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Abstract 

Ubiquitous computing environments offer a wide range of devices in many different shapes 
and sizes, creating new possibilities for interaction. In the context of meetings and teamwork 
situations, it is desirable to take advantage of their different properties for synchronous col-
laboration. Besides providing an adapted user interface, this requires the software to be de-
signed for synchronous access to shared information using heterogeneous devices with different 
interaction characteristics. The handling of these requirements poses challenges for software 
developers. As this field is still emerging and no mature models, tools, and standards are at 
hand, developers have to create their own solutions from scratch. 
The goal of this thesis is to provide guidance and support for developers of synchronous group-
ware applications for ubiquitous computing environments. They have to be enabled to develop 
applications more efficiently and with the flexibility and extensibility that is required for ubiq-
uitous computing. The development effort can be reduced effectively if support for developers 
is provided at several levels. Developers need assistance when creating models of the applica-
tions to be developed, when choosing an appropriate architecture, when creating the design, 
and finally when implementing. This implies that an architecture-driven, model-based devel-
opment approach should be followed. 
While the implementation of a single synchronous UbiComp application still requires re-
search, the development of appropriate development support is even more challenging. Com-
mon properties of ubiquitous computing applications have to be identified. Future develop-
ments and extensions have to be predicted. Requirements of different research areas have to 
be fulfilled. Addressing these aspects, the goal of this dissertation is accomplished by providing 
extensions to the state of the art at four levels: 
(1) A conceptual model of synchronous UbiComp applications defines a high-level structure for 

applications that ensures reusability and extensibility of developed software components. 
It identifies separation of concerns, degree of coupling and sharing, and level of abstrac-
tion as the three main design dimensions of these applications. The conceptual model 
provides two key contributions to the state of the art. First, it proposes the strict separation 
of user interface and interaction concerns orthogonal to the level of abstraction that is not 
found in current HCI models. This is a crucial extension of HCI models that is required in 
the context of ubiquitous computing. Second, it introduces a new view on the concept of 
sharing. By applying the CSCW concept of sharing in the context of ubiquitous comput-
ing, sharing user interface, interaction, and environment state becomes relevant. Thereby, 
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the concept of sharing as known from CSCW can be extended to function as a guiding 
principle for UbiComp application design. This novel design approach helps ensuring the 
extensibility and flexibility that is required in ubiquitous computing. 

(2) A flexible software architecture identifies essential abstractions that support the develop-
ment of synchronous applications in “roomware” environments. Roomware refers to the 
integration of room elements with information technology, such as interactive tables, 
walls, or chairs. Roomware environments represent one form of ubiquitous computing en-
vironment. They are used in this thesis as an application context for the conceptual 
model. The software architecture refines the conceptual model to meet the needs of 
roomware environments. 

(3) An object-oriented application framework that has been designed and implemented pro-
vides a reusable design and reusable software components. Furthermore, extensibility is 
supported by explicit mechanisms that are provided to allow adaptability for variable as-
pects of applications. Thus, the application framework helps developers with the design 
and implementation. 

(4) To show how model, architecture, and framework can be applied, the design of sample 
roomware applications is explained. To demonstrate the extensibility, several new forms of 
interaction that are required for roomware environments are implemented. The developed 
applications and interaction forms are used in i-LAND, the roomware environment at 
Fraunhofer IPSI. Besides being a contribution on their own, the developed applications 
and new forms of interaction provide evidence that the conceptual model effectively sup-
ports developers in meeting the requirements of roomware environments. They show that 
the model helps reduce the implementation effort when accompanied by appropriate soft-
ware development tools such as the application framework. 

The conceptual model, software architecture, and application framework presented in this thesis 
relieve software developers from the burden of handling all details of multiple interaction 
forms, and of many critical issues when dealing with synchronous collaboration. By these 
means, the developer can concentrate on the task at hand designing software at an appropri-
ately high abstraction level, and thus create applications with a higher quality that are flexibly 
extensible. 



 

 v 

Kurzfassung 

Die stetig zunehmende Allgegenwart von Computern ermöglicht neue Formen der Interakti-
on und Zusammenarbeit. In der Umgebung steht eine Vielzahl von Geräten zur Verfügung, 
die verschiedene Formen, Größen und Interaktionsmöglichkeiten aufweisen. Vor allem für 
Meetings und Teamwork ist es wünschenswert, dass die verschiedenen Eigenschaften aller 
verfügbaren Geräte effektiv ausgenutzt werden können, um synchrone Zusammenarbeit zu 
ermöglichen. Beispielsweise muss eine Benutzungsschnittstelle bereitgestellt werden, die an 
die verschiedenen Geräte angepasst ist. Genauso wichtig ist es aber, dass die Software so ent-
worfen wird, dass synchroner Zugriff auf gemeinsame Informationen möglich wird, obwohl un-
terschiedliche Geräte mit differierenden Interaktionsmöglichkeiten verwendet werden. Die resultie-
renden Anforderungen zu erfüllen, stellt eine Herausforderung für Softwareentwickler dar. 
Das Forschungsgebiet „Ubiquitous Computing“ (UbiComp) befasst sich mit den Anforderun-
gen, die durch die Allgegenwart von Computern entstehen. Da dieses Forschungsfeld noch in 
der Entwicklung begriffen ist und daher weder bewährte Modelle und Werkzeuge noch Stan-
dards zur Verfügung stehen, müssen Softwareentwickler eigene Lösungen von Grund auf neu 
entwickeln. 
Ziel dieser Arbeit ist es daher, Softwareentwickler von synchronen Groupware Anwendungen in 
UbiComp-Umgebungen Hilfestellung und Unterstützung zu bieten. Es soll ermöglicht werden, 
diese Anwendungen effizient und mit der für das „Ubiquitous Computing“ nötigen Flexibilität 
und Erweiterbarkeit zu entwickeln. Der gesamte Entwicklungsaufwand kann effektiv reduziert 
werden, indem Entwicklern Unterstützung auf mehreren Ebenen geboten wird: Entwickler 
benötigen Hilfe bei der Erstellung von Anwendungsmodellen, bei der Wahl einer passenden 
Architektur, bei der Erstellung des Designs und schließlich bei der Implementierung. Diese 
Herangehensweise legt einen architektur-zentrierten und modell-basierten Entwicklungspro-
zess zugrunde. 
Heute erfordert die Entwicklung einer einzigen synchronen UbiComp-Anwendung noch For-
schung; geeignete Unterstützung für deren Entwickler bereitzustellen ist daher eine noch grö-
ßere Herausforderung. Hierzu müssen gemeinsame Eigenschaften von UbiComp-
Anwendungen identifiziert, zukünftige Entwicklungen und Erweiterungen vorhergesehen und 
Anforderungen aus verschiedenen Forschungsgebieten beachtet und erfüllt werden. Das Ziel 
dieser Dissertation wird – unter Berücksichtigung der genannten Aspekte – erreicht, indem 
auf vier Ebenen ein neuer Beitrag zu dem bisherigen Stand der Technik geleistet wird: 
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(1) Ein konzeptionelles Modell von synchronen UbiComp-Anwendungen beschreibt die grobe 
Struktur dieser Anwendungen, um Wiederverwendbarkeit und Erweiterbarkeit von ent-
wickelten Software Komponenten sicherzustellen. Es identifiziert Aufgabenbereich, Kopp-
lungsgrad und Abstraktionsebene als die drei wesentlichen Entwurfsdimensionen. 

(2) Eine flexible Software-Architektur identifiziert die essentiellen Abstraktionen, mithilfe de-
rer synchrone Anwendungen für „Roomware“-Umgebungen entworfen werden können. 
„Roomware“ bezeichnet die Integration von Raumelementen mit Informationstechnik, 
wie zum Beispiel interaktive Tische, Wände oder Stühle. Roomware-Umgebungen sind 
dabei ein konkretes Beispiel für UbiComp-Umgebungen. Sie werden in dieser Arbeit als 
Anwendungskontext für das konzeptuelle Modell verwendet; die entwickelte Software-
Architektur verfeinert das konzeptuelle Modell in Bezug auf die Bedürfnisse von Roomwa-
re-Umgebungen. 

(3) Ein objekt-orientiertes Anwendungsframework wurde entwickelt, das zum einen ein wie-
derverwendbares Design und wiederverwendbare Software-Komponenten bereitstellt. 
Zum anderen wird die Erweiterbarkeit durch explizite Mechanismen ermöglicht, welche 
die Adaptierbarkeit bezüglich der variablen Aspekte der Anwendungen sicherstellen. 
Hierdurch hilft das Anwendungsframework Entwicklern bei Design und Implementierung. 

(4) Um zu zeigen, wie das konzeptuelle Modell, die Architektur und das Framework ange-
wandt werden können, wird das Design von Bespielanwendungen für Roomware erläutert. 
Um die Erweiterbarkeit zu demonstrieren, wurden mehrere neue Interaktionsformen ent-
wickelt, die in Roomware-Umgebungen benötigt werden. Die entwickelten Anwendungen 
und Interaktionsformen werden in i-LAND, der Roomware-Umgebung am Fraunhofer IPSI, 
eingesetzt. 

Das konzeptuelle Modell, die Software-Architektur und das Anwendungsframework, die in 
dieser Arbeit entwickelt wurden, befreien Softwareentwickler davon, sich um die Details ver-
schiedener Interaktionsformen und um viele kritische Aspekte synchroner Kooperation küm-
mern zu müssen. Dies ermöglicht Entwicklern, sich auf ihre Kernaufgabe zu konzentrieren, 
indem sie Software auf einer angemessenen Abstraktionsebene entwerfen und somit flexibel 
erweiterbare Anwendungen höherer Qualität erstellen können. 
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»Siehst du, Momo«, sagte er dann zum Beispiel, »es ist so: Manchmal hat man eine sehr lange 
Straße vor sich. Man denkt, die ist so schrecklich lang; das kann man niemals schaffen, denkt 
man.« 
Er blickte eine Weile schweigend vor sich hin, dann fuhr er fort: »Und dann fängt man an, 
sich zu eilen. Und man eilt sich immer mehr. Jedes Mal, wenn man aufblickt, sieht man, dass 
es gar nicht weniger wird, was noch vor einem liegt. Und man strengt sich noch mehr an, man 
kriegt es mit der Angst, und zum Schluss ist man ganz außer Puste und kann nicht mehr. Und 
die Straße liegt immer noch vor einem. So darf man es nicht machen.« 
Er dachte eine Zeit nach. Dann sprach er weiter: »Man darf nie an die ganze Straße auf ein-
mal denken, verstehst du? Man muss nur an den nächsten Schritt denken, an den nächsten 
Atemzug, an den nächsten Besenstrich. Und immer wieder nur an den nächsten.« 
Wieder hielt er inne und überlegte, ehe er hinzufügte: »Dann macht es Freude; das ist wichtig, 
dann macht man seine Sache gut. Und so soll es sein.« 
Beppo Straßenkehrer in Momo (Ende, 1973) 
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1. Introduction 

The introduction examines properties of ubiquitous computing (UbiComp), human-
computer interaction (HCI), and computer-supported cooperative work (CSCW), 
which have been identified as research areas that must be considered when support-
ing synchronous collaboration in ubiquitous computing environments. The chal-
lenges for software development that arise when combining requirements of these ar-
eas are illustrated. The roomware concept is introduced, constituting the context and 
primary application domain of this thesis. The goal of the dissertation is defined to 
provide support for developers of synchronous applications in ubiquitous computing 
environments. This dissertation contributes to the state of the art at four different 
levels by providing a conceptual model of synchronous applications in ubiquitous 
computing environments, an software architecture, an application framework, and 
roomware applications that also serve as a proof-of-concept, 

 
Ubiquitous computing environments offer a wide range of devices in many different shapes 
and sizes (Weiser, 1993). Today, the desktop computer as a device is present in every office 
and many homes. Portable information appliances, such as personal digital assistants, enjoy an 
increasing popularity. In the future as it can be foreseen today, collaboration between users 
and environments with multiple interconnected devices will determine work and everyday 
activities to a large degree. The vision is that heterogeneous devices will complement each 
other to provide a consistent usage experience. User interfaces will take advantage of the dif-
ferent properties of the devices. The devices will be closely connected and integrated with the 
environment and context in which people use them. People will be able to exchange and syn-
chronously share information and functionality among all devices. The devices will indeed 
seamlessly work together to support fluent collaboration. This vision was first pursued by Mark 
Weiser, who coined the term ubiquitous computing (Weiser, 1991; Weiser, 1996). Related ap-
proaches are pervasive computing (Lyytinen and Yoo, 2002), intelligent environments (Coen et al., 
1999; Shafer et al., 1998), or reactive environments (Cooperstock et al., 1997).  
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These approaches have in common the goal of transforming and transcending human–
computer interaction resulting rather in direct human–information interaction and human–
human cooperation, thus making computers disappear in two ways (Streitz, 2001; Ambient 
Agoras, 2001). Firstly, the physical disappearance of computer devices comes about by integrat-
ing computers into the environment, for instance by making the computer-based parts small 
enough so that they fit in the hand, interweave with clothing, or attach to the body. Secondly, 
the mental disappearance of computers occurs when they become invisible to the user’s mental 
eyes. The important point here is that humans do not perceive the devices as computers any-
more, but as embedded elements of augmented artifacts within their environment. 

1.1. Challenges for Software Development 
Today, the development of interactive software is determined to a large degree by the re-
quirements and properties of the single-user desktop PC. The envisioned ubiquitous comput-
ing situation, in contrast, differs from the current usage scenarios of desktop PCs in several 
ways (see fig. 1-1). Firstly, new interaction devices require new user interface concepts. Sec-
ondly, applications can profit by adapting to the current environment and the interaction capa-
bilities it provides. Thirdly, synchronous collaboration is essential, taking into account that col-
laboration with heterogeneous devices must be handled. This section gives a brief introduc-
tion of these aspects. A detailed discussion of the requirements addressed is given in chap-
ter 2. 

(a)

(b)

(c)

(a)

(b)

(c)

 

Figure 1-1. In ubiquitous computing environments, heterogeneous devices are used to 
support synchronous collaboration: (a) an interactive wall with a large visual interac-
tion area, (b) interactive chairs or handhelds with small displays, (c) a horizontal table-
top surface. The drawing is based on a vision scribble we created in early 1997. 

The devices available in ubiquitous computing environments have different properties that 
enable—and need—new possibilities for interaction. Instead of being equipped with mouse 
and keyboard, other forms of interaction are used for input, such as pen, finger, voice, or ges-
tures. For output, some devices offer displays that range from small to very large wall-size, or 
that are mounted horizontally. Other devices employ different modalities to replace or aug-
ment visual presentation. Some examples are shown in figure 1-1. All these interaction capa-
bilities must be handled by application software. To ensure intuitive and efficient interaction, 
new user interface and interaction concepts must be supported. 
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The main characteristic of a ubiquitous computing environment is the presence of multiple 
devices. For interaction, software can utilize the different properties of these devices to com-
plement and augment each other. This requires that the software is aware of the current envi-
ronment of the device it is running on, in order to be able to detect other devices and their 
properties. Then, a small handheld could detect a nearby interactive wall and use this display 
to show information that is needed by several collaborating people (see fig. 1-1a–b). 
Today, most desktop applications are designed for a single user; they cannot handle collabora-
tion. A forte of ubiquitous computing environments will be the support for synchronous col-
laboration. To allow truly synchronous work, the software must be capable of handling multiple 
users that can simultaneously manipulate a shared document. This requires a software infra-
structure that is designed for handling multiple concurrent users—unlike today’s common 
operating systems. 
The devices used for collaboration in ubiquitous computing environments are likely to have 
different interaction capabilities. Current software tools that support synchronous collabora-
tion assume that all participants use computers with similar interaction capabilities. This as-
sumption does not hold for ubiquitous computing environments. The software must be able to 
reduce the degree of coupling in such a way that the presentation of shared information can 
be adapted to the devices used. An extreme example is a synchronously coupled presentation 
of a visual presentation on a large interactive wall with a voice presentation on a mobile cell 
phone. 
All these features pose new challenges for the development of ubiquitous computing applica-
tions. 
Due to the described nature of collaborative ubiquitous computing environments, software 
systems have to cater for all aspects of interaction and collaboration in a heterogeneous envi-
ronment. The outlined properties lead to requirements addressed by related and intersecting 
research areas (fig. 1-2) that software systems have to fulfill: 

• Human-Computer Interaction (HCI) deals with user interfaces and interaction techniques. 
• Ubiquitous computing (UbiComp) explores dynamic environments with heterogeneous de-

vices. 
• Computer-Supported Cooperative Work (CSCW) develops techniques to handle synchronous 

interaction with distributed computers. 
• Software design techniques (SW) are needed to ensure extensibility and reusability. 

Admittedly, this is a simplified view of the research areas, but points only to their relevant 
contributions within the context of this thesis. 
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UbiComp

HCI

CSCW

collaborative
ubiquitous computing
applications

software 
technology

 

Figure 1-2. Related research areas for the design of collaborative ubiquitous computing 
applications 

Whereas several well-established models, frameworks, and tools exist to aid application design 
for a traditional PC (e.g. Myers, 2003), UbiComp application developers cannot draw upon 
such tools. They are in the same situation as that of pioneering computer scientists when PC 
use first began to spread. 
Current operating systems, for instance, provide no support for handling this heterogeneity. 
Synchronous collaboration can be handled by several computer-supported cooperative work 
frameworks, groupware systems, or middleware infrastructures, but these systems have little or 
no support for heterogeneous devices. There are research prototypes aimed at managing de-
vices with different interaction capabilities, but these mainly deal with interfaces for, and dis-
covery of, simple services while they lack support for tight collaboration.  
All existing tools cover only parts of the necessary functionality. However, they cannot simply 
be combined, as different approaches often make incompatible assumptions. Frameworks, for 
example, reverse the flow of control (Fayad, 1999), making it very costly, if not impossible to 
combine different frameworks (Bosch et al., 1999). 
Because of these shortcomings, there is a need for a software infrastructure designed to handle 
heterogeneous environments, to support adequate interaction forms and user interface con-
cepts, as well as offering capabilities for synchronous collaboration. As this kind of infrastruc-
ture is built on top of current operating systems, which handle the interaction with the specific 
hardware, it is referred to as a middleware operating system (Román et al., 2001b). 
To structure architectures of software systems, it has proven helpful to rely on conceptual 
models, reference models, and architectural styles that allow reuse of successful designs (Bass 
et al., 1999). Traditional application models do not provide enough guidance for developers to 
create software systems for synchronous collaboration in ubiquitous computing environments; 
software developers must consider further aspects not relevant for software running on a desk-
top PC. Several researchers have already identified this problem. Yet, there are only few 
emerging models for ubiquitous computing. Myers et al. (2000) states the need for changes in 
user interface software tools. Garlan (Garlan, 2000; Sousa and Garlan, 2002) and Banavar and 
Bernstein (2002) found that software architectures for ubiquitous computing systems will have 
to be more flexible than they are today to meet the challenges that ubiquitous computing 
poses on software architecture. Abowd (1999) says that building ubiquitous computing appli-
cations raises software engineering problems in toolkit design, software structuring for separa-
tion of concerns, and component interaction. Winograd (2001) and Dey et al. (2001) com-
plain about a lack of conceptual models and tools. Also, there is no straightforward way of 
combining models coming from different research areas. 
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Until now, the burden of carefully selecting appropriate models from all relevant areas has 
been placed on the software developer. He or she has to ensure that the chosen combination 
does not cause unexpected effects. A conceptual model covering all aspects of synchronous 
collaboration in ubiquitous computing environments would take this burden off the software 
developer and provide the structure in which to create appropriate software tools and tech-
niques. Such a unified conceptual model that covers all aspects of interaction and collabora-
tion in a heterogeneous environment has to fulfill requirements brought up by the relevant 
research areas shown in figure 1-2. 

1.2. Context of the Dissertation: i-LAND and Roomware 
Over the last eight years at IPSI, the Fraunhofer Integrated Publication and Information Sys-
tems Institute1 in Darmstadt (Germany), we have been working in the i-LAND project on sup-
porting synchronous collaboration with roomware components (Streitz et al., 1997; Streitz et 
al., 1999; Streitz et al., 2001; Streitz et al., 2002; Tandler et al., 2002b; Tandler, 2004). 
“Roomware” is a term we coined (Streitz et al., 1997) to refer to the integration of room ele-
ments with information technology, such as interactive tables, walls, or chairs. Figure 1-1 
shows some of the ‘vision scribbles’ of i-LAND created in spring 1997. It presents roomware 
components we envisioned for i-LAND, an “interactive landscape for creativity and innovation”. 
The roomware components we built as part of the i-LAND project are tailored to support co-
located teamwork. The term “roomware” has come to be used as a general characterization of 
this approach.2 The roomware components are presented in detail in section 2.1. 
The work presented in this thesis was initially triggered by the need to create a software infra-
structure for the roomware environment. This led to the development of a software prototype 
called BEACH, the “Basic Environment for Active Collaboration with Hypermedia”.3 BEACH pro-
vides the software infrastructure for roomware environments supporting synchronous collabo-
ration with many different devices. It offers a user interface that also fits to the needs of de-
vices that have no mouse or keyboard and require new forms of human-computer and team-
computer interaction. To allow synchronous collaboration, BEACH is based on shared models, 
making information accessible through multiple interaction devices concurrently. 
During its development, BEACH was restructured and refactored (Opdyke and Johnson, 1990; 
Roberts et al., 1997; Jacobsen, 2000) several times. It became obvious that a conceptual model 
was needed to guide developers of ubiquitous computing applications. This led us to the work 
presented here. Parts of BEACH emerged as a software framework with an architecture that is 
structured according to the conceptual model for synchronous ubiquitous computing applica-
tions as developed in this thesis. 

1.3. Goal of the Dissertation 
The goal of this thesis is to provide guidance and support for developers of synchronous group-
ware applications for ubiquitous computing environments. They have to be enabled to develop 
applications more efficiently and with the flexibility and extensibility that is required for ubiq-
uitous computing. Since the implementation of one single synchronous UbiComp application 
still requires research, it is evident that creating appropriate development support is even more 

                                                       
1 Until summer 2001, IPSI was part of GMD Forschungszentrum Informationstechnik GmbH, the Ger-

man National Research Center for Information Technology that was merged with the Fraunhofer Ge-
sellschaft. 

2 “Roomware” is a registered trademark of Fraunhofer Gesellschaft (formerly of GMD). 
3 Concerning the creation of the BEACH acronym, please refer to (Seitz, 1997, section 5.1; Myers, 1991; 

Streitz et al., 1999; Streitz et al., 1994; Schuckmann et al., 1996). 



1. Introduction 

6 

challenging. Common properties of ubiquitous computing applications have to be identified. 
Future developments and extensions have to be predicted. Requirements of different research 
areas have to be fulfilled.  
The development effort can be reduced effectively if support for developers is provided at sev-
eral levels. Developers need assistance when creating models of the applications to be devel-
oped, when choosing an appropriate architecture, when creating the design, and finally when 
implementing. This implies an architecture-driven, model-based development approach, such 
as described by Jacobson et al. (1992). 

1.4. Contributions of the Dissertation 
This thesis presents a conceptual model, a software architecture, and an application 
framework that supports developers of synchronous ubiquitous computing software. 
Using the model, architecture, and framework, UbiComp developers can create ap-
plications much more easily; the applications are structured such that the reusability 
and extensibility as required in ubiquitous computing environments is ensured. De-
velopment effort is significantly reduced by providing a framework that handles criti-
cal requirements and offers predefined components for common functionality. It en-
ables developers to concentrate on the task-specific parts of the implementation by 
providing high-level abstractions, leading to higher software quality. As a proof-of-
concept, several roomware applications that support new forms of interaction have 
been realized. 

To reduce the complexity of UbiComp software development, design and development issues 
are broken down to four levels. At each of the levels, this thesis contributes to the state of the 
art. 
(1) At the conceptual level, guidance for UbiComp developers has to be given by providing a 

conceptual model of synchronous ubiquitous computing applications that helps define 
their basic structure. In this thesis, the term “conceptual model” is used to describe the 
very high-level structure of applications of a particular domain. 

(2) Software architectures define the high-level structure for software systems. By analyzing 
successful software architectures in a given problem domain, structures have to be identi-
fied that are common across the whole problem domain. Therefore, at the architectural 
level, a software architecture for synchronous software applications of roomware environ-
ments has to be defined that can be reused by developers. 

(3) Software frameworks allow the reuse of implemented software architectures, offering spe-
cific support for extensibility. At the design and implementation level, a software application 
framework has to be created that provides a reusable design and reusable components that 
ease the implementation of roomware applications. 

(4) At the application level, new forms of interaction and applications for roomware environ-
ments must be developed using the conceptual model, architecture, and framework. The 
applications to be developed serve as a proof-of-concept and illustrate how the conceptual 
model, architecture, and framework are applied. 

This thesis applies the conceptual model (1) to develop a software infrastructure supporting 
synchronous collaboration in roomware environments. The term “software infrastructure” is 
used here to describe everything that is needed to start building and executing applications 
within their destination environment. This includes the software architecture (2) and an im-
plementation of this architecture, e.g. as an application framework (3), that can be used as a 
platform to easily develop applications (4) for a roomware environment (see fig. 1-3). 
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Figure 1-3. Relationship between conceptual model, architecture, framework, and infra-
structure that are developed as part of this thesis. The conceptual model (1) provides 
the structure for the software architecture (2). The application framework (3) imple-
ments the architecture. Roomware applications (4) use the application framework. The 
numbers refer to the four levels of contributions. 

1.4.1 Conceptual Model 
In order to narrow the gap between needed and available conceptual models and architectural 
guidance, this thesis presents the generic BEACH conceptual model covering all aspects of soft-
ware systems supporting synchronous collaboration in ubiquitous computing environments. 
The model provides flexibility and extensibility for different devices. It helps identify reusable 
components of software systems. As the requirements for the software go beyond what is 
needed for traditional single-user PCs with mouse-and-keyboard interaction, it covers new 
interaction techniques and devices. Additionally, it supports distributed systems that collabo-
rate synchronously. It fulfills requirements brought up by all mentioned relevant research ar-
eas (fig. 1-2). The conceptual model provides the guidance to structure the software architec-
ture. 
A unified conceptual model is important, since future development will cross the borders of the 
individual research areas. This relieves the application developer from trying to merge incom-
patible concepts that have been created for different purposes. 
The BEACH model is structured according to three design dimensions: 

• Separation of concerns, 
• Coupling and sharing, and  
• Level of abstraction.  

The first dimension, separation of concerns, separates five basic concerns, represented as mod-
els: data, application, user interface, environment, and interaction models. Second, coupling 
and sharing is concerned with the degree of coupling, and which parts of the models are shared. 
The third dimension of the conceptual model is the level of abstraction. Four levels of abstrac-
tion are distinguished: task, generic, model, and core level. 
To provide guidance for developers of software for roomware environments, the conceptual 
model helps define the high-level structure of software systems. Software developers can reuse 
this structure when designing software systems for ubiquitous computing environments. In this 
way, they can draw on proven experiences, ensuring extensibility and reusability of their soft-
ware. 
A clear separation of concerns makes it possible to adapt different aspects of a software system 
independently. This is important if, e.g., two devices are used to support collaboration where 
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each device requires a different user interface. Therefore, the BEACH model introduces a clear 
separation of user interface and interaction orthogonal to the level of abstraction, which has 
not yet been proposed in related models. This separation is required to enable tightly-coupled 
collaboration using different interaction styles. For instance, a form can be visually presented 
by a projection, and then a keyboard or voice recognition can be used to enter text in this 
form, and eye tracking or hand gestures can control the input focus in the form. This way, 
multiple interaction modalities can be combined. This helps meet the requirement of enabling 
appropriate interaction in ubiquitous computing environments. 
The structure that is imposed on software systems by the basic concerns is horizontally organ-
ized. As the concerns have a defined dependency that can be sequentialized, it is possible to 
make a vertical cut through the architecture of systems built according to the BEACH model. 
This is a key factor for improving maintainability, extensibility, and reusability of software sys-
tems in general. 
Similarly, the levels of abstractions define a vertical structure for software systems, in contrast 
to the horizontal structure defined by the concerns. As each level builds on the lower levels 
only, these levels allow a horizontal cut through the architecture of software systems built ac-
cording to the BEACH model. 

The BEACH conceptual model is the first of the three main contributions of this thesis. 
The model provides a flexible and extensible structure for synchronous collaboration 
with different devices and helps identify reusable parts of a software system. It is dis-
cussed in detail in chapter 4. 

1.4.2 Software Architecture 
The conceptual model is applied to structure the architecture of the software infrastructure. 
The BEACH software architecture tailors the generic structure defined by the conceptual model 
to match the concrete needs of applications supporting synchronous collaboration in room-
ware environments. It can therefore be used as an example of how the conceptual model can 
be applied in practice. The BEACH architecture defines the software components that are nec-
essary to use roomware components. It defines the key abstractions at several abstraction levels, 
according to the BEACH conceptual model. The identified abstractions reduce the complexity 
for software developers, as they hide the underlying realization and thus allow thinking at the 
appropriate abstraction level. This allows software developers also of non-roomware ubiqui-
tous computing applications to reuse and adapt the BEACH software architecture, instead of 
having to create a new one from scratch. 

The BEACH software architecture is the second of the three main contributions of this 
thesis. It defines important abstractions for synchronous collaboration in roomware 
environments to reduce the complexity for software developers. It is presented in 
chapter 5. 

1.4.3 Application Framework 
At the implementation level, the BEACH model and architecture have been used to design and 
implement an object-oriented application framework, in order to ease the construction of applica-
tions for roomware environments. It serves as proof-of-concept to show how the model and 
architecture can be successfully applied. In order to be able to design an application frame-
work, existing applications have to be analyzed to acquire comprehensive knowledge about 
common and variable aspects of ubiquitous computing applications. The abstractions defined by 
the BEACH architecture serve as the basis for common parts and variable aspects. The common 
parts are provided by the framework as reusable software components; the variable aspects are 
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implemented as hooks4 to enable extensibility. The design of the framework therefore contrib-
utes the abstracted knowledge about common and variable aspects of ubiquitous computing 
applications that has been acquired by analyzing existing applications and ongoing research 
efforts. This knowledge is valuable for software developers of ubiquitous computing applica-
tions. 
The BEACH framework constitutes the software infrastructure for roomware environments, pro-
viding services and reusable software components. Software developers can use the framework 
for the implementation of roomware applications. To be able to draw on a number of existing 
components speeds up the development process and enhances software quality (Fayad, 1999). 
To implement the BEACH framework itself, it was possible to reuse existing software compo-
nents. To realize the shared-object space that handles the aspects related to coupling and shar-
ing, the open-source framework COAST has been selected (Schümmer et al., 2000). In addition, 
it proved to be feasible to adapt and extend the VisualWorks user interface framework 
(ParcPlace-Digitalk, Inc., 1995) such that it meets the requirements of roomware applications. 
However, the implementation of the software infrastructure as an application framework im-
plies certain restrictions, which might be relevant in a different setting, other than a roomware 
environment. To clarify the goal of this thesis, the focus of the developed software architec-
ture and application framework is described after the discussion of related work, in section 
3.5.2. In this way, this thesis can be contrasted against the state of the art. 

The design of the BEACH application framework, which is the third main contribution 
of this thesis, is explained in chapters 6 and 7. Using this framework, developers can 
implement applications that acknowledge the specific properties of roomware envi-
ronments much more efficiently. The design of the framework reflects abstracted 
knowledge about common and variable aspects of ubiquitous computing applications. 

1.4.4 Roomware Applications 
At the application level, the thesis contributes roomware applications that implement new 
forms of interaction and provide specific functionality to support collaboration in roomware 
environments. To validate the approach proposed by this thesis, the applications have been 
constructed guided by the BEACH conceptual model, based on the BEACH software architecture, 
and using the BEACH application framework. They illustrate how different interaction tech-
niques and new functionality can be implemented using the framework. 
The development of the roomware applications was carried out in collaboration with other 
members of the AMBIENTE team and students from the Darmstadt University of Technol-
ogy. Up to now, more than 15 software developers have used the BEACH model and framework 
to create 12 tools and extensions. Contributions of others are explicitly noted in the chapters 
8 and 9. 
To enable users to interact in a natural way, the users’ physical actions—to the extent that 
they can be captured by computers—can serve as input for software. This way, physical ob-
jects can become part of the user interface. For this kind of interaction, a generic interaction 
model has been designed, and two applications that use physical input have been imple-
mented. 
The example of combined visual and acoustic presentation is used to illustrate how new inter-
action modalities can be added in order to augment other forms of interaction. This proves that 
the BEACH model ensures extensibility for new forms of interaction. 

                                                       
4 Hooks are those parts of a framework that are designed to be extended (Froehlich et al., 1997; Pree, 

1999). 
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A suite of tools has been developed to support creative work within roomware environments. 
These cover all phases of creativity sessions and enable seamless transitions. The functionality 
provided by the BEACH application framework has been used and extended with new types of 
document elements and appropriate interaction forms. Handheld devices can be used for 
asynchronous work. They also illustrate how the BEACH model can be applied on different 
computing platforms. 
In ubiquitous computing environments, it is important that hardware and software are inte-
grated with the environment in which they operate, to provide a coherent whole. For in-
stance, the software must be aware of other devices nearby. A tool has been developed within 
the BEACH framework that visualizes this information for the user by showing the presence of 
other roomware components. In this way, synchronous collaboration among roomware compo-
nents can be initiated. 
By analyzing these applications, it can be shown that the BEACH conceptual model helps create 
a clearly structured, reusable and extensible software design. In fact, we experienced that de-
velopers with little experience in software design and architecture—with the help of BEACH—
created applications that were able to support synchronous collaboration and that could be 
easily extended for new forms of interaction. 
Comparing one of the applications with a previous implementation not based on the BEACH 
model and framework provided evidence that both model and framework help software devel-
opers to significantly reduce the necessary implementation effort. In fact, the implementation 
effort measured by lines of code was reduced to less than one third while the robustness to 
failures of components was improved significantly. This example is discussed in section 8.1. 

Roomware applications that are developed with the BEACH conceptual model, archi-
tecture, and framework serve as a proof-of-concept. They provide new interaction 
techniques and functionality for synchronous collaboration in roomware environ-
ments. The new forms of interaction that have been implemented are presented in 
chapter 8, new tools for roomware environments in chapter 9. 

In order to provide the basis for the overall discussion, the thesis starts with a thorough analy-
sis of the requirements coming from the research areas that influence the work within room-
ware environments. The identified requirements are not only relevant for roomware environ-
ments, but they also describe important aspects of all kinds of ubiquitous computing software 
systems. 

1.5. Outline of the Dissertation 
This thesis consists of four parts. The first part starts with an analysis of the requirements for 
the software infrastructure of ubiquitous computing environments (chapter 2) by examining 
existing applications for computer-supported cooperative work, co-located teamwork, and 
ubiquitous computing environments. Subsequently, existing solutions are analyzed with re-
spect to the extent which they can fulfill the requirements (chapter 3). Based on the require-
ments and the insights gained while examining related work, the conceptual model is defined 
and its applicability is discussed (chapter 4). 
The second part describes an application of the BEACH conceptual model. Chapter 5 defines 
the BEACH architecture, tailoring the conceptual model for the concrete needs of the roomware 
components developed by the i-LAND project. Then, the BEACH architecture is implemented as 
two software frameworks. The BEACH Model framework covers the implementation of the core 
and model layer (chapter 6). The BEACH Generic Collaboration framework implements the 
generic layer of the BEACH architecture (chapter 7). Both frameworks are described in a bot-
tom-up fashion. 
The third part of this thesis describes applications of the BEACH conceptual model and software 
framework. The applications validate the usability of model and framework and provide evi-

↓ Part I: 
The BEACH 
Conceptual Model 

↓ Part II: 
Architecture and 
Framework 

↓ Part III: 
Applications for 
Roomware 
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dence that they ease application development. In addition, they illustrate how their features 
can be applied. Chapter 8 presents examples where BEACH has been extended to support new 
forms of interaction. Chapter 9 describes some tools that have been developed on top of the 
BEACH framework. Chapter 10 presents conclusions, also discussing open questions and direc-
tions for future work. 





 

 13 

Part I. The BEACH Conceptual Model: 
Guidance for Ubiquitous Computing 
Developers 

Part I of this thesis provides support for ubiquitous computing developers. It starts in 
chapter 2 with analyzing the requirements for the software infrastructure of ubiqui-
tous computing environments. This is achieved by examining existing applications for 
computer-supported cooperative work, co-located teamwork, and ubiquitous com-
puting environments. Chapter 3 investigates to what extent related work fulfills the 
identified requirements. The conducted analysis reveals that existing models and sys-
tems cover the requirements of their original domain only; they fail to meet require-
ments that originate from other research areas. Especially, it becomes apparent that 
CSCW models and frameworks fail to cope with the requirements of ubiquitous com-
puting, while UbiComp systems offer no adequate support for synchronous collabo-
ration. To fill this gap, chapter 4 presents a conceptual model for synchronous ubiq-
uitous computing applications that meets all addressed requirements. Its applicability 
is discussed, also comparing it to related approaches. This comparison demonstrates 
that the presented model comprises—and exceeds—what can be expressed by the 
current state of the art. 
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2. Requirements of Ubiquitous Computing 
Applications 

This chapter analyzes the requirements of the software infrastructure of ubiquitous 
computing environments. It starts with a presentation of the roomware components 
developed in the i-LAND project and describes important application scenarios. This 
description constitutes the background for the requirement analysis, pointing to an 
initial set of relevant aspects. The subsequent sections present work within the areas 
of human-computer interaction, ubiquitous computing, computer-supported coop-
erative work, and software engineering to broaden the view on the problem domain 
beyond the roomware developed by the i-LAND project. The given samples are exam-
ined and structured in order to derive requirements of synchronous ubiquitous com-
puting applications. Finally, the identified requirements are summarized in the last 
section of this chapter. 

In order to develop a conceptual model for ubiquitous computing applications supporting syn-
chronous collaboration, this chapter analyzes general properties and requirements of such ap-
plications. To get a broad view, several examples from all relevant research areas are scruti-
nized to find common aspects. Properties of the roomware components are presented before 
the specific aspects of the related areas are researched. Synchronous roomware applications 
are examples of applications placed at the intersection of HCI, CSCW, and UbiComp (fig. 
1-2). Analyzing the roomware components is also relevant to design an appropriate software 
infrastructure, which is taken as a sample application for the conceptual model. 

2.1. The i-LAND Roomware Project 
This section presents the roomware components that were developed as part of the i-LAND pro-
ject at Fraunhofer IPSI. As the BEACH architecture and framework constitute the software in-
frastructure for these components, the design and functionality of the roomware components 
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had a major influence on the requirements. Their properties are also relevant in a broader 
context of ubiquitous computing environments. 
Until now, two generations of roomware components have been developed. The first genera-
tion comprised a large interactive wall, called DynaWall, and the initial designs of an interac-
tive table and interactive chairs, called InteracTable and CommChairs. In 1999, the second 
generation of roomware components was developed together with partners from industry as 
part of the R&D consortium “Future Office Dynamics” (FOD, 2002), and presented to the 
public in late 1999. Apart from redesigns of the InteracTable and the CommChair, two new 
components were added, the ConnecTable and the InterWall, a mobile information appliance 
with a large vertical display. In the meantime, two roomware components, the InteracTable 
and the CommBoard (a redesigned version of the DynaWall using different technology), have 
become commercially available (Wilkhahn, 2002). 
The first three roomware components created as part of the first generation are presented in 
this section: the DynaWall, the CommChair, and the InteracTable. The ConnecTable is de-
scribed in chapter 8, as it was developed after the BEACH framework was already implemented. 
The ConnecTable was used to test the flexibility and extensibility of the BEACH architecture 
and framework. The InterWall is presented elsewhere (FOD, 2002; Englisch, 1999), as their 
interaction capabilities are very similar to those of the other components and require no spe-
cial software features. The description of roomware components also includes forward refer-
ences to the requirements analyzed and categorized later. 

2.1.1 DynaWall 
The DynaWall is a large interactive wall with a display size of 4.50 m width and 1.10 m 
height. It consists of three touch-sensitive back-projection units5 that are integrated in one 
wall of the room. The DynaWall is shown in figure 2-1. Each segment is driven by a separate 
PC that receives input from the touch-sensitive surface and has an LCD projector attached as 
a display. Without any special software support, the DynaWall works just like three computers 
with large displays placed next to each other. The DynaWall is similar to the interactive wall 
constructed at Stanford (Stanford University, 2000).6 
In order to combine the segments to form a homogeneous interaction area, the display output 
of the three computers has to be synchronized. The output must be generated in such a way 
that objects being moved off one side of a display will appear on the other side of the adjacent 
display. This is a requirement that originated directly from the design of the DynaWall (see 
req. U-2, on page 24 below). 
Other issues arise from the size of the DynaWall. Large interactive surfaces raise the need for 
new forms of interaction, as it is, e.g., not possible (or convenient) to easily reach all objects 
on the wall (Winograd and Guimbretière, 1999; Swaminathan and Sato, 1997; Pier and Lan-
day, 1992). To re-arrange objects directly on a large visual surface while standing in front of it, 
it has been proposed to enable throwing of objects from one user to another (Geißler, 1998; 
Streitz et al., 2002). 

                                                       
5 The DynaWall at IPSI uses three dismantled SMART boards (SMART Technologies Inc., 2002). 
6 The interactive wall at Stanford was constructed some years after the DynaWall was built. 

↓ Roomware 
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Figure 2-1. Two people working at the DynaWall 

Apart from that, interaction with pen or finger can also benefit from an adapted interaction 
style. This leads to the requirement to support different forms of interaction (see req. H-1 be-
low). 

2.1.2 CommChair 
The CommChair is a mobile chair, which has an embedded computer with a pen-sensitive 
display attached at one side (see figure 2-2). To ensure maximum flexibility and mobility, each 
chair is provided with a wireless network and an independent power supply. 
While a CommChair can be used as a comfortable single-user device, it develops its full power 
when used collaboratively. In this situation, it can be used to share information among a small 
group of coworkers in order to support discussions (see req. C-1 on page 28). Alternatively, 
CommChairs can be used to access both personal and public information (Greenberg et al., 
1999; O'Hara et al., 2002) when used together with a public interaction device such as the 
DynaWall (see also figure 2-4). In this case, the collaboration is more complicated, as the in-
volved devices differ significantly with respect to available display area. This requires allowing 
collaboration with heterogeneous devices (see req. UC-1 on page 30). 

(a) (b)  

Figure 2-2. (a) The initial two prototypes of CommChairs developed by IPSI. (b) The re-
designed version of the CommChair being part of the second generation of roomware 
components that have been created by IPSI and Wilkhahn/Wiege within the “Future 
Office Dynamics” R&D consortium. 

2.1.3 InteracTable 
The InteracTable is designed to support informal discussions of small groups (figure 2-3). It is 
an interactive table that can be used by up to six people standing around it. It has a touch-



2. Requirements of Ubiquitous Computing Applications 

18 

sensitive display in a horizontal position, allowing people standing around the table to look at 
the display from any side. 
However, this has implications for the interaction (Streitz et al., 2001; Kruger et al., 2003; 
Scott et al., 2003; Tandler et al., 2002a; Hancock et al., 2002; Shen et al., 2002).  
While vertical displays have, for example, a defined top, bottom, left, and right, a horizontal 
interaction area has no predefined orientation. Furthermore, multiple users are often working 
at a table concurrently. Therefore, traditional user interface concepts and interaction tech-
niques need to be augmented (see req. H-2, UH-1, C-3). 

(a) (b)  

Figure 2-3. (a) First prototype of the InteracTable, developed by IPSI. (b) Second version 
of the InteracTable, which is commercially available. It allows collaboration of up to six 
co-located people. 

2.2. Application Scenarios of Synchronous Collaboration within 
Roomware Environments 

This section illustrates typical work situations in a roomware environment by presenting three 
scenarios. The situations described in the scenarios are used in section 7.6 to show how these 
can be realized with the proposed architecture. 
The scenarios illustrate a meeting of a small group. A marketing team is working on the adver-
tising strategy for a new product. The leader of the team has prepared an agenda for the meet-
ing in advance. 

2.2.1 Group Discussions with the DynaWall and CommChairs 
At the beginning of the meeting, all participants assemble in the meeting room equipped with 
roomware components. One side of the room is completely covered with a DynaWall. The 
leader walks up to the DynaWall to show the prepared agenda. The others take seats in one of 
the available CommChairs. 
After a brief introduction, the group starts a discussion about the open issues of the strategy. 
As each member uses a CommChair, everyone can take private notes. In addition, every 
CommChair has access to the information displayed at the DynaWall. This enables everyone 
to directly interact with the shared information. All ideas can be collected in a shared docu-
ment; everyone can write down ideas, draw illustrations of parts of the advertising, or write 
annotations on contributions made by others. Moreover, material that was collected in prepa-
ration for the meeting can be moved from the personal workspace to the shared document. As 
the team works in a tight collaboration mode, all modifications made by a team member in a 
CommChair are immediately displayed at the DynaWall. 
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For the users in CommChairs, it is helpful that they can easily look at the DynaWall. Since 
the display of the CommChair is much smaller, they can use the DynaWall to get an overview 
of all created material. The CommChair is used to select the focus area for their contribution. 
Finally, the team decides that all major issues have been identified. They agree to split into 
subgroups. This facilitates working on different issues in parallel. They distribute the material 
necessary to work on the selected issues to different sub-workspaces, which are created by 
simple pen gestures at the DynaWall. 

2.2.2 Tight Collaboration between CommChairs and the DynaWall 
One subgroup continues working at the DynaWall. A user at the DynaWall continues a dis-
cussion about one of the selected issues together with another user still sitting in a Comm-
Chair (see figure 2-4). They need a lot of space to sketch sequences for TV spots, so they fre-
quently have to switch between different workspaces. As they work loosely coupled with re-
spect to the other subgroups, their navigation commands do not affect the other group’s cur-
rently visible workspace. 

 

Figure 2-4. Tight collaboration, using a CommChair in front of a DynaWall. The user in 
the chair can remotely interact with information displayed at the wall by using the dis-
play attached to the chair. In addition, he can access his personal workspace. 

In this situation, several subgroups share the same room, but they are able to work independ-
ently. Still, if two groups access the same information object, they share the same object. For 
example, if the subgroups need the list of identified issues, in order to add further items that 
came up in their subgroup discussion, they share the same copy of the list and can immediately 
see the modifications made by others. This is helpful in eliminating the need for merging dif-
ferent versions of the same object, and to create awareness about the other groups’ activities 
in an unobtrusive manner. 

2.2.3 Cooperative Work at an InteracTable 
Two other people forming another sub-group move over to an InteracTable separated by a 
movable partitioning wall. They use the table for brainstorming about possible customer pro-
files. They write down their ideas and sketches on small digital brainstorming cards. Standing 
around the table, they shuffle new cards over to each other to increase creativity by supplying 
new associations. Since they look from different positions at the table, the cards automatically 
rotate when thrown to someone else. After a while, they decide that they have enough mate-
rial and start incorporating their ideas into a drawing. To be able to look at the emerging 
drawing simultaneously, one team member opens a second view on the drawing and rotates it 
towards her. This way, they both can watch and work with the same workspace, but each with 
the preferred orientation (fig. 2-5). 
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Figure 2-5. To support horizontal displays, BEACH lets different users rotate documents 
to a preferred orientation. For collaboration, a second view of a document can be 
opened that remains synchronized with the original. 

The next sections derive requirements for the software infrastructure for roomware environ-
ments that can be identified by analyzing the relevant research areas (fig. 1-2) to broaden the 
scope. This facilitates the identification of requirements not relevant to the currently existing 
roomware components. The following is an updated version of the requirements published in 
(Tandler, 2001b). 
The requirements are organized by the research area to which they are related. To identify the 
requirements, the following abbreviations are used: 

“H” – HCI: User Interface and Interaction requirements (section 2.3) 
“U” – UbiComp: Ubiquitous Computing Environments (section 2.4) 
“C” – CSCW: Applications for Synchronous Collaboration (section 2.5) 
“S” – SW: Software engineering requirements (section 2.6) 

2.3. HCI: User Interface and Interaction 
In the area of computer-human interaction, several new user interface concepts are being de-
veloped that go beyond the traditional WIMP (windows, icons, menus, pointing) metaphor 
(Beaudouin-Lafon, 2000). This section presents some important developments that influence 
the development of ubiquitous computing environments. The discussed developments are 
analyzed to form requirements for the software infrastructure for roomware environments. 
They are grouped in two categories. 

• New forms of interaction present new interaction techniques and devices. 
• New user interface concepts and elements describe new concepts that are originally designed 

for traditional desktop PCs, but seem to be very helpful in the context of roomware compo-
nents. 

2.3.1 New Forms of Interaction 
New devices with different properties require new forms of interaction. This section concen-
trates on the consequences of pen and gesture input, as well as non-visual interaction. 
With the availability of new input devices besides mouse and keyboard, new interaction tech-
niques started to develop. These aim to providing a more efficient, more direct, transparent, 
and natural interaction (Baudel and Beaudouin-Lafon, 1993; Abowd, 1999; Abowd and My-
natt, 2000). 

↓ Chapter preview 
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In the context of roomware environments, these new interaction techniques are relevant as 
within meeting situations little distraction should occur. In particular, complicated interaction 
should be avoided (Prante et al., 2002). 
Within informal meetings, pen input to public whiteboards facilitates more natural and ade-
quate interaction (Pedersen et al., 1993; Haake et al., 1994; Meyer and Bederson, 1998; 
Shipman and Marshall, 1999). Additionally, pen input has the benefit of having one level of 
indirection less in the interaction compared to mouse-input, as the pen is operated directly at 
the position where the output is rendered. (In contrast, the mouse is operated on a horizontal 
surface besides the display.) In the Tivoli system, pen-input is implicitly structured to combine 
the informal character with the benefits of structured data types (Moran et al., 1995). 
To provide natural interaction, it is appropriate to use pen or hand gestures (Bolt, 1980; 
Baudel and Beaudouin-Lafon, 1993; Henry et al., 1991; Rekimoto and Matsushita, 1997). 
When gestures are interpreted by software in order to invoke commands, the software must be 
aware that input can be ambiguous and detection error prone (Mankoff et al., 2000b; Mankoff 
et al., 2000a). 
In some situations, it might be more appropriate to use speech as input or audio output 
(Müller-Tomfelde and Steiner, 2001; Mynatt et al., 1998; Coen, 1998). 
While a common interface can be provided for different visualizations at a rather low level 
describing the visual appearance, another approach has to be taken for other modalities. One 
such idea is the separation of the models for the abstract and the physical user interface 
(Thevenin and Coutaz, 1999). Depending on the available output device, it might be possible 
to generate the physical user interface automatically from generic elements (Myers et al., 2000, 
p. 13). In general, it is helpful if all different interaction models use a common interface for 
the underlying functionality. 
Facing all these different forms of interaction that apply to different situations, it is important 
for ubiquitous computing software to be open for different styles of interaction and to be ex-
tensible for future developments (Myers et al., 2000, p. 15 f). However, current operating sys-
tems and platforms only offer direct support for “traditional” interaction techniques and de-
vices. The ubiquitous computing software must allow the integration of other device drivers in 
an extensible manner (Abowd, 1999, p. 82). 
The idea of different forms of interaction is extended by Myers et al. (2002). They define the 
term “flexi-modal” as the ability to simultaneously and flexibly mix different interaction mo-
dalities. 
Different interaction styles, such as pen, speech, or gestures, require the introduction of new 
interaction models. For example, pen input cannot be dispatched to one single point at a dis-
play, as it might affect a wide area on the screen. Speech or gesture recognition requires differ-
ent processing levels. For each of these types of input, abstractions must be defined that can 
be easily mapped to the invocation of functionality (Abowd, 1999, p. 81). For mouse, key-
board, and pen input, events are a useful abstraction, but for other types of input, other con-
cepts might be more appropriate (Myers et al., 2000, p. 24). Other interaction techniques, 
such as hardware buttons often found in PDAs (personal digital assistants), offer a very similar 
functionality compared to software button widgets. 
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Requirement H-1: Different Forms of Interaction7 

Ubiquitous computing software must be able to handle different forms of interaction. 
It must be possible to simultaneously and flexibly mix interaction forms. Different 
forms of interaction have different characteristics requiring different abstractions and 
different handling of input and output. 

2.3.2 New User Interface Concepts 
New devices and interaction techniques offer new possibilities for the construction of user in-
terfaces. While the classical user interface style with windows, menus, and toolbars was de-
signed for a traditional desktop PC with mouse and keyboard, new user interface concepts 
have been developed that consider the properties of new interaction devices. 
Having a pen as an input device (see previous section) offers the possibility to employ strokes 
drawn with a pen as part of the interaction with the user interface. For example, pen-gestures 
can supplement a traditional user interface. In order to reflect the properties of the pen as an 
input device, new user interface elements can be designed. Consequently, researchers have 
developed various types of icons and menus. 
For example, Marking Menus (Kurtenbach and Buxton, 1994) extend pie menus (Callahan et 
al., 1988) for usage with pens. In addition to selecting a menu item, a stroke can be drawn to 
the direction of the menu item without waiting for the menu to open. This is a short cut that 
skips drawing the menu. 
The FlowMenu (Guimbretière and Winograd, 2000) combines the previously explained idea 
with mechanisms developed for pen-based entry of text (Perlin, 1998; Mankoff and Abowd, 
1998). They allow selecting a command together with sub-commands or arguments by draw-
ing a pen-gesture instead of navigating through a hierarchical menu. 
Another variation is Gedrics (Geißler, 1995; Geißler, 2001). Gedrics are gesture-driven exten-
sions of icons that respond to pen gestures. Users can either select a command from a popup-
menu or draw the corresponding pen gesture over the Gedric. 
The devices found in roomware environments differ in terms of their characteristics, e.g. dis-
play size (Weiser, 1991; Myers et al., 2000). The requirements imposed by the size of the dis-
play led to the development of different user interface concepts. The following presents exam-
ples for new concepts for managing display space. 
Large interactive displays are an example of how the physical properties of the devices impose 
requirements on the user interface. Classical window-interfaces typically provide menus at the 
top of the window. However, on a large display, this can be inconvenient or too high to reach 
for short users (Pier and Landay, 1992). 
Using large interactive display surfaces, overlapping windows can obscure important pieces of 
information. Therefore, researchers experimented with non-overlapping segments. Flatland 
defines segments that are automatically shrunk if space is needed (Mynatt, 1999b; Mynatt, 
1999a). 
In Tivoli (Moran et al., 1997; Moran et al., 1995), a single surface is used. The surface can be 
structured by “boundaries” and “regions”. Boundaries can be manipulated directly by the user, 
while regions are implicitly computed for every selection. 
Translucent patches (Kramer, 1994) extend the traditional window concept. Translucency in-
hibits that underlying information is obscured. In addition, the patches can have freeform 
shapes. 

                                                       
7 Requirements related to human-computer interaction are denoted with a capital “H”. 
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Pad++ (Bederson et al., 1996) uses the concept of infinite zooming to overcome the restric-
tion of a finite available surface. Fisheye views or multi-scale interfaces have a variable zoom fac-
tor. The part of a document having the focus is magnified, while less important parts are 
shrunk (Robertson and Mackinlay, 1993; Furnas and Bederson, 1995). Guimbretière et al. 
(2001) applied this idea to space management of interactive walls. ZoomScapes have an associ-
ated scaling value associated with each point on the surface. This allows objects to be put 
aside that are currently out of focus and, therefore, do not need to be visible at a high resolu-
tion. 
Different concepts for user interfaces must be defined for very small displays, e.g. personal digi-
tal assistants. Prante et al. (2002) describe the “navigation stack”: spatially arranged informa-
tion objects can be viewed in two different modes, which show the spatial relationship or the 
details, respectively. The navigation stack helps to switch quickly between different objects. 
Due to the differences of the interaction capabilities of different devices, it is not sufficient to 
support different forms of interaction (req. H-1) that use the same user interface. Moreover, a 
particular user interface concept is not feasible for all forms of interaction and all devices 
(Myers et al., 2000, p. 16). For example, in handheld computers, parts of the user interface will 
be built into the hardware itself, such as the physical buttons and switches. These buttons al-
low only one interaction, namely to press them physically. Consequently, physical buttons that 
are part of a user interface cannot be used with other interaction forms. 
To reuse application functionality for different devices requiring different user interfaces, a 
conceptual model for ubiquitous computing applications must separate the user interface from 
application issues that encapsulate the application logic and are independent of the user inter-
face. This is necessary for providing an appropriate user interface for every device available. 
Depending on the number of different devices, the appropriate user interface can be manually 
implemented by the developer for every supported class of devices. Other researchers are de-
veloping device-independent descriptions of user interfaces that allow the dynamic creation or 
selection of user interfaces (Ponnekanti et al., 2001; Banavar et al., 2000). 

Requirement H-2: Different User Interface Concepts 

For ubiquitous computing software, it is essential to separate the application func-
tionality from the user interface. This is to ensure that based on the available interac-
tion devices an appropriate user interface can be supplied to access the functionality. 
To increase reuse, user interfaces should be designed to enable different forms of in-
teraction. 

2.4. UbiComp: Ubiquitous Computing Environments 
Ubiquitous computing, as foreseen by Mark Weiser (1991), is still a vision. Computing devices 
are not yet able to cooperate in an unobtrusive way. Although named “ubiquitous”, ubiquitous 
computing is not yet available everywhere. When speaking of ubiquitous computing environ-
ments, this often refers to small environments only, e.g. a room or building within which de-
vices have access to their network resources. To be truly ubiquitous, a ubiquitous computing 
environment has to be scaleable to cover large areas. Environments have to be able to ex-
change information and devices. However, the currently existing ubiquitous computing envi-
ronments will grow. Researchers will develop techniques and protocols to exchange devices 
and information among each other. Finally, the developed technology has to be standardized 
by industry to ensure wide-scale interoperability. 
This section first analyzes properties of ubiquitous computing environments. Subsequently, 
issues of human-computer interaction within UbiComp environments are discussed. 

↓ Section outline 
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2.4.1 Properties of UbiComp Environments 
Ubiquitous computing environments have three main properties (Weiser, 1991) that consti-
tute requirements for software systems for ubiquitous computing environments: 

• A ubiquitous computing environment consists of multiple heterogeneous networked devices. 
• As most devices are mobile, they are likely to be carried around, raising the need of dynamic 

configuration. 
• The devices are not treated “in isolation”; they are always seen related with their current 

environment. 

These properties directly bring up the following requirements. 

Multiple and Heterogeneous Devices 
The most prominent property of a ubiquitous computing environment is the ubiquitous pres-
ence of devices with embedded computing facilities (Weiser, 1991). These devices come in 
many different sizes and shapes depending on the tasks that they are designed for (Weiser, 
1993). Ubiquitous computing software must therefore be able to deal with the device hetero-
geneity (Garlan, 2000; Brummit et al., 2000; Sousa and Garlan, 2002). This includes a com-
munication infrastructure for message exchange and for providing access to shared data 
(Myers et al., 2000; Esler et al., 1999; Kon et al., 2002). 

Requirement U-1: Multiple and Heterogeneous Devices8 

Ubiquitous computing software must be able to deal with environments containing 
multiple heterogeneous devices. 

Multiple-Computer Devices 
Some devices that are perceived by a user as a single element might actually consist of many 
individual hardware components. Some roomware components (e.g. the DynaWall, see fig. 
2-1) are composed of several segments, each of them running on a separate PC. Due to hard-
ware limitations,9 this configuration allows each segment to receive pen input by one user only 
at a time, thereby supporting several users working simultaneously. To give the user the im-
pression of a homogeneous interaction area, the segments must therefore be coupled via soft-
ware. This facilitates multiple users collaborating on the same visual interaction area despite 
the limitations of hardware or physical space. 

Requirement U-2: Multiple-Computer Devices 

Ubiquitous computing software must support devices that have multiple embedded 
computers. It must be possible to coordinate and couple the software running on 
these computers. 

Context and Environmental Awareness 
The devices within a ubiquitous computing environment are not treated in isolation; instead, 
they are often perceived within the context of their environment. Software being aware of its 
context can act depending on the state of the surrounding environment (Schmidt et al., 1999; 
Dey, 2000; Schilit, 1995; Mills and Scholtz, 2001). Therefore, it is also important for the sys-
tem to have a “deeper understanding of the physical space” (Brummit et al., 2000). 
Common examples of relevant context information are the current location of devices (Weiser, 1991), 
specific users, and the kind of device on which a software application is actually running (Chen and 

                                                       
8 Requirements related to ubiquitous computing are denoted with a capital “U”. 
9 When designing and implementing BEACH, each SMART Board (SMART Technologies Inc., 2002) 

could only recognize a single pen position at a time. 
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Kotz, 2000; Abowd and Mynatt, 2000). Apart from the physical environment, other contextual in-
formation—such as the current task or project, or presence of co-workers—could influence the be-
havior of the software, as far as this information is available to the application (Sousa and Garlan, 
2002; Schmidt, 2000; Ambient Agoras, 2003; Thevenin and Coutaz, 1999). 
The software infrastructure must therefore maintain a representation of the current context. In 
order to be able to update this representation, an interface to sensors collecting context in-
formation distributed all over the environment is needed. Similar to what was described for 
different input devices, the data collected by the sensors will normally need to be pre-
processed in order to generate information at a level of abstraction useful for the application 
(Salber et al., 1999). 
If context changes are detected, mechanisms must exist to notify the application about the 
changes. This way, resource awareness can be realized, which is one of the requirements for 
ubiquitous computing environments identified in (Garlan and Schmerl, 2001). In fact, re-
source awareness extends to environmental awareness as it includes not only physical resources 
but also the other kinds of context information, named above. 

Requirement U-3: Context and Environmental Awareness 

Ubiquitous computing software is integrated with its environment. It must draw on 
context information to provide an adapted behavior and tailored functionality. 

Dynamic Changes 
Ubiquitous computing environments are highly dynamic. During meetings it often occurs that 
several independent problems have to be solved in parallel. In such situations, a team usually 
splits into several subgroups, each of which tries to solve one of those problems. After a given 
time, the team regroups and all solutions are presented. This scenario shows that different 
kinds of collaboration modes must be supported within a ubiquitous computing environment. 
Each of these will require a different configuration of available devices. 
In (Sousa and Garlan, 2002), dynamic changes of users entering and leaving an environment, 
of the environment, of the task, and of the context (like privacy preferences or the current 
user activity such as sitting or driving) are distinguished. Configurations change dynamically 
due to devices, which are brought in and taken away (Coen et al., 1999; Shafer et al., 2001). 
Handling the dynamic reconfiguration was identified by Garlan (2000) as a key issue for soft-
ware architectures of UbiComp environments. 
The dynamics of work practices must therefore be reflected by the design of the software. The 
design should be flexible enough to give a team the necessary freedom to work efficiently. 

Requirement U-4: Dynamic Configuration 

As ubiquitous computing environments are highly dynamic, software must deal with 
dynamic change as well. This implies that it must be possible to dynamically adapt 
the software configuration. 

2.4.2 Human-Computer Interaction Issues in UbiComp Environments 
Ubiquitous computing environments impose new challenges on human-computer interaction. 
The requirements that are found by analyzing interaction issues in the context of ubiquitous 
computing are also part of the requirements for roomware environments. 

Adapted Presentation for Different Devices 
Due to the different form-factors of interaction devices in a ubiquitous computing environ-
ment, displays appear in a wide range of different sizes and with different orientations (req. 
U-1). For differently-sized devices, different scaling factors, a different representation, or a 
different selection of objects must be used (Russell and Weiser, 1998).  
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Hence, we need to consider whether the user needs an overview of the entire document, or 
just the part of the document that is being edited. The more the devices differ, the harder it is 
to use the same user interface for all devices (Abowd, 1999, p. 81; Myers et al., 2000, p. 16). 
For different devices, other interface metaphors and concepts become more appropriate. 
A specific problem is to display information on an interactive table. The output does not necessarily 
have a common top–bottom / left–right orientation for all users working at an InteracTable (see sce-
nario in section 2.2 and implementation in section 7.6.3), as different users can look at the surface 
from different positions (Streitz et al., 1999). At a normal table, people would simply rotate a sheet of 
paper to show it around (Kruger et al., 2003). At an interactive table, it is desirable that the same be 
possible. Furthermore, users should be able to keep a view of this object oriented towards them. This 
way, each user can look at the object with the preferred orientation (Hancock et al., 2002; Shen et 
al., 2002; Bruijn and Spence, 2001). 

Requirement UH-1: Adapted Presentation 

Ubiquitous computing software must be able to adapt its presentation to the charac-
teristics of the device it is currently running on and the interaction possibilities that 
are available. 

Multiple-Device Interaction & Cross-Device User Interfaces 
In a ubiquitous computing environment, a user usually has access to more than one computer 
(Myers et al., 2000). Within a meeting, a user might leave an interactive chair and walk up to 
a large public presentation surface. Here, the software must be able to re-detect and quickly 
re-assign the used device to give the user access to private information, for instance to the 
prepared material for a presentation. 
Continuing this scenario brings up a different case of multiple-device interaction: the user giv-
ing the presentation might have access to another device in parallel to the public display. To 
view her private annotations in addition to her slides, she uses an electronic lectern or a PDA 
(Myers, 2001). This means that she uses several devices simultaneously with the same infor-
mation displayed on both devices—but within a different context that influences the resulting 
view (different size, different level of detail, private annotations). This relates to the adapted 
presentation (req. UH-1) where the context is defined by the used devices in contrast to the 
usage of the device (see also the scenarios in section 2.2). 
There are many examples in literature where a PDA-like device is used concurrently with a 
digital whiteboard, a table, or PC (Fox et al., 2000; Myers et al., 1998b; Myers et al., 2002; 
Rekimoto, 1998b; Rekimoto, 1998a). There, a PDA is used to have access to additional in-
formation or functionality without consuming space of the main display. These are examples 
of multi-machine or cross-device user interfaces (Myers, 2001). In general, interaction devices 
that are present in the environment can be dynamically employed to extend the interaction 
capabilities of a mobile device (Pierce and Mahaney, 2004). 
Pick-and-drop (Rekimoto, 1997) is an interaction technique for transferring data between 
different computers. Hyperdragging (Rekimoto and Saitoh, 1999) enables easy exchange of 
information between laptops and interactive tables or walls. 
On displays that are placed in public spaces, the PDA can be used for visualizing private in-
formation (Greenberg et al., 1999). Likewise, the PDA can be used to access only the func-
tionality that is currently relevant for its user. In these cases, both devices show different in-
formation and offer a different functionality. 
As part of the Pebbles project (Carnegie Mellon University, 2000), a technique called “snarf-
ing” has been developed to use a PDA to remotely control another device (Myers et al., 2001). 
This is done by displaying parts of the user interface on the PDA. A different approach is 

Example 2-2: 
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taken in (Ayatsuka et al., 2000), where the PDA is used as a 6-degree-of-freedom10 input de-
vice for an interactive surface. 

Requirement UH-2: Multiple-Device User Interface and Interaction 

Ubiquitous computing software can benefit from the presence of multiple devices, if 
multiple devices can be involved in interaction and the user interface can cross the 
boundaries of a single device. The software must enable that a distributed user inter-
face benefits from the different properties of all available devices. 

Interacting with Physical Objects 
Since the configuration of physical objects in, for example, a meeting room depends on the 
current work mode of a team, changes made to “real” objects can be used to trigger actions of 
software (Ishii and Ullmer, 1997; Shafer et al., 2001). In particular, it is useful to reflect adap-
tations made by users to the setting of devices, due to changes of the current collaboration 
mode. 
There are situations in which a state change of the software is relevant to the maintenance of 
the consistency of the “real” and the “virtual” parts of the world (see also req. U-3). Rekimoto 
and Saitoh (1999) have augmented a table to allow links between physical and virtual objects. 
Digital information can be dragged off laptops that are placed on the table to physical objects. 
At MIT, several software systems with tangible user interface have been created (Ullmer et al., 
1998; Patten et al., 2001; Pangaro et al., 2002). Cooperstock et al. (1997) describe the reactive 
room, a computer-augmented video-conferencing environment with automatic behaviors and 
physical interaction elements. Designer’s outpost is an augmented interactive wall, which ac-
cepts physical post-it notes to provide input (Klemmer et al., 2001). 
For all these examples, the software includes physical objects as part of the user interface. 

Requirement UH-3: Physical Interaction 

Ubiquitous computing software has to support physical objects as user interface ele-
ments (in a generalized sense). It must be able to track user actions with physical ob-
jects and use this to trigger software functionality. 

2.5. CSCW: Synchronous Collaboration 
The field of computer-supported cooperative work is concerned with building groupware, i.e. 
“computer-based systems that support groups of people engaged in a common task (or goal) and 
that provide an interface to a shared environment” (Ellis et al., 1991). The term “groupware” 
was initially coined by Peter and Trudy Johnson-Lenz in 1981 (Johnson-Lenz and Johnson-
Lenz, 1994). 
Groupware applications can be classified in terms of time and space: they can support people 
working together at the same time or at a different time, and also, being in the same (physical) 
place or in different places (Ellis et al., 1991). This thesis concentrates on supporting work at 
the same time and in the same place, called synchronous co-located collaboration. However, the 
BEACH model and framework can be used for distributed collaboration as well. 
This section analyzes aspects of synchronous groupware. These are used to identify the re-
quirements related to synchronous collaboration—but put into context of ubiquitous comput-
ing. In this respect, two issues of CSCW applications are important: meeting support and sin-
gle display groupware. These are discussed in the context of UbiComp environments. 

                                                       
10 The six degrees are motion in three dimensions and rotation in three dimensions. 
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2.5.1 Meeting Support 
A prominent application area of groupware tools is meeting support. Meeting support systems 
can be divided into a number of categories, ranging from remote-conferencing to electronic 
meeting systems and process support tools. A general model for classifying the functionality of 
groupware systems is the “clover model” (Calvary et al., 1997; Graham and Grundy, 1999). It 
distinguishes three “spaces” of functionality: the production, coordination, and communica-
tion space. The focus of this thesis is the support of the production space. Within meeting 
rooms, many coordination tasks can be carried out by social protocols. Likewise, computer sup-
port for communication and awareness is not required for people working together in the same 
room. 
An example for tools enabling distributed meetings is TeamRooms (Roseman and Greenberg, 
1996a). Further examples are discussed in (Ellis et al., 1991). The benefit of the “room” meta-
phor used in TeamRooms is that it can be used by both individuals and groups, as well as in 
asynchronous and synchronous work modes (Greenberg and Roseman, 2003). 
Other systems focus on meetings where several participants are located in the same room. In 
this case, all participants often have access to a private workstation (Stefik et al., 1987a; 
Nunamaker et al., 1991). Since all participants are co-located, awareness and communication 
features become less important than in the distributed case. These kinds of systems can be 
called “co-present groupware” (Stewart et al., 1999). 
Depending on the type of meeting, whether it is more formal with strict process and floor con-
trol or whether it is an informal meeting, the used groupware systems need different features 
(Greenberg, 1991). GroupSystems (Nunamaker et al., 1995), for example, is able of handling 
formal processes for meetings with a large number of participants. Tivoli (Pedersen et al., 
1993; Moran et al., 1998b; Moran et al., 1998a) on the other hand, is an example for informal 
meeting support. Other systems such as DOLPHIN (Streitz et al., 1994; Haake et al., 1994) or 
the Colab suite of tools (Stefik et al., 1987a; Stefik et al., 1987b) aim to allow various working 
styles. 
Independent of whether or not all participants reside within the same room, multiple devices 
are used to support direct participation of people. This means that the software needs to deal 
with the requirements imposed by distributed systems. This includes issues such as session 
management, coupling control, and concurrency control (Schuckmann et al., 1999; Greenberg 
and Roseman, 1999). Concurrency control is of particular importance for highly dynamic syn-
chronous collaboration occurring in meeting situations. When people are working concur-
rently within the same shared workspace, software infrastructure and applications must be 
designed to make people’s actions unlikely to interfere. 

Requirement C-1: Multi-Device Collaboration11 

Many ubiquitous computing applications have to support collaboration. Involving 
several devices, these applications are necessarily distributed systems that have to 
cope with CSCW issues such as synchronization, concurrency, and consistency. To 
enable synchronous collaboration, information must be shared among devices. 

The goal of this thesis is not the development of a groupware infrastructure. It rather investi-
gates the applicability and influence of available groupware technology in the context of ubiq-
uitous computing. This requirement is therefore rather to be understood as a pointer to 
groupware in general; a detailed discussion of groupware requirements can be found in group-
ware literature (Graham and Grundy, 1999; Schuckmann et al., 1999; Roseman and Green-
berg, 1992). 

                                                       
11 Requirements related to computer-supported cooperative work are denoted with a capital “C”. 
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Coupling and Collaboration Mode 
As mentioned above, meetings often undergo changing collaboration modes. Changes of the 
collaboration mode may be induced by changing human behavior and do not need to be re-
flected in the model retained by the software. In other cases, however, it is quite helpful to 
reflect these changes in the software. If the software is aware of the current collaboration 
mode, it can adapt its behavior accordingly. 
The mode of collaboration is modeled in groupware as the degree of coupling or “coupling 
mode” (Patterson et al., 1990). Dewan defines coupling as the means by which interface com-
ponents share interaction state across different users (Dewan and Choudhard, 1991). Dewan 
and Choudhary (1992) state that flexible coupling mechanisms are an important requirement. 
In (Haake and Wilson, 1992; Berlage and Genau, 1993) different modes of collaboration are 
identified: individual work, loosely coupled work, and tightly-coupled work. Tightly-coupled 
collaboration is critical during highly-interactive exchanges between people (Tatar et al., 
1991). 

Requirement C-2: Flexible Coupling and Modeled Collaboration Mode 

Collaborative software must provide support for implementing different coupling 
modes and allow flexible changes in the degree of coupling. 

2.5.2 Single Display Groupware 
Some devices such as interactive tables or walls offer another challenge for the software: a 
number of people can use and interact simultaneously with a single device. This is often called 
Single Display Groupware (SDG) (Stewart et al., 1999). 
One of the first SDG applications was MMM (Multi-Device, Multi-User, Multi-Editor) (Bier 
and Freeman, 1991), which allowed the use of up to three mice concurrently to edit rectangles 
and text. Tivoli (Pedersen et al., 1993) supported up to three pens on the original version of 
the Xerox Liveboard (Bruce and Elrod, 1992). KidPad is a collaborative drawing tool designed 
for children (Druin et al., 1997), (Stewart et al., 1998). All these examples have in common 
that the software has to handle concurrent event sequences, such as drawing a stroke or drag-
ging a window (Hourcade and Bederson, 1999). 
While all these systems use mice or pens connected to a PC, the Pebbles project (Carnegie 
Mellon University, 2000) explored how PDAs can be used to provide concurrent input to a 
shared PC (Myers et al., 1998b; Myers, 2001). This is already a step toward a ubiquitous com-
puting environment, as multiple devices are used in collaboration (see also req. UH-2). 
In addition to SDG, in ubiquitous computing environments multiple users at one display can 
collaborate with multiple users at other displays. This leads to an n-to-m relation among col-
laborating users and devices (Winograd, 2001a). 
Apart from these technical issues, the user interface should be designed to allow interactions 
of multiple users without interference (Stewart et al., 1999; Zanella and Greenberg, 2001). 

Requirement C-3: Multiple-User Devices 

Software running on a device capable of receiving input by multiple users must be 
able to receive events from several input-streams, to recognize input from different 
users, and to track several concurrent event sequences. 

2.5.3 Collaboration in UbiComp Environments 
The Pebbles project (mentioned above) presents an example of support for collaboration 
where several devices are used concurrently. However, the PDAs are used as input devices for 
a “master” PC only. This configuration can be extended to a scenario where all participating 
devices are equivalent, providing functionality at the same level of abstraction. 
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With the SharedNotes system (Greenberg et al., 1999), it is possible to create personal notes 
on a PDA. In a meeting, these notes can be published and discussed on a public display. An-
other example is Rekimoto’s M-Pad (Rekimoto, 1998b). It enables several people to use a 
PDA to transfer data to an interactive display using the pick-and-drop interaction style 
(Rekimoto, 1997). These examples can be considered as the first step from single display 
groupware to the integration with ubiquitous computing. 
Marsic (2001) describes a system that supports synchronous collaboration with heterogeneous 
devices. The same instance of information objects can be concurrently edited on a high-end 
workstation with a virtual reality display and a PDA, using different visualization for each de-
vice. Recently, Myers et al. (2002) described another system that enables to share information 
synchronously among public displays and handheld devices. 
The examples mentioned above show that within the context of ubiquitous computing, 
groupware applications cannot assume that they run on similar hardware. Instead, the soft-
ware must be designed in a way that enables collaboration using heterogeneous devices 
(Shafer et al., 2001). This implies that standard methods of shared editing cannot be used. For 
example, WYSIWIS (“What-You-See-Is-What-I-See” (Stefik et al., 1987a; Stefik et al., 
1987b)) would require that all collaborating users have coupled workspaces of exactly the 
same size in pixels. This is not possible in a heterogeneous environment if the devices cover a 
display size in the range of very small to very large—or even do not have a display at all 
(Olsen et al., 2000b; Olsen, 1998). 
Therefore, the software must allow tightly-coupled components to use different view proper-
ties; it must also ensure that the users get a representation that fits to the current working 
mode. A user in a CommChair working on a shared workspace together with a user at a Dyna-
Wall (see section 2.2) will need both an overview representation of the whole workspace con-
tent and a zoomed view to work with. If the CommChair is located directly in front of the Dy-
naWall so that the user has an overview, the overview representation displayed at the Comm-
Chair can be shrunk or omitted, as it may be needed for navigation only. 

Requirement UC-1: Collaboration with Heterogeneous Devices 

Ubiquitous computing software must be able to handle collaboration if heterogene-
ous devices are involved. It must be possible to view and modify the same informa-
tion with different devices and forms of interaction. 

2.6. SW: Software Engineering Requirements 
This section discusses requirements that arise from general software engineering. The re-
quirements listed above are related to a specific research area, whereas the requirements pre-
sented in this section apply to every software application. However, they are of major impor-
tance so that they are explicitly mentioned. Other important non-functional requirements 
such as portability and scalability are not mentioned here, as they are implicitly included in 
requirement U-1. Supporting the heterogeneous devices found in ubiquitous computing im-
plies that (a) the software must run on different hardware platforms, and (b) it has to cope 
with multiple devices, which leads to scalability issues. 
Software functionality can be divided into levels of abstraction. Since this is important for im-
proving the structure of the entire software system (Dijkstra, 1968), it is also significant for the 
presentation of a system’s functionality to the user, in order to help in creating a uniform user 
interface. Therefore, the requirements presented in this section can be viewed from two per-
spectives: the user and the system perspective. 

2.6.1 Functionality Common for Whole Application Domains 
In every application domain, some functionality is common to a wide range of application sce-
narios. This functionality should be implemented in a reusable way. Examples are generic 
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document elements, such as workspaces, text, scribbles, and common tools like document 
browsers. 
One possibility to realize reusability is to design software components in a composable way. 
Composability has been identified as a major requirement for state-of-the-art groupware envi-
ronments (ter Hofte, 1998). 
While reusability in general is still a big challenge in software engineering (Garlan et al., 1995; 
Krueger, 1992), it is especially difficult in the context of ubiquitous computing. The device 
heterogeneity of ubiquitous computing environments implies coping with various platforms, 
resource constraints, and interaction styles, which makes reuse even harder (Garlan, 2000). 

Requirement S-1: Generic Functionality—Reusability12 

The software architecture has to be designed in such a way that it eases the reuse of 
generic and application-domain-specific functionality. Thereby, the heterogeneity of 
ubiquitous computing environments has to be taken into account. 

2.6.2 Special Functionality for a Single Task 
Aside from support for generic meeting tasks special-purpose functionality can improve the 
efficiency of a number of tasks (Nunamaker et al., 1995, p. 167). An interview study that 
Streitz et al. (1998) carried out found that creative teams have several recurring tasks. Impor-
tant examples for typical group tasks that are to be supported are creative sessions, presenta-
tions, meeting moderation, and project or task management. Consequently, the software 
should offer dedicated help for a selected set of such tasks, which should be extensible to meet 
future needs (ter Hofte, 1998; Moran et al., 1998b).  
One possibility to be able to provide tailored support is a module concept that allows extend-
ing the generic functionality. Of course, this has to be possible without the need to change 
existing code and without interference with other modules. 
Depending on the devices used, different tasks need different tools that exploit the properties 
of the available devices. Therefore, extensibility in the context of ubiquitous computing can 
be seen from two directions. (1) New functionality must be developed in a way that is tailored 
to available devices. Oppositely, (2) newly developed devices might enable improved ways of 
interacting with existing functionality. 

Requirement S-2: Tailorable Functionality—Extensibility 

The software architecture has to ensure that the software system is extensible. To 
support ubiquitous computing, extensibility must reflect both functionality and inter-
action devices. 

2.7. Summary of Requirements 
Table 2-1 summarizes the requirements for synchronous collaboration in ubiquitous comput-
ing environments that are relevant in the context of this thesis. Looking at the number of re-
quirements of each area it can be noted that the focus is more on ubiquitous computing (eight 
requirements) than it is on HCI (five requirements) and CSCW (four requirements). One 
reason is that ubiquitous computing is a rather new research area compared to HCI and 
CSCW, making it necessary to provide requirements that are more detailed. This emphasizes 
the developments that are necessary compared to the state of the art. The combination of 
HCI and CSCW is not considered, as this combination is of such a fundamental importance 
for nearly all CSCW systems that it has been well elaborated in the field of CSCW. 

                                                       
12 Requirements related to software engineering are denoted with a capital “S”. 
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Research Area Req. Requirement Name 

H-1 Different Forms of Interaction HCI 

H-2 Different User Interface Concepts 

U-1 Multiple and Heterogeneous Devices 

U-2 Multiple-Computer Devices 

U-3 Context and Environmental Awareness 

UbiComp 

U-4 Dynamic Configuration 

UH-1 Adapted Presentation 

UH-2 Multiple-Device User Interface and Interaction 

UbiComp & HCI 

UH-3 Physical Interaction 

C-1 Multi-Device Collaboration 

C-2 Flexible Coupling and Modeled Collaboration Mode 

CSCW 

C-3 Multiple-User Devices 

UbiComp & CSCW UC-1 Collaboration with Heterogeneous Devices 

S-1 Generic Functionality—Reusability SW 

S-2 Tailorable Functionality—Extensibility 

Table 2-1. Summary of requirements for the software infrastructure of ubiquitous com-
puting environments 

The requirements identified here apply to synchronous ubiquitous computing applications in 
general. The BEACH conceptual model proposed in this thesis (see chapter 4) must ensure that 
applications meet the requirements if they are constructed according to the model. However, 
some requirements are at a rather low level of abstraction. They cannot be completely cap-
tured by the conceptual model. Instead, the BEACH architecture (see chapter 5), which applies 
the conceptual model in the context of roomware components, is an example of how they can 
be fulfilled. This applies to requirements U-4, UH-1, C-2, and C-3. 
In order to provide support for roomware components, their properties had to be analyzed. 
Based on these properties, architectural decisions can be made for the BEACH architecture, 
where the requirements and the BEACH conceptual model allow several possibilities: 
• visual and pen-based interaction (req. H-1, H-2) 
• standard computation capabilities in terms of memory resources and processing speed (req. 

U-1, UC-1) 
• a permanent network connection among each other (req. C-1) 
• a slow wireless network connection for mobile components (req. C-1) 
• the roomware components are operated inside dedicated meeting rooms (req. U-1) 
• the application scenarios cover dynamic collaboration, informal meetings, and creative or de-

sign tasks (req. H-2, U-4) 
The requirements are referred to in the next chapter with respect to the related work. They 
also form the basis by which the proposed conceptual model (chapter 4), software architecture 
(chapter 5), and framework (chapters 6 and 7) are evaluated. 

↓ Next chapter 
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3. Related Work 

This chapter studies the state of the art that meets some of the requirements identi-
fied in the previous chapter. The relevant work done in the areas of HCI, UbiComp, 
CSCW, and software technology is analyzed. The conducted analysis reveals that no 
model or system covers all addressed requirements. They all have their strengths in 
their original domain only, failing to meet requirements that originate from other re-
search areas. Especially, it becomes apparent that CSCW models and frameworks fail 
to cope with the requirements of ubiquitous computing, while UbiComp systems of-
fer no adequate support for synchronous collaboration. However, software technol-
ogy provides several approaches to increase the modifiability, extensibility and reus-
ability of software systems. The chapter closes with a summary of important con-
cepts constituting the fundamentals for the remainder of the thesis. The focus of the 
thesis is refined with respect to the presented state of the art. It is concluded that 
there is currently no appropriate support for synchronous collaboration in ubiquitous 
computing environments. 

The requirements defined in the previous chapter are now used to evaluate other models and 
systems. It is discussed to what degree the requirements are fulfilled by existing systems and 
which ideas influenced the design of the solution proposed in this thesis. 
As ubiquitous computing environments combine research outcomes from different areas (see 
fig. 1-2), related work from all areas has to be considered in order to be combined and ex-
tended to form a consistent solution. First, results from the domain of software architecture 
and object-oriented frameworks are presented. These are considered to help understand and 
design the software architecture and framework. The next sections present related work from 
human-computer interaction (section 3.2), ubiquitous computing (section 3.3), and com-
puter-supported cooperative work (section 3.4). As this thesis contributes at four levels—the 
conceptual, the architectural, the framework, and the application level—related work is ana-
lyzed according to these levels. The last section summarizes important concepts and architec-
tural designs that influenced this work. 

↓ Section outline 
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3.1. Object-Oriented Frameworks and Architectures 
Software reuse has been proposed as an approach to cope with the increasing complexity of 
software. However, software reuse is still hard (Nowack, 1999; Krueger, 1992; Kiczales, 1994; 
Garlan et al., 1995). This section presents software techniques that have proven to be success-
ful in improving reusability and extensibility of software systems (req. S-1, S-2).  

• Software architectures define the high-level structure for software systems. By analyzing suc-
cessful software architectures in a given problem domain, structures can be identified that 
are common for the whole problem domain. 

• Software frameworks allow the reuse of implemented software architectures, offering specific 
support for extensibility. In contrast to class libraries they focus on design reuse, not code 
reuse only. 

All reuse techniques have in common that they rely on some forms of abstraction, generaliza-
tion, and specialization (Krueger, 1992). 

3.1.1 Software Architecture 
At the end of the 1960’s, when software systems began to become more complex, a debate 
started on how to structure a software system (Dijkstra, 1968; Parnas, 1972). Today, software 
architecture is established as a discipline of software engineering of its own (Perry and Wolf, 
1992; Garlan and Shaw, 1993). The term “software architecture”, however, is not used consis-
tently in literature and practice. Commonly, software architecture is defined as “the structure 
or structures of the system, which comprise software components, the externally visible prop-
erties of those components, and the relationships among them” (Bass et al., 1999). While this 
definition focuses on the architecture of a particular system, the term “architecture” is also used 
to refer to an architectural style, such as “client-server architecture” (Garlan, 2001). 
A software architecture is often described by a set of components, connectors, and additional 
constraints or properties (Gregory D. Abowd et al., 1993; Garlan, 2001). An architectural style 
suggests a vocabulary of component and connector types, together with a topology of how 
they are combined (Bass et al., 1999; Perry and Wolf, 1992; Phillips, 1999; Gregory D. Abowd 
et al., 1993). 
In contrast to an architectural style, a conceptual or reference model specifies the complete 
structure of some class of systems at a relatively large granularity (Phillips, 1999; ter Hofte, 
1998).13 It shows the conceptual structure with its fundamental functional elements. It should 
be possible to map all systems of this class to the structure defined by the reference model. 
Without such an architectural framework it is difficult to structure applications (Calvary et al., 
1997). 
Within a software development process, software architecture plays a key role in laying a 
foundation to meet the requirements (Castro and Kramer, 2001; Garlan, 2001; Foegen and 
Battenfeld, 2001). In particular, software architecture has its strength in meeting non-
functional requirements (Kazman and Bass, 1995). 
To describe an architecture, it has proven helpful to use different views (Perry and Wolf, 1992; 
Kruchten, 1995). Typically, views explaining the static structure, the dynamic behavior, and 
distribution are distinguished (Garlan, 2001). It is a common approach in software engineering 
to develop different models of the software system for each view of the architecture (Jacobson 
et al., 1992; Bass et al., 1999). 

                                                       
13 Bass et al. (1999) further distinguish between a reference model, seen as the division of functionality, 

and a reference architecture, which maps a reference model onto software components. 
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In general, a model is an abstraction of a system (ter Hofte, 1998; Jacobsen, 2000). As abstrac-
tion implies simplification, creating different models of a system helps cover important as-
pects—while reducing the overall complexity for each aspect (Nowack, 1999). 
The following describes two techniques for structuring software architectures that are relevant 
to the solution contributed by this thesis: level of abstraction and separation of concerns. 

Levels of Abstraction 
One of the first techniques that was used to structure software systems is using a layered struc-
ture with distinct levels of abstraction (Dijkstra, 1968; Buschmann et al., 1996; ter Hofte, 
1998). Each layer defines abstractions that can be used by higher layers to implement the 
functionality. This way, the semantic gap between two adjacent levels is much lower compared 
to building the overall functionality from scratch (Demeyer, 1996). Introducing levels of ab-
straction into a software system is seen as its vertical structure. There is empirical evidence 
that using a layered approach for design and implementation can reduce the development 
costs (Zweben et al., 1995). 
In the context of framework development, it has been recommended to define three layers as 
part of the functional view on the architecture (Succi et al., 1999): The environment layer en-
capsulates low-level middleware- and platform-specific features. The domain-specific layer pro-
vides services common to a specific domain, while the application-specific layer contains ser-
vices that are only used by particular applications. 

Separation of Concerns 
Separation of concerns is another principle that structures a software system. Abstractions are 
defined at the same level of abstraction, in order to simplify a problem (Jacobsen, 2000; Alencar 
et al., 1999; Kazman and Bass, 1995). This structure is also called horizontal decomposition. 
A software component can be regarded as closed if it has a well-defined and stable interface 
that hides the implementation details (Meyer, 1988). By hiding internal information and de-
fining an externally visible interface, the software components implementing the abstractions 
can be loosely coupled, easing modifiability, portability, and reusability (Parnas, 1972; Kazman 
and Bass, 1995; ter Hofte, 1998). 
A module is said to be open if it is still available for extension. This means that functionality 
can be added or functionality can be refined. Bertrand Meyer stresses that it is important for 
software components to be both open and closed in the sense defined here (Meyer, 1988). 
Recently, a discussion has started that concerns should be separated along multiple dimen-
sions (Tarr et al., 1999; Herrmann and Mezini, 2000). Using techniques such as aspect-
oriented programming (Kiczales et al., 1997a), it is possible to combine orthogonal concerns in 
a modular way. 

3.1.2 Software Frameworks 
There are several techniques for how software can be reused. A very simple form, aiming at 
code reuse only, is the class library concept as known from object-oriented programming 
(Hong and Landay, 2001). In contrast, a framework can be seen as a reusable, “semi-
complete” application that can be specialized to produce custom applications (Johnson and 
Foote, 1988; Fayad and Schmidt, 1997; Fayad et al., 1999). Apart from providing implementa-
tion classes that can be reused, a framework always predefines the complete architecture of 
the applications and enables applications to add functionality. Typically, frameworks and 
toolkits follow a specific architectural style (see above). Big parts of the flow of control are 
handled by the framework, causing an inversion of control, as the framework calls the applica-
tion code. This is contrary to class or function libraries, where the library code is typically 
called by the application. 

↓ Section preview 



3. Related Work 

36 

As a result, developers are released from the burden of creating their own architecture. In-
stead, a proven design can be reused along with parts of the code (Fayad, 1999). The devel-
oper can concentrate on the parts specific to the particular application. 
A software component is a “physical packaging of executable software with a well-defined and 
published interface” (Hopkins, 2000). Components can be combined to form larger systems. 
Therefore, a software component also aims to provide reusable software. While frameworks 
are designed to be extended by custom code, components focus on evolution of software sys-
tems. By structuring a system as a set of components with well-defined interfaces, each com-
ponent can be modified with little effect on other components. However, in order to gain the 
desired independence, components have to rely on a common software framework providing 
the necessary infrastructure (Johnson, 1997). Mismatching assumptions about the available 
infrastructure are one of the major causes for incompatibility between components (Garlan et 
al., 1995). Therefore, frameworks and components can be thought of as complementary tech-
nologies. 
A software infrastructure is a software system14 that acts as a foundation for other systems 
(Hong and Landay, 2001). It provides an architectural framework for other systems and offers 
dedicated services. One way to implement a software infrastructure is to provide a generic 
framework that implements the software architecture and hides the underlying technology 
from applications (see figure 1-3 on page 7). Challenges for an infrastructure are the definition 
of standard data formats and protocols and the design of basic services (Hong and Landay, 
2001). 
Apart from implementing an architecture, frameworks that offer a large number of reusable 
components, are sometimes referred to as toolkits (Hong and Landay, 2001). Typically, frame-
works for graphical user interfaces have many predefined widgets that cover the needs of most 
applications. However, in context of user interfaces, the term “toolkit” is often used to de-
scribe a library of widgets (Myers, 2003). 
Due to different scopes of frameworks, it is useful to introduce a classification schema (Fayad 
and Schmidt, 1997; Fayad, 1999). System infrastructure frameworks simplify the development of 
portable system infrastructures, e.g. operating systems. Middleware integration frameworks are 
used to integrate distributed applications. For example, they handle exchange of data in dis-
tributed environments. Enterprise application frameworks, finally, address a specific application 
domain. An example would be a manufacturing or banking framework. 

Designing for Extensibility 
Depending on the techniques used to create extensions and to add application-specific behav-
ior, frameworks can be classified into white-box and black-box frameworks (Fayad, 1999; 
Demeyer, 1996; Gamma et al., 1995; Johnson and Foote, 1988). White-box frameworks use the 
techniques of object-oriented languages to add extensions. Typically, sub-classes can be de-
rived from dedicated base-classes, which provide a set of methods to be overridden and re-
fined. This requires a detailed understanding of the framework’s architecture. Black-box 
frameworks define interfaces for components that can be integrated. Instead of using inheri-
tance as main extension technique, they rely on composition and delegation, which is often 
easier to use for application developers. 
Those parts of a framework that are designed to be extended are often called hot spots 
(Schmid, 1997; Schmid, 1999; Pree, 1999) or hooks (Froehlich et al., 1997; Froehlich et al., 
1999). To be useful for many applications within the same domain, a framework must support 
the parts common to the applications within a domain (also called frozen spots), while provid-
ing hooks for the variable aspects. The variable aspects can be detected, e.g., by systematic 
                                                       
14 A software system does not have to be a single software application only. 
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generalization (Schmid, 1997) or by identifying the axes of variability (Demeyer et al., 1997). 
In this respect, the framework will offer a software architecture that can be easily adapted to 
target requirements. 

Object-Oriented Techniques for Extensions 
Apart from the “classical” object-oriented techniques for extensions (Johnson and Foote, 
1988; Krueger, 1992), such as inheritance with polymorphism and dynamic binding (in the 
case of white-box frameworks) or composition and delegation (in the case of black-box 
frameworks), new techniques have been proposed. 
Open implementation is a technique to provide links for tailorability of software components 
(Kiczales, 1994; Kiczales et al., 1997b; Demeyer, 1996; Buschmann et al., 1996). This is done 
by adding a meta-level interface (or meta-object protocol) in addition to the software compo-
nent’s base interface (Kiczales et al., 1991; Bouraqadi-Saâdani et al., 1998). The meta-object 
protocol provides the ability to do self-analysis and self-adaptability, called reflection. 
A reflective program is one that reasons about itself (Foote and Johnson, 1989). Typically, 
reflection allows inquiring for the type or class of objects, to check the existence of attributes 
and methods, or to send dynamically computed messages. Using meta-classes, the behavior of 
classes and their instances can be controlled (Klas et al., 1989). Self-adaptability is an impor-
tant property for ubiquitous computing applications, in order to react appropriately on envi-
ronment changes (req. U-3). Recently, reflection has been used to increase adaptability of 
middleware (Kon et al., 2002). 
An example where a meta-level is used to be adaptable for heterogeneous and mobile devices is the 
object-oriented Apertos operating system (Yokote, 1992; Yokote et al., 1994). Abstractions are sepa-
rated from possible implementations to be able to map the abstractions at runtime to the currently 
appropriate implementation. This way, Apertos supports different strategies for persistence, object 
migration, or security. 
One form of open implementation is the possibility to extend classes defined in other modules. 
The extension mechanism is quite similar to inheritance. The only difference is that no new 
class is defined for the additional behavior. Instead, new features are added to the base class. 
Of course, the new features can only be used by modules that use the module defining the ex-
tension. This mechanism is one possibility of hyperslicing for n-dim separation of concerns 
(Tarr et al., 1999), with the restriction that no methods can be combined. 
Several programming languages support an extension mechanism. In functional programming 
languages that provide generic methods like CLOS (Keene, 1989; Paepcke, 1993) and Cecil 
(Chambers, 1992; Chambers, 1995) new implementations of generic methods can be added by 
different modules. For untyped interpreted languages, an extension mechanism can be added 
easily. So, Perl’s implementation of classes as packages (Wall et al., 2002) allows adding meth-
ods in any module (file), and attributes can be added dynamically as well. Smalltalk (Goldberg 
and Robson, 1989) has the capability to add methods to classes by other packages. In typed 
programming languages, it is more difficult, as type safety has to be ensured. MultiJava, an ex-
tension of Java, enables class extensions (called “open classes”) by providing multiple dispatch 
(Clifton et al., 2000). 

3.2. Software Models for Human-Computer Interaction 
This section discusses related work coming from the research area of human-computer inter-
action. 

3.2.1 Conceptual Models and Architectural Styles from HCI 
Conceptual models and reference models specify the complete structure of a class of systems at 
a relatively coarse level of granularity. They show the conceptual structure with its fundamen-
tal functional elements. For all systems within this class it should be straightforward to map 

Example 3-1: 
Apertos 
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them onto this structure. For interactive systems, several popular models have been devel-
oped. 

Traditional Application Models 
In the 80’s, researchers started thinking about the structure of interactive applications. The 
first reference model for interactive applications was the Seeheim model (Pfaff, 1985; Phillips, 
1999; Kazman and Bass, 1995), which introduced the separation of layers for the application 
(i.e. the functional core), dialog, and presentation. It was refined into the Arch model in the 
early 90’s (Bass et al., 1992; Phillips, 1999; Kazman and Bass, 1995). Arch introduced an ab-
stract interface for the functional core, which is called “functional core adapter” (fig. 3-1). 
The logical interaction layer was added as a place for widget libraries and user interface tool-
kits such as Motif or MFC. 

physical
interaction

functional
core

functional
core adapter

logical
interaction

dialogue

 

Figure 3-1. Arch reference model (Kazman and Bass, 1995) 

A different approach, which was originally developed for the Smalltalk user interface frame-
work, is the model–view–controller (MVC) paradigm (Krasner and Pope, 1988a; Buschmann et 
al., 1996). It separates the model—which can be seen as a combination of Seeheim’s applica-
tion and dialog component—from view and controller, which divide the presentation in input 
and output functionality (see fig. 3-2). This way, an application can be divided into small 
components that are easier to develop and maintain. In addition, the goal was to create reus-
able view and controller classes. 

model

view controller

<<observes>> <<modifies>>

 

Figure 3-2. Model–View–Controller 

Some later systems used a simplified version of model–view–controller, as they experienced 
that the controller can be rarely reused independently from the view. Therefore, they com-
bined controller and view, and separated model and view only (Linton et al., 1989; Morris et 
al., 1986). The model–view–presenter (MVP) framework integrates the functionality of the 
controller in the view, but introduces the presenter that governs how the model can be ma-
nipulated by the user interface (Potel, 2000; Bower and McGlashan, 2000). 
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The separation of the functional core from the presentation provides the independence that is 
important whenever, e.g., the presentation has to be changed while the application needs no 
modification. This way, the interaction style and user interface concepts can be used without 
modification to the application itself (req. H-1, H-2). 
The PAC-AMODEUS model, developed by Nigay and Coutaz (1991) tries to combine an 
MVC-like approach with the Arch architectural model. It was developed from the experience 
that the different layers of the Arch model often have a heterogeneous structure. If, e.g., a 
user interface toolkit is used to implement the presentation layer, the developer has no influ-
ence on the architectural model used. Instead, it is proposed to use a hierarchy of so-called 
“PAC agents” to structure the dialog control layer (fig. 3-3). A PAC agent is a software com-
ponent with separated “facets” for presentation, abstraction, and control (Buschmann et al., 
1996). The control facet handles the communication between the presentation and abstrac-
tion facets, as well as the communication with other agents. PAC agents are organized in a 
hierarchy. The root represents the overall application, while the leaves correspond to single 
interaction objects like menus, icons, or windows. 
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Figure 3-3. Reference architecture of PAC-AMODEUS (Nigay and Coutaz, 1991) 

In this model, it is possible to support different interaction modalities by integrating several 
presentation and interaction components in the dialog component (Coutaz, 1997). However, 
this model is not designed to dynamically exchange modalities. 
In order to develop a user interface design tool that allows expressing abstract conceptualiza-
tions of an interface, the HUMANOID model has been developed (Luo et al., 1993; Szekely et 
al., 1993). Most interestingly is the separation of application data, application model, presen-
tation, and manipulation (Szekely et al., 1992; Szekely, 1990). The application data describe 
the objects that are manipulated. The application model specifies the functionality the applica-
tion provides for manipulating the objects. The presentation describes the (visual) appearance. 
The manipulation defines what user actions invoke what operations. 
While the separation of data, presentation, and manipulation originates from MVC, the con-
tribution of the HUMANOID model is a further separation of data from the operations used to 
manipulate it. 

Models for Post-WIMP User Interfaces 
The models presented so far were designed with traditional user interfaces in mind, supporting 
a mouse and keyboard interaction style. They offer appropriate separation of concerns for in-
teraction and application functionality. However, their application is limited if newer interac-
tion and user interface concepts—like pen or gesture interaction (Baudel and Beaudouin-
Lafon, 1993), or zoomable user interfaces (Bederson and Hollan, 1994)—are used for an ap-
plication. 
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Instrumental Interaction is an approach to model both “traditional” WIMP (see page 20) and 
Post-WIMP user interfaces (Beaudouin-Lafon, 2000). It defines “domain objects” and “inter-
action instruments”. Domain objects are the “potential objects of interest for the user of a 
given application”, e.g., the objects defining a text document if the user edits text. Interaction 
instruments serve as a “mediator” between the user and domain objects. They transform the 
user’s action into commands that operate on the domain objects; they further provide feed-
back about the execution and results of the command. Therefore, an interaction instrument 
defines a (possibly dynamic) association of a physical part (i.e. the input device) and a logical 
part (e.g. a view on a screen). 
The focus of this interaction model lies on interface design and not on interface development; 
the latter is the duty of architectural models. 
Another concept to acknowledge the new requirement of more flexible user interface design is 
the framework for plasticity (Thevenin and Coutaz, 1999; Coutaz et al., 2003). Plasticity (or 
adaptability) describes the property of a user interface how easy it can be adapted to changing 
requirements. It is argued that plasticity becomes an important issue if an application is to 
support a wide range of heterogeneous devices (req. U-1)—without the need to re-implement 
large portions of the user interface for every platform. Therefore, the model was inspired by 
model-based user interface generators. The conceptual model distinguishes two informal or 
semi-formal, and four formal models that provide the input to generate an appropriate “physi-
cal” user interface for a given platform. Within the context of this thesis, the four formal mod-
els only are relevant. 
The “abstract user interface model” is the part specific for a given application. It describes the 
user interface of an application independent of concrete interaction and user interface ele-
ments. The “interactors model” describes all available interactors, i.e., components capable of 
processing and producing events. Typical examples of interactors are widgets or speech sen-
tences. The “platform model” gives a description of the characteristics of the target platform. 
It includes available interaction devices, computational facilities (e.g. memory and processing 
power), or communicational facilities (e.g. availability and bandwidth of communication 
channels). Finally, the “environment model” specifies the context of use. It covers all objects, 
persons, and events that may impact the application’s functionality. This is closely related to 
the work on context aware applications as discussed below (see section 3.3). 
The main contribution of this conceptual model relevant to this thesis is that the focus of 
models for interactive applications is widened to include also properties of the context the 
application is running in. Therefore, it is possible to abstract from the concrete platform and 
context—gaining independence from the current environment, which results in more flexibil-
ity in adapting to new contexts. This is important for designing user interfaces for ubiquitous 
computing environments. 

Tangible User Interfaces: Model–Control–Representation (physical, digital) 
Tangible user interfaces constitute a special case of Post-WIMP user interfaces. “Graspable” or 
“tangible” user interfaces facilitate the manipulation of digital information by interacting with 
physical objects (Fitzmaurice et al., 1995; Ishii and Ullmer, 1997). 
In the systems described so far, physical objects are completely ignored (as is in most models) 
or seen as adorning the context of the user interface only. Tangible user interfaces (TUIs) dif-
fer in that they treat physical objects as first-class entities of the user interface. 
The MCRpd interaction model developed by Ullmer and Ishii (2000) extends the MVC model 
(described above) to fit the description of tangible user interfaces. While the “model” and 
“controller” parts are also present in a TUI, the “view” part is replaced by the digital representa-
tion (rep-d) of a physical object. In addition, the physical object itself is included in the interac-
tion model as the physical representation (rep-p) of the (digital) model object. In contrast to the 
view (rep-d), which renders the current state of the model object, the physical representation 



 3.2. Software Models for Human-Computer Interaction 

  41 

is only used as input object in many systems. Therefore, the controller is associated with the 
physical representation, trying to update the model whenever the physical object is manipu-
lated. However, if the physical object is equipped with actuators, it is also possible to reflect 
the state of the model in its physical representation. In addition to the models defined by the 
plasticity framework, MCRpd allows to use physical objects not only as part of the environ-
ment, but also as first-class interaction objects (called “interactors” in plasticity). 

3.2.2 User Interface Application Frameworks 
This section gives prominent examples of user-interface application frameworks that introduce 
significant concepts or mechanisms. It does not have the intent to give an extensive overview 
of all application frameworks coping with the construction of user interfaces. 

User Interface Toolkits 
The following presents systems that help in constructing user interfaces. 
The Garnet system (Myers, 1990; Myers et al., 1992) is a user interface development environ-
ment written in Lisp. It is based on a prototype-instance object system (Lieberman, 1986). It uses 
a retained object model for all graphics. This means that for anything that is displayed, a corre-
sponding object has to be created. This is related to the views of the MVC paradigm, but at a 
finer level of granularity. 
While the original MVC uses notifications sent by the model to the view whenever the model 
is changed to implement the observer pattern (Gamma et al., 1995), Garnet uses a universal 
one-way constraint system to couple values among objects. Any slot of an object can contain 
code to compute its value instead of containing the value itself. The value is automatically re-
computed whenever there are changes in the slots that were read to compute the current 
value. 
The input model is also an extension of MVC. As most controllers in MVC are closely related 
to a single view, Garnet introduced the concept of “interactors” to separate the input behavior 
from presentation. Interactors can be considered as a black box (Fayad and Schmidt, 1997) 
implementation of the most common input behaviors. This way, interactors can be easily re-
used in many situations that do not require an uncommon interaction style. 
The Amulet framework is the successor of Garnet (Myers et al., 1997; Myers et al., 1998a). It is 
written in C++ and improves some features of Garnet that turned out to be inconvenient in 
practice. First, Amulet adds a strictly layered design (see figure 3-4). “Gem”, the graphics and 
input layer defines a portable framework for handling of low-level graphics and interaction. 
The “ORE” object system implements a prototype-instance object system in C++. As with 
Garnet’s object system, it can be used for all kinds of objects, not only for those related to the 
user interface. The constraint system was extended to allow multiple constraint solvers to co-
exist. A set of six “interactors” is provided that is sufficient for all behaviors found in today’s 
user interfaces. It also includes a gesture interactor that supports pen gestures. To support new 
forms of interaction, such as speech input, new interactors can be added. On the top of the 
architecture, two layers defining command objects and widgets were added. An interface 
builder called “Gilt” uses all of the lower layers. Later, the Amulet framework was also ex-
tended to support simultaneous input from several concurrent users (see section 3.4.3). 
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Operating System Platform (e.g. Windows, X/11, …)

“Gem” Graphics & Input Layer

“ORE” Object System

Constraint System

“Interactors” Input Handling

Command Objects

Widgets

“Opal” Output Handling

“Gilt” Interface Builder

 

Figure 3-4. Layers defined in Amulet (Myers et al., 1997) 

Apart from Garnet and Amulet, several other systems have investigated the use of constraints 
for the creation of user interfaces (Bharat and Hudson, 1995; Hudson and Smith, 1996; 
Freeman-Benson, 1990; Szekely and Myers, 1988; Epstein and LaLonde, 1988). 
The Jazz toolkit aims to help with the construction of zoomable user interfaces (Bederson et 
al., 2000). It was built based on the experiences with Pad++ (Bederson et al., 1996; Bederson 
and Meyer, 1998). Similar to Garnet and Amulet, a retained graphics model (here, called 
“scene graph”) is used. 
However, most interesting for the design of frameworks is the “minilithic” design philosophy 
on which Jazz is based. In contrast to a monolithic approach where classes contain many 
methods implementing functionality of different aspects, in Jazz functionality is added rather 
by composing, and not through inheritance. 
Therefore, for example, many decorator nodes (also called wrapper objects) are used to add 
behavior by composition (Beck and Johnson, 1994; Gamma et al., 1995; Brant et al., 1998)—
in contrast to adding this functionality to a subclass. Support for handling the management of 
several decorators for one object is not provided by the object itself. Instead, editor objects are 
introduced that manipulate decorators, e.g., return a reference to a specific kind of decorator. 
If a requested decorator is not yet available, a new instance is transparently created and in-
serted in the scene graph. 

Pen and Gesture Support 
Pen and gesture input is an interesting example of how a different interaction style is sup-
ported. Besides, pen and gesture input itself is also important for the work presented here (see 
section 7.5.2). 
SATIN is a toolkit to develop informal pen-based applications (Hong and Landay, 2000). It 
was developed to create a generalized software architecture for informal pen-based applica-
tions, focusing on how to handle sketching and gesturing in a reusable manner. 
SATIN defines a number of general concepts in order to process pen input. A “stroke” is the 
elementary object created by the user’s pen. The “stroke assembler”, aggregates user input into 
strokes and dispatches them as events. A “recognizer” classifies ambiguous input and returns 
an n-best list ordered by probability. Finally, the “interpreter” takes actions based on user-
generated strokes. The interpreter also decides whether or not and what recognizer to use. 
The stroke assembler can be seen as a special interactor developed for handling low-level pen-
input. This is the same approach as taken in Garnet’s extension for supporting gesture recog-
nition (Landay and Myers, 1993). The approach of separating the recognition algorithm from 
the interpreter results in more flexibility in choosing and replacing the algorithms used (Henry 
et al., 1990). The interpreter can be seen as a MVC controller that handles pen events instead 
of mouse or keyboard events. 
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3.2.3 Discussion of HCI Models 
Table 3-1 gives an overview of what requirements are met by the presented models and 
frameworks. The main contribution of the human-computer interaction model lies in the 
separation of concerns related to the user interface. This makes it easier to use a different user 
interface or interaction style without having to change the rest of the application (req. H-1, 
H-2, UH-1, S-1, S-2). 
The newer conceptual models (“instrumental interaction” and “plasticity”, page 40) have 
been developed because not all devices can be treated homogeneously. This is important for 
the support of ubiquitous computing environments (req. U-1). Plasticity is the most advanced 
model, as it acknowledges the need to include the environment within the model (req. U-3) 
and that ubiquitous computing environments are changing dynamically (req. U-4). MCRpd 
(page 40) is the only conceptual model offering specific support for physical user interfaces 
(req. UH-3). 
However, none of the models and frameworks presented here offers support for collaboration 
(req. C-1, C-2, C-3, UC-1) or for anything that goes beyond the boundary of a single device 
(req. U-2, UH-2). 
 
Requirement H-1 H-2 U-1 U-2 U-3 U-4 UH-1 UH-2 UH-3 C-1 C-2 C-3 UC-1 S-1 S-2 

Conceptual Models 

Seeheim / Arch                
MVC                

PAC-AMODEUS                

HUMANOID                

Instruments         ( )       
Placticity     ( )    ( )       
MCRpd                

Frameworks 

Garnet / Amulet                

Jazz                

SATIN                
 

Domain Req. Requirement Name  Domain Req. Requirement Name 

H-1 Different Forms of Interaction  C-1 Multi-Device Collaboration HCI 
H-2 Different User Interface Concepts  
U-1 Multiple and Heterogeneous Devices  

C-2 Flexible Coupling and Modeled Collaboration 
Mode 

U-2 Multiple-Computer Devices  

CSCW 

C-3 Multiple-User Devices 
U-3 Context and Environmental Awareness  

UbiComp 

U-4 Dynamic Configuration  
UbiComp 
& CSCW 

UC-1 Collaboration with Heterogeneous Devices 

UH-1 Adapted Presentation  S-1 Generic Functionality—Reusability 
UH-2 Multiple-Device User Interface and Interaction  

SE 
S-2 Tailorable Functionality—Extensibility 

UbiComp
& HCI 

UH-3 Physical Interaction   = requirement is fully supported 

    ( ) = requirement is partially supported 
     

Table 3-1. Comparison of the HCI models against the requirements for a conceptual 
model for the software infrastructure for roomware environments. Requirements H-1 
and H-2 are supported by most HCI models and frameworks. Requirements U-2, UH-2, 
C-1, C-2, C-3, and UC-1 are not explicitly addressed. This is indicated in the table by 
the background color of the columns. 
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3.3. Software Models for Ubiquitous Computing 
As the research area of ubiquitous computing is quite new compared to the other areas, no 
established conceptual models exist yet. Garlan (2000) identifies the development of architec-
tures for ubiquitous computing as one of the major challenges for future software architec-
tures. However, first models are currently being developed, and looking at the existing proto-
types for software infrastructures for UbiComp environments, the underlying concepts can be 
investigated. 
This section therefore presents conceptual models and software architectures of the state of 
the art of ubiquitous computing. It analyses to what degree they fulfill the requirements for the 
software infrastructure for roomware environments. 

3.3.1 Environmental Awareness 
The systems presented in this section include context information as part of the application 
design. This leads to context-aware applications that can draw on a richer source of informa-
tion for the reactions. Here, only three systems are presented. An extensive survey has been 
compiled by Chen and Kotz (2000). Recent developments are discussed in (Moran and Dour-
ish, 2001). 

EasyLiving: Building Intelligent Environments 
The EasyLiving project at Microsoft Research (Microsoft Research, 2001) addresses the de-
velopment of architecture and technologies for intelligent environments with heterogeneous 
devices (Shafer et al., 2000; Shafer et al., 1998; Brummit et al., 2000). It aims at developing an 
architecture that aggregates diverse devices into a coherent user experience. 
To achieve this goal, EasyLiving provides a middleware system, a geometric world model, sup-
port of sensing devices, and abstract service descriptions. The middleware system (“InConcert”) 
focuses on passing messages between mobile devices. It has no support for synchronous col-
laboration and concurrent access to shared objects, however. While the focus of the EasyLiv-
ing project is on the handling of many devices and their adaptability to context changes, the 
system also provides parts that define a conceptual model. The EasyLiving Geometric Model is 
a very advanced description of spatial relationships between devices and users. Sensing devices 
collect information about the state of the physical environment, to be able to keep the Geo-
metric Model up to date. Abstract descriptions of services support the decomposition of device 
control, internal logic, and user interface. This functionality is quite similar to ICrafter (which 
is part of iROS, described below). 

CoolTown: Integrating the Real with the Virtual World 
The HP Labs are working on the CoolTown project (HP Labs, 2003), which aims at integrat-
ing the real with the virtual world by adding Web presence for “people, places, and things” 
(Kindberg et al., 2000; Caswell and Debaty, 2000). A Web presence can be considered as an 
extended homepage that dynamically reflects the current status. 
Conversely, physical spaces can be extended to integrate the virtual world by placing infrared 
beacons that provide URLs related to the physical space. URLs are exchanged to access ser-
vices and to transfer content, e.g. a Web-present printer renders and prints the documents 
attached to the URLs it receives. A service called “PlaceManager” is responsible for providing 
views of the resources present in the place and related services. 

ContextToolkit: Abstractions for Context Information 
The ContextToolkit (Dey et al., 2001b; Dey et al., 2001a) was developed by Anind Dey at the 
Georgia Institute of Technology as part of his Ph.D. (Dey, 2000). He provides a definition of 
“context”, a conceptual framework for context-aware applications, and a toolkit that instanti-
ates the conceptual framework to facilitate rapid development of applications. 
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The conceptual framework aims to ensure the separation of concerns principle by introducing 
abstractions for context information. “Context widgets” adapt the idea of GUI widgets to the 
context area by defining abstractions of specific context information, thus hiding sensor de-
tails. “Interpreters” and “aggregators” produce higher-level information by interpreting and 
combining the information provided by the context widgets. Dey defines “services” as the 
complement of “widgets”. While widgets provide input to an application, context services 
modify the state of the environment, e.g. by using actuators. Finally, “discoverers” maintain a 
registry of the services that are currently available within an environment. 

3.3.2 Infrastructure for Ubiquitous Computing Environments 
The projects presented in this section concentrate on technology-enriched rooms. These 
rooms are equipped with a range of devices that are integrated with the overall environment. 
In order to enable a fluid interaction in this kind of rooms, an appropriate infrastructure needs 
to be developed. 

Aura: Architectural Framework for User Mobility 
At Carnegie Mellon University, the Aura project is creating an architectural framework for 
user mobility in ubiquitous computing environments (Carnegie Mellon University, 2002; 
Sousa and Garlan, 2002; Garlan and Schmerl, 2001). The main components are a first-class 
representation of user tasks, called “personal aura”, and a representation of tasks as a collec-
tion of abstract service descriptions. The abstract service descriptions can be mapped to concrete 
service suppliers that are available in the environment. A “Task Manager” is responsible for 
allocating tasks to available resources, thus minimizing user distraction. The “Environment 
Manager” is aware of which service suppliers are currently available in the environment. Fi-
nally, “Context Observers” provide information on the physical context to the Environment 
Manager. 
These components are placed at the three layers defined by Aura’s architecture (Cheng et al., 
2002). The “Runtime Layer” is the lowest layer, containing the Environment Manager and the 
runtime system. The next layer, called “Model Layer”, defines the externalized architectural 
model. The top layer, “Task Layer”, contains the Task Manager, which defines the task 
model. 

Gaia: Operating System and Application Model for Active Spaces 
The Gaia project (University of Illinois at Urbana-Champaign, 2002; Román et al., 2002; 
Román, 2003) at the University of Illinois at Urbana-Champaign (UIUC) is developing a 
software infrastructure for UbiComp environments (which they call “active spaces”). They are 
developing an operating system for active spaces called “GaiaOS” and a conceptual model 
called “MPACC” for applications built using GaiaOS. 
GaiaOS (Román et al., 2001b) is a component-based meta-operating system or middleware op-
erating system. The term “meta-operating system” is used to stress the fact that it is an operat-
ing system for whole ubiquitous computing environments, built on top of currently existing 
operating systems. GaiaOS consists of two main parts, the Unified Object Bus and the GaiaOS 
kernel. The Unified Object Bus defines a common interface to manipulate components in the 
active space to hide the heterogeneity of the hardware devices and software protocols. 
The GaiaOS kernel contains a minimum of required services for an active space. This includes 
a naming service to access distributed objects; an event manager to distribute information; a dis-
covery service, which is responsible for tracking software components, people, and physical ob-
jects; a space repository that stores information about arbitrary entities (e.g. devices, services, or 
users); a security service; and the data object service. The data object service (Hess et al., 2001a) 
is a low-level infrastructure to deliver data objects to computers. To handle the heterogeneity 
of UbiComp environments, it is able to adapt content depending on the current context, e.g., 
the current location, or the used device. 
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On top of the kernel services, other services can be implemented. GaiaOS has been realized 
using a customized CORBA implementation (Román et al., 2001a). 
As part of the Gaia project, an “application model” for ubiquitous applications has been de-
veloped (Román and Campbell, 2001). It was realized that models for traditional applications 
offer not enough support for the features needed in a ubiquitous computing environment. 
Therefore, the model–view–controller model (see section 3.2, p. 38) has been extended to the 
model–presentation–adapter–controller–coordinator (MPACC). The term “presentation” is used 
instead of “view” as a ubiquitous computing environment offers more modalities besides vis-
ual-based interaction. Similarly, controllers are not only used for input devices but for any 
physical and digital context that can affect the application. “Adapters” are introduced to 
transform a model to a form that is understood by a given presentation. This can help increase 
the reuse of both models and presentations. 
Finally, the “coordinator” is a “meta-level component” that manages the application composi-
tion and applies adaptation aspects. It knows the adaptation policies and configuration rules 
that are used for combining the components. 

iROS: Infrastructure for Interactive Rooms 
The Interactive Workspaces project at Stanford University (Stanford University, 2000) has 
developed a couple of tools that facilitate working in a “technology-enriched” space. The In-
teractive Room (iRoom) was set up with a hardware technology very close to the one used in 
i-LAND at Fraunhofer IPSI. Although the Interactive Workspaces project focuses on a meeting 
and task-oriented working situation as application context, they offer no specific support for 
synchronous collaboration. Instead, they aim to enable the use of both new and legacy appli-
cations in ubiquitous computing environments, and the interaction between the two. The fo-
cus is on the dynamic and continually evolving nature of interactive spaces. 
The software infrastructure for the iRoom is iROS, the “interactive room operating system” 
(Johanson et al., 2002a; Ponnekanti et al., 2003). It defines a set of low-level services to facili-
tate the development of applications for ubiquitous computing environments. The major sub-
systems of iROS are the Event Heap, the Data Heap, and ICrafter. 
The Event Heap provides the core infrastructure of iROS (Fox et al., 2000; Johanson and Fox, 
2002; Johanson and Fox, 2004), being responsible for coordination of applications and ser-
vices. It uses a blackboard metaphor (Winograd, 2001b), by exchanging tuples that are placed 
on and obtained from the Event Heap. The tuple-space model was introduced in Linda 
(Ahuja et al., 1986; Carriero et al., 1994). Any service can post tuples to the central instance 
of the Event Heap, and can subscribe to a tuple-pattern. Linda’s model of the tuple-space 
(which is also used by TSpaces (Wyckoff et al., 1998) or JavaSpaces (Sun Microsystems, 2002; 
Sun Microsystems, 2000)) has been extended in a number of ways. Most important, Event 
Heap’s tuples are self-describing to make it easier to adapt applications to work together. A 
publish-subscribe mode is introduced as an alternative to the normal polling mechanism. Also, 
every tuple can be received by multiple services. This allows a broadcast-like communication. 
The benefit of a tuple-based communication is that communication can be anonymous, i.e., 
sender and receiver do not need to know each other. This eases the extensibility of the soft-
ware infrastructure. 
The Data Heap is a per-room attribute based file store that can be used to store persistent in-
formation. The Context Memory is a part of the Data Heap, holding meta-information about 
the files stored. To increase flexibility, the Data Heap provides facilities for data transforma-
tion. 
ICrafter is a service framework that enables the software infrastructure to select, generate, or 
adapt user interfaces for the services available in a ubiquitous computing environment 
(Ponnekanti et al., 2001). The Service Discovery keeps track of running services. User inter-
faces are generated from abstract service descriptions that are provided by every service. In-



 3.3. Software Models for Ubiquitous Computing 

  47 

formation about the used device is used to decide what kind of interface to select (if a tailored 
interface exists for this class of devices) or to generate (from the service description). This 
way, a wide range of different user interfaces can be supported. 

one.world: System Architecture for Pervasive Computing Environments 
The one.world project at the University of Washington (University of Washington, 2003) is 
creating a system architecture for pervasive computing (Grimm et al., 2002; Grimm et al., 
2001). They follow three main principles: first, expose change, e.g. of the environment or of 
network connection, rather than hiding it, to enable applications to react upon changes; sec-
ond, to compose dynamically, to be able to have an appropriate reaction (this relates to our 
requirement U-4); and third, to separate data and functionality. The third point enables data 
and functionality to evolve independently. This is discussed in section 4.3 below. 
The one.world project defines three basic abstractions and a set of services. Tuples provide a 
common data format. Components define functionality. Environments group tuples and compo-
nents. Components can use five core services that are provided by one.world. Checkpointing 
allows the capture and restoration of application state. Migration moves components and their 
data between environments, which can reside on different nodes. Components can communi-
cate by passing events, including facilities for remote event passing. Discovery allows sending 
events to services with an unknown location. To manage asynchronous interactions, logic, i.e. 
computations that do not fail, is separated from operations that might fail. 

Oxygen: Pervasive Human-centered Computing 
The Oxygen project at the Massachusetts Institute of Technology (MIT) (Massachusetts In-
stitute of Technology, 2003) embraces a couple of activities to create an infrastructure for 
human-centered pervasive computing. In contrast to the other projects mentioned, Oxygen is 
not only concerned with software technology, but following a universal approach, it covers 
device and network technologies as well. The focus is on multimodal interaction in “intelli-
gent environments” (Coen, 1998). 
The software infrastructure of Oxygen is investigated by two projects. Metaglue is a robust ar-
chitecture that provides the “computational glue” for software agents (Coen et al., 1999). It 
offers support for resource management, configuration changes, agent migration, and agent 
persistency. Hyperglue (Shrobe et al., 2002) increases the scalability of Metaglue. The resource 
management is extended to support high-level service discovery and routing of messages 
among instances of Metaglue. 
GOALS is an architecture that focuses on software adaptability to changes and evolving sys-
tem requirements (Ward et al., 2002). In order to be able to adapt to changes, goals are for-
malized as a language construct. Software components that provide techniques for fulfilling 
goals are dynamically combined to construct the desired services. This way, the GOALS sys-
tem integrates software services to accomplish user-defined goals. 

3.3.3 Discussion of UbiComp Models 
Table 3-2 gives an overview of what requirements are met by the models, frameworks, and 
infrastructures presented. The systems presented in this section have strengths in handling of 
multiple heterogeneous devices (req. U-1), integration of the environment (req. U-3), and 
handling of dynamic changes (req. U-4). Abstractions are introduced in order to facilitate re-
use and extensibility of components and services (req. S-1, S-2). 
Dedicated support for adaptation of the presentation of information and user interfaces to de-
vices (req. UH-1) is addressed by Aura, Gaia, and iROS (ICrafter). Aura separates tasks that 
contain abstract service descriptions from service suppliers. Gaia introduces an adapter that 
can be placed between model and presentation. ICrafter generates user interfaces from ab-
stract service descriptions. Gaia and iROS only, offer explicit support for different forms of 
interaction, and different user interfaces (req. H-1, H-2). Both iROS and EasyLiving enable 
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interaction with a user interface spread over multiple devices (req. UH-2). ContextToolkit, 
CoolTown, and EasyLiving are designed to integrate elements of the environment as part of 
the user interface (req. UH-3). 
Interesting in one.world is the emphasis on the importance of separating data (tuples) and 
functionality (components) as known from HCI models (see section 3.2.1) in the context of 
ubiquitous computing. This separation enables the manipulation of the same data in different 
contexts, with different devices, and different functionality. 
However, none of the models and frameworks presented here offers support for collaboration 
(req. C-1, C-2, C-3, and UC-1), or for multiple-computer devices (req. U-2). The iRoom, 
only, provides limited support for multiple-computer devices via PointRight (Johanson et al., 
2002b). PointRight uses a static model of the topology of the devices available within the 
iRoom in order to re-direct mouse and keyboard input to an arbitrary computer. 
Requirement H-1 H-2 U-1 U-2 U-3 U-4 UH-1 UH-2 UH-3 C-1 C-2 C-3 UC-1 S-1 S-2 

Environmental Awareness 

EasyLiving                

CoolTown                

ContextToolkit                

Infrastructure for Ubiquitous Computing 

Aura                

Gaia & MPACC                

iROS    ( )            

one.world                

Oxygen                
 

Domain Req. Requirement Name  Domain Req. Requirement Name 

H-1 Different Forms of Interaction  C-1 Multi-Device Collaboration HCI 
H-2 Different User Interface Concepts  
U-1 Multiple and Heterogeneous Devices  

C-2 Flexible Coupling and Modeled Collaboration 
Mode 

U-2 Multiple-Computer Devices  

CSCW 

C-3 Multiple-User Devices 
U-3 Context and Environmental Awareness  

UbiComp 

U-4 Dynamic Configuration  
UbiComp 
& CSCW 

UC-1 Collaboration with Heterogeneous Devices 

UH-1 Adapted Presentation  S-1 Generic Functionality—Reusability 
UH-2 Multiple-Device User Interface and Interaction  

SE 
S-2 Tailorable Functionality—Extensibility 

UbiComp
& HCI 

UH-3 Physical Interaction   = requirement is fully supported 

    ( ) = requirement is partially supported 
     

Table 3-2. Comparison of the UbiComp models and infrastructures against the re-
quirements for a conceptual model for the software infrastructure for roomware envi-
ronments. Requirements U-1, U-2, and U-4 are supported by most UbiComp systems. 
Requirements C-1, C-2, C-3, and UC-1 are not explicitly addressed. This is indicated in 
the table by the background color of the columns. 

3.4. Software Models for Computer-Supported Cooperative Work 
Researchers have developed a number of models, architectures, and toolkits for groupware 
systems. This section presents conceptual models, architectural styles, support for single dis-
play groupware, and groupware frameworks or toolkits for heterogeneous environments. A 
very extensive and excellent survey of groupware architectures was done by Phillips (1999); 
another article discusses programming abstractions and techniques (Greenberg and Roseman, 
1999). 
In the domain of CSCW, the concept of local and shared objects is important. An object is 
called local if it is local to a single computer, i.e. it can be accessed only by processes running 
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on this computer. Objects that can be accessed by multiple computers are called shared ob-
jects. 

3.4.1 Conceptual Models from CSCW 
For groupware systems, several conceptual models have been developed. As mentioned above, 
a conceptual model specifies the complete structure of some class of systems at a relatively 
coarse granularity. This section presents two popular models for groupware systems, Patter-
son’s taxonomy, and Dewan’s “Generic architecture”. 

Patterson’s Taxonomy 
Patterson (1995) proposed the first reference model specific to groupware systems. It is based 
on the assumption that groupware applications need to maintain a shared state but use multi-
ple displays to render the shared information. Therefore, Patterson divides the application into 
four levels. The “display” is implemented in the video hardware. “Views” represent a logical 
representation of the information in a format that can be displayed. The “model” is the shared 
information itself. It is kept persistent in a “file”. Based on this separation, Patterson identified 
three classes of architectures for groupware: architectures with shared state that keep only a 
single instance of the model, those with replicated state that allow several instances of the 
model, which are synchronized, and hybrid architectures that are a mixture of the other two 
approaches. It is assumed that all levels above the first replicated one are replicated as well. 
Therefore, this model is sometimes referred to as the “zipper” model. 

Dewan’s Generic architecture 
Patterson’s architecture was generalized by Dewan (1999), keeping the structure of an (op-
tional) centralized stem with replicated branches. In addition to Patterson’s model, Dewan 
allowed an arbitrary number of layers to be defined, being aware that up to five layers are suffi-
cient for most systems (fig. 3-5). Lower layers are related to the hardware and interaction de-
vices; higher layers handle domain specific functionality. Components communicate by send-
ing events. Events between layers are called “interaction events”; events between replicated 
instances at the same layer are called “collaboration events”.  
This model can serve as a good basis for coupling control, mapping of functionality to proc-
esses (including issues such as concurrency, replication, distribution), and mapping functional-
ity to processors. 



3. Related Work 

50 

layer 0
(hardware)

layer 0
(hardware)

layer 1layer 1

layer L
(branch point)

layer L
(branch point)

layer L+1
(base)

layer N
(semantics)

 

Figure 3-5. Dewan's generic architecture (Dewan, 1999) 

3.4.2 Architectural Styles for CSCW 
An architectural style suggests a vocabulary of component and connector types, together with 
a topology of how they are combined (Phillips, 1999). Typically, frameworks and toolkits fol-
low a specific architectural style. 
This section presents architectural styles for groupware systems. Some of them—such as 
PAC* or C-2—have been created by augmenting a style for single-user applications for multi-
user settings. 

PAC* 
The PAC* style is an extension of the PAC-AMODEUS style (see section 3.2) for multi-user 
applications (Calvary et al., 1997), using Dewan’s generic architecture. In addition, no restric-
tions are made about which levels are replicated and which are centralized. Similar to PAC-
AMODEUS, every Dialog Control is equipped with PAC agents. As in Dewan’s model, events 
are passed vertically between adjacent local layers and horizontally between replicates. How-
ever, within the Dialog Control, all communication is handled by the control facets of every 
PAC agent. 
As the PAC* architectural style is at a relatively abstract level and integrates aspects of refer-
ence models, it can be positioned between an architectural style and a reference model. 

Shared Model–View–Controller 
The idea to couple presentation with the model using constraints, as used in Garnet or Amu-
let (see section 3.2 above), inspired researchers to develop multi-user architectures based on 
this approach. 
The abstraction-link-view (ALV) style was developed at Bellcore as part of the architecture of 
the Rendezvous systems (Patterson et al., 1990; Patterson, 1991; Hill et al., 1994). It proposes 
to separate abstractions (the equivalent to MVC models) from their views, and to use con-
straints (called links) to couple the views to their abstractions. As part of the Rendezvous sys-
tem, a constraint maintenance system was implemented (Hill, 1993), supporting declarative 
one-way constraints, similar to those of Garnet (Myers et al., 1992). Abstractions and views 
can be structured hierarchically. Abstractions are always centralized, while the view hierarchy 
is replicated for every client. Therefore, ALV can be mapped to Dewan’s generic architecture 
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with three layers and a single centralized layer. Unlike MVC, controllers (here implicitly part 
of the view) modify cached values in the local views; changes are then propagated by the links 
to the abstraction. 
The main advantage of the ALV style is flexibility in how to separate domain models from 
their presentation in the multi-user case. This gives “dialog independence”, i.e., different pres-
entations can be used for different devices and different users (Hill et al., 1994). As links can 
adapt data while transferring between model and presentation, ALV offers a high potential for 
reuse of both models and presentations. 
The Clock architectural style is directly based on MVC (Graham et al., 1996; Urnes and Gra-
ham, 1999). It adopts ALV’s idea to link the view to the model using (one-way) constraints, 
but supports a separate controller sending requests and update events to its model. It also 
separates the data (here described as abstract data type) from the application model (called 
functional core as in Seeheim). 
In Clock, groupware applications are defined in a component hierarchy, where every compo-
nent can consist of a model, view, and controller. In correspondence with Dewan’s generic 
architecture, the components of the stem are shared up to a specific level. Components lo-
cated further down the hierarchy are local to every client. Interestingly, requests that are not 
performed by a model are propagated up the component hierarchy. This introduces an elegant 
way of sending requests to the shared models at the root of the hierarchy. 
By proposing a hierarchy of MVC components, the Clock architectural style differs from ALV 
in that it uses separate hierarchies for models (abstractions) and views. On the other hand, 
this relates a Clock component to a PAC agent, but using different strategies to pass messages. 
The COAST groupware framework has introduced another variation of a shared MVC architec-
tural style (Schuckmann et al., 1996; Schümmer et al., 2000). COAST is based on the concept of 
a shared-object space that allows distributed clients to access the shared objects, while trans-
parently hiding details of communication. Therefore, this can be implemented using different 
distribution architectures. The COAST framework, however, handles the synchronization of rep-
licated shared objects. 
Model objects are always shared in the COAST architectural style. View objects, in contrast, are 
always local to a single client. It is argued that view objects must be local, as they interact with 
the local hardware and local interaction devices. 
Similar to ALV or Clock, views are coupled to their model using one-way constraints. Con-
trollers modify shared model objects. Changes are propagated to other replicates of the 
changed object. As distinct from other implementations, in COAST, views are never notified 
about changes by their controllers; updating of views is always triggered by their dependencies 
to the model. This way, the originator of a change is transparent. It makes no difference 
whether the change happened due to local input or whether it is propagated from another cli-
ent. The system on today’s desktop PCs is fast enough that this approach causes no perform-
ance problems at run-time, which was the reason to have the controller directly modify its 
view in former systems. Details about performance optimizations in COAST are described in sec-
tion 6.1.3. 
Similar to ALV and the original MVC, the COAST style constructs separate hierarchies for 
views and models. This is because all views are always local while models are shared. Further-
more, the COAST style suggests further separating the model into the domain and application 
models (Schuckmann et al., 1999). It is argued that by sharing both domain and application 
models, different collaboration modes (such as tightly- or loosely-coupled collaboration) are 
easily realized. 
Compared to Clock, the COAST style offers more flexibility in decoupling the presentation from 
the model, which is an important property of ubiquitous computing environments. 
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Chiron-2 (C2) 
Similarly to the PAC* style, the Chiron-2 (C2) architectural style (Taylor et al., 1996) is an 
extension of a style developed for single-user applications (Taylor et al., 1995). It does not ex-
plicitly distinguish between model and view components. Instead, it organizes components at 
an arbitrary number of layers. Components at “top” layers are considered to be models, while 
components at lower layers are related to views. All layers are separated by “connectors” that 
handle all communication between components. This implies that only components on adja-
cent layers can communicate directly. 
The advantage of connectors is that the architecture can handle the distribution between 
multiple clients. As components never talk directly with each other, connectors can be intro-
duced to route events to different clients, or to broadcast messages. 

3.4.3 Single Display Groupware 
While traditional groupware architectures and frameworks aim at collaboration involving mul-
tiple computers, single display groupware concentrates on multiple users working with the 
same computer. Here—apart from issues of user interface design—the handling of multiple 
input devices and concurrent input are important issues. 
While the groupware architectures and models presented so far only mention that single dis-
play groupware is a very simple special case (Dewan, 1999; Calvary et al., 1997), some re-
searchers have started investigating architectural issues for single display groupware. These are 
described next. 

Multi-Device Multi-User Multi-Editor (MMM) 
The Multi-Device, Multi-User, Multi-Editor (MMM) project at Xerox PARC developed one 
of the first single-display groupware applications. The architecture of MMM defines a 
hierarchy of editors that is used to structure the application (Bier and Freeman, 1991). Each 
editor has a space assigned on the display for which it is responsible. Child editors belong to a 
part of the area—like views in a MVC view hierarchy. An editor runs in its own process and is 
responsible for handling input events, manipulating its data, and updating the screen. 
Input events are collected by a device process and put into the system queue. The notification 
process is responsible for the dispatching of events from the system queue to the appropriate 
editor’s queue. It also maps the device to its user by maintaining a “device ownership table”. 
When an event is dispatched from an editor to its child editors, the coordinates of the event 
are transformed to the editor’s local coordinate system. To avoid interference between users, 
events are dispatched to the children only if the editor is not busy, e.g., not being moved. 
To execute commands, every editor stores the current modes and preferences on a per-user 
basis. 

Pebbles 
As part of the Pebbles project at Carnegie Mellon University (Carnegie Mellon University, 
2000), support for single display groupware has been developed by extending the Amulet tool-
kit (see section 3.2.2 on page 41) to handle multiple input streams (Myers, 1999).15 Pebbles is 
a framework that eases communication between a PC and one or multiple PDAs (Myers, 
2001). It supports multiplexing and de-multiplexing of messages exchanged over a simple (in-
frared, serial cable, or network) connection between several applications on a PDA and their 
counterparts on the PC. In order to support single display groupware, a PDA can be used as an 
input device for a PC, emulating mouse and keyboard. The messages are received by an Amu-

                                                       
15 Amulet v5 that includes Pebbles support has not been released (email from B. Myers, Feb 19, 2003). 



 3.4. Software Models for Computer-Supported Cooperative Work 

  53 

let Pebbles Handler running on the PC, which passes them as events, enriched with informa-
tion about the originating device and the user’s ID, to Amulet’s Event Handler. 
The widgets and interactors defined in Amulet are augmented to handle concurrent users. In 
contrast to traditional MVC, multiple controllers (interactors) are needed for the same view. 
Apart from that, different modes for interaction with widgets were identified. A widget 
marked “anyone-mixed-together” can simultaneously be used by different users. The default 
for most widgets is “one-at-a-time”, which means that another user can interact with these 
widgets only, if no one else is currently using it. This corresponds to floor control strategies 
found in many groupware systems (Greenberg, 1991). 

Multiple Input Devices (MID) 
MID (Hourcade and Bederson, 1999) is a framework to enable single display groupware de-
veloped in Java at the University of Maryland to build the underlying infrastructure for Kid-
Pad (Druin et al., 1997), (Stewart et al., 1998). MID stands for “Multiple Input Devices”. It 
uses multiple mice connected via USB to a single PC. It provides capabilities to dispatch 
events generated by multiple mice, using a mechanism similar to Java’s event dispatching 
mechanism. Components can add MIDMouseListeners in order to receive input from MID. 

3.4.4 CSCW Toolkits and Frameworks for Heterogeneous Environments 
Some frameworks have been developed to investigate how to handle synchronous collabora-
tion when using heterogeneous devices. 

QuickStep and Pocket DreamTeam 
QuickStep and Pocket DreamTeam are two frameworks to support the creation of synchro-
nous groupware for mobile devices developed at the University of Hagen (Germany).  
QuickStep (Fernuni Hagen, 2002a; Roth and Unger, 2000) has been designed for small, low-
power handheld devices with low bandwidth. In addition, the operating systems of most 
handheld devices do not support threads. This imposes another challenge on a groupware 
framework. Therefore, QuickStep offers no true synchronous collaboration. Shared data can 
only be modified by the creator of a record, which avoids the need for conflict detection and 
resolution. Yet, this approach enables fast synchronization of replicates. To support privacy, 
private information that is stored in records can be masked before transmitting. 
Pocket DreamTeam (Roth, 2002), is an extension of the DreamTeam groupware framework 
(Fernuni Hagen, 2002b; Roth, 2000) for mobile handheld devices. It was developed driven by 
the constraint to be interoperable with the original DreamTeam framework. To cope with the 
restrictions of wireless connections, an optimistic concurrency control strategy was added. 
Since the functional core of a groupware application is portable between the desktop and 
handheld platform, a new user interface has to be created for every platform. 

Manifold 
Manifold (Rutgers University, 2002; Krebs et al., 2000; Marsic, 2001) is an extension of the 
DISCIPLE groupware framework (Wang et al., 1999) to handle heterogeneous devices. It is 
based on a data-centric approach to sharing. This means that data is shared among all collabo-
rators, but the visualization is rendered independently on every device. Therefore, different 
presentations can be used. 
The Manifold architecture defines three tiers; one for the presentation (using MVC), domain 
logic, and collaboration functionality. This results in a separation of concerns. Depending on 
the platform, a different implementation of domain logic or presentation can be used. In order 
to exchange information between different platforms, a defined representation (based on 
XML) is used, which is transformed into a representation feasible for the particular platform. 
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This approach is interesting because the different concerns for model and presentation are 
separated in a way that facilitates even different representation of models for different plat-
forms. 

XWeb 
Another architecture that aims at enabling synchronous collaboration with heterogeneous 
devices is XWeb, which is being developed at the Brigham Young University (Olsen et al., 
2000a; Olsen et al., 2000b). 
It extends the HTTP protocol to be able to query and subscribe to XML documents. Clients 
can subscribe to XML documents in order to be synchronously notified upon changes to that 
document. To enable platform independent user interfaces, documents are coupled with a 
device-independent description of a user interface (called “view”) appropriate for this docu-
ment. Views are encoded in XML and can be rendered for the particular device and the par-
ticular interaction modality. A tuple built from a document reference and a reference to a 
view is called a “task”. A “session”, finally, couples a task with a reference to the current focus 
within the task’s view. This model was used to build the “join and capture” interaction style 
for a collaboration environment with multi-modal interaction capabilities (Olsen et al., 2001). 
XWeb aims at defining an architecture supporting multi-modal interaction and collaboration, 
which is as simple as the Web. However, apart from defining data formats and protocols, no 
guidance is given on how to design the architecture of services and applications for a ubiqui-
tous computing environment. 

3.4.5 Discussion of CSCW Models 
Table 3-3 gives an overview what requirements are met by the presented models, architectural 
styles, and frameworks. The systems can be divided into two categories: multi-computer and 
single display groupware. Multi-computer groupware is designed to support collaboration with 
multiple devices and flexibly control the degree of coupling (req. C-1, C-2). Single display 
groupware, on the other hand, aim at multiple-user devices (req. C-3). Only Pebbles, Pocket 
DreamTeam, Manifold, and XWeb acknowledge the usage of different devices and platforms 
for collaboration (req. U-1, UC-1). 
Most models also propose to separate the interaction and user interface from the domain-
dependent parts of the applications (req. H-1, H-2). Abstractions are introduced in order to 
facilitate re-use and extensibility of components and services (req. S-1, S-2). 
Altogether, the focus of CSCW models and architectures is not on the adaptation of presenta-
tions, user interface crossing the boundaries of a single device, integration of context informa-
tion, or physical interaction (req. U-2, U-3, UH-1, UH-2, and UH-3). 
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Requirement H-1 H-2 U-1 U-2 U-3 U-4 UH-1 UH-2 UH-3 C-1 C-2 C-3 UC-1 S-1 S-2 

Conceptual Models 

Patterson’s 
Taxonomy 

               

Generic 
architecture 

               

Architectural Styles 

PAC*                

Shared MVC                

Chiron-2                

Single Display Groupware 

MMM                
Pebbles      ( )          

MID                

Heterogeneous Environments 

Pocket Dream 
Team 

               

Manifold                

XWeb        ( )        
 

Domain Req. Requirement Name  Domain Req. Requirement Name 

H-1 Different Forms of Interaction  C-1 Multi-Device Collaboration HCI 
H-2 Different User Interface Concepts  
U-1 Multiple and Heterogeneous Devices  

C-2 Flexible Coupling and Modeled Collaboration 
Mode 

U-2 Multiple-Computer Devices  

CSCW 

C-3 Multiple-User Devices 
U-3 Context and Environmental Awareness  

UbiComp 

U-4 Dynamic Configuration  
UbiComp 
& CSCW 

UC-1 Collaboration with Heterogeneous Devices 

UH-1 Adapted Presentation  S-1 Generic Functionality—Reusability 
UH-2 Multiple-Device User Interface and Interaction  

SE 
S-2 Tailorable Functionality—Extensibility 

UbiComp
& HCI 

UH-3 Physical Interaction   = requirement is fully supported 

    ( ) = requirement is partially supported 
     

Table 3-3. Comparison of the UbiComp models and infrastructures against the re-
quirements for a conceptual model for the software infrastructure for roomware envi-
ronments. Requirements C-1 and C-2 are supported by most CSCW systems; require-
ment C-3 is supported by SDG systems. Requirements U-2, U-3, and UH-3 are not ex-
plicitly addressed. This is indicated in the table by the background color of the col-
umns. 

3.5. Conclusions: What to Use, What is out of Focus & What is missing 
The conclusion of the discussion of related work is that the state of the art in the areas of hu-
man-computer interaction, ubiquitous computing, and computer-supported cooperative work 
fulfills only a part of the requirements identified for synchronous collaboration in ubiquitous 
computing environments. It became clear that currently there is no conceptual model for ap-
plications addressing synchronous collaboration in ubiquitous computing environments that 
provides guidance for designing an appropriate software architecture (Winograd, 2001b; 
Kazman and Bass, 1995). Still, each relevant research area can contribute important ideas for 
some particular aspects. 
This section, therefore, summarizes the concepts that are used in this thesis. The focus of the 
dissertation is clarified considering the related topics. Finally, it is analyzed what aspects are 
missing to meet the goal of this thesis. These aspects are addressed in this thesis. 

↓ Section outline 
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3.5.1 What to Use: Important Concepts 
The important concepts that have been identified are listed grouped according to their level: 
conceptual, architectural, and design level. Each concept is marked in bold. 

Conceptual Level 
Many models stress that a conceptual model has to separate different concerns. HCI models, 
such as MVC, started with the separation of the domain model from the interaction aspects 
(e.g. view and controller). HUMANOID contributes the additional separation of data and 
application models. The Arch model and its refinement PAC-AMODEUS define a separate 
layer for the user interface. 
Post-WIMP models like Plasticity or MCRpd identified the need for the explicit modeling of 
information of the environment in order to allow adaptations to different platforms and reac-
tions to physical interactions. A model of the environment is also used in several UbiComp 
systems such as CoolTown and EasyLiving that keep a representation of “people, places, and 
things” (Kindberg et al., 2000). 
UbiComp models and infrastructures often use a dedicated component responsible for coordi-
nating other components. Examples are MPACC’s coordinator or the environment manager 
used in Aura. These are core services that manage the architecture of applications. Applica-
tions being able to manipulate their architecture are called reflective. 
Apart from separating basic concerns, it is common to define different layers representing dif-
ferent levels of abstraction. For example, PAC, Patterson’s generic architecture, C2, and 
Aura propose to use multiple layers. However, the layers of the Arch reference model mix 
separate concerns and different levels of abstraction. While functional core, dialog control, 
and presentation are separate concerns, the virtual presentation and virtual application are an 
abstracted view on presentation and functional core. UbiComp architectures such as Aura 
define three layers for runtime, model, and task. The runtime layer is similar to the core ser-
vices provided by GaiaOS. 
To enable synchronous collaboration, groupware frameworks have shown the importance of 
sharing information and coupling behavior. Depending on the involved devices and available 
infrastructure, different distribution architectures are appropriate to implement the shared-
object space. For heterogeneous environments, it must be possible to use different implemen-
tations for the same conceptual model and convert information when transmitted between 
devices, as shown in Pocket DreamTeam or Manifold. 

Architecture Level 
In order to implement a conceptual model, many different architectural styles can be used. 
In practice, it might be advantageous to use different styles together to implement different 
concerns. To implement interaction and user interface, styles such as MVC, PAC, or MPACC 
can be used. For pen based interaction, gesture handling similar to the one provided by 
SATIN is needed. To access the context information represented by the environment model, 
context widgets (as defined in the ContextToolkit) are a good abstraction. In a dynamic envi-
ronment, an application model defining an abstract user interface together the abstract ser-
vice descriptions helps adapting to new situations, as tested in Plasticity, XWeb, Aura, and 
EasyLiving. 
To gain more flexibility in combining software components, PAC and the C2 architectural 
styles propose to use explicit controller facets or connection objects for the routing of mes-
sages between components or agents. Alternatively, a blackboard architecture such as the 
Event Heap of the iRoom project allows a flexible communication of services. 
As overall design rules, the “minilithic” design philosophy followed in Jazz seems to be ap-
propriate. If functionality is added by composition (using wrapper or decorator objects) instead 
of inheritance, small components with a well-defined functionality are created that are likely 
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to be reusable in different contexts. Additionally, promising experiences were made with a 
prototype-instance paradigm, constraints, and interactors in Garnet and Amulet. 
Research in CSCW revealed that for distributed applications a shared-object space is a pow-
erful abstraction that often is preferable with respect to synchronization using events. Shared-
MVC couples local presentation objects with a shared model. Additionally, XWeb uses a 
shared abstract description of the user interface. For mobile devices in a dynamic environ-
ment, it improves the overall performance to use optimistic transactions as in Pocket 
DreamTeam, COAST, and XWeb. 
To allow multi-user devices, it is necessary to have multi-user event handling and concur-
rency-safe widgets as provided by MMM, Pebbles, and MID. 

Design and Implementation Level 
To provide the software infrastructure needed to implement an architecture, software frame-
works have certain benefits. Frameworks offer a proven design together with many reusable 
components while being open for extensions. 
Such a framework would be classified between a “system infrastructure framework” and a 
“middleware integration framework” according to the classification schema by Fayad (1999). 
The resulting infrastructure can be seen as a middleware operating system, similar to 
GaiaOS. 

3.5.2 What is out of Focus for the Dissertation 
As shown above, the research areas that are relevant to this thesis are very wide. This section, 
therefore, describes the focus of this thesis to clarify which related topics are examined in what 
depth. 
The goal of the proposed conceptual model for applications supporting synchronous collabora-
tion in roomware environments is to cover a wide range of applications in this area. Neces-
sarily, a conceptual model has to be at an abstract level, leaving room for individual designs 
and implementation approaches. Especially, the conceptual model makes no restriction for 
architectural style and distribution architectures. 
The software infrastructure for the roomware components created as part of the i-LAND pro-
ject is used as sample application of the conceptual model. Having a concrete application al-
lows making decisions for all aspects where the conceptual model allows several choices. The 
choices that were taken are mentioned along with the presentation of the architecture and 
design. 
However, there are many related topics that this thesis does not address explicitly; it rather 
relies in some parts on work done by others. Some of these topics are mentioned in this chap-
ter. For example, no sophisticated model for the physical environment is created in this the-
sis. Instead, several models of the environment are being developed by other researchers, e.g., 
in EasyLiving or CoolTown. In this thesis, a simple model of roomware environments is used. 
The same applies to models and framework for context awareness. The used document 
model is also not the focus of this thesis. 
With respect to the need for flexibility and mobility, no mechanisms for code migration are 
included, although it should be straightforward to include it in the presented framework. No 
mechanisms are currently provided for dynamic service handling, such as service discovery; 
solutions have been developed by other projects, e.g. Gaia or iRoom. As all roomware compo-
nents use visual displays and pen input, there is no need for automatic adaptation of data 
formats, automatic generation of user interfaces from abstract descriptions, or support for 
multi-modal input. However, this could be integrated as part of the data, user interface, and 
interaction model. As the roomware components currently reside in the same local network, 
there is no strong need for secure transmission of information. Secure access on data and 
privacy is also not a focus of this thesis, although this might be crucial for real-life applica-
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tions. The thesis does not contribute new architectural styles and technologies for imple-
menting distribution architectures. Also, issues such as mobile databases are not investi-
gated. 

3.5.3 What is missing: Contributions of this Dissertation 
As seen, several relevant concepts have been developed. In order to support the development 
of groupware applications in ubiquitous computing environments, the related state of the art is 
not sufficient. Models from human-computer interaction have no support for collaboration 
and multi-device interaction. Approaches from ubiquitous computing support interaction in 
heterogeneous environments, but have the focus on individuals rather than synchronous 
group collaboration. Computer-supported cooperative work concentrates on the collabora-
tion aspect, but assumes homogeneous devices used for cooperation. 
However, as ubiquitous computing environments will be used for collaboration, better support 
is needed for building appropriate applications. A conceptual model must include all aspects 
of interaction and collaboration in ubiquitous computing environments. 
The next chapter presents the BEACH conceptual model that has been developed to fulfill all 
requirements discussed in chapter 2. It extends the most promising approaches discussed in 
this chapter to form a unified model that is feasible for supporting synchronous collaboration 
in ubiquitous computing environments. 

↓ Next chapter 
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4. A Conceptual Model for UbiComp Applications 

In order to have a high-level structure of applications for ubiquitous computing envi-
ronments, the BEACH conceptual model is presented in this chapter. After identifying 
the relevant design dimensions, the three design dimensions—separation of concerns, 
coupling and sharing, and the level of abstraction—are discussed. At the first dimen-
sion, five basic concerns represent aspects of ubiquitous computing applications that 
need to be separated: interaction, environment, user interface, application, and data. 
The second dimension explores coupling and sharing issues based on the basic con-
cerns. It is argued that depending on an application’s needs the parts related to dif-
ferent concerns (as defined by the first dimension) have to be shared in order to 
achieve the desired functionality. This extends the current view on handling sharing 
in ubiquitous computing applications. Four conceptual levels of abstraction constitute 
the third dimension of the BEACH model: the core, model, generic, and task level. Each 
level helps to reduce the complexity of constructing software components at the 
higher levels and ensures interoperability, reusability, and extensibility. The chapter 
closes with a discussion of the BEACH conceptual model, also comparing it with re-
lated work presented in the previous chapter. This comparison demonstrates that the 
BEACH model comprises—and exceeds—what can be expressed by the state of the 
art. 

In this chapter, a conceptual model for synchronous ubiquitous computing applications is pre-
sented, which has been developed as part of this thesis. It was developed based on the de-
scribed related work to meet the requirements defined above. 
According to the definition by Nowack (1999), p. 29 a “conceptual model describes a concep-
tual understanding of something, and it is based on concept formation in terms of classifica-
tion, generalization and aggregation. Hence, conceptual modeling implies abstraction”. Ab-
straction is an essential technique to overcome software complexity by allowing the developer 
to focus on one specific aspect at a time. Jacobson et al. (1992) see system development as 
model building, and stress that different conceptual models are created depending on which 
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aspects of a system one wishes to model. Jacobsen (2000) stresses that conceptual models sup-
port understandability and reusability. 
In this thesis, we use “conceptual model” as defining the very high-level structure of an appli-
cation (Phillips, 1999, p. 3; Coutaz, 1997, p. 5), sometimes also called “conceptual architec-
ture” (Anderson et al., 2000). By using this structure for applications, basic components are 
identified that have a clear separation of concerns, thus supporting their independence and 
increasing their flexibility and adaptability (see section 3.1 and Alencar et al., 1999). 
The model presented here is an updated version of the model published in (Tandler, 2001b), 
adding a third dimension for coupling and sharing (Tandler, 2004). In addition, a graphical no-
tation to visualize the model in design diagrams is proposed. This first version of the model 
was published in (Tandler, 2001a). 
This chapter first identifies three design dimensions of the conceptual model. Subsequently, its 
properties are discussed, according to the design dimensions. The succeeding section summa-
rizes the conceptual model. To examine the relations of the BEACH model to related models, 
the model is compared to related work. Finally, the model is discussed. Examples of how the 
conceptual model can be applied in the design of a concrete architecture for roomware appli-
cations are shown in the next chapter. 

4.1. Design Dimensions 
In order to identify the design dimensions for a conceptual model, results of all contributing 
research areas (identified in section 1.1) have to be considered. Looking at these four areas, 
contributions for a conceptual model can be identified (fig. 4-1): 

• Human-Computer Interaction (HCI) is concerned with user interface & interaction. 
• CSCW has identified different degrees of coupling and different mechanisms for sharing. 
• Ubiquitous computing (UbiComp) has to deal with device heterogeneity and the relation to 

the environment in which the devices are used. 
• And, finally, separating specific concerns and defining levels of abstraction are very important 

software modeling techniques. 

UbiComp

HCI
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coupling &
sharing

user interface 
& interaction
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level of abstraction & 
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software 
technology

 

Figure 4-1. Contributions to collaborative ubiquitous computing applications by the 
different relevant research areas, extending figure 1-2. 
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These contributions can be arranged as three design dimensions: separation of concerns, cou-
pling and sharing, and level of abstraction. The contributions “degree of coupling” and “level of 
abstraction” define a dimension on their own. In contrast, “user interface & interaction” and 
“devices & environment” represent different concerns of UbiComp software systems that 
should be separated to simplify building abstractions and models (Jacobsen, 2000; Alencar et 
al., 1999). Hence, they can be combined to a single dimension. Separation of concerns and 
levels of abstraction are two independent properties of a system structure (Parnas, 1972). This 
allows seeing them as independent dimensions. 

4.2. The BEACH Conceptual Model 
The BEACH conceptual model is a generic model providing a structure for all kinds of applica-
tions supporting synchronous collaboration in ubiquitous computing environments. Before the 
three dimensions are discussed in detail, an overview of the conceptual model is shown in fig-
ure 4-2. Looking at the dimension of the level of abstraction and the dimension of the separa-
tion of concerns, these two dimensions form a grid, which can be used to place software com-
ponents or assign software functionality (see fig. 4-12 below). In contrast, the degree of cou-
pling specifies the level of collaboration for this functionality rather that defining or categoriz-
ing the functionality itself. 
In order to be applicable to a wide range of applications and architectures, the model specifies 
a coarse-grained structure at a high level of abstraction. Thereby, the conceptual model leaves 
much freedom for application developers and architects to choose approaches appropriate for 
the problem at hand. 
Foremost, the conceptual model does not impose a restricted set of architectural styles. Rather, 
many architectural styles can be used to implement the model. The same is true for the distri-
bution architecture. Depending on the constraints of the platform and requirements in terms of 
collaboration, a different distribution architecture can be selected. 

degree of coupling & sharing

data
model

level of abstraction

separation
of concerns

application
model

user interface
model

environment
model

interaction
model

local model shared model

model level

core level

task level

generic level

 

Figure 4-2. Notation for the three design dimensions of the BEACH conceptual model 

Figure 4-2 suggests a graphical notation that can be used in design diagrams to denote the po-
sition of classes within the design dimensions of the conceptual model. The level of abstraction 
is indicated by the border line style. The higher the level of abstraction, the thicker is the line. 
The degree of coupling is shown by the color of the border; a black border denotes fully shared 
models, light gray stands for local models. To help the separation of concerns the five basic 
models are indicated by the background color and an icon. This aids developers in under-
standing the design of a ubiquitous computing application. 
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These three design dimensions—separation of concerns, coupling and sharing, and level of ab-
straction—constitute the basic dimensions of the conceptual model proposed in this thesis. 
Each of these dimensions will be discussed next. 

4.3. First Dimension: Separating Basic Concerns 
Separation of concerns is a principle to structure a software system. Abstractions are 
defined at the same level of abstraction, in order to simplify a problem. This structure 
is also called horizontal decomposition. The BEACH model proposes to separate five basic 
concerns: data, application, user interface, environment, and interaction models. 

As described above, it is necessary for different devices to have different user interface ele-
ments (req. H-1). Oppositely, different functionality is useful depending on the device(s) at 
hand (req. S-2). Clearly separating different responsibilities within the software helps provide 
the flexibility that different devices need (req. S-1). Therefore, we distinguish models for the 
data, application, user interface, environment, and interaction, as figure 4-3 shows. The term 
“model” here refers to a part of an application handling a specific concern (Jacobsen, 2000). 
The importance of separating distinct concerns is reviewed in section 3.1. 
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user interface 
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behavior

information 
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data
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application
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application
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environment
model

environment
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uses  

Figure 4-3. Dependencies between data, application, environment, user interface, and 
interaction models. The user interface model can draw on information available in the 
environment model to define an application’s user interface that is adapted to the cur-
rent environment. 

The data model specifies the kind of data the users can create and interact with. To work with 
data, the application model provides the necessary functionality. These two models are inde-
pendent of the currently used or supported hardware device. Instead, the environment model 
describes available devices and other relevant parts of the environment. The user-interface and 
interaction models define the framework for how the software can present its functionality to 
the user, taking into account the properties of the environment model. 
These models are applicable to other applications besides those for ubiquitous computing and 
roomware, as well. Yet, because of the heterogeneous environment in which ubiquitous com-
puting applications operate, they have a strong need for a structure that is clear yet flexible 
enough to adapt components independently for different situations. 
According to the definition given in (Demeyer et al., 1997), the five basic models represent 
axes of variability (see also section 3.1) of roomware applications. For each model, several 
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characteristics are possible. The model itself, thus, has to incorporate the parts common for all 
characteristics. 
When applying the conceptual model to design a software system, the developer has to decide 
how to create an appropriate class structure. As the five basic models refer to different aspects 
of an application, it might not be sensible to use one class per model in a design. In many 
cases, several classes have to be used for every model. On the other hand, for simple applica-
tions it might be sufficient to use only a small number of classes that combine the aspects rep-
resented by different models. In this case, the models represent different facets of a single 
component (Anderson et al., 2000; Calvary et al., 1997). 

selection, cursor
position, and edit

mode belong to the
application model

window, menu,
toolbar, and

scrollbar are part
of the user

interface model

mouse and
keyboard are

described by the
environment

model

the look & feel and
supported

interaction forms
are defined by the

interaction model

the text
document  is

defined by the
data model

 

Figure 4-4. The text editor sample application’s interaction model visualizes information 
that is defined by data, application, user interface, and environment models.16 

In the following, these five models are presented in more detail, including their relationship to 
the previously identified requirements. Concrete examples how these models have been ap-
plied are given in chapters 8 and 9. As a simple example for illustrating the different concerns, 
a text editor application is used (fig. 4-4). The example is not intended to be specific for ubiq-
uitous computing or roomware environments. 

4.3.1 Data Model: Information Objects 
The data model specifies the kind of data the users can create and interact with. It is inde-
pendent of the currently used devices. 

A common approach in application modeling is to separate the application model from the 
data, domain, or business object model (see examples in chapter 3). The data model relates to 
the information dimension identified by Jacobson et al. (1992), while the application model 
represents the behavior dimension. This way, both data and application models can be reused 
independently. 
Different applications can be specified and implemented for one kind of data. This reuse can 
save much time if the current application domain has complex data structures or algorithms. 
Conversely, application models can be reused for different types of data, if the interface be-

                                                       
16 The screenshot shows the SciTE text editor, which is freely available from http://www.scintilla.org. It 

was not developed using the BEACH model. 
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tween the application and the data has been defined very carefully at an appropriate level of 
abstraction. 
The data model defines the classes and functionality of all objects that can be part of a docu-
ment. According to an object-oriented view, data objects combine document state with meth-
ods to change the state. In the context of cooperative work (req. UC-1), it makes sense to 
choose a fine-grained model to gain more flexibility in defining different aspects of collabora-
tion, like the degree of coupling. In (Anderson et al., 2000) the model facet represents the 
data model. 
Following an object-oriented approach, the data model will usually consist of a network of 
multiple connected objects. For hypertext-like documents, e.g., it is popular to define one 
main containment hierarchy with additional connections defined by hyperlinks. 
Let’s take the example of a text editor application. The data a text editor works with is the text docu-
ments it can edit. This includes the text itself, but also its formatting, such as fonts, styles, and text 
sizes. In general, the data model covers everything that is traditionally stored in document files. A de-
tailed example of a data model is given below as part of the description of BEACH’s data model (see 
section 7.2). 
Depending on the actual application, data objects are not restricted to represent what is clas-
sically seen as a “document”. In (Edwards and LaMarca, 1999) a much broader view on 
documents is described. If, for instance, physical devices, people, or tasks are treated as special 
kinds of “documents”, a uniform interface can be used. The term “domain model” is some-
times also used for the concept of a data model (ParcPlace-Digitalk, Inc., 1995; Schuckmann 
et al., 1999). The word "domain" stresses that the model represents artifacts of a given applica-
tion domain, which may not necessarily be documents. Although the term “domain model” 
can be used interchangeably with “data model”, this thesis uses the latter term in order to pro-
vide a clearer contrast with the application model. 

4.3.2 Application Model: Application Behavior 
The application model provides functionality to work with, create, and modify the in-
formation that is defined by the data model. To ensure the reusability of the applica-
tion model in ubiquitous computing environments, it is independent of the current 
environment, such as available interaction devices. 

Application models describe all platform- and interface-independent application aspects, such 
as manipulation of data objects. It also includes the necessary editing state. As application 
models define the behavior of the application, they specify control objects as defined in 
(Jacobson et al., 1992). The ontological model of the conceptual model for groupware as de-
fined by Ellis and Wainer (1994) covers aspects of both data and application models. 
Looking at the example of the text editor, its application model covers what is needed to edit texts. This 
includes the cursor position, current selections, editing modes (such as insert or overwrite mode), and 
the reference to the document to be edited, plus the functionality that uses these abstractions to actu-
ally modify the associated document. BEACH’s application model is described in section 7.2.2. 
To use different application models for the same data model, the data model must remain un-
aware of any application model, but only represent the document state. 
It has proven helpful to choose a rather fine granularity for some application models17. This 
way, low-level application models with a well-defined functionality (for example, to edit a 

                                                       
17 To make it even more confusing, fine-grained application models are called “value models” in 

(ParcPlace-Digitalk, Inc., 1995) to distinguish them from more complex application models. As this 
separation refers to a different level of abstraction as opposed to a different concern, in this thesis, only 
the term “application model” is used. 
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simple text field) can be aggregated into more complex models at a higher level of abstraction 
(for example, an editor that can manage complete workspaces). Usually, a whole hierarchy of 
application models composed of generic, reusable parts and custom parts constitutes an appli-
cation (Schuckmann et al., 1999). This way, the application model often forms a hierarchy 
that is isomorphic with respect to the containment hierarchy of its associated data model 
(ParcPlace-Digitalk, Inc., 1995). 
Using small application models turned out to foster a new conception of what is regarded as 
an application. The application model is seen as a description of additional semantics for a data 
model, instead of the conventional view of data as a supplement that applications will edit. 
This change in viewpoint, therefore, leads to an information-centric perspective of application 
models (Winograd and Guimbretière, 1999; Grimm et al., 2002; Esler et al., 1999). 
In the context of ubiquitous computing environments, it is essential that developers do not 
include user interface and environment aspects in the application model. Enforcing a strict 
separation between application model and device-dependent aspects makes it possible to reuse 
application models with different user interfaces and within a different environment. 

4.3.3 User-Interface Model: Interface Objects 
The user-interface model deals with everything that is needed to describe the user interface 
of an application, but without the application-specific parts. Typical examples are win-
dows, menus, scrollbars, and toolbars. The user interface model, however, does not 
describe how these concepts are presented to the user or how the user can interact, 
as these issues are modeled separately by the interaction model. In order to be able to 
adapt the user interface to the current context, such as available interaction devices, 
the user interface model draws upon information provided by the environment model. 

As traditional operating and window management systems are suited for a traditional desktop 
PC, their user interfaces have drawbacks when used with devices without a mouse and key-
board, or those having different forms and sizes. For instance, if a menu bar were always at the 
top of the screen in a wall-sized display (such as DynaWall, see section 2.1), users would find 
it difficult to reach (Pier and Landay, 1992). Alternatively, toolbars take up a lot of precious 
screen space on a small device, such as a personal digital assistant. 
Accordingly, the user interface model could define alternative user interface concepts suitable 
for different interaction devices (req. H-1), for example, rotation of user interface elements on 
horizontal displays. Multiple-computer devices (req. U-2) and multi-device interaction (req. 
UH-2) make it necessary to have user interface elements that can be distributed and shared 
among different devices. To choose an appropriate user interface, the user interface model can 
draw on information provided by the environment model.  
An explicit model of an appropriate user interface addresses all issues related to the available 
hardware and the current environment, making applications and documents device and envi-
ronment independent. Therefore, the user interface aspects have to be separated from infor-
mation and behavior of applications. This is related to the interface dimension identified by 
Jacobson et al. (1992), but refined to acknowledge the additional requirements of ubiquitous 
computing environments.  
Still, the BEACH conceptual model further distinguishes the user interface from the interaction, to 
allow accessing a (possibly shared) user interface with different modalities and different de-
vices. The user interface model must not enforce a dedicated presentation or interaction style; 
this is the responsibility of the interaction model. Rather, the user interface model concen-
trates on the elements offered for interaction. These elements can be a device-independent 
representation of user interface widgets or interactors. Models of device-independent user in-
terfaces are developed in the context of user interface generation (Ponnekanti et al., 2001; 
Banavar et al., 2000; Nichols et al., 2002). These tools use a device-independent specification 
of the user interface to generate a user interface that matches the currently available interac-
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tion capabilities. To be able to do this, information that is described in the environment model 
is necessary. In contrast to BEACH, these tools do not distinguish between user interface and 
interaction models; the generated user interface is always used with the same interaction form. 
Some of today’s application framework or toolkits already support some means of separating 
user interface and interaction. For instance, the Swing toolkit (Walrath and Campione, 1999) 
for Java and the VisualWorks Smalltalk application framework (ParcPlace-Digitalk, Inc., 
1995) allow the look & feel of the user interface to be switched. This is a simple form of this 
separation. Figure 4-3 illustrates the dependencies between data, application, environment, 
and user interface models. 
To clarify the responsibility of the user interface model, let’s take again the example of the text editor. 
Its user interface model covers the window the editor is displayed in, a menu, toolbars, but also the 
text pane with scrollbars. However, for all of these widgets, it does not specify the way it is presented 
to the user. It rather abstracts from the interaction issues. This way, other interaction forms can be 
supported. Interaction issues are specified by the interaction model instead (see below). In addition to 
the definition of widgets, the user interface handles the input focus. This is possible, as the user inter-
face model is aware of the available interaction devices, such as keyboard or mouse. Available devices 
are described by the environment model (see below). Defining the input focus in the user interface 
model has the benefit of being able to change to focus using different interaction modalities. In this 
simple example application, the keyboard focus can be changed by clicking with the mouse on a wid-
get. The user interface model for roomware components provided by the BEACH framework is de-
scribed in section 7.3. 

4.3.4 Environment Model: Context Awareness 
The environment model describes relevant context information, such as available de-
vices, physical environment, and the logical context. 

One major property of ubiquitous computing environments is the heterogeneity of the avail-
able devices. To provide a coherent user experience (Prante, 2001), the “system must have a 
deeper understanding of the physical space” (Brummit et al., 2000). This raises the need for an 
adequate model of the application’s physical environment. The environment model covers 
three different aspects of the relevant environment: the hardware environment, the physical 
environment, and the logical context (fig. 4-5). 

environment model

platform & devices logical contextphysical environment
 

Figure 4-5. The environment model provides information about the platform, available 
devices, the surrounding physical environment, and the logical context. This may in-
clude information about the presence of other people and their tasks. 

Therefore, the environment model is the representation of relevant parts of the real world. 
This includes a description of the devices themselves, their configuration, and their capabili-
ties. This is the direct hardware environment, which the user interface model can employ in 
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adapting to different devices (req. H-1). This part corresponds to the platform model defined 
by the Plasticity framework (section 3.2.1, page 40), or Aura’s notion of environment (section 
3.3, page 45). 
In addition, the environment model can include other aspects if these aspects influence the 
behavior of the software. Necessarily, it has to be possible to measure their relevant properties 
with sensors. Depending on detected changes in the physical environment, the software can 
trigger further actions to reflect the current situation (req. U-4). An example of this is the way 
ConnecTables establish a common workspace when placed next to each other (see section 
8.2). 
Besides the physical environment, other contextual information, such as the current task, pro-
ject, or coworker presence, could influence the behavior of the software—insofar as this in-
formation is available to the application. We refer to this type of contextual information as the 
logical context of the application (Schmidt et al., 1999). 
Software with functionality depending on physical objects and their properties, or other as-
pects of the user’s environment (req. U-3) is called context-aware (Salber et al., 1999). There is 
a strong need for context-aware applications in ubiquitous computing environments, as the 
large number of available devices, services, and tools can be a burden for the user if the com-
plexity for explicit interaction becomes too high. An environment designed to support the 
users’ needs must aim at implicit interaction (Schmidt, 2000). This can be accomplished by 
using changes in the real world’s state to trigger software functionality.18 Therefore, the envi-
ronment model must be capable of expressing relevant information, such as spatial relation-
ships between physical objects. 
However, currently, it is difficult for software applications to grasp the physical environment 
and logical context. Further work must establish how to capture sufficient information about 
the current environment and to define appropriate models (for example, as by Sousa and Gar-
lan (2002)). 
Current software systems have only a very limited environment model. The text editor assumes that 
every computer it is running on has exactly one mouse, one keyboard, and one monitor. However, 
other applications are aware of audio hardware or special peripheral devices such as graphic tablets or 
scanners. In the context of ubiquitous computing, it is essential that applications do not assume a fixed 
set of available interaction devices to be present. BEACH’s environment model includes information 
about roomware components. It is described in section 7.1. 

4.3.5 Interaction Model: Presentation and Interaction 
The interaction model defines how users and the software can communicate. This includes 
the specification of how information is presented to the user and how the user can invoke 
functionality. Typically, the interaction model describes how the user interface is ren-
dered onto the screen and what happens if users click buttons of a mouse or press 
keys. By strictly separating interaction issues from the rest of software systems, espe-
cially from the user interface model, other forms of interaction can be employed 
without needing to change existing code. 

To support different forms of interaction (req. H-1, UH-3), it is crucial to separate interaction 
issues from all other aspects of an application. The interaction model is the only place that 
specifies presentation aspects or interaction style. This way, a software system can adapt its 
presentation for different contexts, for example, by using a pop-up menu instead of a list box if 
display space is scarce. It is also possible to choose a different representation—when no display 
is available, voice-based interaction might still be possible. 
                                                       
18 However, using detected context to trigger functionality always has the danger of relying on misinter-

preted information, which can be very annoying for users. 
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The interaction model as it is defined here extends existing definitions. Beaudouin-Lafon 
(2000) defines the interaction model as a “set of principles, rules, and properties that guide the 
design of an interface. It describes how to combine interaction techniques in a meaningful and 
consistent way and defines the ‘look and feel’ of the interaction from the user’s perspective”. 
This view places the interaction model at the meta-level only. In this thesis, the interaction 
model also refers to the instantiation of Beaudouin-Lafon’s definition, i.e. the set of concrete 
interactions that are possible for a given software system. Dewan and Choudhary (1995) de-
fine an interaction model as “describing the nature of the state maintained by the user inter-
face”. In contrast, we see the interaction model as describing the means of how to interact 
with the user interface. Interestingly, the user interface model of the conceptual model for 
groupware by Ellis and Wainer (1994) mixes aspects of the interaction model (view of infor-
mation objects), and the environment model (views of participants, views of context), but not 
the aspects that the BEACH conceptual model places in the user interface model. 
As an appropriate interaction style depends on the available interaction devices and the asso-
ciated user interface, a suitable interaction model can be chosen depending on the environ-
ment and user-interface model. The interaction model defines a way to communicate with all 
other basic models, as shown in figure 4-3. This is necessary, as all models can define aspects 
and functions that can be represented for and accessed by the user. 
The relationships between the five basic models can be illustrated by looking again at the example of 
the text editor. The interaction model is responsible for input and output of the application. Figure 4-4 
shows a text editor that is displayed using a Windows look for widgets. The same application could 
use a different interaction model in different contexts, e. g. a Motif look for widgets when run under 
Linux. In addition to the visualization of the user interface, the interaction model shows the data 
model (the text that is edited) and the application model. The selection is visualized by highlighting the 
selected text; the cursor position and the edit mode are shown in the status bar at the bottom of the 
window. This shows why the interaction model can directly interact with all other basic models. 
To handle user input, the interaction model processes mouse and keyboard input. By separating user 
interface and interaction model, a different feel can be used. In addition, different input modalities, 
such as pen gestures or speech input, can be added for the same user interface by defining an appro-
priate interaction model. As a detailed example in the context of roomware environments, BEACH’s 
interaction model is described in sections 7.4 and 7.5. Chapter 8 explains how new forms of interac-
tion can be added to the BEACH framework. 
In ubiquitous computing environments, it is often desirable that multiple modalities can be 
flexibly combined (Myers et al., 2002). The original “Put-that-there” system (Bolt, 1980) 
shows that one modality (there: speech input) may require additional information that is pro-
vided by other modalities (there: hand gestures). This common information, however, can be 
seen as part of the user interface or application model state. In this example, the gesture is used 
to set the selection and input focus for the operation that is given as speech command. This 
view has the benefit that different modalities are independent and can be exchanged or com-
bined as desired. 
When designing an interaction model, the software developer has to choose an architectural 
style that is appropriate for the supported interaction style. For visual interaction, an adapted 
version of the model-view-controller style (Krasner and Pope, 1988a; Schuckmann et al., 
1996) has proven successful. This way, the MVC’s “model” needs no information about how it 
is presented, or how users can trigger functionality. However, the “model” of the model-view-
controller style is not further specified. It can refer to each of data, application, user interface, 
or environment model as defined in this section. 

4.4. Second Dimension: Coupling and Sharing 
The coupling and sharing dimension of the BEACH model refers to the degree with 
which models are shared among cooperating devices. Depending on the application 
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context of a software system, none, some, or all models defined for the five basic con-
cerns have to be shared. 

Whenever multiple devices are involved in a software system, the question arises, which parts 
of the system should be local to a device or shared among several. This has to be clarified for 
both the application code and its state. While distributing code among devices is a technical 
question unique to every application, sharing state has conceptual implications, which this sec-
tion addresses. 
Today, many applications still run entirely local to a single computer, or access only data that 
is distributed over a network. Aiming at synchronous collaboration, traditional CSCW or 
groupware systems have two crucial aspects: access to shared data and the ability to couple the 
applications of collaborating users (Dewan and Choudhary, 1995). Obviously, this coupling 
must apply to both data and application models for software running in a distributed environ-
ment (Schuckmann et al., 1999). 
In the context of ubiquitous computing environments, we must extend this view. In addition 
to data and application, different devices and applications must exchange information about 
the physical environment, such as the presence of nearby users or other available interaction 
devices. The user interface can be distributed among several machines (req. U-2) or among 
complementing devices (req. UH-2). The sharing dimension of the BEACH conceptual model 
explores these additional issues. 
Based on the separation of concerns that has been previously identified, Dewan’s definition of 
coupling (given in section 2.5, page 29) can be refined. Coupling can now be defined as sharing 
the same interaction, user interface, environment, application (editing), or data state among several 
users or devices. Coupling can thus simply be implemented as accessing the same user inter-
face or application model. This is an important benefit of using shared user interface and ap-
plication models. 
Depending on how much state is shared, the degree of coupling can be controlled. If all user 
interface and editing state is shared, a tightly-coupled collaboration mode is realized; if only 
the same data model is shared, users work loosely coupled (req. C-2). This is related to the 
coupling model described in (Dewan and Choudhary, 1995). Examples of how collaboration 
can be modeled are given in section 7.6. 
Even if some models are not coupled, one can profit from sharing environment, user interface, 
and application models. As the information encapsulated in the models is accessible to all cli-
ents, it is possible to provide awareness information in the user interface. Typical for CSCW 
applications is the provision of workspace or activity awareness (Gutwin et al., 1996; Nomura 
et al., 1998). This can easily be realized if the application model including all editing state is 
shared (Schuckmann et al., 1999). While tightly coupling the user interface can be inconven-
ient (Gutwin and Greenberg, 1998; Stefik et al., 1987b), shared user interface information 
provides a means of giving additional awareness hints to remote users. 
Beyond the provision of awareness in CSCW systems, sharing the environment model allows a 
new kind of awareness for ubiquitous computing environments. The information embodied in 
the environment model can be used to give environmental awareness. 
This section discusses the aspects of sharing of the basic models. Before starting a detailed dis-
cussion, it has to be noted that “sharing” can be implemented in many different ways. In the 
case of collaborating devices with quite varying properties—especially in terms of memory, 
performance, or network connection—a shared object does not need to have the same imple-
mentation for different platforms (see Manifold and Pocket Dream Team presented in section 
3.4.4). For example, a shared “image” object is likely to have a different implementation on a 
high-end desktop PC than on a PDA. At the conceptual level, however, both implementa-

Definition: coupling 
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tions represent the same shared object.19 This section extends the example of a text editor 
application to be a cooperative editor to illustrate aspects of sharing.  

4.4.1 Sharing the Data Model: Collaborative Data Access 
Sharing the data model enables collaboration using common documents in a distrib-
uted environment. 

To access and work collaboratively with shared data (req. C-1) it is widely agreed that a 
shared model for documents reduces the complexity in dealing with distributed applications 
(Phillips, 1999). While there are well-established models defining a shared data model provid-
ing only read access (e.g. the World-Wide-Web), it is much more complicated to allow simul-
taneous modifications at a fine granularity. 
For a shared text editor, sharing the data model is essential, as this is the information that should be 
edited by multiple concurrent users (fig. 4-6). The software must ensure that all users access a consis-
tent data model. 
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Figure 4-6. A shared data model is essential for synchronous collaboration. 

Most popular toolkits and frameworks for computer-supported cooperative work provide some 
mechanism to manage a shared-object space. In toolkits with a centralized architecture 
(Patterson, 1991), the document is necessarily shared. Replicated (or semi-replicated (Phillips, 
1999)) systems create a shared-object space by synchronizing the replicated objects (Urnes 
and Graham, 1999; Anderson et al., 2000; Schuckmann et al., 1996). In later versions of 
GroupKit (Roseman and Greenberg, 1992; Roseman and Greenberg, 1996b) shared “envi-
ronments” have been introduced as shared data structures that can trigger callbacks upon 
changes. 
Application designers thus have to decide to what degree or for which parts of their applica-
tion shared access to data is desirable or necessary. In the example of a team member sitting in 
a CommChair and working with another member at the DynaWall (section 2.2), both users 
have access to the same information objects (i.e. data model) and can modify them simultane-
ously. 

4.4.2 Sharing the Application Model: Workspace Awareness & Degree of Coupling 
Sharing the application model allows tight coupling of editing state and awareness 
about other users’ actions. 

                                                       
19 In the case of sharing between PC and PDA, it is likely that conceptually different implementations 

of interaction and user interface models are used. The example given in section 9.2 uses different in-
teraction and user interface models, and a combined implementation of the data and application 
model, although the data model is conceptually shared with a different implementation on the PC. 
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As an easy way of getting information about the editing state of other users, it has been pro-
posed to share the data model as well as the application model (Schuckmann et al., 1999). 
Sharing the editing state allows accessing information about who is working on which docu-
ment, providing awareness information to collaborating team members. For example, action 
indicators (Gutwin and Greenberg, 1998) can provide visual feedback for actions performed at 
a DynaWall by a user sitting in a CommChair. 
Theoretically, it would be sufficient to share the data model in order to implement a shared text editor. 
In practice, it has been found that collaboration is inefficient if users are not aware of other users’ 
actions (e.g. Gutwin et al., 1996). Taking again the example of a text editor, sharing the application 
model opens the opportunity to provide awareness indicators for other users’ actions (fig. 4-7a). The 
text cursors or selections of remote users can be accessed and visualized if the application model is 
shared. In addition, a shared application model can be used to model different collaboration modes. 
For instance, the text editor uses a loose coupling of cursors and selections (fig. 4-7b); i.e. all partici-
pating users can have separate cursor positions and personal selections. The reference to the current 
document is shared by all users. This enables a tightly-coupled navigation, as if one user switches the 
document, all others will follow. 
In BEACH, different instances of the workspace application model are used to allow specifying different 
rotations of the workspace for two users working at an interactive table (section 7.6.3, req. H-1). 
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Figure 4-7. Local application models enable separate cursor positions, but no aware-
ness and coupling. (a) Sharing the application model enables tightly-coupled collabora-
tion and activity awareness. (b) If separate instances of the shared application model 
are used for different clients, some aspects of collaboration can be loosely coupled. 

By changing the state of the application model, the software can control possible work modes 
such as the degree of coupling (req. C-2). This means it controls which parts of the editing 
state are shared by which users, and where private values are allowed. Users working with the 
same application model can work tightly coupled with rich awareness information 
(Schuckmann et al., 1999). Tightly-coupled work could for instance include a coupled scroll 
position, coupled selection, or coupled navigation. If separate instances of the application 
model or different application models are used, users can still work loosely coupled when they 
modify the same data. 
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Again, the application designer has to decide whether or not a tightly-coupled work mode 
should be supported or how much awareness information is advantageous. 

4.4.3 Sharing the User Interface Model: Distributed and Coupled User Interfaces 
Sharing the user interface model allows the coupling of the user interface among dis-
tributed devices. In the context of ubiquitous computing, a shared user interface 
model reduces the effort necessary to implement cross-device user interfaces and 
multiple-computer devices. 

If one user interacts with different devices at the same time (req. UH-2), it is useful to coordi-
nate their user interfaces. This is only possible if all involved devices can access information 
about the current user-interface elements. Depending on how much state collaborating users 
share, software can control the degree of coupling. Sharing all user interfaces and application 
state produces a tightly-coupled collaboration mode; sharing only the same data model creates 
a loosely coupled environment. 
In addition, a shared user interface model forms the basis for providing awareness about the 
user interface state of other participating users. This is analogous to a shared application 
model that can be used to give workspace awareness. 
In our example of the cooperative text editor, a cooperative scrollbar could be implemented by sharing 
the user interface model (fig. 4-8). This way, the scrollbar could work either in a tightly-coupled mode 
that ensures the same scroll position for all users, or in a loosely coupled mode it could provide aware-
ness about the other users’ scroll positions. 
In a roomware environment, a user sitting in a CommChair in front of a large DynaWall can view all 
information at the chair and on the wall at the same time (section 2.2). Consequently, the user would 
benefit if she could modify the information visible on the wall and remotely control the entire user in-
terface. How this is implemented in BEACH is explained in section 7.6.2. Another example of how user 
interfaces can be coupled is the “join” operation of “join and capture” (Olsen et al., 2001). 
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Figure 4-8. Local user interface models enable independent window and scroll posi-
tions, but no awareness and coupling. (a) Shared user interface can cross the bounda-
ries of several devices. (b) Independent instances of shared user interface models allow 
for awareness. As the user interface relies on context information, the environment 
model must also be shared. 
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Furthermore, some devices actually have several embedded computers (req. U-2, e.g. the Dy-
naWall, see section 2.1). When a visual interaction area crosses the borders between displays 
that are physically placed next to each other, but connected to different machines, it is desir-
able that the user interface elements be freely movable between the different displays (Streitz 
et al., 1999). 
In these cases, the involved machines must share user interface elements. However, if an ap-
plication’s user interface is local to a single machine, it is not necessary to implement it as 
shared objects. 

4.4.4 Sharing the Environment Model: Environmental Awareness 
A shared environment model is the basis for giving environmental awareness. It also eases 
the maintenance of the representation of the environment, as different devices can con-
tribute the aspects they can detect. 

When several people and devices physically share a common environment, it is obvious that 
the applications used in such situations should also have a shared model of how their envi-
ronment looks. 
In ubiquitous-computing environments, many devices have sensors that grasp some aspects of 
the physical environment. By combining all available information and making it accessible to 
other devices, each application draws on context information that it can use to adapt its be-
havior (req. U-3). Thus, a shared environment model can serve as the basis for environment 
or context awareness—similar to the workspace awareness, which is enabled by a shared ap-
plication model. This is especially important in figuring out which users and interaction de-
vices are currently present and available. 
As the environment model of the sample text editor is too simple, we use here the example of Connec-
Tables (see section 8.2) to illustrate the benefit of sharing the environment model. When someone 
places roomware components, such as two ConnecTables, next to each other, the ConnecTables up-
date their shared environment model using the information detected by sensors. As soon as BEACH 
observes this change, it triggers functionality to connect the two displays to form a homogeneous inter-
action area. Currently, the involved sensors are attached to computers built into the ConnecTables; 
future work could replace or augment this set up. A sophisticated object tracking system, for example, 
as described in (Brummit et al., 2000) involves computers integrated into the environment. Here, a 
shared environment model enables arbitrary computers to update the information (fig. 4-9). 
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Figure 4-9. Local environment models can represent the local platform and devices, but 
not much of the surrounding context. A shared environment model allows drawing on 
information detected by remote devices and adapting to a broader context. 
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4.4.5 Sharing the Interaction Model: Disaggregated Computing 
In contrast to the other models, the interaction model cannot be shared completely 
as it includes components that communicate with the devices attached to the local 
computer. In the context of ubiquitous computing, however, a shared interaction 
model can publish the interaction state of local devices to enable disaggregated com-
puting. A local interaction model can be used to adapt the presentation and interac-
tion style to the local context of a device. 

The advantages of implementing the data, application, user interface, and environment mod-
els as shared objects to give several users or devices the possibility to access these objects si-
multaneously have been discussed. In contrast, some objects of the interaction model must 
necessarily exist local on each machine. This is necessary because interaction model objects 
communicate with the interaction devices that are attached to the local computer.20 
In a ubiquitous computing environment however, the computer to which an interaction de-
vice is attached should become irrelevant, leading to what is called “disaggregated computing” 
(Shafer, 2001). Systems such as PointRight (Johanson et al., 2002b) or Mouse Anywhere from 
EasyLiving (Brummit et al., 2000) route input events to remote computers and introduce 
proxy device drivers. These examples show how an interaction model can be partially shared. 
The sharing can be partial only, as the device drivers remain local to a machine. 
Another benefit of a local interaction model is the ability to adapt the interaction style ac-
cording to each client’s local context, especially to its physical environment and interaction 
capabilities. An extensive example of how local interaction objects can be used to adapt to 
their local context is given in (Tandler et al., 2001). 
The cooperative text editor could use a shared interaction model to display telecursors, i.e. representa-
tions of the cursor positions of remotely participating users (fig. 4-10). This example, in fact, illus-
trates the relationship between the interaction and the environment model. While the environment 
model describes which devices are attached to which station, the interaction model represents their 
current interaction state, such as the cursor position for a mouse. 
On the other hand, a local interaction model can be used to adapt the interaction to the local context. 
For instance, the shared text editor could use a Windows look & feel (fig. 4-4) for clients running on 
Windows, but a Motif look & feel for clients on UNIX, without implications for the collaboration. In 
the context of ubiquitous computing, further adaptation might be required. If a user sitting in a 
CommChair is collaborating with others working at a DynaWall (fig. 2-4), the information displayed 
at the wall must be scaled to fit into the screen of the CommChair. 

                                                       
20 Almost by definition, shared objects can never have a reference to a local object. This would require 

the local object to be accessible from every machine that has access to the shared object—which 
would result in the local object being shared. However, the opposite is very well possible: A local ob-
ject can access any shared object (COAST, 2000b). 
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Figure 4-10. Local interaction models enable independent presentation and user con-
trol for each device. While the complete interaction model cannot be shared, sharing 
some of its parts enables disaggregated computing. 

4.5. Third Dimension: Conceptual Levels of Abstraction 
Separating software into levels of abstraction is a common software engineering tech-
nique. It reduces the complexity of each level and ensures interoperability, reusabil-
ity, and extensibility. Introducing levels of abstraction into a software system is seen 
as its vertical structure. The BEACH model proposes to separate four conceptual ab-
straction levels: the core, model, generic, and task level. 

The third dimension of the conceptual model is the level of abstraction. Separating software 
into levels of abstraction is a common software engineering technique (see section 3.1); it re-
duces the complexity of each level (Nigay and Coutaz, 1991) and helps ensure interoperability 
(Hong and Landay, 2001). 
For example, a core functionality of the interaction model, such as handling physical interac-
tion devices, belongs to a very low level. Based on this functionality, higher levels define ab-
stractions, such as widgets or logical device handlers. High-level interaction components use 
these abstractions to define the user’s access and interaction possibilities for some other model 
at the same level of abstraction. 
While the C2-architecture (see section 3.4, page 52) places different functionality at different 
levels (Taylor et al., 1996), we prefer to see the level of abstraction as being orthogonal to 
functionality. As different functionality should be separated by different basic models, software 
components implementing one model can belong to different levels. For example, core func-
tionality of the interaction model, such as the handling of physical interaction devices, belongs 
to a very low level. Based on this functionality, abstractions are defined, e.g. widgets or logical 
device handlers. High-level interaction components use these abstractions to define the user’s 
access and interaction possibilities for some other model being at the same level of abstraction. 
In practice, the number of levels that are actually used may vary. As mentioned in section 3.1, 
in the context of framework development, it has been recommended to define three layers as 
part of the functional view of the architecture (Succi et al., 1999), the environment layer, the 
domain-specific layer, and the application-specific layer. These represent three different con-
ceptual levels of abstraction. Handling environment and platform issues belongs to the core 
level, domain-specific functionality represents the generic level, and application-specific func-
tionality is located at the task level. Similar levels are defined in (Tarpin-Bernard et al., 1998) 
in the context of CSCW systems. 
Still, besides the three commonly acknowledged levels, one additional level is needed to repre-
sent common abstractions for all basic concerns in an application-, domain-, and platform-
independent way (fig. 4-11). This is called the model level in the BEACH conceptual model. 
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Figure 4-11. Four conceptual levels of abstraction: core, model, generic, and task level 

Please note that the term level is used in contrast to layer to denote a conceptual level of ab-
straction. A layer is a software technique to structure software architecture and can be used to 
reflect different levels of abstraction in architecture and implementation; a layer can be used 
to separate different concerns. 
The remainder of this section discusses these levels, starting at the bottom with the core layer. 

4.5.1 Core Level: Specialized Infrastructure 
The core level defines the platform-dependent low-level infrastructure. It encapsu-
lates the platform-dependent issues in order to ensure portability and reusability. 

The core level provides functionality that will make the development of higher-level function-
ality more convenient and portable by abstracting from the underlying hardware platform and 
encapsulating platform-dependent details. Functionality normally provided by the (meta-) 
operating system, middleware infrastructures, or groupware and user interface toolkits resides 
at this level. 
Roomware applications require additional functionality that is unavailable from off-the-shelf 
libraries or toolkits. This functionality includes support for multi-user event handling and low-
level device and sensor management. In the BEACH framework, this also includes implementa-
tion of the shared-object space and the dependency mechanism (see chapter 6). 

4.5.2 Model Level: Abstractions to Ensure Platform-Independent Separation of Concerns 
The model level defines application- and domain-independent abstractions to ensure 
platform-independent separation of concerns. 

The model level provides application-, domain-, and platform-independent abstractions that 
can serve as the basis for the definition of higher-level abstractions. These abstractions can be 
implemented on top of the core level. This implies that the implementation of the model level 
maps the platform-dependent abstractions defined at the core level to the platform-
independent abstractions constituting the interface of components at the model level. 
Components at the model level typically define abstract classes that allow different implemen-
tations for different platforms, e.g., using the abstract factory or bridge pattern as defined in 
(Gamma et al., 1995). For the platform-independent implementation of user interface and in-
teraction models for instance, it is quite common to use an abstract GUI framework, such as 
Java AWT, Swing (Walrath and Campione, 1999), or the VisualWorks GUI framework 
(ParcPlace-Digitalk, Inc., 1995). These frameworks provide good examples of components at 
the model level. 
Here, for example, the BEACH framework implements the model-view-controller style for the 
interaction model (see section 6.8). 
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4.5.3 Generic Level: Reusable Functionality 
The generic level defines application-independent reusable functionality for a given appli-
cation domain. 

One important goal of every software system is to provide generic components suited for many 
different situations and tasks (req. S-1). Each application domain has common concepts and 
algorithms that can be applied by a number of software systems. 
Therefore, software developers should group generic models and concepts that apply to a 
whole application domain at a generic level. In this way, the software developer must think 
about generic concepts, which will lead to the implementation of reusable elements.  
At the generic level, the BEACH framework defines generic document elements, such as work 
spaces, text, scribbles, or hyperlinks (see chapter 7). 

4.5.4 Task Level: Tailored Support for Specific Tasks 
The task level is concerned with application-specific support for specific tasks. It covers 
abstractions that are unique to small application areas and are not likely to be further re-
fined. 

When a conceptual application model defines only generic elements, this restricts the applica-
tion’s usability to some extent. Some tasks require specialized support (req. S-2). Therefore, 
the BEACH conceptual model has a task level, which groups all high-level abstractions unique 
to small application areas. For example, we have implemented support for creative sessions on 
top of the BEACH framework (Prante et al., 2002). 
However, in order to increase the amount of reusable components, the application designer 
should aim to minimize application-specific code. Ideally, an application needs to do no more 
than glue together existing software components. 
To show how the related models and architectural styles match with the BEACH conceptual 
model, the next section compares the BEACH model against related work. 

4.6. Comparison with Related Work 
In this section, the conceptual model proposed in this thesis is compared with related models. 
Although results from the different research areas (mentioned in section 1.1) influenced this 
work, we focus here only on human-computer interaction and ubiquitous computing. It is also 
discussed which related models could be used as an architectural style to implement applica-
tions based on the BEACH model. For this discussion, MVC and PAC-AMODEUS have been 
selected as HCI models; MPACC and iROS for ubiquitous computing, and Dewan’s generic 
architecture and the Chiron-2 architecture for CSCW. 

4.6.1 Comparison with Software Frameworks  
In section 3.1, categories of software frameworks have been explained. In order to help under-
stand the BEACH model, the relationship between the BEACH conceptual model and the different 
kinds of frameworks and components of interactive systems is discussed here. Figure 4-12 illus-
trates which parts of an application can be implemented using which category of framework or 
component. Typical components of interactive applications are discussed by Myers (2003). 
Often, software architectures use layers to separate different concerns. For example, data, busi-
ness, and presentation are typical software layers that correspond to the data model, applica-
tion model, and a combined user interface and interaction model. The layers defined by the 
Arch model (see section 3.2.1) mix concerns and levels of abstractions. However, the figures 
in this thesis use the level of abstraction as the vertical dimension. This does not imply that 
the abstraction levels are implemented as software layers. 
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Figure 4-12. The different categories of software frameworks can be used to implement 
different parts of an application that is structured according to the BEACH conceptual 
model. 

On top, at the task level, the software application is placed. It can reuse functionality that is 
provided at the generic level. Application frameworks address the development of complete 
application, providing a generic application “without functionality” that can be specialized. 
Virtual toolkits abstract from concrete user interface toolkits. Domain-specific frameworks 
provide solutions for an application domain, such as digital electronics, aerodynamics, or fi-
nancial transactions. Domain-specific frameworks typically concentrate on data types and al-
gorithms for their domain; that’s why they can be seen as defining data and application mod-
els. To help create user interfaces, widget libraries or user interface toolkits can be used. Win-
dow systems belong to the generic level of user interface and interaction models, as they de-
fine generic means of managing display space for applications, which is a task of the user inter-
face. The model level contains device- and application-independent components. There, com-
ponents such as device-independent graphics packages, UI intrinsics, or collections of abstract 
data types can be placed. At the bottom of the core level, operating systems handle the com-
munication with the hardware platform. System infrastructure frameworks can be used to de-
velop hardware-related functionality. Above, middleware frameworks abstract from operating 
system issues, and often provide support for distribution. 

4.6.2 Comparison with HCI Models 
The HCI models do not address aspects of sharing and distribution. Therefore, the figures in 
this section only show the first and third dimension of the BEACH model, i.e. different concerns 
as the horizontal structure and levels of abstraction as vertical structure. 

Model–View–Controller (MVC) 
The model–view–controller paradigm (see section 3.2.1, page 38) is concerned with the sepa-
ration of the interaction issues from the application and domain logic. Therefore, it concen-
trates on interaction, application, and data model (see figure 4-13). The user interface model 
can be seen as part of MVC’s non-specific model, as views and controllers are also provided 
for user interface elements, such as windows, toolbars, and scrollbars. However, the idea to 
define the view as an observer on the model has proven very successful, and it can be used in 
applying the conceptual model. Whether it is helpful to strictly separate input and output be-
havior depends on the modalities used. 
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Figure 4-13. Comparison with Model–View–Controller 

Agent-Style User Interfaces: PAC-AMODEUS 
The PAC-AMODEUS style (see section 3.2.1, page 39) combines the Arch reference model 
(see figure 3-1) with the PAC style to structure Arch’s dialogue component. Figure 4-14 
shows which parts of the BEACH conceptual model map to PAC-AMODEUS. The data model 
corresponds to the functional core defined in the Seeheim model and Arch. The functional core 
adapter introduced in Arch represents a higher level of abstraction. As the other layers defined 
in Arch represent different concerns rather than different levels of abstraction, they represent 
different models in the BEACH conceptual model. The physical interaction belongs to the core 
level of the interaction model. The logical interaction provides generic components and defines 
abstractions for interaction and user interface elements. Therefore, it can be positioned at the 
model and generic level of the interaction and user interface model. 
Finally, the dialogue component is structured—according to PAC—in presentation, abstrac-
tion, and control (see figure 3-3). These represent different concerns; accordingly, they belong 
to different models. The presentation facet is placed at the task level of the interaction and user 
interface model, as it defines application-specific presentation functionality. The abstraction 
facet defines application functionality and, therefore, it can be seen as an equivalent of the 
application model. The control facet is responsible for passing of messages between the other 
facets and between PAC agents. This is a responsibility orthogonal both to concerns and to 
levels of abstraction. Therefore, the functionality can be found in interaction, user interface, 
and application model. From the point of separation of concerns, care must be taken that the 
dependencies (shown in figure 4-3) between the basic models are not violated. The depend-
encies ensure that, e.g., different user interfaces can be used for the same application, or that 
the same user interface can be with different interaction styles. 
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Figure 4-14. Comparison with PAC-AMODEUS: The dialogue component includes as-
pects of interaction, user interface, and application models. PAC-AMODEUS has no 
notion of environment model. 

4.6.3 Comparison with UbiComp Models 

Gaia’s MPACC: Application Model for Active Spaces 
As part of Gaia, the MPACC application model is defined (see section 3.3, page 46). It is also 
an extension of the MVC paradigm. Presentation and controller are components belonging to 
the interaction model (figure 4-15). The adapter belongs to the user interface model, as it 
transforms the underlying abstractions into a format that fits the interaction model. The 
coordinator can be seen as a low-level service at the core level, which coordinates all other 
models. The MPACC model does not distinguish further between user interface, application, 
and data model. No explicit notion of an environment model is included. 
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Figure 4-15. Comparison with MPACC (model, presentation, adapter, controller, 
coordinator): Adapter and coordinator are components introduced to support 
UbiComp environments. 

iROS: Infrastructure for Interactive Rooms 
As part of the Interactive Workspaces project at Stanford University, the meta-operating sys-
tem “iROS” has been developed (see section 3.3, page 46). It defines a set of low-level services 
to facilitate the development of applications for ubiquitous computing environments. The ma-
jor subsystems of iROS are the Event Heap, the Data Heap, and ICrafter. These are shown in 
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figure 4-16, together with a sample application called Room Controller. However, iROS itself 
has no underlying conceptual model such as the BEACH model.21 
The Event Heap (Johanson and Fox, 2002 or Johanson and Fox, 2004) provides the core in-
frastructure of iROS, being responsible for coordination of applications and services. It thus 
can be seen as base component at the core level, similar to the BEACH core.sharing component 
shown in figure 5-5. The Data Heap—used to store persistent information—can also be 
placed at the core level and related to the data model. The Context Memory is a part of the 
Data Heap, holding information about which services and devices are available in the envi-
ronment. Therefore, it can be seen as core service of the environment model. The Service Dis-
covery keeps track of running services, relating it to the application model. 

core level

model level

generic level

task level

environment
model

user-
interface

model

application
model

data
model

interaction 
model

ICrafterICrafter

Room
Controller
Room
Controller

HTML, VoiceML, 
MoDAL, SUIML

Room Model UI Template Services

UI Model

UI Templates

Swing UI

Interface 
Manager

Service 
Model

Service 
Discovery

Service 
Discovery

Context 
Memory
Context 
Memory Data HeapData Heap

Event HeapEvent Heap  

Figure 4-16. Using the BEACH conceptual model to structure the iROS meta-operating 
system 

ICrafter is a well-known service, which is also part of iROS (Ponnekanti et al., 2001). It han-
dles the generation and selection of user interfaces for services. When a client device requests 
access to a service, ICrafter tries to find the best matching user interface from a set of prede-
fined user interface descriptions for that device, with respect to the device’s interaction capa-
bilities. If no matching interface is available, a plain interface can be generated from the defi-
nition of the service’s functionality and a set of service-independent user interface templates. 
To accomplish this task, ICrafter defines abstract models for services and user interfaces at the 
model level. Interface description languages, such as HTML or VoiceML, are used to construct 
the interaction model from a user interface specification. At the generic level, on the one hand, 
the collection of service-independent user interface templates form a generic user interface 
model for interface generation. On the other, the Interface Manager is a generic application 
model, constituting the main ICrafter service, responsible for interface selection and genera-
tion. 
However, ICrafter does not support a clear separation of user interface and interaction model, 
as it is not possible to define a device independent user-interface description, which can be 
mapped on arbitrary interaction models. This restricts the range of automatically generated 
user interfaces, as the user interface cannot have its own state, separate from the application 
state. For example, the user interface cannot define a cursor position or input focus in a de-

                                                       
21 In fact, there is a discussion in the Interactive Workspaces project whether the BEACH model could be 

adopted to guide authors in developing applications built on top of iROS (private email from Brad Jo-
hanson, Aug 8, 2003). 
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vice-independent manner. Consequently, this information cannot be shared between collabo-
rating devices, as it is described by Olsen et al. (2001). 
The Room Controller is a sample application running on top of iROS. It consists of services 
controlling devices within the current room. It offers an interface to turn lights, projectors, 
and display surfaces on or off. The services controlling devices are part of the application model, 
defining the functionality that can be executed. Handcrafted user interface templates exist as 
user interface model. Templates, e.g. for Java, Palm OS, or HTML, are instantiated based on a 
Room Model (the environment model) to present the currently controllable devices in the 
room. The Swing UI for the Room Controller is an example of a supported interaction model. 

4.6.4 Comparison with CSCW Models 
Comparing the conceptual model with CSCW models, it is ascertained that the models offer 
complementing views on the overall architecture of an application. While the BEACH model 
has the focus on a semantic structure defining important concerns and levels of abstraction, 
CSCW models deal with distribution architectures or architectural styles to implement dis-
tributed systems. 

Dewan’s generic architecture 
For example, Dewan’s generic architecture—also being adopted by PAC*—defines different 
layers separating different levels of abstraction and different concerns, but these layers are 
used to illustrate different distribution strategies. The distribution architecture defines which 
parts of an application are centralized with shared access, which parts are replicated, and 
which parts are kept local to a single client. The BEACH model, instead, abstracts from the dis-
tribution architecture and only highlights the importance of sharing information, providing 
the freedom to select (maybe dynamically) an appropriate distribution architecture.22 
Additionally, the hardware used to present information is also included in Dewan’s architec-
ture, as layer zero (see fig. 3-5). The BEACH model, in contrast, takes the approach of including 
a representation of the relevant parts of the available hardware, as part of the environment 
model. This acknowledges the fact that the available hardware has to be considered when se-
lecting interaction (and also computation) strategies, but stresses the independence of the 
overall systems from the actually available hardware. 

Chiron-2 
Chiron-2 defines an architectural style about how to model the communication between the 
software components of an application. It proposes to use communication buses that mediate 
messages between components residing at different layers. This ensures a high degree of inde-
pendence between the components and eases the selection of the distribution architecture. 
The BEACH model does not propose the usage of an explicit architectural style for the commu-
nication or other aspects of the implementation of different basic models. Nevertheless, some 
architectural styles obviously fit better than others. Chiron-2, although it has not been used in 
the implementation of the BEACH software framework (see chapters 6 and 7), seems to offer 
support for the necessary independence between the components implementing the basic 
concerns. 

                                                       
22 An approach how the distribution architecture can be linked to the conceptual architecture is de-

scribed in (Anderson et al., 2000). 
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4.7. Discussion of the Conceptual Model 
The final section discusses the conceptual model presented in this chapter. It shows its 
strengths, but also its limits, and discusses alternative approaches. Important aspects are type-
set in bold. 
The BEACH conceptual model is a generic model providing a structure for all kinds of applica-
tions for roomware and ubiquitous computing environments. This wide applicability is gained 
by defining structural elements and common concerns at a rather high level of abstraction. As 
the BEACH model combines models from the research areas of HCI, UbiComp, and CSCW, it 
can also be applied to applications in just one of these areas by ignoring the parts necessary 
only to the other areas. In contrast, the current state-of-the-art models cover only a part of 
what is necessary to enable synchronous collaboration in roomware environments (see the 
discussion in section 4.6). 
In conclusion, why does the model look like this? To answer this question, we can look at the 
three dimensions of the model, illustrated in figure 4-2. 
The BEACH model deals with five basic concerns. But, why does the model use exactly these 
five concerns? As shown in section 4.3, all models represent important aspects of roomware 
applications. Every concern should be separated to be able to adapt applications independ-
ently for all concerns. Therefore, all models are necessary. 
However, some other models mention additional aspects explicitly. The conceptual Plasticity 
framework (see section 3.2.1, page 40) separates the environment model (here understood as 
context information relevant to the user’s current task) and platform model as separate con-
cerns. The architectural framework developed in the Aura project (see section 3.3, page 45) 
divides the environment model (concerned with the device configuration) from the task 
model. The BEACH model, in contrast, makes no explicit distinction between different kinds of 
context information that might be relevant for an application. This way, the developer is free 
to put the focus on the kind of information that is needed. The model is also kept simpler, 
specifying only the basic concerns for synchronous roomware and ubiquitous computing appli-
cations. 
Some other models explicitly define connectors handling the communication between soft-
ware components. For example, PAC (see section 3.2.1, page 39) defines the “control” facet 
of a PAC-agent to be responsible for routing messages. Chiron-2 (see section 3.4, page 52) 
introduced communication buses to pass events between components. These two are exam-
ples for architectural styles. Since the BEACH conceptual model aims to be open to implementa-
tion with a wide range of different styles, the developer can choose which architectural style 
for message passing fits best to the given application. 
Concerning the number of proposed levels of abstraction, one can also ask whether or not all 
defined levels are necessary, or, whether important levels are missing. The reason for defin-
ing the proposed levels has been discussed in section 4.5. The architectural framework defined 
in the Aura project (see section 3.3, page 45) restricts the model level to a model of the soft-
ware environment. Also, it makes no distinction between generic and task levels. The explicit 
notion of a generic level helps increase the possibilities for reuse, as it forces the developer to 
think about generic elements of the given domain area. Therefore, it has been proposed in the 
area of software framework development (see section 3.1, page 35) to separate three levels for 
environment, domain-specific, and application-specific. Here, the explicit notion of a level 
defining platform-, application-, and domain-independent models—the model level—is miss-
ing, which is the key element to ensure the separation of basic concerns and the basis for ex-
tensions. 
On the other hand, there is no need to define additional levels. Models that propose more or 
a flexible number of levels (or layers) often mix levels of abstractions with the introduction of 
explicit software layers to implement different concerns. For example, the five layers defined by 
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the Arch reference model (see section 3.2.1, page 38) belong to the interaction, application, 
and data models—and are separated into two levels of abstraction only. The layers imple-
mented in the Amulet framework (see section 3.2.2, page 41), mix core level, interaction 
model, and user interface models. Dewan’s generic architecture (section 3.4) allows an arbi-
trary number of layers to model distribution and communication aspects of distributed sys-
tems. This gives no advice about which layers are actually needed. However, using the BEACH 
model it is still possible to implement a single conceptual level as multiple software layers. Al-
ternatively, the developer is free to define sub-levels if necessary. 
As an additional remark, it should be pointed out that separation of concerns and levels of 
abstraction are two independent properties of a system structure (Parnas, 1972). This allows 
seeing them as independent dimensions. 
The third dimension of the BEACH model—coupling and sharing—addresses the aspect of col-
laboration, especially synchronous collaboration. In section 4.4, the benefits of sharing the 
basic models have been discussed. Generally, it can be summarized that sharing offers the 
capability of providing awareness. Besides sharing the data—which is unavoidable for syn-
chronous collaboration—a shared application model can be used to provide collaboration 
awareness and control coupling. A shared environment model offers environmental awareness 
(including context awareness) among several independent devices. The shared user interface 
model builds the base for distributed interaction. 
While the dimensions of concerns and level of abstraction are independent, the combination 
of the sharing dimension with the others is more constrained. For instance, the sharing has to 
be homogeneous between all levels of abstraction for any concern. It simply makes no 
sense to share, e.g., an application model at the task level, if the generic application model it is 
build upon is local. Besides, it is also not possible to reference a local model from a shared one, 
as (per definition) all references of a shared model are shared as well, and a shared reference 
obviously cannot point to a local object. This implies that, if an application model is shared, 
the data model has to be shared as well—according to the references shown in figure 4-3. This 
is the same constraint that led to Patterson’s “zipper” model and Dewan’s generic architecture 
(see section 3.4). 
The next part shows an application of the BEACH conceptual model. It starts in the following 
chapter with applying the BEACH conceptual model to develop the BEACH software architecture 
for roomware components. 

↓ Next part 
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Part II. The BEACH Software Architecture and 
Framework: Support for Implementing 
Roomware Applications 

Part II shows an application of the BEACH conceptual model in the context of room-
ware environments. Chapter 5 analyzes the concrete needs of the roomware compo-
nents developed by the i-LAND project and derives the aspects of the BEACH model that 
require tailoring. This is used to design the BEACH architecture for the software infra-
structure for roomware environments. In order to support developers when designing 
and implementing roomware applications, two software frameworks are developed 
providing a design and implementation of the reusable parts of the BEACH architec-
ture. The BEACH Model framework covers the core and model layers (chapter 6). The 
BEACH Generic Collaboration framework implements the generic layer of the BEACH ar-
chitecture (chapter 7). Using the architecture and these frameworks, developers can 
implement applications that acknowledge the specific properties of roomware envi-
ronments much more efficiently, which is discussed in Part III. This part describes the 
architecture and frameworks in a bottom-up fashion. 
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5. Software Architecture for Roomware Applications 

This chapter presents the design of the BEACH architecture. The BEACH architecture 
constitutes one major part of the software infrastructure for the roomware compo-
nents developed as part of the i-LAND project. It is designed to enable scenarios such 
as the ones given in section 2.2. The BEACH architecture was developed based on the 
BEACH conceptual model presented in the previous chapter. As basis for the design of 
the architecture, this chapter analyzes the concrete needs of the roomware compo-
nents and derives the aspects of the BEACH model that require tailoring. The results 
are used to define key abstractions at several levels that reduce the complexity of 
software development for roomware environments. While traditional software sys-
tems often use layers to separate software concerns such as data, application and 
presentation, the BEACH architecture defines software layers according to the levels of 
abstraction identified by the BEACH conceptual model. This enables to provide low-
level functionality as part of the software infrastructure. The BEACH architecture can 
thus be used as proof-of-concept showing the applicability of the BEACH conceptual 
model. 

The conceptual model introduced in chapter 4 was designed for the software infrastructure for 
ubiquitous computing environments as a major application area. To be widely applicable, it 
leaves many options for implementation. This chapter presents the BEACH software architec-
ture that was developed as part of this work. It comprises the platform for the roomware appli-
cations developed in the i-LAND project (section 2.1). This is an example of how the concep-
tual model can be applied in the design of frameworks and architectures. The architecture of a 
software system plays a key role as a bridge between requirements and implementation 
(Garlan, 2000). 
With respect to the requirements described in chapter 2, this architecture offers the flexibility 
necessary for supporting collaboration with heterogeneous devices and ensures extensibility for 
future devices. Although this architecture was designed as the software infrastructure for 
roomware components, it has generic elements that are applicable to other ubiquitous com-



5. Software Architecture for Roomware Applications 

88 

puting environments as well. On the other hand, due to the focus on the roomware compo-
nents of i-LAND, several issues that are relevant for a universal ubiquitous computing software 
infrastructure have not been addressed. For example, the implementation as a software 
framework aims at constructing single applications; for a universal UbiComp infrastructure, 
some of the functionality included in the framework would be provided as services by the in-
frastructure (Hong and Landay, 2001; Sousa and Garlan, 2002; Johanson et al., 2002a). Also, 
roomware components have a rather homogeneous software platform; in the general case, the 
heterogeneity of devices in an UbiComp environment has to be addressed explicitly. 

5.1. Architecture Overview 
The architecture conforms to the guidelines proposed in the conceptual model, according to 
the three design dimensions (shown in figure 4-2). 
• The five basic models separate the basic concerns of roomware applications, as identified 

above. 
• A software layer is introduced for every conceptual level. In contrast to defining layers for 

the basic concerns, this way, the lower abstraction levels can be realized as part of the 
software infrastructure or as a software framework. 

• All basic models except the interaction model are implemented as shared objects to enable 
distributed access. In contrast, the interaction model is implemented with local objects to 
be able to adapt to the local context. This gives maximum flexibility for the design of ap-
plications, as discussed in detail in section 4.4. 
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Figure 5-1. Following the BEACH model, the software architecture is vertically organized 
in four layers defining different levels of abstractions and horizontally by five models 
separating basic concerns. Crucial for synchronous collaboration is the shared-object 
space provided by the core layer. 

The resulting structure of the architecture is visualized in figure 5-1. Parts of the functionality 
of the core and generic layers are described in (Tandler, 2001b) in the context of architectures 
for ubiquitous computing environments. The idea to refactor the reusable parts as a software 
framework is discussed in (Tandler, 2001c). The remainder of this chapter explains these as-
pects, organized by the layers of the architecture. 
The layers are presented bottom-up, starting with the model layer. The core layer is presented 
last; it provides low-level abstractions, which are encapsulated by the model layer. A detailed 
understanding is therefore not necessarily required for the description of the upper layers. 
This chapter concentrates on showing how the conceptual model can be applied in the design 
of a software framework. 

↓ Chapter outline 



 5.2. Model Layer: Domain-Independent Abstractions for Roomware Components 

  89 

The figures in this chapter use the separation-of-concerns and level-of-abstraction 
dimensions of the BEACH conceptual model to illustrate the software architecture. The 
degree-of-coupling dimension is not visualized. Arrows denote usage relationships be-
tween software components. The notation is summarized in appendix A on page 207. 

5.2. Model Layer: Domain-Independent Abstractions for Roomware Components 
The BEACH conceptual model suggests extracting domain- and platform-independent abstrac-
tions to ensure strict separation of concerns to improve extensibility and interoperability (sec-
tion 4.5). Consequently, the BEACH architecture defines a separated model layer that provides 
common abstractions for all applications in roomware environments. As discussed in section 
4.4, sharing the environment, user-interface, application, and data models provides the neces-
sary flexibility to create roomware applications. Therefore, the architecture ensures that in-
stances of these models are always realized as shared objects. This enables roomware develop-
ers to think and design at a high level of abstraction, not caring about distribution issues in the 
roomware environment. Figure 5-2 shows the components of the model layer. A component is 
used to specify the basic abstractions for each of data, application, user interface, and envi-
ronment model. Each component implements the basic models by defining both abstract and 
concrete helper classes.  
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Figure 5-2. Components of the model layer. Every basic concern identified in the con-
ceptual model is implemented by a corresponding component. 

The application model (BEACH appmodel) defines the basic structure of applications. The data 
model characterizes the foundation for the structure of data. Composites are abstractions for 
part–whole hierarchies, providing a common interface for all hierarchies. Wrappers can by 
used to dynamically add functionality to other objects. Relation wrappers describe the relation-
ship between objects. 
The visual interaction model (BEACH viewmodel) defines an adapted version of the model-view-
controller (MVC) concept as basic architectural style to be used for interaction aspects. MVC 
has been selected because the roomware components support visual-based interaction. De-
coupling input and output allows the creation of different input styles, such as mouse, pen, or 
finger, for the same visual representation. 
The view model defines abstractions for views, controllers, and trackers, and includes a 
framework for view management, transformations, and event handling. The view is the ab-
straction for any visual representation of a model. By creating local presentations of informa-
tion as observing shared models, the presentation of common information can be locally 
adapted. In order to ensure flexible adaptation of presentations, transformations are used to 
modify the output generated by view. Controllers map the user’s input actions to the behavior 
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that is invoked in the user interface. This is extended by trackers, which track interaction se-
quences and map these to the appropriate functionality. 
Interaction models are always local objects, as they are computed by every device independ-
ently, depending on its local context. This way, views can use different scale factors depending 
on their display size, or show a different part of a common workspace, as in the case of multi-
ple-computer devices (req. U-2), such as the DynaWall (see section 2.1). 
Other interaction modalities besides visual presentation can be easily integrated in this archi-
tecture. In section 8.3, an additional component to support auditory feedback is described. For 
multi-modal interaction, new components like a multi-modal integration component (Oviatt 
et al., 2000) could be added as part of the interaction model. 
The user interface model (BEACH uimodel) is also designed for visual interaction, due to the focus 
on visual-based interaction of the roomware components. The main abstractions it defines are 
the visual interaction area and the tool. The visual interaction area represents a part of display 
space that can be used to render a visual representation of a tool. A tool describes the user in-
terface for an application model (or a set of application models). 
The low-level abstractions of the environment model (BEACH envmodel) are stations and devices. 
The term station refers to computers running a BEACH client. Stations can have attached de-
vices, which can be both explicit interaction devices—like displays, keyboards, or pens—and 
sensors that are used for implicit interaction (Schmidt, 2000). While a concrete representa-
tion of the environment is modeled at the generic level, introducing station and device as ba-
sic abstractions at the model level is important for the extensibility of the overall system. This 
way it can be ensured that the model level is truly device-independent, but that it is possible 
to add support for arbitrary devices.  
Concerning the dependencies between the components, the architecture mainly follows the 
dependencies between the basic models as defined in the conceptual model (fig. 4-3). In addi-
tion, the environment model uses the data model. This way, all environment model classes 
can define specialized document classes. If physical elements, like devices or people, can be 
treated as special kinds of documents, a uniform interface can be provided, reusing concepts 
and interfaces for documents (Edwards and LaMarca, 1999). 
On the other hand, at this layer there is no direct dependency between the interaction models 
and the other models as it is present in the conceptual model. The reason is that the interac-
tion is based on a more generic notion of “model” defined in the core layer. In general, all ab-
stractions defined by the components at the model layer can be used by the upper layers. 

5.3. Generic Layer: Informal Collaboration Support for Roomware Environments 
One important goal of every software architecture is to provide generic components that are 
useful in many different situations and for different tasks (req. S-1). The generic layer contains 
components that support many work situations in roomware environments. It builds on the 
abstractions defined by the model layer. Figure 5-3 shows the generic components and their 
connections. 
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Figure 5-3. Generic components for roomware environments that are defined as part of 
the BEACH architecture. The dotted boxes represent the functionality within a software 
component that belongs to a specific model. 

The generic layer defines two groups of components that are independent of each other, as 
shown in figure 5-3. One is concerned with the document, the other with roomware compo-
nents. Both groups span several of the basic models, as typically an application model is de-
fined to work on a specific data model, and an interaction model defines the interaction for a 
specific application model. As these groups are independent, they should not be seen as build-
ing sub-layers for the generic layer. They rather form entities, being next to each other at the 
same layer. 
Both groups’ interaction models rely on the interaction style for roomware components that 
support multiple users at one roomware component and gestures to ease pen interaction. This 
section now explains the generic components. 

5.3.1 Interaction Style for Roomware Components 
As identified in one of the requirements (req. C-3), multiple users may interact with one device 
synchronously and cooperatively. Consequently, the BEACH architecture defines a component 
(BEACH multiuser) that extends the basic interaction capabilities to be able to handle concurrent 
actions. This is especially needed for roomware components such as the InteracTable, which 
work well for small group meetings. 
Since the currently existing prototypes of roomware components offer pen-based interaction, 
gesture support is the major interaction style. The gesture component (BEACH gestures) supports 
assembling of strokes from low-level events, recognition of gesture-shapes, and provides an 
appropriate event dispatching mechanism for gesture events. 
Further details about the core event handling mechanisms provided by the BEACH framework 
and the extensions for multiple users and gesture interaction are discussed below (section 5.5). 

5.3.2 Roomware Components 
The BEACH architecture defines two software modules to support roomware components. First, 
a concrete instantiation of the environment model (BEACHroomware) of roomware components is 
defined that provides a representation of roomware components, their interaction devices, 
sensors, environment, and relationship to other roomware components. Two abstractions are 
defined. The roomware component abstracts from the computers that are used to construct 
what is perceived as a single device by users. The display area has a similar job: it abstracts 
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from the displays and defines a homogeneous area that actually might be built out of several 
displays. This is important to ensure flexibility for applications to work with arbitrarily config-
ured displays that might be present in the environment (req. U-3) and to dynamically update 
to changes in this configuration (req. U-4). 
The display area is used by the second module, the roomware user interface component (BEACH-
roomwareInterface). It defines user interface elements that are adapted to the needs of the differ-
ent roomware components (called “roomware interface elements” in figure 5-3). Two user 
interface elements are segments and overlays that are provided as concrete implementation of 
the abstract concept of a visual interaction area (defined at the model layer), which is appro-
priate for roomware components. To be able to interact with these user interface elements, 
the component also defines views, controllers, and pen gestures for the interaction with these 
elements (denoted “roomware interface views” in figure 5-3). 
In order to be able to make the functionality that is provided by modules and services avail-
able in the user interface, the roomware interface offers a hook to add functionality to the user 
interface. The concept of a toolbar is used that can dynamically add and remove commands 
that can be invoked. 

5.3.3 Generic Document Elements 
The basis for documents created with BEACH is a hypermedia data model. The generic docu-
ment elements include hand-written input (scribbles), texts, images, and links as basic objects 
constituting information. Workspaces are used to structure information (the equivalent of a 
page in other hypermedia systems). By including hand-written input and free spatial arrange-
ment of document elements within the workspace, the infrastructure aims to support informal 
meetings, a major application area for roomware components (see section 2.2). 
The document applications component defines fine-grain application models for the document 
elements. They add editing behavior to the document elements, and specify additional editing 
state, such as the cursor positions for all users currently modifying a text object. With respect 
to collaborative work, the application model defines no global editing modes. 
The “document pen interaction” component defines the possibilities for pen-based interaction 
with the document application models. Similar to the interaction model for the roomware user 
interface, this defines view, controllers, and pen gestures for all application models. Note that 
in the BEACH architecture the interaction with a document element is always mediated by a 
specific application-model object. 

5.4. Task Layer: A Platform for Roomware Applications and Extensions 
The generic components that are proposed by the BEACH architecture are useful in many dif-
ferent situations. For some tasks, it is helpful if specific support is given (req. S-2). Therefore, 
the architecture has a task layer, which provides a place for modules to add further model 
elements and to extend the functionality of existing components. 
The BEACH architecture provides support for modules at the core level. This way, modules can 
be plugged into BEACH that can add new functionality and services without having to change 
existing code. Figure 5-4 shows three modules that have been developed for BEACH, the docu-
ment browser and two modules for creativity support, BEACHcreativity and PalmBEACHsupport. 
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Figure 5-4. Components defined by the document browser and creativity support 
modules. The task layer represents the place for application-specific definitions. 

The document browser defines a connection between the user interface and the document that 
is currently being viewed or edited. It can specify which part of the document is shown, also 
offering the possibility to navigate in the document to a different workspace. The document 
browser provides no visible interaction elements in BEACH. Instead, it stays in the background 
and reacts to commands invoked via gestures or toolbars. 
At present, many tools have been implemented on top of the BEACH framework. For example, 
the BEACH creativity module provides support for creative teams to collect ideas during brain-
storming sessions (Prante et al., 2002).23 As the roomware components allow informal interac-
tion, they contribute to the atmosphere needed for creative meetings. To support smooth 
transitions, ideas generated between sessions can be collected using a PDA and transferred to 
a public roomware component (e.g. a DynaWall) in the next meeting. With its basic struc-
ture, this module is similar to the generic document module (fig. 5-3). 
Other modules provide, e.g., extensions for context-awareness that is integrated with the data 
model (Flucher, 2001). The “Passage”-system enables the transport of BEACH documents using 
physical objects (Konomi et al., 1999 and section 8.1). The ConnecTables explore the transi-
tion between individual and cooperative work by dynamically combining displays to form a 
homogeneous interaction area (Tandler et al., 2001 and section 8.2). How auditory feedback 
for interactions has been added is described by Müller-Tomfelde and Steiner (2001) and in 
section 8.3. 

5.5. Core Layer: Specialized Infrastructure for Roomware Components 
The aim of the core level of the BEACH conceptual model is to provide functionality that will 
make the development of the higher levels more convenient or possible. Figure 5-5 shows the 
components that are provided by the core layer of the BEACH architecture. The dashed line 
separates two sub-layers. Model-independent components are first of all the shared-object space 
to enable synchronous access to distributed objects, dependency detection and automatic up-
date, and support for modules and services. It is important that the basic support for sharing is 
provided at core level, as all other components must be able to define and access shared ob-
jects (Myers et al., 2000, p. 17f). 

                                                       
23 This and other examples are explained in chapter 9. 
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To enable interaction, the event-handling component (BEACH core events) enables event dis-
patching for different interaction devices. As basis for the visual interaction model, the BEACH 
core views component defines view objects that use the dependency mechanism to observe 
shared model objects and are automatically updated when the shared object’s state changes. 
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Figure 5-5. Components of the core layer. They provide a shared-object space, con-
straints and enable the handling of custom modules and services. On top of this, core 
support for visual presentation and event-based interaction is realized. 

Some parts of this functionality are actually implemented by the runtime-environment of the 
implementation language, by the operating system, and by other toolkits. The remainder of 
the section explains the functionality of the components. 

5.5.1 Module and Services Interface 
To be able to plug in new components that offer new functionality without having to change 
existing code requires a provision of appropriate hooks already at the core layer. Hooks or hot 
spots have been introduced as places in a software architecture that are intended to be adapt-
able by applications (section 3.1). 
In BEACH, modules are allowed to add: 

• components, which may define or extend data, application, user interface, environment, or 
interaction models, 

• services, which encapsulate new active behaviors that are not directly triggered by the user, 
but can start new threads of execution and become active due to external influences (like 
sensors), and 

• hooks, which allow other modules to add new kinds of features. This is used, e.g., by the 
roomware interface module that defines a hook to plug in new toolbars in the user inter-
face. 

Reflection is used to check for the presence of modules. On startup, existing module objects 
are queried for components and services. 
Services are notified on startup and shutdown of BEACH on the station they are running on. It 
is up to the service what actions to take. For the communication with sensors, a service might 
start a process to poll a sensor for values, and act if the sensed value changes. Another service 
could install an observer to watch for specific state changes, e.g. of the environment model. 
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5.5.2 Shared-Object Space and Distribution Architecture 
In order to provide computer support for synchronous collaboration, a platform for distributed 
access to shared objects is needed (req. UH-2, UC-1, U-3, and U-2). As mentioned above, the 
BEACH conceptual model makes no assumptions about the underlying distribution architecture. 
This section, therefore, does not focus on the properties of different groupware frameworks 
and toolkits; it rather highlights the important features of the software infrastructure of a 
roomware environment. 
To implement sharing, the BEACH architecture uses objects as basis for sharing, rather than 
simpler models such as tuples (Ahuja et al., 1986; Johanson et al., 2002a). Using objects allows 
for building complex data models; tuples, in contrast, are a very simple model. When hetero-
geneous devices and services interact, a simple model has the benefit of being easily adaptable. 
This is an important feature for ubiquitous computing. However, we chose to use objects for 
sharing, as synchronous collaboration often requires more complex data models that cannot 
be mapped onto tuples in a straightforward manner. Objects, instead, can be used not only to 
share data, but also to share application, user interface, and environment state information. 
This was shown above to be useful for synchronous collaboration in ubiquitous computing 
environments. 
The BEACH architecture uses a replicated distribution architecture, as some roomware compo-
nents are connected via a wireless network with a rather low bandwidth: currently 10 Mbps 
are shared by all connected clients (fig. 5-6). After an initial replication, only incremental 
changes to the shared objects must be transmitted, thus reducing necessary communication. A 
server synchronizes all replicas of shared objects and ensures persistency. To minimize the co-
ordination overhead, objects are grouped in “clusters” as the atomic elements for replication. 
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Figure 5-6. BEACH clients running on different roomware component are synchronised 
by a server. Mobile components communicate with the server via a wireless network. 

In our implementation, it is assumed that all collaborating clients have a permanent network 
connection to allow for timely synchronization. However, for environments with mobile de-
vices having no permanent network access, special support for versioning and merging would 
have to be provided. Transactions are used to guarantee consistency in spite of concurrent 
changes to objects. As a roomware or ubiquitous computing environment is highly interactive, 
it is important to ensure a fast response of the user interface. By committing locally and allow-
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ing control flow to proceed before server confirmation, optimistic transactions offer a significant 
speedup whenever conflicting actions are unlikely or harmless. 

5.5.3 Dependency Detection and Automatic Update  
As changes to shared objects can be initiated by an arbitrary computer for a variety of reasons, 
it is very important that mechanisms are provided to trigger updates automatically when the 
state of shared objects changes (req. UH-3, U-4). 
Therefore, it is possible to define computed values for local objects. For computed values, a de-
clarative description of the computation is used. The dependencies between computed values 
and attributes of shared objects are automatically detected and re-computation is triggered 
whenever these attributes are changed (Schuckmann et al., 1996; Schümmer et al., 2000). 
When, e.g., the attribute ‘color’ of a workspace is set to ‘blue’ while a view for this workspace 
is open somewhere, this view will be repainted, regardless who changed this value on which 
device. This is very similar to the constraints used in systems like Amulet (Myers et al., 1997), 
but works also in a distributed setting. 
Both triggering of re-computation and using shared events are techniques that allow for syn-
chronization. Nonetheless, shared state (e.g. implemented as a shared-object space) together 
with a dependency or constraint mechanism enjoys several key advantages, which make it a 
preferable technique in our situation. 
First, it is straightforward to make the state of objects persistent. This way, the overall state of 
tools and applications can be captured, which is helpful to recover from crashes, or to migrate 
applications to a different device (Coen et al., 1999). If a client is crashed or migrated, it can 
simply be restarted (optionally on a different device) and its saved state is retrieved from the 
server. In the context of synchronous collaboration, sharing state helps overcoming the “late-
comer” problem (i.e. clients joining an already running session), which has been discussed in 
the CSCW literature (ter Hofte, 1998). 
Second, specifying constraints or dependencies enables a declarative programming style, 
which has several advantages (Myers et al., 1992). For example, it can be left to the constraint 
system, which (and when) computed values have to be updated. This takes a huge burden 
from the developer and can help improve overall performance by allowing only necessary 
computations to be triggered. However, triggering re-computation can be seen as an auto-
matic and implicit creation of events upon state changes. 

5.5.4 Automatic View Update 
For distributed interactive systems, it is desirable that the state of the replicated objects be 
consistent among all clients. Moreover, the associated interaction models should also give an 
up-to-date representation of their attached model objects, because otherwise the users might 
not realize that the shared state is actually synchronized. 
To support visually oriented interaction models, the BEACH framework is capable of treating 
display space as a special kind of computed value (see above). The core view model provides 
the re-computation mechanism (also used for computed values) for the re-painting of a view’s 
part of the display by recording all accesses to shared model objects that occurred when paint-
ing the view. When any value accessed by a view to render the visualization is changed, the 
re-painting of this view is triggered automatically in order to ensure an up-to-date representa-
tion. This mechanism can be easily adapted to support different kinds of interaction models 
(req. H-1). 

5.5.5 Event Handling 
One characteristic of roomware environments is the presence of different interaction devices 
that allow different forms of interaction (req. H-1). While output devices can vary too much 
to provide more specific support at the core level than the automatic dependency detection 
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and update mechanism described above, most input devices can be abstracted as using events 
to provide notification of state changes. Our experience has been that it is convenient to use 
an event-based model, although the question has been raised if events are an appropriate in-
teraction model for recognition–based systems (Myers et al., 2000, p. 8)]. In the case of the 
roomware components, it is convenient to use events, as the device drivers already send 
events to the application. 

Different Families of Events 
To enable the integration of new interaction devices, new types of events can be added by 
new components. As an alternative to the standard mouse button-up or -down events, these 
could be event types like pen-up, pen-moved, or pen-down in the case of a pen-based system. 
All event types being generated by each kind of interaction device can be thought of as be-
longing to one family of events. Using this terminology, one can say that each interaction de-
vice has one associated family of events it generates. 

High-Level Events 
To support an adapted user interface for roomware components equipped with a pen, the 
events generated by the device drivers can first be assembled into higher-level events. As it is 
very intuitive to draw strokes with a pen instead of just clicking on a document, pen events 
can be combined as strokes. For these strokes, gesture events can be generated depending on 
the shape drawn with the pen (like tap, line, circle (Geißler, 1995)). 
To track several concurrent event sequences, the concept of “trackers” (Demeyer, 1996; 
ParcPlace-Digitalk, Inc., 1995) is extended by the generic layer to function in the multi-user 
case (see BEACH multiuser in figure 5-3). A tracker is an object receiving events directly, without 
using the view hierarchy for dispatching. This is the same mechanism as is used by Myers’ 
multi-user interactors (Myers, 1999). BEACH is capable of handling several trackers at the same 
time by keeping a mapping of input device IDs to the different trackers, which will get all 
events from this device. 
As recognition-based systems inherently have to deal with ambiguity, a hierarchical event 
model has been proposed (Mankoff et al., 2000a; Mankoff et al., 2000b). This could be easily 
realized on top of this event mechanism.  

Different Event Dispatching Strategies 
Different devices produce different kinds of events that might need to be handled differently. 
Therefore, the event-handling component allows specifying different dispatching strategies for 
different classes of events (Henry et al., 1990). 
For example, mouse or pen events, being closely connected to the visual interaction model, 
are normally sent to the topmost view (that wants to handle this event) at the position speci-
fied by this event. 
In contrast to mouse events, which refer to a specific point, a gesture event is associated with 
a stroke, which could cross the bounds of multiple view objects. Therefore, a dispatcher for 
gesture events has been implemented as part of the generic layer (see BEACH gestures in figure 
5-3) that is capable of selecting the right controller by considering all views that are “close” to 
the drawn shape.  

5.6. Discussion of the BEACH architecture 
This chapter presented the BEACH architecture, which applies the BEACH conceptual model us-
ing the roomware components created as part of the i-LAND project (section 2.1), in order to 
enable scenarios such as the ones given in section 2.2. At several points, architectural deci-
sions have been made to tailor the flexible aspects of the conceptual model for the concrete 
requirements of roomware components. In this discussion, “roomware components” always 
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refers to the first generation of roomware components created as part of the i-LAND project. 
When other roomware components (or other devices) are used, it might be necessary to sup-
port different architectural properties. 
As illustrated in chapter 2, the properties of roomware components that influenced the archi-
tectural decisions are: 

• visual and pen-based interaction 
• standard computation capabilities in terms of memory resources and processing speed 
• a permanent network connection among each other 
• a slow wireless network connection for mobile components 
• the roomware components are operated inside dedicated meeting rooms 
• the application scenarios cover dynamic collaboration, informal meetings, and creative or design 

tasks 

In discussion sections, the important aspects are typeset in bold. 
The roomware components focus on visual interaction. Therefore, the interaction model is 
based on the MVC architectural style. The user interface model uses the concept of visual 
interaction areas to specify the space on a display, which is used to display different applica-
tion models. 
The visual presentation of information on roomware components is augmented by a pen-based 
interaction style. Here, the separation of view and controller helps in modifying the input inde-
pendently from the output. At the generic layer, gesture recognition is the major component 
for handling ambiguous pen input. 
The computers currently built into the roomware components are standard PCs, or have com-
parable characteristics. In contrast to PDAs as target platform, the roomware components im-
pose no special requirements on the software in terms of computation and memory capabilities.24 
This provides the chance to keep the strict separation of basic concerns at the architectural 
(and therefore also framework) level. Every client is fast enough to render its own view of 
shared objects, and has enough memory to hold replicates of all objects it is currently access-
ing. 
As basis for distribution, a shared-object space is used. Sharing state in contrast to shared 
events enables continuous persistency. Constraints are used to ensure consistency of presen-
tation with the state of shared objects. To share objects instead of tuples allows for represent-
ing complex models and enables sharing not only for information, but also for application, user 
interface, and environment state. 
For the communication between roomware components, a permanent network connection is as-
sumed. This is necessary to ensure the timely synchronization of replicated objects that is 
needed for synchronous collaboration. Using a replicated distribution architecture has bene-
fits compared to a centralized architecture, as the mobile roomware components (such as the 
CommChair) are equipped with a wireless network that has a much lower bandwidth than a 
standard LAN. If replicates are used, only incremental update messages have to be sent. To 
speed up feedback in the user interface, optimistic transactions provide fast feedback, while 
ensuring consistency among all clients. 
As the roomware components are designed to be used in dedicated meeting rooms, it can be as-
sumed that a prepared infrastructure is available. This makes it possible to rely on a server as 
part of the infrastructure, to keep the primary copies of all replicated objects and to ensure 

                                                       
24 An example of how the BEACH conceptual model can be applied for PDAs is described in section 9.2. 
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persistency. Due to the relatively static setup of some roomware components,25 the focus of 
the BEACH architecture was not on support for mobile devices that can fluidly change environ-
ments. Hence, features such as code migration or service discovery are not included in the 
architecture. 
When people are collaborating in a roomware environment, documents are modified concur-
rently on different devices. For such dynamic collaboration situations, it is helpful to free the 
developer from thinking about sending update messages manually when views have to be re-
freshed. Therefore, the presentation is coupled to the shared model objects using a con-
straint mechanism. As the shared-object space ensures the synchronization of replicated ob-
jects, the presentation is automatically refreshed, as soon as synchronization messages are re-
ceived. 
The roomware components aim to support an informal meeting style. This is reflected in the 
generic document elements by including hand-written scribbles and free spatial arrange-
ment of document elements within a workspace. 
Finally, creative meetings constitute a major application scenario. Accordingly, a sample mod-
ule provides tools to support creativity. 
The main abstractions and hooks defined by the BEACH architecture are summarized in figure 
5-7, using the notation suggested in chapter 4. The second dimension of the BEACH model, the 
degree of coupling and sharing, is shown by the gray scale of the borders of the boxes. The 
numbers in the figure refer to the section in this thesis where this topic is discussed in detail. 
The BEACH software architecture is organized by layers representing the levels of abstraction 
identified by the BEACH model. This allows implementing lower abstraction levels as part of 
the software infrastructure. This is not possible if the layers represent different concerns, 
such as data, business (i.e. application), and presentation (user interface and interaction) as 
commonly realized in today’s architectures. 

                                                       
25 Especially the DynaWall cannot be easily moved to a different room, as it is physically integrated in 

the meeting room. Even, to transport an InteracTable to another location is still more effort than de-
sirable. 
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Figure 5-7. Overview of the main hooks and abstractions defined by the BEACH frame-
work. The task layer lists the applications discussed in this thesis. The numbers refer to 
the section in this thesis where this topic is discussed. 

In the next two chapters, it is explained how the BEACH architecture is implemented as two 
object-oriented software frameworks. Besides conceptual model and software architecture, the 
framework constitutes the third level (see section 1.4) at which this dissertation is contribut-
ing. 

↓ Next chapters 
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6. Software Infrastructure for Roomware Environments 

This chapter describes the design of the BEACH Model framework, which implements 
the core and the model layer of the BEACH architecture. It serves as a proof-of-concept 
to show how the conceptual model and architecture can be successfully applied. The 
core layer implements platform-dependent functionality. The model layer provides ab-
stractions that enable extensibility. Hooks are defined for the aspects that are de-
signed to be extended by upper layers. 

 

This chapter describes the design and important implementation details of the BEACH Model 
framework. It implements the core and model layer of the BEACH architecture presented in the 
previous chapter. In this way, it can be used as the basis for implementing both generic and 
specialized components for roomware applications. The BEACH Model framework (and there-
fore necessarily BEACH applications as well) are implemented using VisualWorks Smalltalk 
(Cincom, 2002). The BEACH framework was first presented in (Tandler, 2001c). 
The description of the design is organized bottom-up, starting with the model-independent 
core components. The following chapter focuses on the generic layer. The design presented 
here is at some parts abstracted from the “real” design of the BEACH framework to contain only 
the essential parts and thus make it more understandable. The “real” design had to consider 
more constraints from the implementation platform that are not relevant to explain the appli-
cation of the BEACH conceptual model and the BEACH architecture. 

6.1. Design of the Core Layer 
This section explains the design of the components specified for the core layer of the BEACH 
architecture. The architecture was presented in section 5.5 and illustrated in figure 5-5. 
The core level of the BEACH architecture defines six low-level abstractions that are explained 
in this section: 
• The client represents an instance of BEACH running on a device (section 6.1.1). 
• A module allows plugging in of new code into the BEACH architecture (section 6.1.2). 

task
generic

core
model

  

↓ Chapter outline 
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• A service encapsulates functionality that can be added by modules (section 6.1.1). 
• The configuration provides a common place to define parameters for modules and services 

and a single interface to modify all available parameters (section 6.1.1). 
• The shared-object space defines the basic abstraction for implementing transparent distri-

bution (section 6.1.3). 
• Constraints are used for automatic dependency detection and re-computation (section 

6.1.3). 

6.1.1 Beach Client: Modules, Services, and Configuration 
The BEACH client is responsible for handling services, configurations, and modules. In addition, 
it also is responsible for initializing the shared-object space and establishing the connection to 
a server, as described below. Modules and Services represent two essential hooks that are de-
fined at the core level. Modules allow the integration of arbitrary software components, while 
services encapsulate functionality that can be turned on and off. The configuration takes care of 
handling the selection of values for various hooks and parameters. 

Service Management 
A service encapsulates any kind of functionality that can be started and stopped.26 Many ser-
vices like to act on startup and shutdown of the BEACH client. It is up to the service what ac-
tions to take. A service can be passively used by other components, or it can actively start its 
own thread of control. A couple of subclasses are defined to support different kinds of services 
(fig. 6-1). 
The SingletonService can be used for services that have exactly one instance. (The name is de-
rived from the “Singleton” design pattern (Gamma et al., 1995).) Its single instance can be 
accessed by the class method current. 
The ProcessService adds the ability to spawn a process that remains under the control of the 
service. When the service is shutdown, the forked process will also be terminated if it is still 
running. 
While all service objects are local objects belonging to the local client, the SharedService can be 
attached to a shared object that is used to store its state. This way, it is possible to change the 
service’s state remotely by simply modifying the shared object at another client. This, e.g., is 
used by the environment model to implement the startup and shutdown of the devices con-
nected to the station (section 6.6). 

                                                       
26 Examples of how the service hook has been used are given in sections 6.6 (device service), 7.4 (dis-

play application), 8.1 (sensor management), 8.2 (ConnecTables), and 9.2 (PalmBeach). 
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Figure 6-1. Different kinds of services 

To influence the order in which services are started, each service can specify prerequisite ser-
vices that have to be running in order to start this service. If a service is shut down, it is en-
sured that all dependent services are shut down before. 

Configuration 
The BeachClient also handles the configuration of services and modules by offering an interface 
to define and access configuration entries, grouped by categories. The configuration object is 
the single point to control the configuration of the overall system, as proposed in (Demeyer, 
1996; Demeyer et al., 1997), and is similar to MPACC’s coordinator (see page 46). At startup, 
all defined configuration entries are set to the values provided in the client’s configuration file. 
This has been implemented to have a simple mechanism to inform each client about the 
(static) context in which it is running. It is implemented in such a way that nearly all configu-
ration values can be changed dynamically. One exception is the hostname the server is run-
ning on; this value is only read at startup and cannot be modified afterwards, as switching to a 
different server would require shutdown of the client first.27 

6.1.2 Modules and Hooks for Extensions 
Using a reflective programming language like Smalltalk for the implementation of a frame-
work, one can benefit using reflection (see page 37) to detect modules and allow a wide range 
of adaptations. The interface for modules is implemented by a single class, Module. New mod-
ules are defined by simply including a new subclass of class Module in a new software compo-
nent. Due to the ability of Smalltalk’s class objects to query existing subclasses, Module can eas-
ily check for the presence of modules—just by querying all its subclasses.28 
To be able to make any initialization, class Module is designed to extend class SingletonService. 
This allows treating modules as a specialized form of services if they have to perform startup or 
cleanup functions. Using the service’s prerequisites mechanism, modules can thus also specify 
other services—or modules—that should be started before. 
In order to determine the initial set of services, the BeachClient checks the existence of loaded 
modules on startup. Using Smalltalk’s meta-object protocol (see page 37), all subclasses of 

                                                       
27 The current implementation actually restarts the client automatically if the server is changed. This 

causes no inconvenience as the complete state of each client is stored persistently by the server, and 
switching to another server and back to the previous resumes exactly where stopped. 

28 Some examples of modules that have been created are presented is sections 6.6 (environment model 
module), 7.1.1 (roomware module), and 8.2 (ConnecTables). 
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class Module are asked for services that should be automatically started together with the BEACH 
client. 
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Figure 6-2. Classes Module and Service. 

The remainder of this section presents an example of how modules can use the object-
oriented techniques for extensions (discussed in section 3.1, page 37), to define hooks to be 
used by new modules. 
Using these extension mechanisms, the technique of querying existing subclasses of class 
Module can be used by higher-level components to inquire the existence of present functional-
ity. For example, the user interface model (component BEACHuimodel.toolbars) uses the modules 
to check for additional toolbars (see section 7.3.4). 
Besides sub-typing and inheritance, a very powerful extension mechanism is the possibility to add 
methods and/or attributes to a class defined in another module. If the user interface model module 
wants to allow modules to add new toolbars, an easy implementation would be to send a toolbars 
message to every loaded module. Each module then has the possibility to return a collection of toolbars 
to be included in the user interface. The problem that occurs is that not all modules necessarily under-
stand the new toolbars message, which results in runtime (or compile-time) errors if the message is 
sent to these modules. 
One approach to solve this problem is to use reflective features available in the implementation lan-
guage as described above. Then, every module would be asked if it responds to the toolbars mes-
sage, before actually sending it. While this approach works technically well, it decreases the maintain-
ability of the software system, as all software development tools analyzing message passing between 
classes have a hard time in examining these messages. 
A better solution is to use an extension to the module class. The user interface model module adds the 
toolbars message to the Module metaclass—which is actually defined in the BEACHcore.client mod-
ule (fig. 6-3). Every subclass that uses the uimodel.toolbars module can then redefine the toolbars 
method in order to return new toolbars. 

Example 6-1: 
Toolbar hook 
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Figure 6-3. Example how to use the extension mechanism to add a toolbars method 
to the Module metaclass. 

6.1.3 A “BEACH at the COAST”: Shared-Object Space and Constraints 
As discussed in section 5.5.2, a shared-object space is the major core functionality for coopera-
tive ubiquitous computing applications. In section 3.4, several existing toolkits and frame-
works for CSCW applications have been presented. Each of these systems has advantages and 
disadvantages. In practice, it depends therefore on the target applications and the actual envi-
ronment which framework should be chosen (Urnes and Graham, 1999). As the shared-object 
space that constitutes the basis for the BEACH framework, the open-source framework COAST 
has been selected (COAST, 2003; Schümmer et al., 2000; Schuckmann et al., 1996). The rea-
son was, on the one hand, because it has the properties needed in a roomware environment, 
on the other hand, because it has been developed and used in previous projects29 at Fraun-
hofer IPSI. Using COAST, the available competence could be reused and flexible support was 
possible. This section therefore discusses the properties of COAST that are relevant for the im-
plementation of shared-object spaces in ubiquitous computing environments. The COAST 
framework itself has not been developed as part of this dissertation. Instead, the new applica-
tion domain introduced in this thesis had an impact on the development of the framework. 
Figure 6-4 illustrates the relationship between BEACH and COAST. 
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Figure 6-4. Relationship between BEACH and COAST. The COAST framework is used to im-
plement the shared-object space and the constraint system. 

                                                       
29 The first version of COAST was implemented as part of SEPIA (Haake and Wilson, 1992). It was ex-

tracted as a framework for DOLPHIN system (Streitz et al., 1994), and has been used in several other 
projects in the meantime. 
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COAST Architecture Overview 
COAST defines a simple, platform-independent, and efficient protocol for synchronizing repli-
cated objects, quite similar to the one defined by XWeb (see page 54). In order to easily use 
this protocol, the COAST framework has been implemented for applications written in Visual-
Works Smalltalk (Cincom, 2002; ParcPlace-Digitalk, Inc., 1995). It takes care of handling 
replicated objects and encapsulates all communication with the COAST server. 
In fact, the COAST framework can be divided into three main parts for both the client and the 
server side. The frame system constitutes the object model for the shared-object space; the rep-
lication and transaction management takes care of the replication and synchronization and en-
sures consistency. These parts implement the shared-object space for the BEACH framework, for 
both clients and server. The third part for the client is the dependency detection, which is used 
to keep output interaction models (like view objects) up-to-date. The persistency component 
on the server side handles the storage and retrieval of all shared objects. By separating replica-
tion and frame system, the replication is transparent to the frame system and to software using 
the frame system. These components are explained in this section. For more detailed descrip-
tion of COAST, please refer to (COAST, 2000a). A more extensive overview over the current 
version of the COAST framework is given in (COAST, 2000b). 

Frame System 
Frame systems have been used in the construction of interactive software for several years 
now. Frames were originally used within the domain of artificial intelligence for knowledge 
representation. In contrast to objects that model their relationships among each other using 
simple references, frames use slots to express their relationships. In addition to storing values, 
slots are capable of carrying supplementary semantics such as bi-directional references (called 
“inversion”) and cardinality constraints. 
Slots were introduced in object-oriented programming languages by CLOS, the Common Lisp 
Object System (Keene, 1989). As mentioned in section 3.2, the Amulet environment uses 
slots for the construction of interactive systems (Myers et al., 1997; Myers et al., 1998a). 
The frame system monitors access to frames and slots to provide the declared properties or 
check constraints. That means the frame system has full control over the state of all frames. 
Based on this fact, the frame system can provide additional generic facilities such as transac-
tions or persistent storage that can be used for any user-defined frame. 
In COAST, slots can hold not only a single value. Instead, there are slot types providing basic 
abstract data types like Set, Ordered Collection, or Dictionary (Map/Hash). So called “invert-
ing slots” use constraints to ensure a bi-directional relationship between objects. This way, it 
can be ensured that two objects always reference each other; if one reference is changed, the 
other one will be adjusted automatically. 
In COAST’s frame system, every frame has a type attribute. The COAST framework uses this at-
tribute when instantiating objects for a frame. It uses the type attribute to look for a matching 
class, and instantiates an object of this class, if the class is present. If no class is found, the 
frame is instantiated as an object of class CoastUniversalFrame. This approach is very comfortable 
when using object-oriented programming languages. However, it would be possible to always 
use a single frame class if desired, or, if more appropriate for different platforms or different 
languages. Being a white-box framework, COAST provides the class CoastModel as basic super-
class for all shared objects. 

Replication and Consistency 
The replication management component of COAST handles the remote access to shared objects. 
Unlike systems aiming at distributed processing (such as CORBA (Object Management 
Group)), in most systems supporting synchronous collaboration, the behavioral part of each 
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object (i.e. methods) is always available at each site, instead of using proxy objects. This allows 
much faster feedback of the user interface, which is crucial for interactive systems. 
Instead, the state of shared objects is replicated. COAST uses a server-based architecture (fig. 
5-6). The server always has the primary copy of replicated objects, while the clients get secon-
dary copies. This implies that client state might be overwritten (or rolled-back, see below) in 
cases of conflicts. One benefit of a replicated architecture is that after an initial replication, 
only incremental update messages have to be transmitted. This requires much less network 
bandwidth, which is especially important for those roomware components connected using 
wireless technology that is currently much slower compared to standard Ethernet. 
Partial replication by Clusters 
Early versions of COAST always replicated the complete shared-object space to every client. It 
turned out that this was infeasible in practice when object structures got too large. Therefore, 
now all shared objects are grouped into clusters that represent the atomic entities for replica-
tion. This way, the necessary management overhead for partial replication is reduced, and per-
formance can be gained if the objects are grouped together that are most likely used together. 
Good candidates are, e.g., all objects on one document page or workspace. If an object is ac-
cessed at a machine that has no replicate of this object yet, COAST transparently loads the nec-
essary cluster. 
Consistency Control and Commutative Operations 
While working in roomware environments, concurrent interaction can occur at different 
roomware components. This might result in conflicts, if, e.g., one property of an object is 
modified by more than one user at the same time. To ensure consistency between all clients 
and the server, transactions are used. Transactions guarantee that all changes that occur 
within a transaction are accepted—or all changes are denied and correctly rolled-back, i.e. 
restored to the state before the transaction was executed. 
If transactions arrive at the server, the server checks whether the state that the transaction 
was based-on is still valid, or if another transaction has already been committed that has modi-
fied some object’s state the new transaction has used. If two transactions are independent of 
the order they are executed, they are said to be commutative. COAST uses a very fine-grained 
model to check for commutativity of transactions. This way, the application designer can gain 
a high degree of possible parallel interactions without loosing the power of an automatic con-
currency control. 
COAST defines commutative operations on a per-slot basis. For every type of slot, all commuta-
tive operations are defined. A ‘read’ and a ‘write’ access to a slot are never commutative, be-
cause the read would result in returning different values when executed before or after the 
write. In contrast, two ‘add’ accesses to a slot of type ‘set’ are commutative, as after the execu-
tion both values are part of the set independently of the order they have been added. This al-
lows a very fine-grained detection of conflicts, in contrast to locking whole objects or even 
collection of objects. 

Persistency 
The COAST server provides persistency for all shared objects. To be able to retrieve shared ob-
jects when a client has been shut down and is started again, a name can be assigned to some 
key-objects. This name can be used if a client is started to check for the existence of these ob-
jects. This is similar to the naming service provided in GaiaOS (see page 45). 
Every change of a shared object’s state is stored automatically by the server. Therefore, a crash 
of a client is not very harmful, as it will retrieve all its state from the server when started again. 

Constraint System: Automatic Dependency Detection and Updating 
For distributed interactive systems, it is not only desirable that the state of the replicated ob-
jects is consistent among all clients, but associated interaction models should also give an up-
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to-date representation of their attached model objects, because otherwise the users would not 
realize that the shared state is actually synchronized. This part of the core layer of the BEACH 
framework can thus be associated with the interaction model. 
Computed or Virtual Slots 
To ensure the up-to-date presentation, COAST provides a one-way constraint system that is 
used to couple local (interaction) models to shared objects. Local objects can have computed 
or virtual slots that cannot be modified directly like other slots. Instead, they have an associ-
ated specification how to compute the slot value. The specification is simply a code fragment 
(implemented as a Smalltalk block) that returns the value for the slot. 
When a virtual slot is accessed the first time, COAST executes its associated computation speci-
fication and caches the returned result. Moreover, it registers all accesses to other slots that 
occur during the computation of the slot. The accessed slots are used to automatically build 
up dependencies between the slots. This way, all depended virtual slots can be invalidated if at 
least one of the recorded slots changes its value. 
In COAST, the class CoastVirtualFrame is used as base class for all frames being able of having com-
puted slots. 
Lazy and Eager Slots 
To avoid unnecessary re-computations, virtual slots by default only re-compute their value 
when they are accessed the next time (and—of course—if their cached value has been invali-
dated). In addition, it is possible to declare a virtual slot as eager, which means that it is re-
computed immediately at the end of the current transaction. The default behavior of virtual 
slots is called lazy. The concept of lazy and eager computation is common in many interpreted 
(mainly functional) programming languages like CLOS (Keene, 1989), Common Lisp (Steele, 
1990), or ML (Leroy, 2001). 
Display Updates 
To support visually oriented interaction models, COAST is capable of treating display space as a 
special kind of virtual slot. COAST’s view model provides the same re-computation mechanism 
for the re-painting of a view’s part of the display by recording all slot accesses that occurred 
when painting the view. In order to always have an up-to-date representation COAST eagerly 
triggers the re-painting of all invalidated views at the end of every transaction. However, this 
mechanism can be easily adapted to support different kinds of interaction models (req. H-1) as 
shown in section 8.3 below. 

Speed-up Possibilities for Distributed Interactive Systems 
In COAST, all accesses to shared-object state must occur within a transaction to ensure consis-
tency of all clients. As a roomware environment is highly interactive, it is important to ensure 
a fast response of the user interface (Coen et al., 1999). Therefore, COAST offers several possi-
bilities to speed up interaction, namely display transactions, event handling support, and op-
timistic transactions. 
An essential issue is the execution of transactions. Avoiding delays waiting for the server’s 
commit, optimistic transactions offer a significant speedup whenever conflicting actions are 
unlikely or harmless. In case of a rollback, all transactions that rely on the rolled-back transac-
tion are also rolled-back. If a client has to rely on a transaction, it has to use a pessimistic 
transaction, which blocks the client’s active process until the commit (or cancel) is received. 
To update local objects like views, so-called display transactions can be used, which inhibit 
modifying access to shared objects. Therefore, they can be executed completely on the client’s 
site, which is much faster as no messages have to be sent to the server. 
When accessing local objects, the use of transactions may be discarded if speed is particularly 
crucial and consistency is not the main focus or conflicts are very unlikely. This has been in-
troduced for faster event handling. If, e.g., mouse events have to be dispatched to the right 
view’s controller, the bounds of many views have to be checked. The views’ bounds are nor-
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mally stored as part of the computed local-object state (see below), which would result in an 
up-to-date check for every access of every slot. However, it is very likely that the currently 
cached value is up-to-date, as mouse interactions normally occur after a view has been dis-
played—and during display transactions all computed slots that are accessed are updated. This 
speed-up illustrates that optimization often implies an increased responsibility of software de-
velopers. If no transaction is used, the framework cannot automatically ensure the consistency 
of computed slot values, thus forcing the developer to take care that all slots used while event 
dispatching are guaranteed to be computed during display update. 
In COAST, views are never directly notified about changes by their controllers, as done in other 
systems, such as Smalltalk’s original MVC implementation. Instead, views use the dependency 
mechanism of COAST, registering the dependencies between the visualization and each slot 
used when drawing. Each slot notifies its observers about write accesses to this slot. This leads 
to a fine granularity for update messages that helps avoid performance problems. 
For further optimization, COAST accumulates all invalidation messages (i.e. notifications about 
slot changes) to avoid the same re-computation being triggered twice. This is a technique that 
all window systems do when handling re-draw messages. 
These mechanisms ensure that COAST applications are fast enough to run on standard desktop 
PCs. When starting developing BEACH, we used 200 MHz Pentium CPUs, yielding a reasonable 
speed for interaction. Concluding, we experienced that the overhead introduced by COAST’s 
slot dependency system is really worth it. In return, one gains a significant reduction of im-
plementation effort and avoided bugs, because developers do not have to worry about sending 
update notifications manually and because consistency is guaranteed. 

BEACH Shared and Computed Models 
BEACH introduces a base class for all shared objects. The class BeachModel itself is a sub-class of 
class CoastModel, which is defined by the COAST framework. In addition to CoastModel, it has some 
minor enhancements, such as the ability to support shared prototype objects, to allow a proto-
type-instance style of programming if desired. The core property of the prototype-instance 
concept is delegation (Ungar and Smith, 1987). Using delegation, active properties can be 
realized, as described in (Dourish et al., 2000), but this is not a main issue of this thesis. 
Module BEACHcore.depend defines the base class for all computed models, BeachComputedModel. It 
uses the dependency mechanism defined by COAST to implement models that can observe 
other—especially shared—models. Computed models can define computed slots, which are 
re-computed whenever an observed model is changed (either eagerly or lazily). Computed 
models are always local objects to avoid conflicts with triggering re-computation. 

6.2. Design of the Core Interaction Model Support 
The core layer contains two components that are included to form the basis for interaction 
models. 
• The BEACHcore.events component encapsulates the interface to the operating system’s event 

handling API and provides a hook to use different event dispatching strategies. 
• The BEACHcore.views component offers a set of base classes for the development of a visual-

based interaction model that use the constraint mechanism for automatic re-display. 

6.2.1 Event Handling 
The BEACHcore.events component (figure 6-5) provides a low-level infrastructure for handling 
events that are either sent to the application by the operating system or generated by a part of 
the application itself. (An example of application-generated events is given in section 7.5.2, 
page 144.) 
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Figure 6-5. The core level support for the interaction model defines classes for event 
handling. 

The class SystemEventInterface is an abstraction of the specific system’s API. At runtime, a con-
crete subclass like Win32EventInterface is instantiated depending on the current platform. The 
class EventDispatcher retrieves events from the SystemEventInterface and creates event objects from 
a matching subclass of Event. If no matching subclass can be found, an instance of UnknownEvent 
is created. Class WindowEvent is the base class for events concerning the window, like window 
repaint requests. 
The event objects are dispatched to an appropriate handler for this event—depending on the 
kind of event and its properties (see section 5.5.5). The handler could be a Tracker that is cur-
rently grabbing events of some kind. To select a handler, different event dispatching strategies 
can be used. For example, most events that refer to a specific position on the screen are sent 
to the WindowController of the Window at this position. Other event dispatching strategies are pre-
sented in sections 6.8.1 (mouse events) and 7.5 (keyboard and pen gesture events). 
Although not directly concerned with event dispatching, BEACHcore.events includes the class 
Application that builds the low-level abstraction of a top-level application model that is associ-
ated with every window (ParcPlace-Digitalk, Inc., 1995). This is used in section 6.3 as the 
base for visual-based interaction. 
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Figure 6-6. Event dispatching strategy for window events. Window events are always dis-
patched to the window controller. 

Figure 6-6 shows a sequence diagram illustrating the dispatching strategy used for window events. 
When the event dispatcher receives a new event, it uses double-dispatch (Gamma et al., 1995) 
(dispatchWith(disp), dispatchToWindow(ev) in the diagram) to determine an appro-
priate dispatching strategy for the event. Dispatch strategies are implemented as methods of class 
EventDispatcher. The dispatch strategy method first detects a controller to handle the event. Then, it 
sends handleEvent(ev) to this controller. 

6.2.2 Views 
The BEACHcore.views component extends the low-level support for visual-based applications by 
defining abstractions to organize and visualize the available display space (figure 6-7). In fact, 
the many classes contained in BEACHcore.views are provided by the VisualWorks application 
framework and the COAST framework. 
Every Window contains a top-level VisualComponent. A VisualComponent mainly manages one part of 
the window’s display space, defined by its bounds, which can be painted using the method 
displayOn(). The displayOn() method is given an instance of the window’s GrapicsContext 
as an argument. GrapicsContext provides a device-independent low-level interface to draw geo-
metric objects. 
CoastAutomaticVisualPart extends VisualComponent with support for the dependency mechanism 
provided at the core level (see section 6.1.3). A CoastAutomaticVisualPart can contain computed 
slots. More important, it uses the dependency mechanism for re-painting its visual representa-
tion (using composeDisplayOn() instead of displayOn()). This is an example of how 
constraints can be used to ensure a presentation that is always consistent with its associated 
models. In section 8.3 it is discussed how the same mechanism can be used to give an auditory 
presentation. 
Finally, CoastView has an attached model that is visualized by the view, and a controller that 
reacts to events by manipulating the model. 

Example 6-2: Event 
dispatching strategy 
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Figure 6-7. The base classes defined at the core level for the interaction model in 
BEACHcore.views. Class CoastAutomaticVisualPart uses COAST’s dependency mechanism for 
redraw and it supports the definition of custom computed slots. 

6.3. Design of the Model Layer 
The aim of the model layer is to provide an abstract implementation of the five basic con-
cerns (see section 4.3) to be used as the device- and application-independent basis for the 
implementation of the higher layers. Three abstractions are used in the design for all basic 
concerns: 
• Composites use the composite pattern (Gamma et al., 1995) as an abstract interface to 

part–whole hierarchies (see fig. 6-9). 
• Wrappers can add behavior using the decorator pattern (Gamma et al., 1995). Relation 

wrappers describe the relationship between objects (see fig. 6-9, 6-10). 
• Applications are abstractions for the top-level models that represent each concern as a 

whole for a software application (see fig. 6-5, 6-13, and 6-14). 
The BEACH framework implements the basic concerns by defining abstract base classes (fig. 
6-8) and additional helper classes.30 The base classes of environment, user interface, applica-
tion, and data model ensure that all instances of their subclasses are part of the shared-object 
space. 
For the visual interaction, the base classes for views and controllers are defined (Krasner and 
Pope, 1988a). These are always local objects, as they are computed by every device independ-
ently, depending on its local context. This way, views can use different scale factors depending 
on their display size, or show a different part of a common workspace, as in the case of the 
DynaWall (shown in fig. 2-1). 

                                                       
30 Figure 6-8 also shows an interesting observation: Lower-level layers are usually drawn below higher-

level layers. (That is where the name comes from.) For class diagrams, in contrast, it is common to 
place low-level abstractions (i.e. base classes) above their specialization (sub-classes). 
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CoastModel
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Figure 6-8. Base classes for all shared models. The graphical notation introduced for the 
BEACH model (see fig. 4-2) is used in class diagrams to ease the mapping of classes to 
the model’s dimensions. The grayscale of the background indicates the basic concern 
the class belongs to, the grayscale of the border the degree of coupling, and the border 
style the level of abstraction. 

One abstraction that covers all basic concerns is the application. For a software application, the 
“application” abstraction represents the top-level model for each concern. Applications have 
to coordinate which sub-models are used. In addition, the applications specify the relationship 
among the concerns, e.g. the user interface application defines which application model to 
use, and the interaction application chooses the user interface application. 
In sections 7.3 and 7.4, an example of how the application abstraction can be used is given, 
taking the example of visual interaction. In section 8.3, a model for audio feedback is defined 
that creates a different interaction style for the same user interface application. 
The following sections of this chapter explain the design of the abstractions defined for the 
five basic concerns. 

6.4. Design of the Data Model 
The data model supports very simple, hierarchical document structures, as an elaborate data 
model is not the focus of this thesis (see 3.5.2). It defines base classes for the containment 
hierarchy and wrappers to be inserted between document elements31. 
Figure 6-9 shows the classes defined by BEACHdatamodel. BEACHdatamodel defines class DataModel as 
a base class for all shared data model classes. The classes DataModel, ContainerData, and AtomicData 
define the basic structure of hierarchical documents, following the composite pattern (Gamma 
et al., 1995). This way, clients can treat individual objects and compositions of objects uni-
formly. In addition, as composition is a very common structure, defining a simple protocol for 
accessing hierarchies enables the reuse of all operations that are performed on hierarchies. 
Using the composite pattern to represent a containment hierarchy has the benefit of providing 
an abstract interface for navigation in the structure, while keeping the possibility to add fur-
ther document elements transparently. This ensures extensibility (req. S-2) of the data model, 
as new types of document elements can be placed in the document hierarchy. 

                                                       
31 The term document “element” is used to avoid confusion with (software) “component” or “object” in 

general. 
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Using COAST’s ability to define additional behavior when accessing slots, it is ensured that the 
containment hierarchy always keeps bi-directional references. This kind of slot is called an in-
verted slot, as modifications automatically trigger modification of the referenced slot to contain 
an up-to-date backwards-reference. 
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Figure 6-9. BEACH Data Model. The BEACH data model defines a containment hierarchy 
and the ability to add wrappers for all document elements. 

In addition to the containment elements, the data model provides the ability to add wrappers 
to the document in order to ensure future extensibility (req. S-2). Wrappers (or decorator ob-
jects) can be used to add further information to a document element (see section 3.2.2, page 
42). As an advantage over class extension or sub-classing, wrappers can be added dynamically 
to individual objects in contrast to adding functionality to the class. Besides offering a hook for 
extensions, wrapper objects also increase reusability (req. S-1), as the same add-on functional-
ity can be reused in different contexts. 
In the implementation here, a wrapper can be seen as a kind of container element that is 
transparent when navigating between a container and its component. BeachWrapper therefore 
also defines a components slot, but it may only contain one component that is wrapped. 
The RelationWrapper is a special kind of wrapper, as it is used to add information about the rela-
tionship between a document element and its container. It can also be seen as an objectified 
association between the element and its container. The data model supports the existence of 
one instance of RelationWrapper only, as the container object takes care of inserting an appropri-
ate relation wrapper when components are added. Also, relation wrappers are always placed 
between other wrappers and the container to make it easy for the container to access the rela-
tion wrapper. 
Figure 6-10 shows the possible combinations of wrappers between a container and a document 
element. An example for concrete wrapper classes is given in section 7.2; a sample object dia-
gram is shown in figure 7-12. The BEACH framework offers support in creating and navigating 
among wrapper objects. There are methods for navigating between a component and its con-
tainer, independent of the presence of any wrapper, but also for accessing a specific wrapper. 
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Figure 6-10. An arbitrary number of document wrapper objects can be added around a 
document element. Additionally, a relation wrapper can be inserted between a container 
and its sub-components to describe the properties of their relationship. 

6.5. Design of the Application Model 
Application models are used to describe the application behavior such as manipulation of 
document objects (see 4.3.2). 
In general, two different classes can be distinguished, depending on their relationship to data 
models. The base class for all application models is class AppModel. Yet, some application mod-
els have a direct association to a data model to which they add editing capabilities. These are 
subclasses of class DataApp (fig. 6-11). Having a separate application model object for every 
data object leads to a fine-grained structure of application models that increases the reusability 
of the models (req. S-2), and also allows a fine-grained model for the degree of coupling (req. 
C-2). The issue of coupling modes is discussed in sections 4.3.2 and 4.4.2. 
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Figure 6-11. Classes AppModel, DataApp, and DataModel 

To be able to define a fine-grained structure of application models that are likely to be reus-
able, BEACHappmodel defines a set of base classes that reflect the structure of the data model. 
In order to reflect the structure of the current document, the default behavior of application 
model classes is to keep the structure of the document, i.e. for every data object an application 
model object is created. Therefore, all subclasses of DocContainerApp observe (Gamma et al., 
1995) their associated container data model object and will add or remove application model 
objects, whenever document elements are added to or removed from the document container 
object. This is related to the “tree maintenance links” in ALV (Hill et al., 1994). 

6.6. Design of the Environment Model 
In contrast to the models described so far that only define abstract classes; the environment 
model goes one step further by also providing concrete classes. Concrete classes are defined 
for the station, the device service, and the environment model module (fig. 6-12). The envi-
ronment model defines two main abstractions: 
• The station refers to a computer running a BEACH client. 
• A device is anything that can be attached to a station and be used for interaction. 
The module BEACHenvmodel is an example of how the module hook that is provided at the core 
layer (see section 6.1.2) can be applied. The module contains class EnvModelModule as a subclass 
of class Module. As all defined subclasses of class Module are detected using Smalltalk’s meta-
object protocol, class EnvModelModule can define services to manage the station and its attached 
devices. 
A computer running a BEACH client is called station. Stations can have attached devices, which 
can be both explicit interaction devices—like displays, keyboards, or pens—and sensors that 
are used for implicit interaction (Schmidt, 2000). The station has to be configured to reflect 
the local context, e.g. it has to know which devices and sensors are attached to it. To accom-
plish this, station and attached devices use the BEACH client’s configuration (see section 6.1.1). 
The EnvModelModule creates an instance of class Station on system startup to represent the local 
machine. 
Class Station provides means of handling all attached devices. When the station is started, it 
creates one instance of class DeviceService for every attached Device. The device service is an 
example of how services can be used to add functionality (see section 6.1.1). The device ser-
vice notifies the associated device on system startup and shutdown. This can be used to ini-
tialize and release resources associated with the device. As the device service has an associ-
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ated, shared device object, DeviceService is a subclass of SharedService. The abstract subclasses 
InputDevice and OutputDevice are used to group input and output devices. Devices that have been 
implemented are described in sections 7.1 (display, mouse, and keyboard), 8.1 (sensors), and 
8.3 (audio output). 

BEACHenvmodel

environment
model

EnvModel

BeachModel

Station Device

Service

SharedService

DeviceService*

Module

EnvModel
Module

InputDevice OutputDevice

localStation

 

Figure 6-12. The environment model of BEACH defines classes for the stations and devices it 
can attach. The device service handles the communication with the physical device. 

6.7. Design of the User Interface Model 
The user interface model defines three main abstractions: 
• The user interface application is concerned with the top-level functionality at the user in-

terface part of an application (see also section 6.3). 
• Tools provide the connection between the user interface of an application and the appli-

cation’s behavior. 
• The visual interaction area represents an area on a screen that can be used to visualize a 

tool. 
The module BEACHuimodel provides the base classes for user interface elements and for the 
overall user interface of software applications. Figure 6-13 shows the relationships between 
classes UIApplication, VisualInteractionArea, and Tool. 
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Figure 6-13. BEACH User Interface Model. The dotted lines, in this case, denote possible 
relationships in subclasses. Class UIApplication typically uses information provided by the 
environment model to configure the user interface, while tools encapsulate the inter-
face to application behavior, i.e. the application model. 

Class UIApplication represents the top-level user interface part of an application (see section 
6.3). It constitutes the root of a user-interface-model hierarchy. Subclasses of UIApplication typi-
cally will draw on information provided by the environment model, in order to adjust the user 
interface according to the properties of available interaction devices and other context infor-
mation (section 4.3.4). 
In order to interact with the user interface of an application, at least one interaction application 
(see section 6.8) needs to be assigned to the user interface application. This way, different (or 
multiple) interaction applications can be used depending on the appropriate interaction style. 
An example of a visual interaction application is given in sections 7.3.1 and 7.4.1. Section 8.3 
describes an interaction application for audio feedback. 
Tools provide the connection between the interface of an application (the user interface 
model) and the application’s behavior (i.e. the application model). A tool can directly refer to 
a specific application model object or to a group of objects, or it has only an indirect or con-
nection to application model objects. 
An example for a tool is the document browsers, which is used to switch between different 
documents (see section 5.4, page 93). In contrast, toolbars (see below) are examples of tools 
that are not directly connected to an application model. Instead, they group access to func-
tionality that can be provided by arbitrary application objects. 
Class VisualInteractionArea is the base class for all user interface elements that define a region on 
the display that can be used to visualize a tool. A concrete example of a visual interaction area 
that is used in all modern operating systems is the “window”. Examples of visual interaction 
areas defined by the BEACH framework are the “segment” and “overlay”, explained in section 
7.3.3. 
The reason why dedicated support for visual interaction is placed at the model level is that the 
roomware components rely heavily on visual-based interaction. Additionally, the functionality 
of visual interaction areas is independent of the application domain, which would require it to 
be placed at the generic level. 
In addition to the base classes of the user interface model class hierarchy, module BEACHuimodel 
defines classes to represent commands and toolbars. Commands represent a function that can 
be triggered by the user interface (Myers and Kosbie, 1996; Gamma et al., 1995). Toolbars are 
used to hierarchically group commands. Depending on the interaction capabilities of the used 
device, they can be displayed as a popup menu when invoked by a right-button mouse click or 
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as a toolbar with icons if a pen gesture is used.32 This is related to the command groups that 
can be defined to describe the user interface of personal universal controllers (Nichols et al., 
2002). In section 6.1.2, it has been explained how new toolbars can be added to the BEACH 
framework by new modules (especially see fig. 6-3). The root toolbar is described in section 
7.3.4. 

6.8. Design of the Interaction Model 
The interaction model defined by the BEACH framework aims at visual-based interaction, as the 
currently existing prototypes of roomware components focus on a pen-based, visual interac-
tion style. The interaction model defines four main abstractions: 
• The view is the abstraction for any visual representation of a model. 
• To increase the reuse of views, transformations are used to modify the output generated by 

view. 
• Controllers map the user’s input actions to the behavior that is invoked in the user inter-

face. 
• This is extended by trackers, which track interaction sequences and map these to the ap-

propriate functionality. 
For visual-based interaction, BEACH uses an adapted version of the model-view-controller 
(MVC) concept (Krasner and Pope, 1988a; Krasner and Pope, 1988b), tailored for distributed 
synchronous applications (COAST, 2000b). The model-view-controller concept separates the 
model with its state and application logic from the handling of input and output. The 
BEACHviewmodel, therefore, defines the base classes for views and controller, based on the sup-
port provided in the core layer (see section 6.2). An instance of BeachView can be opened on 
every model object, although in the current implementation of BEACH views are never opened 
directly on a data model, but rather on an application model for this document element. As 
mentioned earlier, view objects are always local objects, as they have to communicate with the 
local display to create a rendered representation of its model. As shared model objects can be 
modified by virtually every participating machine, views use the core level observer mecha-
nism (described in section 6.1.3). It ensures that the views are automatically notified upon 
changes to the model’s state—regardless whether the model has been changed by the local 
controller or by a remote machine. Instances of BeachController handle all events that are gener-
ated on the local machine by the operating system or by drivers for attached input devices. 
In order to allocate a part of the display from the underlying operating system, class Application 
defined at the core layer is extended. The abstraction defined at the core layer to describe a 
part of the display is a Window that belongs to an Application. The abstract class VisualApplication is 
a subclass of class Application, inheriting the ability to open and control a window (fig. 6-14). In 
addition, it has an associated user interface application (section 6.7), specifying the underlying 
user interface. The dotted line between class VisualApplication and class BeachView in figure 6-14 
emphasizes that, normally, subclasses of class VisualApplication define the root of the view 
hierarchy to be shown in the window. See section 7.4.1 for an example of how a concrete vis-
ual interaction application is defined. 

                                                       
32 The name “toolbar” is actually not well chosen, as the collection of commands can be presented by 

the interaction model in an arbitrary form. The name was used because originally only toolbars were 
supported, and it was not changed afterwards. 
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Figure 6-14. Relationships between interaction application, user interface application, 
window, and views 

The remainder of this section further explains views and controllers, including defined base 
classes, wrappers, and an appropriate event dispatching strategy. Then, predefined trackers are 
presented. Finally, transformations of the rendering of views are discussed. 

6.8.1 Views and Controllers 
BEACHviewmodel defines base classes for views according to the hierarchical structure of views. A 
DocAtomicView is a view that has no subcomponents, DocContainerView cares about the creation of 
sub-views for the sub-elements of its model (similar to DocContainerApp, see section 6.5), and 
BeachWrapperView is the base-class for all wrappers in the view hierarchy. 
To allow combining different interaction modalities and styles, view objects should have no 
local object state that is not computed from the state of their model (see also the observer 
mechanism, described in section 6.1.3). When view objects carry no information, but only 
specify output behavior, the interaction behavior can very flexibly be combined or exchanged, 
as no information is lost if view objects are destroyed. This is a key feature to realize different 
interaction styles. 

Wrappers for Visual Output 
The view model defines two base classes for wrappers. BeachWrapperView is the default base class 
for the views of wrapper models, e.g. wrappers in the document or application model. In con-
trast, composed wrappers (subclasses of BeachComposedWrapper) have no associated model, as they 
inherit directly from CoastAutomaticVisualPart. They can be used as wrappers additionally inserted 
in the view hierarchy. For instance, this can be used to add translation or transformation 
wrappers that modify the output of the contained view (see below). 
In addition to the abstract classes, BEACHviewmodel defines two concrete classes for translation 
wrappers, which are commonly used in the view hierarchy to position a sub-view relative to its 
containing view. Class PositionWrapperView can be used as the view for all relation wrapper 
models that define the position of a document element relative to its container. Class 
ComposedTranslationWrapper has no associated model. Instead it gets the current translation from 
a translation composer, i.e. an object that answers the message translationFor: aView. 
When translation wrappers are used, the wrapped sub-views are unaware of being translated, 
as the wrapper creates a translated local coordinate system for its sub-view. 

Controllers Classes 
BEACHviewmodel defines only one base class, BeachController, for all controllers, as the abstract 
controller does not need to behave differently for views with or without sub-views. The class 
NoController is a concrete class that ignores all events and can be used for views whose control-
lers should not react to any kind of input. 

↓ Section outline 
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Every view in the view hierarchy has an attached controller. The controllers, however, are not 
arranged in a hierarchy themselves (fig. 6-15). Instead, the view hierarchy is used when dis-
patching events to controllers (see below). 
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Figure 6-15. Example view hierarchy with attached controllers 

Dispatch Events along the View Hierarchy 
To be able to send events to the topmost view in the view hierarchy at a specific (mouse) posi-
tion, class EventDispatcher is extended with a suitable dispatching strategy (see section 6.2.1). 
Method dispatchToPoint can be used for all events that specify a position inside the win-
dow to which they should be dispatched. It traverses the view hierarchy and looks for the 
topmost view that has a controller that wants to handle this event. 

interaction
model

BEACHviewmodel <<extends>>

EventDispatcher
dispatchToWindow

EventDispatcher
 dispatchToPoint

 

Figure 6-16. Class EventDispatcher is extended with a dispatching strategy for mouse 
events using the view hierarchy. 

6.8.2 Predefined Trackers 
A tracker encapsulates an interaction sequence (see section 6.2.1), similar to Myers’ interac-
tors (1990). The view model defines trackers for generic sequential operations: moving, resiz-
ing, and scaling of graphical objects (fig. 6-17). 
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Figure 6-17. Predefined tracker classes. They handle interaction sequences for moving, 
resizing, and scaling objects. 

6.8.3 View Transformations 
Views should be displayable in different orientations and sizes depending on the current con-
text (req. UH-1, UC-1). Therefore, the core model replaces the standard “graphics context” 
(that handles the drawing of views, see section 6.2.2) by an adapted version that supports 
transformations of the rendered output. 
This is realized by optionally attaching a transformation object to a view object. This way, the 
possibility to transform output is separated from how the output is transformed (strategy pattern 
(Gamma et al., 1995)). A transformation is an object that responds to messages for transform-
ing points and graphic primitives like images. These transformations are applied by wrapper 
objects which are inserted into the view hierarchy and which “wrap” the view to be trans-
formed without needing to change it. A similar idea is followed by introducing the portals in 
Pad++ (Bederson et al., 1996) or the internal cameras in Jazz (Bederson et al., 2000). 
The view model defines three types of transformations, IdentityTransformation, Rotation-
Transformation, and ScaleTransformation (fig. 6-18). Composed transformations use an arbitrary 
beach model as a “transformation composer”, i.e. an object to compute a rotation or scaling 
factor. This eases reuse and adaptation. 
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Figure 6-18. Transformation class hierarchy 
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Transformation Wrappers and Global Transformation 
To be able to modify the presentation of a part of the view hierarchy, a transformation wrapper 
can be inserted into the view hierarchy. It ensures that the rendered output is transformed 
using its associated transformation. This allows the flexible reuse of views in different contexts 
that require an adapted rendering. 
Within a view hierarchy, multiple transformation wrappers can be used. Therefore, a view 
might have to be transformed several times before it can be displayed. To speed up drawing, 
especially to combine several transformations of the same kind (e.g. several rotations), a global 
transformation was introduced that combines all local transformations (fig. 6-19). Below an 
example is given of how the transformations interact with the view hierarchy. 
Please note that the translation is handled independently from the other transformations. We 
observed that for the kind of visual-oriented applications that we built for roomware compo-
nents, graphical objects were frequently re-arranged. Therefore, re-computation and re-
painting of moved objects had to be very fast to ensure usability of the system. This led to two 
optimizations. First, the handling of the translation was separated from the other transforma-
tions, to save time-consuming re-transformations when the translation is changed. Second, 
the underlying graphical system provides native support for translations, which allows han-
dling translations much faster. 
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Figure 6-19. Transformations and views 

Example: Transformations in the BEACH View Hierarchy 
Figures 6-20 and 6-21 give an example of how the transformations are used. It shows a part of the 
view hierarchy that is created by the generic BEACH elements. A detailed description of the view classes 
mentioned here is given in section 7.4. 

Example 6-3: 
Transformations 



6. Software Infrastructure for Roomware Environments 

124 

interaction
model

Window

DisplayView

Scale
Transformation

scale = 2
Global

Transformation
rot = 0, scale = 2

Composed
Transformation
WrapperView

Identity
Transformation

Global
Transformation
rot = 0, scale = 1

Rotation
Transformation

rot = 180
Global

Transformation
rot = 180, scale = 2

Composed
Transformation
WrapperView

display
window

display area

(b)

(a)

 

Figure 6-20. Transformations and views example—part 1. (a) The display in this 
example has a different rotation and resolution than the display area. (b) The display 
view is wrapped with a scale and a rotation wrapper, to be able to adjust the output 
properties of the display relative to its display area. The global transformation 
accumulates all previous transformation to speedup redraw. 

The top view is always a Window (fig. 6-20). The Window creates the root global transformation, 
which is attached to an IdentityTransformation, as the window defines the global coordinate 
system. To allow scaling and rotation of a roomware component’s display (see section 7.1), two com-
posed transformation wrappers are inserted between the display’s view and the window into the view 
hierarchy. One is used for the scaling, the other for the rotation. The wrappers obtain the current 
scaling factor and rotation from the display’s display layouter (not shown in the figure 6-20, see figure 
7-17 in section 7.4.2). In this example, the display is rotated by 180 degrees. 
Each wrapper’s global transformation accumulates all transformations that are upwards in the view 
hierarchy. Here, this is a rotation of 180 degrees, and a scaling factor of two. 
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Figure 6-21. Transformations and views example—part 2: The translation wrapper be-
tween the display and display area view is used to select the part of the display area 
that corresponds to the display. The global transformation merges the overlay’s and 
display’s rotation. 

Figure 6-21 shows the continuation of the example. The display area (see section 7.1.1) combines all 
displays of one roomware component. Consequently, each display shows a partition of the display 
area. To accomplish this, a composed translation wrapper is used to move the local display’s part of 
the display area to the visible area on the screen. Again, the current translation is computed by the 
display’s display layouter. 
Finally, this example shows the view of a single overlay (see section 7.3.3) that is displayed at the dis-
play area. As overlays can be positioned and rotated freely, a PositionWrapperView uses the 
translation specified in the model to adjust the view’s local coordinate system, and a composed transla-
tion wrapper handles the rotation. Now it can be seen how the global transformations accumulate 
transformations. Given that the rotation for the overlay is set to 270 degrees in the model, the global 
transformation combines this with the display’s rotation (set to 180 degrees in the example), yielding a 
normalized global rotation of 90 degrees. 

Drawing of Transformed Views 
All views use a graphics context for creating their visual representation. The abstract class 
GraphicsContext defines methods that can be used for drawing different kinds of graphical 
objects, such as lines, boxes, text, or images. Subclasses of GraphicsContext define the spe-
cific implementation to render these graphical objects for different output systems. In order to 
handle the transformation, the TransformationGraphicsContext has been introduced. 
It uses its associated global transformation to transform drawing requests from the local coor-
dinate system to the global one before passing them to the original graphics context. 

Example 6-4: 
Display area 
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Figure 6-22 extends the perspective of figures 6-20 and 6-21 to also show the graphics context 
and transformation graphics contexts that are used. As the graphics context holds several at-
tributes such as the translation, current paint color, or line width, a new copy of the graphics 
context is created for every view. For every view in the view hierarchy below the window, a 
transformation graphics context mediates between the view and the original graphics context. 
As only transformation wrappers modify the transformation, each transformation graphics 
context uses the instance of the global transformation that belongs to the next transformation 
wrapper above it in the view hierarchy. 
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Figure 6-22. This extends the perspective of figures 6-20 and 6-21 to also show the 
graphics context and transformation graphics contexts that are used. 

6.9. Discussion: Properties of the BEACH Model Framework 
This chapter describes the design and important implementation details of the BEACH Model 
framework. It implements the BEACH conceptual model, serving as proof of implementability 
of the model. The BEACH Model framework covers both core and model level. It is built upon 
the experiences about the common and variable aspects at the different levels of abstraction. 

6.9.1 Properties of the Core Layer 
The core layer contributes platform-dependent low-level functionality. The frame system pro-
vides the basis for a platform-independent shared-object space. Using replicated objects, this 
is sufficiently fast for synchronous collaboration with interactive applications. In addition, it is 
powerful enough to realize an automatic dependency-detection. The automatic dependency-
detection is used as the basis for the rendering of application output. 
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The benefit of the shared-object space is that it enables a transparent distribution. Developing 
a distributed application using the BEACH framework adds no extra complexity compared to an 
equivalent single-user application. Using transactions and constraints with automatic depend-
ency-detection enables guaranteed consistency among replicated objects and between the 
shared object and its (visual) presentation. Developers do not have to worry about sending 
update notifications among clients explicitly. This reduces the possible errors and the neces-
sary development effort, which is the main goal of this dissertation. 
The support for modules allows for adding code without modifying the existing framework. 
The presence of new modules is detected using reflective features. Hooks can be defined by 
modules to allow integration with other extensions. To plug in functionality, services allow 
the integration of functionality that can be started and stopped. Modules can identify services 
that should be started automatically at system startup. The configuration is responsible for 
handling the overall configuration of the system. Modules, hooks, services, and configurations 
are abstractions that ensure the extensibility of the developed software systems (req. S-2). 
To ease implementation of the interaction model, the core level includes abstractions to open 
windows, handle views, and dispatch events. This ensures the independence of the underly-
ing operating system, as the abstractions encapsulate platform-specific details. 

6.9.2 Properties of the Model layer 
The model layer of the BEACH Model framework implements abstractions to separate the five 
basic concerns, which are independent from the platform and application domain. The data 
model is a simple model, using composites and wrappers to ensure its extensibility. In general, 
composites and wrappers are two simple, but powerful abstractions that help enable reuse and 
extensibility. 
Composites define a uniform interface to work with any kind of hierarchy. This enables exten-
sibility, as new types of elements can be added to the hierarchy without having to adapt the 
places in which they are accessed. Composites also ease reuse, as the same functionality for 
working with hierarchies can be employed for different kinds of hierarchies. For example, 
views offer mechanisms for visualizing a model and its sub-components. These mechanisms 
can be used for all models that can be traversed as a hierarchy. This technique was used to 
visualize the dependencies among services (that actually form a directed graph, not a 
hierarchy) for debugging purposes. Wrappers offer a significant improvement in extensibility, as 
new functionality can be added to existing models and existing behavior can be augmented on 
a per-object basis. This is, for instance, used when transformation wrappers are inserted into 
the view hierarchy. In addition, wrappers have a high potential of being reused, as the same 
wrapper can be combined with different objects, as long as they provide the same protocol; the 
tranformation wrapper can be used to scale the visualization of the complete display area or to 
rotate the presentation of a workspace. Composites and wrappers are two techniques to realize 
a minilithic design (see section 3.2.2) that uses small components that can be flexibly com-
bined. 
The application model is used to add application behavior to information objects. To be able to 
use fine-grain application models, its implementation provides base classes that link the struc-
ture of data and application model. Thus, an application model can observe its currently at-
tached data model object in order to create and remove sub-application models for sub-data 
models that are added and removed. The separation of data and application model enables 
reuse of both data and application models. The same data model can be manipulated by dif-
ferent application models, and the same application model can be used to edit different kinds 
of data models, as long as they rely on compatible protocols. 
The environment model defines a minimal model of the environment. It includes the station, as 
abstraction for the device the client is running on, and a notion of device, to model all kinds 
of interaction devices that can be attached to a station. Using the device service, device driv-
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ers for new devices can be integrated in the framework, which ensures the extensibility for 
new interaction devices and forms of interaction. The device hook is used to provide visual 
output (display device, section 7.1), acoustic output (MIDI device, section 8.3), mouse, key-
board, and pen input (section 7.1), and physical objects as input elements (section 8.1). 
The user interface model provides the root abstractions for an application’s user interface. The 
user interface application is the base class for the root object of the user interface. For the 
construction of the user interface, it draws on information made available by the environment 
model. A tool links the user interface with the application model. The visual interaction area 
encapsulates a part of a display that can be used to render a tool. These abstractions decouple 
the functionality and the space in which it is presented at a high level. 
The interaction model uses the model-view-controller architectural style to render output and 
process input, allowing separate input and output of applications. As views are state-less and 
computed from the state of the other models, different views and support for other interaction 
modalities can be combined flexibly. Implementing views as local objects enables the adapta-
tion of the visual representation to the local context. To decouple the visual representation 
from the properties of the underlying device and to enable reuse of views for adapted presenta-
tion, the rendering of views can be independently transformed using view transformations. 
As extension of controllers, which process a single event at a time, trackers are an abstraction 
that allows controlling event sequences. By defining support for typical interaction sequences, a 
small set of trackers can be used in a number of situations. 
The following chapter uses the BEACH Model framework to provide generic components for 
synchronous collaboration with roomware components. This focus there is on informal meet-
ings and collaboration situations. 

↓ Next chapter 
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7. Generic Support for Collaboration in Roomware 
Environments 

This chapter presents the part of the BEACH framework providing generic elements to 
support synchronous collaboration with roomware components. The focus is on in-
formal meetings and collaboration situations. It implements the generic layer of the 
BEACH architecture and offers reusable components for roomware applications. The 
BEACH Generic Collaboration framework proves that the BEACH conceptual model helps 
identify reusable software components. 

 

The previous chapter introduced the low-level part of the BEACH software framework core and 
the model layer of the BEACH architecture. The BEACH Model framework (presented in the pre-
vious chapter) is independent from an explicit application area, and is applicable for many 
different ubiquitous computing environments.  
This chapter, now, presents the part of the BEACH framework providing generic elements to 
support synchronous collaboration with roomware components—tailored for meeting situa-
tions as described in section 2.2. Thus, it implements the generic layer of the BEACH architec-
ture. As it is designed to be used with the roomware components we have built in the context 
of the i-LAND project, this part of the framework is strongly tailored to their needs. The descrip-
tion of the roomware components developed in the i-LAND project is given in section 2.1. 
Currently, the roomware components support pen or finger as the main medium for input. 
Thus, BEACH emphasizes direct visual interaction. All roomware components have a perma-
nent (in parts wireless, see fig. 5-6) network connection aiming to support synchronous col-
laboration, and no “slow” CPUs. This implies that BEACH is not designed for very small devices 
such as PDAs and for devices not having a permanent connection to the network. 
Although being designed for roomware components, this part of the BEACH software framework 
can be used to illustrate how the proposed conceptual model and architecture can be applied 
in a concrete environment. 
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The BEACH Generic Collaboration framework offers a set of pre-defined components. The 
components defined at the generic layer can be used as a very simple application for collabora-
tive whiteboard interaction already. 
The following sections explain the modules defined by the generic layer as shown in figure 5-3. 

7.1. Generic Environment Model: Roomware Components 
The BEACHroomware module provides an environment model for roomware components, de-
fining two abstractions and several concrete classes: 
• The roomware component abstracts from the computers that are used to construct what is 

perceived as a single device by users. 
• The display area has a similar job: it abstracts from the displays and defines a homogeneous 

area that actually might be built out of several displays. 
• Mouse, pen, and keyboard are defined as basic interaction devices. 

7.1.1 Roomware Components and Display Area 
One important part of the representation of the physical environment is the configuration of 
roomware components. BEACHroomware extends class Station defined in BEACHenvmodel to be part 
of a roomware component (fig. 7-1), allowing multiple stations to be part of a roomware com-
ponent (req. U-2, U-3). 
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local
Roomware
Component
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Figure 7-1. Class diagram showing relationships between roomware components, sta-
tions, displays, and display areas 

Using the module hook (section 6.1.2), module BEACHroomware is represented at runtime by 
class RoomwareModule. Class RoomwareModule can be used to access the roomware component the 
client is currently running on. Therefore, class RoomwareModule references class EnvModelModule 
that manages the local station. 
A roomware component consists of one or more stations. Each station can have a display. The 
displays of all stations belonging to a roomware component are combined into a display area, 
which represents the complete interaction area of the roomware component.33 

                                                       
33 The “display area” is called “display” in (Swaminathan and Sato, 1997); the “display” as a physical 

device, is called “screen”. 

↓ Section outline 
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Note that the display is implemented as an output device. This implies that it can be managed 
like any other device by the functionality provided at the model level (see section 6.6). Using 
the display’s device service, the window that is used for BEACH’s visual presentation can be 
opened and closed when the display device is started or stopped (see section 7.4.1). 
Using the DynaWall (shown in figure 2-1) as an example, figure 7-2 illustrates the environ-
ment model that is constructed for this DynaWall at runtime. For each PC, a station object 
(Station1 to Station3) is created that is associated with the object representing the Dyna-
Wall. Their displays are combined by the object that stands for the DynaWall’s display area. 

DynaWall

BEACH Cooperation
Support

Station1

Display1

DynaWall

DisplayArea

Station2

Display2

Station3

Display3

environment model  

Figure 7-2. The representation for a DynaWall consisting of three computers that are 
combined to form a homogeneous display area. This allows the complete area to be 
used to show one large workspace. 

If displays are added to or removed from the display area, the views showing it will immedi-
ately adjust the size of the available area (req. U-4) due to the dependencies between the en-
vironment model and the views. The interaction model for roomware components is described 
in section 7.4. An example of dynamically changing display areas is given in section 8.2. 

7.1.2 Input Devices 
In addition to the model for roomware components, BEACHroomware defines two concrete 
classes for interaction devices, class PointingDevice (representing mouse or pen input) and class 
Keyboard (which is used in case the roomware component has also an attached keyboard). 

7.2. Generic Data and Application Model: Document Elements 
The basis for documents created with BEACH is a hypermedia data model. The instances of data 
model classes are always part of the shared object space, as this gives several users the possibil-
ity to access these objects simultaneously. Module BEACHdocument defines data, application, and 
interaction models for the document elements. 

7.2.1 Document Data 
The generic document elements are separated according to the structure defined by the 
atomic, container, and wrapper elements of BEACH’s data model. 
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Atomic Document Elements 
Atomic document elements are shown in figure 7-3. Class DocText contains text typed by a 
keyboard. DocGeometric is a super-class for geometric elements. DocScribble models hand-written 
input (scribbles). Hyperlinks are constructed using an instance of class DocReference that is 
placed in a workspace and connected by an instance of class DocLink with another reference. 
The reference functions therefore as an anchor in terms of the Dexter hypermedia model 
(Halasz and Schwartz, 1994). 

BEACHdocument

DataModel

DocAtomic

DocText DocGeometric DocLink DocReference

DocScribble

*

data
model

 

Figure 7-3. Atomic document elements that are defined by BEACH’s generic document 
model. 

Container Document Elements 
Like many hypermedia data models (Conklin, 1987), BEACH’s generic data model builds on a 
containment hierarchy that is primarily composed from workspaces (the equivalent of a page). 
In addition, external objects such as images are also container objects, as they can contain 
annotations made by the user (especially scribbles). Figure 7-4 shows the class hierarchy. 
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Figure 7-4. Container document elements that are defined by BEACH’s generic 
document model. 

Wrapper Document Elements 
Large visual display-surfaces that are provided by roomware components fit well for a spatial 
hypertext model like the one defined by VIKI (Marshall and Shipman, 1995; Marshall et al., 
1994). This makes it necessary to position document elements freely within container ele-
ments. As the position at which an element is placed describes the relation to its container, a 
relation wrapper is used (see section 6.4). A PositionWrapper is inserted between a workspace 
and its elements (fig. 7-5). An example is shown below in figure 7-12. 

BEACHdocument
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Position
Wrapper

BeachWrapper
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Wrapper

 

Figure 7-5. The position wrappers is the only relation wrapper that is defined by 
BEACH’s generic document model. 

Modeling the position as a relation wrapper gives flexibility in re-using the document element 
in different contexts, as they do not need to make an assumption about the environment in 
which they are placed. For example, the same classes can be used for elements placed inside a 
table with automatic adjustment of rows and cells, or in a tree- or map-like structure, which 
computes the position from the relationship to other elements. 

7.2.2 Document Applications 
In order to work with documents, a set of application models is provided by BEACHdocument that 
support editing and navigation.  
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Atomic Document Application Models 
As it turned out that modeless interaction seems to ease collaboration at multi-user devices 
(req. C-3) (Pier and Landay, 1992; Prante, 1999), not much editing state is actually added by 
the document application models. Figure 7-6 shows the atomic document application model 
classes. 
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Figure 7-6. Atomic Document Application Models. The application model for text ele-
ments allows several input devices to provide input concurrently. 

Class InputDevice is extended to refer to the application model that currently has the input fo-
cus. Class DocTextApp defines an association of all input devices with their input focus currently 
lying on this text element. This way, it is possible that multiple input devices edit a single text 
object concurrently. 

Container Document Application Models 
As noted in section 6.5 above, all container application models automatically create sub-
application models for the sub-elements of their associated data model. External objects are 
objects not directly handled by BEACH. Class DocExternalObjectApp allows starting of applications 
to edit the external object, like a paint program for images or a Web browser for URLs. It re-
members the process ID of the started application to be able to re-import changes after the 
application is closed. 

Wrapper Document Application Models: Add Movement to Positions 
Roomware components require new forms of interaction (req. H-1). For example, it is helpful 
for users at physically large interaction areas to ease rearranging of objects across large dis-
tances by permitting throwing of document elements across the display area (Geißler, 1998; 
Streitz et al., 2001). We experimented with several different implementations of throwing 
across multiple displays that belong to the same display area (e.g. at the DynaWall, see section 
2.1). According to the experiences we gathered, throwing works most smoothly if only one 
transaction is used to specify the throw-parameters—and the animation is handled independ-
ently by the local interaction models of every involved machine. 
Therefore, class PositionWrapperApp can store information about the time, position, and direction 
if the object has been thrown. The start time refers to a synchronized millisecond time value 
to allow synchronous animation on multiple stations. An end time does not need to be stored, 
as it can be computed from the start time, vector, and a diminution factor, which is currently 
implemented as the same constant value for all elements. 
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Figure 7-7. Wrapper Document Application Models. The application model for the po-
sition wrapper handles the throwing of document element across large display areas. 

In order to implement time-based throwing, the COAST framework had to be extended. First, a 
synchronized millisecond timer was needed. Second, support for time-based invalidation had 
to be added. In COAST, the redraw of views is handled upon invalidation only. Normally, slots 
send invalidation notifications to all observers as soon as their value is changed. In order, to 
be invalidated after some amount of time, slots can register at the timer to be notified after a 
given duration. This way, the position slot of class PositionWrapperApp can request to be in-
validated every time it has moved by one pixel. This mechanism is related to the animation 
constraints described in (Myers et al., 1996), but provides support at a lower abstraction level. 
While the animation constraint is an abstraction that can be used to define the animation of 
the throwing, the time-based invalidation can be used to implement synchronized animation 
constraints. 

7.3. Generic User Interface Model: Roomware User Interface 
As the BEACH Generic Collaboration framework is designed to be used as an application 
framework, beside re-usable software components it also provides the complete design and 
implementation of an “application without application-specific functionality”. The module 
BEACHroomwareInterface has four major tasks. 
• It defines a concrete user interface application (see section 6.7), used to visually render ap-

plications on the display of the local station. 
• The document browser provides functionality to navigate among workspaces. 
• Two user interface elements are segments and overlays, which are provided as a concrete 

implementation of the abstract concept of a visual interaction area (see section 6.7) that 
is appropriate for roomware components. 

• In order to be able to make the functionality that is provided by modules and services 
available in the user interface, the concept of a toolbar is used that can dynamically add 
and remove commands that can be invoked. 

7.3.1 Display User Interface Application 
The BEACH framework uses one large window on every station that normally covers the com-
plete area of the display. The module BEACHroomwareInterface therefore defines a user interface 
application. It is used as the basis for the generic interaction model to open a window on the 
local station’s display and creates views for display and display area of the environment model 
(see section 7.4). 
Class DisplayUIApp is a concrete subclass of UIApplication (fig. 7-8). Every station creates an in-
stance of class DisplayUIApp that is attached to the display object representing its display. In ad-
dition, class DisplayArea that is part of the environment model is extended into the user inter-
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face model to be able to refer to a set of root visual interaction areas that should be shown on 
the display area. This extension means on the conceptual level that the user interface incor-
porates a concept defined in the environment model in order to integrate the user interface 
with the environment (req. U-3, UH-3). 
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*
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Figure 7-8. The display user interface class DisplayUIApp is instantiated by every station 
to refer to its local display. This is used as the basis for opening a window and views. 

7.3.2 Document Browser 
The document browser shows the contents of a workspace and allows navigating to different 
workspaces. Class DocumentBrowser has an associated application model (document) that is 
used to edit a document (fig. 7-9). 
When navigating, the document browser stores visited documents in an ordered collection 
(history). It keeps a reference to the visited application model in the history—instead of 
storing the data model. This allows preserving the editing and collaboration state when 
switching between workspaces. This way, it is also possible to switch between different appli-
cation models for the same document. This gains a high flexibility in dynamically adjusting the 
collaboration mode (req. C-2, section 2.5). 
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Figure 7-9. The document browser is a tool allowing navigation between different 
workspaces. Its history stores the visited application models with the associated data 
model (instead of data models only) in order to be able to restore editing state. 
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When, for example, users share the same document browser, they work in a tightly-coupled 
mode (sections 2.5 and 4.4), also navigating together. This can be used for shared browsing. If 
the same application model, but different browsers are used, users can get awareness of other 
users’ activities, but can switch to a different workspace when desired. If only the data model 
is shared, it is possible to use a different application and/or user interface model. For instance, 
one user can monitor the overall workspace using an outline or overview application, while 
others can work on details within the workspace. 

7.3.3 Overlay and Segment 
The main elements of the user-interface of BEACH are segments and overlays (Prante, 1999). 
The complete visual interaction area of a roomware component can be divided into non-
overlapping segments, which define the space available for an application model, e.g., a docu-
ment browser. Segments have an advantage over overlapping windows if enough display space 
is available (Mynatt, 1999a; Kandogan and Shneiderman, 1997; Moran et al., 1997 (regions)). 
In addition, overlays can be positioned freely and are used in a similar way to the windows of 
most popular operating systems. They also provide space for a tool, such as a document 
browser. They would normally be used for toolbars and other smaller tools that have to be at 
hand all the time (fig. 7-10). 

overlay with
browser

overlay with
 toolbar

background segment
with browseroverlay with

 toolbar

 

Figure 7-10. Overlays can be used to provide space for tools, such as document brows-
ers or toolbars. 

Figure 7-11 shows the concrete classes for segments and overlays (classes VisualInteractionOverlay 
and VisualInteractionSegment) that are defined in module BEACHroomwareInterface. 
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Figure 7-11. Overlays and segments are the two concrete visual interaction areas 
defined by the BEACH Generic Collaboration framework. 

Figure 7-12 illustrates the relationships between environment, user interface, application, and data 
models. To display a workspace (a data model), an application model for this workspace is created 
and shown in a document browser. The browser is placed in the segment of the display area belonging 
to a roomware component (not included in the figure). All these classes extend the base classes de-
fined in the basic-models layer. If the workspace contains sub-elements, the workspace application 
model automatically creates appropriate sub-application model objects for all sub-elements. 
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Figure 7-12. Object diagram, showing instances of all models (except the interaction 
model). The display belongs to a display area, which shows a segment containing a 
document browser pointing at a workspace. This models a part of the scene shown in 
the screenshot in figure 7-10. 

7.3.4 Root Toolbar 
Module BEACHroomwareInterface also defines a default root toolbar for applications. It is used as 
the place for all commands that should be made available to the user via toolbars (section 

Example 7-1: 
Workspace browser 
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6.7). As a toolbar is a tool, it can be placed in any visual interaction element. Normally it 
would be placed inside an overlay, as this allows positioning it freely on a display area (see sec-
tion 2.3.2). 
Figure 7-13 shows an example of a toolbar within an overlay. A “sub-toolbar” command enables 
hierarchical structures of toolbars. A special sub-toolbar, which is part of the root toolbar, provides a 
hook for modules to plug in additional commands or toolbars. This hook was described in section 
6.1.2 and illustrated in figure 6-3. 
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Figure 7-13. Example showing a toolbar within an overlay. (a) A screenshot showing 
the root and modules toolbars, and a text object and a mind-map that have been cre-
ated. (b) The objects used to model this part of the user interface. 

The toolbar hook is also used in section 9.1 to plug the functionality defined by the modules 
into the toolbar. 

7.4. Generic Interaction Model: Visual Output for Roomware Components 
To enable interaction with roomware components, the interaction model defines both view 
and controller classes for all other models. As every view object has one attached controller 
object, the figures in this section show view objects only. BEACHroomwareInterface defines two 
main abstractions: 
• It defines the visual display application, used to visually render applications on the display of 

the local station. 
• The display layouter contributes the algorithm to calculate which part of a display area 

must be rendered on a given display and which transformation has to be used. 

7.4.1 Visual Display Application 
In order to open a user interface on the display, BEACH’s roomware interface module defines 
concrete subclasses of the user interface and interaction applications (see sections 6.7 and 
6.8).  
The corresponding part of class DisplayUIApp on the interaction model side is class DisplayVApp. It 
is used to open a window on the display of the local station. Inside the window, a view of class 
DisplayView is placed for this display, which in turn opens a sub-view of class DisplayAreaView for 
its associated display area (fig. 7-14). The dotted lines in the figure denote indirect associa-
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tions between the classes. The detailed description of the constructed structure is discussed in 
section 6.8.3, especially figures 6-20 and 6-21, to illustrate view transformations. 
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Figure 7-14. The view subsystem of module BEACHroomwareInterface defines the basis to 
open a window that shows the local display’s part of the display area. 

When the station is started, it creates one instance of a device service for every attached de-
vice (see section 6.6). The display device service creates the display user interface application 
for its associated display (if there is not already an instance for this display). When the display 
device service is started, an instance of class DisplayVApp is created (fig. 7-15) that is associated 
with the display user interface application. This instance opens a full-screen window that 
shows a view of the display of the associated display user interface application. 
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Figure 7-15. Object diagram for display interaction and user interface applications (in-
stantiation of figure 7-14). The display interaction application opens a view for the dis-
play specified by its associated display user interface application. 

The display view, in turn, opens a view for the display area that is currently attached to this 
display as a sub-view (fig. 7-16). The display area view opens sub-views for all of its segments 
and overlays, which (in turn) open sub-views for their associated tools. 
Due to the dependency-mechanism provided at the core level, the views will automatically be 
re-computed as soon as the associations among any model-objects change. This happens, e.g., 
if the display is moved to a different display area, or a different workspace is attached to the 
document browser. This re-computation is triggered independently of the client that actually 
changed the shared model. 
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Figure 7-16. Example view hierarchy (continued from figure 7-15): display to work-
space. Interaction models are added to a part of figure 7-12. The dependencies between 
associations in the view hierarchy and corresponding models are highlighted. Dotted 
lines denote omitted wrappers (for simplification). 

7.4.2 Multiple-Computer Devices 
If one roomware component consists of multiple stations (req. U-2), their displays are com-
bined into a single display area (as in the example of the DynaWall above). Every display’s 
view object should then show the part of the display area belonging to its local display in a way 
that yields a homogeneous display area. However, there are cases where not every display has 
the same orientation or resolution with respect to the other displays of a display area (an ex-
ample is given in section 8.2 figure 8-14). In these cases, the view transformations (see section 
6.8.3) can be used to adapt the display view without having to modify any view class. Every 
display has the attribute position defining the position relative to the other displays. The at-
tributes scale and rotation specify the magnification and orientation of the display relative to 
the display area.  
An instance of class DisplayLayouter is responsible for assigning the right coordinates to each 
display (fig. 7-17). It computes the values for the transformation wrappers, which are inserted 
in the view hierarchy by analyzing the properties of all displays that are combined in the local 
display’s display area. The used wrappers are explained in section 6.8.3. 
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Figure 7-17: Assigning the position within a display area to the local display view. In addi-
tion to figure 7-16, the three transformation wrappers shown in this diagram adapt their 
sub-views’ local coordinate systems. (Unlike figure 6-20, the display layouter is shown 
here instead of the transformation objects.) 

7.5. Generic Interaction Model: User Input to Roomware Components 
Besides adapted visualization, roomware components also need specific support for user in-
put (req. H-1). This section explains: 
• event dispatching strategies for the devices implemented at the generic level, 
• recognition of pen gestures, and  
• support for multi-user devices. 

7.5.1 Event Dispatch Strategies for Default Devices 
As mentioned in section 6.2.1, different devices produce different kinds of events that might 
need to be handled differently. Module BEACHdocument therefore defines a dispatch strategy 
that uses the focus holder (section 7.2.2) associated with the device that originated an event 
as the controller for this event (fig. 7-18). In addition, the events generated by mouse or key-
board are defined. Mouse events use the dispatchToPoint dispatch strategy (section 6.8.1), 
while keyboard event use dispatchToFocusHolder. 
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Figure 7-18. Class EventDispatcher is extended with a dispatch strategy for focus-oriented 
input devices, such as a keyboard. 

7.5.2 Gesture Recognition 
Gestures are often used to enable natural interaction with pens (req. H-1)—especially for 
roomware components having no mouse or keyboard as input devices. To be able to invoke 
commands using gestures, the raw input events have to be assembled and interpreted. The 
interpretation of the user input is difficult, as it can be ambiguous leading to recognition errors 
if the wrong interpretation is chosen (Mankoff et al., 2000b). This reduces user acceptance 
and effectiveness. In modeless user interfaces (see section 7.2.2), correct interpretation is es-
pecially important, as the shape is used to distinguish between commands and scribbles. 
To generate the gesture events needed to handle pen input, each stroke that is drawn is sent 
to a gesture recognizer to check whether it is similar to one of the set of supported gesture 
shapes (see also section 3.2.2). Using BEACH for our work and for presentations, we found that 
the writing speed is crucial for fluid interaction. This led to an incremental recognition algo-
rithm, similar to the one proposed by Rubine (1991). In addition, an incremental algorithm 
allows continuous feedback to the user of whether a gesture is currently recognized, similar to 
the idea published in (Arvo and Novins, 2000). Immediate feedback is very helpful, as gesture 
recognition is inherently error-prone. Thus, a very fast recognition algorithm helps improve 
the usability of the system by giving feedback about an action before the action is executed. 
This section explains the incremental recognition algorithm, the design of the gesture recog-
nizer, and how the recognition process works. 

Incremental Recognition 
To illustrate the immediate feedback, the example of a user drawing a box shape is used (fig. 7-19). 
For simplicity, the gesture recognizer used in this example only supports three different shapes: line 
shape, “L” shape, and box shape.34 The user starts drawing a line (a), which is recognized as a known 
shape. To give feedback about the recognized shape, the stroke turns red. When the user reaches the 
first angle (b), the color changes again to the current scribble color. As an “L” shape has a minimum 
length of both line segments (c), the “L” shape is recognized until the user comes to the next turn (d). 
Finally, when the end-point comes close to the start-point again, a box shape is identified (e). 

                                                       
34 The actual recognizer in BEACH uses a shape set of currently 15 different shapes: box, circle, coil, dou-

ble-box, double-circle, double-X, encircle, line, L, spike, U, X, and the special shapes: tap, scribble, 
and abort. The special shapes are explained below. 

↓ Section outline 
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(a) (b) (c) (d) (e)  

Figure 7-19: Intermediate steps while a user is drawing a box shape. If a shape is 
recognized the color changes to red (a, c, e). 

Design of the Recognizer 
Figure 7-20 shows the objects involved in the recognition process. Class Recognizer is responsi-
ble for transforming a sequence of pen (or mouse) positions into a set of matching shapes. It 
uses a set of ShapeFeatures that are computed from the sequence of points to determine a set of 
matching instances of class Shape. While it is active, the StrokeTracker, used for drawing strokes 
with a pen, receives events directly from the event dispatcher (see section 6.2.1). 
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Figure 7-20. Design of the gesture recognition module 

Recognition Process 
The recognition process is illustrated in figure 7-21. When the stroke tracker is started (upon 
a pen down event), it creates a new instance of the recognizer. While the stroke tracker is ac-
tive, besides drawing and recording the stroke, it sends all points immediately to its recognizer 
(1). When the recognizer receives a new position, it first updates all of its features (2). The 
features used in this example (see fig. 7-22) are key-points (i.e. the corners of a stroke), the 
length of the stroke, and the bounding box (i.e. the minimal box containing the stroke). Based 
on the values of the features, the recognizer checks all shapes possibly matching, whether they 
match or not (3). For example, a line shape needs to have two key-points, and the distance 
from the first to the last point should be similar to the length of the line feature. 
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Figure 7-21: The recognizer receives mouse events from the tracker and incrementally 
updates the features and the list of matching shapes. 

After all shapes are updated, the tracker checks whether the currently most likely shape has 
changed. In this case, it asks the new shape for its associated stroke color and redraws the 
stroke. Finally, when the stroke is finished (pen up event), the tracker creates a gesture event 
associated with the final shape and passes it to the event dispatcher for further processing. 

Incremental Update 
While the first implementation recomputed all features every time a new point was added to 
the stroke, we determined that this was too slow to be acceptable. Therefore, the recognizer 
was changed to update the features incrementally: The recognizer now sends every new point 
to every feature, which will merge the new value with the previous state. Each feature can 
decide whether to update or re-compute. 

• The length of the stroke is computed by summing the distances between all points. It is much 
faster only to add the new distance. 

• The bounding box needs to check whether the new point is outside the previous box and 
enlarge if necessary. 

• To compute the key-points, it is necessary to look for turns in the stroke. As the first and last 
points of the stroke are always key-points, the incremental update is not as easy as in the 
previous examples. Depending on whether the last point is a corner or not, the last key-
point is replaced (see fig. 7-22 b–c). 
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Figure 7-22: The features are updated incrementally while the stroke is drawn, if shapes 
cannot match anymore, they are removed from the recognizer. 

With the updated values, the recognizer asks all shapes for their current similarity to the 
stroke. If a shape returns zero, e.g., because the stroke has too many key-points, the recognizer 
removes it from the list of possibly matching shapes. This is illustrated in figure 7-22 at the 
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transitions a–b and c–d. The scribble shape is the default shape and will never be removed 
from that list. 

Special Stroke Shapes: Scribble, Tap, and Abort Shape 
The BEACH framework defines three special shapes that are handled specially. 

• The scribble shape is the default shape that matches any stroke that does not match any 
other shape. 

• The tap shape is the only shape that consists of only one key point. It is the equivalent of a 
mouse click in pen-based interaction models. 

• The abort shape was introduced to make use of the immediate user feedback. As the name 
suggests, the abort shape is never handled by any controller. Thus, it enables the user to 
cancel a shape that was not recognized. An abort shape can start with any other shape. At 
some point, the user can encircle this point several times. This allows turning any shape 
into an abort shape. 

Dispatching Gesture Events 
When the stroke is finished (pen up event), the tracker creates a gesture event associated with 
the final shape and passes it to the event dispatcher.35 In contrast to mouse events that refer 
to a specific point (see section 6.8.1), a gesture event is associated with a stroke — which 
could cross the bounds of multiple view objects. Therefore, BEACHgestures provides a dispatch-
ing strategy (see section 6.2.1) for gesture events (fig. 7-23). Depending on the shape, it asks 
the controllers of all views that intersect with the shape or that contain the shape whether 
they want to handle this shape. The controllers are asked in the reverse order in which their 
views are displayed. The event dispatcher sends a handleShape: message to the first con-
troller signaling interest to handle this gesture event. 

BEACHgestures <<extends>>

EventDispatcher
dispatchToWindow

EventDispatcher
 dispatchShape

interaction
model

 

Figure 7-23. Dispatching strategy for gesture events 

7.5.3 Support for Multi-user Devices 
For multiple-user devices (req. C-3), it is necessary to provide an interface to hardware that is 
capable of handling multiple users at the same time using the same device.36 Multiple device 

                                                       
35 The abort shape is dispatched just like any other shape. This enables applications to provide user 

feedback if a shape is aborted. However, a controller must not invoke any command when handling 
an abort shape. 

36 Currently, the available hardware is quite limited concerning concurrent direct user input at the same 
visual interaction device. Wacom’s Intuos graphics tablet can trace two interaction devices (like pens 
or mice) at the same time (Wacom Technology Co., 2003), but it provides no output facilities. Dia-
mondTouch (Dietz and Leigh, 2001) is a research prototype of a table allowing concurrent input of 
multiple users sitting around the table. SMART technology (SMART Technologies Inc., 2002) is also 
currently working on a new version of the SMART board, being able to detect up to four people 
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drivers can send events, tagged with an identification of the originator, to the BEACH frame-
work. 
The device information attached to the events can be used at several levels. On the one hand, 
it is needed to track concurrent sequences of input events as mentioned above. On the other 
hand, it could also be used to map the device to the user that is actually using it (either manu-
ally or using available context information). This enables truly user-aware multi-user systems, 
as this information can be, e.g., associated with created artifacts as additional context meta-
data to ease later retrieval, or it can be used to automatically select the user’s preferences. This 
is especially helpful, if personalized settings for gesture recognition can be used. 
Module BEACHmultiuser extends the event dispatching defined at the core level (see section 
6.2.1). It defines class MultiDeviceEventDispatcher that is capable of tracing several concurrent se-
quences of input events and directs them to the appropriate tracker (fig. 7-24). In order to 
identify the device that originated an event, class Event is extended with an association to the 
device that created the event. 

environment
model

interaction
model

BEACHmultiuser

Event InputDevice

Event

<<extends>>

MultiDevice
EventDispatcher

EventDispatcherTracker

*

 

Figure 7-24. The multi-device event-dispatcher can manage several concurrent trackers. 
As the tracker receives events from the dispatcher, it can be reused directly and does 
not need to be extended. 

7.6. Example Device Configurations 
To illustrate how the BEACH framework can be used for different devices and configurations, 
this section gives three examples. The examples are based on the application scenarios defined 
in section 2.2, showing how different collaboration situations can be modeled with the BEACH 
framework. However, they can serve as samples for quite generic collaboration situations. 
The examples show objects defined by the generic layer only (except class Station), as this 
layer defines the concrete classes used to implement generic support for roomware compo-
nents. 
• First, the DynaWall is an example for a multiple-computer device (req. U-2). 
• Second, the collaboration between a large public and a smaller private device (req. UC-1) 

is shown in the case of a DynaWall in conjunction with a CommChair. 
• Third, the InteracTable, an interactive table, is used to demonstrate a device that can be 

used by multiple users at the same time, but with different viewing preferences (req. 
UH-1, C-3). 

                                                                                                                                                           
(Martin et al., 2002). As a workaround, multiple mice or SMART boards can be connected to one 
computer. Recently, Rekimoto (2002) has presented a research prototype of an interactive surface 
that is capable of detecting multiple hand positions using capacitive sensing. 
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These examples focus on the four shared models, leaving the interaction model aside to re-
duce complexity. This causes no loss of relevant information, as the interaction model does 
not have its own state; its state can be completely computed from the state of the other mod-
els. Another configuration showing the relationship of the shared models to the interaction 
model using the example of ConnecTables is presented in the next chapter (section 8.2) and 
in (Tandler et al., 2001). 

7.6.1 Combining Multiple Computers to One Interaction Device 
As mentioned before, the DynaWall (fig. 7-2) consists of three computers (multiple-computer 
device, req. U-2), each with an attached SMART Board (SMART Technologies Inc., 2002). 
Therefore, the environment model defines the roomware component “DynaWall” 
(DisplayArea in figure 7-2) to consist of three stations (Station1 to Station3) with 
their displays combined to one large display area. 
Using the view transformations (see section 6.8.3) a view is opened for each display showing a 
part of the complete display area. (See also the example given in section 7.4.) 
While the three SMART Boards in our lab are mounted to one wall (fig. 7-2 on page 131), 
the software allows changing this setting dynamically (req. UH-3, U-4). This is useful when 
the boards are mobile and equipped with sensors such that the presence of other boards can be 
sensed automatically (similar to the ConnecTable, see section 8.2 and (Tandler et al., 2001)). 

7.6.2 Tight Collaboration Using Two Different Devices 
When a CommChair connects to the DynaWall specified in the previous example, it is inter-
esting to see, on the one hand, how the tight collaboration between CommChair and Dyna-
Wall is implemented (req. UC-1). On the other hand, it shows how the CommChair’s display 
area is separated into two segments for public and private workspaces. 
The display area, which consists of only one display in the case of a CommChair (CommChair 
in fig. 7-25), is split into two segments (CCPublicSegment and CCPrivateSegment). 
While one segment is used to show a document browser (CCDocBrowser) for the private 
workspace (Workspace2), the other connects to the document browser shown at the Dyna-
Wall (DWDocBrowser). This enables very tight collaboration, as using a shared browser re-
sults in coupled navigation. Since the same application model is always used, all editing state 
is also shared between the DynaWall and the CommChair, which allows providing awareness 
information (Schuckmann et al., 1999). 
As the size of the segments at the DynaWall and the CommChair differs, the interaction 
model (not shown in figure 7-25) has to provide an appropriate mechanism for displaying the 
public workspace at the CommChair. Established techniques are scrolling and/or zooming. 

Example 7-7: 
Display area; view 
transformations 

Example 7-8: Shared 
document browser 
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Figure 7-25. The CommChair splits its display area into two segments. One connects 
to the document browser shown at the DynaWall; the other is used to show a private 
workspace. 

7.6.3 Multiple Users Collaborating at One Device 
While the CommChair in combination with a DynaWall enables collaboration of users with 
different devices, the InteracTable aims to support several users at the same device (req. C-3). 
As mentioned, it is necessary to provide adapted orientation of visualizations for multiple users 
around a horizontal display (req. UH-1). 
To realize this, we used an approach where each user can open an overlay that can be moved 
freely around the display area, similar to a window (e.g. ITOverlay1 and ITOverlay2 in 
figure 7-26). Each overlay gets a separate document browser and workspace application 
model, but remains connected to the same workspace. In this case, the interaction model will 
open two views showing the same workspace. This allows each user to rotate his or her work-
space to the preferred direction, as the rotation is specified by the workspace application 
model. 

Example 7-9: 
Multiple views on 
one document 



 7.7. Discussion: Properties of the BEACH Generic Collaboration Framework 

  151 

ITRWC

ITDisplayArea

InteracTable

ITDocBrowser1

WorkspaceApp1
rotation = 90

Workspace1

ITOverlay1

environment model

application model

data model

user-interface model
ITDocBrowser2

WorkspaceApp2
rotation = 180

ITOverlay2

 

Figure 7-26. Two users working at an InteracTable with the same workspace. By using 
separate browsers with separate application models, each user can look at the work-
space with the preferred orientation. (The figure is simplified omitting the wrappers.) 

7.7. Discussion: Properties of the BEACH Generic Collaboration Framework 
This chapter presents the BEACH Generic Collaboration framework providing generic elements 
to support synchronous collaboration with roomware components. The focus is on informal 
meetings and collaboration situations. It implements the generic layer of the BEACH architec-
ture. 
The environment model adds a simple model of roomware components. The display area is an 
abstraction to combine several displays to form a homogeneous interaction surface. This 
makes the visual presentation independent of the physical setup of display devices and allows 
dynamic reconfiguration of the display setup. The display illustrates how new interaction de-
vices can be defined. Using the display’s device service, which is provided by the model layer, 
the display user interface and the interaction application can be created and opened on the 
(physical) display. 
The data model provides typical document element types, such as links and anchors, for a 
spatial hypertext model. Spatial hypertext is appropriate for informal meeting situations. The 
relationship between an element and its container is modeled as a position wrapper to de-
couple element and container, thus raising reusability. The position wrapper is an example of 
a relation wrapper. 
The application model aims at supporting modeless interaction. To enable throwing of docu-
ment elements across large displays, the application model of the position wrapper holds the 
information needed to determine the current position while thrown. This is an example of 
how editing state can be added by the application model. By extending the default application 
model of the position wrapper, it is possible to throw any document element within any con-
tainer as long as a position wrapper is used to place the element inside the container. To im-
plement the animated throwing, synchronized time-based invalidation had to be imple-
mented. 
The user interface model defines the display user interface application, which is the default 
application, opening a full-screen window to represent the display of a station. As this is a very 
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fundamental task, it is interesting to note that this is not implemented as core or model level 
functionality. By using the device hook, which is defined at the model level, the display and 
functionality for visual interaction and a visually-oriented user interface can be added at the 
generic level. This demonstrates that the BEACH Model framework can be extended to support 
new interaction devices and forms. Another example of using the device hook is presented in 
section 8.3. 
As generic user interface elements to structure the available interaction space, overlays and 
segments are defined as concrete specializations of the abstract visual interaction area. The 
user interface model extends the display area to refer to the visual interaction areas that are 
currently displayed. This is an example of how the user interface is integrated with the 
physical environment (req. U-3). As the display area reflects the physical configuration (be-
ing defined by the environment model), modifications of the display setup represented by the 
display area will cause changes in the user interface. 
The root toolbar provides a hook for modules to plug in module-specific functionality. This 
way, new functionality that is defined by modules can be made available in the user interface. 
A document browser is used to navigate between workspaces. Its history remembers the vis-
ited application models (in contrast to storing data models), in order to be able to restore the 
complete editing state when navigating back. Different collaboration modes can be distin-
guished depending on whether users share browser, application model or data model. 
The interaction model provides the display interaction application, which is the corresponding 
part of the display user interface application in the interaction model. It actually opens a win-
dow containing a view hierarchy, showing the part of the display area currently visible on the 
local display. The display layouter is responsible for calculating the correct bounds and trans-
formation for each display within the display area. It can be used as a hook for extending the 
supported display configurations, which might be necessary for future roomware components. 
The views’ dependency mechanism is explained by an example view hierarchy. It shows how 
the presentation can be connected to shared models, while being able to adapt the presenta-
tion to the local context. This is necessary to generate the different presentations for all dis-
plays that are combined by the same display area. Using constraints also ensures that changes 
made to the display setup are immediately reflected in the visual presentation. 
To provide an appropriate input for roomware components, the interaction model implements 
an incremental gesture recognition algorithm, which allows giving immediate feedback 
about recognized shapes to the user while drawing a pen stroke. The abort shape makes use of 
the immediate feedback by enabling users to cancel misinterpreted gestures before they are 
executed. Pen input is an example of how another interaction form can be supported using the 
BEACH Model framework. A new tracker is defined that assembles pen events into pen strokes. 
The event dispatcher is extended by a new event dispatching strategy for gesture events, 
and the controllers are extended to handle gesture events. 
Multi-user support is needed for roomware components supporting concurrent input at a sin-
gle device. The BEACH framework defines a new event dispatcher that is capable of handing con-
current input sequences coming from different devices. However, the defined trackers need 
not be adapted, as the event dispatcher is responsible for sending events to the trackers and 
the tracker does not have to be aware of other active trackers. 
The last part of this thesis presents applications of the BEACH model, architecture, and frame-
work. Chapter 8 presents examples where BEACH has been extended to support new forms of 
interaction. Chapter 9 explains some tools that have been developed on top of the BEACH 
framework. 

↓ Next part 
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Part III. Applications for Roomware Environments: 
Validating the Usability of the BEACH Model 
and Framework 

The last part of this thesis shows applications of the BEACH conceptual model and 
software framework. By analyzing these applications, it can be shown that the BEACH 
conceptual model helps create a clearly structured, reusable and extensible software 
design. The applications validate the usability of the model and framework and prove 
that they ease application development. In addition, they illustrate how their features 
can be applied. Chapter 8 presents examples where BEACH has been extended to sup-
port new forms of interaction. Chapter 9 explains some tools that have been devel-
oped on top of the BEACH framework. These two chapters illustrate that new interac-
tion forms and tools can benefit from the reusable design and implementation. Up to 
now, more than 15 software developers have used the BEACH model and framework to 
create 12 tools and extensions. This found that the BEACH model helps identify reus-
able parts of a software system to be developed. For one example, it is shown that 
the implementation effort in terms of lines of code is reduced to less than one third. 
Chapter 10 finally presents conclusions, also discussing open questions and direc-
tions for future work. 
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8. Extending BEACH for New Forms of Interaction 

This chapter presents three examples of devices for which new interaction styles have 
been implemented on top of the BEACH framework. The styles have been implemented 
as BEACH modules. The examples are: the Passage mechanism, the ConnecTables, and 
audio feedback. The Passage mechanism is an example of an interaction style using 
physical objects. The ConnecTables show how to dynamically re-configure the envi-
ronment model of roomware components. The audio module provides an audio-based 
interaction style. The implementation of the Passage mechanism reveals that the 
BEACH model helps identify reusable parts. Two modules originally developed for Pas-
sage provide a major part of the functionality needed for the ConnecTables. The im-
plementation of Passage using the BEACH framework also shows that the implementa-
tion effort in terms of lines of code compared to a previous implementation based on 
state-of-the-art technology is reduced by a factor of more than three. Finally, the 
chapter discusses the experiences of extending the BEACH framework to support new 
interaction forms. It is found that the BEACH framework flexibly supports combination 
of interaction modalities and distribution of interaction and interaction devices. 

 

The purpose of the BEACH framework presented in the previous chapters is to ease the devel-
opment of applications for a roomware environment, while offering a platform that allows in-
corporating new devices that require new forms of interaction. 
This chapter presents three examples of devices for which extensions have been implemented 
on top of the BEACH framework. The extensions have been implemented as BEACH modules that 
belong to the task layer, but also introducing new interaction models at the model layer, and 
default implementations at the generic layer. The examples are: 

• The Passage mechanism to transport digital information using physical objects. 
• The ConnecTable as an example how to dynamically re-configure the environment model of 

roomware components triggered by physical interaction. 
• Audio feedback as a different form of interaction. 

core
model
generic
task
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These interaction forms have been cooperatively developed by the members of the 
AMBIENTE team with major participation of the author of this dissertation. The software 
design has been created by the author alone. The implementation was done by the author and 
other team members. 
To illustrate how applications can be constructed with the help of the BEACH framework, the 
next chapter presents several applications that have been built on top of BEACH. 

8.1. Passage Mechanism: Interaction with Physical Objects 
The first BEACH extension that has been implemented is the passage mechanism. An earlier 
implementation was published in (Konomi et al., 1999). This section first gives an overview of 
the functionality of the passage mechanism. It is followed by a description of the interaction 
model that is used to access sensors and a description of the supported sensors. Then, the ac-
tual passage system is presented. 

8.1.1 Functionality of the Passage Mechanism 
Passage describes a mechanism for establishing relations between physical objects and virtual 
information structures, i.e., bridging the border between the real world and the digital, virtual 
world. So-called passengers (passage-objects) enable people to have quick and direct access to 
information and to use the objects as “physical bookmarks”. It provides an intuitive way for 
the “transportation” of information between roomware components, e.g., between offices or to 
and from meeting rooms.  
A passenger does not have to be a special physical object. Any uniquely detectable physical 
object may become a passenger. Since information is not stored on the passenger itself but 
only linked to it, people can turn any object into a passenger: a watch, a ring, a pen, glasses, or 
other arbitrary objects. The only restriction passengers have is that they can be identified by 
the “bridge” and that they are unique. The “bridge” is a device attached to a roomware com-
ponent that is capable of detecting passengers. Figure 8-1 shows a key-chain as an example of 
a passenger. The passenger is placed on a dark area of the InteracTable representing the real 
part of the “bridge” device that is embedded in the margin of the InteracTable. When a pas-
senger is placed on a bridge, its virtual counterpart is made accessible. With simple gestures, 
the digital information can be assigned to or retrieved from the passenger via the virtual part 
of the bridge. 

Real Part
of the Bridge

Real Passenger

Virtual Part
of the Bridge

Virtual Object
assigned to Passenger

 

Figure 8-1. Passage: a key-chain as a passenger object on the bridge of the Interac-
Table. The interface area in the front of the display represents the virtual part of the 
bridge. 

We developed two methods for the detection and identification of passengers. The first 
method allows the use of arbitrary objects without any preparation or tagging. Here, we use a 
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very basic property of all physical objects—the weight—as the identifier. Therefore, each 
bridge contains an electronic scale for measuring the weight of the passengers. The second 
method uses a contact-free identification device using radio-frequency-based transponder 
technology, which is built into every bridge. Small electronic identification tags (RFID) that 
do not need batteries are attached to or embedded in physical objects so that the passenger 
can be identified by a unique 32-bit ID. The identification via the weight of an object provides 
greater flexibility and aims at short-term assignments. In contrast, the electronic tag method 
provides higher reliability and is useful for long-term assignments—at the expense of requiring 
some preparation of the objects. 

8.1.2 Passage and Sensor Architecture Overview 
The handling of sensors is not a task unique to the passage system. According to the BEACH 
model, the system was therefore divided into four modules at three levels to allow easy reuse 
of sensor-related functionality. Figure 8-2 gives an overview of the resulting system architec-
ture. Module BEACHsensormodel defines an environment and interaction model for sensors. Con-
sequently, this is placed at the model level, as this defines the basic abstractions for interaction 
mediated by sensors, analogous to what the view model is defining for visual interaction. The 
sensor model is used by the two modules implementing the interface for the scale and the tag 
reader, respectively. These modules belong to the generic level, as the interface to the sensors is 
independent of any task or applications. These two are the parts that are good candidates for 
reuse. 
The BEACHpassage module, then, provides the task-specific part of the Passage system. The task, 
in this case, is to transport digital information using physical objects. It needs three main ab-
stractions that are unique to this task. First, the bridge is the new part of the user interface that 
allows assigning information to objects. Second, the passenger is the digital representation of a 
physical object that has been detected by a sensor. Third, the bridge observer is an interaction 
model that allows detecting passengers that are placed on the bridge and provides the interac-
tion for assigning information to it. The BEACHpassage module uses the sensor model for inter-
facing with information. This way, it is possible to use arbitrary sensor implementations for the 
passage system. 



8. Extending BEACH for New Forms of Interaction 

158 

task
layer

environment
model

user-
interface

model

application
model

data
model

interaction
model

BEACH
passage

passage
client bridgepassenger

BEACHsensormodel

BEACH
sensor

TagReader

BEACH
sensor
Scale

generic layer

model layer

uses  

Figure 8-2. Passage architecture overview. A new interaction model is defined to allow 
physical objects act as part of the user interface. Sensor-related functionality is placed 
in separate modules to allow reuse of these components. 

8.1.3 Interaction Model for Physical Context-Information 
Similar to the interaction using displays and pointing devices that is supported by the 
BEACHviewmodel module, the interaction with sensors requires an appropriate interaction model 
as well. Module BEACHsensormodel defines base-classes for both the environment and interaction 
model (fig. 8-3, classes added for the Passage implementation are marked by a diagonal back-
ground pattern). Abstractions for the sensors and the actuators represent the interaction de-
vices as part of the environment. Sensor observers and actuator controllers are responsible for 
the interaction. 
Class Sensor extends class InputDevice. If a sensor detects a physical object, the software repre-
sentation of this sensor will set its value to an object representing the physical object. For ex-
ample, a tag-reader will use the identification of the sensed tag. A SensorObserver watches the 
sensed value and triggers actions whenever the sensed value changes. As the sensor is de-
signed to be a shared model, it is possible for sensor observers to access values sensed by sen-
sors that are connected to remote computers. To handle the communication with the sensor 
hardware, each sensor (like any other device using the device hook, see section 6.6) is notified 
on system startup and shutdown. Then it can start a process to monitor the sensor. 
Classes Actuator and ActuatorController are not used by the Passage system. They are included for 
completeness of the sensor interaction model. Actuators are physical objects that can be con-
trolled by software (Greenberg and Fitchett, 2001; Greenberg and Boyle, 2002). However, 
currently there is no module actually providing a driver for actuators for the BEACH framework. 



 8.1. Passage Mechanism: Interaction with Physical Objects 

  159 

interaction
model

BEACHsensormodel

environment
model

Sensor
Observer

Device

<<observes>>

InputDevice OutputDevice

ActuatorActuator
Controller

<<modifies>>

Sensor
value : Object

physical
environment

sensor

actuator

get data

control

 

Figure 8-3. The sensor interaction model supports physical objects and context infor-
mation as part of the user interface. Classes added for the Passage implementation are 
marked by a diagonal background pattern. 

8.1.4 Sensor Management 
Two concrete sensor classes have been implemented for the Passage system: class ScaleSensor 
and TagSensor. 
Class ScaleSensor (fig. 8-4) undertakes the communication with an electronic scale that can be 
connected to a PC via the serial port. The scale sensor starts a process that repeatedly queries 
the currently detected weight in a defined interval. If the sensed weight changes, the value 
attribute of the scale sensor is set to the new weight (as a number). This makes the sensed 
value available to remote clients also, as the value is shared. 

environment
model

BEACHsensorScale

Sensor

ScaleSensor
value : Number

 

Figure 8-4. The scale sensor handles the communication with an attached digital scale. 
It represents the currently sensed weight as part of its object state. 

Class TagSensor (fig. 8-5) defines the interface to the RFID tag reader used in the passage sys-
tem. In contrast to the scale sensor, the tag reader is able to push values to the software when 
a tag is sensed. Therefore, the process started by the tag sensor need not poll for new values, 
but waits for new data from the tag reader. In addition, the tag reader module defines class Tag, 
as a representation of the RFID tags that can be attached to physical objects. 
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Figure 8-5. The tag sensor provides an interface to an RFID tag reader. The currently 
sensed tag ID is represented as part of its object state. The tag is a model of the tags 
that can be sensed. 

8.1.5 Passage Module 
The sensor model defined above is used by the passage module to realize the passage mecha-
nism. Class BridgeClient is a sensor observer, which is notified whenever the sensed value 
changes (fig. 8-6). It retrieves the sensed value from its associated sensor and looks in the pas-
sage registry (class PassageRegistry) for a known passenger object (class Passenger) with the 
sensed ID. If none is found, a new passenger object with the sensed ID is created and added to 
the registry. Passengers must be able to reference the currently assigned application model. To 
enable this, the user interface model extends the passenger. 
Finally, the bridge observer informs its associated bridge user interface (class BridgeUI) about 
the newly sensed passenger. As sensors, passengers, and bridges are shared objects, they can be 
easily distributed among different machines. The stations with connected sensors that run a 
bridge observer and the stations that open a bridge view can be configured arbitrarily. One 
station could run the device service querying the sensor for data, another could run the bridge 
observer watch the sensed value and inform the bridge, while still another shows the bridge 
view. 
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Figure 8-6. Design of the Passage module. The bridge observer observes an attached 
sensor. The passage registry manages all passenger objects that are in use. The bridge 
shows information attached to a detected passenger object. 

When the bridge is informed about the passenger, the virtual part of the bridge (class 
BridgeView) is shown on the display. Class BridgeView opens a sub-view for the application model 
that is currently associated with the passenger (if any). In addition, it provides the possibility 
for the user to retrieve the document assigned to the passenger or to assign a different docu-
ment to the passenger. Due to the dependency mechanism, the view is automatically updated 
if the sensed passenger or the assigned document changes (fig. 8-7). 
As an application model can be assigned to a passenger (in contrast to a data model), it is pos-
sible to transfer a document including the current editing state via the passage mechanism. A 
user can therefore move to a different device and continue working. 
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Figure 8-7. Passage interaction diagram. The bridge observer informs the bridge if a dif-
ferent passenger object is detected. The view of the workspace currently associated 
with the detected passenger is updated automatically whenever a different passenger is 
detected or a different workspace is attached to the passenger. 

8.1.6 Analysis of the Passage Implementation 
The BEACH model helped identify reusable parts that belong to the model and generic layer. 
Later, when implementing support for the ConnecTables (see next section) it was possible to 
directly reuse much of the code developed for Passage. 
The implementation of the bridge is an example that illustrates the importance of the separa-
tion of input, output, and user interface issues. The interaction with the bridge combines two 
different modalities: a visual representation and manipulation of physical objects. In fact, this 
separation is the key to flexibly combining interaction modalities (what is called flexi-modal by 
Myers et al. (2002)). 
As class BridgeUI is also shared, this separation enables flexible distribution. Multiple bridge ob-
servers (that act as controllers for the bridge) can be used if several sensors are integrated in 
order to broaden the range of detectable physical objects. Due to the shared user interface 
model of the bridge, the sensor can be connected to arbitrary computers. Any computer with a 
display that is in close physical proximity to the physical part of the bridge can be used to ren-
der the view of the bridge. Here, again, the view transformations (see section 6.8.3) can help 
orient the output generated by the view. The InteracTable shown in figure 8-1 has one bridge 
integrated near the left side of the display. To display the virtual part of the bridge oriented 
towards the left side, a rotation transformation is used. A scale transformation can scale the 
view of the workspace to fit inside view of the bridge, which has a fixed size. 

8.1.7 Comparison of Implementations 
The first implementation of the Passage system, which is described by Konomi et al. (1999), 
was not implemented using the BEACH model and framework. It was implemented from scratch 
by an experienced (Post Doc) computer scientist with no knowledge of the BEACH model or 
framework. It had an interface to the BEACH software prototype that existed then. The second 
implementation presented in this section was a complete re-implementation of the system. It 
was done by a graduate computer scientist trained using the BEACH model and framework. It is 
interesting to compare the two approaches. 
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Overall, the first implementation of Passage needed over 11.500 lines of code (including code 
to manage the sensors). Due to the reuse possibilities of the BEACH framework, this was re-
duced in the second implementation to less than 3000 lines of code37 (again, including sensor 
management). However, these numbers can give a vague idea of the implementation effort 
only. As the first implementation used plain C and Perl, the latter Smalltalk, the development 
language might have an impact on the length of written code. Although the development 
time for the first implementation was not exactly tracked, it was developed during a period of 
several months. The first version of the second implementation was done in less than a week 
and required minor modifications only later on. 
The first implementation used a Microsoft Access database and an Apache web server for the 
Passage registry. As the second version was completely built upon the BEACH framework, the 
Passage registry could be implemented as a single shared object. This reduced the code neces-
sary to query the registry for sensed objects dramatically. For communication with sensor 
managers (i.e. the processes communicating with the sensor hardware), interested clients had 
to create a direct socket connection to the sensor manager process. As a consequence, all sen-
sor managers had to be started before the clients, and clients lost the connection if a sensor 
manager died. In the reimplementation, the shared-object space was used as an indirect com-
munication medium. In this way, sensor managers and clients can be started and stopped in 
arbitrary order. In addition, there is no latecomer problem, which has to be considered when 
shared events are used to notify about state changes only. As the current state is stored, any 
client can always access the most recent information. 

8.2. ConnecTables: Dynamic Reconfiguration 
The ConnecTable is a new component that was developed as part of the second roomware 
generation (Streitz et al., 2001; Streitz et al., 2002). It is designed for individual work as well as 
for cooperation in small groups. By moving two ConnecTables together, they can be arranged 
to form a larger display area (see figure 8-8). This is a natural way of establishing cooperation, 
as recommended in (Roseman and Greenberg, 1996b). 
Integrated sensors measure the presence of another ConnecTable and initiate automatic cou-
pling of the displays once they are close enough. When two ConnecTables’ displays form a 
larger tabletop, the software provides a homogeneous interaction area encompassing both dis-
plays. The temporarily created common workspace contains all objects from the two previ-
ously separated workspaces keeping their positions and sizes constant (fig. 8-12). As an indica-
tor for the users, the background color of the common workspace is changed. 

 

Figure 8-8. (a) Three working-modes of the ConnecTable: connect, stand-up, sitting. (b) 
Two connected ConnecTables. 

This section first presents the physical realization of the ConnecTables, followed by the design 

                                                       
37 The lines of code do not count empty lines. For Smalltalk, the file out of the modules was counted. 

↓ Section outline 
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of the software support. Finally, the dynamic view of the connection process is given. A more 
detailed discussion of the design issues of the ConnecTable can be found in (Tandler et al., 
2001). 

8.2.1 Physical Realization of the ConnecTables 
The pen-interactive display forming the tabletop allows a user to interact with information 
objects by pen. Currently, a Wacom PL-400 graphic tablet (Wacom Technology Co., 2003) is 
used. The ConnecTable’s computer unit is based on an embedded PC board with a 266 MHz 
Pentium mobile CPU. The independent power supply for at least 3 hours is based on custom-
built Nickel Metal Hydride rechargeable batteries integrated into the upper part of the chassis. 

(c) sensor

(a) coil

(b) tag

 

Figure 8-9. Sensor technology integrated in the ConnecTable. Coil and tag are placed 
left and right at the top of the display to detect other tables. 

The sensing technology integrated into the ConnecTable’s tabletop to detect others tables 
uses the same RFID tags as the passage system (see previous section). The right part of figure 
8-9 shows the utilized components and the left part shows their location in a ConnecTable. A 
coil (see fig. 8-9a) establishes an energy field by emitting electromagnetic waves on a certain 
frequency. When a passive transponder tag (fig. 8-9b) enters the energy field emitted by the 
coil, it uses the induced energy to send back its unique 32-bit identification to the coil using 
another frequency. Signals that are received by the coil are forwarded to the sensor (fig. 8-9c) 
where they are processed. The identification mechanism starts at a distance of approximately 
3 cm and takes 1.5 sec. The sensor connected to the coil communicates with the embedded 
PC using a serial interface. 

8.2.2 Software Design to Support ConnecTables 
To provide the functionality of connecting ConnecTables, the modules BEACHconnection has 
been implemented. It reuses the sensor interaction model and the tag reader interface that 
were implemented for the Passage system (see sections 8.1.3 and 8.1.4). Figure 8-10 shows the 
classes defined by BEACHconnection. The ConnectionModule starts a ConnectionClient and a Connection-
Monitor for the local station of each ConnecTable. This is possible as the module hook (see sec-
tion 6.1.2) enables modules to add services implementing new functionality. The station is 
extended to allow a Connection between two stations. The CompositeRoomwareComponent is used to 
combine ConnecTables. 
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Figure 8-10. Design of the connection module. Connection clients watch for other 
ConnecTables detected by the sensors. The connection monitor combines two adjacent 
ConnecTables to form a logically combined roomware component. 

If a new value is sensed by the sensor attached to a ConnectionClient, the ConnectionClient checks if 
the ID belongs to a tag attached with another station (fig. 8-11). In this case, the environment 
model is updated representing the currently connected stations. Introducing a new abstraction 
(the connection) that is tailored for the task (connecting tables) in the environment model at 
the task level enriches this model with semantically new information compared to the raw 
information detected by the sensors. The role of the connection client can thus be seen as an 
interpreter of context information in the sense of the conceptual framework as defined by Dey 
(2000). 
The connections modeled in the environment model are unidirectional, representing “station 
A has detected station B”. This is important for two reasons. First, the connection objects can 
be created and modified simultaneously by the BEACH clients running at both involved stations; 
as they operate on different objects no conflicting accesses can occur. Second, as hardware sen-
sors tend to have dropouts and failures, this provides redundant information about the status of 
the connection between two tables. 
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Figure 8-11. Sensors attached to a station. The ConnectionMonitor handles the con-
nection if a sensor recognizes another ConnecTable. Connection client and monitor 
communicate indirectly by modifying the same station object. 

Every change in the present connections between stations is detected by the ConnectionMonitor. 
The ConnectionMonitor then triggers the connection (or disconnection) process of the Connec-
Tables. Triggering the connection upon changes in the modeled connections among stations, 
rather than upon changes in the values sensed, offers additional flexibility. 
When two ConnecTables are connecting, concurrency has to be taken into account. As every 
ConnecTable has one sensor attached, this normally results in redundant information about 
the connection, as explained above. To avoid both tables trying to change the same attributes 
of shared objects at the same time, only one computer should change the environment model 
of roomware components. Otherwise, the conflicting accesses as soon as they are recorded by 
the BEACH server would result in rollbacks and canceled transactions. Therefore, only the 
ConnectionMonitor running on the station with the smaller station ID executes the connection. 
However, having a ConnectionClient running on both stations providing redundant information 
about the sensed values raises the tolerance against hardware dropouts. 

8.2.3 Connecting two ConnecTables 
The client triggered by the connection monitor to execute the connection has the task of re-
flecting the new configuration of the roomware components in the environment model. This 
includes the adjustment of the displays and merging all workspaces to one common work-
space.  
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(a) (c)(b) (d)  

Figure 8-12. To switch between individual work (a) and tightly-coupled work, two 
ConnecTables are placed next to each other (b). This results in a homogeneous display 
area enabling the exchange of information objects (c). Moreover, users can have their 
own but shared views of the same information object for tight collaboration (d). 

Combining Roomware Components 
In order to combine the displays of two ConnecTables to a homogeneous surface when they 
are connected, the model described so far was extended by a new abstraction for the dynamic 
combination of several roomware components. A CompositeRoomwareComponent consists of multi-
ple other roomware components (fig. 8-10), but has its own display area (see fig. 8-13 below). 
If other roomware components are connected to a composite roomware component, their dis-
plays belong to the common display area—which adjusts the local view of all connected 
roomware components automatically. 
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Figure 8-13. Two connected ConnecTables. Both displays are temporarily assigned to 
the common display area (displArea3) of the composite roomware component. 

Connecting the Roomware Components 
To connect two ConnecTables, a new composite roomware component with a new display 
area is created. The two ConnecTables are added as components to it. This also moves their 
displays from the ConnecTables’ original display areas to the new common one (fig. 8-13). As 
a result, the view objects will be updated to show the correct part of the common workspace: 
Per definition, the station changing the model will be the lower display using a zero rotation 
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and an offset of (0, 1). The other ConnecTable is assigned to the upper display. As both Con-
necTables have the sensors and tags built in on the same side of the display, this display is ro-
tated by 180 degrees relative to the display area (fig. 8-14). Therefore, its rotation is 180 and 
its offset is set to (0, 0). The displays’ transformations (see section 6.8.3) are used to ensure 
that the presentation is visualized with the correct orientation. 
While the software part of the implementation described so far can handle an arbitrary num-
ber of tables, this part is tailored to connections between exactly two ConnecTables. This is 
no problem, as the current hardware realization is only equipped with sensors that can detect 
a second table only. If advanced detection hardware becomes available (e.g. Hinckley, 2003, 
this part of the software has to be extended with functionality that computes appropriate off-
sets and rotations. 

Connecting the Workspaces 
Every display area shows originally its own workspace. When two ConnecTables are con-
nected, the contents of their workspaces must be moved to the new common workspace of the 
composite roomware component’s display area (fig. 8-14). All objects shown in the upper dis-
play’s workspace (workspace1) must be rotated, as the new workspace’s orientation is up-
side-down compared to the original workspace’s orientation. The objects in the lower display’s 
workspace (workspace2) must be moved down by the size of the upper display. For calculat-
ing the positions of the objects in the common workspace, it was possible to reuse the trans-
formations (see section 6.8.3), which were originally developed to transform the output of 
views. 
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display1
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display2

display1
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content
translated

by
display
height

content
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Figure 8-14. Combining the contents of two individual workspaces to a larger common 
one. To keep the contents at the same physical position they have to be rearranged 
with respect to the coordinate system of the common workspace. 

Finally, the background color of the workspace is darkened to give feedback to the user that the 
ConnecTables are connected. For the design of the ConnecTables’ user interface, we decided 
that the simplest design is also the best. When connecting, as little as possible information 
displayed at the tables should change, just as physical objects placed on a table would also not 
change if the table were moved. While this idea proved to be natural for users, we noticed that 
it is necessary to provide feedback about a successful connect action, especially if it is not ob-
vious whether or not the sensors have detected the other table. Changing the background 
color was chosen as an ambient, non-disturbing visualization. 
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Disconnecting 
When the sensors recognize that the ConnecTables are separated again, the reverse opera-
tions are performed. The objects in the common workspace are moved back to the private 
workspaces of the ConnecTables depending on their position inside the workspace. Objects 
overlapping the border between the displays are moved to the display’s workspace where most 
of them are visible. 
Then, the ConnecTables are removed from the composite roomware component and the dis-
plays are attached to the previous display areas. Consequently, the views are updated to show 
these display areas and workspaces. 

8.2.4 Analysis of the ConnecTables Implementation 
The implementation of the ConnecTable module could draw on abstractions that are pro-
vided by the BEACH framework. The display area enabled dynamically adding and removing 
available displays. The transformations made it possible for displays with different physical ori-
entations to be combined to form a homogeneous display area that is correctly rendered on all 
involved displays without having to adapt any view. In addition, the ConnecTable module 
could directly reuse the sensor interaction model and the sensor management that had been de-
veloped for the Passage system (see previous section). This was possible because the BEACH 
model suggested identifying reusable parts at the model and generic levels for the implementa-
tion of Passage. 
For the ConnecTables, it was crucial that the environment, user interface, application, and 
data models be shared. The shared environment model allowed sensors integrated in both Con-
necTables to access information about the tags attached to the remote station, and to modify 
the model by adding connections between stations. The shared user interface, application, and 
data models are necessary to be able to flexibly and easily exchange user interface elements, 
editing state, and information (see fig. 8-12). 
In general, the implementation effort was about two weeks by a (at that time, 3rd year) uni-
versity student with two years experience of using the BEACH framework and model. The most 
time-consuming part was actually dealing with the concurrency issues, as in the case of the 
ConnecTables the same, complex action is triggered by two sensors simultaneously. In con-
trast, actions invoked by users are very unlikely to conflict38 and are thus well handled by the 
conflict detection algorithms of COAST. As described, the solution was to introduce the connec-
tion as an intermediate, task-level abstraction in the environment model. In addition, the im-
plementation of the sensor management had to be improved, as the sensors do not always 
produce reliable results. Dropouts had to be handled by software to avoid unintended discon-
necting and reconnecting while the tables where placed next to each other. 
An obvious extension to the implementation described here is support for connecting an arbi-
trary number of ConnecTables. This requires on the hardware side an appropriate sensor 
hardware setup capable of detecting ConnecTables placed at the sides and at the bottom of 
each table. On the software side, the Connection, Tag, and TagSensor need to be extended to re-
flect the additional geometry information that can be captured by the sensors. They must be 
aware of their position relative to the station’s display. The ConnectionMonitor must be extended 
to construct the equivalent layout of all displays within their display area and to compute the 
corresponding transformation for the workspaces’ contents. All other aspects of the imple-
mentation can remain unchanged. This is possible as the shared environment, data, and user 
interface models allow straightforward access to the other ConnecTables’ states, and because 
the environment model already provides the display area as an abstractions for the combina-
tion of physical displays. 
                                                       
38 In our experience, two users simply do not do the same action at exactly the same time. 
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8.3. Integrating Audio Feedback: Non-Speech Augmentation 
In contrast to working with physical objects, manipulating digital information objects produces 
no acoustic feedback about the ongoing activities. Therefore, we experimented with adding 
acoustic feedback for interaction with roomware components (Müller-Tomfelde and Steiner, 
2001; Müller-Tomfelde, 2003). 
Acoustic feedback can be helpful in a number of situations. First, working with a gesture-
based interface like the one provided by BEACH, acoustic feedback about recognized gestures 
and triggered commands gives additional cues for the user about the interaction. This can eas-
ily be implemented in a similar way as the immediate visual feedback described in section 
7.5.2, as it focuses on a single user, involving local components only. 
Other situations for acoustic feedback arise when several people are collaborating. Both for 
multiple users at one interaction device (req. C-3) and for users working at different roomware 
components (req. UC-1) acoustic feedback can help avoid unexpected interference. 
For example, if two users are working loosely coupled at a DynaWall, acoustic feedback can 
provide cues of the other user’s activity. This is especially helpful since large visual interaction 
areas (such as the one provided by the DynaWall) cannot be overviewed when working close 
to the surface. Therefore, acoustic feedback can be used to announce the arrival of new in-
formation objects if an information object is thrown towards another user. 
Furthermore, if a user sitting in a CommChair is modifying material shown at a DynaWall, 
people working at the wall may not notice remote actions—even if the “remote” user is work-
ing in close physical proximity. 
These cases are similar from the perspective of the software, as in both cases several computers 
are involved, due to the fact that the DynaWall is a multi-computer device (req. U-2). As the 
BEACH framework implements data, application, environment, and user interface models as 
shared objects, it is easily possible to use the information that is present in any of these models 
to give feedback on any involved machine. 
This section presents the support for audio feedback. First, the hardware setup is described. 
Subsequently, an overview of the software architecture is given, before the audio interaction 
model and the MIDI output support is explained. Finally, the example of audio feedback for 
thrown objects is explained to illustrate how the audio feedback works. 

8.3.1 Audio Hardware Setup 
In order to give acoustic feedback at the DynaWall, a loudspeaker was mounted invisibly be-
hind every segment of the wall. The speakers are connected to a PC equipped with dedicated 
audio hardware, denoted “audio PC” in figure 8-15. The audio PC was added as a fourth sta-
tion of the DynaWall, which has no visual display, but special audio hardware and audio out-
put devices attached. 
In our first setup, the audio PC was only connected via Ethernet with the BEACH server. How-
ever, we experienced that the network delay and the transmission of messages by the server 
was not fast enough and had an unpredictable delay, resulting in unsynchronized acoustic and 
visual feedback. Therefore, we added direct MIDI connections between each station and the 
audio PC. This allows computing visual and acoustic feedback at every machine for its local 
context, enabling sufficient synchronization of visual and acoustic output. The audio PC has 
the role of generating, mixing, and filtering the audio signal from the MIDI data. 
It is important to understand that the MIDI connection is used to synchronize visual and au-
dio output at the DynaWall; the audio feedback is given independent of the client actually 
initiating a change in a shared model. Thus, this setup can also give feedback for remote in-
teractions. 

↓ Section outline 
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Figure 8-15. Audio hardware setup. The audio PC is connected to the DynaWall via 
MIDI to ensure a real-time transmission of audio information. 

8.3.2 Audio Software Architecture Overview 
To enable the generation of audio output, three software modules have been implemented. 
According to the BEACH conceptual model, the functionality was divided into three layers and 
it covers two concerns, the interaction and environment models. Similar to the visual interac-
tion model defined in chapter 5.2, an audio interaction model (BEACHaudiomodel) is defined (see 
fig. 8-16). It serves as an abstraction, mediating between the module providing acoustic feed-
back for interaction with documents (BEACHdocumentAudio) and the interface to the used audio 
hardware, in this case a MIDI device (BEACHaudio.MIDI). These three modules are presented in 
the next sections. 
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Figure 8-16. The audio software architecture is structured according to the BEACH con-
ceptual model. The audio model defines an abstraction for audio output. MIDI support 
is implemented as a concrete output device. Module document audio provides acoustic 
awareness about activity in the document application model. 

8.3.3 Audio Interaction Model 
The audio interaction model (BEACHaudiomodel) defines an abstraction for output of acoustic 
feedback, similar to the visual interaction model defined in chapter 5.2. 
Analogous to the “view” classes (see sections 6.2.2 and 6.8), it defines “audio presenters” 
(class BeachAudioPresenter in fig. 8-17) that handle the acoustic rendering of document state 
and—in contrast to view classes—also of state changes.39 This is important, as acoustic feed-
back can be very helpful to inform a user about activity, implying state change. It is very diffi-
cult to design an acoustic representation of a document’s state without being annoying over 
time. The audio presenters use the dependency mechanism (see section 6.1.3) to detect state 
changes automatically by subclassing BeachComputedModel. 
Audio presenters also define a hierarchy representing the structure of the document (fig. 
8-17). To be able to couple the audio model with an application, the class AudioApplication is 
defined. Similar to class VisualApplication (see section 7.4.1) that is concerned with the view 
hierarchy, class AudioApplication manages the audio presenter hierarchy in an analogues way. As 
class AudioOutputDevices is an output device, an audio output device can be dynamically at-
tached to a station. Its device service, which is provided by the device hook (see section 6.6), 
can be used to open and close the audio application. 
To generate output, an audio presenter can allocate an AudioChannel, which provides the func-
tionality to describe audio signals in a device independent form. This is equivalent to the 

                                                       
39 While not implemented in the BEACH framework, it is possible to visualize state changes as well. 

Gutwin and Greenberg (1998) have shown that animated state changes help to provide workspace 
awareness. 
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GraphicsContext used to render visual output in the view interaction model. Supported atomic 
audio output elements are “loops” and “sequences”. Loops are pieces of audio data being re-
peated until stopped explicitly. They are used for continuing feedback, e.g. while an element is 
moved. Audio sequences are played once; they notify about changes only. 
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Figure 8-17. Interaction model for audio output. The interaction application is extended 
to handle a hierarchy of audio presenter objects. 

8.3.4 MIDI output 
As the DynaWall’s stations are connected to the audio PC via MIDI, a concrete audio-output 
device is provided by module BEACHaudio.MIDI that generates MIDI events and sends them to 
the MIDI interface (fig. 8-18). As MIDI supports only a very limited number of channels, class 
MIDIChannel defines virtual MIDI channels, which are mapped to currently available channels 
by the MIDIOutputDevice. 

environment
model

BEACHaudio.MIDI

AudioOutput
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Figure 8-18. MIDI output is a concrete implementation of the abstract audio-output 
device and channel. 

8.3.5 Audio Feedback for Throwing 
Document content is hard to represent acoustically if no speech should be used, which would 
interfere with collaboration among people. Thus, the BEACHdocumentAudio module concentrates 
on geometric properties of document elements. This decision implies that this implementation 
of acoustic feedback cannot be used as a replacement for views; it only provides additional 
feedback in a multi-modal way. 
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In addition, we decided to use acoustic feedback to notify about changes and ongoing activi-
ties only. The example that is discussed here is rearrangement of document elements by mov-
ing or throwing40. 
To enable acoustic feedback, class PositionWrapperAudioPresenter (fig. 8-19) is defined to handle 
acoustic rendering of the position of document elements. It monitors changes of the position 
caused by movement commands, and checks whether a document element is currently being 
thrown. In this case, not only the position and size but also the current speed is used to gener-
ate the output signal. Details of the generation of audio output are not in the focus of this the-
sis and can be found in (Steiner, 1999; Müller-Tomfelde, 2003). 
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Figure 8-19. The audio presenter for position wrappers monitors movements happening 
in the position-wrapper application model. 

Figure 8-20 illustrates how the audio interaction model is added. The audio interaction application is 
attached to the same user interface display application that is also used for the visual output, as it 
augments the visual presentation. The audio interaction model then creates a hierarchy that resembles 
the view hierarchy. While in this example all container audio presenters serve only the purpose of 
holding the sub-presenters, the audio position wrappers give acoustic awareness about the position of 
elements. 
This is also an example that shows how two different interaction models are used for the same user 
interface model, stressing the importance of the separations of interaction and user interface concerns. 

                                                       
40 The implementation of the throwing interaction style is explained in section 7.2.2, page 134. 

Example 8-1: Adding 
acoustic interaction 
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Figure 8-20. An interaction model for acoustic output can be added without interfering 
with the existing interaction modalities. The audio interaction application uses the 
same user interface application to be able to augment the visual presentation. 

8.3.6 Analysis of the Audio Feedback Implementation 
While the sensor interaction model developed for the Passage system shows how another in-
put modality can be added, the audio interaction model is an example of another output mo-
dality that augments the visual presentation. This serves as an example of two interaction 
models sharing the same user interface, application, and data models. 
The device hook provided at the model level (see section 6.6), was used to be able to add an 
audio output device to the station and use its device service to start the audio interaction ap-
plication. 
Additionally, the audio interaction model generates—similar to the view interaction model—
a presentation for a rather complex application model with a hierarchical structure, even if the 
current acoustic presentation is limited. This is possible by using the abstractions of composites 
and wrappers that are also employed in the view interaction model. 
An issue for future investigation is the possibility to audio transformations in an analogous way 
as for views (see section 6.8.3). Audio transformations could be inserted into the audio pre-
senter hierarchy to modify the acoustic presentation of sub-hierarchies, e.g. to adapt the vol-
ume, frequencies, or the speed. 
The integration of the feedback for throwing was done by a 3rd year university student with 
no prior experience of using the BEACH framework as part of his three month internship. How-
ever, only a small part of the work was dealing with BEACH related issues. The major part of the 
work was creating the hardware setup, dealing with device drives of audio hardware, and de-
signing pleasant and non-annoying acoustic representations. 

8.4. Discussion: Experiences Extending the BEACH Framework 
This chapter presented examples showing how to implement new interaction forms on top of 
the BEACH framework. The sensor model provides an interface to include properties of physi-
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cal objects that can be recognized by sensors as input to applications, and actuator to manipu-
late physical objects. The sensor model is used by the Passage system and by the ConnecTables. 
The audio model enables giving acoustic feedback. Implementing these interaction models, 
we experienced that new interaction forms can be realized in a straightforward and conven-
ient way. The chosen samples prove that the BEACH model and framework supports different 
interaction forms (req. H-1). 
The audio interaction model revealed a benefit of using a software architecture that is struc-
tured according to the BEACH model. Automatic generation of user interfaces and appropriate 
interaction models is not the focus of the BEACH framework. Consequently, a new interaction 
model has to be defined for all components that have to support this new interaction form. 
Fortunately, as the framework clearly separates concerns and abstraction levels, each compo-
nent profits from all interaction forms defined at lower levels of abstraction. If, for example, 
a new interaction model for speech input is defined, then, at the generic level, common ac-
tions, such as “move”, or “delete” can be invoked by speech commands. Now, even if no spe-
cific support is added at the task level, all components that use the generic commands can be 
controlled by speech as well. However, if cross-modal generation of user interface is necessary, 
approaches as presented in section 3.3 can be easily integrated. 
The audio model shows also how to combine multiple modalities, here acoustic and visual 
feedback, in an independent manner. Synchronization of modalities is performed via the un-
derlying shared models. Therefore, it is necessary that the interaction be separated from the 
user interface model, as otherwise it is not possible to add interaction modalities for the same 
user interface. However, to provide more sophisticated forms of multi-modal interaction, es-
pecially for multi-modal user input, additional components might be necessary as part of the 
low-level interaction model that are managing multiple and flexible change of interaction mo-
dalities (Oviatt et al., 2000; Myers et al., 2002). 
The ConnecTables are an example of how to handle dynamic changes in the environment 
model. Whenever sensors detect that two ConnecTables are placed next to each other, they 
update the environment model accordingly. 
This can be used to provide environmental awareness. As the interaction model imple-
mented as part of the BEACHconnection module observes the state of the environment model, it is 
possible to trigger functionality upon state changes. 

8.4.1 Comparison of the Interaction Models 
While the three sample interaction models (including the view model described in section 
6.8) define different abstractions that are unique to the supported interaction style, they fol-
low a similar structure. 

• All interaction models operate on shared models; they can access user interface, applica-
tion, data, and environment model. Using shared model allows flexible distribution of user 
input and presentation of information. 

• The interaction models use the device hook provided at model level (see section 6.6) to 
add the necessary interaction elements. The service associated with each device can be 
used to establish communication between the device and the components handling the cor-
responding actions. This is the essential feature for ensuring extensibility (req. S-2) for fu-
ture interaction forms. 

• The concepts of interaction and user interface applications are used as the root for these 
two concerns. The applications are created by the corresponding device service. 

• The interaction models normally have two parts: one dealing with presentation, the other 
with user input. The visual interaction model defines views and controllers, the sensor 
model actuator and sensors. However, this separation might not be necessary or feasible in 
all cases. The implementation of the audio model currently supports acoustic presentations 
only. 
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• Presentation of shared objects is modeled as being dependent on shared models. This has 
the benefit of being independent of the client causing a state change. 

• To be independent of the underlying hardware the output part introduces an abstract in-
terface to generate the presentation. The views use a graphics context, the audio model 
the audio channel. 

• User input triggers modification of the shared model state. The way user input that is re-
ceived by the interaction model depends on the interaction style and the available device 
drivers. 

Common possibilities for mapping input to functionality are sending events (as in the view 
model) or observing device state (as in the sensor model). It seems that events are appropri-
ate if the device generates explicit user input, such as mouse or keyboard, and the input is di-
rectly connected to a complex user interface or application model. Complex, here, means that 
it is modeled as multiple interrelated objects that are dynamically changing candidates for the 
target action. When events are used to invoke functionality, different interaction forms re-
quire different event dispatching strategies. 
When functionality is triggered upon changes of shared state, this gives freedom to distribute 
input devices and input handlers. Here, state changes implicitly define input events. The way 
to deal with this kind of input can be regarded as rule-based. For each action, a rule describes 
the state in which it has to be triggered. In contrast to the “classical” input events that are 
normally dispatched to a single controller only, it is quite possible that several rules exist that 
specify the same state in which they have to be triggered. For these rules, constraint solving is 
more appropriate than event dispatching, as the main problem is to figure out when the speci-
fied event (i.e. the state change) has occurred, not determining the appropriate action. To 
ease this detection, the ConnecTables module introduced the “connection” as a tailored ab-
straction. It abstracts from the interpretation of the available context information and allows 
the specification of the rule at the appropriate level of abstraction (task level in this case). 

8.4.2 Properties of the BEACH Architecture 
Using the BEACH framework revealed that its architecture has properties that make reuse and 
extensibility more convenient. 
As the functionality belonging to the different levels of abstractions of the BEACH model is im-
plemented by the BEACH framework as separate layers, lower level components can be reused 
easily. For instance, the sensor model implemented for the Passage system defines functional-
ity at the model level. This was reused unmodified in the implementation of the Connec-
Tables. This example shows that the layers allow making a horizontal cut through the archi-
tecture (fig. 8-21a). All components placed at a higher level can thus be modified, or new 
components can be added without the need to adapt lower-level components. 
Analogous to the horizontal cut, which is enabled by the software layers, it is also possible to 
make a vertical cut in the architecture (fig. 8-21b). This means that software components 
implementing separate concerns can also be replaced without the need to change the compo-
nents they depend on. This chapter presented examples showing that different interaction 
models can be implemented without the need to modify other models. If a new user interface 
is created, this might require changes in the interaction model only. If the software interface 
of the application model has to be changed, this might affect both user interface and interac-
tion model. 
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Figure 8-21. The BEACH architecture enables horizontal (a) and vertical (b) cuts through 
the architecture. This is essential to ensure reusability and extensibility. 

8.4.3 Developing Distributed Systems with the BEACH Framework 
The second dimension of the BEACH conceptual model (figure 4-2) is concerned with coupling 
and sharing. This chapter presented several examples of how the shared-object space that 
forms the basis of the BEACH framework reduces significantly the development effort, while 
providing means of flexible distribution. The examples also show the benefits of introducing 
the dimensions of separation of concerns in combination with sharing in the underlying BEACH 
conceptual model. This enables developers to decide for each concern about the appropriate 
degree of coupling for the task at hand. 
All three examples demonstrate that sharing the data model is essential for collaborative 
ubiquitous computing applications, by enabling an intuitive way of accessing and manipulating 
shared information. The shared application model enriches the collaboration possibilities, as 
it allows using the same editing state, which could be transported by Passage, shared by the 
ConnecTables, or used for remote acoustic feedback of remote interactions. This allows flexi-
ble changes of devices, locations, and participants while being able to continue work seam-
lessly in spite of context changes. The ConnecTables also rely on a shared user interface 
model to be able to exchange user interface elements, such as toolbars or overlays, while being 
connected. The shared environment model is used in the implementation of the Connec-
Table to find other tables to connect to. The example of the sensor model demonstrates that 
using the shared environment model also eases the distribution of sensors and sensor ob-
servers.  
In spite of the interaction model not being shared, the examples presented in this chapter 
illustrate how the dependency mechanism is used to generate a coupled distributed presen-
tation. As the presentation is local, but coupled to a shared model via constraints, the presen-
tation can be adapted to the local context. This is used by the ConnecTables to transform the 
common coordinate system to the local one that is rotated or translated accordingly to show 
the correct part of the common display area with the correct orientation. The audio interaction 
model illustrates how a remote device can use an arbitrary interaction model to allow flexible 
provision of awareness of remote actions and state changes. 
While this chapter discussed the possibilities of integrating new forms of interaction with the 
BEACH conceptual model and framework, the next chapter shows how applications can be cre-
ated based on the framework. 

↓ Next chapter 
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9. Tools for Collaborative Roomware Environments 

This chapter presents examples of how applications are implemented using the BEACH 
conceptual model and framework. Two examples are discussed in detail. The MagNets 
tool is used for collaboratively generating and organizing ideas. It shows how new 
document element types can be implemented that define a new interaction behavior. 
PalmBeach extends the support for creativity sessions to portable devices. Ideas can 
be noted on a Palm and beamed to a public display. PalmBeach shows how it is pos-
sible to include a different hardware platform, which requires new user interface con-
cepts and a different implementation for a conceptually shared model. 

 

With the help of the BEACH model and framework, 12 tools and extensions have been devel-
oped up to now (including the three extensions described in the previous chapter). These 
tools and extensions are implemented by about 25.000 lines of Smalltalk source code41 in to-
tal, which gives an average of about 2000 lines per application. To date, more than 15 soft-
ware developers have used BEACH42, both students from the Darmstadt University of Technol-
ogy and researchers at IPSI, with varying experiences in software development ranging from 
novices to experts. Most of them had no prior knowledge of the Smalltalk programming lan-
guage; none of them had prior knowledge of BEACH. Several developers continued using the 
BEACH model and framework for several years. 
We experienced that programmers with little training—but with the help of BEACH—were able 
to implement software that supports synchronous cooperation and different forms of interac-
tion, up to a complexity they would be able to handle as equivalent single-user desktop soft-
ware. In addition, this software required no special care about synchronous actions or special 

                                                       
41 The total number of lines in the Smalltalk file-out including resources. 
42 BEACH here (and in the following) refers to conceptual model, software architecture, and application 
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interactions. After one year of experiences with BEACH, students had internalized the concepts 
of the BEACH model and were able to create software designs that reflect the specific properties 
of roomware environments. 
The following tools have been developed for BEACH. BeachMaps is a tool of the BEACH “Creativ-
ity Suite” (Prante et al., 2002) that provides cooperative mind-maps (Buzan, 2002). It can be 
used to structure collaboratively the ideas gathered during a brainstorming session. BEACHshow 
is a simple tool to give presentations in a roomware environment, enabling the audience to 
directly participate by remotely annotating slides. The RoomViewer gives environmental 
awareness by visualizing nearby roomware components. The Remote Access Tool allows access 
to remote roomware components. It is an example that shows that it is useful to have a local 
interaction model that can be adapted to its context. BEACHsearch provides a query-by-example 
user interface to retrieve documents. It can also use context information that is attached to 
documents as search criteria, such as the roomware component at which it was created or us-
ers that have been present at this meeting. This information is taken from the environment 
model. BEACHcontext integrates the BEACH framework with the iROS Event Heap (see section 
3.3.2), in order to establish a simple interface to sensor and context data. BEACHweb provides a 
BEACH client that works as a web server. Users that have no access to a BEACH client, but a web 
browser can view BEACH documents. The web browser represents the current state of the work-
space rendered as Scalable Vector Graphics (SVG) (World Wide Web Consortium (W3C), 
2003). Update is not automatic due to limitations of the HTTP protocol, but users can update 
the presentation manually by reloading the web page. This is an example of how to generate 
an interaction model for a web browser.  
This chapter, now, presents two examples in detail showing how applications can be imple-
mented using the BEACH conceptual model and software framework. They are taken from the 
BEACH “Creativity Suite”. The first tool, MagNets, shows how new document element types can 
be implemented that define a new interaction behavior. The second, PalmBeach, is an exam-
ple of how it is possible to include a different hardware platform, which requires new user in-
terface concepts and a different implementation for a conceptually shared model. The exam-
ples have been selected to illustrate different aspects of the BEACH model and framework. The 
examples presented in this chapter were implemented by students and colleagues with the 
help of the BEACH model and framework. The author contributed to the software design only. 

9.1. MagNets: Extending Document Model and Interaction Behavior 
“MagNets” is the first application that was developed with the BEACH model and framework. It 
supports collaborative generation and structuring of ideas in creativity sessions. MagNets 
(“Magnetic cards to form idea-Networks”) provide enhanced interaction mechanisms in anal-
ogy to the magnetism-metaphor in order to support successive bottom-up structuring of cards. 
In this section, first, the functionality of MagNets is explained, followed by the design of the 
software application, highlighting important aspects of the BEACH framework. 

9.1.1 MagNets Functionality 
When several people generate ideas during brainstorming sessions, efficiency is increased if 
each participant can write down the ideas immediately to prevent ideas being lost. Besides, 
new ideas should immediately be visible to other participant to trigger further associations and 
ideas. In a roomware environment, this can be easily realized. Every participant can write 
down ideas using a personal device (such as a CommChair). All ideas are placed in a shared 
workspace, which is also visible at a public device, such as the DynaWall. 
To write down ideas, MagNets offers small (digital) cards, which can be collected in a shared 
workspace. It distinguishes two types of “magnetic” cards: element cards and title cards. Element 
cards are repelling upon creation to avoid overlap. When an element card is dragged on top of 
another, the first one is pushed away to a defined distance. This is to fulfill the basic require-

↓ Chapter outline 

↓ Section outline 
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ment of brainstorming that during the stage of idea creation all ideas have to be treated 
equally. 
In contrast to element cards, title cards are attracting upon creation, thus supporting progres-
sive clustering of cards during idea-structuring phases. They serve to name clusters of ideas 
that are related to each other. When an element card is dragged over a title card, it sticks to it 
and becomes attracting itself. It is freed again by quickly tearing it away from the magnetic 
cluster.  

 

Figure 9-1. The animated collapsing of a magnetic card cluster. 

MagNets also provide flexible visualization forms for card clusters; they can be collapsed and 
expanded (see fig. 9-1). This is useful to save space on the whiteboard and to redirect the fo-
cus of attention to other ideas. 
An extensive description of the functionality of MagNets is published in (Prante et al., 2002). 

9.1.2 MagNets Software Design 
The example of the MagNets modules illustrates how it is possible to add new document ele-
ments that have a new interaction behavior. To implement the described functionality, the 
MagNets module defines the “card” as a new document element (class Card in figure 9-2). Clus-
ters of magnetic cards are represented by instances of class MagneticGroup. The MagNetsModule 
class can be used as an example of how to add new toolbars to the generic root toolbar. In ad-
dition, a new application model for position wrappers is needed to realize the new interaction 
mechanism. 

Cards as New Document Elements 
A “card” is a container object containing only scribbles, text, and images. To implement a new 
document element, the data, application, and interaction model is defined for cards. If a card 
is a title card, attribute isTitle is set to true. Title cards can be used to create magnetic 
clusters of cards. In this case, an instance of class MagneticGroup is created and all members of 
the cluster are added as members of this group. 
The application models of cards and magnetic groups take care of redirecting all commands 
that influence the whole cluster. For example, move and throw commands always involve the 
whole group. In addition, collapse and expand commands are handled by the application 
model to switch between the two different visualization modes. Handling collapsing of clusters 
in the application model has the advantage of allowing loosely coupled interaction with the 
same cluster of cards. Users working with a different application model can independently col-
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lapse one group, e.g., if one user wants to continue elaborating the elements while the other 
user has already switched the focus to other topics. 
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Figure 9-2. Classes defined by the MagNets module 

Implementing New Behavior of Cards: Magnetic Attracting and Repelling 
Attracting and repelling between cards does not only concern the membership of cards in a 
magnetic cluster. Moreover, as it is also reflected in the position of cards, a new application 
model has been implemented for position wrappers that is used instead of the default position 
wrapper application model by the card’s application model. 
When move or throw commands are sent to an instance of CardPositionWrapperApp, it checks for 
intersecting and close-by cards at the final position. If other cards are detected that are at-
tracting (i.e. that are title cards or that already belong to a magnetic cluster), the card is added 
to the magnetic group. If a repelling card is found, a new position is computed for the card 
being moved that ensures a minimum distance to all repelling cards. 

Making New Document Elements available to Users 
To enable users to actually create cards as part of BEACH documents, the “create card” com-
mand must be made available in the generic user interface of BEACH. To allow new modules to 
add new document elements, the generic root toolbar (see section 7.3.4) uses a hook to in-
clude commands defined by other modules. (This hook is explained in section 6.1.2.) There-
fore, the MagNetsModule metaclass overwrites the toolbars method and returns a sub-toolbar-
command that opens the “MagNets” toolbar. The “MagNets” toolbar, in turn, provides a set 
of “create card” commands for a collection of both title and element cards in different colors. 
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Figure 9-3. The MagNets toolbar is plugged into the modules toolbar. It can be used to 
create MagNets cards during creativity sessions. Element cards are used to write down 
ideas. Title cards are magnetic attracting and can be used to cluster cards into catego-
ries. 

9.1.3 Analysis of the MagNets Implementation 
The implementation of the MagNets illustrates three aspects. While to add new interaction 
forms the device hook can be used (see chapter 8), the BEACH framework provides the toolbar 
hook to include new functionality in the user interface (see section 7.3.4). The new document 
elements are implemented as subclasses of abstract document classes. In this respect, the BEACH 
framework can be classified as a typical white-box framework. To implement the card’s mag-
netic behavior, a specialization of the application model of the position wrapper was used. 
As the position wrapper is selected depending on the container in which a card is placed, this 
design enables implementing different behaviors depending on the container. This way, it was 
possible to reuse the cards when placed in different structures. In (Prante et al., 2002) a third 
tool of the BEACH creativity suite, called BeachMaps, is described that covers the idea-
structuring phase after all ideas have been collected. It uses a graphical hierarchical structure 
called mind-map (Buzan, 2002). Ideas written on MagNets cards can be placed into a 
mindmap. BeachMaps supports automatic layout according to the hierarchy. Here, the 
magnetic behavior is not needed; instead normal position wrappers can be used. 
To provide awareness about the re-positioning of the cards, the movement of the card to its 
final position is animated. When implementing the animation for the “throwing” interaction 
technique (see section 7.2.2), we experienced that in a distributed environment the animation 
works best if there is only one transaction used to set the parameters of the animation. In ad-
dition, time-based invalidation of the presentation and a synchronized timer is used to guaran-
tee consistent presentations that are generated locally. 
In principle, the animation of the magnetic behavior uses the same approach. However, we 
faced additional problems due to concurrency. In contrast to ordinary document elements, the 
final position of magnetic cards depends on other cards, as cards are not allowed to overlap. 
When other cards are placed concurrently by different clients, their final position can inter-
fere, as the local client cannot consider this when calculating the position. This often results 
in rollbacks, as both clients access all slots specifying the positions of the cards within this 
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workspace. Whenever any of these positions is changed by another client in the meantime, 
the transaction is canceled by the server. As the animation of the movement was not the fo-
cus of our research, we did not develop a sophisticated solution. When giving demonstrations 
of MagNets we simply try to avoid this situation. This example illustrates that concurrency 
cannot always be handled automatically. However, the shared-object space ensures that each 
action results in a consistent state, even if this is not the one preferred by all users. 

9.2. PalmBeach: Implementing Models on a Different Platform 
While MagNets supports creativity sessions, “PalmBeach” is focused on collecting ideas in be-
tween scheduled sessions using small, mobile devices. Currently, PalmBeach can be used with 
handheld devices running PalmOS, e.g. the Palm (Palm, Inc., 2003).43 Ideas that are gener-
ated in between meetings can be further processed in a subsequent meeting. 
As the Palm is very limited in terms of memory, processing capability and display size com-
pared to roomware components, it was neither possible nor advisable to directly port MagNets 
and the BEACH framework to this platform. Instead, we chose to develop an independent im-
plementation for the Palm based on the same conceptual document model, but tailored to the 
needs and capabilities of this device. In addition, an interface to exchange data between 
PalmBeach and MagNets was implemented. 
Therefore, PalmBeach can be used as an example to show how the same conceptual model 
can be implemented differently on different platforms. 
This section first describes the functionality of PalmBeach and the user interface designed for 
the Palm. Then, the software design of PalmBeach is presented, discussing the differences 
from the design of MagNets. Finally, it is explained how data is exchanged between the Palm 
and the DynaWall. 

9.2.1 PalmBeach Functionality and User Interface 

Tailored User Interface for PDAs 
The user interface of MagNets is designed for large interactive surfaces; thus, it does not fit for 
the small display of a PDA. For PalmBeach, therefore, a new user interface had to be devel-
oped (Prante et al., 2002; Magerkurth and Prante, 2001a). It also uses MagNets’ card-
metaphor for idea collection. The user can create content on the cards as well as model spatial 
and link relations between the cards. In addition to the MagNets implementation, each card 
has a title and an icon to allow for a semantic structuring. 
To cope with the limited screen space of a PDA and to the demands of a card-based approach, 
the user interface separates the content of a card from its relations to the other cards, provid-
ing two different views. The Detail View (right side in figure 9-4) is used for modifying the con-
tent of a single card. The Relation View (left side in figure 9-4) shows all of the defined cards to 
visualize their relations. 

                                                       
43 However, as PalmBeach is implemented on top of an abstraction layer encapsulating the handheld’s 

operating system called pNF (Magerkurth and Prante, 2001b) there is already a basis to port it to dif-
ferent platforms. 

↓ Section outline 
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Figure 9-4. Screenshots of PalmBeach’s Relation View (left) and Detail View (right). 

In the Detail View, the user can draw scribbles, handwritten text, or use text-boxes to create 
annotations. The Detail View also hosts a framing set of tab controls, the Navigation Stack. 
Each of the tab controls represents a previously created card. Its appearance indicates how the 
corresponding card relates to the selected card, e.g., if there is a link between them. A single 
tap on any of the tab controls switches to its corresponding card. 
The Navigation Stack was introduced to reflect the early stages of idea generation. This is 
analogous to brainstorming, where ideas are simply collected and not immediately brought in 
relation to each other to prevent early tunneling in the search space. When the initial flow of 
ideas ceases, the preliminary organization of the Navigation Stack may then be augmented 
using the Relation View. 
In the Relation View, the iconic representations of the cards can be dragged around the 
screen to model their spatial relationships as well as using hyperlinks complementing the spa-
tial structure. 

Exchange of Ideas 
As PalmBeach is focused on collecting ideas in between scheduled sessions, it is essential that 
the created ideas can be shared among participants in the next meeting. Therefore, a simply 
way to exchange ideas between devices is needed. PalmBeach uses the infrared interface built 
into Palm PDAs to transmit information to other devices. To be able to transfer information 
generated on a PDA to MagNets running on the DynaWall, an infrared receiver has been in-
tegrated in the DynaWall. This way, PalmBeach users can beam their ideas to the DynaWall 
(see figure 9-5), where they are converted to MagNets element cards. 

 

Figure 9-5. A PDA running PalmBeach pointing at an electronic whiteboard to transfer 
a card 

9.2.2 Differences between the Software Design of MagNets and PalmBeach 
PalmBeach has been implemented by Carsten Magerkurth (Magerkurth and Prante, 2001a). 
For the implementation, it was not possible to reuse any code that had been written for Mag-
Nets. First, a completely different user interface was designed that fits the needs of a small 
PDA. Consequently, a new interaction and user interface model had to be designed and imple-
mented. As it is very unlikely that a different interaction style would be used for the user in-



9. Tools for Collaborative Roomware Environments 

186 

terface provided by the Palm, the interaction and user interface model have been combined 
(fig. 9-6). This also helps reduce the size of the code. 
Second, the data and application model could not be reused. MagNets is implemented on top of 
COAST. However, currently COAST has not been ported to the Palm OS platform. Porting a syn-
chronous groupware framework to a PDA platform is known to be a challenging task due to 
limited memory and processing capabilities (e.g. no threads) on the one hand, but a different 
(i.e. mobile) usage on the other (Roth, 2002). To keep data and application model small, a 
single class was used to represent both the data and the application model facet (fig. 9-6). In 
addition, no wrappers were used to model the relationship between a workspace and its con-
tents. Still, it is an implementation of the same conceptual model. 
Last, only a very simple environment model is needed. Class Beamer (not shown in fig. 9-6) needs 
to be aware of the presence of other devices it could transmit data to. This is detected by wait-
ing for responses for messages sent via the infrared port of the Palm. 
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Figure 9-6. Software design of PalmBeach. Due to the constraints of the PDA, data and 
application models, and user-interface and interaction models are combined. 

The software design of the combined application and data model is very simple (fig. 9-6). A 
workspace can contain multiple cards. Each card has a position within the workspace, a name, 
and a collection of text and scribble objects. 
The combined interaction and user interface model has class PalmBeachApp as root. PalmBeachApp 
combines aspects of the user interface and interaction application, as defined in sections 6.7 
and 6.8. As explained above, PalmBeach switches between a workspace and detail view (fig. 
9-6). The button bar is always visible. The workspace view uses a different view class for cards, 
only showing an icon for the card (see left screenshot in figure 9-4). For performance reasons, 
no view objects are created for scribbles. They are rather directly drawn by the class CardView. 

9.2.3 Data Exchange between PalmBeach and MagNets 
At the time of implementing PalmBeach, no wireless network connection was available for 
Palm. Therefore, the built-in infrared port was used to transmit cards to other Palm and 
roomware components. To be able to transmit cards, an infrared receiver was attached to the 
center station of the DynaWall (fig. 9-7). 
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Figure 9-7. Hardware setup for data exchange between Palm and DynaWall 

At the station, to which the infrared receiver is connected, the PalmBeachService is started using 
the capability of modules to define services (see section 6.6). When started, it opens the con-
nection to the receiver and waits for card or a workspace with cards to be transmitted. The 
transmission uses a compact binary marshalling format. 
When data is received, it is unmarshalled and corresponding MagNets card objects are created 
(or updated if a corresponding object already exists) to have the appropriate representation of 
the cards for the different platform. To make new card objects accessible to the user, the 
“bridge” implemented for the passage system (see section 8.1) is used. The PalmBeachService 
(defined in module PalmBeachConnect, see fig. 9-8) registers itself as a new kind of sensor, the 
PalmSensor. When cards are received, the PalmBeachService first creates a passenger object asso-
ciated with the received data; then the PalmSensor is informed about a newly sensed object (the 
Palm). 
To transmit data back to a Palm would be possible using the same interaction (by assigning 
data to the bridge opened for a detected Palm). However, the currently installed hardware 
enables transmission from the Palm to the DynaWall only. 

uses
synchronizes
uses
synchronizes

Palm PilotPalm Pilotroomware
component
roomware
component

PalmBeach
Connect

PalmBeach
Connect PalmBeachPalmBeach

BEACH
sensormodel

BEACH
sensormodel

BEACH
passage
BEACH
passage

 

Figure 9-8. Software architecture to handle the data transmission between PalmBeach 
and roomware components 
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9.2.4 Analysis of the PalmBeach Implementation 
Although not much code could be reused, PalmBeach proves that the BEACH model can be 
applied for the construction of software that runs on other hardware platforms with different 
requirements. PalmBeach shows that it is possible to combine the implementation of several 
concerns due to size restrictions, without violating the guidelines given in the BEACH model. 
As the Palm we had available when implementing PalmBeach had no permanent network 
connection, PalmBeach does not support synchronous collaboration. This is an example of a 
lower degree of sharing, illustrating that there possible steps on the second dimension of the 
BEACH model (coupling and sharing) in between local and fully shared models. 

9.3. Discussion: Experiences Building Roomware Applications 
This chapter presented two sample tools that have been developed on top of the BEACH frame-
work to explain different usage and extension possibilities. 
The MagNets tool is an example of how new functionality can be easily integrated into the 
framework. First, it provides a new type of document element, the magnetic cards. They offer 
a new form of interaction, the magnetic attracting and repelling. As the relationship between 
a document container and its elements is modeled as an explicit relation wrapper object, an 
adapted algorithm for positioning elements can be realized. In this way, the new behavior can 
be reused for other document elements if desired. The new functionality is linked into the user 
interface using the toolbar hook that is offered by the BEACH framework. 
PalmBeach shows how the same conceptual model can be implemented differently on differ-
ent platforms and for different devices. PalmBeach and MagNets conceptually share the same 
data model. As PalmBeach runs on a PDA, which has restrictions in memory and processing 
capabilities, the implementation cannot be reused. When data is transferred between the 
PDA and a roomware component, it is converted between the implementations. In addition, a 
standard Palm has no permanent network connection. To transfer data, the user has to explic-
itly use beaming instead of having a synchronously coupled shared-object space. This is an 
example for a different implementation of conceptually shared objects. 
PalmBeach has a different user interface for the conceptually same data model than Mag-
Nets. To conform to the platform restrictions, the PalmBeach implementation combines sev-
eral concerns into one class. Interaction and user interface models are implemented as two 
facets of one class. In this case, this is no major restriction for reuse, as it is unlikely that a dif-
ferent interaction style has to be implemented for a PDA. 
The implementation of the described tools was done by university students with some experi-
ence in object-oriented programming. In general, their first impression of the BEACH framework 
is its complexity and the lack of up-to-date documentation. However, without understanding 
the whole of the framework, it was possible for them to develop tools for roomware applica-
tions, without considering distribution issues and with little thought about supported interac-
tion forms. 
However, as with all distributed software systems there are cases when concurrency remains 
an issue. Although it is technically possible to guarantee consistency, surprising rollbacks can 
be very annoying for users. Due to the dependency mechanism, the output generated by the 
interaction model will always be consistent with the shared model. If rollbacks are received, 
the interaction model should nevertheless not only restore the correct state, but also provide 
awareness about the actions causing conflicts. We found some guidelines that should be 
followed when developing shared systems with the BEACH framework. 

• In order to prevent conflicts, software developers have to take care to create a design 
that aims at minimizing possible conflicting interactions. One approach is a fine-grained 
model to detect conflicts, as provided by the COAST framework. Our experience shows that 
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finding a mature design in terms of concurrency sometimes needs several iterations, as for 
connecting the ConnecTables. 

Another example that seems simple at first glance is the ordering of components within a workspace. 
The components within a workspace must have a defined order used for presentation that is consistent 
among all clients. Our first (and obvious) approach was to use a components slot that stores an 
ordered collection. However, if users at two clients try to insert components concurrently (e.g. because 
they are both writing in this workspace), it happened quite often that one transaction was rolled-back. 
The reason was that the semantics of an ordered collection do not allow concurrent insertion of ele-
ments, as the client inserts an element at a specific position within the collection and this position 
was already occupied by the first transaction. We therefore improved our design to use a slot of type 
set. It is possible to insert elements into a set concurrently, as the set defines no order. Now, we had to 
define the order in a different way. We extended the position wrapper that is used inside workspaces to 
store a timestamp. The timestamp is set to the current value of the synchronized clock whenever an 
element is added to the workspace (or raised to the front). Each client, then, uses the timestamp to 
calculate the order of elements. Now, when two elements are added synchronously, their order is de-
termined by the exact timestamp (in milliseconds) of the action. 
This example illustrates the way developers can solve concurrency issues by changing the de-
sign. Using a shared-object space, however, both solutions ensure consistency and have the 
same functionality. While the first one was faster to design and implement, the latter can cope 
with concurrent actions. Using this approach, developers can decide how much effort to put 
into concurrency issues. When using BEACH, we experienced that the critical issues concerning 
concurrency are noticed very quickly when testing a prototype. We therefore encourage de-
velopers to use the simplest approach at first and improve the design as necessary for the in-
tended task in subsequent iterations. 

• Another pit-fall caused by the automatic detection of dependencies between interaction 
model and shared models that depends on the chosen design is the unintentional creation 
of avoidable dependencies. As too many avoidable updates cause decreased performance 
the designer should also consider which actions trigger which re-computations. Again, a 
fine-grained model to detect dependencies helps minimizing unnecessary computations 
while keeping the guaranteed consistency of the interaction model with the observed sub-
jects. 

• We found that it is essential to establish clear rules about the responsibility of using trans-
actions. As nested transactions cause run-time errors or dead-locks, we came up with the 
rule that only the interaction model is responsibility for starting and ending transac-
tions (in contrast to allowing all basic models to begin transactions). Views use transac-
tion to record dependencies during display updates,44 controllers to modify shared state. 
This turned out to be very natural, as this way, user actions are completely executed or 
completely canceled. In addition, this clear rule helps ensuring reusability, as it cannot 
happen that some method that is called within a transaction calls another method that 
tries to start its own transaction. This rule helps new developers, as it turned out that the 
problems of nested transactions are hard to understand when having little experience 
writing cooperative software. 

To summarize, it has been shown that the separation of concerns defined by the BEACH model 
enables extensibility of data, application, and user interface models. Also, the examples illus-
trate situations in which different approaches for coupling and different degrees of sharing are 
useful. 

                                                       
44 When updating the presentation, transactions have to be used to access shared state. As during pres-

entation update the shared state is not modified, a special read-only variant of transactions is available, 
called display transaction, which allows optimized transaction processing (see section 6.1.3). 

Example 9-1: 
Synchronous 
insertion into a 
workspace 

↓ Next chapter 
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The next chapter is the final chapter of this thesis. It wraps up the main ideas and contribu-
tions of the thesis. The contributions of the thesis are evaluated to see if they fulfill all re-
quirements. Then, alternative application areas are discussed. Finally, the questions that have 
remained unanswered are outlined, to indicate possible directions for future work. 
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10. Conclusions & Future Work 

The final chapter of the thesis starts with a summary of the main ideas presented, 
highlighting the key contributions made. Returning to the requirements identified at 
the beginning of the thesis, it is discussed in detail how the contributions meet these 
requirements. Finally, open questions and directions for future research are discussed. 

Approaching the end of this thesis, this chapter firstly discusses the achievements of the dis-
sertation. In order to show that all requirements have been fulfilled the next section compares 
the solution developed in this thesis against the requirements identified in chapter 2. Finally, 
open questions that have been raised by this thesis are listed to give pointers for future work. 

10.1. Achievements of the Dissertation 
This section summarizes the main contributions of this thesis; an extensive discussion can be 
found in the last section of each chapter. As mentioned in the introduction, this dissertation 
contributes at four different levels to the state of the art: at the (1) conceptual, the 
(2) architectural, the (3) design, and the (4) application level (see section 1.4). These levels 
are used to structure this section. 

10.1.1 The BEACH Conceptual Model: Contributions at the Model Level 
At the conceptual level, a generic conceptual model for roomware applications, the BEACH 
conceptual model, has been developed (chapter 4). It unifies approaches that have been devel-
oped in the relevant research areas (section 1.1): human-computer interaction, computer-
supported cooperative work, and ubiquitous computing. 

Summary of the BEACH conceptual model 
The BEACH model is structured along three design dimensions: separation of concerns, cou-
pling and sharing, and level of abstraction (section 4.1). 
The first dimension, separation of concerns, separates five basic concerns represented as mod-
els: data, application, user interface, environment, and interaction models (section 4.3). The 



10. Conclusions & Future Work 

192 

data model specifies the kind of data the users can create and interact with. To work with data, 
an application model provides the necessary functionality. These two models are independent of 
the currently used device. Instead, available devices and other relevant context information 
are described by the environment model. The user-interface and interaction models define how the 
applications can be presented to the user, taking into account the environment model. 
Second, coupling and sharing specifies the degree of coupling, and which parts of the models 
are shared (section 4.4). Focusing on synchronous collaboration, crucial aspects of groupware 
systems are access to shared data and coupling of applications, making it necessary to share data 
and application models among devices. In addition, information about the physical environ-
ment such as the presence of nearby users or other available devices has to be exchanged. 
Elements of the user interface can be distributed among complementary devices. Depending 
on how much state is shared, the degree of coupling can be controlled. If the entire user inter-
face and editing state is shared, a tightly-coupled collaboration mode is realized; if only the 
same data model is shared, users work loosely coupled. By sharing models, software can pro-
vide awareness about activities, environmental changes, and user interface state. 
The third dimension of the conceptual model is the level of abstraction (section 4.5). It is a 
widely used software engineering technique to separate different levels of abstraction in order 
to reduce the complexity at each level. The BEACH model defines four levels of abstraction. 
At the task level, application-dependent tailored support for tasks is given. The generic level 
provides generic functionality, which is application-independent, but domain-specific. The 
model level implements the basic separation of concerns in an application-, domain-, and plat-
form- independent manner. Finally, the core level provides a platform-dependent specialized 
infrastructure. 

Contributions and Discussion of the BEACH conceptual model 
The BEACH conceptual model was applied to structure related systems in section 4.6. Demon-
strating that the BEACH model can provide a structure for a range of existing systems has vali-
dated that it covers the essential aspects of ubiquitous computing applications. 
To provide guidance for developing software for roomware environments, a conceptual ap-
plication model helps define the high-level structure of software systems (chapter 4). A uni-
fied model is important, since future development will cross the borders of individual research 
areas. This relieves the application developer of the problem of trying to merge incompatible 
concepts that have been created for different purposes. The BEACH conceptual model is a ge-
neric model (section 4.7). Its wide applicability is gained by defining structural elements and 
common concerns at a rather high level of abstraction, such that it can be applied to many 
different applications and in many different contexts. It leaves much freedom for application 
developers and architects to choose approaches and architectural styles that are appropriate 
for the problem at hand. On the other hand, the guidance provided is necessarily at the same 
high level of abstraction. This implies that no help can be given for anything specific that 
“falls into the cells of the grid” opened by the model. However, this is not a problem caused by 
the BEACH model; rather, it is inherent in conceptual modeling. 
In addition to the overall contributions, the model itself contributes to the state of the art in 
each design dimension. 
Firstly, a clear separation of concerns gives the possibility to adapt different aspects of a soft-
ware system independently (sections 3.1, 4.3). This is important if, e.g., two devices that re-
quire different user interfaces are used to support collaboration. Therefore, the BEACH model 
introduces a clear separation of user interface and interaction orthogonal to the level of ab-
straction (section 4.3.3), which has not yet been proposed in related models. This separation is 
important to enable tightly-coupled collaboration using different interaction styles (req. U-1, 
UH-1, UH-2). The structure that is imposed on software systems by the basic concerns is ver-
tically organized. As the concerns have a defined dependency that can be sequentialized, it is 



 10.1. Achievements of the Dissertation 

  193 

possible to make a vertical cut through the architecture of systems built according to the 
BEACH model (section 8.4). This is a key factor for improving maintainability, extensibility, and 
reusability of software systems in general. 
The second dimension, coupling and sharing, provides new contributions in combination with 
separated concerns. Based on the separation of concerns, an extended definition of “cou-
pling” can be given: Coupling can now be refined as sharing the same interaction, user interface, 
application (editing), or data state among several users or devices (section 4.4). Coupling can 
thus be implemented such that the same interaction, user interface, or application models are 
access by all participants. 
Looking at the separate concerns from the sharing dimension, the notion of “awareness” can 
be extended in a similar way. Each concern leads to a different aspect of awareness if the cor-
responding model is shared (section 4.7). Thus, besides the workspace awareness that results 
from a shared application model, awareness can be given for the data, user interface, environ-
ment, or interaction, as soon as each model is shared. 
For the third dimension, the level of abstraction, the three levels commonly used for software 
frameworks are extended by the BEACH model (section 4.5). One additional level, the model 
level, is introduced to define an application-, domain-, and platform-independent interface for 
higher-level components. The levels of abstraction define a vertical structure for software sys-
tems, in contrast to the horizontal structure defined by the concerns. As each level builds on 
the lower levels only, these levels allow a horizontal cut through the architecture of software 
systems built according to the BEACH model (section 8.4). 

In summary, the BEACH conceptual model provides two key contributions to the state 
of the art (fig. 10-1). First, it proposes the strict separation of user interface and interac-
tion concerns orthogonal to the level of abstraction that is not found in current HCI 
models. This is a crucial extension of HCI models that is required in the context of 
ubiquitous computing. Second, it introduces a new view on the concept of sharing. By 
applying the CSCW concept of sharing in the context of ubiquitous computing, shar-
ing user interface, interaction, and environment state becomes relevant. Thereby, 
the concept of sharing as known from CSCW can be extended to function as a guid-
ing principle for UbiComp application design. This novel design approach helps en-
suring the extensibility and flexibility that is required in ubiquitous computing. 

UbiComp

HCI

CSCW

extended view
on sharing

software 
technology

separation of
user interface

and interaction

 

Figure 10-1. Key contributions of the BEACH conceptual model are: the separation of 
user interface and interaction concerns (orthogonal to the level of abstraction), and an 
extended view on the concept of sharing. 
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10.1.2 The BEACH Software Architecture: Contributions at the Architectural Level 
At the architectural level, the architecture for the software infrastructure for roomware 
applications has been developed as part of this thesis—the BEACH software architecture (chap-
ter 5). It applies the BEACH conceptual model in the context of roomware environments in or-
der to provide a basic structure, but refines it to meet the concrete needs of applications sup-
porting synchronous collaboration in roomware environments. The BEACH architecture, there-
fore, serves as example of how the BEACH model can be applied in practice. Moreover, the 
BEACH architecture proves that the BEACH model provides guidance for structuring software 
systems for roomware environments. It has been demonstrated that using this structure leads 
to an architecture that is flexibly extensible and that eases the reuse of software components. 
By defining key abstractions at several abstraction levels, the complexity of software devel-
opment is reduced. The underlying realization is hidden, thus facilitating thought at the ap-
propriate abstraction level. 
In order to design the architecture, the requirements for roomware applications (chapter 2) 
had to be examined to identify concrete implications for the construction of the architec-
ture (chapter 5). These are decisions for those parts of the conceptual model which leave 
freedom for the developer to choose an appropriate design. The most prominent decisions are: 

• At the model level, a visual interaction model was chosen as the primary interaction style. 
• At the generic level, the environment model defined a representation of roomware com-

ponents. In addition, explicit support for pen-based and multi-user interaction was given. 
• At the core level, a server-based, replicated distribution architecture was used. It provides 

a shared state in contrast to sharing events. Dependencies guarantee a consistent presenta-
tion rendered by the interaction model. Shared objects instead of simple models such as 
tuples allow for representing complex information. This is needed to be able to share all ba-
sic models: the data, application, user interface, environment, and interaction models. 

10.1.3 The BEACH Application Framework: Contributions at the Design Level 
At the design level, the BEACH architecture has been implemented as a layered object-oriented 
application framework (chapters 6 and 7). It serves as proof-of-concept to show how the 
conceptual model and architecture can be successfully applied. 
Developing a framework requires experience concerning the common parts of typical applica-
tions in the given domain. Additionally, knowledge of variable aspects also plays an impor-
tant role, since the framework must provide possibilities to add specialized components and 
behavior. They have been considered in the design of the BEACH framework. The design of the 
framework therefore contributes abstracted knowledge about common and variable aspects 
that is valuable for developers of ubiquitous computing applications as guidelines for the soft-
ware design. 
The BEACH framework provides reusable components for roomware applications to support 
synchronous and informal collaboration. The data model provides a spatial hypertext model. 
Spatial hypertext is appropriate for informal meeting situations. The application model aims to 
support modeless collaboration. Throwing of objects is one example of an interaction and 
editing style designed for the needs of roomware components. The user interface model defines 
generic user interface elements tailored to the properties of roomware components. It can 
dynamically adapt to changes in the environment. The environment model adds a model of 
roomware components that can be flexibly configured to reflect different settings. 
The interaction model provides new forms of interaction with roomware components. To pro-
vide an appropriate input for roomware components, the interaction model implements an 
incremental gesture recognition algorithm, which supports provision of immediate feedback 
to the user about recognized shapes while drawing a pen stroke. The event dispatcher is ex-
tended by a new event dispatching strategy for gesture events. Multi-user support is needed 
for roomware components supporting concurrent input at a single device. The display lay-
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outer is responsible for calculating the correct bounds and transformation for each display 
within the display area. 

10.1.4 BEACH Roomware Applications: Contributions at the Application Level 
The BEACH framework has been used to develop several new interaction techniques and appli-
cations as proof-of-concept. Up to now, more than 15 software developers have used the 
BEACH model and framework to create 12 tools and extensions. This found that the BEACH 
model helps identifying reusable parts of a software system to be developed. 
The Passage system and the ConnecTables use actions with physical objects as user input, 
which enable natural interaction with computers. The audio interaction model provides an am-
bient, multi-modal presentation of information. These interaction forms have been coopera-
tively developed by the members of the AMBIENTE team with major participation of the au-
thor of this dissertation. The software design has been created by the author alone. The im-
plementation was done by the author and other team members, as noted in chapter 8. 
In chapter 9, tools for roomware environments have been presented that support various col-
laborative tasks in roomware environments. MagNets, BeachMaps, and PalmBeach form a suite 
of creativity support tools. They benefit from the natural interaction with roomware compo-
nents, enhancing the overall process of idea generation in a natural way. This suite has been 
developed together with Thorsten Prante and Carsten Magerkurth, with help for implementa-
tion from Alexander R. Krug. 

Besides being a contribution on their own, the developed tools and new forms of in-
teraction provide evidence that the BEACH conceptual model effectively supports de-
velopers to meet the requirements of roomware environments. They show that the 
model helps reducing the implementation effort when accompanied with appropriate 
software development tools such as the BEACH framework. 

10.2. Evaluation: Comparison against Requirements 
This section returns to the requirements identified in chapter 2 to show how they have been 
fulfilled by the conceptual model, architecture, and framework proposed in the thesis. It is 
shown how each requirement is fulfilled at the conceptual level. In addition, examples are 
given that show a concrete application of several aspects of the BEACH architecture and its im-
plementation as the BEACH framework. An overview is given in table 10-1. 

10.2.1 HCI Requirements 

Requirement H-1: Different Forms of Interaction 
By separating the interaction model from the other concerns in the conceptual model, it is 
possible to use a different interaction style without modifying other components. This tech-
nique has its origin in the domain of human-computer interaction models; however, existing 
models never clearly separate user interface and interaction concerns. In chapter 8, examples 
are given where this technique was applied to support interaction with physical objects (the 
Passage mechanism and the ConnecTables, see sections 8.1 and 8.2), as well as audio feed-
back (section 8.3). 

Requirement H-2: Different User Interface Concepts 
Similarly, the separation of the user interface model in the conceptual model creates the 
freedom to change the user interface independently. As an example, a new user interface con-
cept (based on segments and overlays, see section 7.3) has been developed for the roomware 
components. 
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10.2.2 UbiComp Requirements 

Requirement U-1: Multiple and Heterogeneous Devices 
The basic concept that supports multiple devices is the sharing of the models. The handling 
of heterogeneity is realized by the introduction of the conceptual model level. It defines the 
abstractions that are common for all devices, providing opportunities for individual adapta-
tions and extensions. Due to the separation of the five basic concerns, adaptations and exten-
sions can be made to any one of the concerns, without interference with the others. Examples 
of support for heterogeneous devices are the different roomware components, presented in 
sections 2.1 and 7.6. PalmBeach shows how a different implementation can be used for the 
same conceptual model (see section 9.2). 

Requirement U-2: Multiple-Computer Devices 
To support multiple-computer devices such as the DynaWall, it is essential that all computers 
have access to a shared-object space. Data and application models must be shared to access 
the same data, and a shared environment model is needed in order to describe the current 
physical setup of the computers. In addition, the user interface model has to be shared, in or-
der to provide a homogeneous user interface crossing the borders of the separate computers. 
These are two examples that highlight the need for extending the concept of sharing to in-
clude environment and user interface models. 
In section 7.1.1, a concrete environment model for composite roomware components was pre-
sented. Distinguishing between the concepts of the physical display and the logical display 
area provides the basis on which a display area can be extended across multiple physical dis-
plays. 

Requirement U-3: Context and Environmental Awareness 
On the conceptual side, the environment model is introduced to model relevant context and 
environmental information. The interaction model for the environment model is used to 
update the model using sensors (or to modify the physical environment using actuators). 
Examples where environmental information is used are the Passage mechanism and the Con-
necTables (see sections 8.1 and 8.2). The presence of physical objects, e.g. a Passenger or an-
other ConnecTable, is reported in the environment model via sensors. Dependencies are used 
to ensure consistency and to support notification about changes within the environment 
model, e.g., when the Bridge has to be shown or two ConnecTables should be connected. 

Requirement U-4: Dynamic Configuration 
Dynamic reconfiguration is possible, since the environment model is shared and can be 
modified by any client at any time. It has proven very helpful to use constraints to explicitly 
model dependencies. In the BEACH framework, the interaction model is kept up-to-date by 
one-way constraints that are automatically generated when executing declarative descriptions 
of the representation (see sections 5.5.3 and 6.1.3). In this way, the developer is freed from 
having to think about handling explicit change notifications, which can become very complex 
in a distributed environment. Constraints can also be used to trigger modifications of shared 
models, as in the example of the ConnecTables (see req. U-3 above or req. UH-3 below). 

10.2.3 Combined UbiComp and HCI Requirements 

Requirement UH-1: Adapted Presentation 
To support adapted presentations for specific roomware components and devices, the interac-
tion model can draw on information provided by the environment model about the local de-
vice and the context in which it is running. The implementation of the visual interaction 
model in the BEACH framework introduces the view transformations in order to adapt the lo-
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cal visual representation sent from the different views to the graphics context (see section 
6.8.3). This allows the representation to be scaled, e.g., to fit in the available space on a 
CommChair, or to be rotated to provide the preferred orientation for different users at an In-
teracTable. Depending on the constraints imposed by the available device, it would also be 
possible to select a different representation. 

Requirement UH-2: Multiple-Device User Interface and Interaction 
User interfaces and interaction styles including multiple devices are enabled by sharing user 
interface and application models. This supports the creation of a synchronized representa-
tion of the same data, the same editing state, and related user interface elements on different 
computers and using different modalities. A very simple example is a user sitting in a Comm-
Chair in front of a DynaWall (see sections 2.2 and 7.6.2). This user can interact both directly 
with information displayed on the CommChair and remotely with information visible at the 
DynaWall. 

Requirement UH-3: Physical Interaction 
Physical interaction is enabled, since the interaction model can observe the environment 
model and react to changes in the environment. Here, again, the example of the Passage 
mechanism and the ConnecTables can be used for illustration. As a reaction to changes made 
by sensor observers to the environment model (see also req. U-3), software functionality is 
triggered. This is shown on the virtual part of the Bridge in the Passage mechanism (see sec-
tion 8.1), or in the connection of two adjacent ConnecTables to form a common, homogene-
ous workspace (see section 8.2). 

10.2.4 CSCW Requirements 

Requirement C-1: Multi-Device Collaboration 
The key technique for supporting collaboration between multiple devices is a shared-object 
space. In practice, there are many different options for how a shared-object space can be im-
plemented. The choice of an appropriate implementation depends on the requirements of the 
target platform. For the BEACH framework a replicated approach with incremental updates that 
synchronize the replicates was chosen. 

Requirement C-2: Flexible Coupling and Modeled Collaboration Mode 
Flexible strategies for coupling can be realized by separating data, application, and user in-
terface models and by sharing not only the data, but also application and user interface mod-
els. In this way, the current collaboration mode is represented as shared objects that can be 
accessed and modified by any client. Tightly-coupled collaboration is achieved when several 
people use the same application model. Loose collaboration can be realized by using different 
application models for the same data model. An example of tight collaboration is given in sec-
tion 7.6.2 with a CommChair and a DynaWall. Other examples are discussed in 
(Schuckmann et al., 1999). 

Requirement C-3: Multiple-User Devices 
To support multiple users concurrently working at one device, the core level must be imple-
mented in a way that supports extensions (section 6.2.1). It must be designed in such a man-
ner that new kinds of events and new dispatching strategies, such as multiple-user event 
handling, can then be added. The BEACH Generic Collaboration framework provides a module 
to handle concurrent input (section 7.5.3). 
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10.2.5 Combined UbiComp and CSCW Requirement 

Requirement UC-1: Collaboration with Heterogeneous Devices 
The option of using different devices for collaboration is gained by introducing model-based 
sharing and providing a local interaction model. On different devices, different user inter-
face and interaction models can be used while working with the same data and application 
model (Seitz, 1999). The environment model is needed to provide information about avail-
able interaction devices and about the underlying platform. For heterogeneous platforms, it is 
also possible to use several distinct implementations to realize a conceptual shared-object 
space. PalmBeach, for example, uses a different implementation for the conceptually same 
data model (see section 9.2). 

10.2.6 Software Engineering Requirements 

Requirement S-1: Generic Functionality—Reusability 
The separation of the five basic concerns is an important factor in the reusability of software 
components. In addition, separation of different levels of abstractions also opens the possi-
bility to reuse components at the desired level of granularity. The purpose of the conceptual 
generic level is the definition of reusable components. Therefore, this level is implemented as 
the BEACH Generic Collaboration framework. The generic components provided by this frame-
work have been used to implement the new forms of interaction and tools described in chap-
ters 8 and 9. 

Requirement S-2: Tailorable Functionality—Extensibility 
To ensure extensibility, a clear separation of concerns and of levels of abstraction is also 
necessary. In this way, different concerns can be extended independently of the other con-
cerns. The model level provides the basis for extensions, in that it defines the abstractions 
that are common for all implementations. 
In the context of ubiquitous computing, using shared models as the design approach enables 
extensibility in another manner. Currently, services deployed in ubiquitous computing envi-
ronments usually provide access to data and application models only. If within such an envi-
ronment user interface, interaction, and environment models are shared as well, new devices 
can be added dynamically at any time that for instance support further interaction modalities 
for existing user interfaces. This is essential to be able to evolve the overall system over time. 
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Requirement H-1 H-2 U-1 U-2 U-3 U-4 UH-1 UH-2 UH-3 C-1 C-2 C-3 UC-1 S-1 S-2 
Separation of 
concerns                

• Interaction                

• Environment                

• User interface                

• Application                

• Data                
Coupling & 
sharing 

               

• Interaction                

• Environment                

• User interface                

• Application                

• Data                
Level of 
abstraction 

               

• Task                

• Generic                

• Model                

• Core                
Dependencies                

 
Domain Req. Requirement Name  Domain Req. Requirement Name 

H-1 Different Forms of Interaction  C-1 Multi-Device Collaboration HCI 
H-2 Different User Interface Concepts  
U-1 Multiple and Heterogeneous Devices  

C-2 Flexible Coupling and Modeled Collaboration 
Mode 

U-2 Multiple-Computer Devices  

CSCW 

C-3 Multiple-User Devices 
U-3 Context and Environmental Awareness  

UbiComp 

U-4 Dynamic Configuration  
UbiComp 
& CSCW 

UC-1 Collaboration with Heterogeneous Devices 

UH-1 Adapted Presentation  S-1 Generic Functionality—Reusability 
 

SE 
S-2 Tailorable Functionality—Extensibility 

UbiComp
& HCI UH-2 Multiple-Device User Interface and Interaction 

  = requirement is fully supported 

 UH-3 Physical Interaction  ( ) = requirement is partially supported 
     

Table 10-1. Comparison of contributions against requirements. It shows that all re-
quirements are fulfilled and that all aspects of the BEACH model are necessary. 

10.3. Open Questions & Future Research Topics 
The work that is presented in this thesis can be continued in a number of directions. For some 
issues, work that has been developed by others has to be integrated; for others, research is still 
necessary. Happily, researchers are currently addressing many related problems. 

10.3.1 Beyond Roomware 
While the roomware components require different forms of interaction due to their different 
form-factors, their hardware and software platform is quite homogeneous. In general, ubiqui-
tous computing environments contain a variety of hardware platforms. The example of Palm-
Beach (section 9.2) showed that the underlying hardware implies changes in the software ar-
chitecture. At the conceptual level, the BEACH model can cope with this heterogeneity. The 
BEACH architecture and framework, however, are designed for roomware only. Here, work is 
needed that addresses the issues of heterogeneous platforms and interoperability. The data 
that is available and that is worked with in ubiquitous computing environments is accessed 
and modified by many different applications that usually have been developed independently. 
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To enable this integration, the data must be structured in a way that fits all applications inter-
ested in it. While simple structures might be more robust against evolution and different 
requirements (Tandler, 2003), some data has an inherently complex internal structure that 
cannot be mapped easily onto simple structures such as tuples (Johanson and Fox, 2004). One 
approach that has recently been proposed is using ontologies as basis for UbiComp application 
development (Niemela and Vaskivuo, 2004). One aspect that is addressed by the MPACC 
architectural style and Gaia (section 3.3, Hess et al., 2001b) is the transparent adaptation and 
conversion of data formats. It still remains a research challenge to develop and integrate 
other architectural styles that address heterogeneous platforms and interoperability. 
The dynamic aspects of the setting that the BEACH framework is designed for are changes in 
collaboration modes and styles. There was no need to cope with mobility across different en-
vironments and migration. For instance, while running, a BEACH client cannot switch the 
server to which it is connected. Dynamic changes of the environment are investigated by the 
Aura project (section 3.3). Spontaneous Container Services that combine component frame-
works, service discovery, and aspect-oriented programming (Popovici et al., 2003) are a prom-
ising approach to meet the required flexibility on the implementation side. 
When the used device is changed, the used application must migrate, preserving its current 
state. As the BEACH framework keeps all application state persistent, it is easy to stop an appli-
cation at one device, and restart it at another, where the current state can be retrieved from 
the server. However, no support is given for code migration, as for example in (Grimm et al., 
2002). One approach to integrate code migration in the BEACH framework that is consistent 
with the sharing philosophy proposed by BEACH is to encapsulate code as shared large binary 
objects that are installed as executable code when loaded. 
When devices change their environment, they have to cope with heterogeneous infrastructure 
and services. The application model needs to support service discovery and mapping of ab-
stract service descriptions to available services. This is investigated for instance by iROS, 
Gaia, and Aura (section 3.3), MIT’s Metaglue/Hyperglue (Coen et al., 1999; Shrobe et al., 
2002), UC Berkeley’s Ninja (Czerwinski et al., 1999), and Sun’s Jini (Sun Microsystems, 1999; 
Sun Microsystems, 2001). 
The environment model that is provided by the BEACH framework is limited to the needs of a 
roomware environment. In order to be useful beyond roomware, more generic models need to 
be integrated. Such models are developed in a number of ongoing research projects. As dis-
cussed, these related models can be grouped into three categories: physical environment, con-
text, and logical environment models. Models of the physical environment are developed, 
e.g., in EasyLiving or CoolTown (section 3.3) or the Steerable Interfaces project (Pingali et al., 
2003).  Steerable interfaces, for instance, demand much higher resolution in localization and 
environment modeling than supported in current pervasive computing architectures. A scal-
able location model that is designed for mobile users to access location-based services is pre-
sented in (Roth, 2003). Support for context awareness is described in (Dey, 2000; Moran and 
Dourish, 2001; Schmidt, 2000).  The user’s task as an example of logical context is investi-
gated in the Aura project (section 3.3). Especially, capturing user activities and goals is a 
challenging research issue. 
Another consequence of the dynamic and heterogeneous nature of UbiComp environments is 
that it cannot be assumed that all services are always running and never fail. Therefore, re-
searchers have started to explicitly address the problem of failure tolerance (Cheng et al., 
2002; Johanson and Fox, 2004). Our experiences with the BEACH framework show that a 
shared, persistent state helps in recovering from crashes. If all state is stored by the server 
and all application state is shared, a client retrieves its complete saved state as soon as it is 
restarted. However, the framework is currently not resistant against crashes of the server. We 
plan to extend it to be robust against lost connections between client and server (for instance 
because the server machine has gone down). In this case, the clients wait for the server to be 
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available again, automatically reconnect, and send all transactions that have been locally 
cached. However, the server is very stable and we experienced very few crashes. In general, 
coping with failures has to be addressed in several ways in ubiquitous computing applications. 
Besides the technical aspects just mentioned that try to handle software failures transparently, 
in UbiComp the possibility of failures has to be tackled explicitly by all parts of a software sys-
tem as also failures become ubiquitous. This includes the user interface that needs to provide 
awareness of broken components in a non-obtrusive manner. The software must handle 
failures as first-class entities. 

10.3.2 Multiple-Device Interaction & Cross-Device User Interfaces 
In a ubiquitous computing environment the user interface can be enhanced when it can draw 
on the properties of the present devices. This includes both mobile PDAs that are carried by 
users and devices integrated in the environment. As the BEACH framework concentrates on 
roomware, it provides opportunities for extensions in a number of ways. 
For the user interface model, a major issue is raised by device heterogeneity. For cross-device 
and device-independent user interfaces, it is necessary to find good abstractions that can be 
mapped onto different modalities and interaction styles in a natural way (Myers et al., 2000; 
Olsen et al., 2000b; Olsen et al., 2001). This also involves the area of dynamic user interface 
mapping and generation, which is, for example, investigated by systems such as ICrafter 
(Ponnekanti et al., 2001) and others (Banavar et al., 2000; Sussman et al., 2001; Nichols et al., 
2002). Here, new concepts and techniques are missing that need to be developed. For in-
stance, the mapping of an abstract user interface description onto a set of available devices in 
a way that best supports users is still a major challenge (Pierce and Mahaney, 2004). 
For interaction models, the focus on visual interaction has to be widened. It is especially impor-
tant to investigate support for multi-modal interaction. The novel way of integrating different 
interaction modalities by sharing the user interface state needs to be combined with tradi-
tional approaches (Oviatt et al., 1997; Nigay and Coutaz, 1995) and reflected in suitable soft-
ware development tools. It needs to be explored how the extensibility for new interaction 
forms can be improved if the information common to different modalities is provided by a 
shared user interface model that acts as the mediator between different modalities. 

10.3.3 Sharing in Ubiquitous Computing 
At the sharing dimension of the BEACH model, current groupware frameworks and architectures 
have been designed with a rather homogeneous set of devices and scenarios in mind. By plac-
ing these in the context of ubiquitous computing, new requirements become relevant, as dis-
cussed in section 2.5. While BEACH started exploring collaboration issues in the UbiComp con-
text, its focus is on roomware environments. For instance, work has to be continued to be able 
to support devices without a permanent network connection. While replication is one im-
portant aspect to allow off-line work, the technology used for BEACH (as provided by the COAST 
framework) does not work well if replicated documents are modified independently. In this 
case, it is very likely that all changes made while being off-line will be rejected when synchro-
nizing again. Instead support for versioning and merging is needed that can take semantic 
information into account. One approach that was followed by Xerox PARC's Bayou project is 
to explore weakly consistent replicated databases for asynchronous collaboration that also 
supports devices with limited resources (Demers et al., 1994; Edwards et al., 1997). 

10.3.4 Software Technology 
While the previous issues focused on design and implementation in ubiquitous computing, the 
BEACH model can be applied for conceptual work in software technology as well. When apply-
ing any model for designing software systems, the knowledge about architectural styles and 
design patterns helps in the reuse of successful approaches. For the BEACH model, only a few 
architectural styles have been employed. To ease application development, an extensive set of 
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architectural styles and design patterns would be desirable. For that reason, there is a need to 
investigate what architectural styles and design patterns are adequate for the different basic 
models, on different levels of abstraction, and for different degrees of sharing. In fact, if used in 
this way, the BEACH model can be utilized as a conceptual framework for structuring re-
search in UbiComp software modeling. 
When the BEACH architecture was designed, the design was influenced by object technology. 
Currently, new, advanced modeling techniques are being developed. One example is multi-
dimensional separation of concerns (Tarr et al., 1999; Herrmann and Mezini, 2000) or as-
pect-oriented programming (Kiczales et al., 1997a). Once these techniques reach maturity, it 
will be necessary to check the extent to which they should influence the way in which the 
BEACH model is mapped to the design of software architectures. Especially aspect-oriented pro-
gramming seems to open elegant possibilities to separate the coupling and sharing dimension 
into distinct software units. An example of how software architectures can benefit from these 
technologies is spontaneous containers that can dynamically adapt software components for 
mobile devices (Popovici et al., 2003). 

10.3.5 Real-life Applications 
A topic that has been avoided in this thesis, but which is highly relevant for real-life applica-
tions, is security and privacy. Ubiquitous access to personal information always involves the 
risk of unauthorized and unintended usage (Langheinrich, 2001; Da Campo, 2001; 
Shoemaker and Inkpen, 2001). For instance, if someone can walk up to any device to get ac-
cess to personal data, it must be ensured that all data is completely removed as soon as the 
user leaves the device (Russell and Gossweiler, 2001). These issues must be handled at the 
core level in a secure manner. 
The last point that is mentioned here is a rather general one. For ubiquitous computing to be 
successful in future, a standard ubiquitous computing infrastructure needs to be developed. 
This includes establishing standard protocols and data formats (Hong and Landay, 2001) and 
providing a reference implementation and standard development methodologies. It also in-
cludes questions about which parts of the functionality should go in the operating system of 
the devices, which in a middleware operating system for the environment, and which into 
toolkits and frameworks (Myers et al., 2000, p. 23f). The ongoing research has to establish the 
foundation for these standardization efforts in order to be effective. 
The topic addressed by this thesis belongs to an active area of research, and the long path to 
standardization still lies far ahead. However, as ubiquitous computing is becoming more wide-
spread every day, the need to cope with heterogeneous devices that require multiple interac-
tion forms, and to collaborate in ubiquitous computing environments is constantly rising. The 
conceptual model, software architecture, and application framework that have been presented in 
this thesis free software developers from the burden of handling all details of multiple interac-
tion styles, and relieves them of many critical issues when dealing with synchronous collabora-
tion. By these means, the developer can concentrate on the task of designing software at an 
appropriately high level of abstraction, and thus can create applications of higher quality and 
more flexible extensibility. Altogether, developers are enabled to investigate and create novel 
approaches to today’s and tomorrow’s UbiComp, CSCW, and HCI problems. 
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Appendix A Notations Used 

The notation used in this thesis for class, object, and interaction diagrams is based on UML 
(Object Management Group, Inc., 2003). This appendix gives a brief summary of important 
aspects of the used notation, with the focus on the features added to illustrate important as-
pects of the BEACH framework. For the notation used to illustrate the BEACH model, refer to 
chapter 6 (see figure 4-2 on page 61). 
Figure A-2 shows how associations between classes or between objects can be qualified. The 
“uses” association can also be used for modules. Dotted associations denote simplifications 
when classes or objects that are not essential in this context are not shown. 

association
uses
extends
instance of

association
uses
extends
instance of  

Figure A-2. Associations between classes 

If not specified otherwise, an association denotes an association between two objects (or two 
instances of the classes shown). If an association exists between multiple instances of a class, 
this is specified as shown in figure A-3. For instance, a station can have zero, one, or multiple 
associated devices (fig. A-3a); a Passenger object can have a single associated workspace (fig. 
A-3b), i.e. the cardinality of the associated workspace application model is zero or one. 

Station Device* Passenger WorkspaceApp
0..1

(b)(a)  

Figure A-3. Cardinality of associations. (a) The star marks an arbitrary number of asso-
ciated instances, which can be zero. (b) A range can be used to specify the cardinality. 
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In section 3.1 the extension mechanism is introduced that allows adding features by another 
module to a class (see also example 6-1 in section 6.1.2 on page 104). To distinguish it from 
normal inheritance, the associations denoting the extension mechanism are marked with 
“<<extends>>” (fig. A-4). 

Station

Station

<<extends>>

 

Figure A-4. To distinguish the extensions made by inheritance from extensions made to 
the same class in another module, the later case is marked with “<<extends>>”. 

The BEACH model separates five basic concerns (see section 4.3) that are represented by five 
models in the BEACH architecture and framework. When a concept represents aspects that be-
long to different concerns, the extension mechanism can be used to clearly separate the con-
cerns in the design while keeping a single class to represent the concept. For example, the dis-
play area is a concept introduced in the environment model to represent the available display 
space (see section 5.3). It is extended in the user interface model, as the display area also de-
fines the space that is available in the user interface (see fig. A-5). 

user-interface
model

environment
model

DisplayArea DisplayArea
<<extends>>

(b)(a)

environment
model

user-interface
model

DisplayArea

VisualInteraction
Segment

VisualInteraction
Segment

 

Figure A-5. (a) The extension mechanism is also used to extend a concept into a model 
representing another concern. (b) To simplify class and object diagrams a shorthand 
notation is used. 

In the BEACH architecture and framework dependencies can be used (see section 5.5.3). If the 
dependency mechanism is used to compute associations between objects, it is possible that 
associations are automatically updated whenever any of the associations used in this computa-
tion is changed. These dependencies can be visualized in class and object diagrams (fig. A-6). 
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Display
View

DisplayArea
View

Display

DisplayArea

<<depends on>>

model

model
 

Figure A-6. When the dependency mechanism is used to compute associations, the 
dependencies to other associations can be visualized. 
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Appendix B Abbreviations 

ALV Abstraction-link-view (Hill et al., 1994), an architectural style for multi-user applica-
tions, see section 3.4, page 50. 

API Application programming interface 

BEACH Basic environment for active collaboration with hypermedia, the project working on 
ubiquitous computing software supporting synchronous collaboration with multiple 
heterogeneous devices (the topic of this thesis). See also: BEACH model, BEACH 
architecture, and BEACH framework. 

C-2 Chiron-2, see section 3.4, page 52. 

CC CommChair, a roomware component, see section 2.1. 

CSCW Computer-supported cooperative work, see section 2.5. 

CT ConnecTable, a roomware component, see section 8.2. 

DW DynaWall, a roomware component, see section 2.1. 

HCI Human-computer interaction, see section 2.3. 

i-LAND Interactive landscape for creativity and innovation, the ubiquitous computing environ-
ment at Fraunhofer IPSI, which was used as a test bed for BEACH, see section 1.2. 

iROS Interactive room operating system (Johanson et al., 2002a), see section 3.3, page 46. 

IT Information technology or InteracTable (a roomware component, see section 2.1), 
depending on the context. 

MCRpd Model–controller–physical/digital representation (Ullmer and Ishii, 2000) is an 
extension of MVC for tangible user interfaces, see section 3.2, page 40. 

MIDI Musical instrument digital interface 

MMUI Multi-machine user interface, see cross-device user interface. 

MPACC Model–presentation–adapter–controller–coordinator (Román and Campbell, 2001) is an 
extension of MVC for interactive rooms, see section 3.3, page 46. 

MVC Model–view–controller (Krasner and Pope, 1988a), an architectural style that 
separates input (controller) and output (view) from the functional core (model), see 
section 3.2, page 38. 

OS Operating system 
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PAC Presentation–abstraction–control (Nigay and Coutaz, 1991), an architectural style, see 
section 3.2, page 39. 

PDA Personal digital assistant, a small and mobile information appliance, i.e. a very small 
special-purpose computer, such as a Palm. 

req. *-* Denotes requirements defined in this thesis (chapter 2): 
H-1, H-2 – HCI requirements (section 2.3) 
U-1, U-2, U-3, U-4 – UbiComp requirements (section 2.4) 
UH-1, UH-2, UH-3 – UbiComp and HCI requirements (section 2.4) 
C-1, C-2, C-3 – CSCW requirements (section 2.5) 
UC-1 – UbiComp and HCI requirement (section 2.5) 
S-1, S-2 –Software engineering requirements (section 2.6) 

RW Roomware, see section 2.1 

RWC Roomware component, see section 2.1 

SE Software engineering 

SW Software 

TUI Tangible user interface, see sections 2.4.2 and 3.2.1. 

UbiComp Ubiquitous computing, a term coined by Weiser (1991). 

UI User interface 

WIMP Windows, icons, menus, pointing (Beaudouin-Lafon, 2000), a metaphor for the 
traditional user interface of the desktop PC, see section 2.3. 
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Appendix C Glossary 

Terms that are related to BEACH or COAST are marked using brackets. 

abstraction 
level 

See level of abstraction 

application 
framework 

An application framework is a framework for complete applications in a spe-
cific domain (Buschmann et al., 1996). Sometimes called enterprise applica-
tion framework (Fayad et al., 1999). 

application 
model [BEACH] 

 

The BEACH model separates five basic concerns, see section 4.3. The applica-
tion model provides functionality to work with, create, and modify the informa-
tion that is defined by the data model. To ensure the reusability of the applica-
tion model in ubiquitous computing environments, it is independent of the 
current environment, such as available interaction devices. 

architectural 
style 

Software architectures are often described by a set of components, connectors, 
and additional constraints or properties (Gregory D. Abowd et al., 1993; 
Garlan, 2001). An architectural style suggests a vocabulary of component and 
connector types, together with a topology of how they are combined (Bass et 
al., 1999; Perry and Wolf, 1992; Phillips, 1999; Gregory D. Abowd et al., 
1993). See also section 3.1. 

architecture See software architecture 

BEACH 
application 
framework 

See BEACH framework 
 

BEACH 
architecture 

The BEACH architecture is the software architecture for roomware environ-
ments. It defines the software components that are necessary to use roomware 
components. It is based on the BEACH model and tailors the conceptual 
model to fit to the concrete needs of applications supporting synchronous col-
laboration taking the example of roomware environments. It is one of the 
main contributions of this thesis, see chapter 5. 

BEACH 
conceptual 
model 

See BEACH model 
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BEACH 
framework 

The BEACH framework is an implementation of the BEACH architecture as 
an object-oriented framework. It constitutes the software infrastructure for 
roomware environments, providing services and reusable software compo-
nents. Using this framework, developers can implement applications that ac-
knowledge the specific properties of roomware environments much more effi-
ciently. The design of the framework reflects abstracted knowledge about 
common and variable aspects of ubiquitous computing applications. It is one of 
the main contributions of this thesis. The design and properties of the BEACH 
framework are explained in chapters 6 and 7. 

BEACH model The BEACH model is a generic application model providing a structure for all 
kinds of applications for roomware and ubiquitous computing environments. It 
is one of the main contributions of this thesis. See chapter 4. 

BEACH 
software 
architecture 

See BEACH architecture 

black-box 
framework 

Depending on the techniques used to create extensions and to add applica-
tion-specific behavior, frameworks can be classified into white-box and black-
box frameworks (Fayad, 1999; Gamma et al., 1995; Johnson and Foote, 1988). 
Black-box frameworks define interfaces for components that can be integrated. 
Instead of using inheritance as main extension technique, they rely on compo-
sition and delegation, which is often easier to use for application developers. 
See also: white-box framework. 

class library A class library is a collection of utility classes (Johnson and Foote, 1988), for 
example several “container” classes, such as Set, Bag, Dictionary, or 
OrderedCollection. It refines the concept of a library by encapsulating algorithms 
in (utility) classes. 

cluster [COAST] In COAST, shared objects are grouped into clusters that represent the atomic 
entities for replication. See section 6.1.3. 

component See software component 

composite 
pattern 

Using the composite pattern, objects that form a hierarchy can be access in a 
uniform way (Gamma et al., 1995). See section 6.3. 

computed slot See slot, virtual 

conceptual 
architecture 

In this thesis, conceptual architecture is used to refer to the conceptual model of 
software architecture, see conceptual model. 

conceptual 
model 

In this thesis, conceptual model is used as defining the very high-level structure 
of an application (Phillips, 1999, p. 3; Coutaz, 1997, p. 5). See also chapter 4. 

core level 

[BEACH] 
task
generic
model
core  

The BEACH model defines four levels of abstraction. The core level defines the 
platform-dependent low-level infrastructure, see section 4.5. It encapsulates 
the platform-dependent issues in order to ensure portability and reusability. 

coupling 
[BEACH] 

In this thesis, Dewan’s definition of coupling (section 2.5, page 29) is refined 
based on the separation of concerns dimension of the BEACH model. Coupling 
can now be defined as sharing the same interaction, user interface, environment, 
application (editing), or data state among several users or devices. 

coupling and 
sharing 

Coupling and sharing is the second dimension of the BEACH model (section 
4.4). Whenever multiple devices are involved in a software system, the ques-
tion arises of which parts of the system should be local to a device or shared 
between several. This has to be clarified for both the application code and its 
state. While distributing code among devices is a technical question unique to 
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every application, sharing state has conceptual implications. Depending on the 
application context of a software system, none, some, or all models defined for 
the five basic concerns (see separation of concerns) have to be shared. 

cross-device 
user interface 

A multi-machine or cross-device user interface dynamically distributes elements 
of the user interface across several interaction devices, such as public displays 
or handheld devices (see section 2.4.2). 

data model  
[BEACH] 

 

The BEACH model separates five basic concerns, see section 4.3. The data 
model specifies the kind of data the users can create and interact with. It is in-
dependent of the currently used devices.  

display area 
[BEACH] 

A roomware component can have several attached displays that form a homo-
geneous display area, see section 7.1.1. An example is the DynaWall, which is 
described in section 2.1. 

display 
transaction 
[COAST] 

See transaction, display 

distribution 
architecture 

Distribution architectures describe the run time distribution of system state and 
components across computing platforms connected by a network. (Phillips, 
1999). It addresses issues such as client/server or replication. 

domain model The term domain model is sometimes used for the concept of a data model 
(ParcPlace-Digitalk, Inc., 1995; Schuckmann et al., 1999). The word "domain" 
stresses that the model represents artifacts of a given application domain, 
which may not be necessarily documents, see section 4.3. 

environment 
model [BEACH] 

 

The BEACH model separates five basic concerns, see section 4.3. The envi-
ronment model describes relevant context information, such as available de-
vices, physical environment, and logical context. 

frame [COAST] Frame is the name for objects in the COAST framework that contain slots to store 
values that can be shared among distributed machines, see section 6.1.3. 

framework See software framework 

frozen spot To be useful for many applications within the same domain, a framework has 
to support the parts common to the applications within a domain. These parts 
are called frozen spots (Pree, 1999). See also: hot spot. 

generic level 

[BEACH] 
task

core
model
generic

 

The BEACH model defines four levels of abstraction. The generic level defines 
application-independent reusable functionality for a given domain, see section 
4.5. 

groupware Groupware is a “computer-based system that supports groups of people engaged 
in a common task (or goal) and that provides an interface to a shared envi-
ronment” (Ellis et al., 1991). The term groupware was initially coined by Peter 
and Trudy Johnson-Lenz in 1981 (Johnson-Lenz and Johnson-Lenz, 1994). 
See also section 2.5. 

hook See hot spot 

horizontal 
structure 

The horizontal structure of a software system is defined by the separation of con-
cerns, see sections 3.1 and 4.3. 

hot spot The parts of a framework that are designed to be extended are called hot spots 
(Schmid, 1997; Schmid, 1999; Pree, 1999) or hooks (Froehlich et al., 1997; 
Froehlich et al., 1999). See also: frozen spot. 

interaction 
model [BEACH] 

The BEACH model separates five basic concerns, see section 4.3. The interac-
tion model defines how users and the software can communicate. This includes 
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 the specification of how information is presented to the user and how the user 
can invoke functionality. Typically, the interaction model describes how the 
user interface is rendered onto the screen and what happens if users click but-
tons of a mouse or press keys. By strictly separating interaction issues from the 
rest of software systems, other forms of interaction can be employed without 
needing to change existing code. 
The interaction model as it is defined here extends existing definitions. While 
Beaudouin-Lafon (2000) places the interaction model at the meta-level only, 
in this thesis, the interaction model also refers to the instantiation of Beau-
douin-Lafon’s definition, i.e. the set of concrete interactions that are possible 
for a given software system. Dewan and Choudhary (1995) defines an interac-
tion model as describing the nature of the state maintained by the user inter-
face. In contrast, we see the interaction model as describing the means for how 
to interact with the user interface. 

layer, software 
layer 

A layer is a software technique to structure software architecture and can be 
used to reflect different levels of abstraction in architecture and implementa-
tion. The term level is used in contrast to layer to denote a conceptual level of 
abstraction, see section 4.5. 

level (of 
abstraction) 

Separating software into levels of abstraction is a common software engineering 
technique, see section 3.1. It reduces the complexity of each level (Nigay and 
Coutaz, 1991) and ensures interoperability (Hong and Landay, 2001). Intro-
ducing levels of abstraction into a software system is seen as its vertical struc-
ture. 
The four levels of abstraction that constitute the third dimension of the 
BEACH model are discussed in section 4.5. The BEACH model proposes to 
separate four conceptual abstraction levels: the core, model, generic, and task 
level. 

library A library is a generalized set of related algorithms (Hong and Landay, 2001). 
Examples are code for manipulating strings or for performing mathematical 
calculations. The focus is on code reuse. See also: class library. 

local model A local model (in contrast to a shared model) is a model that is local to a single 
computer, thus it defines local classes. 

local object or 
class 

An object is called local if it is local to a single computer, i.e. it can be accessed 
only by processes running on this computer. Objects that can be accessed by 
multiple computers are called shared objects, see section 3.4. 

local station or 
roomware 
component 

The computer a BEACH client is running on is referred to as its local station (see 
section 6.6). The local roomware component is the roomware component to 
which the local station belongs (see section 7.1). 

MagNets 
[BEACH] 

“Magnetic cards to form idea-Networks” (Prante et al., 2002), a software appli-
cation built on top of the BEACH framework supporting collaborative genera-
tion and structuring of ideas in creativity sessions. It provides enhanced inter-
action mechanisms by analogy to the magnetism metaphor, see section 9.1. 

model A model is an abstraction of a system (ter Hofte, 1998, p. 61). A model focuses 
on aspects of a system that are considered relevant in a specific context. 
Jacobsen (2000), p. 10 regards the activity of model building as a part of the 
more general activity of problem solving. See also chapter 4. 

model level 

[BEACH] 
task
generic

core
model  

The BEACH model defines four levels of abstraction. The model level defines 
application- and domain-independent abstractions to ensure platform-
independent separation of concerns, see section 4.5. 
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module A module is a conceptual entity of a software system. Often a synonym for 
component or subsystem (Buschmann et al., 1996). 
The BEACH framework uses the term module to refer to software components 
that can be plugged into the framework, see section 6.1.2. 

multi-machine 
user interface 

See cross-device user interface. 

optimistic 
transaction 
[COAST] 

See transaction, optimistic 

PalmBeach 
[BEACH] 

PalmBeach (Prante et al., 2002), a creativity application for the Palm, is fo-
cused on collecting ideas in between scheduled sessions, using small, mobile 
devices. See section 9.2. 

Passage [BEACH] Passage (Konomi et al., 1999) is a mechanism for establishing relations between 
physical objects and virtual information structures. See section 8.1. 

pervasive 
computing 

The concept of pervasive computing implies that the computer has the capabil-
ity to obtain information from the environment in which it is embedded and 
utilize it to dynamically build models of computing (Lyytinen and Yoo, 2002). 

pessimistic 
transaction 
[COAST] 

See transaction, pessimistic 

policy See strategy pattern. 

reference model A reference model specifies the complete structure of some class of systems at a 
relatively large granularity (Phillips, 1999; ter Hofte, 1998). Bass et al. (1999) 
further distinguish between a reference model, seen as the division of function-
ality, and a reference architecture, which maps a reference model on software 
components. A reference model shows the conceptual structure with its fun-
damental functional elements. It should be possible to map all systems of this 
class to the structure defined by the reference model. See also section 3.1. 

roomware  Roomware (Streitz et al., 1997; Streitz et al., 2001) refers to the integration of 
room elements with information technology. 
See also: roomware component. 

roomware 
component 

A roomware component is a room element with integrated information technol-
ogy, such as an interactive table, wall, or chair. 

roomware 
environment 

In this thesis, a roomware environment refers to a room or building that is 
equipped with roomware components. These rooms and building provide the 
necessary infrastructure for roomware applications. 

separation of 
concerns 

Separation of concerns is a principle to structure a software system. Abstractions 
are defined at the same level of abstraction, in order to simplify a problem 
(Jacobsen, 2000). This structure is also called horizontal decomposition.  
Separation of concerns is the first dimension of the BEACH model, see section 
4.3. The BEACH model proposes to separate five basic concerns: data, applica-
tion, user interface, environment, and interaction models. 

shared model A shared model (in contrast to a local model) is a model that is shared by multi-
ple computers, thus it defines shared classes. 

shared object 
or class 

An object is called shared if it can be accessed and modified by several distrib-
uted computers. A class is called shared if all its instances are shared objects, 
see section 3.4. Objects that belong to a single computer only are called local 
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objects. 

shared-object 
space 

The set of all shared objects forms a shared-object space, see section 3.4. 

slot 
[COAST] 

A slot stores values that can be shared among distributed machines. In addi-
tion to storing values, slots are capable of carrying supplementary semantics 
such as bi-directional references and cardinality constraints. See section 6.1.3, 
page 106. 

slot, computed See slot, virtual 

slot, virtual 
[COAST] 

A computed or virtual slot is a slot that does not store a value directly; it rather 
computes and caches it based on the values of other slots. In COAST, re-
computation of virtual slots is triggered automatically. See section 6.1.3, page 
108. 

software 
architecture 

The software architecture defines the high-level structures for software systems 
(see section 3.1). In the literature, several definitions are given: 
The software architecture of a program […] is the structure or structures of 
the system that comprise software components, the externally visible proper-
ties of those components, and the relationships among them (Bass et al., 
1999). 
While there are numerous definitions of software architecture, at the core of 
all of them is the notion that the architecture of a system de-scribes its gross 
structure. (Garlan, 2000). 
The architecture of a software system defines that system in terms of compo-
nents and of interactions among those components. In addition to specifying 
the structure and topology of the system, the architecture shows the intended 
correspondence between the system requirements and elements of the con-
structed system (Shaw et al., 1995). 

software 
framework 

Software frameworks allow the reuse of implemented software architectures, 
offering specific support for extensibility (see section 3.1). In contrast to class 
libraries they focus on design reuse, not code reuse only. Often, a framework 
defines the main flow of control (Fayad, 1999). In literature, several defini-
tions are given: 
A framework is a software architecture, often object-oriented, that guides the 
programmer so that implementing user interface software is easier (Myers, 
2003). 
An object-oriented abstract design is called a framework. It consists of an ab-
stract class for each major component (Johnson and Foote, 1988). 
A framework provides the basic structure for a certain class of applications. In 
contrast to libraries the focus is more on design reuse (Hong and Landay, 
2001). 
A framework is a semi-finished software (sub-)system intended to be instanti-
ated. It defines the architecture for a family of systems and provides basic 
building blocks to create them. It also defines the parts of itself that can be 
adapted to achieve a specific functionality (Buschmann et al., 1996). 
A framework is a reusable, semi-complete application that can be specialized to 
produce custom applications (Fayad et al., 1999). 
See also: application framework 

software 
infrastructure 

A software infrastructure is a set of technologies that acts as a foundation for 
other systems (Hong and Landay, 2001). The term software infrastructure is 
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used in this thesis to describe everything that is needed be able to build and 
execute applications within their destination environment. This includes the 
software architecture and an implementation of this architecture that can be 
used as a platform to easily develop applications, e.g. an application framework 
(see fig. 1-3). 

software layer See layer 

station [BEACH] The term “station” refers to computers running a BEACH client. Stations can 
have attached devices, such as displays, keyboards, pens, or sensors, see sec-
tion 6.6. 

strategy pattern The strategy pattern enables to exchange algorithms by encapsulating the algo-
rithm in a strategy object (Gamma et al., 1995). Also known as policy. 

Tangible user 
interface 

Tangible user interfaces (TUIs) include physical objects in the user interface, 
see sections 2.4.2 and 3.2.1. 

task level 

[BEACH] core
model
generic
task

 

The BEACH model defines four levels of abstraction. The task level is con-
cerned with application-specific support for specific tasks, see section 4.5. It 
covers abstractions that are unique to small application areas and are not 
likely to be further refined. 

toolkit In literature several different definitions of toolkits are given: 
Myers (2003) defines a user interface toolkit as a library of widgets that can be 
called by application programs. 
Hong and Landay (2001) say that toolkits build on frameworks, offering a large 
number of reusable components for common functionality. Using the termi-
nology of this thesis, this is referred to as a black-box framework. 
According to Johnson and Foote (1988), a toolkit is an object-oriented applica-
tion construction environment, i.e. a collection of high-level tools that allow a 
user to interact with an (usually black-box) application framework to config-
ure and construct new applications. All toolkits are based on one or more 
frameworks. 
In this thesis, the term toolkit is used describe a software component or a col-
lection of components that help build applications. If the support is given for 
the user interface and interaction part of applications, the term user interface 
toolkit is used. 

transaction 
[COAST] 

A transaction groups slot accesses that have to be executed atomically to avoid 
inconsistencies. See section 6.1.3, page 107. 

transaction, 
display [COAST] 

A display transaction is used by COAST for accessing slot values during display 
updates. During display transactions no modifications of slot values, but only 
read-accesses are allowed, allowing faster processing of display updates, see 
section 6.1.3, page 108. 

transaction, 
optimistic 

For optimistic transactions, the client does not wait for the server’s commit, in 
order to speed-up interaction. When the transaction is rejected by the server, 
the client has to rollback this transaction and all others that rely on its 
changes, see section 6.1.3, page 108. 

transaction, 
pessimistic 

In contrast to an optimistic transaction, a pessimistic transaction blocks the cli-
ent process that executes the transaction until the commit (or cancel) is re-
ceived. See section 6.1.3, page 108. 

ubiquitous 
computing 

Ubiquitous computing is a term coined by Weiser (1991), describing the vision 
that computers vanish into the background. Heterogeneous devices comple-
ment each other to provide a consistent usage experience. User interfaces will 
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take advantage of the different properties of the devices. The devices will be 
closely interconnected and integrated with the environment and context in 
which people use them. 

ubiquitous 
computing 
environment 

A ubiquitous computing environment consists of multiple heterogeneous net-
worked devices. It is essential that the devices are not treated in isolation. In-
stead, they must always be seen related with other devices, users, and objects 
that are part of their current environment, see section 2.4. 

user interface 
model [BEACH] 

 

The BEACH model separates five basic concerns, see section 4.3. The user-
interface model deals with everything that is needed to describe the user inter-
face of an application, but without the application-specific parts. Typical ex-
amples are windows, menus, scrollbars, and toolbars. The user interface model, 
however, does not describe how these concepts are presented to the user or 
how the user can interact, as these issues are modeled separately by the interac-
tion model. In order to be able to adapt the user interface to the current con-
text, such as available interaction devices, the user interface model draws 
upon information provided by the environment model. 

user interface 
toolkit 

See toolkit 

vertical 
structure 

Introducing levels of abstraction into a software system is seen as its vertical 
structure, see sections 3.1 and 4.5. 

virtual slot See slot, virtual 

white-box 
framework 

Depending on the techniques used to create extensions and to add applica-
tion-specific behavior, frameworks can be classified into white-box and black-
box frameworks (Fayad, 1999; Gamma et al., 1995; Johnson and Foote, 1988). 
White-box frameworks use the techniques of object-oriented languages to add 
extensions. Typically, sub-classes can be derived from dedicated base-classes, 
which provide a set of methods to be overridden and refined. This requires a 
detailed understanding of the framework’s architecture. See also: black-box 
framework. 

wrapper Wrappers add behavior to other object using the decorator pattern (Gamma et 
al., 1995). As an advantage over class extensions or sub-classing, wrappers can 
be added dynamically to individual objects in contrast to adding functionality 
to the class. Besides offering a hook for extensions, wrapper objects also in-
crease reusability as the same add-on functionality can be reused in different 
contexts, see section 6.3. 
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Appendix D Development Tools Used 

This appendix describes the development tools that were used in the context of this disserta-
tion. 
BEACH is implemented in VisualWorks Smalltalk (Cincom, 2002). ENVY (from OTI) was used 
as versioning system. ENVY also adds the possibility of class extensions to VisualWorks Small-
talk. For design, we used a cooperative UML editor, which is also written in Smalltalk and 
with COAST. It is available from http://www.opencoast.org/. 
The thesis was written with Microsoft Word (see Acknowledgements). The bibliographic da-
tabase was first stored in an Adabas D database (Software AG, 2004), then using MySQL 
(MySQL AB, 1995-2004). The bibliography is available online at 
http://tandlers.de/peter/beach/ in BibTeX format. 
To edit the database, first StarOffice (Sun Microsystems, 2004), and later OpenOffice 
(OpenOffice.org, 2004) was used. To format the references in the document and to compile 
the References section, I wrote a couple of Perl scripts, called “PBib”. They work similar to the 
classical BibTeX, but can be extended for arbitrary bibliography databases (including BibTeX 
files), arbitrary bibliography styles (e.g. ACM, IEEE), and arbitrary document formats (includ-
ing RTF and OpenOffice). To browse the bibliography database and the references used in a 
document, I implemented a simple user interface in Perl/Tk. 
PBib is available online at http://tandlers.de/peter/pbib/. 

http://www.opencoast.org/
http://tandlers.de/peter/beach/
http://tandlers.de/peter/pbib/
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