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Abstract

A model is one of the most fundamental concepts: it is a formal
and generalized explanation of a phenomenon. Only with models we
can bridge the particulars and predict the unknown. Virtually all our
intellectual work turns around finding models, evaluating models, using
models. Because models are so pervasive, it makes sense to take a
look at modelling itself. We will approach this problem, of course, by
building a model of the process of modelling.
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Figure 1: The intelligent agent. The universe contains an agent that
perceives through its sensors, and acts through its effectors. The outside
world is unknown, but not necessarily unknowable.

1 Agents

To discuss modelling, we will weave an imaginary universe where there is
both the modeller and the nature, illustrated in Fig. 1. We will not use
the computer metaphor, as it has been replaced by the metaphor of the
autonomous agent over the past decades (Russell and Norvig, 1995). Of
course, an autonomous agent is not a novel idea, and it has much in common
with other work that dates at least back to von Uexküll’s work (Salthe,
2001). The autonomous agent is not a passive entity with input and output.
Instead, an autonomous agent has a persistent existence through space and
time: it can ignore the perceptions, and it does not need to act.

The outside world is outside its reach except through the agent’s sensors
and effectors. Still, the autonomous agent may build a picture of the world
inside itself, and the picture may include the agent itself, which we render
with the small blob within the agent’s model in Fig. 1. This should not be
seen as recursion, however: it is just an auto-portrait. Externalists feel more
comfortable by assuming a world, as seen by a God or as represented by a
certain model of objective reality, and placing the agent in the world; inter-
nalists prefer not to postulate such a model, so they first assume the agent,
and then place the world inside it. Even if the differences in perspective are
often overwhelming, there are no major differences for modelling: in both
cases there are sensors and effectors.

Inside the agent’s mind we separate the model from the utility. The
model roughly corresponds to the descriptive and the mental: the model
seeks to represent the truth. The utility, however, corresponds to the nor-
mative and the emotional: the utility chooses the desirable. This way, the
sensors are not mapped directly to the actions, and the agent is not a mind-
less automaton. Instead, the agent learns a model of the reality, and chooses
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the action with the highest utility. Our concern in this text will be the learn-
ing.

The agent is an existential system, so it is not completely free in its
choices: if too many choices are wrong, the agent is prevented from making
any more of them because it breaks down. Its curiosity, pursuit of truth,
novelty and aesthetics might wish to allocate plenty of utility to building
faithful, novel and beautiful models. At the same time, the agent’s body
struggles to keep the agent alive by restricting the freedom of its artistic and
intellectual pursuits. In all, we may imagine a certain hierarchy of utilities
inside the agent, similar to Maslow’s hierarchy of needs.

The role of the utility is to judge the actions. But actions are often
judged by the utilities of their consequences, and the models are judged by
the utilities of their actions’ consequences, and the agents are judged by
their models’ actions’ consequence utilities. Just as the agent has limited
insight into the actuality of the nature, it also has a limited insight into
the consequences of its actions. The agent does not know the consequences,
but uses utility to make the decision. This way, utility should itself be seen
as a model of the desirability of the consequences before the consequences
actually occur. Even if the utility appears fixed, utility itself is subject to
change and selection through the process of evolution.

Moreover, the agent does not have full access to the actuality around
it. It is restricted to the percepts it can make out of the environment. The
agents and their sensors were not selected through their ability to make beau-
tiful, novel and faithful models, but primarily by how much these models
helped them survive. Hence, the agent has limited insight into the fidelity of
its perceptions. Nevertheless, from these perceptions, the agent constructs
its reality, the model of actuality.

2 Models

Let us now focus on a particular problem. The agent has assembled a num-
ber of perceptions, and organized them formally in the form of instances.
This is referred to as data or a data set. The ‘data’ is a necessarily internal
representation of either internal or external measurements, samples or ob-
jects. An example of data is shown in Table 1. The agent wonders whether
the outcome of the coin toss can be predicted from the weather outside.
Such ability would yield major utility in various gambling endeavors.

Only the attribute Y is labelled, as the agent does not strive to predict
the weather (it can easily be observed), only the outcome of the coin toss
(which cannot be observed a priori). This already shows how the model
is constrained by the nature of the agent’s existence: if agent’s desire was
direct pursuit of truth, predicting the weather would be just as interesting
as predicting the coin toss. What needs to be modelled is only what is not
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the label
↓

attributes → X Y

an instance → rain H
an instance → sunny H
an instance → sunny T

. rain H

. sunny T

. sunny T

. rain H

. rain H

Table 1: A non-deterministic data set. The weather is described with
an unlabelled attribute X with the range <X = {rain, sunny}. The coin is
modelled as a labelled attribute Y with the range <Y = {H, T}. In general
it is impossible to predict the coin toss from the weather, and there is not
enough data to be truly certain in our ability to predict heads in rain.

already known or cheaper to observe or verify directly.

2.1 Mechanical Modelling

Table 2 attempts to summarize the flow of information from the percepts
to the consequences within a specific agent. This conveyor belt is judged
as a whole by the outside world. We can formalize different stages in the
process. First, the percepts can be crystallized into the form of instances and
examples. The algorithms for building models are formalized as algorithms
and procedures, and take the instances and examples and operate on them
to create models, seeking to maximize the quality of the model as assessed
by the utility. However, the agent has no direct control of or insight into
the objective reality (before stage 1), and no control of or knowledge about
the consequences of its actions (after stage 6).

The model-in-progress is expressed in a specific language. This lan-
guage differs from the notion of the natural language which is intended for
communication between agents, but is the internal ‘language’ in which the
models are written. For example, a logically-minded agent would have a
language if X = a then Y = b, where a is a particular value of the at-
tribute X and b is a particular value of the labelled attribute Y . The agent
could then create a model that says if X = rain then Y = H. Of course,
there are other languages for expressing models, such as mathematical ex-
pressions (y = a×x+b), case-based inferences (if X like a then Y like b),
or non-causal inferences (X = a with Y = b). The agent employs these
models to choose actions with good utility.
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A common metaphor of representation is a space. We can speak of data
instances as points in the data space. The dimensions of the data space are
attributes or variables, the properties of instances. The data is a scattering
of points in some area of the data space. On the other hand, there is a
language space, where the model is a point or an area, and the dimensions
are the parameters, the properties of models.

stage subject particulars formalization
1 percepts /
2 representation data instances, examples Instances
3 learning algorithm heuristics, procedures Programs
4 knowledge model hypotheses, concepts Languages
5 decision-making actions utility, preferences Policies
6 consequences /

Table 2: A model-producing factory. The path of producing and using
a model is essentially linear.

2.2 Organic Development of Models

While the linear view expresses the creation of a model as a linear sequence of
operations, the developmental view interprets the model as resulting from
the interaction of four restraints acting upon it. These restraints can be
formalized with the scheme in Fig. 2. The model to be learned is constrained
between four surrounding layers in an intersecting specification hierarchy
(Salthe, 1993). Under these restraints, the model emerges organically. The
restraints need not be fixed. On the scalar scale, the modelling is performed
inside the agent. All the terms of mechanical modelling from the previous
section are retained, it is just that the path towards the model, and the
existence of the model that are different. Of course, even within the organic
framework, we can envision an essentially linear path as in the previous
section. However, such a limited choice is not necessary.

Utility, language, algorithm and data can be interpreted as Aristotelian
causes of the model: the model cannot be independent of either of them.
The algorithm is what is driving the construction of the model and it assures
that the model is feasible. The language is what the model is made of and
it assures that the model is represented. The data is what defines the form
of the model: obviously the model should be consistent with the empirical
data. Finally, the model is going to be judged though the utility of the
actions chosen by using the model, it assures that the model is useful.
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final cause
↓

utility

︸ ︷︷ ︸

material cause → language { MODEL { data ← formal cause

︸ ︷︷ ︸

algorithm
↑

efficient cause

Figure 2: The model develops under the pressure of constraints. The
constraints are the Aristotelian causes: the capacity of the algorithm, the
expressive power of the language, the quest for utility and the consistency
with the data. The development of the model can be compared to attaining
resonance.

3 Dichotomies in Learning

There are numerous views of inductive learning and statistical inference.
Machine learning is still an active field of research and there are different
methodologies competing with one another. With a bit of emotional distance
we see, however, that many of the competing approaches in fact approach
the same problem, but from a different direction. Our description will briefly
and simplistically touch upon several ideas in machine learning, artificial in-
telligence and statistics. The list should be seen as an opinionated snapshot,
not as an exhaustive survey.

3.1 Identification vs Approximation

The Probably Approximately Correct (PAC) learning theory (Valiant, 1984)
was concerned with problems of deductive identification. We assume that
the data results from measurement of a specific but unknown concept that
determines whether an instance is true or not. The concept itself is a state-
ment in a particular language, and the task of learning is to identify the con-
cept that yielded the instances. Valiant proved that the learning problem
is tractable for several non-trivial concept languages, such as conjunctive
and disjunctive normal form expressions. The criterion in this identifica-
tion approach is to arrive at the true definition of the concept. Here, our
term ‘identification’ is to be distinguished from ‘system identification’, an
approach to modelling which includes approximation.

6



The utility is not needed because the language is trusted. The language is
the ontology. Most scientists believe that mathematics is the right language
for modelling nature, for example. We often like to think that our brain
(as a kind of a language) is powerful enough to understand the truth of
the universe. Many philosophers deem that the language of causal logic is
sufficient for a complete description of how the universe evolves and revolves,
and that everything can indeed be linked into an endless thread of chain and
effect.

Identification assumes that the agent’s language matches the language
of the concept. This is a strong assumption: we are rarely sure that our
language as such can truly describe the reality! For that reason, the agnostic
approach to learning (Haussler, 1992) no longer expects that the model will
be true. The approximation approach no longer seeks truth, but only seeks
to minimize the error that the model makes. The language is epistemology.
For example, the agent will decide between using the barometer, the weather
channel, or a combination of both in order to minimize the error in predicting
the weather next day. The goal is achieved when the agent finds the best of
the models that can be expressed with its language. This way, however, trust
is placed onto utility as a realistic model of model quality. For example, we
may assume the utility to be the mean square error: 1

n

∑n
i=1(yi − ŷ(xi))2,

for n test instances 〈y1, x1〉, . . . , 〈yn, xn〉 that have the true value of yi, which
can be predicted from xi as ŷ(xi).

While the identification approach strives to explain the nature with a
specific language, reducing data into special cases of particular universal
truths, the approximation approach is skeptical about the validity of the
language. Of course, a good enough model can be found in the language,
but perhaps there is another language that would work even better. An old
joke says: The approximating engineer thinks that equations approximate the
reality, while the identifying physicist thinks that the reality approximates the
equations.

3.2 Probability: Frequency vs Belief

In many circumstances it is impossible to predict the outcomes exactly. I
take a coin and toss it, but even if I try, I cannot perfectly control the
outcome. If it is not possible to reliably predict the outcome, we can still
reliably predict the probability of each outcome. For example, we could
say that there is a 50% probability of the coin falling heads, and a 50%
probability of the coin falling tails.

There are numerous interpretations of the meaning of probability, but
a particularly important division is into the frequentist probability on one
hand and the interpretation of probability as a degree of belief on the other
hand. Objective frequentist probabilities are a part of the ontology, and
they refer to reality. On the other hand, subjective beliefs arise from agent’s
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limited knowledge about the world, and are an aspect of epistemology. The
worldview with frequentist probability takes the reality as inherently unpre-
dictable, but guided by a true model. The true model is identifiable, should
an infinite number of observations be made. Probability is defined through
the long-run frequency of an event. Learning is referred to as estimation,
and seeks to minimize the fixed utility or risk.

On the other hand, the subjective view considers probabilities as re-
sulting from the lack of knowledge. The coin toss, for example, appears
random purely because the conditions of each experiment are not precisely
controlled. Learning is referred to as inference. The probability is thus seen
just as a way of representing the degree of belief, the ignorance, the inabil-
ity or reluctance to state a deterministic model. The subjective probability
refers to statements in a language, not to objects in the world. It is the
model that is unable to predict the outcome, perhaps due to agent’s bad
eyes or thick fingers, not the inherent unpredictability of the reality. An
ideal observer with all the information would be able to get a model with
less uncertainty. A subjective interpretation of an unpredictable quantum
phenomenon is that we do not know what is inside, not that the inside
is inherently unknowable. The process of learning seeks to maximize the
utility of the model, but the utility and the probability are dependent and
inherently entangled (Rubin, 1987). It is possible, however, to use proper
score functions and objective algorithms that favor probabilities that are
calibrated and have good properties with respect to the frequentist criteria.

3.3 Simplicity vs Timidity

The simplicity-driven algorithm restricts itself to a simple language and then
seeks the best model from the language, in the process of fitting or optimiza-
tion. It is a good practice to assess whether the model is significantly better
than another simpler model. It is also possible to reverse the process: we
first identify the best model, and then seek to simplify it in the process of
pruning (Breiman, Friedman, Olshen and Stone, 1984). In all, simplicity-
driven algorithms restrict the language or hide the data, and then maximize
the performance.

The grand majority of scientists pursue simplicity. Namely, the goal of
learning is not just to predict but also to understand. A simple explanatory
model of a previously complicated phenomenon is the epitome of science.
When the model appears too complex, it is critiqued and disliked: the sim-
plicity has an inherent quality to it, a quality does not derive from the
objective precision of the model. Instead, simplicity implies that the model
is easier to learn, keep in mind, work with it, easier to present on a slide,
easier to persuade people into it, and easier to validate.

On the other hand, the timidity-driven approach tries to identify the
model that agrees with the data but that achieves the highest utility in the
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worst case. For example, we examine the data and estimate particular statis-
tics, such as the mean and the standard deviation. Now, what model with
such a mean and such a standard deviation is the most timid in the sense
that it will be worst-case optimal according to some utility function? The
most timid one is the bell-curved Gaussian distribution. If our constraints
are the upper and the lower limit, the most timid model is the uniform
distribution. Generally, the constraints imposed upon the model ascertain
that the model agrees with the data. But from all agreeable models, we pick
the least pretentious one of them, which also has the property of worst-case
optimality. A generalization of this view are the maximum entropy (Max-
Ent) methods (Jaynes, 2003). Another interpretation is that the maximum
entropy model is the most ‘settled-down’ model that the constraints allow,
a view that resonates well with the organic view of Fig. 2.

3.4 Selection vs Combination

There may be multiple models within a single language that are all consistent
with the data. The set of consistent models is referred to as the version
space (Mitchell, 1997). There are two approaches for resolving this issue:
model selection and model combination. Model selection seeks to identify
the single best model. Model combination instead views the identity of the
model as a nuisance parameter: no model is correct, but we can assign them
weights according to their performance. It must be stressed that we are not
selecting actions. Instead, we are selecting models, and the selected model
will be used to select actions.

There are very many model selection criteria. For example, Fisher’s
maximum likelihood principle (Fisher, 1912) suggests picking the single most
likely model, regardless of anything else. Hypothesis testing in statistics se-
lects a particular null model unless there is overwhelming evidence against
it. The Bayesian priors (Bernardo and Smith, 2000) set up a coherent set of
preferences among models that are combined with the models’ likelihoods.
Ockham’s parsimony principle prefers the simplest among several equally
useful models. The maximum entropy approach (Jaynes, 2003) prefers the
‘flattest’ and most symmetric model with the highest Shannon entropy of
all those that satisfy the constraints derived from the data. Akaike infor-
mation criterion (AIC) (Akaike, 1973) penalizes the utility with the number
of parameters. The minimum description length principle (Rissanen, 1986)
represents the complexity of the model with the same unit of measurement
as the utility.

An example of the application of model selection is shown in Fig. 3.
There are four models: NBC, PIG, NIG and BS. These four models are
applied to several data sets, and the one that achieved the lowest loss (loss
is the opposite of utility) is typeset in bold. It can be seen that the model
NB very often achieves the best performance. Only in a few situations BS
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NBC PIG NIG BS
lung 0.230 0.208 0.247 0.243

soy-small 0.016 0.016 0.016 0.016
zoo 0.018 0.019 0.018 0.018

lymph 0.079 0.094 0.077 0.075
wine 0.010 0.010 0.015 0.014
glass 0.070 0.071 0.071 0.073
breast 0.212 0.242 0.212 0.221
ecoli 0.032 0.033 0.039 0.046

horse-c 0.108 0.127 0.106 0.104
voting 0.089 0.098 0.089 0.063
monk3 0.042 0.027 0.042 0.027
monk1 0.175 0.012 0.176 0.012
monk2 0.226 0.223 0.224 0.226

Table 3: Model selection. The losses (negative utilities) suffered by dif-
ferent modelling methods (NBC, PIG, NIG, BS) are not consistent across
data sets. For each row we can select the one of the best methods, typeset in
bold, for that particular data set. It is difficult, however, to choose a single
best method overall.

performs better. Overall, however, NBC would be selected as ‘the best’.
Sometimes, however, the choice is ambiguous: the problem is illustrated

in Fig. 3: two models A and B were tested over a large number of exper-
iments in two contexts. For each experiment, the utility of model B was
subtracted from the utility of model A. In the first case (top), the model
B achieved higher utility than model A almost always. However, in a small
number of situations A was still better. In the second case (bottom), de-
ciding which model is better becomes a very difficult problem: in the most
frequent case (mode), B was better; for the average utility over all exper-
iments, A was better; in the average case (median), B was better; in the
best case, A was better; at the worst, B was not as bad. What to do?
Deciding between two models may be ambiguous even when the consistent
and quantitative utilities are given in full detail. Of course, such a dilemma
only arises when the methods are similar in performance, and any choice
might be fine.

Epicurus’ principle of indifference states (Kirchherr, Li and Vitányi,
1997): Keep all hypotheses that are consistent with the facts. Therefore,
instead of making an arbitrary selection, one could perform a combina-
tion. Consistency is not a binary decision: in a probabilistic context several
models have a non-zero posterior probability, meaning that they are all con-
sistent, to some extent. Namely, if we see three tornadoes in the same
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Figure 3: Replicated comparisons. We can compare the utility of two
models over several experiments. Sometimes it is easy (top), and sometimes
hard (bottom) to decide which model is better, A or B.

week, it might be due to the expected pattern with global warming or sim-
ply due to a coincidence without global warming. The Bayesian solution
to this problem is based upon an ensemble of multiple models, with each
model having a non-zero likelihood. In our example, we would consider both
global warming and no global warming as being true to some extent. The
term commonly used for the ensemble is the posterior distribution over the
models, but the whole ensemble itself is really a single model, composed of
multiple hypotheses.

Let us consider the familiar example of the coin toss. There are numerous
languages that can formalize our knowledge about the coin. One language
views the coin as guided by some frequentist probability: the greater the
probability of the coin falling heads, the larger the frequency of the heads
in the final tally. A model from this language is referred to as the Bernoulli
model. We start with some prior belief about the coin’s probability: the
coin may be biased, or unbiased. We can represent this belief by saying
that our prior is an ensemble of all possible Bernoulli hypotheses, and our
belief in each hypothesis is equal (Fig. 4, left panel). Then we toss the
coin five times, and the tally is 3 tails and 2 heads. The resulting ensemble
reflects this (Fig. 4, middle panel): those probabilities that indicate that the
coin always falls heads are impossible, and the most likely is the hypothesis
that claims that the probability of heads is 2

5 . The data has narrowed the
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range of our beliefs about the probability. It would be improper, however,
to claim that this single hypothesis is representative of the coin: we have
not seen enough data to be so specific. All we can say is that we believe that
the probability of heads is in the interval [0.1, 0.8]. Performing a few more
tosses, we end up with the tally of 9 heads and 10 tails. The distribution of
our beliefs over the ensemble (Fig. 4, right panel) shows that the probability
is almost certainly somewhere on [0.2, 0.8], but we cannot yet say anything
beyond that with complete certainty.

When such an ensemble is used to make a prediction, each hypothesis
makes a distinct prediction. This way, we obtain an ensemble of predictions,
each of them weighted by the posterior probability of the corresponding
hypothesis. We can interpret the ensemble as an imprecise prediction: not
just that the ensemble is not sure about the outcome, it is also unsure about
the probability. The other way of interpreting the ensemble is by stating
that the identity of the hypothesis is a nuisance parameter, a property that
exists but we do not want to know. The Bayesian approach for dealing with
nuisance parameters is to average the predictions of all hypothesis, so that
each prediction is weighted by our belief in the hypothesis that made it.

If we consider the hypothesis as a nuisance parameter, we need not treat
the model as an ensemble: it is somewhat expensive to lug along all the
hypotheses and their individual worths. Instead, we may average them
together. In this case, we can represent the average as a single model being
guided by the following probability:

pH
MAP =

nH + 1
nH + nT + 2

This is referred to as the Laplace estimate of probability, because the legend
says that Laplace wondered about the probability of seeing another sunrise
after having seen only a single one. Of course, in some applications it is
important to keep note of the whole ensemble: pH

MAP is identical for the
tally of 1 head and 1 tails and for the tally of 10000 heads and 10000 tails.
However, the ensemble is much more distinctly peaked for the latter one.
Averaging, therefore, is a way of replacing the Epicurean ensemble with a
single hypothesis that is closest to the average of the ensemble, but any single
hypothesis from the ensemble does not faithfully represent the variation in
the ensemble. There is an old statistician’s joke: The average European has
one testicle and one ovary.

3.5 Bias vs Variance

Would you believe me if I told you that all ravens are black after seeing five
of them? In every case, the agent is restricted to the data set. The agent
seeks the elusive goal of generalization (Wolpert, 1995): the model should
be applicable to data that has not been used when building the model; the
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Figure 4: A Bayesian ensemble of models. Each probability of the
unknown coin falling heads is an individual hypothesis, and these hypothesis
form an ensemble. Each hypothesis is assigned a particular belief. Our prior
belief is uniform over all the probabilities. Successive observations of coin
toss outcomes induce greater and greater precision in our beliefs about the
posterior probability (left to right). Still, there is always some uncertainty
about the exact probability.

model should be the best on the data that was not yet seen. This problem
is highly problematic: what can we know about the data we have not seen?

The cross-validation approach (Stone, 1974) divides the data into two
parts: one part is used for building the model, and the second part for eval-
uating its utility; this way we prevent the model from simply memorizing
the instances and ‘peeking at the correct answers’. We are interested in the
agent generalizing, not memorizing. Thus, we evaluate the agent’s predic-
tions on those instances that it has not seen during learning of the model.
This way, the validated utility will reflect the mistakes of generalization.
The idea underlying the cross-validation is that a reliable model will be able
to show a consistent gain in utility with incomplete data. By induction, we
then expect that a model that achieved reliable performance with a part of
the given data will also not miss the target on the future truly unseen data.

The hidden nuisance parameter in cross-validation is how much data we
use for training. This decision is far from arbitrary, as we will now show
using learning curves (Kadie, 1995). A learning curve shows the relationship
between the performance of a model on unseen data depending on how much
data was used for training. If the utility no longer changes, the model has
converged, and additional data is less likely to affect the model. In Fig. 5
we compare two commonly used algorithms in machine learning, the naive
Bayesian classifier (NBC), and the C4.5 classifier (Quinlan, 1993). The
utility is not simple to characterize when there is little data (less than 50
instances), but NBC is less robust than C4.5. When there is more data (50-
150), it is still difficult to compare both methods. Beyond 150 instances,
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Figure 5: The learning curves. Most models become better with an
increasing number of instances. Some of them quickly reach a plateau and
result in reliable utility. Others take more chances, and reach greater levels
of utility, but pay a cost in reliability.

NBC becomes reliable: we know that the NBC model requires approximately
150 instances to be characterized almost unambiguously. On the other hand,
C4.5 keeps gaining utility indefinitely. Therefore, two conclusions can be
made: the NBC model is simple enough to be identified unambiguously
with 300 instances: this is good, as there are 960 instances in that data
set. And, when there are 250 instances, the C4.5 model has not yet fully
converged, but it is already clear that it is consistently better than the NBC
model.

Still, there is the problem of which method to choose: C4.5 has higher
average utility, but NBC has lower variance in its utility. This trade off is
referred to as the bias/variance dilemma (Geman, Bienenstock and Doursat,
1992). When we want to be sure about the performance, in cases when any
mistake would be dangerous, a method with lower variance is preferable.
When, however, we can afford to take chances, the method with lower bias
is going to be preferable, in spite of the possible variance. The choice of the
model, hence, depends on how risk-averse we are. It is clear, though, that
the generalization performance still depends on the sample being unbiased
representative: when one wants to predict the outcome of the elections, one
should ask the people that will actually vote, and even these should not
be all aging golf players but instead a representative sample of the whole
population (that will vote). No cross-validation on the population of aging
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golf players will reveal the true preferences of the general population. Also,
problems occur both with learning curves and cross validation when there
are very few instances: then neither the convergence nor the average utility
can be reliably assessed.

There is an important connection between simplicity and variance. It
is often thought that simple models have lower variance, but it would be
mistaken to assume that this connection is causal or rigid. Whether a com-
plex language will yield models with high variance depends upon the prior
assumptions and on the algorithm. Seemingly complex models often have
low variance (Breiman, 1996).

3.6 Bayesians vs Frequentists

A common dilemma in statistics is between the opponents and endorsers
of the Bayesian approach. We will now present their caricatures. For a
frequentist, there are multiple data sets consistent with a given model: their
probabilities are about the data, and their model is believed to be true. For
a Bayesian, there are many models in the language that are consistent with
a particular piece of data: each model has a specific belief, but their data is
assumed to have the probability of 1.

Bayesians are uncertain about the model, but assume certainty about
the data. To get rid of the uncertainty, they average out the model. To
demonstrate the uncertainty, they perturb the choice of the model given
a data set, and examine if the ensemble can be faithfully represented by
a model selection or a model average. Bayesians tend to be driven by lan-
guages and data: they focus on the construction of languages to model data.
Their priors are the explicit gold standard, and the algorithms they use are
centered on the properties of the priors and the data. In fact, the prior
corresponds to the algorithm in the scheme of Fig. 2.

Frequentists are uncertain about the data, but assume certainty about
the model. To demonstrate the uncertainty, they perturb the data given
a model. To get rid of the uncertainty about the model, they vary the
data, and select the best model of a particular language for the data. For
different choices and sizes of the data, they compare the languages on the
bias-variance axis. If the variance is too high, they average over the selec-
tions. Frequentists tend to be driven by utilities and algorithms: they focus
on the construction of algorithms to maximize utilities. They rarely question
their language (which is usually very flexible), and their prior assumptions
are hidden in the choice of the algorithms.

Because the assumptions are different, attempts to reconcile these ap-
proaches are difficult. Frequentists find it illogical that a photon detector
would have ‘beliefs’ about the outcomes. Bayesians would respond that there
may be laws in the nature, but all we can do is to have beliefs about them.
On the other hand, Bayesians find it illogical for a frequentist to say that
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there is a probability in the world that rules the outcome of a coin toss. Fre-
quentists would respond that the probability would arise if such experiment
was repeated in identical circumstances infinitely many times, or through
Everett’s many-worlds interpretation of probability (Everett, 1957).

To be fair, most frequentists in statistics do not think in such a way:
most statisticians tend to be epistemological in spirit, and true frequentists
may be found among the ontologically-minded physicists. The statisticians
that do not call themselves frequentists but non-Bayesians pragmatically
prefer to work with the algorithms and the utilities, rather than to work
indirectly through languages, like Bayesians. And most Bayesians too are
pragmatic and concerned about various utility functions and algorithms.
Still, there are attempts to reconcile the results if not their interpretations
(Berger, 2003). It is important, however, to see that beliefs and probabilities
can co-exist.

4 Subjective, Intersubjective and Objective

There is also the dilemma of identification and approximation. It is clear
that once the ontology is fixed, and if the ontology includes probability,
frequentist probability is an existent which we can seek to estimate. But if
the ontology is internal and not external, one has to include epistemological
considerations with prior expectations and degrees of belief. The opponents
of this approach argue that the choice of the prior is inherently subjective.
The Bayesians struggle to find ‘objective’ languages and prior assumptions,
ones that carry little bias or preference for different models. Example of
such priors are the non-informative priors, ones that provide no information
about the choice of the model and reflect ignorance. It is easy to dismiss
these attempts as ‘still subjective’.

The most common example of an ‘objective’ technique is the linear re-
gression model. It is next to being fully automated: no human intervention
is needed beyond preparing reliable, plentiful and unbiased data. It has
been used for numerous applications, often resulting in utility. It is widely
accepted and known. It is taught in schools. Many people understand lin-
ear models and can gain utility from them. But this does not make linear
regression objective. It is just a specific model, based upon many subjective
assumptions. The very fact that we are assuming that a linear model can
be used to represent reality is quite arbitrary. Nobody really believes that
the nature is solving linear equations.

The key difference, thereby, is that ‘objective’ methods result in models
that are transplantable, multisubjective or intersubjective. Intersubjective
models are self-sufficient and encapsulated, they are particulars. This way,
they can be communicated from one agent to another. Furthermore, trans-
plantable models derive from shared preconceptions; they are guided by
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rules that are general. They do not make use of the hidden implicit sub-
jective assumptions, but only of those prior assumptions that are shared
by several agents. In summary, intersubjectivity means that a model can
be understood and accepted by more than a single agent in a community.
But intersubjective approaches are still epistemological, so ontologists do
not find them objective.

It is not just that shared language (otherwise a model could not be
conveyed), shared data (otherwise the model could not be verified), and
shared algorithms (other the model could not be proved) that matter: shared
utilities matter too. Someone might understand my theory, but the question
is whether the other agent will appreciate it as much as I do. I might form
an intersubjective and comprehensible theory of why there are five empty
cups of coffee on my desk, but not many agents will care: my model of
the five cups does not yield them any utility. In all, objective models arise
from data, algorithms, utilities and languages that is shared by the whole
community. Sometimes, we convey them explicitly (“Tomorrow is going to
rain.”), and sometimes by conveying merely their causes (new data, new
rules of induction, new words in the language, new qualities and priorities).

The four Aristotelian causes (data, algorithms, language and utility)
must be aligned for the model to coalesce. Teaching is about varying one or
two of the causes so that the learner can re-adjust his internal model. If too
many causes are varied, if there is no alignment, or if there is imbalance along
any of the dichotomies listed in the previous sections, the learner becomes
confused and lost. Therefore, it is desirable for only one of the causes to be
varied during teaching. Communicating the data is the easiest of all causes.
It may even turn out that the data is the only way of conveying models:
A theory is something nobody believes, except the person who made it. An
experiment is something everybody believes, except the person who made it.
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