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Abstract

Before information theory can be applied, we must postulate a par-
ticular model of the universe based on probability theory. We jour-
ney through the assumptions, advantages and disadvantages of the
view. There are three kinds of symmetry or similarity in such a uni-
verse: symmetries between probabilities reveal ignorance, symmetries
between events reveal indifference, and symmetries between properties
reveal information.
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1 Introduction

In this paper we will discuss similarity and symmetry within the framework
of information theory. The starting point in our discussion is a model, as
it is usually understood in statistics. A model is how we formally describe
a particular pattern. But a model is formal, and must be expressed in a
particular language. For example, linear functions are a language, as are
specifications of Turing machines. For a model to have any relation to
the reality, it should agree with the data. The data are abstractions of
measurements or of sensory experiences.

The data does not pretend to be general. It is the task of the model to
generalize upon it. Let us consider an example: if the language is geometry,
and the data are our experiences involving the sunset and the sunrise, the
model will attempt to provide a simple set of geometric statements that
explain the many observations. So, the model will be a geometric statement
associating the Earth and the Sun as spheres placed in space. The Earth
rotates around its axis with a cycle of 24 hours, and the sunrise is defined
by the sun becoming visible to a point on the surface of the Earth. This
model will be able to predict that the sun will rise tomorrow.

If the model is true, the data can be expected to be its measurements.
Even if the model is not true, it can be understood as an approximate
explanation of the data. The goal of modelling is to connect the data and
the model by forming an expression in the language so that it will agree with
the data. A model is thus consistent both with the language (otherwise it
cannot be conveyed to others, and remains forever captured inside a black
box, a mind or a computer) and with the data (otherwise it is a flight of
fancy).

There are many phenomena in real world that are much more complex
to model than the mechanics of celestial bodies. Consider the simple coin
toss: of course we could measure the exact shape of the coin, the properties
of the forces acting upon it, and predict the outcome of tossing it. But these
characteristics are often not known to us. Still, we would like to predict the
outcome. It is impossible to predict a single outcome, but we can predict
how likely different outcomes are. A coin toss is expected to be equally likely
to fall heads or tails. In fact, that is why it is used as a random outcome
generator.

Coin toss is an example of a phenomenon where it is impossible for the
data to be fully consistent with any model, either because we lack the data,
or because the god tosses dice. Of course, the data could be perceived in a
very restricted way (“Did the coin get tossed?”), by giving up the precision of
our perception, ignoring the outcome. Nevertheless, the situations near the
transition between tossing and not tossing are always good subject matter
for paradoxes (“Does it count as a toss if the coin is intercepted in the air?”),
so the solution is rarely perfect. Alternatively, there must be some way of
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accounting for probability as an aspect of the model, allowing for multiple
outcomes of an identical experiment. A particular event is certain only
if the probability is 1, and impossible if the probability is 0. Because both
heads and tails are possible, their individual probability will lie somewhere in
between. Only when such a model is built in the language of probability, we
have the foundation for applying Shannon’s theory of information (Shannon,
1948).

Shannon’s entropy is based upon a model expressed in terms of proba-
bility. As such, it has little to do with thermodynamic entropy. If there is
no probability in the model, the entropy will be zero. So, any non-trivial
model to be considered with information theory should involve uncertainty.
In the subsequent sections we will show how probabilistic models look like
and what assumptions do they enforce. We will describe the notion of an
attribute as something knowable about the reality, and then show how in-
formation theory helps question attributes and the relationships between
them. In the end we will interpret symmetry as a geometric language, and
discuss the nature of symmetry in models. Although all the notions of this
paper are expressible with mathematical formalizations, our style will be
conceptual and expository.

2 Models and Probability

We have described models, languages and data, and identified probability
as a way of allowing for unpredictability. We will now provide a more spe-
cific account of the language of probability. This representation will be the
foundation for interpreting any information-theoretic quantity. Namely, as
information theory is built upon probability theory, we have to be aware of
its limitations. We will also address some of the criticisms of probability. On
the other hand, we will not discuss various interpretations of probability: our
applications of probability are compatible with several interpretations, but
there may definitely be interpretations incompatible with our applications.

Before Shannon’s theory of information can be applied, we need to for-
malize the notion of a ‘model’. To do this, we will use two concepts: the
universe and the attribute. A universe is a collection of possibilities (sun,
clouds, rain), while probability measures the likelihood of each of them (sun:
0.7, clouds: 0.2, rain: 0.1). On the other hand, an attribute wet/not-wet is a
shortened projection of the universe (wet:(rain), not-wet:(sun,clouds)). An
attribute is a property. Using attributes, we can condition a universe, split it
into separate subuniverses, one for each value of the attribute (wet:(rain:1),
non-wet:(sun:0.78, clouds:0.22)). Alternatively, we may marginalize a uni-
verse by collapsing all events that cannot be distinguished with the given set
of attributes (wet:0.3, non-wet:0.7). The following subsections are intended
to be an informal introduction to mathematical probability. A reader who
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desires a more formal approach should refer to other literature, such as
(DeGroot and Schervish, 2002).

2.1 Universes

Most of Shannon’s theory of information is based on the notion of a probabil-
ity mass function, or briefly PMF. When we have several PMFs, we assure
their cohesion by having them all derived from an underlying universe. The
universe is a measure space 〈S, E , P 〉 based on a discrete set of elementary
events E = {e1, e2, . . . , en}. The set of events is sometimes also referred to as
sample space in probability theory, or an alphabet. Note that events may be
letters, symbols, things, entities, objects in a bag, states of some machine,
outcomes of an experiment, or words in a document: events are merely the
carriers of distinction. The formal term for a universe along with probabil-
ity is a probability space, but information theory refers to probability spaces
with discrete events.

It is extremely important to note that our universe is a model. It is
not necessarily a true model of reality, but of a partial view of reality. It is
the goal of statistical mechanics to provide a good model of reality through
probabilistic modelling, but we can use the same tools to model anything,
such as patients entering a doctor’s office. And in such circumstances there is
little similarity between Shannon’s entropy and Boltzmann’s ‘quantity called
H’ (Tolman, 1979) which refers to molecules of gas. In retrospect, it was
not a good decision to call Shannon’s entropy entropy: a more appropriate
term would be neginformation.

In the universe, probability P is a measure of each event. The proba-
bilities for all these elementary events should sum up to 1:

∑
i P (ei) = 1.

Therefore, in every circumstance exactly one of the events should happen.
The assumption that elementary events be mutually exclusive is sometimes
found problematic, but is easily remedied. One frequent example is the
case of the ‘excluded middle’. Exactly one of a and ¬a, where ¬a signifies
not-a, is true at the same time. For example, if a signifies a full cup, and
¬a an empty cup, this appears to be a problem. But it is not a problem
of assumptions, but of the representation: saying that ¬a marks an empty
cup is incorrect, as a cup can be neither full nor empty. More appropriate
would be a larger set of four events, based on a signifying a full cup and ¬a′

an empty cup: {a ∧ ¬a′, a ∧ a′,¬a ∧ a′,¬a ∧ ¬a′}, here ∧ stands for logical
conjunction. It is then the task of the probability to capture the semantic
mutual exclusivity of emptiness and fullness: P (a ∧ a′) = 0, but we could
have excluded this joint event when defining the events.

Another problem with probability may be unforeseen circumstances.
What happens if we get a broken cup: is it full or empty? Indeed, in some
situations we need to create a ghost event e0 which means ‘something else’
or ‘something unforeseen’. Also, it would be incorrect to use a probability
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larger than 1 to describe an event that has happened several times: this
is achieved by creating multiple events {a1, a2, a3, . . .}. As these events are
mutually exclusive, we have ‘invented’ natural numbers.

The events and probabilities are considered to be pure and objective. We
do not concern ourselves with the notion of an observer and the observed. If
this is necessary, the act of observation should be included among the events.
For example, if a signifies the sun rising, and b me observing the sunrise, the
universe should be modelled as four events: {a ∧ b,¬a ∧ b, a ∧ ¬b,¬a ∧ ¬b}.
If the model should allow for the truth of my claims about the sunrise, a
further symbol c would need to be combined with a and b, and would signify
what I claimed about the sunrise. Therefore, these three events capture the
situation in its full scope: a - truth, b - what I see as true, and c - what I
say.

It is obvious that our model is of limited precision: we cannot break
any event into its constituent parts - the events are atomic and internally
indistinguishable. Should we want to do that, we would need a new sample
space, a new universe. The universe is the embodiment of the notion of an
ontology: the list of conceivable events along with the possibility, impossi-
bility and probability of each one of them. If one prefers the language of
logic, the set of events is the set of possible atomic statements, the probabil-
ity of each event is their semantics, so that each resulting statement has a
probability. The mathematical structure of a sample space generalizes upon
this notion by allowing aggregations of elementary events.

The choice of the universe is in the eye of the beholder. The beholder
only distinguishes those nuances that matter. There are unimaginably many
possible states, but as beholders, we choose not to distinguish all of them.
We might distinguish 37.001 and 37.002 as abstract numbers, but we would
generally not distinguish them if they indicated the body temperature as
one variable in medical diagnosis. On the other hand, 37.049 and 37.051
would be distinguished in the universe where rounding to the nearest num-
ber turned them into 37.0 and 37.1, but not in another universe where all
numbers are rounded down. We avoid associated problems by allowing for
a number of universes that model the same reality: ultimately the choice
of the universe is an event like any other. Furthermore, we may have sev-
eral probability measures for the same universe: each choice of a probability
measure is an event. Finally, all that we truly require is that the probabil-
ities are consistent within a particular universe, and that universes can be
coalesced into a single universe which agrees with the above assumption of
mutual exclusivity and completeness.

It is also possible to model dynamics with the concept of the universe.
Given a static universe E , the dynamic universe is a Cartesian product of
the universe before and the universe after: Ebefore×Eafter. The implicit time
of the dynamic universe is also discrete: ‘before’ and ‘after’ are distinctly
separated. At the same time, the model is unable to account for its possible
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changes through time: it is necessarily invariant with respect to translations
in time. The invariance of some kind, with respect to moments, types of
cups, translations in time or something else, facilitates the repeatability of
a particular event. Multiplicity or repeatability of occurrence of an event,
or at least belief in the occurrence of an event is what is needed to speak
about probability. A ‘thick time’ model of the universe would be E0 × · · · ×
Enow, but only ignorance or multiplicity of universes (multiverse) would allow
probability.

The data D is represented as a multiset of events, or as a set of instances
or measurements: a single event may have happened several times and so
corresponds to several instances, just the same temperature can be obtained
through several acts of measurement. This means that the universe may not
distinguish every pair of instances, either due to ignorance or intentional
disregard. There is no ordering of instances, unless the order is a part
of each event. Many possible probability measures are consistent with a
given set of data: the only requirement is that each instance has non-zero
probability.

It is possible to learn the probability from the data, too: we can seek
the probability assignments that make the data as likely as possible (Fisher,
1912). Or, more generally, we can use the Bayes rule to assign probabili-
ties to different probability measures consistent with the data, e.g. (Good,
1965; Jaynes, 2003), thereby creating a universe of probability measures. In
some cases it is necessary to interpret the data probabilistically, especially
with unreliable sensors or with real-valued measurements. The temperature
reading of 37.0 degrees Celsium may be interpreted as an observation that
the true temperature has a uniform distribution between 37.05 and 37.15
degrees Celsium: an additional source of uncertainty. Not to get bogged
down in this complexity, we will always consider a single universe with a
single probability measure. However, if this universe is nested as an event
within another universe, so will every statement or conclusion based on it.

2.2 Attributes

We have interpreted the universe as a formalization of everything that can be
distinguished. There is no structure in the universe, it is a mere structureless
list. We will now consider the notion of an attribute A as a construct built on
top of the universe. We will start with a binary attribute, the simplest of all,
whose range <A is {0, 1}. The binary attribute A is a function A : E → <A.
Thus, for each event, we will know whether the attribute took the value of 0
or 1. The attribute merges all the states of the universe into those that have
the value of 0 and those that have the value of 1: the attribute values are
mutually exclusive. By summing all the corresponding event probabilities,
we can obtain the attribute value probabilities. We can also envision a
universal attribute whose range is the universe itself: the universe itself is
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then the original attribute, the alphabet. 1

There are a few arguments against attributes. First, fuzzy logic (Zadeh,
1965) disagrees with the notion of an attribute which takes a single crisp
value for each event. Instead, fuzzy logic recommends using grades of mem-
bership of an attribute value for each event. We will attempt to do the same
in the existing framework by introducing the notion of a ‘perception’ or a
sensor. The sensor is unreliable, and may or may not react to a particu-
lar event. But this can easily be handled within our notion of events and
attributes. As earlier, we will include the sensor reading {s,¬s} into the
universe, obtaining four events: {a∧¬s, a∧ s,¬a∧ s,¬a∧¬s}. If the sensor
is precise, P (a∧¬s) and P (¬a∧s) will be low. Nevertheless, there is a good
reason why sensors should not always be precise: consider a indicating the
height of 183.2321 . . . centimeters and the s signifying ‘tall’: there is a good
reason for working with clumpier s rather than with a. Of course, if we have
several heights and several sensors, the situation of sensors ‘tall’ and ‘very
tall’ both taking the value of 1 for the same objective height is perfectly
possible. When there are k mutually exclusive binary attributes, meaning
that for each event in the universe there is exactly one of them taking the
value of 1, we may replace them all with a single k-ary attribute with the
range {1, 2, . . . , k}. This is a major gain in economy, but it is contingent
upon mutual exclusivity.

Another common assumption is the invariance of a sensor: it should
remain the same for all instances, in the same way as an event is atomic.
This assumption is not always realistic: there may be drift through time
(Widmer and Kubat, 1996), old sensors may not be the same as new sensors
and consequences once upon the time are no longer the same. A systematic
deviation from this assumption cannot be captured by the model, and the
resulting model will carry some uncertainty because of that. The solution
lies in introducing a sensor’s sensor, indicating if the sensor is new, old or
broken. And one can continue by including the sensor of a sensor’s sensor.

In other circumstances, the value of the attribute might be unknown
or undefined. Assume patients coming to a physician, so each patient is an
event. For some patients, the body temperature is known, but for others it is
not. Technically, the attribute’s range must then include ‘not known’ as one
of its values. Even in the binary case, we can imagine the range {‘1’, ‘0 or
unknown’}. Alternatively, we may create a binary attribute {‘temperature
known’, ‘temperature unknown’}, and condition the universe to contain only
those patients whose temperature is known. In that conditional universe,
the temperature is always known. This conditioning is always implicit: the
patients themselves are conditioned on the binary attribute ‘The event is a

1More formally, an attribute is essentially a random quantity, and each attribute value
corresponds to an element of the event space in probability theory. The attributes whose
range is the set of real numbers R are sometimes referred to as random variables, and that
is why we are using the term ‘attribute’ and not ‘random variable’.
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patient coming to a physician.’ in the first place. The probabilities in each
branch of a conditional universe sum up to 1.

The second kind of operation is marginalization. Here, we take a set
of attributes, for example {A,B, C}, and collapse all events that cannot be
distinguished with these attributes into elementary ones. For example, if
we marginalize away all colors except for two A : {black, not-black} and
B : {white, not-white}, every color will be mapped either to black, white or
gray (not-black and not-white). Furthermore, zero probability is put in effect
for each combination 〈a, b, c〉 of attributes’ values, 〈a, b, c〉 ∈ <A×<B ×<C ,
that cannot be found in the universe (such as ‘black and white’). In the
example of physician’s patients, the attribute ‘astrological signs’ has been
marginalized away and is not known or used by the physician (presumably).
On the other hand, ‘body temperature’ is usually marginalized away in the
discourse of an astrologer. In all, contemporary medicine generally assumes
that all people are equal, and this assumption both allows generalizing from
one patient to others, but also prevents distinguishing specific characteristics
of patients. Some theories of probability claim that that probability is purely
a result of marginalization and a consequence of the fact that the causes are
not known.

In all, we see that attributes can be seen as projections of the universe,
as views of the universe. Marginalization serves as integration, as merging of
events, and probability reflects this merging. On the other hand, condition-
ing creates separate universes, each of them with a consistent definition of
probability. The universe serves as a unified foundation for defining the re-
lationships between attributes, and in turn, these attributes serve as means
for characterizing the events. It is possible to construct or remove attributes
as deemed suitable, and these attributes will transform the perception of the
universe.

3 Information Theory

In the previous section we have described the three crucial elements needed
to discuss entropy: the universe E , the probability P and the attributes
A,B, C, . . .. We can now begin to disentangle the model with informa-
tion theory. We will show the connection between entropy, investment and
growth. In the second subsection, we will justify other information-theoretic
expressions through questions we can ask about the truth. We will use the
results and expressions of (Shannon, 1948).

3.1 Entropy as a Bound on Growth

We will now consider the definition of entropy through gambling, following
a popular information theory textbook (Cover and Thomas, 1991). Assume
that we are playing a game, trying to predict what event will take place. We
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start with K coins, and place a bet on each of the events in the universe,
expressing it as a proportion of K. So for event ei, our bet is b(ei), while∑

e∈E b(e) = 1. We now let some event e′ happen, and our gain is MKb(e′),
where M is the maximum reward multiplier: had we bet everything on e′,
b(e′) = 1, our funds would increase M -fold. Therefore, our funds multiply
by Mb(e′).

Clearly, we would achieve the highest growth of funds by putting all
the money on the single most likely event, but would also lose everything
if that event did not happen. Alternatively, we minimize the chances by
betting on every outcome equally, but if there are too many possible events,
we would be losing in every game. It can be shown that the maximum
rate of growth out of all possible betting portfolios is achieved by betting
proportionally to event probabilities, so that P (e) = b(e), and this is called
the Kelly gambling scheme. The doubling rate of the horse race using the
proportional gambling is log2 M +

∑
e∈E P (e) log2 P (e). It is easy to see that

for an omniscient player the game is worth playing only if log2 M > H(E),
or in other words, if the logarithm of the rewards exceeds the Shannon or
information entropy of the universe:

H(E) := −
∑

e∈E
P (e) log2 P (e) (1)

Of course, it is impossible to stop playing with reality.
Realistic observers, however, are not omniscient, and their portfolio b

deviates from the true distribution P . For them, the doubling rate is
log2 M −H(E)−D(P‖b), where D(P‖b) is the Kullback-Leibler divergence
or relative entropy between the truth P and their belief b:

D(P‖q) :=
∑

e∈E
P (e) log2

P (e)
q(e)

(2)

It is important to understand that a linear change either in entropy or in
KL-divergence corresponds to a linear change in the rate of growth. Entropy
is the minimum rate of growth for an omniscient predictor. Furthermore,
the rate of growth or demise is essentially linked with the ability to place
bets well. The same conclusion is valid also if a different M is specified for
each event m(e), only the log2 M would be replaced by

∑
P (e) log2 m(e).

That we refer to money should not be a distraction. Instead of money,
we could refer to food, energy, and even information. Plants successfully
photosynthesize because they correctly predict that there will be sunlight
coming vertically down from the sky, a coal-powered power plant successfully
operates because the engineers correctly predict that heated air will expand.
A scientist successfully publishes papers if she correctly predicts that some
of her experiments will demonstrate something new.

We can express entropy and divergence in the terms of loss functions.
Consider that the player whose betting portfolio is q. He suffers the loss of
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− log2 q(e) in the case of event e. This means that we have a loss function
S(e, q) = − log2 q(e): the less the player bet, the more he lost. This specific
loss function is used in data compression, where we pay each symbol pro-
portionally to the logarithm of the probability with which we predicted it.
Data compression programs, such as zip and unzip, are nothing else than
successful gamblers.

The expected loss is the expectation of player’s loss. The player is using
an imperfect model of reality with q instead of the true probability P . The
Shannon entropy corresponds to the minimum expected loss, suffered by
the omniscient player: H(E) = infq Ee∼P {S(e, q)}. The KL-divergence thus
corresponds to the player’s expected loss beyond the omniscient player’s:
D(P‖q) = Ee∼P {S(e, q)−S(e, P )}. We could also understand these expres-
sions as definitions of entropy and divergence based on some loss function.
Entropy and divergence are just specific definitions of loss and gain, and
we may introduce quantities corresponding to entropy and divergence with
different definitions of this loss (Grünwald and Dawid, 2004). Of course, not
all properties would be retained.

Probability can be defined also for continuous universes with real-valued
events. Unfortunately, such a definition of the universe is inappropriate
for Shannon entropy. A different concept of differential entropy is then
defined as h(X) =

∫
P (x) log2 P (x)dx, but its properties differ from those

of Shannon entropy. For example, the differential entropy may be zero or
negative. The KL-divergence, on the other hand, works satisfactorily also
with continuous universes.

3.2 Queries and Contexts

Let us now focus on three attributes, A, B and C in the context of some
creature. The range of A is <A = {happy, unhappy}, B’s range covers
possible actions that our focal creature can take, while C is a sensor of its
environment. The creature cannot know A, is unsure about B, but does
know C. The default uncertainty of our creature depends solely on A, and
can be quantified by H(A) = −∑

a∈<A
P (a) log2 P (a). This implies that

the creature performs no intervention different than usual: it does not mean
that no action is taken, just that the creature does not think about it. If
the creature does decide to think about taking an action, the uncertainty
is reduced to H(A|B) = H(A,B) − H(B). Conditional entropy is always
lower or equal to the unconditional entropy. If it is equal, being conscious
about B did not reduce the creature’s uncertainty about A and its effort was
wasteful. The unfortunate situation of the consequence being independent
of the action is possible: turning the steering wheel left or right is quite
independent of being happy after the drive.

A more promising conditional entropy is H(B|C), the entropy of the
action in the context of the sensor. Indeed, it is a lot easier to decide
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whether to turn left or right based on the sensor than on nothing else: the
entropy of the ‘action’ variable B is lower, meaning that the uncertainty
about the action is lower given the information about the surroundings. It
is also possible to be more specific about conditional entropy. We could
ask about the uncertainty of the action in a particular context: H(B|C =
standing in front of a red light) is low because there is little the creature can
do. On the other hand, H(B|C = slow truck in front, other lane empty)
requires some thought whether to overtake or not. If we do not specify the
value of the context, the conditional entropy is the expectation over the
possible contexts H(B|C) =

∑
c P (c)H(B|C = c).

The conditional entropy of A given C is not necessarily low. Of course,
there are situations that are inherently more ambiguous and uncertain, and
some that we know well. But the key connection between A and either of
B and C is through the interaction between B and C: we are happy, if
our action was appropriate for the circumstances and unhappy otherwise.
Whether the action was good is only learned through A, and can be formed
as a question “Which action b in the context of c will make us happy with the
highest probability, or unhappy with the lowest probability?” The entropy
can also be seen a measure of how difficult it is to make a decision: the
larger the difference between these two probabilities, the lower the entropy.
If we are to seek a new sensor D, the most desirable one would minimize
H(A|B, C, D): it would allow the best prediction of happiness along with
the existing actions and sensors. Simply minimizing H(A|D) would ignore
the contributions of D beyond those already provided by B and C.

3.3 Similarity as Information

Conditional entropy manifests how the uncertainty may be decreased by con-
sideration of other attributes. We treat all satisfaction, action and knowl-
edge as attributes. Our true bets are placed on satisfaction, but we cannot
bet on satisfaction directly - we can only place bets on our actions, and
hope that these will translate to good bets on the outcomes. We do not
place bets randomly, but we let perceptions C inform us on how to place
bets. Furthermore, an active creature may introduce new attributes to de-
crease the entropy of making decisions. But with all the possible conditional
entropies, how to make sense of reality? Information performs this deed by
decomposing the entropy.

Earlier, we mentioned that the lower the H(A|B), the better the at-
tribute B in reducing A’s entropy. It was already Shannon who proposed
mutual information, defined as I(A; B) = H(A) + H(B)−H(A,B) for the
purpose of understanding the relationship between A and B. Mutual in-
formation is symmetric with respect to the ordering or roles of individual
attributes: I(A; B) = I(B; A), and can be used to reconstruct conditional
entropy: H(A|B) = H(A)−I(A; B), H(B|A) = H(B)−I(A; B). It can also
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be interpreted as the loss caused by assuming independence between A and
B: I(A;B) = D(P (A,B)‖P (A)P (B)). Finally, mutual information forms
the backbone of Rajski’s distance (Rajski, 1961), a metric on attributes
defined as:

dR(A,B) := 1− I(A;B)
H(A,B)

(3)

The higher the mutual information, ceteris paribus, the closer the two at-
tributes should be in the cognitive space of the universe and the probability
measure on it. Rajski’s distance is always in the interval [0, 1], as mutual
information is never larger than the entropy of either attribute, and the
entropy of either attribute cannot be larger than the joint entropy of them
both. It is notable that similarity is no longer postulated but instead in-
ferred through the notions of information theory. A good similarity measure
will be the one that will enable us to predict well (Baxter, 1997), and with
mutual information we tie similarity between A and B directly to how well
A is predicted from B and vice versa.

It is possible to carry the entropy decomposition approach further, and
to speak of 3-way or 4-way interactions. This course of work has been
pioneered by (Quastler, 1953) and (McGill, 1954), independently at first, but
later together (McGill and Quastler, 1955). Their definition of interaction
information or is best understood as a lattice structure of the entropy space
(Han, 1975), while visualizations of this space are described by (Jakulin and
Bratko, 2004). All such k-way interactions are symmetric with respect to
the ordering of attributes.

The notion of the context is important here. For example, A and B may
not be dependent by default. However, in some context C, they may turn
out to be dependent. In such cases, we may employ the notion of conditional
mutual information: I(A;B|C) = H(A|C)+H(B|C)−H(A,B|C). We now
have a context-dependent notion of similarity.

Sometimes, two attributes become more dependent in a context, a situ-
ation revealed by positive interaction information. In such a case, we speak
about positive interactions or synergies. For example, the employment of
a person and criminal behavior are not particularly dependent attributes
(most unemployed people are not criminals, and many criminals are em-
ployed), but adding the knowledge of whether the person has a new sports
car suddenly makes these two attributes dependent: it is a lot more frequent
that an unemployed person has a new sports car if he is involved in criminal
behavior; the opposite is also true: it is somewhat unlikely that an unem-
ployed person will have a new sports car if he is not involved in criminal
behavior.

On the other hand, two attributes become less dependent inside the con-
text C. We detect this with negative interaction information. For example,
the attributes of weather, rain and lightning, are dependent because they
occur together. But the attribute storm interacts negatively with them,
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since it reduces their dependence. Storm explains a part of their depen-
dence. Should we wonder whether there is lightning, the information that
there is rain would contribute no information if we already knew that there
is a storm. In a specific context two attributes may be perfectly indepen-
dent. This is an indication of conditional independence, meaning that any
kind of dependence or correlation between them can be reduced to the fact
that they share the context. The view that the context may be seen as the
cause underlies certain theories of causality (Pearl, 2000; Spirtes, Glymour
and Scheines, 2000).

4 Symmetry as a Language

Let us now try to provide a universe for a geometric space. Let us assume
the familiar Cartesian geometry. The purpose of our endeavor is to be able
to represent a geometric figure as a data set in the universe. The events of
the universe could simply be points in space. A figure is a set of points, and
can be represented as a sequence of events, one for each point. We are also
able to compute the entropy of a particular model of figures. Our attributes
can represent lines or shapes. Consequently, we can compute the entropy in
the context of a particular line.

Unfortunately, the probabilities need to sum up to 1. Because points
are infinitesimal, it will take infinitely many points to describe an object
of finite area. Most of practical data sets will thus be infinite, and this is
impractical. Let us then assume that the size of the point is specified as
a constant d, restricting some minimum resolution, and disregarding every-
thing smaller than that. But the precision of the point’s displacement is still
infinitesimal, and the specification of any single point’s position itself will
still take infinitely many bits of information.

A common assumption is that the coordinates are multiples of d as well.
Now we have pixels with integer coordinates, the fundamental representation
in computer graphics. The problems due to having to round coordinates to
integers are referred to as aliasing. But without restricting the dimensions of
the universe, we are still unable to represent a figure. In computer graphics
the dimensions of the window, viewport or an image are indeed restricted.
A similar solution has been used by Boltzmann to model gas: all that we are
interested in is the integer number of different states in an integer number
of discrete sections of a container.

Is there any way around this? One answer lies in symmetry. Even if no
two points are the same, we can identify “sameness” between assemblages
of points at different positions in the space. Symmetry is nontrivial equality
(Petitjean, 2003): there is symmetry between spatial objects X and Y if
X equals a transformation of Y . Therefore, given a collection of points,
symmetries form an algebraic language for describing geometry. We can
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say: ‘Draw a point. Transform the point into a line. Copy the line three
times and obtain the square.’ Of course, symmetry of shape is just one
kind of a transformation. Color symmetries imply that different shapes
have the same color. Distance symmetries imply that the distances between
shapes are equal, and the shapes are equidistant. Relative distances can be
symmetric too: all articles have the titles on the top of the first page.

Fractal image compression (Barnsley, 1988; Wohlberg and de Jager,
1999) is based on the realization that an image can be represented alge-
braically as an iterated function system (IFS) whose fixed point is close to
the original image. Note that in this image compression universe, each im-
age is an event, not each point. The iterated function system is a union
of contractive affine maps. The fixed point or the basin of attraction is
unique, through the Banach fixed point theorem. However, the image is no
longer represented as a matrix of pixels, but instead as a finite set of affine
maps, each with its parameters (scaling, rotation, translation). Further-
more, the fixed point has infinite resolution, unlike any quantization of the
image. With the ubiquity of self-similarity in nature, such a representation
yields realistic representations of real world images. Or perhaps our own
perception too focuses on discovering symmetry and self-similarity and is
thus unable to distinguish the fixed point from the reality.

The major practical problem of fractal image compression is how to
acquire the parameters of the IFS that match a specific image well. The
collage theorem (Barnsley, 1988) shows that only the first few iterations of
the mappings are sufficient to judge the overall quality of the attractor. A
further breakthrough that put fractal image compression into practice was
the realization that it is easier to apply transforms to parts of the image
than to the image as a whole.

In summary, fractal image compression is based on representing an image
purely in terms of its symmetries. Because compression ‘works’, the image
can be compressed into fewer bits than by ordinary quantization into pixels.
If fewer bits are required for the same set of images, betting in the universe of
iterated function systems yields lower entropy than betting in the universe of
quantized pixels. Recently, image compression algorithms based on wavelets
have won over fractal image compression, and this means that currently
betting in the space of smooth images is better than betting in the space of
self-similar ones. Some day, perhaps, both symmetry and smoothness will
be included in the betting portfolio of compression algorithms.

Lossy image compression algorithms are all mapping a set of images that
all look equivalent to human perception into the same sequence of bits. A
possibly large number of images are thus symmetric with respect to our
perception. This is a reminder that both smoothness and self-similarity are
means used by human visual system to reduce the entropy of the real world.
This does not mean that symmetry and smoothness are necessarily aspects of
the real world but that slight asymmetry and roughness are often invisible

14



to our brain. Furthermore, if our brain functions in terms of symmetry
and smoothness to reduce entropy, it will find those images, situations and
objects that are symmetric and smooth preferable to others. The preference
may arise purely from lower cost of processing, perhaps explaining what the
principles of aesthetics refer to.

5 Entropy and Symmetry

5.1 Invariance and Symmetric Universes

Symmetry can also refer to algebraic entities, not just to geometric ones.
For example, through Galois’ notion of permutation group, symmetry is an
invariance regarding a group of transformations (Mostow, 1996; Brassard,
1998). With the permutation group we ignore the ordering of letters in
a string, and all that matters is the frequency of individual letters. Or,
with the group of rotations, we disregard the orientation of an object, only
considering its shape. Probability too is born from symmetries: we do not
care about when and how the event happens, but only about how likely it
is to happen, or about the number of times it happened.

However, there is also a different kind of symmetry here. What is an
event? The structure of the universe is undoubtedly simpler than the struc-
ture of reality. All observations of the same event are indistinguishable.
Similarly, Boltzmann did not distinguish between various arrangements of
gas molecules within a specific microstate. The set of events of the universe
can be seen as a result of applying some set of transformations to reality
and each event describes all the states of reality that get mapped to it. The
partitioning of reality into events of the universe has established an explicit
mapping from reality into events, and implies the assumption of symmetries
in reality. The fewer the events, the more symmetry we have assumed in
the universe.

If we start with a particular universe, we can modify it by establishing
further symmetries between individual events. In a particular universe E ,
we could collapse two events e1 and e2 into a single e1+2 with the proba-
bility P (e1+2) = P (e1) + P (e2). This could be interpreted as an increase
in symmetry, as we distinguish less than before. But what would hap-
pen to Shannon entropy? Because logarithm is a monotonically increas-
ing function, it is trivial to see that P (e1) log2 P (e1) ≤ P (e1) log2(P (e1) +
P (e2)) and that P (e2) log2 P (e2) ≤ P (e2) log2(P (e1)+P (e2)), therefore also
P (e2) log2 P (e2) + P (e1) log2 P (e1) ≤ (P (e1) + P (e2)) log2(P (e1) + P (e2)).
Increasing symmetry of the universe by collapsing events entails decreasing
Shannon entropy.
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5.2 Maximum Entropy and Symmetric Models

There is another kind of symmetry that refers to probabilities. Imagine
that the probabilities form the universe. If the same probability, such as
0.1, appears for several events, we can say that there is some symmetry
within the model. The universe with probabilities {a : 0.25, b : 0.25, c :
0.25, d : 0.25} is more symmetric than {a : 0.2, b : 0.3, c : 0.4, d : 0.1}
because it only has a single probability. This means that the model is
symmetric, even if the reality is not. For example, in the common model
of the coin toss, we do distinguish the heads from tails, but by saying that
the probability of both heads and tails is 0.5, we have established symmetry
between these two probabilities. In inference it is desirable to establish
such symmetries through the principle of insufficient reason, or the Bayes-
Laplace postulate (Bernardo and Smith, 2000): in absence of evidence to
the contrary, all possibilities should have the same initial probability. In a
more general context with the events being expressed as infinitesimal points
in some space, symmetries can be established between areas with the same
probability density.

Let us focus on the simple example of probabilities of two discrete events
within some larger model, and assume that p1 > p2. We could equalize these
probabilities by moving them closer to one another: d = k(p2 − p1), p′1 =
p1 +d, p′2 = p2−d. However, since the logarithm’s first derivative is a mono-
tonically decreasing function, the entropy cannot increase by equalization.
This was noted already by (Shannon, 1948). Therefore, increasing similarity
or symmetry among probabilities in the model reflects in increasing Shannon
entropy of the universe. This principle underlies the maximum entropy prin-
ciple (Jaynes, 2003), which states that among several models of probability,
one should choose the model that yields the highest entropy. Such a model
is the least pretentious, contains the fewest dependencies, and has the most
symmetric probabilities.

But if the model itself is considered a universe, symmetries between
probabilities allow us to represent it in a more compact way. Imagine that
the model is a sequence of events, and each event is a probability. There
would be such an alphabet of probabilities: {0, 0.25, 0.5, 0.75, 1}. In a sym-
metric model, certain probabilities will be more likely than others, and so
the descriptions of a symmetric model have lower Shannon entropy than
the descriptions of an asymmetric model. Yet, the universe described by a
symmetric model has higher Shannon entropy than a universe described by
an asymmetric model. It is helpful to think of probabilities of probabilities
in this context.

Most of statistical modelling is about balancing between these two sym-
metries: the attempt to provide a sharp and symmetric view of reality, to
reduce entropy of the universe and to maximize the predictive power of
the model. On the other hand, the goal is to provide simple, smooth and
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symmetric probabilistic models. There are dangers to either approach. A
sharp picture of reality might be overidealistic and unrealistic. The problem
that ensues is overfitting : the model may be overconfident. On the other
hand, smoothing the probabilistic model draws a pessimistic view of reality
as unpredictable and disorganized, yet the model of such disorganized re-
ality is surprisingly smooth and organized. This problem is referred to as
underfitting.

In maximum entropy inference, we start with sharp constraints that
should minimize our entropy, then investigate all the models that conform to
the constraints, and pick the maximum entropy and thus the most symmet-
ric one amongst them all. In classical statistics, we pick a maximum entropy
distribution and then discover sharp parameters that minimize the entropy:
it is well-known that most distributions in statistics are maximum entropy
models given some constraint (Kapur, 1990): the normal distribution re-
sults from constraining the mean and the variance, the uniform distribution
results from constraining the bounds, etc. Therefore, most practical sta-
tistical methods are balanced in the sense that they combine both entropy
maximization and minimization.

6 Conclusion

Several authors have recently investigated the relationship between sym-
metry and information theory, but the interpretations often oppose one
another. For example, both (Lin, 2001) and (Petitjean, 2003) note that
symmetry is closely associated with similarity. However, increasing symme-
try can be interpreted both as decreasing or increasing entropy (Lin, 2001).
Our framework agrees with both interpretations, and adds another one.

Symmetries hidden inside events: By making assumptions that sim-
plify views of reality, we also postulate symmetry and similarity in the
data (Sect. 5.1). Henceforth, the Shannon entropy of the universe is re-
duced. For example, instead of allowing any wavelength for a photon (E =
{blue, yellow, green, violet, . . .}), we can restrict the photons to just three
kinds: red, green and blue, and through this symmetry, we arrive to a sim-
pler universe E ′. With this, our indifference about the subtypes of events
has entered the mode, and we have decreased the Shannon entropy of the
universe: H(E ′) ≤ H(E).

Symmetries between probabilities: The language may enforce sym-
metry and similarity in the models it describes (Sect. 5.2). This way, the
probability of two events is assumed to be identical, just as in the coin
toss. Similarly, both tails of the Gaussian distribution are assumed to be
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identical. The resulting simplicity of the model increases the Shannon en-
tropy of the universe, making it seem harder to predict than it really is.
On the other hand, if we consider each probability in the model to be an
event, e.g., P(E) = {0, 0.5, 1}, collapsing two unique probabilities p1 and
p2 into p′1 = p′2 = (p1 + p2)/2 can decrease the resulting entropy of the
model H(P ′(E)), but increase the entropy of the universe H(E|P ′). In gen-
eral, symmetries between probabilities indicate some kind of ignorance, the
inability to differentiate between the likelihoods of events.

Symmetries between attributes: Two attributes provide information
about one another when their mutual information is high (Sect. 3.3). This
can be interpreted as symmetry or similarity between them. For example,
because of symmetry in reality, the binary smoking attribute and the binary
lung cancer attribute have high mutual information. We exploit these sym-
metries by being able to infer that a smoker is more likely to fall ill with lung
cancer, but also that lung cancer victims are often smokers. Neither the en-
tropy of the universe nor the entropy of model is affected by the symmetries
between attributes. Instead, choosing and constructing useful attributes for
prediction is guided by the knowledge of symmetries between them.
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