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Abstract

In Artificial Intelligence (AI), there exist formalised approaches and algorithms for
general problem solving. These approaches address problems that require combina-
torial search among alternatives, such as planning, scheduling, or playing of games
like chess. In these approaches, problems are typically represented by various kinds
of graphs, and problem solving corresponds to searching such graphs. Due to their
combinatorial complexity, these problems are solved by heuristic search methods
where problem-specific heuristics represent the solver’s knowledge about a concrete
problem domain. Thus such computer-based approaches to problem solving roughly
consist of two components: search among alternatives, and problem-specific knowl-
edge. Computer methods of heuristic search are also a good model of human problem
solving. In human problem solving, however, these two components take very differ-
ent dimensions compared with machine problem solving. A human expert typically
uses much richer domain-specific knowledge whereas the computer has the advan-
tage of incomparably faster search compared to the human.

The thesis presents some novel aspects on the comparison and combination of
search and knowledge in human and machine problem solving, in particular with
respect to possibilities of developing heuristic-search methods for evaluating and im-
proving problem-solving performance. Among others, the following scientific ques-
tions are addressed. How can a computer be used to assess a human’s problem-
solving performance? How can a machine problem solving model be used to assess
the difficulty of a given set of problems for a human? How can machine problem
solving be used in tutoring, for teaching a human to solve problems in a given prob-
lem domain? How can knowledge represented in a form suitable for the computer, be
transformed into a form that can be understood and used by a human? In this thesis
we explore these questions in the framework of human and computer game playing,
and use the game of chess as the experimental domain.

In Part I of the thesis, “Search and Knowledge for Estimating Human Problem
Solving Performance,” we demonstrate that heuristic-search based programs can be
useful estimators of human problem-solving performance. We introduced a novel
method, based on computer heuristic search, for evaluating problem-solving perfor-
mance in chess (with possible extensions to other games), and provided an analysis
of appropriateness of this method. Experimental results and theoretical explanations
were provided to show that, in order to obtain a sensible ranking of the chess players
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using our method, it is not necessary to use a computer that is stronger than the chess-
players themselves. We also designed a heuristic-search based method for assessing
the average difficulty of a given set of chess positions (problem situations).

In Part II, “Search and Knowledge for Improving Human Problem Solving Per-
formance,” we presented a novel, heuristic-search based approach to automated gen-
eration of human understandable commenting of decisions in chess. We also demon-
strated a novel approach to the formalization of complex patterns for the purpose
of annotating chess games using computers. Finally, we introduced a procedure for
semi-automatic synthesis of knowledge suitable for teaching how to solve problems
in a given domain. We verified appropriateness of this procedure in a case study
where we applied it to obtain human-understandable textbook instructions for teach-
ing a difficult chess endgame.

Part III, “On The Nature of Heuristic Search in Computer Game Playing,” aims
at improving the understanding of properties of heuristic search and consequences
of the interaction between search and knowledge that typically occurs in both hu-
man and machine problem solving. Monotonicity property of heuristic evaluation
functions for games was revisited. Namely, that backed-up values of the nodes in
the search space have to tend to approach monotonically to the terminal values of the
problem state space with the depth of search. We pointed out that backed-up heuristic
values therefore do not approximate some unknown “true” or “ideal” heuristic val-
ues with increasing depth of search, in contrast to what is generally assumed in the
literature. We also discussed some of possible impacts of this property on the theory
of game playing, and pointed out that heuristic evaluations obtained by searching to
different search depths are not directly comparable, in contrast to what is generally
assumed both in literature and in practical applications. Finally, we studied experi-
mentally factors which influence the behavior of diminishing returns with increased
search. Empirical proof was provided that the rate of changed decisions that arise
from search to different depths depends on (1) the quality of knowledge in evaluation
functions, and (2) the value of a node in the search space.

Keywords

artificial intelligence, heuristic search, problem solving; heuristic evaluation func-
tions, estimating problem-solving performance, intelligent tutoring, intelligent anno-
tating, expert systems, knowledge elicitation; game playing, chess, computer chess
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Povzetek

V umetni inteligenci obstajajo formalizirani in algoritmizirani pristopi k reševanju
problemov, ki so po svoji naravi kombinatorični, kot je npr. načrtovanje operacij
ali igranje miselnih iger. V teh pristopih so problemi predstavljeni s problemskim
prostorom, ki je značilno neke vrste graf, reševanju problema pa ustreza preisko-
vanje ustreznega grafa. Zaradi kombinatorične zahtevnosti se ti problemi rešujejo
s hevrističnimi metodami preiskovanja, pri katerih problemu specifične hevristike
predstavljajo znanje o konkretni problemski domeni. Tako ti računalniški pristopi v
umetni inteligenci v grobem vsebujejo dve komponenti: specifično znanje o prob-
lemu ter preiskovanje med alternativami. Metode hevrističnega reševanja problemov
so tudi dober model človeškega reševanja problemov, ki prav tako odraža ti dve kom-
ponenti. Seveda pa sta pri računalnikih in ljudeh ti dve komponenti zelo različno
zastopani. Človek – ekspert tipično uporablja veliko bogatejše znanje o samem prob-
lemu, medtem ko je prednost računalnika v neprimerno hitrejšem preiskovanju.

Doktorske disertacija obravnava možnosti razvoja metod, temelječih na hevristič-
nem preiskovanju, za ocenjevanje in izboljševanje uspešnosti pri človeškem in raču-
nalniškem reševanju problemov. Vsebuje tudi prispevke k splošnemu razumevanju
lastnosti hevrističnega preiskovanja ter posledic interakcije med znanjem in preisko-
vanjem, tipično prisotne pri reševanju problemov, tako pri ljudeh kot pri računalnikih.
Med drugim smo si zastavili naslednja vprašanja. Kako uporabiti računalnik pri
ocenjevanju uspešnosti človekovega reševanja problemov? Kako z modelom računal-
niškega reševanja oceniti, kako težavni so konkretni dani problemi za človeka? Kako
bi lahko računalniško reševanje problema uporabili za poučevanje človeka o reševanju
problemov v dani problemski domeni? Kako transformirati znanje, izraženo v obliki,
primerni za računalnik, v obliko, ki jo razume in lahko uporabi človek? V doktorski
disertaciji so ta vprašanja naslovljena v ogrodju človeškega in računalniškega igranja
iger, šah pa je uporabljen kot raziskovalna domena.

V prvem delu disertacije, “Ocenjevanje uspešnosti ljudi pri reševanju proble-
mov”, smo pokazali, da so programi, ki temeljijo na hevrističnem preiskovanju, lahko
uspešni ocenjevalci uspešnosti ljudi pri reševanju problemov. Predstavili smo novo
metodo, temelječo na hevrističnem preiskovanju, za ocenjevanje uspešnosti reševanja
problemov v šahu (z možnostjo razširitve na ostale igre), in pokazali verodostojnost
te metode. Eksperimentalni rezultati in teoretične razlage so podprle našo tezo, da
lahko računalniški program z uporabo naše metode ustrezno razvrsti šahiste glede
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na njihovo uspešnost pri reševanju problemov, četudi je po šahovski moči slabši od
njih. Prav tako smo razvili novo metodo, ki temelji na računalniškem hevrističnem
preiskovanju, za ocenjevanje povprečne težavnosti množice šahovskih pozicij (prob-
lemskih situacij) za človeka.

V drugem delu disertacije, “Izboljševanje uspešnosti ljudi pri reševanju proble-
mov”, smo najprej predstavili nov pristop, temelječ na računalniškem hevrističnem
preiskovanju, k avtomatskemu in hkrati človeku razumljivemu komentiranju odločitev
v šahu. Razvili smo nov pristop k formalizaciji kompleksnih vzorcev za namen
računalniškega komentiranja šahovskih partij. Predstavili smo tudi nov pristop k
polavtomatskemu pridobivanju človeku razumljivega znanja, primernega za poučeva-
nje reševanja problemov v dani problemski domeni. Ustreznost tega pristopa smo
preverili s študijo, kjer smo z njegovo uporabo pridobili človeku razumljiva navodila
za poučevanje težavne šahovske končnice.

Tretji del disertacije, “O naravi hevrističnega preiskovanja pri računalniškem ig-
ranju iger”, stremi k izboljšanju razumevanja lastnosti hevrističnega preiskovanja in
posledic interakcije med znanjem in preiskovanjem, tipično prisotne pri reševanju
problemov, tako pri ljudeh kot pri računalnikih. Raziskali smo lastnost monotonosti
hevrističnih ocenjevalnih funkcij pri igranju iger: z naraščajočo globino preiskovanja
morajo vzvratne ocene vozlišč težiti k monotonemu približevanju končnim vrednos-
tim v prostoru preiskovanja. Vzvratne ocene torej ne aproksimirajo nekih “resničnih”
vrednosti ali “idealnih” hevrističnih vrednosti, kar se sicer v literaturi na splošno
predpostavlja. Razložili smo nekaj možnih vplivov lastnosti monotonosti na teorijo
igranja iger. Pokazali smo, da hevristične ocene, pridobljene pri različnih globinah
iskanja, niso primerljive med seboj, kot je sicer splošno predpostavljeno tako v li-
teraturi kot v praktičnih aplikacijah. V nadaljevanju smo izvedli eksperimentalno
študijo v zvezi z dejavniki, ki vplivajo na spreminjanje odločitev z globino preisko-
vanja. Empirično smo dokazali novi ugotovitvi, da je pogostost razlik v odločitvah,
ki temeljijo na različnih globinah preiskovanja, odvisna od (1) kvalitete hevrističnega
znanja v ocenjevalni funkciji in (2) vrednosti vozlišča v preiskovalnem prostoru.

Ključne besede

umetna inteligenca, hevristično preiskovanje, reševanje problemov; hevristične ocen-
jevalne funkcije, ocenjevanje uspešnosti pri reševanju problemov, inteligentno pouče-
vanje, inteligentno komentiranje, ekspertni sistemi, zajemanje znanja; igre, šah
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Chapter 1

Introduction

In Artificial Intelligence (AI), there exist formalized approaches and algorithms for
general problem solving. These approaches address problems that require combina-
torial search among alternatives, such as planning, scheduling, or playing of games
like chess. In these approaches, problems are typically represented by various kinds
of graphs, and problem solving corresponds to searching such graphs. Due to their
combinatorial complexity, these problems are solved by heuristic search methods
where problem-specific heuristics represent the solver’s knowledge about a concrete
problem domain. Thus such computer-based approaches in AI roughly consist of two
components: search among alternatives, and problem-specific knowledge.

Computer methods of heuristic search are also a good model of human prob-
lem solving which also exhibits these two components: search and domain-specific
knowledge. These two components, however, take very different dimensions in hu-
man problem solving compared with machine problem solving. A human expert
typically uses much richer domain-specific knowledge whereas the computer has the
advantage of incomparably faster search compared to the human. The well-known
pioneering work on the modeling of computer problem solving with computer prob-
lem solving was carried out by A. Newell and H. Simon [NS72].

This thesis presents some novel aspects on the comparison and combination of
search and knowledge in human and machine problem solving, in particular with
respect to possibilities of developing heuristic-search methods for evaluating and im-
proving problem-solving performance. It also aims at improving the understanding
of properties of heuristic search and consequences of the interaction between search
and knowledge that typically occurs in both human and machine problem solving.

7



1. INTRODUCTION

In the introduction, we briefly introduce problem solving, heuristic search, and
interaction between search and knowledge. Then suitability of the game-playing
framework as a platform for research in AI, and appropriateness of the game of chess
as a research domain is discussed. Finally, the major questions behind our research
and contributions to science are stated.

1.1 Problem Solving and Heuristic Search

A person is confronted with a problem when he∗ wants something and does not know
immediately what series of actions he can perform to get it [NS72]. In AI, a typical
general scheme for representing problems is called state space. A state space is a
graph of which the nodes correspond to problem situations, and a given problem is
reduced to finding a path in this graph.

Graph searching in problem solving typically leads to the problem of combinato-
rial complexity due to the rapidly growing number of alternatives. To overcome this
problem, heuristic search is widely used. For the nodes in the state space heuristic
estimates are determined, indicating how promising nodes are with respect to reach-
ing a goal node. The underlying idea is to perform search always from the most
promising node among the candidate nodes [Bra00]. In general, heuristics stand for
strategies that use information to control problem solving in human beings and ma-
chines [Pea84].

1.2 Search and Knowledge

Heuristic search implies usage of both search and knowledge. Knowledge can be
used to guide the search and search may help to confirm the knowledge. A faster pro-
gram can examine more nodes and therefore search deeper. This suggests a possible
solution to solving various types of problems: obtain faster hardware. A different ap-
proach to the problem could draw on extensive knowledge to evaluate problem states
accurately using less searching. Taken to the extreme, a program (or human) with
deep enough understanding of the problem domain might not require any search at all
[Sch86]. In chess, for example, human chess-players usually rely on their knowledge
and experience with the game to perform less searching with position evaluations as

∗For brevity we will use ’he’ (’his’) when ’he or she’ (’his or her’) is meant.

8



1.3. Game Playing as a Platform for AI Research

accurate as possible. Perfect knowledge about a domain renders search unnecessary
and, likewise, exhaustive search obviates heuristic knowledge. In practice, a trade-
off between search and knowledge is found somewhere in the middle, since neither
extreme is feasible for interesting domains [JS99].

Search and knowledge are also fundamental components of expert systems. Ex-
perts systems, in general, contain problem-solving functions capable of using domain-
specific knowledge, and this usually involves searching [Sch86; Bra00]. As knowl-
edge is a key component of every intelligent computer system, obtaining knowledge
is one of the perennial tasks of artificial intelligence. This process, called knowledge
elicitation, is known to be a difficult task and thus a major bottleneck in building a
knowledge base in expert systems [Fei03].

1.3 Game Playing as a Platform for AI Research

Most games of any interest cannot be played at an acceptable level without using
domain knowledge, because the corresponding state space is too large to be searched
completely in a reasonable amount of time. Consequently, they can neither be played
by using knowledge nor search only. Moreover, ever since the beginning of artificial
intelligence, game-playing provided a great platform for improving AI algorithms
and methods. In games, the players (humans or computers) continuously deal with
problems they have to solve. Therefore, game-playing was chosen as a suitable plat-
form for the topics of this thesis.

In the usual game-theoretic framework, the state space is represented by a game
tree. In the practice of computer game playing, only a part of complete game tree is
generated, called a search tree, and a heuristic evaluation function is applied to termi-
nal positions of the search tree. The heuristic evaluations of non-terminal positions
are obtained by applying the minimax principle. That is, the estimates propagate
up the search tree, determining the position values in the search tree. The so-called
minimax search remains an essential component for programs that also incorporate
a large amount of knowledge derived from a humanlike approach to understanding
game states and move choices [Bea99].

Many experiments have been performed in game-playing programs that measure
the benefits of improved knowledge and/or deeper search. In particular, chess has
been a popular domain for these experiments. The explicit or implicit message of
these works is that the results for chess are generalizable to other games [JS99].
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1.4 Chess as a Research Domain

Newell and Simon [NS72] denote chess as a particularly attractive research domain
for human problem solving for several reasons.

• Selecting a move in chess is generally acknowledged to be a difficult problem
solving task.

• The vast amount of recorded experience makes it easy to evaluate the quality
of a chess-playing program and compare it in detail with human players of
different strength, different styles, and even different periods in the history
of the game. Moreover, the protocols produced by a chess program can be
compared with human protocols in the same game positions.

• The task has already been used in previous researches, particularly in the work
by A. de Groot with human chess players [dG78].†

• The irregularity of the structure of chess gives the task some of the flavor of
everyday, garden-variety problem solving that is absent from tasks like proving
theorems or solving puzzles.

Schaeffer [Sch86] advocates that chess has many advantages as a domain for
exploring some of the problems in artificial intelligence. A chess-program’s perfor-
mance is strongly tied to both search algorithms and its domain knowledge. Due to
complexity of the game (around 1046 different positions are possible [Chi96]) perfect
play is not feasible, so chess programs must have general knowledge that attempts
to describe as many positions as possible. The result is that the knowledge is in-
exact (heuristic), and the program must make important quality-of-response versus
effort-expended decisions. He also states the following advantages.

• The game is intellectually challenging; 200 years of intensive analysis has
failed to make it any less interesting and did not exhaust its possibilities.

• The rules of chess are well-defined.

• Chess can be partitioned into manageable subsets; for example restricting the
problem domain to endgame.

†Note that also after the year 1978, several other researchers from the field of psychology used
chess as a research domain.
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• Chess ratings are an accepted method for measuring performance. This is im-
portant in that improvements in the play of a chess program will be reflected in
its ratings.

• There is a large body of chess knowledge to draw on.

• A great deal is known about humans and computers play chess.

• Many AI researchers know how to play chess and are capable of evaluating
results from a chess program. For many other applications, the average re-
searcher is unfamiliar with the domain and must rely on the opinions of others.

In the year 2010, we can add the following statements about the appropriateness
of chess as our research domain.

• The strong chess programs are though opponents even to the strongest human
grandmasters - already surpassing them in many aspects [Kas06].

• Complete tablebases [Tho86], indicating best moves for every position, exist
for chess endgames (up to 6-pieces, including the kings).

• A user-friendly software to work with existing large databases containing mil-
lions of chess games is available and widely used.

• Chess-programs giving high quality decisions about best possible moves from
a given position in a few minutes or sometimes even just in a few seconds are
available and widely used.

• Chess is still a very popular game (or even more popular than in the past).

1.5 Related Work

The aim of this section is not to undertake a full-scale history of a related work in
such a large scientific area such as Human and Machine Problem Solving, but merely
to express a somewhat personal view, in particular with respect to the scope of this
thesis, on the developments in the two highly related scientific fields where an in-
teraction between human cognition and artificial intelligence also plays an important
role.
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1.5.1 Human Problem Solving and Integrated Cognitive
Architectures

Newell and Simon [NS72] presented human cognition as an “Information Process-
ing System” and defined its several different components, including human informa-
tion processing capabilities such as short-term memory, long-term memory, external
memory, perception, etc. They proposed an architecture for human cognition, sug-
gesting that humans are essentially symbol manipulators that perform operations seri-
ally and represent knowledge as production rules, while solving problems by search-
ing through a problem space with explicit representation of goals. Their proposed
architecture is still perceived as a reasonable approximation of human cognition for
the purpose of studying problem solving.

The work by Newell and Simon stimulated several researchers in psychology to
aim towards various theories about human cognition. Newell [New90] introduced his
view on a unified theory of cognition, that is set of mechanisms that account for all
of human cognition, such as human memory, problem solving and planning, recogni-
tion and categorization, skill acquisition, and behavior in general. Such theory must
explain, among other things, how intelligent organisms represent their knowledge,
how they acquire knowledge, and how they operate flexibly according to their envi-
ronment. Various theories for simulating and understanding human cognition were
introduced by different authors [And93b; KWM97; LC06].

Based on theories of human cognition, several integrated cognitive architectures
emerged, such as SOAR [LNR87], ACT-R [ABB+04], and ICARUS [LC06]. All
three share many features of artificial intelligence, including means-end analysis for
problem solving, symbolic representation of knowledge, inference based on produc-
tion rules etc. While so far no cognitive architecture provided a full level of human in-
telligence, many important insights into how human brains work have emerged. Im-
portant properties of cognitive architectures are associated with representation, orga-
nization, utilization, and acquisition of knowledge. They usually include a program-
ming language that lets one construct knowledge-based systems of various kinds.

SOAR (State, operator, and result; [LNR87]) has its root in the classical artificial
intelligence [New90] and is one of the first cognitive architectures introduced (it is
continuously being developed since the early 1980s). SOAR incorporates a wide
range of problem solving methods and learns all aspects of the tasks to perform them.
The long-term memory in SOAR is represented by production rules. These rules
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are organized in terms of operators associated with problem spaces. The working
memory in SOAR cognitive architecture contains all the knowledge that is relevant to
the current situation. Tasks are formulated in terms of goals to be achieved. Typical
processing cycle repeatedly suggests, selects, applies, and terminates operators of the
current to the next problem state, making one decision at the time. When one goal is
not achievable, SOAR creates a new goal and selects a new operator. SOAR is capable
of generating a goal hierarchy, by decomposing problems into subproblems. When
a new result is produced, the system learns one or more chunks and stores them as
production rules. A production rule triggers in a new situation that is similar along
relevant dimensions.

ACT-R (Adaptive control of thought-rational; [ABB+04]) is notably different
from SOAR by its strong emphasis of producing a psychologically motivated cogni-
tive model. It uses empirical data derived from experiments in cognitive psychology
and brain imaging. ACT supports two different long-term memories: declarative
memory and procedural memory. A declarative memory contains knowledge about
facts and events in a form of the so-called chunks, while knowledge in procedural
memory is available in terms of production rules. Each declarative chunk is associ-
ated with internally stored information about its past usage, while production rules
have associated expected costs (in terms of time or number of steps to achieve the
goal) and probability of success.

ICARUS [LC06] encodes knowledge as reactive skills, each of which specifies
the goal-relevant reactions to a class of situations. The key processes in ICARUS

include inference mechanism, goal selection, skill execution, problem solving, and
learning. ICARUS also focuses on only one goal at a time. Whenever an applicable
skill to achieve its current goal could not be found, it employs means-ends analysis
as its problem solving strategy, which involves the decomposition of a problem into
subgoals. After accomplishing a subgoal, the agent returns to the parent goal. Skill
learning in ICARUS occurs as a result of problem solving activities. Namely, a skill
is learnt when an agent is able to execute some action successfully.

Langley et al. [LLR09] advocate that despite the many advances that have oc-
curred over several decades of research, cognitive architectures still have many lim-
itations and open issues such as (1) relatively poor categorization and understand-
ing, (2) limited possibilities of encoding knowledge in different yet interrelated for-
malisms, (3) limited range of knowledge utilization strategies, and (4) lack of robust
and flexible learning mechanisms for extended operation in unfamiliar and/or more
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complex domains.
Anderson [And93a] advocates that two key features often observed of human

problem solving are difference reduction and subgoaling. Problem solvers tend to
chose actions that approach them to the goal state and are even reluctant to pursue
paths that temporarily take them into the opposite direction. Anderson and Kushmer-
ick [AK90] demonstrated that the time to make a move in the Tower of Hanoi task is
strongly correlated with the number of subgoals necessary to complete the particular
move. These findings speak in favor of means-ends analysis, which is so often used
in various cognitive architecture systems.

While the theories of human cognition and integrated cognitive architectures shed
light on the way human approach to problem solving and on the possibilities of using
computer programs to model human problem solving, effective formalized ways of
measuring human problem-solving performance remain to be discovered.

A second question that should be addressed with respect to human problem solv-
ing is: How difficult is the problem to solve? Campbell [Cam88] reviewed task com-
plexity in light of the following aspects: (1) primarily a psychological experience,
(2) an interaction between task and the persons’ characteristics, and (3) a function of
objective task characteristics. The latter aspect is obviously the only one that could
be tackled by the methods of artificial intelligence alone. Effective ways to formalize
difficulty for a human of a given task or a set of given tasks also remain undiscovered.

1.5.2 Artificial Intelligence in Education

The field of artificial intelligence and education is grounded in three academic disci-
plines: computer science, psychology, and education, which all contribute to the de-
velopment of the interdisciplinary field of Intelligent Tutoring Systems (ITS) [Woo08].
Research on intelligent tutoring serves two goals. Beside the obvious goal of de-
veloping systems for automating education, an equally important goal is to explore
epistemological issues concerning the nature of the knowledge that is being tutored
and how that knowledge can be learned [ABCL90].

The idea of using computers to enhance learning began with the Computer-Aided
(or Assisted) Instruction (CAI) systems (e.g., see [KBW83]), where computers were
used mostly for presentation of student material. The main deficiency attributed to
these systems is their static behavior; they are unable to interact with students or
adjust to the specific student needs. Simple computer assisted instruction systems
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suffer from the fact that in general they do not know the subject matter they are
teaching. Intelligent tutoring systems use artificial intelligence (AI) formalisms to
represent knowledge in order to improve on CAI systems [Yaz86].

One-to-one tutoring with personal human tutors provide a highly efficient learn-
ing environment and have been estimated to increase mean achievement outcomes
by as much as two standard deviations [Blo84]. Education based on CAI systems has
also been well documented to improve learning at the elementary, secondary, higher-,
and adult-education levels. A meta-analysis of several hundred well-controlled stud-
ies showed that student scores increased by 10% to 20%, the time to achieve goals
decreased by one-third, and class performance improved by about one-half standard
deviation. The current state-of-the-art intelligent tutoring systems are estimated to
increase mean achievement outcomes by about one standard deviation [Woo08].

To our knowledge, intelligent tutoring systems that have been most successful
at aiding student learning are Model-Tracing Tutors (MTT) [AP91] that are com-
monly used in teaching problem solving domains and allow the tutor to follow the
problem-solving steps of the student through the use of a detailed cognitive model
of the domain. MTTs have had considerable success in improving student learning
[ACKP95]. Carnegie Learning, a company founded by researchers from Carnegie
Mellon, produced the commercial version of such tutor for use in high school math-
ematics classes, which was used in about 10% of the U.S. high school math classes
in 2007 [Woo08]. A second successful and widely used model-tracing tutor is the
Andes Physics Tutor [VLS+05].

The core of model-tracing tutoring systems is an expert module that contains
the cognitive model of the domain. Such cognitive models are usually based on a
theory of human cognition, for example, the Carnegie Learning tutors are based on
ACT-R, a learning theory and cognitive architecture framework [And93b]. ACT-R
assumes that skill knowledge is initially encoded in a declarative form when students
read or listen to a lecture. Students employ general problem-solving rules to apply
declarative knowledge (concepts, facts, procedures etc.), but with practice, domain-
specific procedural knowledge is formed. ACT-R assumes that procedural knowledge
can be represented as a set of independent production rules that associate problem
states and problem-solving goals with actions and consequent state changes.

Several research issues limit the use of Model-Tracing Tutors. Production rules
have limited generality, and all model-tracing tutors suffer from the difficulty of ac-
quiring problem-solving models, which requires cognitive task analysis, an enormous
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undertaking for any nontrivial domain. Cognitive analysis is typically performed
manually and is tedious, time consuming, and error prone. Student models are of-
ten hand-coded and remain fossilized unless extended with human help. Addition-
ally, this method is nearly impossible to reproduce for disciplines in which no well-
developed psychological theory exists, such as medical diagnosis or law [Woo08].

Thus, whereas intelligent tutoring are proving to be useful they are also difficult
and expensive to build [Mur99], mainly because building the expert model is difficult.
The MTT implicitly require complete domain knowledge, which requires a lot of
knowledge engineering. And although many authoring tools (tools for building an
ITS without the need of a programmer) were proposed, they have not been shown to
be usable for modeling domain expertise [Mur99].

Building the expert module of a tutoring systems is similar to building the knowl-
edge base of an expert system, where machine learning is commonly used as an alter-
native way of obtaining the expert knowledge [FR86]. However, it should be stressed
that the kind of knowledge required for an ITS (including the domain knowledge
component) is different to that required for an expert system in the domain [Cla87].
It is quite possible to have an expert system that can perform the task well but that
is poor at teaching or even explaining its reasoning because so much knowledge re-
mains implicit [Twi92]. While it was shown that machine learning can be successful
in building knowledge bases for expert systems [LS95] in terms of performance, the
major problem with this approach is that these models usually do not mimic the cog-
nitive processes (how an expert or a student solves problems in the given domain),
which is the most important requirement of the expert module. Sison and Shimura
[SS98] shed light on the difficulties of using machine learning for automating the
construction of student models as well as of the background knowledge necessary
for student modeling.

In the construction of intelligent tutoring systems, the acquisition of background
knowledge, either for the specification of the teaching strategy, or for the construction
of the student model, identifying the deviations of students’ behavior, remains one
of the unsolved problems [Ant08]. A still unanswered question is: is it possible to
conceptualize (semi)automatically the domain in a way that conforms to the way the
experts want to have their knowledge organized and presented?
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1.6 Research Summary

The thesis is divided into three parts. In the first part (Chapters 2, 3, and 4), “Search
and Knowledge for Estimating Human Problem Solving Performance,” we address
the following question.

• How can we develop methods based on computer heuristic search for evaluat-
ing human problem solving performance?

This includes answering the following two research questions (RQs).

RQ1 How can a computer be used to assess a human’s problem-solving per-
formance?

RQ2 How can a machine problem solving model be used to assess the diffi-
culty of a set of given problems for a human?

In the second part (Chapters 5, 6, and 7), “Search and Knowledge for Improving
Human Problem Solving Performance,” we address the following question.

• How can we develop methods based on computer heuristic search for improv-
ing human problem solving performance?

This includes answering the following two research questions.

RQ3 How can machine problem solving be used in tutoring, for teaching a
human to solve problems in a given problem domain?

RQ4 How can knowledge represented in a form suitable for the computer, be
transformed into a form that can be understood and used by a human?

The third part (Chapters 8 and 9), “On The Nature of Heuristic Search in Com-
puter Game Playing,” aims at improving the understanding of properties of heuristic
search and consequences of the interaction between search and knowledge that typi-
cally occurs in both human and machine problem solving, in particular with respect
to computer game playing.
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1.7 Thesis Overview

The thesis is organized as follows.
In Chapter 2 we devise a comparison of World Chess Champions, as a case study

of estimating problem-solving performance using a heuristic-search based program.
It is based on the evaluation of the games played by the World Chess Champions
in their championship matches. We were interested in the chess players’ quality
of play regardless of the game score, performing computer analyses of individual
moves made by each player. Since the champions are top-level human experts in the
game of chess, evaluating their performance is a great challenge. The evaluation was
performed by the chess-playing program CRAFTY.

Chapter 3 provides a thorough analysis of credibility of our method of estimating
problem-solving performance in the game of chess. We repeated our computer anal-
ysis of World Chess Champions, using various chess programs at different levels of
search. We provided experimental results and theoretical explanations to show that,
in order to obtain a sensible ranking of the chess players using our method, it is not
necessary to use a computer that is stronger than the chess-players themselves.

Chapter 4 addresses another important aspect of problem solving: How difficult
are the problems to solve? From the chess player’s point of view, our basic method for
estimating problem-solving performance is particularly crude in that it does not take
into account the differences in the average difficulty of the positions the players were
faced with. We devise a heuristic-search based method to assess average difficulty of
positions used for estimating the champions’ performance and present the results of
applying this method in order to compare chess players of different playing styles.

In Chapter 5, we introduce some elements of an intelligent computer system
aimed to provide commentary in a comprehensible, user-friendly and instructive way.
The main idea is to use a heuristic-search program to provide results of heuristic
search and heuristic-evaluation function’s features to describe the changes between
the root node and the goal node. The features can then be combined to form higher-
level concepts understandable to humans. Additional knowledge could be introduced
into the system to describe the differences between the root node and the goal node.
The descriptions can then be used both for the purpose of intelligent tutoring by
providing knowledge-based feedback to students, and for the purpose of annotating.
Chess is again used as a research domain, however, the scope of our research find-
ings are intended not to be limited to chess only. The most natural way of annotating
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chess games in chess literature (for example, [Kas06]) is the following: commenta-
tors usually support suggested moves with variations, and (1) comment on changes
that would occur and/or (2) describe the envisioned position at the end of the vari-
ation. Our approach follows this natural way of providing commentary. Chess has
been used several times as a domain in scientific research for automatic annotating
([GGM93], [Sei94], and [HB96]), however, the demonstrated concepts all have a
common weakness - the inability to practically extend annotations to the entire game
of chess. Our approach is not to be bound to such limitations.

In Chapter 6, we demonstrate a new approach, based on argument-based ma-
chine learning [MvB07], to the formalization of complex patterns for the purpose
of commenting and/or teaching. As knowledge is one of the key components of
every intelligent computer system, the process of obtaining knowledge from do-
main expert, called knowledge elicitation, is known to be a difficult task and thus
a major bottleneck in building a knowledge base in expert systems [Fei03]. Compo-
nents of a heuristic-search program’s evaluation function alone are hardly sufficient
for making in-depth comments, thus obtaining knowledge for construction of more
complex positional features is desirable for successful annotating software. Defining
complex patterns requires powerful knowledge-elicitation methods. In the presented
case study, we considered the elicitation of the well-known chess concept of the bad
bishop and showed that argument-based machine learning enables such a method.

In Chapter 7, we demonstrate how to synthesize semi-automatically knowledge
usable for intelligent tutoring purposes from databases that contain perfect informa-
tion. Complete tablebases [Tho82], indicating best moves for every position, that
exist for chess endgames, served as a source of such perfect information. We devel-
oped a novel approach to deriving meaningful concepts and strategies usable for con-
structing a heuristic evaluation function for commenting and/or teaching purposes.
Our approach combines ideas from argument-based machine learning with special-
ized minimax search to extract a strategy for solving problems that require search.
We also explain the guidelines for an interaction between the machine and the expert
in order to obtain textbook instructions suitable for teaching how to deliver check-
mate in a difficult chess endgame, and how these instructions, including illustrative
diagrams, could be derived semi-automatically from such a model.

In Chapter 8, we analyze the properties of successful evaluation functions in game
playing. The monotonicity property of heuristic evaluation functions for games is in-
troduced. That is a property of successful heuristic evaluation functions for games.
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Namely, that backed-up values of the nodes in the search space have to tend to mono-
tonically approach to the terminal values of the problem state space with the depth of
search. The experimental results show that the evaluation functions used in typical
chess programs tend to have this property that enables the program to play with a
sense of direction towards a desirable goal. We demonstrate that backed-up heuris-
tic values therefore do not approximate some unknown “true” or “ideal” heuristic
values with increasing depth of search, in contrast to what is generally assumed in
the literature, and point out that heuristic evaluation functions should not respect the
minimax relation. That is, backed-up heuristic evaluation values should not be in-
variant along the game tree, as game-theoretical values in the theoretical minimax
model are. We also argue that heuristic evaluations obtained by a search to different
search depths are not directly comparable, and demonstrate that the same backed-up
heuristic values obtained by different evaluation functions do not necessarily reflect
the probability of winning in the same way.

In Chapter 9, we study experimentally additional factors which influence the be-
havior of diminishing returns with increased search. Deep-search behavior and the
phenomenon of diminishing returns for additional search effort have been studied
by several researchers, whereby different results were obtained on the different data
sets used. Our results were obtained on a large set of more than 40,000 positions
from real chess games using chess programs CRAFTY, RYBKA, and SHREDDER.
We demonstrate that the rate of changed decisions that arise from search to different
depths depends on (1) the quality of knowledge in evaluation functions, (2) the value
of a node in the search space, and to some extent also on (3) the phase of the game.

1.8 Contributions to Science

The thesis is a contribution to computer science and artificial intelligence. The re-
search done in the scope of the thesis was performed in the framework of human and
computer game playing, and the game of chess was used as the experimental domain.
Many researchers used the game-playing platform and the domain of chess in their
experiments, the explicit or implicit message of their works being that the results for
chess are generalizable to other domains. Although we did not aim at providing spe-
cific evidence for that, we believe that the below stated contributions to science also
have a potential of being extendable to several other games, as well as to some other
domains where heuristic search is applicable.
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The main contributions of the thesis are as follows.

1. A new method, based on computer heuristic search, for the assessment of hu-
man problem solver’s performance, and an analysis of appropriateness of this
method. [Chapters 2 and 3]

2. A new method for the assessment of the difficulty, for a human, of a given set
of problems, based on the computer’s solving of these problems. [Chapter 4]

3. A novel approach, based on computer heuristic search, to automated gener-
ation of human understandable commenting of decisions in problem solving.
[Chapter 5]

4. A novel approach to the formalization of complex patterns for the purpose of
annotating problem solving decisions and/or intelligent tutoring. [Chapter 6]

5. A novel approach to semi-automatic synthesis of human-understandable knowl-
edge suitable for teaching how to solve problems in a given problem domain.
[Chapter 7]

6. An extensive analysis of the monotonicity property of successful heuristic eval-
uation functions for games. Namely, that backed-up values of the nodes in the
search space have to tend to monotonically approach to the terminal values of
the problem state space with the depth of search. This means that backed-up
heuristic values therefore do not approximate some unknown “true” or “ideal”
heuristic values with increasing depth of search, in contrast to what is gener-
ally assumed in the literature, and that successful heuristic evaluation functions
should not respect the minimax relation. That is, backed-up heuristic evalua-
tion values should not be invariant along the game tree, as game-theoretical
values in the theoretical minimax model are. [Chapter 8]

7. An empirical proof of a novel finding that the rate of changed decisions that
arise from search to different depths depends on:

• the quality of knowledge in evaluation functions, and

• the true value (relative to a fixed search depth) of a node in the search
space. [Chapter 9]
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Chapter 2

Computer Analysis of World Chess
Champions

This chapter is an updated and abridged version of the following publication:

1. Guid, M. and Bratko, I. Computer Analysis of World Chess Champions. ICGA
Journal, Vol. 29, No. 2, pp. 65-73, 2006. [GB06]

It also includes some materials from the following publication:

1. Guid, M., Peréz, A., and Bratko, I. How Trustworthy is CRAFTY’s Analysis of
World Chess Champions? ICGA Journal, Vol. 31, No. 3, pp. 131-144, 2008.
[GPB08]

In this chapter, we introduce a method, based on computer heuristic search, for
evaluating problem-solving performances of World Chess Champions, top-level hu-
man experts in the game of chess.

Establishing heuristic-search based computer programs as an appropriate tool for
estimating problem-solving performance in chess may seem impossible, since it is
well known that both programs’ evaluations and programs’ decisions tend to change
as depth of search increases. It is very likely that computer chess programs will
continue to change their decisions with searching deeper in heuristic-search based
computer analyzes for many years to come, and that the frequencies of changes will
remain significant for all feasible search depths. Not to mention that the cease of
decision changes at some particular search depth does not guarantee optimal play at
all. Also, it is even unclear what “optimal” is? For a human, it is not necessarily
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the shortest path to win, but a kind of “easiest” and most reliable one, that is one that
minimizes the risk – the probability for a human to make a mistake. It is, however, not
feasible to determine such probabilities. All these issues seem like a giant obstacle
on the way to establishing heuristic-search based methods as competent problem-
solving performance estimators, especially in complex games like chess.

Nevertheless, we will demonstrate that heuristic search can be used reliably for
the purpose of evaluating problem-solving performance. In this chapter, we present
the rankings of World Chess Champions based on the scores obtained at the highest
practically feasible search depth. This may seem as the only reasonable alterna-
tive, since it is well known that the programs’ chess strength increases with depth of
search. In Chapter 3, however, we will show that the rankings based on the obtained
scores are surprisingly stable over a large interval of search depths, at least for the
players whose score significantly deviates from the others.

2.1 Can Heuristic Search be Useful for Estimating
Problem Solving Performance?

There are many arguments in favor of heuristic-search based computer programs
being an appropriate tool for estimating problem-solving performance. In contrast to
humans, they:

1. have an enormous computing power,

2. use numerical values as evaluations,

3. adhere to the same rules all the time,

4. are not influenced by emotions.

Computer programs therefore have a capability of being more consistent than
human observers, and can deal with incomparably more observations in a limited
time. In chess, they are particularly good at evaluating tactical positions, where a
great deal of computation is required.

As the basis for estimating each player’s performance we chose the average dif-
ferences between heuristic evaluations of the players’ decisions and heuristic evalu-
ations of computer’s decisions, both obtained after a fixed depth of search. This may
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Depth Best move Evaluation
2 Bxd5 -1.46
3 Bxd5 -1.44
4 Bxd5 -0.75
5 Bxd5 -1.00
6 Bxd5 -0.60
7 Bxd5 -0.76
8 Rad8 -0.26
9 Bxd5 -0.48
10 Rfe8 -0.14
11 Bxd5 -0.35
12 Nc7 -0.07

Figure 2.1: Botvinnik-Tal, World Chess Championship match (game 17, position af-
ter white’s 23rd move), Moscow 1961. In the diagram position, Tal played 23...Nc7
and later won the game. The table on the right shows CRAFTY’s decisions and eval-
uations as results of different depths of search. As it is usual for chess programs,
the decisions and the evaluations vary considerably with depth. Based on this obser-
vation, a straightforward intuition suggests us that by searching to different depths,
different rankings of the problem solvers, in this case chess players, would have been
obtained, had their performance been estimated using a heuristic-search based pro-
gram. However, as we will demonstrate, the intuition may be misguided in this case.

appear surprising, since different search depths may result in large differences in po-
sition evaluations and in completely different choices (see Figure 2.1). However, in
sufficiently large samples of data that is a subject of computer analysis, larger errors
of the program (in terms of unfair differences in assigned evaluations) are expected
to cancel out through statistical averaging. Our goal is no more and no less than to
devise a method for estimating the problem-solving performance as best s possible.
It would lead to the the correct ranking of problem solvers’ performances. Having
this point in mind, we expect that the computer estimator of the problem-solving
performance is trustworthy already when it is equally unfair to all problem solvers.

2.2 Determining Best Chess Player in History

Who is the best chess player of all time? This is a frequently posed and interesting
question, to which there is no well founded, objective answer, because it requires a
comparison between chess players of different eras who never met across the board.
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With the emergence of high-quality chess programs a possibility of such an objec-
tive comparison arises. However, so far computers were mostly used as a tool for
statistical analysis of the players’ results. Such statistical analyzes often do neither
reflect the true strengths of the players, nor do they reflect their quality of play. It
is common that chess players play against opponents of different strengths and it is
well known that the quality of play changed in time. Furthermore, in chess a single
bad move can decisively influence the final outcome of a game, even if all the rest of
the moves are excellent. Therefore, the same result can be achieved through play of
completely different quality.

The most complete and resounding attempt made to determine the best chess
player in history has been put forward by Jeff Sonas, who has become a leading
authority in the field of statistical analysis in chess during the past years. Sonas
[Son] devised a specialized rating scheme, based on tournament results from 1840
to the present. The rating is calculated for each month separately, with the player’s
activity taken into account. A player’s rating, therefore, starts declining when he is
no longer active, which differs from the classic FIDE rating. Having a unified system
of calculating ratings represents an interesting solution to determining a “common
denominator” for all chess players. However, it does not take into account that the
quality of play has risen drastically in the recent decades. The first official World
Champion, Steinitz, achieved his best Sonas rating, which is on a par with ratings
of recent champions, in April 1876. His rating is determined from his successes in
tournaments in a time when the general quality of play was well below that of today.
The ratings in general reflect the players’ success in competition, but not directly their
quality of play. With other words, ratings do not necessarily reflect problem-solving
performance.

Other estimates about who was the strongest chess player of all times, are primar-
ily based on the analyzes of their games as done by chess grandmasters; obviously
these are often subjective. In his unfinished set of books My Great Predecessors,
Gary Kasparov [Kas06], the thirteenth World Chess Champion, analyzes in detail
numerous games of the best chess players in history and will most probably express
his opinion regarding who was the best chess player ever. But it will be merely an
opinion, although very appreciated in the chess world.

Our approach was different. We were interested in the chess players’ quality of
play regardless of the game score, which we evaluated with the help of computer
analyzes of individual moves made by each player.
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2.3 Obtaining Data for the Analysis

We evaluated fourteen classic-version World Champions, from the first World Chess
Championship in 1886 to the World Chess Championship match between Kramnik
and Topalov in 2006. Matches for the title of “World Chess Champion”, in which
players contended for or were defending the title, were selected for analysis. Only the
games with slow time control were analyzed. World Champions represent problem
solvers, and chess positions they were confronted with represent problem-solving
tasks.

Evaluation of each game started on the 12th move, without the use of an openings
library, of course. This decision was based on the following careful deliberation. Not
only today’s chess programs poorly evaluate positions in the first phase of a game, but
also analyzing games from the start would most likely favor more recent champions,
due to the vast progress made in the theory of chess openings. In contrast, starting
the analyzes on a later move would discard too much information.

Each position was iteratively searched to fixed depths ranging from 2 to 12 ply.
Search to depth d here means d-ply search extended with quiescence search to ensure
stable static evaluations. Conducting search to variable depths, for example, by fixing
the amount of time dedicated to search in an individual position, would likely lead to
false conclusions, due to the monotonicity property of heuristic evaluation functions,
as it was explained in Subsection 8.5.1. With such an approach we also achieved the
following advantages.

1. Complex positions, which require processing bigger search trees to obtain an
evaluation at the search depth specified, automatically receive more computa-
tion time.

2. The program could be run on different computers and still the same evaluations
for a given set of positions on each of the computers are obtained.

As the second advantage suggests, searching to fixed depths assures the repeata-
bility of the analysis. It also enabled us to speed up the calculation process con-
siderably by distributing the computation among a network of machines, and as a
consequence, searching to a greater depth was possible.

We chose to limit the search depth to 12 plies plus quiescence search. There were
some speculations that a program searching 12 plies would be able to achieve a rating
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that is greater than that of the World Champion [HACN90], although this speculation
was based on observations of gains in strength of chess programs with each ply at
shallowest search depths, and it is not likely to be correct, due to diminishing returns
for searching more deeply (see Section 9.1). However, the search depth mentioned
was chosen as the best alternative, since deeper search would mean a vast amount of
additional computation time∗.

The chess program CRAFTY was used as an estimator of problem-solving perfor-
mance. We slightly modified CRAFTY for the purpose of our analysis. We changed
the ‘King’s safety asymmetry’ parameter thus achieving a shift from CRAFTY’s usual
defensive stance to a more neutral one where it was neither defensive nor offensive.

With each evaluated move, data was collected for search depths ranging from 2
to 12 ply, comprising:

1. the best evaluated move and the evaluation itself,

2. the second-best evaluated move and its evaluation,

3. the move made by the human and its evaluation.

We also collected data about a material state in positions from the first move on.

2.4 Three Criteria for Estimating Performance

2.4.1 Basic Criterion

The basic criterion was the average difference between the evaluations of the moves
that were played by the players and evaluations of best moves suggested by computer,
both obtained at a particular depth of search. These differences are referred to as
players’ scores. The score of player P at search depth d is defined as

score(P ) =

∑
|EBEST (d) − EPLAY ED(d)|

NP (d)
, (2.1)

where EBEST (d) is the evaluation of the move that CRAFTY suggests as best at depth
d, EPLAY ED(d) is CRAFTY’s evaluation of the player’s move at depth d, and NP (d)

∗More than ten full days of computation time on 36 stand-alone computers with an average speed
of 2.5 GHz were required to perform the analyzes of all games
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is the number of moves analyzed for player P at particular depth. The sum is over all
the moves analyzed for the player P . Based on the players’ scores, rankings of the
players are obtained in such way that a lower score results in a better ranking.

The following limitation was imposed upon this criterion. Moves, where both
the move made and the move suggested had an evaluation outside the interval [-
2, 2] at the highest search depth, were discarded and not taken into account in the
calculations of the scores. The reason for this is the fact that a player with a decisive
advantage often chooses not to play the best move, but rather plays a move which is
still “good enough” to lead to victory and is less risky. A similar situation arises when
a player considers his position to be lost – a deliberate objectively worse move may
be made in such a case, to give the player a higher practical chance to save the game
against a fallible opponent. Such moves are, from a practical viewpoint, justified.
Taking them into account would wrongly penalize players that used this legitimate
approach trying (and sometimes succeeding) to obtain a desired result. All positions
with evaluations outside the interval specified were declared lost or won.

The basic criterion can be criticized on the basis that it does not take into account
the differences in the average difficulty of the positions played by different players.
Nor does this score-based criterion take into account another important aspect, that
is the differences between the playing styles of different players. Moreover, if SSDF
ratings ([Kar08], see Section 9.4) are comparable with official FIDE ratings, then
CRAFTY’s chess rating is lower than the rating of many of the players analyzed,
which makes this approach of estimating World Champions’ performances based on
such criterion highly counter-intuitive and seemingly highly questionable. We will
return to this issues in Chapter 3 and provide a refinement and a justification for this
approach.

2.4.2 Blunder Criterion

The rankings of the players according to this criterion will be devised based on the
rates of blunders that occurred in their games, so that the lower the blunder rate of
the player the better his ranking is.

Big mistakes or blunders can be quite reliably detected with a computer, to a
high percentage of accuracy. Individual evaluations could be inaccurate, but such
inaccuracies rarely prevent the machine from distinguishing blunders made in play
from reasonable moves.
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Detection of errors was similar to the basic criterion. We used a measure of
difference between evaluations of moves played and evaluations of moves suggested
by the machine as the best ones. We label a move as a blunder when such difference
exceeds some high value, and provide results for various such “high values”. We
also discarded moves where both evaluations of the move made by a player and
the move suggested by the machine lie outside the [-2, 2] interval, due to reason
mentioned in Subsection 2.4.1. Successful blunder detection inevitably depends on
chess strength, therefore only blunders detected at the highest available search depth
were considered. We labeled a move as a blunder when the numerical error as seen
by CRAFTY at highest available depth exceeded the value of 1.00.

There is a problem with taking a particular value at particular search depth, in
terms of the difference between the played move and best evaluated move, as a big
mistake or a blunder.† Namely, if we label a move as a blunder when the numerical
error (as seen by the computer program) exceeds 1.00, then the big differences in
the two evaluations such as 0.99 remain unnoticed by this measurement. Since the
blunder rates of World Champions tend to be very low, it is easy to expect different
rankings when the value labeled as a blunder changes only by a margin.

In order to obtain as objective results as possible, we therefore chose to vary the
value of numerical error that is labeled as a big mistake or a blunder. We performed
five measurements of blunder rates, the values of numerical error as seen by CRAFTY

at search depth of 12 plies being labeled as a blunder being 0.8, 0.9, 1.0, 1.1, and
1.2. The final result of blunder-rate measurements was the averaged result of all five
measurements performed at this (highest available) depth.

2.4.3 Best Moves Criterion

The percentage of best moves played alone does not actually describe the quality
of play as much as one might expect. In certain types of position it is much easier
to find a good move than in others. Experiments showed that the percentage of best
moves played is correlated to the difference in evaluations of the best and second-best
move in a given position. The greater the difference, the better was the percentage
of player’s success in making the best move (see Figure 2.2). For each interval of
the difference in evaluations of two best moves shown in the figure (the step was

†We also cannot know the exact interpretation of what the value of 1.00 really means - see Sub-
section 8.5.1
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Figure 2.2: Rate of best moves played according to the computer depending on the
difference in evaluations of the best and second-best move.

0.1, only intervals represented by at least 500 measurements are included), average
best-move played rates are displayed.

Such a correlation makes sense, because the bigger the difference between the
best two moves, the greater the error made when selecting the wrong move. The
height of the curve is amplified by the fact that we are dealing with World Champions,
experts at the game of chess. Analyzes of weaker players would give a curve of lesser
height.

By analyzing the correlation between (1) the percentage of best moves played
and (2) the difference in best two moves’ evaluations, we derive information about the
quality of each individual player. It turned out that curves for individual players differ
significantly. This behavior served as a basis for creating the following criterion, used
to infer information on the quality of individual players. For greater clarity, we will
call it “the best moves criterion.”

The scores by this criterion were obtained as follows. For each player we cal-
culated the distribution of moves across separate intervals of the difference in eval-
uations of two best moves (where the step was 0.1). We also calculated an average
distribution for all players combined. Given this average distribution, we then deter-
mined the expected percentage of the best moves played for each individual player.
Due to reasons mentioned in Subsection 2.4.1, we did not count clearly lost or won
positions in this statistics.

33



2. COMPUTER ANALYSIS OF WORLD CHESS CHAMPIONS

2.5 Player’s Performance w.r.t. Difficulty of Positions

The main deficiency of the three criteria detailed above is in the observation that
there are several types of players with specific properties, to whom the criteria do not
directly apply. It is reasonable to expect that positional players on average commit
fewer mistakes due to the somewhat less complex positions in which they find them-
selves as a result of their style of play, than tactical players. The latter, on average,
deal with more complex positions, but are also better at handling them and use this
advantage to achieve excellent results in competition.

From the chess player’s point of view, the three criteria are thus particularly crude
in that they do not take into account the differences in the average difficulty of the
positions played by different players. It may seem that the third of the above criteria
provides a possible solution to this problem, since it was observed that the difficulty
of chess positions may be somehow related to the difference in evaluations of the best
and second-best move. However, it is highly unlikely that determining the difficulty
of chess position is a one-dimensional problem that could be expressed merely in
terms of the differences in evaluations between possible moves in a given position.

We wanted to determine how players would perform when facing positions of
equal average difficulty. In order to determine this, thee following two topics were
addressed.

1. The assessment of difficulty of positions.

2. How to take into account the differences between players in the average diffi-
culty of the positions encountered in their games.

These topics, which are essential part of the present computer analysis and are
also very important for estimating problem-solving performance in general, will be
addressed separately in Chapter 4.
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2.6 Results of a Computer Analysis

In this section, we will present the results of a computer analysis of the World Chess
Champions, obtained by CRAFTY using a search depth of 12 plies.‡

2.6.1 Results According to the Basic Criterion

The basic criterion for estimating performance of the World Champions was the av-
erage difference between moves played and best evaluated moves by the computer.
Results of the computer analysis according to this measure at the highest available
search depth are given in Figure 2.3. The winner was the third World Champion, José
Raúl Capablanca. As stated in Subsection 2.5, we expected positional players to per-
form better by this criterion than tactical players. Capablanca is widely renowned to
be a pure positional player. In compliance with this observation, Steinitz, who lived
in an era of tactical “romantic chess,” took clearly last place.

Player Score
Capablanca 0.1012
Kramnik 0.1071
Karpov 0.1274
Kasparov 0.1297
Spassky 0.1330
Petrosian 0.1352
Alekhine 0.1368
Smyslov 0.1375
Lasker 0.1396
Tal 0.1462
Fischer 0.1541
Botvinnik 0.1595
Euwe 0.1734
Steinitz 0.2259

Figure 2.3: Ranking of the champions based on average differences between moves
played and best-evaluated moves, according to CRAFTY at search depth of 12 plies.

‡Note that the results are slightly different from those presented in the paper Computer Analysis
of World Chess Champions [GB06]. In the current text the search was limited to 12 plies, and was not
extended to 13 plies in the endgames, as it was in the paper cited. For explanations why searching to
a fixed depth is desirable we refer to Subsection 8.5.1.
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Some of the results might appear quite surprising and may thus be considered
also as an interesting contribution to the field of chess. Capablanca’s outstanding
score in terms of this score-based criterion will probably appear to many as such
an interesting finding, although it probably should not come as a complete surprise.
Gary Kasparov [Kas06] describes Capablanca by the following words: “He contrived
to win the most important tournaments and matches, going undefeated for years (of
all the champions he lost the fewest games)” and “his style, one of the purest, most
crystal-clear in the entire history of chess, astonishes one with his logic.”

As it could be seen from Figure 2.3, for majority of the players the scores are
very similar. This does not appear surprising bearing in mind that the players that
were a subject of the analysis were all World Champions, so the quality of play in
the games at the peak of their careers may indeed not differ significantly when being
compared, at least when the majority of the champions is concerned. For appropriate
interpretation of the obtained scores of the players, we refer to Chapter 3.

2.6.2 Blunder-Rate Measurements

The results of the blunder-rate measurements (see Figure 2.4) show a triumph of the
champions that are commonly regarded as positional players: Capablanca, Kramnik,
Petrosian, Karpov, and Smyslov. Again, the results can be nicely interpreted by a
chess expert. Kasparov [Kas06] when commenting Capablanca’s games speculates
that Capablanca occasionally did not even bother to calculate deep tactical varia-
tions. The Cuban simply preferred to play moves that were clear and positionally
so strongly justified that calculation of variations was simply not necessary. While
the results are similar to those obtained with the basic criterion (see Figure 2.3), the
excellent result by Petrosian, who is widely renowned as a player who almost never
blundered, cannot remain unnoticed. As before, Wilhelm Steinitz is clearly last. Of
course, this ranking is even more crude for the champions that could be labeled as
tactical players, who on average dealt with more complex positions in their games,
but were also better at handling them and therefore used this advantage to achieve
their best results in competition.

2.6.3 Bringing the Champions to a “Common Denominator”

Our third criterion was the expected number of best moves played providing that all
players dealt with positions with equal difference between the best two moves, as it
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Player Blunders (%)
Capablanca 1.30
Kramnik 1.34
Petrosian 1.67
Karpov 1.73
Smyslov 1.80
Kasparov 2.09
Spassky 2.14
Alekhine 2.34
Lasker 2.56
Tal 2.96
Botvinnik 2.91
Fischer 3.47
Euwe 4.02
Steinitz 5.55

Figure 2.4: Ranking of the champions based on blunder-rate measurements according
to CRAFTY at search depth of 12 plies.

was described in Subsection 2.4.3. It represents an attempt to bring the champions
to a “common denominator,” by taking into account the differences in their style of
play.

As it was explained in Subsection 2.4.3, the percentage of best moves played
alone does not actually describe the quality of play as much as one might expect,
since in certain types of position it is much easier to find a good move than in others.
We demonstrated in Figure 2.2 that the percentage of best moves played is highly
correlated to the difference in evaluations of the best and second-best move in a given
position.

Kramnik and Alekhine, for example, had the highest percentage of best moves
played (see Figure 2.5), but also the above-mentioned difference was high in the
positions they were faced with (see Figure 2.6). In contrast, Capablanca, who was
right next regarding the percentage of the best move played, on average dealt with
the smallest difference in evaluations between the best two moves.

To make it easier for the reader, we will briefly describe again how the results
of the third criterion, presented in Figure 2.7, were obtained. For each player we
calculated the distribution of moves across separate intervals of the difference in
evaluations of two best moves. We also calculated an average distribution for all
players combined. Given this average distribution, we then determined the expected
percentage of the best moves played for each individual player.
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Player Best (%)
Kramnik 59.26
Alekhine 56.58
Capablanca 56.30
Euwe 56.03
Fischer 55.59
Tal 54.88
Kasparov 54.68
Lasker 54.22
Karpov 54.05
Smyslov 53.22
Botvinnik 52.83
Spassky 50.87
Steinitz 50.15
Petrosian 48.32

Figure 2.5: Rates of best moves played according to CRAFTY at search depth of 12
plies.

Player Difference
Euwe 0.5952
Fischer 0.5805
Kramnik 0.5397
Alekhine 0.5233
Kasparov 0.5095
Steinitz 0.4976
Karpov 0.4906
Tal 0.4887
Spassky 0.4851
Lasker 0.4841
Botvinnik 0.4770
Smyslov 0.4236
Petrosian 0.4114
Capablanca 0.3972

Figure 2.6: Difference in evaluations between the best two moves according to
CRAFTY at search depth of 12 plies.
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Player Best (%)
Capablanca 57.08
Kramnik 56.62
Alekhine 54.67
Kasparov 53.98
Karpov 53.94
Lasker 53.50
Smyslov 53.07
Euwe 52.08
Tal 52.66
Botvinnik 52.47
Fischer 51.68
Spassky 50.80
Petrosian 49.56
Steinitz 47.50

Figure 2.7: Expected percentage of the best moves played, according to the criterion
described in Section 2.4.3.

The winner by the third criterion was once again Capablanca, while Steinitz again
finished in the last place. The third criterion represents our first attempt to bring the
champions to a “common denominator,” by taking into account the differences in
their style of play. In Chapter 4, we will present the fourth criterion for estimat-
ing performance of the World Chess Champions that will also take into account the
differences between players in the average difficulty of the positions encountered in
their games. We will also show that the excellent result of Capablanca should be
interpreted in the light of his playing style that tended towards low complexity posi-
tions.
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Chapter 3

Credibility of a Heuristic-Search
Based Estimator

This chapter is an updated and abridged version of the following publication:

1. Guid, M., Peréz, A., and Bratko, I. How Trustworthy is CRAFTY’s Analysis of
World Chess Champions? ICGA Journal, Vol. 31, No. 3, pp. 131-144, 2008.
[GPB08]

In this chapter, we assess how reliable CRAFTY (or, by extrapolation, any other
fallible chess program) is as a tool for the comparison of chess players, using the
methodology presented in Chapter 2. In particular, we were interested in observing
to what extent the scores and the rankings of the players are preserved at different
depths of search. As it was illustrated in Figure 2.1, the decisions and the evaluations
of heuristic-search based programs may vary considerably with depth of search. Nev-
ertheless, our results show, possibly surprisingly, that at least for the players whose
scores differ sufficiently from the others the ranking remains preserved, even at very
shallow search depths.

We also study in this chapter how the scores and the rankings of the players
would deviate if smaller subsets of positions were used for the analysis, and whether
the number of positions available from World Championship matches suffices for
reliable estimates of the players’ deviations from the chess program.

Finally, we used three chess programs stronger than CRAFTY as estimators of
problem-solving performances of the World Chess Champions.
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3.1 Trustworthiness of CRAFTY’s Analysis of World
Chess Champions

In Chapter 2, we carried out a computer analysis of games played by World Chess
Champions as an attempt at an objective assessment of one aspect of the playing
strength of chess players of different times. The chess-program CRAFTY was used
in the analysis. Given that CRAFTY’s official chess rating is lower than the rating
of many of the players analyzed, the question arises to what degree that analysis
could be trusted. In this chapter, we investigate this question and other aspects of the
trustworthiness of those results.

Among the three criteria considered (see Section 2.4), the basic criterion for
comparison among players was the average deviation between evaluations of played
moves and best-evaluated moves, both obtained as results of searching to some fixed
depth. According to this criterion, Jose Raul Capablanca, achieved the best score at
search depth of 12 plies, that is the highest depth that was available for our analysis
(for explanation, see Section 2.3). In this chapter, we will focus mainly on the basic
criterion for estimating problem-solving performance. We will provide experimental
results and theoretical explanations to show that, in order to obtain a sensible rank-
ing of the players according to the criterion considered, it is not necessary to use a
computer that is stronger than the players themselves.

We will deal with the following reservations that may be imposed to the method-
ology used for estimating performances of World Chess Champions, using chess
program CRAFTY.

1. The program used for analysis was too weak.

2. The depth of the search performed by the program was too shallow.

3. The number of analyzed positions was too low (at least for some players).

To avoid possible misinterpretation of the work presented in this chapter, it should
be noted that this chapter is not concerned with the question of how appropriate
this particular measure of the playing strength (deviation of player’s moves from
computer-preferred moves) is as a criterion for comparing chess players’ ability in
general. Therefore any possible interpretations of the results and rankings that appear
in this chapter should be made carefully keeping this point in mind.
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3.2 Variation of Rankings with Search Depth

In this section, we investigate the effects of search depth on rankings and the scores of
the players, that is the average differences between player’s and CRAFTY’s moves.
We used the same methodology as described in Section 2.3 and Subsection 2.4.1,
only that now the scores (as defined in Equation 2.4.1) of the players were observed
at each search depth ranging from 2 to 12.

It is well known for a long time that the strength of computer-chess programs
increases with the search depth. Already in 1982, Ken Thompson compared pro-
grams that searched to different search depths. His results show that searching to
only one ply deeper results in a more than 200 rating points stronger performance
of the program [Tho82]. Although later it was found that the gains in the strength
diminish with additional search, they are nevertheless significant at search depths up
to 20 plies [Ste05]. In Chapter 9, we show that changes in decisions are also af-
fected by the quality of knowledge in evaluation functions – the more knowledgeable
evaluation function is, the less changes occur with increasing depth of search. How-
ever, even currently the strongest chess program, RYBKA 3, changes its decision on
average in more than 15% cases at search depth of 12 plies (see Section 9.4). Steen-
huisen conducted go-deep experiments with CRAFTY on 4,500 positions and showed
that the program changes its decision in more than 10% of the cases even at search
depth of 18 plies [Ste05].∗

The preservation of the rankings at different search depths would therefore sug-
gest (1) that the same rankings would have been obtained by searching deeper, and
that (2) using a stronger chess program would probably not affect the results signif-
icantly, since the expected strength of CRAFTY at higher depths are already compa-
rable with the strength of the strongest chess programs, under ordinary tournament
conditions at which their ratings are measured.†

The players’ scores at different search depths are presented in Figure 3.1, while

∗Conducting heuristic search to such depths is very time consuming, while time spent for each
additional search ply increases exponentially. In private communication, Steenhuisen acknowledged
that it took several months of operating time of fourteen stand-alone computers (3.06 GHz Intel P4,
512 KByte cache, 1 GByte RAM) to analyze 4,500 positions up to 18 plies using CRAFTY.

†In the aforementioned go-deep experiments with CRAFTY Steenhuisen showed that the program
changes its decision in less than 15% of the cases from search depth of 15 plies on [Ste05]. According
to our observations presented in Section 9.4, this result suggests that the strength of CRAFTY at 15
plies is comparable with the strongest chess program, RYBKA 3, when the latter conducts a search to
a depth of 12 plies.
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Figure 3.2 shows the deviations of the players’ scores from the average score of all
players obtained at each search depth. Some players whose rankings preserve at most
of the depths are highlighted.

Figure 3.1: Scores of each player at different depths of search.

The results clearly demonstrate that although the scores of the players tend to
decrease with increasing search depth, the rankings of the players are nevertheless
preserved at least for the players whose scores differ considerably from the others. It
is particularly interesting that even searching to a depth of just two or three ply (plus
quiescence) does a rather good job in terms of the ranking of the players.

3.3 Robustness of Rankings w.r.t. Sample Size

The results presented in the previous section suggest that for some players the ob-
tained rankings are preserved with depth of search. In this section we investigate
the question whether the available samples of chess positions were sufficiently large
to conclude that the observed differences between pairs of players are statistically
significant. We then observe the stability of the obtained results, repeating the exper-
iments on different subsets of the available positions.
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Figure 3.2: Average deviations of the players’ scores from the average score
of all players obtained at each depth of search. Based on the players’ scores
the rankings of the players were obtained. For almost all depths it holds
that rank(Capablanca) < rank(Kramnik) < rank (Karpov) < rank(Kasparov) <
rank(Petrosian) < rank(Botvinnik) < rank(Euwe) < rank(Steinitz).

3.3.1 Number of Positions for Analysis

The number of available positions varies for different players. About 600 positions
only were available for Fischer, while both for Botvinnik and Karpov this number
is higher than 5,000 at each depth. The exact number for each player slightly varies
from depth to depth, due to the constraints of the method. Positions where both the
move made and the move suggested by the computer had an evaluation (based on
search to given depth) outside the interval [-2, 2] were discarded at each depth.

To assess whether the set of positions available from World Chess Championship
matches were sufficiently large, in order to produce reliable rankings of the players,
at least for some pairs of the players, we conducted the following statistical analy-
sis. For each player, n=30 samples of m = 50 positions were randomly chosen with

45



3. CREDIBILITY OF A HEURISTIC-SEARCH BASED ESTIMATOR

Figure 3.3: Distributions of scores in 1,000 randomly generated samples consisting of
50 positions are shown for players Fischer (left) and Karpov (right). X axis represents
the player’s sample score, while Y axis represents the number of samples with the
score in a given interval.

replacement from the set of all available positions for the player. For each of these
positions, we observed the player’s deviations from CRAFTY’s moves (from now on
we will be referring to these deviations as CRAFTY’s differences) previously com-
puted for search depth of 12 plies using the method presented in Subsection 2.4.1.
For each of the 30 samples, the player’s “sample score” was computed as the average
of CRAFTY’s differences in the sample.

The sample scores were now used to determine statistical significance of the
obtained rankings of the players. Generally speaking, for any two players P1 and
P2, their mutual rank rank(P1) < rank(P2) is determined by the condition score(P1)
< score(P2). In determining statistical significance, why did we not simply use
CRAFTY’s differences in the whole data set of individual positions analyzed? The
reason is that the distributions of the CRAFTY’s differences on individual positions
are non-symmetrical and very far from normal. Therefore we cannot apply para-
metric statistical tests on the original data. However, the distributions of the scores
(obtained as the average CRAFTY’s differences in the sample) in samples consisted
of 50 positions are approximately normal (see also the results of an experiment with
1,000 samples of 50 positions given in Fig. 3.3), so a parametric significance test as
the one below is appropriate.

For a pair of players P1 and P2, our null hypothesis is that their expected scores
are equal. That is, if we had a very large set of positions available for each of them,
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their observed scores would be indistinguishably close. The alternative hypothesis to
the null hypothesis is that the players’ expected scores are not equal. Now, given our
limited sets of available positions, and the corresponding observed scores and their
deviations for the two players, the statistical question is whether the null hypothesis
can be rejected at some confidence level, say 95%. If yes, then we may with 95%
confidence conclude that the expected scores of the two players are not equal, and
therefore the players’ performances according to this criterion are not equivalent. We
use the following test (for example, see [Ros05]) to decide this. If the inequality 3.3.1
is true then the null hypothesis is rejected:

√
s2
X̄1

(m)

n1

+
s2
X̄2

(m)

n2

× z > |M1 −M2| (3.1)

where s2
X̄i

(m) is the sample variance of the n1 = n2 = n = 30 scores of player Pi,
X̄i is a sample score (that is an average CRAFTY’s difference in a sample of m (m
= 50) positions), and Mi is the average of the n sample scores of Pi. The value of z
can be obtained from a table of the normal distribution in order to obtain the desired
confidence levels. We note that a two-tailed test is appropriate for testing our null
hypothesis.

We cannot apply this test in our case directly to all pairs of the players, because
it is only valid for testing a single hypothesis. Since we have

(
14
2

)
= 91 pairs of the

players, we need to test 91 hypotheses. Due to the multiple comparisons problem, a
more strict test is required. One simple way to strengthen the test is to use the Bonfer-
roni correction where the confidence level is increased by modifying p = 0.05 to p =

0.05/91, that is dividing p by the total number of tested hypotheses. The Bonferroni
correction is however unnecessarily conservative. The FDR method (False Discov-
ery Rate [BH95]), a modification of the Bonferroni correction, is a more powerful
method which has become popular in many multiple hypothesis testing applications
(e.g., [HvBK08]).

Before presenting the results obtained with the FDR method, we look into the
following question. How large sample sizes m and n we can afford so that the statis-
tical tests are still valid? With increased sample size, more positions are repeated in
different samples, so that the samples, which ideally should be independent, may be-
come too similar for reliably estimating the variance. Of course, the smaller the total
available set is, the more repetitions we have in the samples. And again, the larger
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the samples are, the more repetitions occur. To check the effect of increased repeti-
tions of positions in the samples of different sizes, we split all Karpov’s positions into
five subsets of 1,000 positions, and measured the variance on different sized samples
drawn from these subsets. We chose Karpov for this experiment because of the large
set of positions available from his World Chess Championship games. Finally, we
compared the obtained variances with those obtained on the whole set of more than
5,000 positions. Figure 3.4 shows the results of this experiment. The results indicate
that we can afford samples of which the size may be even a rather large proportion
of the total set. For example, sample size of 500 out of 1,000 seems perfectly safe.
This suggests that our choice of m = 50 was rather conservative.

Figure 3.4: Standard deviations of the scores in 100 subsets of positions (n = 100)
of different sizes m that were obtained on 5 data sets that each consisted of 1,000
positions from Karpov’s games. Different positions were included in each data set.
The results that were obtained from all available positions from Karpov’s games are
included as well.

The results obtained with the statistical test and by using the FDR method for
multiple comparisons are shown in Table 3.1, which shows for which pairs of the
players the expected scores differ at the confidence level > 95%. According to the
results, for 52.7% of pairs of the players we may with 95% confidence conclude that
the expected scores of the two players differ significantly. Note that the sizes of the
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Ste Euw Bot Tal Las Fis Smy Ale Pet Spa Kas Kar Kra Cap
Capablanca X X X X X X X X X X X X X
Kramnik X X X X X X X X X X
Karpov X X
Kasparov X X
Spassky X X
Petrosian X X X
Alekhine X X X X
Smyslov X X X
Fischer X X
Lasker X X
Tal X X X
Botvinnik X
Euwe X
Steinitz

Table 3.1: The names of the players are ordered according to their scores at search
depth 12 that were obtained on the whole set of positions available from their World
Chess Championship matches. Pairs of the players whose expected scores differ at
the confidence level > 95% are marked with ’X’. The results were obtained by the
false discovery rate (FDR) procedure for multiple comparisons.

samples used in our statistical analysis were onlym = 50 and n = 30. Therefore these
results can be rather conservative.

The results indicate that the sets of available positions were sufficiently large to
confirm reliably that for at least one half of the pairs of players their scores differ
significantly. Therefore, for at least one half of the pairs of the players, their mutual
rankings according to chess program CRAFTY would stay the same even if many
more positions were available for the analysis.‡ For players whose scores are very
similar, however, the positions available from World Chess Championship matches
do not produce statistically significant mutual rankings. This indicates that the third
possible reservation stated in Section 3.1, speculating that the number of analyzed
positions was too low (at least for some players), should be taken seriously, at least
when looking for a firm statistical guarantee regarding the relative rankings of some
pairs of the players.

‡Of course, this assumes that positions selected for computer analysis appropriately represent the
strength of a particular player.
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3.3.2 Stability of the Rankings with Search Depth

The results presented in the sequel were obtained on 100 subsets of the original data
sets, generated by randomly choosing 500 positions (with replacement) from the
available position samples of each player. The aim here is to study the stability of
rankings across the search depths.

In order to study the stability of the scores at different samples, the standard de-
viation of the scores at different search depths were obtained for each of the players.
The results are summarized in Figure 3.5, which shows the averages of the obtained
standard deviations. The average standard deviations of the players’ scores show that
they are less variable at higher depths. Anyway, they could be considered practically
constant at depths higher than 7. We also observed that Capablanca had the best score
in 95% of all the subset-depth combinations.

Figure 3.5: Average standard deviations of the scores of the players over 100 random
subsets of 500 positions, and standard deviations of the scores of some of the players
(for clarity, only a few players are included).

In order to determine the stability of the rankings (obtained in 100 subsets) across
different search depths, standard deviations of the ranks of individual players at each
search depth were computed. The results are summarized in Figure 3.6, which shows
the average of the standard deviations of all the players. They only slightly decrease
with increasing search depth and are practically equal for most of the depths.

Finally, we observed the stability of the obtained ranks for each player across dif-
ferent search depths, i.e., how much do the players’ ranks tend to change at different
search depths. The results of this study are summarized in Figure 3.7, which shows
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Figure 3.6: Average standard deviations of the players’ ranks (obtained in 100 sub-
sets), and standard deviations of the ranks of some of the players (for clarity, only a
few players are included).

Figure 3.7: Standard deviations of the average ranks for each player across all depths.

standard deviations of the average ranks for each player across all the search depths.
The low standard deviation values for most of the players (lower than 1) confirm that
the rankings of most of the players on average preserve well across different depths
of search.
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3.4 A Simple Probabilistic Model of Ranking by an
Imperfect Referee

Here, we present a simple mathematical explanation of why an imperfect evaluator
may be sufficient to correctly rank the candidates. The following simple model was
designed to show the two points below.

1. To obtain a sensible ranking of players, it is not necessary to use a computer
that is stronger than the players themselves. There are good chances to obtain
a sensible ranking even using a computer that is weaker than the players.

2. The (fallible) computer will not exhibit preference for players of similar strength
to the computer.

Let there be three players and let us assume that it is agreed what is the best move
in every position. Player A plays the best move in 90% of positions, player B in 80%,
and player C in 70%. Assume that we do not know these percentages, so we use a
computer program to estimate the players’ performance. Say the program available
for the analysis only plays the best move in 70% of the positions. In addition to
the best move in each position, let there be 10 other moves that are inferior to the
best move, but the players occasionally make mistakes and play one of these moves
instead of the best move. For simplicity we take that each of the inferior moves is
equally likely to be chosen by mistake by a player. Therefore player A, who plays the
best move 90% of the time, will distribute the remaining 10% equally among these
10 moves, giving 1% chance to each of them. Similarly, player B will choose any of
the inferior moves in 2% of the cases, etc. We also assume that mistakes by all the
players, including the computer, are probabilistically independent. In what situations
will the computer, in its imperfect judgement, credit a player for the “best” move?
There are two possibilities.

1. The player plays the best move, and the computer also believes that this is the
best move.

2. The player makes an inferior move, and the computer also confuses this same
inferior move for the best.

In general in this model, the computer’s estimate of a player’s accuracy can be
calculated as follows.
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P = probability of the player making the best move

PC = probability of the computer making the best move

P ′ = computer’s estimate of player’s P accuracy

N = number of inferior moves in a position

Then:

P’ = P× PC +
(1− P)× (1− PC)

N
(3.2)

By simple probabilistic reasoning we can now work out the computer’s approx-
imations of the players’ performance based on the computer’s analysis of a large
number of positions. By using equation (3.2) we can determine that the computer
will report the estimated percentages of correct moves as follows: player A: 63.3%,
player B: 56.6%, and player C: 49.9%. These values are quite a bit off the true per-
centages (i.e., 90%, 80%, and 70% for players A, B, and C respectively), but they
nevertheless preserve the correct ranking of the players. The example also illustrates
that the computer did not particularly favor player C, although that player is of similar
strength as the computer.

The simple example above does not exactly correspond to our method which also
takes into account the cost of mistakes. But it helps to bring home the point that for
sensible analysis we do not necessarily need computers stronger than human players.

P’ is monotonically increasing with P as long as PC > 1 / (N+1). Note that PC
corresponds to random referee in the case when PC = 1 / (N+1). So according to this
model, the referee only has to be better than random to obtain the ranking right, given
sufficiently large samples of positions, and that the independence assumption is true.
That is, the computer’s choice of wrong moves is independent of the player’s wrong
moves. All this is not to say that a perfect referee and a referee just better than random
are equally useful in determining rankings. In a realistic setting, where position sets
are limited, an inferior referee is more likely to arrive at the wrong ranking because
of larger statistical fluctuations in smaller samples.

3.5 A Model of Estimators of Different Strengths

Assume we have an estimator A that measures the performance of an individual M at
a concrete task, by assigning this individual a score S, based on some examples of M
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Figure 3.8: Although estimators A and B give different approximations of the true
performances of individuals M and N (SM and SN ), and A approximates the real
scores more closely, since their scores are equally biased towards each individual
(BiasAM = BiasAN and BiasBM = BiasBN ) and variances of the scores of both estimators
are equal for each respective individual (VarAM = VarBM and VarAN = VarBN ), they are
both equally suitable for mutual ranking of M and N.

performing the task. The estimator assigns different score values to the individual at
different examples, and the associated variance and bias are:

V arAM = E[(SAM − E(SAM))2] (3.3)

BiasAM = E(SAM − E(SAM)) (3.4)

Assuming a normal distribution of score values, the probability of an error in the
relative rankings of two individuals, M and N, using the estimator A, only depends
on the bias and the variance. Given two different estimators, A and B, if their scores
are equally biased towards each individual (BiasAM = BiasAN and BiasBM = BiasBN ) and
variances of the scores of both estimators are equal for each respective individual
(VarAM = VarBM and VarAN = VarNB ), then both estimators have the same probability
of committing an error (see Figure 3.8). This phenomenon is commonly known in
the machine-learning community and has been frequently used, e.g., in studies of
performances of estimators for comparing supervised classification algorithms (for
example, see [Koh95]).
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Figure 3.9: Average biases, standard deviations of them, and standard deviations of
the scores with 100 subsets.

3.5.1 Variance of Players’ Scores and Rankings with Search
Depth

In the sequel, we analyze what happens in comparisons in the domain of chess when
estimators based on CRAFTY at different search depths are used, as has been done in
the work presented in this chapter.

In our study, the subscript M in SAM refers to a player and the superscript A to a
depth of search. The true performance SM could not be determined, but since it is
commonly known that in chess the deeper search results in better heuristic evalua-
tions (on average), for each player the score at depth 12, obtained from all available
positions of each respective player, served as the best possible approximation of the
true performance. The variances and the biases for each player were observed at
each depth up to 11, once again using the 100 subsets of 500 positions, described in
Section 3.2.

The results are presented in Figure 3.9. The standard deviation of the bias over all
players is very low at each search depth, which suggests that BiasAM is approximately
equal for all the players M. The program did neither show any particular bias at any
depth towards Capablanca nor towards any other player, if we assume that CRAFTY

at search depth 12 is not biased. Moreover, the standard deviation is practically the
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same at all levels of search with only a slight tendency to decrease with increasing
search depth. In contrast, standard deviations of the scores are very low at all depths,
from which we could assume that VarAM = VarBM also holds. For better visualization,
we only present the mean variance, which as well shows only a slight tendency to
decrease with depth. To summarize, taking into account both of these facts, we may
conclude that the probability of an error of comparisons performed by CRAFTY at
different levels of search is practically the same, and only slightly diminishes with
increasing search depth.

3.6 Using Other Programs as Estimators

In Section 3.5, we showed that the probability of an error of comparisons performed
by CRAFTY at different levels of search is practically the same, and only slightly
diminishes with increasing search depth. The fact that the rankings of the players
whose scores are similar to each other fluctuate with depth therefore speaks for the
performance of these players, according to the criterion of deviation between the
estimator of problem-solving performance and problem solvers, being very similar.
Since this is a pioneer work on the subject, no reference exists to support this con-
clusion.§ However, this conclusion does not appear surprising bearing in mind that
the problem-solvers were all World Chess Champions, so the quality of play in the
games at the peak of their careers may indeed not differ significantly when being
compared, at least when the majority of the champions is concerned.

Nevertheless, some players whose scores significantly deviate from the others
have been established: Capablanca, Euwe, and Steinitz. This can be concluded par-
ticularly from the results presented in Table 3.1 and from the fact that Capablanca
had the best score in 95% of all the subset-depth combinations in the 100 samples
consisted of 500 randomly chosen positions, as mentioned in Subsection 3.3.2. Since
the goal of this thesis is not to give the final verdict on the question who was the best
chess player in history, but merely to determine how can heuristic-search based pro-
grams be used as estimators of problem solving performance, we will now focus on
these three players and check whether other chess programs rank them in the same
order as CRAFTY did.

§For an explanation why the widely established ratings do not necessarily reflect the problem-
solving performance, refer to Section 2.2.
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We will now observe variations with depth of average differences between player’s
and program’s decisions on a large subset of randomly chosen positions from the
World Chess Championship matches using three chess programs stronger than CRAFTY.
The following programs will be used, namely: RYBKA 2, RYBKA 3, and SHREDDER.
The (SSDF) ratings of these programs are given in Table 9.7. Among other observa-
tions, the inclusion of the stronger chess programs will help us to deal with another
reservation that may be imposed to our methodology of estimating problem-solving
performance, namely that the program will give a better ranking to players that have
a similar strength to the program itself.

Figure 3.10: The scores of Capablanca, Euwe, Steinitz, and other players, obtained
on a large subset of games from World Chess Champion matches, using RYBKA 2.

For each of the three players, we randomly picked at least 1,000 positions for
the analysis. As a control group, we randomly picked at least 20,000 positions of
the rest of the players. We used the same methodology for determining the rankings
according to our basic criterion, that is, the scores at each depth were calculated using
Equation 2.4.1.

The results of each of the programs are given in 3.10, 3.11, and 3.12, for RYBKA

2, RYBKA 3, and SHREDDER, respectively. The ranking of Capablanca, Euwe, and
Steinitz remained preserved at all depths using any of the programs, and the ranking
of the control group is also the same as it was when using CRAFTY. We observed
that the three players remained on their positions at any level of search using any of
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Figure 3.11: The scores of Capablanca, Euwe, Steinitz, and other players, obtained
on a large subset of games from World Chess Champion matches, using RYBKA 3.

Figure 3.12: The scores of Capablanca, Euwe, Steinitz, and other players, obtained
on a large subset of games from World Chess Champion matches, using SHREDDER.

the program, when comparing their scores to the average scores of the players in the
control group.

The experimental results presented in 3.10, 3.11, and 3.12 not only confirm that
the scores are not invariable for the same program at different depths of search, the
scores also differ significantly when using different programs. This is most clearly
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seen from Fig. 3.13, where average scores of all the players, obtained on the same
large subset of games from World Chess Champion matches, are given for the three
programs, and compared to average scores of all the players according to CRAFTY.
While the scores of SHREDDER are very similar to the scores of CRAFTY, the scores
of the two RYBKAs very much differ.

We would like to emphasize here that the scores obtained by the program only
measure the average differences between the players’ choices of move and the com-
puter’s choice. However, as the analysis shows these scores that are relative to the
computer used, have good chances to produce sensible rankings of the players.

Figure 3.13: Comparison of average scores of all the players, obtained by CRAFTY,
SHREDDER, RYBKA 2, and RYBKA 3.

For appropriate interpretation of the obtained scores and rankings of the players, it
should be emphasized again that this is only one possible criterion for the comparison
of the players among many sensible criteria of very different kinds. In this chapter,
we were concerned only with the credibility of the obtained results in the estimates
according to this particular criterion. The results show that, at least for the players
whose score significantly deviate from the others, the rankings are surprisingly stable
over a large interval of search depths, and over a large variation of position sample.
Even extremely shallow search of just two or three ply enable reasonable mutual
rankings for some pairs of the players.

Last but not least, our experimental findings strongly suggest that in order to
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obtain a sensible ranking of the players, it is not necessary to use a computer that is
stronger than the players themselves.

As we already mentioned, from the chess player’s point of view, this score-based
criterion is particularly crude in that it does neither take into account the differences
in the average difficulty of the positions played by different players, nor does this
criterion take into account another important aspect, that is the differences between
the playing styles of different players. These topics will be addressed in Chapter 4.
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Chapter 4

Assessing Difficulty of Problem
Solving Tasks

This chapter is based on the following publication:

1. Guid, M. and Bratko, I. Computer Analysis of World Chess Champions. ICGA
Journal, Vol. 29, No. 2, pp. 65-73, 2006. [GB06]

The main deficiency of our basic criterion for estimating problem-solving per-
formance, as detailed in the previous two chapters, is in the observation that there
are several types of players with specific properties, to whom this criterion does not
directly apply. It is reasonable to expect that positional players in average commit
fewer errors due to the somewhat less complex positions in which they find them-
selves as a result of their style of play, than tactical players. The latter, on aver-
age, deal with more complex positions (or more difficult positions in the sense of
problem-solving tasks in such positions being harder for humans), but are also better
at handling them and use this advantage to achieve excellent results in competition.

We wanted to determine how players would perform when facing equally difficult
positions. In other words, we wanted our computer analysis of World Chess Cham-
pions to take into account the differences in players’ styles to compensate the fact
that calm positional players in their typical games have less chance to commit gross
tactical errors than aggressive tactical players. Therefore, we designed a method to
assess the difficulty of positions.

Although there are enormous differences in the amount of search, nevertheless
there are similarities regarding the way chess programs and human players conduct
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a search for the best possible move in a given position. They both deal with a giant
search tree, with the current position as the root node of the tree, positions that follow
with all possible moves as children of the root node, and so on recursively for every
node. They both search for the best continuations and doing so, they both try to
discard moves that are of no importance for the evaluation of the current position.
They only differ in the way they discard them. A computer is running algorithms
for efficient subtree pruning whereas a human is depending mainly on his knowledge
and experience. Since they are both limited in time, they cannot search to an arbitrary
depth, so they eventually have to evaluate a position at one point. They both utilize
partial evaluations at given depths of search. While a computer uses evaluations
in a numerical form, a human player usually has in mind descriptive evaluations,
such as “small advantage”, “decisive advantage”, “unclear position”, etc. Since they
may have a great impact on the evaluation, they both check all forced variations (the
computer uses quiescence search for that purpose) before giving an assessment to the
root position. One can therefore draw many parallels between machine and human
best-move search procedures, which served as a basis for assessing the complexity
of positions.

The basic idea is as follows: a given position is difficult with respect to the
task of accurate evaluation and finding the best move, when different “best moves”,
which considerably alter the evaluation of the root position, are discovered at differ-
ent search depths. In such a situation, a player has to analyse more continuations
and search to a greater depth from the initial position to find moves that may greatly
influence the assessment of the initial position and then eventually choose the best
continuation.

As difficulty metric for an individual move, we chose the sum of the absolute dif-
ferences between the evaluation of the best and the second best move. It is invoked
at every time that a change in evaluation occurs when the search depth is increased.
A corresponding algorithm for calculating the complexity of a position is given in
Algorithm 2. Note however that the aim of this metric is neither to reflect the true
cognitive difficulty of a single chess position, nor is it designed for comparing indi-
vidual chess positions in terms of difficulty of their corresponding problem-solving
tasks. The aim of this metric is to enable assessing an average difficulty over a suffi-
ciently large set of chess positions, as it was the case in the WCC matches.

The difference between the evaluations of the best and the second-best move
represents the significance of change in the best move when the search depth is in-
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Algorithm 1 An algorithm for calculating the difficulty of a position.
difficulty := 0;

for depth 2 to 12 do
if (depth > 2) and (previous best move not equals current best move) then

difficulty += |best move evaluation - second best move evaluation|
end if

end for

creased. It is reasonable to assume (1) that a position is of higher difficulty, and (2)
that it is more difficult to make a decision on a move, when larger changes regarding
the best move are detected when increasing search depth. Merely counting the num-
ber of changes of the best move at different search depths would give an inadequate
metric, because making a good decision should not be difficult in positions where
several equally good choices arise.

Graph of errors made by players at different levels of difficulty, shown in Fig.
4.1 clearly indicates the validity of the chosen measure of difficulty of positions;
the players made little errors in simple positions, and the error rate increased with
increasing difficulty.∗

Figure 4.1: Average deviation between evaluations of played moves and best-
evaluated moves (errors) made by players at different levels of difficulty.

∗Chess program CRAFTY was used in the experiments presented in this chapter.
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4.1 Difficulty Measurements in the WCC matches

We applied our difficulty metric to assess an average difficulty of positions of partic-
ular players in World Chess Championship matches. The results are shown in Figure
4.2.

Figure 4.2: Results of average position difficulty measurements for particular World
Champions in their World Chess Championship games.

The described metric of position difficulty was also used to determine the dis-
tribution of moves played across different intervals of difficulty, based on positions
that players had faced themselves. This, in turn, largely defines their style of play. In
general, Capablanca is renowned for playing a “simple” chess and avoiding compli-
cations, while it is common that Steinitz and Tal faced many “wild” positions in their
games. The results of the difficulty measurement clearly coincide with this common
opinion.

For each player that was taken into consideration, the distribution over difficulty
was determined and the average error for each difficulty interval was calculated (nu-
merical scale of difficulty was divided into intervals by steps of 0.1). We also calcu-
lated an average distribution of difficulty of moves made for the described intervals
for all players combined. Figure 4.3 demonstrates that Capablanca indeed had much
less dealings with difficult positions compared to Tal.

The described approach enabled us to calculate an expected average error of
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Figure 4.3: Distribution of moves played across different intervals of difficulty.

World Champions in a hypothetical case where they would all play equally diffi-
cult positions. We calculated the errors for two cases. Firstly, for a game of average
difficulty, averaged among games played by all players. Secondly, for a game of aver-
age difficulty, averaged among games played by a single player. The latter represents
an attempt to determine how well the players would play, should they all play in the
style of Capablanca, Tal, etc. The results of this experiment are given in Figures 4.4
and 4.5.

Distribution of moves in different intervals regarding complexity is closely re-
lated with a player’s style. Establishing the players’ expected errors with a variety of
such distributions was another attempt to bring the champions to a “common denom-
inator,” by taking into account the differences in their style of play (see Figures 4.4
and 4.5).

Our measure of position difficulty seems to have produced sensible results, which
are qualitatively much in line to the observation of how a chess expert would describe
the players in this study in terms of their playing style. As a line of future work, it
would be interesting to explore by means of a psychological study, how well our
difficulty measure reflects the true cognitive difficulty of chess positions.
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Figure 4.4: How would the players perform if they all had the same distribution of
moves played across different intervals of difficulty as Capablanca?
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Figure 4.5: How would the players perform if they all had the same distribution of
moves played across different intervals of difficulty as Tal?
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Chapter 5

A Heuristic-Search Based Annotator

This chapter is an extensively updated and abridged version of the following publi-
cation:

1. Sadikov, A., Možina, M., Guid, M., Krivec, J., and Bratko, I. Automated Chess
Tutor. Computers and Games, Lecture Notes in Computer Science 4630 (eds.
Herik, H.J. van den, Ciancarini, P., Donkers, H.H.L.M.(Jeroen)), pp. 13-25.
Springer, 2007. [SMG+07]

It also includes some materials from the following publication:

1. Guid, M., Možina, M., Krivec, J., Sadikov, A., and Bratko, I. Learning Posi-
tional Features for Annotating Chess Games: A Case Study. Computers and
Games, Lecture Notes in Computer Science 5131 (eds. Herik, H.J. van den,
Ciancarini, P., Donkers, H.H.L.M.(Jeroen)), pp. 192-204. Springer, 2008.
[GMK+08]

The second part of the dissertation looks at the topic of Knowledge and Search
from a different angle, through the eye of an annotator. The prevailing question is:
can a computer act as an expert annotator? In this chapter, we present a roadmap to
achieve the goal of building a program for automated commentary of chess games.
The current chess software is lacking in this respect. The strong chess programs have
long ago achieved the human-grandmaster level of play, yet, they are rather unsuit-
able for providing instructive commentary. This is logical as they were designed to
play well, and their “language” is not intended for the annotating purposes. Our aim
is to overcome this issue.
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5.1 Automatic Annotation of Chess Games

The strong chess programs are though opponents to human grandmasters - already
surpassing them in many aspects. In spite of that, their capabilities to explain why
certain moves are good or bad in a language understandable to humans are quite lim-
ited. So far, only some attention was paid to an automatic intelligent annotation of
chess games and consequently the progress made in this field is negligible in compar-
ison to the progress in the power of chess engines, which we have witnessed in the
last decades. The typical “commentary” in the form of best continuations and their
numerical evaluations can hardly be of much help to the chess-player who would like
to learn the important concepts that are hidden behind the suggested moves.

In this chapter, we will present a novel approach for automated annotating of
chess games. Our approach will be based on a computer program that uses heuristic
search. The long-term goal of our research is to develop a computer system that will
provide commentary of chess moves and possible continuations in a comprehensible,
user-friendly, and instructive way, thus using the power demonstrated by the chess
engines for the purposes of annotating. Our approach aims at the following main
advantages:

• the ability to annotate chess games during all the phases of the game,

• the automatically generated commentary, aside from the ability to comment
on tactical positions, should also express a solid understanding of strategic
concepts behind variations that the engines suggest in given positions.

5.1.1 Related Work

The importance of the idea about automatic annotation of chess games was real-
ized long time ago. Around 1980, Donald Michie was probably the first to propose
research in this direction. ICGA (then still ICCA) Journal started an annual competi-
tion for the best chess annotation program - named after the late Prof. Herschberg. In
the mid 1990s, the spirits were high and the progress made even prompted D. Levy
and T. Marsland [LM96], members of the competition jury, to write: “If progress in
this field continues to be made at the same rate we would expect that, by the end of
the century, there will be annotation programs available which can offer a very use-
ful service to chess-players of every strength.” However, none of this have happened
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- the 1998 Fritz was the last program to enter the competition, and to this day the
commentary of chess programs remains rather spare and is mainly of tactical nature,
while the more complex strategic concepts and plans more or less remain unmen-
tioned.

The scientific research in this field was limited only to chess endgames, while
the demonstrated concepts all have a common weakness - the inability to extend
annotations in practice to the entire game of chess.

Gadwal et al. [GGM93] introduced a tutoring system with king, bishop and two
pawns on the same file versus lone king endgame. Their approach allows to com-
pile the plans in a given endgame into a strategy graph, which elaborates strategies
that students might use as they solve the endgame problem. Later, during tutoring,
the strategy graph can be accessed quickly in order to understand a student’s moves
in terms of his strategies. With such understanding, appropriate knowledge-based
commentary is provided to the student. The aim of the proposed approach was not
to tutor the whole game of chess, since compiling strategy plans for complex chess
middlegames would be unrealistic.

Seidel [Sei94] focused on the lone-king type of elementary endgames such as
KRK and KBBK. At the core of the system is a general rule for generating moves for
the stronger side that first determines the threats by the weaker side, generates possi-
ble actions, and then eliminates those moves that do not parry the threats. Threats and
actions represent the chess knowledge of the system and are defined manually. The
annotation mechanism follows simply from the move generating scheme by com-
menting which actions and threats are encountered. While this approach enables
specific annotations, the weak point is that a vast amount of manually entered knowl-
edge is required even for simple endgames. Besides, in a commentary on chess
games, people are interested in far more than only threats and actions in order to
benefit from annotations, in terms of chess knowledge gained.

Herbeck and Barth [HB96] combined alpha-beta search with knowledge in the
form of rules. Chess endgames up to four pieces served as their domain. Their al-
gorithm performs a standard search and then follows the principal variation until a
position is encountered in which a rule from the knowledge base states the outcome
(or a bound on the outcome) of the game. This rule (or a set of them) is then offered to
the user as an explanation. Such an approach enabled sensible and instructive com-
mentary, however, the manually constructed rules are hardly appropriate for more
complex endgames, let alone for middlegames. As with the other studies mentioned
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the main problem with it is the lack of extendability beyond the simple endgames.

5.2 The Annotating System Design

We follow the most natural way of annotating chess games in chess literature. Com-
mentators usually support suggested moves with series of moves (variations), and
comment on changes that the given variations would bring and/or describe the en-
visioned position at the end of the variation. Our main underlying idea is to use
heuristic search and chess-program-evaluation-function-like features to describe the
changes in the position when a move is made. These elementary features can later be
combined to form higher-level concepts understandable to humans. In this manner
we bridge the communication barrier between machines and humans. Our annotating
system consists of three components.

Search Module
provides principal variations and evaluations that result from heuristic search to
various consecutive search depths, for all possible moves in an initial position.

Knowledge Module
provides knowledge in a form of positional-feature values computed for all
positions along the obtained principal variations.

Expert Module
uses the principal variations and the positional-feature values to produce in-
structive and comprehensible annotations, based on a rule-based system.

Search Module guides a computer chess program, that is a chess engine,∗ to con-
duct heuristic searches from all possible moves in a given position† in order to obtain
(a) principal variations as a result of those searches, and (b) corresponding backed-up
heuristic evaluations. Preferably the strongest available chess engine and a reason-
ably high depth of search are used for this purpose, i.e., to assure a high quality of
the obtained variations.

∗We will from now on often use the term “chess engine” instead of “chess program,” to make the
distinction easier between our annotating program and ordinary chess programs (i.e., chess engines).

†Even weak moves (according to the engine at the highest search depth) may be interesting for
annotating purposes, especially if they seem to be good at lower search depths. In such cases, showing
a refutation of a seemingly good move may lead to instructive annotations.
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Knowledge Module combines the results of search with potentially useful do-
main knowledge. The positions along all the principal variations are assigned chess
engine’s positional feature values.‡ Additional positional features can also be intro-
duced into the system. We will address obtaining knowledge, in terms of learning
positional features useful for annotating chess games, in Chapter 6.

Expert Module uses the results of both other modules to produce comprehensible,
user-friendly, and instructive annotations. It is largely based on the rule-based expert
system, which will be described in Section 5.4.

5.3 Our Approach to Automatic Annotation

At first glance, moves can be divided into two categories: good moves and bad
moves. Yet, when delving into the matter more deeply, one can see that most moves
in games, pitting two players with opposing interests against each other, are a sort
of tradeoff of positive and negative characteristics of the position. With most moves
you gain something and you lose something.

These characteristics and their tradeoffs is what our annotating system is calcu-
lating and analyzing. For any given move, it calculates what characteristics of the
position have changed and on the basis of this and the change in evaluation, as given
by the engine, the annotator can elaborate what is the essence of the given move or
variation. The general merit of the move, however, is obtained by simply comparing
its score with the scores of other possible moves in the given position.

Most chess engines employ an evaluation function in the form of a weighted sum
of the position’s features. Such features, along with their associated weights, are
actually the position’s characteristics on which our commenting module is operating.
The weights are important too, because they define the relative importance of the
features (characteristics).

In the sequel, the mechanisms for calculating positive and negative changes of
characteristics are described. Subsection 5.3.1 deals with commenting on why a
certain move is good, and Subsection 5.3.2 deals with commenting on why a certain
move is bad.

‡Actually, positional-feature values used in evaluation function of any chess engine could be used
for this purpose. However, it could be beneficial to use positional-feature values of an engine that relies
more heavily on the knowledge it contains than on searching deeper. For the method of measuring the
quality of knowledge in heuristic evaluation functions, we refer to Section 9.4.
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5.3.1 Commenting on Good Characteristics

In general, the annotating system has two options to generate a comment why a
certain move is good:

1. the move achieves progress towards some goal, or

2. the move overcomes some weakness or deficiency of the current position.

Let us take a look at both options in more detail.
The basic idea behind the first option is that making headway involves achieving

progress towards goals, eventually accomplishing them. The goals in our schema are
simply positive changes in the evaluation function’s features (or additional positional
features, which also describe particular characteristics of the positions). We believe
this is a natural way to state simple, comprehensible goals to be achieved. Later we
show how the expert system can combine several simple goals into a more structured
one thus increasing the expressive power of the annotating system.

Figure 5.1a illustrates the setting for this idea. First, search is employed to ob-
tain a principal variation starting with the move to be commented upon. The final
position in the principal variation represents the goal position – this is the position
that one can reach from the initial position with the move in question. This position
might be viewed as envisioned by the player when he made the move. Second, we
calculate which features of the evaluation function have changed and by how much
they changed when comparing the envisioned position with the starting position. If
one looks at the evaluation function’s estimation of a position as a vector of values,
this operation is simply a difference between the corresponding position vectors.

The positive characteristics (or rather positively changing characteristics) achieved
are those that have positive values in the resulting vector of differences (here we as-
sume that we comment from the white player’s perspective; otherwise it is just the
opposite). Each such characteristic represents an eventual comment of what the move
in question aims to achieve. Basically, at this stage, we obtain a list of positive char-
acteristics which the move (or rather the principal variation starting with the move in
question) aims to achieve.

For example, if the following characteristic was singled out as the one that changed
positively:

WHITE_KNIGHTS_CENTRALIZATION
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(a) (b)

Figure 5.1: Commenting good characteristics

then a possible raw commentary would be “White’s knight is now centralized.” Of
course, it is up to the rule-based expert system to decide whether the positive change
is big enough actually to produce such comment in a given position, or if it is appro-
priate to give any annotation in this position at all.

It should be noted that both starting and envisioned position must be quiescent.
The starting position should be quiescent, because there is no point in commenting in
the middle of a tactical sequence; such a sequence should be viewed as a whole. The
envisioned position should be quiescent for obvious reasons – the evaluation based
on a non-quiescent position is completely unreliable and thus of little use.

Let us now take a look at the other possibility why a move can be good – namely,
because it overcomes some weakness or deficiency of the current position. This
situation is illustrated in Figure 5.1b. However, computationally this option is im-
plemented exactly as the first one. Note that good characteristics for the opponent
are bad for us, and are represented by negative numbers in the position’s vector. For
example, one such negative characteristic (position’s deficiency) could be:

BLACK_BISHOP_PAIR

If the value of this feature changes from some negative value to zero from the start
until the end of the principal variation, a possible raw commentary would be “After
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[principal variation], Black’s bishop pair is eliminated.” Again, it is up to the rule-
based expert system to decide whether to comment or not.

5.3.2 Commenting on Bad Characteristics

The annotating system has three options to generate a comment why a certain move
is bad:

1. the move creates a weakness or deficiency in the position,

2. the move spoils some good characteristic of the current position, or

3. the move is compared to a better (the best) possible move.

Options (1) and (2) are quite similar to the two options we encountered earlier
when discussing how commenting of good aspects of a move is accomplished. Op-
tion(1) mirrors option (1) for generating comments for good moves. The difference
is that there we strove to achieve some positive goals, while here the move achieves
some negative goal(s). Similarly, option (2) mirrors option (2) for generating com-
ments for good moves. Here, the difference is that instead of removing some weak-
ness or deficiency of the current position, the move removes some positive character-
istic of the current position.

From the computational point of view, the only difference is that we are now
looking at the evaluation features that are negative in the vector of differences be-
tween the starting and envisioned position. The rest is the same. For example, if
the following features were flagged as changed for the worse (negatively changing
characteristics):

BLACK_EVALUATE_PAWNS

BLACK_ROOK_BEHIND_PASSED_PAWN

the possible raw commentaries would be “The move allows the opponent to improve
the pawn structure,” and “Black’s rook is now behind a passed pawn.” The rule-based
expert system may further refine such comments by stating more concretely how was
the pawn structure improved (e.g., the opponent solved his problem of the doubled
pawns), and by explaining which rook is behind which passed pawn, if necessary.

However, there is a further difficulty when commenting really bad moves – be it
bad in positional or tactical sense. The nature of minimax search is such that it does
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not search for a sort of “bad envisioned position”, but rather allows the mistake (as it
is forced upon it by the user) and then searches for best play for both sides from that
point on. So, in essence, the envisioned position at the end of the principal variation
returned by the search may not necessarily reflect the real weakness of the bad move
(which is what we would like to comment upon), because this weakness was perhaps
traded for some other weakness later in the variation.

Let us illustrate this by an example. Assume that White made a mistake by mov-
ing a pawn and thus Black gained a strong outpost for its knight. Later in the prin-
cipal variation, stemming from this initial pawn move, however, Black exchanged
this strong knight for White’s bishop and so eliminated White’s strong bishop pair
and doubled White’s pawns. The annotating system, comparing the starting position
with the position at the end of principal variation, would comment that “The move
allows the opponent to eliminate your bishop pair and to weaken your pawn struc-
ture.” While in principle this is true, it may be more in the spirit of annotating to say
“The move allows the opponent to gain a strong knight outpost.” The initial comment
can prove too abstract to the user. Or, after all, the user can choose not to follow the
principal variation at all.

The difficulty we described is actually just a special case of a more general prob-
lem – namely, how long should the principal variation be and where in it we should
decide to comment. This is a cognitive problem and amongst other things depends
on the chess strength of the user (or the audience) for which the system attempts to
annotate. In some cases just a single move should be commented, in other cases the
whole variation, and in still other cases a part of the variation. The results of searches
to lower depths are meant to provide useful information for making annotations of
different lengths.

The idea behind option (3) is different from the concepts we discussed so far.
Instead of observing what the move achieved, positive or negative, we observe what
the move did not achieve although it could have. We compare the move played
with the best move that was available. In essence, positive and negative changes of
characteristics for the move played and for the best move available are calculated for
this purpose, and their respective merits compared.
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5.4 The Rule-Based Expert System

In principle, the raw comments that could be generated merely by observing changes
in particular features along the principal variations can already enable producing rel-
atively intelligent annotations. However, most of the tasks in order to obtain in-
structive, user-friendly, and comprehensible annotations are left to the expert system.
These tasks include solving the following problems:

1. deciding when to annotate and when not,

2. choosing which moves (alternatives) to annotate,

3. choosing an appropriate length of displayed variations,

4. deciding what features and feature changes to comment on,

5. deciding to describe feature changes or rather the envisioned position,

6. forming sensible annotations from the calculations of feature changes,

7. refining annotations, making them more instructive and comprehensible.

In Subsection 5.4.1, we describe how our rule-based expert system works. In Sub-
section 5.4.2 we briefly discuss possibilities for (1) manually changing the obtained
rules, and (2) introducing machine learning into the system’s development.

5.4.1 Illustrative Example

To illustrate how our expert system works, we present a typical annotation of our
annotating program in Figure 5.2. Chess engine CRAFTY was used in the Search
Module, and CRAFTY’s original positional features (supported with two additional
features that measure the activity of the pieces) were used in the Knowledge Module.
The commentary on the move 16...Ra7 is shown in the caption. According to the
engine, this move is stronger the move played in the game (16...Nc5).

The automated annotator claims that the move 16...Ra7 move leads to (approxi-
mately) equal chances for both sides, and supports this assessment with the sequence
of moves. The assessment is expressed both qualitatively and numerically (-0.11),
the search depth at which it was obtained (13 plies), and the engine used (CRAFTY)
are given. The diagram on the left shows the position to be commented upon, while
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Kasparov - Shirov, Horgen 1994, Position at the end of the envisioned
position after 16.Rb4 variation, after 21...e4

Figure 5.2: Automatic annotation – “16...Ra7 leads to equality after 17.Bd3 O-O
18.O-O a5 19.Ra4 Nc5 20.Ra3 Bxd5 21.exd5 e4 (-0.11, Crafty:13). Black has im-
proved the pawn structure and the activity of his pieces, White no longer has a strong
knight. Black no longer has the advantage of a bishop pair.”

the diagram on the right shows the envisioned position, that is the position at the end
of the given variation.

The annotating system decided to produce annotations in this position, since ac-
cording to the engine a better move (16...Ra7, -0.11) was found then the one that was
played in the game (16...Nc5, 0.00). The system therefore commented on the better
alternative.

The length of the given variation was shortened by two plies compared to the
original principal variation given by CRAFTY (the last two moves, 22.Bc4 a4, were
omitted). Note that the length of the variation does not have to be the same as it is in
the original principal variation given by the engine at some chosen depth of search.
Actually, it is beneficial to shorten the engine’s principal variation, to avoid possible
tactical flaws that may occur at the end of it due to a horizon effect (despite having
quiescence search enabled). As we mentioned earlier, choosing appropriate length of
the variation is a cognitive problem and amongst other things depends on the chess
strength of the user (or the audience) the system attempts to annotate for. Of course,
the vector of differences between features is always calculated for the variation that
the annotating system (not the engine) chooses to display. Choosing automatically
the appropriate length of the displayed variation belongs to our future work.
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Regarding the depth of search, the depth of 12 or 13 plies usually provides search
results of sufficient strength for sensible annotations, when using the chess engine
CRAFTY. Of course, some positions (e.g., those of a higher tactical complexity) may
demand deeper search. Choosing an appropriate search depth automatically is also a
part of our future work.

Tables 5.1 and 5.2 show the calculations of feature-value changes between the di-
agrammed positions in Figure 5.2. The values are given in “centipawns.” That is, the
change of +20, for example, contributes to the positive change of 0.20 in the evalua-
tion by the engine. The flags provide additional useful information to the annotating
system. For example, “2→ 1” for the feature BLACK BISHOP PAIR tells that the
number of Black’s bishops reduced from two to one. Additional positional features
that were introduced into the annotating system, WHITE PIECE ACTIVITY and
BLACK PIECE ACTIVITY, are displayed separately from the CRAFTY’s features.

Table 5.1: Vector of negative differences (favorable changes for Black).

Feature Change Flag

KING TROPISM -52
WHITE KNIGHTS OUTPOSTS -15 2→ 1
EVALUATE PAWNS -15
BLACK WEAK PAWNS -12
WHITE BACK RANK -12
BLACK PAWN ADVANCES -6
WHITE KNIGHTS CENTRALIZATION -6 2→ 1
BLACK ROOKS POSITION -4
BLACK KNIGHTS CENTRALIZATION -2

WHITE PIECE ACTIVITY -10 45→ 35
BLACK PIECE ACTIVITY -4 -36→ -40

The feature KING TROPISM, for example, expresses a difference between a
proximity of the pieces of each player to the opponent’s king. Seemingly, this was the
most important change to comment on. Obviously, the Black king escaped from the
center of the board by castling on the 17th move, and the knight that attacked some
squares around the Black’s king was eliminated. Since commentaries like “White’s
pieces are now less approximated to the opponent’s king” are really not typical for
annotating chess games, giving a comment saying that Black’s king is now safer than
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Table 5.2: Vector of positive differences (favorable changes for White).

Feature Change Flag

BLACK BISHOP PAIR +20 2→ 1
BLACK BISHOP PLUS PAWNS ON COLOR +16 2→ 1
BLACK BACK RANK +12
WHITE BISHOPS POSITION +10
BLACK BISHOPS MOBILITY +9 2→ 1
WHITE ROOK HALF OPEN FILE +5
WHITE ROOKS POSITION +4
WHITE PAWN ADVANCES +3
WHITE BISHOPS MOBILITY +3
BLACK BISHOPS POSITION +2 2→ 1

before may seem to be appropriate. However, was Black’s king really in any dan-
ger before? Actually, this attribute alone does not give an answer about the king’s
safety. Only combined with another features (such as EVALUATE KING SAFETY,
BLACK SAFETY, or WHITE TROPISM) this feature may be able to help the system
to determine whether one side has a pressure against the opponent’s king. In the
present case, no rule in the expert system triggered, and no comment was produced
based on the changed value of this feature. In general, it is better to not comment at
all than giving false annotations.

Let us demonstrate how the annotating system produced the following commen-
tary: “Black has improved the pawn structure.” The values of the following two
CRAFTY’s features were particularly important in order to induce this comment:

(a) EVALUATE_PAWNS,

(b) BLACK_WEAK_PAWNS.

At the beginning of the variation, the values of these features were 26 (a) and 12
(b), while at the end of the variation they changed to 11 (a) and 0 (b). The positive
values here mean that these features favored White. After the relatively big change
of the features’ value is detected (compared to other feature-value changes), the an-
notating system seeks for appropriate rule. In the present case, a rule of the following
structure triggered.

IF (BLACK_PAWNS < -X) THEN
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IF (∆EVALUATE_PAWNS < -Y) THEN

IF ((∆BLACK_WEAK_PAWNS + ∆BLACK_DOUBLED_PAWNS +

+ ∆BLACK_PASSED_PAWNS + ∆BLACK_ISOLATED_PAWNS +

+ ∆BLACK_PAWN_DUO) <= -Z) THEN

comment(‘‘Black has improved the pawn structure.’’)

The rule combines several elementary CRAFTY’s features to decide whether com-
menting on improved pawn structure by Black is desirable or not. First, it checks
whether there are sufficient Black’s pawns on the chessboard, and then how much
Black’s pawn structure improved over the opponent’s pawn structure. Finally, it
checks whether the sum of changes of positional feature values that describe Black’s
pawn structure changed sufficiently in Black’s favor. At the relatively simple set
rule of rules using this structure for expressing whether one’s pawn structure has
improved, the values of X , Y , and Z were determined using the expert knowledge
only, after the experts became acquainted with the meaning of the feature values
that CRAFTY uses. The rule can easily be modified to describe the envisioned posi-
tion, e.g., by changing the comment to “Black’s pawn structure is now improved.” It
is possible to allow choosing among alternative comments, making the annotations
more colorful.

In similar fashion, the other comments were obtained. The comment ”White
no longer has a strong knight” was made by considering the negatively changed val-
ues of WHITE KNIGHTS OUTPOSTS and WHITE KNIGHTS CENTRALIZATION,
and that the number of White’s knights reduced from two to one. For the rest of the
feature-value changes, no rule triggered. At last, all the obtained commentary is joint
together to form more human-like annotations, as are the ones shown in Figure 5.2.

5.4.2 Possibilities for Manually Changing the Obtained Rules

The elementary positional features that are built in CRAFTY’s evaluation function
are not always appropriate for successful annotating, while combining them into ap-
propriate rules is often too difficult for domain experts. For example, none of the
following attributes that are somewhat associated with the high-level concept of hav-
ing a pressure against the opponent’s king, if used alone in some kind of a rule,
would suffice for determining whether the pieces form a threat to the opponent’s
king: (1) WHITE TROPISM, (2) BLACK SAFETY, (3) EVALUATE KING SAFETY,
(4) KING TROPISM. The following comment would sound absurdly: “White im-
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proved the safety of his king relatively to the safety of the opponent’s king.” This is
exactly what the feature EVALUATE KING SAFETY is supposed to express.

Introducing additional elementary positional features into the annotating system
usually does not completely solve the problem either, although it may help construct-
ing more powerful rules for successful annotating.

It may seem that relatively complex concepts associated with the game of chess,
and numerous exceptions to particular “rules” make this domain inappropriate for
applying machine learning techniques, at least for annotating purposes. Indeed it
seems rather difficult to express high-level concepts using the limited set of available
positional features. However, there is one favorable circumstance: It is not neces-
sary to produce particular annotations, when the annotator is not sure about their
correctness. Therefore it is possible to change manually the obtained rules into more
demanding ones. For example, by increasing the value of Z in the example rule in
Subsection 5.4.1, which would result in demanding greater change in Black’s pawn
structure improvement in order to comment about it. Moreover, it is not necessary to
obtain a “perfect” model for describing some concept – it suffices to obtain at least
some rules that can reliably classify new examples, and then use these rules only.

Our approach for formalizing complex positional patterns and thus obtaining
rules for describing high-level concepts by using machine learning techniques will
be presented in detail in Chapter 6.

5.5 Final Remarks

By providing a roadmap to achieve the goal of building a program for automated
commentary of chess games, our goal was to demonstrate that a heuristic-search
based program is able to act as an expert annotator of chess games. Our main idea is
to use a heuristic-search program to provide results of heuristic search and heuristic-
evaluation function’s features to describe the changes between the root node and
the goal node. The features can then be combined to form higher level concepts
understandable to humans. We showed an illustrative example and explained it in
detail in order to demonstrate how our annotating program works. However, we view
its development as a work in progress – the value of our novel approach still has to
be proven. This can be done by submitting our annotating program to the Herschberg
Annotation Award Competition, which is one of our future goals.
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Chapter 6

Obtaining Knowledge for a
Heuristic-Search Based Program

This chapter is an updated and abridged version of the following publication:

1. Guid, M., Možina, M., Krivec, J., Sadikov, A., and Bratko, I. Learning Posi-
tional Features for Annotating Chess Games: A Case Study. Computers and
Games, Lecture Notes in Computer Science 5131 (eds. Herik, H.J. van den,
Ciancarini, P., Donkers, H.H.L.M.(Jeroen)), pp. 192-204. Springer, 2008.
[GMK+08]

It also includes some materials from the following publication:

1. Možina, M., Guid, M., Krivec, J., Sadikov, A., and Bratko, I. Fighting Knowl-
edge Acquisition Bottleneck with Argument Based Machine Learning. Pro-
ceeding of the 2008 conference on ECAI 2008: 18th European Conference on
Artificial Intelligence, pp. 234-238. IOS Press, 2008. [MGK+08]

In this chapter, we investigate what type of knowledge is necessary for the task of
an expert annotator. We point out certain differences between the computer programs
which are specialized for playing chess and a program which is aimed at providing
quality commentary. A link with machine learning techniques is proposed for the
elicitation of knowledge from human experts. After examining several opportunities
for introducing machine learning into development of a chess annotating system as
it was introduced in Chapter 5, we embark upon argument-based machine learning
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as a method of choice for obtaining useful knowledge for a heuristic-search based
annotating program.

6.1 Knowledge Acquisition for Chess Annotation

In this chapter, we investigate a particular aspect in the development of a chess anno-
tating software - the ability of making intelligent comments on the positional aspects
of a chess game. This task is made more difficult by the fact that the strength of
the chess playing programs mainly comes from search and not from subtle posi-
tional knowledge which is necessary for generating positional comments. Therefore,
components of a chess program’s evaluation function are not sufficient for making
in-depth positional comments. Defining deep positional patterns requires powerful
knowledge-elicitation methods.

Our approach to the generation of positional comments makes use of elements of
a chess evaluation function. However, more sophisticated positional patterns have to
be introduced in addition to the features contained in an evaluation function. Defining
such sophisticated positional patterns is often a difficult knowledge-elicitation task.

In the presented case study, we consider the elicitation of the well-known chess
concept of the bad bishop. There is a general agreement in the chess literature and
among chess players about the intuition behind this concept. However, formalizing it
in a way that would enable an annotating system to decide reliably whether a bishop
in a given position is bad turned out to be quite difficult even for chess experts.

To alleviate the knowledge-elicitation problem, we applied the recently developed
approach of Argument Based Machine Learning (ABML) [MvB07]. The efficacy of
ABML comes from its unique ability to make use of expert’s arguments (or justifica-
tions) for selected example cases. This approach is natural and effective for the expert
because he can concentrate on explaining concrete cases, and does not have to con-
struct general rules, which is much more difficult. The method also leads the expert
to think about new relevant descriptive features, thereby improving the description
language that the learning program uses.

Through a case study, we present an application of argument-based machine
learning to the construction of more complex positional features, in order to pro-
vide our annotating system (see Chapter 5) with an ability to comment on various
positional intricacies of positions in the game of chess.
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Figure 6.1: Classical example of a bad bishop.

6.2 Positional Features for Annotating Chess Games

The programs that are aimed to play chess successfully do not need to be aware of all
the concepts that would otherwise be useful for giving instructive annotations. There
is always a dilemma how much knowledge to implement into evaluation functions of
the programs in order to achieve best tournament performances. The more knowledge
means less time for efficient search and vice versa. It is commonly known that some
programs have more knowledgeable evaluation functions, while others rely more on
efficient search algorithms that allow them to reach higher search depths.

To illustrate our points, we will introduce a concept of the bad bishop. Watson
[Wat99] gives the following definition as traditional: a bishop that is on the same
color of squares as its own pawns is bad, since its mobility is restricted by its own
pawns and it does not defend the squares in front of these pawns. Moreover, he puts
forward that centralization of these pawns is the main factor in deciding whether the
bishop is bad or not. In the middlegame, he continues, the most important in this
aspect are d and e pawns, followed by c and f pawns, while the rest of the pawns on
the same color of a square as the bishop, are irrelevant (up to the endgame, where
they might again become an important factor for determining the goodness of the
bishop).

The example in Figure 6.1 is taken from the classic book by Aaron Nimzovich,
The Blockade [Nim06]. The black bishop on c8 is bad, since its activity is signifi-
cantly hindered by its own pawns. Furthermore, these pawns are blockaded by the
pieces of his opponent, which makes it even harder for black to activate the bishop.
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Chess program CRAFTY, for example, has several positional features that are
associated with the goodness of the bishops, but they are insufficient fully to describe
this concept. They apply to both bishops for one side at the same time, i.e., the
values for both bishops are represented by one feature only. Even if we arrange to
obtain the feature values for each bishop separately, these positional features are still
not appropriate to describe the goodness of a bishop, with the aim to annotate chess
games in an instructive way.

Table 6.1 shows CRAFTY’s most relevant positional features for describing a bad
bishop. As it becomes clear from the descriptions of these features and their deficien-
cies from the purpose of describing bad bishops, CRAFTY clearly could not be aware
of such a concept. For example, if we move pawns e6 and d5 to g6 and h7 (pre-
serving the value of BLACK BISHOP PLUS PAWNS ON COLOR - since pawns on
the same color of the square as the bishop carry the same penalty, regardless of their
position) and the rook from a8 to d7 (the value of BLACK BISHOPS MOBILITY

even decreases, as the bishop is attacking one square less), the bishop clearly would
not be bad, but in CRAFTY’s view it would be even worse than in the given position.

Table 6.1: Some CRAFTY’s positional features that have a potential for describing
bad bishops and their deficiencies for doing so successfully.

Feature Description Deficiency for annotating

BLACK BISHOP
PLUS PAWNS
ON COLOR

a number of own pawns
that are on the same
color of the square as the
bishop

all such pawns count the
same, regardless of their po-
sition and how badly they re-
strict the bishop

BLACK BISHOPS
POSITION

an evaluation of the
bishop’s position based
on predefined values for
particular squares

such predefined value is
not the actual value of the
bishop’s placement in a
particular position

BLACK BISHOPS
MOBILITY

the number of squares
that the bishop attacks

the number of attacked
squares and the actual
bishop’s mobility are not
necessarily the same thing

In order to introduce a new positional feature (say BAD BISHOP) that would allow
commenting on such complex concepts, as is the concept of the bad bishop, it is
therefore essential first to obtain additional (simple) positional features, and then
combining them into some kind of rules that would allow to obtain the value of the
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new (more complex) positional feature BAD BISHOP.
As we mentioned in Subsection 5.4.2, it is not necessary to comment on particular

feature each time it occurs. When the annotator is not sure about some feature in the
position, it is better to say nothing at all than giving false comments.

6.2.1 The Static Nature of Positional Features

Positional features are static in their nature - they describe the state of their purposed
issue for the current position only. It is heuristic search that enables them to fulfil
their purpose - contributing to the program finding the best moves. For example, in
position in Figure 1, if we moved the knight from e5 to h1, and decided that black
is to move, black would easily solve all his problems by playing e6-e5, chasing the
other white knight away and freeing both of his pieces. The positional features from
Table 6.1, among others, would contribute to deciding for this freeing move, since
the values of all three attributes become more desirable soon along the principal
variation (e.g., after e6-e5 and Bc8-f5, there are less pawns on bishop’s square color,
and the bishop itself is placed on a square with a higher predefined value and also
attacks more squares). Although the mentioned positional features are not suitable
for commenting on the bad bishop, they nevertheless help it to become a good one.

It is also desirable for positional features for annotating chess games to be of
static nature. For example, it is up to the chess engine to determine whether the
freeing move e6-e5 is possible or not (e.g., in case of white king on f4 and the e5
knight still on h1 it would drop at least a pawn).

6.3 Application of Machine Learning Techniques

In the sequel of this chapter, we demonstrate the construction of a static positional
feature, BAD BISHOP (with possible values yes or no), which was designed for com-
menting on bad bishops (possibly combined with some heuristic search).

In our domain, it turns out to be extremely difficult for a chess expert to define
appropriate rules, using typical positional features, for the program to be able to rec-
ognize complex concepts, such as the bad bishop. Our domain experts∗ defined the
rules, using CRAFTY’s positional features only, which in their opinion described bad

∗WGM Jana Krivec and FM Matej Guid.
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bishops in the best possible way (considering the constraint of having only CRAFTY’s
features at disposal). The rules were of the following type:

IF (|BLACK_BISHOP_PLUS_PAWNS_ON_COLOR| > X)

AND (|BLACK_BISHOPS_MOBILITY| < Y)

THEN BAD_BISHOP = yes

Three such rules were given, depending on the number of black pawns in the
position. The positional features and the values for X and Y were determined, after
the experts had become acquainted with the exact meaning of CRAFTY’s positional
features and observed their values in several positions of various types. However,
after examining the outcome of these rules on various chess positions, it turned out
that the rules performed rather poorly, which was the key motivation for introducing
machine learning into the system’s development.

In Subsection 6.3.1, we describe how the learning data set was obtained. In Sub-
section 6.3.2, we present the results of using typical machine learning methods. Fi-
nally, in Subsection 6.3.3, we introduce Argument Based Machine Learning as our
method of choice for the acquisition of knowledge.

6.3.1 The Learning Data Set

The learning data set consisted of middlegame positions† from real chess games,
where the black player has only one bishop. Based on the aforementioned expert-
crafted rules, positions were obtained automatically from a large database of chess
games. In all positions, the quiescence criterion was satisfied. The bishops were a
subject of evaluation by the experts.

When chess experts comment on concepts such as the bad bishop, they also have
dynamic aspects of a position in mind. Therefore, assessing bishops “statically”
is slightly counter-intuitive from the chess-player’s point of view. After a careful
deliberation, the following rules were chosen for determining a bad bishop from the
static point of view.

The bishop is bad from the static point of view in some position, if:

1. its improvement or exchange would notably change the evaluation of the posi-
tion in favor of the player possessing it,

†While the concept of the bad bishop hardly applies to the early opening phase, different rules for
determining bad bishops apply in the endgames (see Watson’s definition in Section 6.2).
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2. the pawn structure, especially the one of the player with this bishop, notably
limits its chances for taking an active part in the game,

3. its mobility in this position is limited or not important for the evaluation.

These rules seem to be in line with the traditional definition of the bad bishop, and
in the experts’ opinion lead to sensible classification - in positions where assessment
from the static point of view differs from the one obtained from the usual (dynamic)
point of view, it seems very likely that a possible implementation of heuristic search,
using the newly obtained positional feature BAD BISHOP (such search could enable
the program to realize whether the bishop is more than just temporarily bad and thus
worth commenting on), would lead to sensible judgement on whether to comment on
the bad bishop or not.

The learning data set consisted of 200 positions‡. We deliberately included no-
tably more bishops labeled as “bad” by the initial rules given by the experts, due to
our expectations (based on the unsuitability of CRAFTY’s positional features) that
many of the bishops labeled as “bad” will not be assessed so after the experts’ exam-
ination of the positions. After examination by the experts, 80 examples in the data
set obtained the class value yes (“bad”) and 120 examples obtained the class value no
(“not bad”). It turned out that only 59% of the examples were correctly classified by
the expert-crafted rules.

6.3.2 Using Ordinary Machine Learning Methods

As the expert-crafted rules scored only 59% classification accuracy on our data set,
which is clearly insufficient for annotating purposes, there is a clear motivation for
the use of machine learning. However, as classification accuracy equally penalizes
false positives (“not bad” classified as “bad”) and false negatives, we should also use
precision, which measures the percentage of true “bad” bishops among ones that were
classified as “bad”. Remember, falsely commenting is worse than not commenting at
all.

From the many available machine learning methods we decided to take only those
that produce understandable models, as it will be useful later to be able to give an
explanation why a bishop is bad and not only labeling it as such. We chose standard

‡This number was chosen as the most feasible one, considering limited available time of the
experts. The quality of the final model implies that the number of selected positions in the learning
data set was high enough.
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machine learning methods given in Table 6.2. We also give accuracy and precision
results of these methods on our learning set.

Table 6.2: The machine learning methods’ performance with CRAFTY’s features.

Method Classification accuracy Precision
Decision trees (C4.5) 71% 64%
Logistic regression 80% 76%
Rule learning (CN2) 73% 75%

All the accuracy and precision results were obtained through 10-fold cross validation.
All the methods achieve better accuracies than expert given rules, but they are still
too inaccurate for commenting purposes.

6.3.3 Argument Based Machine Learning

Argument Based Machine Learning (ABML, [MvB07]) is machine learning extended
with some concepts from argumentation. Argumentation is a branch of artificial in-
telligence that analyses reasoning where arguments for and against a certain claim
are produced and evaluated [PV02].

Arguments are used in ABML to enhance learning examples. Each argument is
attached to a single learning example only, while one example can have several ar-
guments. There are two types of arguments; positive arguments are used to explain
(or argue) why a certain learning example is in the class as given, and negative ar-
guments are used to explain why it should not be in the class as given. We used
only positive arguments in this work, as negatives were not required. Examples with
attached arguments are called argumented examples.

Arguments are usually provided by domain experts who find it natural to articu-
late their knowledge in this manner. While it is generally accepted that giving domain
knowledge usually poses a problem, in ABML they need to focus on one specific case
only at a time and provide knowledge that seems relevant for this case and does not
have to be valid for the whole domain. The idea can be easily illustrated with the
task of commenting on chess games. It would be hard to talk about chess moves in
general to decide precisely when they are good or bad. However, if an expert is asked
to comment on a particular move in a given position, he will be able to offer an ex-
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planation and provide relevant elements of this position. Naturally, in a new position
the same argument could be incorrect.

An ABML method is required to induce a theory that uses given arguments to
explain the examples. Thus arguments constrain the combinatorial search among
possible hypotheses, and also direct the search towards hypotheses that are more
comprehensible in the light of expert’s background knowledge. If an ABML method
is used on normal examples only (without arguments), then it should act the same
as a normal machine learning method. We used the method ABCN2 [MvB07], an
argument-based extension of the well known method CN2 [CB91], that learns a set
of unordered probabilistic rules from argumented examples. In ABCN2, the theory (a
set of rules) is said to explain the examples using given arguments, when there exists
at least one rule for each argumented example that contains at least one positive
argument in the condition part.

In addition to rules we need an inference mechanism to enable reasoning about
new cases. Given the nature of the domain, we decided to learn only rules for “bad”
bishop and classify a new example as “bad” whenever at least one of the learned rules
triggered.

Asking experts to give arguments to the whole learning set is not likely to be
feasible, since it requires too much time and effort. The following loop describes an
iterative process for acquiring arguments and new attributes from experts.

Step 1 Learn a set of rules.

Step 2 Search for problematic cases in the data set; these are the examples that are
misclassified by the induced rules.

Step 3 If no problematic examples are found, stop the process.

Step 4 Select a problematic example and present it to experts. If the case is a po-
sition with a “bad” bishop, then experts are asked to explain why this bishop
is “bad”. If it is a “not bad” bishop position, then we search for the culpa-
ble rule predicting “bad” and ask experts to explain an example with the class
value yes (“bad”) from the set of examples covered only by this rule. In the
latter case experts need to be careful to provide reasons that are not true in the
problematic position. Problematic positions with a “not bad” bishop are called
counter-examples.
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Step 5 Experts have three possibilities of responding to the presented case.

1. They can give reasons why bishop is “bad”. Reasons are added to the
example in the data set.

2. If they cannot explain it with given attributes, they can introduce a new
attribute (or improve an existing one), which is then added to the domain.

3. Experts can decide that this bishop is actually “good” and thus the class
of the example needs to be changed.

If experts are unable to explain the example, we select another one.

Step 6 Return to step 1.

In the sequel, we present in detail the interactive procedure between the domain ex-
pert(s) and ABML during knowledge acquisition.

6.4 Knowledge Elicitation Process

Table 6.3 shows the three rules induced in the first iteration of the aforementioned
process, where only CRAFTY’s positional features were used and no arguments have
been given yet. Condition part of a rule is the conjunction of the features indicated
in the corresponding column. In the cases with no threshold specified, the feature is
not part of the corresponding rule. For example, the rule #1§ is:

IF BLACK BISHOP MOBILITY > -12 THEN BAD BISHOP = yes

The distribution of positive and negative examples covered by each of the rules
speaks about the relatively poor quality of these rules - especially in the last rule.

Figure 6.2 (left) shows the first problematic example selected by our algorithm.
The experts were asked to describe why the black bishop is bad. Based on their
answer, another attribute, BAD PAWNS, was added into the domain. The experts
designed a look-up table (see Figure 6.2 (right)) with predefined values for the pawns
that are on the color of the square of the bishop in order to assign weights to such

§The negative values of BLACK BISHOP MOBILITY are the consequence of CRAFTY using
negative values for describing features that are good for Black. The more squares this bishop is
attacking, the more negative this value. For each attacked square, the feature value is decreased by -4.
For example, the value of -12 means that the bishop is attacking three squares.
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Table 6.3: The rules for BAD BISHOP = yes, after the first iteration of the process.

Positional feature #1 #2 #3
BLACK BISHOPS MOBILITY > -12 > -18 > -18
BISHOP PLUS PAWN ON COLOR > 12
BLACK BISHOP POSITION > 4
positive examples (“bad”) 40 44 67
negative examples (“not bad”) 4 7 25

Figure 6.2: The experts were asked the question: “Why is the black bishop bad?”
They used their domain knowledge to provide the following answer: “The black
bishop is bad, since a lot of black pawns are on the same color as the bishop. Es-
pecially the central pawns notably limit its chances for taking an active part in the
game.” The need for the attribute BAD PAWNSwas identified. The experts designed a
look-up table with predefined values for the pawns that are on the color of the square
of the bishop in order to assign weights to such pawns.

pawns. According to Watson’s definition, centralization of the pawns has been taken
into account. Several other attributes that were added at later stages (see Table 6.4)
used this look-up table to assess heuristically an influence of such bad pawns on the
evaluation of the bishop.

Table 6.4 presents the list of attributes that were added to the domain during the
process. To give an example of how the values of these new attributes are obtained,
we will calculate the value of the attribute BAD PAWNS AHEAD for the position in
Figure 2. This attribute provides an assessment of pawns on the same color of square
as the bishop that are in front of it. There are three such pawns in that position: e6,
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Table 6.4: The new attributes, and iterations when they were added to the domain.

Attribute Description It.

BAD PAWNS
pawns on the color of the square of the bishop
- weighted according to their squares (bad
pawns)

2

BAD PAWNS AHEAD bad pawns ahead of the bishop 3

BLOCKED DIAGONAL
bad pawns that block the bishop’s (front) diag-
onals 4

BLOCKED BAD PAWNS
bad pawns, blocked by opponent’s pawns or
pieces 5

IMPROVED BISHOP
MOBILITY

number of squares accessible to the bishop, tak-
ing into account only pawns of both opponents 6

BLOCKED PAWNS
BLOCK DIAGONAL

bad pawns, blocked by opponent’s pawns or
pieces, that block the bishop’s (front) diagonals 12

d5, and a6. For each of these pawns their corresponding values are obtained from the
look-up table, that is, 16, 24, and 2, respectively. The sum of these values (16 + 24 +
2 = 42) represents the value of the attribute BAD PAWNS AHEAD in that position.

Figure 6.3 shows an example how the argument given to some particular po-
sition could be improved by the expert, using some help by the machine learn-
ing method, which automatically suggests him appropriate counter-example. The
counter-examples are another effective feature for overcoming the knowledge acqui-
sition bottleneck.

The final rules at the end of the process are presented in Table 6.5 (for the interpre-
tation of this presentation, see the description before Table 6.3). The obtained rules
for the new positional feature BAD BISHOP only cover positive examples, have a
pure distribution (no misclassified examples), and also appear sensible to the experts.

Particularly valuable is that the rules enable not only commenting on whether a
bishop is bad, but also why it is bad. Formulation of the explanations is provided in
the expert module of our annotating system. For example, if the rule #2 from Table
6.5 triggers in a particular position, the following comment could be given: “Black
bishop is bad, since black pawns on the same color of squares ahead of it, and pawns
of both opponents restrict its mobility.”
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Figure 6.3: After iteration 6, the expert gave the following description why the
bishop is bad in position on the left: “The bishop is bad, because, taking the
pawn structure into account, only one square is accessible to it.” The argu-
ment “IMPROVED BISHOP MOBILITY=low” was added to this position, based
on this description. However, in the next iteration, the machine learning method
selected the position on the right, where the bishop is classified as “not bad”, as
the counter-example. After the expert’s examination, the following significant dif-
ference between the two positions was determined: in the position on the right,
there are no bad pawns ahead of the bishop. Based on that, the argument to the
position on the left was improved to “IMPROVED BISHOP MOBILITY=low AND
BAD PAWNS AHEAD=high”.

6.5 Assessment and Discussion

The machine learning methods that were used on CRAFTY’s original positional fea-
ture values were tested on the same data, supplemented with the newly obtained
attribute values. All the accuracy and precision results were again obtained through
10-fold cross validation.
The results are presented in Table 6.6. They suggest that the performance of other
algorithms could also be improved by adding appropriate additional attributes (com-
pare to Table 6.2). However, using arguments (as with the method ABCN2), besides
stimulating the expert to identify the need for useful additional attributes, also guides
the method towards appropriate combinations of attributes, which is likely to lead to
even more accurate models.

The main advantage of ABML over classical machine learning is the ability to
take advantage of an expert’s prior knowledge in the induction procedure. This leads
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Table 6.5: The rules for BAD BISHOP = yes, obtained after the 14th (final) iteration.

Positional feature #1 #2 #3 #4 #5 #6 #7
BAD PAWNS > 14 > 32
BAD PAWNS AHEAD > 20 > 18 > 26 > 28 > 12
BLOCKED DIAGONAL > 4 > 16 > 16
BLOCKED BAD PAWNS > 0
IMPROVED BISHOP
MOBILITY

< 3 < 4 < 4 < 2 < 5

BLOCKED PAWNS
BLOCK DIAGONAL

> 0

BLACK BISHOPS
MOBILITY

< -15

positive examples 46 46 42 38 38 36 31
negative examples 0 0 0 0 0 0 0

Table 6.6: The machine learning methods’ performance with the data, supplemented
with the newly obtained attribute values.

Method Classification accuracy Precision
Decision trees (C4.5) 85% 85%
Logistic regression 89% 91%
Rule learning (CN2) 91% 94%
Rule learning with arguments (ABCN2) 94% 96%

to hypotheses comprehensible to experts, as it explains learning examples using the
same arguments as the expert did. In our case study this was confirmed by chess
experts. According to them, the final set of rules are more alike to their understanding
of the bad bishop concept than the initial rules were. Furthermore, the final rules were
also recognized to be in accordance with the traditional definition of a bad bishop.

Our domain experts clearly preferred the ABML approach to manual knowledge
acquisition. The formalization of the concept of bad bishop turned out to be be-
yond the practical ability of our chess experts (a master and a woman grandmaster).
They described the process as time consuming and hard, mainly because it is diffi-
cult to consider all relevant elements. ABML facilitates knowledge acquisition by
fighting these problems directly. Experts do not need to consider all possibly rele-
vant elements, but only elements relevant for a specific case, which is much easier.
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Moreover, by selecting only critical examples, the time of experts involvement is
decreased, making the whole process much less time consuming.

Given our experimental findings in the domain of chess, we believe that our ap-
proach to knowledge elicitation based on the ABML type of machine learning will
be most helpful for obtaining positional features useful for heuristic-search based
programs. Complex features such as BAD BISHOP that we formalized in our case
study may not always be suitable for evaluation functions of competitive programs,
where time spent on heuristic search is quite important (besides, appropriate weights
of these features should be determined). Nevertheless, they could serve well for an-
notation purposes. For example, when used in a software such as the chess annotating
system presented in Chapter 5.
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Chapter 7

Deriving Concepts and Strategies
from Chess Tablebases

This chapter is an updated and abridged version of the following publication:

1. Guid, M., Možina, Sadikov, A., and Bratko, I. Deriving Concepts and Strate-
gies from Chess Tablebases. ACG 2009, Lecture Notes in Computer Science
6048 (eds. Herik, H.J. van den, and Spronck, Peter), pp. 195-207. Springer,
2010. [GMSB10]

In this chapter, we demonstrate a semi-automatic procedure for deriving con-
cepts and strategies usable for intelligent tutoring purposes from chess tablebases,
i.e., databases that contain perfect information. We focus on constructing human-
friendly textbook instructions for teaching a difficult-to-master KBNK (king, bishop
and knight versus a lone king) chess endgame. The instructions were obtained from
a hierarchical model of semi-automatically generated goal-based rules, and repre-
sent the knowledge of a search-based program that is capable of giving instructive
annotations.

The chapter is organized as follows. Section 7.1 contains a short overview of
related work on extracting knowledge from chess tablebases. In Section 7.2, we first
present the obtained textbook instructions. The hierarchical model of ordered set
of rules is given at the end of the section, together with an example game contain-
ing automatically generated instructions based on these rules. In Section 7.3, we
introduce the basics of our approach to goal-based rule learning, explain the guide-
lines for interaction between the machine and the expert in order to obtain a human-
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understandable rule-based model for playing a chess endgame, and describe how the
instructions for KBNK were derived semi-automatically from our hierarchical rule-
based model. In Section 7.4, we present the evaluation of the instructions by three
renown chess teachers, and an evaluation of human-like style of play generated by
our method by four international grandmasters. We conclude the chapter by some
final remarks and intentions for further work.

7.1 Learning from Perfect Information

Chess tablebases [Tho86] have enabled people a glimpse of how a perfect play looks
like. It seems, however, that people are ill adapted to understanding this perfection.
While tablebases are of enormous help to computers, people are for the most part
puzzled by the style of play generated by tablebases. Yet, people would very much
like to learn as much as possible, and there is no doubt that tablebases contain an
enormous amount of potential knowledge – but in a form not easily accessible to a
human mind.

There have been many attempts to extract knowledge from tablebases. Perhaps
two best documented examples are a research project carried out by a chess study
specialist John Roycroft [Roy88] and the work of grandmaster John Nunn resulting
in two books on pawnless endings [Nun95; Nun02]. All the attempts, however, had
at most limited success.

The goal of Roycroft’s study was that he would learn himself reliably to play
the KBBKN endgame (king and two bishops vs. king and knight). This endgame
was for a long time considered generally to be drawn, until the KBBKN tablebase
was computed. The tablebase showed that the side with two bishops can usually
force a win, but the winning play is extremely difficult and takes a long sequence
of moves under optimal play by both sides. Many moves in the optimal play for
the stronger side are completely obscure to a human. Roycroft tried to extract a
human-executable winning strategy by the help of this tablebase, trying manually to
discover important concepts in this endgame which would enable a human to win
reliably. After a one year’s effort, the project ended with rather limited success when
Roycroft’s accumulated skill for this endgame was still not quite sufficient to win
actually against the tablebase in many of the won KBBKN positions.

The task of learning is not any easier for the computer. In an overview of the
learning methods in games, Fürnkranz indicated that machine learning of understand-
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able and usable concepts over the years did not yield much success [F0̈1]. There
have been various attempts to bridge the gap between perfect information stored in
tablebases and human-usable strategies. While some of these approaches succeeded
for relatively small domains (such as KRK endgame in chess), the resulting models
are hardly intelligible to human experts [vdHUvR02], not to mention beginners and
novices. All related work did not result in breakthroughs in more complex domains.
Moreover, the research questions how to learn human-understandable models and
use them to generate instructions suitable for teaching humans remained open.

In a way learning from tablebases resembles closely the extraction of expert’s
tacit knowledge when constructing a knowledge base of an expert system – in both
cases the knowledge is difficult to extract. In chapter 6 we introduced a new paradigm,
which facilitates semi-automatic elicitation of knowledge in the form of rules. We
successfully applied it to creating a knowledge base of an expert system that recog-
nizes bad bishops in chess middlegames and is able to explain its decisions.

In this chapter, we introduce a novel approach of Goal-Based Rule Learning and
combine it with the aforementioned paradigm for learning strategic goal-based rules.
We harvested the tablebases to extract useful concepts and strategies which the do-
main expert in close collaboration with the machine learning tool turned into a text-
book (and computer aid) for teaching the KBNK endgame. It is important to note
that at the beginning of the process the expert was unable to express such precise
instructions on his own and was even unaware of some of the important concepts that
were later used in the instructions.

7.2 Semi-Automatically Derived Instructions for
KBNK endgame

We present here the instructions in the form of goals for delivering checkmate from
any given KBNK position. These instructions were semi-automatically derived from
the tablebases. In the following hierarchical set of goals, to deliver successfully a
checkmate, the chess-player is instructed always to try to execute the highest achiev-
able goal listed below. The goals are listed in order of preference, goal 1 being the
most preferred. The chess-player is expected to know how to avoid stalemate, piece
blunders, and threefold repetitions. Apart from descriptions of the goals we also
illustrate most of the concepts behind them.
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Goal 1: Deliver Checkmate

A checkmating procedure is the following: two consecutive checks with the minor
pieces are delivered, the later one resulting in one of the two types of checkmate
positions shown in Fig. 7.1.

Figure 7.1: Checkmate can be delivered by the bishop or the knight, always in the
corner of the bishop’s color (“right” corner). Each arrow indicates last bishop’s move.

Goal 2: Prepare the Knight for Checkmate

This goal applies when the king and the bishop restrain the defender’s king to only
two squares: the corner square and a square on the edge of the board right beside the
corner square (see Fig. 7.2). The task of the attacker is to prepare the knight so that
it is ready for the checkmating procedure.

Goal 3: Restrain Defending King to a Minimal Area Beside the Right Corner

Figure 7.2: A minimal area.

The task of the attacker is to take squares away from
the defending king until it is driven to the edge of the
board, and consequently to the corner square. The
chess-player is advised to aim for the type of posi-
tion shown in Fig. 7.2 where the king and the bishop
restrain the defending king to a minimal area beside
the right corner.

Goal 4: Build a Barrier and Squeeze Defending King

The attacker is advised to build a barrier that holds the defending king in an area
beside the right-colored corner. When such barrier is built, the attacker should aim to
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squeeze the constrained area in order further to restrain the defending king (see Fig.
7.3).

Figure 7.3: In the position shown in the left diagram, the attacking side could build
the barrier in the following manner: 1.Ne5-d7 Kc7-c6 2.Bh7-d3!, leading to the po-
sition on the right. The area around the right-colored corner to which the defending
king is confined, could be squeezed further, e.g., after 2...Kc6-c7 3.Bd3-b5.

Goal 5: Approach Defending King from Central Side

A part of the basic strategy is to drive the opposing king to the edge of the board. In
order to achieve this, it is beneficial for the attacking side to occupy squares closer to
the center of the chessboard than the defending king does. The attacker should aim
to approach the opposing king from the central side of the board.

Goal 6: Block the Way to the Wrong Corner

When the defender’s king is already pushed to the edge of the board, the attacker’s
task is to constrain as much as possible the defending king’s way to the wrong-
colored corner. At the same time, the attacker should try to keep restraining the
king to the edge of the board. Fig. 7.4 shows an example of a typical position that
often occurred in simulated games.

Goal 7: Push Defending King Towards the Right Corner

The attacker is advised to push the defending king towards the right-colored corner,
at the same time not allowing it to move further away from the edge of the board (see
Fig. 7.5).
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Figure 7.4: In the position on the left, white pieces lure the defending king out of the
wrong corner: 1.Ne5-f7+ Kh8-g8 2.Bf5-g6 Kf8 (note that this is the only available
square, since h8 is attacked by the knight) 3.Bh7! The last move in this sequence
takes under control square g8, and sets up the blockade one square farther from the
wrong corner.

Figure 7.5: Black king’s distance from
the right corner (a8) should decrease, and
black king should not be allowed to move
away from the edge of the chessboard.
This is achieved by the move 1.Nf7-e5,
and black cannot resist white’s goals:
even after suboptimal 1...Ke8-f8 (optimal
move according to tablebases is 1...Ke8-
d8) white could play 2.Ne5-d7+ Kf8-e8
3.Kf6-e6 and black should move closer
to the right corner with the only available
move 3...Ke8-d8.

Goal 8: Push Defending King towards the Edge

The attacker is advised to arrange the pieces in such way so that the defending king is
pushed towards the edge of the board, and cannot immediately increase the distance
from the edge.

Goal 9: Approach with the King

The attacker is advised to move the king closer to the opposing king.

Goal 10: Bring the Knight Closer to the Defending King

The attacker is advised to bring the knight closer to the defending king.
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Default Goal: Keep the Kings Close

If none of the above goals is achievable, at least keep the king as close as possible to
the defending king, and - if possible - strive for the opposition of the kings.

Table 7.1: The hierarchical model of ordered set of rules.

1. IF true THEN checkmate = true
2. IF min_area = true THEN knight_prepare = true
3. IF min_area = false THEN min_area = true
4. IF king_area < 70 AND ndist <= 3

THEN king_area should decrease
AND king_area minimise

5. IF cpdist > 1
THEN cpdist should decrease

AND king_area should not increase
AND mkdist should not increase
AND mkdist minimise

6. IF edist < 1
THEN edist should not increase

AND knight_on_edge = false
AND wrong_corner_way should decrease
AND wk_more_central = true
AND wrong_corner_way minimise

7. IF kdist < 3 AND ndist < 6 AND rcdist > 0
THEN edist should not increase

AND rcdist should decrease
8. IF kdist < 3 AND edist > 0

THEN edist should decrease
AND piece_safety = true
AND wrong_corner_way should not increase

9. IF cpdist > 0 AND mkdist > 2
THEN edist should not increase

AND mkdist should decrease
AND mkdist minimise

10. IF ndist > 2 THEN ndist should decrease
11. IF true

THEN kdist should not increase
AND mkdist minimise
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7.2.1 The Hierarchical Model of Ordered Set of Rules

The ten goals and the default goal in the presented textbook instructions are based
on the hierarchical model of ordered set of rules given in Table 7.1. In Section 7.3,
we will describe how the textbook instructions were obtained from these rules. Any
of these goal-based rules [MGSB09] triggers only if preconditions are true and the
goal is actually achievable. The description of attributes used in the model is given
in Table 7.2

Table 7.2: Descriptions of Attributes

Attribute Description
checkmate deliver checkmate within 5 plies

min area
white king and bishop are on adjacent squares, and con-
strain black king to only two squares beside the right-
colored corner

knight prepare
white knight is able to attack the square adjacent to the
right-colored corner square in just one move

king area
8 * the farther diagonal black king can reach from the
right-colored corner + number of squares black king can
reach on the farther diagonal

wrong corner way

8 * the farther diagonal black king can reach from the
right-colored corner + number of squares black king can
reach on the farther diagonal, but only in the direction
towards the nearest wrong-colored corner

kdist distance between the kings
mkdist Manhattan distance between the kings
edist distance between black king and the edge of the board
ndist distance between black king and white knight
rcdist distance between black king and right-colored corner

cpdist
distance between white king and the closest square to
black king on a straight line between black king and the
very center of the board

piece safety
white pieces are not closer to black king than to white
king

wk more central
white king is no closer to the right-colored corner than
black king, when rcdist < 5, otherwise always true
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Table 7.3: An example game from the following starting position. White: Kh1,
Ba8, Nh7; Black: Kb1 (mate in 31). White played according to the rules in our
hierarchical model, Black defended optimally. The suggested goals are given each
time the previous goal is accomplished. It is also stated in how many moves (N) the
goal is achievable. The moves 7.Bd5+ and 9.Kd3 are suboptimal, each one of them
prolongs the checkmating procedure by one move.

Suggestion N Resulting play
Approach the black king from the central side. 1 1.Kg1 Kc2
Approach the black king from the central side. 1 2.Kf2 Kd3
Approach the black king from the central side. 1 3.Kf3 Kd4
Approach the black king from the central side. 1 4.Kf4 Kc4
Approach the black king from the central side. 1 5.Ke4 Kb4
Approach with the king. 1 6.Kd4 Kb3

Push the black king towards the edge. 3
7.Bd5+ Kc2 8.Bc4 Kb2
9.Kd3 Ka1

Approach with the king. 1 10.Kc3 Kb1
Bring the knight closer to the black king. 1 11.Ng5 Ka1

Block the way to the wrong corner. 3
12.Ne6 Kb1 13.Nd4 Ka1
14.Nc2+ Kb1

Block the way to the wrong corner. 2 15.Bd5 Kc1 16.Ba2 Kd1
Push the black king towards the right corner. 1 17.Nd4 Ke1

Build a barrier and squeeze black king’s area. 3
18.Kd3 Kf2 19.Ne2 Kg2
20.Be6 Kf3

Build a barrier and squeeze black king’s area. 2 21.Bc8 Kf2 22.Bg4 Ke1
Build a barrier and squeeze black king’s area. 2 23.Nf4 Kf2 24.Nh5 Ke1
Build a barrier and squeeze black king’s area. 1 25.Ke3 Kf1

Build a barrier and squeeze black king’s area. 3
26.Nf4 Ke1 27.Nd3+ Kf1
28.Kf3 Kg1

Restrain the black king to a minimal area. 3
29.Bh3 Kh2 30.Nf4 Kh1
31.Kg3 Kg1

Deliver checkmate. 2 32.Ne2+ Kh1 33.Bg2#
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7.2.2 Generating Example Games

The hierarchical model of rules can be used as a heuristic function for generating ex-
ample games supplemented by commentary in a form of instructions. An instruction
is given each time the previous suggested goal has been accomplished. These games
can help the student better to understand the learned strategy. They also illustrate
how the teaching process would run with the help of a computer. The student would
first read the instructions and then be presented a random position to play against the
computer. At any point in the game, the computer is able to give an appropriate sug-
gestion to the student in the form of a goal to accomplish. These suggestions/goals
could be further augmented by occasionally displaying a side diagram containing the
position associated with the given goal.

In general, a successful execution of a given goal can be either optimal or sub-
optimal. For generating example games we chose optimal execution of goals. This
does not necessary lead to optimal play, which is not the purpose of instructions for
teaching a given endgame anyway. One such example game is shown in Table 7.3;
note that an optimal execution of the goals achieves checkmate in two more moves
than optimal play.

7.3 The Process of Synthesizing Instructions

In Subsections from 7.3.1 to 7.3.5, we introduce the basics of our approach to goal-
based rule learning. In Subsections 7.3.6 and 7.3.7, we describe how the instructions
for KBNK were derived semi-automatically from our hierarchical rule-based model,
and explain the guidelines for interaction between the machine and the expert in order
to obtain a human-understandable rule-based model for playing a chess endgame.

7.3.1 Basic Description of Our Approach

As already mentioned, the rules were induced by a recently developed method for
goal-based rule induction [MGSB09]. This method extracts a strategy for solving
problems that require search (like chess, checkers etc.). A strategy is an ordered list
of goals that lead to the solution of the problem, similar to advice list in Advice Lan-
guages [Bra82]. These goals can then be used to teach a human, who is incapable
of extensive search, how to act in these domains and be able to solve these problems
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Figure 7.6: Computer: “What goal
would you suggest for white in this po-
sition? What are the reasons for this
goal to apply in this position?” The ex-
pert used his domain knowledge to pro-
duce the following answer: “Black king
is close to the edge of the board, but the
king is not constrained by white pieces.
Therefore I would suggest White to
constrain black king.”

simply by following the suggested goals. The method combines ideas from the Argu-
ment Based Machine Learning (ABML) [MvB07] with specialized minimax search
to extract a strategy for solving problems that require search.

7.3.2 Obtaining Knowledge from Domain Expert

In order to obtain meaningful and human-understandable instructions, the knowledge
has to be elicited from a chess expert (in our case this was a FIDE master). Each chess
position is described with a set of features that correspond to some well-known chess
concepts. The features are obtained by a domain expert as a result of the knowledge
elicitation process.

The knowledge elicitation process is similar as in [MGK+08; GPB08]: Domain
expert and machine learning algorithm improve the model iteratively. We will present
a typical interaction between the method and the expert in a simple KRK endgame
where we also applied our approach. As a result of this particular step of the inter-
action (shown in Figures 7.6 and 7.7), a new attribute king constrained was
introduced. A demonstration of a similar interaction for the KBNK endgame is pre-
sented in Subsection 7.3.7.

7.3.3 Strategic Goal-Based Rules

Our hierarchical model consists of an ordered set of rules of the following form:

IF preconditions THEN goal
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Figure 7.7: Computer: “Would you ad-
monish a student if he played 1.Rd1-c1
in this position?” The expert found this
move to be perfectly acceptable. De-
spite of its non-optimality: from the
tablebase point of view 1.Ke7-d7 is
a much better move - 1.Rd1-c1 (the
worst possible execution of the sug-
gested goal) achieves mate in 11 moves
whereas after 1.Ke7-d7 only 6 moves
are necessary (1...Kb7-b6 2.Rd1-d5!).

The rule’s preconditions and goals are both expressed by using the aforemen-
tioned features. The method used the expert’s argument given in Fig. 7.6 to induce
the following rule:

IF edist < 3

AND king_constrained = false

THEN king_constrained = true

AND edist should not increase

where edist is the distance between black king and the edge of the board. The sub-
goal edist should not increase was added by the computer. The method recognized
that allowing Black to move away from the edge of the board would increase the dis-
tance to mate. The expert can accept or reject such suggestions before the rule’s
acceptance, but doing so, it is important to rely on his common knowledge about the
domain.

7.3.4 Allowing Non-Optimal Play

Often, counter examples are detected by the method, and presented to the expert.
Counter examples are positions where the goal can be achieved, but the resulting
play nevertheless leads to increased distance to mate. Among such positions, the one
with the highest distance to mate is chosen as the key counter example. Figure 7.7
illustrates this idea.

Since human players typically choose a longer path to win by systematically
achieving intermediate goals, the expert is instructed to accept counter examples
where such subgoals are executed, although they often do not lead to optimal play in
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the sense of shortest win against best defence. However, the resulting play in counter
examples should lead to overall progress towards achieving the final goal of deliver-
ing checkmate. Constraining the black king in the above counter example was judged
to lead to such progress.

The expert may also find the execution of the goal in a counter example to be un-
acceptable. In this case, he may add, modify, and/or remove any of the preconditions
and subgoals. Again, doing any of these, it is important that the expert relies on his
common knowledge about the domain.

7.3.5 Hierarchy of Goals

When a rule triggers, all the goals higher in the hierarchy are also taken into account.
The goal is achievable when at least one of these goals can be executed regardless of
the defender’s play (optimal or non-optimal). Such hierarchy of goals is typical of a
human way of thinking. For example, when the goal is to push the defender’s king
towards the right-colored corner in the KBNK endgame and the defender resists the
goal by allowing the opponent to deliver checkmate (that would not be achievable
without the opponent’s help), one is expected to see such a possibility. It would be
redundant to express goals in the following way: “Push the defending king towards
the right corner or deliver a checkmate, if the opponent plays badly and allows it.”

7.3.6 Constructing Human-Friendly Instructions from
Semi-Automatically Generated Rules

The role of preconditions and non-progressive subgoals is merely to allow a com-
puter program to detect positions where a specific rule triggers and to achieve goals
appropriately. All the goals in the instructions are obtained by stating only the pro-
gressive subgoal. The exception is the last, default goal, since it is desirable always
to be able to give advice to the student. Let us demonstrate this on the following rule
(the descriptions of the attributes are given in Table 7.2):

IF edist < 1

THEN edist should not increase

AND knight_on_edge = false

AND wrong_corner_way should decrease

AND wk_more_central = true
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AND wrong_corner_way minimise

The precondition edist < 1 enables the program to try to achieve the goal only
when the defending king is confined to the edge of the board. The progressive sub-
goal is wrong corner way should decrease, so when this rule triggers (i.e., this
goal is achievable and no higher rule triggers) the student is given the following ad-
vice: “Block the way to the wrong corner.” It is expected from a human to recognize
(at least eventually) that moving the knight to the edge, allowing the opponent to
move away from the edge, and putting the king closer to the edge than the oppo-
nent’s king does not lead to progress. For a computer, such constraints are necessary
to enable a sensible execution of the goals.

It is also desirable to obtain sensible diagrams and variations that are supposed
to provide a most useful representation of the goals and concepts in a given domain.
We obtained these by executing simulations of delivering checkmate from randomly
chosen initial positions using the hierarchy of goals. The execution of goals in these
simulations was optimal in sense of minimizing the distance to mate (quickest play).
For each goal, the position that occurred most frequently in the simulations, was
chosen to be presented by a diagram. When several positions occurred equally fre-
quently, more diagrams were used.

7.3.7 Demonstration of Interaction between Computer and
Domain Expert in KBNK

The instructions for the bishop and knight checkmate were tailored to students at club
level. Our domain expert judged that the skill level of the targeted students should
be sufficient for them to be able to calculate chess variations at least three moves (or
6 plies) ahead. This depth of lookahead was therefore set for the depth parameter of
our algorithm.

As already mentioned, the expert and the machine learning algorithm improve the
model iteratively. A typical interaction in this particular chess endgame is demon-
strated in Figures 7.8 and 7.9. Our algorithm is capable of inducing goals that are
both achievable and successful in terms of progressing towards delivering checkmate
by itself. However, in the critical example in Fig. 7.8 the automatically induced goal
(“distance of black king from the edge of the board should decrease”) was charac-
terized by the algorithm as bad (e.g., after 1.Bg4-f3 Kg2-h3 the goal is achieved, but
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Figure 7.8: Computer: “I suggest the following goal: the distance between black
king and the edge of the board should decrease. However, it does not seem to work
well in this position. What goal would you suggest for white in this position? What
are the reasons for this goal to apply in this position?” The expert: “Pushing black
king to the edge of the board is fine. However, I find the following goal to be more
instructive for the student: Build a barrier and squeeze the defending king into the
corner. Currently such barrier is not yet established. The move expected from the
student is 1.Ne5-d3, achieving the goal.”

distance-to-mate increases).
As an answer to the question posed by the computer, the expert expressed his

argument describing the diagrammed position. A new attribute king area was
introduced. Note that new attributes also allow the domain expert to introduce im-
portant elements of knowledge to be acquired by students. In the present case, the
student is advised to build a barrier that holds the defending king in an area beside the
corner. When such barrier is built, the student should aim to squeeze the constrained
area in order further to restrain the defending king. The comment from the expert
was translated into the following argument in computer-understandable form:

IF king_area is high

THEN decrease king_area

AND minimise king_area

Important to note here is that “king area” is a new concept introduced by the
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Figure 7.9: Computer: “Would you admonish a student if he played 1.Bg4-e2 in
this position?” The expert would not admonish a student, he found this move to be
perfectly acceptable. Despite of its non-optimality: from the tablebase point of view
1.Kf5-g5 is a better move - 1.Bg4-e2 (the worst possible execution of the goal of
squeezing the area available to the black king) achieves mate in 10 moves whereas
after 1.Kf5-g5 only 8 moves are necessary.

expert which he used for explaining his view. The expert is free to use as high-level
or low-level concepts as he wishes the targeted students to be presented. In short, this
is another way for experts to tailor the level of instructions.

Appropriate translation of the experts’s comment into the language understand-
able to the algorithm is mandatory. For example, the subgoal minimise king area

was included in the argument, as the student has to squeeze the area available to the
defending king as much as possible. Without this particular subgoal, another move
would be acceptable apart from the one that the expert mentioned: 1.Ne5-c4, which
is worse, since it provides more freedom to the defending king.

Among positions where the goal can be achieved, but the resulting play neverthe-
less leads to an increased distance to mate, the position with the highest distance to
mate (see Fig. 7.9) was chosen as the key counter example in this particular interac-
tion.

Allowing non-perfect execution of tasks enables generated instructions to be in
a more human-like manner. In chess, human players typically do not play optimally
in the sense of shortest win against best defense; they choose a longer path to win
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by systematically achieving intermediate goals. The expert would not admonish stu-
dents if resulting play in counter examples leads to overall progress towards achiev-
ing the final goal (delivering checkmate). The way of squeezing the area available to
the black king in the counter example in Fig. 7.9, although not optimal in terms of
perfect play, was judged to lead to such progress.

7.4 Discussion and Evaluation

The bishop and knight checkmate (KBNK) is regarded as the most difficult of the
elementary mates. Several chess books give the general strategy for playing this
endgame as follows. Since checkmate can only be forced in the corner of the same
color as the squares on which the bishop moves, an opponent will try to stay first in
the center of the board, and then retreat in the wrong-colored corner. The checkmat-
ing process can be divided into three phases: (1) driving the opposing king to the
edge of the board, (2) forcing the king to the appropriate corner, and (3) delivering
a checkmate. However, only knowing this basic strategy hardly suffices for anyone
to checkmate effectively the opponent.∗ Another strategy is known as Delétang’s
triangles, involving confining the lone king in a series of three shrinking isosceles
right-angled triangles (pioneered by Delétang in 1923 [Del23]). This strategy usually
takes five to ten moves longer to deliver checkmate. Since state-of-the-art endgame
manuals (e.g., [Dvo08]) prefer teaching the aforementioned three-phase checkmat-
ing process, we decided to aim for obtaining the rules for executing that (quicker)
strategy.

To the best of our knowledge, no formalized models for KBNK endgame suitable
for teaching purposes were derived by any machine-learning programs. As H.J. van
den Herik et al. in 2002 (and still valid today) nicely put it: “The current state
of the art of machine-learning programs is that many ad hoc recipes are produced.
Moreover, they are hardly intelligible to human experts. In fact, the database itself
is a long list of ad hoc recipes. Hence, the research question is how to combine
them into tractable clusters of analogue positions and then to formulate a human-
understandable rule.”[vdHUvR02]

Based on the aforementioned Delétang’s triangles method, van den Herik con-
structed a formalized model for playing KBNK endgame and successfully imple-

∗For example, grandmaster Epishin (Kempinski-Epishin, Bundesliga 2001) failed to force the
defending king to the appropriate corner and the game ended in a draw.
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mented it in a chess-playing program [vdH83b]. The knowledge in the model was
partitioned into 28 patterned equivalence classes (introduced by Bramer [Bra77])
aimed to correspond to some significant recognizable features of the endgame as per-
ceived by chess-players such as “confinement in the wrong corner” and “intermedi-
ate class between the large and the middle bishop triangle” (the obtained equivalence
classes and patterns are fully described in [vdH83a]). The model was derived from
chess theory books, discussions with (grand)masters, and the author’s experience,
but without any machine-learning programs or chess-tablebases support. Similarly
as with our approach, the resulting knowledge is intended to be used jointly with tree
search with a maximum search depth decided in advance and does not necessarily
produce optimal play. There are several important differences between [vdH83b]
and our approach, the most important two of them being:

• Obtaining the formalized model for KBNK in [vdH83b] required existence of
some method for playing the endgame in question (in this case, the method
discovered by Delétang), while our ABML-based knowledge elicitation pro-
cess provides a potential for obtaining goal-based instructions for any chess
endgame where tablebases are available. Note that no known method for de-
livering checkmate exist for more complex endgames (such as KBBKN, for
example).

• Using pattern-classes based model leads to instructions in form of descriptions
of states the chess-player should aim to achieve from a given position, while
our strategic goal-based rules suggest the relative change (improvement) in a
position given in terms of one progressive goal per instruction. For a student,
it seems easier to memorize instructions containing a single progressive goal
than a sequence of several states.

In another attempt to obtain a formalized model for KBNK endgame, van den Herik
and Herschberg [vdHH86] strived for optimal play, using tablebases. After the very
limited success, the task of translating perfect information into a set of rules to be
followed by human or computer was reported to be extremely difficult.

The extracted strategy as described in Section 7.2 was presented to three chess
teachers (among them a selector of Slovenian women’s squad and a selector of Slove-
nian youth squad) to evaluate its appropriateness for teaching chess-players. They
all agreed on the usefulness of the presented concepts and found the derived strat-
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egy suitable for educational purposes. Among the reasons to support this assessment
was that the instructions “clearly demonstrate the intermediate subgoals of delivering
checkmate.”

We also evaluated the rules by using them as a heuristic function for 6-ply min-
imax search to play 100 randomly chosen KBNK positions (each requiring at least
28 moves to mate providing optimal play†) against perfect defender. We tested two
different strategies for cases when the heuristic suggests several moves achieving the
goal: either (a) a move that minimizes distance to mate (quickest play), or (b) a move
that maximizes distance to mate (slowest play) was chosen. Our rules were able to
achieve mate in 100% of the cases using both quickest play (average game length was
32 moves) and slowest play (average game length was 38 moves). Therefore, even
with slowest possible realization of strategic goals, the strategic rules are expected to
guide a student reliably towards the final goal of achieving checkmate within allowed
50 moves. It is worth noting that state-of-the-art chess engines such as RYBKA 2.1,
ZAPPA 1.1, and TOGA II 1.3.1, when limited to a 6-ply search only, were not able
to deliver checkmate within 50 moves against an optimal defender from any of the
100 starting KBNK positions.

Our ABML-based approach leads to obtaining domain’s strategic goal-based rules
using the same arguments and the same domain language attributes as the expert does.
We therefore expect the resulting models to produce “human-like” style of play, in
the sense that it would be clearly understandable by human players. As typical for
humans, such play would not aspire to minimize distance to win. To verify this claim,
we applied our approach to constructing strategic rules for the KRK chess endgame,
where it is commonly accepted that a traditional way of delivering mate differentiates
from optimal (tablebase) play.

We verified our claim with a kind of a Turing test. Four strong grandmasters were
asked to observe 30 games: 10 games played by our KRK chess program guided
only by the rules obtained with our ABML-based method, 10 games by a perfect
(tablebase) player, and 10 additional games (further to complicate the evaluators’
job), all facing a perfect (tablebase) opponent. They were only told that at least
in some of the games white player was a computer program, while black always
defended optimally. The grandmasters were asked to express their assessment for
each game to what degree (marks 1 to 10) they find the play to be human-like. The

†KBNK is a 33-move game in the maximin sense, as it was established after the complete table-
bases were computed by Dekker and van den Herik in 1982 [vdH83a].
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mark of 1 means that the attacker’s play seems totally computer-like, and mark 10
means that it seems totally human-like. The average scores given to our KRK rules
by the four grandmasters were 4.1, 7.1, 8.2, and 7.3, while the average scores given
to tablebase player were 2.2, 3.1, 1.8, and 2.0, an obvious difference!

7.5 Final Remarks

We developed a procedure for semi-automatic synthesis of textbook instructions for
teaching the KBNK endgame, accompanied by example games containing generated
instructions. The presentation of the derived strategy includes, importantly, a number
of concepts and key positions from this endgame that help the human learner to eas-
ily understand the main principles of this strategy. The key positions were detected
automatically from simulated games played by the derived strategy. The key posi-
tions in Figures 7.3, 7.4, and 7.5 belong to a frequent sequence of seven moves in
tablebase play. In our case, this sequence was reduced to the three key positions and
conceptualized in terms of goals along the sequence. In contrast to memorizing the
optimal sequence itself, the extracted generalization also enables correct play against
suboptimal defence.

The derived strategy is human-friendly in the sense of being easy to memorize,
but produces suboptimal play. In the opinion of chess coaches who commented on
the derived strategy, the tutorial presentation of this strategy is appropriate for teach-
ing chess students to play this ending. We view the positive assessment of derived
textbook instructions by chess coaches as a confirmation that our approach is able to
facilitate knowledge extraction from the tablebases.

We also explained the guidelines for the interaction between the machine and
the expert in order to obtain a human-understandable rule-based model for playing
a chess endgame, and how the instructions, including illustrative diagrams, could be
derived semi-automatically from such a model.

There are at least two obvious directions for future work. First, to create a com-
puter tool for teaching the KBNK endgame. All the main ingredients are already
available and all that remains is to package them into an actual application as de-
scribed in Subsection 7.2.2. The second possible line of future work is to use the
described procedures to synthesize instructions for much harder endgame, namely
KBBKN.
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Part III

On The Nature of Heuristic Search
in Computer Game Playing
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Chapter 8

Monotonicity Property of Heuristic
Evaluation Functions

The third part of the dissertation aims at improving the understanding of properties
of heuristic search in both human and computer problem solving, in particular with
respect to computer game playing.

In this chapter, we analyze the properties of successful evaluation functions in
game playing. We demonstrate that backed-up values of the nodes in the search
space have to tend to monotonically approach to the terminal values of the prob-
lem state space with the depth of search. A theoretical model about a monotonicity
property of heuristic evaluation functions is designed. We show empirically that the
evaluation functions of typical chess programs tend to have this property that enables
the program to play with a sense of direction towards a desirable goal.

Some of possible impacts of the monotonicity property of heuristic evaluation
functions on the theory and practice of game playing are discussed. Among other
findings, we arrive experimentally at the following claims.

• Heuristic evaluation functions do not approximate some “ideal” or “true” val-
ues (as it is commonly assumed).

• Heuristic evaluations obtained by a search to different search depths are not
directly comparable among each other.

• Backed-up heuristic values should not be invariant with deeper search, as game-
theoretical values in the theoretical minimax model are.
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• The same backed-up heuristic values obtained by different evaluation functions
do not necessarily reflect the probability of winning in the same way.

We also show that taking into account the monotonicity property of heuristic
evaluation functions can provide a heuristic-search based program with an ability to
solve a difficult type of problems: detecting fortresses in chess.

8.1 Heuristic Evaluation in Game Playing

The minimax principle is applied in game playing as follows. The rules of the game
define the outcomes of the game in the terminal positions of the game, that is, in
the leaves of the game tree. These are called game-theoretic values of positions. If
the game ends in such a terminal position, this value is the final result of the game,
that is, this value is the score obtained by the players. The rules of the game do
not define the values of non-terminal positions. These values can be determined by
back-propagation from terminal positions and applying the minimax rule. So the
value of any non-terminal position P is equal to the score of the terminal position
of the game that starts in P and is played optimally by both players. An optimal
play (principal variation) from position P is, accordingly, a sequence of moves that
do not change the value of the positions along this sequence. So the property of the
principal variation is that it preserves the value of the game. The so-obtained values
of the nodes throughout such completely generated game tree therefore respect the
minimax relation.

The minimax principle, often implemented by the alpha-beta algorithm, is widely
used as the basis for computer game playing. The above theoretical construction is
applied in practice with the modification that in games of any interest, it is computa-
tionally prohibitive to search as far as terminal positions. Instead, search has to stop
short of reaching terminal positions, typically when some depth limit is reached and
quiescence criterion satisfied. The part of the game tree that is generated for search
is called a search tree, and a heuristic evaluation function is applied to terminal po-
sitions of the search tree. These terminal positions are evaluated “statically” as if
they were terminal positions of the game. Of course, they cannot be evaluated by
the rules of the game, so they are evaluated heuristically. The heuristic evaluations
of non-terminal positions of the search tree are obtained by the minimax back-up

124



8.1. Heuristic Evaluation in Game Playing

rule. Therefore, the values of the nodes in the search tree also respect the minimax
relation.

In Subsection 8.1.1, we discuss what may be “ideal” heuristic values. In Sub-
section 8.1.2, we explain why heuristic values should enable direction-oriented play.
Finally, in Subsection 8.1.3, we present our theoretical model about the monotonicity
property of heuristic evaluation functions.

8.1.1 What are “Ideal” Heuristic Values?

It is assumed that heuristic evaluation functions approximate some “ideal” or “true”
values, and that such values could be assigned to any non-terminal position in the
game tree. Since these “true” values are not known, it is accepted that they have
to be approximated heuristically. For example, Luštrek et al. give conditions under
which real-valued evaluation functions outperform discrete-valued evaluation func-
tions, proposing a model that uses real numbers for “both true and heuristic values”
[LGB05]. In the proposed model, static heuristic values are obtained “by corrupt-
ing the true values at depth d with error representing the fallibility of the heuristic
evaluation function”. As another example we could take a typical view among chess
players: they commonly believe that evaluations given by chess programs try to ap-
proximate some “true” values of positions that are a subject of computer analysis (see
Figure 8.1).

However, what are these “true” values? This question has been largely ignored.
Clearly, they are not backed-up values from the game-theoretic values at the leaves
of the game tree using minimax, since it is well known that game-theoretic heuristic
values alone would not produce desirable results ([SK98], see Section 8.1.2). Such
“true” values would not be useful for practical game playing, therefore aiming to
approximate them would be useless. Heuristic evaluations are typically multival-
ued and they are supposed to reflect a goodness∗ of a particular position. It is well
known that searching deeper generally leads to stronger play. A common belief is
that searching deeper leads to better approximations of the value of the root node of
the search tree (after minimaxing) to the unknown “true” value of the position at the
very same root node. That is, it is typically assumed that searching deeper results
in more accurate evaluation in terms of approaching to the unknown “true” value of

∗Actually, what exactly this value means was never strictly defined. Various authors viewed this
value as position’s “worth”, “merit”, “strength”, “quality”, or “promise” [Abr89].
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Program Evaluation
CHESSMASTER 10 0.15
CRAFTY 19.19 0.20
CRAFTY 20.14 0.08
DEEP SHREDDER 10 -0.35
DEEP SHREDDER 11 0.00
FRITZ 6 -0.19
FRITZ 11 0.07
RYBKA 2.2n2 -0.01
RYBKA 3 -0.26
ZAPPA 1.1 0.13

Figure 8.1: Lasker-Capablanca, St. Petersburg 1914, position after white’s 12th

move. The table on the right shows backed-up heuristic evaluations obtained by
various chess programs, when evaluating the diagrammed chess position using 12-
ply search. Chess programs usually use heuristic evaluations where advantage of one
unit represents material advantage of one pawn (or equivalent by means of accumu-
lated pluses of positional features). Chess players are nowadays used to computer
evaluations and even widely accepted the centipawn as the unit of measure used in
chess as measure of the advantage, a centipawn being equal to 1/100 of a pawn. As
the figure clearly shows, different programs typically assign different evaluations to
a given position, even when using the same depth of search. This leads to mislead-
ing impression that the programs try to approximate some unknown “true” heuristic
value of the position being evaluated (which is obviously not meant to be the same as
the game-theoretic value, which could be either “win”, “draw” or “loss”). However,
as we intend to demonstrate, this conclusion is false: such “true” values cannot exist.

the root-node position, and that the “true” value should not change with increasing
search depth. Consequently, this assumes that a “perfect” heuristic evaluation func-
tion would statically (i.e., without any search) assign the “true” value to the position
in question and that searching deeper would not affect this evaluation. This corre-
sponds to the assumption that the ”true” heuristic values throughout the tree respect
the minimax relation, and that heuristic functions should therefore also aim to respect
the minimax relation. However, we will show that this generally accepted view does
not correspond to what actually happens in computer game playing.

When giving arguments in support of look-ahead, Pearl explains the notion of vis-
ibility, which says that since the fate of the game is more apparent near its end, nodes
at deeper levels of the game-tree will be more accurately evaluated and choices based
on such evaluations should be more reliable [Pea83]. We will demonstrate that the
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improved accuracy of static heuristic evaluations at higher depths (and consequently
the accuracy of the backed-up evaluations at the root of the search tree) does not lead
to assigning some better approximations to unknown “true” or “ideal” heuristic val-
ues to the position at the root of the search tree after minimaxing, but that the value
of the root position should be changing with increasing search depth.

8.1.2 Direction Oriented Play

Superficially it might seem that the “true” values have a simple definition - that they
are simply minimax backed-up values from the game-theoretic values at the leaves
of the game tree. However, such definition does not produce “true” values useful for
practical game playing. To emphasize the difference between game-theoretic values
and “ideal heuristic values”, from now on we will be referring to these “ideal heuristic
values” as utility values or utilities. A function that assigns the utility to a position
will be called a utility function.

The purpose of utility function is to guide the game-tree search. Utilities have to
enable a program to find a direction of play towards a win, not only to maintain a won
position. In addition to reflecting the game-theoretic value of a position, utility values
should in some way also reflect the progress towards the end of the game. For chess,
for example, it is well known that the game theoretic value could not be a useful
utility function. Scheucher and Kaindl advocate that a heuristic evaluation function
should be multivalued to be effective and that game-theoretic heuristic values alone
would not produce desirable results [SK98]. In chess there are only three possible
outcomes: win, draw and loss. Given a won position, this utility function would
just ensure that the value “win” is maintained, without any guarantee of eventually
winning, since such a program would not be able to discriminate between a position
with a slight advantage from one that is clearly won (see Fig. 8.2).

This actually happens when one of the state-of-the-art chess programs is con-
fronted with the simple task of winning the king and rook versus lonely king endgame
without the use of chess tablebases,† and is limited with sufficiently low search depth.
It turns out that the program behaves in the following way:‡ when using a search
depth of 4 and higher, it assigns the same heuristic evaluations to all winning po-

†Chess tablebases, indicating best moves for every position, exist for chess endgames up to 6
pieces (including the kings) and are commonly used by chess programs.

‡The program where this phenomenon occurs is “RYBKA 2.1c 32-bit”. In the year 2006, this was
the highest rated chess program. The phenomenon no longer occurs in the later versions.
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Figure 8.2: In the simple chess endgame shown in the figure, the extra rook guaran-
tees the white player an easy win. By moving his pieces in appropriate manner white
will force the black king on the edge of the chessboard and eventually deliver a mate.
All terminal nodes of the game tree from this position on are wins, except the ones
where white had lost the rook and the ones that end in a stalemate. If utility function
with game theoretic values was used for playing this endgame, white pieces would
just wander around the board, only maintaining a won position and would never (ex-
cept by pure luck) deliver mate in time (limited by the 50 moves rule), providing a
sufficiently low search depth. However, state-of-the-art evaluation functions enable
chess programs to reliably deliver checkmate within prescribed 50 moves even at the
shallowest depths of search.

sitions in this endgame (concretely, it is the numerical value of 4.92), regardless of
search depth. That is, although the program’s evaluation function assesses positions
in this endgame as won, it fails to distinguish between non-equally promising posi-
tions for achieving the final goal: delivering checkmate. This results in rather ridicu-
lous play by the winning side. In simulations from 100 randomly chosen mate-in-16
positions, where the program played against the black player defending optimally
(using tablebases), the program did not manage to deliver checkmate within pre-
scribed 50 moves in several games, even at 12-ply search. Despite the fact that the
program is aware of the 50-move rule,§ it does not help it to always avoid the draw,
when depth of search is limited. The same program, when using the shallow search of
only 2 plies (i.e., when the phenomenon does not occur) checkmates the opponent in
100% of the games played from the same randomly chosen positions, also finishing

§The basic rules of the game according to FIDE say: “The game may be drawn if each player
has made at least the last 50 consecutive moves without the movement of any pawn and without any
capture.”
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the task in considerably less moves on average. It is worth noting that the backed-up
evaluations of the 2-ply search were on average monotonically increasing during the
simulated games, while at search depths where the phenomenon occurs they always
stayed the same, unless the depth of search sufficed to find a principal variation that
ends in checkmate (when the heuristic evaluation is no longer necessary). Note also
that an evaluation function of a program that assigns the same heuristic values to all
winning positions behaves as if the minimax relation between heuristic evaluations
in a game tree should be respected.

Another simple definition of the “true” or “ideal” heuristic values may seem to be
a distance-to-win metric. That is, it may seem that the length of the principal varia-
tion from the given position up to the leaves of the game tree that represent theoretical
wins could be a successful utility value. However, an utility function that would use
such utilities (that are obviously not invariant along the game tree) would not be able
to distinguish between theoretically drawn positions with different probability of ac-
tually achieving a draw in a game between fallible opponents. We will demonstrate,
however, that evaluation functions in typical chess programs tend to have this desir-
able property that enable the program to distinguish between differently promising
positions in games between fallible players.

8.1.3 Our Theoretical Model

Direction oriented play (as opposed to advantage-preserving play) is a property of ev-
ery successful program in all typical games where heuristic search is used, therefore
it seems reasonable to expect this property to be reflected somehow in the programs’
heuristic evaluations.

The theoretical model in Figure 8.3 is designed for games where three game-
theoretical results are possible (as in chess and checkers, among several other two-
player games) and shows our expectations. With increasing search depth, backed-up
evaluations of won positions (in theoretical sense: white wins providing optimal play
by both sides) will on average be increasing, evaluations of lost positions will be
decreasing, while evaluations of positions with game-theoretical value “draw” will be
converging towards 0 and search will eventually end in terminal nodes that represent
theoretical draw.

We investigate experimentally this property of the evaluation function of the well-
known open source chess program CRAFTY as a typical representative of chess eval-
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Figure 8.3: Theoretical model about the monotonicity property of heuristic evalua-
tion functions.

uation functions. The results, actually confirmed by currently one of the strongest
chess programs, RYBKA, indicate that evaluation functions of strong chess programs
have this desirable property that gives the program’s play a sense of direction.

Our claim is the following: Backed-up values of the nodes in the search space
have to tend to approach monotonically to the terminal values of the problem state
space. Consequently, backed-up heuristic values at the root of the search tree should
not be invariant with deeper search and could not behave as approximations to some
“ideal” or “true” heuristic values. Existence of such “ideal” or “true” heuristic values
that could possibly be assigned statically to any node in the problem state space im-
plies that the minimax relation between them is satisfied. However, then the evalua-
tion function would not be able to enable the program to play with a sense of direction
towards a win. With other words, heuristic evaluations cannot behave as the terminal
position values in the theoretical minimax model. Our theoretical model also implies
that heuristic evaluations obtained by searching to different search depths are not di-
rectly comparable, in contrast to what is generally assumed both in literature and in
practical applications.

Regarding the related work, we believe that there has been no study about the
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implications of the monotonicity property of heuristic evaluation functions. Luštrek
et al. highlight that multiple values make it possible to maintain a direction of play
towards the final goal.¶ [LGB05] Gomboc et al. show that it suffices for evaluation
functions to tell only whether a certain position is better than some other position, and
not how much better. [GMB03] Note that their demonstration why ordinal correlation
is relevant to heuristic search is in line with our claim that evaluation functions do not
necessarily need to (and actually do not) express exact goodness of a certain position
in order to be successful. Donkers et al. examine three types of evaluation func-
tions: predictive, probability estimating, and profitability estimating evaluation func-
tions. They also investigate how evaluation functions can be compared to each other.
[DvdHU05] Note that each of the three types of evaluation functions enables direc-
tion oriented (as opposed to advantage-preserving) play. Several authors have studied
properties of heuristic evaluation functions, particularly in respect of the propagation
of static heuristic errors through minimaxing.‖ Various authors conducted go-deep
experiments [Hei98; Hei99a; Hei99b; Hei01; Hei03; HN97; JSB+97; Ste05], as we
did in the present study. All this related work does not mention the monotonicity
property of heuristic evaluation functions.

To the best of our knowledge, Newborn ([New75]; pp. 84-86) was the only one
to analyze the monotonicity property of heuristic evaluation functions, back in the
year 1975, when describing the contest between COKO III and GENIE in Chicago,
1971. Nevertheless, the monotonicity property of heuristic evaluation functions re-
mained neglected both in the literature and in computer chess programming. The aim
of our work presented in this chapter is not only to provide extensive analysis of this
property, but also to show its implications for both the theory and practice of game
playing.

¶They also add: “Given that multivalued position values are necessary for playing well, it is
natural to also use multivalued true values. These values are true in the sense that they guide a program
to play optimally.” This statement further supports our thesis about common belief that the programs
are trying to approximate some unknown “ideal” or “true” heuristic values by searching deeper and
back-propagating obtained heuristic evaluations by the rules of minimax.

‖An interested reader could find an overview on minimax pathology in doctoral dissertation of
Aleksander Sadikov [Sad05].
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8.2 Experimental Design

The chess program CRAFTY was used as a typical representative of computer chess
programs. To verify that the results obtained with CRAFTY are likely to be general-
ized to other chess programs, we conducted a control experiment with RYBKA. The
programs were used to analyze more than 40,000 positions from real games from
World Chess Championship matches in a go-deep way: Each position occurring in
these games after move 12 was searched to a fixed depth ranging from 2 to 12 plies.
A smaller set of 8,000 positions was searched up to 14 plies using CRAFTY. Search
to depth d means d ply search extended with quiescence search to ensure stable static
evaluations.

To determine the best available approximation of the utility of each analyzed po-
sition, the backed-up evaluation at the deepest search depth served as an “oracle”.
We devised six different groups of positions based on their estimated utility values,
as given in Table 8.1. Evaluations by computer chess programs are given by the
following standard: the more positive evaluations mean the better position for white
and the more negative evaluations mean the better position for black, while evalua-
tions around zero indicate an approximately equal position. In usual terms of chess
players, the positions of Groups 1 and 6 could be labeled as positions with “decisive
advantage”, positions of Groups 2 and 5 with “large advantage”, while Groups 3 and
4 consist of positions regarded as approximately equal or with a “small advantage”
at most.∗∗

Table 8.1: Number of positions in each of the six groups of data in three data sets.
The groups were devised based on backed-up heuristic evaluation values obtained at
search depth of 12 plies (CRAFTY12, RYBKA12) and 14 plies (CRAFTY14).

Group 1 2 3 4 5 6
Evaluation (x) x<-2 -2≤x<-1 -1≤x<0 0≤x<1 1≤x<2 x≥2
CRAFTY12 4,011 3,571 10,169 18,038 6,008 6,203
CRAFTY14 422 332 1,875 3,570 1,081 783
RYBKA12 1,263 1,469 9,808 22,644 3,152 2,133

For each data set and for each group separately we observed behavior of the
backed-up evaluations with increasing depth of search.
∗∗Of course, this is only an approximation: The terms “decisive advantage”, “large advantage”,

and “small advantage” are not strictly defined in the literature.
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8.3 Experimental Results

The comparison of backed-up evaluations obtained at adjacent search depths shows
different behavior for positions of each group of our test data. The graph in Figure
8.4 clearly shows that backed-up heuristic evaluations for Groups 1 and 6, where
positions are likely to be within the zones of theoretical win and loss in our theoretical
model, on average monotonically increase with increasing search depth in positions
with a decisive advantage for the white player (won positions), and monotonically
decrease with increasing search depth in positions with a decisive advantage for the
black player (lost positions from the perspective of white player).

Figure 8.4: Average backed-up evaluations at different search depths for each group
of the test data.

As the graph in Figure 8.5 demonstrates, the changes between backed-up evalu-
ations belonging to adjacent search depths are significantly higher for the positions
with a decisive advantage than for positions of the other groups.

Figure 8.6 demonstrates that the evaluations gradually approach those at the deep-
est search depth. Comparison of backed-up evaluations obtained at different search
depths to the backed-up evaluation at the highest search depth shows that the former
tend to be pessimistic in actually won positions, while in lost positions they tend to
be optimistic.

In the graphs of Figures 8.7 and 8.8, each curve represents the distribution of av-
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Figure 8.5: Changes between backed-up evaluations belonging to adjacent search
depths.

Figure 8.6: Average difference between backed-up evaluations resulting from
searches to corresponding depths and the backed-up evaluations at the highest search
depth.

erage deviations of backed-up evaluations at a given search depth from 14-ply search
backed-up evaluations. We considered small intervals of 0.05 difference in backed-
up evaluation (both in positive and negative direction from 0, which corresponds to
the backed-up evaluation obtained at the highest search depth). For evaluations at
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Figure 8.7: Distribution of deviations of backed-up evaluations at different search
depths from the backed-up evaluation obtained at 14-ply in balanced positions of
Groups 3 and 4.

Figure 8.8: Distribution of deviations of backed-up evaluations at different search
depths from the backed-up evaluation obtained at 14-ply in won positions of Group
6.

each depth, we checked what percentage of them falls in a given interval.
The result is a graph showing the distribution of deviations. Each curve represents

such a distribution for a given search depth. In both such graphs, positive deviation
means that in a given interval the average backed-up evaluation at particular search
depth was lower than the one obtained from the highest depth of search. Given
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that backed-up evaluations gradually approach those at the highest search depth (see
Figure 8.6), the deviations for greater search depths should be (and actually are)
distributed closer to zero.

Symmetry of such graph with respect to zero deviation means that both positive
and negative deviations from backed-up evaluations at the highest search depth are
equally represented. In accordance with our claim that heuristic evaluations tend to
increase with increasing search depth in won positions, the graph is approximately
symmetrical only for more or less balanced positions of Groups 3 and 4 (see Figure
8.7). In positions with a decisive advantage the described bias of evaluations results
in non-symmetrical graphs. In the graph of Figure 8.8, only positions of Group 6
were taken into account. The obvious inclination to the right means that in prevalent
part of won positions, the evaluation at the highest search depth was higher than the
evaluations at shallower depths. Similar inclination (but in the opposite direction)
was noticed in the equivalent graph for lost positions of Group 1.

The presented results demonstrate that in won (lost) positions, CRAFTY’s backed-
up evaluations as a result of search to different search depths tend to increase (de-
crease) monotonically with increasing search depth. But with what confidence can
we expect the backed-up heuristic values obtained from deeper searches to be higher
(or lower) due to the monotonicity property of the program’s evaluation function?
Does this phenomenon occur on regular basis, or only on average? Do the backed-up
heuristic values increase (decrease) more rapidly with increasing search depth mono-
tonically with the utility value in won (lost) positions?

In order to answer these questions, we further divided the data of won positions
of Group 6 into four subsets, based on backed-up heuristic evaluation values obtained
at search depth of 12 (similarly as earlier, the highest search depth served as the best
available approximation of the utility value of each analyzed position, see Section
8.2). For each subset separately we observed:

1. the rates of the backed-up evaluation at the highest search depth being higher
than the backed-up evaluation at each particular depth, and

2. the average backed-up evaluations at each depth.

Figure 8.9 shows that the confidence of expectation of the backed-up heuristic
values obtained from deeper searches being higher in won positions depends on the
utility value of a position. Moreover, the graph shows that it is more likely that the
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Figure 8.9: The rates of the backed-up evaluation at the highest search depth be-
ing higher than the backed-up evaluation at particular depth for each subset of won
positions of Group 6, obtained with CRAFTY).

Figure 8.10: The average backed-up evaluations at each depth for each subset of won
positions of Group 6, obtained with CRAFTY.

backed-up evaluation will increase when the difference between the depths of search
are bigger.

Figure 8.10 shows that the backed-up heuristic values in won positions indeed
increase more rapidly with increasing search depth monotonically with the utility
value of the position.

We repeated the experiment with the program RYBKA to check whether our re-
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sults with CRAFTY are likely to hold for other chess programs. Figures 8.11 and 8.12
(compare to Fig. 8.4 and Fig. 8.10, respectively) show the corresponding results with
RYBKA, which confirm that the behavior of CRAFTY’s and RYBKA’s heuristic eval-
uation functions reflect the monotonicity property in a similar way.

Figure 8.11: Backed-up evaluations depending on search depth obtained with RY-
BKA (compare to Fig. 8.4).

Figure 8.12: The average backed-up evaluations at each depth for each subset of won
positions of Group 6, obtained with RYBKA (compare to Fig. 8.10).
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So far the results did not seem to confirm another prediction of our theoreti-
cal model: that the backed-up evaluations of positions with game-theoretical value
“draw” will be converging towards 0 and search will eventually end in terminal nodes
that represent theoretical draw. Was the chosen interval of utility values that are sup-
posed to reflect theoretically drawn positions (i.e., drawn positions provided optimal
play by both sides) too big? Or is search up to 12 plies too shallow?

In order to answer these questions, we now divided the data of presumably drawn
positions of Groups 3 and 4 into several subsets, again based on backed-up heuristic
evaluation values obtained at search depth of 12. Figures 8.11 and 8.12 show the
obtained results with the chess program RYBKA. It turned out that backed-up evalu-
ations of RYBKA are more closely distributed around the value of 0 than CRAFTY’s
(we will return to this observation in Section 8.4). Using RYBKA in the following
experiments therefore allowed us to divide the data into smaller, but still well repre-
sented subsets.

In Fig. 8.13, the chosen interval of backed-up evaluations obtained at the highest
search depth, which served to divide the data into subsets, was 0.10. The average
number of positions in the subsets was 1,600 (the minimum number being 436, and
the maximum number being 3,618). The value of 0 was treated separately and was
assigned to a special interval, represented by 2,053 positions.

The results show that backed-up evaluations on average indeed monotonically
approach to the value of 0, however, only in those intervals where the approximated
utility value is sufficiently close to 0. As it could be seen from Fig. 8.13, it is when
the backed-up evaluations obtained as a result of 12-ply search are within the interval
[-0.50, 0.50] approximately. According to our theoretical model and provided that
RYBKA’s evaluation function is a successful one, positions of these subsets are more
likely to be within theoretical draw. Positions where the backed-up evaluations ob-
tained as a result of 12-ply search are outside this interval are less likely to be drawn
provided optimal play. All the curves are ordered according to the value at search
depth of 12 in the interval they represent, note also that none of the curves cross each
other.

In Fig. 8.14, the data was divided in a similar way, only the chosen interval of
backed-up evaluations obtained at the highest search depth was lowered to 0.03. The
average number of positions in the subsets was 915 (the minimum number being
474, and the maximum number being 2,053). The results show behavior of RYBKA’s
evaluation function, when the approximated utility values are closer to 0. From this
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figure it is even more clearly visible that the backed-up evaluations that are likely to
be theoretically drawn monotonically approach towards the value of 0 with increasing
depth of search.

Figure 8.13: Backed-up evaluations depending on search depth for different subsets
of approximately equal positions, obtained with RYBKA (size of the interval: 0.10).

Figure 8.14: Backed-up evaluations depending on search depth for different subsets
of approximately equal positions, obtained with RYBKA (size of the interval: 0.03).
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We should point out that results obtained on the data set of positions that were
the subject of searching up to 14 plies lead to the same conclusions. Because the data
set of positions that were searched up to 12 plies is much larger (see Section 8.2),
we chose to present the results obtained on this data set on most occasions (except
in Figures 8.7 and 8.8). In the large data set, the subsets that were obtained by
further divisions of the original data were represented with at least several hundreds
of positions.

8.4 Heuristic Evaluation Functions and Probability
of Winning

In this section, we will show that backed-up heuristic evaluations tend to reflect the
probability of winning in a game between two fallible players. We will also demon-
strate that the same backed-up evaluation values obtained by different evaluation
functions do not reflect the probability of winning in the same way.

Up to now it was not important who were the players in the games we chose for
analysis with chess programs CRAFTY and RYBKA, and what were the game scores
- heuristic evaluation function of a particular program should of course assign the
same values to the same positions, regardless of this information. Now, however, we
will observe what was the game result (win, draw, or loss) that was obtained from a
particular position that was the subject of computer analysis. For the experiments in
this section, exactly the same positions with the same game results were the subject
of analysis by both programs. In order to obtain as logical outcomes from particular
positions as possible, and in order to particular heuristic values on average well reflect
the expected game result, the games from World Chess Championship matches were
particularly suitable, since:

• World Champions in general played strong chess moves in their World Cham-
pionship matches, and committed relatively little mistakes,

• the contenders of the final match for the title of World Chess Champion were
played by opponents of rather similar chess strength,

• large data set of games is available from these matches.
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Of course, there were occasional turnovers in the course of the game in these
matches, however, due to the large data set of positions available, statistical smooth-
ing is expected to prevail. Besides, if the game ends in a win for the white player from
a position that could be judged as completely lost for him (either by a human or by a
highly negative heuristic value assigned by a computer), obviously some probability
(albeit it is likely to be small) still exists that such result is possible between fallible
players, in this case top chess players. Moreover, exactly the same positions with the
same game results were the subject of analysis by both programs, which speaks for
comparison between them being sensible.

The results in Fig. 8.15 were obtained with chess programs CRAFTY and RYBKA

at search depth of 12 plies. They show the proportion of wins, draws, and losses
achieved from positions where particular heuristic evaluation value was obtained by
the program, for each program separately. The backed-up evaluation values were
joined into intervals, so that each interval was represented by more positions. The
chosen size of the interval was 0.10, the intervals ranging from -3.00 to 3.00 are
shown for both programs.

The results show that backed-up evaluations of both programs tend to be mono-
tonic with probability of winning in a game between fallible players. However, it is
also obvious that the same backed-up evaluation values obtained by the evaluation
functions of each program do not reflect the probability of winning in the same way.
It suggests that the scales of heuristic evaluation values of the two programs are not
the same. This is confirmed in Fig. 8.16, which shows the histograms where for each
of the assigned intervals the number of positions that belong to particular interval is
shown. Obviously, RYBKA’s evaluation function tend to assign heuristic values that
are more closely distributed around 0.

We view these results as another confirmation of our claim that the evaluation
functions do not try to approximate some unknown “true” value of the position being
evaluated (compare to Fig. 8.1). Each evaluation function may use its own range
of heuristic evaluation values that enable the program to play in a direction-oriented
way, while the backed-up evaluations that result from searching more deeply some-
how reflect the probability of winning in a game of two fallible players of approxi-
mately equal strength.
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Figure 8.15: The proportion of wins, draws, and losses achieved for particular
backed-up evaluation values at search depth of 12 plies with CRAFTY (left) and RY-
BKA (right).

Figure 8.16: Number of positions that belong to particular backed-up evaluation val-
ues at search depth of 12 plies for CRAFTY (left) and RYBKA (right).
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8.5 Possible Impacts on Theory and Practice

Three additional possible impacts of the monotonicity property of heuristic evalu-
ation functions on the theory and practice of game playing are discussed. In Sub-
section 8.5.1, we argue that heuristic evaluations obtained by a search to different
search depths are not directly comparable. In Subsection 8.5.2, we explain how the
monotonicity property provides an explanation why in positions with a decisive ad-
vantage, best moves according to a chess program change less frequently with in-
creasing search depth than they do in balanced positions. In Subsection 8.5.3, we
show the usability of our findings for providing a heuristic-search based program
with an ability to solve a difficult type of problems: detecting fortresses in chess.

8.5.1 Searching to Variable Depths Revisited

Having in mind the demonstrated monotonicity property of heuristic evaluation func-
tions we could ask ourselves: “Are heuristic evaluations obtained by a search to
different search depths really directly comparable?” Consider a minimax-based pro-
gram searching to variable search depths. Due to various types of search extensions
(extending interesting variations, i.e., searching more deeply from seemingly more
promising parts of the search tree), state-of-the-art chess programs frequently con-
duct a search to different depths of search. Afterwards, the backed-up evaluations are
being compared in such way that the depth of search at which they were obtained is
completely ignored.

However, in won positions, for example, backed-up heuristic values obtained
from deeper searches should, on average, be expected to be higher due to the mono-
tonicity property of heuristic evaluation functions. According to this observation, in
such positions, if two moves result in approximately equal backed-up values, the one
resulting from shallower search may well lead to a better decision. Obviously, the
depth at which the backed-up evaluation was obtained is necessary to be taken into
account in order to perform relevant comparisons of backed-up heuristic evaluation
values (see Figure 8.17).

Let us illustrate this point by an example from a real game. Figure 8.18 shows
CRAFTY’s backed-up evaluations obtained at search depths in range from 7 to 17
for two winning moves in the diagrammed position: 40.a5-a6 and 40.Nc7-e6. The
evaluations tend to increase monotonically with increasing depth of search, indicating
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Figure 8.17: Let positions n1 and n2 be theoretically won (i.e., won providing opti-
mal play by both players). After searching to some arbitrary fixed depth d from the
root position, backed-up heuristic evaluations f(n1′) and f(n2′) are obtained, so that
f(n1′) < f(n2′). Let the program continue the search for x1 more plies from the po-
sition n1′ and for x2 more plies from the position n2′, x1 > x2, leading to backed-up
evaluations f(n1′′) and f(n2′′). Due to the monotonicity property of heuristic eval-
uation functions, f(n1′′) > f(n2′′) could be expected, providing that the difference
between f(n1′) and f(n2′) is sufficiently low, and the difference between x1 and x2
is sufficiently high. The program that completely ignores the depth of search where
f(n1′′) and f(n2′′) were obtained will chose the move n1, although it obtained the
lower evaluation after searching to the fixed depth of d. However, it is likely that
in a game between two fallible players choosing the move n1 would result in lower
probability of winning than if the move n2 was chosen.

that both moves lead to a win assuming optimal play. The program’s move of choice
at any depth is 40.a5-a6, that is, at each depth the evaluation of 40.a5-a6 is higher
than the evaluation of 40.Nc7-e6. This indicates that in a game between two fallible
players, the move 40.a5-a6 would lead to a higher probability of winning than the
other move. Indeed, the move 40.Nc7-e6 would yield the black player some practical
chances of escaping into a drawn king and two knights versus king endgame (it is also
well known that exchanging pawns in won endgames, generally speaking, favors the
weaker side). However, if the evaluation of the inferior move 40.Nc7-e6 was obtained
at sufficiently higher depth of search than the evaluation of 40.a5-a6, CRAFTY would
fail to make the best choice.

This observation is confirmed when currently the strongest chess engine accord-
ing to the SSDF rating list [Kar08], RYBKA 3, is used for the analysis of this position.
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Depth 40.a5-a6 40.Nc7-e6
7 2.77 1.55
8 2.47 1.56
9 2.62 2.01

10 2.72 2.46
11 3.24 2.54
12 3.46 2.84
13 3.73 2.72
14 3.84 3.17
15 3.99 3.41
16 4.45 3.59
17 4.54 3.82

Figure 8.18: Botvinnik-Smyslov, World Chess Championship match (game 16, po-
sition after black’s 39th move), Moscow 1954. White has two tempting continua-
tions in this winning position: 40.a5-a6, keeping both white pawns on the board, and
40.Nc7-e6, attacking the black bishop. Both of them probably win, however, after
40.Nc7-e6 black can play 40...Nc6xa5!, and now if Black manages to sacrifice the
knight for White’s only remaining passed pawn, for example, after 41.Ne6xf8 (taking
the bishop) 41...Na5-c6 42.Nf8xh7?? (taking the black pawn, but this is a mistake),
Black saves himself with 42...Nc6xe5! 43.Ke4xe5 Kh4xh3, sacrificing the knight for
achieving a drawn KNNKP endgame. In the game, Botvinnik played 40.a5-a6! and
won five moves later. The table on the right shows CRAFTY’s backed-up evaluations
as results of search to different search depths.

As it is demonstrated in Figure 8.19, this program also finds 40.a5-a6 to be the best
move, at any search depth. However, if the search depth used for evaluating the move
40.a5-a6 was less than 14 plies and the search for evaluating the move 40.Nc7-e6 was
extended to 17 plies, RYBKA 3 would also choose the inferior move.

Searching to fixed depth (extended with quiescence search to ensure stable static
evaluations) becomes particularly important when averaging the results of search
over a large amount of data takes place. For example, when estimating human perfor-
mance in problem solving. In Chapter 2, we conducted computer analyzes of World
Chess Champions’ games, aiming at a more objective assessment of chess playing
strength of chess players of different times. The idea was to determine the chess
players’ quality of play (regardless of the game score), which was evaluated with the
help of computer analyzes of individual moves made by each player. Basic World
Champions’ performance estimates were determined as the average differences be-
tween evaluations of moves that were played by the players and evaluations of best
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Figure 8.19: Backed-up evaluations with increasing depth of search from the position
shown in Figure 8.18, obtained with currently the strongest chess engine, RYBKA 3,
for the best two moves according to the program, i.e., 40.a5-a6 and 40.Nc7-e6.

moves according to the computer. In this type of analysis, conducting search to vari-
able depths (e.g., by fixing the amount of time dedicated to search in an individual
position) would likely lead to false conclusions, due to the monotonicity property of
heuristic evaluation functions, as it is explained above.

Let us briefly return to blunder-rate measurements presented in Subsection 2.4.2.
We labeled a move as a blunder when the numerical error as seen by CRAFTY at
highest available depth exceeded the value of 1.00. According to the common inter-
pretation of computer heuristic evaluations as understood by chess players (or chess
programmers), the value of 1.00 in terms of differences between computer evalu-
ations assigned to two particular chess positions, the latter resulting by making a
move from the former one, is regarded as “losing a pawn without compensation”
(with no other deficits of removing a pawn from the chessboard being taken into ac-
count) [GB06]. This interpretation seems very logical, since the common standard
in programming evaluation functions in chess programs is that the value of a single
pawn is 1.00.

However, taking into account the monotonicity property of heuristic evaluation
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functions, this interpretation is false. The evaluations should necessary change with
search depth, and so should the differences in evaluations between particular moves.
We therefore cannot say that the value of 1.00 in terms of differences between eval-
uations represents “losing a pawn without compensation.”

The empirical results presented in this chapter strongly suggest the following
answer to the question in the beginning of this subsection. Heuristic evaluations
obtained by a search to different search depths are not directly comparable, in contrast
to what is generally assumed both in literature and in practical applications.

8.5.2 Expectations of Decision Changes with Deeper Search

The monotonicity property of heuristic evaluation functions provides an explanation
why in positions with a decisive advantage, best moves according to a chess program
change less frequently with increasing search depth than they do in balanced posi-
tions (see Chapter 9). In the present chapter, we observed that in positions with a de-
cisive advantage, backed-up evaluations of better moves according to the program on
average increase more rapidly than backed-up evaluations of less good moves. This
phenomenon can be most clearly seen in Figures 8.10 and 8.12. Since the backed-up
evaluations of better moves on average increase more rapidly in positions with a de-
cisive advantage, in such positions the differences between backed-up evaluations of
candidates for the best move according to the program are likely to become bigger
with increasing search depth, thus changes of programs’ decisions with increasing
search depth are less likely to occur.

8.5.3 Detecting Fortresses in Chess

In this section, we will demonstrate a practical application of taking into account the
monotonicity property of heuristic evaluation functions for solving a difficult type of
problems that are currently regarded as unsolvable by using heuristic-search based
programs: detecting fortresses in chess.††

Fortresses are usually defined as positions when one side has a material advan-
tage, however, the defender’s position is an impregnable fortress and the win cannot

††We note that the detection of fortresses in chess is nowadays possible by using Monte-Carlo
Tree Search (MCTS) [KS06; WBS08; Cou07]. However, the implementation of MCTS in current
chess programs for the purpose of detecting fortresses only is likely to be rather impractical compared
to the method that we propose in this subsection.
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be achieved providing optimal play by both sides. Current state-of-the-art programs
typically fail to recognize fortresses and seem to claim winning advantage in such
positions, although they are not able to achieve actually the win against adequate de-
fence. We will demonstrate that due to lack of monotonically increasing evaluations
between successive depths that are otherwise expected in won positions, fortresses
are detectable by using heuristic search to several successive search depths.

Figure 8.20: In this position the white player is to move, and has a winning posi-
tional advantage. State-of-the-art chess programs without an exception choose the
move 1.Na4xb6 (white knight takes the black queen), which leads to big material
advantage. However, after 1...c7xb6 (black pawn takes the white knight) black’s po-
sition becomes an impregnable fortress and the win is no longer possible, providing
adequate defence. Nevertheless, in the diagrammed position white has a winning
plan: Ka2-b3, Na4-b2, Kb3-a4, and Qd2xa5.

The position in Fig. 8.20 is taken from the book Dvoretsky’s Endgame Manual
[Dvo08]. Current state-of-the-art chess programs without an exception chose to take
the black queen with the knight (1.Na4xb6), which leads to big material advantage
and to high evaluations that seemingly promise an easy win. However, it turns out
that after 1...c7xb6 (black pawn takes the white knight) the backed-up evaluations
cease to increase with increasing depth of search. In fact, black position becomes an
impregnable fortress and the win is no longer possible, providing adequate defence.
From the diagrammed position, grandmaster Dvoretsky gives the winning plan for
the white player, which includes taking the insufficiently protected pawn on a5 (see
the caption in Fig. 8.20). Had the programs chosen the proposed series of moves,
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the backed-up evaluations would continue to increase monotonically with increasing
search depth and the programs would find the way to win this position.

Figure 8.21: In the positions that could be regarded as fortresses, backed-up evalua-
tions obtained by RYBKA cease to increase (or decrease) as it is otherwise expected
in winning (losing) positions (compare to Figures 8.11 and 8.12).

We chose 20 positions from the aforementioned book by Dvoretsky that were
recognized as fortresses for the following experiment. The positions were a sub-
ject of analysis by chess program RYBKA. The program’s backed-up evaluations of
searching to depths ranging from 2 up to 20 plies were obtained. Our claim was the
following: Backed-up evaluations in positions that could be regarded as fortresses
will not behave as it is usual for winning (losing) positions, that is they will not in-
crease (or decrease) monotonically with increasing depth of search. The results of
this experiment are demonstrated in Fig. 8.21 and they confirm this claim.

We should note that similar behavior of backed-up evaluation values as shown in
Fig. 8.21 were obtained using various different chess programs for chess positions
that are accepted as fortresses.
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Chapter 9

Factors Affecting Diminishing
Returns for Searching Deeper

This chapter is an updated and abridged version of the following publication:

1. Guid, M. and Bratko, I. Factors Affecting Diminishing Returns for Searching
Deeper. ICGA Journal, Vol. 30, No. 2, pp. 75-84, 2007. [GB07]

In this chapter, we prove empirically that the rate of changed decisions that arise
from search to different depths depends on (1) the quality of knowledge in evaluation
functions, (2) the value of a node in the search space, and to some extent also on (3)
the phase of the game.

9.1 Go-Deep Experiments and Diminishing Returns

Deep-search behavior and diminishing returns for additional search in chess have
been burning issues for more than twenty five years in the game-playing scientific
community. Two different approaches took place on this topic: self-play and go-
deep. While in self-play experiments, two otherwise identical programs are matched
with one having a handicap (usually in search depth), go-deep experiments deal with
best-move changes resulting from different search depths of a set of positions.

Ken Thompson’s pioneering work illustrated the benefits of increasing the search
depth by conducting self-play experiments with chess program BELLE [Tho82]. In
his experiments, the program searching to a fixed depth d + 1 scored a surprising
80% of the possible points against the program searching to a fixed depth of d plies
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in a 20-game match. Some researchers extrapolated this work and speculated that
a program searching to the depth of 12 plies would be able to achieve a rating that
was higher than that of the World Champion [HACN90]. However, it seems highly
unlikely that every additional ply of search leads to the same gain in playing strength.
As Junghanns et al. point out, simple logic suggests that diminishing returns for
searching deeper must eventually appear, illustrating this point with the following
question: “Can there possibly be a big difference between a 100-ply program and
one doing 101 ply?” [JSB+97]

The go-deep experiments were introduced for determining the expectation of a
new best move being discovered by searching only one ply deeper. The approach is
based on Newborn’s [New85] discovery that the results of self-play experiments are
closely correlated with the rate at which the best move changes from one iteration
to the next. Newborn [New85] formulated the following hypothesis. Let RI(d + 1)

denote the rating improvement when increasing the search depth from level d to level
d+ 1, and BC(d) the expectation of finding a best move at level d different from the
best move found at level d− 1, then:

RI(d+ 1) =
BC(d+ 1)

BC(d)
RI(d) (9.1)

There were some objections about the above equation, e.g., the one by Heinz
[Hei98]: “Please imagine a chess program that simply switches back and forth be-
tween a few good moves all the time. Such behavior does surely not increase the
playing strength of the program at any search depth.” He suggested that the discov-
ery of “fresh ideas” looks like a much better and meaningful indicator of increases in
playing strength than a best-move change at the next iteration of the search, and
proposed “fresh best” moves instead, defined as new best moves which the pro-
gram never deemed best before. Whatever the merit of this proposal, determining
BC(d) for higher values of d continued to be used in several experiments. In 1997,
PHOENIX (Schaeffer, [Sch86]) and THE TURK (Junghanns et al., [JSB+97]) were
used to record best-move changes at iteration depths up to 9 plies. In the same year,
Hyatt and Newborn [HN97] let CRAFTY search to an iteration depth of 14 plies. In
1998, Heinz [Hei98] repeated their go-deep experiment with DARKTHOUGHT. All
these experiments were performed on somehow limited data sets of test positions and
did not provide any conclusive empirical evidence that the best move changes taper
off continuously with increasing search depth.
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An interesting go-deep experiment was performed by Sadikov and Bratko [SB06].
They made very deep searches (unlimited for all practical purposes) possible by con-
centrating on chess endgames with a limited number of pieces. Their results con-
firmed that diminishing returns in chess exist, and showed that the amount of knowl-
edge, which a program has, influences the precise time when diminishing returns will
start to manifest themselves.

A remarkable follow-up on the previous work done on deep-search behavior us-
ing chess programs was published by Steenhuisen [Ste05] who used CRAFTY to
repeat the go-deep experiment on positions taken from previous experiments to push
the search horizon to 20 plies. He used the same experimental setup to search, among
others, a set of 4,500 positions, from the opening phase, to a depth of 18 plies. His
results show that the chance of new best moves being discovered decreases exponen-
tially when searching to higher depths, and decreases faster for positions closer to
the end of the game. He also reported that the speed with which the best-change rate
decreases depends on the test set used.

The latter seems to be an important issue regarding the trustworthiness of the
various results obtained by the go-deep experiments. How can one rely on statistical
evidence from different go-deep experiments, if they obviously depend on the data
set used?

In this chapter, we study experimentally additional factors which influence the
behavior of diminishing returns that manifest themselves in go-deep experiments.
Using a large data set of more than 40,000 positions taken from real games we con-
duct go-deep experiments with the programs CRAFTY, RYBKA, and SHREDDER to
provide evidence that the chance of new best moves being discovered at higher depths
depends on (1) the values of positions in the data set, (2) the quality of the evaluation
function of the program used, and to some extent also on (3) the phase of the game.∗

Among other findings, the results will demonstrate with a high level of statistical
confidence that both “Best Change” and “Fresh Best” rates (as defined by Newborn
[New85] and Heinz [Hei98], respectively) decrease with increasing search depth in
each of the subsets of the large data set used in this study.

∗In the paper Factors Affecting Diminishing Returns for Searching Deeper [GB07] we also
showed that the chance of new best moves being discovered at higher depths depends to some ex-
tent also on the amount of material on the board. However, since the amount of material on the board
is closely correlated with the phase of the game, we will omit those results in this thesis. An interested
reader could find them in the aforementioned paper.
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9.2 Experimental Design

The Chess programs CRAFTY, RYBKA, and SHREDDER† were used to analyze more
than 40,000 positions from real games played in World Chess Championship matches.
Each position occurring in these games after move 12 was searched to a fixed depth
ranging from 2 to 12 plies. Similarly as in Section 8.2, searching was extended with
quiescence search to ensure that programs’ decisions were based on stable static
evaluations.

For the measurements done in the go-deep experiments we use the same defini-
tions as provided by Heinz [Hei98] and Steenhuisen [Ste05]. Let B(d) denote the best
move after a search to depth d, then the following best-move properties were defined.

Best Change B(d) 6= B(d - 1)

Fresh Best B(d) 6= B(j) ∀j < d

(d-2) Best B(d) = B(d - 2) and B(d) 6= B(d - 1)

(d-3) Best B(d) = B(d - 3) and B(d) 6= B(d - 2) and B(d) 6= B(d - 1)

We give the estimated probabilities (in %) and their estimated standard errors SE
(in Equation 9.2: N(d) stands for the number of observations at search depth d) for
each measurement of Best Change. The rates for Fresh Best, (d - 2) Best, and (d - 3)
Best are given as conditional to the occurrence of a Best Change. We also provide
mean evaluations of positions at each level of search.

SE =
√

(
BC(d)(1−BC(d))

N(d)− 1
) (9.2)

For confidence bounds on the values for best-change rates we use the 95%-level
of confidence (λ = 1.96). We use the equation given by Steenhuisen [Ste05] (in Equa-
tion 9.3: m represents the number of successes in a sample size of n observations).

m+ λ2

2
±√(m(1− m

n
) + λ2

4
)

n+ λ2
(9.3)

Similarly as in Section 8.2, we devised several groups of data in order to test our
hypotheses. Properties of these groups are described at the beginning of each section.

†CRAFTY 19.2, and RYBKA 2.2n2 32-bit were used in the experiments. In Section 9.4, we also
used DEEP SHREDDER 10 UCI and RYBKA 3 1-cpu 32 bit.
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9.3 Diminishing Returns and Values of Positions

9.3.1 CRAFTY Goes Deep

Several researchers used CRAFTY for their go-deep experiments. However, none had
such a large set of test positions at his disposal as we had (over 40,000 positions).
Steenhuisen (2005) observed deep-search behavior of CRAFTY on different test sets
and reported different Best Change rates and Best Change rate decreases for different
test sets. This and the following section will show that best-change rates strongly
depend on the values of the positions included in a test set.

As described in Section 8.2, to determine the best available approximation of
the utility value of each analyzed position, the backed-up evaluation at the deepest
search depth served as an “oracle”. We devised six different groups of positions
based on their estimated utility values, as given in Table 9.1. In usual terms of chess
players, the positions of Groups 1 and 6 could be labeled as positions with “decisive
advantage”, positions of Groups 2 and 5 with “large advantage”, while Groups 3 and
4 consist of positions regarded as approximately equal or with a “small advantage”
at most.

Table 9.1: Number of positions in each of the six groups of data. The groups were
devised based on backed-up heuristic evaluation values obtained at search depth of
12 plies (CRAFTY).

Group 1 2 3 4 5 6
Evaluation (x) x<-2 -2≤x<-1 -1≤x<0 0≤x<1 1≤x<2 x≥2
CRAFTY 4,011 3,571 10,169 18,038 6,008 6,203

The results for each of the six groups are presented in Figure 9.1. The curves
clearly show a different deep-search behavior of the program for the different groups,
depending on the estimated value of positions they consist of. The chance of new
best moves being discovered at higher depths is significantly higher for balanced
positions than for positions with a decisive advantage. It is interesting to observe
that this phenomenon does not yet occur at the shallowest search depths, while in the
results of RYBKA it manifests itself at each level of search (see Section 9.3.2).

Tables 9.2 and 9.3 show the results for Groups 4 and 6. While the results resemble
the ones obtained by Steenhuisen [Ste05] on the 4,500 positions in a sense that both
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Figure 9.1: Go-deep results of CRAFTY on the six different groups of positions.

Table 9.2: Results of CRAFTY for the 18,038 positions of Group 4.

Search Best Change Fresh Best (d-2) Best (d-3) Best Mean
depth in % (SE) in % in % in % evaluation

3 35.96 (0.36) 100.00 - - 0.36
4 34.47 (0.35) 74.88 25.12 - 0.37
5 33.18 (0.35) 64.16 27.34 8.50 0.37
6 32.34 (0.35) 54.38 28.44 11.38 0.37
7 30.48 (0.34) 49.53 31.14 9.51 0.37
8 29.86 (0.34) 42.81 31.45 11.27 0.38
9 27.75 (0.33) 40.02 33.87 10.81 0.38

10 26.48 (0.33) 37.77 33.31 10.57 0.38
11 24.53 (0.32) 34.79 33.48 11.14 0.38
12 23.17 (0.31) 32.26 33.07 12.04 0.39

Best Change and Fresh Best rates decrease consistently with increasing search depth,
the rates nevertheless significantly differ for each of the two groups of positions.

The 95%-confidence bounds for Best Change (calculated using the Equation 9.2)
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Table 9.3: Results of CRAFTY for the 6,203 positions of Group 6.

Search Best Change Fresh Best (d-2) Best (d-3) Best Mean
depth in % (SE) in % in % in % evaluation

3 37.42 (0.61) 100.00 - - 2.64
4 32.27 (0.59) 73.93 26.07 - 2.76
5 30.13 (0.58) 64.85 24.83 10.33 2.84
6 26.60 (0.56) 55.70 28.06 9.70 2.95
7 26.21 (0.56) 49.88 27.37 10.52 3.04
8 23.99 (0.54) 39.92 31.18 11.02 3.17
9 22.44 (0.53) 37.21 32.18 12.72 3.29

10 20.47 (0.51) 36.30 30.79 11.50 3.42
11 18.30 (0.49) 31.37 32.42 12.07 3.54
12 17.85 (0.49) 29.27 29.99 13.91 3.68

at the highest level of search performed for the samples of 18,038 and 6,203 positions
of Groups 4 and 6 are [22.56;23.97] and [16.91;18.82], respectively.

9.3.2 RYBKA Goes Deep

The results of go-deep experiments with RYBKA will not only confirm that Best
Change rates depend on the values of the positions, but also demonstrate that the
chance of new best moves being discovered at higher depths is lower at all depths
compared to CRAFTY, which is rated more than 300 rating points lower on the
Swedish (SSDF) Rating List [Kar08]. Table 4 presents the subsets evaluated by RY-
BKA, analogous to those presented in Table 9.1 and evaluated by CRAFTY.

Table 9.4: Number of positions in each of the six groups of data. The groups were
devised based on backed-up heuristic evaluation values obtained at search depth of
12 plies (RYBKA).

Group 1 2 3 4 5 6
Evaluation (x) x<-2 -2≤x<-1 -1≤x<0 0≤x<1 1≤x<2 x≥2
RYBKA12 1,263 1,469 9,808 22,644 3,152 2,133

The results of RYBKA presented in Figure 9.2 resemble the results of CRAFTY

in Figure 9.1, except that all the curves appear significantly lower on the vertical
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scale. This result seems to be in line with the observation, based on the results by
Sadikov and Bratko [SB06], that the amount of knowledge a program has (or the
quality of the evaluation function) influences the deep-search behavior of a program.
The big difference in strength of the two programs is likely to be the consequence
of RYBKA having a stronger evaluation function; it is as well commonly known that
chess players prefer evaluations of this program to RYBKA’s evaluations. In their
study, Sadikov and Bratko [SB06] claim that diminishing returns will start to manifest
themselves earlier using a program with a stronger evaluation function, based on
experiments performed on chess endgames, at the same time suspecting that similar
results would be obtained with more pieces on the board. The results presented here
seem to be in accordance with that claim.

Figure 9.2: Go-deep results of RYBKA on the six different groups of positions.

Tables 9.5 and 9.6 (results of RYBKA) are the analogous of Tables 9.2 and 9.3
(results of CRAFTY). We will just briefly mention here that the mean evaluations of
both programs in won positions monotonically increase with increasing search depth,
which is in accordance with our findings presented in Chapter 8.
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Table 9.5: Results of RYBKA for the 22,644 positions of Group 4.

Search Best Change Fresh Best (d-2) Best (d-3) Best Mean
depth in % (SE) in % in % in % evaluation

3 28.59 (0.30) 100.00 - - 0.31
4 27.36 (0.30) 71.42 28.58 - 0.31
5 27.00 (0.30) 62.95 27.12 9.93 0.31
6 25.44 (0.29) 53.32 28.13 10.45 0.31
7 24.00 (0.28) 49.91 26.63 11.21 0.30
8 22.88 (0.28) 45.78 26.85 11.37 0.30
9 22.50 (0.28) 42.97 25.63 11.46 0.30

10 20.73 (0.27) 37.17 28.46 11.31 0.30
11 20.03 (0.27) 36.16 27.76 11.78 0.30
12 19.01 (0.26) 34.08 27.87 11.85 0.30

Table 9.6: Results of RYBKA for the 2,133 positions of Group 6.

Search Best Change Fresh Best (d-2) Best (d-3) Best Mean
depth in % (SE) in % in % in % evaluation

3 22.36 (0.90) 100.00 - - 2.49
4 20.39 (0.87) 77.24 22.76 - 2.60
5 17.63 (0.83) 66.76 24.20 9.04 2.77
6 16.41 (0.80) 54.86 25.43 10.57 2.89
7 16.32 (0.80) 49.71 26.44 10.06 3.01
8 15.24 (0.78) 44.00 23.69 13.23 3.14
9 14.49 (0.76) 45.63 24.60 10.36 3.27

10 13.31 (0.74) 42.61 23.94 12.68 3.42
11 12.61 (0.72) 37.92 24.16 8.55 3.59
12 12.19 (0.71) 36.54 30.00 7.31 3.75

The 95%-confidence bounds for Best Change at the highest level of search per-
formed for the samples of 22,644 and 2,133 positions of Groups 4 and 6 are [18.51;19.53]
and [10.87;13.65], respectively.
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9.4 Diminishing Returns and Quality of Evaluation
Function

In this section, we give a comparison of Best Change rates of four programs of dif-
ferent strengths. In order to test our hypothesis that best-move changes correlate with
the quality of the evaluation function of a program, we used another two programs,
namely SHREDDER and the stronger version of RYBKA, RYBKA 3, to analyze more
than 40,000 positions from the World Chess Championship matches, using the same
methodology. We also did “SHREDDER goes deep” and “RYBKA 3 goes deep exper-
iments”, and the results showed the same trends as those obtained by CRAFTY and
RYBKA 2.

In order to provide a relevant comparison of chess strength of the four programs,
relative to each other, we give in Table 9.7 the publicly available information from
currently the latest (2009-04-10) version of the Swedish (SSDF) Rating List [Kar08],
where ratings of several state-of-the-art chess programs are published. The ratings
on this list are obtained after many games are played on the tournament level (40
moves in 2 hours followed by 20 moves in each following hour) between the pro-
grams, supervised by members of the Swedish Chess Computer Association (SSDF).
‘Games’ stands for the number of games on which the rating is based, and ‘Against’
for the average rating of opponents. The ‘+’ and ‘-’ denote respectively the upper
and lower 95% confidence intervals. Although the versions of the programs slightly
differ from the ones that we used in our experiments, the listed ratings should give
enough information about their strength, in particular relative to each other.

Table 9.7: Comparison of the four programs that we used in our experiments accord-
ing to the SSDF rating list (slightly different versions were used in our experiments).
All four programs listed here were ran on 256MB Athlon 1200 MHz.

Program Rating + - Games Win % Against
DEEP RYBKA 3 3073 44 -44 253 55 3039

RYBKA 2.3.1 Arena 2923 23 -23 920 53 2904
SHREDDER 10 UCI 2827 20 -20 1246 58 2769

CRAFTY 19.17 2527 41 -44 304 30 2677

In Section 8.4 we showed that the scales of heuristic evaluation values of different
programs may not be the same, that is, each evaluation function may use its own
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range of heuristic evaluation values. Having this observations in mind, in order to
perform a relevant comparison of programs’ Best Change rates, we now observed
Best Change rates on all available positions. Moreover, the data sets of positions
analyzed were exactly the same. The results are given in Fig. 9.3. The curves of Best
Change rates are ordered in accordance with the ratings of the programs. RYBKA 3,
which is regarded as the program with the strongest evaluation function of the three
programs, has the lowest Best Change curves, and the opposite applies to CRAFTY,
of which the evaluation function is considered to be the weakest one. Qualitatively,
quite similar results were observed for minor subsets of data as well.

Figure 9.3: Go-deep results on all available positions with CRAFTY, SHREDDER,
RYBKA 2, and RYBKA 3. Positions that were not analyzed by all four programs were
excluded.

Could Best Change rates be used as a direct measure of the quality of an evalua-
tion function? This question requires a further investigation. Consider a program that
always selects the first move of the alphabetically sorted possible moves. In such a
case, the Best Change curve coincides with the horizontal axis (which also happens
in case of a “perfect” evaluation), despite of terribly low quality of such program’s
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evaluations. However, this is a rather contrived case. As our experimental results
suggest, evaluation functions of successful programs may have some properties that
make comparison based on Best Change rates sensible. In each case, we suggest that
a data set used for such an investigation should be representative for the whole game
of chess, as it was probably the case with our large data set of real-game positions.

9.5 Diminishing Returns and Phase of the Game

Steenhuisen [Ste05] was the first to point out that the chance of new best moves
being discovered at higher depth decreases faster for positions closer to the end of
the game. However, having in mind that deep-search behavior depends on the val-
ues of positions in a test set, it seems worthwhile to check whether his results were
just the consequence of dealing with positions with a decisive advantage (at least on
average) in a later phase of the game. For the purpose of this experiment we took
only a subset with more or less balanced positions with depth 12 and an evaluation
in the range between -0.50 and 0.50 (see Table 9.8). Our results show that in the po-
sitions that occurred in the games later than move 50, the chance of new best moves
being discovered indeed decreases faster, which agrees with Steenhuisen’s [Ste05]
observations. The experiments in this and the following section were performed by
CRAFTY.

Table 9.8: Five subsets of positions of different phases in the game, with evaluations
obtained at search depth 12 in range between -0.50 and 0.50 (CRAFTY).

Group 1 2 3 4 5
Move no. (m) m<20 20≤m<30 30≤m<40 40≤m<50 m≥50
Positions 7,580 6,106 3,418 1,356 961

The results presented in Figure 9.4 show that while there is no obvious correlation
between move number and the chance of new best moves being discovered at higher
depth, in the positions of Group 5 that occurred closer to the end of the game the Best
Change curve nevertheless appears lower than the curves of the other groups. Table
9.9 shows the best-move properties for this group.
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Figure 9.4: Go-deep results with positions of different phases of the game.

Table 9.9: Results for the 961 positions of Group 5.

Search Best Change Fresh Best (d-2) Best (d-3) Best Mean
depth in % (SE) in % in % in % evaluation

3 37.04 (1.56) 100.00 - - 0.07
4 34.03 (1.53) 72.78 27.22 - 0.05
5 29.24 (1.47) 60.85 27.40 11.74 0.05
6 26.85 (1.43) 49.22 30.23 14.34 0.03
7 24.35 (1.39) 47.44 29.91 10.26 0.02
8 22.89 (1.36) 45.91 27.27 9.55 0.02
9 23.10 (1.36) 38.29 32.88 10.81 0.02

10 21.85 (1.33) 37.62 27.62 11.43 0.02
11 20.60 (1.31) 33.33 32.83 12.12 0.02
12 19.25 (1.27) 26.49 36.22 8.65 0.01

The 95%-confidence bounds for Best Change at the highest level of search per-
formed for the sample of 961 positions of Group 5 are [16.88;21.86].
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Chapter 10

Conclusions

10.1 Critical Analysis and Open Questions

We view this thesis as a progress report on work that needs to be advanced in a great
deal of directions. We do believe it describes some novel aspects on the comparison
and combination of search and knowledge in human and machine problem solving,
and that it provides one possible view on possibilities of developing heuristic-search
methods for evaluating and improving problem-solving performance. Our hope is
that the research done in the scope of this thesis will stimulate further extensions,
emendations, or even refutations.

We are well aware that we have limited ourselves to only a small portion of refer-
ences that exist in such a large scientific area such as Human and Machine Problem
Solving. Only a rather small part of highly related branches in psychology such as
the huge field of Integrated Cognitive Architectures, and a rather small part of an
important and highly related field of Artificial Intelligence in Education, particularly
with respect to building intelligent tutoring systems (an excellent book on the subject
was recently written by B.P. Woolf [Woo08]) were addressed. We do hope, however,
that researchers of all kind of areas related to Human and Machine Problem Solving
will find in our work at least some fresh ideas for arriving farther on our common
way in the enormous “problem space” that we are all searching through.

The research done in the scope of the thesis was performed in the framework of
human and computer game playing, and the game of chess was used as the experi-
mental domain. While we advocated that many researchers used the game-playing
platform and the domain of chess in their experiments, the explicit or implicit mes-

165



10. CONCLUSIONS

sage of their works being that the results for chess are generalizable to other domains,
we actually did not provide any specific evidence that our work is extendable outside
the scope of the game of chess. This is clearly one possible future research direction.

There is almost a countless number of (even fundamental) scientific questions
that remain open. Below we mention five of them.

1. How to define a measure of understandability (or comprehensibility) of a body
of knowledge (a theory, model, problem-solving strategy) for a human? This
is an old fundamental question of AI that has been rarely considered, and for
which not even a reasonable tentative solution exist.

2. What are the characteristics of human-understandable (or human-assimilable)
representations of a theory, model, or problem-solving strategy? There are
limits on memory – what can be memorized, on search complexity: How many
inference steps or moves a human is able to look ahead? There should be a well
balanced mixture of knowledge requirements, useful key patterns, and some
search (not too much knowledge, not too much search).

3. What is an effective “conceptualization” of a domain theory for a human? One
that can be effectively learned, memorized, and effectively applied for problem
solving?

4. How to generate human-meaningful and natural commentary, depending on a
student’s level and type of knowledge and skill? A human may be solving the
task using a particular strategy, so the commentator should be aware of this and
make comments relative to this strategy; or alternatively, the commentator may
be aware of a student’s limited knowledge (limited problem-solving strategy,
limited declarative knowledge) and may decide to draw a student’s attention to
another strategy that is better applicable to the problem at hand.

5. How to define a measure of cognitive difficulty of a given problem? Is it mea-
surable at all or is it unique to each individual?

We address some more open questions and suggestions for further research direc-
tions in the sequel where assessments of the contributions of the thesis are stated.
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10.2 Search and Knowledge for Estimating Human
Problem Solving Performance

In Part I of the thesis, “Search and Knowledge for Estimating Human Problem Solv-
ing Performance,” we addressed the following question: “how can we develop meth-
ods based on computer heuristic search for evaluating human problem solving per-
formance?” Chapters 2 and 3 answer the research question 1 (RQ1): “how can a
computer be used to assess a human’s problem-solving performance?” Chapter 4
answers the research question 2 (RQ2): “how can a machine problem solving model
be used to assess the difficulty of a set of given problems for a human?”

In Chapters 2 and 3, our aim was to demonstrate that heuristic-search based pro-
grams can be useful estimators of human problem-solving performance. We intro-
duced a novel method based on computer heuristic search, for evaluating such perfor-
mance at solving a given set of problems, and provided an analysis of appropriateness
of this method. As a case study of estimating problem-solving performance using a
heuristic-search based program we devised a comparison of World Chess Champi-
ons, top-level human experts in the game of chess. It is based on the evaluation of
the games played by the World Chess Champions in their championship matches.
We were interested in the chess players’ quality of play regardless of the game score,
performing computer analyzes of individual moves made by each player. As the basis
for estimating the chess players’ problem-solving performance we chose the average
differences between heuristic evaluations of their decisions and heuristic evaluations
of computer’s decisions, all of them obtained on a large set chess positions and at
some fixed depth of search.

In Chapter 3, we confirmed the trustworthiness of our approach to estimating
problem-solving performance in chess. We demonstrated that at least for pairs of the
players whose scores differ significantly, it is not very likely that their relative rank-
ings would change if (1) a stronger chess program was used, or (2) if the program
would search more deeply, or (3) larger sets of positions were available for the anal-
ysis. The results show that, at least for the players whose scores differ significantly,
the rankings are surprisingly stable over a large interval of search depths, and over
a large variation of position sample. Even extremely shallow search of just two or
three ply enable reasonable mutual rankings for some pairs of the players. Differ-
ent chess programs were used to provide further evidence that using other, stronger
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chess programs would be likely to result in similar rankings of the players whose
scores differ by more than an average margin. Experimental results and theoretical
explanations were provided to show that, in order to obtain a sensible ranking of
the champions’ performances by applying the proposed method it is not even neces-
sary to use a computer program that is stronger in terms of chess strength than the
champions themselves.

Generally speaking, the results of our computer analysis can be nicely interpreted
by a chess expert. Some of the results may be considered also as an interesting
contribution to the field of chess. Capablanca’s outstanding result in terms of mean
value loss will probably appear to many as such an interesting finding, although it
probably should not come as a complete surprise.

Our goal was to devise a method for estimating problem-solving performance that
would lead to the correct ranking of problem solvers’ performances, and our assump-
tion was that the computer estimator of problem-solving performance is trustworthy
already when it is equally unfair to all problem solvers. The latter issue was not
addressed in our work, and the following question remains unanswered: Does the
program’s style of play exhibit preference for the styles of any particular players?

Various discussions about our ICGA Journal publication [GB06] took place at
different places, including scientific ([Haw07]) as well as popular blogs and forums
across the internet. A shortened version of that publication was published by the pop-
ular chess website, Chessbase.com (see [Che06b]). The same website soon published
some interesting responses by various readers from all over the world, including some
by scientists (Chessbase.com, see [Che06a]). One frequent question by the readers
was associated with the meaning of the players’ scores according to our basic crite-
rion. A typical misinterpretation of their meaning went like this: “For every 8 moves
on average, CRAFTY expects to gain an advantage of one extra pawn over Kasparov”
(Chessbase.com, [Che06a]). As we mentioned in Chapter 3, the scores obtained by
the program only measure the average differences between the players’ choices of
move and the computer’s choice. The experimental results presented in this thesis
demonstrate that the scores are associated with the strength of the program and are
not invariable neither for the same program at different depths of search, nor for dif-
ferent programs at the same depth of search. However, as the analysis shows these
scores that are relative to the computer used, have good chances to produce sensible
rankings of the players.

There were also speculations that using chess programs stronger than CRAFTY
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for the analysis would lead to completely different results, and that Capablanca’s re-
sult is merely a consequence of his style being similar to CRAFTY’s style. In the the-
sis, we used three chess programs stronger than CRAFTY as estimators of problem-
solving performances of the World Chess Champions and confirmed our previous
findings. We observed that the three champions whose scores differ sufficiently from
the others remained on their positions at any level of search using any of the program,
when comparing their scores to the average scores of the rest of the champions.

There is much space for possible improvements of criterions for estimating chess-
players’ performances. For example, instead of measuring absolute differences be-
tween heuristic evaluations of chess-players’ decisions and heuristic evaluations of
computer’s decisions, it would perhaps be more accurate to express these differ-
ences in terms of deteriorated probability of winning the game, as we suspect that
computer-chess programs’ heuristic evaluations are not on interval scale. That is,
the difference of, e.g., 0.60 at some particular search depth is much less meaningful
in won/lost positions than in positions of (approximate) equality. Such an approach
would also make the arbitrary set boundaries (-2.00 and 2.00) unnecessary. Second
and different approach to estimating human problem-solving performance could be
found in the works by Guy Haworth (see for example [Haw07] and [HRdF10]).

In Chapter 4, a heuristic-search based method was designed for assessing the
average difficulty of a given set of chess positions. This made it possible to compare
players of different playing styles. We demonstrated that the outstanding score of
José Raúl Capablanca, the 3rd World Champion, in terms of the average deviation
between evaluations of played moves and best-evaluated moves (the basic criterion)
should be interpreted in the light of the comparatively low difficulty of positions in
Capablanca’s games. This is quite in line with the known assessments in the chess
literature of his style.

Our measure of position difficulty seems to have produced sensible results. These
results are qualitatively much in line to the observation of how an expert chess com-
mentator would describe the players in this study in terms of their playing style. We
believe that no published related work regarding using heuristic-search estimator of
difficulty of chess positions exist. As a line of future work, it would be interesting to
explore by means of a psychological study, how well our difficulty measure reflects
the true cognitive difficulty of a given set of chess positions. Related open question
is: How to take into account the differences between players in the average difficulty
of the positions encountered in their games? We also believe that the algorithm for
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measuring the difficulty could be further improved, for example, by assigning bigger
weights to changes in decisions at greater search depths. Finally, there is an open
question how to adjust this algorithm to be suitable for accessing the difficulty of
tactical positions where quiescence search often does most of the job, leading the
computer to find the best solution of an otherwise difficult problem from a human’s
point of view in merely a tiny portion of a second of time (and possibly even at the
shallowest depths, making our difficulty measure irrelevant).

10.3 Search and Knowledge for Improving Human
Problem Solving Performance

In Part II of the thesis, “Search and Knowledge for Improving Human Problem Solv-
ing Performance,” we addressed the following question: “how can we develop meth-
ods based on computer heuristic search for improving human problem solving perfor-
mance?” Chapters 5 and 6 answer the research question 3 (RQ3): “how can machine
problem solving be used in tutoring, for teaching a human to solve problems in a
given problem domain?” Chapter 7 answers the research question 4 (RQ4): “how
can knowledge represented in a form suitable for the computer, be transformed into
a form that can be understood and used by a human?”

In Chapter 5, we presented a novel approach for automated generation of human
understandable comments on decisions in problem solving. Our approach is based
on a computer program that uses heuristic search. We set a quite ambitious target
domain: the complete domain of chess. The long-term goal of our research is to
develop a computer system that will provide commentary of chess moves and possi-
ble continuations in a comprehensible, user-friendly and instructive way, thus using
the power demonstrated by the ever stronger chess programs for the purposes of an-
notating. We demonstrated the main advantages of our approach over the related
proposals, namely:

• the ability to annotate chess games during all the phases of the game,

• the automatically generated commentary, aside from the ability to comment
on tactical positions, also expresses a solid understanding of strategic concepts
behind variations that chess programs suggest in given positions.
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There is an array of cognitive issues still to be solved to arrive at really good
annotating system, e.g., when to comment and when not, which move (the best or
some similar but better) to compare the move to, and what is the most suitable depth
of lookahead, to name but a few. These are obvious tasks for future work.

In order to make possible for annotating software to make more in-depth com-
ments, obtaining knowledge for construction of more complex positional features is
desirable. In Chapter 6 we demonstrated our novel approach, based on argument-
based machine learning [MvB07], to the formalization of complex patterns for the
purpose of commenting on problem solving decisions and/or intelligent tutoring. We
investigated a particular aspect in the development of a chess annotating software -
the ability of making intelligent comments on the positional aspects of a chess game.
This task is made more difficult by the fact that the strength of the chess playing pro-
grams mainly comes from search and not from subtle positional knowledge which
is necessary for generating positional comments. Therefore, components of a chess
program’s evaluation function are not sufficient for making in-depth positional com-
ments. Defining deep positional patterns requires powerful knowledge-elicitation
methods. Our study suggests that argument-based machine learning enables such a
method.

Our future work will be associated with further improvements of our annotation
software. We intend to implement several additional positional features into its eval-
uation function, in order to make the commentary more instructive. In particular, the
expert module of our annotation system, which provides the user with a commen-
tary of chess games, based on learned or manually-crafted positional features, and
possibly with more detailed explanations about particular features of chess positions,
requires further attention. As part of future work, we intend to apply this knowledge-
acquisition method to the formalisation of other positional concepts of fuzzy nature,
such as weak or strong pawn structures, pressure on the opponent’s king, space ad-
vantage, harmony among the pieces, etc.

In Chapter 7, we demonstrated a procedure for semi-automatic synthesis of knowl-
edge usable for intelligent tutoring purposes. We developed an approach to deriv-
ing meaningful concepts and strategies usable for constructing a heuristic evaluation
function ready to be used for commenting on problem-solving decisions. As a case
study, we semi-automatically synthesized textbook instructions for teaching the dif-
ficult king, bishop, and knight versus the lone king (KBNK) endgame. Moreover, we
used the obtained goal-based rules as a heuristic evaluation function to produce ex-
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ample games containing automatically generated instructions. The derived strategy
was found to be suitable for educational purposes at the level targeted for. Among
the reasons to support this assessment was that the instructions “clearly demonstrate
the intermediate subgoals of delivering checkmate.”

Our procedure for semi-automatic synthesis of knowledge combines ideas from
argument-based machine learning with specialized minimax search to extract a strat-
egy for solving problems that require search. Using this approach, a domain expert
and a machine learning algorithm improve the model iteratively. It is particularly
suitable from the expert’s point of view that argument-based machine learning offers
several advantages for knowledge elicitation:

• it makes easier for the experts to articulate their knowledge,

• it facilitates the experts to adjust the level of introduced concepts to be acquired
by students as dictated by the level of skills of students targeted at,

• the experts only need to provide relevant knowledge, and

• the obtained knowledge is

– consistent with expert knowledge,

– in a form suitable for use in a computer tutoring application,

– in a form that can be understood and used by a human.

We also explained the guidelines for the interaction between the machine and the
expert in order to obtain a human-understandable rule-based goal-oriented model for
teaching how to solve problems in a particular symbolic domain, and how the in-
structions, including illustrative diagrams, could be derived semi-automatically from
such a model.

Deriving human-understandable concepts and strategies from chess tablebases
is an actual AI challenge. The positive outcome on the human understandability
of the derived concepts and strategies would represent a milestone. However, the
value of the demonstrated approach yet needs to be proven. So far we only have the
positive opinion of chess coaches who commented on the derived strategy. There are
at least two obvious directions for future work. First, to create a computer tool for
teaching the KBNK endgame. Second, to use the described procedures to synthesize
instructions for another, preferably much harder endgame.
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10.4 On the Nature of Heuristic Search in Computer
Game Playing

In Part III of the thesis, “On The Nature of Heuristic Search in Computer Game
Playing,” we aimed at improving the understanding of properties of heuristic search
and consequences of the interaction between search and knowledge that typically
occurs in both human and machine problem solving.

In Chapter 8, we analyzed the properties of successful evaluation functions in
game playing. Monotonicity property of heuristic evaluation functions for games was
revisited. This is a property of successful heuristic evaluation functions for games.
Namely, that backed-up values of the nodes in the search space have to tend to ap-
proach monotonically to the terminal values of the problem state space with the depth
of search. The experimental results show that the evaluation functions used in typical
chess programs tend to have this property that enables the program to play with a
sense of direction towards a desirable goal. We demonstrated that backed-up heuris-
tic values therefore do not approximate some unknown “true” or “ideal” heuristic
values with increasing depth of search, in contrast to what is generally assumed in
the literature, and point out that heuristic evaluation functions should not respect the
minimax relation. That is, backed-up heuristic evaluation values should not be in-
variant along the game tree, as game-theoretical values in the theoretical minimax
model are.

We demonstrated a practical application of taking into account this desirable
property of heuristic evaluation functions for solving a difficult type of problems:
detecting fortresses in chess. The experimental results also show that backed-up
heuristic evaluation values in chess programs tend to be monotonic in the probabil-
ity of winning a game between two fallible players. We discussed some of possible
impacts of the monotonicity property of heuristic evaluation functions on the theory
of game playing, and pointed out that heuristic evaluations obtained by searching to
different search depths are not directly comparable, in contrast to what is generally
assumed both in literature and in practical applications.

In Chapter 9, we studied experimentally additional factors which influence the
behavior of diminishing returns that manifest themselves in the so-called go-deep
experiments. Deep-search behavior and the phenomenon of diminishing returns for
additional search effort have been studied by several researchers, whereby different

173



10. CONCLUSIONS

results were obtained on the different data sets used. Our results were obtained on
a large set of more than 40,000 positions from real chess games using programs
CRAFTY, RYBKA, and SHREDDER. They provide an empirical proof that the rate of
changed decisions that arise from search to different depths depends on:

1. the quality of knowledge in evaluation functions, and

2. the true value (relative to a fixed search depth) of a node in the search space.

Among other findings, the results also demonstrated with a high level of statistical
confidence that changes of the programs’ decisions decrease with increasing search
depth in each of the subsets of the large data set used in our experiments.

Could the rates of changed decisions that arise from search to different depths
be used as a direct measure of the quality of an evaluation function? If so, under
what conditions? These questions require a further investigation and in our opinion
represent an interesting line of future work.
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Znanje in preiskovanje
pri človeškem in računalniškem
reševanju problemov

A.1 Uvod

V umetni inteligenci obstajajo formalizirani in algoritmizirani pristopi k reševanju
problemov, ki so po svoji naravi kombinatorični, kot je npr. načrtovanje operacij
ali igranje miselnih iger. V teh pristopih so problemi predstavljeni s problemskim
prostorom, ki je značilno neke vrste graf, reševanju problema pa ustreza preisko-
vanje ustreznega grafa. Zaradi kombinatorične zahtevnosti se ti problemi rešujejo
s hevrističnimi metodami preiskovanja, pri katerih problemu specifične hevristike
predstavljajo znanje o konkretni problemski domeni. Tako ti računalniški pristopi v
umetni inteligenci v grobem vsebujejo dve komponenti: specifično znanje o prob-
lemu ter preiskovanje med alternativami.

Metode hevrističnega reševanja problemov so tudi dober model človeškega reše-
vanja problemov, ki prav tako odraža ti dve komponenti: preiskovanje in znanje o
konkretnem problemu. Seveda pa sta pri računalnikih in ljudeh ti dve komponenti
zelo različno zastopani. Človek – ekspert tipično uporablja veliko bogatejše znanje
o samem problemu, medtem ko je prednost računalnika v neprimerno hitrejšem
preiskovanju. Pionirsko delo o modeliranju človeškega reševanja problemov z raču-
nalniškim sta opravila v svoji dobro znani raziskavi A. Newell in H.A. Simon [NS72].

Doktorske disertacija obravnava možnosti razvoja metod, temelječih na hevristi-
čnem preiskovanju, za ocenjevanje in izboljševanje uspešnosti pri človeškem in raču-
nalniškem reševanju problemov. Vsebuje tudi prispevke k splošnemu razumevanju
lastnosti hevrističnega preiskovanja ter posledic interakcije med znanjem in preisko-
vanjem, tipično prisotne pri reševanju problemov, tako pri ljudeh kot pri računalnikih.
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V tem uvodnem delu bomo najprej na kratko predstavili reševanje problemov,
hevristično preiskovanje in interakcijo med preiskovanjem in znanjem. Nato bo
opisana primernost okolja igranja iger kot platforme za raziskovalno delo pri umetni
inteligenci in šah kot ustrezna raziskovalna domena. Na koncu uvoda predstavljamo
osrednja znanstvena vprašanja, povezana z našim raziskovalnim delom in prispevke
k znanosti.

A.1.1 Reševanje problemov in hevristično preiskovanje

Človek je soočen s problemom, če želi nekaj in ne ve takoj, katero sosledje dejanj
lahko izvede, da to doseže [NS72]. Pri umetni inteligenci je tipična splošna shema
za predstavitev problemov imenovana prostor stanj. Prostor stanj je graf, katerega
vozlišča ustrezajo problemskim situacijam, dani problem pa je omejen na iskanje
ustrezne poti v tem grafu.

Preiskovanje grafov za namene reševanja problemov vodi do problema kombi-
natorične kompleksnosti, ki izhaja iz hitro naraščajočega števila pojavljajočih se al-
ternativ. Za premostitev tega problema se navadno uporablja hevristično preisko-
vanje. Vozliščem v grafu se določi hevristične ocene, ki odražajo obetavnost vozlišč
za doseganje ciljnih stanj. Namen je izvajati preiskovanje iz najbolj obetavnih vozlišč
med možnimi kandidati [Bra00]. Na splošno hevristike predstavljajo strategije, ki s
pomočjo uporabe informacij kontrolirajo reševanje problemov, s katerimi se soočajo
tako ljudje kot računalniški sistemi [Pea84].

A.1.2 Preiskovanje in znanje

Hevristično preiskovanje implicira tako uporabo preiskovanja kot znanja. Znanje je
moč uporabiti pri usmerjanju preiskovanja in preiskovanje je lahko v pomoč pri osva-
janju znanja. Hitrejši program lahko preišče več vozlišč in torej išče globlje. To sug-
erira možno rešitev pri reševanju številnih tipov problemov: pridobiti hitrejšo strojno
opremo. Drug pristop k reševanju problemov je zanašanje na kakovostno znanje za
natančno ocenjevanje problemskih stanj z uporabo manj preiskovanja. V ekstrem-
nem primeru računalniški program (ali človek) z dovolj globokim razumevanjem
problemske domene preiskovanja sploh ne potrebuje [Sch86]. Na primer v šahu
se človeški igralci navadno zanašajo na svoje znanje in izkušnje ter izvajajo manj
preiskovanja, pač pa ocenjujejo nastale položaje natančno, kot je le mogoče. Popolno
znanje o domeni preiskovanje naredi nepotrebno in podobno, možnost preiskovanja



vseh možnih poti ne zahteva nikakršnega domenskega znanja za uspešno rešitev
problema. V praksi je značilno kombiniranje preiskovanja in uporabe domenskega
znanja, saj katerikoli od obeh navedenih ekstremov navadno ni izvedljiv, vsaj pri
zanimivih domenah ne [JSB+97].

Preiskovanje in znanje sta prav tako ključni sestavini vsakega ekspertnega sis-
tema. Ekspertni sistemi na splošno vsebujejo funkcijo za reševanje problemov, ki
uporablja značilno domensko znanje, in pri tem pogosto uporablja tudi preiskovanje
[Sch86; Bra00]. Ker je znanje ključna komponenta inteligentnega računalniškega sis-
tema, je njegovo pridobivanje ena izmed stalno prisotnih nalog v umetni inteligenci.
Proces pridobivanja znanja, imenovan elicitacija znanja, je znan kot težavna naloga
in predstavlja glavno ozko grlo pri gradnji baze znanja za ekspertne sisteme [Fei03].

A.1.3 Igranje iger kot platforma za raziskave v umetni
inteligenci

Večine zanimivih iger ni mogoče igrati na zadovoljivi ravni brez uporabe domenskega
znanja, saj je ustrezni prostor stanj prevelik, da bi se ga dalo v celoti preiskati v
razumnem času. Zato večine iger ni mogoče igrati niti izključno z zanašanjem na
znanje niti izključno s preiskovanjem. Nadalje, že od samih začetkov umetne in-
teligence je igranje iger nudilo izvrstno platformo za izpopolnjevanje metod in algo-
ritmov s tega področja. Pri igrah se igralci (ljudje ali računalniki) neprestano soočajo
s problemi, ki jih morajo rešiti. Iz navedenih razlogov je bilo področje igranja iger
izbrano kot ustrezna platforma za tematiko v tej disertaciji.

Pri igranju iger je prostor stanj navadno predstavljen kot drevo igre. V praksi
računalniškega igranja iger se ustvari le del drevesa igre, drevo iskanja, in hevristična
ocenjevalna funkcija oceni končne pozicije v drevesu iskanja. Hevristične ocene
nekončnih pozicij pridobimo s pomočjo upoštevanja minimaks principa. Tako imen-
ovano minimaks preiskovanje ostaja ključna komponenta programov, ki med drugim
vsebujejo tudi obsežno količino znanja, pridobljenega z upoštevanjem človeških pri-
stopov k razumevanju stanj igre in izbire potez [Bea99].

Številni eksperimenti s programi za igranje iger so bili izvedeni z namenom ugo-
tavljanja prednosti izpopolnjenega znanja in/ali poglobljenega preiskovanja. Še pose-
bej popularna domena v teh eksperimentih je bil šah. Eksplicitno ali implicitno
sporočilo teh del je bilo, da je rezultate, pridobljene pri šahu kot domeni, mogoče
posplošiti tudi na ostale igre [JS99].



A.1.4 Šah kot raziskovalna domena

Newell in Simon [NS72] postavljata šah kot posebej atraktivno raziskovalno domeno
za reševanje problemov pri ljudeh iz več vzrokov.

1. Izbiri poteze pri šahu se splošno priznava status težavne naloge reševanja prob-
lemov.

2. Ogromna količina zapisanih izkušenj omogoča lažje ocenjevanje kakovosti
šahovskega programa in njegovo podrobno primerjavo s človeškimi igralci
z različnimi prednostmi, slogi in celo različnimi obdobji v zgodovini igre.
Nadalje je mogoče protokole, ki jih naredi šahovski program, primerjati s
človeškimi protokoli pri istih položajih igre.

3. Ta naloga se je že uporabljala v starejših raziskavah, predvsem v delu A. de
Groota s človeškimi igralci šaha [dG78].∗

4. Neenakomerna struktura šaha daje nalogi nekaj pridiha vsakdanjega, klasičnega
reševanja težav, česar ne najdemo v nalogah, kot so dokazovanje teoremov ali
reševanje ugank.

Schaeffer [Sch86] zagovarja, da ima šah mnoge prednosti kot domena za razisko-
vanje nekaterih izmed problemov v umetni inteligenci. Zmogljivost šahovskega pro-
grama je tesno povezana tako s preiskovalnimi algoritmi kot z domenskim znan-
jem. Zaradi kompleksnosti igre (možnih je okrog 1046 različnih položajev [Chi96])
je popolna igra neizvedljiva, zato morajo imeti šahovski programi splošno znanje, ki
skuša opisati čim več možnih položajev. Rezultat tega je, da je znanje nenatančno
(hevristično) in da mora program sprejeti pomembne odločitve glede na kakovost
odziva, oziroma porabljen čas. Navede tudi nekaj drugih prednosti.

1. Igra je intelektualno zahtevna; 200 let intenzivne analize je ni uspelo nare-diti
nič manj zanimive, niti izčrpati vseh možnosti.

2. Šahovska pravila so jasno določena.

3. Šah je mogoče razdeliti v obvladljive podskupine; na primer omejevanje po-
dročja problema na šahovske končnice.

∗Tudi po letu 1978 je več drugih raziskovalcev iz področja psihologije uporabilo šah kot področje
raziskovanja.)



4. Šahovsko ratingiranje je sprejeta metoda za merjenje uspešnosti. To je pomem-
bno, saj je izboljšave v igranju šahovskega programa mogoče opaziti v nje-
govem ratingu.

5. Na voljo je obsežna zbirka znanja o šahu iz katere je mogoče črpati.

6. Veliko je znanega o ljudeh in računalnikih, ki igrajo šah.

7. Mnogi raziskovalci umetne inteligence znajo igrati šah in so sposobni oceniti
rezultate šahovskega programa. Pri mnogih drugih aplikacijah se povprečni
raziskovalec ne spozna na področje in se mora zanašati na mnenje drugih.

Sedaj, v letu 2010, lahko dodamo še naslednje trditve o primernosti šaha kot
izbrane domene za naše raziskovalno delo.

1. Vse močnejši šahovski programi predstavljajo nevarne nasprotnike celo na-
jmočnejšim šahovskim velemojstrom, v številnih pogledih pa jih že prekašajo
[Kas06].

2. Na voljo so baze podatkov, ki določajo najboljše poteze v prav vsaki poziciji
[Tho86] (v vseh končnicah, kjer je prisotno 6 figur vključno s kraljema).

3. Na voljo in splošno uporabljana je uporabnikom prijazna programska oprema,
ki omogoča delo z ogromnimi podatkovnimi bazami, ki vsebujejo milijone
šahovskih partij.

4. Šahovski programi so sposobni sprejemati zelo kvalitetne odločitve glede naj-
boljših potez v dani poziciji v le nekaj minutah ali celo v le nekaj sekundah.
Takšni programi so enostavno dostopni in splošno uporabljani.

5. Šah je še vedno zelo priljubljena igra (ali celo še bolj kot v preteklosti).



A.1.5 Ocenjevanje in izboljševanje uspešnosti pri reševanju
problemov

Osrednji dve znanstveni vprašanji v doktorski disertaciji sta:

1. Kako lahko razvijemo metode, ki bodo temeljile na računalniškem hevrističnem
preiskovanju, za ocenjevanje človekove uspešnosti pri reševanju problemov?

Vprašanje vključuje:

• Kako uporabiti računalnik pri ocenjevanju uspešnosti človekovega reše-
vanja problemov?

• Kako z modelom računalniškega reševanja oceniti, kako težavni so kon-
kretni dani problemi za človeka?

2. Kako lahko razvijemo metode, ki bodo temeljile na računalniškem hevrističnem
preiskovanju, za izboljševanje uspešnosti človeka pri reševanju problemov?

Vprašanje vključuje:

• Kako bi lahko računalniško reševanje problema uporabili za poučevanje
človeka o reševanju problemov v dani problemski domeni?

• Kako transformirati znanje, izraženo v obliki, primerni za računalnik, v
obliko, ki jo razume in lahko uporabi človek?

V prvem delu disertacije, “Ocenjevanje uspešnosti ljudi pri reševanju proble-
mov”, smo pokazali, da so programi, ki temeljijo na hevrističnem preiskovanju, lahko
uspešni ocenjevalci uspešnosti ljudi pri reševanju problemov. Predstavili smo novo
metodo, temelječo na hevrističnem preiskovanju, za ocenjevanje uspešnosti reševanja
problemov v šahu (z možnostjo razširitve na ostale igre) in pokazali verodostojnost
te metode. Eksperimentalni rezultati in teoretične razlage so podprle našo tezo, da
lahko računalniški program z uporabo naše metode ustrezno razvrsti šahiste glede
na njihovo uspešnost pri reševanju problemov, četudi je po šahovski moči slabši od
njih. Prav tako smo razvili novo metodo, ki temelji na računalniškem hevrističnem
preiskovanju, za ocenjevanje povprečne težavnosti množice šahovskih pozicij (prob-
lemskih situacij) za človeka.

V drugem delu disertacije, “Izboljševanje uspešnosti ljudi pri reševanju proble-
mov”, smo najprej predstavili nov pristop, temelječ na računalniškem hevrističnem



preiskovanju, k avtomatskemu in hkrati človeku razumljivemu komentiranju odločitev
v šahu. Razvili smo nov pristop k formalizaciji kompleksnih vzorcev za namen
računalniškega komentiranja šahovskih partij. Predstavili smo tudi nov pristop k
polavtomatskemu pridobivanju človeku razumljivega znanja, primernega za poučeva-
nje reševanja problemov v dani problemski domeni. Ustreznost tega pristopa smo
preverili s študijo, kjer smo z njegovo uporabo pridobili človeku razumljiva navodila
za poučevanje težavne šahovske končnice.

Tretji del disertacije, “O naravi hevrističnega preiskovanja pri računalniškem ig-
ranju iger”, stremi k izboljšanju razumevanja lastnosti hevrističnega preiskovanja in
posledic interakcije med znanjem in preiskovanjem, tipično prisotne pri reševanju
problemov, tako pri ljudeh kot pri računalnikih. Analizirali smo lastnosti uspešnih
hevrističnih ocenjevalnih funkcij pri računalniškem igranju iger. Obširneje smo razi-
skali lastnost monotonosti hevrističnih ocenjevalnih funkcij pri igranju iger in poka-
zali, kako lahko z upoštevanjem te lastnosti uspešno rešimo težaven tip problemov,
kjer hevristično preiskovanje običajno odpove (detekcija neprebojnih utrdb v šahu).
Razložili smo nekatere od možnih vplivov omenjene lastnosti na teorijo igranja iger.
Pokazali smo tudi, da hevristične ocene, pridobljene pri različnih globinah iskanja,
niso primerljive med seboj, kot je sicer splošno predpostavljeno tako v literaturi kot
v praktičnih aplikacijah. V nadaljevanju smo izvedli eksperimentalno študijo v zvezi
z dejavniki, ki vplivajo na spreminjanje odločitev z globino preiskovanja. Empirično
smo dokazali novi ugotovitvi, da je pogostost razlik v odločitvah, ki temeljijo na ra-
zličnih globinah preiskovanja, odvisna od (1) kvalitete hevrističnega znanja v ocen-
jevalni funkciji in (2) vrednosti vozlišča v preiskovalnem prostoru.



A.2 Ocenjevanje uspešnosti ljudi pri reševanju
problemov

V prvem delu disertacije smo pokazali, da so programi, ki temeljijo na hevrističnem
preiskovanju, lahko uspešni ocenjevalci uspešnosti ljudi pri reševanju problemov.
Predstavili smo novo metodo, temelječo na hevrističnem preiskovanju, za ocenje-
vanje uspešnosti reševanja problemov v šahu (z možnostjo razširitve na ostale igre),
in pokazali verodostojnost te metode. Eksperimentalni rezultati in teoretične razlage
so podprle našo tezo, da lahko računalniški program z uporabo naše metode us-
trezno razvrsti šahiste glede na njihovo uspešnost pri reševanju problemov, četudi
je po šahovski moči slabši od njih. Prav tako smo razvili novo metodo, ki temelji
na računalniškem hevrističnem preiskovanju, za ocenjevanje povprečne težavnosti
množice šahovskih pozicij (problemskih situacij) za človeka.

A.2.1 Računalniška primerjava svetovnih šahovskih prvakov

Kdo je bil najboljši šahist vseh časov? To vprašanje že od nekdaj buri duhove sve-
tovne šahovske javnosti, vendar dobro utemeljenega, objektivnega odgovora ni, saj
je potrebna primerjava med igralci, ki so živeli v različnih obdobjih in se nikoli niso
mogli pomeriti med seboj za šahovnico. Pojavitev vse močnejših šahovskih pro-
gramov omogoča objektivnejše odgovore na to vprašanje. Vendar pa so kljub temu
v dosedanjih tovrstnih raziskavah računalnike v glavnem uporabljali le za statistične
obdelave rezultatov šahovskih partij. Le-ti pa ne izražajo vedno dejanske šahovske
moči igralcev, še posebej ker je kvaliteta igre skozi desetletja na splošno močno
napredovala. Jeff Sonas [Son] je leta 2005 izvedel obsežno raziskavo, ko je s pomočjo
dobro premišljenega ratinškega sistema primerjal rezultatsko uspešnost igralcev vse
od leta 1840 naprej, vendar je težko verjeti, da bi prvega uradnega svetovnega prvaka,
Wilhelma Steinitza, ki po rezultatih Sonasove raziskave sodi med deset najboljših
igralcev vseh časov, dejansko bilo mogoče uvrstiti tako visoko po njegovi šahovski
moči, odraženi z njegovimi potezami na šahovnici.

Naš pristop je bil drugačen: zanimala nas je kvaliteta igre šahistov, ki smo jo
ocenjevali s pomočjo računalniške analize posameznih potez. Osnovali smo tudi
metodo za določanje kompleksnosti oz. težavnosti pozicij, da bi pri ocenjevanju
upoštevali razlike med različnimi stili igranja. Mirni pozicijski igralci so namreč v
svojih tipičnih partijah navadno imeli manj priložnosti za grobe taktične napake kot



taktični igralci, ki so ravno z ustvarjanjem kompleksnejših pozicij postavljali svoje
nasprotnike pred nerešljive probleme, pa čeprav tudi sami pri tem niso ostali nez-
motljivi. Prav tako smo podali skrbno izbrano metodologijo za uporabo računalniških
šahovskih programov za ocenjevanje kvalitete igre šahistov. Gre seveda le za en
(vendar zelo pomemben) vidik merjenja šahovske moči, ki ne upošteva psiholoških
in ostalih dejavnikov, ki so prav tako prisotni v šahovski igri. Četudi niti računalniki
niti ljudje nikoli ne bodo mogli podati dokončnega odgovora na vprašanje, kdo je
bil zares najboljši šahist vseh časov (za to enostavno ni zabeleženih dovolj podatkov,
na voljo imamo praktično le odigrane poteze in rezultate partij, pa tudi kriteriji za
primerjavo bodo stvar diskusije), so nekatere metode vendarle bolj objektivne od
drugih in računalniki kljub vsemu lahko podajo marsikatere koristne odgovore, če
jih le uporabimo na primeren način.

Ocenjevali smo štirinajst svetovnih prvakov, ki so vladali na svetovnem šahovskem
prestolu od prvega uradnega dvoboja za svetovnega prvaka leta 1886 pa vse do leta
2006. Obravnavali smo partije njihovih neposrednih dvobojev za naslov šahovskega
prvaka, bodisi so bili v njih v vlogi izzivalca bodisi v vlogi branitelja naslova. Os-
novali smo več kriterijev za ocenjevanje. Osnovni kriterij je povprečno odstopanje
med ocenami potez, ki so jih svetovni prvaki odigrali v obravnavanih partijah, in med
potezami, ki jih je v istih pozicijah predlagal računalnik. Prav tako smo izračunali
povprečno število grobih napak in uspešnost igralcev v primeru, da bi vsi imeli
opravka z enako kompleksnimi pozicijami. Naše analize med drugim tudi jasno
kažejo, da je odstotek najboljših potez odvisen od pozicije same in da je zelo močno
povezan z razliko med ocenama najboljših dveh potez (kot jih predlaga računalnik):
večja kot je razlika med najboljšima potezama, lažje je najti najboljšo potezo.

Ocenjevanje vsake partije se je pričelo pri 12. potezi. Današnji računalniški
programi namreč slabo ocenjujejo poteze v začetni fazi igre, hkrati pa bi zgodnejši
pričetek ocenjevanja partij bil po vsej verjetnosti v prid svetovnim prvakom mlajših
generacij, ki so bili v fazi otvoritve zaradi stalnega napredka teorije otvoritev bolje
pripravljeni od njihovih predhodnikov. Vendar pa tudi ne gre prezreti dejstva, da so
slednji imeli na voljo več časa za razmišljanje. Kasnejši pričetek ocenjevanja bi po
drugi strani vodil do izgube koristnih informacij in 12. poteza je bila izbrana kot
ustrezen kompromis.

Pri izračunu nismo upoštevali potez, pri katerih imata tako najbolje ocenjena
poteza kot odigrana poteza oceno izven območja od -2.00 do +2.00. Namreč ko
šahist ocenjuje, da je njegova pozicija dobljena oz. da ima prednost, ki zadošča, da



partijo lahko odloči v svojo korist tudi ob morebitni najboljši igri nasprotnika, včasih
namenoma ne povleče najboljše poteze, ampak se odloči za potezo, ki je “dovolj do-
bra” in vodi do zmage z manj tveganja. Prav tako šahisti v izgubljenih pozicijah,
kjer ocenijo, da se niti z morebitnimi najboljšimi potezami ne morejo rešiti poraza,
če nasprotnik ne naredi kakšne večje napake, včasih namenoma povlečejo poteze,
za katere sicer vedo, da so objektivno slabše, vendar jim dajejo večje praktične
možnosti, da se rešijo iz težkega položaja. Neprimerno bi bilo obsojati igralce, ko so
na ta povsem legitimen način poskušali priti oz. tudi prišli do želenega rezultata.

Igralec Razlika
Capablanca 0,1012
Kramnik 0,1071
Karpov 0,1274
Kasparov 0,1297
Spassky 0,1330
Petrosian 0,1352
Alekhine 0,1368
Smyslov 0,1375
Lasker 0,1396
Tal 0,1462
Fischer 0,1541
Botvinnik 0,1595
Euwe 0,1734
Steinitz 0,2259

Slika A.1: Razvrstitev svetovnih prvakov po uspešnosti glede na osnovni kriterij, to
je povprečna razlika med odigranimi in najbolje ocenjenimi potezami, uporabljen je
bil računalniški program CRAFTY pri globini preiskovanja 12 polpotez.

Splošno gledano rezultati analize delujejo smiselno in se jih s strani šahovskih
strokovnjakov da prav lepo interpretirati. Kljub temu so nekateri rezultati za mnoge
prav gotovo lahko presenetljivi. Osnovni kriterij za ocenjevanje svetovnih prvakov
je bila povprečna razlika med odigranimi in najbolje ocenjenimi potezami. Zmago-
valec po tem kriteriju je tretji svetovni prvak, ki je vladal na šahovskem prestolu med
leti 1921 in 1927, Jose Raul Capablanca (Slika A.1). Ta rezultat je po vsej verjet-
nosti povezan z relativno nizkimi izmerjenimi kompleksnostmi (oz. nižjo stopnjo
težavnosti) pozicij v Capablancinih partijah (več o tem v podpoglavju A.2.3), kar
se sklada s šahovsko literaturo, povezano z ocenami njegovega stila igre. Gari Kas-
parov v svoji zbirki knjig Moji veliki predhodniki, komentirajoč Capablancine partije,



Igralec %
Capablanca 1,30
Kramnik 1,34
Petrosian 1,67
Karpov 1,73
Smyslov 1,80
Kasparov 2,09
Spassky 2,14
Alekhine 2,34
Lasker 2,56
Tal 2,96
Botvinnik 2,91
Fischer 3,47
Euwe 4,02
Steinitz 5,55

Slika A.2: Razvrstitev svetovnih prvakov po uspešnosti glede na odstotek grobih
napak, uporabljen je bil računalniški program CRAFTY pri globini preiskovanja 12
polpotez.

celo navaja, da Kubanec občasno sploh ni izgubljal časa z računanjem kompleksnih
taktičnih variant, ampak je preprosto dal prednost potezam, ki so pozicijsko bile tako
močno utemeljene, da je bilo računanje preprosto odveč. Capablanco opisuje še z
naslednjimi besedami: “Zmagoval je vse najpomembnejše partije in dvoboje ter bil
neporažen več let zapored (od vseh prvakov je izgubil najmanj partij)” in “njegov stil,
eden najbolj kristalno čistih v zgodovini šaha, navdušuje s svojo logiko”. [Kas06]

Rezultati merjenj grobih napak so podobni (Slika A.2). Bilo je pričakovati, da
bodo pozicijski igralci v prednosti pred taktičnimi igralci, saj v mirnih pozicijah, s
katerimi so se navadno soočali, ni bilo veliko možnosti za spreglede. Opaziti velja
odličen rezultat Tigrana Petrosjana, ki je splošno znan kot tipičen pozicijski igralec.
V skladu z omenjenim je Steinitz, ki je živel v stoletju na oko prijetnega, vendar zato
manj korektnega romantičnega šaha, zasedel prepričljivo zadnje mesto.

Preverili smo tudi odstotek najboljših odigranih potez glede na računalniški pro-
gram CRAFTY pri globini preiskovanja 12 polpotez. Odstotek najboljših potez sam
po sebi ne pove toliko o moči igralca, kot se to morda zdi na prvi pogled. V določenih
tipih pozicije je veliko lažje najti najboljšo potezo kot drugje. Eksperimenti so
pokazali, da je odstotek najboljših odigranih potez tesno koreliran z razliko v ocenah
med najboljšima potezama v dani poziciji. Večja kot je razlika, večji je bil izmerjeni
uspeh igralcev pri odločanju za najboljšo potezo.



Igralec %
Kramnik 59,26
Alekhine 56,58
Capablanca 56,30
Euwe 56,03
Fischer 55,59
Tal 54,88
Kasparov 54,68
Lasker 54,22
Karpov 54,05
Smyslov 53,22
Botvinnik 52,83
Spassky 50,87
Steinitz 50,15
Petrosian 48,32

Slika A.3: Odstotek odigranih najboljših potez posameznih igralcev glede na
računalniški program CRAFTY pri globini preiskovanja 12 polpotez.

Igralec Razlika
Euwe 0,5952
Fischer 0,5805
Kramnik 0,5397
Alekhine 0,5233
Kasparov 0,5095
Steinitz 0,4976
Karpov 0,4906
Tal 0,4887
Spassky 0,4851
Lasker 0,4841
Botvinnik 0,4770
Smyslov 0,4236
Petrosian 0,4114
Capablanca 0,3972

Slika A.4: Razlika med ocenama dveh najboljših potez glede na računalniški pro-
gram CRAFTY pri globini preiskovanja 12 polpotez.

Kramnik, Fischer in Aljehin so največkrat odigrali najboljšo potezo, vendar so v
njihovih pozicijah bile tudi relativno visoke razlike med najboljšima potezama (Slika
A.3). V nasprotju s tem opažanjem je v pozicijah Capablance, ki po odstotku odi-



granih najboljših potez takoj sledi omenjeni trojici, bila izmerjena v povprečju naj-
manjša razlika med najboljšima potezama (Slika A.4).

Slika A.5: Korelacija med razliko v ocenah dveh najboljših potez in odstotkom odi-
granih najboljših potez.

Igralec %
Capablanca 57,08
Kramnik 56,62
Alekhine 54,67
Kasparov 53,98
Karpov 53,94
Lasker 53,50
Smyslov 53,07
Euwe 52,08
Tal 52,66
Botvinnik 52,47
Fischer 51,68
Spassky 50,80
Petrosian 49,56
Steinitz 47,50

Slika A.6: Pričakovani odstotek odigranih najboljših potez, če bi vsi igralci imeli
opravka z enakimi razlikami med najboljšima potezama.



Ugotovljena korelacija (Slika A.5) je bila podlaga za oblikovanje novega kriter-
ija: pričakovani odstotek odigranih najboljših potez, če bi vsi igralci imeli opravka
z enakimi razlikami med najboljšima potezama. Ta kriterij predstavlja prvi poizkus
spraviti vse prvake na “skupni imenovalec” (drugi tak poizkus je predstavljen v pod-
poglavju A.2.3). Zmagovalec po tem kriteriju je bil znova Capablanca. Skupaj s
Kramnikom po rezultatu spet močno izstopata pred ostalimi (Slika A.6).

A.2.2 Verodostojnost ocenjevalca uspešnosti, temelječega na
hevrističnem preiskovanju

Za ocenjevanje je bil uporabljen odprtokodni šahovski program CRAFTY. CRAFTY

sicer ima moč šahovskega velemojstra, kljub temu pa se poraja vprašanje, kako je
mogoče za ocenjevanje uporabiti program, ki je po vsej verjetnosti slabši vsaj od
večine obravnavanih svetovnih prvakov. Vendar, ocenjenih je bilo skupno več kot
37.000 pozicij in naša predpostavka je bila, da čeprav CRAFTY-jeve ocene niso vselej
pravilne, morajo za tovrstno analizo biti le dovolj natančne, da se občasne manjše
napake v ocenah statistično izničijo. Eksperimentalni rezultati in teoretične razlage
so podprle našo tezo, da lahko računalniški program ustrezno razvrsti posamezne
ljudi glede na njihovo uspešnost pri reševanju problemov, četudi je pri reševanju
problemov v dani domeni slabši od njih, in da tudi uporaba katerega od močnejših
šahovskih programov vodi do podobnih rezultatov. V tem razširjenem povzetku se
bomo omejili le na predstavitev ključne ideje, ki je v ozadju empiričnega dokaza o
verodostojnosti CRAFTY-ja kot ocenjevalca, ki temelji na hevrističnem preiskovanju.

V splošnem številni argumenti govorijo v prid računalniškim programom kot
ocenjevalcem. Pri ocenjevanju pozicij navajajo numerične ocene, ki so za naš na-
men neprimerno bolj uporabne kot tipične ocene ljudi šahistov, hkrati pa se pri ocen-
jevanju ves čas držijo istih pravil in so zato pri ocenah veliko bolj konsistentni od
ljudi in tudi niso pod vplivom čustev in drugih, za ocenjevanje motečih dejavnikov,
ter so povrhu vsega izredno dobri pri detektiranju taktičnih napak. Poleg tega je bil
CRAFTY pri ocenjevanju omejen na fiksno globino preiskovanja (in ne časovno), kar
pomeni, da je bolj težavnim pozicijam avtomatsko namenjal več časa.

Vendar šahovski programi podajajo različne ocene za iste ocenjevane pozicije in
splošna intuicija nas kaj lahko vodi do zaključka, da bi ocenjevanje z različnimi pro-
grami dalo povsem različne rezultate. Še več, celo programi sami tipično spreminjajo
svoje odločitve z naraščajočo globino preiskovanja. Kot tabela na Sliki A.7 nazorno



Globina Poteza Ocena
2 Lxd5 -1,46
3 Lxd5 -1,44
4 Lxd5 -0,75
5 Lxd5 -1,00
6 Lxd5 -0,60
7 Lxd5 -0,76
8 Tad8 -0,26
9 Lxd5 -0,48
10 Tfe8 -0,14
11 Lxd5 -0,35
12 Sc7 -0,07

Slika A.7: Botvinik-Talj, 17.partija za naslov svetovnega prvaka, Moskva 1961. V
poziciji na diagramu je Talj odigral potezo 23...Sc7! in kasneje, v 83. potezi, tudi
zmagal to partijo. Tabela na desni prikazuje CRAFTY-jeve odločitve glede najboljše
poteze in njegove ocene te pozicije pri različnih globinah preiskovanja.

prikazuje, CRAFTY pri različnih globinah iskanja pozicijo na diagramu ocenjuje zelo
različno: ne samo, da se izrazito menjajo ocene pozicije, tudi sama izbira najboljše
poteze je od globine preiskovanja 7 polpotez dalje vselej različna. Podobno velja
za računalniške šahovske programe tudi na splošno: ocene in predlagane najboljše
poteze se pogosto spreminjajo z globino preiskovanja.

Pojavi se vprašanje: “Kako bi CRAFTY razvrstil ocenjevane svetovne prvake, če
bi ga omejili na različne globine preiskovanja?” Glede na omenjene razlike v ocenah
pri različnih globinah nam intuicija sugerira na videz jasen odgovor: pri vsaki globini
bi dobili povsem različne rezultate. Vendar pa so naše raziskave pokazale, da bi
CRAFTY tudi pri preiskovanju do različnih globin v dobršni meri ohranil razvrstitev
igralcev. Npr. prav pri vseh globinah sta Capablanca in Kramnik na prvih dveh
mestih, Euwe in Steinitz pa na zadnjih dveh (Slika A.8). Pri nekaterih igralcih vmes
se vrstni red sicer spreminja, kar pa je posledica dejstva, da so njihovi rezultati zelo
izenačeni.

Kaj ta rezultat pomeni? Leta 1982 je Ken Thompson [Tho82] primerjal med seboj
programe pri različnih globinah preiskovanja in pokazal, da je program, ki išče samo
eno polpotezo globlje, boljši za več kot 200 ratinških točk od enakega programa, ki
preiskuje do la za eno polpotezo nižje globine. Naši rezultati ocenjevanja s CRAFTY-
jem do različnih globin torej kažejo na to, da čeprav bi uporabili različno močne



Slika A.8: Razvrstitev svetovnih prvakov po uspešnosti glede na osnovni kriterij, pri
različnih globinah preiskovanja.

verzije CRAFTY-ja, bi še vedno dobili praktično enako razvrstitev igralcev. Povsem
umestno je tudi sklepanje, da bi CRAFTY na zelo podoben način ohranil vrstni red
igralcev tudi pri globinah iskanja do 20 in še dlje. CRAFTY pri tako velikih globinah
iskanja pa bi se po vsej verjetnosti lahko povsem enakomerno kosal z najboljšimi
računalniškimi šahovskimi programi, ki bi preiskovali do nekoliko nižjih globin.

A.2.3 Ocenjevanje težavnosti šahovskih pozicij

Metode hevrističnega reševanja problemov so tudi dober model človeškega reševanja
problemov, ki prav tako odraža preiskovanje in znanje o konkretnem problemu. Seve-
da pa sta pri računalnikih in ljudeh ti dve komponenti zelo različno zastopani. Človek
– ekspert tipično uporablja veliko bogatejše znanje o samem problemu, medtem ko
je prednost računalnika v neprimerno hitrejšem preiskovanju. Pionirsko delo o mod-
eliranju človeškega reševanja problemov z računalniškim sta opravila v svoji dobro
znani raziskavi A. Newell in H.A. Simon [NS72].

Čeprav je glede količine preiskovanja pri reševanju problemov med računalnikom
in človekom razlika ogromna, kljub temu obstajajo določene podobnosti med nju-
nima načinoma iskanja najboljše poteze v dani poziciji. Tako računalnik kot človek
imata opravka z gigantskim drevesom iskanja, kjer koren predstavlja trenutna pozi-



cija, ki je predmet reševanja problemov, liste tega drevesa pa predstavljajo vse možne
poteze oz. pozicije, do katerih te poteze vodijo – in tako rekurzivno naprej iz vsakega
možnega vozlišča. Oba poizkušata najti najboljša nadaljevanja in se pri tem trudita
ne upoštevati potez, ki niso relevantna za oceno možnih nadaljevanj. Razlikujeta se
predvsem v načinu, kako ne upoštevati nerelevantnih nadaljevanj. Računalniki se pri
tem zanašajo na algoritme za učinkovito rezanje poddreves, medtem ko se človek pri
tem zanaša na svoje znanje in izkušnje. Oba sta pri preiskovanju omejena s časom,
zato ne moreta preiskovati do poljubne globine, pač pa morata v določenem trenutku
oceniti dano pozicijo. Oba se pri tem poslužujeta delnih ocen. Medtem ko računalnik
uporablja numerične hevristične ocene, ima človek navadno v mislih deskriptivno
oceno, kot so npr. “majhna prednost”, “odločilna prednost” ali “nejasna pozicija”.
Tako računalnik kot človek preverjata vse t.i. forsirane variante – računalnik v ta
namen tem uporablja iskanje mirovanja (ang. quiescence search) – preden ocenita
pozicijo v korenu drevesa. Možno je torej najti precej vzporednic med računalniškimi
in človeškimi postopki za iskanje najboljše poteze, kar je služilo kot osnova za osno-
vanje metode za ocenjevanje težavnosti (oz. kompleksnosti) šahovskih pozicij.

Osnovna ideja je sledeča: dana pozicija je težavna za dodelitev točne ocene in
izbire najboljšega nadaljevanja, ko se pri različnih globinah preiskovanja pojavijo
različne kandidatske poteze, ki signifikantno spreminjajo oceno trenutne pozicije
v korenu. V takih primerih mora igralec preanalizirati več možnih nadaljevanj in
preiskovati do večje globine, da najde poteze, ki vplivajo na oceno pozicije v ko-
renu in nato izbere najboljšo izmed njih. Realizacijo te ideje v obliko, primerno za
uporabo v računalniškem programu, ilustrira Algoritem 2. Naj poudarimo, da namen
te metrike ni odražati resnične težavnosti šahovskih pozicij s kognitivnega vidika,
niti ni osnovana za primerjanje posameznih šahovskih pozicij v smislu težavnosti
za reševanje ustreznih problemov, ki se pri njih pojavljajo. Namen te metrike je
omogočiti ocenjevanje povprečne težavnosti pri večjih količinah šahovskih pozicij,
kot je bilo o mogoče v primeru analize dvobojev svetovnih prvakov.

Graf odvisnosti napak svetovnih prvakov glede na različne nivoje težavnosti pozi-
cij (Slika A.9) jasno kaže na korektnost uporabljene metode za merjenje težavnosti
pozicij. Igralci so delali manj napak v bolj preprostih pozicijah, povprečne izmerjene
napake pa naraščajo s težavnostjo pozicij.

Capablanca je znan po tem, da je igral relativno “enostaven” šah in se je izogibal
komplikacijam, medtem ko sta se Steinitz in Talj v svojih partijah pogosto soočala z
“divjimi” pozicijami. Rezultati merjenja težavnosti pozicij (Slika A.10) se povsem



Algorithm 2 Algoritem za izračun težavnosti pozicije.
težavnost := 0;
for globina 2 to 12 do

if (globina > 2) and (prej najboljša poteza not equals zdaj najboljša poteza)
then

težavnost += |ocena najboljše poteze - ocena druge najboljše poteze|
end if

end for

Slika A.9: Povprečna razlika med odigranimi in najbolje ocenjenimi potezami
(povprečna napaka) pri različnih nivojih težavnosti.

skladajo s tem v šahovskem svetu priznanim splošnim mnenjem.
Merilo za ugotavljanje težavnosti pozicij smo uporabili, da bi ugotovili porazdeli-

tev potez po posameznih intervalih kompleksnosti, kar je v veliki meri povezano s
stilom igre igralcev. Capablanca, na primer, je glede na rezultate merjenja težavnosti
po izbrani metodi imel veliko manj pogosto opravek z bolj težavnimi pozicijami v
primerjavi s Taljem, ki velja za taktičnega igralca.

Glavna slabost uporabljenega osnovnega kriterija ocenjevanja uspešnosti (pov-
prečna razlika med odigranimi in najbolje ocenjenimi potezami) je, kot smo že ome-
nili, da je nekoliko nepošten do taktičnih igralcev, ki so v povprečju imeli opravka z
bolj težavnimi pozicijami, vendar so se v njih tudi bolje znašli od svojih nasprotnikov
in so izkoriščali to dejstvo za doseganje odličnih rezultatov. Kriterij za določanje
težavnosti pozicij nam je omogočil eksperiment, v katerem smo preveriti, kako bi se
igralci odrezali, če bi vsi imeli opravka z enako kompleksnimi pozicijami: npr. če bi
vsi igrali v stilu Capablanke ali Talja.

Videti je, da naša metoda ugotavljanja težavnosti pozicij daje smiselne rezul-



Slika A.10: Rezultati merjenja povprečne težavnosti pozicij, s katerimi so se soočali
posamezni igralci v dvobojih za naslov svetovnega prvaka.

tate, ki se kvalitativno ujemajo z opažanji, ki jih v obliki komentarjev zasledimo pri
šahovskih ekspertih v zvezi s stili igranja svetovnih prvakov. Kot možno nadaljevanje
tega dela bi bilo zanimivo izvesti psihološko študijo z namenom ugotoviti, kako do-
bro naša metoda odrazi resnično kognitivno težavnost šahovskih pozicij.

A.3 Izboljševanje uspešnosti ljudi pri reševanju
problemov

V drugem delu disertacije smo najprej predstavili nov pristop, temelječ na računalni-
škem hevrističnem preiskovanju, k avtomatskemu in hkrati človeku razumljivemu
komentiranju odločitev v šahu. Razvili smo nov pristop k formalizaciji komplek-
snih vzorcev za namen računalniškega komentiranja šahovskih partij. Predstavili
smo tudi nov pristop k polavtomatskemu pridobivanju človeku razumljivega znanja,
primernega za poučevanje reševanja problemov v dani problemski domeni. Us-
treznost tega pristopa smo preverili s študijo, pri kateri smo z njegovo uporabo pri-
dobili človeku razumljiva navodila za poučevanje težavne šahovske končnice.



A.3.1 Avtomatsko komentiranje šahovskih partij

Dandanašnji šahovski programi se enakovredno kosajo s človeškimi velemojstri, v
številnih pogledih pa jih tudi že prekašajo. Kljub temu so njihove sposobnosti ra-
zložiti v ljudem razumljivem jeziku, zakaj so določene poteze dobre in zakaj ne,
zelo omejene. Avtomatskemu inteligentnemu komentiranju šahovskih partij je bilo
posvečeno le malo pozornosti, napredek na tem področju pa je zanemarljiv v primer-
javi z gromozanskim skokom v šahovski moči programov, ki smo mu bili priče v
zadnjih desetletjih. Tipični “komentarji” v obliki najboljših nadaljevanj in njihovih
numeričnih ocen so le stežka v pomoc šahistu, ki bi se rad naučil pomembnih kon-
ceptov, ki se skrivajo za izbranimi potezami.

Ideja o avtomatskem komentiranju šahovskih partij ni nova. Verjetno prvi, ki
je predlagal raziskave v tej smeri, je bil leta 1980 Donald Michie. Revija ICGA je
kmalu nato začela podeljevati letne t.i. Herschbergove nagrade za najboljši šahovski
komentatorski program [LM96]. Komentarji zmagovalcev kljub temu še do danes os-
tajajo zelo skopi ter so pretežno taktične narave, medtem ko kompleksnejši strateški
koncepti in plani ostajajo bolj ali manj neomenjeni. Znanstvene raziskave s tega po-
dročja so večinoma omejene le na končnice šahovskih partij, predstavljeni koncepti
pa imajo skupno slabost - nezmožnost praktične razširitve komentiranja na celotno
šahovsko partijo [GGM93; Sei94; HB96].

Z razvojem inteligentnega računalniškega sistema, ki bo na človeku razumljiv,
prijazen in zanimiv način komentiral šahovske poteze, bi radi šahovsko moč, ki jo
demonstrirajo današnji programi za igranje šaha, izkoristili za poučevanje šaha ter
za komentiranje šahovskih partij. Glavna prednost našega pristopa je, da omogoča
komentiranje šahovskih partij v vseh fazah igre, hkrati pa avtomatsko generirani ko-
mentarji poleg zmožnosti komentiranja taktičnih pozicij izražajo tudi razumevanje
strateških nians v pozicijah.

Na poti do cilja nas čakajo še prenekateri izzivi. Poleg predstavljenih težav
pri uporabi strojnega učenja pri razvoju ekspertnega sistema je potrebno rešiti še
nekatere probleme kognitivne narave, npr. kdaj komentirati in kdaj ne, kako dolge
variante podajati, podajati komentarje za uporabnike z različnim šahovskim predz-
nanjem itd. Eden izmed ciljev, ki jih želimo doseči, je uporabiti naš inteligentni
sistem tudi za avtomatsko generiranje povzetkov šahovskih partij.



A.3.2 Formalizacija kompleksnih vzorcev za namen
komentiranja odločitev pri reševanju problemov

Omogočanje naprednejših komentarjev v zvezi z odločitvami pri reševanju proble-
mov zahteva zajem znanja za konstrukcijo vzorcev bolj kompleksne narave. V ta
namen smo razvili nov pristop k formalizaciji kompleksnih vzorcev za komenti-
ranje odločitev pri reševanju problemov v šahu. Naš pristop temelji na argumenti-
ranem strojnem učenju [MvB07]. Raziskali smo naslednji vidik razvoja inteligent-
nega sistema za komentiranje šahovskih partij: možnost podajanja inteligentnih pozi-
cijskih komentarjev (za razliko od komentarjev taktične narave). Ta naloga je to-
liko težja, ker moč dandanašnjih šahovskih programov izhaja predvsem iz preisko-
vanja in ne toliko iz znanja o številnih niansah strateške narave, ki je potrebno za
uspešno komentiranje pozicijskih elementov šahovske igre. Komponente ocenjeval-
nih funkcij računalniških programov zato niso zadostne za naprednejše pozicijske ko-
mentarje. Formalizacija globokih pozicijskih vzorcev zahteva močna orodja za zaje-
manje ekspertnega znanja. Naša študija, kjer smo formalizirali koncept slabega lovca
v šahu, kaže na to, da argumentirano strojno učenje predstavlja ustrezno metodo za
ta namen.

A.3.3 Polavtomatsko sintetiziranje človeku razumljivega znanja
iz tabeliranih šahovskih baz

V šahu so na voljo tabelirane baze podatkov (ang. tablebases), ki vsebujejo popolno
znanje v smislu, da podajajo najboljše poteze v prav vsaki poziciji. Tovrstne baze ob-
stajajo za vse končnice, kjer je prisotno največ 6 figur vključno s kraljema. Računal-
nikom te baze omogočajo optimalno igro v smislu doseganja mata v najmanjšem
možnem številu potez. Vendar pa je znanje v dani obliki skoraj povsem neprimerno
za človeka, ki bi se iz teh baz rad naučil pomembnih konceptov in strategij.

Razvili smo nov pristop k polavtomatskemu sintetiziranju človeku razumljivega
znanja, primernega za poučevanje kako reševati probleme v dani problemski domeni.
Ta pristop omogoča formalizacijo konceptov in strategij, ki se jih da uporabiti za kon-
strukcijo hevristične ocenjevalne funkcije, s pomočjo katere je mogoče komentirati
odločitve pri reševanju problemov. V naši študiji smo polavtomatsko sintetizirali
navodila za poučevanje težavne šahovske končnice matiranja z lovcem in konjem.
Nadalje, pridobljena ciljno orientirana pravila smo uporabili v hevristični ocenje-



valni funkciji, s pomočjo katere smo ustvarili primere partij z avtomatsko generi-
ranimi navodili. Formalizirana strategija je bila spoznana za primerno za namene
poučevanja s strani šahovskih učiteljev. Eden od navedenih razlogov, ki podpirajo to
oceno, je bil, da navodila “jasno demonstrirajo vmesne cilje na poti do matiranja”.

Naš postopek k polavtomatski sintezi znanja kombinira ideje iz argumentiranega
strojnega učenja s specializiranim minimaks preiskovanjem. Z njegovo uporabo
domenski ekspert in metoda strojnega učenja iterativno izboljšujeta model pravil, ki
predstavljajo formalizirano strategijo. S stališča domenskega eksperta so še posebej
primerne naslednje prednosti, ki jih argumentirano strojno učenje ponuja:

• ekspertom je lažje argumentirati specifične primere kot podajati splošno domen-
sko znanje,

• ekspertom olajša prilagajanje nivoja novo vpeljanih konceptov nivoju ciljne
publike študentov,

• ekspertom je potrebno podajati le znanje, ki je relevantno, in

• pridobljeno znanje je:

– konstistentno z ekspertnim znanjem

– v obliki, primerno za uporabo v računalniških programih za poučevanje,

– v obliki, ki jo razume in lahko uporabi človek.

Razložili smo smernice za interakcijo med računalnikom in ekspertom za prido-
bivanje človeku razumljivega, ciljno orientiranega modela pravil za poučevanje, kako
reševati probleme v dani problemski domeni. Pojasnili smo tudi, kako se navodila,
vključno z ilustrativnimi diagrami, pridobijo polavtomatsko iz takšnega modela.

A.4 O naravi hevrističnega preiskovanja pri
računalniškem igranju iger

Tretji del disertacije, stremi k izboljšanju razumevanja lastnosti hevrističnega preisko-
vanja in posledic interakcije med znanjem in preiskovanjem, tipično prisotne pri
reševanju problemov, tako pri ljudeh kot pri računalnikih. Analizirali smo lastnosti



uspešnih hevrističnih ocenjevalnih funkcij pri računalniškem igranju iger. Podrob-
neje smo raziskali lastnost monotonosti hevrističnih ocenjevalnih funkcij pri igranju
iger in pokazali, kako lahko z upoštevanjem te lastnosti uspešno rešimo težaven
tip problemov, kjer hevristično preiskovanje običajno odpove (detekcija neprebojnih
utrdb v šahu). Razložili smo nekatere od možnih vplivov nove ugotovitve na teorijo
igranja iger. Pokazali smo tudi, da hevristične ocene, pridobljene pri različnih globi-
nah iskanja, niso primerljive med seboj, kot je sicer splošno predpostavljeno tako v
literaturi kot v praktičnih aplikacijah. V nadaljevanju smo izvedli eksperimentalno
študijo v zvezi z dejavniki, ki vplivajo na spreminjanje odločitev z globino preisko-
vanja. Empirično smo dokazali novi ugotovitvi, da je pogostost razlik v odločitvah,
ki temeljijo na različnih globinah preiskovanja, odvisna od (1) kvalitete hevrističnega
znanja v ocenjevalni funkciji in (2) vrednosti vozlišča v preiskovalnem prostoru.

A.4.1 Monotonost kot lastnost hevrističnih ocenjevalnih funkcij

V tem poglavju smo analizirali lastnosti uspešnih hevrističnih ocenjevalnih funkcij
pri igranju iger. Izbrali smo več sodobnih šahovskih programov, ki so izvajali hevri-
stično preiskovanje iz velikega števila (več deset tisoč) šahovskih pozicij iz resničnih
partij. Iz vsake pozicije se je izvajalo preiskovanje do globin v razponu od min do max
polpotez. Preiskovanje do globine d tukaj pomeni d polpotez, razširjeno z iskanjem
mirovanja (ang. quiescence search), za zagotavljanje ocenjevanja le stabilnih pozi-
cij. Pozicije iz zgodnje faze partije niso bile predmet analize, saj sodobni šahovski
programi relativno slabo ocenjujejo tovrstne pozicije (pri igranju otvoritvenih potez
uporabljajo otvoritveno knjižico). Pri šahovskih programih so pridobljene ocene
tipično v numerični obliki, kar je primerno za naš namen. Rezultate preiskovanja
smo shranili v relacijsko podatkovno bazo, skupaj s podatki o vsaki analizirani par-
tiji.

Na podlagi dognanj iz eksperimentalnih rezultatov smo predstavili lastnost mono-
tonosti hevrističnih ocenjevalnih funkcij pri igranju iger. In sicer: z naraščajočo
globino preiskovanja morajo vzvratne ocene vozlišč težiti k monotonemu približeva-
nju končnim vrednostim v prostoru preiskovanja. Eksperimentalni rezultati so poka-
zali, da ocenjevalne funkcije tipičnih šahovskih programov imajo to lastnost, ki pro-
grame usmerja k doseganju želenega cilja. Vzratne ocene vozlišč torej ne aproksimi-
rajo nekih “resničnih” vrednosti ali “idealnih” hevrističnih vrednosti, kar se sicer v
literaturi na splošno predpostavlja, kar pa pomeni, da uspešne hevristične ocenje-



valne funkcije oz. njihove vzvratne ocene ne smejo upoštevati minimaks relacije. To
je, vzvratne hevristične vrednosti ne smejo biti nespremenljive tekom drevesa igre,
kakor so teoretične ocene igre v teoretičnem minimaks modelu.

Izvedli smo praktično demonstracijo upoštevanja v hevrističnih ocenjevalnih fun-
kcijah prisotne lastnosti monotonosti za uspešno reševanje težavnega tipa problemov,
kjer hevristično preiskovanje običajno odpove: detekcijo neprebojnih utrdb (ang.
fortress) v šahu. To so pozicije, kjer ima navadno določena stran večjo materialno
prednost, vendar zmage ni mogoče doseči, saj se je nemogoče uspešno prebiti v tabor
nasprotnika. Programi takšne pozicije ocenjujejo kot dobljene za močnejšo stran, kar
pomeni, da so pripravljeni zaiti v tovrstne pozicije, četudi bi imeli na voljo boljše
nadaljevanje (četudi ocenjeno z nižjimi hevrističnimi vrednostmi). Skladno z našimi
predpostavkami so eksperimenti pokazali, da v tovrstnih pozicijah kljub visokim oce-
nam ni sicer pričakovanega monotonega naraščanja ocen z globino preiskovanja.

Razložili smo nekatere od možnih vplivov ugotovljene lastnosti na teorijo igranja
iger, kot sta (1) njen vpliv na spreminjanje odločitev z naraščajočo globino in (2)
primerljivost ocen pri različnih globinah preiskovanja. Namreč, pri vozliščih z zelo
visoko ali zelo nizko vzvratno hevristično vrednostjo, pri katerih ocene z naraščajočo
globino preiskovanja hitreje naraščajo oz. padajo, je verjetnost spreminjanja odločitev
z naraščajočo globino manjša kot v vozliščih s povprečno vrednostjo. In nadalje,
zaradi lastnosti monotonosti hevristične ocene, pridobljene pri različnih globinah
iskanja, ne morejo biti primerljive med seboj, kar je sicer splošno (in narobe) pred-
postavljeno tako v literaturi kot v praktičnih aplikacijah.

A.4.2 Dejavniki, ki vplivajo na spreminjanje odločitev z globino
preiskovanja

V okviru prizadevanja k izboljšanju splošnega razumevanja lastnosti hevrističnega
preiskovanja smo obravnavali tudi možne dejavnike, ki vplivajo na spreminjanje
odločitev z naraščajočo globino preiskovanja. Obnašanje računalniških programov
v smislu spreminjanja odločitev z naraščajočo globino preiskovanja je bilo predmet
številnih raziskav, še posebej glede ugotavljanja morebitnega neenakomernega oz.
pojenjajočega naraščanju moči programa z vsako nadaljnjo globino (ang. diminish-
ing returns). Rezultati teh raziskav so bili zelo spremenljivi glede na uporabljene
eksperimentalne podatke, vzroki za to pa niso nikoli bili pojasnjeni.

Izvedli smo empirično študijo, v kateri smo uporabili bistveno večjo količino po-



datkov (preko 40.000 analiziranih pozicij iz šahovskih partij) kot ostali raziskovalci,
hkrati pa smo te pozicije preanalizirali s tremi različnimi šahovskimi programi, ki
so v ta namen izvajali hevristično preiskovanje iz danih pozicij (oz. problemskih
situacij iz resničnih partij) do različnih globin (od 2 do 12 polpotez globoko). Po-
datke smo za namene te študije razdelili na več podmnožic, glede na pričakovano
vrednost pozicij v njih. Ker je dobro znano, da moč šahovskih programov narašča z
globino preiskovanja, so ocene, pridobljene pri največji globini preiskovanja, služile
kot najbolj zanesljivo orodje za takšno razdelitev. Spreminjanja odločitev z globino
smo opazovali pri vsaki podmnožici posebej. Uporabili smo programe z različno
kvalitetnimi ocenjevalnimi funkcijami.

Empirično smo dokazali novi ugotovitvi, da je pogostost razlik v odločitvah, ki
temeljijo na različnih globinah preiskovanja, odvisna od

• kvalitete hevrističnega znanja v ocenjevalni funkciji in

• dejanske vrednosti (glede na fiksno globino preiskovanja) vozlišča v preisko-
valnem prostoru.

Pri programih s kvalitetnejšo ocenjevalno funkcijo lahko pričakujemo manj odlo-
čitev z naraščajočo globino preiskovanja (v primeru “idealne” hevristične ocenje-
valne funkcije, ki bi vsebovala popolno znanje o domeni, sprememb v odločitvah pri
nadaljnjih globinah preiskovanja sploh ne bi bilo). Hkrati pa se izkaže, kot to smo ra-
zložili pri ugotavljanju lastnosti monotonosti pri hevrističnih ocenjevalnih funkcijah,
da je v dobljenih in izgubljenih pozicijah tovrstnih sprememb v odločitvah opazno
manj kot v izenačenih pozicijah.

Pokazali smo tudi, z visoko stopnjo statistične značilnosti, da spreminjanje odlo-
čitev pojenja z naraščajočo globino preiskovanja.



A.5 Prispevki k znanosti

Prispevki disertacije spadajo v področje umetne inteligence. Raziskave, ki so vodile
do teh prispevkov, so bile opravljene v ogrodju človeškega in računalniškega igranja
iger, kot raziskovalna domena pa je bil uporabljen šah. Številni raziskovalci so
uporabljali igranje iger kot platformo za svoje raziskave, šah pa je bil še posebej pop-
ularna domena. Eksplicitno ali implicitno sporočilo njihovih del je bilo, da je rezul-
tate, pridobljene v domeni šaha, mogoče posplošiti tudi na ostale domene. Čeprav
naše delo ne vsebuje eksplicitnih dokazov, ki bi podprli to trditev, verjamemo, da spo-
daj našteti prispevki k znanosti imajo potencial širitve tako na številne ostale igre kot
tudi na nekatere druge domene, kjer je smiselno uporabiti hevristično preiskovanje.

Glavni prispevki disertacije so:

1. Razvili smo novo metodo, ki temelji na računalniškem hevrističnem preisko-
vanju, za ocenjevanje človekove uspešnosti pri reševanju problemov in uteme-
ljili verodostojnost te metode ocenjevanja.

2. Razvili smo novo metodo, ki temelji na računalniškem hevrističnem preisko-
vanju, za ocenjevanje težavnosti danih problemov za človeka.

3. Razvili smo nov pristop k avtomatskemu, človeku razumljivemu komentiranju
odločitev pri reševanju problemov, ki temelji na hevrističnem preiskovanju.

4. Razvili smo nov pristop k formalizaciji kompleksnih vzorcev za namen ko-
mentiranja odločitev pri reševanju problemov in/ali poučevanja.

5. Razvili smo nov pristop za polavtomatsko sintetiziranje človeku razumljivega
znanja, primernega za poučevanje kako reševati probleme v dani problemski
domeni.

6. Obširna raziskava lastnosti monotonosti uspešnih hevrističnih ocenjevalnih fun-
kcij: z naraščajočo globino preiskovanja morajo vzvratne ocene vozlišč težiti k
monotonemu približevanju končnim vrednostim v prostoru preiskovanja. Poka-
zali smo, da vzvratne ocene ne aproksimirajo nekih “resničnih” vrednosti ali
“idealnih” hevrističnih vrednosti, kar se sicer v literaturi na splošno predposta-
vlja, in da uspešne hevristične ocenjevalne funkcije ne smejo upoštevati min-
imaks relacije. To je, vzvratne hevristične vrednosti ne smejo biti nespre-



menljive tekom drevesa igre, kakor so teoretične ocene igre v teoretičnem min-
imaks modelu.

7. Empirično smo dokazali novi ugotovitvi, da je pogostost razlik v odločitvah,
ki temeljijo na različnih globinah preiskovanja, odvisna od:

• kvalitete hevrističnega znanja v ocenjevalni funkciji,

• dejanske vrednosti (glede na fiksno globino preiskovanja) vozlišča v pre-
iskovalnem prostoru.
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