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Chapter 1

Introduction

Ultrasonic motors (USMs) belong to the class of piezoelectric motors. In this work the
term USM will be used for the motor only (power electronics and closed loop control
are not included). The system, composed of the motor, power electronics and the closed
loop control will be called ultrasonic actuator or piezoelectric actuator. The working
principle of these motors has been well known for at least 50 years WALLASCHEK

(1995, [59]). However, they gained widespread interest first with the influencing work
of SASHIDA (1982, [43]). Before, piezoceramic materials with high conversion effi-
ciency and fast electronic power control of the ultrasonic vibrations were not available.
Through their specific advantages compared to conventional electro-magnetic motors
they fill a gap in certain actuator applications. Advantages of USM over electromag-
netic motors are their compactness, i.e. their high stall torque-mass ratio and their high
torque at low rotational speed, often making speed reducing gears superfluous. Ad-
ditionally, with no voltage applied, an inherent holding torque is present due to the
frictional driving mechanism. It is also worthwhile to mention that their compactness
and the high frequency electrical excitation make quick responses possible. But besides
that, USM also offer a high potential for miniaturization. These actuators produce no
magnetic field since the excitation is quasi-electrostatic. On the other hand, some draw-
backs can be easily pointed out. Due to the frictional driving mechanism, the lifetime
is limited and the motor may heat up drastically within minutes of operation. The com-
plicated stator-rotor contact behavior and the temperature drift call for special control
strategies. Last but not least, the electrical excitation frequencies in the ultrasonic range,
the capacitive or inductive behavior of the motor out of resonance and the temperature
dependence of the motor materials require sophisticated power electronics and closed
loop controls. Due to the frictional driving mechanism between stator and rotor, USMs
are not intended to be used as permanently driven actuators. The friction between sta-
tor and rotor causes wear and abrasion effect as well as temperature rise of the motor,
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which may lead to a faster aging due to polarization degradation of the piezoceramic
material.

Their potential field of application is in ”short time” actuation tasks. The first mass
produced USM were utilized in lens drives in autofocus cameras. In the meantime other
large scale applications have been established, e.g. steering-wheel or head rest adjust-
ment. In areas like robotics USMs are planned to be used as actuators, e.g. in robot
wrists. Intensive research in the field of USM is being conducted for more than two
decades now. Unlike in the early years, when research was concentrated on the inven-
tion of different vibration principles and motor designs, nowadays the focus is more
on sophisticated mathematical models and towards a better understanding of motor dy-
namics and motor optimization.

1.1 The working principle

There are various different design and operation principles for ultrasonic motors. De-
pending on the design (plate-type stator, cylinder-type stator, etc.), on the kind of ac-
tuation (linear or rotational motion) or on the vibration principle (traveling-wave-type
or standing-wave-type vibrations) there are different classifications of USM. A good
overview is presented in the monograph of UEHA et al. (1993, [57]). These motors are
usually driven in an ultrasonic vibration range between 20-100 kHz. Common in most

Figure 1.1: Prototype of a USM devel-
oped by Physic Instrumente; diameter
60 mm

Figure 1.2: Prototype of a USM devel-
oped by Daimler-Chrysler; diameter 90
mm

of these motors is the excitation of stator vibrations so that the stator’s surface points
move in elliptical trajectories. In Figs. 1.1 and 1.2, two examples of rotary traveling-
wave-type USM are shown; the left one with a stator in the form of a cylindrical shell
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and the one on the right side with a plate-type stator. The stator of the motor in Fig. 1.1
is fully made of piezoceramic material. Appropriate electrode patterns distributed over
the outer and inner circumferential surfaces of the stator are used to electrically excite
mixed bending and longitudinal vibration modes. The superposition of these modes re-
sults in a traveling wave causing material points lying on the surface towards the rotor
to move through an elliptical trajectory. Pressing the rotor against the stator leads to a
frictional contact and thus to the rotor motion. The vibration principle for this type of
motor is explained in detail by BERG (2001, [5]).

In Fig. 1.3 a slider of a linear traveling-wave-type motor is depicted. Two orthogonal
bending modes are excited in the slider by the bonded piezoceramic patches. Their
superpostion leads to a traveling bending wave. But as it may be obvious, the geometric
structure has to be adjusted appropriately to get two orthogonal bending modes with
the same frequency. This is not an easy task. Pressing the slider against the support,
frictional contact takes place and the slider moves along the support. Details about

Ultrasonic motor

Figure 1.3: Slider of a linear ultrasonic
traveling wave motor

Figure 1.4: Example of a possible ap-
plication of USM: Autofocus-camera

the motor design and the experimental results can be found in SATTEL & HAGEDORN

(2001, [18]). A well-known example of an application of a USM technology is depicted
in Fig. 1.4. The lens adjustment in the auto-focus camera is done via a USM. The
working principle of an USM will be explained in detail using the motor design in
Fig. 1.2 and with reference to HAGEDORN & WALLASCHEK (1992, [20])

Different options are available to generate a traveling wave. In the plate type USM
shown in Fig. 1.2 two degenerate eigenmodes (bending modes) having the same eigen-
frequency are excited. Both bending modes have n nodal lines and zero nodal circles.
Their excitation has a spatial phase shift of λ/4 (90◦ in a wavelength sense) in cir-
cumferential direction. They are excited to the same amplitude, ŵs, by two excitation
sources (two phase) with a temporal phase shift of 90◦. The mode shapes of these or-
thogonal bending modes are illustrated in Fig. 1.5 (for the sake of simplicity n = 2).
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Actually, the stator in Fig. 1.2 is excited in it’s eleventh bending mode, i.e. n = 11.
If w represents the transverse deflection of the stator plate, one may express the lateral
vibration of the plate’s mid-plane as

ws(r, ϕ, t) = ŵs R(r) sinnϕ sinΩt+ ŵs R(r) cosnϕ cosΩt (1.1)

= ŵs R(r) cos(nϕ− Ωt) ,

where R(r), sinnϕ and cosnϕ are the radial and the circumferential shape functions
of the orthogonal eigenmodes, respectively. For the radial mode shape the scaling
R(ra) = 1 is chosen, where ra represents the plate’s outer circumferential radius. Fur-
thermore, ŵs denotes the stator vibration amplitude and Ω the excitation frequency. The
superposition of the mathematical representations of the two standing waves, shifted
90◦ in space and time, may be transformed in a mathematical representation of a trav-
eling wave using trigonometric identities. Eigenmodes with eigenfrequencies in the
ultrasonic range are selected to achieve silent operation.

The bending deformation in the plate leads to elliptic motion of the surface points
as illustrated in the side view of Fig. 1.6. This can be made obvious by considering the
kinematics of surface points using KIRCHHOFF plate theory. In cylindrical coordinates
the displacements of surface points may be written as

uP (r, ϕ, z, t) = −
hs

2
ws,r(r, ϕ, t) er −

hs

2r
ws,ϕ(r, ϕ, t) eϕ + ws(r, ϕ, t) ez , (1.2)

where (·),r and (·),ϕ are the derivatives with respect to the coordinates r and ϕ, re-
spectively. The vectors (er, eφ, ez) define a local reference frame and hs is the stator
thickness. Inserting (1.1) into (1.2) results in an equation describing the elliptic motion.
The time derivatives of the displacement function in (1.2) give the velocities of the sur-

V
R

v
w

rotor

stator

stator
mode

rotor
vr0

trajectory of a
material surface point P

stator

Q

r ϕ

z

Figure 1.5: Possible stator vibration
form

Figure 1.6: Planar sketch of the working
principle of the motor in Fig. 1.5
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face points. The velocity of the points Q at the wave crest may be obtained by setting
cos(nϕ− Ωt) = 1, yielding

u̇Q = −ŵs Ω
hs

2

R(r)

r
n eϕ . (1.3)

It turns out that the velocity at the wave crest is in the circumferential direction, i.e. in
the eϕ direction. But note that for all surface points not lying at the wave crest, radial
velocity components exist. Such radial velocity components do not contribute to the
motor drive but to dissipative effects instead. One design task, therefore, is to hold such
radial velocity components as small as possible.

A ring type rotor is pressed against the stator, e.g. by a disc spring and driven by
frictional contact forces acting between stator and rotor. Assuming a rigid rotor and
contact at the wave crests along the outer radius ro only, the no slip rotational speed of
the rotor is given by

ϕ̇r = −
|u̇Q|

ro
= −ŵs Ω

hs

2

R(ro)

r2o
n (1.4)

and the velocity at the outer circumference follows as

vr0 = vr0 eϕ = ϕ̇r r0 eϕ . (1.5)

Two things are noteworthy. First, a comparison of (1.3) and (1.1) shows that the trav-
eling wave and the rotor move in opposite directions. Second, using parameters of a
typical motor having an outer diameter of the stator of 60 mm and with hs ≈ 5mm,
r0 ≈ 30mm, R(ro) ≈ 2µm and n = 9, (1.6) gives the ratio

ϕ̇r

Ω
≈ −

1

40000
(1.6)

between the rotational speed and the excited circular frequency. This means a frequency
reduction of the order of magnitude 104 between the circular frequency Ω and the rota-
tional speed of the rotor!

From a motor design perspective (1.6) indicates, which design variables influence
the maximum rotational speed of a motor. The stator vibration amplitudes are usually
limited by the maximum strain that the piezoceramics are capable to withstand. To in-
crease the maximum rotational speed the number of nodal lines, n, can be made larger
as well as the stator thickness hs. However, a larger stator thickness comes along with
an increasing stator stiffness and thus with an increase in the eigenfrequencies in which
the stator is excited. Higher excitation frequencies in the motor demand more effort in
the design of the power electronics. To avoid this, notches can be milled into the stator,
as illustrated in the FE-model in Fig. 1.8, which allow to increase the stator thickness hs

without a significant change of the eigenfrequencies of the stator’s operational eigen-
mode. Surely, there is an increase of the manufacturing costs, but the notches offer an
additional benefit. Wear particles will be taken apart from the contact zone between
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Figure 1.7: Possible stator vibration
form with n = 11 of the motor shown
in Fig. 1.2

Figure 1.8: FE-Model of one sector (half
wavelength) of the stator with notches,
shown in Fig. 1.2

stator and rotor, as pointed out in SASHIDA et al. (1993, [44]. The notches also in-
fluence the eigenmodes of the stator. Without notches, the eigenmodes are harmonic
and with notches they are only periodic in circumferential direction. Thus, parasitic
vibration components occur. The stator teeth act almost as rigid bodies. Whether the
teeth have to be considered in the contact modeling or not, depends on the perturbation
of the stator’s harmonic mode shape in circumferential direction. The influence of the
notches on the stator kinematics is discussed in SCHMIDT (1999, [51]).

The question remains, how to excite the traveling bending wave in the stator? In
Fig. 1.9 the excitation principle used in the motor in Fig. 1.2 is shown schematically.
The piezoceramic ring, bonded to the lower surface of the stator is divided into oppo-
sitely polarized segments having remnant polarization Pr (see Fig. 2.6). The length of
each segment is equal to half the wavelength λ of the bending mode. At the free surface
of the piezoceramic ring, these segments in Fig. 1.9 are coated with a thin metalic layer
acting as an electrode. An electric voltage across the piezoceramic thickness causes
the segments to either elongate or shorten in the circumferential direction (ϕ-direction)
due to the inverse piezoelectric effect. This effect is called a d31-effect, since an elec-
tric field in the 3-direction (z-direction) causes mechanical strains in the 1-direction (x-
direction). The excitation of two orthogonal bending modes may be achieved by various
arragements of polarization or electrodes. For a two-phase drive, one possiblity is to use
half of the piezoceramic ring to excite one bending mode and the other half to excite the
corresponding orthogonal bending mode. This is illustrated in Fig. 1.10. There are two
polarization configurations, A and B. Each configuration is used to excite one bending
mode. Hence, there must be a spatial phase shift of a quarter of the wavelength λ be-
tween both configurations. The + and − signs in each segment indicate the orientation
of the remnant polarization vector Pr with respect to the z-direction. Each polarization
configuration in Fig. 1.10 is coated by a thin metallic layer acting as an electrode. But
note that the two electrodes A and B are electrically isolated. Under perfect transfer be-
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piezoceramic ring

Pr
polarization
vector

electric
voltage

VA(t)

ϕ

z

r

+ −

λ

polarization
configuration B
excites:

R(r) cosnsϕ

ϕ

polarization
configuration A
excites:

R(r) sinnsϕ

VB(t)
VA(t)

sensor
electrodes S

z

r

Figure 1.9: Principle of excitation of a
bending mode by a piezoceramic ring

Figure 1.10: Polarization configuration
of the piezoceramic ring exciting bend-
ing vibrations of the type shown in
Fig. 1.7

havior (without motor imperfections), the excitation of the polarization configurations
A and B by voltages VA(t) = V̂A sinΩt and VB(t) = V̂B cos(Ωt + ∆φV ), results in
a lateral vibration of the stator according to (1.1). Note that the temporal phase shift
of 90◦ in the voltage excitation is necessary to excite a pure traveling wave. Otherwise
also standing wave components will be excited. Indeed, voltage signals of the form

VA(t) = V̂A sinΩt , VB(t) = V̂B cos(Ωt+∆φV ) (1.7)

with the phase deviation ∆φV cause lateral vibrations of the plate’s mid plane as

ws(r, ϕ, t) = ŵsA R(r) sinnϕ sinΩt+ ŵsB R(r) cosnϕ cos(Ωt+∆φV ) (1.8)

= ŵsA R(r) cos(nϕ− Ωt) (1.9)

+ [ŵsB R(r) cos(Ωt+∆φV )− ŵsA R(r) cos(Ωt)] cos(nϕ) ,

where the first term in the second equation corresponds to the traveling wave component
and the second term to the standing wave component. It is readily seen that by choosing
∆φV = 0 for the phase deviation and ŵsA = ŵsB for the vibration amplitudes of
both modes a pure traveling wave results. The trajectories of stator surface points at
different phase deviations,∆φV , and vibration amplitudes, ŵsA, ŵsB , of both modes is
illustrated in Fig. 1.11 for two time instances. The arrows indicate the positions of stator
surface points along the circumference. Note that these trajectories are projected onto
the (ϕ, z) axis and are scaled with respect to theϕ-axis. The trajectories have extensions
in the µm range, whereas the wavelength, λ, is in the mm range. For ∆φV = 90◦ and
ŵsA = ŵsB a pure standing wave is obtained.
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∆φV = 0◦,
ŵsA = ŵsB

∆φV = 45◦,
ŵsA = ŵsB

∆φV = 90◦,
ŵsA = ŵsB

∆φV = 0◦,
ŵsA 6= ŵsB

ra ϕ [mm]0 λ

ws(ϕ, 0)

ws(ϕ, T/4)

[µm]

Figure 1.11: Lateral displacement of the stator’s mid-plane at two time instances (t=0,
red, and t=T/4, blue) and trajectories of stator surface points for different phase devi-
ations and vibration amplitudes

The motor is driven near its resonance in the ultrasonic range. Although the near
resonance motor operation needs special effort with respect to the motor and power
electronic design, the out-of-resonance operation implies several drawbacks making it
difficult for such kinds of actuators to compete with classic electromagnetic motors.
First, out of resonance, the reactive power component can be larger than the resistive
power component. Since the power electronic device has to be designed for the apparent
power, a large reactive power component results in power electronic devices which may
be larger in size than the motor itself. This contradicts the effort to miniaturize the USM
technology. Second, the out-of-resonance operation needs high voltage excitation to
reach the same vibration amplitude in the stator as with the near resonance excitation.
Special application fields as e.g. consumer market devices, however, did not allow high
voltage devices for safety reasons.

A typical resonance behavior of the stator’s lateral vibration amplitude ŵs of a USM
excited at constant voltage amplitude is shown in Fig. 1.12. In SATTEL et al., 2001,
[49] it was shown, that such a resonance curve with softening behavior of an USM may
be caused by the non-linear stator-rotor contact. It can be explained as follows. With
a rigid rotor, only point contact between stator and rotor would occur. The rotor and
the contact layer are however deformable (see Fig. 1.2). Hence, under operating condi-
tions, there are contact zones of finite area depending on the stator vibration amplitude.
Therefore, the stator-rotor contact introduces a nonlinear effect. Far away from the
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resonance peak the contact zones between stator and rotor are relatively large. When
the excitation frequency approaches the resonant peak, the stator amplitude increases,
with a corresponding decrease in the contact zones, thus resulting in decreasing con-
tact stiffness. Therefore, the softening behavior in the resonance curve in Fig. 1.12 may
be explained by a decrease in the contact stiffness between stator and rotor when the
excitation frequency approaches the resonance peak. To ensure smooth and robust oper-

Ω

ŵs

voltage amplitude=const

Figure 1.12: Resonance curve of stator displacement in the motor

ation, the range of the excitation frequency must be on the downslope resonance curve
and sufficiently far away from the resonance peak.

Besides the mechanical behavior of motors, the electrical behavior is important from
a power electronic and control point of view. The principle electrical behavior of piezo-
electric motors in the vicinity of their resonance frequency is explained most easily by
a simple rod model. In Fig. 1.13 an electrically excited polarized piezoceramic rod with
polarization vector P, free-free mechanical boundary conditions and electroded end
faces is depicted, as well as an equivalent electric circuit diagram representing the elec-
tric behavior in the vicinity of the resonance frequency. The electrical quantities Lm,
Cm and Rm correspond to the modal mass, the modal stiffness and the modal damping,
respectively, of the rod’s mechanical vibration behavior. The two impedances Cp and
Rp represent the electric behavior of the piezoceramics. Details on the representation
of electromechanical systems by equivalent electric circuits may be found in various
books, as e.g. BERLINCOURT et al., 1964, [7] or IKEDA, 1990, [24]. Exciting the
rod electrically by a voltage V (t) = V̂ cosΩt in the vicinity of the eigenfrequency
of the first longitudinal eigenmode, the frequency response plots of the longitudinal
displacement u(L) and the electric admittance

Y =
I

V
(1.10)

yield the qualitative behavior as illustrated in Fig. 1.14. The frequency response plot
of the displacement shows a resonance only, whereas the electric admittance exhibit a
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Lx

P

I

V

Lm

Cm

Rm
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Figure 1.13: Left: Simple piezoceramic rod structure with electrodes at the end faces
and free-free mechanical boundary conditions; right: equivalent electric circuit diagram
near a resonance frequency
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Figure 1.14: Frequency response plots of the rod’s longitudinal displacement u(L) and
the electric admittanceY near the eigenfrequency corresponding to the first longitudinal
eigenmode

resonance and an antiresonance. Neglecting damping effects and considering the free
vibrating structure, i.e. without electric excitation, the resonance and antiresonance
frequencies in the electric admittance plot correspond to the the eigenfrequencies of the
free vibrating rod at different electric boundary conditions, namely those with short-
circuited and open-circuited electrodes (see Fig 1.15). In the case of short-circuited
electrodes the eigenfrequency corresponds to the resonance, whereas open-circuited
electrodes stiffens the system and results in a higher eigenfrequency, corresponding to
the antiresonance in the frequency response plot.
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V = 0
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P

Figure 1.15: Short-circuited and open circuited electric boundary conditions of the rod

It is often argued that USMs show capacitive behavior due to the piezoceramic ma-
terial, thus causing reactive power that subjects the power electronics to a high load.
Since USMs are resonant driven devices it is not immediately obvious why there is a

Lm

Cm

Rm

Rp
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I1
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Rm

Rp

Cp

I2 Rs Ls

VA, VB

Figure 1.16: Left: Equivalent electric circuit diagram of an USM; right: with an induc-
tor Ls, Rs added in series

capacitive electric motor behavior. In literature a clear explanation is missing, so that
a few comments seem to be necessary. In Fig. 1.16 two simple equivalent electrical
circuit diagrams are plotted. The electric circuit in the left figure describes qualitatively
the electric admittance of one electrical port of an USM in the vicinity of the operational
resonance frequency. The electric quantities Lm, Cm and Rm correspond to the modal
mass, the modal stiffness and the modal damping, respectively, of the motor’s mechan-
ical vibration behavior (Fig. 1.5). The two impedances Cp and Rp represent the electric
behavior of the piezoceramics. The electrical circuit on the right side of Figs. 1.16 il-
lustrates the electric circuit of the motor with an inductor added in series. Putting the
inductance Ls in parallel to the electric circuit of the motor would also be possible.
Different other more sophisticated circuit topologies for so called resonant converters
are known, as e.g. LC or LLCC circuit topologies, as pointed out in MAAS, 2000,
[34]. The electric admittance of the motor is denoted as Y 1 and that of the motor with
inductor as Y 2. The electric admittances for both equivalent circuits yield

Y 1 :=
Î1

V̂ i

, Y 2 :=
Î2

V̂ i

, with i = {A,B} (1.11)
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and the graphs of both admittances are depicted in Fig. 1.17. The admittances on the
right are zoom plots. Considering the electric admittance Y 1 of only the motor, the res-
onance is followed by an anti-resonance. This is typical for a piezoelectric system. The

20 40 60 80
10

−4

10
−3

10
−2

10
−1

 A
dm

itt
an

ce
 [m

S
]

Y
1

Y
2

20 40 60 80
−100

−50

0

50

100

 Frequency [kHz]

 P
ha

se
 [°

]

41.5 42 42.5
10

−3

10
−2

Y
1

Y
2

41.5 42 42.5
−100

−50

0

50

100

 Frequency [kHz]

Figure 1.17: Typical electric admittance of USMs without, Y 1, and with an inductance
in series, Y 2. Dashed line for low motor damping

operational resonance frequency at 42 kHz is both, an electrical and a mechanical res-
onance. The resonance frequency corresponds to a vibration mode when the electrodes
are short circuited, whereas the anti-resonance frequency corresponds to a vibration
mode with open circuited electrodes (no current flow). The solid line indicates a high
frictional damping in the motor due to the rotor contact, and the dashed line describes
the behavior at low frictional damping. Connecting an inductor with high enough in-
ductance Ls, in series with the motor, results in the admittance behavior as illustrated
by Y 2 in Fig. 1.17. For frequencies above the anti-resonance frequency (≈ 43 kHz),
the motor’s electric admittance Y 1 is dominated by the piezoceramic capacitance and
the admittance of the motor with inductor, Y 2, is dominated by the inductance, thus

Y 1 ≈ jΩCp , Y 2 ≈
1

jΩLs
for f ≥ 43kHz (1.12)

hold. Indeed, the motor itself shows a high-pass filter behavior (capacitive behavior)
at frequencies above the anti-resonance. Instead, the motor with series inductor Ls

exhibits a low-pass filter behavior (inductive behavior). Operating a motor near it’s
resonance with a pure sinusoidal voltage signal would not lead to a significantly dif-
ferent electrical behavior between both the circuits despite a phase reversal. However,
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the power electronics for USMs may produce electric voltage signals with significant
higher order harmonic components (pulse width modulated signals e.g.). With a ca-
pacitive behavior, Y 1, such higher harmonics may produce large reactive power com-
ponents, whereas with an inductive behavior, Y 2, the reactive power components are
drastically reduced. This is what is meant in literature by capacitive behavior of USM!
There are investigations where especially the electric port behavior of USMs and the
interaction of USMs and power electronics had been the focus of research.

So far, ideal motor transfer behavior was assumed to hold. Imperfections or symme-
try disturbances due to manufacturing inaccuracies results in non-ideal transfer behavior
of the motors. In the case of USMs using two or more degenerated eigenmodes (modes
with the same eigenfrequencies), imperfections split the eigenfrequency of the degen-
erated modes, as pointed out e.g. in UEHA et al. (1993, [57], p.58-59). Ideal traveling
wave operation is not possible anymore. When using single frequency excitation, there
is always a standing wave component, which produces frictional damping effects only.
The frequency split must be small enough so that there is a sufficient traveling wave
component in the motor.

In Fig. 1.18 the principal character of speed-torque curves of USMs are sketched
in a four-quadrant graphic. The motor output torque and the rotational speed are de-
noted by T and n, respectively. For an ideal motor, i.e. without any imperfections, the
speed-torque characteristics have point symmetry with respect to the origin. Each mo-
tor characteristic has two distinguished points, the no-load speed at zero torque and the
stall torque at zero speed. The curves run through three different quadrants in the graph,
namely the operation quadrant, the dragging quadrant and the braking quadrant. In the
operation quadrant the USM is loaded by an external load. In the dragging quadrant,
the USM is driven by an external load and in the braking quadrant, the rotor reverses
it’s direction of motion due to an external load, acting as a brake. Having a closer look
at the velocities of particular stator and rotor material points, this can be explained in
more detail. Under simplified assumptions regarding the contact mechanism between
stator and rotor, the following relations between the rotor velocity at the outer circum-
ference and the velocities at the stator’s wave crests hold in different quadrants (see also
Fig. 1.6):

• operation quadrant: vr0 is in the same direction as u̇Q and |vr| ≤ |u̇Q| holds

• dragging quadrant: vr0 is in the same direction as u̇Q and |vr| ≥ |u̇Q| holds

• braking quadrant: vr0 is in the opposite direction as u̇Q.

The motor behavior in the dragging quadrant and in the braking quadrant have not been
investigated in detail up to now, since such motor operation conditions are unusual if
not unwanted. For a given motor design, there are at least four parameters influencing
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Figure 1.18: Tyical speed-torque characteristics of USMs

the position of the speed-torque characteristics, namely the position of the no-load rota-
tional speed and the stall-torque on their corresponding axes. One parameter is the axial
preload, Faxial, excerted to press the rotor against the stator. This design parameter is
easy to adjust. Within certain bounds, it influences mainly the stall-torque. Moreover,
the stall-torque depends on the friction coefficient and on the contact state between
stator and rotor. Since the stator-rotor contact state may exhibit a complex behavior,
the stall-torque cannot be predicted a priori. Only an upper bound of the motor output
torque can be estimated: Tmax = r0µFaxial. The other three parameters are the con-
trol parameters excitation frequency Ω, voltage amplitudes V̂a, V̂B and phase deviation
∆φV . In a first approximation they influence the no-load rotational speed by changing
the size, the orientation and the elliptical shape of the stator’s surface point trajecto-
ries, as it is shown in Fig. 1.11. The excitation frequency, e.g., changes the vibration
amplitude of the stator’s transverse displacement (see Fig. 1.12) and thus results in a
change in major and minor axes of the ellipse without changes of the ellipse’s shape.
This again changes the tangential velocity component at the stator’s wave crest in (1.3).
A simultaneous change of both voltage amplitudes, i.e. changing V̂a = V̂B , shows the
same effect.

However, there are changes that cause also standing wave components which result
in a change of the ellipse’s shape. Different voltage amplitudes, i.e. V̂a 6= V̂B , as well
as a phase deviation ∆φV 6= 0◦ lead to those standing wave components.

Each of these three control mechanism has its advantages and disadvantages with
respect to feedback control, motor operation and motor efficiency. In the experimental
part the influence of these four parameters will be investigated. A few comments on
feedback control can be found in UCHINO (1997, [56]).
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1.2 Past and ongoing research

There has been active research in the USM technology for more than 20 years. During
this time, new working and design principles have been invented, yielding an increas-
ing range of applications and greater industrial interest and demand for this kind of
actuators. Nevertheless, besides a few applications like lens drives in autofocus cam-
eras of Canon (see UEHA et al. (1993, [57])), USMs are not yet mass-producted. New
applications are beginning to emerge in special areas like robotics, e.g. in the robotic
manipulator ’MarsArmII’ which is driven by a USM, (SCHENKER et al. (1997, [50])),
or as a robot wrist actuator, (SCHREINER et al. (2000, [53])), or e.g. in active-control
sticks for airplanes, (MAAS et al. 1999 [33]). Some applications may also be found
e.g. in micro-positioning devices, as proposed in FERREIRA (1998, [11]), or in the
automotive industry.

Different trends in research on USM can be recognized. One direction of research
concentrates on miniaturization of these motors, aiming at piezoelectric micromotors
with diameters in the millimeter range. The fundamental work of FLYNN (1997, [12])
marks the beginning in this area. The opposite direction was promoted e.g. by Daim-
lerChrysler Research Center in Frankfurt, Germany, (SCHREINER et al. (2000, [53])),
where a 90 mm diameter motor with a holding torque of approximately 6 Nm was de-
signed. To increase the USMs’ torque-mass ratio, so called two-sided USMs have been
designed and tested, (see GLENN & HAGOOD (1998, [15])). The motor has an outer
diameter of approximately 80 mm and operates with in a vibrational mode with nine
nodal lines. With an axial preload of 200 N a stall torque of 170 Ncm was obtained
as well as a non-load speed of 40 rpm. The authors mentioned excessive wear of the
polymer layer (friction layer) bonded to the non-rotating parts. And this was likely the
cause of the lowered performance with a peak value of 13% for the motor’s efficiency.
The motor was operated at the frequency boundary where it became noise and inconsis-
tent at lower frequencies. A third research direction focuses on new design principles
and the fourth and last trend, which has been emerging in recent years aims at motor
optimization and the development of more realistic and detailed mathematical models.

Today, the research fields in the area of USMs may be roughly divided into mo-
tor design and motor optimization where the investigations of the stator-rotor contact,
including tribological issues, play an important role. Research is also conducted in
piezoceramic material performance and motor control or power electronics technology.
The development of appropriate mathematical models goes along with all these research
activities.

One major research field is the stator-rotor contact, since this is one of the key
issues for motor optimization and performance improvements. Consequently, many
contributions are dedicated to contact layer materials, to the better understanding of the
contact mechanics and its influence on the overall motor behavior, like the torque-speed
characteristics.



16 Chapter 1. Introduction

1.3 Actual problems and objective of the work

The design and prototyping of USMs essentially is still an empirical process, involving
many experiments and tests. More advanced and refined mathematical models would be
helpful for the preliminary design and optimization of an ultrasonic actuator. Also, de-
tailed studies of the influence of different motor parameters on the motor behavior have
not yet been carried out. Today it is not a difficult task to design a stator for an USM
by using commercial FE-packages and analyzing its vibrational behavior. However,
choosing ”good” design parameters for a rotor in contact with the stator is still in its in-
fancy. Which rotor material should be taken or which rotor thickness should be taken to
ensure stable, reliable and efficient operation are typical questions for the rotor design.
Such questions cannot be answered as directly as those for the stator design variables.
There has been a lot of progress towards a better understanding of the dynamic contact
problem between stator and rotor, but nevertheless there is by far a good understanding
of the contact mechanisms. To date, most researchers have concentrated on particular
design issues like stator-rotor contact, design of controllers, compensation of reactive
power using finite element models or electric analogy models for oversimplified motor
behavior. Few researchers have considered complete motor models. Questions like how
to chose the rotor geometry or the material parameters of the contact layer to ensure re-
liable and silent motor operation in the desired range of rotational speed and output
torque have not been addressed in a rigorous and systematic way.

On the other hand some special problems still exist in USMs which have not been
investigated from a modeling point of view. The onset of squealing, which occurs e.g.
when the rotational speed falls below a certain speed threshold, is one of these prob-
lems. This phenomenon was observed in our laboratory (Dept. of Applied Mechanics,
Darmstadt University of Technology) with different motors. The initial torque-speed
characteristics observed in a cold motor is poor compared to that of the motor heated
up by internal dissipation. Squealing occurs in a relatively broad range of rotational
speeds. Another drawback of ultrasonic actuators is the speed threshold below which
they don’t work, depending on the speed control strategy used and the stator-rotor con-
tact behavior. For applications requiring low rotational speed without using additional
gears, a reduction of the speed threshold may be necessary. Surely, there is the pos-
sibility to drive the motors out of phase or far away from resonance, but this requires
additional effort in the power electronic design, since high reactive load is present. Op-
erating these motors near resonance can reduce the size of the power electronics dras-
tically. A thorough modeling and theoretical investigation of the stator-rotor contact is
needed for a deeper understanding of all these phenomena, more so, since the processes
in the contact zone are difficult to measure.

SASHIDA (1993, [44] p. 219) commented that rotor flexibility is a ’necessary evil’
in the design of USM. In his book he mentioned the necessity of rotor flexibility in the
design of USM but did not give reasons for his statement. One reason could be that a
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high rotor stiffness results in a greater rotor inertia, which limits the potential of these
motors with respect to a fast response time compared to classical electromagnetic mo-
tors. As it is, Sashida’s comment highlights another of the design problems in USM.
The rotor flexibility may be one reason for stability problems in USM operation. One
hypothesis is, that eigenmodes in the rotor can be excited by the frictional contact forces
causing noise and reduced operability. Experimental investigations carried out together
with an industrial collaborator clearly indicate, that the operativeness and reliability of
USMs strongly depends on the design of the rotor. In SASHIDA (1993, [44]) some com-
ments on stability problems in USMs are stated and our laboratory experience indicate
that instability problems may occur in a wide range of motor operation (see 4.1.1).

Besides the purely mechanical phenomena observed in the motor dynamics, the
electromechanical part must also be studied in detail. The compensation of reactive
power due to the piezoceramic material needs particular attention. Special capacitance-
inductance circuits, so called LLCC-circuits (see SCHULTE et al. (2000, [54])), are
used between the power amplifier and the piezoceramic part of the motor to cancel out
the reactive power. These circuits are also resonant systems, so that the dynamics of the
complete actuator is affected.

Obviously, there is a need for more detailed modeling investigations to obtain a
global picture of such actuator systems. The few motor models found in the literature
usually are formulated in the time domain, they often neglect rotor flexibility or con-
tain other simplifications. They, therefore, only give very limited information on the
influence of the different design parameters on the motor dynamics.

The present work is concerned with the modeling, model analysis and experimental
analysis of USMs. In the modeling part a framework for modeling the complete motors
is established. The framework is formulated for a two-dimensional description of such
motors. Thus, linear motors and rotary motors where the curvature can be neglected in
a first approximation can be modeled within this framework. It includes a thorough de-
scription of the contact kinematics and of the contact laws. The description is done with
respect to a reference frame moving with the traveling wave in the stator, as proposed in
SCHMIDT et al. (1996, [52]). All the necessary balance laws, mechanical and electrical,
are combined in the principle of virtual power. Assuming the appropiate kinematics for
stator, rotor and electric displacement, the equations of motion may then be derived in
a straightforward manner. In the model analysis part, a numerical solution procedure
for the contact problem in USMs is proposed for the description in a moving reference
frame. Numerical results will be discussed and the computed speed-torque character-
istics will be compared with the measured characteristics. In the experimental part the
resonance behavior and the steady-state motor behavior are investigated in detail. Also
some investigations with respect to the instationary motor behavior are carried out. The
objective of these experiments is to give a comprehensive qualitative picture of typical
motor behavior.
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Chapter 2

Modeling

2.1 Literature review

A good overview of the various design principles of USMs can be found in UEHA

et al. (1993, [57]) while detailed information pertaining to the Shinsei USM is given
in SASHIDA (1993, [44]). Piezoelectric actuator technology is also presented in parts
of UCHINO (1997, [56]). In addition, some simple but helpful models of mechanical
stator, electric analogy stator and stator-rotor contact are treated in these references.
These models do however not describe the relation between the stator-rotor contact and
the overall motor behavior. In addition, the electric analogy models lack a physical
interpretation.

The working principle and the modeling and numerical vibration analysis of USM
stator’s of the Shinsei type are described in HAGEDORN & WALLASCHEK (1992, [20])
and HAGEDORN et al. (1993, [20]).

A comprehensive survey of the state-of-the-art of stator-rotor contact problems in
USM is given in the review article by WALLASCHEK (1998, [58]). Only some represen-
tative literature concerning the stator-rotor contact problem are cited. ENDO & SASAKI

(1986 [9]) investigate the influence of the hardness of the contact layer material on the
motor operation. The authors point out that material hardness strongly influences the
motor behavior. The high-frequency frictional mechanisms in USM are investigated in
detail by REHBEIN & WALLASCHEK (1998, [42]). They suggest special polymer com-
posites for the contact layer material. Using tribological experiments they also show
that friction coefficients measured at high frequencies (20 kHz) are significantly smaller
than those measured at low frequency. They explain the phenomenon by microimpacts
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between colliding asperities. KANAZAWA et al. (1993, [29]) observed that the fric-
tion and wear processes in USM are less severe than those of sliding friction. They
claim that the fluid dynamic effect of air appreciably influences this process. Among
the papers on motor operability KAMANO et al. (1988, [28]) is cited, who observed a
stator vibration amplitude below which the rotor doesn’t operate. This phenomenon is
important when designing USM as precision positioning devices. In the latter context
FURUYA et al. (1992, [10]) mention the difficulty of operating USM at low rotational
speeds. Hence, more detailed investigations concerning the appropriate control strategy
are necessary and adequate (see MAAS et al. (1999, [33])). Motor models would be
useful to this end. KAWAI et al. (1995, [30]) investigate experimentally the influence of
rotor vibrations on the motor characteristics and state that the maximum output torque,
output power and efficiency are obtained when the rotor vibration amplitude in axial di-
rection is half that of the stator vibration amplitude. They also state that, with a proper
rotor design, high rotor vibration amplitudes may be realized without squealing.

MAENO and his co-workers conducted both experimental and numerical work. In
MAENO et al. (1992, [36]) for example, finite-element simulations of the stator-rotor
contact behavior are carried out in the time domain for a Canon-USM and compared to
experimental results. The authors find several stick-slip zones within one contact zone.
Differences between measured friction coefficients and the values calculated by fitting
measured torque-speed characteristics lead MAENO et al. (1992, [36]) to the hypothesis
of the importance of hydrodynamic bearing effects. Numerical investigations qualita-
tively confirm this hypothesis. An analytic approach to solve contact problems in USM
was used by ZHARII (1995, [63]). By applying the half-space method he derived ana-
lytical expressions for the normal stresses and relative velocities in the contact zones.
This approach may be used to justify numerical results. The half space method was also
used by LE MOAL & MINOTTI (1997, [32]). The rotor is modeled as half-space and
the stator is assumed to act as rigid indenter with a wavy profile, pressed into the con-
tact layer and rotor substrate. The inertia of stator, rotor and contact layer are however
ignored.

A different approach is chosen by CAO & WALLASCHEK (1995, [8]), who focus
on the contact layer bonded to the rotor substrate. A simple but useful contact model is
derived for the computation of the torque-speed characteristics for different motor de-
sign parameters. A similar model was chosen by HAGEDORN et al. (1996, [52]). The
model consists of a visco-elastic contact layer attached to a rigid rotor and an elastic
stator. It is shown that the feedback of the rotor and the contact motion on the stator
motion is negligible in the vicinity of resonance. Thus, the stator may be modeled as
a kinematic constraint. In the same laboratory SCHMIDT (1999, [51]) and SATTEL,
HAGEDORN & SCHMIDT (2001, [48]) studied the stator-rotor contact including rotor
elasticity and a visco-elastic contact layer. Using COULOMB’s law, several stick-slip
zones were obtained in one contact zone, depending on the mechanical load. Relations
between rotor stiffness, contact layer stiffness and torque-speed characteristics are com-
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puted. It turns out, for example, that rotor flexibility strongly influences the flatness of
the torque-speed characteristic. A stator-rotor contact model for simulations in the time
domain was proposed in SATTEL & HAGEDORN (1999, [45]).

The first complete motor model relaying on design parameters was proposed by
HAGOOD & MACFARLAND (1995, [21]). Models of this type are important for de-
signing the motors and controllers. A plate type stator substrate with bonded piezoce-
ramic ring is discretized using a RITZ-Method. However, the rotor was modeled as a
rigid body with one rotational and one axial degree of freedom. A pure slip law was
used for the contact. Since the simulation is done in the time-domain, transient motor
characteristics can be investigated. HAGEDORN et al. (1998, [19]) extended the motor
model proposed by HAGOOD & MACFARLAND by incorporating the rotor flexibility.
Additionally an analysis in the frequency domain was carried out (see HAGEDORN &
SATTEL (1998, [47])). LE LETTY et al. (1997, [31]) developed a finite-element model
together with a dynamic contact algorithm working in the time-domain.

2.2 General modeling aspects

This chapter presents a general two-dimensional framework for the modeling of ultra-
sonic traveling wave motors, including both, the electro-mechanical and the contact
modeling but neglecting curvature of rotary motors. Previous models either take only
the contact between stator and rotor into account, neglecting the electrical part of the
motor, or include the electrical part, but use a very limited contact model. Notches,
milled into the stator, as described in Section 1.1 and Fig. 1.8 are, however, not con-
sidered in the modeling. Their influence on stator vibration modes is discussed in
SCHMIDT (1999, [51]). From the modeling point of view, it is a priori not obvious
which parts and design parameters of the motor have important influence on the motor
dynamics and which can be neglected. Thus, a consistent and very general derivation of
the equations of motion is carried out. All simplifications are made under the aspect of
the order of magnitude of the coefficients by using a scaling analysis. Neither the mass
of the contact layer is neglected nor the layer is described as fibers. Non-dimensional
and scaled equations are characteristics of the model presented here. Often the a pri-
ori assumption is made, that the tangential contact stress does not influence the normal
contact stress. By the scaled equations it is possible to decide under which parameters
such an assumption is valid. The general framework of modeling allows to transfer
the modeling procedure for plate type USMs and for USMs with stators of cylindrical
shape, as well. Maxwells equations are taken into account on an over average level
which allows to compute and examine the influence of connected impedances. In con-
trary to other models, lower modes can also be considered which enables the model
to determine and to represent subharmonic vibration in the solution. This is important
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when investigating effects like squealing, which often occurs in the design stage and
causes lots of experiments to find appropriate stator and rotor design parameters.

The contact kinematics is formulated in a continuum mechanical setting to pro-
vide flexibility in the modeling. All equations are described with respect to a reference
frame moving with the traveling wave to simplify model analysis. Choosing appro-
priate mechanical and electric displacement shape functions, motor models of different
modeling depth can be derived using the principle of virtual power. Electrical quantities
like electric admittance or reactive power which are useful for the design of the power
electronics are introduced. Using this general framework, a simple motor model with
BERNOULLI-EULER kinematics for stator and rotor is derived giving a set of PDE’s
for stator, rotor, contact layer, piezoceramic and constraint equations for the stator-rotor
contact. Subsequently, a scaling is carried out to neglect terms of lower order. This
simple model can be used for example to investigate the influence of different design
parameters on torque-speed characteristics. Also, transient analysis may be carried out
by using appropriate contact algorithms. The objective of this modeling framework is
to derive more sophisticated dynamic motor models in order to get a deeper qualita-
tive understanding of motor dynamics and contact behavior in ultrasonic motors, and
to work towards motor optimization tools. Furthermore, complete motor models are
useful in the design of controllers for ultrasonic motors.

2.2.1 Outline of the USM modeling

In Sections 2.2.2 to 2.6 the general two-dimensional modeling framework is presented.
A simple motor model is then derived in Section 2.7 using this general framework. The
kinematics of stator and rotor motion is described both, in a spatial fixed frame of refer-
ence and in a reference frame moving with the traveling wave in the stator. Section 2.3
contains the notation and definitions used to describe the stator-rotor contact including
the sliding velocity and the switching conditions for the detection of changes in the fric-
tional contact states. The dynamics is treated in Section 2.4. First, the boundary value
problem if formulated for these special electro-mechanical systems. The principle of
virtual power is discussed together with the local balance laws. This is followed by the
formulation of the constitutive laws for stator, rotor, contact layer and piezoceramic.
The necessary electric quantities for the motor model are introduced in Section 2.6.
These are the electric current to the actor electrodes, the electric potential at the sen-
sor electrodes and other quantities such as the electric admittance and reactive power,
which are useful for the design of the power electronics. The simple motor model de-
rived in Section 2.7 is scaled with appropriate characteristic quantities to distinguish the
quantitative important terms in the equations of motion from higher order effects.
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2.2.2 Kinematics

First, the simplification of using a planar instead of a three dimensional motor model
is motivated. A thin contact layer (thickness ≈ 0.1 mm) is bonded on the rotor surface
at the outer radius ra as shown in Fig. 1.2. Line contact at the outer circumference of
stator and rotor is assumed, since for the width s of the contact layer s � ra holds.
Thus, only the displacements at the outer radius are of interest. According to (1.2) and
(1.1) the stator’s displacement at the outer radius can be written as

us(ra, ϕ, z, t) = −z ws,r(ra, ϕ, t) er −
z

ra
ws,ϕ(ra, ϕ, t) eϕ (2.1)

+ws(ra, ϕ, t) ez , ϕ ∈ [0, 2π]

with ws(ra, ϕ, t) = R(ra) cos(nsϕ − Ωt). Using the coordinate transformation x =
raϕ we get

us(x, z, t) = −z ws,r(x, t) er − z ws,x(x, t) eϕ + ws(x, t) ez , x ∈ [0, L] (2.2)

with the outer circumferential length L = 2πra, the transverse displacement

ws(x, t) = R(ra) cos(nskx− Ωt) (2.3)

and the fundamental wave number

k = 2π/L = 1/ra . (2.4)

The radial displacement component of the stator’s surface points in (2.2) is orthogonal
to the circumferencial direction and therefore contributes only to frictional dissipative
effects between stator and contact layer and not in driving the rotor. Hence, the stator
design and the eigenmodes in which the motor is driven should be choosen appropri-
ately to get only small radial displacement components. The magnitudes of the different
displacement components can be compared by substituting (2.3) into (2.2). This yields

max
ϕ∈[0,2π]

|us · er| =
hs

2
R′(ra) , max

ϕ∈[0,2π]
|us · eϕ| =

hs

2
R(ra) k , (2.5)

max
ϕ∈[0,2π]

|us · ez| = R(ra) .

If choosing the stator’s geometry and bending mode properly, the radial displacement
component max |us · er| in (2.6) is small compared to the axial and circumferential
ones. To this end, the number of nodal lines ns must be high enough and R′ must be
sufficiently low. Equation (2.2) then is reduced to

us(x, z, t) = −z ws,x(x, t) ex + ws(x, t) ez x ∈ [0, L] , (2.6)

with periodic boundary conditions at x = 0 and x = L. The x-axis can be identified
with the circumferential direction at the outer radius and the z-axis corresponds to the
axial direction of a rotary USM. The z-axis will also be called rotational axis.
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2.2.3 Material description in an inertial frame

In modeling rotary ultrasonic motors, the stator in the shape of a circular plate is substi-
tuted by a straight beam, according to the discussion leading to (2.6). Both linear and
rotary motors are therefore modeled as two-dimensional bodies. The motions χs of the
stator and χr of the rotor in material description with respect to an inertial reference
frame (O,E1,E2,E3), as depicted in Fig. 2.1, can be written as

xs = χs(X, t) = X+ us(X, t) = [Xi + usi(X, t)] Ei , X ∈ B0s (2.7)

and

xr = χr(X, t) = cr(t) +X+ ur(X, t) (2.8)

= [cri(t) +Xi + uri(X, t)] Ei , X ∈ B0r ,

where the unit vectors E1,E3 span the motor plane and E2 is perpendicular to them.
In case of the rotary USM the circumferential direction coincides with X1-axis and the
rotational axis is identified with the X3-axis of the reference frame in Fig. 2.1. The

stator

rotorXr

Xs

B0r

B0s

O

E3, X3

E1, X1

cr
ur

xr

Xr

us

xs

O

E3, X3

E1, X1

Br

Bs

Figure 2.1: Motor model in the refer-
ence configuration X = χ(X, t0)

Figure 2.2: Motor model in the mo-
mentary configuration for t > t0

translational rigid body motion of the rotor and the displacement fields of stator and
rotor are described by cr(t) and ur(X, t), respectively. For the sake of simplicity,
u(X, t) instead of u(X1, X2, X3, t) is used to indicate the material coordinates. In the
reference configuration, shown in Fig. 2.1, the stator and rotor occupy the volumes B0s,
B0r and in the momentary configuration, as illustrated in Fig. 2.9, the volumes Bs, Br

respectively. If necessary, points of stator or rotor are designated by

Xs , ∀X ∈ B0s , Xr , ∀X ∈ B0r.

For the planar motor model, the periodicity condition

u(X1, X2, X3, t) = u(X1 + L,X2, X3, t) , X1 ∈ [−∞,∞] (2.9)

is assumed, where L can be regarded as the circumferential length for example at the
outer radius of a rotary USM (see Section 2.2.2). Throughout the paper it is assumed
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that this periodicity also holds for linear motors. The vibration amplitudes in almost all
ultrasonic traveling wave motors are small compared to the wavelength of the traveling
wave and to the geometric dimensions of both, stator and rotor. Therefore, the assump-
tions of small displacements u and small deformations Gradu(X, t) are applied. For
the linearized strain tensor S of stator and rotor, one obtains

S =
1

2

[

Gradu(X, t) + GradT u(X, t)
]

. (2.10)

2.2.4 Material description in a moving reference frame

A traveling wave such as cos(nsksX1 − Ωt) is excited in the stator. Here Ω is the
circular excitation frequency, ks the fundamental wave number and ns the number of
the nodal lines in the stator. Then, also the steady state contact zones between stator
and rotor travel with velocity vw = Ω/(nsks). From the modeling and model analy-
sis point of view it is convenient to introduce a new reference frame, (Õ, Ẽ1, Ẽ2, Ẽ3),
with coordinates Y1, Y2, Y3 moving with the traveling wave in the stator (see Fig. 2.3).
In this reference frame, the traveling wave degenerates into a standing wave. A co-

Xr

cr

Xs

O

E3, X3

E1, X1

b(t) Õ

Ẽ3, Y3

Ẽ1, Y1

Yr

Ys
B0s

B0r

Figure 2.3: Configurations of stator and rotor with respect to inertial and moving refer-
ence frames

ordinate transformation then gives cos(nsksX1 − Ωt) = cos(nsksY1). Under some
simplifying assumptions, stationary motor operations, i.e. for constant rotational speed
and stationary contact states, this leads to a time independent contact problem. The
reduction of the dynamic contact problem to a time independent contact problem in the
moving reference frame may be a good approximation in the vicinity of the resonance
of the system (see Fig. 1.12). This presuposes a corresponding excitation of the stator
vibrations, which will be discussed in more detail in Section 2.6.1. The two reference
frames are related by Ei = Ẽi, since these undergo only an translational shift. The
points of the stator Xs, and of the rotor Xr, transform according to

Xs = b(t) +Ys ⇔ Xsi = bi(t) + Ysi (2.11)

Xr + cr(t) = b(t) +Yr ⇔ Xri + cri(t) = bi(t) + Yri . (2.12)
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Inserting the transformation relations (2.11) and (2.12) in the displacement functions u
gives

us(Xs, t) = us(b+Ys, t) =: ũs(Ys, t) (2.13)

ur(Xr, t) = ur(b− cr +Yr, t) =: ũr(Yr, t) , (2.14)

with

Ys(t) = Xs − b(t) and Yr(t) = Xr − [b(t)− cr(t)] . (2.15)

The periodicity condition (2.9) in the inertial reference frame also holds in the moving
reference frame (O, Ẽ1, Ẽ2, Ẽ3)

ũ(Y1, Y2, Y3, t) = ũ(Y1 + L, Y2, Y3, t) . (2.16)

The strain tensor (2.10) becomes

S̃ =
1

2

[

Grad ũ(Y, t) + GradT ũ(Y, t)
]

. (2.17)

2.2.5 Time derivatives and virtual velocities

Next, the velocities and accelerations of stator and rotor points must be calculated. The
abbreviation ˙(·) ≡ d

dt is used to indicate the total time derivative with respect to the
inertial reference frame (0,E1,E2,E3). It follows that

vs(Xs, t) = χ̇s(Xs, t) = u̇s(Xs, t) (2.18)

v̇s(Xs, t) = χ̈s(Xs, t) = üs(Xs, t) (2.19)

for the stator and

vr(Xr, t) = χ̇r(Xr , t) = ċr + u̇s(Xr, t) (2.20)

v̇r(Xr, t) = χ̈r(Xr , t) = c̈r + üs(Xr, t) (2.21)

for the rotor. For the material time derivatives of the displacement fields expressed
in terms of the moving reference frame coordinates, the chain rule is applied and the
partial time derivative with respect to the inertial reference frame is indicated by the

symbol
◦

(·)
.
= ∂

∂t . It follows

ṽs =
◦

ũs −Grad ũs · ḃ (2.22)

˙̃vs =
◦◦

ũs −2Grad
◦

ũs ·ḃ+Grad
[

Grad ũs · ḃ
]

· ḃ−Grad ũs · b̈ (2.23)
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and

ṽr = ċr+
◦

ũr −Grad ũr ·
(

ḃ− ċr

)

(2.24)

˙̃vr = c̈r+
◦◦

ũr −2Grad
◦

ũr ·
[

ḃ− ċr

]

+Grad
[

Grad ũr ·
[

ḃ− ċr

]]

·
(

ḃ− ċr

)

−Grad ũs ·
[

b̈− c̈r

]

(2.25)

for stator and rotor, respectively. Using the velocity expressions given above, the strain

rate tensor ˙̃
S can be expressed as

˙̃
S = 1

2

[

Grad ṽ +GradT ṽ
]

. (2.26)

The equations of motion are derived using the principle of virtual power. To this end,
the virtual velocities are needed

δṽs = δ
◦

ũs
(2.27)

δṽr = δċr + δ
◦

ũs +Grad ũr · δċr . (2.28)

Note that the variation of ḃ is zero since b is the prescribed motion of the moving
reference frame relative to the inertial reference frame. The virtual strain rate tensor

δ ˙̃S = 1
2

[

Grad δṽ +GradT δṽ
]

(2.29)

is needed for the formulation of the principle of virtual power in the often-used short
form.

2.3 Contact formulation

The vibration amplitudes in ultrasonic motors are in the range of microns and the wave-
lengths in stators are typically in the range of millimeters. Several experiments, as
carried out by FLYNN (1997, [12]), or ENDO & SASAKI (1986, [9]), for example, show
that the surface finishing of both stator and rotor or contact layer, in addition to the
hardness of the materials, can drastically influence the motor performance. ODEN &
MARTINS (1985, [39]) note that, depending on the method of surface finishing, the
peak height of surface asperities may vary between 0.05µm to 50µm while the spacing
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between them ranges from 0.5µm-50 mm resulting in an average slope of the asperities
usually of the order 5◦ − 10◦. It is therefore not surprising that the surface roughness,
described for example as ’root mean square’ in ODEN & MARTINS (1985, [39]) or
JOHNSON (1985, [27]), has to be low enough to ensure that only the wave crests of the
traveling waves are in contact with the rotor. The motor performance would otherwise
seriously deteriorate since the velocity profile of the valley of the traveling wave is op-
posite to that of the wave crest (see Fig. 1.6). The contact surfaces are therefore lapped
flat and then polished with appropriate lapping paper. In FLYNN (1997, [12]), averaged
surface roughnesses in the order of 10−2 µm of 8mm-diameter motors operating at vi-
bration amplitudes in the micron range were obtained after lapping and polishing the
surfaces. MAENO & BOGY (1992, [36]) mentioned a maximum surface roughness be-
tween 50-100 nm for a Canon ultrasonic motor whereas HONDA & KATO (1993, [23]),
state surface roughnesses of 600 nm for a rotor and 50 nm for a stator.
Depending on the modeling objective one has to choose appropriate contact models
and appropriate contact formulations from the numerous options available in contact
mechanics. Since the focus is on deformation effects in the stator, rotor and the contact
layer (see Fig. 1.2) and on the phenomenology of motor dynamics, a continuum based
approach for the contact formulation is chosen, according to WRIGGERS (1995, [62]),
or ODEN & MARTINS (1985, [39]), for example. This method of modeling allows so
called conformal contact (see JOHNSON (1985, [27]), as is the case in many USMs
and its formulation is general enough to derive motor models for a variety of motor
designs. As for the contact model, a simple non-penetration condition is used for the
normal contact and COULOMB’s law with stick-slip transitions is used to account for
the tangential contact. Reasons to choose these contact laws are stated below. Other,
more sophisticated contact models, such as nonlinear penetration laws for high-pressure
contact are mentioned in WRIGGERS (1995, [62]) or ODEN & MARTINS (1985, [39]).
Possible other friction mechanisms, such as hydrodynamic bearing effects proposed in
MAENO & BOGY (1991, [35]), due to the high frequency motion of surface particles
and the small gap between non-contacting surface points of stator and rotor, are not
considered. Also, small scale frictional mechanisms as micro-impacts between surface
asperities, as suggested by REHBEIN & WALLASCHEK (1998, [42]), to explain the de-
crease of the ’apparent’ coefficient of friction at high frequencies (ultrasonic range) can
only be considered by adjusting the macroscopic coefficient of friction. To this end, in
a first approximation the surface properties are assumed, including wear effects, to be
contained both, in the stiffness of the contact layer and in the friction coefficient.

2.3.1 Contact kinematics

The objective of this section is the formulation and definition of contact kinematic quan-
tities, such as the gap function and the relative velocity of two contacting surface points.
In the following, all quantities and variables refering to the surface of stator or rotor are
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denoted by a hat symbol (̂·). For each rotor material point X̂r of the rotor surface, a sta-

E1

E3

stator
surface
∂Bsc

rotor
surface
∂Brc

X̂r

d

X̂∗
sgN(Xr , t)

n∗

a∗1

X̂s

X̂s

xr(X̂, t)

xs(X̂
∗, t)

Figure 2.4: Definition of the contact gap

tor surface point X̂∗
s is associated, which can be determined by minimizing the distance

d(X̂r , X̂s, t) (see Fig. 2.4) between surface points

d(X̂r , X̂
∗
s , t) = min

X̂s∈∂Bsc

‖ xr(X̂r , t)− xs(X̂s, t) ‖ . (2.30)

The pair (X̂r , X̂
∗
s) represents a contact pair and it should be noted that the stator surface

point X̂∗
s(X̂r, t) is a function of the rotor contact point X̂r and time and is found by

solving the necessary condition for a minimum

∂

∂X̂s

d(X̂r, X̂s, t)
∣

∣

X̂s=X̂∗
s
= 0 . (2.31)

All field variables refering to the contact point X̂∗
s will be denoted by a star, (·)∗. A

local coordinate system is defined at the stator surface point X̂∗
s with the tangent unit

vectors

a∗1 =
∂x̂s(X̂

∗
s , t)

∂X
≈ E1 , a∗2 = E2 (2.32)

and the outside normal vector

n∗ =
a∗x × a∗y

‖ a∗x × a∗y ‖
≈ E3 , (2.33)

according to the assumptions of small displacements and planar motor models. If re-
ferring to the contact kinematics or the contact forces, we will speak of the normal and
tangential direction n∗ and a∗1, respectively. The gap function can then be defined as

gN (X̂r, t) := [xr(X̂r , t)− xs(X̂
∗
s , t)] · n

∗ = [ur(X̂r, t)− us(X̂
∗
s , t)] · n

∗

= [ûr − û∗
s ] · n

∗ . (2.34)
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The gap function can be written in terms of the moving reference coordinates

g̃N (Yr, t) = [ˆ̃ur − ˆ̃u
∗

s ] · n
∗ (2.35)

with

separation : g̃n > 0 , penetration : g̃N < 0 .

The gap velocity follows as

ġN = [v̂r − v̂∗
s ] · n

∗ (2.36)

in terms of coordinates with respect to the interial reference frame and as

˙̃gN (Ŷ, t) = [ˆ̃vr − ˆ̃v
∗

s ] · n
∗ (2.37)

in terms of coordinates of the moving reference frame. The variation of the gap velocity
leads to

δ ˙̃gN (Ŷ, t) = [δ ˆ̃vr − δ ˆ̃v
∗

s ] · n
∗ . (2.38)

Substituting (2.22) and (2.24) into (2.37) yields

˙̃gN =

[

ċr+
◦

ˆ̃ur −Grad ˆ̃ur ·
(

ḃ− ċr

)

−
◦

ˆ̃us +Grad ˆ̃us · ḃ

]

·n∗ . (2.39)

The virtual gap velocity is needed for the principle of virtual velocity which can be
written as

δ ˙̃gN =

[

δċr + δ
◦

ˆ̃ur +Grad ˆ̃ur · δċr − δ
◦

ˆ̃us

]

·n∗ . (2.40)

Here, the variation δḃ = 0 since the motion of the moving reference frame in Fig. 2.3
(see also Eqn. (2.11) and (2.12)) is prescribed. Since a COULOMB friction law is used,
the kinematics of the tangential contact is written at the velocity level, yielding the
relative velocity

ˆ̃vrel = ˙̃gT a∗x := [ṽs(Y
∗
s , t)− ṽr(Yr, t)] · a∗x (2.41)

and the virtual relative velocity

δ ˆ̃vrel = δ ˙̃gT a∗x :=
[

δ ˆ̃v
∗

s − δ ˆ̃vr

]

· a∗x . (2.42)

Note, that according to definition (2.41), the relative velocity is positive for stator tan-
gential velocities exceeding rotor tangential velocities, i.e. for a driven rotor surface
point.
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2.3.2 Contact states: Normal and tangential contact

The contact stress at the stator surface, ˆ̃T
s

, is divided into normal and tangential com-
ponents, according to the local coordinate system shown in Fig. 2.4

ˆ̃
T

s∗

= ˆ̃
T

s∗

N + ˆ̃
T

s∗

T = T̃Nn∗ + T̃Ta
∗
1 . (2.43)

TN and TT will be called the normal and tangential contact stress, respectively. The
following equation holds at a contact point

ˆ̃
T

r

= − ˆ̃
T

s∗

, (2.44)

where ˆ̃
T

r

is the contact stress at the rotor surface. It is distinguished between con-
tact and non-contact states by using the gap function g̃N and the normal contact stress
T̃N . Instead of a material contact law for the normal contact, i.e. a functional relation

between normal contact stress and gap function, ˆ̃
T = f(g̃N) (see WRIGGERS (1995,

[62]) or ODEN & MARTINS (1985, [39]), a non-penetration condition is chosen

no contact :
(

g̃N > 0 ∧ T̃N = 0
)

contact :
(

g̃N = 0 ∧ T̃N ≤ 0
)

.
(2.45)

This geometric contact formulation is motivated by the order of magnitude of the nor-
mal contact stress between stator and rotor surfaces and the averaged surface roughness
of the contact surfaces. The normal contact stress usually is in the range of only several
N/mm2 in USMs, and the averaged surface roughness is assumed to be at least one or-
der of magnitude smaller than the vibration amplitude in the stator. This indicates that
a small penetration only can be assumed between the centerlines (see Johnson (1985,
[27] pp. 406)) of the rough surfaces of stator and rotor (small compared to the stator
vibration amplitude). Thus, a geometric non-penetration condition seems to be valid.

For tangential contact COULOMB’s law with identical coefficients of friction and
stiction is assumed. It should be noted, that this is merely an assumption and is not ev-
ident from experimental results with USM or appropriate polymer-metal contact pairs.
REHBEIN & WALLASCHEK (1998, ([42]), for example, measured a difference between
sticking coefficients µstick and apparent coefficients of friction, µslip, for sliding con-
tact carrying out various polymer-metal contact experiments at high frequency. LE

MOAL et al. (1997, [32]), conducted tribological experiments with the Shinsei USM.
They measured a sliding friction coefficient increasing with the relative sliding velocity
to a limit friction coefficient. No details about the experiments were however given.
WRIGGERS (1995, [62]), distinguish between elastic sticking and plastic sliding. The
tangential slip gT is split into an elastic part geT and a plastic (slip) part gsT . The elastic
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part describes the reversible micro-displacements of the asperities during sticking and
results in a constitutive relation of the type

T̃T = cT g̃eT

between the tangential contact stress and the tangential displacement where cT is the
tangential contact stiffness between asperities.

As outlined above, in USM applications the contact surfaces are finished to obtain
an averaged surface roughness much smaller than the vibration amplitude. Also, the
averaged slope of asperities usually is of the order of 5◦−10◦ only. This provides a first
explanation for the high tangential contact stiffness cT , since the asperities may undergo
very small tangential displacements only. In the limit case, for cT → ∞, COULOMB’s
law results. ODEN & MARTINS (1985, [39] p. 530) state that the macroscopically
observed apparent dependence of the coefficient of friction on relative velocity may,
at least in certain cases, also be explained by a more refined modeling, e.g. by taking
into account oscillations in the normal direction. It must however be noted that their
statements are based on experiments with metal-metal contact. There seems to be no
reason not to use COULOMB’s law in the form

| T̃T |≤ µ T̃n with







if | T̃T |< µ T̃n then ˙̃gT = 0 : stick

if | T̃T |= µ T̃n then ˙̃gT 6= 0 : slip
. (2.46)

Condition ˙̃gT = 0 is a tangential constraint equation which has to be fulfilled for stick-
ing. Also smoothed friction laws, such as proposed by ODEN & MARTINS (1985,
[39]) for example, or stated in WRIGGERS (1995, [62]), may be applied. In some cases
smoothed friction laws are used to simplify computation.

2.3.3 Switching conditions: Detecting temporal changes of the contact zones

In the dynamic stator-rotor contact problem of USMs, the surface points run through a
series of different contact states with a changing number of contact constraints. Firstly,
it is assumed that the system state as known, so that also the contact state at time t0
is given. Let there be a total of I contact zones ∂B̃ci, i ∈ {1, . . . , I} at time t0
and consider e.g. the i-th contact zone ∂B̃ci, as illustrated in Fig. 2.5. Additionally,
it is assumed that three subzones exist at time t0 with one sticking contact subzone,
B̃stick2
ci , and two slipping contact subzones, B̃slip1

ci , B̃slip3

ci . At time t > t0 it must
be checked whether new contact zones occur, ∂B̃c(I+1), or old ones grow, shrink or
disappear. The switching conditions for normal contact between stator and rotor are:
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stator
surface ∂Bs

rotor
surface ∂Br

∂B̃ci(t0)

∂B̃slip3

ci ∂B̃stick2
ci ∂B̃slip1

ci

g̃N > 0

Figure 2.5: Example of a contact zone, Bci, between stator and rotor

contact: g̃N = 0 ∧ T̃N < 0 ∀ Ŷr ∈ ∂B̃ci(t0)
⇓ ⇓

switching condition: check whether for t > t0 ∃ Ŷr ∈ ∂B̃ci(t0)

with T̃N(Ŷr, t) = 0
⇓ ⇓

no contact: g̃N > 0 ∧ T̃N = 0 ∀ Ŷr ∈ ∂B̃ci(t0) \ ∂B̃ci(t) .

Here g̃N = 0 is a constraint equation which has to be released (g̃N > 0) for all con-
tact points at which the switching condition T̃N = 0 (see the box), holds. The reverse
switching condition, as stated below, indicates if two surface points come into contact
at time t > t0:

no contact: g̃N > 0 ∧ T̃N = 0 ∀ Ŷr ∈ ∂B̃r \ ∪I
i=1∂B̃ci(t0)

⇓ ⇓

switching condition: check whether for t > t0 ∃ Ŷr ∈ ∂B̃r \ ∪I
i=1∂B̃ci(t0)

with g̃N(Ŷr, t) = 0
⇓ ⇓

contact: g̃N = 0 ∧ T̃N < 0 ∀ Ŷr ∈ ∪I+J
i=1 ∂B̃ci(t) ,

for J new contact zones emerging at t > t0. Different contact states, with alternating
stick and slip subzones may occure in each contact zone. To account for a change from
stick to slip states between two contact surface points, the tangential stress | T̃T | has
to reach the sliding friction stress µ T̃N . The procedure to detect a change of tangential
contact states can therefore be written as:
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stick: ˙̃gT = 0 ∧ | T̃T |< µ T̃N ∀ Ŷr ∈ ∂B̃
stickj

ci (t0)
⇓ ⇓

switching: check whether for t > t0 ∃ Ŷr ∈ ∂B̃
stickj

ci (t0)

condition with | T̃T | −µ T̃N = 0
⇓ ⇓

slip: ˙̃gT 6= 0 ∧ | T̃T |= µ T̃N ∀ Ŷr ∈ ∂B̃
stickj

ci (t0) \ ∂B̃
stickj

ci (t)

In a similar manner, the reverse formulation indicating the transition from slip to stick,
can be stated as follows:

slip: ˙̃gT 6= 0 ∧ | T̃T |= µ T̃n ∀ Ŷr ∈ ∂B̃
slipj

ci (t0)
⇓ ⇓

switching: check whether for t > t0 ∃ Ŷr ∈ ∂B̃
slipj

ci (t0)

condition with ˙̃gT (Ŷr, t) = 0
⇓ ⇓

stick: ˙̃gT = 0 ∧ | TT |< µTn ; ∀ Ŷr ∈ ∂B̃
slipj

ci (t0) \ ∂B̃
slipj

ci (t)

As mentioned above, frictional problems are evolutionary, the state at time t follows
from the history of frictional states beginning at time t0. To solve a contact problem at
hand, an initial contact configuration must be known (e.g. if the motor is at rest, there
is contact over the complete stator surface) and the contact algorithm needs to keep
track of kinematic (g̃N = 0, ˙̃gT = 0) and dynamic (T̃N = 0, | T̃T | −µ T̃N = 0)
switching conditions of stick-slip and contact forces. At each time increment ∆t the
switching conditions have to be checked and contact constraints have to be set or re-
leased. Therefore, a numerical contact search algorithm for the stator-rotor contact is
needed. Such an algorithm must determine unknown contact zones, ∂B̃ci, and unknown
contact subzones, ∂B̃stick

ci , ∂B̃slip
ci , as well as temporal changes in the contact zones.

2.4 Dynamics

The principle of virtual power is used to derive the equations of motion of USMs.
It provides an easy way to account on one hand for special kinematic fields, such as
BERNOULLI-EULER kinematics or the kinematics of the friction layer. On the other
hand the electromechanical boundary conditions are obtained as a by-product without
additional effort. Starting from the local balance laws and the appropriate boundary
conditions of the quasi-electrostatic approximation of VOIGT’s theory of linear piezo-
electricity, the principle of virtual power for electromechanical systems is formulated,
incorporating mechanical contact contributions. The boundary value problem is stated
in Section 2.4.1 and in Section 2.4.2 the principle of virtual power is given.
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2.4.1 Problem statement in local form

Without loss of generality the equations of the quasi-electrostatic approximation of
VOIGT’s theory of linear piezoelectricity (see MAUGIN (1988, [13], p.218)) for the
description in the material framework and pp. 222 for the linear theory) are written
in coordinates of the moving reference frame (Õ, Ẽ1, Ẽ2, Ẽ3) (see Figure 2.3). When
using different (inertial) reference frames it is neccessary to distinguish between the
reference frame a variable is described in and the reference frame a variable’s deriva-
tive is derived with respect to (see Section 2.2.5). The independent variables (Y, t) in
the field description will be droped in the remainder of this section. The three balance
laws used in modeling ultrasonic motors are the balance of momentum (see BECKER

& BÜRGER (1975, [2]))

ρ ˙̃v = Div T̃ , Y ∈ B̃ , (2.47)

the balance of charges, refered also as COULOMB’s law (see JACKSON (1975, [26] pp.
14 and 218))

Div D̃ = ρ̃free ≡ 0 , Y ∈ B̃sp . (2.48)

where D̃ is the electric displacement in C/mm2 and ρ̃free in C/mm3 is the charge
density of the free charges which is equal to zero in an ideal dielectric media and the
continuity law for free charges and currents (see JACKSON (1975, [26] p. 218))

Div J+
∂ρfree
∂t

= 0 , (2.49)

with the electric current density J of free charges in C/(smm2). Equation (2.49) is
written with respect to the inertial reference frame (without tilde) since the electric cur-
rent, needed to calculate the input electric power, is determined by appropriate surface
integration over the electrodes, which are fixed in the inertial reference frame. The us-
age of (2.49) is explained in detail in Section 2.6.2.

REMARK: The electromagnetical balance laws are written in the rationalized MKSA
(meter, kilogram, seconds, ampere) system (see JACKSON (1975, [26] p. 818)). The
electric displacement is a calculative quantity, representing an abbreviation of D̃ :=
ε0 Ẽ+ P̃+ . . ., where ε0 is the dielectric constant in a vacuum and P̃ is the polarization
vector, describing the macroscopically averaged effect of electric field induced separa-
tion (displacement) of the centers of positive and negative charges in a crystal lattice.
This effect is also called the electric dipole effect. Higher order electric effects, such as
electric quadrupoles, are completely negligible in most materials (see JACKSON (1975,
[26], p.232)). Thus, D̃ := ε0 Ẽ + P̃ is in excellent agreement with physics for almost
all materials. Note that in the microscopic description of MAXWELL’s equations, i.e.
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without an spatial averaging process, all charges are considered individually. In such
a description, no electric displacement and polarization vector occurs. The only fields
are then the microscopic electric field, magnetic field, volume charge distribution and
electric current density. As a result of the spatial averaging process, ”molecules can be
viewed as a collection of point multipoles located at one fixed point in the molecule”.
By this averaging process, the polarization vector is introduced. And, for the sake of
simplicity in the representation of the formulas and description of charge boundary con-
ditions (i.e. Dn = −σ, where σ is the surface charge density) a mathematical quantity,
the electric displacement D, is defined as stated above. The derivation of the macro-
scopic MAXWELL equations from the microscopic equations can be found in JACKSON

(1975, [26], pp. 226).
Material laws can be formulated either using the polarization vector, as P̃(Ẽ) for exam-
ple, or the electric displacement D̃(Ẽ). It is also clear that inverse laws, like Ẽ(D̃), can
be formulated. Due to the reasons stated above, it is common to describe the material
laws as relations between electric displacement and electric field.

The strain-displacement relation (2.17) and the electric field-potential relation for
quasi-static electric fields can be written as

S̃ =
1

2

[

Grad ũ+GradT ũ
]

, Y ∈ B̃ (2.50)

Ẽ = −Grad Φ̃ , Y ∈ B̃sp . (2.51)

Two types of mechanical boundary conditions may exist. Let the displacement be spec-
ified on section ∂Bu, while surface tractions are specified on ∂BT :

ũ = ˆ̃u , Y ∈ ∂B̃u , (2.52)

T̃ · ñ = ˆ̃
T , Y ∈ ∂B̃T . (2.53)

The prescribed quantities are the stress vector ˆ̃
T and the displacement ˆ̃u. The vector

ñ is the outer normal vector of the surface considered. Due to the nature of the con-
tact problem at hand, intermediate conditions between stator and rotor/slider have been
formulated in Section 2.3.2, (2.45), (2.46), and (2.44), which will be stated again here:

ˆ̃
T

r

= − ˆ̃
T

s∗

, Y ∈ ∂B̃ci ,

g̃N = 0 , Y ∈ ∂B̃ci , i ∈ {1, . . . , I} ,

˙̃gT = 0 , Y ∈ ∂B̃stick
ci , i ∈ {1, . . . , I} .

(2.54)

The surface of the piezoceramic is covered by electrodes and the electric potential is
specified by

Φ̃ = ˆ̃Φ , Y ∈ ∂B̃Φ , (2.55)
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where the term ˆ̃Φ describes a given time dependent spatial distribution of the electric
potential at the surface electrodes, applied to excite vibrations modes in the stator of an
USM.

REMARK: It is possible to justify the use of the quasi-electrostatic approximation
(2.49) and (2.51) of Maxwell’s equations through some simple scaling arguments. The
quasi-electrostatic approximation neglects the coupling of the electric and magnetic
fields, Ẽ and B̃, respectively, and considers this coupling as a second order effect. One
line of argument to neglect the electromagnetic coupling in many piezoceramic applica-
tions is based on the comparison of the wavelength λem of electromagnetic waves with
that of mechanical waves, λmech, at a common excitation frequency Ω of a specified
piezoelectric boundary-value problem. Consider the phase velocity c0 of electromag-
netic waves in vacuum, the phase velocity cem of electromagnetic waves in piezoce-
ramic nondispersive matter and cmech as the phase velocity of mechanical waves in the
same matter. The relation c0 > cem � cmech holds and from it follows kem � kmech

for the wave numbers or λem � λmech for the wavelength, respectively. The length
L may be used as the characteristic length scale of a motor. Considering mechanical
waves of the order λmech/L ≈ 0.1, it follows that λem/L � 1. This allows for a
quasi-static approximation. For a proof see MAUGIN (1988, [13] p. 235), for example.

Finally, material laws relating stress T̃ and electric field Ẽ to strain S̃ and electric
displacement D̃ are required. Since isothermal conditions are assumed in the reminder
of the paper, terms involving temperature and entropy are neglected, i.e. the thermody-
namical backround is ignored. From the modeling point of view, it is more convenient
to choose (T̃, Ẽ) as dependent variables instead of (T̃, D̃) since this simplifies the
modeling procedure, as explained in the next section. The relations

T̃(S̃, D̃) , Ẽ(S̃, D̃) Y ∈ B̃sp (2.56)

are used for a ceramic material. A simple elastic material law is assumed for the stator
and rotor substrate occupying the volumes B̃s \ B̃sp, B̃r \ B̃rc, respectively

T̃(S̃) , Y ∈
(

B̃s \ B̃sp

)

∪
(

B̃r \ B̃rc

)

, (2.57)

while a visco-elastic material law

T̃(S̃, ˙̃S) , Y ∈ B̃rc (2.58)

is assumed for the rotor contact layer. The detailed forms of the above material laws are
specified in Section 2.5. The problem formulation given above contains the four field
variables, T̃, S̃(ṽ), Ẽ and D̃. In the next section the principle of virtual power is for-

mulated by choosing the velocity ṽ and the electric displacement rate ˙̃
D as independent

variables.
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2.4.2 Principle of virtual power (PvP)

The pairs (T̃, ṽ) and (Ẽ, ˙̃D) represent the conjugate field variables of mechanical and
electrical power, respectively. A weak form of the local balance laws in Section 2.4.1

is derived in a formal procedure by using the pairs (T̃, δṽ) and (Ẽ, δ ˙̃
D). To this end,

both, the balance of momentum (2.47) and the electric field-voltage relation (2.51) are
multiplied with their virtual counterparts, the virtual velocity δṽ and virtual electric

displacement rate δ ˙̃
D, respectively. Applying the product rule and the GAUSS theorem

one gets

Pinertia + Pinner + Pcontact = Pmech + Pelec (2.59)

with

Pinertia =

∫

B̃

ρ ˙̃v · δṽ dṼ , (2.60)

Pinner =

∫

B̃

T̃ :δ ˙̃S dṼ +

∫

B̃sP

Ẽ · δ ˙̃
D dṼ , (2.61)

Pcontact = −

∫

∂B̃r
c

T̃N δ ˙̃gN dÃ+

∫

∂B̃r
c

T̃T δ ˙̃gT dÃ , (2.62)

Pmech =

∫

∂B̃s

ˆ̃
T · δ ˆ̃v dÃ , Pelec =

∫

∂B̃Φ

ˆ̃Φ ñ · δ
˙̂
D̃ dÃ . (2.63)

Equation (2.59) will now be understood as a fundamental principle, the principle of
virtual power (PvP).

The term T̃ : δ ˙̃S in the virtual power of the inner mechanical forces, Pinner , is ob-

tained from the equality T̃ :Grad δṽ = T̃ :δ ˙̃S, by applying the identity T̃ :Grad δṽ ≡
T̃T :GradT δṽ and using the symmetry of the stress tensor T̃ = T̃T .

The virtual power of the mechanical forces acting on the stator and the rotor is
broken up into the virtual power of the prescribed forces, Pmech, acting upon the stator
and into the virtual power of contact forces, Pcontact, acting between stator and rotor.
The virtual power of the contact forces in (2.62) is derived by separating stator and rotor
and applying the contact forces at both contact regions:

Pcontact =

∫

∂B̃sc

ˆ̃
T

s∗

· δ ˆ̃v
∗

s dÃ+

∫

∂B̃rc

ˆ̃
T

r

· δ ˆ̃vr dÃ . (2.64)
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Substituting (2.44) and (2.43) into (2.64), rearranging the terms and substituting the
virtual velocity terms with (2.38) and (2.41), results in (2.62).

Note that, if contact occurs, δ ˙̃gN = 0 holds in the contact zone and thus ˙̃gN = 0
establishes a kinematical constraint to be fullfilled. Similarly, if sticking occurs within
a contact subzone, δ ˙̃gT = 0 holds, yielding the tangential constraint condition ˙̃gT = 0.
These constraint conditions follow from (2.40) and (2.42).

The relation δ ˙̃
D · ñ = −δ ˙̃σ holds for the term Pelec, where σ̃ is the surface charge

density. The minus sign stems from the convention of orientation of electric quantities

at system interfaces. The virtual electric displacement rate satisfies δ ˙̃
D = δ

◦

D̃ as in
(2.27).

REMARK: It is possible to formulate other equivalent principles. A principle which
is called principle of mixed virtual power, for example, uses the pairs (T̃, δṽ) and

(D̃, δ ˙̃E). The term mixed indicates that displacement quantities δṽ and force quantities

δ ˙̃E are used as independent variables. The weak form for the mixed PvP is obtained
by multiplying the electric field-potential relation (2.51), with the virtual displacement
rate, and the balance of charges (2.48) with the virtual electric potential. Some terms
change in this mixed PvP and are indicated in Tab. 2.1. Depending on the type of
principle, the appropriate material laws have to be used as indicated in the table.

Principle Pinner Pelec Boundary Compatibility Material
Constraint Conditions Law

PvP
�
Bsp

�
T̃ : δ

˙̃
S + Ẽ · δ

˙̃
D � dV

�
∂B0Φ

ˆ̃
Φ ñ · δ

˙̂
D̃ dA

ˆ̃
D · ñ = −σ̃ , ∂Bσ Div D̃ = 0 T̃(S̃, D̃)

ũ = ˆ̃u , ∂Bũ rotT rotũ = 0 E(S̃, D̃)

Mixed
�
Bsp

�
T̃ : δ

˙̃
S +

˙̃
D · δẼ � dV

�
∂Bσ

˙̃
D · ñ δΦ̃ dA Φ = Φ̂ , ∂BΦ Ẽ = −gradϕ̃ T̃(S̃, Ẽ)

PvP ũ = ˆ̃u , ∂Bũ rotT rotũ = 0 D(S̃, Ẽ)

Compl.
�
Bsp

�
˙̃
S : δT + Ḋ · δE � dV

�
∂Bσ

Ḋ · n δΦ dA Φ = Φ̂ , ∂BΦ Ẽ = −gradϕ̃ S̃(T̃, Ẽ)

PvP T̃ · ñ =
ˆ̃
T , ∂B

T̃
Div T̃ = 0 D(T̃, Ẽ)

Table 2.1: Different forms of the principle of virtual power
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There are two fundamental electric boundary conditions, portions ∂B̃Φ on which the

electric potential ˆ̃Φ is specified and portions ∂B̃σ on which a surface charge σ̃ is speci-
fied. In general, boundary conditions may be of a mixed type with electric potential and
surface charge interrelated by a load impedance. In ultrasonic motors there exist almost
only regions were the electric potential is specified. The sensor electrodes would be re-
gions on which the surface charge is prescribed, because the sensor potential normally
is measured with high-impedance circuits and neglectable current. In the case of ne-
glectable currents the surface charge remains constant, while the electric potential will
vary. However, the area of the sensor electrodes is small compared to the surface area
where the electric potential is prescribed. Therefore, the sensor electrode part in USMs
is neglected. If the PvP is applied, the prescribed electric potential enters the principle
through the term Pelec in (2.63). On the other hand, if the mixed PvP is applied, the
prescribed electric potential has to be considered as a boundary constraint. In struc-
tural dynamics, where strutural members like beams, plates or shells are used and the
polarization is in the thickness direction, the PvP has some advantage over the Mixed
PvP. This is due to the fact, that, after carrying out the integration over the thickness of
the beam or plate model in the PvP, the specified electric potential enters the PvP as a
right-hand side inhomogenity in the equations of motion, whereas in the Mixed PvP the
specified electric potential has to be considered as an additional constraint, or must be
incorporated into the principle via LAGRANGE multipliers. Note, that a complementary
principle of virtual power can only be formulated in statics and not in dynamics, since
the velocity in the inertia term enters the principle as an independent variable.

REMARK: When using the PvP to derive equations of motion, displacement fields
must be chosen so as to satisfy exactly, or in a good approximation, the mechanical com-
patibility condition rotT rot ũ = 0 and the electric compatibility condition Div D̃ = 0,
see Tab. 2.1.

2.5 Material Laws

2.5.1 Stator and piezoceramic

Stators in ultrasonic motors can be made up completely or partially of ceramics. In the
latter, the ceramic is bonded to the metallic stator substrate. Making the stator entirely
out of ceramics garantees high energy density with respect to the motor volume and
avoids the bonding of ceramics. However, it also results in higher geometric misalign-
ment due to the special manufacturing process of piezoceramic material. The excitation
of a harmonic traveling wave is based on two degenerate eigenmodes and this requires
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good geometric alignment. For a metallic stator substrate, HOOKE’s law

T = cs : S ⇔ Tij = cijkl Skl (2.65)

is used with the stiffness coefficients

cijkl =
Es

1 + νs

(

δik δjl +
νs

1− 2νs
δij δmk δml

)

, (2.66)

where δij is the Kroneker symbol and Es and νs are Young’s modulus and Poisson
ratio, respectively. For a piezoceramic material in the linear range of application one of
several representations described in literature, e.g. IKEDA (1990, [24] p. 16), is

T = cD : S− (h)T ·D

E = h : S+ βS ·D
⇔

Tij = cDijkl Skl − hmij Dm

Ei = −hikl Skl + βS
ij Dj

(2.67)

with the coefficients for the stiffness, electromechanical coupling and the dielectric im-
permeability, respectively (see GHANDI (1997, [14]))

cijkl = (δklc3 + 2akalc5) aiaj + (2δklc1 + akalc3) δij + 2c2δilδjk

+c4 (δilakaj + δjkalai) ,

hmij = h1 (δmiaj + δmjai) + (δijh2 + aiajh3) am ,

βij = b1δij + 2b2aiaj .

(2.68)

The above illustrates a material law for a linear planar isotropic piezoelectric ce-
ramic with 10 different material constants. The scalar constants c1, . . . , c5, are related
to the material stiffness, h1, h2, h3 and b1, b2 are related to the electromechanical cou-
pling and the material dielectric properties, respectively. The coefficient ai ≡ δri indi-
cates the direction r of polarization in the ceramics. The superscript D and S in (2.67)
indicate material constants measured at constant electric displacement D or constant
strain S. A so-called engineering notation is often used in the literature (IEEE STAN-
DARD (1987, [1]), MAUGIN (1988, [13])), which makes use of symmetry properties of
the material coefficients of piezoelectric ceramics leading to a compressed notation:

ij or kl p or q
11 → 1
22 → 2
33 → 3

23 or 32 → 4
31 or 13 → 5
12 or 21 → 6

Tij → Tp

Sij → Sp for i = j, p=1,2,3

2Sij → Sp for i 6= j, p=1,2,3 .

Now, the constitutive equations (2.67) with (2.68) can be written in short form
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Tp = cDpq Sq − hkp Dk ,

Ei = −hip Sp + βS
ik Dk ,

(2.69)

where cDpq , hkp and βS
ik are the standard piezoelectric constants found in the litera-

ture and in published data sheets of measured material properties. In matrix notation
the short form representation (2.69) of piezoelectric ceramics, which have transversal
isotropy with respect to the polarization axis is�������

�

T1

T2

T3

T4

T5

T6

� ������
� =

�������
�

cD11 cD12 cD13 0 0 0
cD12 cD11 cD13 0 0 0
cD13 cD13 cD33 0 0 0
0 0 0 cD44 0 0

0 0 0 0 cD44 0
0 0 0 0 0 cD66

� ������
�

�������
�

S1

S2

S3

S4

S5

S6

� ������
� +

�������
�

0 0 h31

0 0 h31

0 0 h33

0 h15 0
h15 0 0
0 0 0

� ������
�

�
� D1

D2

D3

�
�

(2.70)

with cD66 = 1

2
(cD11 − cD12) and

�
� E1

E2

E3

�
� =

�
� 0 0 0 0 h15 0

0 0 0 h15 0 0
h31 h31 h33 0 0 0

�
�

�������
�

S1

S2

S3

S4

S5

S6

� ������
� +

�
� βS

11 0 0

0 βS
11 0

0 0 βS
33

�
�

�
� D1

D2

D3

�
�

(2.71)

As a convention in engineering notation the Z- or 3-axis is used as the polarization axis,
giving ai = δ3i.

REMARK: The linear material laws (2.67) with (2.68) and (2.69) are valid only in
the vicinity of the remanent polarization Pr, depicted in Fig. 2.6. Using for example
the strain S̃ and the electric field Ẽ as independent variables, the polarization P̃(Ẽ, S̃)
follows and it is clear that both, strain and electric field, must be low enough for a linear
material law to hold.

REMARK: Piezoelectric ceramics, often called piezoceramics, are made up of iso-
tropic ferroelectric ceramics by means of a polarization procedure using a strong elec-
tric field (UCHINO (1997, [56] pp. 51)). The bulk isotropic ferroelectric ceramic pos-
sesses no net piezoelectric property in the vicinity of the unloaded state, since the grains
and the domains in the material are randomly oriented, so that the crystals produce no
net macroscopic polarization. Depending on the temperature, the proportion of Zr and
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Ti in the ceramics and the contamination with other atoms the randomly oriented grains
in the ferroelectric belong to different crystal systems and crystal classes (e.g. tetrag-
onal, rhombohedral). Exerting a strong homogeneous external electric field aligns the
microscopic polarization in the direction of the external field due to the rearrangement
of the domain walls within the grains. A macroscopic polarization of the isotropic fer-
roelectric ceramics occurs. If the strong electric field is removed, a remnant polarization
is kept and a transversely isotropic piezoelectric ceramic material is obtained, where the
axis of net polarization is perpendicular to the plane of isotropy. The bulk material has
a material law equivalent to that of a single hexagonal crystal of the crystal class 6mm
(see NYE (1985 [38], pp. 295) for the classification of crystals). Each piezoceramic ma-
terial possesses this special material behavior but note that this is only a macroscopic
equivalence. The crystals in the piezoceramic material are not of the crystal class 6mm!

Figure 2.6: Response of an initially unpoled piezoceramic material to a cyclic electric
field

2.5.2 Rotor and contact layer

For the rotor HOOKE’s law is used

T = cr : S ⇔ Tij = cijkl Skl (2.72)

and, for the sake of simplicity, the contact layer bonded to the rotor as shown in Fig. 1.2
is modeled by assuming a linear visco-eleastic material law of the Kelvin-Voigt type
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(see Eq.(2.58))

T = crc :
(

S+ ϑrc Ṡ
)

⇔ Tij = cijkl

(

Skl + ϑrcṠkl

)

(2.73)

with the stiffness coefficients

cijkl =
Erc

1 + νrc

(

δik δjl +
νrc

1− 2νrc
δij δmk δml

)

(2.74)

and the viscous damping ϑrc term. In ultrasonic motors a special contact material be-
tween stator and rotor is often used to increase the maximum output torque to prevent
unwanted noise or to improve the efficiency of energy conversion between stator and ro-
tor. Several experimental investigations, as for example in REHBEIN & WALLASCHEK

(1998, [42]), have been conducted with different polymers. UEHA et al. (1993, [57]
pp. 288) cite some data pertaining to the dynamic elastic modulus Erc, the tangent
loss coefficient tan δrc, measured at a frequency of 50 kHz and the friction coefficient
µ, of various polymers which have been tested in a Shinsei ultrasonic motor. Next the
loss tangent tan δrc has to be related to the viscous damping coefficient ϑrc. For a
one-dimensional material model (2.73) can be reduced to

T11 = Erc S11 + ϑrc Erc Ṡ11 , S11 = Ŝ11 e
jΩt

⇒ T̂11 = Erc(1 + jϑrcΩ) Ŝ11 (2.75)

and the loss tangent follows from

tan δrc = ϑrc Ω . (2.76)

2.6 Electric current, voltage, admittance, power and efficiency

In this section the definitions of the electric quantities needed for a complete motor
model are given. In a first step, we consider appropriated electrode patterns for the
excitation of the bending modes in the stator. Most ultrasonic motors have a two-
phase excitation (see UEHA et al. (1993, [57]) and only those are considered here.
Two typs of electrodes on the piezoceramic surface are distinguished, actor electrodes
A, B, delivering the electric energy to the piezoceramic material and a sensor elec-
trode S, measuring the voltages due to the deformation of the piezoceramic material, as
shown in Fig. 2.7 (see also Fig. 1.10 for the electrode configuration of the Shinsei mo-
tor). Electrodes are thin metallic layers on the piezoceramic material which are assumed
to have a neglectible thickness and behave as ideal conductors. They are therefore mod-
eled as material discontinuities at the piezoceramic surfaces.
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A
B S

stator (metal)

piezoceramic

∂B̃Φ

∂B̃sp

VA(t) VB(t)
IA(t) IB(t)

ΦS(t)

Figure 2.7: Schematic representation of the stator with actor electrodes A, B and sensor
electrode S, electroded surface ∂BΦ and stator substrate surface ∂Bsp

∂B̃Φ

piezoceramic

Pr

A
ΨA

X1

Pr

ΨA

X1

A

piezoceramic

Figure 2.8: Electrode A, grouped, with
spatial variation of electric potential
shape function ΨA. See also Fig. 1.9
and Fig. 1.10

Figure 2.9: Electrode A with spatial
homogenious electric potential shape
function ΨA. See also Fig. 1.9 and
Fig. 1.10

2.6.1 Electric excitation

The electric excitation may be realized in two different ways. Either by using a homo-
geneous polarized ceramic and grouped electrodes as depicted in Fig. 2.8 or by means
of an alternating polarized ceramic with one electrode, as illustrated in Fig. 2.9. Both
possibilities can be regarded as equivalent in their net effect of exciting particular eigen-
modes in the stator. Thus, from the modeling point of view the former possibility seems
to be more attractive since it is easier to implement. The potential Φ̂ at the electrode
boundary ∂BΦ requires shape functions Ψ to take the spatial variation into account,
as shown in Fig. 2.8. For a two-phase excitation, the electric potential at the electrode
surface is described by

Φ̂(X, t) = ΨA(X1)VA(t) + ΨB(X1)VB(t) , X ∈ ∂BΦ (2.77)

with the electric voltages VA and VB and the potential shape functions ΨA and ΨB .
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Ultrasonic motors are excited usually either by sinusoidal voltages or, for the sake
of simplicity in the design of the power electronics, by rectangular voltages. To this
end, the voltages may be described as

VA(t) =

∞
∑

i=1

V̂Ai sin iΩt , VB(t) =

∞
∑

i=1

V̂Bi cos (iΩt+∆φV ) , (2.78)

with the fundamental circular frequency Ω as the excitation frequency of the motor and
∆φV as the phase between the time signals, respectively.

The potential shape function for electrode A according to Fig. 2.8 can be expressed
in terms of a Fourier expansion

ΨA(X1) =

∞
∑

m=1

[ΨASm sinmkX1 +ΨACm cosmkX1] , k =
2π

L
, (2.79)

with the fundamental wave number k of the spatial discretization and length L cor-
responding to the outer circumferential lenght of the stator, for example. A similar
expression holds for electrode B.

The electric voltage is the input signal and the electric current the output signal.
The electric current signals may have a different fundamental frequency ω and a phase
difference α to the electric voltage signals, since USM are highly nonlinear dynamical
systems eventually providing subharmonic responses in the current signal. Therefore,
if a steady state motor operation is assumed, the current signals are of the type

IA(t) =

∞
∑

j=1

ÎAj sin( jΩt+ αAj) , IB(t) =

∞
∑

j=1

ÎBj cos( jΩt+ αBj) . (2.80)

Nevertheless, the current signals IA, IB contain the circular frequency component Ω.
Assuming pω = Ω for the p-th component of the Fourier series in (2.80), the current
signals therefore contain p− 1 subharmonic oscillation components. The number p has
to be calculated after solving the steady-state problem for the motor.

For the description of the electric potential Φ̂ on the electrodes the voltages (2.78)
and the electric shape functions (2.79) are inserted into the equation (2.77) for the elec-
trode surface. All terms causing excitation of undesired modes may be lumped in a
term R(X1, t), leading to the abbreviated form of electric potential

Φ̂(X, t) = ΨASns
V̂A1 sinnskX1 sinΩt

+ΨBCns
V̂B1 cosnskX1 cos(Ωt+∆φV ) +R(X1, t) , (2.81)

where sinnskX1 and cosnskX1 in the first two terms represent the two orthogonal
eigenmodes of the stator in which the motor is driven near resonance, ns being the
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number of nodal diameters. Note that R(X1, t) describes all of the undesired sub- and
superharmonic excitations caused by both non-harmonic electric voltages VA(t) and
VB(t) and rectangular electric shape functions ΨA, ΨB , respectively (see Fig. 2.8). In
the case of an excitation frequency in the vicinity of a motor resonance (see Fig. 1.12),
the forced vibrations in the stator due to the sub- and superharmonic terms in R(X1, t)
can be neglected, in a first approximation. For the sake of simplicity it is set ΨASns

=
ΨBCns

= 1, without restricting the model derivation and model analysis. Equation
(2.81) results in

Φ̂(X, t) = V̂A1 sinnskX1 sinΩt+ V̂B1 cosnskX1 cos(Ωt+∆φV ) . (2.82)

Rearranging the terms in (2.82) and using trigonometric identities yields

Φ̂(X, t) = V̂A1 cos(nskX1 − Ωt)

+
[

V̂B1 cos(Ωt+∆φV )− V̂A1 cos(Ωt)
]

cos(nskX1) . (2.83)

For an electric excitation Φ̂(X, t) of a harmonic traveling wave V̂A1 = V̂B1 and ∆φV =
0◦ or ∆φV = 180◦ is chosen, depending on the direction of operation of the rotor

Φ̂(X, t) = V̂A1 cos(nskX1 ∓ Ωt) . (2.84)

Setting V̂A1 = V̂B1 and ∆φV = 90◦ results in the standing wave

Φ̂(X, t) = V̂A1 [sin(nskX1) + cos(nskX1)] sin(Ωt) . (2.85)

The motor has four electric input quantities, namely the excitation frequency Ω, the
voltage amplitudes V̂A1, V̂B1 and the phase ∆φV between the voltage signals.

To substitute for the coordinates of the moving reference frame the transformation
rule (2.11) is inserted into (2.83). Choosing b1 appropriately yields

ˆ̃Φ(Y, t) = V̂A1 cos(nkY1) +
[

V̂B1 cos(Ωt+∆φV )− V̂A1 cos(Ωt)
]

·

· cos(nsk(Y1 − b1(t))

(2.86)

with

b1(t) := vw t =
Ω

ns k
t , (2.87)

where Y1 is a coordinate of the moving reference frame (Õ, Ẽ1, Ẽ2, Ẽ3). Under the
excitation conditions V̂A1 = V̂B1 and ∆φV = 0, (2.86) takes the form

ˆ̃Φ(Y, t) = V̂A1 cos(nkY1) . (2.88)

One may wonder where the excitation frequency comes into play. This becomes clear
from the time derivatives of the displacements in (2.22) and (2.23), which contain not
only the vector b but also its derivatives. The excitation frequency therefore enters the
problem via the field variables.
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2.6.2 Electric current to the actor electrodes

To derive an expression for the electric current, the balance of charges, Eq. (2.48) in the
inertial reference representation (without tilde), is substituted into the continuity law of
charges and current (2.49), yielding the local and global forms of KIRCHHOFF’s law:

Div (J+ Ḋ) = 0 ⇔

∮

∂BΦ

[

J+ Ḋ
]

dA = 0 . (2.89)

The electric current at the electrodes A,B, S is defined according to

Ii(t) :=

∮

∂BΦi

J(X, t) dA , i = A,B, S , (2.90)

with the closed surfaces ∂BΦA,B,S around the electrodes A, B and S as indicated in
Fig. 2.10. Using (2.89) and (2.90) the electric current may be expressed as

IA = −

∮

∂BΦA

Ḋ dA ≈ −

∫

∂BΦAe

Ḋ dA−

∫

∂BΦAp

Ḋ dA (2.91)

if the side areas are neglected. Since the electric field Ee in an ideal electrode is zero for

∂B̃ΦA

∂B̃sp

Ep

Ee

Ap

Ae
IA

VA

hp

X1

X3

Figure 2.10: Schematic illustration of the electric current calculation at electrode A.
∂B̃ΦS : surface of discontinuity between piezoceramic and electrode, ∂B̃sp: surface of
discontinuity between piezoceramic and metallic stator substrate.

quasi-electrostatic applications, the term
∫

∂BΦA1
Ḋ dA is also zero. Thus, the electric

current is

Ii = −

∫

∂BΦi

Ḋ dA i = A,B, S (2.92)

with ∂BΦAp = ∂BΦi.
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The contact problem is solved in coordinates of the moving reference frame giving
D̃(Y, t) as a result. Therefore, the integral in (2.91) is transformed into a representation
with respect to the moving reference frame

Ii = −
∫

∂B̃Φi
(t)

[

◦

D̃ −Grad D̃ · ḃ

]

dÃ i = A,B, S . (2.93)

Here, the time derivative of the electric displacement is carried out in a manner equiva-
lent to the time derivatives of the displacement (see Eq. (2.22)).

2.6.3 Electric voltage on the sensor electrodes

By measuring the electric potentialΦS at the sensor electrode with respect to a reference
potential, as illustrated in Fig. 2.7, changes in the mechanical state of a piezoceramic
structure may be detected. The electric potential ΦS is measured with a voltage mea-
suring device having a high input resistor, which results in a small current signal IS
(IS � IA, IB) and a small electric power loss. Thus, in good approximation the cur-
rent flow to or from the sensor electrode can be neglected. Equation (2.92) yields the
integral constraint condition

0 = −
∫

∂BΦS
Ḋ dA . (2.94)

The electric potential at the sensor electrodes follows from the solution of the equa-
tions of motion under the integral constraint equation (2.94). An expression for the
electric potential is obtained from the material law (2.67) and the electric-field potential
relation (2.51), which are stated here again:

Ep = h : S+ βS ·D , Ep = −GradΦ , (2.95)

together with the transition condition at a surface of discontinuity

(Ee −Ep)× n = 0 at ∂BΦS .

It is distinguished between the electric field in the piezoceramic material and in the
electrode by using the symbols Ee and Ep, respectively. In (2.96) n is the surface
normal vector. Since the electric field in the electrode is zero, one gets

Ep × n = 0 at ∂BΦS . (2.96)
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For an example on how to obtain the electric potential at a sensor electrode assume
that the sensor electrode lies in the X1 −X2 plane. The normal vector is then oriented
along the X3-direction. Using condition (2.96) gives E1 = E2 = 0 for the electric field
components. The electric field is therefore different from zero at the surface. Equations
(2.95) simplify to

E3p = −Φ,3 = −h3p Sp + βS
33 D3

⇒ ΦS(X1, X2, X3, t) =

∫

(

h3p Sp − βS
33 D3

)

dX3 + C (2.97)

according to the simple form of the material law (2.69). The known strain fields Sp and
electric displacement field D3 must be integrated with respect to X3 over the piezoce-
ramic height hp (see Fig. 2.10). The integration constant C is obtained by specifying the
electric potential equal to zero at the boundary ∂Bsp in Fig. 2.10. The electric voltage
at the sensor electrode then yields ΦS(X1, X2, hp, t) with (X1, X2) ∈ ∂BΦS .

2.6.4 Electric input admittance

Quantities like the electric impedance or admittance of USM are necessary in the design
process of the power electronics. As these quantities characterize steady-state behav-
ior of linear systems at harmonic excitation, one must carefully interpret them when
characterizing non-linear systems since they contain only filtered information about the
system at hand. In accordance to what has been stated in Section 2.6, a fundamental
complex admittance at the electrode A is defined as follows

Y A1(Ω) :=
ÎA1(Ω)

V̂A1

ejαA1(Ω) = YA1(Ω) e
jαA1(Ω) , (2.98)

where YA1(Ω) and αA1(Ω) are known as the admittance and phase, respectively. In
(2.98), V̂A1 is the voltage amplitude of the fundamental frequency of electric excitation
according to (2.78) and ÎA1(Ω) is the spectral component of the electric current signal
with the same circular frequency Ω. Since the system at hand is nonlinear and a multi-
input system, the current amplitude and phase depend not only on the circular frequency
Ω, but also on the amplitudes V̂A, V̂B of the periodic voltage signals VA(t) and VB(t),
for example.

2.6.5 Power and efficiency

The power balance of the proposed motor model follows from

Pin(t) = Pout(t) + Ploss(t) + Pinner(t) , (2.99)
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where Pin, Pout, Ploss and Pinner are the electrical input power, the mechanical out-
put power, the power loss due to several loss mechanisms and the inner power due to
elastic deformation and electric energy storage, respectively. The electric input power
delivered by the two electrodes A, B are given as

Pin(t) := Pelec(t) = VA(t) IA(t) + VB(t) IB(t) (2.100)

and the mechanical output power by a motor is the product of drive force and output
speed

Pout(t) := Pmech(t) = F (t) ċrx(t) . (2.101)

The power loss is composed of several dissipative sources due to the presence of slip
contact between stator and rotor, the visco-elastic material of the contact layer, the
losses in the piezoceramic and a viscous damping mechanism of the rotor due to a rub-
ber layer between rotor and disc spring, as shown in Fig. 1.5. To this end, the different
losses are divided as follows

Ploss(t) := Pslipcontactloss(t) + Pcontactlayerloss(t) + Ppiezoceramicloss(t)

+Protorloss(t) . (2.102)

The individual losses are stated in the following. In the contact zone, the losses can be
written as

Pslipcontactloss(t) :=

∫

∂B̃slip
c

T̃T
˙̃gT dÃ , (2.103)

while for the contact layer and the piezoceramic material it is set

Pcontactlayerloss(t) :=

∫

B̃rc

T̃loss : ˙̃S dṼ =

∫

B̃rc

(crc : ϑrc
˙̃
S) : Ṡ dṼ (2.104)

Ppiezoceramicloss(t) :=

∫

B̃p

T̃loss :
˙̃
S dṼ =

∫

B̃sp

(csp : ϑsp
˙̃
S) : ˙̃

S dV , (2.105)

where T̃loss represents that part of the stress belonging to the dissipative processes in
the material (see Eq.(2.73)). The losses Protorloss in the rubber layer are described in
the detailed modeling procedure in Section 2.7.3.

Power consumption and mechanical output power usually are specified as averaged
quantities over one period of the lowest fundamental circular frequency of the motor in
steady-state operation. The voltage signals VA and VB in (2.78) are the electrical input
quantities, with the fundamental circular excitation frequency Ω. In non-linear systems
it may happen that the response to an input quantity contains not only the frequency
components of the input signal but also other sub- or superharmonic frequency com-
ponents. For the steady-state motor dynamics it is assumed, that the motor quantities
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contain only multiples of the fundamental circular frequencyΩ. The active input power
is then be defined to

<Pin>:=
2π

Ω

∫ Ω
2π

0

[

VA(t) IA(t) + VB(t) IB(t)
]

dt . (2.106)

Note, that at unsteady motor operation subharmonic frequency components may occur.
If Ω is used in (2.106), subharmonic components in the current signal will erroneously
contribute to the active input power. The active output power is

<Pout>:=
2π

Ω

∫ Ω
2π

0

F (t) ċrx(t) dt , (2.107)

where F (t) represents the driving force of the motor. The definition of the motor effi-
ciency yields

η :=
<Pout>

<Pin>
. (2.108)

Note that this efficiency contains the two-stage energy conversion from electrical energy
to deformation energy in the first stage, and from deformation energy to mechanical
output energy in the second stage.

Another issue important in actuator design is the capacitive behavior of the ceramics
giving rise to a reactive power. This has to be considered in the design of the power
electronics. The reactive power is defined as follows

< Q >:=
√

< SA >2 − < PinA >2 +
√

< SB >2 − < PinB >2 , (2.109)

with the apparent power components

< Si >:= VeffiIeffi , i = {A,B} , (2.110)

where Veffi and Ieffi are the effective voltages and currents, respectively. Assuming that
the main part of the electric energy is stored in the spectral component of the funda-
mental circular frequency Ω, the fundamental reactive power component yields

QΩ =
1

2

[

V̂A1 ÎA1 sinαA1 + V̂B1 ÎB1 sinαB1

]

. (2.111)
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2.7 A simple planar motor model

The objective in this section is to derive a simple physical motor model relying on the
geometrical and material data of a typical plate-type USM (e.g. Shinsei USR60), as far
as these are available. A simple motor model is chosen here, which should neverthe-
less lead to a good qualitative agreement between model and experimental results. The
model should be able to capture the main phenomena observable in experiments such
as the nonlinear resonance curve or the onset of squealing in some operation ranges.
For the sake of simplicity, the notches milled into the stator of some types of USM are
ignored. A benefit of the notches is that wear particles created by the friction between
stator and rotor can escape from the contact region, thus ensuring homogeneous and
constant friction states during motor operation. The main effect of neglecting the stator
notches in the model is to increase the eigenfrequencies of the eigenmodes used for
motor operation. To adjust the eigenfrequency of the excited mode in the stator model
to that of the physical motor, Young’s modulus and mass density of the stator model are
adjusted appropriately. This doesn’t change or restrict the qualitative features of the mo-
tor model. The motor geometry and operation mode in the Shinsei USR60 lends itself to
the use of a BERNOULLI-EULER kinematics for both, the stator with piezoceramic, and
also for the rotor, as outlined in Section 2.2.2. Basics on BERNOULLI-EULER beam the-
ory and solution methods for dynamical problems can be found in HAGEDORN (1988,
[17]), for example. For the contact layer a simple kinematic relation (see Fig. 2.13) is
chosen, that allows for shearing and compression. The reference configuration of the
motor model is shown in Fig. 2.11. Reference frame (O,E1,E3) is laboratory fixed,
whereas reference frame (Õ, Ẽ1, Ẽ3) moves with the velocity ḃ1(t) = vw of the travel-
ing wave to the right. In the reference configuration, stator and rotor occupy regionsB0s

hsn

hr

hc

hs

hp

b(t)
E3

E1O Õ

Ẽ3

Ẽ1

ks

kr, dr

B0r

B0s

B0cr

L

Figure 2.11: Motor model in the reference configuration

and B0r, respectively. The region of the piezoceramic part is denoted as B0sp and that
of the contact layer as B0cr. The region of the stator substrate and the rotor substrate



54 Chapter 2. Modeling

are therefore identified by B0s\B0sp and B0r\B0rc, respectively. The heights of stator,
piezoceramic, rotor and contact layer are denoted as hs, hp, hr and hrc, respectively.
The radial width of the contact zone between stator and rotor in the motor shown in
Fig. 1.2 is small compared to the radius of the stator (see also what has been stated at
the beginning of Section 2.2.2). This width is denoted as s in our linear model. Since
the stator consists of a metallic stator substrate and a piezoceramic portion, the neutral
plane is different from the X1-axis in Fig. 2.11 by a distance hsn. The stator is sup-
ported by an elastic foundation with stiffness ks and the rotor support is a visco-elastic
foundation with stiffness kr and damping constant dr. The damping of the rotor sup-
port may come from the rubber layer between disc spring and metallic rotor, as shown
in Fig. 1.2. In Fig. 2.12 the motor model is illustrated in the momentary configuration
with external load F and axial preload p.

axial preload p

�

external

load FE3

E1

xr

xs

Figure 2.12: Simple motor model in the momentary configuration

2.7.1 Moving reference frame

The relations between the coordinates of the different reference frames for stator and
rotor was presented in Section 2.2.4. According to (2.11) these are

Xs1 = b1(t) + Ys1 , Ys2 = Ys2 , Xs3 = Ys3 , (2.112)

Xr1 + cr1(t) = b1(t) + Yr1 , Xr2 = Yr2 , Xr3 = Yr3 . (2.113)

It is remembered, that the velocity vw of the moving reference frame with respect to the
laboratory fixed reference frame was chosen to satisfy

b1(t) = vwt =
Ω

ns k
t , (2.114)

where k is the fundamental wave number defined in (2.4) and ns the number of nodal
diameters of the eigenform excited in a ring type stator (see (2.87)).
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2.7.2 Stator

The BERNOULLI-EULER kinematics for the stator with a piezoceramic section may be
written as

xs = χs(X, t) = Xs + us(Xs, t) =





X1

X2

X3



+





−(X3 + hsn) w
′
s(X1, t)

0
ws(X1, t)





∀ X ∈ B0s , (2.115)

in fixed reference frame coordinates. Using the transformation (2.112) for the displace-
ment function us, the description in terms of the coordinates of the moving reference
frame follows

ũs(Y, t) =





−(Y3 + hsn) w̃
′
s(Y1, t)

0
w̃s(Y1, t)



 , ∀ Y ∈ B̃s . (2.116)

Throughout the paper, the prime (·)′ represents the derivative with respect to the coor-
dinate X1 or Y1. The distance hsn of the neutral axis from the X1-axis is computed
by

∫
hs
2

−
hs
2 +hp

T̃11 dÃ = 0 ⇒ hsn , (2.117)

but for the sake of simplicity it is assumed that the stiffness of the piezoceramic ring
equals the stiffness of the stator substrate and that the mass density of the piezoceramic
material equals the mass density of the stator substrate. This is without loss of generality
with respect to the qualitative behavior of the motor model. The distance of the neutral
axis to the laboratory fixed frame then becomes

hsn =
hp

2
. (2.118)

The kinematics in (2.116) leads to

S̃12 = 0, S̃13 = 0, S̃23 = 0 , and S̃22 = 0, S̃33 = 0 . (2.119)

The normal stresses T̃22, T̃33 and the shear stresses T̃23, T̃21 are neglected in addition
to the electric field Ẽ1, Ẽ2

T̃22 = 0, T̃33 = 0, T̃23 = 0, T̃21 = 0, Ẽ1 = 0, Ẽ2 = 0 . (2.120)

For a BERNOULLI-EULER beam model representing a plain stress assumption the ma-
terial law

T̃11 = Es S̃11 ∀ Y ∈ B̃s\B̃sp (2.121)
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can be derived from (2.65) and (2.66). By similarly applying a planar stress assump-
tion and assuming for the strain components in (2.119)2 to be unequal zero and insert
(2.119)1 and (2.120) into the material laws (2.70), (2.71), the material laws for the
piezoceramic part of the BERNOULLI-EULER beam stator model yield

T̃11 = c̄D11S̃11 + h̄31D̃3 Ẽ3 = h̄31S̃11 + β̄33D̃3

T̃13 = h15D̃1 Ẽ1 = β11D̃1

∀ Y ∈ B̃sp .(2.122)

Note that the material constants indicated by a bar correspond to a planar stress assump-
tion and are different form their counterparts without a bar. The strain components are
computed by inserting (2.116) into (2.17).

The compatibility condition for the electric displacement follows from the balance
of charges, (2.48), together with the assumptions for the electric field in (2.120)

Div D̃ = 0 ⇒
∂D̃3

∂Y3
= 0 ⇒ D̃3 = D̃3(Y1, t) (2.123)

and states that the electric displacement component D̃3 depends only on the Y1-coordinate.

2.7.3 Rotor

The rotor substrate deformation is also described by a BERNOULLI-EULER kinematics.
The motion of the rotor substrate is therefore written according to (2.8) as

xr = χr(X, t) = cr(t) +Xr + ur(Xr, t) , ∀X ∈ B0r\B0cr (2.124)

=





crx(t)
0
0



+





X1

X2

X3



+





−(X3 − hrn)w
′
r(X1, t)

0
wr(X1, t)



 ,

(2.125)

where hrn is the distance to the rotors neutral axis (see Fig. 2.11)

hrn =
hs

2
+ hc +

hr

2
, (2.126)

which is located at mid-thickness of the rotor substrate for hc � hr. The displacement
written in coordinates of the moving reference frame follows as

ũr(Y, t) =





−(Y3 − hrn) w̃
′
r(Y1, t)

0
w̃r(Y1, t)



 , ∀Y ∈ B̃r\B̃rc . (2.127)

The rotor material law can be written in a manner analogous to that of the stator as

T̃11 = Er S̃11 ∀ Y ∈ B̃r\B̃rc . (2.128)
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2.7.4 Contact layer

The kinematics of the displacements in the contact layer is composed out of a super-
position of the BERNOULLI-EULER kinematics, the compressin displacement wc and
the shear displacement uc as shown in Fig. 2.13. The description of the contact layer

P

uc

wc

momentary
configuration

reference
configuration

Q

Q

P

Figure 2.13: Kinematics of the contact layer

motion in the reference configuration may then be written as

xrc = χrc(X, t) =





crx(t)
0
0



+





X1

X2

X3



+ ,

+





−(X3 − h̄)w′
r(X1, t) + uc(X1, t)

0
wr(X1, t) + wc(X1, t)



 , ∀X ∈ B0rc (2.129)

with

ũrc(Y, t) =





−(Y3 − hrc)w̃
′
r(Y1, t) + ũc(Y1, t)
0

w̃r(Y1, t) + w̃c(Y1, t)



 , ∀Y ∈ B̃rc . (2.130)

Inserting the displacement (2.130) into the strain-displacement relation (2.17) yields

S̃22 = 0, S̃12 = 0, S̃23 = 0 . (2.131)



58 Chapter 2. Modeling

for the strain components. The normal stress T̃22 and the shear stress T̃23 are neglected:

T̃22 = 0, T̃23 = 0 . (2.132)

The material law for the contact layer with this special kinematic results in

T̃11 =
Erc

(1 + νrc)(1− 2νrc)

[

(1− νrc) (S̃11 + ϑrc
˙̃S11)+

+ νrc (S̃33 + ϑrc
˙̃S33)

]

(2.133)

T̃33 =
Erc

(1 + νrc)(1− 2νrc)

[

(1− νrc) (S̃33 + ϑrc
˙̃S33)+

+ νrc (S̃11 + ϑrc
˙̃S11)

]

(2.134)

T̃13 =
2Erc

1 + νrc

[

S̃13 + ϑrc
˙̃S13

]

. (2.135)

2.7.5 Contact formulation

Recalling what has been stated in Section 2.3.1, it is proceeded by computing the re-
lation between the corresponding contact points (X̂r, X̂

∗
s) of stator and rotor contact

layer. To this end, the minimum distance function (2.30) is evaluated assuming small
displacements, resulting in the approximation

X∗
s ≈ cr +Xr ⇒ Y∗

s ≈ Yr , (2.136)

where the transformation rules (2.11) and (2.12) have been used. The gap function
(2.35) becomes

g̃N = w̃r(Yr, t) + w̃c(Yr, t)− w̃s(Yr, t) , (2.137)

and the gap velocity (2.39) yields

˙̃gN =
◦

w̃r +
◦

w̃c +(w̃′
r + w̃′

c) (ċrx − vw)−
◦

w̃s +w̃′
s vw . (2.138)

From the definition of the relative velocity between two contacting points, (2.41), one
gets

˙̃gT = −

(

hp

2
+

hs

2

)

◦

w̃′
s −ċrx−

◦

ũc −

(

hc +
hr

2

)

◦

w̃′
r

+(vw − ċrx)

(

ũ′
c + (hc +

hr

2
)w̃′′

r

)

+

(

hp

2
+

hs

2

)

vww̃
′′
s . (2.139)
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2.7.6 External forces

The active forces applied to the motor are the axial prestress p̃ pressing the rotor against
the stator and the external load F acting on the rotor as illustrated in Fig. 2.12. Both
active forces enter the principle of virtual power through the first part in (2.63). For the
stress components one gets

ˆ̃T 33 = p̃axial(Y1) ∀ Y ∈ ∂B̃s (2.140)

for the axial prestress and

ˆ̃T 11 =
F (t)

s hr
(2.141)

for the load in the Y1-direction.

2.7.7 Scaling and non-dimension formulation

The equations of motion will be derived via the principle of virtual power. It turns out
that the derivation is rather cumbersome but straightforward. By use of the mathemat-
ical toolbox MATHEMATICA, a good part of this may be done automatically. Despite
the fact that a relatively simple motor model has been chosen, the resulting PDEs are
quite lengthy. For comparing the magnitudes of the different terms in the equations of
motion, the equations are written in a non-dimensional form. This procedure allows us
to identify and neglect terms of lower order. An overview of all the design parameters
used in the simple model is given in Fig. 2.14.

The physically independent quantities are scaled as follows

t̄ = [Ω] t, Ȳ1 =
Y1

[λ]
. (2.142)

The reference circular frequency [Ω] is the circular eigenfrequency of the stator’s eigen-
mode, used for the motor operation. The reference wavelength [λ] is computed by
[λ] = L/ns. Here L is the circumferential length of the stator at the outer radius (see
Fig. 1.5). A reference stator vibration amplitude [ŵs] is used for the scaling of the dis-
placement field variables. This yields the following non-dimensional quantities

w̄s =
w̃s

[ŵs]
, c̄rx =

crx
[ŵs]

, w̄r =
w̃r

[ŵs]
, ūc =

ũc

[ŵs]
, w̄c =

w̃c

[ŵs]
. (2.143)

Axial preload and contact stresses may be scaled with a reference axial prestress [paxial],
to yield

p̄axial =
p̃axial
[paxial]

, T̄N =
T̃N

[paxial]
, T̄T =

T̃T

[paxial]
(2.144)
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Electric energy soure

Electric drive

Signal Ω, ∆φV VA1(t), VB1(t)

IA1(t), αA1, IB1(t), αB1 m

Motor

Design parameters Variables

Piezoceramic

Stator substrate

Rotor with

Contact layer

L s

hp, ρp, c̄D11, h̄31, β̄33 w̃s(x, t), Vs(t)

hs, ρs, Es, ks, λ w̃s(x, t)

p, µ m T̃N(x, t), T̃T (x, t) m

hr, hrc, ρr, ρrc, Er, Erc,

νrc, kr, ϑrc, dr

ċrx(t), w̃r(x, t)

ũc(x, t), ũc(x, t)

Mechanical load

F (t) m

Figure 2.14: Overview of the design parameters and motor variables of the simple motor
model, used in this study

and for the electric quantities reference quantities are taken for the electric displacement
and voltage amplitude, [D̂], [V̂ ]

D̄3 =
D̃3

[D̂]
, V̄ =

V̂

[V̂ ]
, Φ̄ =

Φ̃

[V̂ ]
. (2.145)

The characteristic electric displacement is chosen, using the one-dimensional material
law for the characteristic quantities, [Ê3] = h̄31[Ŝ11] + β̄33[D̂3], ignoring the strain
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influence on the electric field and choosing [Ê3] = [V̂ ]/hp. This results in [D̂3] =

[V̂ ]/(hpβ̄33).

Additionally, a non-dimensional excitation frequency is introduced

Ω̄ =
Ω

[Ω]
. (2.146)

Table 2.2 lists parameter values of a typical USM, which can be used as reference data
for a numerical analysis and as data inserted into the PDE’s to neglect terms of lower
order.

system parameter symbol value dimension

stator height (with teeth) hs 5 · 10−3 m

rotor height hr 3 · 10−3 m

piezoceramic height hp 1 · 10−3 m

contact layer height hc 1 · 10−4 m

stator mass density %s 8 · 103 ∗ kg
m3

rotor mass density %r 3 · 103 kg
m3

piezoceramic mass density %p 8 · 103 kg
m3

contact layer mass density %rc 3 · 102 kg
m3

stator Young’s modulus Es 1 · 1011 ∗ N
m2

rotor Young’s modulus Er 7 · 1010 N
m2

piezoceramic Young’s modulus c̄D11 9 · 1010 N
m2

contact layer Young’s modulus Erc 3 · 109 N
m2

elastic foundation stiffness ks, kr 1 · 106 N
m

damping constant dr 2 · 102 kg
s

damping constant tan δrc 1 · 10−1

damping constant contact layer ϑrc 4 · 10−7 s

electromechanic coupling h̄31 −2 · 108 N
C

dielectric constant β̄33 9 · 107 Nm2

C2

Table 2.2: Data of a typical USM (Shinsei USR60). Data’s with ∗-symbol will be
adjusted to approximately fit the eigenfrequency of the stator model with that of the
physical stator having notches, since the notches have been neglected in the stator model
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Approximate values of the design parameters are stated in Fig. 2.2. Some of these
parameters can be easily measured, others are adopted from the literature (see e.g. HER-
ZOG, (1993, [22]), or LE MOAL & MINOTTI (1997, [32]) or estimated by means of the
data of the piezoceramic material. In this figure, values for three of the typical scaling
variables are also given. With the data given in Tab. 2.2, the equations of motion will be
scaled and terms of order of magnitude smaller than 1·10−3 will be neglected. Table 2.3
lists the scaling parameters.

scaling parameter symbol value dimension

reference eigenfrequency [Ω] 3 · 105 rad
s

reference wavelength [λ] 2 · 10−2 m

reference stator amplitude [ŵs] 1 · 10−6 m

reference axial load [paxial] 2.7 · 105 N
m2

reference dielectric displacement [D̂] 5.3 · 10−4 C
m2

reference voltage amplitude [V̂ ] 100 Volts

Table 2.3: Scaling parameters reflecting typical quantities of a Shinsei USR60 motor

2.7.8 Equations of motion

The velocities, virtual velocities, strain components and virtual strain rate components
of the stator and rotor motion can be derived, using the formulas in the general modeling
framework in Section 2.2.5. Inserting them into the principle of virtual power and doing
some partial integrations and manipulations leads to the equations of motion of the
motor model where all terms of order of magnitude smaller than 5 · 10−3 have been
neglected. The equations of motion represent a one-dimensional model of length

Ȳ1 ∈ [0, ns] (2.147)

with the number ns of nodal points or nodal lines for a rotary USM. All field variables
f̄ depend on the coordinate Ȳ1 and the time t̄), giving f̄(Ȳ1, t̄). The prime (.)′ now

indicates the derivative with respect to the coordinate Ȳ1, and the circle
◦

(.) the partial
time derivative with respect to t̄. The non-dimensionalized equations of motion may
then be stated as follows

• Stator equation:

S1

◦◦

w̄s + S2

◦◦

w̄
′′

s + S3

◦

w̄s + S4

◦

w̄
′

s +S5

◦

w̄
′′′

s +S6 w̄s + S7 w̄
′
s + S8 w̄

′′
s + S9 w̄

′′′′
s +
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S10 T̄N + S11T̄
′
T = −S12 D̄

′′
3 − S13 p̄axial , ∀ Ȳ1 ∈ [0, ns]

(2.148)

• rotor equation of rigid body motion

Rr1

◦◦

c̄rx +Rr7

◦

w̄
′′

r +Rr8 w̄
′
r +Rr11

◦◦

ūc +Rr13

◦

ū
′

c +Rr15 ū
′
c +Rr16 ū

′′
c +

Rr17 w̄
′
c +Rr20T̄T = −Rr22 F , ∀ Ȳ1 ∈ [0, ns]

(2.149)

• rotor equation of flexural motion

◦◦

w̄r +Rf3

◦

w̄r +Rf4

◦

w̄
′

r +Rf7 w̄r +Rf8 w̄
′
r +Rf9 w̄

′′
r +Rf11 w̄

′′′′
r

+Rf25 T̄N +Rf26T̄
′
T = 0 , ∀ Ȳ1 ∈ [0, ns] (2.150)

• contact layer equation in the Ȳ1 direction

Lu9

◦

ūc +ūc + Lu13 ū
′
c + Lu19 T̄T = 0 , ∀ Ȳ1 ∈ [0, ns] (2.151)

• contact layer equation in the Ȳ3 direction

Lw11

◦

w̄c +Lw14 w̄c + Lw15 w̄
′
c + Lw18 T̄N = 0 , ∀ Ȳ1 ∈ [0, ns] (2.152)

• electric displacement equation in the Y1-direction

E1 = 0 , ∀ Ȳ1 ∈ [0, ns]

• electric displacement in the Ȳ3-direction

P1
ˆ̄Φ
′′

+ P2 D̄
′′
3 + P3 w̄

′′′′
s = 0 , ∀ Ȳ1 ∈ [0, ns] . (2.153)

The contact formulation in Section 2.7.5 may be written as

• contact gap:

ḡN = w̄c + w̄r − w̄s = 0 , ∀ Ȳ1 ∈ ∂B̄ci (2.154)
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• contact gap velocity:

˙̄gN = −
◦

w̄s +G2 w̄
′
s+

◦

w̄r +G4 w̄
′
r+

◦

w̄c +G6 w̄
′
c = 0 , ∀ Ȳ1 ∈ ∂B̄ci (2.155)

• relative velocity for tangential contact:

˙̄gT = SS1

◦

w̄
′

s +SS2 w̄
′′
s − ˙̄crx + SS4

◦

w̄
′

r +SS5 w̄
′′
r−

◦

ūc +SS7 ū
′
c = 0 ,

∀ Ȳ1 ∈ ∂B̄stick
ci (2.156)

• Friction law:

T̄T = µ sign( ˙̄gT ) T̄N , ∀ Ȳ1 ∈ ∂B̄slip
ci . (2.157)

The coefficients Si, Rri, Rfi, Lui, Lwi, Pi, Gi and SSi are given in Appendix A.1. The
notation of the coefficients is taken for convenience as the abbreviations of the stator
equation of motion (S), the rotor equation of motion (R) and so on.

2.7.9 Electric quantities

The non-dimensionalization of the electric potential (2.86) is obtained by substituting
the relations (2.142), (2.145) and (2.146). This yields

ˆ̄Φ(Ȳ, t̄) = ˆ̄V A1 cos(2πȲ1) +
[

ˆ̄V B1 cos(Ω̄t̄+Φ)− ˆ̄V A1 cos(Ω̄t̄)
]

·

· cos(2π(Ȳ1 − b̄1(t̄)) (2.158)

with

b̄1(t̄) =
b1(t)

[λ]
=

Ω̄

2π
t̄ . (2.159)

The sensor electrodes occupy only a small portion of the piezoceramic part of the
stator. They are important for sensing the stator vibrations for control purposes, but
their direct effect on the motor dynamics is negligible. Thus, only actor electrodes
will be modeled here. Under this simplification, the electric potential is assumed to act
along the whole piezoceramic surface ∂BΦ. The two electrodes A and B are applied to
different regions

∂BΦA = [0,
L

2
]× [0, s] and ∂BΦB = [

L

2
, L]× [0, s] . (2.160)
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Both electrode surfaces are defined in coordinates of the moving reference frame using
(2.11). In non-dimensional notation they are characterized as

∂B̄ΦA(t) = [−b̄1(t̄),
ns

2 − b̄1(t̄)]

∂B̄ΦB(t) = [ns

2 − b̄1(t̄), ns − b̄1(t̄)] .
(2.161)

The non-dimensional expressions for the electric current to the electrodes A and B in
(2.93) are similarly obtained as

ĪA = −
∫ ns/2−b̄1(t̄)

−b̄1(t̄)

[

◦

ˆ̄D3 − ˆ̄D
′

3
˙̄b1

]

dȲ1 ,

ĪB = −
∫ ns−b̄1(t̄)

ns/2−b̄1(t̄)

[

◦

ˆ̄D3 − ˆ̄D
′

3
˙̄b1

]

dȲ1 ,

(2.162)

with

ĪA =
ÎA

s [D̂] [λ] [Ω]
and ĪB =

ÎB

s [D̂] [λ] [Ω]
. (2.163)

The non-dimensional electric current is obtained substituting the expression (2.153) of
the electric displacement in the Ȳ3-direction in both equations (2.162). The electric
current to electrode A for example can be calculated from

ĪA(t) =
1

P2

∫ ns/2−b̄1(t̄)

−b̄1(t̄)

[

P1

◦

ˆ̄Φ +P3

◦

w̄
′′

s −
(

P1
ˆ̄Φ
′

+ P3 w̄
′′′
s

)

b̄1

]

dȲ1 , (2.164)

with the coefficients P1 to P3 defined in Appendix A.1.

The electric input admittance defined in (2.98) simplifies to

Ȳ A1(Ω̄) :=
ˆ̄IA1(Ω̄)

ˆ̄V A1

ejαA1(Ω̄) = ˆ̄Y (Ω̄) ejαA1(Ω̄) . (2.165)

The losses in the motor can be obtained according to Section 2.6.5. The slip loss be-
tween stator and rotor follows from substituting the friction law (2.157) and the relative
velocity (2.156) into (2.103):

P̄slipcontact(t̄) =

∫

∂B̄slip
c

µ sign( ˙̄gT )λ̄N ˙̄gT dĀ . (2.166)

The expression for losses in the contact layer is rather lengthy and will not be given
here. The losses Ppiezoceramicloss(t) in the piezoceramic material are neglected in the
following.
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The active output power is calculated as

<P̄out>=
Ω

2π[Ω]

∫
2π[Ω]

Ω

0

F̄ (t̄) ˙̄crx(t̄) dt̄ . (2.167)

The active input power, the efficiency and the reactive power yield

<P̄in>=
Ω

2π[Ω]

∫
2π[Ω]

Ω

0

V̄A(t̄) ĪA(t̄) dt̄ . (2.168)

η̄ =
<P̄out>

<P̄in>
(2.169)

Q̄Ω =
1

2

[ ˆ̄V A1
ˆ̄IA1 sinαA1 +

ˆ̄V B1
ˆ̄IB1 sinαB1

]

. (2.170)

2.7.10 Comment on the electric displacement

A simplified model should always be consistent with the underlying general theory.
From the basic mechanical literature it is well known that the BERNOULLI-EULER

(BE) theory gives good results compared to the exact solutions obtained from the the-
ory of elasticity if only for example h/λ � 1. Let us examine the consistency of
the BE theory with the theory of elasticity. In BE beam theory the shear stress Txy

is neglected and only the stress component Txx in axial direction is considered to be
important. For a given Txx the shear stress Txy can however be computed from the
theory of elasticity. In the theory of elasticity one can show that h/λ � 1 in fact leads
to maxTxy/maxTxx � 1 (and also to maxUshear/maxUbend � 1). BE theory is
therefore consistent with the theory of elasticity. For electromechanical models, such
a consistency, must not only hold for the stresses but also for the electric field compo-
nents, for example. Therefore, for the model developed here, the consistency

max Ẽ1

max Ẽ3

� 1 (2.171)

must hold. In modeling the stator, the assumptions Ẽ1 = 0, Ẽ2 = 0 were made,
see (2.120). Thus Ẽ3 is the only remaining electric field component. To compute the
electric potential, one can use the material law (2.122) and the electric field-electric
potential relation

Ẽ3 =
∂Φ̃

∂Y3
= h̄31S̃11 + β̄33D̃3 , Ẽ3 = −Φ̃,3 . (2.172)
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Integrating with respect to Y3 and matching the boundary condition at ∂Bsp (see Fig. 2.7)
yields

Φ̃(Y1, Y3, t) =
h̄31

2

[

Y 2
3 −

h2
s

4

]

w̄′′
s (Y1, t)− β̄S

33

[

Y3 +
hs

2

]

D3(Y1, t) . (2.173)

The electric field-electric potential relation (2.51) leads to

E1 = −
∂Φ̃

∂Y1
6= 0 , E2 = −

∂Φ̃

∂Y2
6= 0 , E3 = −

∂Φ̃

∂Y3
6= 0 , (2.174)

which is inconsistent with the assumption pertaining to the electric field components.
It may be shown very easily by non-dimensionalizing the ratio (2.171) that for the
proposed model the relation

max Ē1

max Ē3
≈

hp

[λ]
(2.175)

is valid, thus if the ratio between the height of the piezoceramic part of the stator and
the wavelength is small enough, the inner consistency in (2.171) is satisfied. Clearly,
this is not a sufficient condition but nevertheless sufficies as an initial indicator to check
the validity of the model assumptions.

2.7.11 Summary

In this chapter the basic equations for modeling USM have been presented, focusing
on key issues like the formulation of the equations with respect to a moving reference
frame, the contact mechanics, or the modeling of piezoceramics. The principle of vir-
tual power for electro-mechanical systems, extended by terms representing the mechan-
ical contact between stator and rotor, has been stated in order to generate the equations
of motion, the electric equations as well as the contact constraints. The framework of
the basic equations allows to derive planar motor models for different motor designs.
This has been done examplary for a plate-type motor, for which a simple planar model
has been derived. The model assumptions and simplifications in the presented frame-
work are listed below:

• Planar motor model, assuming a small strip of contact layer at the outer radius
and neglecting the curvature and radial motion of surface points in rotary motors.

• Teeth only indirectly considered by using the stator height in the model as the
height of the physical stator with teeth but adjusting the Young’s modulus and the
mass density of the stator model to get approximately the same eigenfrequency
in the stator model and the physical stator.
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• Isothermal process assumed, i.e. no long time scale effects due to temperature
drift is considered.

• Instead of modeling non-homogenious polarization (see Figs. 1.10, 2.8 and 2.9)
periodic shape functions for the electric potential are assumed to simplify com-
putation.

• No material non-linearity of the piezoceramic is considered.

• Properties of the contacting surfaces are subsumed in the friction coefficient, no
inner variables accounting for surface roughness are introduced.

• No distinction between sticking and sliding friction coefficient is made.

For the simple planar motor model, proposed in Section 2.7, further assumptions have
been made, which will be summarized here:

• Longitudinal displacements in stator and rotor are ignored.

• A lossless piezoceramic material is assumed.

• No sensor electrodes are incorporated.

• No geometric imperfections are modeled, such as for example wavyness of the
surface, non-coincidence of the eigenfrequencies of only nearly orthogonal eigen-
modes.

It turned out, that, although the model is held simple, the equations of motion are rather
lengthy and cumbersome to generate by hand. Therefore, a symbolic toolbox have
been used to derive the model equations. To exploit only terms of leading order in the
equations of motion, dimensionless quantities were introduced. A scaling procedure
have been carried out to neglect terms of lower order. The proposed simple motor
model extends those already used in different aspects. First, it is a electromechanical
model in contrary to many models, where only the mechanical parts have been modeled,
or the mechanical parts have been represented by equivalent electrical circuits. Second,
it includes rotor flexibility as well as the kinematics and dynamics of the contact layer
bonded to the rotor. Third, the model is not restricted to given kinematics of the stator,
but allows to excite the stator by voltages and get electric currents as output quantities.
It is possible to connect the motor model with models of power electronic models to
analyze the dynamics of the whole system.



Chapter 3

Model Analysis

3.1 Introduction

In this chapter, a numerical solution procedure for the contact problem of USMs is pro-
posed and some results of numerical analysis will be presented. The design process
of USMs is usually based on the analysis of the eigenfrequencies and the eigenmodes
of the stator. A lot of work has been done to understand the vibrational behavior of
the stator. The situation is different when it comes to modeling of the motor behav-
ior. Here, only a few models have been proposed and only some analysis results have
been presented (see Section 2.1 for a literature review). Some numerical results on
the stator-rotor contact problem were obtained by time integration of Finite-Elemente-
Models. CAO & WALLASCHEK (1995, [8]) and SCHMIDT (1999, [51]) started to give
a deeper insight into the contact behavior between stator and rotor using more sophis-
ticated structural dynamic models. Also, equivalent electric circuit models have been
investigated capturing the essential motor behavior. To come towards design rules for
the motor, the models need to be more sophisticated. The computation of frequency
response curves, speed-torque characteristics and electric admittances e.g. allows to
estimate important motor characteristics without actually building prototypes. Ques-
tions like how to choose the ratio between stator vibration amplitude and wavelength
or how to choose the rotor design parameters for a given stator design have not yet
been investigated intensively. Therefore, contact models and model analysis algorithms
are necessary which can give qualitative insights into the motor dynamics and which
allow parameter studies in reasonable time compared to numerical time simulation of
Finite-Element-Models.

In the first part of this chapter a numerical solution procedure is presented. At a
constant load, transients of motor dynamics usually settle down within a few millisec-
onds due to different damping mechanism. Thus, the focus is on the analysis of the
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steady-state motor dynamics. Since the concept of a moving reference frame is used,
the steady-state analysis can be reduced to solving a time independent contact problem.
This drastically simplifies the analysis compared to the time consuming FEM analysis.
First the computation of the eigenfrequencies of stator and rotor is discussed. Then,
the steady-state system equations are formulated for the simple motor model derived in
Section 2.7. The equations to compute the normal and tangential contact behavior are
given and the contact boundary conditions as well as the initial conditions are specified.
Using a Galerkin method, the set of ODE’s is then spatially discretized. All equations
are transformed into a matrix notation. Due to the contact interaction between stator
and rotor, stiffness matrices occur in the system equations which have to be updated
whenever the contact state changes. The system equations thus have a alterable struc-
ture. For the contact algorithm the principle incremental solution procedure is briefly
explained. A flow diagram of the contact algorithm gives an overview on the computa-
tion procedure. In the section containing numerical results, the difficulties encountered
during the numerical analysis of the contact zones are discussed and computed speed-
torque characteristics are compared to measured ones. Also, a result of a time domain
analysis is presented.

3.2 Numerical Solution Procedure

3.2.1 Eigenfrequencies of stator and rotor

For interpretation of the results of numerical analysis, knowledge of the eigenfrequen-
cies of stator and rotor are of importance since the stator is excited in two orthogonal
eigenmodes with the same frequency. Replacing the electric displacement on the right
side of the stator equation (2.148) with the equation of the electric displacement in
(2.153) and neglecting the contact forces and the external forces result in

S1

◦◦

w̄s + S2

◦◦

w̄
′′

s + S3

◦

w̄s + S4

◦

w̄
′

s +S5

◦

w̄
′′′

s +S6 w̄s + S7 w̄
′
s +

S8 w̄
′′
s +

[

S9 − S12
P3

P2

]

w̄′′′′
s = 0 , ∀ Ȳ1 ∈ [0, ns]. (3.1)

Note, that the term S12
P3

P2
in (3.1) represents influence of the piezoceramic part on

bending stiffness of the stator. Since periodic boundary conditions at Ȳ1 = 0 and
Ȳ1 = ns are assumed, the wavenumbers of the eigenmodes are known a priori to be

k̄i = (i− 1)
2π

ns
, i = 1, 2, . . . . (3.2)

To each wavenumber corresponds the wave velocity

v̄i =
ω̄i

k̄i
, with v̄i =

vi
[Ω][λ]

. (3.3)
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The terms S4, S5, S7-S9 in (3.1) depend on the velocity of the traveling reference frame

vw =
[Ω]

nsk
Ω̄ (3.4)

and thus on the circular frequency Ω̄. There are two ways to compute the eigenfre-
quencies. One is to solve the eigenvalue problem in a spatially fixed reference frame
by setting vw = 0. Consequently, the terms with the coefficients containing the wave
velocity vw vanish. Inserting an ansatz of the type w̃ = ejk̄iȲ1ejω̄i t̄ into (3.1) gives an
equation for the ω̄i for each k̄i. The other way of computing eigenfrequencies is to look
at the steady state condition where the time dependent terms in (3.1) vanish. Using an
ansatz of the type w̃ = ejk̄iȲ1 and substituting (3.4) into (3.1) gives the eigenfrequen-
cies Ω̄i. These are related to the eigenfrequencies ω̄i of the modes via

ω̄i =
i− 1

ns
Ω̄i , i = 2, 3, . . . , (3.5)

where it is taken into consideration that the wave velocity vw in (3.4) corresponds to
the (ns + 1)th mode in the stator (the operational mode).

3.2.2 Contact equations

The most important characteristic of USMs are the speed-torque curves, i.e. the motor
features under steady-state motor operation. Transient characteristics like start and stop
behavior may be important, too. However, the first step towards a better understanding
of the motor dynamics and the influence of important design parameters, e.g. the rotor
geometry and material, must be an analysis of the steady-state motor behavior. The nu-
merical solution procedure is then carried out for steady-state, i.e. all time derivatives
in the system equations (2.148)-(2.157) vanish, except for the rotor rigid body displace-
ment c̄rx in the driving direction. The motor equations for steady-state are, the stator
equation

S6 w̄s + S7 w̄
′
s + S8 w̄

′′
s +

[

S9 − S12
P3

P2

]

w̄′′′′
s + S10 T̄N + S11T̄

′
T

= −S12 D̄
′′
3 − S13 p̄axial , ∀ Ȳ1 ∈ [0, ns] (3.6)

the rotor equation of rigid body motion

Rr8 w̄
′
r +Rr15 ū

′
c +Rr16 ū

′′
c +Rr17 w̄

′
c +Rr20T̄T = −Rr22 F ,

∀ Ȳ1 ∈ [0, ns] (3.7)

the rotor equation of flexural motion

Rf7 w̄r +Rf8 w̄
′
r +Rf9 w̄

′′
r +Rf11 w̄

′′′′
r +Rf25 T̄N +Rf26T̄

′
T = 0 ,

∀ Ȳ1 ∈ [0, ns] (3.8)
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the contact layer equation in the Ȳ1 direction

ūc + Lu13 ū
′
c + Lu19 T̄T = 0 , ∀ Ȳ1 ∈ [0, ns] (3.9)

the contact layer equation in the Ȳ3 direction

Lw14 w̄c + Lw15 w̄
′
c + Lw18 T̄N = 0 , ∀ Ȳ1 ∈ [0, ns] (3.10)

the contact gap

ḡN = w̄c + w̄r − w̄s , with (3.11)

ḡN = 0 , ∀ Ȳ1 ∈ ∂B̄ci and ḡN > 0 , ∀ Ȳ1 ∈ ∂B̄nci (3.12)

the relative velocity for tangential contact

˙̄gT = SS2 w̄
′′
s − ˙̄crx + SS5 w̄

′′
r + SS7 ū

′
c with (3.13)

˙̄gT = 0 ∀ Ȳ1 ∈ ∂B̄stick
ci and ˙̄gT 6= 0 ∀ Ȳ1 ∈ ∂B̄slip

ci (3.14)

and the friction law

T̄T = µ sign( ˙̄gT ) T̄N , ∀ Ȳ1 ∈ ∂B̄slip
ci . (3.15)

The interaction between stator, rotor and contact layer is expressed via the normal con-
tact stresses

T̄N ≡











T̄ ∗
N if Ȳ1 ∈ ∂Bci

0 if Ȳ1 /∈ ∂Bnci

, (3.16)

and the tangential contact stress

T̄T ≡



























T̄ stick
T if Ȳ1 ∈ ∂B

stickj

ci ∧ ˙̄gT = 0

sign( ˙̄gT )µ T̄ ∗
N if Ȳ1 ∈ ∂B

slipj

ci ∧ ˙̄gT 6= 0

0 if Ȳ1 /∈ ∂Bci

, (3.17)

with i = 1, . . . , Nc contact zones and j = 1, . . . , Ncti stick and slip sub-zones, within
each contact zone. The different contact zones are illustrated in Fig. 2.5.

The motor input quantities are the electric excitation, which are given according to
(2.158) as

ˆ̄Φ(Ȳ, t̄) = ˆ̄V A1 cos(2πȲ1) , (3.18)

and the rigid body speed of the rotor as

˙̄crx := v̄r . (3.19)
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Note, that the assumption is made that higher harmonic spatial components caused by
the rectangular shaped electric potential as illustrated in Fig. 2.10 are negligible, since
the motor is driven near it’s operational resonance. Thus, higher harmonic components
in the stator due to the electric excitation are assumed to be small.

There are four given or prescribed quantities, namely the frequency of excitation
Ω̄, the amplitude of the electric voltage V̄A1, the axial prestress paxial, and the rotor
velocity v̄r. Note, that the rotor velocity is used instead of the motor output force as
independent variable to simplify the computational effort. The unknown quantities are
the displacements w̄s(Ȳ1), w̄r(Ȳ1), w̄c(Ȳ1), ūc(Ȳ1), the contact stresses T̄N (Ȳ1) and
T̄T (Ȳ1), the contact gap ḡN(Ȳ1), the relative velocity ˙̄gT (Ȳ1) the contact boundaries
{pei, pbi} for i = 1, . . . , Nc as well as the transition points with coordinates ptij for
j = 1, . . . , Ncti, defining transitions from stick to slip and vice versa. The bending
wave runs from left to right with the wave velocity vw while due to the stator kinemat-
ics, the rotor moves in the opposite direction with rotor velocity v̄r. The beginning of a
contact zone is defined as that boundary at which material points approach each other
(coordinates pbi). Analogously, the end of a contact zone is defined as that boundary at
which material points separate from each other (coordinates pei). The contact bound-

Y

W

rv

vw

p
bi- ei tij bi ei bi

p p p p p
+11 +1

ei-

p
1

Figure 3.1: Stator and rotor deformation and contact boundaries

aries are illustrated in Fig. 3.1. The various contact subzones are labeled by the type of
contact. According to Fig. 2.5 the various subzones are named as follows: The contact
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zones, ∂Bci, and the non-contact zones ∂Bci correspond to

∂Bci = [pei, pbi] , ∂Bnci = [pbi, pe(i+1)] , (3.20)

respectively. It is assumed that Nc contact zones exist, with i = 1, . . . , Nc, whereas
Nc = 1 is possible. For both types of subzones, the relations

∂Brc =
(

Nc
⋃

i=1

∂Bci

)

∪
(

Nc
⋃

i=1

∂Bnci

)

and ∂Bci ∩ ∂Bnci = ∅ ,

hold. The contact zones are divided into stick- and slip-subzones by the transition
coordinates, which are bounded by the boundaries of the contact zone. The computation
of the tangential contact stress distribution starts at the beginning of a contact zone. This
is the reason why the numeration of these subzones starts at the beginning of a contact
zone and ends at the end of a contact zone. The stick-subzones may belong to the
following sections of the stator or rotor contact surface

∂B̄stick1
ci = [pti1, pbi] ∨ ∂B̄

stickj+1

ci = [pti(j+1), ptij ]

∨ ∂B̄
stickNcti

ci = [pei, pti(Ncti+1)] . (3.21)

Analogously, the slip-subzones may belong to the sections

∂B̄slip1

ci = [pti1, pbi] ∨ ∂B̄
slipj+1

ci = [pti(j+1), ptij ]

∨ ∂B̄
slipNcti

ci = [pei, pti(Ncti+1)] . (3.22)

It is assumed, that each contact zone consists of Ncti + 1 stick or slip subzones, with
j = 1, . . . , Ncti + 1. For the stick- and slip-subzones the relations

∂B̄ci =

Ncti
⋃

j=1

∂B̄
stick/slipj

ci and ∂B
stickj

ci ∩ ∂Bslipk

ci = ∅ , ∀ j 6= k .

hold.

Before the discretization method is carried out, the motor equations are rearranged
and partially solved to reduce the number of unknowns. The objective now is to express
both displacements of the contact layer, w̄c(Ȳ1), ūc(Ȳ1), and the contact stresses in
terms of the stator and rotor displacements. Therefore, the contact conditions have to
be considered in more detail.
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Normal contact Two cases must be distinguished, the contact state and the non-
contact state. In the case of contact, ḡN = 0 holds and according to the gap function in
(3.11), the lateral contact layer displacement can be expressed as

w̄c = w̄s − w̄r . (3.23)

Substituting (3.23) back into the equation of the lateral contact layer displacement
(3.10) results in an expression for the normal contact stress

T̄ ∗
N = −

1

Lw18

[

Lw14

(

w̄s − w̄r

)

+ Lw15

(

w̄′
s − w̄′

r

)]

, ∀ Ȳ1 ∈ ∂Bci. (3.24)

In the case of non-contact, T̄N = 0 holds for the contact stress. The equation of the
contact layer in the Ȳ3 direction, (3.10), reduces to a homogeneous ODE

Lw14 w̄c + Lw15 w̄
′
c = 0 , ∀ Ȳ1 /∈ ∂Bci . (3.25)

The solution of this equation is

w̄c = Cfree
wi e−

Lw14
Lw15

(Ȳ1) , ∀ Ȳ1 ∈ [pbi, pei+1] 6⊂ ∂Bci . (3.26)

The solution (3.26) is valid for two neighboring contact zones. Substituting (3.26) into
(3.11) yields

ḡN = Cfree
wi e−

Lw14
Lw15

Ȳ1 + w̄r(Ȳ1)− w̄s(Ȳ1) > 0 , ∀ Ȳ1 ∈ ∂Bnci . (3.27)

As it has been shown, the normal contact stress T̄ ∗
N , the contact layer displacement w̄c,

and the contact gap can be expressed in terms of the stator and rotor displacements, w̄s,
w̄r , respectively. Consequently, additional unknowns such as the integration constants
Cfree

wi , i = 1, . . . , Nc enter the equations of motion, which have to be determined by
the contact boundary conditions. This will be discussed in a subsequent paragraph.

Tangential contact A similar procedure as that for the normal contact will be carried
out for the tangential contact. The objective is the same, to express the tangential contact
layer displacement ūc and the tangential contact stress T̄T in terms of the stator and rotor
displacement. In the case of contact, ḡN = 0, between two different contact situations
must be distinguished, the stick and the slip tangential contact state.
Where two surfaces stick, the relative velocity is zero, i.e. ˙̄gT = 0 is valid. The
tangential displacement of the contact layer can be expressed in terms of the stator and
rotor displacements by integrating (3.13)

ūstick
c =

1

SS7

[

v̄r Ȳ1 − SS2 w̄
′
s − SS5 w̄

′
r

]

+ C
stickj

ui ∀ Ȳ1 ∈ ∂B̄
stickj

ci . (3.28)

Substituting (3.28) into (3.9) gives an expression for the tangential stress in terms of the
stator and rotor displacement

T̄ stick
T = −

1

Lu19 SS7

[

v̄r Ȳ1 − SS2 w̄
′
s − SS5 w̄

′
r + Lu13

(

v̄r − SS2 w̄
′′
s − SS5 w̄

′′
r

)]

−
1

Lu19
C

stickj

ui , ∀ Ȳ1 ∈ ∂B̄
stickj

ci . (3.29)
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Under slip-contact conditions, ˙̄gT = ˙̄g
slip
T 6= 0 holds. Inserting the friction law

(3.15) into (3.9) yields an inhomogeneous ODE for the displacement ūc

ūslip
c + Lu13 (ū

slip
c )′ = −Lu19 µ sign( ˙̄gT ) T̄

∗
N , ∀ Ȳ1 ∈ ∂B̄

slipj

ci . (3.30)

The solution consists of the superposition of a particular solution and the solution of
the homogeneous equation

ūslip
c = ūslip

ch + ūslip
cp , with ūslip

ch = C
slipj

ui e
− 1

Lu13
Ȳ1 , ∀ Ȳ1 ∈ ∂B̄

slipj

ci . (3.31)

The right hand side of (3.30) can be modified by inserting (3.24)

ūslip
cp + Lu13 (ū

slip
cp )′ =

Lu19

Lw18
µ sign( ˙̄gT )

[

Lw14

(

w̄s − w̄r

)

+ Lw15

(

w̄′
s − w̄′

r

)]

∀ Ȳ1 ∈ ∂B̄
slipj

ci . (3.32)

The right hand side of (3.32) is a function of the stator and rotor displacement. Thus,
a particular solution ū

slipj
cpi can be obtained depending on the stator and rotor displace-

ments. Analogously, the tangential contact stress for slipping surfaces, i.e. the friction
law (3.15) follows as

T̄ slip
T = −

µ sign( ˙̄gT )

Lw18

[

Lw14

(

w̄s − w̄r

)

+ Lw15

(

w̄′
s − w̄′

r

)]

,

∀ Ȳ1 ∈ ∂B̄
slipj

ci . (3.33)

Other, more sophisticated friction laws may be implemented by substituting the term
µ sign( ˙̄gT ) by the corresponding functional dependence of the friction coefficientµ( ˙̄gT ).
The relative velocity results in

˙̄g
slip
T = SS2 w̄

′′
s + SS5 w̄

′′
r + SS7 (ū

slip
c )′ − v̄r (3.34)

with ūslip
c taken from (3.31) and (3.32).

In the case of non-contact, T̄T = 0 holds and the contact layer equation (3.9) de-
generates to a simple homogeneous ODE with the solution

ūfree
c = Cfree

ui e−
1

Lu13
Ȳ1 , ∀ Ȳ1 ∈ [pbi, pei+1] . (3.35)

The contact layer displacements ūc, w̄c and the contact stresses T̄ ∗
N , T̄ stick

T and
T̄ slip
T have been expressed in terms of the stator and rotor displacements w̄s and w̄r,

respectively. This reduced the number of field variables and thus, the computation
time. However, additional unknowns, namely the integration constants C

stickj

ui and

C
slipj

ui , appear. Notably, the contact problem has to be solved incrementally, since due
to the frictional contact the equations cannot be solved simultaneously. At each load
step increment or increment of the excitation frequency, for example, the normal contact
problem is solved under constant tangential contact conditions (ūc, T̄T ). After that, the
tangential contact condition is updated and the integration constant will be determined.
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Contact boundary conditions Besides the field variables, also the contact bound-
aries (pei, pbi) as well as the integration constants Cfree

wi , Cfree
ui , Cslipj

ui , and C
stickj

ui

are unknown. To solve the equations of motion, additional conditions have to be for-
mulated at the contact boundaries. The variables (pei, pbi) and Cfree

wi are related to the
normal contact. Therefore, three types of boundary equations are necessary. First, the
integration constant Cfree

wi is determined. At the end of the i + 1th contact zone, the
gap function (3.83)

ḡN (pei+1) ≡ Cfree
wi e

−
Lw14
Lw15

pei+1 + w̄r(pei+1)− w̄s(pei+1) = 0 (3.36)

must be satisfied. The integration constant becomes

Cfree
wi =

[

w̄s(pei+1)− w̄r(pei+1)
]

e
−

Lw14
Lw15

pei+1 . (3.37)

The other boundary conditions result in equations for the boundary values (pei, pbi). At
the beginning of the contact zone, the gap function must vanish

ḡN (pbi) ≡
[

w̄s(pei+1)− w̄r(pei+1)
]

e−
Lw14
Lw15

(pbi+pei+1)

+ w̄r(pbi)− w̄s(pbi) = 0 . (3.38)

whereas, at the end of the contact zone the normal contact stress reaches zero

T̄ ∗
N (pei) ≡ −

1

Lw18

[

Lw14

(

w̄s(pei)− w̄r(pei)
)

+ Lw15

(

w̄′
s(pei)− w̄′

r(pei)
)]

= 0 . (3.39)

As the next step, the boundary conditions for the tangential contact will be stated. Using
the incremental solution procedure, the normal contact state, i.e. the contact boundaries
(pei, pbi) are assumed to be known. In the updating procedure, the tangential contact
state is computed at constant normal contact state. For the tangential contact state,
conditions for the determination of the integration constants Cfree

ui , Cslipj

ui , and C
stickj

ui

must be given.

Transition conditions from stick to slip and vice versa With the knowledge of the
normal contact stress at an incremental change of the external quantities, the updating
of the tangential contact stress needs the equations stated in the foregoing paragraph. At
this step the stator and rotor displacements w̄s and w̄r are known. So is also the normal
contact stress T̄ ∗

N . The rotor velocity v̄r is given. The unknown parameters, such as the
contact layer displacement ūc and the tangential contact stress T̄T are computed next.
Since Coulomb’s friction law is used, stick and slip zones must be distinguished. There-
fore, the conditions of the transition pointsPtij between stick and slip regions need to be

formulated in order to determine the integration constants Cstickj

ui and C
slipj

ui . The strat-
egy is to pass through the contact state from the beginning of contact (at pbi) through
the end of contact (at pei). During passage, it must be verified whether a transition from
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stick to slip or vice versa occurs. Two limiting frictional stresses exist, a braking limit
stress and a driving limit stress

braking limit stress: T̄ l+
T (Ȳ1) := µ |T̄ ∗

N (Ȳ1)| , (3.40)

driving limit stress: T̄ l−
T (Ȳ1) := −µ |T̄ ∗

N(Ȳ1)| , (3.41)

where braking and driving are considered with respect to the rotor rigid body motion v̄r.
The normal contact stress T̄ ∗

N (Ȳ1) is given by (3.24). The determination of transition
points Ptij , i = 1, . . . , Npi between stick- and slip-subzones starts at the beginning of
the contact zone, at points Pbi. Three cases must be distinguished.

First, the transition from stick to slip will be determined, i.e under the assumption
that the stick contact state is known, the integration constant Cslipj

ui for the slip contact
state is found. The coordinate ptij where the transition from stick to slip takes place, is
located by the indicator function

f(ptij) ≡| T̄ stick
T (ptij) | − | µT̄ ∗

N(ptij) |= 0 . (3.42)

The explicit expression of the indicator function is given by inserting (3.29) and (3.24)
into (3.42). The contact layer displacement in tangential direction under stick-condition
gives

ūstick
c (ptij) = ūstick

c0 . (3.43)

The integration constant is then determined from the condition of continuous transition
of the displacement

ūslip
c (ptij) = ūstick

c0 , (3.44)

resulting in

C
slip(j+1)

ui =
[

ūstick
c0 − ūslip

cp (ptij)
]

e
ptij
Lu13 . (3.45)

Second, the transition from slip to stick is formulated under the assumption that the
slip contact state is known. The indicator function is given by (3.34) and the transition
coordinate ptij is determined by the vanishing of

˙̄g
slip
T (ptij) ≡ SS2 w̄

′′
s (ptij) + SS5 w̄

′′
r (ptij) + SS7 (ū

slip
c )′(ptij)− v̄r = 0 . (3.46)

The contact layer displacement in tangential direction under slip-condition gives

ūslip
c (ptij) ≡ ūslip

c0 (3.47)

at the transition point. The integration constant is then again determined by the condi-
tion of continuous transition of the displacement

ūstick
c (ptij) = ūslip

c0 , (3.48)
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with ūstick
c (ptij) taken from (3.28). The integration constant becomes

C
stick(j+1)

ui = ūslip
c0 +

1

SS7

[

SS2 w̄
′
s(ptij) + SS5 w̄

′
r(ptij)− v̄r ptij

]

. (3.49)

Third, the transition from stick- or slip-contact to no-contact needs to be derived.
In this case, the transition point is already known, namely the end-points of the contact
zones, Pei. The contact layer displacement at the end of the last contact subzone is
known and is either a stick or a slip subzone

ūslip
c (pei) = ūslip

c0 or ūstick
c (pei) = ūstick

c0 . (3.50)

The integration constant of the solution for the non-contact state of the contact layer is
determined from

ūfree
c (pei) = ū

slip/stick
c0 . (3.51)

The integration constant is given by (3.35) as

Cfree
ui = ū

slip/stick
c0 e

Lw14
Lw15pei . (3.52)

Motor output force and maximum rotational speed After the solution of the con-
tact problem for a given set of external variables (voltage, excitation frequency and
rotational speed), the corresponding motor output force can be computed by rearrang-
ing (3.7)

F = −
1

Rr22

[

Rr8 w̄
′
r +Rr15 ū

′
c +Rr16 ū

′′
c +Rr17 w̄

′
c +Rr20T̄T

]

,

∀ Ȳ1 ∈ [0, ns] . (3.53)

A scaling analysis, using the characteristic data from Tab. 2.2 and the reference data
from Tab. 2.2, shows that the coefficient Rr20/Rr22 is much greater than the others. In
very good approximation the motor force is given by

F = −
1

ns

Rr20

Rr22

Nc
∑

i=1

∫ pbi

pei

T̄T dȲ1 , (3.54)

where the integration is carried out between the different stick and slip subzones.

The maximum rotational speed of the motor would be achieved in point contact
between the wave crests of the bending wave in stator and rotor. For such an idealized
condition the rotor together with the contact layer must behave like a rigid body. The
velocity of stator surface points for the simple motor model is given by substituting
(2.116) and (2.118) into (2.22)

v̄rmax =
[hs

2
+

hp

2

]

vw max
[

w̄′′
s

]

Ȳ1∈[0,ns]
. (3.55)
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With the scaling parameters in Tab. 2.2 and the typical data in Tab. 2.2, the maximum
rotational speed reads as follows

v̄rmax = 0.25 ˆ̄ws , (3.56)

where ˆ̄ws is the dimensionless amplitude of the harmonic stator vibration. The dimen-
sional form is obtained using (3.19) and the scaling rules (2.142), (2.143) as

vrmax ≈ 100
rpm

µm
ŵs . (3.57)

The maximum rotational speed gives an upper bound for the no-load rotational speed
of the motor. For the no-load rotational speed v̄r0,

v̄r0 < v̄rmax (3.58)

holds. The no-load rotational speed is unknown beforehand, since the tangential contact
distribution along the contact zones are unknown.

Initial conditions The frictional contact between stator and rotor demands an incre-
mental solution procedure, since frictional processes are history dependent. Beginning
with a known contact state, a control parameter (e.g. excitation frequency, electric volt-
age) is changed by an increment. Then, the normal contact state is determined. Hereby,
the tangential contact state stays unchanged. In a second step, the tangential contact
state is updated with the new normal contact state remaining unchanged. Using such
an incremental procedure, the incremental steps of the control parameter must be small
enough to ensure only small changes in the tangential contact state. To begin with an
initial contact state any known state already obtained during an contact computation can
be used. Also, the contact state at rest, where no traveling wave excitation is present,
can be taken as initial contact state. For this contact state, the equations (3.6) to (3.17)
reduce to

the stator equation

S6 w̄s + S10 T̄N = −S13 p̄axial , ∀ Ȳ1 ∈ [0, ns] (3.59)

the rotor equation of rigid body motion

F = −
1

ns

Rr20

Rr22

∫ ns

0

T̄T dȲ1 (3.60)

the rotor equation of flexural motion

Rf7 w̄r +Rf25 T̄N = 0 , ∀ Ȳ1 ∈ [0, ns] (3.61)

the contact layer equation in the Ȳ1 direction

ūc + Lu19 T̄T = 0 , ∀ Ȳ1 ∈ [0, ns] (3.62)
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the contact layer equation in the Ȳ3 direction

Lw14 w̄c + Lw18 T̄N = 0 , ∀ Ȳ1 ∈ [0, ns] (3.63)

the contact gap

ḡN = w̄c + w̄r − w̄s with ḡN = 0 (3.64)

and the relative velocity for tangential contact

˙̄gT = 0 ∀ Ȳ1 ∈ ∂B̄
stickj

ci . (3.65)

For a given axial preload p̄axial the initial contact state can be easily determined as

⇒ w̄(0)
s , w̄(0)

r , w̄(0)
c , ū(0)

c . (3.66)

Electrical Quantities Having the solution, the motor force F in (3.7) can be calcu-
lated, giving the speed-force characteristics (v̄r-F -characteristics). The speed-torque
characteristics (n-T -characteristics, see Fig. 1.18) and the speed-force characteristics
are related to each other by the radius of the stator and rotor. Also, electrical quantities
can be calculated. For example the electric current is

ĪA(t̄) := −
1

P2

∫ ns/2−b̄1(t̄)

−b̄1(t̄)

[

P1
ˆ̄Φ
′

+ P3 w̄
′′′
s

]

b̄1(t̄) dȲ1 , (3.67)

with b̄1(t̄) defined in (2.159).

3.2.3 Steady-state system equations

In Section 3.2.2 the field variables of normal stress, tangential stress, contact gap, rel-
ative velocity and contact layer displacements were derived. They were expressed in
terms of stator and rotor displacement variables and integration constants. The integra-
tion constants of these field variables were readily obtained using continuity conditions
of the contact layer displacements at the contact boundaries and the transition points.

In this section the steady-state equations are summarized and the initial state as
well as the contact topology is formulated. Then, a description of the contact search
equations follows. Finally, the equations to compute contact boundaries and contact
transition points are presented.
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Stator and rotor equations

The stator and the rotor equations of motion are given by (3.6) and (3.8) as

S6 w̄s + S7 w̄
′
s + S8 w̄

′′
s +

[

S9 − S12
P3

P2

]

w̄′′′′
s + S10 T̄N + S11T̄

′
T

= −S12 D̄
′′
3 − S13 p̄axial , ∀ Ȳ1 ∈ [0, ns] (3.68)

Rf7 w̄r +Rf8 w̄
′
r +Rf9 w̄

′′
r +Rf11 w̄

′′′′
r +Rf25 T̄N +Rf26T̄

′
T = 0 ,

∀ Ȳ1 ∈ [0, ns] , (3.69)

respectively. The motor output force, given in (3.54), is

F = −
1

ns

Rr20

Rr22

Nc
∑

i=1

∫ pbi

pei

T̄T (Ȳ1) dȲ1 , (3.70)

and can be computed for a known tangential contact stress distribution T̄T (Ȳ1).

Contact field variables

Besides the stator and rotor equations, there are the contact field variables, which consist
of the kinematic field variables, namely, the contact layer displacement, the contact gap
and the relative velocity as well as the normal and tangential contact stress between
stator and rotor surfaces. These field variables were derived in Section 3.2.2 together
with expressions for the corresponding integration constants. Here, the field variables
are summarized.

Normal contact state The normal contact layer displacement was splitted into parts
describing the displacement in contact zones, (3.23), and in non-contact zones, (3.26).
Substitution of the integration constant by (3.37) results in

w̄c(Ȳ1) =











w̄s − w̄r , ∀ Ȳ1 ∈ ∂Bci

[

w̄s(pei+1)− w̄r(pei+1)
]

e
Lw14
Lw15

(pei+1−Ȳ1) , ∀ Ȳ1 ∈ ∂Bnci

. (3.71)

Summarizing the expressions for the contact gap function in the different contact areas,
yields

ḡN (Ȳ1) =























0 , ∀ Ȳ1 ∈ ∂Bci

[

w̄s(pei+1)− w̄r(pei+1)
]

e
Lw14
Lw15

(pei+1−Ȳ1)

+w̄r(Ȳ1)− w̄s(Ȳ1) > 0 , ∀ Ȳ1 ∈ ∂Bnci

. (3.72)
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Similarly, the normal contact stress in the different contact zones is complementary to
the gap function, giving

T̄N (Ȳ1) =







− 1
Lw18

[

Lw14

(

w̄s − w̄r

)

+ Lw15

(

w̄′
s − w̄′

r

)

]

, ∀ Ȳ1 ∈ ∂Bci

0 , ∀ Ȳ1 ∈ ∂Bnci

. (3.73)

By inspection of (3.72) and (3.73) the complementary character of the gap function and
the normal stress gets obvious

ḡN (Ȳ1) ≥ , T̄N(Ȳ1) ≤ , ḡN(Ȳ1) T̄N (Ȳ1) = 0 . (3.74)

This is the so-called non-penetration condition or KUHN-TUCKER condition for fric-
tionless contact problems (see WRIGGERS (1995, [62], p.10).

Tangential contact state Summarizing the tangential contact layer displacements in
the different contact subzones given by (3.28), (3.31) and (3.35) yields

ūc(Ȳ1) =























1
SS7

[

v̄r Ȳ1 − SS2 w̄
′
s − SS5 w̄

′
r

]

+ C
stickj

ui , ∀ Ȳ1 ∈ ∂B̄
stickj

ci

C
slipj

ui e−
1

Lu13
Ȳ1 + ūslip

cp (Ȳ1) , ∀ Ȳ1 ∈ ∂B̄
slipj

ci

Cfree
ui e−

1
Lu13

Ȳ1 , ∀ Ȳ1 ∈ ∂B̄nci

. (3.75)

The relative velocity becomes

˙̄gT (Ȳ1) =







0 , ∀ Ȳ1 ∈ ∂B̄
stickj

ci

SS2 w̄
′′
s + SS5 w̄

′′
r + SS7 (ū

slip
c )′ − v̄r , ∀ Ȳ1 ∈ ∂B̄

slipj

ci

, (3.76)

using (3.34) and the tangential contact stress is given by combination of (3.29) and
(3.33):

T̄T (Ȳ1) =















































0 , ∀ Ȳ1 ∈ ∂B̄nci

− 1
Lu19 SS7

[

v̄r Ȳ1 − SS2 w̄
′
s − SS5 w̄

′
r

+Lu13

(

v̄r − SS2 w̄
′′
s − SS5 w̄

′′
r

)

]

− 1
Lu19

C
stickj

ui , ∀ Ȳ1 ∈ ∂B̄
stickj

ci

µ sign( ˙̄g
slip
T )

[

Lw14

(

w̄s − w̄r

)

+ Lw15

(

w̄′
s − w̄′

r

)

]

, ∀ Ȳ1 ∈ ∂B̄
slipj

ci .

(3.77)

It should be noted, that the integration constants C
stickj

ui , Cslipj

ui and Cfree
ui are not

substituted, since the topology (stick-slip sequences) of the tangential field variables,
(3.75)-(3.77), are not known a priori. They have to be determined by continuity con-
ditions of the tangential contact layer displacement uc at the boundaries of the contact
subzones (see Section 3.2.4).
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Initial state and contact topology

For a given system state (e.g. the state at rest, see (3.66)), all state variables are known.
This includes the integration constants of the field variables

C
stickj

ui , C
slipj

ui , Cfree
ui with i = 1, . . . , Nc ; j = 1, . . . , Ncti + 1 , (3.78)

the displacements of stator, rotor and contact layer

w̄s(Ȳ1), w̄r(Ȳ1), w̄c(Ȳ1) = fw
(

w̄s(Ȳ1), w̄r(Ȳ1)
)

, ūc(Ȳ1) = fu
(

w̄s(Ȳ1), w̄r(Ȳ1)
)

,

where w̄c and ūc are expressed as functions of the stator and rotor displacements and the
topology of the contact state, respectively, and the coordinates of the contact boundaries
and the transition points

{pei, pbi} , {pti1, . . . , ptij , . . . , pti(Ncti)} with i = 1, . . . , Nc . (3.79)

Contact search equations

Topological changes in the contact states occur when stator and rotor surface points
come into contact, separate or new stick-slip contact subzones appear. Such events
result in a change of the number of integration constants, (3.78) and boundary and
transition points, (3.79), respectively. Contact search equations are necessary to indicate
new contact topologies. Additionally, they give first approximations of the coordinates
of the contact boundaries and the transition points. In this section, the topological
changes of normal and tangential contact states are studied and the necessary contact
search equations are presented. The different variations of contact states are described
according to Section 2.3.3.

Normal contact It is distinguished between contact processes which generate new
contact zones and those where contact zones vanish. The first type of contact processes
corresponds to mechanisms where stator and rotor surface points in a contact zone begin
to separate or where stator and rotor surface points within a non-contact zone approach
each other. The second type describes contact processes where contact zones vanish
either by merging of neighboring contact zones or by shrinking of contact zones to zero
length. In both cases the contact topology changes.
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New subzones: Separation and Approach Separation of stator and rotor surface
points occurs when the normal contact stress in a contact zone becomes positive, i.e. if
tensile stresses occur

T̄ ∗
N (Ȳ1) < 0 ⇒ T̄ ∗

N (Ȳ1) > 0 , Ȳ1 ∈ ∂Bci = [pei, pbi] . (3.80)

For the new non-contact subzone

T̄ ∗
N (Ȳ1) = 0 , Ȳ1 ∈ [pbi, pe(i+1)] , (3.81)

is valid, where {pbi, pe(i+1)} are the new contact boundaries. On the contrary, an ap-
proach of surface points takes place under a change of sign in the contact gap function,
i.e. if penetration occurs

ḡN (Ȳ1) > 0 ⇒ ḡN (Ȳ1) < 0 , Ȳ1 ∈ [pbi, pe(i+1)] 6⊂ ∂Bci . (3.82)

In the new contact zone, [pe(i+1), pb(i+1)],

ḡN (Ȳ1) = 0 , ∀ Ȳ1 ∈ [pe(i+1), pb(i+1)] . (3.83)

holds.

Vanishing subzones: Merging and Shrinking On the one hand, contact zones
vanish if neighboring contact zones merge, i.e. if contact boundaries of different contact
zones approach each other:

∂Bci =
[

pei, pbi
]

, ∂Bc(i+1) =
[

pe(i+1), pb(i+1)

]

: pbi → pe(i+1) .

On the other hand, contact zones also vanish if contact boundaries of the same contact
zone approach each other, i.e. the contact length shrinks to zero

∂Bci =
[

pei, pbi
]

: pei → pbi .

Tangential contact The contact search for transition coordinates ptij between stick-
and slip-subzones starts at the contact boundaries pbi. Under the assumption of stick-
ing, it is checked, whether the sticking condition is valid or violated. The sign of the
indicator function f(Ȳ1) in (3.42) determines, which tangential contact state

f(pbi) < 0 begin with stick in the i-th contact zone

or

f(pbi) > 0 begin with slip in the i-th contact zone ,

is valid at the beginning of a contact zone. To find transitions from stick to slip or vice
versa each contact zone is checked from the beginning (coordinate pbi) towards the end
(coordinate pei) for the first zero of each active indicator function:

stick → slip : f(Ȳ1) < 0 → f(Ȳ1) > 0

slip → stick : ġT (Ȳ1) > 0 → ġT (Ȳ1) < 0 , or

slip → stick : ġT (Ȳ1) < 0 → ġT (Ȳ1) > 0 .

at each case. The indicator function ġT (Ȳ1) is stated in (3.46).
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3.2.4 Contact boundaries and transitions

The contact search equations in Section 3.2.3 are used to find the contact topology. The
exact values of the contact boundaries and the transition coordinates between stick and
slip-subzones are subsequently determined by solving a set of boundary and transition
equations, which are stated below.

Normal contact

The contact boundary conditions for normal contact have already been derived in (3.2.2).
At the beginning and the end of contact zones (3.38) and (3.39) must be fulfilled, lead-
ing to

ḡN(pbi) ≡
[

w̄s(pei+1)− w̄r(pei+1)
]

e
−

Lw14
Lw15

(pbi−pei+1)

+w̄r(pbi)− w̄s(pbi) = 0 , (3.84)

T̄ ∗
N (pei) ≡ −

1

Lw18

[

Lw14

(

w̄s(pei)− w̄r(pei)
)

+Lw15

(

w̄′
s(pei)− w̄′

r(pei)
)]

= 0 . (3.85)

Tangential contact

Two sets of equations are required to determine the integration constants, (3.78) and
the transition coordinates, (3.79), of the tangential contact state. One set of equations
is delivered by continuity conditions of the tangential displacement uc at the contact
boundaries and transition points. This is used to determine the integration constants. In
each contact zone the following equations hold:

ūstate2
ci (pbi) = ūfree

ci (pbi) (3.86)
...

ū
state(j+1)

ci (ptij) = ū
statej
ci (ptij) (3.87)

...

ūfree
c(i−1)(pei) = ū

stateNcti−1

ci (pei) , (3.88)

where state ∈ {stick, slip}. It should be mentioned here, that besides these general
contact states, also degenerate contact states exist. In the case of full contact between
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stator and rotor and various stick/slip subzones, the equations

ūstate2
c1 (pt11) = ūstate1

c1 (pt11) (3.89)
...

ū
state(j+1)

c1 (pt1j) = ū
statej
c1 (pt1j) (3.90)

...

ū
stateNcti+1

c1 (pt1(Ncti)) = ū
stateNct1
c1 (pt1(Ncti)) (3.91)

ū
stateNcti+1

c1 (0) = ūstate1
c1 (ns) (3.92)

must be used instead. Two other degenerate contact states are full contact, ḡN(Ȳ1) =
0, ∀Ȳ1 ∈ [0, ns], with either pure slip-condition or pur stick-condition. For pure slip,
the periodicity condition

ūslip1

c1 (0) = ūslip1

c1 (ns) (3.93)

must be fulfilled, thus Cslip1

u1 = 0 holds and only the particular solution

ūslip1

c1 (Ȳ1) = ūslip1

cp1 (Ȳ1) (3.94)

remains. In case of pure stick a similar periodicity condition holds

ūstick1
c1 (0) = ūstick1

c1 (ns) . (3.95)

This requires the rotor speed to vanish, i.e. v̄r = 0. Without stator and rotor bending
deformation, there is no tangential displacement and the integration constant vanishes:

uc(Ȳ1) = 0 , for w′
s = w′

r = 0 ⇒ Cstick1
u1 = 0 . (3.96)

The coordinates ptij of the contact transition points Ptij are obtained by computing
the zeros of the indicator functions, (3.42) and (3.46), respectively. Inserting (3.29) and
(3.24) into (3.42) yields the equation for transition from stick to slip tangential contact

f(ptij) ≡
∣

∣

∣

1

Lu19 SS7

[

v̄r ptij − SS2 w̄
′
s − SS5 w̄

′
r + Lu13

(

v̄r − SS2 w̄
′′
s − SS5 w̄

′′
r

)]

+
1

Lu19
C

stickj

ui

∣

∣

∣−
∣

∣

∣

µ

Lw18

[

Lw14

(

w̄s − w̄r

)

+ Lw15

(

w̄′
s − w̄′

r

)]

∣

∣

∣ = 0 .

(3.97)

Analogously, inserting (3.31) in (3.46) results in the equation for transition from slip to
stick tangential contact

˙̄g
slip
T (ptij) ≡ SS2 w̄

′′
s (ptij) + SS5 w̄

′′
r (ptij)−

SS7

Lu13
C

slipj

ui e−
ptij
Lu13

+(ūslip
cp )′(ptij)− v̄r = 0 . (3.98)

Equations (3.97) and (3.98) are called contact transition equations.
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3.2.5 GALERKIN discretization

In Section 3.2.2, the set of ODE’s for steady-state motor operation have been given,
(3.6)-(3.19). For the numerical solution procedure, a spatial GALERKIN-discretization
will be carried out.

Shape-functions

Rotary USMs exhibit a spatial periodicity having a fundamental wave length corre-
sponding to the dimensionless length ns (see Section 3.2.1). Therefore, it is reasonable
to use global, periodic shape-functions for the displacement of stator and rotor

χk(Y ) =























1 if k = 1

cos(k2
2π
ns

Ȳ1) if k is even

sin(k−1
2

2π
ns

Ȳ1) if k is odd

, with k = 2, . . . , 2Ns + 1 . (3.99)

The stator and rotor displacements are expressed by

w̄s(Ȳ1) =

2Ns+1
∑

k=1

qsk χk(Ȳ1) , w̄r(Ȳ1) =

2Ns+1
∑

k=1

qrk χk(Ȳ1) , (3.100)

with the state variables qsk and qrk. Contact forces, by themselves, must be considered
as local quantities. Thus, the discretization method has to take into account the local
character of the contact forces and as a result the local deformations of the contact
layer. As pointed out in Section 3.2.2, the normal displacement of the contact layer w̄c

in the contact zones can be expressed by the stator and rotor displacements. Together
with the contact layer displacement outside the contact zones, its displacement can be
summarized as given in (3.71). The situation is different for the tangential contact layer
displacement ūc. In the contact region, the tangential contact layer displacement must
satisfy an inhomogeneous ODE, (3.32). The ansatz

ūslip
cp (Ȳ1) = sign( ˙̄gT )

2Ns+1
∑

k=1

qck χk(Ȳ1) , Ȳ1 ∈ ∂B
stickj

ci (3.101)

is chosen to find the particular solution of the tangential contact layer displacement
within a slip-subzone. As it was stated earlier, the objective is to express both dis-
placement variables of the contact layer in terms of the stator and rotor displacements.
Therefore, the state variables qck in the ansatz (3.101) must be expressed by the state
variables of stator and rotor, qsk and qrk, respectively. In order to do so, (3.101) together
with (3.100) are substituted into (3.32). Sorting and comparing the state variables re-
sults in expressions for the qck. The relations in the different contact and non-contact
regions are summarized in (3.75).
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Vector notations

The displacement field variables are written in vector notation as

u(Ȳ1) =
[

w̄s(Ȳ1), w̄r(Ȳ1), w̄c(Ȳ1), ūc(Ȳ1)
]

. (3.102)

Similarly, the coordinates of the contact state are assembled in vector form as

C =
[

Cfree1
u1 , Cstate1

u1 , . . . , C
stateNct1+1

u1 , . . . , Cfree1
u2 , Cstate1

u2 , . . . , C
stateNct(Nc)+1

u(Nc)

]T
.

(3.103)

A vector notation is chosen also for the coordinates of the contact topology

pN =
[

pT
N1, . . . ,p

T
NNc

]T
=

[

pe1, pb1, . . . , pei, pbi, . . . , peNc , pbNc

]T

pT =
[

pT
T1, . . . ,p

T
TNc

]T
=

[

pt11, pt12, . . . , ptij , . . . , p(Nc)(1), p(Nc)(NctNc
)

]T
,

(3.104)

with pNi =
[

pei, pbi
]T

and pTi =
[

pti1, . . . , ptiNcti

]T
. The vectors of the state vari-

ables are assembled as

qs = [qs0, . . . , qs(2Ns+1)]
T , qr = [qr0, . . . , qr(2Ns+1)]

T (3.105)

and the composed vector of all state variables is written as

q = [qT
s ,q

T
r ]

T . (3.106)

Introduction of a matrix notation for the shape functions

χ = [χ1(Ȳ1), . . . , χ2Ns+1(Ȳ1)] , w̄ = χq (3.107)

results in a vector notation of the discretized displacement variables.

Discretization of the system equations

The next step in the discretization procedure is the integration of the stator and rotor
equations of motion, given in (3.68) and (3.69), respectively. The procedure is explained
for the stator equation, the discretization of the rotor equation follows in an analogous
manner. The stator stiffness matrix Ks is obtained by the integration procedure

Ks q :
∫ ns

0
Ks[w̄s(Ȳ1)]χk(Ȳ1) dȲ1

Kskl
=

∫ ns

0
Ks[χl(Ȳ1)]χk(Ȳ1) dȲ1.

(3.108)
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The symbol Ks represents the functional of all terms in (3.6) containing the displace-
ment variable w̄s. For the terms with the normal contact stresses two normal contact
stiffness matrices KcNss and KcNsr, for one contact zone, are given by

KcNss(pNi)q :
∫ pbi

pei
TNss[w̄s(Ȳ1)]χk(Ȳ1) dȲ1

KcNsskl
(pei, pbi) =

∫ pbi

pei
TNss[χl(Ȳ1)]χk(Ȳ1) dȲ1,

(3.109)

KcNsr(pNi)q :
∫ pbi

pei
TNsr[w̄r(Ȳ1)]χk(Ȳ1) dȲ1

KcNsrkl
(pei, pbi) =

∫ pbi

pei
TNsr[χl(Ȳ1)]χk(Ȳ1) dȲ1,

(3.110)

with the functionals

TNss[w̄s(Ȳ1)] = −
1

Lw18

[

Lw14

(

w̄s) + Lw15

(

w̄′
s)
]

, (3.111)

TNsr [w̄r(Ȳ1)] = −
1

Lw18

[

Lw14

(

− w̄r) + Lw15

(

− w̄′
r)
]

. (3.112)

The tangential contact stiffness matrices, Kstick
cTss (pNi,pTj), Kstick

cTsr (pNi,pTj) for the
case of sticking and K

slip
cTss(pNi,pTj), K

slip
cTsr(pNi,pTj) for the case of slipping can be

obtained in an analogous manner. The components of the tangential stiffness matrices
Kstick

cTss and Kstick
cTsr , for example, are derived as

KcTss(pNi,pTj)q :
∫ pti(j+1)

ptij
TTss[w̄s(Ȳ1)]χk(Ȳ1) dȲ1

KcTsskl
(pNi,pTj) =

∫ pti(j+1)

ptij
TTss[χl(Ȳ1)]χk(Ȳ1) dȲ1,

(3.113)

KcTsr(pNi,pTj)q :
∫ pti(j+1)

ptij
TTsr[w̄r(Ȳ1)]χk(Ȳ1) dȲ1

KcTsrkl
(pNi,pTj) =

∫ pti(j+1)

ptij
TTsr[χl(Ȳ1)]χk(Ȳ1) dȲ1,

(3.114)

with the functionals

TTss[w̄s(Ȳ1)] =
SS2

Lu19 SS7

[(

w̄s

)′′
+ Lu13

(

w̄s

)′′′]

, (3.115)

TTsr [w̄r(Ȳ1)] =
1

Lu19 SS7

[

− v̄r + SS5

(

w̄r

)′′
+ Lu13

(

w̄r

)′′′]

. (3.116)

Note, that the boundaries of the integrals in (3.113) and (3.114) can also be contact
boundary coordinates pei, pbi.

The rotor stiffness matrix Kr, the normal contact stiffness matrices KcNrs and
KcNrr and the tangential contact stiffness matrices, Kstick

cTrs(pNi,pTj), K
slip
cTrs(pNi,pTj),

and Kstick
cTrr(pNi,pTj), K

slip
cTrr(pNi,pTj) are built up in a similar way, by integrating

the rotor equation of motion, (3.8).
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System equations in matrix notation

The system matrix is composed of the stator and rotor stiffness matrices and the normal
contact matrices

K =







Ks 0

0 Kr






, KcNi =







KcNss(pNi) KcNsr(pNi)

KcNrs(pNi) KcNrr(pNi)






, (3.117)

as well as the tangential stiffness matrices for sticking

Kstick
cT (pNi,pTj) =







Kstick
cTss (pNi,pTj) Kstick

cTsr (pNi,pTj)

Kstick
cTrs(pNi,pTj) Kstick

cTrr(pNi,pTj)






, (3.118)

and the tangential stiffness matrices for slipping, yielding K
slip
cT . The system matrix

equation can be written as
[

K+KcN(pN

)

+Kstick
cT (pN ,pT

)

+K
slip
cT (pN ,pT

)

]

q = F , (3.119)

with

KcN (pN

)

=

Nc
∑

i=1

KcN

(

pNi

)

, (3.120)

Kstick
cT (pN ,pT

)

=

Nc
∑

i=1

Ncti
+1

∑

j=1

Kstick
cT

(

pNi,pTj

)

, (3.121)

K
slip
cT (pN ,pT

)

=

Nc
∑

i=1

Ncti
+1

∑

j=1

K
slip
cT

(

pNi,pTj

)

. (3.122)

Contact boundary and transition equations in matrix notation

Since (3.119) contains the unknown contact boundary variables pN , pT , additional
equations are needed. Those have been stated in Section 3.2.4. The contact boundary
equations, according to (3.38) and (3.39), can be assembled in matrix form as

ZN

(

pN

)

q =





























ḡN(pb1)

T̄ ∗
N(pe1)

...

ḡN (pbNc)

T̄ ∗
N(peNc)





























= 0 . (3.123)
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Substituting the displacement variables in (3.107) and (3.38) by (3.39) yields the con-
straint matrix

ZN

(

pN

)

=





























ZgN
11 ZgN

12

ZTN
11 ZTN

12

...
...

ZgN
(Nc)1

ZgN
(Nc)2

ZTN

(Nc)1
ZTN

(Nc)2





























, (3.124)

with

ZgN
11 = χ(pe2) e

−
Lw14
Lw15

(pb1−pe2) − χ(pb1) , ZgN
12 = −Z11 (3.125)

...

ZTN

(Nc)1
= −

1

Lw18

(

Lw14χ(peNc) + Lw15χ
′(peNc)

)

, ZTN

(Nc)2
= −Z(2Nc)1. (3.126)

Besides contact boundary equations, there are tangential displacement continuity
conditions which are formulated in (3.86)-(3.88). Substituting the ansatz, (3.100), and
sorting with respect to the unknown variables yields the discrete form of the continuity
equations

Zc1

(

pN ,pT

)

C = Zc2

(

pN ,pT

)

+ Zc3

(

pN ,pT

)

q . (3.127)
The coefficients of the matrices Zc1, Zc3 and the vector Zc2 in (3.127) cannot be stated
a priori, since they depend on the sequence of stick-slip transitions in each contact zone.

The last set of equations, which is necessary to solve the contact problem, is con-
stituted by the contact transition conditions, represented by (3.97) and (3.98). Inserting
the GALERKIN-Ansatz, (3.100), into both equations, yields
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˙̄g
slip
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≡ ZI

(

pT ,C,q
)

= 0 . (3.128)
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Contact search equations in matrix notation

To check for changes of the contact topology, a discretization of the contact surface
∂Brc is needed. The length of the motor ns is spatially discretized in equidistant points,
according to

Ȳ1k = (k − 1)∆Ȳ1 , ∆Ȳ1 =
ns

Ny
, k = 1, . . . , Ny + 1 . (3.129)

The discretized form of the normal contact stress in (3.73) can be written as

T̄N (Ȳ1k) =







NTN (Ȳ1k)q , ∀ Ȳ1k ∈ ∂Bci

0 , ∀ Ȳ1k ∈ ∂Bnci

, (3.130)

with the normal stress shape vector

NTN (Ȳ1k) =
1

Lw18

[(

− Lw14χ(Ȳ1k)− Lw15χ
′(Ȳ1k)

)

(

Lw14χ(Ȳ1k) + Lw15χ
′(Ȳ1k)

)]

. (3.131)

Similarly, the discrete form of the contact gap function writes

ḡN (Ȳ1k) =







0 , ∀ Ȳ1k ∈ ∂Bci

NgN (Ȳ1k)q , ∀ Ȳ1k ∈ ∂Bnci

, (3.132)

with the contact gap vector

NgN (Ȳ1k) =
[(

e
Lw14
Lw15

(pei+1−Y1k) χ(pei+1)− χ(Ȳ1k)
)

(

− e
Lw14
Lw15

(pei+1−Y1k) χ(pei+1) + χ(Ȳ1k)
)]

. (3.133)

Other quantities, like the indicator functions (3.42), (3.46) or the tangential stresses,
are derived in an analogous manner. Since the principle of the procedure has been out-
lined above, the details are not given here. Only the matrix formulations are presented.

The discrete version of the tangential contact layer displacement in (3.75) is

ūc(Ȳ1k) =























Nstick
u (Ȳ1k)q+ 1

SS7
v̄rȲ1k + C

stickj

i , ∀ Ȳ1k ∈ ∂B̄
stickj

ci

C
slipj

ui e−
Ȳ1k
Lu13 +Nslip

u (Ȳ1k)q , ∀ Ȳ1k ∈ ∂B̄
slipj

ci

Cfree
ui e−

1
Lu13

Ȳ1k , ∀ Ȳ1k ∈ ∂B̄free
ci

. (3.134)
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To build up the shape vector Nslip
u in (3.134), the particular solution of (3.32) is re-

quired, (see (3.101)). The relative velocity, (3.76), is expressed in its discrete form
as

˙̄gT (Ȳ1k) =







0 , ∀ Ȳ1k ∈ ∂B̄
stickj

ci

N
slip
˙̄gT

(Ȳ1k)q− v̄r , ∀ Ȳ1k ∈ ∂B̄
slipj

ci

. (3.135)

The tangential contact stress, (3.77), results in the matrix formulation

T̄T (Ȳ1k) =































0 , ∀ Ȳ1k ∈ ∂B̄nci

Nstick
TT

(Ȳ1k)q− 1
Lu19

[

1
SS7

v̄r
(

Ȳ1k + Lu13

)

C
stickj

ui

]

, ∀ Ȳ1k ∈ ∂B̄
stickj

ci .

µ sign( ˙̄gT )N
slip
TT

(Ȳ1k)q , ∀ Ȳ1k ∈ ∂B̄
slipj

ci

(3.136)

The discretized indicator functions to detect the transition points Ptij from stick to slip
or vice versa become

f(Ȳ1k) =

∣

∣

∣

∣

Nstick
TT

(Ȳ1k)q−
1

Lu19

[ 1

SS7
v̄r
(

Ȳ1k + Lu13

)

+ C
stickj

i

]

∣

∣

∣

∣

−

∣

∣

∣

∣

µNTN (Ȳ1k)q

∣

∣

∣

∣

(3.137)

˙̄g
slip
T = N

slip
˙̄gT

(Ȳ1k)q− v̄r . (3.138)

3.2.6 Problem statement

In this section, the problem formulation for the discretized equations is given in a com-
prehensive form:

Given are the external quantities,

Λ =
[

V̄A, Ω̄, paxial, v̄r
]

,

the design parameters (see Tab. 2.2)

Γ =
[

hs, hr, hp, hc, ρs, ρr, . . .
]

,

and the initial system state

q(0) , p
(0)
N , p

(0)
T , C(0) . (3.139)
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An initial state can be the state at rest, for example. The solution of this motor state is
given in (3.66). Find solutions for the system state variables

q(1) , p
(1)
N , p

(1)
T , C(1) . (3.140)

and for the external load F for a quasi-static incremental change of any of the external
quantities or one of the system parameters in the following non-linear matrix equations:

The system equations, taken from (3.119), which are given as
[

K+KcN(pN

)

+Kstick
cT (pN ,pT

)

+K
slip
cT (pN ,pT

)

]

q = F , (3.141)

with the constraint equations at the contact boundaries, (3.123), the continuity equa-
tions of tangential contact layer displacement, (3.127), and the equations of transition
conditions between stick- and slip-subzones, (3.128),

ZN

(

pN

)

q = 0 , (3.142)

Zc1

(

pN ,pT

)

C = Zc2

(

pN ,pT

)

+ Zc3

(

pN ,pT

)

q , (3.143)

ZI

(

pT ,C,q
)

= 0 , (3.144)

respectively. After an incremental change of one of the external or the design para-
meters, it must be checked whether a change of the contact state occurs. Separation
between stator and contact layer surface points is detected, if the normal stress function
gives a tensile stress

contact → non-contact : ∃ Ȳ1k ∈ ∂Bci , T̄N (Ȳ1k) > 0 . (3.145)

Oppositely, a contact approach in the non-contact subzones is detected if the gap func-
tion shows penetration (3.132)

non-contact → contact : ∃ Ȳ1k ∈ ∂Bci , ḡN (Ȳ1k) < 0 . (3.146)

The indicator functions to detect the transition points Ptij from stick to slip or vice
versa become

stick → slip :

∃ Ȳ1k ∈ ∂B
stickj

ci f(Ȳ1k) > 0 , (3.147)

slip → stick :

∃ Ȳ1k ∈ ∂B
slipj

ci
˙̄g
slip
T < 0 → ˙̄g

slip
T > 0 or , (3.148)

∃ Ȳ1k ∈ ∂B
slipj

ci
˙̄g
slip
T > 0 → ˙̄g

slip
T < 0 . (3.149)

Note, that the excitation frequency Ω̄ and the rotor speed v̄r are hidden in the stiff-
ness and constraint matrices, whereas the excitation voltage and the axial prestress are
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arranged in the vector of the external forces, F! The nonlinearity of the contact prob-
lem results, on the one hand, from the contact boundary variables. The coordinates
pei and pbi occur as arguments of trigonometric and exponential functions in (3.141)
and (3.142). On the other hand, a nonlinearity is given by the frictional contact matri-
ces. The stiffness matrix in (3.141) is a structural variable matrix, since the number of
contact matrices during the contact process is not constant.

3.2.7 Contact Algorithm

Incremental solution procedure and updating Usually in USM modeling, the influ-
ence of the tangential contact on the normal contact is neglected. This a priori assump-
tion needs a scaling analysis to be verified. The scaling procedure, which is carried out
now, shows that this negligence is not suitable with the characteristic motor parame-
ters given. For the following estimation, the terms of the contact stresses in the stator
equation (3.6) are compared.

For a slip contact condition, i.e. | T̄T |= µ | T̄N | the ratio between both terms can
be estimated as follows

∣

∣

∣

∣

S[11]

S[10]

∣

∣

∣

∣

| T̄ ′
T |

| T̄N |
=

3

5

hs

[λ]

| T̄T |

| T̄N |

| T̄ ′
T |

| T̄T |
=

3

5

hs

[λ]
µ
| T̄ ′

T |

| T̄T |
. (3.150)

For the operation mode (i = 2ns), | T̄ ′
T | may be written as 2π | T̄T | (see 3.99), (3.150)

yielding

S[11] | T̄ ′
T |

S[10] | T̄N |
=

3

5

hs

[λ]
2π µ ≈ 0.95µ . (3.151)

In REHBEIN (1998, [41] p.32) friction coefficients for steel/polymer are in the range
from 0.1 to 0.5. Therefore, the tangential contact influence is in the same order of mag-
nitude as the normal contact influence. For superharmonics the ratio between tangential
and normal contact influence increases because of increasing ratio | T̄ ′

T | / | T̄T |.

An appreciable strategy to cope with interaction between normal and tangential
contact stress is to use an incremental updating procedure. The control parameter, like
the excitation frequency or the electric voltage, must be change in sufficiently small
steps. The normal contact stress is computed using the tangential contact stress from the
previous control parameter increment. If the increments are chosen sufficiently small,
the tangential contact stress from the previous increment is an accurate approximation
for the tangential contact stress in the actual increment.
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Algorithm The contact algorithm is as follows:

1. Give the initial state:

q(0) , p
(0)
N , p

(0)
T , C(0) ,

the external parameters Λ(i) and the system and contact matrices

K(Λ(i)) , KcN (p
(0)
N ;Λ(i)

)

, Kstick
cT (p

(0)
N ,p

(0)
T ;Λ(i)

)

, Kslip
cT (p

(0)
N ,p

(0)
T ;Λ(i)

)

2. Change one of the external parameters incrementally: Λ(i+1)

3. LOOP over iterations: for m = 0, . . . , convergence

(a) Compute: q(m+1) = K−1
total(p

(m)
N ,p

(m)
T ;Λ(i+1)

)

F
(

Λ(i+1)
)

(b) Determine a change in the contact topology:
GOTO 4: SUBROUTINE NORMAL

(c) Determine a change in the contact topology:
GOTO 5: SUBROUTINE TANGENTIAL

(d) Solve: ZN (pN ;Λ(i)
)

q(m+1) = 0 ⇒ p
(m+1)
N

with Newton-Raphson e.g.

(e) Compute: C(m+1) = Z−1
c1

(

p
(m+1)
N ,p

(m)
T ;Λ(i+1)

)

·
[

Z−1
c2

(

p
(m+1)
N ,p

(m)
T ;Λ(i+1)

)

+ Z−1
c3

(

p
(m+1)
N ,p

(m)
T ;Λ(i+1)

)

q(m+1)
]

(f) Solve: ZI (pT ,C
(m+1),q(m+1);Λ(i+1)

)

= 0 ⇒ p
(m+1)
T

with Newton-Raphson e.g.

(g) Check:

‖ q̃(m+1) − q̃(m) ‖< TOLq

‖ p̃
(m+1)
N − p̃

(m)
N ‖< TOLN

‖ p̃
(m+1)
T − p̃

(m)
T ‖< TOLT

(h) m = m+ 1, end LOOP

4. SUBROUTINE NORMAL:

Determine a change in the topology of the normal contact:

(a) ∃ Ȳ1k ∈ ∂B(m)
ci : T ∗

N = NTN (Ȳ1k;Λ
(i+1))q(m+1) > 0

(b) ∃ Ȳ1k ∈ ∂B(m)
nci : g∗N = NgN (Ȳ1k;Λ

(i+1))q(m+1) < 0
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(c) ⇒ ∂B(m+1)
ci , ∂B(m+1)

ci , i = 1, . . . , N
(m+1)
c

(d) if N (m+1)
c = N

(m)
c → no topological change in normal contact → pNstart

GOTO 5

(e) if N (m+1)
c 6= N

(m)
c → topological change in normal contact → pNstart

update contact matrix KcN and the matrices ZN , Zc1, Zc2, Zc3

(f) GOTO 5

5. SUBROUTINE TANGENTIAL:

Determine a change in the topology of the tangential contact, use q(m+1):

(a) Check whether contact zones at pstartbi starts with stick or slip

i. Compute C
stick(1)

ui using (3.49)

ii. Compute f(Ȳ1k) using C
stick(1)

ui and (3.137)

iii. Check if f(Ȳ1k) < 0 → contact zone begins with stick, GOTO 5.(c) ii.

iv. Check if f(Ȳ1k) > 0 → contact zone begins with slip, GOTO 5.(b) i.

(b) Slip to stick transitions:

i. Compute C
slip(j+1)

ui using (3.45) at ptij

ii. Check if ˙̄g
slip
T (Ȳ1k) changes sign using (3.138), for Ȳ1k ∈ ∂B

slipj+1

ci

iii. Compute uslip
c (pti(j+1)) at the new transition point using (3.134)

iv. If pei is reached, then GOTO 5.(d), else j = j + 1, 5.(c)

(c) Stick to slip transitions:

i. Compute C
stick(j+1)

ui using (3.49) at ptij

ii. Check if f(Ȳ1k) > 0 using (3.137), for Ȳ1k ∈ ∂B
stickj+1

ci

iii. Compute ustick
c (pti(j+1)) at the new transition point using (3.134)

iv. If pei is reached, then GOTO 5.(d), else j = j + 1, 5.(b)

(d) ⇒ ∂Bslip(m+1)

ci , ∂Bstick(m+1)

ci

(e) topological change: if yes, then GOTO 5.(f) else GOTO 3.(d)

(f) update contact matrices Kslip
cT , Kslip

cT and the matrices ZN , Zc1, Zc2, Zc3,
ZI

(g) GOTO 3
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3.3 Numerical Results

In the following, some typical characteristic features of the USM model, obtained by
numerical analysis will be discussed. One of the most important aspects in the design
of USMs is their resonant operation mode. The stator-rotor contact plays a crucial role
in this regard, as it has already pointed out by SASHIDA (1993, [44] p. 219) and HAGE-
DORN & SATTEL (1998, [47]). Therefore, the computational analysis of USM models
also needs special attention. For the set of motor and scaling parameters, given in Ta-
bles 2.2 and 2.3 the eigenfrequencies of the stator, rotor, and stator and rotor pressed
together (without separation) are listed in Tab. 3.1. For the numerical analysis, an oper-
ation mode of the stator having three wave length is chosen. The eigenfrequency Ω̄∗

3 of

scaled eigenfrequency stator rotor stator and rotor

1st. 2nd.

Ω̄1 0.36 0.50 0.38 15.89

Ω̄2 0.69 0.99 0.75 7.96

Ω̄3* 1 1.48 1.08 5.42

Ω̄4 1.27 1.97 1.38 4.33

Ω̄5 1.51 2.46 1.62 3.90

Ω̄6 1.70 2.96 1.80 3.86

Table 3.1: Scaled eigenfrequencies Ω̄i of the stator, rotor, and stator and rotor both
pressed together. The parameters are chosen from Tab. 2.2; * corresponds to the eigen-
frequency of the operational vibration mode

the stator’s operation mode (with three nodes) is scaled to 1. The rotor eigenmode with
the same number of nodes has a higher eigenfrequency of 1.48. If stator and rotor are
pressed together (without separation), the eigenmode with the same number of nodes
has an eigenfrequency of 1.08. Therefore, pressing a rotor onto the stator causes a stiff-
ening effect which results in a frequency shift of 8% with respect to the eigenfrequency
of the stator. Comparision of these computational results with experimental data (in
Fig. 4.11) shows a good agreement with respect to the stiffening effect caused by the
rotor. An axial preload of 250 N causes a stiffening of approximately 10%. The stiff-
ening in Fig. 4.11 depends on the axial preload. This is either caused by a non-linear
contact stiffness or by the separation between stator and rotor during the frequency
sweep at lower axial preloads.

A resonance diagram at full contact between stator and rotor is illustrated in Fig. 3.2.
At full contact between stator and rotor the rotor does not move, since driving and brak-
ing contact zones eliminate each other. Nevertheless, the investigation of this contact



100 Chapter 3. Model Analysis

state gives good insight into the contact behavior from a computational analysis point
of view. The stator vibration amplitude ˆ̄ws is plotted versus the stator length Ȳ and the
excitation frequency Ω̄. The stator is electrically excited in it’s vibration mode having
three nodes. This is a steady-state result in a reference frame moving with the traveling
bending wave. At resonance, a drastic spatial shift of the wave crests occurs. In par-
tial contact, such a spatial phase shift also occurs so that the phase shift of the contact
zones (see Fig. 3.1) is similar. This is illustrated in the contour plot shown in Fig. 3.3.
The wave crests shift over half the wavelength of the stator mode. For the computa-
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0.9
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0W
sS
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Figure 3.2: Stator displacement over stator length and excitation frequency; full contact
between stator and rotor

tional analysis of the stator-rotor contact in USMs, this may cause difficulties in finding
the contact zones during the contact iteration process. Therefore, special contact algo-
rithms for spatial contact problems at resonance, like they occur in USMs, are needed.
The contact algorithm, proposed in Section 3.2.7 removes such difficulties.

In USMs the excitation frequency is chosen to be above the motor’s resonance fre-
quency (see also Fig. 1.12). The same is done for the computation of speed-torque
characteristics. The contact force distribution at different points along torque-speed
characteristics has been analyzed and discussed in detail in SCHMIDT (1999, [51]) and
SATTEL, HAGEDORN & SCHMIDT (2001 [49]) for different parameters of the contact
layer. The dependence of the qualitative appearance of the speed-torque characteris-
tics on the friction law will be discussed now. For the computation, Ns = 15 has
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Figure 3.3: Contour plot of Fig. 3.2

been chosen for the number of vibration modes. In Fig. 3.4 two different friction laws
are illustrated. Friction law 1 assumes pure slip between the contacting bodies with a
constant coefficient of friction, whereas friction law 2 represents a smoothed Coulomb
friction law. At high values of the slope coefficient α, friction law 2 shows a good rep-
resentation of stick-slip effects, as it is pointed out in OESTREICH (1998, [40]). An one
degree of freedom oscillator was modeled there. Using these friction laws, no distinc-
tion between stick and slip contact zones needs to be made. Thus, (3.147) and (3.148)
can be ignored in the computation process. Instead, for all tangential contact states fric-
tion law 1 is represented by (3.4). When using friction law 2 at each iteration step of
the contact algorithm, a numerical integration is necessary. Here a simple trapezoidal
integration rule is used. For both friction laws, speed-torque characteristics are com-
puted and fitted to measured data. Only the parameters of the friction laws are adjusted
to fit the measured data. The motor parameters are chosen from Tab. 2.2, the excitation
frequency was chosen to be in the vicinity of the resonance frequency. In Fig. 3.5, three
speed-torque characteristics are plotted. Two of them are measured at different motor
operation temperatures, the third one is computed. It is important to note that the mo-
tor behavior at room temperature is quite different from that at higher temperatures. A
discussion on temperature effects is given in Section 4.3.

For comparison between numerical and experimental results, the model data are trans-
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Figure 3.4: Left: friction law 1: µ sign ˙̄gT ; right: friction law 2: 2
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Figure 3.5: Speed-torque characteristics: (*) measured data at high temperature (80o

C), (+) measured data at room temperature and (–) computed data with friction law 1

formed into a dimensional form. The friction coefficient of friction law 1 was chosen
to fit the speed-torque characteristic at high temperature. It is not possible to get a good
approximation of the measured curves. Starting at no-load speed, with increasing load
the drop in the rotational speed is small, but at 45 Ncm load torque, the speed-torque
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characteristic suddenly drops. The situation is different when using friction law 2. The
result is plotted in Fig. 3.6.
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Figure 3.6: Speed-torque characteristics: (*) measured data at high temperature (80o

C)., (+) measured data at room temperature and (–) computed data with friction law 2

The difference between both friction laws is obvious. The smooth friction law 2 ap-
proximates stick-slip behavior. There is no sudden drop in the rotational speed at high
load torques.

In addition to the computation of the speed-torque characteristics, also time sim-
ulations have been carried out. During time simulations, the mass and stiffness ma-
trices have been generated according to the procedure outlined in Section 3.2.5. For
the sake of simplification, the time derivatives in the contact layer equations (3.9) and
(3.10) have been neglected. Simulation of the motor behavior in the operation quadrant
(see Fig. 1.18) shows normal vibration behavior of stator and rotor. Simulations in the
dragging quadrant show a beating phenomenon in the state variables of the stator. A
simulation result is shown in Fig. 3.7. The two upper diagrams represent the oscilla-
tion behavior of the state variables of the two orthogonal operational bending modes of
the stator. The lower two diagrams show zoomed plots. In Fig. 3.8, a measured time
history of the stator vibration amplitude is depicted. The measurements were carried
out with a laser vibrometer. Details on the experiments can be found in Fig. 4.2. The
discussion about the experiments on the beating phenomenon is given in Section 4.4.5.
It is worthwhile to note that the model is able to capture such phenomena.
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Figure 3.7: Simulated beating phenomenon in the dragging quadrant of a speed-torque
characteristic
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Figure 3.8: Simulated beating phenomenon in the dragging quadrant of a speed-torque
characteristic

3.4 Summary

A contact algorithm has been developed which accounts for the dynamic contact prob-
lem in USMs. The model and the contact algorithm are general enough to investigate
motor models with different numbers of nodes for the stator operation mode. Especially
the subharmonic modes, i.e. modes having wavelength larger than the wavelength of
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the operation mode, can be considered. To investigate effects like squealing, consider-
ation of such modes may be necessary. The result of a simple scaling analysis is that
normal and tangential contact stresses influence each other and cannot be considered
separately. This is in contrast to what has been used and stated in other model analy-
ses. The results of the frequency responses showed that for resonant contact problems
of spatially distributed structures large spatial shifts of the contact zones occur in the
vicinity of the resonance. In previous works, this has led to difficulties in finding the
contact boundaries. In the traveling wave reference frame the contact zones shifts as
much as half of the wavelength of the stator vibration amplitude. Therefore, the con-
tact algorithm has to be modified correspondingly. The comparison between computed
speed-torque characteristics using a slip friction law and a smoothed Coulomb friction
law showed that the smoothed friction law gives a better representation of the qualita-
tive shape of the speed-torque characteristics. In many of the analyzed contact models,
a pure slip law has been used. The time simulation of a motor operation in the dragging
quadrant results in a beating phenomenon in the stators state variables of the opera-
tion mode. Such a beating phenomenon has been observed also experimentally. The
previously suggested models cannot capture such a phenomenon.
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Chapter 4

Experiments

4.1 Introduction

This chapter outlines the results of detailed experimental studies of a typical USM. The
experiments are performed to give a complete picture of the motor behavior which is
essential for understanding the dynamics of such kind of motors. This is important
not only for furnishing mechanical design guidelines, but also for designing control
and power electronics. Many key features of traveling wave type USMs, like typical
speed-torque characteristics, the jump phenomenon or rotational speed treshold have
already been reported separately. What has been done are measurements focusing on
particular average motor characteristics, like speed-torque characteristics or input and
output power. Additional information like vibration amplitudes of stator and rotor,
phase relation between voltage and electric current, or temperature behavior are not
given. Thus, what is missing is a more comprehensive and detailed picture of the motor
dynamics. Since the contact behavior between stator and rotor plays an important role
with respect to the motor characteristics, knowledge of the vibrational behavior may
contribute to formulations of design rules of USM.

The behavior in the contact zone cannot be measured directly, thus designers rely
on sophisticated contact models or motor models. A spectra of various experiments can
help to optimize the parameters of such a model capturing the significant phenomena.
Additionally, the experimental results may be used to validate existing mathematical
models.

First, the state of the art of a traveling wave type USM is given in Section 4.1.1,
focusing on experimental results only. The detailed objective is stated in Section 4.1.2,
pointing out which additional contributions will be made. Section 4.1.3 introduces the
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various measurable quantities, measurement techniques and devices and the explana-
tion of the test bench for measuring speed-torque characteristics. The essentials of the
experimental results are summarized in Sections 4.2-4.4. First, resonance behavior of
stator and motor are presented, followed by a short comment on temperature depen-
dence of motor characteristics. The chapter ends with the main results of steady-state
motor behavior.

4.1.1 Literature review

The present literature review focuses on the state of the art with respect to essential
experimental results on traveling wave type USM. A vast amount of experiments has
been conducted to investigate salient features of different motors at both, steady-state
and/or transient operating conditions. These include motor features as speed-torque
characteristics, average input and output power, efficiency or start-stop properties. The
reader is referred to UEHA et al. (1993, [57]) or SASHIDA (1993, [44]) for a rough
overview on qualitative features of different kinds of motors. Motor characteristics
may be actively influenced by three control parameters, namely the electric excitation
voltage, the excitation frequency and the phase between the electric input signals. In
addition, there is one design parameter which is easy to adjust, namely the axial preload.
These four parameters together may be varied to investigate the motor characteristics
of a particular motor.

Most of the published experimental data on steady-state motor characteristics where
obtained by operating the motor with feedback controllers and/or resonant converters
(see FURUYA et al. (1992, [10])). Typically, all speed-torque characteristics drop from
the no-load speed to a stall torque as illustrated in Fig. 1.18. In UEHA et al. (1993,
[57]), the speed-torque characteristics at different input power or rather different exci-
tation voltage levels are plotted. With increasing excitation voltage, the speed-torque
curves shift to higher no-load speeds. Depending on the specific motor under investiga-
tion, some speed-torque curves end abruptly at a maximum load-torque. However, this
maximum load-torque is not the stall torque of the motor. This indicates that the charac-
teristics have been measured in a torque-controlled operation mode, see e.g. HERZOG

(1993, [22], p. 78). A sudden breakdown in the rotational speed is observed (FURUYA

et al. (1992, [10])) in a plate type USM if the excitation voltage passes certain lower
values. For example, the excitation voltage is decreased from an effective value of more
than 100 V at 140 rpm down to an effective value of 60 V at 100 rpm, when the rota-
tional speed suddenly collapsed and the motor stopped. The authors showed that this
voltage threshold is load dependent. In the same work the variation of the excitation
frequency is also considered in which case the rotor motion is continuous, even at low
rotation speeds. A shift of the phase between the voltage signals results also in a con-
tinous reduction of the rotational speed down to a few rpm. It was concluded from the
experimental results in FURUYA et al. (1992, [10]) that at low no-load rotational speed



4.1. Introduction 109

operation the excitation frequency instead of the excitation voltage should be varied to
ensure continuous reduction of rotational speed. But from a power electronics point of
view a variation of the frequency leads to higher reactive loads. Following this line of
argument, a hybrid control concept is proposed in MAAS et al. (1999, [33]), combining
the advantages of voltage and phase variation. At high no-load rotational speeds the mo-
tor is controlled by a variation in the voltage signal, whereas at low no-load rotational
speeds a phase variation is used. The experiments were carried out with an AWM90
motor of DaimlerChrysler (see Fig.1.2). The influence of axial preload on the speed-
torque characteristics of the same type of motor was also reported (SCHREINER et al.
(2000, [53])). However, the results characterize the motor together with the control
unit. It is mentioned that hard contact layer material at high axial preload lead to para-
sitic vibrations, also in the audible range. In WHATMORE (2001, [60]) the experimental
results of a plate-type motor with 8 nodal diameters are presented. It is observed, that
the no-load rotational speed drops with increasing axial preload while the stall torque
increases. For each axial preload there is a maximum no-load speed with respect to the
excitation frequency. For small size motors like those designed and manufactured by
FLYNN (1997, [12], p. 137) an optimum of the stall torque with respect to the axial
preload is described, whereas the no-load speed decreases monotonically.

Only few data are available of the stator and rotor vibration amplitudes at steady-
state motor operation. In reference MAENO et al. (1992, [36]) a Canon-type USM
is examined and the stator and rotor vibrational behavior for a particular steady-state
operating condition are measured. In MAAS et al. (1999, [33]) the stator motion is
controlled to achieve a constant vibration amplitude of 1 µm along the speed-torque
characteristics.

The resonance behavior of USM is much better examined and understood. In many
papers the typical non-linear resonance curves of USM (e.g. in UEHA et al. (1993, [57]
p.71)) or more clearly in MAAS et al. (1999, [33] p. 112) with the jump phenomenon
are presented. The frequency response curves of the vibration amplitude are important
looking from a control perspective. From a power electronics point of view the electric
admittance curves of motors at high voltage amplitudes are relevant, since compensat-
ing reactive power components in electric signals reduce the loading of power electronic
components like semiconductor devices. In WHATMORE (2001, [60]) electric admit-
tance curves at high voltage excitation levels are presented for a plate-type stator with
8 nodal lines. The curves exhibit a non-linear resonance behavior. With increasing
voltage amplitude the stator admittance decreases. Unfortunately, the reported electric
admittances of the assembled motor were measured at low electric voltage.

An often-cited advantage of USMs is their silent operation due to ultrasonic fre-
quency drive and their gearless mechanism. This is true when the rotor geometry, the
axial preload and the excitation frequency are properly chosen. The rotor geometry
usually is determined by numerous empirical studies. In the early stage of motor design
the occurance of stability problems are not unusual. Unstable motor operation have
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been observed by several authors. In UEHA et al. (1993, [57], p. 68, 99, 102, 200,
288) unstable operating conditions are reported for different motors; some accompany-
ing with vibrations in the audible range. A degradation of the friction layer material
was observed in HERZOG (1993, [22]), which leads to squealing after several hours
of operation of a Shinsei USR60 motor. Using a laser-vibrometer, SATTEL & HAGE-
DORN (2000, [46]) measured the vibrations of stator and rotor during unstable motor
operation. They observed the 2nd and 4th order of subharmonics of the excitation fre-
quency in the vibration signals of the rotor. SCHREINER et al. (2000, [53]) pointed
out that the rotor design has a significant influence on the onset of squeal in the mo-
tor. They mentioned that damping of the rotor vibrations by layered springs reduces
possible vibrations in the audible range.

The consequence of frictional contact between stator and rotor is an increase in
motor temperature during operation up to more than 100◦C. IZUNO (1992, [25]) men-
tioned the drift of motor characteristics due to a temperature influence. SATTEL &
HAGEDORN (1999, [45]) found a strong dependence of the speed-torque characteris-
tics on temperature. The speed-torque characteristics of Shinsei USR60 motors at room
temperature show a significant lower level in the output torque than those character-
istics with the motor already heated up to more than 70◦C. It must be noted that the
measurements have been carried out applying feedback control (Shinsei control unit).
Temperature fluctuations influence the mechanical as well as the electrical characteris-
tics of the motor. In UEHA et al. (1993, [57] p. 50) the shift of electric admittance of
a stator due to a temperature rise is shown. And notably, piezoceramic material charac-
teristics like the electric capacity exhibit a strong dependence on the temperature.

Manufacturing imperfections may be another aspect responsible for motor defi-
ciency. Giving only two examples of possible imperfections, it is refered to UEHA

et al. (1993, [57] p. 58) where hints are given on the influence of non-degeneracy of
eigenmodes, and HERZOG (1993, [22]) where non-uniform motion of the rotor caused
by a tilt compared to about 5-10 µm are mentioned.

4.1.2 Objective

From the literature review it turns out that still some open questions on the dynamics of
USM exist. To answer these questions, which have not rigourously been adressed yet,
the following experimental studies will be carried out:

• Measurements of speed-torque curves of the motor only, without feedback con-
trol and without resonant converters. The motor behavior is what is focused on.

• Measurements of speed-torque characteristics in the speed-controlled mode. It
seems that published data have been measured in a torque controlled mode of the
test rigs.
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• Investigation on the influence of the axial preload on speed-torque characteristics
and overall motor dynamics.

• Measurements of stator and rotor vibration amplitudes along the speed-torque
characteristics. On the one hand, the influence of the load-torque on the vibration
amplitudes of stator and rotor is obtained. On the other hand, the overall dynam-
ics of the motor is better understood from examining the vibrational behavior of
both, stator and rotor.

• Measurements of frequency response curves of the vibration amplitude and the
electric admittance. The phase of the electric admittance at high voltage signals
indicates the high significance of the reactive power components.

• Detection of the onset of squealing at different excitation frequencies and axial
preloads. This effect has been mentioned but there are almost no experimental
data available. Deeper knowledge of this phenomenon may help to gain sophis-
ticated design rules for both, stator, rotor and the contact layer.

• Measurements of the motor temperature at different load-torque levels. Some
material parameters like those of the piezoceramic or the contact layer may vary
drastically within the operational temperature range. Thus, motor characteristics
will be influenced by the temperature level.

The experimental focus is on steady-state operation and resonance behavior of USM.
Different motors have been tested in our laboratory, as depicted in Figs. 1.1, 1.2 and 1.3,
for example. In the following, only the results obtained for the Shinsei USR60 motor
are presented. The motor has good operation features and its experimental data are often
used to develop, verify and improve contact models of USMs. Besides, some theoretical
and a lot of experimental studies have been carried out in past for the Shinsei USR60
motor and similar motors, see HAGOOD & MACFARLAND (1995, [21]), LE MOAL &
MINOTTI (1997, [32]) or FURUYA et al. (1992, [10]), for example. Three motors of
this type have been used for the experiments.

4.1.3 Measurable quantities, measuring devices and measurements

All electrical and mechanical quantities, which can be measured from a motor by the
available laboratory equipments are summarized in Tab. 4.1. In the following sections
the devices used to measure or control these quantites are briefly explained. The rela-
tion of these experimental quantities to the quantities of the model are found in Section
2.7.8 and in Fig. 2.14. The torque T of the motor corresponds to the force F̄motor of
the model. Similarly, the rotational speed n is related to the rigid body speed ˙̄crx of the
motor model. Note, that controlling the current would also have been possible but was
not used in the experiments presented here. Adjusting ∆φV ∈ {0◦, 180◦} results in
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quantities controlled not controlled

electrical input quantities VA, VB , Ω, ∆φV

electrical output quantities IA, IB

axial preload Faxial (paxial)

mechanical output quantities T (F̄motor) n ( ˙̄crx)

n ( ˙̄crx) T (F̄motor)

inner quantities ẇs(x
∗, t), ẇr(x

∗, t)

temperature ϑ

Table 4.1: Measurable quantities of the USM splitted into variables which are controlled
and not controlled while taking measurements

a traveling wave excitation with clockwise or counter-clockwise rotor motion, respec-
tively, whereas ∆φV ∈ {−90◦, 90◦} gives a standing wave excitation with rotational
speed n = 0 rpm, as obviously seen from (1.8).

The motors were driven in two different operation modi, a standing wave operation
at ∆φV ≈ 90◦ and a traveling wave operation at ∆φV ≈ 0◦. However, fixing the
phase deviation of the excitation voltages to zero (i.e. ∆φV ≈ 0◦) does not guarantee
a pure traveling wave operation. Motor imperfections may prevent such ideal operating
mode to be achieved. Therefore, the traveling wave condition is checked from the phase
difference of the current signals IA(t) and IB(t). This is explained in detail in Section
4.4.6.

The Shinsei USR60 has two electrode systems (see Fig.1.10). Usually an electrical
voltage signal with amplitude of 120 V effective is delivered. The resonance frequency
of the stator is approximately 40 kHz. To deliver the voltage signals VA(t), VB(t) up to
150 V amplitude, two voltage amplifiers are utilized. These are designed especially for
capacitive or inductive loads. Thus, they are capable of resisting high reactive loads due
to the motor behavior. The cut-off frequency of the amplifiers are at 100 kHz. The phase
difference between the two voltage signals is generated by a phase shifter (laboratory
fabricated) which is connected between the output channel of the signal generator and
the two voltage amplifiers. The phase shifter also has a cut-off frequency of 100 kHz.
Note that the phase deviation ∆φV is defined as the phase deviation between the sine
and the cosine signal as described in (1.7). To obtain the excitation frequency response
plots a gain-phase analyzer (HP 4296) is used. Using this analyzer together with the
voltage amplifiers and a current probe, the electric admittances at different voltage lev-
els can be measured. The excitation frequency at steady-state operation is most easily
adjusted using a separate signal generator.

As mentioned earlier, a deeper understanding of the motor dynamics is possible
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knowing the vibrational behavior of both, stator and rotor. A two-channel out-off-plane
laser-vibrometer was utilized for that purpose. This device is capable of measuring
the speeds of material surface points in the direction of the laser beam, as illustrated
in Fig. 4.2. Since the outer diameter of the rotor is a little smaller than the one of
the stator, it is possible to measure both, stator and rotor vibrations simultaneously in
the assembled motor. Orienting the laser beams perpendicular to the stator and rotor
surfaces, the out-off-plane velocities (lateral velocities) ẇs(x

∗, t), ẇr(x
∗∗, t) can be

measured, as illustrated in Fig. 4.2. It is noteworthy that the corner frequency of the
laser vibrometer is at 100 kHz, making it possible to detect the first higher harmonic
component (80 kHz) in the stator or the rotor if present. For a harmonic signal of 40 kHz
vibration amplitudes down to 0.1 µm can be detected. From design and modeling point
of view the displacement signals ws(x

∗, t), wr(x
∗∗, t) and especially the displacement

amplitudes Ŵs(Ω, x
∗), Ŵr(Ω, x

∗∗) are of prime interest. The speed signals can be split
up in their Fourier components by an FFT. The Fourier components of the speed signal
˙̂
W k(Ωk, x

∗) are related to the Fourier component of the displacement signal by

Ŵ k(Ωk, x
∗/∗∗) =

˙̂
W k(Ωk, x

∗/∗∗)

jΩk
. (4.1)

The underscore in (4.1) denotes a complex quantity.

The temperature of the motor was measured by a non-contacting temperature sensor.
The sensor technique is based on the emission of infrared radiation in a band of 8 to 14
µm wavelength. For various metalls the emission coefficients of the measured surfaces
are tabulated, but it is recommended to calibrate the sensor by a two point measurement.

To measure torque-speed characteristics, a special test rig for USMs was developed.
Details about the rig and its features are found in BERG et al. (1998 [6]) and BERG

(2001, [5]). A short description is, however, given below. Contrary to other existing
test rigs this one allows not only a torque controlled measuring mode but also a speed
controlled mode. A sketch of the test rig is shown in Fig. 4.1. The axial preload, Faxial,
is exerted by an electrically driven cylinder whose maximum limit is 500 N. To measure
the axial preload a force sensor equipped with four strain gauges is located between the
electrically driven cylinder and the USM. The external load unit consists of a perma-
nently excited DC-motor with an external proprietary control unit. This electro-motor
has a maximum torque of 5 Nm which is much more than the Shinsei USR60 can with-
stand in real life application. The measurement of the rotational speed was realized by
a DC-generator, integrated in the external load unit. A torque sensor is located between
the USM and the external load unit. The control of the various test rig devices together
with a I/O-card, the speed and the torque controller is housed in a test rig control box.
This box communicates with a PC’s I/O-card which is controlled by a HPVEE program
for the settings of the measurements.
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Figure 4.1: Sketch of the test rig for measuring speed-torque characteristics

4.2 Resonance behavior

This section is about the investigation of the vibrational behavior of the stator itself and
the motor in the vicinity of their operational resonances. Therefore different frequency
response plots have been measured. Fig. 4.2 shows a schematic of the experimental
setup used throughout of all the following experiments. Both electrode systems of the
piezoceramic ring (see Fig. 1.10) have been excited by harmonic electrical voltages
VA(t) and VB(t). The phase deviation ∆φV between the voltage signals have been
set to 0◦ or 90◦ depending on the chosen kind of excitation, traveling or a standing
wave excitation. The electric currents, IA(t) and IB(t), in the two circuits have been
measured by either using the impedance analyzer at low voltage signals or the gain-
phase analyzer together with current probes for the high voltage excitation. To detect
the lateral vibration of the stator (bending vibration), a laser beam was focused on the
top surface of the stator at its outer circumference. Some of the measurements where
carried out for the motor, i.e. stator with rotor, at different axial preloads. Since the outer
diameter of the stator is somewhat larger compared to that of the rotor, fortunately it was
possible to measure the stator vibration amplitude even when the motor is assembled.

For all following measurements two kinds of frequency response plots have been
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Figure 4.2: Sketch of the setup for measuring frequency response plots

recorded. The first one is the frequency response plot of the electric admittance (see
Fig. 1.10)

Y eli(Ω) :=
Î i(Ω)

V̂ i

, for i = {A,B} (4.2)

where the underscore represents a complex quantity and Ω is the circular excitation
frequency. The second frequency response plot is that of the stator’s displacement.
Transfer functions such as

Y elmechi
(Ω;x∗/∗∗) :=

˙̂
W si(Ω;x

∗/∗∗)

V̂ i

, for i = {A,B} (4.3)

are measured since the used Laser-Vibrometer detects velocities. Substituting (4.1) into
(4.3), the expression for the frequency response of the stator’s displacement becomes

Ŵ si(Ω;x
∗/∗∗) = Y elmechi

(Ω;x∗/∗∗)
V̂ i

jΩ
. (4.4)

Frequency responses are recorded at room temperature and without mechanical load-
torque. In a first stage this is sufficient to describe the qualitative behavior of the motor
at different parameter settings. The experiments indicate that the temperature influence
in most cases results in a shift of the measured curves with respect to the excitation
frequency, but not that much of a change of the qualitative behavior. However, in some
USM applications the motors are used for short term actuation with long term phases at
rest. Under such applications the temperature rise is only moderate.
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4.2.1 Resonance behavior of the stator

As a first measurement (Fig. 4.3), the electric admittance of the stator over a broad fre-
quency range had been recorded. The resonance peak at 39 kHz has a significant drop
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Figure 4.3: Electric admittance, Y eli(Ω), frequency response plot of the stator

in the phase. This indicates a high mechanical quality factor so that it is reasonable
to assume this vibration mode to be the operational mode of the motor. The operation
mode with nine nodal lines and zero nodal circles at the resonance of approximately
39 kHz has been confirmed by scanning the stator’s surface with the Laser-Vibrometer.
In a second experiment the degeneracy of the operation modes has been investigated.
Therefore, the electric admittances for both electrode systems, Y elA(Ω) and Y elB (Ω)
are plotted near the resonance frequency, Fig. 4.4. The two frequency response plots co-
incide almost perfectly, giving two degenerated vibration modes. Notably, the electric
admittance in Fig. 4.4 shows a resonance peak at 38.7 kHz and an antiresonance peak
at 38.9 kHz, which typically is a usual phenomenon of electromechanical systems. The
resonance in the electric admittance corresponds to the mechanical resonance. Mea-
suring the frequency response plots of the stator displacements Ŵ s(Ω;x

∗/∗∗), Fig. 4.5
shows the mechanical resonance at 38.7 kHz. Again, the two plots coincide well and by
comparing Fig. 4.4 with Fig. 4.5 it is seen that their resonance frequencies correspond.

The electric admittances in Fig. 4.4 and the displacements in Fig. 4.5 have been
measured at low voltage input signals of approximately 2 V. During the experiments
it had been observed that at higher voltage amplitudes the resonance behavior of the
stator becomes nonlinear. The resonance curves show a backbone behavior and a jump
phenomenon occurs. Fig. 4.6 presents these effects at different excitation voltage lev-
els. It is seen that with increasing voltage amplitudes the admittance amplitudes show
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Figure 4.4: Enlarged view of the frequency response of the electric admittance from
Fig. 4.3 near the operation frequency

a softening behavior and their maximum values decrease. Furthermore, with increasing
voltage levels the jump frequencies between sweep up and sweep down curves increase
as well. Although the distance between resonance and antiresonance jumps expand the
phase response shrinks in between both resonances. At a voltage level of 5 V the phase
plot comes down to −60◦ but at 150 V the phase minimum only reaches approximately
0◦. This effect may come from an increase in internal damping. The mechanism of this
behavior is not obvious but may have significant influences on the power electronics.
If there is no zero crossing in the phase of the electric admittance, an operation with-
out reactive power is not possible. Besides that, a strong nonlinear vibration behavior
produces subharmonic vibration components, which may influence the vibrational be-
havior of the motor. It is remarkable too, that the resonance frequency in Fig. 4.6 shifts
about 2 kHz corresponding to 5% with respect to the resonance frequency of the free
vibrating stator at a low voltage signal, see Fig. 4.4. The measurement of the frequency
response of the stator displacement in Fig. 4.7 yields on quantifying the stator’s vibra-
tion amplitudes in the nonlinear regime. Usually, USM are driven with stator vibration
amplitudes in the micron range. Voltage excitations of 150 V/mm are also reasonable
quantities in USM applications. Thus, considering the resonance amplitudes in Fig. 4.7
an influence of this nonlinearity on the motor dynamics can not be neglected a priori.
This effect has not been measured or discussed in literature of USM design, yet. Such
a nonlinear resonance behavior is well known from literature (see HAGEDORN (1988
[16]), for example) A softening type DUFFING-oscillator with a cubic stiffness term
gives the same qualitative resonance behavior. More detailed investigations, carried out
by NGUYEN (1999, [37]), explain that the softening behavior in the electric admittance
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Figure 4.5: Frequency response of the stator’s bending mode displacement Ŵ sA(Ω;x
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and Ŵ sB (Ω;x
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4 ) near the operation frequency of 38.7 kHz

belongs to the piezoceramic material only, and not as one could assume from the bond-
ing between piezoceramic and stator. However, the bonding can have a strong influence
on the efficiency of the electromechanical power conversion. Investigations on this have
been carried out by SEEMANN & SATTEL (1999, [55]). Here, a pure piezoceramic rod
sample (PZT181, PI Ceramics) of a square cross section with a polarization in axial
direction has been used to confirm both, the softening behavior as well as the jump phe-
nomenon which originates from the material nonlinearity in piezoceramic. The length
of the sample was a few cm. First, frequency response plots of the electric admittance
and the rod’s longitudinal displacement had been measured at a low voltage excitation
signal with the laser-vibrometer. The results are presented in Fig. 4.8. The resonance
peaks correspond to the first longitudinal vibration mode of a rod with free-free bound-
ary conditions. The curves look qualitatively similar compared to those measured for
the stator, see Fig. 4.4 and 4.5. Notably, the distance between the resonance and the
antiresonance frequency of the rod sample is significantly larger than that of the stator
from Fig. 4.4. This distance indicates the strength of the electromechanical coupling in
a structure. Since the rod sample is made fully out of piezoceramic material, its elec-
tromechanical coupling naturally must be larger than the one of the stator. In Fig. 4.9,
electric admittances of the rod probe at different voltage excitation levels are plotted. It
turns out that a qualitatively similar nonlinear behavior exists likewise as seen for the
stator. This points out that the mechanism of the nonlinearity originates from the piezo-
ceramic material and not from the bonding layer. Detailed studies on this topic were
conducted by NGUYEN (1999, [37]). However, in contrary to the admittance phase
plot of the stator, the phase plots of the rod samples switche from +90◦ to −90◦ at
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Figure 4.6: Nonlinear frequency response of the electric admittance, Y elA/B
(Ω) of the
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the resonance. From the frequency response plot of the rod’s longitudinal displacement
in Fig. 4.10 the jump phenomenon can be seen more clearly. The rod displacement
was measured with the Laser-vibrometer focusing the laser beam at one of the free vi-
brating ends. This special kind of nonlinear resonance behavior has been investigated
now for more than four decades. In UCHINO (1997, [56], p.169) the same resonance
behavior as in Fig. 4.7 is shown for a piezoelectric resonator and it is argued that this
non-linear phenomenon results from nonlinear elastic material behavior. This seems to
be the evidence. BEIGE (1983, [4]) worked out experimental and analytical methods
in the frequency domain for the identification of higher order material coefficients of
piezoceramics acting in nonlinear regimes. Starting with an fully consistent expression
for the free enthalpy upon terms of the order four, the following constitutive equations
have been derived:

Si = sEijTj + dmiEm + sEijkTjTk + 2dmikTkEm +RmniEmEn

+sEijklTjTkTl (4.5)

Dm = dmiTi + εTmnEn + dmijTiTj + 2RmniTiEn + εTmnpEnEp

+εTmnpqEnEpEq . (4.6)
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Figure 4.7: Nonlinear frequency response of the lateral displacement of the stator,
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∗), Ŵ sB (Ω;x
∗ + λ

4 ); – solid line: sweep down, - - dashed line: sweep up

The first two terms on the right side in (4.5) and (4.6) represent the linear piezoceramic
material behavior. The softening behavior in the mechanical resonance of the rod sam-
ple (Fig. 4.9) can be explained by a cubic stress-strain relationship as described by the
last term in (4.5). BEIGE (1983 [4]) measured and identified some of the non-linear elas-
tic material coefficients at the mechanical resonance of a piezoceramic specimen, using
measured electric admittances. More recently NGUYEN (1999, [37]) observed effects in
a piezo-beam-system, stemming from of the same mechanism. In WOLF & GOTTLIEB

(1999, [61]) a cantilever beam with piezoceramic layers was modeled, including cubic
mechanical non-linearities in the material law. By utilizing a multiple-scale analysis,
the nonlinear resonance curves with the softening behavior were obtained. Non-linear
dielectric material coefficients were identified in BEIGE (1982, [3]). For these mea-
surements a piezoceramic specimen is connected into series to a linear inductance so
that the electrical resonance is far below the first mechanical resonance of the piezoce-
ramic specimen. The measured electric resonance exhibited the same distorsion in the
resonance curve as for the mechanical resonance.
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Figure 4.8: Frequency response of a piezoceramic rod sample; plots on the left: electric
admittance, plots on the right: longitudinal displacement

4.2.2 Resonance behavior of the motor

In Section 1.1 the control parameters circular excitation frequency, Ω, driving volt-
age, VA, and phase deviation ∆φV for feedback control of USM have been discussed.
The frequency responses, presented in the following, are measured at different driving
voltages. Furthermore, it is distinguished between the two limiting cases of the phase
deviation, the traveling wave operation ∆φV = 0◦ and the standing wave operation
∆φV = 90◦, Fig. 4.2 and (1.8).

The experimental characterization of the motor’s resonance behavior is splitted into
three categories. First, the non-linear resonance behavior of the motor is investigated,
followed by a description of the well known jump phenomenon. The last part considers
the vibration amplitude treshold of the stator vibration which has to be exceeded in
order to drive the rotor.

Nonlinear resonance characteristics

In Fig. 4.11 the electric admittance of the motor is plotted for different axial preloads.
The curves are recorded at a standing wave operation mode, i.e. for ∆φ = 90◦. Two
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Figure 4.9: Frequency response of the electric admittance, Y el(Ω), of the piezoceramic
rod sample near the resonance peak, Fig.4.8: –solid lines: sweep down, - - dashed lines:
sweep up

aspects are worth to mention. First, with increasing axial preload the system stiffens,
i.e. the resonance frequency increases from 39 kHz to 43 kHz. This stiffening effect
may result from two basic mechanisms. On the one hand there is an increase of the
penetration of both contact surfaces. Thus, the contact stiffness between both bodies
increases with increasing preloads until the bulk stiffness of the system is reached. This
mechanism depends on the surface roughness of both contacting bodies. On the other
hand it may happen that rotor and stator partially loose contact in the vicinity of the
resonance peak. With increasing axial preload the softening effect gets reduced and
the resonance frequency increases. This would correspond to a softening effect during
sweeping across the resonance. Notably, an axial preload of 250 N corresponds to an
axial prestress of 0.7 N/mm2 at full contact between stator and rotor. The second
comment is on the dissipative losses in the motor. As it can be easily seen, the phase
signals did not have a zero crossing. Frictional damping in the contact zone is relatively
high.

Another measurement is shown in Fig. 4.12. Again, the electric admittance is plot-
ted, but now with varying driving voltage and at a constant axial preload of 150 N. This
preload is usually chosen for the operation of such motors. The plots were recorded at
standing wave operation. Measuring frequency response plots at standing wave opera-
tion allows to compare them directly with those of the free vibrating stator in Fig. 4.6.
Frequency response plots at traveling wave operation, i.e. with ∆φV = 0◦ will be dis-
cussed in the next paragraph. Several comments on the plots in Fig. 4.13 can be made.
For driving voltages up to 75 V, the magnitude of the electric admittance decreases
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Figure 4.10: Frequency response of the longitudinal displacement of the piezoceramic
rod sample in the vicinity of the resonance peak, Fig.4.8: –solid lines: sweep down, - -
dashed lines: sweep up

while the phase drop slightly shrinks. Besides this, the frictional damping mechanisms
between stator and rotor seem to be relatively strong, since the drop in phase signal is
only down to approximately 80◦ between the resonance and antiresonance frequencies.
At somewhat higher voltages there is a turn around, the magnitude of the admittance
increases and the phase drop tends to be stronger too. Following even higher driving
voltages result in a jump of the electric admittance at the resonance frequency. This
jump seems to be caused by the non-linear stator-rotor contact. The stronger drop down
in the phase signal reveals a decrease in frictional damping effects. At a driving voltage
of 150 V the resonance frequency is at 38.8 kHz. At full stator-rotor contact (contact
length corresponding to the wavelength λ of the bending wave) the resonance frequency
of the assembled motor is more than 43 kHz. Without stator-rotor contact, the resonance
frequency is 38.7 kHz applying 2 V driving voltage, as it can be seen in Fig. 4.4. Thus,
the resonance frequency of 38.8 kHz at 150 V driving voltage in Fig. 4.12 leads in a
first instance to the assumption of a small contact length or equivalently to a small stiff-
ening effect at resonance. The measurement of the frequency response plot of the stator
displacement in Fig. 4.13 shall give more details on the resonance characteristics.

The resonance frequency at low voltages is at 43 kHz. With increasing driving
voltage, resonance and antiresonance frequencies approach each other. The plots at 110
V and more show an analog resonance behavior as those in Fig. 4.12. Especially the
vibration amplitude at high driving voltages is interesting to be looked at more closely.
Values up to 4 µm are reached. At these stator amplitude levels the piezoceramics
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Figure 4.11: Frequency response of the electric admittance, YelA/B
(Ω), of the motor at

constant driving voltage, standing wave operation mode and for different axial preloads

exhibit strong nonlinear resonance behavior, reconsidering the measurement of the free
vibrating stator in Fig. 4.7. For a free vibrating stator with vibration amplitude of 4 µm,
the resonance frequency shifts down to 37.5 kHz. In Fig. 4.14 the frequency response
plots of the free vibrating stator and those of the assembled motor at similar vibration
amplitudes are shown. Coming back to what has been stated about the contact length
in the discussion of Fig. 4.12, the following comment can be made. The resonance
frequencies of stator and assembled motor at the same level of stator displacement differ
approximately about 1 kHz. By no means, it can be argued that there is a weak stator-
rotor interaction at resonance as it was supposed by comparing the resonance frequency
of the stator at low driving voltage (38.7 kHz) with the resonance frequency of the
assembled motor at high driving voltage (38.8 kHz).

The amplitude of the stator’s electric admittance, Y elA/B
(Ω), in Fig. 4.14 has a

slightly lower level, a sharper antiresonance peak and a greater jump in the resonance.
The high frictional damping in the assembled motor is obvious by the almost vanishing
antiresonance peak and the low resonance amplitude in the admittance plot. However,
the most important conclusion out of the measured frequency responses is that it is not
possible to decide from these plots, whether the jump in the resonance frequency is
due to the nonlinear stator-rotor contact or due to the nonlinear piezoceramic material
behavior!
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Figure 4.12: Frequency responses of the electric admittance, Y elA/B
(Ω) of the motor at

different driving voltages and constant axial preload; standing wave excitation: ∆φV =
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Jump phenomenon

In the preceding paragraph the frequency responses of the assembled motor have been
measured at a standing wave excitation. In the following experiments the motor is
operated using a traveling wave, ∆φV ≈ 0◦, see Fig. 4.15. At such an operation mode,
the initiation of the rotor motion and the increase in the rotational speed at approaching
the resonance frequency can be observed. Both, sweep up and sweep down frequency
response plots are recorded. The resonance frequencies between the jumps of sweep up
and sweep down curves differ about 2 kHz. The arrow on the right side in the upper
plots of Fig. 4.15 indicates the begin of the rotor motion, the arrow on the left shows
the end of the rotor motion. The rotation starts at 43 kHz with a relativ small rotational
speed (below 1 rpm) and increases rapidly (depending on the sweep rate) to more than
100 rpm. The frequency response plot for the stator displacement at traveling wave
operation (left side of Fig. 4.15) is qualitatively similar to the plot recorded at standing
wave operation (Fig. 4.13). In contrast, the admittance response plots between both
operation modes (Figs. 4.12 and 4.15) differ in their qualitative behavior. The phase
response at traveling wave operation drops much more, here down to 20◦ and has no
plateau. In conclusion to the results of the admittance response plots, it can be stated
that zero crossing of the phase signal is difficult to reach, if not impossible. To this
point, a significant improved contact mechanism between stator and rotor would be
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at different electric voltage excitations; standing wave excitation: ∆φV = 90◦, sweep
down

necessary. One possibility would be to take the radial vibration component of the stator
into account, which causes dissipative effects only (see (1.2)).

Another conclusion is with respect to the motor operation at low rotational speed. In
Section 1.1 it was mentioned that there are three concepts to control rotor speed, chang-
ing the driving voltage amplitude V̂A, the circular excitation frequency Ω or the phase
deviation ∆φV . The phase signals of the electric admittance in Figs. 4.12 and 4.15
indicate to prefer a variation of the phase difference instead of the excitation frequency.

Vibration amplitude treshold

Each axial preload has a critical stator vibration amplitude which must be achieved to
set the rotor into motion. In Fig. 4.16 the stator vibration amplitude treshold at different
axial preloads is prescribed. The rotor motion starts at points, where the curves fluctuate
and stops at points, where the curves are smooth again. The fluctuating curves indicate
that the motor is not in a steady-state condition during frequency sweeps. This is due
to the low integration time adjusted in the gain analyzer and the low rotational speed
together with motor imperfections. The start and stop frequencies depend on the axial
preload, too. For this particular motor design, the increase in the amplitude treshold is
not proportional to the increase in the axial preload.
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4.3 Temperature dependence

The operational behavior of an USM strongly depends on the temperature also. This
is well known in USM research since the early stages of the invention of the various
motors. The inherent frictional driving mechanism heats up the various motor compo-
nents. The components most sensitive to temperature in USM are the piezoceramic,
the friction layer and perhaps the ”third body” layer i.e. the material layer between
the contacting surfaces. But also the stator and rotor material parameters can exhibit a
relevant temperature dependency. The main temperature effects are a shift of the res-
onance frequency of the assembled motor and the drift of its output torque. The first
effect is demonstrated in Fig. 4.17, showing the electric admittance, Y elA/B

, of the fully
assembled motor. The resonance frequency shifts by several hundred Hz. In addition,
the level of the admittance drops. In Fig. 4.18 the temperature dependent drift of the
motor output torque is illustrated. These data have been recorded at a relatively low
load of approximately 10 Ncm. The excitation frequency has been set to only 100 Hz
above the resonance frequency at 60◦C, which was 38.7 kHz. Within the recorded time
of 100 s the temperature rises from 63◦C up to 73◦C. The motor’s rotational speed has
been controlled by the test bed’s speed controller. The first 20 s the rotational speed
was held constant slightly above an average value of 150 rpm. After 20 s the rotational
speed was lowered and held constant for further 70 s. Within these 70 s the motor’s
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Figure 4.15: Typical jump phenomenon of ultrasonic motors; – solid line: sweep down,
- - dashed line: sweep up, traveling wave excitation: ∆φV = 0◦

output torque signal declines with a rate of 0.13 Ncm/s. Then the rotational speed was
lowered again. However, it should be mentioned, that the motor operation conditions
used above are at the motor’s limit of capability for the no-load rotational speed. The
stator’s vibration amplitude was about several µm. The effect of the declining torque
signal is probably caused by the temperature induced shift of the resonance frequency
according to Fig. 4.17.

The aforementioned effects imply that the temperature influence may be drastic and
cause a drift in the motor output quantities. In published data of measured speed-torque
characteristics this effect is almost not mentioned or discussed.

4.4 Steady-state behavior of the motor

It is the objective of this section to get a deeper insight into the steady-state motor
behavior than the literature provides. Short time fluctuations due to noise and other
irregularities are always present in experimental setups. From an experimental point
of view, steady-state motor operation is defined as that operation condition where ro-
tational speed and torque did not show a temporal drift as e.g. in Fig. 4.18 and the
stator and rotor vibrations have only Fourier components of the excitation frequency



4.4. Steady-state behavior of the motor 129

38 39 40 41 42 43 44 45
0

0.2

0.4

Frequency [kHz]

D
is

pl
ac

em
en

t |
W

s(x
*)

| [
µm

]

V
A
=100 V

V
A
=80 V

V
A
=60 V

V
A
=50 V

V
A
=30 V

F
axial

=50 N
F

axial
=100 N

F
axial

=150 N
F

axial
=200 N

F
axial

=250 N

38 39 40 41 42 43 44 45
−100

−50

0

50

100

Frequency [kHz]

P
ha

se
 φ

 [G
ra

d]

Phase: ∆φ
V
=0°

F
axial

=50 N
F

axial
=100 N

F
axial

=150 N
F

axial
=200 N

F
axial

=250 N

Figure 4.16: Typical vibration amplitude treshold phenomenon at different axial
preloads for traveling wave excitation; sweep down

and multiples of it. For both, the rotational speed and the motor torque, the time sig-
nals have been recorded for a reasonable long time interval of 100 s. As a measure of
the temporal fluctuations the standard deviation is chosen. All measured speed-torque
characteristics have been obtained at speed-controlled operation mode of the test rig.
Several internal motor quantities (e.g. rotor and stator vibration amplitudes) have been
measured simultaneously during the motor operation. Vibration amplitudes of stator
and rotor, ŵs(x

∗) and ŵr(x
∗), have been measured as depicted in Fig. 4.2. The elec-

tric currents IA(t) and IB(t) have been obtained by utilizing two current probes. The
motor operation was restricted to a pure traveling wave operation mode, i.e. keeping
the phase deviation of the electric voltage signals VA(t) and VB(t) at ∆φV ≈ 0◦. With
the aforementioned internal motor quantities, various motor characteristics like power
consumption, reactive load and the efficiency were computed. The speed-torque char-
acteristics were measured varying two parameters, namely the excitation frequency and
the axial preload. The driving voltage signals were chosen to be sinusoidal.

4.4.1 Speed-torque characteristics: four quadrant operation

In Fig. 4.19 two measured speed-torque characteristics are plotted in a four-quadrant
diagram. The two curves correspond to a clockwise and counter-clockwise motor op-
eration. Both curves are point-symmetric to each other in a qualitative sense. This was
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Figure 4.17: Typical temperature effect on the resonance frequency, sweep down

a general observation during all the measurements. Thus, in the subsequent plots it is
sufficient to specify only the clockwise or counterclockwise characteristics. The expla-
nation of the speed-torque diagrams is given in Section 1.1. The vertical and horizontal
line segments at each operation point in Fig. 4.19 describe the standard deviation in the
rotational speed and motor output torque signals, respectively. The characteristics are
measured in a sweep down mode, i.e. starting in the dragging quadrant near the no-load
speed (e.g. Point 1) and decreasing the rotational speed beyond the stall torque into
the braking quadrant. The excitation frequency was approximately 400 Hz beyond the
resonance frequency. Approaching the excitation frequency closer than 100 Hz to the
resonance frequency causes squealing in the motor. Despite a distance of 400 Hz from
the resonance frequency, the excitation voltage was high enough to produce a large no-
load rotational speed. This again produces rapid heating up in the motor. Slightly above
80◦C a steady-state condition was reached at point 2. At Point 1 the fluctuations in the
torque are relatively high, no steady-state operation was possible. The time signals are
depicted in Fig. 4.20. The upper two graphs are the time signals within a time inter-
val of 30 s whereas the lower graphs are enlarged views of the zoom windows marked
on the upper graphs. For every measurement in the dragging quadrant the qualitative
result was similar. Details on the stator and rotor vibrational behavior in the dragging
quadrant will be discussed in Section 4.4.5. Following the speed-torque characteristics
along the arrow, one finds a temperature rise until Point 13, beyond which it remains
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Figure 4.18: Typical time dependend temperature effect occurring at certain operation
conditions

constant at 106◦C. Up to Point 8 the motor remains in a steady-state condition. The
time histories of rotational speed and torque between Points 2 and 11 are qualitatively
similar to those shown for Point 2 in Fig. 4.21. An FFT was applied for the speed and
torque time signals at operation point 2. The results are depicted in Fig. 4.22. The FFT
of the torque signal shows a fundamental peak at 2.1 Hz. This frequency component
is related to the rotational speed of the motor. Other peaks are multiples of the fun-
damental peak. Apparently the motor has an imperfection which produces frequencies
that are correlated to the rotational speed of the motor. Such an imperfection could be
caused by a rotor with tilt. This means that the axial prestress between stator and rotor
is not constant in circumferential direction. HERZOG (1993, [22]) already reported this
phenomenon.

An interesting phenomenon in the speed-torque characteristics in Fig. 4.19 is the
occurrence of an overhang. So far, such a phenomenon has not been reported in liter-
ature. A discussion of this effect is given in Sections 4.4.2 and 4.4.4. It should only
be mentioned, that from existing models in literature such a particular behavior of the
motor cannot be predicted. The available models are not sophisticated enough to cap-
ture unsteady motor behavior such as those between Point 8 and Point 19. Exemplary,
the time histories of the speed and torque signals in the braking quadrant (Point 19) are
plotted in Fig. 4.23. The speed signal is under good feedback control and the torque sig-
nal switches between 60 and 70 Ncm in a more or less regular manner. Since this is not
a steady-state motor condition it may not surprise that the motor output torque is sig-
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Figure 4.19: Example of typical speed-torque characteristics in four-quadrant motor
operation

nificantly lower than its maximum. More detailed results on the overhang phenomenon
and unsteady motor operation will be presented in the following sections.

4.4.2 Speed-torque characteristics: influence of excitation frequency

The excitation frequency is one of the control parameters for the motor operation. Its
influence on the speed-torque characteristics is shown in Fig. 4.24. The resonance fre-
quency (jump frequency) at this particular axial preload of 150 N is approximately 39.3
kHz. When the excitation frequency approaches towards the resonance frequency, the
no-load rotational speed increases. The stall torque stays nearly unchanged. The im-
portant phenomenon are the overhanging curves. The key issue is that for these curves
the maximum output torque is significantly greater than the stall torque. Too many
variables are involved to draw a simple picture of such a phenomenon. For example
the influence of the temperature on the contact layer behavior can not be estimated. To
each of the curves belongs a slightly different average temperature level. Along the
curve for f = 39.5 kHz (excitation frequency) the temperature raise is from 82◦ C to
102◦C. Other important variables are the stator and rotor vibrations, which are mainly
responsible for the stator-rotor contact state. It is evident, that a unsteady stator-rotor
contact may cause this drop in the motor’s output torque.

An insight on the time histories of the speed and torque signals at two different
operating points is given by Figs. 4.25 and 4.26. In both operating points the speed
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Figure 4.20: Speed and torque time histories at point 1 in the speed-torque characteristic
of Fig. 4.19

is under excellent control. The torque signal in Fig. 4.25 shows only small temporal
fluctuations. Such a torque time history is common for normal steady-state operating
condition. Quite different is the temporal behavior of the torque signal in Fig. 4.26.
The time signal shows a switching behavior, which occurs also in the torque signal in
Fig. 4.23. The experiments revealed that this particular time behavior of the torque sig-
nal is always present if the motor squeals and operates in the vicinity of the stall torque.
As it was mentioned above, the no-load rotational speed increases when the excitation
frequency approaches the resonance frequency. The measurement depicted in Fig. 4.27
illustrates the relation between the rotational speed and the excitation frequency for a
low load. The resonance frequency is at 39.3 kHz. Below 39.4 kHz the motor starts
to squeal. From the graph it is seen, that a range of 3 kHz can be used to control the
rotational speed from approximately 140 rpm down to nearly zero rpm.
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Figure 4.21: Speed and torque time signals at point 2 in the speed-torque characteristic
of Fig. 4.19
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Figure 4.22: FFT of the speed and torque time signals in Fig. 4.21
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Figure 4.23: Speed and torque time histories of point 19 of the speed-torque character-
istic in Fig. 4.19
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Figure 4.24: Speed-torque characteristics at different excitation frequencies
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Figure 4.25: Speed and torque time histories of point 7 in the speed-torque characteristic
at f=41.0 kHz in Fig. 4.24
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Figure 4.26: Speed and torque time histories of point 11 in the speed-torque character-
istic at f=40.0 kHz in Fig. 4.24
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4.4.3 Speed-torque characteristics: influence of axial preload

The only design parameter of USMs which can easily be adjusted is the axial preload.
How different the torque speed characteristics may look, like for different axial preloads
at constant voltage excitation, is illustrated by the measurements presented in Fig. 4.28.
All other parameters except the axial preload are held constant. The distance between
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Figure 4.28: Speed-torque characteristics at different axial preloads

the excitation frequency and the resonance frequency depends on the axial preload and
is listed in Tab. 4.29. From Fig. 4.28 one observes that the stall torque does increase with
increasing the axial preload. And again, for some particular axial preloads overhanging
curves exist. The change of the no-load rotational speed with the axial preload is shown
in Fig. 4.30. From the model analysis it is expected that the no-load rotational speed
decreases with increasing axial preload (see for example SATTEL et al. (2001, [49])).
However, there is a maximum of the no-load rotational speed, which is a somewhat sur-

axial preload 50 N 100 N 150 N 200 N 250 N

frequency distance 100 Hz 200 Hz 900 Hz 1000 Hz 1000 Hz

Figure 4.29: Distance of the resonance frequency from the excitation frequency at dif-
ferent axial preloads

prising result. Moreover, a FFT of the time histories of stator and rotor vibrations only
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show spikes at the excitation frequency and at second harmonics. The vibration ampli-
tudes of neither stator nor rotor show any unusual behavior. Thus, the peculiarity in the
variation of the no-load rotational speed is inexplicable from the available experimental
data.

50 100 150 200 250
50

55

60

65

70

75

80

85

Axial Preload [N]

R
ot

at
io

na
l s

pe
ed

 [r
pm

]

 f=40.2 kHz

 V
A
=130 V

 ∆φ
V
=0°

  55°C

  63°C

  82°C

  89°C

  93°C

Figure 4.30: No-load rotational speed for different axial preloads

4.4.4 Speed-torque characteristics: hysteresis behavior

In the preceding sections the overhanging speed-torque characteristics have been ob-
served whose occurrences depend on the proximity of the excitation frequency with
respect to the resonance frequency (see Fig. 4.24), i.e. on the vibration amplitude of
the stator. All the speed-torque characteristics shown in the foregoing sections are mea-
sured in a sweep down mode, where the rotational speed has been decreased from the
no-load value until the motor stopped. In a cyclic measurement procedure, compris-
ing of a sweep down and a sweep up mode pathes are relatively close to each other
for curves without overhang. However, they follow distant pathes in presence of an
overhang (Fig. 4.31). The cycle at Faxial = 200 N shows two turning points, one at
the maximum torque and the other at a somewhat lower rotational speed. This second
turning point is present also at other curves but located at the stall torque position (see
Figs. 4.19 and 4.24, for example). In some more detailed experimental studies data were
taken inside the braking quadrant and they showed that the motor torque does not ex-
ceed the maximum torque obtainable in the operation quadrant. It seems that the motor
can not resist more than the maximum torque in the operational quadrant. Thus, there
must be a pure sliding condition at the maximum torque where the frictional contact
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Figure 4.31: Hysteresis behavior for speed-torque characteristics

forces acting on the rotor within the contact zones are all driving forces. The decrease
of the torque after the first turning point must either be caused by the onset of breaking
contact forces or by the unsteady behavior of the stator and rotor vibrations. For the
cycle at Faxial = 150 N squealing started at the maximum torque of the sweep down
path (Point 9) and stopped at the sweep up path where both pathes bifurcate. In the FFT
diagram of the stator and rotor vibrations, additional peaks besides the regular ones
were observed between Point 11 and 19. Naturally, it will be interesting to know the
vibrational behaviors of the stator and rotor at the different points in one cycle. This is
discussed in the next paragraph.

4.4.5 Vibrational behavior

The aim of this section is a more detailed experimental analysis of the stator and the
rotor displacements and the electric currents at all operation points of the measured
speed-torque characteristics. The results may be used to find the minimum parameters
of motor models to capture the important features, to validate existing motor models
and perhaps to find an interrelation between squealing, hysteresis and the vibrational
behavior.

First, the time histories of the measured displacement and current signals at normal
motor operation will be discussed. Then, two vibration phenomena will be described,
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namely the beating and the squealing phenomenon. Last, the vibration amplitudes of
stator and rotor along the various speed-torque characteristics are illustrated.

Normal operation behavior

At normal operation the motor works in a steady-state and the stator and rotor vibrations
contain only the fundamental harmonics (40 kHz) and its multiples. In Fig. 4.32 typi-
cal time histories are shown at normal motor operation. Note that the stator and rotor
speeds at surface points have been measured. The displacements can be computed as
explained in Section 4.1.3. A deeper insight into the time histories can be obtained from
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Figure 4.32: Typical time signals at normal operation of the motor, corresponding to
point 2 of the speed-torque characteristic in Fig. 4.19

a FFT of the signals, which are presented in Fig. 4.33. As expected, all signals contain
the fundamental frequency (excitation frequency) of approximately 40 kHz. The travel-
ing bending waves run through these measuring points and cause the oscillations of the
surface points which are detected by the laser-vibrometer. The frequency components
in the FFT plot can be correlated with wave length as discussed below. The funda-
mental frequency component at 40 kHz is due to the traveling bending wave with the
fundamental wave number in circumferential direction, which again corresponds in this
particular design to a bending mode with nine nodal diameters (see e.g. Fig. 1.5). The
frequency component at 80 kHz thus corresponds to the next higher wave number, i.e.
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the next higher traveling bending wave component with 18 nodal lines. The occurrence
of multiples of the fundamental mode originates from the stator-rotor contact. The con-
tact between the stator wave crests and the rotor results in a periodic deformation of
both, which is not necessarily harmonic. However, it is clearly indicated in the FFT

0 50 100
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Frequency f [kHz]

 S
ta

to
r 

di
sp

la
ce

m
en

t  
  |

W
(x

* ) s| [
µm

]

 FFT at operation point 2

0 50 100
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Frequency f [kHz]

 R
ot

or
 d

is
pl

ac
em

en
t  

 |W
(x

* ) r| [
µm

]  FFT at operation point 2

0 50 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency f [kHz]

 C
ur

re
nt

   
|I A

| [
A

]

0 50 100
10

−2

10
−1

10
0

10
1

10
2

Frequency f [kHz]

 E
xc

ita
tio

n 
V

ol
ta

ge
   

|V
A
| [

V
]

Figure 4.33: Typical FFT spectra of the time signals at normal motor operation; FFT of
the time signals in Fig. 4.32.

diagrams that the higher harmonic components are not significant. In the current sig-
nals, the amplitudes of the second harmonic component are even an order of magnitude
smaller than those of the displacmenent signals. Such an FFT diagram is typical at a
normal operation condition.

Beating in the dragging quadrant

Operating a USM in the dragging quadrant is unusual and probably unwanted. Nev-
ertheless doing so, a new insight into the vibrational behavior of stator and rotor can
be gained as Fig. 4.34 illustrates. The beating vibrations occur every time the motor
is driven in the dragging quadrant. Due to the electromechanical coupling of the sta-
tor vibration and the piezoceramic ring, beating is transmitted to the current signal as
well. Even more interesting is that the current signal comes into a saturation beyond
0.5 A. This can be explained by the nonlinear admittance characteristics of the stator
arising at high vibration amplitudes, respectively at high strains (Figs. 4.6 and 4.7). The
maximum value of the stator speed in Fig. 4.34 is about 11 m/s, which corresponds to
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a vibration amplitude of 4 µm. The rotor oscillations show an irregular behavior with
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Figure 4.34: Beating phenomenon in the dragging quadrant of the speed-torque charac-
teristic in Fig. 4.19, measured at operation point 1

much lower vibration amplitudes. The FFT diagram of the time signals is plotted in
Fig. 4.35. One can vividly see the main peak at 40 kHz for the stator displacement with
the two neighboring peaks which result in the beating oscillations. The three closely
neighboring peaks are also present in the current signal.

Squealing phenomenon in the operation quadrant

Stator and rotor undergo irregular motion when the motor produces squealing. USMs
like the Shinsei USR60 are usually operated far within their potential limits as can be
seen comparing published data sheets specifying recommended ranges of operability
with the results obtained in this work (Fig. 4.24). An important reason is due to the
drastic increase in temperature close to the operation limit. Doubtless, another reason
for this is the possible onset of squeal and irregular motion in the vicinity of the limiting
values. However, the squealing effect is not only a problem when driving the motor at
it’s operational limit, but also during the early stage of motor design. The geometry
of stator and rotor, contact layer material parameters etc., all of them often make the
design process difficult with the need of a vast amount of experiments. In the follow-
ing, only an example is given regarding the squealing phenomenon. The time signals
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Figure 4.35: FFT of the time signals in Fig.4.34

shown in Fig. 4.36 are typical after the onset of squealing. In Fig. 4.37 the FFT’s of
the time signals are shown. Note that the time signals and the corresponding FFT di-
agrams are only snapshots. There are temporal fluctuations in the time signal, i.e. the
magnitudes of some of the frequency components may change. Moreover, it may hap-
pen that frequency components appear or vanish during a long term run, say, of several
milliseconds. Also, the laser beams are focused at one surface point on the outer cir-
cumference of stator and rotor. One has to keep in mind, that the time signals and the
FFT diagrams may look different at other surface points. In the following, vibrational
components with frequencies different from the fundamental operation frequency - and
multiples of it - are called parasitic vibrations. Those operation points at the measured
speed-torque characteristics where squeal and parasitic frequency components in the
FFT diagram appear are listed in Tab. 4.2. Parasitic vibrational components which may
occur in the inner part of stator and rotor have not been detected. From the table it
follows, that the onset of squealing is before first of appearance of parasitic peaks in the
FFT diagram. Generally, the amplitude of parasitic vibrations in the stator-rotor con-
tact region are at least one order of magnitude smaller than the fundamental peak at 40
kHz. Having a closer look at which position in the speed-torque characteristics squeal-
ing show up, there is no characteristic operation state where this happens. In curve No.
1 in Tab. 4.2 squeal occurs before the turning point is reached, whereas in curve No.
4 it starts at the turning point. For curves No. 3 and 6, on the other hand, squealing
appears after the turning point is exceeded. But it should be stated clearly, that there
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Figure 4.36: Beginning of squealing at point 9 of the speed-torque characteristic with
excitation frequency f=39.5 kHz; Fig. 4.24

speed-torque characteristics begin of begin of parasitic main parasitic

squal at vibrations at vibrations in

No. Figure curve Point No. Point No. kHz

1 4.19 8 13 47, 55

2 4.24 40.5 kHz 9 11 47, 55

3 4.24 40.0 kHz 9 9 47, 55

4 4.24 39.5 kHz 9 9 55

5 4.28 50 N 9 11 47, 55

6 4.28 150 N 9 11 47, 55

Table 4.2: Summary of the occurance of squealing and parasitic frequency components
in the FFT diagrams

is no distinct relation between the onset of squeal and the occurrence of overhang in
speed-torque characteristics. For the overhanging curve corresponding to Faxial = 100
N in Fig. 4.28 no squeal occurs, but appears for curves No. 2 and 5, where no over-
hang exist. Looking at curve No. 1, for example, the onset of parasitic vibrations in
the contact region take place after the turning point, whereas the squealing shows up
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Figure 4.37: FFT of the time signals in Fig. 4.36 during heavy squealing in a motor

even before. All the aforementioned facts suggest that squealing in this motor and at
the particular operation conditions (e.g. high operation temperature up to 90◦C) is a
side effect which does not influence the motor operation drastically, but causes uncom-
fortable noise. However, during the design of new motors, parasitic vibrations may
cause not only unwanted noise, but also a drastic reduction of motor performance. The
same can happen when operating a motor at low temperature (20◦C, e.g.). For a more
detailed investigation of the effect of squealing further information are required, as e.g.
on the spatial distribution of the parasitic vibration modes or on the eigenmodes and
eigenfrequencies of both, the stator and the rotor.

Vibration amplitudes along the speed-torque characteristics

In sections 4.4.1 to 4.4.4 the speed-torque characteristics of the motor were discussed.
The typical vibrational signatures at different operation points for various speed-torque
curves were also presented. Here, the vibrations of stator and rotor displacement and the
fluctuations of the electric current along different speed-torque characteristics are dis-
cussed. It is expected that these information contribute towards a better understanding
of the shape of the different curves as well as towards the validation of existing motor
models. In Fig. 4.38 the vibration amplitudes along the speed-torque characteristics in
the four-quadrant operation are plotted. The motor was excited at a constant driving
voltage in a traveling wave mode. Following the curve from high to low rotational
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speed, the amplitude of stator displacement, ŵs, decreased from 2.7 µm at no-load
rotational speed by half at stall torque, whereas the amplitude of rotor displacement,
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Figure 4.38: Vibration amplitudes of stator and rotor displacement, ŵs(x
∗), ŵr(x

∗),
resp. and electric current ÎA for the speed-torque characteristics of Fig. 4.19

ŵr , decreased not that much. Thus, the ratio between the rotor and the stator ampli-
tudes shows an increasing tendency, implying an enlargement of the area of contact
between them. In the following, we shall try to explain the overhanging phenomenon in
the speed-torque characteristics (Fig. 4.19) with the help of above results on vibrations
along the sweep down path. At the operating point 10, the maximum motor torque
is achieved. This corresponds probably to a contact state where the tangential contact
stresses acting on the rotor are all oriented towards the rotor motion, i.e. they are all
driving stresses (no change in sign in the tangential stress distribution). Exceeding the
maximum motor torque at Point 10, braking contact stresses must take place in order to
reduce the motor torque.

In Fig. 4.39 the vibration amplitudes are depicted for the speed-torque character-
istics at different excitation frequencies. The stator vibration amplitudes reduce with
decreasing rotational speed, i.e. with increasing load-torque. The rotor vibrations, how-
ever, do not follow this behavior distinctly. Nevertheless, the ratios between the rotor
and the stator vibration amplitudes tend to increase with increasing mechanical load.
Two of the curves, at 39.5 kHz and 40 kHz, belong to speed-torque characteristics with
an overhang. The explanation for the occurrance of the overhang phenomenon, given
in the previous paragraph, holds also for the curves in Fig. 4.39.

In Fig. 4.31 a strong path dependent behavior in the speed-torque characteristics
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Figure 4.39: Vibration amplitudes of stator and rotor displacement, ŵs(x
∗), ŵr(x

∗),
respectively and electric current ÎA for the speed-torque characteristics of Fig. 4.24

was observed. The strength of this hysteresis phenomenon depends on the strength
of the overhang. An interesting question arises immediately: whether the low motor
torque along the sweep up curves could be explained by the stator and rotor vibration
amplitudes. For the speed-torque cycle at Faxial = 150 N in Fig. 4.31 the vibration
amplitudes are plotted in Fig. 4.40. The sweep down path starts at Point 1, reaches
the stall torque Point 17 and follows then the sweep up path to Point 30. At Point 18
both speed-torque characteristics bifurcate (Fig. 4.31). Surprisingly, there is no signifi-
cant difference between the vibration amplitudes along both pathes. Up to Point 23 in
Fig. 4.40 both curves coincide quite well and beyond it the stator vibration amplitude
along the sweep up path is slightly lower. The rotor vibration amplitudes are almost
equal along both pathes. However, the current signal between both pathes shows a dis-
tinct difference. Thus, the electric input power between both pathes is different too.
In conclusion, the stator and rotor vibration amplitudes alone can not explain the hys-
teresis behavior in the speed-torque cycles with respect to the rotational speed. Since
the vibrational behavior along the sweep up path is a steady-state one, an obvious hy-
pothesis is, that the tangential contact force distribution causes this hysteresis behavior.
One line of argument could be that the tangential contact force distribution depends
on the path history and on the initial conditions. However, further model analysis and
experiments would be necessary to check this hypothesis.
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Figure 4.40: Vibration amplitudes of stator and rotor displacement, ŵs(x
∗), ŵr(x

∗),
resp. and electric current ÎA for the speed-torque characteristics with significant hys-
teresis in Fig. 4.31

4.4.6 Power and efficiency

Important motor properties which have not been considered yet are the power quantities
and the motor efficiency. With the rotational speed, n(t), the motor torque, T (t), the
electric voltages, VA(t), VB(t), and the electric currents, IA(t), IB(t), different power
quantities and the motor efficiency could be computed. The general definitions of dif-
ferent power quantities have been stated in (2.106)-(2.109). Since the time signals are
available in a discrete form, the power quantities are computed practically in a different
way as expressed by the definitions. The recorded values of the different time signals
are stored in vector format. Using MATLAB style formulas the power quantities are
calculated as following. The electric input power yields

<Pin>=<Pin>A + <Pin>B= mean
[

VA. ∗ IA +VB . ∗ IB
]

(4.7)

and the mechanical output power results in

<Pout>= mean
[

T. ∗ n
]

, (4.8)

with n in rad/s. For the calculation of the reactive power < QfΩ > according to (2.109)
the effective voltages and the effective currents are needed

Veffi = sqrt
[

mean
[

Vi.
∧2

]]

, Ieffi = sqrt
[

mean
[

Ii.
∧2

]]

, i = {A,B} . (4.9)
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In Fig. 4.24 the speed-torque characteristics at various excitation frequencies were
plotted. The corresponding power and efficiency curves are illustrated in Fig. 4.41. As
expected, the average input power level increases when the excitation frequency ap-
proaches the resonance frequency (approximately 39.3 kHz). The reverse is valid for
the reactive power component. It is important to note that for this particular motor de-
sign there is always a reactive power component, which can be more than four times
the average input power! Such a high reactive power component needs sophisticated
power electric design to avoid reactive loading of the transistors. The other possibility
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Figure 4.41: Average input power, average output power, reactive power and motor
efficiency at different excitation frequencies, see Fig. 4.24

to avoid such a reactive loading may be achieved if the phase response of the electric
admittance has a zero crossing in the resonance (compare Figs. 4.4 and 4.6). One de-
sign measure would be to increase the electromechanical coupling in the motor which
corresponds to an increase of the distance between resonance and anti-resonance fre-
quency. Comparing the admittance curves of the rod sample in Fig. 4.9 with those of
the stator in Fig. 4.6 shows clearly the influence of the distance between resonance and
anti-resonance on the phase response. Since the rod sample is solely made of piezo-
ceramic material, there is a high electromechanical coupling and thus a larger distance
between resonance and anti-resonance. In the motor design, illustrated in Fig. 1.1, the
high electromechanical coupling is realized by a stator fully made of piezoceramic ma-
terial. Additionally it is important to choose a proper vibration mode in the stator. This
was pointed out by BERG (2001, [5]). However, one has to keep in mind, that a sta-
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tor fully made of piezoceramics has also disadvantages. The temperature dependence
of the piezoceramic material parameters is more distinct and shifts the design problem
to the feedback control of the motor’s resonance. Another result follows from the effi-
ciency curves in Fig. 4.41. The dependence of the efficiency on the excitation frequency
recommends to operate the motors in the vicinity of the resonance frequency.

In the previous sections it was mentioned that the motors were operated in the trav-
eling wave mode. The stator is excited by the electric voltages VA(t) = V̂A sinΩt
and VB(t) = V̂B cos(Ωt +∆φV ), with ∆φV = 0◦ for a pure traveling bending wave
excitation. Note, however, that a perfect transfer behavior of the stator and rotor is
necessary to get a perfect traveling wave. The fundamental components of the electric
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Figure 4.42: Phase deviation ∆φI between the two current signals IA(t) and IB(t), see
Fig. 4.24

current signals are

IA(t) = ÎA sin(Ωt+ αA) , and IB(t) = ÎB cos(Ωt+ αB) (4.10)

with the phase deviation

∆ϕI = αA − αB . (4.11)

The phase deviation gives a measure for the purity of the traveling bending wave. As-
suming the stator and rotor to be manufactured in good quality without significant im-
perfections, deviation from zero in ∆ϕI indicates standing wave components in the
stator. Figure 4.42 shows the phase deviation for the speed-torque characteristics at
different excitation frequencies in Fig. 4.24. The phase deviations are computed by
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using the FFT of the time signals. The curves illustrate that the motor operates in a
traveling bending wave mode in good approximation.

Besides the variation of the excitation frequency, the motor’s characteristics are
influenced also by the axial preload. This has been demonstrated in Section 4.4.3.
The corresponding power characteristics are plotted in Fig. 4.43. The plot shows that
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Figure 4.43: Average input power, average output power, reactive power and motor
efficiency at different axial preloads, see Fig. 4.28

the level of the average input power increases with increasing axial preload, whereas
the average output power curves has a maximum for an axial preload of 150 N. This
behavior naturally comes along with the behavior of the speed-torque characteristics
at different axial preloads. The reactive power curves show no significant effects. For
all operating points along the speed-torque characteristics the traveling bending wave
operating mode is in good approximation, as Fig. 4.44 illustrates. A change in the axial
preload has no influence on this mode.

Following a sweep up and down path along a speed-torque curve, the motor charac-
teristics exhibit a hysteresis effect. Such a phenomenon is most visible for curves with
significant overhang. In Fig. 4.45 the power behavior of a typical hysteresis curve is il-
lustrated. The power consumption along the sweep up path is much smaller than along
the sweep down path in some regions. This effect cannot be explained by the differences
in the vibrational amplitudes of stator and rotor along both pathes (see Fig. 4.40). The
differences are too small. The tangential contact behavior must have a strong influence
on the motor characteristics along the sweep down path. There is evidence that two
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Figure 4.44: Phase deviation ∆φI between the two current signals IA(t) and IB(t);
corresponds to Fig. 4.28

stable tangential contact states exist at the same motor torque, one on the sweep down
path at higher rotational speed and the other on the sweep up path at lower rotational
speed. Since it is difficult to find out experimentally what is going on inside the contact
zones between stator and rotor, more detailed model analysis would be helpful. Finally,
it should be noted, that the motor was operated in good approximation in a traveling
wave mode along both pathes. The phase deviations ∆ϕI were only a few degrees.
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Figure 4.45: Average input power, average output power, reactive power and motor
efficiency at different axial preloads; corresponds to Fig. 4.31
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4.5 Summary

The experiments presented in this chapter give a comprehensive overview on the mo-
tor dynamics. They were focused on motor features which so far have not been in-
vestigated experimentally. Some new and perhaps interesting insights into the motor
behavior were obtained from a dynamics point of view. The measurements had been
carried out with a typical USM, which has a potential for further miniaturization and
optimization of the torque to volume ratio. During all measurements the motors were
driven without feedback control and without resonant power electronics, in contrary to
most other published works. The focus has been on the plant behavior. Additionally,
the temperature rise due to the frictional contact between stator and rotor was recorded.
In the following, the most important results will be summarized.

Depending on the axial preload and on the position of the excitation frequency with
respect to the resonance frequency, the temperature rises to different levels. The closer
the excitation frequency at the resonance frequency, the higher the no-load rotational
speed and the temperature rise. Within a few minutes of operation the temperatures
reaches up to 80◦C -90◦C.

An interesting but surprising effect was observed in the resonance characteristics of
the stator itself and the motor. The motor shows a softening type of nonlinearity and
jump phenomenon in it’s resonance curves (see Figs. 4.12 and 4.13). In many works
this well known effect is supposed to originate from the nonlinear stator-rotor contact
interaction, i.e. from a geometric nonlinearity. But measurements of the free stator
vibrations (without rotor) revealed the same softening and jump phenomenon at vibra-
tion amplitude levels reasonable for the motor operation (see Figs. 4.6 and 4.7). In the
stator, however, these effects result from a material nonlinearity in the piezoceramics.
Thus, it seems that it is not possible yet to clearly indicate from which effect the jump
in the resonance of the motor originates, from the material nonlinearity of the piezoce-
ramic or from the geometric nonlinearity of the stator-rotor contact or from both. This
is pointed out in Fig. 4.14, where a comparison of the jump phenomenon in both stator
and rotor is given. From a motor design perspective the jumps are unwanted effects.
Especially as it is desirable to drive the power electronic device near resonance to avoid
reactive loading. Therefore, it is interesting to know the cause of the jump phenomenon
in the resonance curves to estimate in advance their importance in the motor design or
to avoid them. The softening behavior in piezoceramic samples is accompanied by an
increase in the internal ”damping”, as can be seen by inspecting the phase of the elec-
tric admittance in Fig. 4.12. It is not obvious whether this ”damping” effect originates
from hysteresis due to a change of the net polarization or from mechanical damping
mechanisms in the piezoceramic.

Using a special test rig, several speed-torque characteristics also with the phe-
nomenon of overhang have been observed (see Fig. 4.19). Its occurrence depends on
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the excitation frequency and the axial preload. Following a sweep down mode along
the speed-torque characteristics (e.g. Fig. 4.19), the parasitic vibrations in both, sta-
tor and rotor, occur at different operating points, in most of the cases at or beyond
the maximum output torque. Additional experimental and analytical studies would be
necessary to explain this effect. Driving the motor in the dragging quadrant causes a
beating phenomenon in the stator vibrations with high vibration amplitudes. This se-
vere motor operation condition may produce high strain in the piezoceramics and high
frictional loading. Therefore, such an operation should be avoided. Depending on the
adjustment of the motor parameters, especially the excitation frequency and the axial
preload, the speed-torque characteristics show a hysteresis behavior, i.e. the operation
points of the motor depend on history. The curves produced by a sweep down and a
sweep up of the rotational speed in the test rig are different. It is supposed that two
different tangential contact stress distributions occur at the same excitation frequency,
since the vibration amplitudes of the stator and the rotor are not significantly differ-
ent between both pathes, the knowledge of such a behavior may be important from a
control perspective. Almost equal values for the control parameters may result in quite
different motor output parameters.

A well-known effect in USM is the high reactive power component. The experi-
ments show that the reactive power component can be more than four times compared
to the average input power. Such a high amount of reactive electric current loads the
transistors of the power electronic devices and demands for special power electronic de-
sign. To avoid reactive components in the electric current, there must be a zero crossing
in the phase of the electric admittance at resonance. Whether the phase shows a zero
crossing depends on the distance between the resonance and anti-resonance together
with the amount of dissipative effects. Smaller distances between resonance and anti-
resonance together with high dissipative effects lead to a low drop in the phase without
zero crossing (Fig. 4.6). The experiments with a piezoceramic rod sample in Fig. 4.9
show, that with increasing electromechanical coupling, respectively increasing distance
between resonance and anti-resonance, the phase drop in the electric admittance in-
creases. Driving the motor with low reactive power components would be possible by
using a stator totally made of piezoceramics, for example. But this may entail other
negative effects, as e.g. a more distinct temperature dependence of the motor parame-
ters.
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Discussion and future work

In the last years there has been considerable interest in new motor designs. However,
the development of motor models, adequate for motor design and optimization is be-
hind the technological state of the art of these motors. With more sophisticated motor
models important design aspects may be considered, like those for choosing the proper
rotor geometry and material parameters. The simple motor model proposed in Section
2.7 can be used with respect to such design problems by means of carrying out detailed
parameter studies. Motor characteristics like speed-torque curves, resonance curves of
the stator and rotor displacement, the electric admittance, the distribution of the contact
forces along the contact zones as well as the power quantities at different motor opera-
tion points are the most interesting motor features at steady-state motor conditions.

The model framework presented here can be a guideline for an extension to three-
dimensional problems. Especially the contact problem between stator and rotor plays
an important role for further improvement of motor efficiency. The kinematics of some
of the designed rotational motors show significant radial vibration components which
contribute to dissipative effects only. Three dimensional motor models could help to
analyze contact mechanism, which are difficult to investigate from an experimental
point of view.

A problem in USM design is the occurrence of parasitic vibrations, sometimes no-
ticeable in the audible frequency range. Comments have been made in literature about
these effects but up to now there are no investigations on this. Since motor design fol-
lows a trail and error procedure, lots of experiments are necessary to give statements
on design questions empirically. The mechanisms causing the unsteady operation in
USMs and the influence of design parameters on its onset is a quite important but still
unresolved problem. A stability analysis seems to be a promising direction for further
research in USM modeling and analysis. Also the qualitative motor behavior for dif-
ferent rotor designs should be investigated. Design rules for the choice of rotor design
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parameters for a given stator design aiming at ”good” motor operation in a wide range
of operation conditions are not available.

There is plenty of room for further experimental work in the future. Optimizing
available motor designs, motor miniaturization, improving motor reliability and in-
creasing the torque to motor volume ratio are the most important directions with re-
spect to the mechanical parts. How can the present results be used in this sense? Often
a trail and error procedure is used to build a motor. Surely, the stator design is done
via FEM. But a motor model or a motor design procedure, including the flexible ro-
tor, the piezoceramics and the power electronic components has not been established.
Especially in the early stage of motor design the squealing problem often occurs. Our
experimental experience with the design of various motors indicates that these trial and
error procedures take plenty of time and cannot offer a deep insight into the contact
mechanisms. Therefore, the experimental data can be used to verify more sophisticated
mathematical motor models which include also rotor design parameters which cannot
be accounted for in trial and error experiments. More detailed, future experimental work
should investigate the resonance characteristics at different temperature levels and me-
chanical loads. It is also interesting to reveal the cause of the jump phenomenon in the
motor’s resonance. Up to now, it is not clear, whether the jump results from a material
non-linearity in the piezoceramics, from the geometric non-linearity between the stator-
rotor contact or from both. Besides that, the 3-D kinematics of the stator surface points
is often neglected. The surface points of the plate-type stator in Fig. 1.5 move along
an elliptic trajectory which is spatially declined in radial direction. Thus, there are ra-
dial frictional forces acting perpendicular to the driving direction. Depending on the
particular motor design, such purely dissipative frictional forces can have an important
influence on the motor efficiency. Special stator and rotor geometries and the choice
of ”good” vibration modes may improve the motor efficiencies. What has not been
adressed in this work are the transient motor characteristics like the start and the stop
behavior and precise positioning capabilities. Some work has been done on this, but a
systematic overview with design rules is, to the best of our knowledge, still missing.
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A.1 Coefficient of the PDEs

The velocity of the traveling wave in the stator varies with the excitation frequency and
is given by

vw =
Ω

nsk
=

[Ω]

ns k
Ω̄ .

In the following, the coefficients in the various PDE’s are stated:
Coefficients of the stator equation:

S1 =
6

5
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18h2
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ds

hs ρs [Ω]
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S11 =
3[p]
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S12 = −
hs h̄31 [D̂]
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S13 =
[p]
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Coefficients of the rotor rigid body equation:
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Rr1 = 1 +
hc %rc
hr %r

Rr7 = −
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Contact layer equation u:
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