
Improving the graph grammar parser of Rekers and

Schürr

Luka Fürst1, Marjan Mernik2, Viljan Mahnič1

1 University of Ljubljana, Faculty of Computer and Information Science,

Tržaška cesta 25, SI-1000 Ljubljana, Slovenia

E-mail: {luka.fuerst, viljan.mahnic}@fri.uni-lj.si

2 University of Maribor, Faculty of Electrical Engineering and Computer Science,

Smetanova ulica 17, SI-2000 Maribor, Slovenia

E-mail: marjan.mernik@uni-mb.si

Abstract

Graph grammars and graph grammar parsers are to visual languages what
string grammars and parsers are to textual languages. A graph grammar spec-
ifies a set of valid graphs and can thus be used to formalise the syntax of a
visual language. A graph grammar parser is a tool for recognising valid pro-
grams in such a formally defined visual language. A parser for context-sensitive
graph grammars, which have proved to be suitable for formalising real-world
visual languages, was developed by Rekers and Schürr. We propose three im-
provements of this parser. One of them enlarges the class of parsable graph
grammars, while the other two increase the parser’s computational efficiency.
Experimental results show that for some (meaningful) graph grammars, our im-
provements can enhance the parser’s performance by orders of magnitude. The
proposed improvements will hopefully increase both the parser’s applicability
and the interest in visual language parsing in general.

1 Introduction

Graph grammars consist of rules (called productions) for matching and replacing
subgraphs in an arbitrary host graph and can thus be regarded as a generalisation
of ‘ordinary’ (i.e., string) grammars. Analogously to string grammars, each graph
grammar defines its language as a set of all graphs that can be generated by its
productions. Graph grammars have thus been used for specifying the syntax of visual
languages [1, 2, 3], but they have also been applied to software systems modelling
[4], pattern recognition [5, 6], mathematical formula recognition [7], generation of
metamodel instances [8], and to many other domains [9, 10]. While context-free
string grammars are employed far more frequently than context-sensitive ones in the
domain of textual languages, visual languages can often be more naturally described
by context-sensitive graph grammars than by context-free ones [1].

The formalisation of a textual or visual language by means of a grammar is not
an end in itself. A grammar is the basis for the automated recognition of valid
sentences of the language (i.e., valid strings in the case of a textual language and

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints.FRI

https://core.ac.uk/display/11679228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

valid graphs in the case of a visual language) and for their translation into some
other meaningful form. (Consider, for instance, the translation of Java language
sentences – i.e., Java programs – into bytecode.) A parser is a tool that determines
whether a given sentence belongs to a given grammar and, if this is indeed the case,
derives the sentence using the grammar’s productions. The parser’s output can be
used for various purposes, including translation.

In this paper, we present an improved version of the graph grammar parser de-
veloped by Rekers and Schürr [11, 1, 12]. This parser recognises the languages of
layered graph grammars (LGGs), which can be regarded as a natural generalisa-
tion of standard context-sensitive string grammars (CSGs). Like CSGs but unlike
context-free grammars, every LGG production may specify its context in addition
to a replacement rule. When applying an LGG production p to a host graph G, the
elements forming the context have to be present in G but are not affected by the
application of p. A further similarity between CSGs and LGGs is a rule stipulat-
ing that for every production, its left-hand side (LHS) has to be ‘smaller’ than its
right-hand side (RHS); however, in the case of LGGs, the meaning of ‘smaller’ is
determined by a fairly complex condition.

Since the parsing problem is NP-complete even for very limited classes of graph
grammars [13], the Rekers-Schürr parser generally takes exponential time to parse
(i.e., to recognise and derive) a given graph. Even more, experiments revealed
that the parser is, in some cases, impractical even for small-sized graphs and graph
grammars. For this reason, we decided to improve the parser’s efficiency.

In this paper, we present three improvements of the Rekers-Schürr parser. As
a first improvement, we abolished the requirement that the productions’ RHSs be
connected and thus enlarged the class of parsable graph grammars. The other two
improvements enhance the parser’s performance. Although they do not make the
parser run in a polynomial time for an arbitrary input (this is actually impossible
unless P = NP), they can reduce the parse time by orders of magnitude for some
graph grammars. We experimentally evaluated both the original parser and our
improvements using meaningful graph grammars.

Our work may benefit the software engineering community in the following ways:

• An efficient parser can serve as a building block in various visual programming
tools, such as compiler, debugger, profiler, etc.

• Besides several other application domains, graph grammars have found their
use in UML-based modelling [8]. Specifically, triple graph grammars (TGGs)
[14, 15] were invented for the purpose of solving certain modelling-related
tasks (such as model transformation, model integration, etc.) within a graph
grammar framework. Some TGG-related problems, such as finding a corre-
spondence between two models, involve operations similar to graph parsing.
Efficient parsing techniques may thus benefit the UML-based modelling com-
munity, too.

• The goal of graph grammar inference [16, 17] is to induce a graph grammar
from a set of sample member graphs, e.g., a grammar of a visual language from
a set of user-provided valid graphs [18]. This problem can be solved by generat-
ing candidate graph grammars according to some search strategy and selecting
the grammar that can generate the maximum number of sample graphs. Javed

2

et al. [19] took a similar course for inferring string grammars [20]. Whether
we infer a string grammar or a graph grammar, an efficient parser is required
for testing which input samples belong to individual candidate grammars.

The rest of this paper is structured as follows: In Section 3, we define basic
concepts associated with graph grammars and parsing. Section 4 presents the graph
grammars that will serve as our test examples. Section 5 briefly describes the original
Rekers-Schürr parser. Our improvements are presented in Section 6 and experimen-
tally validated in Section 7. Section 8 brings the paper to a conclusion.

2 Related work

The Rekers-Schürr parser was chosen as the basis of our work because the LGG
formalism seems appropriate and natural for many different graph languages. Our
test grammars, presented in Section 4, support this claim. However, many other
graph grammar formalisms and corresponding parsers have been developed so far.
Some of them are briefly presented in this section.

Graph grammars can be classified with respect to (at least) two distinct criteria
[21]:

• The first criterion is the form that individual productions are allowed to take.
This criterion leads to a hierarchy similar to the well-known Chomsky hier-
archy of string grammars. According to this hierarchy, LGGs belong to the
context-sensitive class, which is more powerful than the context-free class (such
grammars comprise only productions of the form Vertex ::= Graph) but less
powerful than the unrestricted class (productions of such grammars are com-
pletely unrestricted).

• The second criterion has no counterpart in the domain of string grammars.
It classifies graph grammars with respect to the degree of embedding that
they support. Embedding rules specify how the graph elements created by a
production have to be connected with the elements that are already present in
the host graph. While LGGs do not support embedding, some graph grammar
classes, such as edNLC [22], support complex embedding rules. In contrast to
LGGs, however, edNLC grammars are context-free.

Many graph grammar parsers are limited to context-free graph grammars with-
out embedding or with simple embedding rules [23, 24, 25]. Minas [26], however,
devised a Cocke-Younger-Kasami -style parser for adaptive star grammars. These
grammars are somewhat more powerful than context-free ones, since their produc-
tions may have star graphs, not only single vertices, on their LHSs. Flasiński and
Myśliński [6] developed a parser for a subclass of the aforementioned edNLC gram-
mars and used it for recognising sign language gestures.

To reduce backtracking as much as possible, the Rekers-Schürr parser employs
a complex scheme of searching a given input graph and organising the collected
information. By contrast, the approaches of Zhang et al. [2] and Bottoni et al.
[27], both of which parse graph grammar classes similar to LGG, are based on
the naive parsing algorithm, which simply tries to reduce the input graph to the
initial graph of the grammar by applying productions in the reverse direction and

3

using backtracking if necessary. To reduce the computational complexity of the
naive algorithm, Zhang et al. preclude backtracking by restricting the grammar
formalism significantly, whereas Bottoni et al. employ critical pair analysis to delay
backtracking when it cannot be prevented. The method of Bottoni et al. thus parses
similar grammars as that of Rekers and Schürr, but achieves this goal in an entirely
different way. To our knowledge, a study to compare the performance of these two
parsers has not yet been published.

Relational grammars [28] are essentially context-free string grammars augmented
with predicates specifying (spatial) relationships between grammar symbols. Tucci
et al. [18] developed a parser for relational grammars and showed their relationship
to selected graph grammar classes.

3 Basic definitions

A graph G = (V, E) consists of vertices (V) and edges (E ⊆ V × V), which will
be collectively called (graph) elements. Let s(e) and t(e) denote the source and the
target vertex, respectively, of the edge e ∈ E(G). We will assume that each element
x ∈ G is identified with a unique integer, denoted index (x). Let label(x) denote the
label of the element x ∈ G. If x has no label, then let label(x) ≡ φV if x ∈ V (G)
and label(x) ≡ φE if x ∈ E(G), where φV and φE are special labels reserved for this
purpose. Let Labels(G) ≡

⋃
x∈G label(x).

The graph with no elements (the null graph) will be denoted λ. A graph H is a
subgraph of a graph G (denoted H � G) if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let
copy(G, xi1 : L1, . . . , xik : Lk) denote a copy of the graph G in which the elements
xi1 , . . . , xik are relabelled as L1, . . . , Lk, respectively.

A morphism h : G1 → G2 is a vertex-to-vertex and edge-to-edge mapping from
the graph G1 to the graph G2 such that label(h(x)) = label(x), s(h(e)) = h(s(e)),
and t(h(e)) = h(t(e)) for all x ∈ G1 and e ∈ E(G1). Unless explicitly called partial,
a morphism h : G1 → G2 will be assumed to be total, i.e., defined for all elements of
the graph G1. Given a morphism h : S → T , the graph h(S) � T will be called an
occurrence of the graph S in the graph T . Graphs G and H are isomorphic (denoted
G ≃ H) if there exists a bijective morphism h : G → H.

A layered graph grammar (called just ‘grammar’ in the sequel) is a set of produc-
tions of the form p : Lhs(p) ::= Rhs(p), where all of Lhs(p), Rhs(p), Common(p) ≡
Lhs(p)∩Rhs(p), and Union(p) ≡ Lhs(p)∪Rhs(p) are proper graphs, while the sets
Xlhs(p) ≡ Lhs(p) \ Common(p) and Xrhs(p) ≡ Rhs(p) \ Common(p) may contain
edges that have one endpoint (or both) in Common(p). Figure 1 presents these sets
for a sample production.

Every grammar has to fulfil the so-called layering condition (see Definition 3.10
in [1]), which can be seen as a generalisation of the LHS-smaller-than-RHS rule for
CSGs. The layering condition ensures the grammar’s parsability, since it rules out
cyclic productions or groups of productions (such as A ::= B, B ::= C, C ::= A).

To apply a production p to a graph G, the following steps have to be performed:

1. Find an occurrence of Lhs(p) in G. Let h : Lhs(p) → G denote a morphism
that determines the occurrence.

2. Remove the elements h(Xlhs(p)) from the graph G.

4

Figure 1: A production and its sets Common, Union, Xlhs, and Xrhs. The vertices
labelled ‘A’ do not belong to the sets Xlhs(p) and Xrhs(p).

3. Attach a copy of Xrhs(p) to the graph h(Common(p)) in the same way as
Xrhs(p) is attached to Common(p) in Rhs(p).

The result of an application of a production p to a graph G is thus the graph
G′ ≡ G \ h(Xlhs(p)) ∪ h(Xrhs(p)), where the morphism h : Lhs(p) → G is extended
to h : Union(p) → G as follows (consider that Union(p) = Lhs(p) ∪Xrhs(p)):

• For all vertices v ∈ Xrhs(p): h′(v) = v′ such that label(v′) = label(v).

• For all edges e ∈ Xrhs(p): h′(e) = e′ such that label(e′) = label(e), s(e′) =
h(s(e)), and t(e′) = h(t(e)). In other words: if an edge e connects the vertices
v and w in the graph G, then the corresponding edge h(e) connects the vertices
h(v) and h(w) in the graph G′.

An example of a production application is shown in the dotted frame in Figure 2.

Figure 2: A derivation of a graph in the grammar GGFC of Figure 4. The application
of the production p4 is shown in detail.

A derivation of a graph G in a given grammar is a sequence of production appli-
cations that transforms the null graph into the graph G (Figure 2). The language of
a grammar GG (denoted L(GG)) is a set of all graphs that have some derivation in
GG. A parser is an algorithm that, given a graph G and a grammar GG, determines
whether G ∈ L(GG) and produces a derivation of G if G ∈ L(GG).

In the well-known case of context-free string grammars, the parser is usually
expected to produce a parse tree, which is a data structure that contains all possible
derivations of a given string. The Rekers-Schürr parser does not generate a structure
analogous to the parse tree (it is questionable whether such a structure can even be
defined for general LGGs), but it is able to produce, by backtracking, all derivations
of a given graph G ∈ L(GG) in some order. In this paper, however, we consider a

5

particular parsing problem solved after the parser has produced a single derivation
(or after it has halted without producing any), so we do not deal with finding multiple
derivations of a single graph.

4 The test grammars

Figures 3 and 4 display our test grammars. The grammars from Figure 3 will
be henceforth called GGAHC and GGHC, and those from Figure 4 will be called
GGER and GGFC. The elements of the Common sets of individual productions are
greyed. The small circles and squares that mark some elements will be explained in
Section 6.2.

The grammar GGAHC defines the language of acyclic hydrocarbon graphs. The
grammar GGHC generates all (both acyclic and cyclic) hydrocarbon graphs. (Hydro-
carbons are chemical compounds composed of carbon (C) and hydrogen (H) atoms
in which each carbon atom forms four connections and each hydrogen atom forms
one.) The purpose of the indirect creation of non-labelled C−H edges is to comply
with the layering condition.

The grammar GGER (copied from [1]) defines the language of entity-relationship
diagrams. The grammar GGFC generates flowcharts with conditional clauses, loops,
and forks.

Figure 3: Grammars GGAHC and GGHC.

5 The original Rekers-Schürr parser

This section presents the Rekers-Schürr parser to the extent required to understand
our improvements. Many important details are omitted. For a thorough description,

6

Figure 4: Grammars GGER and GGFC.

7

the reader is referred to [11].
The Rekers-Schürr parser finds a derivation of an input graph G in a given

grammar GG via two separate stages. Stage 1 produces a complete but redundant
information for building any derivation of the graph G. Based on this information,
Stage 2 either constructs an actual derivation of the graph G or declares that G

does not belong to L(GG). Stage 2 is based on backtracking, so it can produce all
derivations, if desired. The rest of this section is devoted to Stage 1, because all our
improvements pertain to it.

At the beginning, Stage 1 creates a graph G as a copy of the input graph G.
Then it systematically searches the graphG for occurrences of the RHSs of individual
productions. Whenever it discovers a graph R′ � G such that R′ = h(Rhs(p)) for
some production p and some morphism h, it augments the graph G by attaching
copies of the elements Xlhs(p) to h(Common(p)). The attached elements and the
elements of R′ jointly form an instance of the production p in the graph G. Stage
1 repeats this discover-and-augment cycle until no more RHS occurrences can be
found in the graph G. Figure 5 visualises the graph G after the first two discover-
and-augment steps when parsing the rightmost graph from Figure 2 against the
grammar GGFC. The corresponding production instances and their sets Xlhs, Xrhs,
and Common are also highlighted.

Figure 5: The graph G after the first two discover-and-augment steps when parsing
the rightmost graph of Figure 2 against the grammar GGFC.

To find an occurrence of an RHS in the graph G, Stage 1 sequentially follows
the RHS’s search plan, which is a list of directives for visiting the RHS’s elements.
A sample search plan is given in Table 1. Stage 1 regards each directive as an
instruction for finding a not-yet-discovered vertex and/or edge of the RHS in G.
Once Stage 1 has successfully fulfilled all directives of the RHS’s search plan, it has
discovered an occurrence of the entire RHS in G and simultaneously established a
morphism that maps the elements of the RHS to those of the occurrence. Stage 1
executes each search plan in all possible ways. If several vertices and/or edges of G
match a given directive, Stage 1 will eventually visit all of them. This implies that
by the end of Stage 1, all possible RHS-to-G morphisms will have been established.
This strategy ensures that Stage 1 eventually discovers all occurrences of the RHS
in G, regardless of the RHS’s search plan (provided that it is correct, of course).

8

Table 1: A search plan for the RHS of the production p6 of the grammar GGFC.

Step Directive

1 Find an unlabelled vertex and call it v1.
2 Start at the vertex v1, follow an unlabelled edge in the reverse direction

to a vertex labelled ‘Stats’, and call this vertex v2.
3 Start at the vertex v1, follow an unlabelled edge to a vertex labelled

‘Cond’, and call this vertex v3.
4 Start at the vertex v3, follow an edge labelled ‘f’ to an unlabelled vertex,

and call this vertex v4.
5 Start at the vertex v3, follow an edge labelled ‘t’ to an unlabelled vertex,

and call this vertex v5.
6 Check the existence of an unlabelled edge from the vertex v5 to the

vertex v2.

The main output of Stage 1 is a set of all production instances created in the
discover-and-augment process. It is guaranteed that if G ∈ L(GG), then there
exists a subsequence (i.e., an ordered subset) of this set that determines a correct
derivation of G. To find such a subsequence, Stage 2 relies on certain relationships
between the production instances. These relationships are defined in Table 2. The
relationship above partially orders the set of production instances: if pi1 above pi2,
then the production instance pi1 has to occur before the production instance pi2
in any derivation that contains both pi1 and pi2. If pi1 excludes∗ pi2, then the
production instances pi1 and pi2 cannot both be part of the same derivation. If
inconsistent(pi), then the production instance pi cannot be part of any derivation.
Other relationships in Table 2 are not employed directly by Stage 2, but they serve as
building blocks for computing the relationships above, excludes∗, and inconsistent .

Inconsistent production instances have to be removed immediately upon creation,
or else Stage 1 might enter an infinite discover-and-augment loop. For this reason,
all relationships have to be updated incrementally during Stage 1.

Figure 6 shows the parsing process for a graph G against the grammar GGFC.
Part (a) presents how the graph G grows as Stage 1 discovers production RHSs and
creates the corresponding production instances. Part (b) presents the created pro-
duction instances in detail: each of them is given as pi = (p, Xlhs(pi), Common(pi),
Xrhs(pi)), where p denotes the production of which pi is an instance. Part (c)
lists all relationships (except the ternary abovepi and above+pi) that hold for the cre-
ated production instances. None of these instances is inconsistent. Based on the
above and excludes∗ relationships, Stage 2 builds a derivation of the graph G. The
constructed derivation is shown in part (d).

6 Our improvements

In this section, we present our improvements of the Rekers-Schürr parser. The
improvement of Section 6.1 enlarges the class of parsable grammars, while those of
Sections 6.2 and 6.3 enhance the parser’s efficiency.

9

Table 2: Relationships between production instances.

Relationshipa Definition

conseqOf pi1 conseqOf pi2 ⇐⇒ Xlhs(pi1) ∩ Rhs(pi2) 6= ∅.

conseqOf + The transitive closure of conseqOf .

above pi1 above pi2 ⇐⇒ pi1 6= pi2 ∧
(pi2 conseqOf pi1 ∨
Xrhs(pi1) ∩ Common(pi2) 6= ∅ ∨
∃e ∈ E(Xlhs(pi1)), v ∈ V (Xlhs(pi2)) : s(e) = v ∨ t(e) = v)

abovepi pi1 abovepi pi2 ⇐⇒ pi1 above pi2 ∧
(pi1 = pi ∧ pi2 conseqOf + pi ∨
pi2 = pi ∧ pi1 conseqOf + pi ∨
pi1 conseqOf + pi ∧ pi2 conseqOf + pi)

above+pi The transitive closure of abovepi.

excludes pi1 excludes pi2 ⇐⇒ pi1 6= pi2 ∧
((pi1 above pi2 ∧ pi2 above pi1) ∨Xrhs(pi1) ∩ Xrhs(pi2) 6= ∅)

excludes∗ pi1 excludes∗ pi2 ⇐⇒ pi1 excludes pi2 ∨
(∃pi′ : pi′ conseqOf + pi1 ∧ pi′ excludes pi2) ∨
(∃pi′′ : pi′′ conseqOf + pi2 ∧ pi1 excludes pi′′) ∨
(∃pi′, pi′′ : pi′ conseqOf + pi1 ∧ pi′′ conseqOf + pi2 ∧ pi′ excludes pi′′)

excludes∗self excludes∗self(pi) ⇐⇒ pi excludes∗ pi

inconsistent inconsistent(pi) ⇐⇒ excludes∗self(pi) ∨
∃pi′, pi′′ : pi′ above+pi pi

′′ ∧ pi′′ above+pi pi
′

aThe relationship conseqOf is related to consequence of Rekers and Schürr [11] via the following
equivalence: pi1 conseqOf pi2 ⇐⇒ pi1 ∈ consequence(pi2).

10

Figure 6: Parsing a graph G against the grammar GGFC.

11

6.1 Improvement 1: Allowing productions with disconnected RHSs

Recall that Stage 1 searches for occurrences of an RHS in graph G by following
the RHS’s search plan. Each non-initial directive of a search plan either instructs
Stage 1 to discover an edge between two already discovered vertices or to discover a
new vertex by following an edge from an already discovered vertex. If search plans
can comprise only such directives, they cannot describe how to visit the elements
of a disconnected RHS. Consequently, Stage 1 cannot discover occurrences of RHSs
such as that of production p2 of grammar GGHC, and the parser cannot parse such
grammars as GGHC.

To make the parsing of grammars with disconnected RHSs possible, we intro-
duced another type of search plan directives, the so-called jump directives. A jump
directive simply takes the form “jump to a vertex labelled A and call it vi” and
can be used anywhere in a search plan. If, in a given step-by-step execution of the
search plan on the graph G, Stage 1 comes across such a directive, it tries to find any
vertex labelled A in G that has not yet been visited in that search plan execution
(but which, of course, might have already been visited in some other execution of
the search plan).

Table 3 presents one of many possible search plans for the RHS of the production
p2 of the grammar GGHC. Let us assume that Stage 1 has to find an occurrence of
this RHS in the graph G shown in Figure 7. To execute Step 1 of the search plan,
Stage 1 can map the search plan’s vertex v1 to any vertex ‘H’ in the graph G. If v1
is mapped to w2, w3, w4, or w5, then the vertex v2 of Step 2 is mapped to the vertex
w1 of G; otherwise, v2 is mapped to w6. In the former case, the vertex v4 of Step
4 can only be mapped to w6; in the latter case, v4 is mapped to w1. Since Stage
1 executes the search plan in all possible ways, half of the discovered occurrences
will cover the vertices w1, w2, w3, w4, w5, and w6, and the other half will cover the
vertices w1, w6, w7, w8, w9, and w10.

Table 3: A search plan for the RHS of the production p2 of the grammar GGHC.

Step Directive

1 Find a vertex labelled ‘H’ and call it v1.
2 Start at the vertex v1, follow an edge labelled ‘a’ to a vertex labelled

‘C’, and call this vertex v2.
3 Start at the vertex v2, follow an edge labelled ‘a’ to a vertex labelled

‘H’, and call this vertex v3.
4 Jump to a vertex labelled ‘C’ and call it v4.
5 Start at the vertex v2, follow an edge labelled ‘a’ to a vertex labelled

‘H’, and call this vertex v5.
6 Start at the vertex v2, follow an edge labelled ‘a’ to a vertex labelled

‘H’, and call this vertex v6.

12

Figure 7: A sample graph G.

6.2 Improvement 2: Preventing multiple discoveries of the same

RHS occurrence

This section is divided as follows: Section 6.2.1 introduces the problem of multiple
discoveries through an example. Section 6.2.2 defines a property called interchange-
ability, and Section 6.2.3 presents a redundancy elimination scheme based on this
property. Section 6.2.4 presents an algorithm to determine interchangeability. Sec-
tion 6.2.5 ‘applies’ this algorithm to our test grammars.

6.2.1 Problem description with an example

Recall that Stage 1 finds all possible RHS-to-Gmorphisms for each RHS. For a given
RHS, each such morphism determines one of its occurrences in G. However, a single
RHS occurrence may be determined by multiple equivalent morphisms. In such
cases, Stage 1 discovers the same occurrence multiple times (once per morphism).
Our first performance improvement, described in this section, is concerned with
preventing such multiple discoveries. This kind of redundancy was first detected by
Vermeulen [12], but his solution required the manual labelling of RHSs. By contrast,
we propose an automatic solution based on formally defined conditions.

Let us illustrate the multiple-discovery redundancy by an example. Figure 8
displays two RHSs and their occurrences in some graph G, and Table 4 lists all
corresponding RHS-to-occurrence morphisms. In this case, Stage 1 would discover
the occurrence of Rhs1 four times, and that of Rhs2 six times.

Table 4: All Rhs1 → G and Rhs2 → G morphisms for the example of Figure 8.

RHS RHS-to-G morphisms

Rhs1 {1 7→ 5′, 2 7→ 1′, 3 7→ 4′, 4 7→ 11′, 5 7→ 6′, 6 7→ 7′, 7 7→ 9′ },
{1 7→ 5′, 2 7→ 1′, 3 7→ 4′, 4 7→ 11′, 5 7→ 6′, 6 7→ 9′, 7 7→ 7′ },
{1 7→ 5′, 2 7→ 1′, 3 7→ 11′, 4 7→ 4′, 5 7→ 6′, 6 7→ 7′, 7 7→ 9′ },
{1 7→ 5′, 2 7→ 1′, 3 7→ 11′, 4 7→ 4′, 5 7→ 6′, 6 7→ 9′, 7 7→ 7′ }.

Rhs2 {1 7→ 10′, 2 7→ 8′, 3 7→ 12′, 4 7→ 13′, 5 7→ 2′, 6 7→ 14′, 7 7→ 15′},
{1 7→ 10′, 2 7→ 8′, 3 7→ 13′, 4 7→ 12′, 5 7→ 2′, 6 7→ 15′, 7 7→ 14′},
{1 7→ 10′, 2 7→ 12′, 3 7→ 8′, 4 7→ 13′, 5 7→ 14′, 6 7→ 2′, 7 7→ 15′},
{1 7→ 10′, 2 7→ 12′, 3 7→ 13′, 4 7→ 8′, 5 7→ 14′, 6 7→ 15′, 7 7→ 2′ },
{1 7→ 10′, 2 7→ 13′, 3 7→ 8′, 4 7→ 12′, 5 7→ 15′, 6 7→ 2′, 7 7→ 14′},
{1 7→ 10′, 2 7→ 13′, 3 7→ 12′, 4 7→ 8′, 5 7→ 15′, 6 7→ 14′, 7 7→ 2′ }.

13

Figure 8: Two production RHSs and their occurrences in a graph G.

6.2.2 RHS automorphisms and interchangeable elements

Multiple RHS-to-occurrence morphisms, which cause multiple discoveries of the
same RHS occurrence, are due to automorphisms of the RHS, i.e., isomorphisms
within the RHS itself. For example, the four RHS-to-occurrence morphisms for
Rhs1 of Figure 8 are due to the following automorphisms of Rhs1 (cf. Table 4):

{1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 4, 5 7→ 5, 6 7→ 6, 7 7→ 7},
{1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 4, 5 7→ 5, 6 7→ 7, 7 7→ 6},
{1 7→ 1, 2 7→ 2, 3 7→ 4, 4 7→ 3, 5 7→ 5, 6 7→ 6, 7 7→ 7},
{1 7→ 1, 2 7→ 2, 3 7→ 4, 4 7→ 3, 5 7→ 5, 6 7→ 7, 7 7→ 6}.

The six RHS-to-occurrence morphisms for Rhs2 are a consequence of the following
automorphisms of Rhs2:

{1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 4, 5 7→ 5, 6 7→ 6, 7 7→ 7},
{1 7→ 1, 2 7→ 2, 3 7→ 4, 4 7→ 3, 5 7→ 5, 6 7→ 7, 7 7→ 6},
{1 7→ 1, 2 7→ 3, 3 7→ 2, 4 7→ 4, 5 7→ 6, 6 7→ 5, 7 7→ 7},
{1 7→ 1, 2 7→ 3, 3 7→ 4, 4 7→ 2, 5 7→ 6, 6 7→ 7, 7 7→ 5},
{1 7→ 1, 2 7→ 4, 3 7→ 2, 4 7→ 3, 5 7→ 7, 6 7→ 5, 7 7→ 6},
{1 7→ 1, 2 7→ 4, 3 7→ 3, 4 7→ 2, 5 7→ 7, 6 7→ 6, 7 7→ 5}.

We will now define interchangeability, a concept closely associated with automor-
phisms. The subsequent definitions will not be justified immediately. Their use will
become apparent in Section 6.2.3, where we describe how to use interchangeability
to eliminate the multiple-discovery redundancy.

Definition 1 (Graph-level interchangeability). Vertices v1, . . . , vk of a graph G are
interchangeable with respect to G (denoted interG(v1, . . . , vk)) if for each permuta-
tion σ of {1, . . . , k} there exists an automorphism h : G → G such that h(v1) = vσ(1),
. . . , h(vk) = vσ(k).

14

Definition 2. An interchangeability class (IC) of a graph G is a set of vertices that
are interchangeable with respect to G.

For example, the graphs Rhs1 and Rhs2 of Figure 8 contain the following ICs:

• Rhs1: {3, 4} and {6, 7}.

• Rhs2: {2, 3, 4} and {5, 6, 7}.

Definition 3. Let a graph G contain ICs with k1, k2, . . . , ks vertices, respectively.
These ICs are mutually independent if G has an automorphism for each of the
k1! k2! . . . ks! permutations of the vertices composing the ICs.

The two ICs of Rhs1 are mutually independent, since there exists an automor-
phism of Rhs1 for each of the four (= 2! 2!) permutations of the vertices {3, 4}
and {6, 7}, namely (3, 4, 6, 7), (3, 4, 7, 6), (4, 3, 6, 7), and (4, 3, 7, 6). By contrast, the
ICs of Rhs2 are not independent, since each permutation of {2, 3, 4} corresponds
to a unique permutation of {5, 6, 7}, and vice versa. The graph Rhs2 is therefore
considered to contain only one IC: either {2, 3, 4} or {5, 6, 7}.

If the RHS of a production contains s independent ICs with k1, k2, . . . , ks ver-
tices, respectively, then Stage 1 will discover each occurrence of that RHS k1! k2! . . . ks!
times, since each automorphism corresponds to an RHS-to-occurrence morphism.

Definition 4 (Production-level interchangeability). Vertices v1, . . . , vk ∈ Rhs(p)
are interchangeable with respect to a production p (denoted interp(v1, . . . , vk)) if
the following three conditions are satisfied:

1. Either v1, . . . , vk ∈ Xrhs(p) or v1, . . . , vk ∈ Common(p).

2. The vertices are interchangeable with respect to the graph Rhs(p), i.e.,
interRhs(p)(v1, . . . , vk).

3. The vertices v1, . . . , vk are interchangeable with respect to the graph Union(p) =
Lhs(p) ∪ Rhs(p), i.e., interUnion(p)(v1, . . . , vk).

Definition 5. An interchangeability class (IC) of a production p is a set of vertices
of Rhs(p) that are interchangeable with respect to p.

In the production of Figure 1, the two RHS vertices ‘A’ are interchangeable with
respect to the RHS but not with respect to the entire production (cf. the graph
Union(p)). The same goes for the vertices ‘D’.

Although we focus on interchangeable vertices throughout Section 6, the concept
of interchangeability can be naturally extended to edges:

Definition 6. Edges e1, . . . , ek are interchangeable with respect to a production p

if the following three conditions are met:

1. Either e1, . . . , ek ∈ Xrhs(p) or e1, . . . , ek ∈ Common(p).

2. All edges have the same label, i.e., label(e1) = . . . = label(ek).

3. All edges connect the same two vertices in the same direction, i.e., s(e1) =
. . . = s(ek) and t(e1) = . . . = t(ek).

For example, all edges in the RHSs of the productions p6 and p7 of the grammar
GGAHC are interchangeable.

15

6.2.3 Eliminating the multiple-discovery redundancy

The knowledge of the ICs of individual productions can be directly employed to
eliminate the multiple-discovery redundancy. Suppose that a production p contains
a single IC, which comprises vertices v1, . . . , vk ∈ Rhs(p). In the original parsing
algorithm, Stage 1 explores the space of partial and total RHS-to-G morphisms
exhaustively and thus establishes a total RHS-to-occurrence morphism for each per-
mutation of the vertices v1, . . . , vk, which results in k! discoveries of every RHS oc-
currence. This redundancy can be eliminated by allowing Stage 1 to establish only
those partial and total morphisms h : {vi1 , . . . , vir} → G (with 1 ≤ i1 < . . . < ir ≤ k)
for which index (h(vi1)) < . . . < index (h(vir)). There is exactly one total RHS-to-
occurrence morphism that meets the condition index (h(v1)) < . . . < index (h(vk)),
so each RHS occurrence will be discovered exactly once. If a given RHS contains
several mutually independent ICs, then such a condition has to be met for each IC
separately.

To illustrate this idea by an example, consider again Figure 8. Suppose that
the three vertices ‘Q’ of Rhs2 (indexed 2, 3, and 4) constitute a production-level
IC, not just an IC of Rhs2. Suppose further that Stage 1 is in the midst of finding
occurrences of Rhs2 in the graphG and that it has already established a partialRhs2-
to-G morphism h : {1 7→ 10′, 2 7→ 12′, 3 7→ 13′}. Since index (h(2)) < index (h(3)),
this partial morphism is allowed to ‘grow’ towards a total morphism. This, however,
is impossible, since the vertex 4 of Rhs2 can now be matched only with the vertex
8′ of G, giving a forbidden partial morphism {1 7→ 10′, 2 7→ 12′, 3 7→ 13′, 4 7→ 8′}.
Therefore, Stage 1 tries to find another way to match the elements of Rhs2 with
those of G. By the end of its search process, Stage 1 will have discovered many
partial morphisms but only one total, namely {1 7→ 10′, 2 7→ 8′, 3 7→ 12′, 4 7→ 13′,
5 7→ 2′, 6 7→ 14′, 7 7→ 15′}. Therefore, Rhs2 will be discovered only once in G.

A proof that the proposed redundancy elimination scheme preserves the correct-
ness of the parser is given in Appendix A.

6.2.4 An algorithm to determine the ICs

The production-level ICs in a given RHS could be determined using Definition 4
directly. While condition 1 is easy to check, this is not the case with conditions
2 and 3. In this section, we give an algorithm for computing the relationship
interG(v1, . . . , vk) for an arbitrary graph G and vertices v1, . . . , vk ∈ G. Using this
relationship, the conditions of Definition 4 can be easily verified.

Proposition 1. Let u and v be two vertices of a graph G, and let # and $ be
special vertex labels that are not present in G. Let S1 = copy(G, u : #, v : $) and
S2 = copy(G, u : $, v : #). Then the following equivalence holds:

interG(u, v) ⇐⇒ label(u) = label(v) ∧ S1 ≃ S2. (1)

Proof. (=⇒) If interG(u, v), then there exists an automorphism h of G such that
h(u) = v and h(v) = u. This is only possible if the two vertices have the same label.
Since the graphs S1 and S2 are copies of G except for the vertices labelled ‘#’ and
‘$’ (which correspond to the interchangeable vertices u and v), the automorphism h

directly corresponds to an isomorphism between the graphs S1 and S2. The graphs

16

S1 and S2 are hence isomorphic. (⇐=) If S1 ≃ S2, then every isomorphism between
S1 and S2 maps the vertices ‘#’ and ‘$’ of S1 to the vertices ‘#’ and ‘$’ of S2,
respectively, since the labels # and $ are unique. These two mappings correspond
to the mappings u 7→ v and v 7→ u in G, respectively, and the entire isomorphism
corresponds to an automorphism in G, provided that label(u) = label(v).

Proposition 2. Let v1, . . . , vk be vertices of a graph G, and let #1, . . . ,#k be special
vertex labels not present in G. For i ∈ {1, . . . , k!}, let σi denote the i-th permutation
of the set {#1, . . . ,#k}, and let Si = copy(G, v1 : σi(#1), . . . , vk : σi(#k)). Then
the following equivalence holds:

interG(v1, . . . , vk) ⇐⇒ (label(v1) = . . . = label(vk)) ∧ (S1 ≃ . . . ≃ Sk!). (2)

This proposition is a generalisation of Proposition 1 and can be proved in a
similar way. Figure 9 shows the graphs Si for the example of Figure 8.

Figure 9: The graphs Si for individual ICs of the RHSs of Figure 8.

Instead of checking whether all k! graphs Si are isomorphic, we determine
interG(v1, . . . , vk) for k > 2 in a recursive way:

interG(v1, . . . , vk) ⇐⇒ interG(v1, . . . , vk−1) ∧

interG(v1, vk) ∧ interG(v2, vk) ∧ . . . ∧ interG(vk−1, vk). (3)

To find independent ICs in a given graph, we use the procedure findICs of Al-
gorithm 1. This procedure accepts a graph and returns a set of independent ICs,
denoted I in the procedure’s body. The set Q contains the vertices that have not
yet been assigned to any IC. At the beginning, Q contains all vertices of G. After
discovering an IC, the vertices from that IC are removed from Q, and the IC itself
is added to the output set I.

The auxiliary procedure enlargeIC tries to enlarge a given IC composed of vertices
u and v by checking condition (3) for each available vertex. Line 8 assigns a unique
label to each constituent vertex of the IC C to ensure that only those ICs that are
independent of C will be subsequently discovered. Without Line 8, the algorithm
would regard the vertex sets {2, 3, 4} and {5, 6, 7} from Rhs2 of Figure 8 as two
independent ICs, which would be incorrect.

17

Algorithm 1: The algorithm to find independent ICs in a given graph.

1 procedure findICs(G)
2 I := ∅;
3 Q := V (G);
4 i := 1;
5 while ∃u, v ∈ Q : inter(u, v) do
6 C := enlargeIC(u, v,Q);
7 I := I ∪ {C};
8 foreach z ∈ C do label(z) := $i; i := i+ 1 end;
9 Q := Q \ C
10 end;
11 return I
12 end

13
14 procedure enlargeIC(u, v, Q)
15 C := {u, v};
16 foreach z ∈ Q do

17 if for all t ∈ C : inter(t, z) then
18 C := C ∪ {z}
19 end

20 end;
21 return C

22 end

18

6.2.5 The ICs in our test grammars

The ICs of our test grammars are displayed with small circles and squares in Figures
3 and 4. The elements marked with the same symbol belong to the same IC.

In general, Improvement 2 should pay off whenever at least one RHS contains
interchangeable elements. Since the number of RHS automorphisms grows factorially
with the size of individual ICs, Improvement 2 should make an especially noticeable
difference for grammars such as GGAHC and GGHC. As we shall see in Section 7,
this really happens.

6.3 Improvement 3: Reducing the need to compute the inconsistent

relationship

To avoid an infinite discover-and-augment cycle, Stage 1 has to determine the
inconsistent relationship for each production instance. Since this relationship de-
pends on the ternary above+pi relationship, it takes Ω(n3) time to determine the
value of inconsistent(pi) for n production instances. However, if we knew in ad-
vance that a given production cannot occur as an inconsistent instance, we could
omit the computation of inconsistent(pi) (and also of excludes∗self(pi) and above+pi)
for all instances of that production. In this section, we describe the conditions under
which such savings are possible.

Let us adopt the following notational convention: p, p′, etc. denote productions,
and pi, pi′, etc. denote production instances. Let Inst(p) denote the set of all
possible instances of production p created during Stage 1 (for any input graph),
and let inconsistent(p) represent the possibility of production p occurring as an
inconsistent instance:

inconsistent(p) ⇐⇒ (∃pi ∈ Inst(p) : inconsistent(pi)). (4)

If inconsistent(p), nothing can be said in advance about the inconsistency of in-
dividual production instances, so inconsistent(pi) has to be computed for each
pi ∈ Inst(p). However, if ¬inconsistent(p) has been determined with certainty,
then ¬inconsistent(pi) is guaranteed for every pi ∈ Inst(p).

Unfortunately, inconsistent(p) cannot be accurately determined for all possible
productions, since many complex interactions between production instances may
occur in Stage 1. We thus assume inconsistent(p) unless our conditions guarantee
that ¬inconsistent(p). This approach might not result in maximum possible savings,
but it can never cause an inconsistent production to be missed during Stage 1.

The relationship inconsistent(p) will be (indirectly) computed from the relation-
ships conseqOf (p, p′), above(p, p′), etc. in a similar manner as inconsistent(pi) is
computed from conseqOf (pi, pi′), above(pi, pi′), etc. The relationships conseqOf (p,
p′), above(p, p′), etc. are defined analogously to (4), e.g.:

p′ conseqOf p ⇐⇒ (∃pi ∈ Inst(p), pi′ ∈ Inst(p′) : pi′ conseqOf pi). (5)

Like inconsistent(p), the relationships conseqOf (p, p′), above(p, p′), etc. will also be
assumed to hold unless our conditions imply the opposite.

The computation of inconsistent(pi) is based on the following fact: If we deter-
mine that neither excludes∗self(pi) nor (∃pi

′, pi′′ : pi′ above+pi pi
′′ ∧ pi′′ above+pi pi

′) can

19

hold for any pi ∈ Inst(p), then we can conclude that ¬inconsistent(p) holds. This
is equivalent to:

¬excludes∗self(p) ∧ ¬∃p′, p′′ : p′ above+p p′′ ∧ p′′ above+p p′ =⇒ ¬inconsistent(p). (6)

The conditions for ¬(p′ abovep p′′) and ¬excludes∗self(p) are constructed analo-
gously to (6) and to the corresponding definitions in Table 2. For example:

(¬∃p′ : p′ conseqOf + p ∧ p excludes p′) ∧ (7)

(¬∃p′, p′′ : p′ conseqOf + p ∧ p′′ conseqOf + p ∧ p′ excludes p′′) =⇒

¬excludes∗self(p).

The relationships abovepi(p, p
′) and excludes∗self(p) indirectly depend on

conseqOf (p, p′). The condition for ¬(p′ conseqOf p) is constructed as follows:

Proposition 3. For any two productions p and p′, it holds that

Labels(Rhs(p)) ∩ Labels(Xlhs(p′)) = ∅ =⇒ ¬(p′ conseqOf p). (8)

Proof. If Rhs(p) and Xlhs(p′) have no labels in common, then it is impossible for
Rhs(pi) and Xlhs(pi′), where pi ∈ Inst(p) and pi′ ∈ Inst(p′), to overlap. For any pair
(pi, pi′), it thus holds that Rhs(pi) ∩ Xlhs(pi′) = ∅ and hence ¬(pi′ conseqOf pi).
This implies ¬(p′ conseqOf p).

The conditions for ¬(p above p′) and ¬(p excludes p′) are constructed in an anal-
ogous fashion. The relationships (p′ conseqOf + p′′) and (p′ above+p p′′) are computed
as the transitive closures of (p′ conseqOf p′′) and (p′ abovep p′′), respectively.

If Improvement 2 is in effect, we use the following additional condition:

Proposition 4. For any production p, it holds that

¬(p above p) ∧Xrhs(p) = {e} ∧ Common(p) = {s(e), t(e)} ∧ interp(s(e), t(e))

=⇒ ¬(p excludes p). (9)

Proof. If Xrhs(p) contains only an edge, then for any instances pi and pi′ of pro-
duction p, Xrhs(pi) ∩ Xrhs(pi′) can contain only a corresponding edge in graph G.
Since Rhs(p) = Common(p)∪Xrhs(p) contains only the edge’s endpoints besides the
edge itself, Xrhs(pi) ∩ Xrhs(pi′) will contain the edge only if Rhs(pi) and Rhs(pi′)
coincide. If interp(s(e), t(e)) and if Improvement 2 is in effect, Rhs(pi) and Rhs(pi′)
can never coincide, for this would imply a double discovery of the same occurrence
of Rhs(p). Therefore, Xrhs(pi)∩Xrhs(pi′) = ∅, which, together with the assumption
¬(p above p), implies ¬(p excludes p).

Table 5 lists those productions p of our test grammars for which inconsistent(p)
holds according to our conditions (i.e., the conditions do not imply ¬inconsistent(p)).
In the case of the grammar GGHC, analogous information is provided for all relation-
ships. For example, since our conditions imply ¬(p2 excludes p3), the pair (p2, p3)
is not listed in the corresponding row of Table 5.

In general, Improvement 3 should prove beneficial when the input grammar
contains many productions p for which Xlhs(p) = ∅. For such a grammar, the
relationship p1 conseqOf p2 is false for many pairs (p1, p2). Since the inconsistent
relationship directly depends on above+pi and excludes∗self, which in turn depend on
conseqOf , it is reasonable to expect that many cases of ¬(p1 conseqOf p2) will lead
to many cases of ¬inconsistent(p).

20

Table 5: Productions or pairs of productions for which individual relationships hold
according to our conditions.

Grammar Relationship
Productions p or pairs (p′, p′′)
satisfying the relationship

GGAHC inconsistent(p) p1, p2, p3, p4, p8

GGHC p′′ conseqOf p′ (p1, p3), (p1, p4), (p2, p3), (p2, p4), (p4, p3)
p′′ conseqOf + p′ (p1, p3), (p1, p4), (p2, p3), (p2, p4), (p4, p3)
p′ above p′′ (p1, p2), (p1, p3), (p1, p4), (p2, p2), (p2, p3),

(p2, p4), (p4, p3)
p′ above+p1 p′′ (p1, p3), (p1, p4), (p4, p3)

p′ above+p2 p′′ (p2, p3), (p2, p4), (p4, p3)

p′ above+p3 p′′ (none)

p′ above+p4 p′′ (p4, p3)

p′ excludes p′′ (p1, p1), (p1, p2), (p2, p1), (p2, p2)
p′ excludes∗self p

′′ (none)
inconsistent(p) (none)

GGER inconsistent(p) p5, p6, p7

GGFC inconsistent(p) p1, p2, p3, p4, p5, p6, p7

7 Experimental results

We estimated the value of our contribution by comparing the performance of the
original Rekers-Schürr parser with the performance attained by our improvements.
To obtain a reliable estimate, we constructed several graph sequences for our test
grammars (five sequences for GGAHC, six for GGHC, one for GGER, and one for
GGFC) and ran the original and the improved parser on individual graphs of these
sequences. The sequences are defined by rules presented in Figure 10. The symbol
Gn denotes the n-th graph in each sequence. Individual graphs Gi are constructed by
the help of auxiliary graphs (labelled Si and T), recursion, and numbered connectors,
the use of which is explained at the bottom of Figure 10. For concreteness, Figure
11 shows the graphs G2 for some sequences.

Tables 6, 7, and 8 display the time, in milliseconds, required to parse a given
graph from a given sequence against a given grammar using a given combination
of improvements. The labels I2 and I3 denote Improvements 2 and 3, respectively.
The label n denotes graph size, e.g., n = 5 represents the graph G5 from a given
sequence. For example, the time to parse the graph G10 from the sequence SeqAHC2

against the grammar GGAHC using both performance improvements amounts to
287 milliseconds (Table 6, row n = 10 / I2 + I3, column SeqAHC2). The parse times
were measured on a 1.86 GHz Intel Core 2 Duo machine, and they are accurate to
three digits. Each experiment was time-limited to 107 milliseconds (ca. 2.8 hours).

Table 9 shows how derivation length (D) and the number of production instances
created during Stage 1 (#PIOriginal and #PII2) grow with input graph size (n de-
notes graph size as in Figure 10 and Tables 6, 7, and 8). Derivation length, i.e.,
the number of production applications required to transform the graph λ into the

21

Figure 10: Test graph sequences.

22

Figure 11: The graphs G2 for some test sequences (cf. Figure 10).

23

Table 6: The time, in milliseconds, required to parse individual SeqAHCi graphs
against the grammar GGAHC.

n Parser SeqAHC1 SeqAHC2 SeqAHC3 SeqAHC4 SeqAHC5

1 Original > 107 > 107 > 107 > 107 > 107

I2 5 5 6 6 37
I2 + I3 5 5 6 6 37

5 Original > 107 > 107 > 107 > 107 > 107

I2 48 46 60 58 338
I2 + I3 47 46 60 58 334

10 Original > 107 > 107 > 107 > 107 > 107

I2 310 289 376 349 1 390
I2 + I3 310 287 375 347 1 370

15 Original > 107 > 107 > 107 > 107 > 107

I2 1 170 985 1 370 1 180 4 040
I2 + I3 1 160 977 1 350 1 150 3 960

20 Original > 107 > 107 > 107 > 107 > 107

I2 3 050 2 630 3 550 3 090 9 370
I2 + I3 3 030 2 590 3 530 3 050 9 130

25 Original > 107 > 107 > 107 > 107 > 107

I2 6 930 5 740 7 970 6 570 18 700
I2 + I3 6 880 5 690 7 880 6 500 18 400

24

Table 7: The time, in milliseconds, required to parse individual SeqAHCi and SeqHC

graphs against the grammar GGHC.

n Parser SeqAHC1 SeqAHC2 SeqAHC3 SeqAHC4 SeqAHC5 SeqHC

1 Original 3 230 3 260 18 000 18 000 119 000 10 500
I2 5 5 4 5 4 5
I2 + I3 5 5 4 4 4 4

5 Original > 107 > 107 > 107 > 107 > 107 > 107

I2 240 240 230 228 220 222
I2 + I3 91 90 87 88 83 85

10 Original > 107 > 107 > 107 > 107 > 107 > 107

I2 7 490 7 380 7 150 7 090 6 890 6 890
I2 + I3 710 704 676 683 667 665

15 Original > 107 > 107 > 107 > 107 > 107 > 107

I2 71 800 71 700 70 500 69 900 69 000 68 900
I2 + I3 3 810 3 840 3 740 3 720 3 670 3 690

20 Original > 107 > 107 > 107 > 107 > 107 > 107

I2 381 000 378 000 373 000 373 000 367 000 367 000
I2 + I3 15 900 15 400 15 800 15 300 15 600 15 900

25 Original > 107 > 107 > 107 > 107 > 107 > 107

I2 1 400 000 1 400 000 1 380 000 1 380 000 1 370 000 1 360 000
I2 + I3 51 200 50 300 50 000 50 100 50 000 50 600

25

Table 8: The time, in milliseconds, required to parse individual SeqER and SeqFC
graphs against the grammars GGER and GGFC, respectively.

n Parser GGER + SeqER GGFC + SeqFC

1 Original 4 10
I2 4 6
I2 + I3 3 6

5 Original 83 7 490
I2 41 352
I2 + I3 26 353

10 Original 561 > 107

I2 261 9 330
I2 + I3 141 9 310

15 Original 1 790 > 107

I2 796 80 600
I2 + I3 399 80 500

20 Original 4 150 > 107

I2 1 850 407 000
I2 + I3 891 407 000

25 Original 8 020 > 107

I2 3 500 1 470 000
I2 + I3 1 650 1 470 000

26

input graph G, is independent of the parsing algorithm. A theoretically optimal al-
gorithm would produce exactly D production instances during Stage 1. The actual
number of production instances depends on the algorithm: the original version of
the Rekers-Schürr parser (column #PIOriginal) typically creates many more produc-
tion instances than the improved one (column #PII2). Note that Improvement 3
can only affect the parse time, not the number of production instances.

Table 9: The growth of derivation length (D) and the number of created production
instances (#PI) with respect to input graph size (n).

Grammar + sequence D #PIOriginal #PII2

GGAHC + SeqAHC1 12n+ 1 Ω(6n) 36n− 7
GGAHC + SeqAHC2 12n+ 1 Ω(6n) 36n− 7
GGAHC + SeqAHC3 11n+ 1 Ω(6n) 53n− 7
GGAHC + SeqAHC4 11n+ 1 Ω(6n) 53n− 7
GGAHC + SeqAHC5 10n+ 1 Ω(6n) 655n− 38

GGHC + SeqAHC1 12n+ 1 3240n2 +Θ(n) 9n2 +Θ(n)
GGHC + SeqAHC2 12n+ 1 3240n2 +Θ(n) 9n2 +Θ(n)
GGHC + SeqAHC3 11n+ 1 6120n2 +Θ(n) 9n2 +Θ(n)
GGHC + SeqAHC4 11n+ 1 6120n2 +Θ(n) 9n2 +Θ(n)
GGHC + SeqAHC5 10n+ 1 11160n2 +Θ(n) 9n2 +Θ(n)
GGHC + SeqHC 10n+ 2 10080n2 +Θ(n) 9n2 +Θ(n)

GGER + SeqER 9n+ 1 41n+ 1 31n+ 1

GGFC + SeqFC 11n+ 2 42 · 2n−1 +Θ(n2) 6n2 +Θ(n)

Improvement 2 significantly reduces the computational effort for all four gram-
mars, since all of them contain productions with interchangeable elements. For the
grammars GGAHC and GGFC, the number of production instances is reduced even
from an exponential to a polynomial function of the input graph size. Improvement
3 substantially accelerates parsing against the grammar GGHC, since none of its
productions can occur as an inconsistent instance in the graph G in Stage 1 (cf.
Table 5). The grammar GGER is also favourable in this regard, but when parsing
against the grammars GGAHC and GGFC, the costly inconsistent relationship has
to be computed for almost every production instance.

The grammar GGHC is more expressive than GGAHC, since it can generate both
acyclic and cyclic hydrocarbon graphs. However, the improved parser parses acyclic
graphs more efficiently against GGAHC than against GGHC (cf. Table 9, column
#PII2). Let us explain why parsing against the grammar GGHC leads to a quadratic,
rather than linear, growth of the number of production instances. When parsing a
hydrocarbon graph with k vertices ‘C’ against the grammar GGHC, Stage 1 discovers
all occurrences of Rhs(p3) (i.e., all C − C edges together with the incident vertices
‘C’) in the graph G. For each C − C edge, a new vertex ‘H’ is attached to each of
the two incident vertices ‘C’. Ultimately, this process makes each vertex ‘C’ in G

connected with four vertices ‘H’. The graph G now contains k(k − 1) = k2 + Θ(k)
occurrences of Rhs(p2), one for each pair of vertices ‘C’. Stage 1 discovers all these
occurrences and creates the same number of production instances. The quadratic

27

growth is thus an undesirable side-effect of allowing productions with disconnected
RHSs.

In contrast to the grammar GGAHC, the grammar GGHC is completely insen-
sitive to the arity of C − C edges; the parse time depends solely on the number
of vertices ‘C’. The reason is that in GGHC, both single and multiple edges are
created with the production p3, while GGAHC has separate productions for creating
double and triple edges. Regarding the number of production instances, there is
no difference between linear hydrocarbons (the sequences SeqAHC1 and SeqAHC3)
and their branched counterparts (the sequences SeqAHC2 and SeqAHC4) for either of
GGAHC and GGHC. However, owing to the search plan for the production p2 of the
grammar GGAHC, a branched hydrocarbon is parsed against the grammar GGAHC

slightly faster than its linear counterpart.

8 Conclusion

We presented three original improvements of the Rekers-Schürr graph grammar pars-
ing algorithm and showed their value by testing them on four meaningful graph
grammars. Our first improvement abolished the requirement that all productions
have connected RHSs and thus made it possible to parse grammars such as GGHC.
The second improvement eliminated the redundancy due to automorphisms of indi-
vidual RHSs, which considerably reduced the parse time for all four test grammars.
The third improvement determined the conditions under which the costly compu-
tation of the inconsistent relationship could be omitted. This improvement proved
successful when parsing against the grammars GGHC and GGER. However, our im-
provements are not specific to any of the presented test grammars, nor to the test
suite as a whole.

There are several possible improvements and applications of our work. Improve-
ment 3 could most probably be improved further. For example, ‘ad hoc’ reasoning
and experiments indicate that the grammar GGER cannot generate inconsistent
production instances at all. However, our present rules of Improvement 3 cannot
reject the possibility that the productions p5, p6, and p7 might occur as inconsistent
instances (cf. Table 5).

Some potential applications of the improved parser were already noted in Section
1. The parser could be employed to parse or translate programs of real-world visual
languages. Graph grammar inference is another domain where an efficient parser
could find its use. The ideas expressed in this paper could also lead to a more
efficient implementation of Triple Graph Grammars.

Appendix A: Correctness of Improvement 2

We shall now prove that the redundancy elimination scheme of Section 6.2.3 pre-
serves the correctness of the parser, i.e., that it never causes any derivation to be
lost because of its suppression of morphisms. Before proceeding to the main proof,
however, we shall prove the following lemma:

Lemma 1. Let v0 : b0
e1 : a1−−−−→ v1 : b1

e2 : a2−−−−→ . . . denote a walk that starts in a vertex
v0 ∈ G with label(v0) = b0 and then passes through an edge e1 labelled a1, a vertex

28

v1 labelled b1, an edge e2 labelled a2, etc. If vertices v0 ∈ G and w0 ∈ G are
interchangeable with respect to the graph G, then the following holds: If there exists

a walk v0 : b0
e1 : a1−−−−→ v1 : b1

e2 : a2−−−−→ . . ., then a walk w0 : b0
f1 : a1
−−−−→ w1 : b1

f2 : a2
−−−−→ . . .

exists as well.

Proof. If the vertices v0 and w0 are interchangeable in G, then (by Definition 1) there
exists an automorphism h in G such that h(v0) = w0 and h(w0) = v0. Let us assume
that v0 is connected with a vertex v1 labelled b1 through an edge e1 labelled a1. Since
the automorphism h, just like any other morphism, preserves both adjacency and
labels, it maps the edge e1 and the vertex v1 to an edge f1 labelled a1 and a vertex w1

labelled b1, respectively, such that w1 is a neighbour of w0 through the edge f1. Such
a vertex w1 and an edge f1 must exist; otherwise, the automorphism h would not

exist either. Therefore, h maps a walk v0 : b0
e1 : a1−−−−→ v1 : b1 to a walk w0 : b0

f1 : a1
−−−−→

w1 : b1. By the same argument as above, a neighbour v2 of v1 through an edge e2 is
mapped to a neighbour w2 of w1 through an edge f2 such that label(w2) = label(v2)

and label(f2) = label(e2). A walk v0 : b0
e1 : a1−−−−→ v1 : b1

e2 : a2−−−−→ v2 : b2 is thus mapped

to a walk w0 : b0
f1 : a1
−−−−→ w1 : b1

f2 : a2
−−−−→ w2 : b2. Continuing in this direction, both

walks can be extended indefinitely.

Proposition 5. The proposed redundancy elimination scheme preserves the correct-
ness of the parser.

Proof. We have to show that our scheme eliminates only purely redundant work and
that it has no effect on the parsing algorithm apart from a (significant) speedup.
For simplicity, let us assume that a given production p contains a single IC, which
comprises k vertices from Rhs(p). The proof can be straightforwardly extended to
the case that p contains several mutually independent ICs, since the ICs can be
treated independently from each other.

Let us pick two vertices from the IC, say v0 and w0, and let v0 : b0
e1 : a1−−−−→

v1 : b1 . . .
er : ar−−−−→ vr : br

er+1 : ar+1
−−−−−−−→ vr+1 : br+1 . . .

es : as−−−−→ vs : bs be a walk where v0,
e1, v1, . . . , er, vr ∈ Rhs(p) and er+1, vr+1, . . . , es, vs ∈ Union(p) \ Rhs(p) =
Xlhs(p). Since, by Definition 4, the vertices v0 and w0 are interchangeable in both

Rhs(p) and Union(p), there must, by Lemma 1, also exist a walk w0 : b0
f1 : a1
−−−−→

w1 : b1 . . .
fr : ar
−−−−→ wr : br

fr+1 : ar+1
−−−−−−−→ wr+1 : br+1 . . .

fs : as
−−−−→ ws : bs such that w0, f1, w1,

. . . , fr, wr ∈ Rhs(p) and fr+1, wr+1, . . . , fs, ws ∈ Xlhs(p).
When Stage 1 discovers an occurrence of Rhs(p) in the graph G via a morphism

h, it maps the walk v0 : b0
e1 : a1−−−−→ v1 : b1 . . .

er : ar−−−−→ vr : br in Rhs(p) to a correspond-

ing walk v′0 : b0
e′
1
: a1

−−−−→ v′1 : b1 . . .
e′r : ar−−−−→ v′r : br (where v′i = h(vi) for i ∈ {0, . . . , r}

and e′i = h(ei) for i ∈ {1, . . . , r}) in the occurrence, and analogously for the walk

w0 : b0
f1 : a1
−−−−→ w1 : b1 . . .

fr : ar
−−−−→ wr : br. Stage 1 then augments the occurrence by

attaching a copy of Xlhs(p) to it. The walk (vr : br)
er+1 : ar+1
−−−−−−−→ vr+1 : br+1 . . .

es : as−−−−→
vs : bs from Xlhs(p) corresponds to attaching a chain of elements with labels ar+1,

br+1, . . . , as, bs to the vertex v′r = h(vr), and the walk (wr : br)
fr+1 : ar+1
−−−−−−−→ wr+1 : br+1

. . .
fs : as
−−−−→ ws : bs corresponds to attaching a chain of elements with labels ar+1, br+1,

. . . , as, bs to the vertex w′

r = h(wr). Both chains are isomorphic and attached to
the vertices at the same relative position from h(v0) and h(w0), respectively, since

29

the walk from h(w0) to h(wr) (and further to h(ws)) has the same length and passes
through the same labels as that from h(v0) to h(vr) (and further to h(vs)). Since
this observation holds for any corresponding pair of walks starting from v0 and w0,
the occurrence is augmented from the perspective of the vertex h(v0) in the same
way as from the perspective of h(w0). This property can be generalised to all k
vertices of the IC, since the vertices v0 and w0 were selected arbitrarily from the IC.

Since the IC comprises k vertices, each occurrence of Rhs(p) is discovered k!
times. For each discovery, the occurrence is augmented in the same way from the
perspective of any vertex composing the IC; as a group, the elements attached to
the occurrence ‘look’ the same to all IC vertices. Since the IC vertices of Rhs(p)
are, as a group, always mapped to the IC vertices of the occurrence, each of the k!
discoveries augments the occurrence in the same way with respect to a fixed group
of vertices, i.e., those of the IC. The work is thus merely duplicated k! times. This
redundancy can be safely eliminated, which is what our scheme does.

References

[1] Rekers, J. and Schürr, A.: ‘Defining and parsing visual languages with layered
graph grammars’. Visual Languages and Computing, 1997, 8, pp. 27–55.

[2] Zhang, D.-Q., Zhang, K., and Cao., J.: ‘A context-sensitive graph grammar
formalism for the specification of visual languages’. The Computer Journal,
2001, 44, (3), pp. 186–200.

[3] Hermann, F., Ehrig, H., and Taentzer, G.: ‘A typed attributed graph grammar
with inheritance for the abstract syntax of UML class and sequence diagrams’.
Electronic Notes in Theoretical Computer Science, 2008, 211, pp. 261–269.

[4] Rafe, V., Rahmani, A. T., Baresi, L., and Spoletini, P.: ‘Towards automated
verification of layered graph transformation specifications’. IET Software, 2009,
3, (4), pp. 276–291.

[5] Lin, L., Wu, T., Porway, J., and Xu, Z.: ‘A stochastic graph grammar for com-
positional object representation and recognition’. Pattern Recognition, 2009,
42, (7), pp. 1297–1307.

[6] Flasiński, M., and Myśliński, S.: ‘On the use of graph parsing for recognition
of isolated hand postures of Polish Sign Language’. Pattern Recognition, 2010,
43, (6), pp. 2249–2264.

[7] Lavirotte, S., and Pottier, L.: ‘Optical formula recognition’. Proc. 4th Int.
Conf. on Document Analysis and Recognition, Ulm, Germany, August 1997,
pp. 357–361.

[8] Ehrig, K., Küster, J.M., and Taentzer, G.: ‘Generating instance models from
meta models’. Software and System Modeling, 2009, 8, (4), pp. 479–500.

[9] Blostein, D., and Schürr, A.: ‘Computing with graphs and graph transforma-
tions’. Software – Practice and Experience, 1999, 29, (3), pp. 197–217.

30

[10] Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg, G. (Eds.): ‘Handbook of
graph grammars and computing by graph transformation. Vol. 2: Applications,
languages, and tools’ (World Scientific, 1999).

[11] Rekers, J., and Schürr, A.: ‘A parsing algorithm for context-sensitive graph
grammars’. Technical Report 95-05, Leiden University, Leiden, The Nether-
lands, 1995.

[12] Vermeulen, J.T.: ‘Viability of a parsing algorithm for context-sensitive graph
grammars’. Master’s thesis, Leiden University, Leiden, The Netherlands, 1996.

[13] Rozenberg, G., and Welzl, E.: ‘Boundary NLC graph grammars – basic def-
initions, normal forms, and complexity’. Information and Control, 1986, 69,
(1–3), pp. 136–167.

[14] Schürr, A.: ‘Specification of graph translators with Triple Graph Grammars’.
Proc. 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science,
Herrsching, Germany, June 1994, pp. 151–163.

[15] Königs, A., and Schürr, A.: ‘Tool integration with Triple Graph Grammars –
a survey’. Electronic Notes Theoretical Computer Science, 2006, 148, (1), pp.
113–150.

[16] Flasiński, M.: ‘Inference of parsable graph grammars for syntactic pattern
recognition’. Fundamenta Informaticae, 2007, 80, (4), pp. 379–413.

[17] Kukluk, J., Holder, L., and Cook, D.: ‘Inferring graph grammars by detecting
overlap in frequent subgraphs’. Int. J. of Applied Mathematics and Computer
Science, 2008, 18, (2), pp. 241–250.

[18] Tucci, M., Vitiello, G., and Costagliola, G.: ‘Parsing nonlinear languages’.
IEEE Trans. on Software Engineering, 1994, 20, (9), pp. 720–739.

[19] Javed, F., Mernik, M., Bryant, B.R., and Sprague, A.: ‘An unsupervised incre-
mental learning algorithm for domain-specific language development’. Applied
Artificial Intelligence, 2008, 22, (7–8), pp. 707–729.

[20] Dubey, A., Jalote, P., and Aggarwal, S.K.: ‘Learning context-free grammar
rules from a set of programs’. IET Software, 2008, 2, (3), pp. 223–240.

[21] Blostein, D., Fahmy, H., and Grbavec, A.: ‘Practical use of graph rewriting’.
Technical Report 95-373, Queen’s University, Kingston, Ontario, Canada, Jan-
uary 1995.

[22] Janssens, D., and Rozenberg, G.: ‘Graph grammars with node-label controlled
rewriting and embedding’. Proc. 2nd Int. Workshop on Graph Grammars and
Their Application to Computer Science, Osnabrück, Germany, October 1982,
pp. 186–205.

[23] Kaul, M.: ‘Parsing of graphs in linear time’. Proc. 2nd Int. Workshop on Graph
Grammars and Their Application to Computer Science, Osnabrück, Germany,
October 1982, pp. 206–218.

31

[24] Bunke, H., and Haller, B.: ‘A parser for context free plex grammars’. Proc.
15th Int. Workshop on Graph-Theoretic Concepts in Computer Science, Castle
Rolduc, The Netherlands, June 1989, pp. 136–150.

[25] Seifert, S., and Fischer, I.: ‘Parsing string generating hypergraph grammars’.
Proc. 2nd Int. Conf. on Graph Transformations, Rome, Italy, September 2004,
pp. 352–367.

[26] Minas, M.: ‘Parsing of adaptive star grammars’. Proc. 2nd Int. Workshop on
Graph and Model Transformation, Brighton, UK, September 2006, pp. 1–14.

[27] Bottoni, P., Taentzer, G., and Schürr, A.: ‘Efficient parsing of visual languages
based on critical pair analysis and contextual layered graph transformation’.
Proc. 2000 IEEE Int. Symposium on Visual Languages, Seattle, WA, USA,
September 2000, pp. 59–60.

[28] Crimi, C., Guercio, A., Nota, G., Pacini, G., Tortora, G., and Tucci, M.: ‘Re-
lation grammars and their application to multi-dimensional languages’. Visual
Languages and Computing, 1991, 2, (4), pp. 333–346.

32

