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Abstract

Inference of new and useful hypotheses from heterogeneous sources of genome-scale experimental data requires
new computational methods that can integrate different types of data. Gene expression and genetic interaction
data are two most informative data types, each allowing the identification of genes at different levels of cellular
regulatory network hierarchy. We present an integrative data analysis approach, which, rather than correlating
the findings from the two data sets, uses each type of data independently to identify the components of
molecular pathways and combines them into a single directed network. Our computational genomics approach
is based on a set of inference rules traditionally used for reasoning on genetic experiments, which we have
formalized and implemented in a software tool. The approach uses chemogenetic interaction and expression
data to infer the type of relation between the chemical substance (perturber) and a transcription factor by using
previous knowledge on the set of genes whose expression the transcription factor in question regulates. We have
used the proposed approach to successfully infer the models for the action of the drug rapamycin and of a DNA
damaging agent on their molecular targets and pathways in yeast cells. The developed method is available as a
web-based tool at http://www.ailab.si/perturbagen.

Introduction

Finding the relations among diseases, genetic makeup
of individuals, and the action of drugs is one of the main

challenges for which functional genomics could provide an-
swers and solutions. Gene expression and genetic/chemoge-
netic interaction data are two of the most informative data
types in functional genomics (von Mering et al., 2002). Since
the introduction of the whole genome DNA microarrays
(DeRisi et al., 1997) it has become clear that every perturbation
of cellular processes causes a set of genes to change their ex-
pression levels, thus enabling to determine a gene expression
profile that is potentially specific for the perturbation. A nice
example of this is the recently proposed concept of Con-
nectivity Maps (Lamb et al., 2006). On the other hand, che-
mogenetic interactions identify genes that are functionally
related to the cellular response to the perturbation, and it has
been shown that chemogenomic profiles are also perturbation-
specific (Hillenmeyer et al., 2008; Parsons et al., 2004).

Traditionally, combining these two types of data has been
based on finding overlapping sets of genes in interaction with
the perturber as determined from each type of experiment. An
example of the reasoning behind this approach is that genes

with upregulated expression under some experimental condi-
tion are important for the cellular adaptation to this condition,
and that therefore their mutation would lead to impaired
growth under the same condition. For instance, in a study to
identify the molecular mechanism of action of an immunosup-
pressive and anticancer drug rapamycin in yeast Saccharomyces
cerevisiae, Xie and coworkers (2005) have identified all yeast
single deletion knock-out strains that exhibited either decreased
or increased resistance when compared to the wild-type strain.
They have then looked at the overlap between the identified set
of genes and the set of genes whose expression had previously
been shown to change significantly in response to rapamycin
treatment (Hardwick et al., 1999). Similarly, as in other studies
employing such correlation rationale (Ooi et al., 2006), only less
than 10% of the genes in chemogenetic interaction with rapa-
mycin have had significantly different expression level when
cells were treated with rapamycin (Xie et al., 2005).

An explanation of this phenomenon has recently been pro-
posed (Li and Zhan, 2008; Yeger-Lotem et al., 2009) that con-
siders the hierarchical architecture of cellular regulatory
networks and which claims that gene expression profiling and
chemogenetic interactions reveal different but related sets of
genes. Based on this rationale, we here present a method
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(outlined in Fig. 1) that uses the information from experimental
data on the chemogenetic interaction between the perturber
and genes coding for transcription factors, gene expression
data obtained by the same perturbation, and literature data on
transcription factors’ target genes. The output of this method is
a two-layered perturbation-specific network between the reg-
ulator (coding for transcription factors) and the effector (ex-
pression regulated by the transcription factor) genes.

The proposed approach is derived from the notion that reg-
ulatory pathways in most cases have a pyramid-like structure
(Yeger-Lotem et al., 2009; Yu and Gerstein, 2006), where one
regulator controls the activity of several effectors (Fig. 2). Ex-
amples of this structure include pathways of transcription fac-
tors regulating the expression of their target genes, whereby an
average number of genes putatively controlled by a yeast tran-
scription factor is 37.6 (Lee et al., 2002). Obviously, in these
pathways gene expression analysis will most often identify
effector genes. By currently available genome-wide (chemo)
genetic interaction assays, on the other hand, only mutations of
single genes can be examined in the context of different pertur-
bers, be it presence of a toxic chemical (e.g., chemogenomics)
(Parsons et al., 2004) or a mutation in the (second) gene of interest
(e.g., synthetic genetic array analysis) (Tong et al., 2004). Due to
the buffering effects of genes functioning either in the same or
parallel pathways (Hartman et al., 2001), it is much more likely
that an observable or measurable phenotype will emerge as a
consequence of a mutation in one single regulator than in any
one of the several effectors. Therefore, current (chemo)genetic
interaction assays are more likely to identify regulators, whereas
gene expression assays primarily identify effectors (Fig. 2).

Our inference method is based on the set of rules that we
formalized from traditional biological reasoning (Fig. 3) and
that determine the type of regulator-effector relations. To

demonstrate the utility of the proposed integrative data anal-
ysis method, we reanalyzed the perturber–gene interaction
data and the gene expression data resulting from the action of
rapamycin, an immunosuppressive and antifungal drug with
a well-understood molecular mechanism of action. In yeast, as
in mammals, rapamycin binds to Fpr1 protein (‘FK506-binding
protein’ homologue) and the complex inhibits the activity of
TOR (target of rapamycin) (Koltin et al., 1991), a phosphati-
dylinositol kinase-related protein kinase that controls cellular
growth in response to nutrients (reviewed in Wullschleger
et al., 2006). The major mechanism of TOR-mediated control
is the inhibition of the activity of a number of transcrip-
tional activators. Chemical epistasis and vector-based global
expression analyses have revealed that transcription factors
Gln3, Gat1, Rtg1/3, and Hap2/3/4/5 are inhibited by Tor1/2
proteins indirectly through Tap42 and/or Ure2 (Shamji et al.,
2000), and a protein localization and biochemical study has
shown that transcription factors Msn2/4 are inhibited by
Tor1/2 proteins by retaining the transcription factors bound to
cytoplasmic Bmh2 protein (Beck and Hall, 1999). Rapamycin
thus has a pronounced effect on the expression of many genes
(Shamji et al., 2000) and as such was an optimal perturber for
our study. To test if the proposed approach is also useful in the
cases of perturbations with less pronounced effects on tran-
scription, we reanalyzed the data of methyl methanesulfonate
(MMS), a DNA damaging agent with well-understood inter-
actions with yeast cellular machinery (Workman et al., 2006).

Materials and Methods

Data

The extraction of relevant relations from publicly available
data sets required for the proposed method, and related litera-

FIG. 1. Schematic representation of the method’s input and output data. As input data, experimental data on the effects of
the perturbation on the transcriptome and on its (chemo)genetic interactome, together with literature data on the nature of
the effect of the transcription factors that are in genetic interaction, on genes with a significantly changed expression level, are
used. The method generates a wiring diagram of a hypothetical model of the molecular mechanism of the action of the
perturbation. See the text (the Materials and Methods section) for details.
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FIG. 2. Pyramid-like architecture of a typical regulator–effectors pathway (e.g., a transcription factor regulating the level of
expression of several genes). (Chemo)genetic interactions with a cellular perturbation are more likely to occur with the
regulator encoding gene, whereas the effectors genes are more likely to significantly change their expression levels under the
conditions of a perturbation. See text for further explanation.

FIG. 3. Rules for assigning predictions on the perturbation effect to each regulator–effector pair according to the input
experimental data (relation of the perturber with the regulator and the effector gene, and relation between the regulator and
the effector gene). Rules are based on formalization of traditional biological reasoning. Blue circles mark the regulators whose
mutation causes sensitivity to the perturber (aggravating genetic interaction), whereas purple circles mark the regulators
whose mutation causes resistance to the perturber (alleviating genetic interaction). Genes that are upregulated in the presence
of the perturber are presented by red circles, and the ones that are downregulated by green circles. The relation between
transcription factor and regulated gene can be either positive (activation, represented with an arrow) or negative (inhibition,
represented with a blunt arrow). In predictive rules, ‘‘positive’’ adaptation refers to the adaptation of the organism by
increasing the expression levels of the regulated genes, whereas ‘‘negative’’ adaptation refers to the adaptation of the
organism by decreasing the expression levels of the regulated genes. The rules are applicable to null mutants only.
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ture search, is not automated. The source of the data depends on
the type of the perturber studied, and has to be identified and
preprocessed according to the published format.

For the rapamycin pathway study, we determined
rapamycin–gene interactions for transcription factor genes
that were selected according to data from Saccharomyces cer-
evisiae rapamycin–gene whole-genome interaction data (Xie
et al., 2005), and we measured whole-genome gene expression
data at the most informative time point, according to a study
using four different time points following treatment with ra-
pamycin (Hardwick et al., 1999). For the inference of MMS
pathway, the list of transcription factors was taken from the
study of Workman and coworkers (2006), and the gene ex-
pression data was from Gasch et al. (2001).

Transcription factor–effector genes interactions were de-
termined based on ChIP–chip experiments by Harbison et al.
(2004), downloaded from SGD’s FTP site: http://down
loads.yeastgenome.org/chromosomal_feature/scerevisiae_
regulatory.gff. For the 102 transcription factors, there were
1,918 putative effectors genes, which have at least one
transcription factor binding site within 1,000 bp upstream of
transcription start site. For gene interaction data we used
data on 5,203 genes from BioGRID (http://www.thebio
grid.org/ downloads/datasets/SGD.tab.txt). We used gene
annotation information from Gene Ontology (http://
www.geneontology.org/) to infer the type of the influence of
individual transcription factors. Transcription factors
(N¼ 26) annotated with either of the terms ‘‘positive regu-
lation of transcription’’ (GO:0045941; GO Biological Process),
‘‘transcription activator activity’’ (GO:0016563; GO Mole-
cular Function), and ‘‘transcription coactivator activity’’
(GO:0003713; GO Molecular Function) were considered as
having a positive influence on transcription. Transcription
factors (N¼ 40) annotated with either of the terms ‘‘nega-
tive regulation of transcription’’ (GO:0016481; GO Biological
Process), ‘‘transcription repressor activity’’ (GO:0016564; GO
Molecular Function), ‘‘general transcriptional repressor
activity’’ (GO:0016565; GO Molecular Function), ‘‘specific
transcriptional repressor activity’’ (GO:0016566; GO Mole-
cular Function), ‘‘transcription corepressor activity’’
(GO:0003714) were considered as having a negative influ-
ence on transcription.

Additional manual literature search was performed to de-
termine the influence of three transcription factors of interest
for the studies we report. Transcription factors Rtg3 and Ste12
were determined to activate expression, and transcription
factor Ume6 to repress expression.

Strains and media, growth assay

The BY4741 (MATa his3D leu2D met15D ura3D) strain was
used as the wild-type (WT) reference and all deletion mutants
were haploid derivatives of BY4741. Standard YPD medium
was used (1% yeast extract, 2% peptone, 2% glucose). Rapa-
mycin (LC Laboratories, USA) was added to 5 nM final con-
centration, unless otherwise stated. Growth assay was
performed as described in (St Onge et al., 2007), with some
modifications. Individual deletion strains were grown over-
night in YPD. Cell cultures were then diluted to an initial
OD600 of *0.05 in YPD containing 5 nM rapamycin and
control YPD and grown in 300 mL volumes in 96-well plates in
Tecan Sunrise microplate reader until stationary phase. The

growth of each culture was monitored by measuring the
OD595 every 2 min with constant shaking between measure-
ments. The growth rate (K) was determined as the slope of the
growth curve during exponential growth. The relative growth
fitness (R) of a strain was calculated as: R¼ (KrapaD/KrapaWT)/
(KD/KWT), where KrapaD and KD are the growth rates of the
deletion strain in rapamycin containing and control medium,
respectively, and KrapaWT and KWT are the growth rates of the
wild-type strain in rapamycin containing and control me-
dium, respectively. The final R was calculated from three in-
dependent biological experiments performed in two parallels
each.

DNA microarray experiment

Yeast cultures for the DNA microarray experiment were
prepared as described by Hardwick and coworkers (1999),
with some modifications. Briefly, wild-type strain or ume1D
strain (strain with deleted UME1 gene from the yeast deletion
collection; see EUROSCARF at http://web.uni-frankfurt.de/
fb15/mikro/euroscarf/) was inoculated in 50 mL of YPD me-
dium and grown overnight. The culture was diluted 1:200 in
YPD prewarmed to 308C and allowed to grow to OD600 *1.0.
Rapamycin was added to a final concentration of 100 nM. After
90 min the cells were harvested by filtration, frozen in liquid
nitrogen, and stored at �808C until RNA isolation.

DNA microarrays were a kind gift from J.L. DeRisi. Micro-
array postprocessing, RNA sample preparation, cDNA syn-
thesis, labeling, and DNA microarray hybridizations followed
published procedures (DeRisi et al., 1997; http://derisilab.
ucsf.edu/data/microarray/protocols.html), with some modi-
fications. For cDNA synthesis in the presence of amino-allyl
dUTP 5mg mRNA were used. The test cDNA sample (i.e., ra-
pamycin treatment) was labeled with Cy5 and the control
sample (i.e., no treatment) with Cy3 fluorescent dye. For
cleanup of cDNA synthesis and dye-coupling reactions QIA-
quick PCR purification kit (Qiagen, Chatsworth, CA, USA) was
used. Microarray hybridizations were incubated at 658C for
16 h. Microarrays were scanned with GenePix Personal 4100A
microarray scanner (Axon Instruments, Union City, CA, USA)
and analyzed using GenePix Pro 5.0 software (Axon Instru-
ments). Cy5 and Cy3 intensities were background-corrected
(median background intensities subtracted from median
intensities) and normalized using a regression correlation
(NOMAD; http://ucsf-nomad.sourceforge.net/). We used the
sliding window method described in (Quackenbush, 2002) and
in Yang et al. (2002) to calculate Z-scores based on the R-I (ratio-
intensity) plot, where R¼ log2(Cy5/Cy3) is the normalized
ratio of intensities and I¼ 0.5�[log2(Cy5)þ log2(Cy3)]. Two
thresholds were used to select differentially expressed genes:
genes with absolute Z-score above or equal to 1 were selected in
the less stringent filtering procedure where the number of false
negatives was minimized (true positives at 86% confidence
level), and genes with absolute Z-score above or equal to 1.96
were selected in the more stringent filtering procedure (true
positives at 95% confidence level). In the experiment where the
transcriptomes of the wild-type and ume1D strains were com-
pared, we used the statistical approach for replicate filtering
described in Yang et al. (2002) to detect the outliers between the
two experiments: if the two experiments are similar, then the
Cy5/Cy3 intensity ratios of a given gene in the two experiments
should be the same. If we define RWT(g)¼ log2[Cy5WT(g)/
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Cy3WT(g)] and Rume1d(g)¼ log2[Cy5ume1d(g)/Cy3ume1d(g)],
then for each gene g, the ratio RWT(g)�Rume1d(g) should be
equal to zero. We calculated the mean and standard deviation
(SD) of this difference for all genes in the two experiments.
Genes, where difference |RWT(g)�Rume1d(g)| was more than 2
SD from the mean, were considered outliers, that is, they sig-
nificantly differed between the two experiments.

All DNA microarray data is available from the ArrayEx-
press database (accession number: E-MEXP-1782).

Inference of pathways

The proposed method infers the molecular mechanism of
the action of perturbers from (chemo)genetic interaction and
gene expression data and is outlined in Figure 1. As an input,
the method uses two experimental data sets related to the
perturber under study: (1) a list of all perturber–gene inter-
actions, and (2) a gene expression matrix of all genes in the
genome of cells treated with the perturber. It can handle
generators of perturbations of any kind: a mutation, a bioac-
tive small molecule, or an overexpressed protein, either endo-
or exogenous. The method also requires the user to define a set
of regulators for which the pathways will be inferred. In our
experimental setup reported above, this set was composed of
S. cerevisiae genes coding for the transcription factors from
Harbison et al. (2004).

The method then proceeds in the following steps:

1. For a set of regulators, identify genes that are present in
the list of perturber–gene interactions.

2. Use previously published data to determine the rela-
tionship (activation, repression) between the regulators
found in Step 1 and their effector genes. Besides the
results of ChIP–chip experiments for a large number of
transcription factors (e.g., Harbison et al., 2004; Lee
et al., 2002), also some modifications of this dataset
(e.g., Beyer et al., 2006) are useful examples of such data
sets, and the activating or repressing function is derived
by literature search.

3. From the set of effectors identified in Step 2, keep only
those whose expression is significantly altered under
the perturbation. The significance of gene expression
change was measured as indicated above.

4. From the set of regulators from Step 1 keep only those
that potentially regulate at least one effector gene from
Step 3. Using the list of regulators and effectors, con-
struct a gene interaction network that includes the re-
lations identified in Step 2.

5. For each regulator in the interaction network from Step
4 there are Nup upregulated effector genes and Ndown

downregulated effector genes. Let N be the total num-
ber of effector genes for this regulator (Step 1). Assign
each regulator a score computed as max(Nup, Ndown)/N
to assess the proportion of effector genes which chan-
ged the expression in the prevailing direction.

6. Based on: (a) the type of (chemo)genetic interaction of
the perturber with the regulator [alleviating—the effect
of the mutation of the regulator is less severe than ex-
pected, or aggravating—the effect of the mutation of the
regulator is more extreme than expected; see also Mani
et al. (2008)]; (b) the type of effect of the regulator on the
effectors (activating/repressing); and (c) the prevailing
direction of the change of gene expression in the group

of effectors (up-/downregulated), associate each regu-
lator with a description of its interaction with the per-
turber, using the corresponding rule from Figure 3.

The final model for the molecular mechanism of the action
for the perturber inferred by the method is thus composed of
the regulator–effectors network (Step 5), the scores associated
with each of the regulators, and the predictions for all regu-
lator–effectors pathways affected by a perturbation. By in-
cluding an edge with a type of regulation as determined from
Step 6 from the perturber to all of the regulator genes, the
model is then visualized as a network (see Fig. 4A for an
example).

Results

We first determined chemogenetic interactions between
rapamycin and transcription factors encoding genes in yeast
S. cerevisiae. We have used the data from the study by Xie and
coworkers (2005), where among 373 haploid single gene
mutants with altered sensitivity to rapamycin in an agar-
based screening, 29 mutated genes are annotated to the
‘‘transcription regulator activity’’ gene ontology term. Eight
of these (GAT1, GLN3, HAP2, HAP3, HAP5, RTG3, UME1,
and UME6) code for transcription factors for which data is
available on their binding to regulatory sequences on the
genome-wide scale (Harbison et al., 2004). We experimentally
determined the relative growth rates compared to the wild-
type strain in the presence of rapamycin for gene deletion
strains of these eight genes, using growth curve measure-
ments in liquid medium (Table 1). In addition, we determined
the same parameter for strains with deleted HAP4, MSN2, and
MSN4 genes, which have not been identified in the screening
(Xie et al., 2005), but have been previously reported to be
functionally related to rapamycin (Beck and Hall, 1999;
Shamji et al., 2000), and for which data exists on their binding
to regulatory sequences (Harbison et al., 2004). Our results
confirmed chemogenetic interaction between rapamycin and
10 out of the 11 genes included in the analysis—Msn2 being
the only exception, because its deletion does not significantly
alter the growth rate of rapamycin-treated cells. This set of 10
genes (Table 1) and their interactions was used in consequent
analysis by the proposed method.

We used gene expression data from our own DNA micro-
array experiment following the same rapamycin treatment
protocol as in Hardwick et al. (1999). To minimize the number
of false negatives, we initially used a less stringent differen-
tially expressed gene filtering procedure by selecting the
genes with absolute Z-scores above or equal to 1.

The inferred network is shown in Figure 4A, and details on
the functional relationships between rapamycin treatment
and transcription factor–effectors pathways are presented in
Figure 4B (html version available at http://www.ailab.si/
perturbagen/examples/RapamycinZLs/results.html). The
transcription factors are ranked according to the ratio be-
tween the number of putatively regulated genes with signif-
icantly changed expression level in the prevailing direction
caused by rapamycin and the total number of genes puta-
tively regulated by the transcription factor. Thus, the highest
score (4/7¼ 0.571) was assigned to the Rtg3 transcription
factor, which putatively binds to the regulatory region
of seven genes (Harbison et al., 2004), four of which were
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upregulated. The predictions describing the relation between
rapamycin and transcription factors were predominantly
based on the formal rule Transcription factor is (in) the target
(pathway) of the inhibitory action of the perturbation; its activation
causing detrimental effects: this rule was assigned to Gln3, Gat1,
Hap2, Hap3, Hap4, Hap5, Rtg3, and Ume1 transcription
factors, whose activation, according to the prediction, in the

presence of rapamycin harms the cells. The prediction for
Ume6 was Regulator with an effect that opposes the effect of ra-
pamycin, and for Msn4 the method’s prediction is that this
Regulator is required for activating the expression of the genes in-
volved in positive adaptation to perturber.

The functional interaction between Ume1 and rapamycin
was inferred based on a single gene with significantly altered
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expression level, out from total of three genes putatively
regulated by Ume1 according to Harbison et al. (2004). Be-
cause Ume1 has been identified as a component of the Rpd3
repression complex (Keogh et al., 2005; Kurdistani et al.,
2002), three regulated genes are almost cetainly an underes-
timate. This fact thus gave us an opportunity to test the de-
veloped method on an example with incomplete data. To test
whether the predicted interaction indeed exists, we per-
formed whole-genome gene expression experiments com-
paring the wild-type and ume1D strains under rapamycin
treatment and control conditions. The genes with different
expression behaviour (i.e., the outliers, as described in the
Materials and Methods section) were significantly enriched
for the maturation of SSU–rRNA from tricistronic rRNA tran-
script biological process ( p¼ 10�5) and snoRNA binding mo-
lecular function ( p¼ 1.34�10�5) Gene Ontology terms. The

respective 18 genes were all downregulated in the presence of
rapamycin in the wild-type strain, but did not significantly
change their expression in the ume1D strain (Table S1 at
http://www.ailab.si/supp/perturbagen/).

To verify the predicted relations between rapamycin and
the transcription factors in chemogenetic interaction with it,
we used gene expression data from an independent study
(Hardwick et al., 1999) and employed the same fourfold
change threshold for differential expression as proposed by
the authors of the study. The predicted relations were exactly
the same, with the only difference in the case of UME1, where
the prediction [Transcription factor UME1 is (in) the target
(pathway) of the inhibitory action of rapamycin; its inhibition
causing detrimental effects] was again based on a single differ-
entially expressed gene (Fig. S1 at http://www.ailab.si/
supp/perturbagen/).

To test how different threshold levels for differential ex-
pression determination affect the results obtained with the
method, we set a more stringent threshold and selected the
genes with absolute Z-score above or equal to 1.96, to mini-
mize the number of false positives. The results (Fig. S2 at
http://www.ailab.si/supp/perturbagen/) somewhat differ
from the ones obtained using less stringent filtering—the role
of Rtg3 and Hap3 is not predicted, and the proposed rules are
different for Hap5 and Msn4—but, importantly, in this case
for six out of the eight transcription factors (Gat1, Hap2,
Hap4, Hap5, Msn4, and Ume1), the rule is predicted on the
basis of a single effector gene.

To test the proposed method on a perturber with less
pronounced transcription-related effects, we analyzed the
data on genome-wide effects of a DNA-damaging substance
MMS. We compared the results obtained by our method to
those obtained in a comprehensive study that mapped the
transcriptional network controlling the DNA damage re-
sponse by measuring genome-wide binding locations for 30
DNA damage-related transcription factors after exposure of
yeast cells to MMS, generating global hypotheses of how

Table 1. Relative Growth Fitness of Selected

Transcription Factor Mutant Strains,

Compared to the Wild-Type Strain

Mutated
gene

Relative growth
rate (�SD)

Type of interaction
(aggravating, alleviating)

GLN3 2.79 (�0.09) Alleviating
HAP4 1.63 (�0.08) Alleviating
UME6 0.40 (�0.11) Aggravating
RTG3 1.42 (�0.10) Alleviating
UME1 1.30 (�0.01) Alleviating
HAP2 1.16 (�0.01) Alleviating
MSN4 0.87 (�0.00) Aggravating
HAP3 1.22 (�0.12) Alleviating
HAP5 1.23 (�0.14) Alleviating
GAT1 1.09 (�0.07) Alleviating

MSN2 0.98 (�0.05) None

Names of the genes constituting the set that represents genetic
interaction input data for the method are marked in bold.

FIG. 4. Comparison of the predicted model of the molecular mechanism of rapamycin activity in yeast cells generated using
our method with the current model (Wullschleger et al., 2006). (A) The method predicted Rtg3, Gln3, Gat1, and Hap2/3/4/5
as transcription factors in the target pathway of rapamycin, which are activated by the perturber; Ume1 as a regulator in the
target pathway of the inhibitory action of rapamycin and its activation causing detrimental effects; Ume6 as a transcription
factor with an effect that opposes the effect of rapamycin, and Msn4 as a regulator that is required for activating the
expression of the genes involved in a positive adaptation to rapamycin. Purple genes denote alleviating chemogenetic
interaction, and blue ones aggravating chemogenetic interaction with rapamycin. Red arrows denote activation and green
blunt arrows inhibition. Dotted lines mark physical interaction between transcription factors. (B) Snapshot of the results table
of transcription factors evaluated by the method and ranked by the assigned score. Columns show (from left to right): name
of the transcription factor encoding gene; type of interaction between perturber and the gene (‘‘þ’’—alleviating interaction,
‘‘�’’—aggravating interaction); orientation of the change in expression of transcription factor target genes under conditions of
the perturber activity; the number of genes in the database to whose promoter sequences the transcription factor binds and
that have significantly changed expression level under conditions of the perturber activity; the number of all genes in the
database to whose promoter sequences the transcription factor binds; the arbitrary ranking score (calculated as the ratio of
numbers from the former two columns); nature of the transcription factor (A—transcription activator; R—transcription
repressor); the method’s prediction of the type of interaction between the perturber and the transcription factor. (C) The
current model proposes Rtg3, Gln3, Gat1, and Hap2/3/4/5 as being activated by rapamycin through canonical pathway (i.e.,
indirectly, through its inhibition of TOR, which normally inhibits the activity of these seven transcription factors through
Tap42 and Ume2 proteins) (Wullschleger et al., 2006), Msn2/4 as being indirectly activated by rapamycin, which causes their
translocation into nucleus (Shamji et al., 2000), and Ume6 as a transcription factor with an effect that opposes the effect of
rapamycin by having an opposite effect on gene expression than Gln3 (Blinder et al., 1996). The proposed method builds from
data on transcription factors binding to their target promoter sequences and therefore does not include other types of
regulators, such as protein kinases (e.g., TOR proteins). (A) and (B) are snapshots of the Web-based tool results page
accessible at http://www.ailab.si/perturbagen/examples/RapamycinZLs/results.html.

‰
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cellular signalling and transcription are integrated after DNA
damage (Workman et al., 2006). Genes encoding the 30 tran-
scription factors were used as the input data for chemogenetic
interactions for our method, and gene expression data were
taken from Gasch et al. (2001). Genes regulated by 10 of the 30
transcription factors, including all four implicated as MMS-
connected by multiple criteria according to Workman et al.
(2006), had significantly changed expression levels, enabling
prediction of the interactions of these 10 transcription factors
with MMS. Six of them (Dal81, Rtg3, Rpn4, Yap1, Gcn4, and
Swi6) were predicted to be required for activating the ex-
pression of genes involved in (positive) adaptation to MMS,
and four of them (Swi5, Fkh2, Swi4, and Sok2) were predicted
to have an effect that opposes the effect of the perturbation
(Fig. S3 at http://www.ailab.si/supp/perturbagen/).

Discussion

With traditional approaches, many years of experimenta-
tion are usually required to complete the model of action of a
given perturber on cells. Provided the availability of the ap-
propriate data, the method presented here infers a network of
directed and annotated functional interactions between a
perturber and transcription factors combining genome-wide
(chemo)genetic interaction and gene expression data. In the
test case of the reconstruction of the model of activity of ra-
pamycin on its molecular targets in yeast cells, 8 out of 10
transcription factors, Gln3, Gat1, Hap2, Hap3, Hap4, Hap5,
Rtg3, and Ume1 were assigned the formal rule Transcription
factor is (in) the target (pathway) of the inhibitory action of the
perturbation; its activation causing detrimental effects. With the
exception of Ume1 (see below), these transcription factors
are known to be under the negative control of TOR and thus in
the rapamycin target pathway (Fig. 4C), and are as such in-
directly activated by rapamycin treatment (Shamji et al.,
2000). Rapamycin treatment induces expression of the genes

they regulate, which is the main mechanism of its toxicity in
yeast (Blinder et al., 1996; Shamji et al., 2000)—the method’s
prediction is thus in complete accordance with the accepted
mechanism of action. Ume6, on the other hand, has an op-
posite effect on gene expression, as a function of nitrogen
availability, compared to Gln3 (Dubois and Messenguy,
1997), and in accordance with this the method correctly pre-
dicted that Ume6 is a Regulator with an effect that opposes the
effect of rapamycin. For Msn4, the method’s prediction is that
this Regulator is required for activating the expression of the genes
involved in positive adaptation to perturber, which is in accor-
dance with the function of this protein, which activates the
expression of genes building a general stress response in yeast
(Gasch et al., 2000). More specifically, rapamycin promotes
nuclear localization of Msn4 through a different pathway as in
the case of Gln3 and Gat1 transcription activators (Beck and
Hall, 1999), and the orientation of chemogenetic interaction is
opposite: whereas gln3 and gat1 mutants are more resistant to
rapamycin treatment than the wild-type strain, msn4 mutant
is more sensitive, revealing that its activity protects the cells
from detrimental effects of rapamycin. Because Msn2 and
Msn4 have overlapping functions, it is reasonable to assume
that a buffering effect exists between the two genes also in the
case of the response to rapamycin, which could explain why
the deletion of only one of these two genes, MSN4, resulted in
a measurable phenotype. Alternatively, this result could in-
dicate an MSN4-specific function in the cellular response to
rapamycin. The currently accepted model of the pathways
affected by rapamycin was thus successfully reproduced,
demonstrating that the proposed network inference approach
can provide biologically meaningful results.

The functional interaction between Ume1 and rapamycin
was inferred based on a single gene with significantly altered
expression level, providing an opportunity to test the devel-
oped method on an example with incomplete data. Gene ex-
pression experiment comparing the wild-type and ume1D

FIG. 5. Comparison of the prediction of MMS–transcription factor relations as predicted by our method with the model
obtained in the study of Workman and coworkers (2006). The method’s prediction is in absolute agreement with the model,
and it takes the level of understanding a step further by predicting the causal relationship between the transcription factors
and MMS. Transcription factors predicted to oppose the effect of MMS (circled in yellow) function in cell cycle, whereas the
ones predicted to be required for adaptation to MMS (circled in purple) function in stress response and metabolism.
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strains under rapamycin treatment and control conditions
were performed and 279 genes were identified, which had
significantly different expression pattern in the ume1D strain
compared to the wild-type strains. These genes are enriched
for the maturation of SSU–rRNA from tricistronic rRNA tran-
script and snoRNA binding Gene Ontology terms, and all the
respective genes were downregulated in the presence of ra-
pamycin in the wild-type strain, but not in the ume1D strain.
Because Ume1 is a negative regulator of gene expression
(Keogh et al., 2005; Kurdistani et al., 2002; Mallory and Strich,
2003; Strich et al., 1989), this is exactly the group where dif-
ferences between ume1D strain and the wild-type strain were
expected, and expression of these genes is apparently re-
pressed by Ume1 when cells are treated with rapamycin.
These results are in line with the known function of Ume1, the
transcription factor best known as a negative regulator of the
expression of a subset of meiotic genes during vegetative
growth, being a component of Rpd3 repression complex
which is involved in the inactivation of yeast ribosomal DNA
genes (Sandmeier et al., 2002). These experimental data con-
firmed the prediction of the method for Ume1 that Tran-
scription factor is (in) the target (pathway) of the inhibitory action of
the perturbation; its activation causing detrimental effects. When
using data from an independent study (Hardwick et al., 1999)
as gene expression input data, the predicted relations for nine
of the transcription factors were exactly the same as with our
own experimental data, with the only difference in the case of
UME1, where the prediction [Transcription factor UME1 is (in)
the target (pathway) of the inhibitory action of rapamycin; its in-
hibition causing detrimental effects] was again based on a single
differentially expressed gene. However, as described above,
input data on genes regulated by Ume1 is incomplete, and our
own as well as published results clearly demonstrate that
rapamycin activates, and not inhibits, Ume1 activity. This
discrepancy nicely exemplifies how complete data sets—in
this case one linking transcription factors to their target
genes—will enhance the performance of methods such as the
one developed in this study.

In line with this, when a stringent threshold was used to
select for differentially expressed genes, resulting in the
majority of predictions for rapamycin transcription factor
relation being based on a single effector gene, the predictions
were less accurate (Fig. S2). We therefore suggest using a less
stringent threshold in the proposed method, because too
stringent filtering results in a larger number of false negative
results, leading to inaccurate predictions. On the other hand,
the negative effect of a higher number of false positives is
diminished due to the fact that in addition to gene expres-
sion data (chemo)genetic interaction data are used to gen-
erate predictions, and in this way the noise coming from
relatively high false positive rate is filtered out, as demon-
strated by the accuracy of prediction of the mechanism of
action of rapamycin (Fig. 4).The method was also used to
analyze the relation between MMS and 10 transcription
factors implicated in the cellular response to DNA damage
caused by MMS. Dal81, Rtg3, Rpn4, Yap1, Gcn4, and Swi6
were predicted to be required for activating the expression of
genes involved in adaptation to MMS, and Swi5, Fkh2, Swi4,
and Sok2 were predicted to have an effect that opposes the
effect of MMS. As expected, because cell cycle is the process
most directly affected by DNA damage, all four genes from
the latter group of genes with opposite effect to MMS, and

only one from the former (Swi6), are cell cycle regulators.
The remaining five transcription factors, which were all
predicted to be required for adaptation to MMS, are in-
volved in either stress response or metabolism—processes
that are indeed involved in the adaptation to cellular dam-
age (Fig. 5) (Workman et al., 2006). Even though MMS does
not directly affect transcription in a way that rapamycin
does, Workman and coworkers (2006) concluded that dif-
ferential expression of genes does not significantly overlap
with the set of genes required for resistance to MMS, but that
the transcription factors most essential for cellular recovery
are also the most central to the MMS transcriptional re-
sponse. Our results are in absolute agreement with this, and
they take the level of understanding a step further by pre-
dicting the causal relationship between the transcription
factors and the perturber—MMS.

The proposed integrated data analysis technique relies on
the hierarchical structure of relationships and exploits the
prevailing direction of change of gene expression to infer the
rules that predict the effect of perturbation on the observed
pathway. The approach requires the availability of the data
that relates a perturber to the set of regulators and their re-
lation to the effector genes. The availability of such data de-
pends on the type of the perturber under study, and in the lack
of databases that would systematically store this type of data
sets the collection of the data set and their preprocessing could
not be fully automated at this stage. Our study showed that
the method is applicable, whereas the current implementation
could be further extended with automated data preprocessing
steps once the comprehensive repositories with standardized
perturbation experiments become available. With the devel-
opment of novel techniques (e.g., Badis et al., 2008), the
method could in the future be applicable also to other
organisms.

Conclusions

We developed an integrative computational method that
infers a network of directed and annotated functional inter-
actions between a perturber and transcription factors. Our
approach is based on experimental gene expression and
(chemo)genetic interaction input data and the set of pre-
defined inference rules. As an example, the method was used
to reproduce the model of molecular mechanism of action of
rapamycin. We demonstrated that successful reconstruction
of the model of activity of rapamycin on its molecular targets
in yeast cells, which otherwise took many years of both
genome-wide and focused experimentation, is attainable by
combining only chemogenetic interaction and gene expres-
sion data and cannot be inferred from each of the two sources
alone. The proposed method could thus be generally useful to
infer the molecular mechanisms of the action of molecules
with potential biomedical or biotechnological importance in a
rapid and straightforward manner: two relatively simple ex-
perimental approaches in a well-annotated model organism
generate sufficient data for the method to formulate a com-
prehensive and reliable hypothesis for the molecular mecha-
nism of the molecule’s biological activity, provided that the
molecule has sufficient effect on gene expression and tran-
scription factors. This development brings functional geno-
mics approaches a step closer toward becoming a technology
with high predictive potential.
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Department of Molecular and Biomedical Sciences
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