to be transiently 

expressed during development, like gliotactin and neurotactin in Drosophila 

(Soreq et al., 1990; Auld et al., 1995). Neuroligins are also suggested to play 

an indirect role on cell-cell interaction and synaptic organization (Ichtchenko et 

al., 1995).  
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Fig. 1.1: The serine esterase domain 
proteins. A dendrogram illustrates 
the relationship between proteins 
involved in cell-cell interactions to 
cholinesterases from representative 
species (Brimijoin and Koenigsberger, 
1999). 

1.1.2 The cholinesterases  

BChE is the closest serine proteases structural relative to AChE. Human BChE 

and Torpedo AChE are 54% identical (Chatonnet and Lockridge, 1989). AChE 

and BChE are distinguished by their distinct substrate specificity and inhibitor 

sensitivity, determined by their functional sites (Massoulié and Bon, 1982; 

Chatonnet and Lockridge, 1989). AChE is selectively inhibited by BW 284c51, 

while BChE is specifically inhibited by iso-OMPA (Austin and Berry, 1953). 

Nevertheless, both are inhibited by 10-5 M physostigmine and organophosphate 

compounds used as insecticides and neurotoxins. Moreover, they can also be 

distinguished by their affinity to monoclonal antibodies (La Motta and Woronick, 

1971; Brimijoin et al., 1983).  

In humans, each BChE subunit comprises 574 amino acids and weights 85.5 

kDa (monomer). The mature catalytic subunit of AChE consists of a major 

common domain of about 535 residues. Each subunit of AChE is composed by 

614 amino acids and weights 67.9 kDa. Both AChE and BChE molecules are 

comprised by a central beta-sheet surrounded by alpha-helices (Fig. 1.2). 



Literature review 
 
 

 

4 

 

 

Fig. 1.2: Secondary structure of BChE. Neighboring amino acids twist in relation to each 
other to form a variety of three-dimensional structures including sheets and helices.  

1.1.2.1 Cholinesterases function  

Henry Dale established acetylcholine's role as a chemical transmitter of nerve 

impulses on the early 30s. AChE (EC 3.1.1.7) rapidly terminates the nerve 

impulse by hydrolyzing acetylcholine (ACh) in cholinergic synapse, thereby 

limiting the action of the neurotransmitter (Quinn, 1987). Therefore, AChE is 

essential to maintain continuous synaptic transmission.  

Although BChE (EC 3.1.1.8) is 3 fold less efficient than AChE on hydrolyzing 

acetylcholine, it can also hydrolyze many other esters, like proprionylthiocoline, 

butyrylcholine and benzoylcholine. It was initially suggested to work as a 

detoxifying agent, by hydrolyzing succinylcholine, a pre-surgery short-acting 

myorelaxant (Davies and Kalow, 1963). The interest in BChE grew as some 

patients experienced prolonged apnea after treatment with succinylcholine, 

caused by a genetic variation of the BChE (Whittaker and Britten, 1980). 

However, the exact physiological function of BChE is not known. It is generally 

viewed as a back up for the homologous AChE and, as a scavenger for 

anticholinesterases compounds (Schwarz et al., 1995; Fontoura-da-Silava and 

Chautard-Freire-Maia, 1996).  

1.1.3 Cholinesterases catalytic mechanisms and kinetics 

Catalysis by ChEs occurs by a mechanism similar to that of the serine 

proteases, via an acyl-enzyme intermediate. First the substrate is broken into 
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choline and acetate (Fig. 1.3). Choline can remain temporarily trapped in the 

muscular end plate or can be immediately taken up again by the high affinity 

choline uptake system on the pre-synaptic membrane. In a second step, a 

deacetylation reaction takes place to re-establish the functionality of the 

enzyme (Fig. 1.3).  

The cholinesterases are among the most efficient enzymes known. The AChE 

hydrolysis rate is similar to the natural rate of diffusion for acetylcholine, 

displaying a turnover number of ~10000 molecules per second, and thus 

operating close to the diffusion-controlled limit (Quinn, 1987). 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3: General cholinesterases catalysis schema: the substrate, in this case 
acetylcholine, binds to the esteratic site, where it is broken by nucleophilic attack by a 
serine, followed by general-base catalysis assisted by a histidine, generating acetate 
and choline (Quinn, 1987). Acetate remains covalently bonded to serine residues within 
the esteratic subsite, forming a temporary acetylated form of AChE. A molecule of water 
then reacts with this intermediate, liberating the acetate group and restoring the active 
form of the enzyme. 
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1.1.4 Cholinesterases structure and functional sites 

Several approaches were undertaken to unravel the functional sites of AChE and 

BChE since the last decade. The structure of the Torpedo californica (Pacific 

Electric Ray) AChE (TcAChE), allowed the idealization of a computational model 

for the human BChE (hBChE) crystal structure, which was just recently 

determined (Nicolet et al., 2003). Based on the amino-acid sequence, x-ray 

crystal structure, site-directed-mutagenesis and ligant binding studies, it was 

possible to elucidate functional sites on AChE and BChE.  

TcAChE active site catalytic Ser-His-Glu triad is found at the bottom of a 20 Å 

deep gorge lined mostly with aromatic residues (Sussman et al., 1991). The 

catalytic triad is the same for both cholineterases and the overall structure of 

the hBChE is very similar to TcAChE (Fig. 1.4). The difference lies on the 

residues lining the gorge, 14 aromatic residues on AChE and 8 on BChE (Harel 

et al., 1992). As a result, bulkier molecules can be accommodated in the 

catalytic gorge of BChE.  

Studies of the pH and charge dependence of catalytic hydrolysis of substrates 

and of the binding of reversible inhibitors suggested that the active site of ChEs 

contains two major subsites, the “esteratic” and the “anionic” (Wilson and 

Bergmann, 1950). These subunits correspond, respectively, to the catalytic 

machinery and the choline-binding pocket (Froede and Wilson, 1970). The AChE 

peripheral anionic site (PAS), which localization was established in 1980 

(Berman et al., 1980), lays 20 Å from the rim of the active center gorge (Fig. 

1.4). Functionally, the primary binding of compounds to the peripheral site 

slows down the traffic of substrate and product at the acylation site (Szegletes 

et al., 1999; De Ferrari et al., 2001). Moreover, it has been speculated that the 

PAS is involved in the phenomenon of substrate inhibition and activation 

through binding of a second substrate molecule.  

A similar peripheral site is known to be present on BChE, although, its response 

to ligand binding differs significantly from that of AChE (Nachon et al., 1998; 

Masson et al., 1997). Based on structure function relationship and reverse 

genetics, it was concluded that the aromatic residues lying in the PAS from 

TcAChE are essential for AChE functioning and substrates selectivity (Radic et 

al., 1993; Barak et al., 1994). This was considered when looking for a PAS in 
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BChE, which was previously thought to do not have a secondary site (Harel et 

al., 1992). However, in BChE the aromatic residues not take part in the PAS, 

and the negatively charged residue Asp70 plays a central role on it (Masson et 

al., 1996). This residue is strategically placed near the top of the active-site 

gorge (Fig. 1.4), also on AChE (Barak et al., 1995), although the Trp-277 is the 

crucial component for the functioning of the AChE PAS (Masson et al., 1997). 

Therefore, the features of the PAS are similar for both enzymes, except those 

that rely on aromatic amino acids.  

 

 

Fig. 1.4: Stereo view of cholinesterases. Superposition of native hBChE (cyan), TcAChE 
(pink), and Drosophila AChE (green) around the active site gorge (Nicolet et al., 2003). 
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1.1.5 A non-cholinolytic activity on cholinesterases 

A second activity, besides the esterase activity, sitting on the ChEs molecule 

has been proposed to exist. AChE was found to hydrolyze o-nitroacetanilide 

(Fujimoto, 1976), an artificial substrate, which is hydrolyzed by the activity of 

aryl acylamidase (Hoagland and Graf, 1971). The aryl acylamidase is an ancient 

enzyme (AAA; EC 3.5.1.13), found in bacteria (Engelhardt et al., 1971; Hsiung 

et al., 1975) and plants (Still and Kuzirian, 1967), which cleaves acyl-amide 

bonds, catalyzing the de-acetylation of aryl acylamides. This activity is known 

since 1909, discovered by Minkowki in rabbit and kidney extracts, using 

phenactin and acetanilide as substrates.  

In basal ganglia, electric eel and, erythrocyte membrane, both AChE and AAA 

have been co-purified by affinity chromatography. They displayed identical 

behavior on gel electrophoresis and in response to the inhibitors eserine, 

neostignine and BW 284C51 (George and Balasubramanian, 1980; Majumdar et 

al., 1982; Majumdar and Balasubramanian, 1982; Checler et al., 1994). The 

association of AAA with AChE and BChE has been reported mostly in mammals 

(Fujimoto, 1976; Oommen and Balasubramanian, 1977; Tsujita et al., 1983; 

Jayanthi et al., 1992; Balasubramanian and Bhanumathy, 1993), however, it 

also occurs in chicken (Weitnauer et al., 1998). The distinction between the AAA 

activities non-associated to the AAA-ChEs associated, was possible due to their 

differential sensitivity towards compounds like serotonin and tryptamine, which 

just affect the latter activity (Fujimoto, 1974, 1976; Oommen and 

Balasubramanian, 1977; Oommen and Balasubramanian, 1979; George and 

Balasubramanian, 1981). AAA ChEs associated is inhibited towards the classical 

cholinesterases inhibitors BW and ISO-OMPA and towards the ChEs substrate 

acetylcholine (Oommen and Balasubramanian, 1977; Checler et al., 1994; 

Weitnauer et al., 1998). However, these biochemical evidences of an aryl 

acylamidase associated to cholinesterases were not enough to convince all the 

scientific community working on cholinesterases about the existence and 

functionality of this second activity on cholinesterases. Nevertheless, chemical 

mutagenesis was conducted to find evidence of a co-relation structure/catalytic 

efficiency of AAA in comparison to the esterase activity (Majumdar and 

Balasubramanian, 1984; Boopathy and Balasubramanian, 1985). However, the 

puzzling results produced with this kind of approach could not clarify which 
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amino acids are essential for the functionality of AAA. In resume, a catalytic site 

for this activity on cholinesterases is not known, in despite of the attempts to 

indicate the amino acids comprising its active site (Majumbar and 

Balasubramanian, 1984; Boopathy and Balasubramanian, 1985).  

Furthermore, the natural substrate for AAA is also not known, increasing the 

uncertainty of a real physiological function for it. It has been suggested to 

contribute to the degradation of substance P (Balasubramanian and 

Bhanumathy, 1993), which is involved in transmission of pain signals to the 

brain. Besides, AAA was shown to be highly sensitive to inhibitors used for the 

treatment of Alzheimer’s disease (Darvesh et al., 2003) and to contribute to the 

maturation of amyloid plaques (Costagli et al., 1998), suggesting it could be 

correlated to the clinic condition of this disease (Darvesh et al., 2003).  

Developmental studies, using chicken as model organism, have indicated 

temporal variation of the AAA activity and of its sensitivity to inhibitors in 

relation to the esterase activity (Boopathy and Layer, 2004).  

The sensitivity of this activity towards serotonin (Fujimoto 1974, 1976; 

Oommen and Balasubramanian, 1977) is a particular property of the AAA 

activity associated to ChEs that deserves more attention. Nevertheless, the 

publications on the subject are limited and more investigations are required to 

describe a functional relevance for this activity and to corroborate its association 

with cholinesterases.   

1.1.6 Cholinesterases genetic background 

1.1.6.1 Evolutionary aspects 

Despite of the high homology of the sequence (Prody et al., 1987; McTiernan et 

al., 1987; Soreq and Prody, 1989), BChE and AChE are encoded by different 

genes, located on different chromosomes (Soreq et al., 1987; Arpagaus et al., 

1990; Gaughan et al., 1991). The human BCHE locus is located on the long arm 

of the chromosome 3, band 26, while ACHE is on the long arm of the 

chromosome 7, on the band 22 (Getman et al., 1992). They possibly were 

originated by a gene duplication, which occurred in different phylogenetic 

lineages (McClellan et al., 1998). AChE is primarily found in nematodes 

(Caenorhabditis elegans), being encoded by four ACHE genes (Grauso et al., 
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1998), and two genes in Amphioxus (McClellan et al., 1998). Insects possess a 

single ChE gene coding for an enzyme with specificity intermediate between 

those of AChE and BChE (Massoulié et al., 1993a; Taylor and Radic, 1994). In 

vertebrates there is a single gene encoding ACHE, whose structure differs 

slightly with taxonomic group (Massoulié et al., 1993b). BChE is not present in 

invertebrates, its first appearance occurs before the split of cartilaginous fish, in 

Torpedo. However, it is not present in zebrafish, suggesting it had been lost, 

emerging later in birds (McClellan et al., 1998). 

1.1.6.2 Cholinesterases diversity 

The human BCHE gene is known to be very polymorph (Arpagaus et al., 1990), 

circa 40 variants have been described (McGuire et al., 1989; Gnatt et al., 1990; 

Muratani et al., 1991; Bartels et al., 1992; Jensen et al., 1992; Hada et al., 

1992; Hidaka et al., 1992; Nogueira et al., 1992; Greenberg et al., 1995; 

Maekawa et al., 1995; 1997; Primo-Parmo et al., 1996, Sudo et al., 1997). The 

existence of BCHE variants with very low esterase activity, 25 with less than 

10% of activity, suggests a non-cholinergic mechanism could be maintaining 

some of these variants as polymorphisms in some populations. For instance, in 

European populations, the frequency of individuals with substantially decreased 

enzyme activity does not exceed 1:2000. However, among Eskimos of Alaska, 

1-2% of individuals produce a variant of the BCHE enzyme without esterase 

activity, due to a silent polymorphism, and 25% are usual/silent heterozygotes 

and exhibit 70% of the activity as compared to normal usual homozygotes 

(Whittaker and Britten, 1989). The existence of silent homozygotes is a strong 

indication of the involvement of BChE in non-cholinergic processes.  

The plasma BChE is present in three main globular forms, monomer, dimer and 

tetramer, according to the number of subunits (Muensch, 1976; Masson, 1979). 

Other subunits of BChE can be detected by electrophoresis, which are suggested 

to be aggregates from the main globular forms of AChE and BChE (Tsim et al., 

1997) or complexes of some forms of BChE with lipoproteins or lipid molecules 

(Kutty, 1980). Although, the significance of the molecular polymorphism of 

BChE is not clear, association studies indicate a correlation of variants with 

reduced cholinergic activity to increased susceptibility to intoxication by 

organophosphorus compounds (Fontoura-da-Silva and Chautard-Freire-Maia, 

1996).  
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Acetylcholinesterase is a highly structural polymorphic enzyme, existing as 

soluble, membrane bund and basal lamina-associated forms (Massoulié et al., 

1998; Feng et al., 1999; Gennari et al., 1987). Through alternative splicing (Fig. 

1.5), the mammalian AChE gene produces three types of coding regions, 

generating proteins that possess the same catalytic domain associated with 

distinct C-terminal peptides, which dictate where the enzyme will be located 

(Massoulié, 2002). AChE subunits of type R ('read through') produce soluble 

monomers, and of type H ('hydrophobic') glycophosphatidylinositol-anchored 

dimmers (Silman and Futerman, 1987), but also secreted molecules. Subunits 

of type T ('tailed') exist for both AChE and BChE. They represent the enzyme 

forms expressed in brain and muscle. These subunits generate a variety of 

quaternary structures, including homomeric oligomers (G1 - monomers, G2 – 

dimmers and G4 - tetramers), as well as hetero-oligomeric assemblies with 

anchoring proteins, ColQ and PRiMA. 

The C-terminal region of BChE is not subject to alternative splicing, presenting 

high homology to the vertebrate T-spliced AChE (AChET). The association of 

AChET or BChE subunits with ColQ produces collagen-tailed molecules, which 

are inserted in the extracelular matrix, e.g. in the basal lamina of 

neuromuscular junctions (Feng et al., 1999; Hall, 1973). Their association with 

PRIMA is required to anchor it to the basal lamina of cells and organize into 

tetramers, which constitute the predominant form of cholinesterases in the 

mammalian brain (Gennari et al., 1987; Inestrosa et al., 1987; Perrier et al., 

2002). The alternatively spliced exons are not common to all invertebrates (Fig. 

1.5). In insects only H cDNAs are present (Massoulié et al., 1998). In 

nematodes it is not the same for all four AChE genes they present. In 

vertebrates the absence of the H exon can be frequent (Simon and Massoulié, 

1997; Simon et al., 1998). 

The assembly of the cholinesterases molecular forms is supposed to take place 

in the trans-Golgi apparatus (Massoulié et al., 1993b). Rotundo (1989) reported 

AChE is packaged in coated vesicles and transported to the plasma membrane, 

where the vesicles fuse and result in either secretion of AChE or insertion to the 

membrane. 
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Fig. 1.5: Alternative splicing at the 3' end of the coding sequence of AChE transcripts 
generating peptides with different C-terminal regions (Cousin et al., 1997): exon 4 is 
either read through to give the R subunit, or alternatively spliced to exon 5 (H subunit) 
or exon 6 (T subunit). 
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Fig. 1.6: AChE subunits. The AChEH subunits undergo a post-translational modification, 
the C-terminal region of the H peptide is replaced by GPI (shown in blue), and the 
resulting dimmers are anchored in the cell membranes. The AChET subunit develops an 
amphiphilic alpha helix (red), which is exposed in amphiphilic forms type II (monomers, 
dimmers and tetramers). AChET subunits form tetramers linked to PRIMA (pink) or ColQ 
(Collagen Q), generating membrane-bound and collagen tailed hetero-oligomers. 

1.1.7 Cholinesterases expression and localization on tissues 

Consistent with the classical role of AChE, it predominates in neuromuscular 

junctions and is also intensely expressed in the human central nervous system, 

where cholinergic synapses are found. On the other hand, AChE also occurs in 

non-neural and embryonic tissues like red blood cells, megakaryocytes, and 

migrating neural crest cells (Lev-Lehman et al., 1997; Smith et al., 1979). BChE 

appears in a limited group of neurons, as it occurs primarily in non-neural or 

non-synaptic sites like adipose tissue, liver, intestine, lung, plasma, and 

neuroglia (Silver, 1974; Graybiel and Ragsdale, 1982). The Weizmann Institute 

of Science has a website reporting cholinesterases expression on human tissues 

based on DNA array experiments (Fig. 1.7). 
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       (A) 

 

       (B) 

 

Fig. 1.7: Cholinesterases expression. AChE (A) and BChE (B) expression in cholinergic 
(nervous system and muscles) and non-cholinergic tissues (immuno system, secretory 
glands and others) according to the Weizmann Institute of Science DNA array 
experiments (Gene Cards web site; http://au-kbc.org/beta/bioproj2/genecard.html). 



Literature review 
 
 

 

15 

Whereas the human BChE is synthesized in liver and white matter of the brain 

(Prody et al., 1987; McTiernan et al., 1987), acetylcholinesterase is released 

from the substatia nigra into the cerebrospinal fluid (Jones et al., 1994). AChE 

and BChE can be found as soluble forms or can be attached to cellular or 

basement membranes (Henderson and Greenfield, 1984; Massoulié, 2002). In 

vertebrates, AChE and BChE asymmetric forms are present just in peripheral 

nervous system and muscles. Membrane bound tetramers from both enzymes, 

are present in mammalian brain and AChE monomers in erythrocytes 

(Massoulié, 1982).  

1.2 Novel functions of cholinesterases 

Novel functions of cholinesterases, which do not involve termination of the 

nervous impulse, have been speculated. These non-classical events involving 

ChEs, between several others, are suggested to be: promotion of cell 

differentiation (Layer and Willbold, 1990; Lapidot-Lifson et al., 1992), cell 

migration (Drews, 1975; Layer and Kaulich, 1991), cell proliferation (Layer, 

1987), tumor growth (Patinkin et al., 1990; Soreq et al., 1992; 1994b) and, cell 

apoptosis (Robitzki et al., 2000; Zhang et al., 2002; Jin et al., 2004; Park et al., 

2004).  

1.2.1 Cholinesterases disfunction in pathological states  

The possible involvement of BChE in neurological diseases, like Alzheimer`s 

disease (AD), has been postulated by association studies on human populations 

(Raygani et al., 2004; Cook at al., 2005). It has been known for several years 

that BChE activity is increased in AD brain (Perry et al., 1978). As well, the 

inhibition of AChE was shown to improve long-term memory processes (Davis et 

al., 1978).  

The progressive disfunction of cholinergic neurotransmission in the brain is a 

factor for the development of cognitive and behavioral problems in Alzheimer`s 

patients (Whitehouse et al., 1981; Coyle et al., 1983). In consequence, drugs to 

treat AD (rivastigmine, huperzine A, donepezil and eptastigmine) act mainly on 

the cholinergic neurotransmission system.  

Neuronal death related to the deposition of the B-amyloid protein on the brain 

plaques and tangles is suggested to be the major cause of AD. The increase in 
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AChE and BChE expression around amyloid plaques and tangles supports the 

involvement of these enzymes on AD (Geula and Mesulam, 1989; Gomez-

Ramos et al., 1994; Rees and Brimijoin, 2003). It is suggested that a physical 

interaction between AChE and beta amyloid could take place (Alvarez et al., 

1995; 1998). However, the mechanism by which cholinesterases would be 

interfering with AD progress is not completely understood.  

The involvement of BChE with other multifactorial diseases is also speculated. 

BChE is reported to be associated with lipoproteins like LDL and HDL (Lawrence 

and Melnick, 1961; Ryhänen et al., 1982), and therefore, its activity is increases 

in conditions associated with abnormal lipid metabolism such as hyperlipidemia 

(Chu et al., 1978). The relation of BChE polymorphism to body weight and Body 

Mass Index has been also shown in population’s genetics studies (Simpson 

1966; Souza et al., 2005). 

1.2.2 Cholinesterases and developmental events 

AChE has been shown to be very early expressed during development of several 

organisms. It is known since the 1970s, from the work of developmental 

biologists like Whittaker. They verified AChE expression in two-cell stage of 

bllastomers of tunicates. The relevance of such an early onset of AChE is 

therefore, not related to termination of nervous impulse and supports a 

developmental function for it.  

Investigating closely the expression of ChEs during development, it was verified 

a growth-related shift in molecular forms generated by alternative 3´-mRNA 

splicing. The monomeric BChE and dimeric AChE forms, mainly intracellular, are 

predominant during brain development (Drews, 1975; Layer and Sporns, 1987; 

Layer and Willbold, 1994). In the adult brain, there are mainly tetramers of 

both enzymes anchored to neurons.  

1.2.2.1 Non-catalytic functions of cholinesterases 

BChE and AChE expression have been shown to be correlated, respectively, to 

cell proliferation and cell differentiation processes. In early chick 

neuroepithelium, BChE was found to be highly expressed in mitotic and post-

mitotic migrating cells, being replaced by AChE when the differentiation process 

takes place (Layer and Sporns, 1987). In parallel, a switch from BChE to AChE, 
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observed in in vitro culture of chicken embryonic cells, was described occurring 

when neuroblasts cease dividing and the development of the axonal processes 

takes place (Layer, 1983). Reinsuring these findings, antisense 5`- BChE 

transfected spheroids, originated from chicken retina cells, displayed inhibition 

of the BChE translation, declining the proliferation process (Robitzki et al., 

1997).    

Axonal outgrowth and synaptic connection formation have been associated with 

transient AChE expression, during human brain (Kostovic et al., 1983) and 

chicken neural crest cells (Layer and Alber, 1990) development. It has been 

demonstrated that neutrite outgrown is affected by peripheral site 

anticholinesterases compounds (Layer et al., 1993) and enhanced in neuronal 

cell lines over expressing AChE (Koenigsberger et al., 1997). In agreement with 

these findings, specific AChE antibodies interfere with the extension of neural 

processes after binding to external cell surfaces in culture (Koenigsberger et al., 

1997). The physiological process leading to these events is not clear. However, 

Small (1995) has demonstrated that the neutrite outgrowth is equally 

stimulated in substrata containing irreversible inactivated AChE or active AChE, 

indicating a non-enzymatic contribution of AChE for the axonal outgrowth.  

1.2.2.2 Non-cholinolytic function of cholinesterases 

Another developmental relevance of ChEs is related to their associated aryl 

acylamidase activity. Boopathy and Layer (2004) verified transient AAA activity 

associated to cholinesterases during distinct embryonic periods. This activity 

was dependent of the cholinesterase associated: AAA on AChE increasing 

constantly in relation to AChE and AAA on BChE, initially high (until E10), 

becoming negligible towards hatching.   

1.2.2.3 Development without cholinesterases  

In Drosophila, a temperature dependent mutation may be induced during 

pupation, leading to absence of the wild-type type AChE and causing improper 

assembly of the visual system (Hall et al., 1980).  

In zebrafish (Danio rerio), a naturally occurring mutant lacking AChE activity 

displayed impaired motility at the 48 h larvae stage, caused by muscle fiber 

formation defects (Behra et al., 2002). 
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On AChE knockout mice (Xie et al., 1999), the brain tissue was normally 

structured and cholinergic pathways were fully developed (Minic et al., 2003). 

This normality was suggested to be due to the widely distributed BChE activity 

in the KO mice (Li et al., 2000). However, in a close inspection of the retina, a 

strong effect caused by the absence of AChE was revealed by the degeneration 

of photoreceptors during development of the KO mice (Bytyqi at al., 2004), 

clearly indicating the relevance of AChE on organization and function of the 

mammalian retina. 

1.3 The aim of this work 

Four premises support the involvement of ChEs in physiological processes 

unrelated to cholinergic neurotransmission: 1) their non-specificity to 

cholinergic innervated tissues; 2) their homologous structure to cell adhesion 

molecules; 3) their early onset during development of several organisms and, 

4) their non-cholinolytic aryl acylamidase activity. 

This study is an attempt to unravel roles of cholinesterases in a broad spectrum 

of possibilities. ChEs expression and function is investigated during the 

development of two-model organisms, zebrafish and chicken, with focus on 

non-cholinolytic and non-catalytic events. 

By reverse genetics, BChE structure and function relationship are studied. In 

vitro expressed human recombinant enzymes are investigated to learn about 

the cholinesterases associated aryl acylamidase activity.  
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2 Spatio-temporal expression of ChEs during chick 
pineal gland embryogenesis and their relation to 

developmental events  
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2.1 Overview  

The pineal organ is characterized as a primitive "third" eye structure in fishes, 

amphibians, and reptiles (Meakin, 1973). In avians, the pineal organ still 

presents directly photosensitive response. However, in mammals, the influence 

of light in the pineal gland metabolism is mostly indirect.  

Cholinesterases expression has been shown to be implicated with proliferation 

and differentiation events occurring in retinal cells (Robitzki et al., 1997). The 

close relationship of the pineal organ to the eye makes it an interesting tissue 

for the study of cholinesterases functionality in developmental processes.  

In addition, the pineal gland metabolism is controlling physiological processes 

following a circadian rhythm. Therefore, it is also implicated in pathological 

states showing disturbances of this rhythmicity. Cholinergic activity is also 

altered during physiological disfunction of circadian activities associated to 

pathological states, like the Alzheimer`s disease, or metabolical alterations in 

aging or seasonal adaptation (Mishima et al., 1999; Small, 1996; Avidan, 2005; 

Wu and Swaab, 2005), suggesting these events are correlated.  

AChE is known to be expressed in the post-hatching pineal of several species, 

although, the pineal gland does not receive significant cholinergic input. The 

relevance of ChEs for the pineal gland metabolism is not clear, and their 

expression during embryonic development has not been characterized until 

now.  

2.1.1 The pineal gland 

Herophilos (circa 325-280 B.C.) described the pineal organ as being a tap 

between the third to the fourth brain ventricle, which was found to be a gland 

by Galen, in the 16th century. The first anatomical studies on pineal gland date 

from the beginning of the last century (Hill, 1900; Cameron, 1903), and the 

detailed morphological descriptions from more than 50 years later (Spirof, 

1958; Oksche et al., 1965, Campbell and Gibson, 1970; Calvo and Boya, 1978).  

The avian pineal gland represents a transitional type between a photosensory 

organ of lower vertebrates and the endocrine gland of mammals, responding to 

photosensory and hormonal stimuli (Deguchi, 1981; Takahashi et al., 1989). In 
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fish and amphibians, the circadian rhythm is directly regulated by light, because 

their pineal gland is located on the surface of the brain (Axelrod et al., 1965; 

Cahill, 1996). In reptile and birds the pineal responds to photosensory and 

hormonal stimulus. In mammals, due to the pineal location in deep midbrain, its 

response to light is limited to signs arriving from the retina (Marieb, 2001).  

The pineal organ is responsible for the control of physiological functions that 

follow a circadian rhythm, like sleep-wake cycles. The link between photoperiod 

to metabolic and endocrinal changes is established by melatonin (Yu et al., 

1993). In the pineal gland, serotonin is metabolized to melatonin, in the 

absence of light, by the enzymes 5-HT N-acetyl transferase and 5-

hydroxyindole-O-methyltransferase, and secreted to the hypothalamus in a 

rhythmic manner (Quay, 1974; Aloyo and Walker, 1987).  

In mammals, this circadian rhythm is generated by the suprachiasmatic nucleus 

and regulated by the stimulus of light perceived by the retina (Zimmerman and 

Menaker, 1979; Binkley, 1983). For sight to be possible, binding of a form of 

vitamin A (retinaldehyde) to rhodopsin, a photopigment of the retina, is 

required. When struck by light, the retinaldehyde-rhodopsin complex undergoes 

physical changes that induce a series of chemical reactions. These reactions 

ultimately generate an electrical signal that travels via retinohypothalamic tract 

to the suprachiasmatic nucleus (SCN), localized in the hypothalamus. From the 

SCN, nerve impulses travel via the sympathetic nervous system to the pineal 

gland (Fig. 2.1). 

In chicken, the circadian rhythm is regulated by a multiple oscillator system that 

consists of endogenous clocks in the retina, in the pineal gland and in the 

hypothalamus (Cassone and Menaker, 1984; Gwinner and Brandstatter, 2001; 

Underwood et al., 2001). Direct light stimuli can down-regulate melatonin 

synthesis on pineal, because an intrinsic oscillator is found within the chicken 

pinealocytes (Takahashi et al., 1980; Nakahara et al., 1997). Another 

endogenous oscillator is located in the hypothalamus, and is functionally 

equivalent to the SCN of mammals (Underwood et al., 2001). In addition, a 

peripheral synthesis of melatonin happens in the retina, also following a clock-

dependent rhythm (Hamm and Menaker, 1980; Bernard et al., 1997; Iuvone et 

al., 2002). Light stimulus perceived by the retina, also induces a response 
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affecting melatonin metabolism in the pineal gland of avian, in a similar way it 

does for mammals (Fig. 2.1).  

 

Fig. 2.1: General schema of the pineal gland anatomical location in the brain of avian 
and mammals. The pineal is localized between the two hemispheres of the 
diencephalon, attached to the third ventricle. In mammals, ganglion cells in the retina, 
via the retino-hypothalamic tract, have direct connection to the SCN, the oscillator 
which regulated the pineal gland (schema on the right side corresponds to mammals). 
In avians, oscillators are found within the retina, pineal and SCN-like structure, differing 
from mammals.  

The pineal photoreceptors in birds differ from the regular mammalian pineal 

photoreceptors, having specific associated photopigments distributed on several 

types of photoreceptors (Okano et al., 2000). Pinopsin, a blue-sensitive 

photoreceptive molecule, is the predominant photoreceptive pigment found in 

chicken photoreceptors (Okano et al., 1994), which presents very few rhodopsin 

and iodopsin positive cells (Korf, 1994). Melanopsin, a novel opsin involved in 

entrainment of circadian rhythms, has been recently described as a 

photopigment also occurring in chicken pineal (Chaurasia et al., 2005).  
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Partial extracranial pineal organs of submammalians are cone-dominated 

photoreceptors sensitive to different wavelengths of light. Intracranial pineal 

organs predominantly contain rod-like photoreceptor cells, which are sensitive 

to very low levels of illumination.  

Photo regulation of pineal function in adult mammals is entirely mediated by 

retinal photoreceptors (Blackshaw and Snyder, 1999). However, 

phototransduction elements are present in the pinealocytes during 

embryogenesis and early neonatal life in rat, suggesting that the pineal is 

directly photosensitive during these periods. Neonatal rats, which had their eyes 

removed, demonstrated light-induced regulation of the pineal gland serotonin 

levels (Zweig et al., 1966). In rat, the pineal is underneath a thin neonatal skull 

and receives more incidence of light than the retina, as the eyes of the newborn 

rats remain closed for three weeks. Besides, crucial neurons for 

phototransduction in the retina do not develop until the second to the third 

week of life (Cepko, 1996).  However, in primates the pineal gland does not 

detect light and retinal photoreceptors do not produce melatonin (Klein, 2004). 

 

Fig. 2.2: Lateral view of a 72 h chick embryo. By this embryonic stage, the chick pineal 
is already outlined on the roof of the diencephalon (circle). 1 = Telencephalon; 2 = 
Diencephalon; 3 = Mesencephalon; 4 = Metencephalon; 5 = Myelencephalon; * = Otic 
capsule; ^ = Olfactory pit. 
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2.1.1.1 Chicken pineal gland structure and development 

A detailed description of the chick pineal embryogenesis was published by Calvo 

and Boya (1978). The chick pineal appears outlined on the roof of the third 

ventricle of the diencephalon by embryonic day 3 (E3), and becomes attached 

to the same by a small stalk during development (Fig. 2.1; Fig. 2.2). The 

evagination of the roof of the third ventricle forms the pineal recess (R); which 

has ample communication with it. By E5, mammilliform projections appear on 

the pineal outline, in the opposite site of the lumen of the recess (Fig. 2.3, a). 

By E7, these mammilliform projections develop into vesicles by the appearance 

of a central lumen (Fig. 2.3, a-b). Mesenchyme forms the connective tissue 

stroma of the gland; it starts to envelop vesicles by this stage. By E8 until E10, 

the pineal organ is under intensive proliferation, showing an increase in the 

number and size of vesicles. By E11 and 12, remarkable pineal growth is 

observed, achieving a volume which will slightly increase until the end of the 

embryogenesis.  

The mechanism of vesicle formation is based in mammilliform projections of 

proliferating cells, which migrate through interruptions of the basal lamina of 

the outline of the recess and follicles (Fujieda et al., 1997). Cells outside the 

basal lamina or inside the pineal lumen present the highest differentiation 

activity in relation to the rest of the epithelium, as found during development of 

the rat pineal with the marker synaptophysin (Fujieda at al., 1997). A rosette 

cell arrangement is characteristic of these migrating mammilliform projections, 

cells which will fill the future central cell lumen of vesicles (Fig. 2.3, b). 

The vesicles become follicles by the reorganization of their cells into two layers 

and, by the thickening of their walls. This transformation happens by E11, when 

columnar cells with ovoid nucleus become radially orientated in relation to the 

lumen, forming a distinct layer surrounded by smaller cells with spherical nuclei, 

which are adjacent to the basal lamina (Fig. 2.3, d). By E11, basal lamina 

surrounds the recess and the follicles. From the lumen to the basal lamina, the 

first layer of cells comprises the follicular region. The next distinct layer of cells, 

pursuing a rounded shaped nucleus, comprises the parafollicular zone (Fig. 2.3), 

according to Boya and Zamorano (1975). Vesicles are classified as primary, 

secondary and tertiary. The primary vesicles are the ones initially formed on the 

walls of the pineal recess, and the secondary are originated from the walls of 
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these primary vesicles (Fig. 2.3, a-c). Tertiary vesicles are originated from cells 

of the parafollicular region of structured follicles and recess (Fig. 2.3, d). 

Therefore, before E11, the vesicles belong to the primary and secondary order. 

By E11, the communication of the recess with the ventricular lumen becomes 

narrow and is strangulated from E12 onwards.  

By E13 onwards, the parenchyma grows progressively and the pineal organ 

develops a compact aspect, which is characteristic of the post-hatching life (Fig. 

2.4, C). By E14 onwards, the parafollicular zone expands, which contributes for 

the densification of the pineal, and the recess extends caudally into the pineal 

stalk. From E15 onwards, cell differentiation is the main developmental event 

occurring until the end of the embryogenesis. From E19 until hatching, no 

morphological variation is observed. 

The chick pineal gland presents sympathetic noradrenergic innervation, 

therefore, reduced cholinergic input (Sato et al., 1988). The number of neurons 

(pineal ganglion cells) varies markedly with within avian species (Sato and 

Wake, 1981), but so far, only AChE-positive neurons have been identified. 

The pineal gland structure resembles the retina of the eyes, containing 

neurosensory ciliary photoreceptor cells, sensory nerve cells, and supporting 

elements. Both pineal and the eyes are derived from the diencephalon roof, 

however, from different regions of the neural plate. Briefly, pineal development 

initiates as the diencephalic roof protrudes to make contact with the epidermis 

(Fig. 2.4, A), secondary projections of the primary evagination form follicles 

and, after an intensive proliferative period, cell differentiation takes place (Fig. 

2.4, B-C). The eye development also begins by an evagination of the 

diencephalon, forming the optic vesicle (Fig. 2.4, a). This evagination is 

followed, however, by an invagination of the distal part of the primary vesicle 

(Fig. 2.4, b). The optic vesicle also induces the formation of the lens from the 

ectoderm (Fig. 2.4, c). During pineal organ embryogenesis no invagination 

happens, therefore, differing from the eye formation.  

During closure of the neural tube, the eye field is located on the most antero 

ventral part of the neural tube, while the pineal is placed on the dorsal 

diencephalon (Fig. 2.5). 
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Fig. 2.3: Embryogenesis of the chick pineal gland. a) E5, E7 and E11 are periods of 
intensive vesicles formation. Mammilliform projections, initiated by a rosette of cells 
(grey), give rise to new vesicles: b) primary vesicles, derived from the recess; c) 
secondary vesicles, developed on the walls of the primary vesicles; d) Tertiary vesicles, 
originated from the cells of the parafollicular zone of structured follicles. Bl = basal 
lamina; (--) basal lamina interruptions; F = follicular region; L = lumen; MP = 
mammilliform projections; R = recess. 
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Fig. 2.4: Pineal and eye development. A) Evagination of the diencephalon. B) Follicles 
formation. C) Pineal towards the end of the embryogenesis, mainly cell differentiation 
happening. a-b) Evagination of the diencephalon, and invagination of the optic vesicle of 
the eye. c) Lens formation. Mc = mesenchymal cells; OS = optic stalk; OV = optic 
vesicle; Ps = pineal stalk; R = recess.  

 

Fig. 2.5: Schema of a side view of a 60 h chick embryo. Brain segments, location of the 
eye, and pineal gland.  
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2.1.2 Approach and aims 

The pineal gland has a great relevance on sustaining physiological processes 

following a circadian rhythm. It is known that acetylcholinesterase is expressed 

in the mature pineal gland of several organisms, although, the link of pineal 

gland metabolic processes to this enzyme is not clear. Development can provide 

one of the answers for the relevance of AChE expression in pineal gland. 

However, AChE expression has not been, until now, characterized during pineal 

embryogenesis. Therefore, to test this hypothesis, I conducted a close 

investigation of cholinesterases activity during chick pineal embryogenesis in 

relation to developmental events.  

Cell proliferation, cell differentiation and cell apoptosis are correlated events, 

which are essential for development. The spatio-temporal distribution of BChE 

and AChE-positive cells was compared to the above-mentioned events during 

chick pineal embryogenesis, using markers for cell proliferation, differentiation, 

and apoptosis. 

AChE and BChE histochemistry and BChE immunohistochemistry were 

conducted on pineal organs from several embryonic stages. Proliferative states 

of the chick pineal were investigated using two markers: PCNA and BrdU, for 

G1-S and S phases of the cell cycle, respectively. The combined information 

given by these proliferation markers was compared to the BChE histochemistry 

in parallel pineal sections.  

Immunolabeling with an anti-vimentin antibody was conducted to detect 

potential glia cells in the chick pineal. Photoreceptors differentiation was 

followed by immunohistochemistry of a photopigment molecule (pinopsin), and 

compared to AChE histochemistry in parallel pineal sections. Apoptosis was 

followed by TUNEL assay and compared to AChE activity revealed by 

histochemistry. 
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2.2 Methodology 

Histological studies were performed on chick pineal gland (Gallus gallus). 

Chicken was chosen as model organism for this work because of the easy 

accessibility to embryos. Chick embryos need a relative short period (21 days) 

to complete embryogenesis and, fertilized eggs can be conveniently incubated 

to develop until the desired period for experimentation.  

The fertilized eggs were obtained from a local supplier and incubated in a humid 

incubator at 38°C. Chicks’ embryonic stages were determined according to the 

Hamburger and Hamilton (Hamburger and Hamilton, 1951) criteria. Pineal from 

the embryonic stages E7 until E20 were investigated. After decapitation, pineals 

were removed and fixed in 4% paraformaldehyde (PFA) for 2-4 hours at room 

temperature, depending on the embryonic day of the pineal, washed in PBS 3 x 

for 15 min, and kept in 30% sucrose solution at 4°C. PFA preserves most of the 

structures detectable at the confocal microscope level and sucrose increases the 

osmolarity of the tissue, avoiding dehydration at low cryostat temperatures. 

2.2.1 Tissue sectioning in microtome 

Pineals, stored in 30% sucrose, were placed in a frozen platform with Tissue Tek 

medium at –28°C. Sagittal sections of frozen tissue were cut with thickness of 

8, 12 and 18 µm, according to purpose, in an Ultracut S microtome. Sections 

were mounted either in superfrost or 0.5% gelatin coated slides.   

2.2.2 Histochemistry for AChE and BChE activities 

Histochemistry was performed on 18 µM thick sections. Frozen slides were 

placed in 0.1 M Tris-maleic buffer for 10 min, before staining.   

2.2.2.1 Preparation of Karnovsky-Roots staining solution  

According to the Karnovsky and Roots (1964) method, for the staining solution, 

37 mg of ATC (for AChE staining) or 50 mg of BTC (for BChE staining) were 

added to 32.5 ml of 0.1 M Tris-maleic buffer, pH 6.0. For a final volume of 50 

ml, 2.5 ml of 0.1 M sodium citrate (C6H5Na3O7 x 2H2O), plus 5 ml of 30 mM 

cupper sulphate (CuSo4), were added, respectively, drop wise to the initial 

solution under stirring. Distilled H2O was added (4.5 ml for the AChE staining 

and 4.75 ml for the BChE staining) before the inhibitors, 10 mM Iso-OMPA (500 
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µl for AChE staining) or 10 mM BW284C51 (250 µl for BChE staining). To 

finalize, 5 ml of 5 mM K3Fe(CN)6 were added drop wise under stirring. Slides 

were incubated for 3 h at 37°C under dark. To finalize the reaction, slides were 

washed 2x for 10 min with distillate H2O. For negative controls, neither of the 

substrates nor inhibitors were used.  

2.2.3 Direct and indirect methods used for immuno- and histochemical 

labeling  

a) Indirect labeling with Avidin-biotin-peroxidase complex (ABC) method 

was performed as a non-fluorescent labeling for PCNA and pinopsin 

immunohistochemistry.   

b) Indirect labeling with binding of a primary antibody to the epitope of 

interest, followed by a fluorescein isothiocyanate conjugate (FITC) or 

CyTM3 labeled secondary antibody, was used for the BrdU, vimentin and 

BChE stainings. 

c) Direct labeling was performed with fluorescent nucleotides (d-UTP) that 

were incorporated into the DNA, or with a fluorescent dye (DAPI), for 

apoptosis and cell nucleus staining, respectively. 

2.2.4 Cell nucleus staining with DAPI 

DAPI (4´, 6-Diamidin-2-phenylidol-dihydrochlorid) was used for cell nucleus 

staining in combination with Karnovsky-Roots staining or immunostainings. 

DAPI was used at the concentration of 0.1 µg/ml in PBS (200 µl/slide, 3 min 

incubation followed by 10 min in PBS) as the last step of double stainings. DAPI 

is a fluorescent dye which emits blue fluorescence when bound to A-T (adenine-

thymine) base pars of the double strand DNA.  

2.2.5 Immunochemical stainings  

All antibodies were characterized either by the company suppliers or by the 

scientists who developed them (Table 2.1). The specificity of the 

immunoreactivity was tested omitting the primary antibody from the protocols. 

In all cases, it resulted in absence of specific immunostaining.  
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Antigen Target  Antibody Host Dilution  Supplier/ 

Collaborat. 

Primary Antibodies 

BChE mAb/7D11 monoclonal mouse 1:500 Tsim et al., 

1988. 

BrdU monoclonal mouse 1:10 Roche 

PCNA (Clone PC10) monoclonal mouse 1:2500 DAKO 

Pinopsin monoclonal mouse 1:250-

1:500 

Okano et al., 

1997. 

Vimentin monoclonal mouse 1:100 Boehringer 

Secondary Antibodies 

CyTM3 IgG (H+L) rabbit 1:100 DIANOVA 

Anti-mouse  Ig-fluorescein IgG (H+L) sheep 1:10 Roche 

Anti-mouse IgG (biotinylated) IgG (H+L) horse 1:200 Vector Lab 

Table 2.1: Antibodies used for Immunohistochemistry. 

2.2.5.1 Pinopsin labeling protocol  

To follow photoreceptors differentiation, an antibody for the N-terminal region 

of chicken pinopsin was used. Frozen sections, 12 µm thick, were treated with 

3% H2O2 in methanol for removal of intrinsic peroxidase activity and washed 3 x 

5 min with PBS. Slides were blocked for 1 h at room temperature with PBS 

containing 0.02% Triton and 1.5% normal horse serum. 4-8 µg/ml of anti-

pinopsin antibody (P1) IgG, raised in mice, were used for 

immunohistochemistry. After incubation with the primary antibody (overnight at 

4°C), slides were washed in PBST 0.02% and incubated with the secondary 

antibody, biotinylated anti-mouse IgG (H+L), 1:200 in blocking solution, for 30 

minutes at room temperature. The Vectastain Elite ABC anti-mouse IgG kit 

contained the secondary antibody and the avidin peroxidase conjugate and 

biotinylated horseradish peroxidase H reagents, which were used according to 

manufactures instructions. Avidin is an egg-white derived glycoprotein with a 

high affinity for biotin. Thus, it binds the biotinylated secondary antibody (Fig. 

2.6). The peroxidase activity was revealed with the VIP substrate kit, which 

produces an intense purple precipitate. The reaction was terminated by washing 

the slides in water for 10 min. For the negative control, anti-pinopsin was 

replaced by mouse-IGg.  
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2.2.5.2 Immunostaining for cell proliferation with PCNA  

Monoclonal mouse anti-proliferating cell nuclear antigen (PCNA) was used to 

detect proliferating pineal cells. PCNA is a 36 kDa multifunctional protein 

originally defined as cyclin because it was found expressed at high levels in 

cycling cells during the last 5% of the G1-phase and the first 35% of the S-

phase of the cell cycle. PCNA is therefore, expressed only in proliferating cells 

and is absent in resting cells (Hall, 1990). 

Procedure: After removal of intrinsic peroxidase activity (like for the pinopsin 

staining), 8 µM thick slides were blocked for 1 h at room temperature with PBS 

containing 0.03% Triton and 20% normal horse serum. After blocking, slides 

were incubated with PCNA antibody (1:2500) in 1.5% normal horse serum PBST 

0.03%, overnight at 4°C. Secondary antibody, biotinylated anti-mouse IgG, was 

diluted 1:200 in 1.5% normal horse serum PBST 0.03% and incubated for 30 

minutes at room temperature. An avidin peroxidase conjugate system was used 

to amplify the positive immunoreaction (Fig. 2.6). The peroxidase activity was 

revealed with the VIP substrate kit, producing an intense purple precipitate.  

 

Fig. 2.6: Indirect labeling with avidin-biotin-peroxidase complex. A biotinylated 
secondary antibody binds to the primary antibody for the specific antigen. The avidin 
peroxidase conjugate binds to the biotin. Its activity is revealed by a peroxidase 
substrate.  

2.2.5.3 Immunostaining for cell proliferation with the BrdU antibody 

BrdU (5-Bromo-2´-deoxy-uridine) is a thymidine analog, which can be 

incorporated into DNA during the synthesis (S) phase. BrdU labeled DNA was 

detected using a monoclonal antibody against BrdU and fluorescein 

isothiocyanate conjugate (FITC) anti mouse IgG second antibody (Fig. 2.7). 

Procedure: Chicken embryos received an in vivo BrdU treatment. The amount of 

BrdU used was related to the weight of the developing embryo, based on 
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Romanoff (1939). For each g weight, circa 15 µl BrdU were injected in the 

allantois of the embryos, which were placed for 2.5 h in an egg incubator at 

38°C, under dark. After incubation, the pineal glands were removed, washed 3 

times with PBS and fixed in PFA 4% for 2-3 h at room temperature. After 

fixation, pineals were incubated for 1 to 7 days at 4°C in PBS solution with 30% 

sucrose. Frozen sections, 12 µM thick, were incubated with a solution of 50 mM 

glycine in 70% ethanol for 20 min at -20 °C. Before immunostaining slides were 

incubated with blocking solution (10% horse serum in PBS) for 30 min at RT. 

The staining procedure was basically conducted according to the “5-Bromo-2´-

deoxy-uridine Labeling and Detection Kit” manufactures instruction. Slides were 

incubated for 30 min with 100 µl of primary antibody at 37°C. After incubation 

with primary antibody, slides were washed in PBS, 3 x for 5 min, and incubated 

with the secondary antibody for 30 min at 37°C. Slides were washed 3 x for 5 

min with PBS and results were captured by confocal scanning microscopy. 

Negative staining controls were performed without the first antibody. 

 

Fig. 2.7: BrdU labeling principle. The antibody conjugate (anti-BrdU-fluorescein) binds 
to BrdU-labeled DNA.  

2.2.5.4 Vimentin and BChE immunohistochemistry 

Frozen sections, 12 µm thick, were blocked for 10 min at room temperature 

with PBS containing 1% bovine serum albumin (BSA) and 0.1% Triton. 200 µl of 

the anti-vimentin antibody or of the mAb antibody for BChE, diluted (1:100) in 

blocking solution, were added to each slide. Slides were incubated at RT for 45 

min for vimentin and 2 h for the BChE immunostaining. 200 µl of the secondary 

antibody CyTM3, diluted 1:100 in blocking solution, were added to the slides 

after two washing steps (PBS 3 x for 10 min). Slides were incubated at RT for 

60 min, washed in PBS and stained with DAPI as previously described.  
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2.2.6 Apoptotic cells labeling  

The enzyme terminal deoxynucleotidyl transferase (TdT) is able to label blunt 

ends of double-stranded DNA breaks independent of a template. The end-

labeling TUNEL assay (TdT-mediated XdUTP end labeling) is based on this 

principle. The use of fluorescein-dUTP to label the DNA strand breaks allows the 

detection of the incorporated nucleotides directly with a fluorescence 

microscope. 

To allow exogenous enzymes to enter the cell, the plasma membrane was 

permeabilized prior to the enzymatic reaction. To avoid loss of LMW DNA from 

the permeabilized cells, cells were re-fixed with 4% formaldehyde, for 5 min, 

before permeabilization. This fixation cross links LMW DNA to other cellular 

constituents and avoids its extraction during the permeabilization step. To 

enhance permeanilization of the slides, they were placed in a jar containing 200 

ml of 0.1 M citrate buffer, pH 6.0, and heated in a microwave oven; 350 W 

(high) microwave irradiation for 4 min. For rapid cooling, 80 ml of distillated 

water was added, and slides were then transferred into PBS (20°–25°C). Slides 

were blocked for 30 min at room temperature (RT) with a blocking solution 

containing 0.1 M Tris-HCl pH 7.5, 3% BSA, and 20% normal horse serum. The 

slides were rinsed twice with PBS at RT and excess fluid was drain off.  

Procedure: after fixation and permeabilization, 50 µl of TUNEL reaction mixture, 

containing TdT and fluorescein-dUTP, were applied to the sections and slides 

were incubated for 60 min at 37°C in a humidified atmosphere. During this 

incubation step, TdT catalyzes the attachment of fluorescein-dUTP to free 3’OH 

ends in the DNA (Fig. 2.8). At the end, slides were rinsed three times in PBS (5 

min for each wash) and evaluated under a laser scanning confocal microscope 

(Leica). For staining controls, the enzyme TdT was omitted from the protocol.  
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Fig. 2.8: Schematic illustration of the TUNEL DNA end labeling method. The enzyme 
“terminal deoxynucleotidyl transferase” (TdT) catalyzes the attachment of fluorescein-
dUTP to free 3’OH ends in the DNA. 

2.2.7 Mounting 

Following the staining procedure, sections were left for 40 min over a 37°C hot 

plate until they got dried or were air-dried overnight at RT. Sections used for 

conventional light or fluorescence microscopy were mounted with Kaisers-

glycerin-gelatin medium and coverslips were applied. For the confocal 

microscopy, slides were mounted with glycerin or Vectorschield mounting 

medium (Vector).  

2.2.8 Microscopy of labeled sections 

A  Zeiss-Axiophot microscope and a laser Leica TCS confocal microscope were 

used for capturing the labeling results. The Zeiss-Axiophot microscope was 

equipped with epifluorescence and Nomarsky-optics. Images were captured with 

a digital video camera INTAS. 

The Leica was equipped with argon-crypton-laser and the TCS software 

(http://www.llt.de/TCSNT1.html) was used for capturing images of the confocal 

microscopy. 
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2.2.8.1 Conventional and confocal microscopy 

In a conventional microscope, light passes through the sample and images from 

out-of-focus-planes overlap with the focal plane, thus the image sharpness is 

compromised. Therefore, sharp focus can be achieved with thin specimens only. 

Cell density of the chick pineal tissue makes it more difficult to obtain a good 

resolution with fluorescence labeling than for the cultured cell specimen. 

General contrast is reduced and weak signal is buried. With the confocal 

system, most of the out-of-focus-plane signal is restricted by pinholes, resulting 

in a cleaner background. Detected background could be further reduced in 

relation to the specific signal.  

 

Fig. 2.9: Confocal laser microscopy system. 

2.2.9 Image processing  

Images were processed using the Jasc Paint Shop Pro 8 program. The 

modifications were restricted to brightness and contrast to enhance clarity. The 

only pictures that had the original color altered were those concerning cell 

nucleus staining (DAPI) to provide a better contrast between cell nucleus 

shapes. 
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2.3 Results 

The pinealocytes are arranged in follicles surrounding narrow or wide spaces. 

Sympathetic nerve fibers, denser at the distal portion, penetrate on the walls of 

the pineal follicles accompanied by blood vessels (Sato and Wake, 1983). Pineal 

cells, connective tissue, nerve fibers and erythrocytes can be distinguished by 

“Kernechtrot-Kombinations” staining on a pineal section (Fig. 2.10).  

On the structured pineal follicles, two distinct cell zones can be identified. The 

follicular area (F), surrounding the central luminal space (L), and the 

parafollicular zone (PF), from where new vesicular walls are originated (Fig. 

2.10; A). The structure containing these follicles is called pineal vesicle, and the 

pineal stalk is located in the most distal part of it. The posterior commissure 

(PC) can be seen caudally associated to the pineal anlage.  

   

Fig. 2.10: The chick pineal gland structure. (A) Pineal gland of an E18 chick embryo and 
(B) respective pineal section stained with “Kernechtrot”, showing the pineal cells (violet) 
and connective tissue (blue). (B`) Amplified follicle from image B, arrows indicate 
erythrocytes and nerve fibers (orange). PC = posterior commissure; PS = pineal stalk; 
PV = pineal vesicle; F = follicular zone; PF = parafollicular zone; If = interfollicular area. 
Bar: 100 µm. 
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2.3.1 Characterization of the AChE and BChE expression patterns during 

embryonic development of the chicken pineal gland 

The distribution of AChE-positive cells has been characterized for the post-

hatching chick pineal gland (Sato and Wake, 1984). Here, we characterize AChE 

and BChE expressions during chick pineal embryogenesis, according to the 

histochemical method of Karnovsky-Roots (Karnovsky and Roots, 1964).  

This methodology is based on AChE and BChE substrate affinities and inhibitors 

specificity. For the AChE histochemistry, acetylthiocholine (ATC) was used as 

substrate with the respective BChE inhibitor (IsoOMPA). For BChE staining, the 

substrate butyrylthiocoline (BTC) was applied, with the respective AChE inhibitor 

(BW284C51). Once cleaved by these enzymes, the substrates ATC and BTC are 

split in thiocholine, in both cases, and acetate or butyrate, respectively. 

Thiocholine reduces ferricyanate to ferrocyanide, which binds to copper 

ferrrocyanate forming a brown complex. The brownish precipitate will mark the 

sites of AChE and BChE activity, according to the substrate and inhibitor used 

during this procedure. A typical result of this procedure can be seen below (Fig. 

2.11) in follicles of an 18 days old embryonic chick pineal. 

  AChE 

  BChE 

Fig. 2.11: Histochemistry for AChE and BChE, in parallel sections of the chick pineal, 
with respective DAPI staining (left). (A´) E18, AChE is strongly expressed in cells 
surrounding the luminal space and parafollicular zone. (B´) No pronounced BChE 
activity can be seen in the follicle by the same embryonic stage. F = follicular zone; PF 
= parafollicular zone; IF = interfollicular area. Bar: 100 µm. 
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Histochemistry for AChE and BChE, revealed a characteristic pattern of 

expression during chick pineal embryogenesis. Until E11, AChE activity is 

restricted to a few vesicular cells, while BChE displays a diffuse and intense 

activity distributed among the pineal vesicles (Fig. 2.12, A-F).  

With a close inspection, it is possible to see that AChE fills the future luminal 

space of vesicular walls, and surrounds the luminal space of vesicles by E9 and 

E10 (Fig. 2.16, A, C, C`). By E11, with the re-organization of cells into two 

distinct layers (follicular and parafollicular zone), AChE activity is mostly present 

between follicular and parafollicular areas of follicles (Fig. 2.17, E). In contrast, 

BChE activity is intense until E11, particularly in the area surrounding luminal 

spaces (Fig. 2.16, B, D, D`; Fig. 2.17, F).  

AChE and BChE activities are nearly equivalent by E12, as BChE activity starts 

to decrease and AChE expression to increase by this stage (Fig. 2.13, G-H; Fig. 

2.17, G-H`). AChE-positive cells start to organize themselves around the 

luminal spaces, and also on the borders of the parafollicular zone by this stage 

(Fig. 2.17, G`). In parallel, vesicles proliferating from the pineal recess and 

follicular walls display BChE activity (Fig. 2.13, H; Fig. 2.17, H-H`).  

From E13 onwards, the increase on AChE-positive cells becomes more evident, 

specially surrounding the luminal space of the recess (Fig. 2.18, I). The AChE 

activity by this stage is more pronounced than the BChE activity, which presents 

a visible decrease in relation to earlier periods (Fig. 2.13, I-J; Fig. 2.18, I-J). 

This shift on BChE to AChE expression will be addressed later in this chapter.  

By E13, the pineal assumes the characteristic shape seen at older stages of 

development. From this stage until hatching, the pineal volume will not increase 

in the same proportion as before (Calvo and Boya, 1978); rather differentiation 

occurs. By E14, AChE activity increases in the parafollicular region and 

surrounding the luminal space of recess and follicles (Fig. 2.13, K; Fig. 2.18, K). 

BChE activity has decreased in overall, but remains intense in proliferating 

vesicular walls (Fig. 2.13, L; Fig. 2.18, L). These expression patterns for AChE 

and BChE remain basically the same until E17, with intensification of the AChE 

activity and decrease of BChE activity (Fig. 2.14, M-P). BChE activity remains 

present in mammilliform projections, and it is low in the rest of the pineal 
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epithelium (Fig. 2.18, N). Many large vesicles can be seen by E17 (Fig. 2.14, O-

P).  

From E18 to the end of development, vesicles start to reduce in number (Fig. 

2.14, Q-R) and a reinvasion of connective tissue into the gland takes place, as 

earlier described by Campbell and Gibson (1970). However, by E18, vesicles 

formation is still in progress on the recess, accompanied by concentrated BChE 

expression limited to mammilliform projection and borders of the parafollicular 

zone of some follicles (Fig. 2.14, R; Fig. 2.19, P). From E18 to E20 some 

follicles close the luminal space and the pineal acquires a compact aspect (Fig. 

2.15, S-V). BChE activity reduces gradually, being absent by E19 onwards (Fig. 

2.15; Fig. 2.19, P, R, T). AChE, however, becomes even more intense by the 

end of the pineal embryogenesis (Fig. 2.19, O, Q, and S).  

By comparing the histochemical results obtained with pineals younger than 12 

embryonic days (Fig. 2.12; Fig. 2.16; Fig. 2.17) with later stages of 

development (Fig. 2.14; Fig. 2.15; Fig. 2.19), a distinct temporal expression is 

revealed for BChE and AChE. 

To understand which developmental events could implicate this differential 

expression of ChEs, their expression patterns were investigated in relation to 

remodeling events during chick pineal gland embryogenesis.  
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  E9 

  E10 

  E11 

Fig. 2.12: AChE versus BChE histochemistry in parallel sagittal sections of chick pineal 
organs. By embryonic days 9, 10 and 11, a few AChE-positive cells become detectable 
(A, C and E, respectively). In contrast, BChE expression is very pronounced on vesicles 
and pineal recess (B, D and F, respectively). PC = posterior commissure. Nomarsky 
optics; bar: 100 µm. 
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     E12 

     E13 

  E14 

Fig. 2.13: AChE versus BChE histochemistry in parallel sagittal sections of chick pineal 
organs. From embryonic day 12 onwards (E12, G-H; E13, I-J; E14, K-L), BChE 
expression gradually diminishes and AChE increases drastically towards development of 
the chick pineal. However, BChE activity still remains prominent in proliferating follicles 
(arrows), by E12 (H) and E14 (L). PC = posterior commissure. Nomarsky optics; bar: 
100 µm. 
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        E17 

   

Fig. 2.14: AChE versus BChE histochemistry in parallel sagittal sections of chick pineal 
glands. From E15 (M, N) to the end of the embryonic development of the chick pineal, 
the shift on cholinesterases expression becomes clearer. BChE activity continues to 
decrease from E15 until E18 (N, P, R). From E15 to E18 (M, O, Q, S) an intensive 
activity of AChE can be seen on the follicles and on the pineal recess (PS). A progressive 
regression of the number of vesicles starts at this stage. PC = posterior commissure. 
Nomarsky optics; bar: 100 µm. 
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 E19 

  E20 

Fig. 2.15: AChE versus BChE histochemistry in parallel sagittal sections of chick pineal 
glands. Basically no BChE activity is found by E19 and E20 (T, V), while a very intensive 
activity of AChE is revealed (U); showing an inverse pattern in relation to early 
embryonic stages. Nomarsky pictures; bar: 100 µm.  
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  E9 

  E10 

  E10 

Fig. 2.16: AChE (left) and BChE (right) histochemstry in sagittal sections of the chick 
pineal organ. By E9 and E10, a few AChE-positive cells surround the luminal space of 
vesicles (A, C and C`). In contrast, BChE expression is strong among vesicles and pineal 
recess (B, D and D`). Nomarsky pictures; bar: 100 µm. 
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AChE              BChE 

  E11   

  E12 

  E12 

Fig. 2.17: AChE (left) versus BChE (right) histochemistry in sagittal sections of chick 
pineal glands. By E11, follicular (F) and parafollicular (PF) zones of cells can be 
distinguished. AChE is mainly concentrated in parafollicular cells (E), while BChE activity 
is strong in the cells surrounding the luminal space of follicles (F). By E12, AChE-
positive cells are present in the parafollicular zone and also surround the luminal space 
(arrows) of the recess and follicles (G-G`). By this stage, BChE activity is mostly 
concentrated in mammilliform projections (MP) of the recess (H) and on proliferating 
follicles (H`). PZ = proliferation zone. Nomarsky pictures; bar: 100 µm. 
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AChE                                                            BChE 

  E13 

  E14 

  E17 

Fig. 2.18: AChE (left) versus BChE (right) histochemistry in sagittal sections of chick 
pineal glands. By E13, AChE-positive cells surround the luminal space of the recess (I), 
while BChE activity drastically decreases in relation to earlier embryonic stages (J). By 
E14, AChE activity increases in cells of the parafollicular zone of the recess (K). BChE 
activity is still intense in newly formed vesicles (arrow). By E17, the number of AChE-
positive cells increase, however, showing the same expression pattern as before (M). 
BChE activity decreases gradually (N). Nomarsky pictures; bar: 100 µm (I-L); 200 µm 
(M-N). 
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AChE                                                    BChE 

  E18 

  E19 

  E20 

Fig. 2.19: AChE and BChE histochemistry in sagittal sections of chick pineal glands. By 
E18, (O) an intensive activity of AChE can be seen at the borders of the luminal space 
and parafollicular zone, which remains strong by E19 (Q) and E20 (S). By E18, BChE 
activity is decreased (P), and is basically absent by E19 and E20 (R, T); showing an 
inverse pattern in relation to early embryonic stages. Nomarsky pictures; bar: 100 µm. 
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2.3.2 Pineal remodeling and distribution of AChE and BChE positive cells  

E7 is the initial stage for chick pineal vesicles formation. Vesicular walls, formed 

by mammilliform projections of the recess, develop a central lumen by this 

period and are then called vesicles (Fig. 2.20, A). By E8, these vesicles start to 

spread around the recess and increase in size (Fig. 2.20, B). AChE and BChE 

distribution on vesicles and recess partially overlaps (Fig. 2.20). AChE cells are 

adjacent to luminal spaces, and BChE, starting from the same area, has a 

broader and more diffuse distribution (Fig. 2.20, A-D).  

Vesicles are originated as mammilliform projections of cells of the recess, and 

also as extension of primary vesicles originated by them (Fig. 2.20). BChE 

activity expands from the recess towards the borders of vesicles in development 

(Fig. 2.20; Fig. 2.21). From E9 until E11 a gradient of its activity, which is more 

intense surrounding luminal spaces in relation to the whole vesicular epithelium, 

can be seen (Fig. 2.15, B, D, D`; Fig. 2.16, F).   

By E11, vesicular cells assume a specific distribution in two distinct layers, as 

part of the development of vesicles into follicles. Columnar cells, arranged 

perpendicular to the central lumen of the follicle, can be distinguished from 

spherical cells, forming the parafollicular zone (Fig. 2.22, a). By this stage, the 

distribution of AChE-positive cells is mainly concentrated between the follicular 

and the parafollicular zones of follicles, in contrast to its initial distribution in the 

luminal space (Fig. 2.15; Fig. 2.22, A`;Fig. 2.23). Cells have migrated from the 

luminal surface towards the follicular borders during follicles remodeling and, 

therefore, are rarely found in the luminal surface by this stage.  

With the development of distinct cell layers, vesicles formation takes place in 

the parafollicular area of recess and follicles (Fig. 2.24, A). AChE-positive cells 

migrate to the borders of the parafollicular zone and form rosettes of cells 

giving rise to mammilliform projections, which develop into vesicles and later 

into follicles (Fig. 2.22, B; Fig. 2.23; Fig. 2.24, b-B). By E12, AChE-positive cells 

appear again in the luminal surface, and for the first time they are present in 

the follicular and parafollicular areas (Fig. 2.17, G`; Fig. 2.23). This pattern of 

AChE expression is intensified throughout development. AChE activity, positive 

in the cellular rosettes of the parafollicular area, will be also present on the 

central lumen of new vesicles originated by them (Fig. 2.23; Fig. 2.24, A-B; Fig. 
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2.25, A-B). Follicles, which generate tertiary vesicles, will also present rosettes 

of AChE-positive cells on their parafollicular zone, and these cells will also give 

rise to the future central lumen of respective vesicles originated from them (Fig. 

2.25, B`). Therefore, AChE-positive rosettes of cells, which accompany the 

mammilliform projections, are the starting and end points for vesicles formation 

(Fig. 2.24, A-B; Fig. 2.25, A-B).  

As follicles grow, consequently, new cells will become AChE-positive, sustaining 

the number of cells to reinitiate the remodeling events of the transient 

parafollicular zone (Fig. 2.23). Migration of AChE-positive cells can be observed, 

either from the follicular area to the parafollicular zone or from the region 

between them in direction to the luminal surface (Fig. 2.26). Therefore, a 

mechanism to supply new AChE-positive cells to accompany the remodeling 

process is suggested. First, AChE-positive cells migrate from the luminal surface 

towards the parafollicular area to originate new rosettes of cells to guide the 

remodeling of follicles (Fig. 2.23). Second, new AChE-positive cells appear in 

the luminal surface as a result of AChE-positive post-mitotic cells migration to 

this area, also possibly migrating in direction to the parafollicular zone (Fig. 

2.27). 

After E12, BChE activity decreases progressively, appearing only in 

mammilliform projections or newly formed follicles (Fig. 2.17, L, N). It is 

interesting to address that until E11 BChE activity is concentrated in the 

surrounding area of luminal spaces and recess, and by E12 it starts to be 

concentrated in regions, of recess and vesicles, that are expanding (Fig. 2.17, 

H, H`). With the decrease in BChE activity in overall, a parallel increase in AChE 

activity occurs. Intensive increase in volume of the chicken pineal is known to 

happen until E12 (Calvo and Boya, 1978). Therefore, the following stages of the 

chick pineal embryogenesis are marked by cell differentiation.  

The shift from BChE to AChE activity suggest a relation to proliferation and 

differentiation events, respectively (Fig. 2.21), which will be here presented in 

detail in the following.  
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Fig. 2.20: AChE (left) and BChE (right) histochemistry in sagittal sections of chick pineal 
organs. By E7 (A-B) and E8 (B-D), AChE-positive cells fill the future central lumen of 
vesicular walls (arrows), whereas BChE displays a diffuse activity over the pineal 
epithelium, with prominent activity on the borders of vesicles, and lumen of the recess 
(arrows). R = recess. Bar: 50 µm (A-B); 100 µm (C-D). 

 

Fig. 2.21: Vesicle formation sheme with AChE and BChE positive cells distribution by E7-
E8. 
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DAPI/AChE 

 E11 

 
Fig. 2.22: (a-A) Double staining DAPI (above) and AChE histochemistry (below). By 
E11, the follicles are comprised by columnar cells, surrounding the lumen, and spherical 
parafollicular cells. AChE-positive cells lie on the parafollicular zone and next to 
mammilliform projections (arrow). The rosette of AChE-positive cells migrates to form 
new vesicles. F = follicular zone; MP = mamilliform projection; PF = parafollicular zone. 
Bar: 50 µm. 
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Fig. 2.23: Schema of AChE and BChE expression during pineal tissue remodeling. Until 
E10, AChE-positive cells occupy the luminal surface of vesicles. By E11 these cells have 
migrated in direction to the newly established parafollicular zone. BChE activity, which 
was already abundant in vesicular surface by earlier stages, initially expands in 
proliferative zones (PZ) and then declines, becoming limited to regions with proliferation 
activity. By E12, AChE-positive cells migrate to the borders of the parafollicular zone, 
and new AChE cells reappear in the luminal surface. As vesicles grow and form 
structured follicles, new cells become AChE-positive and vesicles formation continues 
until E18.  
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 E15 

                               

Fig. 2.24: AChE histochemistry in sections of an E15 pineal. A) AChE-positive cells 
arranged in rosettes on the parafollicular region of the recess (arrows) migrate with 
surrounding cells to form the mammilliform projections. B) The future lumen of the 
vesicles will be filled with the AChE-positive rosette (arrow). Bar: 50 µm (B), 100 µm 
(A), and 200 µm (b). 

A 

B 

b 

Bl 

PF 
 

F 
 

AChE 



Chapter 2 
 
 

 

55 

AChE 

 E17 

 

Fig. 2.25: AChE histochemistry in E17 pineal sections. A) Vesicles in development, 
originated from the migration of AChE-positive rosettes of cells (arrows). B) The rosette 
of AChE-positive cells forms the central lumen of vesicles. Bar: 100 µm. 
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Fig. 2.26: AChE histochemistry of a sagittal section of an E18 chick pineal. AChE-
positive cells on the follicular zone migrate in direction to the parafollicular zone and 
luminal surface. Magnification X100.  

 

 

Fig. 2.27: Possible mechanism of cells migration and proliferation. AChE-positive cells 
migrate from the luminal surface to the parafollicular zone as the follicular area expands 
to form the parafollicular cells. After proliferative periods, several new cells become 
AChE-positive and migrate from the follicular region to the luminal surface and 
parafollicular zone.  
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2.3.3 Chick pineal cells proliferation  

2.3.3.1 Cell proliferation studies with PCNA  

The proliferating cell nuclear antigen (PCNA) is expressed during the G1-phase 

and S-phase (DNA synthesis) of the cell cycle. The cell fate is determined on the 

interplay between G1 and S phases. When cells undergo proliferation, PCNA 

expression is needed. The expression of PCNA was investigated during the 

embryonic development of the chick pineal. Immunohistochemistry for PCNA 

was compared to BChE histochemistry in parallel sagittal sections of pineal 

organs from several embryonic stages. By the embryonic days 7 and 8, most of 

the cells show proliferation activity. By E7 and E8, mammilliform projections 

appear on cells of the pineal recess to form new vesicles (Fig. 2.28, A-B; Fig. 

2.29). These vesicles will expand to form follicles, by E11, with the appearance 

of a parafollicular area. 

Proliferation activity was found on the borders of vesicles, on cells which give 

rise to the parafollicular zone in later stages of development (Fig. 2.30). A 

diffuse BChE expression partially overlaps with the proliferative areas, detected 

by immunostaining against PCNA.  

The BChE activity shows a very intensive pattern for high proliferative periods, 

from E7 to E11 (Fig. 2.28; Fig. 2.29, A`), and decreasing proportionally with the 

state of proliferation, from E12 onwards (Fig. 2.31). BChE displayed a more 

pronounced activity than seen for AChE at highly proliferative stages (Fig. 2.28 

and, Fig. 2.20 A-B, respectively). Comparing their expression with PCNA by E7, 

it is possible to see that AChE expression and proliferation occurs in opposite 

areas (Fig. 2.29). The areas where AChE and BChE activities overlap are, 

therefore, not mitotic zones. However, BChE is more extensively distributed 

than AChE until E11, also covering proliferative areas (Fig. 2.29).  

The proliferation activity remains intense until E12 (Fig. 2.28, D), with the 

development of several new follicles, and it is significantly reduced by reaching 

late embryonic development. By E17, it is mostly limited to the interfollicular 

cells. However, follicles in development still present PCNA positive cells, 

showing proliferation activity (Fig. 2.31). By E18, even less PCNA 

immunoreactivity can be found, and basically no BChE activity (Fig. 2.31). 
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  PCNA                          BChE 

           E7 

  E8 

  E11 

  E12 

Fig. 2.28: PCNA (left) and BChE histochemistry (right) on sagittal sections of the chick 
pineal organ. (A-A`) E7, (B-B`) E8, (C-C`) E11 and (D-D`) E12 are intensive proliferative 
periods and display noticeable strong BChE activity. Bar: 100 µm (C-C`) and 200 µm (A`-B`). 
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PCNA   BChE                         AChE 

   

Fig. 2.29: PCNA (left) and BChE histochemistry (right) on sagittal sections of the chick 
pineal organ. By E7, strong proliferation activity can be seen on the cells of the vesicular 
borders (arrow) and among cells surrounding the recess. Correspondent BChE activity 
accompanies proliferation. Areas where AChE and BChE activities overlap (---). Bar: 50 
µm. 

 

 

Fig. 2.30: Mechanism of follicular development. Vesicles become follicles by E11, as cells 
proliferate to form the parafollicular zone. Mitotic cells from the follicular area develop 
the parafollicular zone.  

Control stainings were performed omitting the primary antibody of the protocol. 

Controls did not present specific immunoreactivity with secondary antibody. 
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   E17 

  E17 

  E18 

Fig. 2.31: PCNA - immunoreactive cells (left) and BChE histochemistry (right) on 
sagittal sections of the chick pineal organ. By E17, PCNA positive cells can be seen just 
on the pineal interfollicular area (A) and on the follicular region of growing vesicles (B-
B`, arrows). (A`) BChE activity has decreased in relation to earlier stages of 
development. By E18, basically no proliferation and no BChE activity can be seen (C-
C`). Bar: 100 µm (B) and 200 µm (A, B`-C`). 
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2.3.3.2 BChE immunohistochemistry  

Histochemistry for BChE using the method of Karnovsky-Roots is largely used to 

detect its activity. However, due to the resulting diffuse brownish tissue staining 

obtained with this methodology for BChE activity; it is not possible to identify 

single positive cells, like it is for AChE. To validate the histochemical results, 

immunostainings were also conducted with a specific antibody against chicken 

BChE. The immunoreactivity observed with the BChE antibody, confirmed high 

BChE expression and localization in growing vesicular walls (Fig. 2.32; Fig. 2.33, 

A`), by E9. As shown earlier by histochemistry, only a few BChE positive cells 

are present during late development, e.g. by E17 there is almost no 

immunoreaction for BChE (Fig. 2.33, B`). Therefore, the results obtained with 

immunolabeling of BChE are compatible with the results observed with 

histochemistry for BChE activity. However, with immunolabeling it is possible to 

visualize that the BChE immunoreactivity is restricted to the cytoplasm of the 

cells, as detected by confocal microscopy (Fig. 2.32, c).  

  E9 

  E9 

  E9 

Fig. 2.32: (A-B`) DAPI 
and BChE Immuno- 
histochemistry: sagittal 
sections of an E9 chick 
pineal. (A-A`) A rosette of 
cells stained for DAPI and 
BChE. (B-B`) Double 
staining DAPI/BChE, and 
only BChE immuno-
reactivity in a new born 
vesicle. (C) Confocal 
picture of immunolabeled 
BChE cells. (c) Amplified 
cells from image C (star) 
displaying BChE immuno-
reactivity on the cyto- 
plasm, but not on the 
nucleus. 20x Magnification 
Bar: 100 µm.  
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  E9 

  E17 

Fig. 2.33: Immunolabeled BChE (right) detected by confocal microscopy. (A-A´) E9, 
expression of BChE in growing vesicles. (B-B´) E17, immunoreactivity for BChE is 
mainly restricted to the parafollicular zone. Magnification X20. 

The omission of the primary antibody from the protocol resulted in absence of 

immunolabeling. 

2.3.3.3 Cell proliferation studies with BrdU  

To corroborate the PCNA studies, BrdU was also used as a proliferation marker, 

and its expression was compared with the BChE histochemistry in pineal 

sections.  

BrdU (5-Bromo-2´-deoxy-uridine) is a thymidine analogue, which can be 

incorporated into DNA during the synthesis (S) phase. The proliferation activity 

of the pineal cells was labeled with BrdU during the exposure time of two and a 

half hours. A fluorescent conjugate secondary antibody revealed 

immunoreactivity for BrdU. Controls did not present immunoreactivity. 

Also here, high proliferation activity in the follicles can be observed from E9 to 

E11 (Fig. 2.34). S-phase BrdU positive cells are almost homogeneously 

distributed throughout the pineal epithelium and intense BChE activity 

accompanies the proliferative states. By E17, when just a few BrdU positive 

cells can be identified in the parafollicular area, BChE activity is respectively 

very low (Fig. 2.34, D-D`). 
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BrdU    BChE 

  E9 

  E10 

  E11 

  E17 

A A’ 
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C C’ 

D D’ 

Fig. 2.34: DNA 
syntheses detected by 
immunoreactivity of 
incorporated BrdU 
versus BChE histo-
chemistry of chick 
pineal sections. (A) By 
E9, BrdU positive cells 
surround the luminal 
space of the follicle. 
(A’) Histochemistry for 
BChE in a parallel pineal 
section reveals a 
correlation of BChE 
activity to proliferating 
areas. (B-B’) By E10, 
intense proliferation, in 
the follicular area, and 
respective strong BChE 
activity can be seen. 
(C) By E11, BrdU 
positive cells surround 
the luminal space of an 
adult follicle, and the 
future central lumen of 
MP. (C’) Follicular area 
and mammilliform 
areas present intense 
BChE activity. (D) E17, 
a few BrdU positive 
cells appear on the 
para-follicular zone; no 
pronounced immuno-
reactivity is found on 
the follicular area. (D’) 
Basically no BChE 
activity is found in 
correspondent areas by 
this stage. MP = 
mammilliform project-
tions; PF = para-
follicular zone. Bar: 100 
µm.  
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Before E11, the majority of the cells are mitotically active. By E11, the 

proliferative cells population expand the follicular area, forming the 

parafollicular zone (Fig. 2.35). Proliferative cells coming from the follicular area 

invade the parafollicular mammilliform projections, as verified by BrdU 

incorporation (Fig. 2.35). The follicular epithelium gives rise to the parafollicular 

zone and, allows the migration of follicular cells in that direction, as it happens 

with AChE-positive cells.   

 

 E11 

 

 

 

 

 

 

Fig. 2.35: Pineal cells proliferation. (A) Mitotic activity detected by immunoreactivity of 
incorporated BrdU on a chick pineal slice by E11. (B) Schema of proliferative areas 
(green) expansion, and AChE (brown) cells migration during the development of the 
parafollicular zone. (C) Mechanism of follicular expansion. Vesicles become follicles by 
E11, as cells proliferate to form the parafollicular zone. Mitotic cells from the follicular 
area develop the parafollicular zone. Magnification X20. 
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2.3.4 Characterization of the expression of vimentin in the developing 

chick pineal  

The organization of vesicles into two distinct layers transforms them into 

follicles. The implication of this remodeling for supportive cells was investigated 

using vimentin as a glia cell marker.  

The intermediate filament (IF) protein vimentin belongs to a class of well-

characterized cytoskeleton elements. In the pineal glands of rat, mice, cat and 

dog interstitial cells were shown to be astrocytes by electron microscopy, and 

by immunolabeling techniques, using antibodies against vimentin, glial fibrillary 

acidic protein, M1 and C1 antigens (Schachner et al., 1984; Calvo and Boya, 

1988; Lopez-Muñoz et al., 1992; Boya and Calvo, 1993). Vimentin positive cells 

showed morphology characteristic of astrocytes, a glia cell type which provides 

chemical and physical support for the neurons (Keilhauer et al., 1985).  

Immunostainings for vimentin revealed that a glia-like cell type, with astrocyte 

morphology, is predominant in the chick pineal interfollicular area and also 

abundant in the parafollicular and follicular zone of structured follicles of the 

chick pineal organ (Fig. 2.36). However, until the embryonic day 10, these 

vimentin positive cells are still limited to the interfollicular area, not invading the 

vesicular walls space (Fig. 2.36, A–A`). By E11, when two cell zones become 

established (follicular and parafollicular), follicular glia cells differentiate (Fig. 

2.36, B–B`). By E17, the follicles are mostly developed and the interfollicular 

cells are abundant (Fig. 2.36, C-F). Marked vimentin expression on the 

interfollicular cells was found by this period. In addition, vesicular walls did not 

display immunoreactivity for vimentin, but newly formed follicles did (Fig. 2.36, 

G-H). For control stainings, primary antibody was omitted from the protocol, 

resulting in absence of specific immunoreactivity.  

Glia cells are known to be supportive cells for neuronal differentiation. 

Therefore, the remodeling of follicles and the appearance of glia cells into the 

follicular can be associated with neuronal differentiation. The differentiation of 

photoreceptors is the further question to be addressed in this chapter.  
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Vimentin 

   

  

   

  

   

Fig. 2.36: Vimentin 
immunostaining of 
sagittal sections of 
chick pineal organs. 
By E10 and E11, 
respectively, pineals 
present no (A-A´) or 
just a few (B-B´) 
vimentin positive 
cells in comparison to 
later stages. By E10, 
vimentin positive 
cells are restricted to 
the interfollicular 
space, being absent 
in vesicles (A-A`). By 
E11, the follicular 
space is invaded by 
vimentin positive 
cells (B-B´). By E17, 
immunostaining for 
vimentin positive 
cells is abundant in 
structured follicles 
(C-F). Vimentin is 
also present in the 
lumen of young 
follicles (G), but not 
on vesicular walls 
(H). Vimentin: red; 
DAPI: blue; F: 
follicular area; Vw: 
vesicular wall. Bar: 
100 µm (A, B, C-D, 
H) and 50 µm (A`, 
B`, E-G). 

A A’ 

B 

C 

E 

B’ 

D 

F 

G H 

Vw 

F 

E10 

E11 

E17 

E17 

E17 



Chapter 2 
 
 

 

67 

2.3.5 Cell differentiation: expression of the pinopsin photopigment in 

AChE-positive cells of the developing chick pineal organ 

Pinopsin is a photoreceptive molecule expressed in most of the photoreceptors 

of the avian pineal organ (Okano, 1994). In the Japanese quail pinopsin 

expression is detected earlier than rhodopsin-like and iodopsin-like molecules 

(Yamao et al., 1999).  

The expression onset of photoreceptive pigments during chick pineal 

embryogenesis has not been characterized until now. To detect when pinopsin 

positive cells first appear during pineal development, young chick embryos were 

investigated. In parallel, AChE histochemistry was conducted to verify if any 

alteration in expression would happen with the differentiation of photoreceptors. 

Until the embryonic day 11 (Fig. 2.37, A), pinopsin was not detected in pineal 

tissue. On the other side, a few AChE-positive cells were detected in the luminal 

surface from E7 to E10 (Fig. 2.16; Fig. 2.20). AChE expression by E11 was 

mainly concentrated in the region between follicular and parafollicular zones 

(Fig. 2.17; Fig. 2.22). By E12, these AChE-positive cells migrate to the borders 

of the parafollicular zone and new cells on the luminal surface become to 

express AChE. At the same time, by E12, the first pinopsin positive cells appear 

in protrusions extending into the luminal space of the pineal recess (Fig. 2.37, 

B). AChE histochemistry revealed correspondent activity for structures in the 

luminal surface of the recess (Fig. 2.37, B`).  

As earlier demonstrated, AChE-positive cells start to surround the luminal space 

of structured follicles by E12 (Fig. 2.17, G). After E12 the AChE activity 

increased significantly (Fig. 2.18; Fig. 2.19), as well as the number of pinopsin 

positive cells. By E15, cells surrounding the luminal space of follicles present 

intense AChE activity and several other AChE-positive cells are found in the 

protrusions of the parafollicular region (Fig. 2.37, C-C`). AChE activity shows a 

remarkable increase by this embryonic stage, around the luminal space of 

recess and follicles, accompanying the increase in pinopsin expression (Fig. 

2.37, C). By the embryonic day 18, pinopsin positive cells are abundant not just 

on luminal protrusions, but also on the follicular zone (Fig. 2.38, A). By the end 

of the chick embryogenesis follicles become denser and the pineal acquires a 
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compact aspect, as earlier shown (Fig. 2.15, U). Most follicles diminish their 

luminal space by E20, and the distribution of the pinopsin positive cells is 

restricted (Fig. 2.39, A). However, the AChE activity remains intensive in the 

follicular and parafollicular area (Fig. 2.37, E`).  

Pinopsin          AChE 

   

   

  

Fig. 2.37: Immunohistochemistry for pinopsin (left) and histochemistry for AChE (right) 
in parallel sagittal sections of chick pineal glands. By E11 there are no pinopsin positive 
cells and no pronounced AChE activity (A-a). By E12, anti-pinopsin immunoreactivity 
(arrow) can be seen in the lumen of the pineal recess (B), co-localized to AChE-positive 
cells (B`- arrow). By E15, pinopsin positive cells surround the entire luminal space of 
the recess (C), and present AChE activity (C`). This increase in AChE activity on cells 
surrounding the luminal space accompanies, therefore, the differentiation of 
photoreceptive cells. (a, b and c) View of the pineal sections with 10X magnification. 
Bar: 20 µm (B; B`); 50 µm (A-A`; C-C`); 200 µm (a; b; c). 
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Fig. 2.38: Immunohistochemistry for pinopsin (left) and histochemistry for AChE (right) 
in parallel sagittal sections of an E18 chick pineal gland. Pinopsin immunoreactivity 
structures and correspondent AChE-positive cells on the follicular area (A-A`) and 
luminal surface (B-C`- arrows). 
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Pinopsin                       AChE 

  E20 

Fig. 2.39: Immunohistochemistry for pinopsin (left) and histochemistry for AChE (right) 
in parallel sagittal sections of an E20 chick pineal gland. Pinopsin immunoreactivity 
structures and correspondent AChE-positive cells on the luminal surface of follicles (A-
A`). Bar: 20 µm. 

Pinopsin 

   

  

  

 

A B 

C D 

E F 

A A’ 

Fig. 2.40: Pinopsin 
immunoreactivity on 
chick pineal gland 
structures. By E18, 
the luminal surface 
of newly formed 
follicles presents 
immunoreactivity for 
pinopsin positive 
cells (A-C). By E15   
onwards, pinopsin 
positive cells show a 
homogeneous distri-
bution (D). Negative 
controls: mouse IgG 
(used instead of 
anti-pinopsin 
antibody) (E), and 
immuno-staining 
without the primary 
antibody (F). Bar: 20 
µm (A-B); 50 µm 
(C); 100 µm (D-F). 
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At late stages of the pineal embryogenesis, pinopsin positive cells are also 

present in the luminal projections of newly formed follicles (Fig. 2.40, B-D). 

Control experiments were conducted following the same protocol for pinopsin 

staining, except for the omission of the primary antibody or substitution of it by 

purified mouse IgG. Control stainings resulted in absence of specific 

immunoreaction (Fig. 2.40, F-G). 

Glia cells appear by E11 in follicles, just before the onset of PRCs expressing 

pinopsin, by E12. This correlation can also be seen later in development. By E17 

newly formed follicles present already pinopsin positive cells on the future 

central lumen region. By E17 vimentin will also be expressed in newly formed 

follicles (Fig. 2.41), in contrast to earlier stages, when neither vimentin nor 

pinopsin expression was found.  

Pinopsin    Vimentin 

  E17 

Fig. 2.41: Pinopsin (left) and vimentin (right) immunostainings. By E17, pinopsin (A) 
and vimentin (B) positive cells fill the future central lumen of young follicles. Bar: 20 µm 
(A); 50 µm (B).  

2.3.5.1 Pineal photoreceptors morphology 

During chick post-hatching life, two types of pinopsin positive pinealocytes were 

earlier reported. Photoreceptors with ciliary shaped outer-segments, and 

comma-like elements (without outer segments) were characterized by 

immunoelectron-miscroscopy (Okano and Fukada, 2001). The cilium-like 

structures were visualized as string-shaped process, which sometimes 

presented an enlarged distal portion (pear-shaped). Bulbous-shaped or comma-

like elements, presented ultrastructural lamellar complexes, and were detected 

in the parafollicular region of the follicles.  

Several distinct morphologies for pinopsin immunoreactive structures during 

development of the chick pineal were detected in this study. Pinopsin positive 

B A 
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segments were mainly concentrated in luminal surfaces, presenting elongated 

string-shaped or pear-shaped projections.  

A few pinopsin positive cells first appear by E11, initially only on the pineal 

recess (Fig. 2.37, B). By E13, several cells containing pinopsin immunoreactive 

granules surround the luminal space of follicles were detected (Fig. 2.42, A-a). 

By E15, numerous photoreceptive cells appear in the luminal surface, 

homogeneously distributed among follicles (Fig. 2.42, B-b). By this stage, it is 

possible to characterize photoreceptor types according to their morphology 

under light microscopy. String-shaped or pear-shaped outer segments, and 

string-shaped segments associated to a bulbous structure, are mainly localized 

in the luminal surface. Comma-like pinopsin immunoreactive elements were 

found in the parafollicular area and were much less numerous than string-

shaped structures (arrows Fig. 2.42, B).  

Comma-like elements and string-shaped structures, immunoreactive to the anti-

pinopsin antibody, were earlier described by immunoelectron-microscopic 

investigations during ontogenesis of the chick pineal (Hirunagi et al., 1997; 

Okano and Fukada, 2001). However, string-shaped cilia associated to bulbous 

structures (Fig. 2.42, A-b) have not been found in the mature chick pineal 

gland. During embryogenesis of quail, similar structure was described being 

immunoreactive to anti-rhodopsin (Araki et al., 1992).  

The string-shaped form associated to a bulbous structure was first visualized by 

E15 (Fig. 2.42, B-b) and was still present in some follicles by E18 (Fig. 2.43, B-

b). By E18, elongated string-shaped pinopsin immunoreactive segments are 

more frequently visualized (Fig. 2.43) and only a few follicles display the string-

shaped form associated to a bulbous structure. By E15, string-shaped elements 

with an enlarged distal portion can be also found projected to the luminal space 

of some follicles (Fig. 2.42, C-c). By E18, the same ciliary PRCs are also found 

in the follicular surface (Fig. 2.43, C-c). By E20, pinopsin positive cells protrude 

into the luminal space, although, outer segments are not distinguishable (Fig. 

2.39, A).  
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Pinopsin  

 E13 

 E15 

 E15 

Fig. 2.42: Immunoreactivity for pinopsin in sagittal sections of chick pineal glands. (A-b) 
By E13, pigment granules surround the luminal space of follicles and pinopsin positive 
structures are rarely found. (B-c) By E15, pinopsin positive cells are abundant and 
present three morphologies: string-shaped (1) or string-shaped associated to a bulbous 
structure (2), and coma-like elements on the parafollicular area (3). Bar: 10 µm (c), 20 
µm (C), 25 µm (a), and 50 µm (A and B). 
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Pinopsin            E18 

 

 

 

Fig. 2.43: Immunoreactivity for pinopsin in sagittal sections of an E18 chick pineal 
gland. Pinopsin positive outer segments, string-shaped elongated (A-a) or with an 
enlarged distal portion (B-c), extend into the luminal space and follicular area of the 
follicles. (b) String-shaped outer segments associated to bulbous structures were also 
detected in the luminal surface of some follicles (star). F = follicular area; L = lumen. 
Bar: 10 µm (a, b, c), 20 µm (A, B, C).  
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2.3.6  Apoptosis and AChE expression in the developing chick pineal 

gland  

Cell death is an essential process for normal development. When embryonic 

cells stop dividing, they differentiate, become quiescent, and eventually die. 

During development of the central nervous system, the original number of 

neuronal cells is excessive, and part of them undergoes apoptosis during 

development (Oppenheim, 1991).  

Apoptosis was followed by TUNEL assay. Fluorescent-labeled dUTP nucleotides 

incorporated on DNA strand breaks allowed detection of cells undergoing 

apoptosis. AChE histochemistry was also conducted for comparison with 

apoptosis. 

Apoptotic cells are shown here to present increased AChE activity (Fig. 2.44). 

By E19, single cells undergoing apoptosis, and presenting increased AChE 

activity can be distinguished (Fig. 2.44, arrows). Areas with intensive AChE 

activity are also shown to be apoptotic (stars). 

Earlier stages of development also presented apoptotic activity in correspondent 

AChE-positive cells (Fig. 2.45; Fig. 2.46).  

Apoptosis            AChE 

  E19 

Fig. 2.44: Apoptotic cells (A) are AChE-positive (A´). By E19, apoptotic cells are 
concentrated in areas with intense AChE activity (stars). Single apoptotic cells, detected 
by TUNEL assay, can be distinguished by their strong AChE activity in a parallel section 
histochemically stained (arrows). Bar: 200 µm. 
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The relation of AChE activity and pinopsin positive cells has been earlier shown 

in this chapter (Fig. 2.37). However, more AChE than pinopsin positive cells 

were detected. Here, it is shown that AChE-positive cells, in the luminal space 

and in the parafollicular region are in great part correspondent to apoptotic cells 

during development (Fig. 2.44; Fig. 2.45; Fig. 2.46). By E12, a period when 

AChE activity starts to increase in relation to earlier stages of development, 

several apoptotic cells are found to be correspondent to AChE-positive cells in 

the follicles (Fig. 2.45). By E17, a correlation of apoptotic areas and high 

expression of AChE can be seen (Fig. 2.46, A-A`). By E18, apoptotic cells, 

surrounding the luminal space, present AChE activity, but not the ones in the 

interfollicular region (Fig. 2.46, B-B`). By E19, follicles with intense AChE 

activity also display apoptotic activity in correspondent areas and vice-versa 

(Fig. 2.46, C-C`). 

Control experiments were conducted omitting the enzyme terminal 

deoxynucleotidyl transferase (TdT), which catalyzes the attachment of 

fluorescein-dUTP to free 3’OH ends in the DNA breaks, from the protocol. 

Control stainings resulted in absence of specific fluorescence.  

Apoptosis   AChE 

  E12 

Fig. 2.45: Genomic DNA fragmentation by TUNEL assay (A) and AChE histochemistry 
(A´) in parallel sections of pineal organs. By E12, apoptotic cells (left arrows) are AChE-
positive (right arrows). Bar: 200 µm. 
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Apoptosis    AChE 

 

  E17 

  E18 

  E19 

Fig. 2.46: Genomic DNA fragmentation by TUNEL assay (left) and AChE histochemistry 
(right) in parallel sections of pineal organs. By E17 (A-A`), E18 (B-B`) and E19 (C-C`) 
apoptotic cells (left arrows) are AChE-positive (right arrows). By E19, areas without 
apoptotic activity also do not present AChE (C-C`). Bar: 100 µm (A-B`); 200 µm (C-
C`). 
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2.4 Discussion  

2.4.1 Remodeling of the chick pineal gland and spatio-temporal 

implication for cholinesterases expression  

AChE accompanies the remodeling of the pineal epithelium during 

embryogenesis. By E11, with the re-organization of follicular cells into two 

distinct layers, most AChE-positive cells migrate from the luminal surface to the 

area between follicular and parafollicular layers (Fig. 2.22; Fig. 2.23). By E12, 

with the establishment of the parafollicular zone, by the expansion of the 

follicular area, AChE-positive cells migrate to the borders of the parafollicular 

zone and become adjacent to the basal lamina. By this stage, cells of the 

luminal surface reinitiate the expression AChE. This becomes clearer during the 

prospective stage, with the respective decrease of the BChE activity, a constant 

increase of AChE-positive cells surrounding the luminal space and the 

parafollicular area takes place.  

AChE activity in whole chick brain homogenates also peaks after E12, displaying 

predominantly tetramers, as demonstrated in earlier studies (Boopathy and 

Layer, 2005). Monomers and dimers were shown to be prevalent at younger 

stages, E7-E11. However, tetramers are much more frequent than the other 

molecular forms of AChE in brain.  

This increase of AChE expression on the parafollicular area accompanies the 

remodeling of the chick pineal gland.  

Mammilliform projections of cells, from the parafollicular region of follicles or 

recess, migrate through dissolutions of the basal lamina, giving rise to new 

vesicles. These mammilliform projections are initiated by rosettes of AChE-

positive cells, which migrate with surrounding cells until the establishment of a 

new vesicle, filling its future central lumen. Therefore, the parafollicular zone is 

transient, as it is constantly rearranged into new follicles. The expansion of the 

mammilliform projections is followed by a rupture of the basal lamina 

surrounding the pineal epithelium, as shown during rat pineal development 

(Calvo and Boya, 1981). It was also demonstrated that cells migrate through 

these local dissolutions of the basal lamina to form aggregates into the 

parafollicular area or into the pineal lumen. While cells migrate through the 



Chapter 2 
 
 

 

79 

basal lamina they lose their attachment to it, and the junctions between them, 

acquiring a round shape (Fujieda et al., 1997). The re-organization of these 

cells in structured follicles is necessary for their morphological and functional 

stability, so that cells can differentiate. AChE-positive rosettes of cells guide 

surrounding cells to migrate through the pineal epithelium and to form the 

mammilliform projections. As shown here, the borders of these mammilliform 

projections, surrounding the central rosettes of AChE-positive cells, present 

proliferation activity and sustain the vesicles growth. With vesicular growth and 

establishment of organized follicles, remodeling will happen on the newly 

formed parafollicular area, always ending in new follicular structures that will 

repeat this process. AChE-positive cells are the beginning and the end point for 

these remodeling events. The association of AChE with tissue remodeling during 

development has been also indicated by other authors (Coleman and Taylor, 

1996; Layer, 1991; Bigbee et al., 1999). 

Beyond its involvement with cell migration, AChE was demonstrated to be in 

association with PRCs differentiation. Some luminal surface AChE-positive cells 

suffer differentiation into photoreceptors, and other migrate to the newly 

formed parafollicular region reinitiating the de novo rearrangement of the 

parafollicular zone. AChE-positive cells, therefore, have to increase in number 

during pineal embryogenesis to support developmental events.   

Proliferation activity is homogeneously distributed among follicles (Fig. 2.34) 

until E12. The decrease in proliferation is followed by a decrease in BChE 

activity, which is completely absent after E19, when vesicle formation ceases. 

The progressive decrease in BChE activity after E12 is followed by an immediate 

increase in AChE expression. Cells which were BChE positive, while proliferating, 

become later AChE-positive and sustain the number of AChE cells for follicular 

expansion and remodeling. Migration of the AChE-positive cells occurs from the 

follicular area in direction to parafollicular zone and central lumen (Fig. 2.26; 

Fig. 2.27). With the formation of the parafollicular area, follicular post mitotic 

cells become AChE-positive and migrate along development. Cells can either 

migrate back to the central lumen or occupy the borders of the parafollicular 

zone. As vesicles become bigger (E17), AChE-positive cells occupy the luminal 

surface densely, as well as the borders of the parafollicular region. By E18, 

remaining BChE activity can be seen on the recess in limited regions responsible 
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for vesicles formation (Fig. 2.13, Q). However, by this period the compactation 

process of pineal follicles takes place and follicles expansion ceases.  

The shift in expression of BChE to AChE reflects the transition from cell 

proliferation to cell differentiation. Therefore, this suggests BChE expression is 

implicated in cell proliferation and its absence in cell differentiation. This 

assumption is supported by other studies on chick development (Layer, 1990; 

Alber et al., 1994). Furthermore, an antisense 5`- BChE inhibited cell 

proliferation and accelerated differentiation in transfected retina cells 

reagregates cultures (Robitzki et al., 1997). A co-regulation of AChE and BChE 

was also demonstrated by the suppression of BChE, resulting in increased AChE 

transcription and protein activity (Robitzki et al., 1998). 

2.4.1.1 Remodeling implication for supportive cells  

The remodeling of the pineal gland vesicles into follicles is accompanied by the 

appearance of supportive cells into follicular tissue by E11 (Fig. 2.22, B; Fig. 

2.36, C). Using vimentin as a glia cell marker, glia was shown to be the 

predominant cell type of the chicken pineal gland, in the interfollicular and 

follicular area of structured follicles (Fig. 2.36). Glia-like cells are known to 

occur in the pineal gland of rat, mouse, gerbil and others (Schachner et al., 

1984; Redecker, 1998).  

Regarding its relevance, glia was originally thought to serve only as connective-

tissue cells. Nowadays, more relevant roles for the glial cells have been 

described. They regulate the initiation of axonal sprouting and outgrowth and 

support the structural stability of synapses (Hatten 1990; Bechmann and Nitsch, 

2000; Pfrieger, 2002). Moreover, vimentin immunoreactive-astrocytes are 

suggested to serve as a source of cytokines or as a physical conduit for 

migrating cells (Wang et al., 2004). The appearance of glia cells on follicles, just 

before the pinopsin photopigment expression onset, is potentially related to 

their relevance for neuronal cells differentiation. Differentiation of supportive 

and follicular cells was earlier shown, in electron microscopy studies, to happen 

before the differentiation of parafollicular cells during chicken pineal 

embryogenesis (Ohshima and Matsuo, 1988). Therefore, supportive cells are 

supposed to became more distinct by the differentiation of photoreceptors.  
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The remodeling events happening on the chick pineal gland by the moment 

vimentin positive cells appear in the follicular zone are temporally correlated 

with the differentiation of photoreceptors, and occasionally are contributing for 

it. It is already known that mechanical stimuli can promote changes in shape, 

growth, and gene expression of many cell types (Curtis and Seehar, 1978; 

Ingber et al., 1994). However, chemical stimulus is also essential for migrating 

cells, eventually supported by glia. Therefore, the correlated temporal events of 

follicles structure definition, glia cells appearance in follicles, and subsequent 

onset of photoreceptors differentiation, are interconnected within the pineal 

remodeling process. 

2.4.1.2 Photoreceptors differentiation and AChE expression during 
pineal embryogenesis 

The AChE expression pattern is altered during pineal´s remodeling process. 

AChE has been already reported to be an early marker for differentiation (Miki 

and Mizoguti, 1982). 

By E12, when photoreceptor differentiation becomes prominent, AChE-positive 

cells, which were between follicular and parafollicular layer by E11, migrate to 

the borders of the parafollicular layer. Then, they reappear in the luminal space 

(Fig. 2.17, G`), correlating with the onset of pinopsin positive cells. The 

distribution of AChE-positive cells increases constantly in intensity and number 

from E13 onwards, as well the number of pinopsin PRCs. The spatio-temporal 

distribution of pinopsin positive cells and AChE activity shows that these events 

are interconnected. Therefore, central lumen AChE-positive cells are involved in 

cell differentiation.  

With these findings, a schema of the relationship of cholinesterases with 

remodeling and differentiation of the pineal gland can be drawn (Fig. 2.47). 
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Fig. 2.47: Schema of AChE, BChE and pinopsin expression during pineal embryogenesis. 
(A) By E11, AChE-positive cells have migrated from the luminal surface in direction to 
the newly established parafollicular zone. BChE activity, which was abundant in 
vesicular surface, declines with the proliferative state, becoming limited to regions with 
proliferation activity. (B) By E12, AChE-positive cells migrate to the borders of the 
parafollicular zone, and new AChE cells reappear in the luminal surface with the increase 
of photoreceptive cells. (C) As vesicles grow and form structured follicles, new cells 
become AChE-positive with respective pinopsin expression on central lumen of newly 
formed vesicles.  

2.4.1.3 Photoreceptors diversity  

From the three kinds of photoreceptor morphologies detected in this study, at 

least one is not described in the literature. Whether this morphology is 

transformed during post-hatching life by the loss of lamellar structures 

associated to outer segments, or whether it is a unique type of PRC that 

appears just during embryonic period is not clear. During ontogenesis, the 

pineal organ of chicken undergoes transformation from a photosensory organ to 

an endocrine gland. A sensory regression of the chick pineal during the post-

hatching period is nevertheless contradictory. Several pineal follicles are 

invaded by connective tissue towards hatching period implying a compactation 

of the pineal organ and decrease of photoreceptors number (Sato, 2001). On 

the other side, Omura (1977) describes one type of photoreceptor in fifteen day 

old Brown leghorns chicks, which was not found during earlier periods. Bischoff 

(1969) also observed lamellar whorls associated to cilia outer segments in adult 

chicks. These, among others, are contradictory studies about the failure of outer 

segments to mature in the chicken pineal gland. The temporal dependence of 

the expression of different types of photoreceptors might have a relation with 

regulatory mechanisms, rather than with the hypothesis that one type of PRC 

evolved to another during avian ontogenesis. 
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2.4.1.4 Relation pineal/retina AChE expression  

Non-catalytic involvement of AChE in neurogenesis, based on its spatio-

temporal expression pattern during development of the chick, has been earlier 

described in retina (Layer, 1990).  

Though structurally similar, retina and pineal differ in relation to AChE activity. 

In retina, the outer segments of the photoreceptors are facing outwards to the 

pigment epithelium (PE). AChE-positive cells (amacrine and ganglion cells) are 

distributed on the ganglion cell layer and on the adjacent inner plexiform layer 

(Fig. 2.48). In the pineal gland on the other hand, the photoreceptors outer 

segments are projected into the luminal space and show AChE activity.  

Nevertheless, retina spheroids, developed from reaggregates of dissociated cells 

of the chick retina, form rosettes displaying photoreceptor outer segments 

projecting into their luminal space (Layer et al., 1997a), resembling the follicles 

of the pineal organ. These spheroids, therefore, show an inverse cell layer 

structuration compared to the one found in retina, though originally composed 

of retina cells (Willbold and Layer, 1992).  

  

Fig. 2.48: Double staining, DAPI (A) and AChE (A`) histochemistry, of an E6 retina. By 
this stage it is possible to distinguish the GCL and the PE of the retina. (A`) Cells of the 
ganglion cell layer present AChE activity. PE = Pigment epithelium; GCL = Ganglion cell 
layer. Bar: 100 µm. 

Pinealocytes have evolved from a common ancestral photoreceptor of both the 

pinealocytes and retinal photoreceptors (Klein, 2004). Even though PRCs of the 

retina are not AChE-positive, their differentiation is indicated to be dependent 

on AChE expression. In AChE knockout mice an impaired inner retina formation 

was shown, which resulted in the degeneration of photoreceptor cells (Bytyqi et 

A A’ 
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al., 2004). AChE clearly accompanies the embryonic development of 

photoreceptive cells in chick pineal (Fig. 2.37), indicating that AChE also plays a 

role on photoreceptor differentiation in this tissue. Therefore, AChE is involved 

in PRC differentiation in both retina and pineal gland. 

AChE is also indicated to be involved in retina photoreceptor functioning. Layer 

et al. (1997b) proposed a regulatory role for AChE on the establishment of 

excitatory and inhibitory channels (“on-off decisions”) in retina. AChE has been 

also associated with post-natal photoreceptor development, because an 

increased expression of AChE takes place during this period (Hutchins, 1987). 

Similarly, the presence of AChE in PRCs of the pineal might imply the 

involvement of this enzyme with the physiological processes dependent on the 

PRCs stimulus. Therefore, a link between the presence of AChE on PRCs and 

metabolism can be hypothesized. How AChE would interfere on melatonin 

regulation is still not clear, but earlier reports have shown that the AChE activity 

is altered during circadian rhythm (Quay et al., 1971; Schiebeler, 1974; Mohan, 

1974; Wood, 1979; Lewandowski, 1986; Pan, 1991).  

2.4.1.5 AChE associated with PRCs during post-hatching life 

The association of AChE with PRCs during chick pineal embryogenesis has been 

investigated for the first time. Similarly, during postnatal periods, AChE 

expression decreases in parallel to the number of PRCs (Sato and Wake, 1983; 

1984).  

During post-hatching life, a functional transition of the avian pineal organ from 

a photoreceptive to an endocrine gland takes place (Sato and Wake, 1983; 

1984). The failure of pineal photoreceptive cells in establishing appropriate 

synaptic connections might trigger the death of other neurons associated to 

them (Sato et al., 1988), since neurons need to make or to receive synaptic 

connections to be functional (Clarke and Cowan, 1975). Therefore, PRCs 

differentiate and die being AChE-positive.  

2.4.2 Apoptosis and AChE 

Half of the cells originally produced on the central nervous system die during 

establishment of neuronal connections with the target tissue (Oppenheim, 

1991). It is hypothesized that the excessive population of neurons has to 
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compete for a limited amount of neurotrophic factors, and just the neurons that 

connect to a target tissue will access neurotrophic factors and survive. 

Therefore, apoptosis in development is a natural process, which ensures that 

neurons make the appropriate connections with their targets.  

The increase of AChE-positive cells on the chick pineal, after the embryonic day 

12, is far more pronounced than the number of differentiating pinopsin positive 

cells (Fig. 2.37). Several of these AChE-positive cells end in apoptosis (Fig. 

2.45; Fig. 2.46). This is possible, because transcription and translation continue 

to take place in dying neurons as demonstrated by Martin et al., 1988.  

When undergoing either proliferation or apoptosis, cells assume a round shape 

and show chromatin condensation (King and Cidlowski, 1995). Some apoptotic 

labeled cells showed a cell rounding morphology, which also can be seen 

through a close inspection of AChE histochemistry (Fig. 2.44). 

Apoptosis has been found to be induced via the stimulation of several different 

cell surface receptors in association with caspases activation (Hu et al., 1998; Li 

and Yuan, 1999). AChE has been suggested to be essential for the assembly of 

the apoptosome, whose function is to activate the caspase-9 (Park et al., 2004). 

Caspase-9 initiates the activation of the caspases cascade and, therefore, 

initiates the apoptotic process. However, it was the first time AChE was shown 

to be associated with naturally occurring apoptosis during development.  

2.4.2.1 Cell apoptosis mechanisms and AChE 

Apoptosis can be triggered by internal signals, in a so called “intrinsic or 

mitochondrial pathway” or by an “extrinsic pathway” (Fig. 2.49).  

The intrinsic pathway is dependent of the formation of the apoptosome, which 

has been shown to be mediated by AChE (Park et al., 2004). Briefly, the 

intrinsic pathway comprises the following steps leading to the formation of the 

apoptosome: a) in a healthy cell, the outer membranes of its mitochondria 

express the protein Bcl-2 on their surface; b) Bcl-2 binds to a molecule of the 

protein Apaf-1 (apoptotic protease activating factor-1); c) internal damage to 

the cell causes Bcl-2 to release Apaf-1 and a related protein, Bax, to penetrate 

mitochondrial membranes, causing cytochrome c to leak out; d) the released 

cytochrome c and Apaf-1 bind to molecules of caspase 9. These steps result in a 
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complex of cytochrome c, Apaf-1, caspase 9 and ATP, which all together form 

the apoptosome (Becker and Bonni, 2004) in the presence of AChE (Park et al., 

2004). Caspase 9 is one of the 11 caspases known in vertebrates. Caspase 9 

initiates a cleavage cascade, activating other caspases. The sequential 

activation of one caspase by another creates an expanding cascade of 

proteolytic activity, which leads to the digestion of structural proteins in the 

cytoplasm, the degradation of chromosomal DNA, and the phagocytosis of the 

cell (Becker and Bonni, 2004). The mechanism of apoptosis via mitochondrial 

pathway has been also described in C. elegans - demonstrating, this cell death 

pathway has been conserved during evolution (Cryns and Yuan, 1998). 

However, apoptosis can also be triggered by external signals of the extrinsic or 

death receptor pathway, via tumor necrose factor (TNF), not involving the 

apoptosome complex. It is also dependent on the activation of a caspase 

cascade (caspase 8 and 10), leading to phagocytosis of the cell (Becker and 

Bonni, 2004). Apoptosis caused by external signals is usually seen in 

neurological diseases, while cell death caused by internal signs is often the case 

in nervous system development, as it was shown here in association with AChE 

expression. Accordingly, not all apoptotic tissues will present increased AChE 

expression. 

Recalling studies in AChE KO mice retina, photoreceptors degeneration was 

observed during early post-natal life (Bytyqi et al., 2004). AChE is not 

expressed by photoreceptive cells in retina, but its expression levels are in 

association with photoreceptors postnatal development (Hutchins, 1987). The 

direct association of AChE activity with pineal photoreceptors is shown here to 

be related to the early death of the photoreceptive cells during pre-hatching 

periods. In retina, photoreceptor cells are not lost during development; they 

even accumulate outer-segment discs. In adult rat, they constantly regenerate 

the membrane discs of the rod outer segments (Goldman, 1982). The fact that 

photoreceptor cells could not survive in AChE KO mice, indicates a relevance of 

AChE for their development. The absence of AChE in the photoreceptors, which 

undergo degeneration, suggests that apoptosis has been generated by the 

extrinsic pathway in this case. If we consider, that the mechanism of the death 

receptor pathway is the one acting for the degeneration of the AChE KO mice 
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retina, it can justify the direct association of AChE with pineal PRCs, which 

normally die during development.  

 

Fig. 2.49: Intrinsic and extrinsic apoptotic pathways (MacFarlane and Williams et al., 
2004). 

2.4.2.2 Apoptotic post-mitotic neurons 

Apoptosis and cell proliferation are suggested to be regulated by similar 

molecular mechanisms. PCNA has a triple function in the life and the death of 

the cells. It is an essential component of the DNA replication machinery, 

functioning as the accessory protein for DNA polymerase δ, required for 

processive chromosomal DNA synthesis, and DNA polymerase ε, required for 

DNA recombination and DNA damage repair (Celis, 1985). It was already 

demonstrated that PCNA inhibition prevents cells from entering the S-phase of 

the cell cycle and eventually leads to cell death (Javier et al., 1997; Mattock, 

2001). Cell death after intensive proliferative periods has been observed in 

several studies of induced apoptosis by neurotoxic stimulus (Feddersen et al., 

1992; Copani et al., 1999), and avoided with antisense oligonucleotides to DNA 

polymerase (Copani et al., 2002). 

Intense proliferation activity in the pineal gland is found until E12, whereas 

apoptotic cells can also be detected (Fig. 2.45). The tendency of apoptosis is to 
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increase, as it approaches the end of embryogenesis (Fig. 2.46). By E17, 

interfollicular cells are positive for the proliferation marker PCNA (Fig. 2.31, A), 

while apoptotic cells are restricted to the follicles (Fig. 2.46, A). By E18, the 

interfollicular cells do not express PCNA anymore (Fig. 2.31, B) and start to 

undergo apoptosis (Fig. 2.46; B), causing the decrease and nearly the 

disappearance of the interfollicular space by the end of pineal development (Fig. 

2.15).  

During intensive proliferative periods AChE activity is very low and limited to a 

few follicular cells (Fig. 2.20). After the embryonic day 12, AChE predominates 

in relation to BChE and increases constantly in activity and number of positive 

cells towards the end of the chick pineal embryogenesis (Fig. 2.13; Fig. 2.14), 

and several of these AChE-positive cells become apoptotic (Fig. 2.44; Fig. 2.45; 

Fig. 2.46). AChE expression has been earlier associated with the decrease of cell 

proliferation (Soreq et al., 1994a; Robitzki et al., 1998; Grisaru et al., 1999).  

AChE correlation to apoptosis has been supported by investigations using cell 

cultures (Hu et al., 1998; Li and Yuan, 1999; Zhang et al., 2002; Park et al., 

2004; Jin et al., 2004). The relation of BChE/AChE activity and apoptosis has 

been shown by the suppression of BChE in reaggregate retina cell cultures, 

inducing apoptosis and increasing AChE mRNA expression and enzyme activity 

(Robitzki et al., 1998). The results presented here, therefore, corroborate the 

relevance of AChE for the apoptotic process and indicate its involvement with 

naturally occurring apoptosis.  

2.4.2.3 Melatonin metabolism, cholinesterases, and 
neurodegenerative processes 

The influence of light on melatonin metabolism, happening in the pineal gland, 

is accentuated in diseases like Alzheimer. Physiological functions following a 

circadian rhythm, such as the sleep-wake cycle, are disturbed with aging, and 

accentuated in Alzheimer’s patients (Wu and Swaab, 2005).  

An accentuated expression of AChE and BChE has been detected around the 

amyloid plaques and neurofibrillary tangles in the brains of Alzheimer's patients 

(Small, 1996). AChE is able to accelerate the amyloid formation and such an 

effect is sensitive to drugs that block the enzyme, showing AChE inhibitors 

provide a possibility for treating Alzheimer's disease (Inestrosa et al., 2005). 
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Therefore, understanding the implications of cholinesterases expression in the 

pineal gland is also relevant for pathological states involving both 

cholinesterases and circadian rhythm disturbances. 

2.5 Summary 

The data presented in this chapter support: 

• A role of AChE on pineal epithelium remodeling (follicles development);  

• The association of AChE expression with photoreceptors differentiation; 

• The organization of follicles with supportive cells is interconnected with 

PRCs differentiation; 

• The existence of at least one PRC morphology type occurring in chick 

pineal only during the embryonic period; 

• A developmentally regulated switch from BChE to AChE expression 

during pineal embryogenesis related to cell proliferation and 

differentiation, respectively; 

• An inversely proportional co-regulation of AChE and BChE expression;  

• The association of AChE expression with apoptosis during development.  
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embryogenesis is generated by serotonin 

administration, and is related to 
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3.1 Overview 

The association of cholinesterases with remodeling, differentiation, proliferation, 

and apoptosis of the chick pineal cells, was demonstrated in the previous 

chapter. How cholinesterases are involved with most of these processes is still 

not understood. The possibility that a second activity of ChEs would be 

participating in developmental events is still open, and will be addressed in this 

chapter. 

Several vertebrates display an aryl-acylamidase (AAA) activity, peculiarly 

associated with the esterase activity. The functional relevance of AAA associated 

to cholinesterases is not known. Therefore, the characterization of the AAA 

activity during ontogenesis of organisms can bring insights into its implication 

for developmental processes. 

The sensitivity of the AAA activity associated to ChEs towards serotonin means 

that a property of a component of the cholinergic system is making reference to 

a serotonergic neurotransmitter. The influence of it for AChE or for the serotonin 

metabolism on the body is not clear. However, a reciprocal influence of the 

serotonergic system towards cholinergic components has been studied, as both 

systems influence, in some cases, the same physiological processes.  

3.1.1 Zebrafish AChE 

Zebrafish (Brachydanio rerio or Danio rerio) is a promising model organism to 

study AChE relevance as it does not have the BCHE gene, which is supposed to 

have been lost in zebrafish during evolution, emerging later in birds (McClellan 

et al., 1998). Zebrafish was shown to have a single AChE gene encoding only T 

subunits (Bertrand et al., 2001), forming molecular forms mentioned in the 

chapter 1.  

The zebrafish ACHE gene presents 62% identity with the mammalian ACHE, 

64% with the ACHE from Torpedo californica (Pacific electric ray), and 80% with 

the Eletrophorus electricus (electric fish) ACHE.  

AChE spatio-temporal expression during zebrafish embryogenesis has been 

detected, by histochemistry and in situ hybridization, in somitic mesodermal 

cells prior to the onset of somitogenesis (Hanneman, 1992; Bertrand et al., 
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2001). It starts in presomitic-mesoderm at the sixtieth somite stage (12 h), 

previously to body movements.  

During development of several vertebrates, AChE has been shown to be 

expressed much earlier than synapses become functional (Layer et al., 1988; 

Layer 1990). In zebrafish, nicotinic acetylcholine receptors (nAChR) beta3 and 

alpha2 are known to be transcribed as early as 2 and 5 hours post-fertilization 

(hpf), respectively (Zirger et al., 2003), suggesting that other components of 

the cholinergic system could also be present at these early embryonic stages. 

However, the expression of AChE in zebrafish has not been investigated with 

more sensitive techniques than in situ hybridization or histochemistry.  

3.1.2 Esterase activity inhibition or absence during development  

As characterized in the previous chapter of this work, AChE and BChE show a 

spatio-temporal co-relation to developmental processes.  

Other studies have attempted to show the relevance of cholinesterases 

inhibiting them in model organisms. For instance, rats showed behavioral 

changes, and down regulation of muscarinic receptors in the brain at single oral 

doses of chlorpyrifos, an esterase activity inhibitor (Moser and Padilla, 1998). 

Hanneman (1992) also attempted to show the relation of cholinesterases 

inhibition to malformations of zebrafish embryos, using a broad spectrum 

inhibitor of serine proteases and related enzymes. He demonstrated that 

somitogenesis was disrupted in the presence of diisopropylfluorophosphate 

(DFP). Furthermore, studies in sea urchin, demonstrated the action of 

chlorpyrifos was essentially restricted to the mid-blastula stage, not affecting 

cleavage division, and showing a decreased impact on gastrulation (Buznikov et 

al., 2001). 

An impact of the cholinergic system development was shown by a chemically 

induced recessive mutation in zebrafish AChE gene (Ser226 → Asn226), which 

abolished the esterase activity of AChE. Impaired motility at the 48 hpf larvae 

stage, and disruption of the cellular organization of muscle fibers in zebrafish 

mutants were observed (Behra et al., 2002).  
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3.1.3 AAA: a side activity of AChE 

The vertebrate aryl acylamidase (AAA) activity was first reported in rat brain 

(Fujimoto, 1974), and later found to be associated with AChE (George and 

Balasubramanian, 1981). The AChE-associated AAA activity, present in avian 

and mammals (Boopathy and Layer, 2004; Fujimoto, 1974), is one example of 

AChE functioning in a noncholinergic manner.  

The endogenous substrate for AAA is not known. It splits the artificial substrate 

o-nitroacetanilide (O-NAA) into o-nitroaniline and acetate. AAA is inhibited by 

acetylcholine, specific anticholinesterase compounds, tyramine, ethopropazine 

and serotonin. 

The sensitivity of AAA towards serotonin (5-hydroxytryptamine, 5-HT) has 

drawn attention to this side activity of AChE, implying a direct influence of 

serotonergic mechanisms on a component of the cholinergic system (and vice 

versa).  

3.1.4 Cholinergic and serotonergic systems 

Acetylcholine (ACh) is synthesized from choline and acetyl-CoA through the 

action of choline acetyltransferase. When an action potential reaches the 

terminal button of a presynaptic neuron a voltage-gated calcium channel is 

opened. The influx of calcium (Ca2+) ions stimulates the exocytosis of vesicles 

containing ACh, which is thereby released into the synaptic cleft. The activation 

of ACh receptors leads to a large Na+ influx and a smaller K+ efflux. The inward 

Na+ current depolarizes the postsynaptic membrane and initiates an action 

potential (Berg et al., 2002). Once released, ACh must be removed rapidly by 

AChE in order to allow repolarization to take place.  

Serotonin (5-hydroxytryptamine, 5-HT) is formed by the hydroxylation and 

decarboxylation of tryptophan. Virtually all brain tryptophan is converted to 

serotonin. The greatest concentration of 5-HT (90%) is found in the 

enterochromaffin cells of the gastrointestinal tract. The remainder 5-HT is found 

in platelets and on the CNS. Effects of serotonin on the central nervous system 

are numerous, complex and difficult to systematize. The effects of 5-HT are felt 
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most prominently in the cardiovascular system, with additional effects in the 

respiratory system and the intestines (Barnes and Sharp, 1999). 

Serotonin (5-HT) does not just function as a neurotransmitter, but also as a 

hormone, which is primarily used for synthesis of melatonin. Melatonin in turn, 

regulates physiological processes like diurnal (circadian) and seasonal behavior 

(Cahill, 2002). The serotoninergic system is known to modulate mood, emotion, 

sleep and appetite, and thus is implicated in the control of numerous behavioral 

and physiological functions. Hinman and Szeto (1988) have shown cholinergic 

influences on sleep-wake patterns in fetal lambs, blocking central cholinergic 

muscarinic receptors. This is an example of interactions between cholinergic and 

serotonergic systems leading to a common physiological process. 

The first cholinergic neurons in the zebrafish can be detected by Karnovsky-

Roots-staining by 13-14 hpf. In contrast, serotonergic neurons first appear 

around 45 hpf; according to 5-hydroxytryptamine immunoreactivity (Teraoka et 

al., 2004).  

3.1.4.1 Serotonin receptors 

Seven types of 5-HT specific receptors (5-HT1 to 5-HT7) have been described in 

mammals (Teitler et al., 1994). Within the 5-HT1 group, there are five subtypes 

(5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F). There are three 5-HT2 subtypes 

(5-HT2A to 5-HT2C), as well as two 5-HT5 subtypes (5-HT5a and 5-HT5B). Most of 

these receptors are coupled to guanine nucleotide binding proteins (G proteins), 

inhibiting cAMP formation, as part of their signaling pathway (Meneses, 1998).  

Some serotonin receptors are presynaptic and others postsynaptic. The 5-HT2A 

receptors mediate many of the central and peripheral functions of 5-HT. 

Cardiovascular effects include contraction of blood vessels, vascular 

permeability, and platelet aggregation. Central nervous system effects include 

neuronal sensitization to tactile stimuli, anxiety and mediation of hallucinogenic 

effects (Barnes and Sharp, 1999). 5-HT2 receptors have been characterized in 

Drosophila and are under investigation in zebrafish (Colas, 1995). 

The 5-HT3 receptors are present in the gastrointestinal tract and are related to 

vomiting. Also present in the gastrointestinal tract are 5-HT4 receptors where 

they function in secretion and peristalsis. The 5-HT6 and 5-HT7 receptors are 
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distributed throughout the limbic system of the brain, and the 5-HT6 receptors 

have high affinity for antidepressant drugs.  

3.1.4.2 Neurotransmitters during pre-nervous period 

The existence of pre-nervous neurotransmitters was investigated in 

invertebrates (sea urchins and starfish) and vertebrates (amphibian and fish), 

by Buznikov (1991; 2001). Serotonin and acetylcholine were found during early 

stages of embryogenesis, and were postulated to be involved with the first 

cleavage divisions and morphogenetic cell movements during gastrulation and 

post-gastrulation in sea urchins. 5-HT was shown to block or inhibited cleavage 

division as an antagonist of acetylcholine, catecholamine and indolylalkylamines 

(Buznikov, 1991). The endogenous indolealkylamides belong to those factors 

that determine the length of the lag-period. Exogenic 5-HT (100 µg/ml) retards 

activation of protein synthesis after fertilization, reliably lengthening the lag-

period by 80%. Therefore, immediately before the start of protein synthesis 

activation, the level of 5-HT like substances decreases (Buznikov, 1971).  

3.1.5 Zebrafish embryonic development  

With the fertilization of the egg starts the zygote period, and it ends as the first 

cleavage occurs. According to the zebrafish book (Westerfield, 2000) the 

embryonic development of zebrafish is comprised by the following periods (Fig. 

3.1):  

• Cleavage Period (0.7- 2.2 h)  

After the first cleavage, the originated cells, denominated then blastomeres, 

divide at about 15 minute intervals. Until the end of the cleavage period usually 

six cleavages occur at regular orientations, originating 64 cells. The number of 

blastomeres can be deduced from their arrangement. 

• Blastula Period (2 1/4 - 5 1/4 h)  

The beginning of the blastulation occurs with the seventh cleave, at the 128-cell 

stage, and continues until epiboly begins with the onset of gastrulation. The 

midblastula transition (MBT) stage is characterized by the cell cycle lengthening 

(Kane and Kimmel, 1993), as not all of the cycles begin to lengthen 

synchronously or to the same extent by the tenth cell cycle (512-cell stage). 
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Throughout MBT the mRNA transcription increases. By the end of the blastula 

period, epiboly begins (Solnica-Krezel and Driever, 1994). Epiboly appears to 

depend on functional microtubules (Strähle and Jesuthasan, 1993) and might be 

under control of early-acting zygotic genes (Kane, 1996). The earliest-

expressed genes identified so far code for regionally localized putative 

transcription factors, and begin expression in the late blastula (e.g. the gene no 

tail, Schulte-Merker et al., 1992; goosecoid, Stachel et al., 1993).  

• Gastrula Period (5 1/4 - 10 h)  

Epiboly continues, and in addition, the morphogenetic cell movements of 

involution, convergence, and extension occur, producing the primary germ 

layers and the embryonic axis. By 5.5 h, gastrulation begins with movements of 

involution by 50% epiboly. Convergence movements promote a local 

accumulation of cells at one position along the germ ring, the so-called 

embryonic shield, the future dorsal side of the embryo. Expression of the gene 

goosecoid (gsc) is a reliable marker of where the shield will form, and appears 

to label the earliest cells to involute at the shield, the axial hypoblast (Stachel et 

al., 1993). These first cells, expressing goosecoid, appear to correspond to 

precursors of the tetrapod prechordal plate. About an hour and a half after the 

beginning of gastrulation, the shield extends towards the animal pole. Half way 

through gastrulation, the axial hypoblast becomes clearly distinct from paraxial 

hypoblast, which flanks it on the other side. Anterior paraxial hypoblast will 

generate muscles to move the eyes, jaws, and gills. More posteriorly, much of 

the paraxial hypoblast is present as the segmental plate that will form somites. 

By the end of gastrulation, the first signs of a rudiment central nervous system 

appear with the distinction of the neural plate. The end of gastrula is considered 

to happen when epiboly is complete, and the tail bud has formed. 

• Segmentation Period (10-24 h)  

Segmentation is marked by morphogenetic movements. The somites develop, 

the rudiments of the primary organs become visible, the tail bud becomes more 

prominent and the embryo elongates. The first cells differentiate 

morphologically, and the first body movements appear. Furthermore, as the tail 

extends, the overall body length of the embryo very rapidly increases, 

reasonably linearly. The somites appear sequentially in the trunk and tail. 
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Anterior somites develop first and more rapididly than the posterior ones. After 

the 14th somite (circa 16 h), a new somite will emerge each half an hour. The 

earliest cells to elongate into muscle fibers appear to derive from a part of the 

medial somitic epithelium, the "adaxial" region (Thisse et al., 1993) adjacent to 

the developing notochord, and in the middle, dorsoventrally, of each somite. 

The neural plate transforms topologically into the neural tube. The medial part 

of the neural plate (originally from dorsal epiblast in the gastrula) forms ventral 

structures in the neural tube, and the lateral part of the plate (from lateral and 

ventral gastrula epiblast) forms dorsal tube. Neurulation and segmentation 

periods, therefore, overlap in zebrafish. Pigment cells differentiate, the 

circulatory system forms, and tactile sensitivity appears (touch-response). 

• Pharyngula Period (24-48 h)  

When the embryos enter the pharyngula stage they already possesse the classic 

vertebrate architecture. They display a well-developed notochord, and a newly 

completed set of somites. Five lobes comprise the brain. During the first few 

hours of the pharyngula period the embryo continues the rapid lengthening that 

started at 15 h, which decreases as the rapid morphogenetic straightening of 

the tail ceases. Head-straightening also occurs, making it more compact along 

the anterior-posterior axis, occasioning the approach of the rudiments of the 

eye and the ear. 

• Hatching Period (48-72 h) 

From 48 hpf onwards, the embryo escapes from the chorion. On the second day 

of development, the interior organs will be formed. After the end of the third 

day the embryo becomes the denomination of larvae.  
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Fig. 3.1: Zebrafish development. Zygote - one cell stage; Cleavage period - the first 6 
cleavages; Blastula – 7th cleavage until beginning of epiboly; Gastrula – until the end of 
epiboly (arrow); Segmentation – formation of the tail (arrow head) and somites 
(arrow); Pharyngula – primordia of the pharyngeal arches; Hatching period – natural 
escape from the chorion occurs.  

3.1.6 Aims of this work 

• To characterize AChE expression during zebrafish embryogenesis by RT-

PCR analysis, a more sensitive technique than in sito hybridization;  

• To investigate the aryl acylamidase (AAA) activity associated to AChE in 

relation to the esterase activity during zebrafish development;  

• To test the sensitivity of zebrafish embryos towards high doses of 

serotonin, an AAA inhibitor, during embryogenesis. 
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0.75 h 
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3.2 Methodology 

3.2.1 Zebrafish as a model organism  

The zebrafish (Brachydanio rerio or Danio rerio) is the ideal model organism to 

study AChE in the absence of BChE. Besides, its fast and easy reproduction, 

passing from the egg to the larvae stage in less than three days, it can provide 

a large amount of embryos for experiments.  

The zebrafish is a tropical fish of sweet water belonging to the minnow family 

(Cyprinidae), originally found in some Asian countries. It grows to about five 

centimeters and lives for around 5 years (Westerfield, 2000).  

Care and breeding of zebrafish was conducted according to Westerfield (2000). 

Zebrafish were grown under day-night cycle with an automatic timer (14 hr 

light/10 hr dark).  

Zebrafish are photoperiodic in their breeding, and produce embryos every 

morning, shortly after sunrise. Embryos were collected, by siphoning them up 

from the bottom of the tank, and placed in Petri dishes. Embryonic stage was 

determined according to Westerfield (2000) under Nomarsky optics, and placed 

in an incubator at 28.5°C until the desired period for the experiments.  

3.2.2 RT-PCR and subsequent PCR of the AChE cDNA 

The principle of the polymerase chain reaction (PCR) is the repeated copying of 

a chosen segment of DNA using specific sense and anti-sense primers, usually 

separated by 200-500 nucleotides on the genome or nucleic acid of interest. 

With the availability of thermostable DNA polymerases derived from 

thermophilic bacteria (Taq DNA polymerase) this repetitive copying of the DNA 

can be done in a single tube by repeatedly heating the DNA to high temperature 

(94°C) to dissociate the DNA duplex, cooling to allow annealing of the primers 

to the template (37-60°C, depending on the primers used) and finally heating to 

the optimum temperature (72°C) for the polymerase to copy the template to 

produce a new DNA strand. The cycles are repeated 25-35 times (25 cycles 

theoretically increases the concentration of starting template DNA 107 times) to 

produce a DNA product which can be directly visualized by ethidium bromide 

staining on an agarose gel. The size of the DNA product is exactly defined by 
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the location of the two primers on the genome. The reverse transcription 

reaction, in contrast, is initiated from a RNA segment to produce a 

complementary DNA (cDNA). This is possible due a viral enzyme, reverse 

transcriptase, which transcribes the RNA into DNA, priming at the 3´ poly (A) 

region of the RNA using Oligo (DT) 15 primers. 

Protocol: circa 400 embryos were collected for each embryonic period 

investigated, and kept at –20°C in RNAlater solution. Total RNA isolation was 

performed with TRI reagent according to the manufacturer’s instructions (Molec. 

Research Center, Inc.). 1 µg of the RNA was used for reverse transcriptase 

reaction with the Reverse Transcription System from Promega, according to 

manufacture instructions.  

A fragment of 488 bp of the ACHE gene was amplified by PCR from the cDNA 

obtained after reverse transcriptase reaction, with forward 5‘-

gtacacagcaccatgcgagttg-3‘ and reverse 3‘-caagttcttccctggagcag-5‘ primers (Carl 

Roth GmbH).  

The PCR for AChE consisted of 33 cycles: initial 5 min by 94°C, than 3 cycles by 

94 °C for 1 min, 52 °C for 45 sec, and 72 °C for 1 min, followed by 30 cycles by 

94 °C for 1 min, 51 °C for 45 sec, and 72 °C for 1 min. Primers and PCR 

conditions for ß-actin were published elsewhere (Liu et al., 2003). RT-PCR and 

ACHE PCR reactions components are listed below.  

RT-PCR AChE PCR 

1. MgCl2, 25 mM                                            4 µl 

2. Reverse Transcription 10X Buffer             2 µl 

3. dNTP Mixture, 10 mM                                2 µl 

4. Recombinant RNasin® Ribonuclease Inhibitor      

0.5 µl 

5. AMV Reverse Transcriptase (High Conc.) 15 ul 

6. Oligo(dT)15 Primer                                  0.5 µg 

7. Total RNA                                                  1 µg 

8. Nuclease-Free Water to a final volume of 20 µl 

1. First-strand cDNA reaction (diluted 1:5)  

10–20 µl 

2. dNTP Mixture, 10 mM                            1 µl 

3. MgCl2, 25 mM                                        4 µl 

4. Reverse Transcription 10X Buffer         5 µl 

5. upstream primer 50 pmol                    0.5 µl 

6. downstream primer 50 pmol                0.5 µl 

7. TaqDNA Polymerase(c) 2 units           0.4 µl 

8. Nuclease-Free Water to a final vol….  50 µl 
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3.2.3 Esterase and AAA activities measurements  

Ten zebrafish developmental stages were investigated. Triton-extracted 

homogenates were used for activity measurements.  

3.2.3.1 Homogenization protocol 

Embryos were transferred to cold Ringer's solution with EDTA (which is a 

pronase inhibitor) and placed on ice. Embryos were washed and centrifuged for 

3 min (1000 rpm) for removal of supernatant. After 3x repeating this washing 

step, cold homogenization buffer (Na-phosphate extraction buffer solution [10 

mM Na-phosphate, pH 7.4, 0.5% Triton X-100] with protease inhibitor cocktail 

(1:200) was added (9 volumes), while stirring the homogenates on ice. 

Embryos were sonicated 4x 9 sec and again homogenized. The homogenates 

were passed through a needle (18 gorge) 5x, and let on ice for 1 hour. 

Homogenates were centrifuged for 45 min at 14.000 rpm at 4°C. Supernatants 

were aliquoted in eppendorfs and kept at -20°C.  

3.2.3.2 Acetylcholinesterase (AChE) activity assay  

Principle of the method: the substrate acetylthiocoline is broken into thiocholine 

and acetate by AChE. The thiocoline reacts with DTNB producing a yellow 

product. The formation of product is follow in spectrophotometer and the 

activity is deduced from the linear variance of the optical density in a period of 

time.  

The esterase activity was assayed by the method of Ellman et al. (1961) using 3 

mM acetylthiocholine (ATCh) in 80 mM sodium phosphate buffer (pH 8.0) 

containing 0.6 mM DTNB (5,5`- dithio-bis-2-nitro-benzoic acid) and 10 µM 

eserine, as AChE inhibitor, at 37°C. The increase in absorbance was followed 

(412 nm) and total enzyme activity was calculated using the KinLab software 

(Perkin Elmer). Specific enzyme activity was calculated dividing the total activity 

by the protein concentration in mg/ml. One unit (U) of enzyme hydrolyzes 1 

µmol of ATCh per min under this assay conditions.  

3.2.3.3 Aryl acylamidase (AAA) activity assay 

Principle of the method: o-nitroacetanilide is split by the aryl acylamidase, a 

side activity of AChE, into o-nitroaniline and acetate (Fig. 3.2). O-nitroaniline is 
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a visible yellow product allowing the reaction to be measured in 

spectrophotometer. The amount of o-nitroanelin produced can be deduced from 

a standard calibration curve of o-nitroanelin versus OD.  

 

Fig. 3.2: Schema of AChE catalyses of the substrate o-nitroanilide. 

The AAA activity of AChE was assayed according to Hoagland and Graf (1971), 

with modifications. 0.05 - 0.1 ml of sample in a total volume of 0.5 ml was 

incubated at 37°C for 5 min in 0.2 M of potassium phosphate buffer, pH 8.0, in 

presence of or absence serotonin (several concentrations) or eserine (10 µM). 

After the addition of the substrate 0-nitroacetanilide (6.6 mM), the product 

formation was followed for 15 min at 430 nm in a Perkin-Elmer 

spectrophotometer. AAA was deduced from calibration curves established with 

known concentrations of o-nitroaniline. One unit of AAA liberated 1 µmol of o-

nitroaniline per min under these conditions.  

3.2.3.4 Protein concentration 

Protein concentration was estimated by the Bradford method (Bradford, 1976), 

using known concentrations of BSA as standard. The assay is based on the 

observation that the absorbance maximum for an acidic solution of Coomassie 

Brilliant Blue G-250 shifts from 465 nm to 595 nm when binding to protein 

occurs. Both hydrophobic and ionic interactions stabilize the anionic form of the 

dye, causing a visible color change.  

Procedure: Bradford reagent was prepared with 100 mg Coomassie Brilliant Blue 

G-250 in 50 ml 95% ethanol, plus 100 ml 85% (w/v) phosphoric acid diluted to 

1 liter in distillated water. The solution was filtered through Whatman paper just 

before use. Standards contained a range of 10 to 40 micrograms BSA in 100 µl 

volume. 1 ml Bradford reagent was added to 100 µl of diluted samples or BSA 

standards and incubated for 5 min. Absorbance was measured at 595 nm. The 

standard curve obtained from the absorbance versus micrograms BSA was used 

to determine concentrations of samples. 
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3.2.4 Serotonin (5-HT) experiment  

Five embryonic stages were used to test the influence of 5-HT on zebrafish 

development: cleavage, blastula, gastrula, segmentation and pharymgula. 

Embryos were treated with 2 to 4 mM 5-HT for 2.5 to 3 h. The effects caused by 

5-HT administration were observed in live embryos, and samples were fixed 

after each experiment by 10 and 14 hpf. 

Protocol: 5-HT was diluted in zebrafish culture medium (30 ml), and embryos 

were placed in 10 cm diameter Petri dishes, with and without serotonin 

(control), and incubated at 28.5°C. After serotonin treatment, solution was 

replaced by normal medium 2x and embryos were then removed to a new dish 

with fresh medium. For each of the embryonic stages investigated, 105 

embryos, which were exposed to 5-HT and 45 control non-treated embryos, 

were collected. Embryos were fixed by 10 and 14 hpf. By embryos fixed by 10 

hpf two probes were used (neurogenin-1 and goosecoid), requiring 70 embryos 

treated with serotonin and 30 non-treated embryos. By 14 hpf fixed embryos 

one probe was used (myo-D), requiring 35 treated embryos and 15 control 

embryos. After each experiment and until the last fixation time, records were 

kept for the number of dead embryos, and the occurrence of embryonic 

malformations, followed with Normarky optics. 

3.2.4.1 Whole mount in situ hybridization (ISH) 

In situ hybridization (ISH) was essentially performed as described in “The 

zebrafish book” (Westerfield, 2000), with immunohistochemical detection using 

an alkaline phosphatase (AKP) conjugated anti-digoxigenin monoclonal 

antibody. Hybridization signal was visualized through the substrates of AKP 

(NBT and BCIP). 

Principle of the method: a labeled nucleic acid probe anneals specifically to 

complementary sequences of target nucleic acids in a fixed specimen. In this 

work, digoxigenin (DIG) labeled RNA probes were used to hybridize cellular 

complementary mRNA, followed by detection and visualization of nucleic acid 

hybrids (Baumgart et al., 2001). This technique can be used to locate DNA 

sequences on chromosomes, to detect RNA or viral DNA/RNA.  
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Probes: although three types of probes, DNA, RNA and oligonucleotide probes 

are generally used in ISH, RNA probes are the best and most sensitive for 

detecting mRNA transcripts because of the high thermal stability of the RNA-

RNA hybrids. The antisense RNA probes with a digoxigenin (DIG) label were 

prepared according to the DIG-RNA-Labeling Kit (Promega). About 5 to 10 µg of 

digoxigenin-labeled probe was transcribed from 1 µg of a linearized plasmid. 

Probes were hydrolyzed to an average length of 150-300 nucleotides following 

the protocol of Cox et al. (1984). After the final precipitation, the hydrolyzed 

probe was taken up directly in hybridization solution (HYB) and placed first at -

80°C for 5 min and then stored at -20°C.  

Three digoxigenin labeled anti-sense riboprobes were used: goosecoid (gsc), 

neurogenin-1 (ngn-1), and myogenic differentiation gene (myo-D). The first two 

are mesodermal markers, while the latter one is a neuronal marker, as follow:  

Goosecoid (Gsc) – early embryos (anterior mesoderm). It is activated at or just 

after midblastula stage until late gastrulation. In early gastrulation, expression 

marks the anterior shield and by late gastrulation, expression is restricted to the 

rostral crescent and medial strip. Levels of gsc then decline and disappear at 12 

h post-fertilization. 

Neurogenin 1 (Ngn-1) - appears to mediate neuronal differentiation (late 

gastrulation). It is strongly expressed in distinct domains in the neural plate at 

the 3-somite stage. By 24 hours, it is expressed in specific regions of the 

developing brain and in the spinal cord. 

Myogenic differentiation gene (Myo-D) – can induce myogenic differentiation 

(posterior mesoderm - gastrula). It encodes a transcription factor of the helix-

loop-helix class. 

Protocol: embryos were fixed with 4% paraformaldehyde in PBS overnight at 

4°C, and washed in PBS (2x 5 min), at RT. For dehydration embryos were 

transferred to vials with 100% methanol (MeOH), replaced with fresh methanol 

after 10 min. For permeabilization embryos were kept at -20°C with fresh 

Methanol for at least 30 min (embryos can be stored that way for months). For 

rehydration embryos were brought back to RT and immerse 5 min in 75% 

MeOH/PBS, 50% MeOH/PBS, 5 min in 25% MeOH/PBS, and then 4x 5 min 
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PBST. For pre-hybridization, embryos were transferred (up to 40) into small 

eppendorf tubes (0.8ml) in approximately 300 µl of hybridization solution, 

without probe at 65°C for 1-2 h, to block unspecific binding. For hybridization 

the probes were chosen according to the embryonic stage. HYB was removed 

(without letting the embryos touch air) and 50 ul HYB containing DIG labeled 

RNA probes (0.5 – 2 µg) were added to 450 µl buffer and incubated at 65°C for 

5 min before adding to the embryos. Embryos were incubated with the 

hybridization solution over-night at 65°C. So far as no higher temperatures for 

hybridization can be used, due tissue damage, the annealing stringency is not 

high. To avoid hybridization mismatches, the formamid was used to reduce the 

melting point of DNA double strands. The pH also influences the hybridization 

and it should be maintained between 5 and 9. To remove unspecific binding 

probes, a post-hybridization washing with formamid was conducted. Decreasing 

its concentration, the thermo stability of the hybrids increases. The 

hybridization incubation was carried out in a high-salt solution to promote base-

pairing between probe and target sequences. The critical parameters are the 

ionic strength of the final wash solution and the temperature at which this wash 

is done. Embryos were washed 10 min with 75% formamid in 2x SSC at 65°C, 

10 min with 60% formamid in 2x SSC at 65°C, 10 min with 25% formamid in 

2x SSC at 65°C, 10 min with 2x SSC at 65°C, 10 min with 0.2x SSC at 65°C, 5 

min with 0.15x SSC/PBST at RT, 5 min with 0.1x SSC/PBST at RT, 5 min with 

0.05x SSC/PBST at RT, and 5 min with PBST at RT. Embryos were blocked for 1 

hour at RT with PBST plus blocking reagent (2% serum + 2 mg/ml BSA). Anti-

Digoxigenin-AP (coupled with alkaline phosphatase) antibody was added 

according to manufactures instruction (Boehringer) at a 1:4000 dilution and 

shacked for 4 hours at RT or overnight at 4°C in PBST plus blocking reagent.  

3.2.4.2 Alkaline phosphatase staining 

Embryos were washed with PBST (2x5 min, 2x15 min, 2x 30 min and 1x 1 h) 

and 3x 5 min with alkaline phosphatase (AP) buffer, for equilibration (optimum 

pH for AP). Embryos were then placed in 24 well plates. Colorimetric detection 

uses the substrates NBT and BCIP to generate purple/brown precipitate directly 

on the membrane (Fig. 3.3). Per ml AP-buffer, 3.5 µl BCIP [50 mg/ml] and 4.5 

µl NBT were added. Embryos were covered with this staining solution, and 

incubated under dark in a shaker at RT for about 30 min. Under binocular, the 
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staining intensity was controlled and stopped with PBST washing, as it can take 

several hours. Embryos were re-fixed in 4% PFA at RT for at least 30 min, 

washed in PBST and transferred to glycerin. 

 

Fig. 3.3: Schema of the NBT/BCIP reaction. When alkaline phosphatase removes the 
phosphate group of BCIP (5-bromo-4-chloro-3-indolyl-phosphate) the resulting 
molecules give a blue precipitate (5, 5'-dibromo-4,4'-dichloro-indigo) under oxidazing 
conditions. During the reaction with BCIP, NBT (nitroblue tetrazolium) is reduced to its 
colored form to give an enhanced color reaction. 

3.2.5 Statistical analyses 

Some of the results of this work were statistically compared using t-student´s 

test and contingency tables, with the objective to show if the observed 

relationship (e.g., between variables) or a difference (e.g., between means) in a 

sample occurred by pure chance. The probability (p) value obtained was higher 

or lower than 0.05, meaning 5% probability that the calculated hypothesis 

would occur by chance. Probabilities lower than 5% increase the certainty that 

the observed results did not occurred by change. More technically, the value of 

the p-value represents a decreasing index of the reliability of a result 

(Brownlee, 1960). The higher the p-value, the less we can believe that the 

observed relation between variables in the sample is a reliable indicator of the 

relation between the respective variables in the population. The p-value 

represents the probability of error that is involved in accepting the observed 

result as valid, that is, as "representative of the population."  
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3.3 Results 

3.3.1 AChE mRNA expression during embryonic development of 

zebrafish  

Total RNA was extracted from embryos at 2 to 24 hpf, during five time points 

comprising five periods of the zebrafish embryonic development (cleavage, 

blastula, gastrula, segmentation, and the beginning of the pharyngula). The 

quality of the RNA obtained was similar for all investigated stages (Fig. 3.4, A). 

RT-PCR was conducted with 1 µg of the purified RNA.  

The control gene ß-actin, a gene involved in basic functions needed for the 

sustenance of the cell, was amplified by PCR from the resulting cDNA obtained 

with the RT-PCR. Using an aliquot of the same original cDNA, a fragment of the 

ACHE gene was also generated by PCR. The first AChE transcripts were detected 

in zebrafish embryos at 4 hpf (blastula period), with a respective increase after 

8 hpf (Fig. 3.4, B). The control gene ß-actin was already present by 2 hpf, 

showing similar amounts of amplified product for all of the embryonic periods 

investigated, assuring the quality of the cDNA used was optimal for all 

embryonic periods investigated (Fig. 3.4, B).  

 

Fig. 3.4: Results of RNA extraction from zebrafish embryos and PCR of a segment of the 
AChE and ß-actin cDNAs. An RNA aliquot was electrophoresed on agarose gel to access 
the integrity of total RNA (A). ACHE cDNA (488 bp) amplification was normalized with 
the control ß-actin (B).  
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3.3.2 Esterase and aryl acylamidase activities of AChE during zebrafish 

embryogenesis 

Both esterase and aryl acylamidase activities were studied during zebrafish 

development from 4 to 144 hpf. AAA was compared to the esterase activity in 

all developmental stages investigated, revealing a particular profile for each one 

(Fig. 3.5). 

Until 12 hpf, negligible esterase activity was detected (Fig. 3.6), increasing 

significantly after the embryonic period (test t = 2.987; df = 6; p < 0.05). 

Eserine was very effective towards the esterase activity, as shown with an 

inhibition curve (Fig. 3.7, A), showing circa 97% inhibition at 10 µM eserine. 

During zebrafish development, eserine (10 µM) was very effective inhibiting the 

esterase activity in homogenates from all investigated periods (Fig. 3.7, B). 

Early embryogenesis was remarkable for the presence of AAA, which was higher 

than the esterase activity until 12 hpf (test t = 3.523; df = 4; p < 0.05). On the 

other hand, after the 24 hpf period, the esterase significantly increased in 

relation to the AAA activity (test t = 3.980; df = 10; p < 0.01), drastically 

altering the ratio AAA/esterase activity, from 2.1 at 4 hpf to 0.01 at 144 hpf 

(Fig. 3.5). The AAA activity displayed circa 80% inhibition at 2 mM towards 

serotonin (Fig. 3.8). Eserine was not as effective towards AAA as it was for the 

esterase activity, with circa 50% inhibition of AAA by 10 µM eserine.  
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Fig. 3.5: Profiles of the esterase and aryl acylamidase activities from 4 to 144 hpf whole 
zebrafish embryos and larvae homogenates.  
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Fig. 3.6: AChE specific esterase activity from 4 to 144 hpf whole zebrafish embryos and 
larvae homogenates.  
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Fig. 3.7: Zebrafish esterase activity inhibited by eserine. (A) AChE inhibition curve 
towards the compound eserine, using zebrafish larvae (144 hpf) homogenates. (B) 
Inhibition of the AChE esterase activity towards eserine (10 µM), using homogenates of 
zebrafish from 10 different developmental stages. 
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Fig. 3.8: Effect of serotonin (5-HT) at various concentrations on the AAA activity from 
96 hpf ( ) and 12 hpf ( ) zebrafish homogenates. 
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3.3.3 The effect of serotonin administration during zebrafish embryonic 

development 

Besides the in vitro inhibition of AAA from zebrafish towards serotonin, an in 

vivo experiment was conducted with administration of 2 and 4 mM 5-HT to 

zebrafish embryos, between 0.3 to 2.5, 2.5 to 5.5, 6 to 9, 10 to 13, and 24 to 

27 hpf. Several concentration dependent malformations were observed 

essentially when embryos received the treatment at 2.5 to 5.5 hpf, the time 

point when AChE started to be expressed (Fig. 3.4), with no pronounced effects 

on earlier or later periods of development (Table 3.1).  

Absolute number of embryos  
Developmental stages 

Period (hpf) hpf 2 mM 5-HT 4 mM 5-HT 

Cleavage (0.7 – 2.2) 0.3 – 2.5 Not affected 8.6% affected 

Blastula (2.5 – 5.15) 2.5 – 5.5 4 % 80% affected 

Gastrulation (5.15 – 10) 6 - 9 Not affected 1.9% affected  

Segmentation (10 – 24) 10 – 13 Not affected Not affected 

Pharyngula (24 – 48) 24 – 27 Not affected Not affected 

Table 3.1: Occurrence of developmental defects based on investigation of embryos with 
Nomarsky optics.  

Under binocular, the malformations observed were basically restricted to the 

embryos treated with serotonin during the blastula period. By this period, 4% of 

the embryos treated with 2 mM 5-HT already presented flattering of the head 

and malformation of the tail by 14 hpf. With 4 mM serotonin, circa 80% of the 

embryos presented incomplete epiboly (50 to 75%) by 10 hpf, somitogenesis 

was affected by 14 hpf, and embryos observed until 24 hpf (20-30%) had 

severe malformations.  

When embryos were treated with 2 mM 5-HT, between 0.3 and 2.5 hpf, no 

malformations were observed. By 4 mM 5-HT, 8.6% of the embryos presented 

incomplete epiboly by 10 hpf, and 3.1% flattering of the head by 14 hpf, which 

evolved to severe malformations by 24 hpf. Serotonin administration during the 

period 6 to 9 hpf (gastrulation), did not reveal malformations at 2 mM 

concentration, however, phenotypic alterations were observed in 1.9 % of the 
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embryos treated with 4 mM 5-HT. The embryos which received serotonin 

between 10 to 13 hpf (segmentation) and 24 to 27 hpf (pharyngula) did not 

present malformations when treated with 2 and 4 mM. Therefore, the zebrafish 

embryos were far more sensitive to serotonin administration during the blastula 

period, than during other investigated periods.  

3.3.3.1 Zebrafish developmental malformations detected by 
neuronal and mesodermal genes expression after 5-HT 
administration 

A closer investigation of the embryonic malformations, using in situ 

hybridization of mesodermal and neuronal markers, revealed a disruption of the 

expression pattern of these markers. For embryos treated with 2 mM 5-HT 

during 2.5 to 5.5 hpf, the expression of the mesodermal marker gsc, by 10 hpf, 

was decreased and its distribution pattern was slightly disturbed on the pre-

chordal plate and anterior mesoderm in relation to controls (Fig. 3.10). By 14 

hpf, a delay on somitogenesis, of 1-2 somites, and a decrease in myo-D 

expression, on the adaxial cells, in 70% of the embryos, was verified (Fig. 3.11, 

B, D).  

The administration of 4 mM 5-HT was conducted between 2.5 to 2.5 hpf and 

also from 2.25 to 5.25 hpf, resulting in the same effects (Fig. 3.10). The 

anterior mesoderm, affecting the expression of the marker gsc in 87% of the 

embryos, and prechordal plate were not well developed in relation to controls 

(Fig. 3.10). By 14 hpf, myogenic differentiation was more intensively affected 

with 4 mM than with 2 mM 5-HT. 67% of the embryos showed a delay of the 

myogenic differentiation, and 33% had no or irregular expression of myo-D on 

the somites and adaxial cells (Fig. 3.11, F, H). By the expression of the 

neuronal developmental marker neurogenin-1, it was possible to detect a 

disruption of the pro-neural cluster cells pattern in 100% of the embryos by 10 

hpf (Fig. 3.12, B, D).  

Therefore, serotonin administration during blastula period caused concentration 

dependent malformations in zebrafish embryos. Embryos did not present 

developmental defects induced by serotonin administration from 6 to 9 (except 

the 1.9% already mentioned before), and 10 to 13 hpf, as no obvious 

discrepancy in relation to controls was observed with the mesodermal marker 

myo-D. 8.6% of the embryos treated between 0.3 and 2.5 hpf presented 
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phenotypic alterations in relation to controls by 4 mM 5-HT, however, none of 

the embryos treated with 2 mM serotonin presented morphological problems. 

Therefore, the only period affected by 2 mM serotonin administration was 

during blastulation.  
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Fig. 3.9: Gsc expression in 
controls and 5-HT treated 
embryos fixed by 10 hpf.
A,B) Anterior view of control, 
and 5-HT (2 mM) treated 
embryos. C,D). Lateral view 
of control, and 5-HT treated 
embryos. pp: prechordal 
platte; am: anterior meso-
derm. Magnification, 66x. 
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Fig. 3.10: Gsc expression in 
controls and 5-HT treated 
embryos fixed by 10 hpf.
A,B) Anterior view of control, 
and 5-HT (4 mM) treated 
embryos. C,D) Lateral view 
of control, and 5-HT treated 
embryos. E,F) Anterior view 
of control, and 5-HT (4 mM) 
treated embryos. G,H) 
Lateral view of control, and 
5-HT treated embryos. pp: 
prechordal platte; am: 
anterior mesoderm. 66x
binocular magnification.  
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Fig. 3.11: Expression of 
Myo-D in controls and 5-
HT treated embryos fixed 
by 14 hpf. A,B) Dorsal 
view of control, and 5-HT 
(2 mM) treated embryos. 
C,D) Lateral view of 
control, and 5-HT (2 mM) 
treated embryos. E,F) 
Dorsal view of control, 
and 5-HT (4 mM) treated 
embryos. G,H) Lateral 
view of control, and 5-HT 
treated embryos. s: 
somites; ac: adaxial cells. 
Binocular magnification 
66x.  
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Fig. 3.12: Ngn-1 gene 
expression in controls and 
5-HT treated embryos 
fixed by 10 hpf. A,B) 
Dorsal view of control, 
and 5-HT (4 mM) treated 
embryos. C,D) Anterior 
view of control, and 5-HT 
(4 mM) treated embryos. 
in: spinal interneurons; 
mb: mid-brain; mn: spine 
motor-neurons; sn: spine 
sensory neurons; dpnc: 
dorsal proneural cluster; 
tg: trigeminal ganglion. 
Magnification of 66x.  

 

10 hpf 

10 hpf 

mn 

tg 

mb 

10 hpf C 

mb 

tg 

sn 

dpnc 

in 
10 hpf 

A 

D 10 hpf 

B 10 hpf 



Chapter 3 
 

 

 

119 

3.3.3.2 Zebrafish embryos mortality after 5-HT administration  

Increased mortality in relation to controls was only observed when serotonin 

was administered to embryos during cleavage and blastula periods. During 

gastrulation, segmentation, and pharyngula, no mortality or no increased 

mortality in relation to controls was observed for embryos treated with 2 and 4 

mM 5-HT. The mortality of embryos, in absolute numbers (Table 3.2:), caused 

for each of the 5-HT concentrations used, within a period and between the 

cleavage and blastula periods, was compared by contingency tables to controls.  

Developmental 
stages 

              Absolute number of embryos 5-HT 

Period (hpf) hpf Control 2 mM Control 4 mM 

Cleavage (0.7 – 2.2) 0.3 – 2.5     

 Mortality 0 0 0 6 
 Survival 45 105 45 99 
      

Blastula (2.15 – 5.15) 2.5 – 5.5     

 Mortality 0 14 6 63 
 Survival 45 91 39 42 

Table 3.2: Mortality and survival (absolute N) of non-treated and 5-HT treated embryos.  

No increased mortality was observed during the cleavage period when embryos 

were treated with 2 mM 5-HT. When 5-HT concentration was increased to 4 

mM, during the same period, no significant increased mortality in relation to 

controls (X2 = 2.97, p > 0.10; Table 3.3) was observed. For the blastula period, 

the mortality rate was significantly higher in 5-HT treated embryos than in 

controls for both concentrations of serotonin, 2 (X2 = 6.62, p < 0.010; Table 

3.4) and 4 mM (X2 = 27.62, p < 0.000; Table 3.5). Comparing the mortality of 

embryos treated with 2 and 4 mM 5-HT, during the blastula period, a 5-HT 

concentration dependent mortality increase was observed (X2 = 49.23, p < 

0.000; Table 3.6). Comparing the mortality of embryos during cleavage and 

blastula periods, a significant higher sensitivity of embryos towards both, 2 (X2 

= 15.0, p < 0.000; Table 3.7) and 4 mM (X2 = 70.12, p < 0.000; Table 3.8) 5-

HT was observed during the blastula period. Therefore, these data support that 

zebrafish embryos display a higher sensitivity towards serotonin administration 

during blastulation than during other periods, and that this sensitivity was 

dependent on the serotonin concentration.  
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        Absolute number of embryos 

 0.3 – 2.5 hpf Control 4 mM 5-HT Total 

Mortality     

 Observed 0 6 6 

 Expected  2 4  

Survival     

 Observed 45 99 144 

 Expected  43 101  

Total  45 105 150 

X2
(1) =   2.97 (p > 0.10) 

Table 3.3: Contingency table. Mortality, in absolute numbers, of 5-HT embryos treated, 
during the cleavage period, compared to controls by 4 mM serotonin. X2

 = chi-square; ( ) 
= degrees of freedom; p = probability. 
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       Absolute number of embryos 

 2.5 – 5.5 hpf Control 2 mM 5-HT Total 

Mortality     

 Observed 0 14 14 

 Expected  4 10  

Survival     

 Observed 45 91 136 

 Expected  41 95  

Total  45 105 150 

X2
(1) =   6.62 (p < 0.010) 

Table 3.4: Contingency table. Mortality, in absolute numbers, of 5-HT embryos treated, 
during the blastula period, compared to controls by 2 mM serotonin. X2

 = chi-square; ( ) 

= degrees of freedom; p = probability. 

 

 

       Absolute number of embryos 

 2.5 – 5.5 hpf Control 4 mM 5-HT Total 

Mortality     

 Observed 6 63 69 

 Expected  21 48  

Survival     

 Observed 39 42 81 

 Expected  24 57  

Total  45 105 150 

X2
(1) =   27.62 (p < 0.000) 

Table 3.5: Contingency table. Mortality, in absolute numbers, of 5-HT embryos treated, 
during the blastula period, compared to controls by 4 mM serotonin. X2

 = chi-square; ( ) 

= degrees of freedom; p = probability. 
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         Absolute number of embryos 

5-HT 

 2.5 – 5.5 hpf 2 mM 4 mM  Total 

Mortality     

 Observed 14 63 77 

 Expected  38.5 38.5  

Survival     

 Observed 91 42 133 

 Expected  66.5 66.5  

Total  105 105 210 

X2
(1) =   49.23 (p < 0.000) 

Table 3.6: Contingency table. Mortality, in absolute numbers, of embryos treated, 
during the blastula period, with 2 mM of 5-HT compared to 4 mM serotonin. X2

 = chi-
square; ( ) = degrees of freedom; p = probability. 
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       Absolute number of embryos  

hpf 

 2 mM 5-HT 0.3 – 2.5  2.5 – 5.5  Total 

Mortality     

 Observed 0 14 14 

 Expected  7 7  

Survival     

 Observed 105 91 196 

 Expected  98 98  

Total  105 105 210 

X2
(1) =   15.0 (p < 0.000) 

Table 3.7: Contingency table. Mortality, in absolute numbers, of embryos treated with 2 
mM of 5-HT, compared between cleavage and blastula periods. X2

 = chi-square; ( ) = 
degrees of freedom; p = probability. 

 

 

       Absolute number of embryos  

hpf 

 4 mM 5-HT 0.3 – 2.5  2.5 – 5.5  Total 

Mortality     

 Observed 6 63 69 

 Expected  34.5 34.5  

Survival     

 Observed 99 42 141 

 Expected  70.5 70.5  

Total  105 105 210 

X2
(1) =   70.12 (p < 0.000) 

Table 3.8: Contingency table. Mortality, in absolute numbers, of embryos treated with 4 
mM of 5-HT, compared between cleavage and blastula periods. X2

 = chi-square; ( ) = 
degrees of freedom; p = probability. 
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3.4 Discussion 

AChE is demonstrated here to be transcribed much earlier, 4 hpf, during 

zebrafish embryogenesis than previously reported, 12 hpf (Bertrand et al., 

2001). The relevance of an early AChE expression is not known. Remarkably, 

there is just a residual esterase activity until 12 hpf, suggesting that AChE 

might be acting in a non-cholinergic way during this period. The AAA/esterase 

activities ratio was much higher during the embryonic period (24 hpf) than for 

the larval stages (48 hpf). In result, the ratio AAA/esterase activities decreased 

from 2.1, by 4 hpf, to 0.01 by 144 hpf, indicating a relevance of AAA activity in 

very early zebrafish embryogenesis.  

Post-translational modifications of AChE, happening during development, could 

explain a more pronounced AAA activity during early embryogenesis. A similar 

profile of AAA activity was previously reported for chicken (Boopathy and Layer, 

2004). If it is a general rule for other organisms, it indicates that AAA could play 

a pivotal role on development, as for adult animals AAA is much less 

pronounced than the esterase activity itself (Fujimoto, 1974). 

This is the first report of AAA activity on fish. The sensitivity of AAA towards 

serotonin ensures its association with AChE, as the serotonin-sensitive-AAA 

activity is postulated to be a property of cholinesterases.  

3.4.1 The effect of serotonin administration during zebrafish embryonic 

development and AChE expression 

A clear temporal serotonin concentration dependent sensitivity of zebrafish 

embryos was observed. Anterior mesoderm malformation and disorganization of 

the prechordal plate cells, marked by the expression of gsc, reflected a 

malfunction of the gastrulation period caused by serotonin administration. 

However, this effect was stronger when 5-HT was administered during the 

blastula period than when embryos were treated with 5-HT during gastrulation.  

It was shown here that ACHE transcripts appear early after mid-blastula 

transition starts. Therefore, a relation between AChE expression onset and 

sensitivity of zebrafish embryos towards serotonin was observed. It is not clear 

if the developmental malformations observed on zebrafish were originated by 

AChE down regulation, but it is possible that its expression was retarded by 
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serotonin. This hypothesis is supported by the work of Buznikov (2001). He has 

postulated that 5-HT blocks indolylalkylamines, factors that determine the 

length of the lag-period, retarding the activation of protein synthesis after 

fertilization in sea urchin. 

A temporal related sensitivity of zebrafish embryos towards serotonin is 

supported by: a) the incidence of a higher mortality among embryos treated 

with 5-HT during blastulation in relation to earlier and later stages, and b) the 

5-HT concentration dependent malformations mostly limited to the blastula 

period. The connection of the onset of AChE expression with the high sensitivity 

of the embryos towards serotonin, during the blastula period, also makes 

reference to another property of AChE, the earlier mentioned AAA activity.  

The serotonin-sensitive AAA activity, associated to AChE, suggests a possible 

influence of the serotonergic system to cholinergic components. It is not 

possible to show a direct influence of serotonin specifically on the AAA, as it is 

just a side activity of the AChE protein. However, a disturbed pattern of the 

expression of the myogenic differentiation gene (myo-D) occurred in areas 

where AChE is normally expressed in zebrafish. AChE is known to be expressed 

in paraxial mesodermal segmental plate at 12 h development (6 somites). This 

expression is probably located in myoblasts, proceeding in a rostro-caudal 

sequence according to the state of differentiation of the somites. As shown 

here, mesodermal differentiation showed serotonin concentration dependent 

malformations when embryos were treated by the time when AChE expression 

begins.  

Furthermore, a disruption of the neural plate cell pattern organization was 

observed with the marker neurogenin-1 (ngn-1). Ngn-1 is involved in neuronal 

differentiation at late gastrulation, and had its expression pattern affected in 

embryos treated with 5-HT during the blastula period. It is known that AChE 

expression is first detected in small clusters of cells parallel to both sides of the 

spinal cord of zebrafish embryos (Bertrand et al., 2001). The disruption of the 

expression of ngn-1 in spine motorneurones of Zebrafish, due to 5-HT 

treatment, also was observed in areas where AChE would be normally 

expressed. This spatial correlation of embryonic malformations and potential 
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sites of AChE expression are additional information suggesting an implication of 

serotonin administration on the cholinergic system development.  

Considering that AChE has been already suggested to be a marker for neuronal 

differentiation (Layer and Willbold, 1995), its relevance for zebrafish 

embryogenesis is expected. Also, in sea urchin the action of an esterase 

inhibitor (chlorpyrifos) was essentially restricted to the mid-blastula stage, not 

affecting cleavage division and showing a decreased impact on gastrulation 

(Buznikov et al., 2001). 

On the other side, a naturally occurring mutation, resulting in the abolishment 

of the esterase activity, has been shown to cause only zebrafish impaired 

motility. This effect was caused by excessive excitation of musculature by 

acetylcholine, as AChE was not effective on hydrolyzing ACh on the end plates 

of this zebrafish mutant. However, the AChE protein is present on this zebrafish 

mutant. Therefore, it could fulfill any structural or side activity, e.g. functionality 

it might have during zebrafish embryogenesis. Noncholinergic action of AChE, as 

for example, the proposed roles of AChE on establishing synapses connection 

and axonal guidance (Layer, 1991), and other morphogenic events, as shown 

on the previous chapter, are likely to take place during zebrafish 

embryogenesis. It justifies, therefore, an early expression of AChE during 

embryogenesis, preceding the gastrulation period.  

3.4.1.1 Serotonin, AChE and AAA 

The primary interest, treating zebrafish embryos with serotonin was due to its 

inhibitory properties towards AAA. The choice for the serotonin concentrations 

(2 and 4 mM) used, was based on an inhibition curve of the AAA activity (Fig. 

3.8). These concentrations should strongly inhibit the AAA activity. Consistently 

with this hypothesis, the most affected embryonic period, towards 5-HT 

administration, coincides with the onset of ACHE transcripts and AAA activity. 

However, once we verified such drastic effects on zebrafish development, it 

became questionable whether they were just due to AAA inhibition. Beyond 

that, it is not known how much of the serotonin administered to embryos was 

absorbed by them. However, the concentrations used were certainly higher than 

the physiological levels of serotonin.  
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Nevertheless, serotonin is a well-known neurotransmitter, mitogen, and 

hormone, which mediates a wide variety of physiological processes. It is not 

unlikely that 5-HT, which is a multifunctional regulator, acting in signal 

transduction systems involving c-AMP and calcium ions, influenced AChE during 

pre-nervous periods of ontogenesis via these second messengers. For instance, 

AChE expression was reported to be markedly increased during myogenic 

differentiation of C2C12 cells from myoblasts to myotubes, regulated via c-AMP 

signaling pathway (Siow, 2002). As serotonin stimulates cAMP (Goy et al., 

1984), it could act as a suppressor element for AChE. 

The results of this work, therefore, brought new questions to be addressed, like 

a possible down regulation of AChE by means of serotonin administration during 

zebrafish early embryogenesis. 

3.5 Summary 

• AChE is very early expressed in zebrafish development, by 4 hpf. 

• The AAA/esterase activities ratio was much higher in zebrafish embryos 

than in larval stages, suggesting a role for AAA in early embryogenesis.  

• The onset of ACHE expression correlates with the embryonic period at 

which the zebrafish embryos were most sensitive to 5-HT, an AAA 

inhibitor. 

• For the first time the AChE-associated AAA activity was investigated 

during fish development.  
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4.1 Introduction 

The existence of an AAA activity associated to cholinesterases has been the 

subject of study of a particular group of scientists working on cholinesterases, 

although, the assumption that AAA is a property of cholinesterases is not 

undisputed among cholinesterases researchers. Doubtlessly, AAA activity has 

been co-purified with AChE and BChE (George and Balasubramanian, 1980; 

1981; Jayanthi et al., 1992), and proven throughout several biochemical assays 

to be associated with ChEs. Nevertheless, it is still criticized to be an artifact.  

The AChE KO organisms present mutations that abolish the esterase activity. 

However, the AChE protein is structurally present in these organisms and could 

display aryl acylamidase (AAA) activity. The existence of a second activity, 

which can be functional in these mutated cholinesterases, has not been taken 

into consideration when talking about ChEs relevance for KO organisms. There 

is, however, no evidence that AAA would be functional in these mutants. 

In vitro expressed cholinesterases have also never been demonstrated to 

display this activity. Therefore, studying in vitro over-expressed cholinesterases, 

and the respective effects of ChEs structural mutations on esterase and AAA 

activities, would be one step forward to clarify AAA expression and location on 

cholinesterases.  

4.1.1 The origin of the AAA activity 

The aryl acylamidase (AAA; EC 3.5.1.13) activity, which hydrolyzes aryl acyl 

amide bonds, first appeared in bacteria (Engelhardt et al., 1971) and plants 

(Still and Kuzirian, 1967). In vertebrates, throughout fish (see chapter 3), avian 

(Weitnauer et al., 1998; Boopathy and Layer, 2004) and mammals (Fujimoto, 

1974, 1976), this activity is peculiarly combined with the esterase activity.  

Therefore, AAA is an ancient enzyme which was preserved during evolution, and 

the activity of which became associated to tissues-widespread enzymes like the 

cholinesterases (ChEs). Considering this selective advantage that AAA 

encontered, it is unlikely that there is no physiological function for this activity, 

as for cholinesterases present in non-cholinergic innervated tissues.  



Chapter 4 
 
 

 

130 

4.1.2 The aryl acylamidase activity of cholinesterases 

AAA activities associated to ChEs fulfill two notions: a) sensitivity towards 

serotonin and, b) inhibition by potent esterase inhibitors; differing from the AAA 

activity non-associated to ChEs, which is not sensitive to these compounds. The 

sensitivity of AAA ChEs-associated towards serotonin drew attention to a 

correlation of serotonergic and cholinergic systems. However, little is known 

about this second activity on ChEs, creating restrictions to approach the subject.  

Indeed, it is not known how the aryl acylamidase molecular domain interacts 

with components binding to the cholinesterases catalytic or peripheral site. 

However, there is a general belief that both activities are based on the same 

catalytic triad, once the specific BChE or AChE activity inhibitors also inhibit 

their associated-AAA activities specifically. On the other side, chemical 

mutagenesis was conducted to find evidence of a co-relation structure/catalytic 

efficiency of AAA in comparison to the esterase activity (Majumdar and 

Balasubramanian, 1984; Boopathy and Balasubramanian, 1985), indicating that 

these activities might not be sharing the same catalytic site. However, chemical 

mutagenesis does not allow controlling the position of the mutations, just the 

type of amino acids, resulting in mutations that can be located anywhere in the 

protein. The puzzling results produced with this kind of approach could not 

clarify which amino acids are essential for the functionality of AAA, and if it is 

reacting differently than the esterase activity due to structural mutations. 

Until now, the attempts to elucidate how and why ChEs display the aryl 

acylamidase activity were not very successful. In particular, it remained unclear, 

which is the molecular domain responsible for the AAA activity on 

cholinesterases.  

Furthermore, this side activity of ChEs has not often been mentioned in 

cholinesterases reviews, due to the discredit of its existence or simple not-

awareness of it. Reviewing the subject, I studied aryl acylamidase activity from 

in vitro expressed recombinant human BChE.  

Provided that several naturally occurring BChE variants display very low 

esterase activity, though remain as polymorphisms in some populations 
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(Whittaker-Britten et al., 1989; Alcantara et al., 1995), I hypothesized that AAA 

might be active on BChE even when the esterase activity is not.  

4.1.3 Approach and aims 

So far, it is essential to investigate AAA on mutant cholinesterases to 

understand how this activity is affected in relation to the esterase activity. To 

simulate this, making use of reverse genetics, human BChE mutants were 

investigated with respect to their AAA catalytic properties compared with the 

wild-type enzyme.  

For this study, two mutant enzymes were designed: one leading to loss of 

esterase activity (S198D), and one leading to low esterase activity (E197Q). 

The effectiveness of the AAA activity associated to BChE mutants was tested 

towards two substrates; in comparison to the AAA activity from wild-type 

human BChE.  

To understand by which mechanism serotonin is inhibiting the human BChE-

associated AAA, wild-type and mutant enzymes were investigated by kinetic 

studies. Ethopropazin was also used towards AAA to confirm its sensitivity 

towards such a selective BChE inhibitor, and to verify the response of an active 

site (S198D) mutant BChE AAA-associated activity.  

4.2 Methodology 

Chemicals and equipments used are listed in appendices. Biological material 

with the respective supplier is listed on the tables below: 

Enzymes Supplier/collaborator 

Purified recombinant mutant human BChE (E197Q)  

Purified recombinant wild-type human BChE  
Prof. O. Lockridge 

(Nebraska University) 

Hind III and Xba I (restriction endonucleases) New England Biolabs, USA 

Cells  

HEK 293 - human embryonic kidney cells American Type Culture 
Collection, Manassas, 
Virginia, USA. 
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Vectors and bacterial strains Supplier/collaborator 

BChE wild-type cDNA cloned in a pGS plasmid 

BChE S198D mutant cDNA cloned in a pGS plasmid 

Prof. O. Lockridge 

(Nebraska University) 

GFP cloned in a LZRSpBMN-z vector plasmid Prof. G. Thiel (TUD); 

Prof. G. Nolan (Stanford 

University) 

Bacteria Escherichia coli XL1-Blue  Bullock et al., 1987. 

 
Antigen Target  Antibody Host Supplier/collaborator 

Primary Antibodies 

Human BChE  monoclonal mouse Prof. O. Lockridge 

(Nebraska University) 

M2 antibody against Tag-

FLAG 

monoclonal mouse Sigma 

Secondary antibodies 

Anti-mouse IGg - Peroxidase  monoclonal rabbit Sigma 

4.2.1 Expression of recombinant BChE 

Two pGS plasmids encoding BChE cDNA for a wild-type enzyme and a silent 

mutant (S198D) for the esterase activity were propagated in E. coli and 

transfected into human embryonic kidney cells (293HEK) with the liposomal 

reagent DOTAP. A plasmid containing the reporter gene GFP was co-transfected 

in 293HEK cells as a control of the efficiency of each transfection. Plasmids 

containing the wild-type and mutant human BChE cDNAs encoded a rat 

glutamine synthetase gene for resistance against the methionine sulfoximine, 

used for selection of positive clones.  

4.2.1.1 Propagation of vectors  

Protocol: plasmidial DNA was inserted into competent cells (E. coli, strain XL1-

Blue MRF) by electroporation. 10 ng of plasmidial DNA were incubated with 100 

µl of competent cells on ice. The principle is that by low temperature the 

plasmids attach to the surface of the bacteria, and with a temperature shock (2 

min at 42°C in water bath) the internalization of the plasmidial DNA occurs by 

bacterial tranformation. After cooling down the transformed bacteria, 1 ml of LB 

medium was added for bacterial growth at 37°C in a shaker (250 rpm), for the 
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expression of the penicillin resistance gene. After 1 h incubation, 25 µl of the 

bacterial solution (1:100) were plated on 85 mm LB agar plates containing 

ampicillin, and incubated over-night at 37°C. Colonies were placed in new LB 

medium (2.5 ml) containing penicillin, and incubated for 8 h at 37°C in a 

shaker. The resulting bacterial culture was diluted 1:500 into new selective LB 

medium, final volume 100 ml, incubated overnight at 37°C under vigorous 

shaking (250 rpm). By bacterial transformation, the plasmidial DNA is amplified, 

and then purified from the resulting bacterial culture.  

4.2.1.2 Isolation of plasmidial DNA 

After overnight growth, bacterial medium was poured in blue-caps and 

centrifuged for 15-20 min at 5500 rpm at 4°C. Medium was removed by gentle 

aspiration, leaving the pellet as dry as possible. Buffers were supplied with the 

kit for maxipreps plasmidial purification from QIAGEN. After the harvesting step, 

subsequent lysis with a buffer containing RNAase was conducted. The protocol 

was based on an alkaline lyses procedure, as DNA is more stable in slightly 

alkaline conditions, followed by binding of plasmid DNA to QIAGEN anion-

exchange resin under appropriate low-salt and pH conditions. RNA, proteins, 

and low-molecular-weight impurities were removed by a medium-salt wash. 

Plasmid DNA was eluted in a high-salt buffer and then concentrated and 

desalted by isopropanol precipitation. After purification, the concentration of 

plasmidial DNA obtained was measured, and samples were applied to an 

agarose gel for electrophoresis, to verify the quality of the DNA obtained.  

4.2.1.3 Plasmidial DNA quality control  

The concentration of plasmidial DNA was measured in spectrophotometer in the 

UV light spectrum, by 260 nm, in crystal cuvettes. To calculate the 

concentration of DNA in µg/ml on samples, the OD observed was multiplied by 

the dilution factor used and by a factor correspondent to a double stranded 

DNA. The factor for double-stranded DNA was equivalent to 50, as 1.0 OD at 

260 nm means a DNA concentration of 50 µg per ml. 

To verify if plasmids had the right insert, they were digested with restriction 

endonucleases (Hind III and Xba I), removing a segment of 885 bp long from 

the total BCHE wild-type and mutant cDNA (1.8 Kb). DNA digestion was 

conducted using, for 1 µg DNA, ~10 U of each endonuclease with 1 µl restriction 
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buffer per µl enzyme, in a final volume of 10 µl reaction with DNase free water. 

The restriction reaction was incubated at 37°C for 1 h. After plasmidial 

digestion, 5 µl of the reaction were mixed with 0.5 µl 10x loading buffer, and 

applied in an agarose gel for electrophoresis. A 1% agarose gel (250 mg 

agarose in 25 ml of 1x TAE buffer, dissolved in microwave oven, plus 1 µg/ml 

ethidium bromide) was used with the intent to obtain the separation of the 

plasmidial DNA from the inserted cDNA fragments, in comparison to a DNA 

molecular weight control marker (0.1 µg/µl). After electrophoresis (~40 min at 

80 volts in 1x TAE buffer), the correspondent bands could be visualized placing 

the gel over a UV light translucid box, as a result of the intercalation of ethidium 

bromide in the DNA. For data records, pictures with a Polaroid camera were 

made to capture the results.  

4.2.2 HEK293 cells culture  

Cells handling was conducted in a sterile as possible environment. To maintain 

the cultures in a most sterile condition, procedures were carried out under 

sterile hood (equipped with UV light), and for cells handling, sterile material was 

used. Cell culture medium and buffers were autoclaved before use, and 

chemicals administered to cells presented quality standard for molecular biology 

use.  

4.2.2.1 Transfection of HEK cells with liposomal reagent  

Principle: Mixing DOTAP liposomal transfection reagent with DNA results in 

spontaneously formed stable complexes that can be directly added to the 

culture medium. These complexes adhere to the cell surface, fuse with the cell 

membrane, and then release the DNA into the cytoplasm.  

On the day before the transfection, cells were dissociated with trypsin (500 µl 

trypsin-EDTA in 50 ml flasks), and the trypsinazion was ended with 5 ml 

complete medium. Cells were distributed to new plates (35 mm), at a cell 

density of ~ 2 x 105, and incubate with 10% FCS DMEM complete medium for 

18-24 h at 37°C in one 5% CO2 incubator. 2 h before transfection cells received 

reduced medium (DMEM 2% serum), and should present between 30-70% 

confluence until transfection takes place. For transfection, DOTAP reagent was 

vortexed before use, and solution for transfection was prepared as follows (for 
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35 mm ∅ dishes): 32 µl of DOTAP plus 68 µl DMEM (without antibiotics and 

serum), pippeting gently to mix. In another Eppendorf cup, the DNA (0.1 µg/µl) 

was diluted in 50 µl DMEM medium (without antibiotics and serum). The diluted 

DNA was added to the diluted DOTAP, mixed by gently flicking of the tube or 

pipetting and incubated for 10 min on ice. The mixture was given to the cell 

culture plates plus 3 ml reduced DMEM. Cells were incubated for 6 hours with 

the transfection solution, and medium was replaced for fresh normal growth 

medium (2% FCS, 2 mM glutamnine plus 20 U streptamicim/20 µg penicillin to 

a final volume of 500 ml DMEM).  

4.2.2.2 Selection of cells with recombinant DNA  

Stable transfected cells started to be selected 2-3 days after transfection in 

serum and glutamine free medium containing 25-50 µM of methionine 

sulfoximine. Surviving cells were trypsinized and expanded in 250 ml flasks, and 

cell growth was followed by collection in serum free medium (Ultraculture). 

After six days, there was enough expressed BChE to test. For detection of the 

proteins, by western blot and activity measurements, concentrated 

supernatants from cell culture were used. The medium collected was 

ultrafiltered with membranes to liberate low molecular weight proteins (less 

than 50 kD weight), concentrating the material of interest.  

4.2.3 SDS-PAGE and Western blot 

The expression of the wild-type BChE was detected by Western blot using the 

M2 antibody (5 µg/ml), raised against the tag-FLAG attached to the C-terminus 

of the protein. A monoclonal antibody specific for human BChE, was also used to 

detect the wild-type BChE, and could be used to detect the mutant, which did 

not display a tag-FLAG attached to the protein. Culture medium from mock 

transfected cells was used as a negative control, and purified BChE as a positive 

control.  

4.2.3.1 SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel 
Electrophoresis) 

Principle: SDS applies a negative charge to every protein. An electric current is 

applied across the SDS-PAGE, causing the negatively-charged proteins to 

migrate across the gel. A tracking dye is added to the protein solution to allow 
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the experimentor to track the progress of the protein solution through the gel 

during the electrophoretic run. 

Protocol: A non-reducing 7.5% SDS-PAGE (no boiling and no reducing agent) 

was used. The gel was discontinuous, with a 4% polyacrylamide stacking gel 

and a 7.5% separation gel (Table 4.1). The function of the stacking gel is to 

form an ion gradient at the early stage of electrophoresis that causes all of the 

proteins to focus into a single sharp band. This occurs in a region of the gel that 

has larger pores, lower concentrated gel, so that the gel matrix does not retard 

the migration during the focusing or "stacking" event. Proteins subsequently 

separate by the sieving action in the lower, "resolving" region of the gel. 

Samples were applied to a SDS-PAGE with the standard buffer system of 

Laemmli (Laemmli, 1970), and electrophoresis was run in a vertical system 

(200 V) with running buffer containing SDS. A molecular weight marker was 

used to control the position of the bands correspondent to proteins.  

Table 4.1: Agarose gel components. 

4.2.3.2 Western Blot 

By the western blot method (Towbin et al., 1979) proteins are blotted from the 

gel, after electrophoresis, to a membrane. On the membrane immunodetection 

of specific proteins can be achieved. 

Protocol: a membrane (Immobilon-P) was soaked in methanol for 30 min for 

permeabilization. After electrophoreses the gel was placed in transfer buffer. 

The membrane was equilibrated in transfer buffer and couple to the gel. Gel and 

membrane were placed in a western blot apparatus between two layers of blot 

Reagents Stacking gel (4%) Separation gel (7.5%) 

dH
2
O  3 ml  4.8 ml  

Tris buffer  1.25 ml (0.5 M, pH 6.4) 2.5 ml (1.5 M, pH 8.8)  

30% Acrylamide 0.8% bis 
acrylamide 

0.65 ml  2.5 ml  

APS 10%  100 µl  100 µl  

SDS 10%  50 µl  50 µl  

TEMED  5 µl  5 µl  

Total Volume 5 ml 5 ml 
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paper and submitted to 350 mA for 1 h. Poison S was used allowing 

visualization of the separated proteins.  

4.2.3.3 Immunodetection  

Protocol: after the detection of the proteins transferred to the membrane, a 

washing step with PBS was followed by a blocking step with 3% nonfat milk in 

TBS with 0.05% Tween 20 at RT for 1 hour. After blocking, the membrane was 

washed in TBS with 0.05% Tween 20, twice for 5 minutes each, and incubated 

with anti-FLAG M2-HRP (against tag-FLAg), or with the antibody against the 

human BChE, in TBS with 0.05% Tween 20 overnight at 4°C. The membranes 

were washed in TBS with 0.2% Tween 20, six times for 5 minutes each. 

Membranes hybridized with the anti-BChE antibody, were again incubated with 

a second antibody conjugated with horse radish peroxidase (HRP), diluted 

1:2000 in TBS 0.2% Tween, 5% milk, overnight at 4°C. This step was omitted 

for membranes hybridized with the antibody against the tag-FLAG because it 

was already coupled with HRP. After 6 washing steps, as described above, 

membranes were treated with a chemiluminescent substrate according to 

manufactures instruction (Lumiglo, KPL) to detect the proteins of interest. 

Positive reaction sites were rapidly detected exposing membranes to an X-ray 

film. 

4.2.4 Activity Assays 

Culture medium containing recombinant BChE was concentrated, from 150 ml 

to 5 ml, by ultrafiltration with Amicon PM10 membranes, and assayed for 

esterase and aryl acylamidase activities (average of three transfections) for the 

wild-type and S198D mutants with the substrate o-nitroacetanilide, against 

concentrated cell culture medium from mock transfected cells. The protein 

concentration was estimated by the Bradford method (see methods-chapter 3).  

Purified in vitro expressed wild-type and E197Q mutant BChE were assayed with 

the substrate ONPRA (N-2-nitrophenylpropanamide) presenting the advantage 

that the assay could be conducted at RT, in contrast with the usual substrate 

ONACA (o-nitroacetanilide).  
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The esterase activity assay was conducted for both purified and non-purified 

enzymes, with the same substrate and conditions. Principle of the activity 

assays were described in the chapter 3.  

4.2.4.1 Ellman assay 

The esterase activity was measured by the Ellman method (Ellman et al., 1961) 

at 412 nm for 4 mM butyrylthiocholine (BTCh) in 80 mM sodium phosphate 

buffer containing 0.6 mM DTNB, pH 8.0, at 23°C, for 5 min. 

4.2.4.2 Recombinant BChE assayed with ONACA  

O-nitroacetanilide (ONACA) is the usual substrate used to measure the AAA 

activity. With this substrate, wild-type and S198D mutant BChE were 

investigated regarding their AAA activity. For this assay, concentrated medium 

from cell culture was used. Medium collected from mock transfected cells was 

used as a negative control. 

The AAA activity was measured with a method described by Fujimoto (1976), 

slightly modified. The assay conditions to measure the AAA activity in cell 

culture medium were: 6.6 mM of ONACA incubated at 37°C for 1 h in 0.4 M of 

potassium phosphate buffer, pH 8.0, containing 0.05 ml of probe and 0.05 ml of 

inhibitor or H2O in a total volume of 0.5 ml. The extinction was measured for 

60-90 min in a continuous assay at 410 nm against ONACA controls processed 

in the absence of enzyme. Controls with correspondent amounts of probe, from 

cells transfected with green fluorescence protein, were also assayed as 

background. AAA was deduced from calibration curves established with known 

concentrations of O-nitroaniline. 

4.2.4.3 Recombinant BChE assayed with ONPRA  

A second substrate, N-2-nitrophenylpropanamide (ONPRA), was used to 

measure the activity of the wild-type and E197Q mutant BChE purified 

enzymes. AAA activity measurements were conducted according to the assay 

described by Fujimoto (1976), with modifications. The extinction was measured 

at 430 nm, at 23°C for 30 min against ONPRA controls processed in the absence 

of enzyme, and with mock transfected cells concentrated medium. In plastic 

cuvettes: 1.35 ml of 0.06 M Tris HCl buffer (pH 8.0), 0.05 ml of dH2O or 

inhibitor, 0.1 ml of buffer containing BChE and 0.05 ml of substrate were added 
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to the final volume of 1.5 ml. The substrate ONPRA and inhibitor 5-HT were 

used to final concentrations ranging from 0.4 to 5 mM and 25 to 330 µM, 

respectively, assayed in at least duplicates. Fixed amounts of enzymes were 

used to measure aryl acylamidase activity, 3 esterase units (U) for the E197Q 

and 5 U for the wild-type BChE. AAA activity was deduced from calibration 

curves established with known concentrations of o-nitroaniline (2-

nitrobenzenamine), a product generated by AAA catalysis of ONPRA, as it was 

for o-nitroacetanilide. Protein concentration was determined by the Bradford 

method (see methodology of chapter 3).  

4.2.5 Substrate Kinetics 

The enzyme substrate dissociation constants were calculated according to the 

Michaelis-Menten kinetics, following the equation below:  

V = Vm*S/ (Km + S) 

V is the velocity, Vm is the maximum velocity for the ES (enzyme/substrate) 

complex (µM/mg protein), Km is the concentration of substrate at which half of 

the maximal velocity of the enzyme was achieved, and S is substrate 

concentration in mM.  

By double-reciprocal plot (Lineweaver-Burk plot) Vmax and Km (Vmax/2) can be 

also determined. On the y axis, velocities (1/V0) are plotted versus substrate 

concentrations (1/S) on the x axis. The slope is determined by Km/Vmax, the 

intercept of the vertical axis by the 1/Vmax, and the intercept of the horizontal 

axis is -1/Km. 

Kcat is the catalytic constant or “turnover number”. The kcat/Km (catalytic 

efficiency) describes the conversion of free E and free S into E + P. The rate at 

low [S] is directly proportional to the rate of enzyme-substrate encounter. The 

kinetic parameters (kcat and Km) were determined employing 6 different 

substrate concentrations (bracketing the Km values) and the data were fitted to 

Michaelis–Menten equation. 
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4.2.5.1 Inhibition Kinetics 

Dissociation constants (Ki) for the enzyme-inhibitor complexes were calculated 

from the effect of substrate concentration on the apparent dissociation 

constants by applying non-linear regression to fit the model to experimental 

data. Data used for calculations were: inhibitor concentrations [I], the initial 

velocities V0, and the substrate concentrations [S] for each reaction. Essentially, 

the following models were tested: 

Pure competitive inhibition: V = Vm*S/ (Ks*(1 + I/Ki) + S) 

Partial competitive inhibition: V = Vm*S/ (Ks*(1 + I/Ki)/ (1 + I/ (a*Ki)) + S) 

Non-competitive inhibition: V = Vm*S/ ((Ks + Ks * I/Ki) + (S + S*I/Ki)) 

Uncompetitive inhibition: V = Vm*S/ (Ks + S * (1 + I/Ki)) 

Linear mixed type: V = Vm*S/ ((Ks + Ks*I/Ki) + (S + S*I/(a*Ki))) 

Hiperbolic mixed type: V = Vm*S/ ((a*Ks*(I/Ki)/ (b*I + a*Ki) + S*(I + a* Ki)/ 

(b*I + a*Ki)) 

The Ks was obtained by the ratio of the rate of breakdown of the E-S complex 

divided by its rate of formation. Ks is defined by the equilibrium formed 

between the enzyme (E) and substrate (S) and the E-S complex. The Ki is the 

dissociation constant for inhibitor binding (in the same concentration units as 

the inhibitors), and I is the inhibitor concentration in µM. Experimental results 

were analyzed by non-linear regression using the Systat software, the lower the 

standard deviation obtained, the better the data were considered to fit a model. 

The Lineweaver-Burk plot was used to visualize the effect of inhibitors, and 

therefore, to distinguish the type of inhibition. 

Determining the appropriate plot to calculate the inhibition constant Ki: if the 

Lineweaver-Burk plots of several inhibitor concentrations intersect on the 

vertical axis, a competitive inhibitor is being used and the Km type of plot is the 

appropriate for that. Competitive inhibitors have the effect to increase the Km 

of the reaction and therefore to reduce the affinity of the enzyme for its 

substrate. If the Lineweaver-Burk plots of several inhibitor concentrations 

intersect on the base line, a non-competitive inhibitor is the case, and the 
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1/Vmax type of plot is the right one. Non-competitive inhibitors do not affect the 

combination of the substrate with the enzyme, but it does affect the velocity. If 

the Lineweaver-Burk plots of several inhibitor concentrations are parallel, the 

type of inhibition is uncompetitive and the 1/Km type of plot is used. 

Uncompetitive inhibitors have the effect of decreasing the Km and the velocity of 

the reaction to the same extent. If the Lineweaver-Burk plots of several 

inhibitor concentrations intersect above or below the 1/[S] axis, a mixed 

inhibitor is the case and 1/Km type of plot is used. Mixed inhibitors have the 

affect of decreasing the velocity of the reaction and either increasing or 

decreasing the Km. 

For instance, for non-competitive inhibition the y intercept is determined by the 

equation below, which result will vary with the concentration of inhibitor:  

Y intercept = 1/Vmax {1 + [I]/Ki} 
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4.3 Results 

4.3.1.1 Detection of the in vitro expressed enzymes: wild-type and 
S198D BChE 

After plasmid recovery and purification, digestion of specific restriction sites 

within the BChE cDNA inserted segment was performed to confirm that plasmids 

contained the right insert (Fig. 4.1). 

Several transfection methodologies were tested to achieve the desired 

transfection efficiency. The liposomal reagent was considered efficient with 

HEK293 cells, according to the results obtained with the reporter gene GFP (Fig. 

4.2).  

The in vitro expressed wild-type and mutant S198D BChE were detected by 

immunoaffinity in western blot, by using concentrated cell culture supernatants. 

Two antibodies were used to confirm the expression of BChE, one for the tag-

FLAG attached to the C-terminus of the protein, and one monoclonal antibody 

specific for human BChE (Fig. 4.3). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1: Digestion of the recombinant DNA after plasmid amplification. Bands 
correspondent to digested DNA from plasmid and BChE cDNA insert (a), and non-
digested vector (b) were visualized in 1% agarose gel, after electrophoresis.  

 

 

 

Fig. 4.2: Experiment control for the transfection 
efficiency with liposomal reagent. Green fluorescent 
protein expressed by the reporter gene GFP, encoded 
by plasmids transfected into HEK293 cells.  

 

← 885 bp  
BChE cDNA 

1000bp 
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Fig. 4.3: Western blot results. (a) SDS-PAGE (7.5%) stained with Ponceau S. (b) 
Immunostaining with a specific antibody for the tag-FLAG (M2) attached to the C-
terminus of the wild-type BChE, revealed by chemiluminescence and exposure to X-ray 
film, with increasing concentrations of sample. (c) Immunostaining with an antibody 
against human BChE, with positive (purified BChE) and negative controls (mock 
transfected cells concentrated medium), and S198D mutant and wild-type BChE. 

4.3.2 AAA activity on the active site mutant (S198D) and wild-type 

BChE  

The recombinant human S198D BCHE cDNA encodes a BChE variant with an 

amino acid substitution at the active site, position 198 (Ser198 → Asp198). 

The AAA activity assay, for the mutant (S198D) and wild-type BChE, was 

conducted with the substrate o-nitroacetanilide. Concentrated supernatants, 

from recombinant BChE transfected cells culture, were used as samples against 

controls. Supernatant from mock transfected cells were used as a background 

control. The presence of the recombinant BChE in cell culture supernatants was 

in parallel confirmed by western blot analysis (Fig. 4.3).  

The BChE mutant S198D displayed 34.6% of the specific AAA activity of the 

wild-type enzyme (Fig. 4.4), and did not show significant esterase activity in 

comparison to controls. The ratio of AAA/esterase activity on BChE for the wild-

type enzyme was 0.69, according to the values of specific activity in U/mg, as 

given on the table below: 

AAA specific activity U/h/mg Esterase specific activity U/min/mg 

Wild-type BChE = 2.08       Wild-type BChE = 3.03 

S198D BChE = 0.72           S198D BChE = no activity  
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The legitimacy of an AAA activity expressed by the recombinant human wild-

type BChE, from cell culture supernatants, was confirmed by serotonin inhibition 

(Fig. 4.5). 1 mM serotonin inhibited 79% of the total AAA activity in agreement 

with earlier reports; viz. amniotic fluid AAA activity from BChE and AChE are 

inhibited to 80% (Jayanthi et al., 1992). On the other side, the AAA activity of 

the mutant S198D BChE was very poorly inhibited by serotonin.  

The AAA activities of the in vitro expressed wild-type and mutant (S198D) BChE 

were also tested towards ethopropazine, a potent reversible inhibitor of BChE. 

Concentrations of 1 and 10 µM inhibited about 62% and 89%, respectively, of 

the wild-type BChE AAA-associated activity, while only about 7% and 13% of 

the S198D activity, respectively (Fig. 4.6; Fig. 4.7).  
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Fig. 4.4: Aryl acylamidase activity of the in vitro expressed human ( ) wild-type BChE 
and (∆) mutant S198D BChE, with the substrate ONACA. 
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Fig. 4.5: Aryl acylamidase activity of the in vitro expressed wild-type BChE, from cell 
culture concentrated supernatants, with the substrate ONACA in the presence and 
absence of serotonin. (■) No inhibitor, (●) 1 x 10-6 M, (*) 1 x 10-5 M, (▼) 1 x 10-4 M and, 
(▲) 1 x 10-3 M of serotonin.  
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Fig. 4.6: Aryl acylamidase activity of in vitro expressed human butyrylcholinesterase, 
from cell culture concentrated supernatants, with the substrate ONACA in the presence 
and absence of ethopropazine. (■) No inhibitor, (▲) 1 x 10-6 M and, (▼) 1 x 10-5 M 
ethopropazine. 
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Fig. 4.7: Aryl acylamidase activity on the in vitro expressed mutant (S198D) 
butyrylcholinesterase, from cell culture concentrated supernatants, with the substrate 
ONACA in the presence and absence of ethopropazine. (■) No inhibitor, (▲) 1 x 10-6 M 
and, (▼) 1 x 10-5 M ethopropazine. 

 
 
 
 
 
 
 
 
 
 
 
 

0 15 30 45 60 75 90
0

20

40

60

80

100

time (min)

%
 re

l. 
AA

A 
ac

tiv
ity



Chapter 4 
 
 

 

149 

4.3.3 Kinetic studies with ONPRA and serotonin on purified wild-type 

and E197Q BChE  

The aryl acylamidase activity was also investigated in recombinant human wild-

type and mutant BChE purified enzymes. In this case, however, a different 

recombinant mutant BChE was investigated (E197Q). This mutant BCHE cDNA, 

encoding for a BChE variant with a single nucleotide substitution (G → C), 

displays a replacement of the active site glutamic acid (E) by a glutamine (Q) 

residue, at the position 197 (Glu197 → Gln197). This amino acid substitution 

did not abolish completely the esterase activity of BChE, which presented 

almost 15% of the total wild-type BChE specific activity under standard assay 

conditions, with the substrate butyrylthiocholine. 

To investigate wild-type and mutant (E197Q) BChE-associated AAA activities, 

substrate and inhibitor affinities, purified recombinant BChEs were used. 

Besides, a new substrate for AAA (ONPRA) was tested aiming a faster activity 

assay.  

Under normal assay condition, six substrate concentrations were tested. The 

mutant E197Q showed a lower affinity than the wild-type BChE for ONPRA, 

according to Km values. The substrate concentration needed to achieve the half 

maximum velocity was about three fold higher for the E197Q BChE (Km = 12.7 

± 1.49 mM), than for the wild-type BChE (Km = 4.4 ± 0.29 mM).  

By definition, the binding of a non-competitive inhibitor occurs in a peripheral 

site of the enzyme and not on the active site. Therefore, substrate and inhibitor 

do not compete for the access to the same site. However, inhibitors binding on 

peripheral sites alter the molecular conformation of the enzyme, preventing the 

substrate to bind to the active site. Consequently, Vmax is altered, as 

demonstrated for AAA activity when using serotonin as inhibitor. By Lineweaver-

Burk plots a decrease in Vmax, and no alteration in Km, were observed for both 

E197Q mutant and wild-type BChE-associated AAA activities (Fig. 4.8; Fig. 4.9), 

fitting a non-competitive inhibition mechanism. However, E197Q (Ki = 308 ± 

10.67 µM) displayed much lower affinity to serotonin than the wild-type BChE 

(Ki = 63 ± 2.58 µM), presenting a higher deviation for the non-competitive 

model of inhibition. 
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4.3.3.1 Catalytic efficiency of the E197Q and wild-type BChE-
associated AAA activities with the ONPRA substrate  

The natural affinity and catalytic power of BChE-associated AAA activity were 

affected by the replacement of glutamic acid 197 by glutamine. The Kcat/Km 

constant was about 10-fold lower for the AAA BChE-associated E197Q mutant 

(0.78) compared to the wild-type enzyme (7.8).  
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Fig. 4.8: Lineweaver-Burk plot of the aryl acylamidase activity of the purified wild-type 
BChE in the absence and presence of serotonin, with several concentrations of the 
substrate ONPRA. (■) No inhibitor, (▼) 2.5 x 10-5 M, and (▲) 5 x 10-5 M serotonin.  
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Fig. 4.9: Lineweaver-Burk plot of the aryl acylamidase activity of the purified mutant 
E197Q BChE in the absence and presence of serotonin, with several concentrations of 
the substrate ONPRA. (▼) No inhibitor, ( ) 1.8 x 10-4 M, and (▲) 3.3 x 10-4 M. 
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4.4 Discussion 

In this study, it was shown that human recombinant wild-type and a mutant 

(S198D) BChE, over-expressed in a cell culture system, showed AAA activity 

(Fig. 4.4). Moreover, purified recombinant wild-type BChE and a second mutant 

type (E197Q), also showed AAA activities, which were inhibited by serotonin, 

confirming the existence of this side activity on BChE (Fig. 4.8; Fig. 4.9). 

4.4.1 AAA activity on the active site S198D BChE mutant  

The amino acid serine (S), present on the active site catalytic triad of 

cholinesterases, is the main amino acid responsible for the esterase activity 

(Shafferman et al., 1992; Ordentlich et al., 1993). As expected, its replacement 

by aspartic acid (D) abolished the esterase activity. Like serine, aspartic acid 

often occurs in active sites. However, in contrast to serine, which is a small 

residue displaying intermediate hydrophobicity, aspartic acid is an 

intermediately large, hydrophilic residue, implying molecular conformational 

changes when one is replaced by the other. However, catalysis was still possible 

for the BChE S198D associated aryl acylamidase activity (Fig. 4.4); indicating 

that esterase and AAA activities have distinct active sites.  

The AAA activity of the mutant BChE S198D decreased circa 65% in relation to 

the wild-type enzyme, and could not be efficiently inhibited by a specific BChE 

inhibitor (ethopropazin), which was effective towards the wild-type enzyme (Fig. 

4.6). Ethopropazin inhibits the esterase activity of the usual human BChE in a 

competitive way (Simeon-Rudolf et al., 2001). It is not clear how the AAA 

molecular domain is interacting with this compound, but its binding affinity is 

affected on the BChE S198D active site mutant. This is not surprising, once the 

mutation in the BChE active site might be critical for the binding of this 

inhibitor, leading to loss of affinity due to polarity and conformational changes 

that interfere with EI interaction.  

4.4.2 New substrates for the aryl acylamidase activity 

New substrates have been developed with the intent to allow a faster AAA 

activity assay. With the usual o-nitroacetanilide substrate, the AAA catalytic 

reaction is slow and dependent on a temperature condition of 37°C. 
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The binding affinity of the purified human wild-type BChE-associated AAA 

activity for the N-2-nitrophenylpropanamide substrate was 3.4 fold higher (Km = 

4.4 mM), than for the o-nitroacetanilide (Km = 14 mM; Darvesh, 2003) 

substrate, meaning that the AAA assay became more effective with N-2-

nitrophenylpropanamide.  

The catalytic power and affinity of the AAA activity of the BChE E197Q mutant 

was weakened by 10-fold compared to the wild-type BChE. Similarly, the 

catalytic affinity (Kcat/Km) of the esterase activity of BChE, with the substrate 

butyrylthiocholine, also decreased about 10-fold for the E197Q mutant (Millard 

et al., 1998). In this sense, the kinetic behaviors of aryl acylamidase and 

esterase activities were affected similarly for the E197Q mutant. Therefore, AAA 

and esterase activities, of the BChE active site mutant E197Q, had similar 

response regarding their substrate affinities.  

4.4.2.1 Serotonin inhibition mechanism 

Serotonin here was demonstrated to act as a non-competitive inhibitor of the 

human recombinant wild-type BChE-associated AAA activity. For the BChE 

E197Q AAA activity, the non-competitive inhibition mechanism model is also 

accepted. However, it is on the limit of acceptance to fit this non-competitive 

model of inhibition towards serotonin. 

AAA affinity for serotonin was greatly affected in the E197Q active site BChE 

mutant, which showed a ~4.8 fold higher Ki than for the wild-type BChE (Fig. 

4.8; Fig. 4.9). Therefore, the esterase active site modification E197Q affected 

serotonin binding. Nevertheless, the binding site for serotonin on BChE is not 

known. However, if one considers that the BChE active site replacement, of a 

negatively charged amino acid (E) by a polar residue (Q), changes the esterasic 

site affinity for positively charged compounds, the decrease in affinity of the 

mutant BChE for serotonin (a positively charged compound) could be justified. 

Furthermore, the S198D BChE mutant AAA associated activity lost its sensitivity 

towards serotonin, implying that the substitution of the amino acid serine (S) 

for the aspartic acid (D), in the esterasic active site, drastically affected 

serotonin binding.  
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These data ultimately reveal an interesting relation of serotonin and 

cholinesterases: a) serotonin inhibits BChE-associated AAA activity in a non 

competitive manner, and b) the affinity of serotonin towards BChE active site 

mutants is affected. It is not known if serotonin inhibits the esterase activity 

through a competitive mechanism. However, it is known that ChEs are slightly 

inhibited by this compound (Gilboa-Garber et al., 1978). The fact that serotonin 

inhibits AAA in a non-competitive manner, indicates that it is binding to a site in 

the periphery of the AAA active site. On the other hand, a reduced affinity of 

BChE active site mutants for serotonin shows that the esterasic catalytic triad is 

essential for serotonin binding. In fact, the behavior of some inhibitors towards 

esterase and AAA activities was previously reported to be ambiguous. 

Competitive inhibitors of the esterase activity, like eserine and neostigmine, 

behave non-competitively towards the AAA activity (Oommen and 

Balasubramanian, 1978). Second, cholinesterases substrates (acetylcholine and 

butyrylcholine), act as non-competitive inhibitors of the AAA activity (Oommen 

and Balasubramanian, 1978). Therefore, these substrates and inhibitors bind to 

a site in the periphery of the AAA active site. It indicates that the esterasic 

active site, where these compounds are binding to, might be functioning as a 

peripheral site for the AAA activity.  

It is not clear if a high concentration of serotonin could provoke direct inhibition, 

or a down regulation of cholinesterases in vivo. However, as shown here, it 

binds to cholinesterases in enzymatic assays. It implies that serotonin could act 

as an inhibitor or as a substrate of cholinesterases in vivo. If cholinesterases are 

involved with serotonin metabolism, physiological levels of this compound could 

influence their expression, and vice versa, as a feedback mechanism. For 

instance, the administration of cholinesterases inhibitors has been reported to 

increase serotonin levels in mice and rat (Mehta et al., 2005; Aldridg et al., 

2005). Of course the mechanism behind the relation of ChEs inhibition versus 

serotonin increase is not clear. However, it is not an isolated case, as the 

occurrence of cholinesterases and serotonin is also inversely proportional in the 

AD brain (Small, 1996; Wu and Swaab, 2005).  
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4.5 Summary 

• AAA activity is present in recombinant BChE; it is decreased, but not 

abolished, in BChE active site mutants (S198D; E197Q); 

• Esterase and AAA activities can have their catalytic powers identically 

decreased due to a specific amino acid alteration (E197Q), indicating that 

both activities are a property of the same protein;  

• The esterase and AAA activities were not affected in the same way by a 

mutation of the BChE esterasic active site (S198D), indicating they have 

distinct active sites;  

• Serotonin acts as a non-competitive inhibitor of the AAA activity of a purified 

human wild-type BChE, demonstrating that it is directly interacting with 

cholinesterases; 

• The affinity of BChE E197Q mutant for serotonin was affected, indicating that 

the glutamic acid (E) at the position 197 of the BChE active site is relevant 

for serotonin binding; 

• Serotonin inhibition was not effective towards the AAA activity of the BChE 

S198D mutant. This indicates that the amino acid serotonin (S), of the 

esterasic catalytic triad, is essential for serotonin binding. 
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5.1 General findings 

Novel functions of cholinesterases have been supported by this work. AChE and 

BChE have been shown to present a developmentally regulated spatio-temporal 

expression pattern during chick (Gallus gallus) pineal embryogenesis in chapter 

2. The involvement of AChE expression with pineal remodeling and 

photoreceptor cell differentiation, and a high activity of it in apoptotic cells were 

shown during embryogenesis of the chick. BChE activity was intense in 

proliferative stages and was down-regulated in less proliferative periods of the 

pineal development, in corroboration with earlier findings of its involvement 

with proliferation (Layer, 1987; Robitzki et al., 2000).  

In chapter 3, the relevance of AChE for the development of another model 

organism, the zebrafish (Danio rerio), was investigated with focus on a 

serotonin related non-cholinolytic activity of cholinesterases. It was 

demonstrated that the AChE mRNA starts to be transcribed shortly after the 

genomic transcription activity begins in this organism, although, initially no 

cholinergic activity is present. The presence of a non-cholinolytic side activity of 

AChE, the aryl acylamidase, was detectable as early as the first AChE 

transcripts, indicating a relevance of it for early zebrafish development. During 

in vivo experiments, a strong malfunction of zebrafish embryogenesis, as a 

result of serotonin administration (a neurotransmitter and AAA inhibitor) was 

observed by the period when the genomic activity of ACHE should be activated. 

Therefore, serotonin administration disrupted early developmental events, in 

association with the AChE expression onset.  

Regarding the interaction of serotonin with cholinesterases molecules, in vitro 

experiments revealed a non-competitive mechanism of inhibition of human aryl 

acylamidase, associated to wild-type and mutants BChEs over-expressed in cell 

culture (chapter 4). Besides, the esterase and AAA catalytic powers were not 

affected in the same way in an esterasic active site recombinant mutant enzyme 

(S198D), but could identically respond to another active site specific mutation 

(E197Q). Therefore, both activities are indeed located on the BChE molecule, 

presenting not identical catalytic sites.  
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5.2 Concluding remarks 

This was a broad study on novel functions of cholinesterases, through the 

achievements of this work new research directions were opened, delivering 

interesting findings for promising future investigations.  

5.2.1 The chick pineal gland embryogenesis and the spatio-temporal 

expression of ChEs  

Investigating the onset of photoreceptors differentiation during embryogenesis 

of the chick pineal gland, a new photoreceptor (PRC) morphology was detected, 

which was not described in the post-hatching pineal gland. The characterization 

of this PRC morphology remains to be done by electron microscopy. The aim is 

to identify whether it has associated lamellar complexes, which are lost after 

embryogenesis, or if it is a unique PRC type appearing only during the chick 

pineal embryogenesis period.  

A second interesting point to be investigated is the pineal basal lamina rupture, 

which appears with the formation of the mammilliform projections during pineal 

expansion. It is already known that cells migrate through the basal lamina to 

form new vesicles, but it is not known if the rosettes of cells (AChE-positive) on 

the apices of the mammilliform projections are leading to ruptures of the basal 

lamina. AChE was found here to guide the surrounding proliferating cells on the 

mammilliform projections, and is possibly leading to the rupture of the basal 

lamina. This question can be also answered by investigating this material by 

electron microscopy.  

The expression of ACHE in pineal photoreceptors and not in retina PRCs is 

intriguing. A relation of AChE expression to photoreceptors cells undergoing 

apoptosis in the pineal organ has been shown in this work. AChE has been 

earlier shown to be relevant for the development of retina photoreceptors, 

which degenerated during development of AChE KO mice (Bytyqi et al., 2004). 

Photoreceptors cannot well develop in the absence of AChE, but were 

demonstrated to need its expression to initiate the apoptotic process by the 

intrinsic pathway (Park et al., 2004). The contradiction of these premises can be 

explained by the fact that apoptosis can be activated by two different pathways, 

which can be dependent or not on AChE expression. Therefore, PRCs death can 
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occurr with the involvement of AChE or without it, in accordance with the type 

of apoptotic process. In retina, PRCs normally do not die in postnatal periods, 

but their death can be induced, e.g. by the absence of AChE in KO mice. It 

would be interesting to verify if the death of these PRCs is happening by an 

extrinsic pathway, which does not involve AChE expression. For this purpose, 

the levels of factors involved in the extrinsic death pathway, e.g. TNF, can be 

investigated in the retina of AChE KO animals. Other approaches like si-RNA, to 

silence AChE expression, can also be used as a tool to characterize its relation 

to the apoptotic process in retina and pineal organ.  

In this study, the involvement of AChE with pineal remodeling was 

demonstrated. Essentially, the repetition of this study using the pineal organ of 

an AChE KO organism can support my findings. AChE KO mice are available and 

could be used for this purpose. 

Nevertheless, the presence of cholinesterases on the mature pineal gland raises 

the question whether there would be a physiological functionality for these 

proteins in this tissue. Daily alterations of serotonin concentration, controlling 

the circadian rhythm, have been correlated with AChE activity fluctuations 

(Quay et al., 1971; Schiebeler, 1974; Mohan, 1974; Wood, 1979; Lewandowski, 

1986; Pan, 1991). Therefore, AChE expression is suggested to be dependent of 

serotonin physiological levels. However, this point has never been investigated 

in detail, making use of molecular approaches. Meanwhile, the possibility 

remains that AChE expression is under circadian rhythm control.  

5.2.2 AChE-AAA expression in zebrafish and embryogenesis malfunction 

under serotonin administration  

The aryl acylamidase and esterase activities show different profiles during 

zebrafish development, indicating that AChE is suffering post-translational 

modifications occurring during the transition from the embryonic to the larval 

period. The existence of post-translational modifications can be verified by mass 

spectrometry, more specifically, by the Quadrupole-time-of-flight (Q-TOF) 

tandem mass spectrometry. This is a relatively new approach with a high 

performance analysis, which requires powerful instruments and proper training. 

It was not possible to conduct such analysis during this work; however, it can 
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be conducted at any time using zebrafish homogenates to investigate this 

matter.  

Regarding the sensitivity of zebrafish embryos towards serotonin, embryonic 

malformations were found to be related to the onset of AChE expression during 

the blastula period. A direct influence of serotonin down regulating AChE 

expression is hypothesized to happen by this period, resulting in future 

developmental malformations. The expression of developmental markers (myo-

D, gsc, and ngn-1) was affected in areas where AChE is also normally active. 

Therefore, AChE expression in these areas will be investigated by in situ 

hybridization to establish whether its expression has also been affected. A delay 

on AChE expression under serotonin administration can also be investigated by 

quantitative RT-PCR, to reveal its effect on the ACHE transcription activity.  

Moreover other zebrafish developmental markers can be used to follow the 

embryogenesis disruption pattern under serotonin administration.  

5.2.3 AAA activity active site on BChE 

The aryl acylamidase activity is suggested to be a property of cholinesterases. 

Therefore, its existence can be just approached by its activity, limiting the 

methodologies to show its relevance. 

Developmental biology can bring interesting insights about the relevance of 

AAA, as investigated with zebrafish. However, to understand how this activity is 

working in relation to the esterase activity, and where it is located on 

cholinesterases molecules, an essentially biochemical strategy has to be drawn, 

designing meaningful mutant enzymes to obtain sound results with molecular 

modeling of kinetics studies. In the present study, only two human BCHE 

mutant enzymes were investigated in relation to their AAA activity. However, 

several other mutants can be investigated to really underline which amino acids 

comprise the AAA catalytic site.  
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5.3 Further work 

Two new lines of research, which opened within this work, will be closer 

investigated: 

During the investigations of chick pineal PRC cells differentiation, one PRC 

morphology was identified as characteristic of embryonic pineals, as it was not 

reported to occur in the mature pineal organ. Further characterization of this 

PRC morphology will be conducted by electron microscopy, bringing the ultimate 

answer whether it is a PRC type present only at embryonic periods. In parallel, 

also by electron microscopy, the pineal basal lamina limits will be investigated 

with the intent to verify if its rupture is caused by the AChE-positive cells 

migration during pineal expansion.  

Regarding the zebrafish embryonic malformations resulting from serotonin 

administration, a complementary study will address its connection with the 

onset of AChE transcripts. Furthermore, in situ hybridization studies, to localize 

AChE expression, will be conducted in embryos affected by serotonin 

administration. Moreover, other zebrafish developmental markers will be used, 

to better characterize the zebrafish development disruption pattern under 

serotonin administration.  

Furthermore, other possibilities of further research, based on the work here 

reported, are still open, as already mentioned in concluding remarks. 
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6 Summary 

 

The non-specificity of cholinesterases to cholinergic innervated tissues, their 

early onset during embryogenesis of many organisms, and their non-cholinolytic 

aryl acylamidase activity, indicate that these enzymes are involved with 

physiological processes other than the termination of nervous impulse. In this 

study, cholinesterases expression and function were investigated during the 

development of two model organisms, chicken (Gallus gallus) and zebrafish 

(Danio rerio), with the focus on non-cholinolytic and non-catalytic events. In 

chicken, the pineal organ was investigated taking into consideration: a) its 

similarity to the eye, as earlier studies suggested a relevance of cholinesterases 

to retina embryogenesis, b) its relevance on controlling physiological functions 

following a circadian rhythm, and c) its disfunction in pathological states, which 

also present altered cholinesterases expression, like Alzheimer’s disease. 

Indeed, in this study, a remarkable developmentally regulated switch from 

butyrylcholinesterase (BChE) to acetylcholinesterase (AChE) expression during 

pineal embryogenesis was found, in association with cell proliferation and 

differentiation, respectively. Even more, AChE-positive cells were shown to 

guide the pineal epithelium remodeling (leading to follicles development), 

indicating it plays a pivotal role in pineal embryogenesis. Besides, the 

appearance of follicular supportive cells correlated with this remodeling onset, 

followed by photoreceptor cells differentiation, indicating that these events are 

interconnected. Furthermore, AChE was demonstrated to be active in cells 

undergoing apoptosis during pineal embryogenesis, corroborating earlier in vitro 

studies indicating its involvement with the apoptotic process. However, the 

mechanism of action of cholinesterases in most of these developmental events 

is not clear, in particular whether the function could be structural or non-

cholinolytic. Using zebrafish as a second model organism, a non-cholinolytic 

activity of AChE was investigated, from the time its transcription begins until 

larval development of this organism. This study revealed a particular profile of 

the AChE-associated aryl acylamidase activity (AAA) during development of 

zebrafish. AAA was particularly more pronounced than the esterase activity 

during zebrafish embryogenesis, indicating a relevance of this activity during 

early development. This non-cholinolytic activity was further investigated in 
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human recombinant BChE wild-type and mutant proteins to address its catalytic 

power in enzymes with low cholinergic functionality. The results of this study 

indicate that the esterase and AAA activities are displayed by separate catalytic 

sites on cholinesterases. Altogether, these three studies on novel functions of 

cholinesterases address aspects of these enzymes also in relation to serotonin, 

as follow: a) cholinesterases are implicated in the development of the pineal 

gland, an organ controlling serotonin metabolism; b) a temporal high sensitivity 

of zebrafish embryos towards serotonin administration correlated with AChE 

expression onset during their blastula period, and c) serotonin directly interacts 

with cholinesterases, demonstrated through a non-competitive inhibition of the 

AAA activity on purified recombinant human BChE.  

This PhD work, therefore, presents strong evidence of the AChE involvement 

with morphogenesis, with further implications of its expression for pineal cells 

differentiation and apoptosis. It also writes further history on the little 

investigated side activity of cholinesterases, the aryl acylamidase, and supports 

a link between cholinergic and serotonergic systems.  
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8.1 Preparation of solutions  
Solutions used in experiments described in the chapter 2  

4% Formaldehyde 10 ml 37% Formalin 

90 ml 1 x PBS 

100 ml 

30 mM cupper sulphate (M = 250 
g/mol) 

0.41 g/250 ml dH2O 

0.1 M Sodium citrate (M = 294 
g/mol) 

7.35 g/250 ml dH2O 

PBS (Phosphate buffered saline) dH2O 

140 mM NaCl 

3 mM KCl 

13.7 mM Na2HPO4 

1.5 mM KH2PO4 

pH 7.1 

Autoclave 

PBST 1x PBS 

0.1% Tween 20 

25% Sucrose 2.5g Sucrose  

Add dH2O to a final volume of 10 ml. 

0.1 M Tris-maleic-buffer pH 6.0 (1 L) 

 

12.2 g Tris (M = 121.14 g/mol) 

11.6 g Maleic acid (M = 116.1 g/mol) 

dH2O to a final volume of 900 ml 

Adjust to pH 6.0 with 2.5 M NaOH  

Add dH2O to a final volume of 1 L.  

Additional solutions used in experiments described in the chapter 3 

Alkaline phosphatase staining buffer 100 mM Tris-HCl, pH 9.5 

50 mM MgCl2 

100 mM NaCl 

0.2% Tween-20 

0.2% Triton X 

60 mg/50 ml Levamisol 
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BCIP 

 

50 mg/ml in 100% DMF 
(Dimethylformamid)  

Culture medium for zebrafish (10x) 28 ml 5 M NaCl 

5.4 ml 1 M KCl 

250 µl 1 M Na2HPO4 

440 µl 1 M KH2PO4 

13 ml CaCl2 

10 ml 1 M MgSO4 

10 ml 1 M Hepes 

adjust pH 7.0 with 1 M NaOH 

 dH2O to 1 L solution 

Dilute 1:10 plus 0.1% Methylenblue (2 
mg/ml) in a final volume of 500 ml. 

Esterase assay buffers: 0.1 M Potassium phosphat, pH 8.0 

a) 1 M K2 HPO4  

b) 1 M KH2 PO4  

Use 93.4 ml 1M K2HPO4 buffer for final 
volume of 950 ml with dH2O. Add the 
amount necessary of KH2PO4 buffer to 
achieve pH 8.0. Add dH2O to a final 
volume of 1 L. 

Fish water 30 L dH2O   

1.2 g see salt 

plus NaHCO3 to achieve pH 6.5 – 7.5 

Hybridization buffer 

 

50% formamide  

5xSSC 

50 µg/ml heparin 

500 mg/ml torula (yeast) RNA* 

0.1% Tween-20  

Final volume of 50 ml with distillate 
water plus 92µl 1M Citric acid. 

Homogenization buffer 

 

Na-phosphate extraction buffer [10 
mM Na-phosphate, pH 7.4, 0.5% 
Triton X-100] with protease inhibitor 
cocktail (1:200 before use- 2.5 µl/5 ml 
buffer). 
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KpI buffer for AAA assay 1 M Potassium phosphat, pH 8.0 

a) 1 M K2 HPO4  

b) 1 M KH2 PO4  

Mix both solutions, adding the amount 
necessary of KH2PO4 buffer to achieve 
pH 8.0. Final volume of 1 L with dH2O. 

Na HCO3 buffer for DTNB dilution 100 mg NaHCO3 /100 ml 0.1 M 
Potassium phosphate, pH 8.0 (= 
0.1%). 

NBT 

 

75 mg/ml in 70% DMF 

 

Ringer's Solution 

 

116 mM NaCl 

2.9 mM KCl 

5 mM HEPES, pH 7.2 

1 mM EDTA 

20x SSC 

 

3 M NaCl  

0.3 M sodium citrate  

pH 7.0 (with 1M HCl) 

Autoclave the solution. 

Additional solutions used in experiments described in the chapter 4 

DMEM reduced medium  

 

2% FCS  

1% Glutamine  

0.1% Penicillin/Streptomycin 

DMEM complete medium Gibco plus  

10% FCS 

1% Glutamine  

0.1% Penicillin/Streptomycin  

LB agar  

 

 

 

 

 

LB agar 32 g  

Final volume 1 L dH
2
O  

Autoclave and after cooling (50 °C) 
add antibiotics if desired. For plates, 
40 – 100 ml solution gives 85 -150 
mm plates. Flame plate to avoid air 
bubbles. Store at 4°C. 
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LB medium LB 20 g 

1 L dH
2
O 

Autoclave and store at RT 

10x loading buffer 57% glycerol 

100 mM Tris pH 8.0,  

10 mM EDTA·Na2 2H2O,  

~ 0.001% bromophenol blue 

Ponceau-S staining solution 5% HCl, 0.2% Ponceau-S 

Running buffer 15 g Tris-base 

72 g Glycin 

0.1% SDS 

Final volume 2 L DH2O  

50x TAE: 2 M Tris 

50 mM EDTA·Na
2
. 2H

2
O 

4% HCl, pH 8.5 

TE buffer 10 mM Tris 

1 mM EDTA·Na
2
 2H

2
O, pH 8.0. 

Transfer buffer 3 g Tris 

14.4 g glycine 

Add dH2O to a final volume of 1 L.  
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8.2 Materials 

8.2.1 Drugs/chemicals 

Aceton  Merck, Darmstadt 

Agarose  Peqlab, Erlangen  

Alkaline phophatase  Roche, Mannheim  

Ampicilline, sodium salt  Sigma, Deisenhofen  

APS  Roth, Karlsruhe  

ATC  Serva, Heidelberg  

ATP  Sigma, Deisenhofen  

BCIP Roche, Manheim 

Brilliant Blue G-250 Merck, Darmstadt 

Bromophenol blue  Merck, Darmstadt 

BrdU Roche, Mannheim 

BSA  Sigma, Deisenhofen  

BTC Fluka, Buchs 

BW 284C51 Sigma, Deisenhofen 

CaCl
2
 Merck, Darmstadt 

Citric acid Merck, Darmstadt 

Cuper sulphate Merck, Darmstadt 

DAB  Sigma, Deisenhofen  

DAPI  Boehringer, Mannheim  

DEPC Sigma, Deisenhofen 

Dianisidine  Fulka, Bucsh  

Diethanolamine  Sigma, Deisenhofen  

DMF  Merck, Darmstadt 

DMSO  Sigma, Deisenhofen  

DNase Roche, Manheim 

DNA standard  Roth, Karlsruhe  

DTNB( 5,5’-Dithio-bis-2-nitro-benzoacid)  Serva, Heidelberg  

EDTA·  Merck, Darmstadt 

Eserine Sigma, Deisenhofen 

Ethanol  Roth, Karlsruhe  

Ethidium bromide  Roth, Karlsruhe  

Ethopropazin (10-(2-diethylaminopropyl)phenothiazine 
hydrochloride 

Sigma, Deisenhofen 

Eukobrom Tetenal developer  Hirrlinger, Stuttgart  

Film developer T Max 400 Kodak Hirrlinger, Stuttgart 

Formaline 37%  Merck, Darmstadt 

Formamide  Sigma, Deisenhofen  

Gelatin  Sigma, Deisenhofen  

Glucose  Merck, Darmstadt 
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Glutamin Serva, Heidelberg 

Glycin Merck, Darmstadt 

Glycerol  Merck, Darmstadt 

H
2
O

2
 Merck, Darmstadt 

HCl (Chloridric acid) Merck, Darmstadt  

Heparin Sigma, Deisenhofen 

HEPES, sodium salt  Merck, Darmstadt 

5-hydroxitryptamine  Sigma, Deisenhofen 

Iso-OMPA  Sigma, Deisenhofen  

Isopropanol  Merck, Darmstadt 

Kaisers Glyceringelatin Merck, Darmstadt 

KCl (Potassium chloride) Merck, Darmstadt 

K2HPO4 (di-Potassium hydrogen phosphate) Merck, Darmstadt 

KH2PO4 (Potassium di-hydrogen phosphate) Merck, Darmstadt 

Levamisol  Sigma, Deisenhofen 

Maleic acid  Merck, Darmstadt 

Methanol  Merck, Darmstadt 

Methylenblue Merck, Darmstadt 

MgCl2 (Magnesium chloride) Merck, Darmstadt 

MgSO4 (Magnesium sulphate) Merck, Darmstadt 

Milk powder  Roth, Karlsruhe  

Na3Citrat (Sodium citrate) Merck, Darmstadt 
NaCH

3
COO (Sodium acetate) Merck, Darmstadt  

NaCl (Sodium chloride) Merck, Darmstadt 

NaHCO3 (Sodium hydrogen carbonate) Merck, Darmstadt 

Na
2
HPO

4 (di-Sodium hydrogen phosphate) Merck, Darmstadt 

NaOH (Sodium hydroxid) Merck, Darmstadt 

NBT Boehringer, Mannheim 

o-Nitroacetanilid Merck, Darmstadt 

o-Nitroanilin Merck, Darmstadt 

ONPRA  Prof. Darvesh (Dalhousie 
University) 

PBS  Gibco, Eggenstein  

Phenol  VWR, Darmstadt  

Phosphoric acid  Merck, Darmstadt 

Ponceau S  Sigma, Taufkirchen  

Protease inhibitor cocktail  Sigma, Taufkirchen  

RNAlater solution Sigma, Taufkirchen 

SDS  Merck, Darmstadt  

Sucrose  Merck, Darmstadt  

TEMED  Roth, Karlsruhe  

Tissue freezing medium  Miles Scientific, USA  

Torula (yeast) RNA Sigma, Deisenhofen 

Tris  Sigma, Deisenhofen  
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Tri-reagent  Molec. Research Center, 
USA 

Tri-sodium citrate·2H
2
O  VWR, Darmstadt  

Triton X-100  Sigma, Deisenhofen  

Tryptone-peptone  Difco, UK  

Trypsin/EDTA  Gibco, Eggenstein  

Tween-20 Roth, Karlsuhe 

Vectorschield mounting medium  Vector Lab, USA 

 

8.2.2 Kits 

Avidin-Biotin Vectastain Elite ABC kit PK-6102 Vector lab, USA 

BrdU Labeling and Detection Kit I – N° 1 296 736 Roche, Mannheim 

DAB Vectastain peroxidase substrate kit, SK-4100 Vector lab, USA 

DOTAP liposomal transfection reagent Roche, Mannheim 

In Situ Cell Death Detecion Kit – N° 2 156 795 Roche, Mannheim 

LuniGLO Chemiluminescent substrate – N° 546102 KPL, UK 

Plasmid Maxi Kit  Qiagen, Hilden  

Reverse trascriptase reaction kit Promega, Manheim 

TUNEL assay for apoptosis – N° 1767305 Roche, Mannheim 

Vip substrate kit for peroxidase activity, SK - 4600 Vector lab, USA 
 

8.2.3 Enzymes and supplements 

Alcalin phosphatase (2000 U/mg)  Boehringer, Manheim 

Hexanucleotide mix Roth, Karlsruhe 

Nuclease free water  Promega, Mannheim 

Restriction endonucleases New England Biolabs, USA 

Restriction endonucleases buffers  New England Biolabs, USA 

RQ1 Rnase-free DNase Promega, Manheim 

Taq DNA polymerase Roche, Mannheim  

 

8.2.4 Cell culture medium and supplements  

DMEM powder  Gibco, Eggenstein  

FCS  Gibco, Eggenstein  

F12 Nutrient mixture Gibco, Eggenstein 

Horse serum (normal) Vector Lab, USA 

L-Glutamine  Seromed, Berlin  

L- Methionine sulfoximine Sigma, Taufkirchen 

Penicillin/Streptamycin Gibco, Eggenstein 
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Ultraculture serum free medium- BioWhittaker Cambrex, USA 

8.2.5 Consume material 

Blotting paper  Whatman, Maidstone, UK  

Filter - paper  Schleider & Schül, Dasel 

Crystal cuvettes BrandTech Scientific, USA 

Falcon tubes (14 ml)  Greiner, Frickenhausen  

Films  Röntgen films, Sigma, Deisenhofen  
Polaroid Films, Amersham  

Flascks - cell culture (50 and 250 ml) Greiner, Frickenhausen 

Glass coverslips  Menzel-Gläser, Braunschweig  

Glass slides  Menzel-Gläser, Braunschweig  

Membrane Immobilon-P  Millipor, Eschborn 

Molecular weight markers  Roth, Karlsuhe 

Nitrocellulose membranes  Whatman Biometra, Göttingen  

Parafilm  Neolab, Heidelberg  

Pasteur pipettes  Volac, UK  

Petry-disches (3.5 and 10 cm ∅) Greiner, Frickenhausen 

Plates – 24 well Greiner, Frickenhausen 

Pipettes (1 ml, 5 ml, 10 ml, 25 ml)  VWR, Darmstadt  

Pipette tips  AHN Biotechnologie, Nordhausen  

Plastic cuvettes  BrandTech Scientific, USA 

Reaction tubes (0.5, 1 and 2 ml) AHN Biotechnologie, Nordhausen 

Ultrafiltration membrane - PM10 Amicon/Millipor, Eschborn 
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8.3 Equipments  
Autoclave  Webeco, Bad Schwartau  

Axiophot microscope equiped with Nomarski and 
fluorescent light supply  

Carl Zeiss, Jena 

Binocular Stemi SV 11 Carl Zeiss, Jena 

Cammera Olympus IMT-2 SC 35 Olympus, Hamburg 

Cell culture hood  Heraeus, Hanau  

Centrifuges J2-21 Beckman, USA 

Centrifuges model 1, OR Biorad, München 

CO2-incubator Heraeus, Hanau 

Confocal – TCS laser scanning spectral 
microscope, equipped with argon-cripton-laser 

Leica, Bensheim 

Cryostat H 11500 OM Microm, Walldorf  

Digital camara (coupled to bonocular) EHD KamPro 04 

Electrophoresis chamber  Peq-lab, Erlangen  

Electrophoresis chamber  Bio-Rad, München  

Electrophoresis power supply  Bio-Rad, Consort E321, München, 
Biometra Powerpack P25  

Freezers  Queue Systems, USA  

Heat block  Janke & Kunkel, Staufen  

Incubators, for E. coli culture  Heraeus, Hanau  

Incubator, for HEK cells culture  Nuaire, Sarstedt  

Incubator, for zebrafish culture  Memmert, Schwabach 

Incubator-shaker  New Brunswick Scientific, USA 

Magnetic stirring plates  Itec, Staufen  

Microwave oven  Bosch, Stuttgart  

pH meter  WTW (Wissenschaftlich Technische 
Werkstätten), Weilheim  

Pipettes  Eppendorf, Hamburg  

Scales Sartorius, Göttingen  

Shakers  GFL, Burgwedel  

Sonicator  Bandelin Electronic, Berlin  

Spectrophotometer - Lambda 2 Perkin Elmer, Langen  

Sterilization oven  Memmert, Schwabach  

Thermocycler  Biometra, Göttingen  

Ultracentrifuge  Beckman, Krefeld  

UV transilumination  AGS, Heidelberg 

Vacuum concentrator, Speedvac  Bachofer, Reutlingen  

Vortex  Heidolph, GFL, Burgwedel  

Waterbaths  Memmert, Schwabach  
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