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Abstract. A graph grammar is a generative description of a graph lan-
guage (a possibly infinite set of graphs). In this paper, we present a novel
algorithm for inducing a graph grammar from a given set of ‘positive’
and ‘negative’ graphs. The algorithm is guaranteed to produce a gram-
mar that can generate all of the positive and none of the negative input
graphs. Driven by a heuristic specific-to-general search process, the algo-
rithm tries to find a small grammar that generalizes beyond the positive
input set. During the search, the algorithm employs a graph grammar
parser to eliminate the candidate grammars that can generate at least
one negative input graph. We validate our method by inducing grammars
for chemical structural formulas and flowcharts and thereby show its po-
tential applicability to chemical engineering and visual programming.

Keywords: graph grammars, graph grammar induction, graph gram-
mar parsing, heuristic search

1 Introduction

Despite a large variety of applications [1, 5, 17], graph grammars have seldom
been used for classifying, compressing, or characterizing graph sets. However,
these potential roles would become far more important if grammars could be
automatically induced from graphs. For example, by inducing a graph grammar
from a set of chemical structural formulas, one could acquire a classifier to dis-
tinguish, e.g., biologically active substances from others, a way to compress large
chemical databases, or a set of rules characterizing a given group of chemicals.

In this paper, we present a novel approach to inducing graph grammars from
positive and (optionally) negative graph examples. Our algorithm is guaranteed
to produce a grammar that can generate all of the positive and none of the neg-
ative examples. By formulating grammar induction as a best-first search process
biased towards small grammars, the algorithm may be expected to induce a
grammar that generalizes beyond the observed examples. The search proceeds
in the specific-to-general direction, starting with a trivial grammar that can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints.FRI

https://core.ac.uk/display/11679229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Luka Fürst, Marjan Mernik, and Viljan Mahnič

generate exactly the positive input graph set. As the algorithm progresses, it
produces increasingly smaller and more general candidate grammars. To pre-
vent over-generalization, the algorithm is coupled with a graph grammar parser,
which is used to check whether a given candidate grammar can generate any
negative input graph. If it can, it is immediately discarded.

In the domain of graph grammar induction, only few approaches have been
formulated as a parser-controlled search process. However, the main contribution
of this paper is the generalization operator in the search process, i.e., the way of
proceeding from more specific to more general grammars.

The grammars induced by our algorithm constitute a subclass of the Layered
Graph Grammars (LGG) formalism [18] and can therefore be parsed using the
Rekers-Schürr parser [18, 8]. The parsability of the target formalism makes it
possible to induce a grammar from both positive and negative examples, which
results in a grammar suitable for classification purposes.

In this paper, we present two nontrivial applications of our algorithm. First,
we induce a grammar of flowcharts comprising atomic, sequential, conditional,
and iterative statements. As a second application, we induce a grammar of the
structural formulas of a subset of hydrocarbons (chemical compounds comprising
carbon and hydrogen atoms). The potential applications of inducing grammars
from chemical formulas have already been mentioned. Induction of flowchart
grammars (and diagram grammars in general) may find its uses in visual pro-
gramming tools. Graph grammars are often difficult to create ‘by hand’. Using
our approach, a tool could automatically induce a parsable graph grammar from
a few user-provided sample graphs.

The rest of this paper is structured as follows: In Sect. 2, we give a review of
related work. Section 3 defines the basic concepts. Our approach is described in
Sect. 4 and experimentally validated in Sect. 5. Section 6 concludes the paper.

2 Related Work

The work on graph grammar induction has been fairly scarce. This fact can be
attributed partly to the complexity of the problem itself and partly to the lack
of efficient general parsers, which stems from the NP-hardness of the parsing
problem for many classes of graph grammars.

One of the first graph grammar induction approaches was proposed by Jeltsch
and Kreowski [10]. Their algorithm induces a hyperedge replacement (HR) gram-
mar [19, Chap. 2] from a set of positive graphs by successive generalizations of
the trivial initial grammar. Our approach is based on a similar idea, but we
employ a fairly different generalization operator and embed the generalization
scheme into a search algorithm.

Jonyer et al. [11] also induce grammars from positive graphs in a specific-
to-general direction. In each generalization step, their algorithm determines the
‘best’ (according to the Minimum Description Length principle) subgraph S in
the input set, replaces it with a single nonterminal vertex v, and adds the produc-
tion v ::= S to the grammar. The generated productions are not equipped with
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any embedding rules and can therefore only represent chains of similar graphs
connected with single edges. An improved version of this approach, proposed
by Kukluk et al. [13], induces grammars that can represent sequences of graphs
sharing common edges. Recently, Brijder and Blockeel [4] presented a method
to induce a node-label controlled (NLC) grammar [19, Chap. 1] from a single
graph containing a set of isomorphic subgraphs.

None of the approaches mentioned above makes use of a parser. Therefore,
they cannot accept negative graphs, and the induced grammars are not suitable
for classification purposes. An approach that does employ a parser, although only
to validate the final grammar produced by the induction algorithm, was proposed
by Ates et al. [2]. They induce grammars from the Spatial Graph Grammar
formalism [12], which is parsable in polynomial time but fairly restricted.

Our approach induces grammars that are both parsable and fairly powerful,
at least in comparison to those of Jonyer et al. and Ates et al. Another advantage
of our method is that the parser actively participates in the induction process.
Unfortunately, the combination of the power and parsability of the target for-
malism results in the exponential worst-case complexity of the parser and hence
of the entire algorithm.

The problem of graph grammar induction has been inspired by that of string
grammar induction [16], where many approaches are based on similar ideas as
our method, i.e., specific-to-general search, parser-based validation, etc. [7, 15].

Graph grammar induction is also related to the problem of metamodel in-
ference [9], where the goal is to induce a metamodel from a given set of models,
and to that of model transformation by example [3], where the goal is to in-
fer model transformation rules from a set of known transformation pairs. Since
model transformation rules can be represented as graph grammars in the Triple
Graph Grammar (TGG) formalism [20], the model-transformation-by-example
problem can be formulated as a TGG induction problem.

3 Definitions

A directed graph G is a tuple (VG, EG, VLabelsG, ELabelsG, connG, vlabelG,
elabelG), where VG, EG, VLabelsG, and ELabelsG are the sets of vertices, edges,
vertex labels, and edge labels, respectively, connG : EG → VG×VG is the function
defining the source and the target vertex for each edge, and vlabelG : VG →
VLabelsG and elabelG : EG → ELabelsG are the functions defining the labels of
individual graph elements. For convenience, let labelG(x) ≡ vlabelG(x) if x ∈ VG

and labelG(x) ≡ elabelG(x) if x ∈ EG. Unlabeled vertices and edges will be
treated as if they were labeled with a special label φV and φE , respectively. Let
|G| = |VG|+|EG| be the size of the graph G. Undirected graphs are defined in the
same way as directed ones, except that for each edge e, conn(e) is a two-element
set rather than an ordered pair. The subscripts in VG, EG, connG, etc., will be
omitted when the associated graph is clear from context.

Graphs G and H are isomorphic (denoted G ≈ H) if there exists a bijec-
tive vertex-to-vertex and edge-to-edge mapping (called isomorphism) h : G →
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H that preserves labels and adjacencies, i.e., labelH(h(x)) = labelG(x) and
connH(h(e)) = h(connG(e)) for all x ∈ VG ∪ EG and e ∈ EG.

3 A graph H

is a subgraph of a graph G (denoted H � G) if VH ⊆ VG and EH ⊆ EG. An
occurrence of a graph H in a graph G is a subgraph H ′ � G such that H ′ ≈ H.
Let us define the neighborhood of a subgraph H � G in G (denoted NhG(H))
as the set of all vertices in VG \ VH connected to at least one vertex in VH , i.e.,
NhG(H) = {v ∈ VG \ VH | ∃w ∈ VH , e ∈ EG : connG(e) = (v, w) ∨ connG(e) =
(w, v) ∨ connG(e) = {v, w}}.

Let [u : A
e : t
−−→ v : B] (or [u : A e : t v : B]) denote a graph comprising a vertex

u labeled A, a vertex v labeled B , and an edge e labeled t with conn(e) = (u, v)
(or conn(e) = {u, v}). Let [u(S)v] denote a graph comprising vertices u and v, a
subgraph S such that Nh [u(S)v](S) = {u, v}, and an arbitrary number of edges
connecting the vertices of S to the vertices u and v.

Let us now define the graph grammar formalism induced by our method.
A graph grammar is the quadruple GG = (T V , T E , NE , P), where T V , T E ,
and NE = {#1, #2, . . .} are pairwise disjoint sets of terminal vertex labels,
terminal edge labels, and nonterminal edge labels, respectively, and P is a set of
productions of the form p : L ::= R, where L = LHS (p) (the left-hand side or
LHS) and R = RHS (p) (the right-hand side or RHS) are connected graphs such
that VLabelsL ⊆ VLabelsR ⊆ T V , ELabelsL ⊆ NE , and ELabelsR ⊆ T E ∪ NE .
Additionally, each production has to belong to one of the following types:

Type I: Productions of this type take the form λ ::= R, where λ denotes the
graph with no elements (the null graph).

Type II: These productions take the form [u : A
e : #i
−−−→ v : B ] ::= [u(S)v] or

[u : A e : #i v : B ] ::= [u(S)v], where {A,B} ⊆ T V and #i ∈ NE . The sub-
graph S will be called the core, and the vertices u and v will be called

the guards. Productions of this type will often be written as [A
#i
−−→ B ] ::=

[A(S)B ] or [A #i
B ] ::= [A(S)B ].

Type III: These productions take the form [u : A
e : #i
−−−→ v : B ] ::= [u

r

−→ v] or
[u : A e : #i v : B] ::= [u r v], where {A,B} ⊆ T V , #i ∈ NE , and r ∈ T E ∪

NE . Productions of this type will often be written as [A
#i
−−→ B ] ::= [A

r

−→ B ]
or [A #i

B ] ::= [A r B ].

For example, the grammar GG7 in Fig. 2 contains one production of each type
(p7,1 belongs to type I, p7,2 to type II, and p7,3 to type III). The guard vertices
on production RHSs are marked with small black circles. In the case of directed
grammars (e.g., in Fig. 1), the RHS guards are marked with ‘S’ and ‘T’. The
letter ‘S’ marks the vertex that coincides with the source vertex on the LHS.

To apply a type-II production p : [u : A
e : #i
−−−→ v : B ] ::= [u(S)v] to a graph

G, one has to (1) find an occurrence L′ of the graph [u : A
e : #i
−−−→ v : B ] in G, (2)

replace in L′ the edge that corresponds to e with a copy S′ of the graph S, and

3 For any function f : A → B, let f((x, y)) = (f(x), f(y)) and f({x, y}) = {f(x),
f(y)}.



Graph Grammar Induction as a Parser-Controlled Heuristic Search Process 5

(3) connect the vertices of S′ to the vertices corresponding to u and v in the
same way as the vertices of S are connected to the vertices u and v in RHS (p).

To apply a type-III production [u : A
e : #i
−−−→ v : B ] ::= [u

r

−→ v] to a subgraph

[u′ : A
e′ : #i
−−−−→ v′ : B ], the edge e′ has to be replaced with an edge labeled r .

To reverse-apply a production, this procedure is simply reversed. Undirected
productions are applied and reverse-applied in the same way as directed ones. A
sample grammar and a series of production applications is shown in Fig. 1. The
notation L ::= R1 | . . . |Rs is an abbreviation for L ::= R1, . . . , L ::= Rs.

Fig. 1. Top row : The reference grammar for the flowcharts language. Bottom row : A
derivation of a sample flowchart. The application of the production p8 is highlighted.

A grammar GG covers a graph G if GG can generate G, i.e., if G can be
derived from the null graph using the productions of GG . The language of a
grammar GG is the set of all terminal-labeled graphs covered by GG . A parser

is an algorithm that determines whether a given graph G belongs to the language
of a given grammar GG .

The RHSs of the type-I productions of a grammar GG will be collectively
called the base graphs of GG and denoted B(GG). The size of a grammar will
be defined as |GG | =

∑
p∈P(GG) |p|, where |p| = |RHS (p)| if p is a type-I pro-

duction, and |p| = |RHS (p)|+ |LHS (p)| − 2 = |RHS (p)|+1 otherwise. (The two
guards are common to the LHS and RHS, hence ‘−2’.) A grammar GG1 is larger
(or smaller) than a grammar GG2 if |GG1| > |GG2| (or |GG1| < |GG2|).

Our target grammar formalism can be regarded as a subset of both LGG
and HR formalisms. Hyperedge replacement grammars consist of productions
for replacing individual hyperedges with hypergraphs. A hyperedge is an edge
that connects an arbitrary sequence or multiset of vertices. (An ordinary edge
is therefore a special case of a hyperedge.) A hypergraph is a graph composed of
vertices and hyperedges. Type-I productions can be thus viewed as HR produc-
tions with zero-arity hyperedges on their LHSs. Type-II and type-III productions
also specify HR rules, since the guard vertices do not participate in the replace-
ment process itself; rather, they only determine the context of replacement. The
guards correspond to external vertices in the HR terminology.
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4 The Proposed Graph Grammar Induction Algorithm

In this section, we will often refer to Fig. 2, which shows the induction of a
grammar from a single positive graph, namely the structural formula of butane.
In this example, the final result is the grammar GG7.

4.1 Overview

The pseudocode of the induction algorithm is shown in Fig. 3. The induction
algorithm induces a graph grammar from a set of positive graphs (G+) and (op-
tionally) a set of negative graphs (G−) such that G+ ∩ G− = ∅. The algorithm
accepts two additional parameters (positive integers): beamWidth specifies the
beam width in the search process, and maxVertexCount determines the maxi-
mum vertex count in the search for production cores (explained later).

The induction algorithm operates as a specific-to-general beam search pro-
cess. Its search space can be visualized as a graph in which the vertices represent
individual candidate grammars and the edges represent possible elementary gen-

eralizations of candidate grammars. A candidate grammar is a grammar that
covers all of the positive input graphs and none of the negative ones. An elemen-
tary generalization step transforms a given candidate grammar GG into a new
candidate grammar that is at least as general as GG .

The goal of the algorithm is to find a candidate grammar of the minimum
size. By restricting its search to the space of candidate grammars, the algorithm
is guaranteed to produce a correct grammar in terms of the coverage of the input
graphs. Its preference for small grammars is likely to result in a grammar that
generalizes beyond the observed examples.

The algorithm starts with the most specific candidate grammar. This gram-
mar, denoted GG1, consists of productions {λ ::= G |G ∈ G+} and thus covers
precisely the positive input set. During its execution, the algorithm maintains a
priority queue of all candidate grammars that have been generated but not yet
generalized. In each step, the algorithm removes the smallest grammar from the
queue and applies to it all possible elementary generalizations, producing a new
set of candidate grammars. Each resulting grammar is verified by our improved
version of the Rekers-Schürr parser [8]. If a grammar covers at least one negative
input graph, it is immediately discarded; otherwise, it is placed into the queue.
To reduce the computational effort, only the beamWidth smallest grammars are
kept in the queue. When the queue becomes empty, the algorithm outputs the
smallest grammar created during the search process.

4.2 Elementary Generalizations

To perform a single step forward in our specific-to-general search, a given candi-
date grammar is ‘slightly’ generalized or merely restructured without changing
its generative power. This is achieved by elementary generalizations of two types,
called ‘type A’ and ‘type B’.
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Fig. 2. Inducing a grammar from the structural formula of butane



8 Luka Fürst, Marjan Mernik, and Viljan Mahnič

1 procedure induceGrammar(G+, G−, beamWidth, maxVertexCount)
2 GG1 := the grammar with productions λ ::= G for each G ∈ G+;
3 GGmin := GG1;
4 Queue := {GG1};
5 while Queue 6= ∅ do

6 GG := the smallest grammar from Queue;
7 if |GG | < |GGmin| then GGmin := GG end;
8 Queue := Queue \ {GG};
9 NewProductions := findProductions(GG, maxVertexCount);

10 foreach p ∈ NewProductions do

11 GG ′ := type-A generalization of GG via the production p;
12 if GG ′ does not cover any graph from G− then

13 GG ′′ := type-B generalization of GG ′ (if it exists);
14 if GG ′′ exists and does not cover any graph from G− then

15 Queue := Queue ∪ {GG ′′}
16 else Queue := Queue ∪ {GG ′} end

17 end

18 end;
19 retain the beamWidth smallest grammars in Queue and discard the others
20 end;
21 return GGmin

22 end

Fig. 3. The induction algorithm

Type-A Generalization. A type-A generalization of a candidate grammar GG

adds a new type-II production p to GG and reverse-applies it to all occurrences
of RHS (p) in the base graphs of GG , resulting in a new grammar GG ′. In
Fig. 2, the addition of the production p3,2 to the grammar GG1 results in the
grammar GG3. The grammar GG3 is thus a type-A generalization of GG1 via
the production p3,2.

How can we find a type-II production p to transform a grammar GG into
GG ′? Since the base graphs of GG ′ are obtained by reverse-applying p to the
base graphs of GG , the base graphs of GG must contain at least one occurrence
of RHS (p), i.e., at least one subgraph of the form [u(S)v]. We thus search the
base graphs of GG for all possible subgraphs of the form [u(S)v]. Each such
subgraph is an occurrence of the RHS of some type-II production, and each such
production is eligible to enrich the grammar GG . Since we cannot determine the
‘best’ type-II production in advance, we have to consider all such productions,
and thus we obtain many possible type-A generalizations of GG .

To simplify the explanation, let us first focus on undirected graphs and gram-
mars. The process of finding type-II productions to generalize an undirected
grammar GG is outlined in Fig. 4. The auxiliary procedure findSubgraphs (omit-
ted for lack of space) finds all subgraphs comprising up to maxVertexCount

vertices in the set of base graphs of GG . More precisely, the procedure creates a
set of pairs (Subgraph, Occurrences), where Subgraph is a graph and Occurrences
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is a set of pairs (Match, Host) such that Match is an occurrence of the graph
Subgraph in the graph Host ∈ B(GG). The procedure findSubgraphs first finds
all single-vertex subgraphs and then iteratively produces larger subgraphs as
single-vertex extensions of individual occurrences of smaller subgraphs. This ap-
proach was inspired by a large selection of algorithms sharing similar goals [6],
especially by the VSiGraM approach [14], which could be used in place of it.

1 procedure findProductions(GG, maxVertexCount)
2 SubsAndOccs := findSubgraphs(B(GG),maxVertexCount);
3 Productions := ∅;
4 foreach (Subgraph,Occurrences) ∈ SubsAndOccs do

5 foreach (Match,Host) ∈ Occurrences do

6 if |NhHost(Match)| = 2 then

7 call the two vertices in NhHost(Match) u and v ;
8 A := label(u); B := label(v);

9 I := {i | [A #i
B] is a subgraph in GG} ;

10 if I = ∅ then k := 1 else k := max(I) + 1 end;
11 foreach i ∈ I ∪ {k} do

12 Productions := Productions ∪ {[A #i
B] ::= [A(Subgraph)B]}

13 end

14 end

15 end

16 end;
17 return Productions

18 end;

Fig. 4. Finding eligible type-II productions to generalize an undirected grammar GG

After receiving a set of subgraph-occurrence pairs, the procedure findProduc-
tions searches this set for all subgraphs that can serve as possible production
cores (not entire RHSs!). For a subgraph S to serve as the core of a production,
S must have exactly two neighbors in the base graph in which it occurs. Such a
subgraph S gives rise to a type-II production p : [A #i

B ] ::= [A(S)B ], where #i

could stand for any nonterminal label. If the graph [A #i
B ] already occurs as a

subgraph somewhere in the grammar, then the production p actually generalizes
the grammar GG ; otherwise, GG is merely restructured. To take both possibili-
ties into account, we create a separate production [A #i

B ] ::= [A(S)B ] for each

i such that [A #i
B] occurs as a subgraph in GG and for a single value of i that

does not meet this condition (lines 9–13 in Fig. 4). For example, the grammar
GG3 in Fig. 2 is extended by the productions p5,3 (giving the grammar GG5)
and p6,3 (giving the grammar GG6), which differ only in their LHS edge labels.

In the case of directed graphs and grammars, a production core [A(S)B ] can

serve as the RHS in two distinct production families, namely [A
#i
−−→ B ] ::=

[A(S)B ] and [B
#i
−−→ A] ::= [B(S)A]. Since neither of these families can be con-
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sidered preferable in advance, both should be added to the resulting production

set. The family [A
#i
−−→ B] ::= [A(S)B ] contains a production for each i such that

[A
#i
−−→ B ] occurs as a subgraph in GG and for a single value of i that does not

meet this condition. The other family is defined in an analogous fashion.
After each type-A generalization step, the resulting grammar is simplified

by reverse-applying its type-II productions to its base graphs wherever possible
and as many times as possible. This procedure is not essential for the induction
process, but can make the grammar considerably smaller.

Type-B Generalization. A type-B generalization of a candidate grammar GG

replaces two ‘similar’ productions of GG with a set of new productions, giving
a grammar GG ′ that is at least as general as GG . In Fig. 2, the grammar GG5

is generalized to GG7 by replacing the productions p5,2 and p5,3 with p7,2 and
p7,3. The notion of ‘similar’ productions is based on the concept of unifiability.

Edge labels l andm are unifiable (denoted l ∼= m) if (l = m)∨(l ∈ NE)∨(m ∈
NE). The unification of unifiable edge labels l and m (denoted unif (l,m)) is the
label l if l ∈ NE ; otherwise, unif (l, m) = m. Graphs G and H are unifiable

if there exists a unifying isomorphism h : G → H, i.e., a bijective vertex-to-
vertex and edge-to-edge mapping such that label(h(v)) = label(v), conn(h(e)) =
h(conn(e)), and label(h(e)) ∼= label(e) for all v ∈ VG and e ∈ EG. The unification
of such graphs G and H (denoted unif (G,H)) is a graph obtained from G by
setting label(e) := unif (label(e), label(h(e))) for all edges e ∈ G.

Type-B generalization can be applied to a pair of directed productions p and

q if they take the form p : [u : A
e : #i
−−−→ v : B ] ::= [u(S)v] and q : [u′ : A

e′ : #i
−−−−→

v′ : B] ::= [u′(S′)v′] and if there exists a unifying isomorphism h : RHS (p) →
RHS (q) such that h(u) = u′ and h(v) = v′. A type-B generalization step replaces

the productions p and q with a set that comprises: (1) a production [A
#i
−−→ B ] ::=

[A(S′′)B ], where S′′ = unif (S, S′) (let g : S′′ → S and g′ : S′′ → S′ denote the

corresponding unifying isomorphisms); (2) a production [P
#j
−−→ Q] ::= [P

r

−→ Q]
for each edge e of S′′ such that label(conn(e)) = (P ,Q), label(e) = #j, and
label(g(e)) = r ∨ label(g′(e)) = r . Undirected productions are treated in an
analogous manner.

5 Experimental Results

5.1 Application to Flowcharts

In our first series of experiments, we applied the induction algorithm to various
sets of valid flowchart graphs. Our goal was to induce a grammar that generates
(a superset of) the language generated by the reference grammar in Fig. 1.
We experimented with different sets of randomly generated flowchart graphs
and different input parameters. Each input set comprised between 10 and 50
graphs with up to 25 vertices. Different sets gave rise to different grammars,
but in many cases, the algorithm induced the grammar shown in Fig. 5 or some
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variation thereof. The productions p1 through p8 in Fig. 5 are equivalent to
the productions of the reference grammar despite the fact that all nonterminal
edges are reversed. (Note the positions of the markers ‘S’ and ‘T’; in every type-
II production, the source vertex on the LHS coincides with the bottom vertex
on the RHS.) The induced grammar can therefore generate any valid flowchart.

Fig. 5. A grammar induced from various sets of valid flowcharts

5.2 Application to Chemical Structural Formulas

In our second series of experiments, we tried to induce a grammar of linear hydro-
carbons with single and double bonds (LHSDB). This graph language comprises
the structural formulas of chemical compounds consisting of carbon atoms (ver-
tices labeled C) and hydrogen atoms (vertices labeled H). The carbon atoms
form a chain connected with single and double bonds (edges). The hydrogen
atoms are connected to the carbon atoms by means of single bonds so that ev-
ery carbon atom has exactly four incident bonds. Some positive and negative
examples of the LHSDB language are shown in Fig. 8. Our reference grammar
for this language is depicted in Fig. 6.

Fig. 6. The reference grammar for the LHSDB language

To make the induction problem more challenging, the induced grammar was
required to cover only valid (though not necessarily linear) hydrocarbons. We
thus demanded that the induced grammar cover all valid LHSDB graphs and
that every graph covered by the induced grammar represent a valid hydrocarbon.
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Experiments showed that such a grammar probably cannot be induced from
positive graphs alone. Moreover, a correct grammar could not be induced from
‘almost any’ pair of input sets. A favorable combination of positive and negative
input graphs had to be sought more systematically.

To determine whether a correct LHSDB grammar can be induced and from
what set of examples this can be achieved, we prepared a set of 42 positive
examples (G+

0 ) and a set of 200 negative examples (G−

0 ). The positive set com-
prised all correct LHSDB graphs with up to 6 carbon vertices. The negative
set was obtained by randomly removing one or two hydrogen atoms in correct
LHSDB graphs with up to four carbon vertices. We then tried to find such subsets
S+ ⊆ G+

0 and S− ⊆ G−

0 that the grammar induced from them would cover all
graphs from G+

0 and none from G−

0 . The sets S+ and S− were obtained by a sim-
ple procedure shown in Fig. 7. The resulting sets are displayed in Fig. 8, and the
grammar induced from them (using beamWidth = 10 and maxVertexCount = 5)
is shown in Fig. 9. The size of the induced grammar equals 59. For comparison,
the size of the reference grammar (Fig. 6) amounts to 54.

1 procedure findInputExamples(G+
0 , G−

0 , beamWidth, maxVertexCount)
2 S+ := {the smallest graph in G+

0 };
3 S− := ∅;
4 GG := induceGrammar(S+, S−, beamWidth, maxVertexCount);
5 Missed+ := {G ∈ G+

0 |GG does not cover G};
6 Missed− := {G ∈ G−

0 |GG covers G};
7 while (Missed+ 6= ∅) ∨ (Missed− 6= ∅) do
8 if Missed− 6= ∅ then S− := S− ∪ {the smallest graph from Missed−}
9 else S+ := S+ ∪ {the smallest graph from Missed+} end;

10 GG := induceGrammar(S+, S−, beamWidth, maxVertexCount);
11 Missed+ := {G ∈ G+

0 |GG does not cover G};
12 Missed− := {G ∈ G−

0 |GG covers G}
13 end;
14 return (S+,S−)
15 end

Fig. 7. Extraction of a pair of small favorable input graph sets (S+ and S−) from a
pair of larger disjoint graph sets (G+

0 and G−

0 )

The grammar of Fig. 9 meets the requirements stated above. By mathemat-
ical induction on the length of carbon vertex chains, we could prove that every
valid LHSDB graph can be generated by the induced grammar. To prove that the
grammar generates only valid hydrocarbon graphs, we would have to show that
every vertex introduced by the grammar eventually obtains the correct number
of incident edges (four in the case of carbon vertices and one in the case of hy-
drogen vertices). To see this, consider that any subgraph C #1 H expands into

C (. . .) H and that any subgraph C #2 H expands into C=(. . .) H.
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Fig. 8. The positive input set (S+) and the negative input set (S−) for the induction
of an LHSDB grammar

Fig. 9. The grammar induced from the input sets of Fig. 8

Given the input sets S+ and S− of Fig. 8, the induction algorithm was
shown to be robust to the parameters beamWidth and maxVertexCount , pro-
vided that beamWidth ≥ 1 and maxVertexCount ≥ 3. The values 1 and 2 for
maxVertexCount cannot possibly produce any meaningful results, since the pro-
duction p5 in Fig. 9, which seems to be an indispensable part of any valid gram-
mar, has three vertices in its core. We systematically varied both parameters
and ran the induction algorithm for each pair of values. The resulting grammars
were tested on a set of positive and negative graphs disjoint from G+

0 and G−

0 .

5.3 Computational Complexity

Owing to the exhaustive subgraph enumeration procedure, which is the basis
of type-A generalization, and to the Rekers-Schürr parser, our algorithm has
exponential worst-case complexity in terms of time and memory consumption.
The complexity of subgraph search could be reduced at the cost of missing some
subgraphs. For example, the approaches of Jonyer et al. [11], Kukluk et al. [13],
and Ates et al. [2] place an upper limit on the number of created subgraphs and
hence run in a polynomial time and space at the cost of suboptimal results. The
improved version of the Rekers-Schürr parser runs in polynomial time and space
for many grammars [8], but its worst-case complexity is still exponential. This
fact should not come as a surprise, since the problem of graph grammar parsing
is NP-hard even for very restricted classes of grammars [19].
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Table 1 shows the performance of our induction algorithm on the input graph
set of Fig. 8 with respect to the parameters beamWidth andmaxVertexCount . We
measured the number of generated candidate grammars and the total execution
time of the algorithm on an 1.86-GHz Intel Core 2 Duo machine. The results for
different values of beamWidth (with maxVertexCount fixed at 5) are shown on
the left side of the table, and those for different values of maxVertexCount (with
beamWidth = 10) are displayed on the right side.

Figure 10 shows how the execution time depends on the number of input
examples. To obtain the left chart, the number of negative examples was fixed
at 200, and the number of positive examples was varied from 1 to 42 in the order
of increasing graph size. To draw the right chart, the number of positive examples
was fixed at 42, and the number of negative examples was varied from 1 to 200 in
no particular order. In both cases, the input examples were drawn from the set
of 42 positive and 200 negative examples that were supplied to the procedure of
Fig. 7 when searching for a favorable input set for hydrocarbons. The parameters
beamWidth and maxVertexCount were fixed at 10 and 5, respectively.

Table 1. The number of generated grammars and the total execution time with respect
to the parameters beamWidth and maxVertexCount

beamWidth maxVertexCount

1 10 100 1000 3 5 7 9

Number of generated grammars 116 148 590 24 435 95 148 195 224
Execution time (in seconds) 6.8 7.2 12.2 370 3.4 7.2 12.4 17.5

Fig. 10. Total execution time with respect to the number of input examples

The algorithm takes a little less than three minutes to finish if provided with
the entire set of 42 positive and 200 negative examples. However, the user is
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not required to wait until the algorithm halts in order to obtain a meaningful
grammar. Since the algorithm generates only grammars that are consistent with
the input set, its result (the current minimum grammar) is valid at any point
during its execution. The longer the algorithm runs, the smaller and the more
general grammars it produces, but all induced grammars are valid with respect
to the input set.

6 Conclusion

We have presented a novel graph grammar induction algorithm. Given a pair of
disjoint graph sets, G+ and G−, the algorithm tries to find the smallest gram-
mar that covers all graphs from G+ and none from G−. The induction process
is realized as a parser-controlled specific-to-general search. We applied the pro-
posed method to two meaningful and nontrivial graph languages. The algorithm
exhibited a surprising inductive power when provided with favorable input.

In our ‘chemical’ example, a favorable input set was found by the algorithm
in Fig. 7, which requires a pair of (large) initial input sets. To make the input
selection process more ‘user-friendly’, we are working on a tool with the follow-
ing interaction scenario: First, the user prepares a (small) set of positive input
graphs. The tool induces a grammar from this set and generates a set of random
graphs covered by the induced grammar. The user can then visually inspect the
generated graphs and add to the negative input set all those that do not belong
to the target language. If there are no such graphs, he or she may prepare some
additional positive graphs and, by the help of the built-in parser, add to the
positive input set all those graphs that are not covered by the induced grammar.
After that, the tool induces a new grammar based on the updated input sets.
The process repeats until the user is satisfied with the induced grammar.

At present, our research is focused on more general target grammar for-
malisms. In the formalism presented in this paper, a grammar for arbitrary
hydrocarbons most probably does not exist. In the unrestricted LGG formalism,
such a grammar comprises four simple productions (see the grammar GGHC in
Fig. 3 in [8]).
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