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Abstract. A model-based approach to reconstruction of 3D
human arm motion from a monocular image sequence taken
under orthographic projection is presented. The reconstruc-
tion is divided into two stages. First, a 2D shape model is
used to track the arm silhouettes and second-order curves are
used to model the arm based on an iteratively reweighted
least square method. As a result, 2D stick figures are ex-
tracted. In the second stage, the stick figures are backpro-
jected into the scene. 3D postures are reconstructed using the
constraints of a 3D kinematic model of the human arm. The
motion of the arm is then derived as a transition between
the arm postures. Applications of these results are foreseen
in the analysis of human motion patterns.
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1 Introduction

The study of human motion has received considerable at-
tention over the past decades in robotics, surgery, rehabili-
tation, behavior studies and sports. A common approach for
quantitative estimation of motion is to attach markers on the
skin of subjects at selected anatomic points and to record
the subject’s motion with cameras. The method is known as
moving light display (MLD) [3, 9]. A typical application is
the evaluation of an athletes’ or robot mechanism’s motion.
The advantage of this approach is that it requires only ba-
sic image processing, however, a severe disadvantage of the
method is that it is invasive. The subject must wear markers
or other equipment which may be impractical, uncomfort-
able or constrain the usage of the system to a limited work
space.

Recently, new applications such as videophones, tele-
conferencing, multimedia, human-computer interface design,
virtual reality, etc. require the capability of following the
movement of the human head, eyes, lips, arms and hands
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from images. The emphasis is not on the recovery of exact
motion but on recognition of motion as a meaningful gesture
or activity.

The goal of this investigation was to develop a method
for monocular tracking of the human arm in 3D without the
use of markers. In particular, we were interested if the kine-
matic model of the human arm that was at our disposal [14]
provided enough constraints to do that. We consider the hu-
man arm to be a six degree-of-freedom (d.o.f.) articulated
object. We assume that the projection is orthographic and
that the arm is moving in front of a dark background. Our
approach differs from previous approaches of tracking artic-
ulated objects in the sense that tracking is achieved without
reconstructing the 3D shape and structure information. First,
2D arm segment axes are extracted from arm silhouettes.
Next, 3D postures of the arm are reconstructed by back-
projecting the 2D stick figures using the constraints of the
kinematic model in each frame separately. The motion of
the arm is derived as a transition between individual arm
postures.

In the next section, we give an overview of the approach.
The third and fourth section is on the 2D modeling of the
arm segments. In the fifth section, the 3D reconstruction is
presented. The sixth section gives some examples of tracking
and reconstruction, followed by discussion and conclusions.

1.1 Related work

One of the earliest systems capable of analyzing 3D hu-
man motion based on a human model was developed by
O’Rourke and Badler [18]. The model consists of 25 seg-
ments defined by about 600 overlapping spheres. Given a
sequence of monocular images, the subject is tracked using
constraint propagation, high-level prediction and low-level
verification and analysis. All computations are conducted
in 3D space. The authors reported results of tracking the
human arms also in the case of occlusion. Yamamoto and
Koshikawa [21] developed a technique to reconstruct the hu-
man arm motion from a real image sequence combining 3D
geometrical and kinematic models of the arm and the image
displacement field. The motion equations are derived by es-
tablishing a connection between the changes of the kinematic
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configuration and image spatial and temporal gradient of the
wire model points. Gavrila and Davis [7] developed a multi-
view approach for tracking of the human upper body. The
pose recovery problem is formulated as a search problem
and entails finding the pose parameters of a human model
for which its synthesized appearance is most similar to the
actual appearance of the real human. Goncalves et al. [8] de-
veloped a system for monocular tracking of the human arm
using the extended Kalman filter. The arm in 3D is modeled
with truncated right-circular cones. Ohya and Kishino [17]
proposed a passive method for estimating the human pos-
ture from multiple cameras. A genetic algorithm is used to
estimate the posture parameters. Rehg and Kanade [20] de-
veloped a model-based hand-tracking system, called Digit
Eyes, that can recover the state of a 27 d.o.f. hand model
from gray-scale images. 3D tracking is achieved by using a
high image acquisition rate. This decreases the differences
between the kinematic configurations in the subsequent im-
ages and thus simplifies the tracking of image features. Kuch
and Huang [13] developed a hand-modeling and -tracking
system for virtual teleconferencing and telecollaboration. A
3D model of the hand is built automatically from three dif-
ferent views of the hand. Tracking is achieved by minimiz-
ing the error between the 2D appearance of the model and
the image. Kakadiaris, et al. [11] proposed an integrated
approach to segmentation, shape and motion estimation of
complex articulated objects. Unlike most existing techniques
which assume a priori knowledge of the object’s parts, they
initially assume that the data belongs to a single-part object
and fit a single deformable model. As the model deforms
to fit the data from subsequent frames they decide when to
split the model into two new models. In order to cope with
occlusion, they use a Kalman filter to predict the location
of the data in the next frame. Some of the most impressive
results of tracking human body and action recognition are
currently achieved by Pentland et al. [1, 15, 19]. They use
2D blob (3D blobs) features to build connected blob repre-
sentation of the human. From 2D blobs the 3D geometry for
the user head and hands are calculated using an uncalibrated
stereo system. The system runs in real time.

2 Overview of the approach

Our approach is based on the following:

1. a six d.o.f. kinematic model that defines all possible spa-
tial configurations of the arm,

2. a 2D shape model that describes the arm’s visual appear-
ance,

3. an assumption, that 2D stick figures of the arm can be
extracted from each image frame.

2.1 Kinematic model of the arm

The simplified (not anatomically precise) kinematic model
of the human arm without the palm (Fig. 1), developed by
Lenařcič and Umek [14] with the aim to represent the reach-
ability of the arm, has six revolute degrees of freedom: two
in the sternoclavicular joint, three in the glenohumeral joint
and one in the elbow joint.

The reference coordinate frame is placed in the stern-
oclavicular joint. Expressed in terms of the matrix algebra,
the 3D vectors of the shoulder~rsh, elbow ~rel and wrist joints
~rwr are as follows:

~rsh = Rz(δ1) · Ry(δ2) · ~dcl, (1)

~rel = ~rsh + Rz(δ1) · Ry(δ2) · Ry(δ3) · Rx(δ4)

·Rz(δ5). ~dup, (2)

~rwr = ~rel + Rz(δ1) · Ry(δ2) · Ry(δ3) · Rx(δ4)

·Rz(δ5) · Rx(δ6) · ~dfor. (3)

Vectors ~dcl, ~dup and ~dfor contain the lengths of the clav-
icular segmentDcl, the upper armDup and the forearm
Dfor, while matricesRx(·), Ry(·) and Rz(·) are standard
rotation matrices about thex-, y- andz-axes and define the
relative revolute displacements between the segments. The
kinematic model also defines the dependencies between the
joint anglesδi (Fig. 1).

2.2 2D shape model of the arm

Based on the above kinematic model, we built a 2D shape
model of the human arm. It is a composition of fitted second-
order curves to the arm silhouette (Fig. 2a). The intersections
of the second-order curves define the linesl2 andl3 that par-
tition the image data into parts according to the kinematic
model. The head is used as a reference to set the root pointR
and the shoulder partitioning linel1. To facilitate the process
of tracking, the palm is also included in the model. Where
the curve axes intersect the partitioning lines, the local coor-
dinate systems for the upper armS, the forearmE and the
palmW are centered respectively. Line segments that con-
nect the root pointR, shoulder pointS, elbow pointE and
wrist pointW produce a stick figure of the arm (Fig. 2b).

Both models (kinematic and shape) define the state
model of the arm which encodes all possible arm configura-
tions and their corresponding image feature patterns. Models
give rise to the followingconstraints [10, 12]:

• Strong constraints: fixed length of the body parts, a
three-point co-linearity of joints, angle relationships,
occlusion-collision relationships (defined in the kine-
matic model).

• Soft constraints: two-way correspondence between the
image features (region, points) and the 2D shape model.

Assumingsmooth motionthe 3D reconstruction of the arm
movements is possible.

2.3 Human arm motion reconstruction method

As the arm moves in 3D its 2D silhouette expresses a va-
riety of shapes. To reconstruct the motion of the arm from
a sequence of monocular images, we need to recover the
time-varying parameters of the shape model and the kine-
matic model. We assume that the projection is orthographic
and that the initial 3D position of the arm is known. We
divided the process of motion tracking and reconstruction
into two steps:
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Fig. 1. 3D kinematic model of the left arm

Fig. 2a.2D shape model of the arm andb its corresponding
stick figure

Step 1. In the first step, we track the arm silhouettes in 2D.
This is achieved by automatically locating the head and
the top of the arm and fitting the 2D shape model to
the arm segment projections (Sect. 4). Each segment is
modeled separately (Sect. 3). We assume that there is a
critical amount of edge points that describe each segment
of the arm and that there is no self-occlusion. The result
is an extracted 2D stick figure of the arm.

Step 2. In the second step, the stick figures are backpro-
jected into the 3D scene (Fig. 3). The inverse projec-
tion problem is solved in each frame separately. The 3D
structure recovery equations are derived by propagating
the strong constraints of the kinematic model from the
root towards the wrist point (Sect. 5). As the projection
is assumed to be orthographic, there are two mirror so-
lutions in 3D for each body segment or all together eight
possible solutions for the whole arm structure (consider-
ing the arm as a three-segment kinematic chain). How-
ever, due to the joint angle constraints defined in the
kinematic model (Fig. 1), not all solutions are possible.
By applying the structure recovery equations in specified
order and assumingsmooth motion(values of the joint
angles change smoothly), we get a unique solution for
the structure of the arm in 3D. Once the 3D postures
are recovered, the 3D motion is given as a transition
between two postures in space. The reconstructed 3D
motion can be described either with the trajectories of
the joint points of the kinematic chainS, E andW or
with the time-varying sequences of the joint anglesδi.

3 Modeling the arm segment projections
using robust M-estimation

The appearance of an articulated object such as the human
arm on the image plane is fairly complex and difficult to

describe with a single model. Standard least square analysis
that assumes that the data belongs to a single model and that
the errors in the data are normally and identically distributed
is of no use. Our aim is to segment the arm silhouettes into
distinct parts of the arm and to use these models to deter-
mine the 2D joint positions. After much experimentation a
second-order curve was chosen to model the data of a single
part. An advantage of this model is that the small number of
parameters that describe the curve can be directly applied to
determine the position and orientation of the arm segments.
Taking into consideration that arm segments can appear in
different sizes, orientations and shapes, we need a procedure
that is robust to local deformations and outliers (data parts
from other parts, or just noise), as well as stable to global
transformations (rotation, translation and scaling). Robust
M-estimation technique based on theHampel redescending
function turned out to be good in both aspects [4]. This
section proceeds with the mathematical background of the
robust parameter estimation technique.

3.1 Mathematical background

The general equation of a second-order curvef (~p, x, y) is
a linear combination of five independent basis functions
{φ1, φ2, φ3, φ4, φ5} = {x2, xy, y2, x, y}:

f (~p, x, y) = p1φ1 + p2φ2 + p3φ3 + p4φ4 + p5φ5 + 1. (4)

The modeling process can be defined as the search for such
a parameter vector~p = {p1, p2, p3, p4, p5} of the model
f̂ (~p, x, y), which fits best the structure of the image data
U = {(x1, y1), ., (xn, yN )}.

A robust M-estimate for the parameter vector~p mini-
mizes the error functionε(~p) that sums the deviations of
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Fig. 3. Overview of the reconstruction approach

the observationse(xi, yi) from the fitted curve (e(xi, yi) =
f (~p, x, y) = 0 for the points on the curve):

ε(~p) =
N∑
i=1

ρ(
e(xi, yi)

s
). (5)

s(~p) = 1.4826 median(|e(xi, yi) −median(e(xi, yi))|). (6)

The parameters is a known or previously computed scale
parameter andρ is a robust loss function. This is more gen-
eral than the sum of squared deviations (ρ(x) = x2), or the
sum of absolute deviations (ρ(x) = |x|).

If we let ψ(~p, x, y) = ∂(ρ(~p,x,y))
∂(~p) , then a necessary condi-

tion for a minimum of the functionε(~p) is that~p satisfies

N∑
i=1

ψ(
e(xi, yi)

s
) φm(xi, yi) = 0, m = 1,2, .,5. (7)

Introducing a set of weighting parameters:

ω(xi, yi) =

{
ψ(

e(xi,yi)
s )

e(xi,yi)
s

if e(xi, yi) /= 0

1 if e(xi, yi) = 0
(8)

the nonlinear matrix Eq. 7 can be rewritten as follows:

N∑
i=1

φm(xi, yi) ω(xi, yi) e(xi, yi) = 0,

for m = 0,1,2, .,M. (9)

To solve the equation, we use theiteratively reweighted
least squaresalgorithm [2]. The weighting process is gov-
erned by the scale estimates which is updated after each fit
by using the equation (6). TheHampel redescendingfunc-
tion ψ(a, b, c) is a three-part redescending function [2, 16]
(Fig. 4). It was chosen because of the property thatψ(x) = 0
for |x| > c, where c is a preselected cutoff value, also known
as the finite rejection point, which allows rejection of out-
liers. Experimental results on synthetical data [4] demon-
strated a high convergence speed of the robust M-estimator,
and therefore the reweighting in the experiments with real
data was limited to few iterations. The final solution depends
on the initial fit (L2 estimate) and the scale estimates.

4 Tracking arm silhouettes using the 2D shape model

We assume that the human head and torso remain still while
the left arm is performing free movements. In the first frame,
we manually segment the head and the arm segments. Next,
we fit second-order curves to each region separately. These
curves define the initial shape model of the arm (Fig. 2a).
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Fig. 4. Hampel redescending function
ψ(a, b, c)

Fig. 5a,b. Initialization of the tracking procedure:a locating the head and the palm;b
locating the upper and lower-arm

The subsequent image frames are processed as follows. First,
the head is found automatically. Then, the root pointR,
the shoulder pointS and the shoulder partitioning linel1
are taken from the previous frame (Fig. 5a). The shoulder
partitioning line separates the arm edge points from the rest
of the silhouette. Next, the top of the armT is located (no
occlusion is allowed) and a curve is fitted to the hand data.
This curve determines the location of the wrist pointW .
The data between the wrist pointW and the shoulder point
S (Fig. 5b) belongs to the upper arm and the forearm. The
curves that model these segments in the previous frame are
used to start the shape estimation process. At the end, a new
shape model for the arm is built and the stick figure of the
arm is extracted.

5 3D structure reconstruction by inversion
of the kinematic model

We derived the 3D structure recovery equations by using:

1. the strong constraints of the kinematic model specified
with the matrix Eqs. 1, 2 and 3, and

2. the end-points of the arm segment projectionsRS, SE
andEW extracted from the arm silhouette (Fig. 2 – left).

For a given image sequence, we assume that the lengths
of the arm segmentsDcl, Dup andDfor are known and the
joint anglesδi have to be recovered. We assume that the root
point of the kinematic chain is fixed and its 3D coordinates
are known. Given the 2D coordinates of the shoulder point
S relative to the root pointR, joint anglesδ1 andδ2 can be
calculated as follows:

δ1 = Π − arccos(
xs

Dcl cos(δ2)
), (10)

δ2 = arcsin(
zs
Dcl

). (11)

From this point, the depth of the elbow pointE in the root
coordinate system is obtained first. Then the elbow pointE
is expressed in the shoulder coordinate system:

(x, y, z) = Ry(δ2)−1 · Rz(δ1)−1 · ~SE. (12)

Joint anglesδ3 andδ4 are given as follows:

δ3 = arccos(
−z

(x2 + y2)
1
2

), (13)

δ4 = arccos(
(x2 + y2)

1
2

Dup
). (14)

From the elbow pointE, the 3D coordinates of the wristW
in the root coordinate system are calculated. By expressing
the wrist pointW in shoulder coordinate system:

(x, y, z) = Rx(δ4)−1·Ry(δ3)−1·Ry(δ2)−1·Rz(δ1)−1· ~SW, (15)

joint anglesδ5 andδ6 are given as follows:

δ5 = arctan(
−y
x

), (16)

δ6 = arccos(
~SW

2 −D2
up −D2

for

2DupDfor
) −Π. (17)

Due to assumed orthographic projection of the arm to the
image plane, the above equations (10–17) satisfy eight solu-
tions for the 3D position of the arm. The mirror solutions are
discarded by applying the equations in the specified order.

6 Experimental results

A test sequences of monocular images were taken with a
CCD camera plugged to a PC-based image-processing sys-
tem. The frame rate was 5 frames/s. The human subject
performed free movements with the left arm in front of a
black background. The images were binarized by the image-
processing system and the human silhouettes were extracted.
Further processing of the image sequence was done off-line
using theMathematicaprogramming environment. No cam-
era calibration was required.

6.1 Example 1:
Estimating the forearm elevation – planar motion

This experiment was carried out as follows. Three markers,
assumed to determine the length of the upper arm and of
the forearm, were attached to the skin of the arm. The upper
arm was held still (Fig. 6), while the forearm rotated paral-
lel to the image plane. The goal of the experiment was to
compare the results for the forearm elevation calculated by
using marker positions with those obtained by modeling the
forearm edge points with second-order curves using robust
M-estimation. The axis of the second-order curve is assumed
to give the forearm elevationϕ. The dimensions of the win-
dow including the data points which belong to the forearm
were determined manually.

The results for the estimated elliptical shape parameters
showed that the elevation parameterϕ converges rapidly in
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Fig. 6. Forearm elevationϕ obtained by ro-
bust M-estimation

Fig. 7. Estimated elevation parameterϕ and
scale parameters for the nine hand pos-
tures/frames shown in Fig. 6

Table 1. Comparison of forearm elevationϕ in the frontal plane recovered
by using markers and robust M-estimation

Frame Markers Robust estimate
1 7.00 − 0.70

2 12.20 7.70

3 20.40 15.70

4 27.00 20.70

5 36.60 31.10

6 45.40 42.40

7 53.60 57.10

8 64.40 68.90

9 75.70 78.90

the iteration process (Fig. 7). Hence, just a few iterations are
enough to obtain a stable result for this parameter. Com-
parison of results obtained by using markers and the robust
M-estimation (Table 1) correspond quite well. The differ-
ence can be explained with the displacement of the markers
caused by the elasticity of the skin, as well as with the nature
of the modeling process.

6.2 Example 2: accuracy analysis of 3D reconstruction
for a four-d.o.f. model

In this example we used a four-d.o.f. model of the arm (three
in the glenohumeral joint and one in the elbow joint). The
aim was to study the accuracy of 3D reconstruction when the
2D projection of the elbow joint point is determined up to
a rectangular region [6]. The robust M-estimation procedure

was limited to the same number of iterations as in the previ-
ous example and applied to different sizes of windowsW1
andW2 (Fig. 8a). Therefore, the obtained results for the ori-
entation of the segments’ axes differ. Intersections of these
lines define a rectangular region inside which the projec-
tion of the elbow joint point probably lies. We simulated
ten subsequent image frames of the upward arm movement.
For each arm position, the rectangular uncertainty region of
the elbow joint point was determined (Fig. 8b). By back-
projecting these uncertainty regions into the scene, all 3D
points that satisfy the constraints of the upper arm lie on a
spherical surface (Fig. 8c). The depth uncertainty intervals
for the position of the wrist joint are graphically presented
in Fig. 8d.

6.3 Example 3: 3D motion reconstruction

The aim of this experiment was to track the 3D motion of
the arm with a six-d.o.f. model of the arm. Frames (from
2 to 7) were selected from a longer sequence of 12 images
(used in experiments in [5]). In this way, we simulated large
displacements between frames. The actual lengths of the arm
segmentsDcl, Dup andDfor were measured beforehand on
the subject and we thus calibrated the image lengths which
were expressed in pixels. In the first frame, the shape model
was initiated by manually mapping the rectangular regions
of image data to each arm segment. As a result, the initial
values for the 3D joint positions were calculated. From this
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Fig. 8a–d.3D reconstruction of the arm motion with uncertainties:
a elbow joint position determined up to a rectangular region;b 10
different projections of the arm;c reconstructed 3D coordinates for
the start and the end position of the elbow showing the uncertainty
of the position;d two mirror 3D reconstruction solutions showing
the depth uncertainty of the wrist joint point position

Fig. 9. Results of fitting second-order curves to the image data

point on, the tracking was automatic. The results of fitting
second-order curves to arm silhouettes are shown in Fig. 9.
Figure 10 shows the extracted shape models. By backproject-
ing the extracted stick figures (Fig. 11a) into the scene, the
3D positions of the shoulder, the elbow and the wrist joint
and values of the joint angles were calculated. In Fig. 11b
the reconstructed trajectories of the joints are shown. From
the values of the joint angles (Fig. 12), assuming that the
motion is smooth, the next position of the arm in space and
the image features can be predicted.

The above example shows one of the best results that we
obtained. The estimated 2D shape parameters for the hand
and forearm are quite stable to different orientations. How-
ever, the 2D shape parameters for the upper arm change
quite a bit from frame to frame (first the upper arm is mod-
eled with a parabola, then with an ellipse). This is influenced
by the nonrigidity of the upper arm segment. As a conse-
quence, the elbow joint point E (for example, in frame 3) is
not accurately determined. In frame 6, the projection of the
forearm contains a critical amount of edge points. Because
there is no control over the estimation of the model param-
eters, the influence of outliers (edge points from the upper
arm) in this case prevail.

Fig. 10. Extracted models for the sequence of moves shown in Fig. 9

7 Discussion

The outlined approach to 3D arm motion reconstruction has
the following advantages:

1. It is noninvasive. The subject does not need to wear
markers or any other equipment.

2. It is based on a single camera. This reduces the hardware
and computational costs. Also the calibration is simple.

3. Robust M-estimation is used for modeling, tracking and
segmentation of 2D image data.

However, the approach does not address the following is-
sues:

1. In the modeling process, each 2D curve is fitted sep-
arately. Better results could be obtained if we could
predict/constrain the regions where 2D joints lie using
multi-frame analysis.

2. It is assumed that the 2D location of the joint points can
be extracted from each frame. The approach does not
deal with the case where the arm parts are occluded. This
drawback can be overcome by choosing a compromise
solution for a joint position where it is not found and by
correcting it in later frames.
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Fig. 11a.Extracted stick figures of the arm,b Recon-
structed 3D trajectories of the shoulder, elbow and
wrist joint points

Fig. 12. Time-varying sequences of joint angle val-
ues

3. The 3D postures are reconstructed in a bottom-up fash-
ion by backprojecting the extracted 2D stick figures sep-
arately in each frame. The full power of the kinematic
model is thus not utilized. The kinematic model could
be used in a top-down manner to predict the location
of the image features by means of a Kalman filter. By
interleaving the process of modeling 2D data and 3D
reconstruction, better results can be expected.

8 Conclusions

We have developed a method for tracking and reconstruct-
ing 3D human arm movements from a monocular image se-
quence. The method is based on a six-d.o.f. kinematic model
of the arm and a 2D shape model of the arm built out of
second-order curves in each image frame. The novelty of
the method is in tracking the arm in 2D without reconstruct-
ing the 3D surface of the arm. Our method advances the
state-of-the-art techniques for tracking the human arm be-
cause the shoulder complex is modeled with 5 d.o.f. instead
of 3 d.o.f. [21, 7, 8]. Our primary goal was to show that the
kinematic model we used offers enough constraints for 3D
reconstruction from a sequence of 2D frames. As a result,
the 3D structure is solved in a computationally inexpensive
way. The mathematics are simplified by assuming ortho-
graphic projection. We did not address the problem of oc-
clusion. Before further development of the system the study
of the accuracy of reconstruction using the comparison with
a 3D tracking system is foreseen.

Experiments with real images of the arm performing free
movements have been shown. The camera geometry was not
involved in 3D reconstruction. Since we did not address the
background extraction problem, uniform black background
was used. To increase the applicability of the approach to

more general scenes, a segmentation technique of gray-level
images (for example blobs) should be employed. Another
direction of improvement could be the use of multi-frame
analysis to improve the stability of reconstruction. Possible
applications are foreseen in 2D or 3D analysis of human
motion patterns.
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