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Lemma
Rule-based clustering for promoter analysis

Summary

Background

The genetic cellular response to internal and eateshanges is determined by the sequence and
structure of gene regulatory promoter regions.

Objectives

Using data on gene regulatory elements, (either putative or known transcription factording
sites) and data on gene expression profiles walisgover structural elements in promoter regions
and infer the underlying programs of gene regutatituch hypotheses obtainedsilico can greatly
assist us in experiment planning. The principatadle for such approaches is the combinatorial
explosion in different combinations of promotermeénts to be examined.

Methods

Stemming from several state-of-the-art machineniegrapproaches we here propose a heuristic,
rule-based clustering method that uses gene expnesisilarity to guide the search for informative
structures in promoters, thus exploring only thestyppomising parts of the vast and expressively ric
rule-space.

Results
We present the utility of the method in the analygigene expression data on budding ySase-
revisiaewhere cells were induced to proliferate peroxiseme

Conclusions
We demonstrate that the proposed approach is@biéet informative relations uncovering relatively
complex structures in gene promoter regions tlrailaede gene expression.
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1 Introduction

Regulation of gene expression is a complex mechamghe biology of eukaryotic cells. Cells carry
their function and respond to the environment bypmhestration of transcription factors and other
signaling molecules that influence gene expresdiie.resulting products regulate expression of
other genes thus forming diverse sets of regulatatiiways. To better understand gene function and
gene interactions we need to uncover and analyzprtigrams of gene regulation. Computational
analysis (1) of gene regulatory regions that canin®rmation from known gene sequences, putative
binding sites and sets of gene expression stuch@sgreatly speed-up and automate the tedious dis-
covery process performed by classical genetics.

The regulatory region of a gene is defined asedddtrof DNA, which is normally located upstream of
the gene’s coding region. Transcription factorsspecial proteins that bind to specific sequences
(binding sites) in the regulatory regions, thushiting or exciting gene expression of target genes
Regulation by binding of transcription factorsustjone of the many regulatory mechanisms. Ex-
pression is also determined by chromatin strudiyeepigenetic effects, post-transcriptional, $ran
lational, post-translational and other forms ofulagon (3). Because there is a general lack fe¢he
kinds of data, most current computational studiesi$ on inference of relations between gene regu-
latory content and gene expression measured usW#ymicroarrays (4).

Determination of the regulatory region and putabueding sites are the first crucial steps in such
analyses. Regulatory and coding regions differudeotide and codon frequency. This fact is suc-
cessfully exploited by many prediction algorithrd$, @nd promoter (regulatory) sequences are rea-
dily available in public data bases for most mamtglanisms. The next crucial, well studied, and
notoriously difficult step is to determine the tsanption factors’ putative binding sites in promot
regions. These are 4 to 20 nucleotide long DNA seges (3) which are highly conserved in the
promoter regions of regulated genes. A matrix regmeation of the frequencies of the four nucleatide
(A, T, C, G) at each position in the binding sgendrmally used in computational analysis. The
TRANSFAC data base (6) is a good source of expertiatly confirmed and computationally inferred
binding sites. Candidate binding sites for gendh wnknown regulations can be found using local
sequence alignment programs such as MEME (7). &ilddtdescription and evaluation of such tools
is presented in the paper by Tongial. (8).

Most contemporary methods that try to relate génetsire and expression start with gene expression
clustering and then determine cluster-specific inigaites (4, 9). The success of such approaches
strongly relies on the number and composition okgausters. Slight parameter changes in clustering
procedures can lead to significantly different tdusig (10, 11), and consequently to inference of
different cluster-specific binding sites. Most oftthese methods search for non-overlapping clusters
and may miss interesting relations, as it is kntlvat genes can respond in many different ways and
perform various functions (12).

An alternative to clustering-first approaches aethuds that start with information on binding sites
and search for descriptions shared by similarlyesged genes. For example, in an approach by
Chianget al. (13) the group’s pair-wise gene expression intnaatation is computed for each set of

Page | 2



genes comprising a specific binding site in thexpter region. Their method reports on binding sites
where this correlation is statistically significabtit fails to investigate the combinations of twro

more putative binding sites: it is known that regign of gene expression can be highly combindtoria
and requires the coordinated presence of manydnatisn factors. There are other approaches where
combinations of binding sites are investigated,thay are often limited to the presence of twaossite
due to the combinatorial explosion of the searciif). For example, the number of all possible
combinations of three binding sites, from a basa thfousand binding sites available for modeling,
quickly grows into hundreds of millions. Transcigpt is also affected by absolute or relative orien-
tation and distance between binding sites and ddimeimarks in the promoter regiare(, the trans-
lation start ATG), further complicating the langeaat should be used to model promoter structure
and subsequently increasing the search space.

To overcome the limitations described above, weettavised a new algorithm that can infer poten-
tially complex promoter sequence patterns andeeh@m to gene expression. In the approach, which
we call rule-based clustering (RBC), we essentiatisrowed from several approaches developed
within machine learning that use heuristic seaoctope with potentially huge search space. The
uniqueness of the presented algorithm is its ghditdiscover groups of genes that share any com-
bination of promoter elements that can be in plaa@mand orientation specific to the start of theege

or to another promoter element. Below, we firsirethe language we use to describe the constitutio
of promoter region, then describe the RBC algoritmd finally illustrate its application on the
analysis of peroxisome proliferation data®ncerevisiae

2 Rule-based clustering method

The inputs to the proposed rule-based clusteriBC)Rmethod are gene expression profiles and data
on their promoter regulatory elements. The algarittoes not include any preprocessing of expres-
sion data€.g, normalization, scaling) and considers the dataregided. For each gene, the data on
regulatory elements is given as a set of sequetiésrvith their position relative to the starttbie

gene and orientation. The motifs are representbdrdby a position weight matrix (7) or a singleeli
consensus; the former was used in all our expetsn@&he RBC algorithm aims to find clusters of
similarly expressed genes with structurally simgasmoter regions. The output of the algorithm are
rules of the form “IFstructureTHEN expression profife wherestructureis an assertion over the
regulatory elements in the gene promoter sequemtexgression profilés a set of expression pro-
files of matching genes.

2.1 Descriptive language for assertions on promoter structure

RBC discovers rules that contain assertions-camtton the structure of the promoter region that
include the presence of binding sites, the distafitke binding sites from transcription and transl
tion start site (ATG), the distance between bindiitgs, and the orientation of binding sites. Weeha
devised a simple language to represent these iasseiffor instance, the expression™says that site
S, (in whichever orientation) must be present ingh@moter, and the expression“8—d(ref.S)”
asserts that both siteg &d $ should be present in the promoter region suchShat the non-sense
direction, appears,dhucleotides upstream 0$.S
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The proposed description language is not unequivtitmsame promoter structure may often be
described in several different ways. For exampig,a the following rules may describe the same
structure : “S+@—-di(ref:ATG) and S-@d(ref:s),” “S,—@—-&k(ref:ATG) and $+@-d(ref:S;),” and
“S1+@-di(ref:ATG) and S—-@-ds(ref:ATG)”. All three descriptions require sites &d $ to be
oriented in the sense and non-sense directionsgctgely. The first rule requires site ® be posi-
tioned at distance,drom the reference ATG (translation start sita) #re position Sto be relative to
S;. According to the second rule, the position pfsSelative to the absolutely positionegle® dis-
tance dfrom ATG. The third rule defines the position @ith sites relative to ATG. In such cases, the
RBC algorithm will return only one of the semanlig@quivalent descriptions, depending on the
order in which they were found in the heuristicrsha

2.2 RBC algorithm

The proposed algorithm is outlined in Fig. 2. Birput it requires data on gene expression pgofile
P and data on promoter elements in the corresporgiing regulatory regions. The algorithm re-
turns a list of inferred rules of the fofR= (C, P) with condition on the promoter structu€eontained
in genes with similar gene expression profies

RBC uses a beam-search approach (lines 3-12) fetldwy two post-processing steps (lines 13 and 14
of the algorithm)Beamis a list of at modit currently inferred rules considered for furthdmement
that are ordered according to their associatedesdgsee below). Parameteis a user-defined pa-
rameter (with a default value of 1000) that affébtsscope of the search and thus the runtimehét t
start of the searcBeamis initialized with a rule “IFTrue THEN Py,” that covers all genes under
consideration.

In every iteration of the main loop (lines 3 to 1Ak search focuses on the best-scoredRel¢C, P)
from Beamand considers all possible single-term extensidiiis conditionC, which are allowed by
the given descriptive language. Each such refinémesnilts in a new candidate rule, which is added
into the list ofCandidateqline 6). The refinements include adding the tewith assertion on the
presence of a site, presence of a site with ientation, or the presence of a site (with or witltbe
information on orientation) at a relative distané@ specific landmark (another site or start afe)e
Refined rules are then represented in a simplibeh. For instance, adding a single-site presence
condition S to the initial rule “(TruePy)” yields a rule “True and Swhich is simplified to its logical
equivalent “Q.” Adding a term with the same site but non-sergntation to the latter yields the rule
“S; and $-" which is simplified to “S-.” Similarly, adding a term with the same site fuith in-
formation on a distance of 100 to 80 nucleotidethéoATG may result in a rule such as
“S;@-100.-80(ref:ATG).” Requirements of other binding siteayrbe added, either simply by
requiring their presence g, rule “S and ") or by adding them as a reference to the pregentl
included sites in conditiong (g, “S;@-100.-80(ref:S$)”). Candidate rules will include those with
matching at leastl genes, wherbl being a user-defined parameter with a defaulterafusix.

Candidate rules are then compared to their (nane@f parent rule based on the intra-cluster
pair-wise gene expression profiles distance ottheered genes. To identify co-expressed genes, the
algorithm uses Pearson correlation as a defauirdie measure, which — when computing the dis-
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tance between two genes — ignores experiments Vitreaay of these two genes the expression is
missing. The user can replace it with any othee tyfodistance function that suits the particulpetpf
expression profiles or the biological question added. For a set of candidate rules, only thogeawi
significant reduction of this distance are retaiirethe list ofCandidategline 7). This decrease of
variance in the intra-cluster pair-wise distanset®sted using thie-teststatistic:

F = SSR SSCandidate

ng — 1 Ncandidate — 1

whereS& andSSandgidate@re sums of squared differences from mean inkigleltister of genes cov-
ered by the parent ruRand by a refine€andidaterule, respectively, and valuag andncangigate@re
the total number of genes in each of the two ctas#ep-valueis calculated from thE scoreand used
to determine the significance of change (the tholkeslo, defaults to 0.05). Figure 1 shows an ex-
ample of explored refinements during rule searel itiiay lead to the identification of pro-
file-coherent gene clusters.

The resulting refined rules stored in thandidatedist are added tBeam(line 9), which retains at
mostL best-scored rules (line 10). Because the goal déscover the most homogeneous clusters,
each rule is scored according to the potential iiee of its corresponding sub-cluster potentially
obtained after the refinement of the rule. Potéobaerence estimates how promising the cluster is
terms of finding a good subset of genes. While erang all subgroups of genes in the cluster would
be an option, such an estimate is computationalhersive because of potentially large number of
subgroups. Instead, we define the potential colvereha cluster as the averagekdfl- (k-N-1)/2
minimal pair-wise profile distances. This in a wapproximates a choice of a subset WitN most
similar genes. If the cluster being estimated dastkess thek-Ngenes, its estimated potential equals
to the average of all pair-wise gene distances.

Rules for which the above procedure finds no sietagfinements and whose intra-cluster pair-wise
distance is below a user-defined threshaldre added t&ules the list that stores the terminal rules
discovered by RBC algorithm (line 12). Note thatracess of taking the best-scored rule from the
Beam refining it and adding newly found rules (if arwith improvements in intra-cluster profile
distances is repeated urBiéamis left empty.

To further reduce the potentially large numberudés found by the beam search, RBC uses two
post-processing steps (lines 13 and 14). RBC nfay fales that describe exactly the same cluster of
genes. Each such rule set is considered indivigluaith the aim to retain only the most generaésul
from it. That is, for each pair of rules with cotidins C; andC,, only the first rule from the pair is
retained in the rule set if its conditi@i subsumes conditidB,, that is, it covers the same genes but is
more general in terms of logic. For instance, cboni‘S;” subsumes condition “Sand $.” The
remaining list oRulesis further filtered by keeping only the most carrules so that on average no
more than a limited number of ruldescribe any gene (parameter M set by the useuldés five).

The final set of rules is formed by selecting thies with lowest intra-cluster distance first, auiding
them to the final set only if their inclusion doest increase the rule-coverage for any gene belbnd
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Alternatively to considering all the genes in itput data, RBC can additionally deal with the in-
formation on a set of target genes for which ther wgants to focus the analysis. Typically, target
genes would comprise a subgroup of similarly arbedtgenes, or a subset of differentially expressed
genes. If a target set is given, discovered rulesreluded irBeamand in the final set only if they
cover at leash target genes. Because the algorithm starts wighrole (line 1), which describes all
genes, the discovered rules can cover genes otitedarget set. The method is thus able to identif
genes that were initially left out of a targetiset should have been included based on their regyla
content and gene expression.

The proposed rule-based clustering method wasrgtsply the beam-search procedure successfully
used in a well known, supervised machine learniggrahm CN2 (15), and by an unsupervised
approach of clustering trees developed by Blockeal. (16), but is in its implementation and ap-
plication substantially different from both. CNZens rules that relate attribute-value based descri
tion of the objects to their discrete class, whilestering trees identify attribute-value baseccdps
tion of non-overlapping clusters of similar objects

RBC combines both approaches by using a beam stantier symbolic descriptions of potentially
overlapping clusters of similarly regulated ger@@smpared to beam search in CN2, where the size of
the beam is relatively small (ten to twenty bes¢sware most often considered for further refine-
ments), RBC uses a much wider beam but also gesgratentially overlapping rules in a single loop.
In contrast, in CN2, only the best-found rule imneed, objects covered by it removed from the data
and the procedure is restarted until no objectsetexplored remain. Similar to CN2, the essence of
our algorithm is rule refinement, for which, in theea of machine learning, the beam search praved t
be an appropriate heuristic method.

3 A case study and experimental validation

We applied the proposed RBC method to data froniceoarray transcription profiling study where
budding yeasE. cerevisiaeells were induced to proliferate peroxisomesganelles that com-
partmentalize several oxidative reactions — dukdaell’s regulated response to the exposuresio ol
fatty acid (oleate) and to the absence of glucebé&h causes peroxisome repression (17). The
transcriptional profile of each gene consists wfmsicroarray measurements on oleate induction time
course, and two measurements in “oleatglucose” and “glucoses.glycerol” growth conditions. In
total, gene pair-wise distance was calculated o g@xpression profiles consisting of eight micro-
array measurements. We defined the pair-wise distamction to b&.0-r, wherer is the Pearson
correlation between two gene profiles.

For the target group we selected a set of 224 geeasified by the study to have similar expression
profiles to those of genes involved in peroxisonogénesis and peroxisome function. The goal of our
analysis was to further divide the target group srhaller subgroups of genes with common promoter
structure and possibly identify genes that wereeaently left out of the target group but should
have been included based on their expression amdgber structure similarity.
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We analyzed data on 2,135 putative binding siteislmvere identified using a local sequence
alignment software tool MEME (7). We searched faasence of these binding sites in 1Kb promoter
regions taken upstream from the translation sii{&ATG) for ~6,700 genes. The search identified
~302,000 matches of putative binding sites thaewleen used to infer rules with RBC. The algorithm
was run with the default values of parameters.dbists between binding sites were rounded to in-
crements of 40 bases; the maximum possible rang&loffor the given promoter length, relative
distances can be frorlKb to +1Kb) was thus reduced to 50 different val@e 2000b/40b). This
largely reduced the number of possible subintetbalisneeded to be considered during rule inference

The search returned 41 rules that described andiedi\i 14 target genes (51% of target genes) into 37
subgroups (see Fig. 3b). No rule could be fourdketxribe the remaining 110 target genes. Most of
the discovered gene groups are composed of fivesgeith high pair-wise intra-group correlation
(above 0.927). Many genes are shared (overlap)destwhe 37 discovered groups, resulting in six
major gene groups visible in Figure 3a and 3b. B@emes outside the target set were also identified
by the method (marked in black in Fig. 3a). Formegke, the smallest eight-gene group in the top-left
corner in Fig. 3a includes two outsidelid®53andYIL168W- also name&DLJ). Gene ontology
annotation shows th#itiP53is involved together with two target genéd P3andVHS)) in the
biological procesphosphate metaboliseneSDL1is annotated to function together with the
group’s target genkY S14in the biological procesamino acid metabolisrand other similar parent

GO terms (results not shown). Details on the premstructure and gene expression are given in Fig.
3c and 3d. These examples confirm the method’#yatulidentify functionally related genes that
were not initially included in the target set.

The majority of the discovered rules in the casdinclude conditions that are composed of three
terms, describing the binding site’s orientatiod distance relative to ATG or other binding sites.
There is no general binding site that would apjpeanany rules; only two rules include the same
binding site (results not shown).

Exhaustive search of even relatively simple rubas quickly grow into a prohibitively hard problem
due to combinatorial explosion. Exhaustive seaoctall possible rules composed of three binding
sites with defined orientation (three possible galyositive, negative, no preference) and distance
(distance range is reduced into 50 different vgluesild, for this case study, require checking geéhu
number of rules:

(2135 X 3

; ) X 503 &~ 5.47 x 1015

Our method checke?l x 11 x 10 of the most promising rules, or less than 0.00004%he entire
three-term rule space. The search took 40 minutesRentium 4, 3.4 GHz workstation. This de-
monstrates RBC'’s ability to efficiently derive potially complex rules within reasonable time frame.

To evaluate the predictive ability of the approaehused a data set on 1364cerevisiagenes that
includes accurate binding sites data for 83 trapson factors (18). We modeled the regulatory re-
gion spanning from —800bp to Obp relative to AT@irRvise gene distance was calculated as the
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average pair-wise distance across nineteen gemesskpn microarray studies available at SGD’s
Expression Connection data base (http://www.yeasige.org/). All genes were considered to be
target genes.

Five-fold cross-validation was used that randorphits genes into five sets. Clustering and testihg
the inferred rules was repeated five times, eank with a different set of genes for validatioraof
model constructed using the remaining four setshk#scovered rule was tested on genes in the test
set. If a rule matched the promoter region of adese, then we calculated the prediction error by
calculating the distance between the true geneesgmn of the test gene and its predicted expmessio
When more than one rule could be applied to predecexpression of a test gene, the average pre-
diction error was returned for that gene. Ovethi, method successfully predicted the expression of
286 genes (21% of all genes considered), with anage cross-validation prediction error of 0.75. If
we were to use “random” rules, which would randouiiyster genes into groups of the same size as
those by inferred rules, we could expect the ptedicrror to be 0.96. We believe that the achieved
prediction error is a good indication of the prédie quality of inferred rules.

4 Conclusion

The proposed rule-based clustering method canesifily find rules of gene regulation by searching
for groups of similarly expressed genes and withilar structure of the regulatory region. Starting
from a target set of genes of interest, the metinaslable to cluster them into subgroups. Concur-
rently, RBC may expand the target set by identdyother similarly regulated genes that were initial
overlooked by the user. Rule-search is guided sungbide efficient by the proposed search heuristics.
An important feature of RBC is its ability to dis@ overlapping groups of genes, potentially indi-
cating common regulation or function.

The algorithm uses a number of parameters thahgakg determine the size of the search space
being examined. The default values provided withalgorithm were set according to particular
characteristics of the domaie.§, about ten thousand genes, small subset of ghaeag some motif
pattern, most known patterns include from oneue fmotifs (19)). The choice of parameters also
affects the run time, and the defaults were chtsenake implementation practical and to infer the
rules within one hour of computational time onansfard personal computer.

We have experimentally confirmed the ability of RBIQorithm with default settings to infer rules
that describe a complex regulatory structure anidhwtan be used to reliably predict gene expression
from regulatory content. In contrast with other msnporary methods that mainly use information on
the presence of binding sites, a principal noveftgur approach is the use of a rich descriptive la
guage to model the promoter structure. The languagée easily extended to accommodate other
descriptive features, such as chromatin structunen such kinds of data become available on a
genome-wide scale.

To summarize and display the findings of the anslgsdifferent levels of abstraction we have ap-
plied different visualizations, which proved useful understanding and biological interpretatiore W
believe that the main application of RBC is an exgtiory search for additional evidence that geines,
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theoretically or experimentally defined groupsuadly share a common regulatory mechanism. The

biologist can then gain insight by looking at thhegented evidence and can better decide which in-
ferred patterns are worth testing in the laboratory
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Figures

Figure 1. Example of a rule search trace. Rule refinemérasresult in a significant increase in gene
expression coherence (check mark) are exploredeurEearch along unpromising branches is
stopped (cross).
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Input: a set of gene expression profieg (for every gene, a vector of gene expressions) aaset of promoter elements
for observed genes (for every gene, a set of tuphbesif_id, position relative to ATG, orientatiot)at define the list of
motifs in the regulatory region of the gene).

Output: list of inferred rules that relate promoter stuwe and gene expression; each Rike (C, P), which can be read as
“IF CTHEN P,” is a pair of condition on promoter structi@end rule’s expression profike (a collection of expression
profiles of genes that mate?).

Parameters:

L  size of the search beam (default: 1,000 rules),

N  minimum number of genes that a rule’s conditioa ttematch (default: 6),

D maximum average intra-cluster pair-wise distaricB, (for 1-Pearson correlation used in our appboas),

k  used in computation of cluster’s potential coheegrestimated as the smallest intra-cluster avgragevise dis-

tance for a subset dé [N genes (default: 2),
significance level for acceptable change in ciisteoherence after rule refinement (default: 0.05)
average number of rules retained during post-msing, which are used to describe a gene (defgult:

=2

1 Beam« [(Trug Pgy)]

2 Rules— []; is a list of discovered rules

3 while Beamnot empty

4 R=(C, P) « highest scored rule froBeam

5 remove R from Beam

6 Candidates— rules covering at leadt genes with all possible extensiongWith a single new term in
condition and an associated matching subsgeioé expression profilés

7 Candidates— subset of rules fror@andidateswith intra-cluster distances significantlyd) lower thanR

8 if Candidatesiot empty

9 add rules fromCandidatedo Beam

10 Beam« L best-scored candidates frdderam(usek)

11 else

12 if intra-cluster distance &t < D then addR to Rules

13 from subsets of completely overlapping ruleRineskeep only most general ones
14 from Rulesremove rules with low scores and high overlap with higheoring rules (used)
15 return Rules

Figure 2. Outline of the RBC algorithm.

Page | 13



g GO T gonc— MR MM MST - pon cm B) o
; @ ¥ AR RoN 80823 f: group 37 goup3s ) G
h ; i voRasoc AN - 7
! e (W . D e - o L group 14 group
. @& ®‘\ YOROBAW 1704 Yerisoc \‘ i ‘ o goup8 — _ \
- Wuaoc o R ¢ —
__________ i R | e G murn\:\ Y278 goup 3 goup 26
(1] " @R wes s
| - (5 ‘ goup 33
1 group 17
|
DD > o e 7 e e caz cer MW W group 6 / \
A0R1 goup 19
ATo2 — ARO9 — AGX1 vz —— ARG —— acw? T gioup 13
L w2 goup 22— D P
ety N 9P 32— goup 25
YoR243W - RSC30 \ / _—
YKLI3ZW ATP7 ECM30 gloup 27 L
oEr vouos7c 5
B S | goup _—
YEROSTW — DNM1 — ATP4 — | pica goup 24
L MTYW\"WW " | group 5 —— group 11
PENO RF2 eurz MYos)——/——SEN1 RiB1 \ / group 23 gopig
s 087E oW APIE yMRO3IC —_— \ -
CAFY
| group 10 —
D | wovt
Wiac Gz RM4 arG1 VeLzorw @D @ 5
<) d)
.~ RN
. ~
;
/" YoR186W s
\ \
. Wsia P .
Sse/ )\ ONVHST .t ;- VHS1
/ Tt s —*\‘—— l‘ kY
_— / \ \ )
AP —_\ [ . (ATP3 .
YNL140C S~ YNL140C gl
[rscTGeaAGe @960~ 16cFATG) and CAAKGGGTGOC) @—880.-521 (efATG) CCAAGCAGTD @ 100~ 41(reFATG) and , CTCCTKMATA - 560.999(ecf
O O
LYS14 . ATD3
(&3 ., L7
SKY1 > - ~LYSH4 - =
VHS1 0 < e yiis1 L o
YORI86W O | YNL140C
YIL168W ] [®) INP53 @)
target genes  —— 4 4
outside genes - - -

: Y

Figure 3. a) Gene network, where we connect genes from saleefor the peroxisome data set
(target genes in gray, genes outside target irkplétdncludes 114 target genes and 7 outside gene
which are clustered in six major groups. b) Grotgpy of the discovered 37 clusters (two groups are
connected if sharing a subset of genes). c anufelyéd promoter structure and gene expressidmeof t

two sub-clusters forming the eight-gene clustemkea “1” in figure 3a (also shown as clusters
“group 37” and “group 34” in 3b).
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