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1. Introduction

Neumann system describes motion of a particle constrained to the n-dimensional
sphere Sn under quadratic potential. The potential is given in ambient coordinates
q = (q1, . . . , qn+1) ∈ Rn+1 by the potential matrix A = diag(a1, . . . , an+1) as

V (q) =
1

2
〈Aq, q〉 =

1

2

n+1∑
i=1

aiq
2
i .

In the generic case where all the eigenvalues of the potential ai are different, the
Neumann system is algebraically completely integrable and its flow can be linearized
on the Jacobian torus of an algebraic spectral curve [1, 2, 3]. A standard approach to
study integrable systems is by writing down the system in the form of Lax equation,
which describes the flow of matrices or matrix polynomials with constant eigenvalues,
i.e. the isospectral flow [2, 4]. Eigenvalues of the isospectral flow are the first integrals
of the integrable system and Lax representation maps Arnold-Liouville tori into the
real part of the isospectral manifold consisting of matrices with the same spectrum.
A quotient of the isospectral manifold by a suitable gauge group is in turn isomorphic
to the open subset of the Jacobian of the spectral curve [5].

Two different Lax equations are known for a generic Neumann system with n
degrees of freedom: one is using (n+ 1)× (n+ 1) matrix polynomials of degree 2 [2]
and the other is using 2×2 matrix polynomials of degree n [3, 5]. The (n+1)×(n+1)
Lax equation was used by Audin [6] to describe the Arnold-Liouville tori for geodesic
motion on an ellipsoid, which is equivalent to the Neumann system.

In contrast to the generic Neumann system, the special confluent case in which
some eigenvalues of the potential coincide has not received much attention. In this
paper we will consider the confluent case with two of the eigenvalues being the same
and the Neumann system having an additional S1 rotational symmetry. We will show
that the confluent Neumann system is algebraically completely integrable and that its
flow can be linearized on the generalized Jacobian of a singular algebraic curve. We
will describe the symplectic reduction of the S1 action, which will yield an alternative
description of the Rosochatius system [7, 8, 9] as a symplectic quotient of the confluent
Neumann system. Mechanically speaking, Rosochatius system can be seen as a
Neumann system on a rotating sphere. More generally one can describe general
Rosochatius system as a reduction of confluent Neumann system with all eigenvalues
of the potential being double [1, 8]. Combined with the proof of integrability of the
confluent Neumann system this result will also give an alternative proof of the algebraic
integrability of the Rosochatius system.

When applying the 2 × 2 Lax equation to the confluent case, the resulting Lax
equation in fact describes the Rosochatius system and not the confluent Neumann
system [10, 11, 12]. We will therefore use (n + 1) × (n + 1) Lax equation, where
the resulting spectral curve is singular in the confluent case. Following the standard
procedure and normalizing the spectral curve results in the loss of one degree of
freedom. In order to avoid that, we will use the generalized Jacobian of the singular
spectral curve to linearize the flow as in [13, 14]. The generalized Jacobian is an
extension of the “ordinary” Jacobian by a commutative algebraic group (see [15] for
more detailed description). In our case the extension will be the group C∗ that
corresponds to the rotational symmetry of the initial system. Generalized Jacobian
was used by others to linearize the flow of other integrable systems with rotational
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symmetry for example spherical pendulum or Lagrange top [16, 14, 17, 13]. Our
study however will give a more detailed description of the relation between symplectic
reduction and algebraic reduction from generalized to ordinary Jacobian.

One should also mention that apart from classical case there has been a lot of
interest in quantum case [18, 19, 20] for both Neumann and Rosochatius system.

After the introduction, Hamiltonian reduction and Liouville integrability of
the confluent Neumann system are discussed in section 2. In section 3 we study
(n + 1) × (n + 1) Lax equation and corresponding isospectral manifolds. Our main
result is formulated in theorem 3.5 and describes the relation of Arnold-Liouville tori
to the generalized Jacobian of the singular spectral curve. As a corollary the complete
algebraic integrability and Liouville integrability of the confluent Neumann system will
follow. We conclude with proposition 3.8, which describes the bifurcation diagram of
the energy momentum map in terms of algebraic data.

2. Hamiltonian description

The Neumann system describes a particle on a sphere (of arbitrary dimension) under
the influence of quadratic potential. We can write it as a Hamiltonian system on
the cotangent bundle of the sphere T ∗Sn with canonical symplectic form ωc and the
Hamiltonian H given in ambient coordinates (q, p) ∈ Rn+1 × Rn+1 as

H(q, p) =
1

2

(
‖p‖2 + 〈q,Aq〉

)
.

The potential is given by a positive definite linear operator A on Rn+1. For simplicity
we will assume that A is diagonal with positive eigenvalues ai. A consequence of
positivity is that the Hamiltonian is proper and the energy level sets - and hence
Arnold-Lioville tori - are compact. The equations of motion in Hamiltonian form are

q̇ = p (1)
ṗ = −Aq + εq

where ε = ‖p‖2 + c is chosen so that ‖q‖ = 1 and the particle stays on the sphere.

2.1. Reduction of the symmetry

Let us consider the confluent case where all the eigenvalues ai of the potential A are
distinct, except an = an+1. The action ϕ′ of S1 = SO(2,R) on Sn, given by rotations
in the qn, qn+1 plane, leave the potential invariant and can be lifted to the symplectic
action

ϕ : T ∗Sn × S1 → T ∗Sn

on the cotangent bundle that leaves the Hamiltonian H invariant. We would like to
reduce this action and describe the resulting reduced system in more detail.

Let K be the moment map for the lifted action ϕ. The map K is a real function
on T ∗Sn as so(2)∗ ' R and is the angular momentum for the rotations in qn, qn+1

plane

K(q, p) = qnpn+1 − qn+1pn.
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Since the action ϕ is not free, the description of reduced system is more complicated.
Let us denote with F the set of points on the sphere, where the action ϕ′ is not free.
This is precisely the fixed point set given by the condition

r2 = q2n + q2n+1 = 0

The set F is a codimension-2 great sphere on Sn. Note that on F , the value k of the
moment map K equals 0. The set of regular points Snreg = Sn − F is an open subset
of Sn on which the action is free.

The reduced system is defined on symplectic quotients (Mk, ωk), which are
parametrized by the value k of the moment map K. We will use the operator //k to
denote the symplectic quotient. By definition

Mk = T ∗Sn//kS
1 := K−1(k)/S1

and ωk is defined with π∗ωk = ωc|K−1(k), where π is the quotient projection. For
k 6= 0 the fiber K−1(k) is a corank-1 sub-bundle of the cotangent bundle over the set
of regular points T ∗Snreg. Since the action is free on K−1(k), the standard result for
lifted actions gives

(Mk, ωk) = (T ∗(Snreg/S
1), ωc + ωp),

where ωp is the magnetic term coming from the curvature of the mechanical
connection. In our case the mechanical connection is flat and ωp = 0 [21]. The
quotient manifold Snreg/S

1 is a dimension-(n − 1) open half sphere Sn−1+ as we can
see if we introduce cylindrical coordinates (q1, . . . , qn−1, r(cosϕ, sinϕ)). The set Snreg
is given by the condition r 6= 0 and the quotient Snreg/S1 can be parametrized by
(q1, . . . , qn−1, r) ∈ Sn−1 for r > 0. We can also see directly by using cylindrical
coordinates that the perturbation ωp of the canonical symplectic form is zero.

For k = 0 the description of M0 is more complicated, since the action on K−1(0)
is not free, and M0 is not a manifold. We will remedy this by considering a singular
double cover of the reduced phase space instead.

The set K−1(0) is not a sub-bundle of T ∗Sn, because at fixed points r = 0 the
fiber has full rank and over Snreg the fiber has codimension 1. However, we can still
pass the quotient on the base manifold because the action is a cotangent lift. The
quotient space Sn/S1 is a dimension-(n − 1) closed half sphere (Sn−1+ )c and can be
parametrized by cylindrical coordinates (q1, . . . , qn−1, r) ∈ Sn−1, with r ≥ 0. The
symplectic quotient M0 is a cotangent bundle over Sn/S1, in the sense that the fiber
at a singular point with r = 0 is a closed half plane of “positive differentials” (the
differential, which is positive at the directions normal to the boundary of Sn/S1). In
that sense we can write

(M0, ω0) = (T ∗(Sn−1+ )c, ωc).

To conclude the construction of the reduced system we have to calculate the
reduced Hamiltonian. This can be easily done using the parametrization with
cylindrical coordinates (q̂, p̂) = ((q1, . . . , qn−1, r), (p1, . . . , pn−1, pr))

H(q, p) =
1

2

(
n−1∑
i=1

(
p2i + aiq

2
i

)
+ p2n + p2n+1 + an(q2n + q2n+1)

)
=

=
1

2

(
n−1∑
i=1

p2i + p2r +
k2

r2
+

n−1∑
i=1

aiq
2
i + anr

2

)
=

=
1

2

(
‖p̂‖2 + Vk(q̂) + 〈q̂, Âq̂〉

)
= Hr(q̂, p̂),
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where Â = diag(a1, . . . , an). The additional term Vk(q̂) = k2

r2 corresponds to the
centrifugal system force, induced by the rotation.

To simplify the description of the reduced system, we will use the whole sphere
Sn−1 instead of only half of it. The half sphere (Sn−1+ )c can be also viewed as a
quotient of Sn−1 by the group Z2 acting with reflections r 7→ −r. The reduced
Hamiltonian Hr(q̂, p̂) can be lifted on (T ∗Sn−1, ωc), since it only depends on r2 and
p2r and is invariant for Z2 action. We have thus constructed a Hamiltonian system
(T ∗Sn−1, ωc, Hr) such that its reduction coincides with the reduced Neumann system.

Theorem 2.1. The singular symplectic quotient (Mk, ωk, Hr) of the Neumann
Hamiltonian system (T ∗Sn−1, ωc, HA) with potential given by the matrix A =
diag(a1, . . . , an, an) is isomorphic to the quotient by the Z2 action of the perturbed
Neumann system (T ∗Sn−1, ωc, HÂ + Vk) with potential matrix Â = diag(a1, . . . , an).

The symplectic quotient of confluent Neumann system is in fact a special case of
Rosochatius system, which was studied in [7, 8, 9, 10]. A general Rosochatius system
is a Hamiltonian system on T ∗Sn with potential

V =
1

2

(
n+1∑
i=1

aiq
2
i +

k2i
q2i

)
. (2)

We can generalize the procedure from the above to the case where potential matrix
has all the eigenvalues double A = diag(a1, a1, a2, a2, . . . , an+1, an+1). This gives a
mechanical interpretation of Rosochatius system as Neumann system on a rotating
sphere.

Corollary 2.2. The symplectic quotient of the confluent Neumann system with
potential matrix A = diag(a1, a1, a2, a2, . . . , an+1, an+1) by the group of rotations
(S1)n+1 is isomorphic to the quotient by the group of reflections Zn+1

2 of the
Rosochatius system on T ∗Sn given by the potential (2). The coefficients ki of the
rational part are the values of the angular momentum of rotations in corresponding
eigenplanes of the potential matrix A.

This result was already mentioned in [1] and was used in [8] to study the
Rosochatius potential without polynomial part.

2.2. Integrability

Hamiltonian system with Hamiltonian H on the symplectic manifold of dimension
2n is called integrable if there exist n functionally independent pairwise Poisson
commutative first integrals, one of which is H. To show that the system is completely
algebraically integrable, we will prove that the level sets of the first integrals are real
parts of the extensions of Abelian varieties by C∗ (see [3] for a definition of complete
algebraic integrability).

The integrability of the confluent Neumann system is a consequence of the
integrability of the generic Neumann system, which is well known[1, 22]. The first
integrals for the confluent case can be obtained by taking the limit an → an+1 on
Uhlenbeck’s integrals for generic Neumann system:

F gi = q2i +
∑
j 6=i

(qipj − qjpi)2

aj − ai
. (3)
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A set of commuting integrals, equivalent to (3), tends to a set of commuting integrals
for the confluent case

{F g1 , . . . , F
g
n−1, F

g
n + F gn+1,

1

2
(an − an+1)(F gn − F

g
n+1)} →

→ {F1, . . . , Fn−1, Fn,K
2}

when taking the limit an → an+1. The set of commuting integrals for the confluent
Neumann system is given by

Fi = q2i +
∑
j 6=i

(qipj − qjpi)2

aj − ai
; i < n

Fn = q2n + q2n+1 +
∑
j<n

(qjpn − qnpj)2 + (qjpn+1 − qn+1pj)
2

aj − an
(4)

K2 = (qnpn+1 − qn+1pn)2.

Note that K is angular momentum for the rotations in qn, qn+1 plane. We can also
verify that the integrals in (4) are not independent but satisfy the same relations as
Uhlenbeck’s integrals in the generic case

n∑
i=1

Fi = 1

and that the Hamiltonian H can be expressed as a linear combination of Fi and K2

n∑
i=1

aiFi +K2 = 2H.

The Poisson brackets of Fi are continuous functions of ai so the commutativity of
the integrals is preserved when taking the limit an → an+1. Commutativity of K
with Fi also follows from the fact that Fi are invariant for S1 action, generated by
K. To conclude the proof of integrability one needs to verify the independence of the
integrals (4) (up to relation

∑
Fi = 1). The commutativity of the integrals Fi and K2

also follows from the AKS theorem, if we write Fi an K2 as invariant functions of Lax
matrix on appropriate loop algebra. This is a standard way to prove commutativity
of Uhlenbeck’s integrals for the generic Neumann case [10, 5].

Let us combine all the first integrals in a map

FEM : T ∗Sn → Rn

(q, p) 7→ (F1, . . . , Fn−1,K)

we will call energy momentum map. The fundamental property of integrable systems
is that the level sets of energy momentum map FEM are n-dimensional tori, on which
the flow can be linearized. We will also use the complexified version of FEM , defined
on (T ∗Sn)C.

Theorem 2.3. The confluent Neumann system (T ∗Sn, ωc, H) is algebraically
completely integrable system.

We have seen that by taking the limit an → an+1, {F1, . . . , Fn−1,K
2} is a set

of n commuting first integrals for symmetric Neumann system and we will show later
in 3.3 that they are functionally independent. We will also prove the part about
algebraically complete integrability in subsection 3.3.
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From the fact that the symmetric Neumann system is integrable also follows that
its symplectic quotient is integrable. This gives alternative proof of the integrability
of Rosochatius system, which is a symplectic quotient of the symmetric Neumann
system.

Corollary 2.4. The Rosochatius system (T ∗Sn, ωc, H + Vr) with Vr =
∑

ki2

q2i
is

algebraically completely integrable system.

3. Lax representation of the confluent Neumann system

In this section we will use Lax equation for (n + 1) × (n + 1) matrix polynomials to
study confluent Neumann system with n degrees of freedom. We will show that the
flow of the system can be linearized on the Jacobian of the singular spectral curve
and that the system is completely algebraically integrable. This will also conclude
the proof of Liouville integrability and yield the description of bifurcation diagram for
energy momentum map.

3.1. Lax equation in g̃l(n+ 1,C)

Let us write the confluent Neumann system (1) as an isospectral flow of matrix
polynomials in loop algebra g̃l(n + 1,C). We will use the Lax equation introduced
by Moser [1]. The loop algebra g̃l(n + 1,C) consists of Laurent polynomials with
coefficients in gl(n + 1,C), and can be written as a tensor product gl(n + 1,C) ⊗
C[λ, λ−1]. Consider complexified Neumann system (1) on a subspace (T ∗Sn)C ⊂
Cn+1 × Cn+1 defined by constraints

∑
q2i = 1 and

∑
qipi = 0. We introduce Lax

matrix polynomial from g̃l(n+ 1,C)

L(λ) = Aλ2 + q ∧ p λ− q ⊗ q ; q, p ∈ Cn+1 (5)
where A is the potential matrix of the Neumann system and (q, p) ∈ (T ∗Sn)C.
Neumann system either generic or confluent can be written as Lax equation

d

dt
L(λ) = [M(λ), L(λ)]. (6)

with M(λ) = Aλ + q ∧ p = (λL(λ))+ (the subscript + denotes the polynomial part
of an element of g̃l(n + 1,C))[2]. The flow of (6) is isospectral as it conserves the
spectrum of the matrix L(λ). This means that the characteristic polynomial P (λ, µ)
and the corresponding affine spectral curve, defined by equation

P (λ, µ) = det(L(λ)− µ) = 0

do not change along the flow and can be expressed only with the values of the first
integrals of Neumann system. In order to avoid unnecessary singularities at the
infinity, the affine curve is completed in the total space of the line bundle OP1(2) over
P1, which is given by the transition function (λ, µ) 7→ (λ−1, λ−2µ) . The completion of
the affine spectral curve in OP1(2) is called the spectral curve of L(λ) and denoted by
Cm. Note that for any given L(λ) there are also naturally defined a map λ : Cm → P1

and a section µ of the bundle λ∗OP1(2) apart from the spectral curve Cm.
The spectral curve of L(λ) is hyperelliptic and we can see that by introducing

new variables x = λ−2µ and y = λ
∏n+1
i=1 (ai − x), where ai are the eigenvalues of the

potential matrix A. The equation we obtain is:

y2 = Q(x)

n+1∏
i=1

(ai − x), (7)
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where Q(x) is a polynomial of degree n [1, 6]. The coefficients of Q(x) are first
integrals of the confluent Neumann system and if we write Q(x) in terms of Lagrange
interpolating polynomials over the points a1, . . . , an, an using notation with partial
fractions

Q(x) =

n+1∏
j=1

(aj − x)

(
Fn

an − x
+

K2

(an − x)2
+

n−1∑
i=1

Fi
ai − x

)
, (8)

the coefficients we obtain are the integrals (4) we met before .
In the confluent case, where an = an+1, the product

∏
(ai − x) has a quadratic

factor (an−x)2 and the spectral curve has a singular point S given by (x, y) = (an, 0)
or (λ, µ) = (∞, an). The singularity S is a double point for K 6= 0 and a cusp for
K = 0. The smoothness of the spectral curve is closely related to the regularity of the
matrix L(λ). Recall that a matrix B ∈ gl(r,C) is called regular if all the eigenspaces
of B are one dimensional.

Proposition 3.1. Let C be the spectral curve of matrix polynomial L(λ) and a ∈ P1.
If all the points λ−1(a) ∈ C are smooth, then the matrix L(a) is regular.

For proof see [5, 13]. The value of L(λ)λ−2 at λ = ∞ is the matrix A and the
singularity at S is a consequence of the fact that A is not regular when an = an+1 .

Let C be normalization of the spectral curve Cm, which is described by

w2 = Q(x)

n−1∏
i=1

(ai − x), (9)

where w = y/(an − x). We will call C the normalized spectral curve of L(λ). There
is a map π : C → Cm that is biholomorphic everywhere except at the inverse image of
the singular point S. The inverse image π−1(S) consists of two points {P+, P−} for
K 6= 0 and a point P0 for K = 0. In case when K 6= 0, the curve Cm is obtained from
C by identifying the points {P+, P−} into the singular point S. The singular curve Cm
can be described as a singularization of C given by modulus m (see [15] for details).
The modulus is m = P+ + P− for K 6= 0 and m = 2P0 for K = 0.
Remark 3.2. Note that we will only resolve the singularity at S, which is “generic”
in the sense that it appears for all the values of the energy-momentum map. So the
curve C can still be singular for some values of the energy-momentum map.

Finally we find the genus of C and Cm from the fact that the curves are
hyperelliptic and from the degree of the polynomials in (7) and (9). We obtain
g(C) = n− 1 for normalized spectral curve C and the arithmetic genus ga(Cm) = n for
the singular curve Cm.

3.2. Isospectral manifold of matrix polynomials

We have seen that the Neumann system satisfies Lax equation and that the spectral
curve depends only on the first integrals and that all the first integrals are encoded
in the spectral curve. The level sets of (complexified) energy momentum map FEM
lie in the set of matrices L(λ) with fixed spectral curve Cm. It is therefore essential to
describe the set of matrix polynomials with a given spectral curve.

Let P (λ, µ) be a spectral polynomial for some matrix polynomial L(λ) ∈ g̃l(r,C)).
Denote withMP the subset of all the elements of g̃l(r,C) with the same characteristic
polynomial P (this also fixes the spectral curve C)

MP = {L(λ); det(L(λ)− µ) = P (λ, µ)}.
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All L(λ) ∈MP have the same spectral curve C, which is defined by P (λ, µ) = 0.
While the characteristic polynomial and thus the eigenvalues of L(λ) are fixed by

the flow, the eigenvectors and eigenspaces change. Let us define a map

ξL(λ) : C → Pr−1,

such that ξL(λ)((λ, µ)) is one dimensional eigenspace of the matrix L(λ) with respect
to the eigenvalue µ. If the spectral curve is smooth, than by proposition 3.1 all the
eigenspaces of L(λ) for any λ are onedimensional and the map ξ is well defined. The
map ξL(λ) defines a line bundle on C and its dual is called eigenvector line bundle or
shorter eigenline bundle. We will denote eigenline bundle by LL(λ). By construction,
the eigenline bundle is a subbundle of the trivial bundle C ×Cr. One can see by using
Riemann-Roch-Grothendick theorem that the degree (Chern class) d of the eigenline
bundle LL(x) equals g + r − 1 where g is the genus of the spectral curve C.

The only condition for ξL(λ) to be defined is that the eigenspaces of L(λ) are one
dimensional for all but finite number of points on C. If the spectral curve is singular,
than the map ξL(λ) can be defined on the set of points Cm − N ⊂ Cm where the
matrix L(λ) has one dimensional eigenspace. If the set N is finite, the map ξL(λ) can
be extended as a holomorphic map and eigenline bundle LL(x) can be defined on the
normalization C of the spectral curve. Note that by the proposition 3.1 the set N is a
subset of singular locus of the spectral curve Cm.

One can define the eigenbundle map

e :MP → Picd(C)
L(λ) 7→ [LL(λ)],

from MP to the Picard group Pic(C) of isomorphism classes of line bundles on the
normalized spectral curve C. The subset Picd(C) consists of classes of line bundles with
given Chern class d. The set Picd(C) is a copy of the zero degree Picard subgroup
Pic0(C), which is in turn isomorphic via Abel-Jacobi map to the Jacobian Jac(C)
of C. The map e assigns to each matrix polynomial L(λ) the isomorphism class of
its eigenline bundle and thus encodes the flow of Lax equation. The map e is not
surjective since eigenline bundles cannot lie in the special divisor Θ on the Jacobian.
The map e is neither injective since the class of eigenline bundle defines the matrix
polynomial only up to conjugation by the gauge group PGl(r,C). The space we have
to consider is the quotient space MP /PGl(r,C) and it was shown in [5] that if the
spectral curve C is smooth, the space MP /PGl(r,C) is isomorphic as an algebraic
manifold to the Zariski open subset Jac(C)−Θ of the Jacobian of the spectral curve
C. The isomorphism is given by the eigenbundle map e.

As the leading coefficient in L(λ) is preserved by the flow, we will use the
closed subset of MP of matrix polynomials with fixed leading coefficient. Let
L(λ) = Aλl +Al−1λ

l−1 + . . .+A0 and let A be fixed. We denote

MA
P = {L(λ) ∈MP ; lim

λ→∞
L(λ)/λl = A}.

The action of the gauge group PGl(r,C) onMP reduces to the action of the stabilizer
subgroup PGA < PGl(r,C) of A. The quotient MA

P by PGA is again isomorphic to
the Jacobian

MA
P /PGA ' Jac(C)−Θ.

Remark 3.3. If the spectral curve C is smooth at infinity, the matrix A has to be
regular by proposition 3.1. As a consequence, the stabilizer group of A is the product
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PGA = (C∗)s−1 × Cr−s where s is the number of distinct eigenvalues of A. If A is
not regular, the dimension of the stabilizer group PGA is larger. In our case, when
A = diag(a1, . . . , an, an) the group PGA is the product

(C∗)n−2 ×Gl(2,C).

Let us assume for one moment that the matrix A is regular. We have seen before
that the level set MA

P is an extension of Jac(C) − Θ by an Abelian algebraic group
PGA. As it happens, the generalized Jacobian is also defined as an extension by
Abelian algebraic group and it was shown in [13] that

MA
P ' Jac(Cm)−Θ

for a suitable choice of modulus m. The chosen modulus is the effective divisor
consisting of infinite points Pi on the spectral curve

m =
∑

Pi∈λ−1(∞)

miPi,

where the coefficients mi are multiplicities of the eigenvalues µ(Pi) of A = L(∞).
The isomorphism MA

P → Jac(Cm) − Θ is given by the eigenbundle map em to the
generalized Jacobian. Let S = |m| be the set of points in C that are mapped to the
singular point in Cm. The line bundle on the singular curve Cm is given by a divisor
on C that does not intersect the singular set S. To give a line bundle on Cm is thus
enough to give a section of a line bundle on C that has no zeros or poles in S. We can
then extend the map e :MP → Picd(C) to a map

em :MP → Picd(Cm)

by choosing a section of e(L(λ)) uniformly on MP that does not have any zeros or
poles in the infinite point. This can be done by appropriate normalization. It was
shown in [13, 14] that em gives an isomorphism from the isospectral spaceMA

P to the
Zariski open subset Jac(Cm)−Θ of the generalized Jacobian of the singular spectral
curve, given by modulus m.
Remark 3.4. The above results give orientation about the expected number of degrees
of freedom of isospectral flows. We see that the upper limit is the arithmetic genus of
the singularization of the spectral curve, which depends on the degree l and the rank
r of L(λ).

In the case of confluent Neumann system, the matrix A is not regular and
corresponding spectral curve is singular. We will show later that the Lax flow also
preserves part of the “derivative” of L(λ) at the singular point. We will restrict the
space MA

P further by fixing a specific block of the lower term Al−1. The resulting
isospectral set will again be isomorphic to the open subset of the generalized Jacobian
[14]. Note that we have to assume regularity of the fixed block of the lower term Al−1
in order to have the isomorphism.

3.3. Proof of the integrability

In order to prove the Liouville integrability of the confluent Neumann system, we have
to show that its first integrals {F1, . . . , Fn−1,K} Poisson commute and that they are
functionally independent. We already know that the integrals commute from section
2. We also know that the level sets of the first integrals - the Arnold-Liouville tori - lie
in the isospectral manifoldMA

P . We will use the eigenbundle map em to map Arnold-
Liouville tori to the real part of the generalized Jacobian of the singular spectral curve
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Cm and show that this map is a (Z2)n−1 covering. This will prove complete algebraic
integrability of confluent Neumann system and independence of the first integrals will
follow.

Let En be the eigenspace of the double eigenvalue an, which is spanned by the
unit vectors en and en+1. The behavior of L(λ)|En near infinity is given by the n, n+1
block F of the matrix q ∧ p, which is in fact conserved by the isospectral flow. The
block F depends only on the angular momentumK = qnpn+1−qn+1pn and is a regular
matrix

F =

(
0 K
−K 0

)
of rank 2 if K 6= 0. The isospectral flow given by (6) conserves both matrix A and
the block F , therefore it is reasonable to consider isospectral manifold of all matrix
polynomials with this data fixed

MA,F
P = {L(λ) ∈MP ; L(∞) = A, prEn

◦ L′(∞)|En
= F}

where prEn
is a projection to En, and the values of L(λ) and L′(λ) at infinity are defined

by the limits L(∞) := limλ→∞(λ−2L(λ)) and L′(∞) := limλ→∞ d(λ−2L(λ))/d(λ−1).
OnMA,F

P acts the subgroup PGA,F < PGA of matrices that stabilize F as well. We
can write

PGA,F ' (C∗)n−1 ×GF
where GF is the stabilizer subgroup of F in Gl(2,C). The group GF ' C∗ consists of
matrices

r

(
cosϕ sinϕ
− sinϕ cosϕ

)
,

where r ∈ (0,∞) and ϕ ∈ [0, 2π). We will describe the isospectral manifoldMA,F
P as

an open subset of the generalized Jacobian of singularized spectral curve.

Theorem 3.5. Let f ∈ Cn be the value of FEM such that the normalized spectral
curve C is smooth and K 6= 0. Let denote by TA = (C∗)n−1 the subgroup of PGA of
diagonal matrices G = [gi,j ] with gn,n = gn+1,n+1.

(i) The complex level set F−1EM (f) is a covering of the isospectral manifoldMA,F
P /TA.

The fiber of the covering is the same as the orbit of the group (Z2)n−1 generated
by reflections qi 7→ −qi for 1 ≤ i ≤ n− 1.

(ii) The isospectral manifold MA,F
P /TA is isomorphic to the open subset of the

generalized Jacobian of the singular spectral curve Cm′ given as a singularization
of smooth spectral curve by modulus m = (∞, iK) + (∞,−iK).

(iii) The flow of K generates the fib re C∗ of the extension C∗ → Jac(Cm)→ Jac(C).
(iv) The flow of H on the generalized Jacobian Jac(Cm) is linear.

Proof. If K 6= 0 then F is a regular matrix with 2 different eigenvalues ±iK. By the
result in [14] the isospectral manifoldMA,F

P is isomorphic as an algebraic manifold to
the Zariski open subset J(Cm) − Θ of the generalized Jacobian of the singularized
spectral curve, given by spectral polynomial P and modulus m′ = λ−1(∞) =
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i=1 (∞, ai) + (∞, iK) + (∞,−iK). The same theorem asserts that the following

diagram commutes

0 // PGA,F //

��

MA,F
P

//

em′

��

MA,F
P /PGA,F //

e

��

0

0 // (C∗)n // Jac(Cm′)−Θ // Jac(C)−Θ // 0

If we singularize C only by modulus m = (∞, iK) + (∞,−iK), we can insert
em :MA,F

P /(C∗)n−1 → Jac(Cm)−Θ into above diagram

GF

��
MA,F

P
//

em′

��

MA,F
P /TA //

em

��

MA,F
P /PGA,F

e

��
Jac(Cm′)−Θ // Jac(Cm)−Θ // Jac(C)−Θ

C∗

OO

We only have to prove that the fiber F−1EM (f) consisting of matrices of the form (5)
is a covering of the quotient MA,F

P /TA. By using the Lax matrix (5) we gave a
parametrization

JA : (q, p) 7→ L(λ) = Aλ2 + q ∧ p λ− q ⊗ q

of the quotient MA,F
P /TA by (q, p) ∈ F−1EM (f) ⊂ (T ∗S)C. First note that the map

JA : (T ∗Sn)C →MA,F
P is an immersion. We will show that any orbit of TA intersects

the image of JA only in finite number of points. To explain how PGA,F acts on the
Lax matrix (5), note that an element g ∈ PGA,F acts on a tensor product x ⊗ y of
x, y ∈ Cn+1

g : x⊗ y 7→ (gx)⊗ ((g−1)T y)

by multiplying the first factor with g and the second with (g−1)T . The subgroup of
PGA,F , for which the generic orbit lies in the image of JA, is given by orthogonal
matrices

O(n,C) ∩ PGA,F ' (Z2)n−2 ×GF ∩O(2,C).

There are special points in the image of JA that have a large isotropy group (take
for example qi = δij and pi = δik, k 6= j, where the isotropy is (C∗)n−2). But
the intersection of any orbit with the image of JA coincides with the orbit of
(Z2)n−2 × GF ∩ O(2,C). If we take the torus TA < PGA,F consisting of diagonal
matrices with gn,n = gn+1,n+1, so that TA∩GF = {Id}, the orbits of TA will intersect
image of JA only in the orbit of the finite subgroup (Z2)n−2. We have proved that
the level set of Lax matrices L(λ) = JA(q, p) with fixed characteristic polynomial P is
an immersed submanifold in MA,F

P that intersects the orbits of torus TA ' (C∗)n−1

in only finite number of points and is thus a covering of the quotientMA,F
P /TA.



Algebraic integrability of confluent Neumann system 13

The group GF is the complexification of the group of rotations in qn, qn+1 plane
and is generated by the Hamiltonian vector field of K. This proves the assertion (iii).

To prove the assertion (iv), note that the matrix polynomialM(λ) in Lax equation
(6) is given as a polynomial part R(λ, L(λ))+ for a polynomial R(z, w) = zw. It is well
known that such isospectral flows are mapped by em to linear flows on the Jacobian
Jac(Cm) (see [4] for reference).

Taking into account the real structure on Cm, the Arnold-Liouville tori can be
described as a real part of the generalized Jacobian.

Theorem 3.6. For K 6= 0 and C smooth, the Arnold-Liouville tori are (Z2)n−2

coverings of the real part of the generalized Jacobian. The rotations generated by K
are precisely the rotations of the fiber S1 in the fibration S1 → Jac(Cm)R → Jac(C)R,
which is the real part of the fibration C∗ → Jac(Cm)→ Jac(C).

Above theorem gives us an algebraic way to describe symplectic quotient
T ∗Sn//kS

1. Algebraically T ∗Sn is a covering of the relative generalized Jacobian,
which is a disjoint union

J̃acR = ∪CmJacR(Cm)

over the space of curves Cm corresponding to the real values of energy momentum
map. The symplectic quotient of J̃acR//kS1 is then the relative Jacobian over the
space of normalized spectral curves with fixed value of K

∪Cm;K=kJac
R(C).

Corollary 3.7. The complex level set of (F1, . . . , Fn−1) of the symplectic quotient of
the confluent Neumann system is a (Z2)n−2 covering of the quotient MA,F

P /PGA,F .
The manifold MA,F

P /PGA,F is isomorphic to the open subset Jac(C) − Θ of the
Jacobian of the normalized spectral curve.

This result agrees perfectly with the results obtained previously for the
Rosochatius system [11].

Proof of the theorem 3.6. Note that the eigenvalues of F are ±iK. Note also that the
value of µ at the points P± equals to the eigenvalues of F , so P± = (∞,±iK). On
C there is a natural real structure J induced by the conjugation on (λ, µ) ∈ C2. The
points P± that are glued in the singular point form a conjugate pair P± = JP∓. If
we follow the argument in [17] we can find the real structure of the fiber C∗ in the
extension C∗ → Jac(Cm) → Jac(C). Note that Pic(C) is defined as the space of all
divisors modulo divisors of meromorphic functions on C, whereas Pic(Cm) is given by
the divisors on C that avoid P± modulo meromorphic functions on Cm. So the fiber C∗
is given by meromorphic functions on C modulo meromorphic functions on Cm. Since
we obtained Cm by gluing two points P±, a function f on C defines a function on Cm
if f(P+) = f(P−) or equivalently f(P+)/f(P−) = 1. For a divisor of any function f
on C, the number z = f(P+)/f(P−) ∈ C∗ determines its class in the Picard group
Pic(Cm). So if P± = JP∓, then the real structure on the fiber C∗ is given by the map

z =
f(P+)

f(P−)
→ f(JP+)

f(JP−)
=
f(P−)

f(P+)
=

1

z̄

and the real part of C∗ is the unit circle S1 given by zz̄ = 1. In contrast, when the
singular points are real P± = JP±, the real structure on C∗ is given by the conjugation
and the real part of C∗ is R∗.
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3.4. Bifurcation diagram

We can use the normalized spectral curve C to describe the singular locus of energy
momentum map.

Proposition 3.8. The vector (f1, . . . , fn−1, k) ∈ Rn is a regular value of the real
momentum map

FEM = (F1, . . . , Fn−1,K)

if and only if the normalized spectral curve C is smooth. The singular locus of the map
FEM consist of

• hyperplanes Fi = 0

• zero level set of the discriminant of Q(x) from (8)
• the codimension 2 hyperplane defined by K = 0 and H = 1

2ai

Proof. The if part follows directly from theorem 3.5. If C is smooth and K 6= 0, then
the level set of FEM is locally isomorphic to the real part of Jac(Cm) − Θ, which is
of dimension n. Hence the rank of the differential of FEM is also n. If K = 0 and
C is smooth, the level set of (F1, . . . , Fn−1) is locally isomorphic to the real part of
the isospectral manifold MA,F

P /PGA,F , which is in turn isomorphic to the real part
of Jac(C)−Θ. Since the dimension of Jac(C) is n− 1, the rank of the differential of
(F1, . . . , Fn−1) is also n− 1. The integrals Fi are invariant to the rotations generated
by K and therefore their Hamiltonian vector fields XF1

, . . . , XFn−1
are independent

from XK . We are left to show that if XK = 0 the normalized curve C is not smooth.
It is easy to see that the case XK = 0 appears only if XH = 0 but then the rank of
XF1

, . . . , XFn−1
is not full and the curve C has to be singular.

To prove the only if part let us consider case by case the components of the
singular locus. The curve C is singular if and only if the polynomial

∏
(ai − x)Q(x)

has a double root. This can happen in two cases

(i) ai is a zero of Q(x), this happens when Fi = 0

(ii) Q(x) has double zero, this happens if the discriminant of Q is zero.

The hyperplanes Fi = 0 are singular, since for the points (q, p) with qi = pi = 0 the
differential dFi = 0. The proof that the discriminant of Q is singular can be found
in [6] and I will omit it here, because it is very specific and beyond the scope of this
article.

Remark 3.9. For values of an > aj for some 1 ≤ j < n the bifurcation diagram has a
singular “thread” of focus-focus singularities defined by values K = 0 and H = 1

2aj .
This would suggest the presence of nontrivial monodromy. Indeed for two degrees of
freedom, the singular level set corresponding to the isolated singular value is a union
of two spheres with two pairs of points identified. By the general result in [23] it
follows that the monodromy is nontrivial and equals(

1 0
ε 1

)
(10)

with ε = 2 being the number of spheres in the singular level set. This can also
be checked by direct calculation.
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(a) a1 > a2 (b) a2 > a1

Figure 1: Image of the energy-momentum map (K, 2H) for confluent Neumann system
with potential matrix A = diag(a1, a2, a2). Regular values lie in the shadowed area
while the solid curves contain singular values. The points (0, a1) and (0, a2) are the
images of fixed points.

The image of the energy momentum map (K, 2H) for confluent Neumann system
with two degrees of freedom is depicted in figure 1. Regular values lie in the shadowed
area while the solid curves contain singular values. The points (0, a1) and (0, a2) are
the images of fixed points. Note that when passing from a2 > a1 to a1 > a2, the
pair of lines becomes imaginary and only their intersection - isolated focus-focus point
(0, a1) - remains real.

3.5. Note on superintegrability

An integrable system with Hamiltonian H and a commuting set of first integrals
H = F1, . . . , Fn is superintegrable, if there exist additional first integrals that Poisson
commute with H but not with all Fi (see [24] for reference).

One would expect that confluenting eigenvalues of the potential would result
in additional symmetries and superintegrability. This is the case if the potential
has k > 2 identical eigenvalues and the system is invariant to the action of non
commutative group SO(k), which gives rise to additional first integrals that do not
Poisson commute with each other.

However if only two of the eigenvalues coincide, the confluent Neumann system
is not superintegrable. The proof of this conjecture is beyond the scope of this article,
but we provide the argument in two degrees of freedom. In that case superintegrability
implies that the flow of H is periodic. If we write H = p1I1 + p2I2 with the action
integrals I1 = K

2π and I2, the flow of H is periodic if and only if the quotient p1
p2

is
rational. However the presence of nontrivial monodromy (10) for a1 > a2 implies,
that the quotient p1

p2
increases by ε = 2 if we make one turn around the singular point

(0, a1) in the image of (K, 2H). Therefore the quotient p1
p2

has to be irrational for
generic values of H and K.

3.6. Note on the case K = 0

We have seen in the previous section that the case K = 0 is significantly different
from the generic case K 6= 0. The problem lies in the following observation. The
space of hyperelliptic curves that appear in the description of Neumann system is
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parametrized byK2 and not byK. As a consequence, the relative generalized Jacobian
is degenerated for K = 0. The phase space of complexified Neumann system is
therefore “folded” into relative Jacobian by the map K → K2. The map between
original phase space and its image in relative Jacobian is singular at K = 0. It is
therefore illusory to expect that we can describe the whole phase space including the
fiber K = 0 by algebro-geometric methods. Different approach has to be considered
that would study the “fold” given by K2 in more detail. This is to be covered in our
future work.

4. Conclusions and discussion

We have proved the algebraic integrability of the confluent Neumann system by
proving the theorem 3.5, which describes Arnold-Liouville tori in terms of the
generalized Jacobians of singular spectral curve. We performed the reduction of the
rotational symmetry and established a firm relationship between symplectic reduction
and desingularization of the spectral curve (corollary 3.7). Most of our results
very likely generalize to any Moser system arising from the rank 2 perturbations
of a fixed matrix with a double eigenvalue. From our work and previous examples
[17, 16] it appears that there generally is a relation between the rotational symmetry
and singularities of spectral curves. We have exposed this relationship explicitly
in our case and have seen that the reduction of S1 symmetry reveals itself in
the algebraic description as a reduction from generalized Jacobian of the singular
spectral curve to the “ordinary” Jacobian of the normalized spectral curve. One can
say that the desingularization of the spectral curve corresponds to the symplectic
quotient. Unfortunately, this relation is not a general phenomenon as we can see
when considering the case K = 0. One can speculate that the appearance of the
global action of a compact group is related to the presence of a “generic” singularity
but there is no general proof yet. Note that the generic Neumann system has no
symmetries given by a compact group.

The singularities of the spectral curve appeared in two different roles in our study.
The singularity that is a consequence of the confluency is “generic” in that it appears
uniformly for all values of the energy-momentum map. The rotational symmetry
shows as the extension by complexified group of rotations C∗ defining the generalized
Jacobian that appears globally. The “sporadic” singularities, which correspond to
the singular values of the energy momentum map (see proposition 3.8) are strictly a
local phenomenon. In those cases the extension by C∗ and the resulting rotational
symmetry does not extend globally. Algebraically speaking both singularities are the
same, but the “generic” singularity appears globally and thus give rise to a rotational
symmetry. Sporadic singularities on the other hand appear when the level sets of
energy momentum map are singular (orbits of lower dimension, heteroclinic and
homoclinic orbits). It would be interesting to describe the isospectral sets of the
singular spectral curves. Note that when we introduced generic singularity we made
sure that we used the subset of the singular isospectral set, consisting of regular Lax
matrices. In the study of sporadic singularities, non regular part of the isospectral
set should not be avoided. It is our conjecture that the singular isospectral sets that
induce homoclinic or heteroclinic orbits should pose an obstruction to the existence
of global action of compact groups.

In a somewhat more ambitious and speculative vein, one could study the
relationship between symmetries of certain PDE’s and generic singularities in
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appropriate spectral curves of infinite genus. Maxwell-Bloch equation for example
can be viewed as a chain of confluent Neumann systems[25, 26], whose symmetries
indeed reflect in a symmetry of the whole Maxwell-Bloch system [27]. The description
of Maxwell-Bloch system with generalized Jacobians of singular spectral curves of
infinite genus should be to some extent analogous to our results.
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