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Abstract. Bone scintigraphy or whole-body bone scan is one of the
most common diagnostic procedures in nuclear medicine used in the last
25 years. Pathological conditions, technically poor quality images and ar-
tifacts necessitate that algorithms use sufficient background knowledge
of anatomy and spatial relations of bones in order to work satisfactorily.
We present a robust knowledge based methodology for detecting refer-
ence points of the main skeletal regions that simultaneously processes
anterior and posterior whole-body bone scintigrams. Expert knowledge
is represented as a set of parameterized rules which are used to support
standard image processing algorithms. Our study includes 467 consec-
utive, non-selected scintigrams, which is the largest number of images
ever used in such studies to our knowledge. Automatic analysis of whole-
body bone scans using our knowledge based segmentation algorithm gives
more accurate and reliable results than previous studies. Obtained refer-
ence points are used for automatic segmentation of the skeleton, which
is used for automatic (machine learning) or manual (expert physicians)
diagnostics. Preliminary experiments show that an expert system based
on machine learning closely mimics the results of expert physicians.

1 Introduction

Whole-body scan or bone scintigraphy is a well known clinical routine investi-
gation and one of the most frequent diagnostic procedures in nuclear medicine.
Indications for bone scintigraphy include benign and malignant diseases, infec-
tions, degenerative changes ... [2]). Bone scintigraphy has high sensitivity and the
changes of the bone metabolism are seen earlier than changes in bone structure
detected on radiograms [15].

The investigator’s role is to evaluate the image, which is of poor resolution
due to the physical limitations of gamma camera. There are approximately 158
bones visible on both anterior and posterior whole-body scans [10]. Poor quality
and the number of bones to inspect makes it difficult and often tedious work.
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Some research on automating the process of counting the bone lesions has been
done, but only few studies attempted to automatically segment individual bones
prior to the computerized evaluation of bone scans [6; 7; 1].

1.1 Related work

First attempts to automate scintigraphy in diagnostics for thyroid structure
and function were made back in 1973 [11]. Most of the research on automatic
localization of bones has been done at the former Institute of medical information
science at the University of Hildesheim in Germany from 1994 to 1996. The
main contribution was made by the authors Berning [7] and Bernauer [6] who
developed semantic representation of the skeleton and evaluation of the images.
Benneke [1] has realized their ideas in 1996.

Yin and Chiu [13] tryied to find lesions using a fuzzy system. Their prepro-
cessing of scintigrams includes rough segmentation of six parts with fixed ratios
of the whole skeleton. Those parts are rigid and not specific enough to localize
a specific bone. Their approach for locating abnormalities in bone scintigraphy
is limited to point-like lesions with high uptake.

When dealing with lesion detection other authors like Noguchi [10] have been
using merely intensity thresholding and manual lesion counting or manual bone
ROI (region of interest) labeling. Those procedures are only sufficient for more
obvious pathologies whereas new emerging pathological regions are overlooked.

2 Aim and our approach

The aim of our study was to develop a robust method for segmenting whole-body
bone scans to allow further development of automatic algorithms for bone scan
diagnostics of individual bones.

We have developed the algorithm for detecting extreme edges of images
(peaks). Here, respective skeletal regions are processed in the following order:
shoulders, head, pelvis, thorax and extremities. The experience with automatic
processing is presented. Several image processing algorithms are used such as
binarization, skeletonization, Hough’s transform, Gaussian filtering [4], least
square method and ellipse fitting in combination with background knowledge
of anatomy and scintigraphy specialities.

In everyday practice, when a bone is identified, it is diagnosed by the expert
physician according to several possible pathologies (lesions, malignom, metasta-
sis, degenerative changes, inflammation, other pathologies, no pathologies). This
process can be supported by using some machine learning classifier [9] which pro-
duces independent diagnoses. As an input it is given a suitably parameterized
bone image, obtained from detected reference points. As an output it assigns the
bone to one of the above pathologies. It can therefore be used as a tool to give
physician an additional insight in the problem.



3 Materials and methods

3.1 Patients and images

Retrospective review of 467 consecutive, non-selected scintigraphic images from
461 different patients who visited University Medical Centre in Ljubljana from
October 2003 to June 2004 was performed. Images were not preselected, so the
study included standard distribution of patients coming to examination in 9
months. 19% of the images were diagnosed as normal, which means no pathol-
ogy was detected on the image. 57% of the images were diagnosed with slight
pathology, 20% with strong pathology and 2% were classified as super-scans.

Images also contained some artifacts and non-osseous uptake such as urine
contamination and medical accessories (i.e. urinary catheters) [5]. Segmentation
was also complicated by the radiopharmaceutical site of injection. Partial scans
(missing a part of the head or upper/lower extremities in the picture) were the
case in 18% of the images. There were also adolescents with growth zones (5%
of the images), manifested as increased osteoblastic activity in well delineated
areas with very high tracer uptake.

3.2 Bone scintigraphy

All patients were scanned with gamma camera model Siemens MultiSPECT
with two heads with LEHR (Low Energy High resolution) collimators. Scan
speed was 8cm per minute with no pixel zooming. 99m-Tc-DPD (TechneosR)
was used. Bone scintigraphy was obtained about 3h after intravenous injection
of 750 MBq of radiopharmaceutical agent. The whole body field was used to
record anterior and posterior views digitally with resolution of 1024 x 256 pixels.
Images represent the counts of detected gamma rays in each spatial unit with
16-bit grayscale depth.

3.3 Detection of reference points

Bone scans are very different (Figure 3) one from another even though the struc-
ture and position of bones is more or less the same. In practice many scans are
only partial because only a determined part of the body is observed or due to the
scanning time limitations. In our study we have observed that only on two images
out of 467 the shoulders were not visible. Many other characteristic parts could
have been missing in images more often (i.e. head, arms, one or both legs). We
have chosen shoulders as the main reference points to start with, which means
they are supposed to be visible in the images. Second and the last assumption
is the upward orientation of the image. This assumption is not limiting since all
scintigraphies are made with same orientation.

In order to make the detection of reference points faster and more reliable we
have tried to automatically detect intuitive peaks which would represent edges
and would cover roughly also the reference points. With normal Canny edge filter



too many peaks were obtained. Our approach is based on orthogonal two-way
Gaussian filtering [16].

Low image intensities (count level) acquired in typical studies are due to the
limited level of radioactive dosage required to ensure patient’s safety. They make
bone scans look distorted. Bone edges are more expressive after we filter images
with some averaging algorithm (i.e. wavelet based, median filter, Gaussian filter)
[4]. We have used Gaussian filter so that the detection of peaks was more reliable.

Both images, anterior and posterior, are simultaneously processed in the same
detection order and in each step the detected reference points visible on both
images are compared and corrected adequately.

Detected points from the anterior image are mirrored to the posterior and
vice versa. Some bones are better visible on anterior and some on posterior
images due to the varying distances from both collimators. This improves the
calculation of circles, lines and ellipses with least square method (LSM).

The order in which the reference points were detected was determined by
using knowledge of human anatomy as well as physicians’ recommendations.
They are represented as a list of parameterized rules. Rule parameters (e.g.
thresholds, spatial and intensity ratios, ...) were initially set by physicians and
further refined on a separate tuning set. More details can be found in [16].

Shoulders. They are the only part of the body that is assumed to be present in
every image in the upper part on both sides. The algorithm just searches for the
highest detected peak on both sides of the image. Next step is to locally shift
the candidate points with local maximum intensity tracing to the outermost
location. Only in 5 images out of 467 the shoulders were not found correctly due
to the tilted head position.

Pelvic region (ilium bone, pubis bone, great trochanter of femur). The
most identifiable bone in pelvic region is ilium bone which has higher uptake
values than it’s neighboring soft tissue. Ilium bone has circular shape in the
upper part and therefore it is convenient for circle detection with LSM method.
This bone is well described with already detected peaks as shown in Figure
1(b). Ilium position is roughly estimated with regions of interest (ROIs) which
are found on the basis of skeleton’s anticipated ratios and reference points found
up to this step of detection.

The pelvis is located at the end of the spine and has approximately the same
width as shoulders. In order to find the pelvis, the calculation of the spine posi-
tion is required. This is done with a beam search (Figure 1(a)). The anticipated
spine length is determined from the distance between shoulders. Beam starting
point is the middle point of the shoulders and it’s orientation is perpendicular
to the shoulder line. The angle at which the beam covers most peaks, is a rough
estimation of spine direction since there is most of the uptake in the vertebrae
and hence peaks are dense in that region.

Pubis bone is detected by estimating the pubis ROI using detected ilium
location, distance between detected ilium circles and their inclination. The ex-
perimentally determined ROI’s size is narrowed and additional vertical peaks
are added and circles detected as shown in Figure 1(b).



(a) Beam search sketch

 

(b) Detection of bones in the pelvic
region

Fig. 1. Beam search and detection in pelvic region

Head and neck. When at least image orientation and the location of the
shoulders are known, some part of the neck or even head is visible since they
are between the shoulders. Finding the head is not difficult but its orientation
is, especially in cases where a part of the head in scan is not visible. The most
reliable method for determining head orientation and position is ellipse fitting
of the head contour determined by thresholding. Neck is found by local vertical
shifting of a stripe determined by the ellipse’s semiminor axis (position and
orientation).

Thoracic part (vertebrae, ribs). Vertebrae have more or less constant spa-
tial relations, the only problem is that on a bone scintigraphy only a planar
projection of the spine is visible. Since the spine is longitudinally curved, the
spatial relations vary due to different longitudinal orientation of the patients.
Average vertebrae relations have been experimentally determined from normal
skeletons.

Ribs are the most difficult skeleton region to detect since they are quite
unexpressive on bone scans, their formation can vary considerably and their
contours [14] can be disconnected in the case of stronger pathology (Figure 2).

Lower and upper extremities (femur, knee, tibia, fibula, humerus, el-
bow, radius, ulna). They are often partly absent from whole-body scan be-
cause of limited gamma camera detector width. In our patients, a maximum of
61cm width is usually not enough for the entire skeleton. The regions of humerus,
ulna and radius as well as femur, tibia and fibula bone are located with the use
of controlled beam search. The beam lengths can be estimated from skeletal
relationships (i.e. femur length is estimated as 78% of the distance between the
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Fig. 2. Rib detection steps example on a skeleton with strong pathology. Rib ROI is
binarized (A), binarized image is skeletonized (B), Hough transform of linear equation
is calculated on skeleton points (C), reference points are estimated using results of the
Hough transform (D), rib contours are individually followed by the contour following
algorithm (E).

neck and ilium bone center). The detection is designed so that a part or all of
the extremities and/or the head may not be visible.

 

Fig. 3. Examples of body scan variety

3.4 Diagnosing pathologies with machine learning

When all reference points are obtained, every bone is assigned a portion of
original scintigraphic image, according to relevant reference points. Obtained
image is parametrized by using the ArTeX algorithm [8]. It uses association
rules to describe images in rotation-invariant manner. Rotation invariance is
very important in our case, since it accounts for different patients’ positions
inside the camera.

Bones were described with several hundreds of automatically generated at-
tributes. They were used for training the SVM [12] learning algorithm. In our



preliminary experiments pathologies were not discriminated, i.e. bones were la-
belled with only two possible diagnoses (no pathology, pathology). In 19% of
patients no pathology or other artifacts were detected by expert physicians. In
the remaining 81% of the patients at least one pathology or artifact was observed.

4 Results

4.1 Segmentation

Approximately half of the available images were used for tuning rule parameters
to optimize the recognition of the reference points and another half to test it.
All 246 patients examined from October 2003 to March 2004 were used as the
tuning set and 221 patients examined from April 2004 to June 2004 were used as
the test set. In the tuning set there were various non-osseous uptakes in 38.9%
of the images, 47.5% images with the visible injection point and 6.8% images of
adolescents with the visible growth zones. Similar distribution was found in the
test set (34.5% non-osseous uptakes, 41.0% visible injection points and 2.85%
adolescents). Most of the artifacts were minor radioactivity points from urine
contamination in genital region or other parts (81.4% of all artifacts) whereas
only few other types were observed (urinary catheters 13%, artificial hips 4%
and lead accessories 1.6%). We have observed that there were no ill-detected
reference points in adolescents with the visible growth zones since all the bones
are homogenous, have good visibility and are clearly divided with growth zones.
Results of detecting reference points on the test set are shown in the Table 1.

Table 1. False reference point detection on test set. Both frequencies and percentages
are given.

Bone no slight strong super-scan all
pathology pathology pathology

46 133 39 3 221

ilium 0 2 0.9% 6 2.7% 1 0.5% 9 4.1%

pubis 2 0.9% 3 1.4% 2 0.9% 0 7 3.2%

trochanter 0 1 0.5% 0 0 1 0.5%

shoulder 0 0 1 0.5% 0 1 0.5%

extremities 5 2.3% 11 5.0% 0 0 16 7.2%

spine 0 2 0.9% 1 0.5% 0 3 1.4%

ribs 11 5.0% 17 7.7% 3 1.4% 0 31 14.0%

neck 2 0.9% 4 1.8% 0 0 6 2.7%

4.2 Machine learning results

From our complete set of 467 patients, pathologies were thoroughly evaluated by
physicians only for 268 patients. These 268 patients were used for evaluation of
machine learning approach by using ten-fold cross validation. Results are shown



in Table 2. The bones were grouped in ten relevant groups. They are quite
impressive, given high numbers of different bones (158 visible for an individual
adult patient). Classification accuracy was obtained for a two-class problem.

Table 2. Experimental results with machine learning on two-class problem.

Bone group Classification spec.% sensit.%
accuracy

Cervical spine 75,9 80,0 77,8
Feet 83,8 84,1 68,0
Skull posterior 94,7 88,2 100,0
Illium bone 87,3 87,6 82,8
Lumbal spine 71,4 75,7 65,4
Femur and tibia 88,9 84,6 73,3
Pelvic region 92,2 90,7 85,0
Ribs 98,1 92,5 91,7
Scapula 91,4 90,9 90,9
Thoracic spine 82,0 79,2 61,5

AVG 86,6 85,4 79,6

5 Discussion

The testing showed encouraging results since the detection of proposed reference
points gave excellent results for all bone regions but the extremities, which was
expected.

We have paid special attention to the images with partial skeletons since it
is often the case in clinical routine (in our study 18% of the images were partial
and no particular problem appeared in detecting) and a robust segmentation
algorithm should not fail on such images. The detection of ribs showed to be
the most difficult, yet that was expected. Results show that in 14% to 20% of
images there were difficulties in detecting the ribs. This usually means one rib is
missed or not followed to the very end which we intend to improve in the future.
In the present system such reference points can be manually repositioned by the
expert physicians.

The automatically detected reference points can be used for mapping a stan-
dard skeletal reference mask, which is to our belief the best way to find individual
bones on scintigrams since bone regions are often not expressive enough to follow
their contour. An example of such mask mapping is shown in Figure 4.

While our experimental results with machine learning are quite good, one
must bear in mind that they were obtained for a simplified (two class) problem.
Simply extending a problem to a multi-class paradigm is not acceptable in our
case, as the bone may be assigned several different pathologies at the same
time. A proper approach, the one we are currently working on, is to rephrase a
problem to the multi-label learning problem, where each bone will be labelled
with a nonempty subset of all possible labels [17; 3].



Fig. 4. Example of mapped standard skeletal mask with the detected reference points

6 Conclusion

The presented computer-aided system for bone scintigraphy is a step forward in
automating routine medical procedures. Some standard image processing algo-
rithms were tailored and used in combination to achieve the best reference point
detection accuracy on scintigraphic images which have very low resolution. Poor
quality, artifacts and pathologies necessitate that algorithms use as much back-
ground knowledge on anatomy and spatial relations of bones as possible in order
to work satisfactorily. This combination gives quite good results and we expect
that further studies on automatic scintigraphy diagnosing using reference points
for image segmentation will give more accurate and reliable results than previous
studies, negligent to the segmentation.

This approach opens a new view on automatic scintigraphy evaluation, since
in addition to detection of point-like high-uptake lesions there are also:

– more accurate and reliable evaluation of bone symmetry when looking for
skeletal abnormalities. Many abnormalities can be spotted only when the
symmetry is observed (differences in length, girth, curvature etc.),

– detection of lesions with low-uptake or lower activity due to metallic im-
plants,

– possibility of comparing uptake ratios among different bones,
– more complex pathology detection with combining pathologies of more bones

(i.e. arthritis in joints)
– possibility of automatic reporting of bone pathologies in written language.

Machine learning approach in this problem is in a very early stage, so its
usefulness in practice cannot yet be objectively evaluated. However, preliminary
results are encouraging and switching to the multilabel learning framework may
make them even better.
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