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Abstract

The field of gene expression data analysis has grown in the past few years from being purely data-centric to integrative, aiming at
complementing microarray analysis with data and knowledge from diverse available sources. In this review, we report on the plethora
of gene expression data mining techniques and focus on their evolution toward knowledge-based data analysis approaches. In particular,
we discuss recent developments in gene expression-based analysis methods used in association and classification studies, phenotyping and

reverse engineering of gene networks.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recent technological advances in high-throughput
experimental analysis have had a profound impact on the
practices and scope of biomedical research. The volumes
of data collected at the genome scale and the requirements
for tools to analyze them have largely mobilized the data
analysis community. Beyond new applications, the biomed-
ical research of today continuously provides a set of tough
challenges for data analysis that go well beyond the sole
treatment of large data sets. Biomedicine is a field rich in
knowledge, with numerous incentives to formally encode
it in an electronic format and share it through usually open
and community-maintained data and knowledge bases.
Containing information on sequence and sequence struc-
ture, gene and protein interactions, function annotation
and ontologies, or genetic and metabolic pathways.' This
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information can significantly complement any data analy-
sis and improve its results. The inclusion of additional
knowledge sources in the data analysis process can prevent
the discovery of the obvious, complement a data-inferred
hypothesis with references to already proposed relations,
help analysis to avoid overconfident predictions and,
finally, allow us to systematically relate the analysis find-
ings to present knowledge.

This review focuses on one of the most active areas of
collaboration between biomedical researchers and data
analysis developers and practitioners. Since the first publi-
cations of gene expression data sets, data analysis methods
have played an important, if not a major, role in presenting
early DNA microarray results and demonstrating their
potential applications. The excellent practice in the field
of biomedicine where a number of publications in top-
rated journals are accompanied with supplements that
include the related experimental data has offered an oppor-
tunity for the bioinformatics community to re-analyze the
data and compare original analysis techniques with the
newly developed ones. In the less than 10 years since the
emergence of the field, the result is a plethora of methodo-
logical papers published in already established journals
now showing renewed interest in data analysis and model-
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ing (e.g., Bioinformatics, Journal of Biomedical Informatics,
Artificial Intelligence in Medicine, Journal of Computational
Biology, Journal of Theoretical Biology and alike) and in a
large variety of new journals (e.g., PLoS Computational
Biology, BMC Bioinformatics, Applied Bioinformatics,
Briefings in Bioinformatics, Current Bioinformatics, IEEE
Transactions on Computational Biology and Bioinformatics)
focusing on bioinformatics and computational approaches
to biomedicine. A number of laboratories previously spe-
cialized in statistics, informatics, artificial intelligence and
data mining are now turning their focus to bioinformatics,
computational biomedicine and systems biology.

The field of gene expression data analysis has grown
fast: early approaches that mainly involved clustering have
quickly been complemented with perhaps more sophisti-
cated but often better-fitting tools for particular analysis
tasks. With the growing number of complementary data
and knowledge bases, the field has shifted from the applica-
tion of pure data-oriented methods to methods that aim to
include additional knowledge in the data analysis process.
These methods are often referred to as intelligent data anal-
ysis and form the primary focus of this review. Intelligent
data analysis refers to all methods that are devoted to auto-
matically transforming data into information exploiting the
background knowledge in the domain. Background knowl-
edge is the domain knowledge obtained from the literature,
domain experts or from available knowledge repositories.
An intelligent data analysis approach usually addresses
the problems of the acquisition, encoding and exploitation
of background knowledge. Intelligent data analysis, of
course, does not exclude user intervention during the infor-
mation extraction process but aims at reducing interaction
through the use of background knowledge, thus reducing
the costs of data analysis in terms of both users’ time
and resources.

Dealing with data coming from DNA microarrays, we
should warn the knowledgeable reader that we will not
address any of the issues related to microarray image anal-
ysis, normalization and data preprocessing. Moreover, of
the plethora of data mining approaches currently being
applied to problems in bioinformatics (see Allison et al.
[1] and Riva et al. [2] for recent critical reviews), we will
only review those that can simultaneously deal with various
(structured) data sets and sources that explicitly encode the
domain knowledge. The paper starts with a review of
approaches for finding gene associations, continues with
methods for expression-based classification and phenotyp-
ing and finishes with techniques for the reverse engineering
of gene networks.

2. Gene association studies

It has been widely recognized that the genes involved in
the same biological process or with a similar function are
likely to be co-expressed [3]. One possible way to perform
gene function discovery is thus to group genes with a sim-
ilar expression profile, consisting of gene expressions mea-

sured at either different conditions or in different time
points. The functional annotation of a new gene can then
be hypothesized on the basis of functional classes of the
other, similarly expressed genes. Because of the relative
simplicity of available methods and related visualizations
that can reveal the underlying data structure, it is not sur-
prising that the area of DNA microarrays data analysis
which has so far probably received the greatest attention
is the clustering of gene expression profiles [4]. For a criti-
cal review of those methods we refer to the paper by Hand
and Heard [5]. Over the last couple of years and following
the principal idea behind intelligent data analysis, new
efforts have been devoted to increase the performance of
clustering methods in terms of their robustness and stabil-
ity by also considering the available knowledge on gene
function. For example, such knowledge may be related to
the process under study such as the periodicity of the cell
cycle [6] or may be codified in knowledge repositories such
as Gene Ontology [7], MIPS [8] and KEGG [8].

One seminal work on the combination of heterogeneous
data and evidence sources is the development of the system
called Magic [9]. Magic uses a Bayesian Network which
combines evidence from different data sources to predict
if two proteins are functionally related. Following the ideas
of probabilistic expert systems in diagnosis, Magic is able
to weight different knowledge sources and derive a poster-
ior probability on the hypothesis of functional relation-
ships. The system has been experimentally validated on
data sets from budding yeast Saccharomyces cerevisiae.

Recently, some attention has been paid to the modifica-
tion of clustering algorithms for embedding background
knowledge. Clustering methods are often divided into three
main classes: distance-based, model-based and template-
based. Below we provide a survey of approaches that adapt
these methods so that they take the additional background
knowledge into account. We will use a notation where we
suppose that the expression of n genes was measured using
DNA microarrays in m different experimental conditions
and we will denote the set of expression measurements of
the ith gene as x; = {x;,Xp,...,X;,X;,}, Where x;; is the
jth measurement, with j=1,...,mandi=1,...,n. We will
also call x; an expression profile of the ith gene.

2.1. Distance-based clustering

The majority of current applications of gene expression
clustering are based on an estimation of the distance
between expression profiles. The basic idea of these meth-
ods is to cluster together those genes which are ‘close’ to
each other according to some distance measure. The most
popular method for distance-based clustering is agglomer-
ative hierarchical clustering which derives a hierarchy of
clusters ordered in a tree (Fig. 1). The leaves of the tree
are the genes, which represent the smallest clusters; at each
subsequent node or level of the tree, the two nearest clus-
ters are grouped to form a bigger cluster [3]. The procedure
is iterated until a single cluster of all genes in the data is
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Fig. 1. Snapshots of several standard gene expression analysis and visualization techniques. (a) Time series gene expression data during heat shock from
Eisen et al. [3]. Only a subset of genes that belong to either of the three different classes (cytoplasmic ribosomes, proteasome and respiration) as assigned by
Brown et al. [35] are included. The spreadsheet displays expression data (first six columns), class label and gene name. (b) The same data displayed using
heat map visualization. (c) Dendrogram showing the result of hierarchical clustering with gene classes displayed as dendrogram labels. Topmost
dendrogram branch with six genes is selected, their expression profiles are displayed in (d). Snapshots are taken from Orange data mining suite [11].

obtained, which also forms the root node of the tree.
Another popular clustering method is k-means [10] which
partitions the m-dimensional space of genes into k regions
in order to minimize the variance of the data within each
region. The algorithm typically starts by selecting k differ-
ent cluster centers, assigning each gene to a cluster with the
nearest centre. Then, the mean (centroid) of each cluster is
computed and the cluster centers are updated. The genes
are reassigned to the clusters and the algorithm is iterated
until it converges to a stable solution. Several variants of
k-means have been proposed in the literature, including
k-medoids to improve on robustness against the outliers
[10].

Gene expression profile-based distance functions are
also exploited in a technique called self-organizing maps
(SOM) [12]. SOM are maps of a small, usually two-dimen-
sional space in which each point represents a cluster. Dur-
ing the clustering algorithm a mapping function is
automatically built in order to assign the genes to one of
the points of the map in such a way that the clusters which
are close on the map are also similar in the original m-
dimensional space. A straightforward use of distance func-
tion has also been explored in so-called gene co-expression
networks [13], which feature a graph of genes as nodes and
connections if the gene-to-gene distance is below some pre-
set threshold.
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Each of these methods has its distinct advantages: if the
number of desired clusters is known in advance, the use of
k-means may be preferred. Results of hierarchical cluster-
ing can be nicely visualized in a dendrogram which may
depict the structure of the data and provide a hint as to
the number and composition of distinct clusters. While in
most reports researchers only present a single dendrogram,
this has often been chosen arbitrarily as there are many dif-
ferent ways we can present a tree-hierarchy (consider rotat-
ing part of the dendrogram that stems at each of the nodes
of the tree). Approaches to optimize the ordering of den-
drogram leaves have been proposed, but are either not used
or not yet available in major data analysis packages [14]. In
an un-optimized dendrogram, the profiles of genes that are
distant in the dendrogram with respect to some target gene
may in fact be more similar to the profiles of genes that are
presented in the dendrogram closer to the target. In this
respect, a two-dimensional visualization of SOM may pro-
vide more comprehensive information on the similarities of
gene expression profiles (for an example of such visualiza-
tion, see Fig. 2a). Gene co-expression networks can have
attractive visualizations with tools like Pajek [15] (Fig. 3)
but suffer from the need to set a similarity cut-off that
determines which gene pairs will be connected. Finding
an appropriate cut-off depends on the data analysis task,
as this can balance between coverage (the proportion of
genes connected to other genes with a shared function)
and accuracy (the proportion of connections of function-
related genes that lead to genes with shared functions) [13].

All the methods mentioned above require the definition
of the distance between two gene expressions. The most
widely used functions in this respect are Euclidean distance
and Pearson’s correlation. With distance functions playing
a central role in distance-based clustering, an interesting
research direction is to adapt them by means of incorporat-
ing the available background knowledge in computation of
the gene distance.

An often used source of available prior knowledge in
functional genomics is a repository on gene functions, such
as the Gene Ontology (GO) [7]. As defined by the Gene
Ontology consortium (www.geneontology.org), the GO is
‘a comprehensive structured vocabulary of terms describ-
ing different elements of molecular biology that are shared
among life forms.” The GO is organized along three main
axes, molecular function, biological process and cellular
component, where the concepts are represented though a
taxonomy, going from the most general to the most specific
terms. Such a taxonomy can be easily represented as a
graph (see Fig. 2b).

Usually GO annotations are used for enrichment analy-
sis, where we can test if a subset of genes we find based on
expression similarity has some interpretable biological sig-
nificance [16,17]. The result of this analysis may be summa-
rized through a list of GO annotations whose relative
frequency is significantly different to that of the reference
set (see Fig. 2b for an example). A number of tools for
GO terms enrichment analysis are available and were

recently reviewed by Khatri and Draghici [18]. In our
review, however, we are interested in GO used as an addi-
tional background knowledge when the clusters are gener-
ated. Obviously, in this case the evaluation of the biological
meaning of the clusters must be performed by using an
independent knowledge base; in other words GO cannot
be exploited for both hypothesis generation and the assess-
ment of clustering results.

To exploit the information available in the GO in the
calculation of a distance, some authors have introduced
the notion of semantic similarity between genes, computed
on the basis of the available taxonomies of concepts. The
GOstats package [19] of the R-library Bioconductor
(www.bioconductor.org), for instance, allows one to esti-
mate the so-called graph similarity between objects under
observation. Given two objects, such as genes or proteins,
each object is associated with a sub-graph that is obtained
by taking the most specific GO terms annotated with the
gene or protein and by finding all their parents up to the
root node. Then, the similarity between the two objects is
defined through the union-intersection method, which com-
putes the number of shared nodes divided by the total
number of nodes in the two sub-graphs, or by the longest
shared path method, which calculates the length of the lon-
gest path shared by the two nodes.

Graph similarity does not explicitly take into account
the frequency of the terms in the corpus, a deficiency that
led to the development of so-called information-based sim-
ilarity. Denoted with p(7) the relative frequency of a term ¢
or of any child term in the GO (or any other corpus), the
similarity between two terms f¢; and ¢, as defined by Lin
[20] is:

2 xlog <r€r§<lti122)P(f))
~ log(p(n)) + log(p(12))

where S(#1,1,) is the set of shared parents of #; and #,. Other
variants of this similarity measure have been reported by
Resnik [21] and Jiang and Conrath [22]. An evaluation of
the different similarity scores can be found in [23]. The val-
ues of Lin’s similarity score fall in the interval between 0
and 1 so that it is easy to obtain a distance measure defined
as d(tl,tz) =1- Sim([l,tz).

Relying on information-based similarity, Kustra and
Zagdanski [24] worked on the integration of the semantic
and expression-based distance between genes. In order to
take multiple annotations (terms) of a gene into account,
they computed the weighted average of the similarity scores
between all term annotations to obtain the distance
d(g1,g>) between two genes g, and g,. Then they proposed
computing the combined distance using the following con-
vex combination

diSt(gh g2) =41 d(x17 x2) + (1 - }) : d(gla g2)

where d(x, x,) is the distance between the gene expression
profiles and / is a user-defined coefficient in the interval
[0, 1] that defines the balance between the expression- and

sim(tl, [2)
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zero gene representation are displayed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

GO-based distance. Kustra and Zagdanski have validated
this approach through an analysis of a budding yeast gene
expression data set by running a k-medoids algorithm.
Their analysis has been compared with the catalogue of
protein—protein interaction data set with encouraging
results.

Another interesting approach has recently been pub-
lished by Huang and Pan [25], who modified the distance
function used in a k-medoids algorithm to obtain a shrink-
age effect when calculating the distance between genes
which are known to share a common function. In their
case, the distance was computed as
dist(gy,g2) = 4 - d(x1,x,) if x; and x, share a common func-
tion, and as dist(g;,g>) = d(x1, x») otherwise. A constant A
is a suitable user-defined shrinkage parameter. Huang
and Pan then extract a set of clusters for genes with known

functions and assign to those clusters or to new clusters the
genes with unknown functions. The results have been
favorably evaluated in terms of the accuracy of gene func-
tion prediction and studied with simulated and real DNA
microarrays data sets collected on yeast.

2.2. Model-based clustering

In model-based clustering each gene expression profile x;
is assumed to be drawn from a probability distribution
[f(x;,0) which is typically a finite mixture of ¢ components,
with each one representing a different cluster:

S(i:0) = peficxis O)
k=1
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The parameters of this model are the weight coefficients
pr which may be considered as the (prior) probability of
each cluster, and the parameters specifying the single clus-
ter distribution fi(x;, 0;). Although the assumption of finite
mixture is the most common, it would also be possible to
exploit more complex models such as the Bayesian infinite
mixture model or the Dirichlet process mixture model, as
reported by Qin [26].

Once a data set of n genes is available, it is possible to
compute the likelihood of any configuration of the param-
eters 0 as:

n

10 =TT Y pifitrs 0

i=1

Within this setup, the goal of finding the clusters is
transformed into a problem of likelihood maximization.
The probability that the ith gene belongs to the kth cluster
can be estimated from the data as p(x; € Cy) o< pifi(x;, 0r).
Each gene is then assigned to the cluster that maximizes
the probability of gene membership.

A standard choice is to exploit a mixture of normal dis-
tributions so that the parameters 0 are mean vectors and
covariance matrices of each cluster. One of the most popu-

lar algorithms proposed in the literature to maximize the
likelihood is the Expectation Maximization approach,
which enables a joint estimate of p, and 6 (see [26] for a
complete description of the algorithm). The EM starts with
an initial guess at the model parameters p;, 0, for every k.
Then, in the E-steps the expected value of the posterior
probability distribution that x; belongs to the kth cluster
(Cx) is computed as:

> k1 Pufi (x5 0r)
In the M-step, the parameter estimates are properly

updated. In particular, the prior probability is obtained
with the following equation:

o bl € Ci)
Pr = - .,

f)(xi S Ck) =

By iterating the procedure until convergence it is possible
to obtain the Maximum Likelihood Estimate of the cluster
parameters and to assign each gene to a cluster by choosing
the maximum value of the posterior probability distribution
for that gene. The method can be easily extended to cope
with the selection of a number of clusters by cross-validation
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or by resorting to a Bayesian model selection. An approxi-
mation of the latter approach leads to the selection of the
model with the highest BIC index [27].

The model-based approach allows one to add back-
ground knowledge in several ways. For example, Pan [28]
extended the normal mixture model by stratification. In
particular, he proposes identifying g — 1 potential gene
groups on the basis of the prior knowledge, for example,
looking at the gene biological annotation in the GO. The
gth group contains all the genes with an unknown function.
The generative mixture model described above is modified
by defining a prior probability distribution which is the
same for all genes belonging to the same group. Let us note
that g is in general different from the number of clusters ¢
adopted in the model. Hence, the revised model for the
genes a priori classified into the /ith group becomes:

Su(xi, 04) = thkfk(xia Or)
k=1

The EM strategy is suitably modified to take prior infor-
mation into account. While the posterior probability calcu-
lation and the estimate of the parameter set  remains the
same, the update of the /th prior distribution takes into
account only the information coming from the genes a pri-
ori grouped into the ith group as follows:

ﬁhk — Z:lilﬁ(xth € Ck)
ny

where ny, is the number of genes belonging to the /th group
and x" is the ith gene belonging to this group. The final
number of clusters (¢) is then selected on the basis of the
BIC index.

The approach proposed by Pan has been validated on
simulated data and on yeast microarray data. The main
problems in the handling of prior knowledge are that: (i)
genes may be associated with different functional classes;
and (ii) it may be difficult to define the initial number of
groups. For example, genes may be involved in different
processes and, looking at the gene ontology, it might be
very difficult to define the level of classification hierarchy
to be chosen in order to derive the groups used when mod-
eling the prior distribution. To solve the first problem the
author suggests multiplying the data of each instance of
gene labeling with a sole gene function class, thus allowing
the same gene to belong to different clusters. The second
problem is however handled heuristically: it is suggested
to a priori choose a number of groups which is not too
big or too small and to then rely on the final clustering
selected through the BIC index.

2.3. Template-based clustering

When gene expression time series are available, it is
often important to recognize and retrieve the data patterns
which may correspond to some interesting time-related
behavior. If those patterns are known in advance, it is pos-

sible to directly apply pattern-matching techniques to solve
the problem. However, the available knowledge is often
expressed in terms of qualitative patterns or templates such
as increase, decrease or up and down. Genes can then be
clustered together according to qualitative similarities in
one or more intervals of the overall time series.

The techniques proposed in the literature for performing
clustering on the basis of qualitative templates seem prom-
ising in terms of providing a suitable means to a domain
expert to elicit their knowledge on the problem. These
approaches thus usually require a definition of such quali-
tative templates and an algorithm that matches the tem-
plates with the quantitative profiles. Such definitions and
mappings are usually knowledge-based since they need to
deal with measurement noise and they may be specific to
a phenomenon under observation. Knowledge-based tem-
poral abstractions [29,30] may be particularly suitable for
performing this kind of qualitative template search.

The main advantage of the qualitative, template-based
representation of temporal gene expression profiles is that
it enables one to perform clustering by following the same
principles used by a human expert, that is, by looking at
series with similar (relevant) qualitative behaviors. The
principal drawback of the approach is that the various tem-
plates to be used in the analysis need to be enlisted in
advance, thus in a way forcing the user to exhaustively
hypothesize the templates prior to the start of the analysis.
In order to overcome these limitations and to perform a
completely unsupervised search for the qualitative patterns,
two techniques have been proposed in the literature. It
must be noted that both of them are currently at the stage
of research proposals and that they are not used as fre-
quently as the other approaches presented in this section.

An interesting knowledge-based template clustering
approach has been proposed by Hvidsten and colleagues
[31]. In their work, whose main goal was to find descriptive
rules about the expression behavior of genes from some
functional classes, they grouped and summarized the avail-
able gene time series by resorting to template-based cluster-
ing. They first enumerated all possible subintervals in the
time series and labeled all possible subintervals as increas-
ing, decreasing and steady with a temporal abstraction-like
procedure. Then, they clustered together the genes match-
ing the same templates over the same subintervals. In this
way a single gene may be present in more than one cluster.
The overall system has been favorably evaluated on data
published by Cho et al. [32] on the cell cycle in human
fibroblasts.

Another recent example of intelligent data analysis-
inspired template-based clustering is provided by Sacchi
and colleagues [30], who modeled time series data as a set
of consecutive trend temporal abstractions, identifying
the intervals in which one of the basic templates of increas-
ing, decreasing, and steady matched the data. Clustering is
then performed in an efficient way at three different levels
of aggregation of the qualitative labels. At the first level,
the gene expression time series with the same sequence of
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increasing or decreasing patterns are clustered together. At
the second level, the time series with the same sequence of
increasing, steady or decreasing patterns are grouped, while
at the third level the time series sharing the same qualitative
labels on the same time intervals are clustered together.
The results of this method, known as TA-Clustering, can
be visualized as a three-level hierarchical tree and, as such,
it is easy to be interpreted (Fig. 4). Sacchi et al. demon-
strated the utility of the proposed algorithm on a set of
two simulated data sets and on a study of yeast gene
expression data.

3. Predictive modeling

Gene association studies relate genes by comparing their
expression profiles. The soundness of discovered gene
grouping is often judged based on the homogeneity of func-
tional labels shared by function-labeled genes in each
group. But, as stated above, since the functions of a subset
of genes may be known in advance we could use this infor-
mation directly to construct the gene expression-to-func-
tion mapping. The area of data analysis addressing such
problems is called supervised data mining and most often
features methods stemming from machine and statistical
learning [10,33]. There are several major distinctions
between unsupervised and supervised data mining.

Unsupervised approaches require the definition of the
distance measure between gene expression profiles, that
is, between the expressions obtained in various experimen-
tal conditions. Simplest, but also most commonly used dis-
tance measure treat these profile elements—features
equally, that is, do not use any particular weighting schema
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Fig. 4. A schematic representation of the temporal abstraction clustering
algorithm applied on three hypothetical time series. At the bottom level,
the time series sharing the same qualitative labels on the same time
intervals are clustered together. In this case, the three time series are
corresponding to three different clusters. At the second level, the time
series with the same sequence of increasing and steady patterns are
clustered. In this case, the three time series belong to the same cluster.
Finally, at the upper (first) level the gene expression time series with the
same sequence of increasing/decreasing patterns are clustered together. In
the example, the three time series correspond to an increasing pattern.
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to favor the result of one experiment over the other when
computing the gene-to-gene distance. Supervised machine
learning methods, on the other side, aim to find features
(experimental conditions) that are most specific with
respect to the observed class label (function, group) and
favor them in the data-induced models. The quality of
supervised data mining is also easier to judge using any
of established statistical approaches like cross-validation
and bootstrap, and model validation scores like classifica-
tion accuracy, area-under-ROC or similar [34]. The princi-
pal problem the supervised methods need to address is
overfitting, whereby the resulting model would well predict
the classes from the training data but perform poorly on
any new data set. All state-of-the-art supervised data min-
ing include mechanisms to avoid overfitting, while it has
become a standard practice in the field to always report
performance results on test data sets only, either by indeed
acquiring the separate test set on which the induced model
is evaluated or by simulating such evaluation through, say,
cross validation.

Supervised data analysis methods require class-labeled
data. The classes, however, need to be sufficiently well rep-
resented; an ideal task for machine learning would, for
instance, be a set of a few thousand genes, each labeled with
a single function where each function would not be repre-
sented with less than, say, a 100 genes. Early demonstra-
tions of the utility of supervised data mining (e.g., [35])
indeed treated such data, but the problems in functional
genomics are often more complex. As reported in the previ-
ous section, genes may be involved in different pathways,
perform different functions and may, for instance, be
labeled in each of the aspects of GO using more then one
term. GO includes a few thousand terms in each of the three
aspects (molecular function, biological process, cellular
components) and if the terms were to directly provide for
class labels no standard machine-learning approach could
sufficiently handle such data. An often explored bypass of
the treatment of thousands of terms is to label the genes
with only a few parent terms close to the root of ontology.
For GO, we could for instance use so-called GO slim terms,
which are a collection of high-level GO terms that best rep-
resent term-based annotations for a specific organism [7].

Instead of trying to fit the data to the present set of
supervised data mining methods, an alternative approach
is to modify these to appropriately consider the potentially
rich and structured knowledge contained in current ontol-
ogies. This task is known in machine learning as hierarchi-
cal multi-label classification. While it has to some extent
been explored in text mining [36,37], Blockeel and co-
authors recently proposed an extension to classification
trees and tested the method in a task to predict terms from
the FunCat [38] protein classification hierarchy.

Predictive modeling has attracted considerable attention
in problems related to cancer-gene expression studies,
where a typical problem is tumor classification based on
a set of tissue-specific gene expression profiles (e.g., [39]).
With often small sample sizes (typically a couple of 100 tis-
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sues/patients) and very high problem dimensionality
(expressions of thousands of genes that characterize the tis-
sue), the chance of reporting overconfident results due to
overfitting or the inappropriate use of data mining methods
in this domain is very high. This problem was nicely
exposed in an excellent review by Simon et al. [40], who
also warn about the inappropriate use of clustering in place
of supervised data mining methods, and comment on
recently frequently reported overly-optimistic results due
to preprocessing by feature subset selection prior to
cross-validation. Namely, an approach to deal with the
curse-of-dimensionality in cancer gene expression studies
is to select only the most informative set of genes prior to
the modeling. If gene selection is performed prior to
cross-validation, the selection of most informative features
based on both the training and test set obviously leads to
overfitting.

A notable task within gene expression-based classifica-
tion is gene ranking. In principle, we can reduce the high
dimensionality of the task by considering only the most
promising genes for classification. In the simplest approach
we could rank them according to their differential expres-
sion between the classes and consider only top-rated genes
when building the classification model. Such a univariate
gene-scoring method may fail to identify genes which are
on their own not very informative, but due to their interac-
tions—only become informative when considered in a
group. Such a failure may be especially damaging for clas-
sification techniques like support vector machines that can
exploit gene interactions. A number of multivariate gene-
scoring schemes have recently been developed for this pur-
pose. We refer interested readers seeking a review and com-
parison of these approaches to the works of Lai et al. [41]
and Jeffery et al. [42].

A subset of genes best-ranked according to how well
they can differentiate between different classes may also
be checked for their biological significance using their
GO annotation. A likely outcome of such analysis is how-
ever a list of genes with no unifying biological theme. Subr-
amanian et al. [43] recently proposed a knowledge-based
method called Gene Set Enrichment Analysis (GSEA)
which uses a priori defined sets of gene groups (e.g., genes
found in the same metabolic pathways, located in the same
cytogenetic band, or sharing the same GO category).
Instead of ranking individual genes, GSEA then ranks pre-
defined gene sets. Besides their method, the authors pro-
vide an initial database of 1325 biologically defined gene
sets, a useful resource yet to be fully exploited in other
knowledge-based data analysis approaches.

A plethora of techniques is available for supervised data
mining and the selection of a particular method for the task
is far from trivial. Some recent reports (e.g., [44]) hinted
that a popular data mining technique of support vector
machines is the (sole) best choice, but their conclusion is
only based on studies of predictive accuracy. Intelligent
data analysis favors techniques that can present a discov-
ered model in a readable form prone to interpretation

and the study of the discovered relations. Support vector
machines comply with this criteria only if linear kernels
are used, whereas for more complex kernel functions the
interpretation of results is far from trivial and other
machine learning methods, like the induction of rules [45]
or intelligent visualization techniques [46], may have an
advantage in this respect.

4. Genome-wide gene expression profiles as a phenotype

The tissue-specific set of gene expressions as used in can-
cer-gene expression studies is in a way a replacement of the
standard phenotype and provides grounds for tumor clas-
sification. Early reports on cancer microarray studies
indeed show heat maps of gene expression profiles of differ-
ent tumor types, provided as evidence that one can make
an informed classification through a study of this (visual)
fingerprint alone. While such phenotyping is, as we
reported in Section 3, frequently used in cancer research,
it is also gaining attention in functional genomics. Instead
of associating genes through a set of measurements of its
expressions under different conditions, one can mutate
the gene under consideration and observe an expression
of all other genes in a mutated organism. Such a mutant-
based transcription profile can be favorable to classical,
morphological phenotypes since it can encompass the state
of the organism on a much larger scale. The approach has
been pioneered in the work of Hughes et al. [47], resulting
in a compendium of whole-genome transcription profiles of
300 single deletion mutants in S. cerevisiae. The mutant-
based, large-scale expression-based phenotypes have pro-
vided grounds for the additional characterization of genes
when compared to standard gene expression profiles con-
sisting of measurements under different conditions. Hughes
et al. present their experimental analysis as a heatmap, that
is, a two-dimensional matrix with experiments (mutants) in
rows and genes in columns, thus combining the informa-
tion obtained from the gene expression profile with tran-
scriptional information from its respective mutant. Two-
dimensional agglomerative hierarchical clustering [48] was
used to order the rows and columns to expose the patterns
of over- and under-expression. This method, also referred
to as biclustering, was developed in particular to overcome
the limitations of standard clustering approaches to the
analysis of gene expression data by grouping genes and
samples simultaneously (see Prelic et al. [49] for a review
and evaluation of different biclustering approaches).

Van Driessche et al. [50] recently showed that whole-
genome expression profiles can be used on their own to
characterize a mutated gene and to relate it with other
genes in order to discover gene-regulation pathways. Their
data included transcriptional phenotypes for single and
double mutants of Dictyostelium discoideum, enabling the
so-called universal epistasis analysis [51] by relating two
genes according to their single and double-mutant pheno-
types (Fig. 5). A similar study was reported by van de Pep-
pel [52].
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Fig. 5. Gene expression profiles of three Dictyostelium discoideum mutants using a data subset from Van Driessche et al. [5S0] (500 genes, each measured at
13 time points during amoebae development). (a) Heat map of mutant expression profiles showing that puf4 mutant is different to otherwise similar profile
of pkaC mutant and double mutant. b) Computational analysis of the differences, indicating for epistasis of gene pkaC, hypothesizing a regulation

pathway pufd — pkaC.

The approaches mentioned above were all applied to
model organisms where gene silencing through knock-outs
is a viable research technique. With new approaches such
as those that use RNA interference [53] and exploit a nat-
ural mechanism for gene silencing that occurs in organisms
ranging from plants to mammals, dedicated computational
tools that can deal with large-scale phenotypes that include
those based on gene expression have yet to take ground.
This also includes their applications for reverse genetic
analysis in humans, where RNAI is rapidly being applied
to study the function of many genes associated with human
disease, in particular those associated with oncogenesis and
infectious diseases [54].

5. Gene networks

One of the most intriguing possibilities offered by collec-
tions of genome-wide expression data sets is to infer a
hypothesis on the gene-regulatory mechanisms. The regula-
tion of gene transcriptional activity is a complex process
which involves protein and protein complexes, intracellular
signaling activity and, as recently discovered, specific con-
trol molecules such as micro-mRNA. The majority of the

proposed computational models to describe regulation at
the genome scale therefore provide an abstract view of
the overall behavior, typically neglecting the details of the
biochemical regulations. Gene-regulation relationships
are most often represented in terms of a network. Follow-
ing Schlitt and Brazma [55], we can distinguish between
four different levels of detail for those networks, which
may be integrated in a single, final model: (1) parts list,
which are collections, descriptions and systematizations
of network elements in a certain organism or for particular
biological processes (like the list of transcription factors);
(2) topology models, which are networks in which nodes
represent genes and arcs represent the relationships
between genes; (3) control models, which express the effect
of one gene on another gene in terms of control action,
such as activation and repression; and (4) dynamic models,
which aim at defining a model able to predict the gene
expression activity on the basis of the knowledge of the
expression of other genes and, if available, other informa-
tion such as an external stimulus. Once a suitable set of
genes is selected, that is, a part list has been defined, several
methods can be applied to infer the topology, control and
gene expression dynamics directly from DNA microarray
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data. In particular, the availability of time series gene
expression data has stimulated researchers applying data
mining approaches to infer control and dynamic models.
An interesting review of a number of those approaches is
provided by de Jong [56], while problems related to the
analysis of time-oriented data are reviewed by Bar-Joseph
[57].

Three different types of approaches and related network
representation formalisms to infer gene-regulation net-
works from gene expression data have been largely
exploited: Boolean networks, differential equations and
Bayesian Networks. With Boolean networks, the binary
discretized expression of a gene at time ¢+ 1 is modeled
as a logical function of all modeled genes at time 7. One
of the first and perhaps most often cited approaches in this
area is REVEAL (REVerse Engineering ALgorithm) [58],
which infers Boolean networks from data under some lim-
itations in terms of a possible number of antecedents of
inferred logical rules. As another approach, using differen-
tial and difference equations assumes that the gene relation-
ships can be described with a parametric dynamic model
where the time derivative of each gene, that is, the rate of
gene expression synthesis or degradation, is modeled as a
function of the expression of other genes and of the gene
itself [59]. Recently, the approach which has received more
interest is to use the inference of causal probabilistic net-
works, in particular Bayesian Networks (BNs) and
Dynamic Bayesian Networks (DBNs). Such networks are
particularly appropriate for modeling gene expression data
since they are probabilistic in nature so they can appropri-
ately consider both measurement and modeling errors.
Together with a model of the dynamics of the system,
BNs and DBNs provide a topological model which
describes the relationships between genes [60].

A current key question is whether it is really possible to
infer such gene networks from gene expression data only.
In fact, two crucial limits hamper the use of pure data-dri-
ven approaches. First, the amount of available data for
each gene, that is, the number of time points where gene
expression was recorded, is still insufficient to appropri-
ately explore the space of all possible regulatory networks.
In the case of learning a BN with 25 genes where the
expression was discretized to a binary presentation (up-
and down-regulation), it is possible to show that by limit-
ing the number of genes that regulate the expression of a
particular gene to four, a sufficient number of measurement
samples exceeds 8000. Although such a problem can be
partially circumvented by more parsimonious models (such
as continuous models) [61], the limitations in the gene
expression data sampling forces the algorithm to be biased
towards simpler regulation structures to avoid overfitting.
Second, the control or dynamic models chosen to describe
the system always represent a great simplification of the
molecular processes under analysis. This makes the model
search feasible from a computational viewpoint but may
lead to unstable solutions or, even worse, to obtain a set
of equivalent models that describe the data equally well.

This later problem is known in the modeling literature as
an unidentifiability problem and cannot be solved even if
an infinite number of samples is available. The unidentifi-
ability problem is related to the lack of information which
may be useful to disambiguate models, such as data on
processes occurring to the cell during measurement (acti-
vated proteins, intra-cellular signals and external stimula).

Due to the problems mentioned above, the modeling
community is currently particularly interested in the inte-
gration of different data sources in the learning process
and exploiting the available background knowledge to
guide the model search. Over the last few years several
papers have proposed solutions that can take accumulating
experience into account in at least two ways. First, infor-
mation available in biological databases, such as protein—
protein interactions, promoter sequences and transcription
factors binding sites, has been used to derive a prior
hypothesis on the gene network structure, which is then
revised and updated by exploiting the gene expression data
[62]. An interesting example is given by the work of Li and
colleagues [63], who combined text mining to search asso-
ciations in the PubMed literature with linear regression
modeling to verify the proposed associations with gene
expression data. A validation of the network extracted on
the angiogenesis process, performed by comparing the
results with the pathway information contained in the
KEGG database, showed that literature mining can be
greatly improved by gene expression data and that, at the
same time, the extraction of a gene expression network
may be successfully guided by an automated literature
search. A second interesting approach is to integrate differ-
ent gene expression data sets by summarizing the relations
within a network that is consistent with the considered data
sets. An example of this approach is an implementation by
Wang and colleagues [64], who integrated different gene
expression data sets, relying on differential equation models
to describe the process dynamics and on linear program-
ming to find the network structure. Since the majority of
published work on data and knowledge integration for
deriving regulatory networks exploits probabilistic model-
ing, below we review several issues of learning BNs and
DBNs by combining background knowledge and data.

The algorithms to infer BNs and DBNs from data must
typically infer their structure, that is, infer the relations
between genes in the network. From a Bayesian viewpoint,
this means identifying the structure or graph G with the
highest posterior probability distribution given a data set
X. The resulting scoring metric is:

pX|G)p(G)

raix) =2t

x p(X|G)p(G)

The metric depends on two terms: p(X|G) is the marginal
likelihood, which expresses how likely the model is with
respect to the available data; and p(G) is the prior probabil-
ity of the model. The marginal likelihood is computed by
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averaging the likelihood over the possible values that the
parameter set 0 of the conditional probability distributions
of a structure G may assume, so that:
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such an integral can be solved in close form when the vari-
ables are discrete [65] and when the model is conditionally
Gaussian [66]. Since the search in the directed acyclic graph
space—assumed for the structure of the models—is super-
exponential, several heuristic algorithms have been pro-
posed in the literature. The best known approach from this
field is the original K2 search proposed by Cooper and
Herskovits [65]. Other approaches include genetic algo-
rithms [67] and Monte Carlo Markov Chain techniques
[68].

The BN framework allows one to introduce background
knowledge in several different ways. Imoto et al. [69] mod-
ulated the prior probability of each model p(G) as a func-
tion of the available background knowledge. The prior
knowledge is modeled with a Gibbs distribution

p(G) = 2" exp{—IE(G)}

where E(G) is the energy of the network, Z is a normalizing
constant and / is a suitable hyperparameter. Thanks to the
locality property of the BNs, E(G) is decomposed in order
to take into account the force of prior evidence for an arc,
expressed in terms of the energy of the arc.

n
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where E;; is the energy of the arc going to the ith gene from
its jth parent. Through a set of elegant algebraic transfor-
mations, the problem of specifying prior knowledge is then
transformed into the specifications of a number of hyper-
parameters. The search process is then guided by the prior
knowledge using the usual Bayesian scoring metric. The
method was tested on simulated data and yeast data. A
similar approach has been applied by [70] to infer gene net-
works by combining gene expression data and the structure
of a gene promoter region.

Later on, the same group [71] proposed an approach for
the joint learning of gene-regulatory networks and protein—
protein interaction networks in terms of Bayesian and
Markov (undirected) networks (Fig. 6). Given a set of data
coming from DNA microarrays (X) and a set of data of
interaction networks (Y), they computed the posterior
probability of the gene-regulatory network (G,) and of
the protein interaction network (G,) as:

p(Gr, Gp|X, Y) < P(X|G,)P(X|G,)P(G/|G,)P(G))

They tested their approach on a mutant expression data
set [47] and protein—protein interaction data [72] and addi-
tionally relied on the background knowledge contained in
the MIPS functional category database. The approach
has been evaluated against an external reference knowledge
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Fig. 6. The conceptual view of the approach proposed by Nariai et al.
[71]. Gene regulatory networks and protein interaction networks are
jointly built by borrowing strengths from both kinds of available data. The
figure is adapted from [71].

source (KEGG). The results showed an increase in accu-
racy in recovering protein—protein interactions of about
10% with respect to learning without gene expression infor-
mation, and an improvement in recovering correct regula-
tory interactions with respect to learning without protein—
protein interaction information.

Le and colleagues [68] described the effect of using back-
ground knowledge on the learning of a BN from a set of
simulated data describing glucose homeostasis. The value
of the inclusion of prior knowledge was evaluated by
clamping a number of arcs in the gene-regulation network
to the correct ones as obtained from background knowl-
edge, and by looking at the sensitivity, i.e. the proportion
of true edges found over the total number of true edges.
The results showed that even a relatively small proportion
of clamped edges may improve the sensitivity of the algo-
rithm and, at the same time, reduce the number of expres-
sion profiles required for learning.

A different approach was presented by Bernard and Har-
temink [73], who derived a model for defining the prior
probability p(G) of a DBN from a transcription factor data-
base. In particular, they derived the probability of an arc
connecting two genes in the network by analyzing the data
on transcription binding sites. By assuming that the evi-
dence that a transcription factor regulates a gene is
expressed through a p-value, they computed the prior prob-
ability as the composition of local models, with each one
expressing the probability of an edge being present given
its p-value. Since the scoring metric can be decomposed into
local models, the search procedure is easily modified taking
into account different priors for each different gene model.
The effectiveness of the algorithm has been shown on simu-
lated data on the gene-regulatory network of the yeast cell
cycle, producing similar findings as Le Phillip et al. [68].
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6. Issues of model accuracy and evaluation

The outcome of data analysis, being descriptive or pre-
dictive in nature, is a model of the elements and their inter-
actions being considered in the analysis. The model
therefore represents a hypothesis (rather, a set of hypothe-
ses) that were inferred from the data and background
knowledge. These hypotheses were inferred from experi-
mental data that may often include a substantial compo-
nent of noise. How accurate are they? Are all
components of the model equally well founded in the data
or can some be more trusted than others? Did the method
avoid overfitting the data, or are the results a by-product of
randomness?

The components of inferred models can be tested com-
putationally, verified through a literature search, and/or
eventually tested with in vitro and in vivo experiments.

Verification through tracing the findings in published lit-
erature may increase our confidence in the resulting model
and, if executed on a global model scale, identify a set of
relations that may be either new or false. The true benefit
of knowledge-based data analysis stems from automation
and the incorporation of this phase within the analysis pro-
cedure. Compared to an often infeasible and unsystematic
subsequent manual search, a computer-based comparison
with knowledge bases may reveal which data-based find-
ings are consistent with present knowledge, inconsistent
with present knowledge pointing to either faults in the data
or a need for a revision of current theories, or findings
where our inferred hypothesis is new and requires further
experimental confirmation. Experimental tests in labora-
tory (in vivo or in vitro) represent the crucial benchmark
for hypothesis verification in molecular biology since they
allow to study the biological system under controlled con-
ditions. Such tests are usually performed on model organ-
isms. The availability of new experimental procedures, such
as RNA-interference, allows researchers to experimentally
verify interactions and regulation mechanisms which are
hypothesized with computational procedures.

Experimental testing in the laboratory is, of course, the
most expensive validation and should only be used for the
most promising or most interesting hypotheses. When
models include larger sets of diverse hypotheses, proce-
dures to rank these in terms of their computationally-esti-
mated accuracy and the cost-benefit of their laboratory
validation may be of benefit.

This leads us back to computational assessments of
hypotheses. Standard statistical modeling techniques, often
assuming that data were randomly drawn from some
known distribution, can provide the means to estimate con-
fidence intervals of predictions and components of the
models (e.g., model coefficients). However, other tech-
niques, mostly stemming from engineering and artificial
intelligence, do not provide such tools. There, the estima-
tion of the success of the modeling technique is based on
data sampling. For instance, a standard technique in
machine learning and data mining called cross-validation

[74] splits the data into, say, ten subsets of equal size,
and then averages the model performance measure across
ten different experiments, each time using a distinct subset
for testing and remaining subsets for training the models.
Other popular alternatives to cross validation include boot-
strap and leave-one-out [74]. Note that such procedures
only assess the performance of the modeling method, giv-
ing us an indirect indication of the reliability of the target
model that is developed from the complete data set. The
computational evaluation of the target model and its com-
ponents requires a separate validation set that is often
expensive to obtain, but which is required for a systematic
performance analysis. Computational validation has
become a standard practice in data mining. Statistics,
machine learning and data mining communities are also
converging on testing procedures and measures to assess
the predictive performance [34] and have become standard
equipment of all major data analysis software packages.

Ideally, all three validation procedures described above
should be used. The modeling methods should be tested
through cross-validation on the training data, choosing
the best-performing approach for development of the final
model to be then validated on an external data set and
whose findings should be compared with present knowl-
edge. The scientifically most promising hypothesis would
then need to undergo laboratory testing. The current prac-
tice in bioinformatics most often includes a range of eval-
uation procedures, with reports published in computer-
science or statistical journals often only resorting to an
assessment through cross-validation, and reports pub-
lished in biomedical journals most often relying on exper-
imental laboratory testing or testing through an
independent, external data set. Scientifically, the value of
modeling techniques is only measured through the
hypothesis tested in the laboratory, while for the method-
ological development and comparison of methods cross-
validation can suffice.

Models in systems biology often encompass a large set
and variety of relations between the components (genes,
sequence motif, proteins etc.) of observation. There is a
risk of considering only the most promising part of the
model, assessing the quality of the approach and resulting
model through subsequent tests of this biased sample.
Despite showing the utility of the approach to explorative
data analysis, generalizing such findings to the entire model
is wrong and misleading. The performance of system-
based, data mining approaches can only be assessed
through systematic testing and validation. The community
has well recognized a major importance of the field, and
has recently initiated a number of projects and activities
to specifically address these issues. Examples of these are
a DREAM (Dialogue on Reverse Engineering Assessment
Methods, http://www.nyas.org/ebriefreps/main.asp?intEB-
riefID=534) initiative with the goal to provide reference
material, gold standards and metrics for the evaluation of
reverse engineering methods, competitions like CoEPrA
(Comparative Evaluation of Prediction Algorithms,
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http://www.coepra.org/), and dedicated conferences like
CAMDA (Conference on Critical Assessment of Micro-
array Data Analysis).

7. Conclusion

The obvious trend in gene expression data analysis, as
also emphasized in this review, is a departure from the util-
ity of standard, off-the-shelf data analysis toolboxes to spe-
cialized approaches that can, besides the target data set,
include additional information from other available knowl-
edge and data sources. This transition is accelerated with
community efforts to standardize data and knowledge stor-
age formats and access protocols, and efforts to make the
corresponding bases publicly available, most often through
web-based access. The level of standardization and homog-
enization of data and knowledge bases is far from the point
where we can speak about uniform bioinformatics and
computational biology platforms, and with the present rate
of the development of new approaches and paradigms in
biotechnology this is unlikely to take place soon. Yet, the
environment is ripe for research-based implementations
of integrative tools that support knowledge-based data
mining which, as reviewed in this paper, is a fast growing
field. As recently proposed in the Science 2020 report
[75], it is this integration that can provide the cornerstone
of research in the coming years. Developments in this area
will require even closer interdisciplinary collaboration and
will lead not only to the integration of data and knowledge,
but also to computer-supported experimental and knowl-
edge generation platforms, thereby closing the loop of data
gathering, hypothesis generation and experiment-based
testing [76,77].
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