
Information-Theoretic Exploration and Evaluation of Models

Aleks Jakulin
Faculty of Computer and Information Science,

University of Ljubljana,
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Abstract

No information-theoretic quantity, such as
entropy or Kullback-Leibler divergence, is
meaningful without first assuming a prob-
abilistic model. In Bayesian statistics, the
model itself is uncertain, so the resulting
information-theoretic quantities should also
be treated as uncertain. Information the-
ory provides a language for asking meaning-
ful decision-theoretic questions about black-
box probabilistic models, where the chosen
utility function is log-likelihood. We show
how general hypothesis testing can be devel-
oped from these conclusions, also handling
the problem of multiple comparisons. Fur-
thermore, we use mutual and interaction in-
formation to disentangle and visualize the
structure inside black-box probabilistic mod-
els. On examples we show how misleading
can non-generative models be about informa-
tiveness of attributes.

1 INTRODUCTION

The task of statistical modelling is to create reliable
probabilistic models given the data and prior expec-
tations about it. The prior expectations are both ex-
plicit Bayesian priors and implicit frequentist assump-
tions in the form of the choice of particular statistical
models. Over the past years, automation of statisti-
cal modelling brought along models that are no longer
easily presentable. This causes a dilemma: what are
these models useful for? They may yield excellent per-
formance, but how can we learn anything from them?
How do we convey the meaning to a human analyst?

Shannon’s information theory (Shannon, 1948) is a
successful attempt to model communication and trans-
mission of data. But it is important to note that there
is nothing in information theory that would not be

first based upon some generative probabilistic model.
Even if the models used in information theory focus
primarily on sequential and mainly on discrete data,
information-theoretic tools are applicable to any joint
probabilistic model, such as statistical models built for
mainly real-valued data. Of course, probability mass
functions differ from probability density functions, and
some pitfalls must be avoided.

Information theory makes heavy use of concepts such
as entropy and mutual information. We will interpret
them through the usual statistical framework of mod-
els, model comparisons and loss functions. Namely,
entropy, Kullback-Leibler divergence and mutual in-
formation are intrinsically decision-theoretic and not
probability-theoretic concepts. They can be seen as
a language for asking questions about the properties
of models, and provide a good formalization of intu-
itive notions of relevance, dependence and complex-
ity. Even if the underlying statistical model is a black
box, information-theoretic notions can be used to ask
questions about it, such as “How much would we lose
by assuming the independence between these two at-
tributes?” or “How much information about the out-
come do we gain by this attribute?”

The first two sections on model loss and model com-
parison will present a few definitions which have been
synthesized from works on information theory and ma-
chine learning. We will follow recent interpretations
of entropy (Harremoës & Topsøe, 2001; Grünwald &
Dawid, 2004) that view modelling as a game and en-
tropy as a loss. Loss functions will be used as a founda-
tion for model comparisons: loss is the sensible quan-
tity to be used for model comparisons, rather than
direct references to probability or parameter values.
We will also follow up on the earlier work (Wolpert &
Wolf, 1995; Hutter & Zaffalon, 2004) on probability
distributions of information-theoretic quantities, not-
ing that expected loss is an oversimplification in com-
parison to the view of loss as a stochastic quantity.
The second part of the paper focuses on case studies.



2 MODEL LOSS

We begin by revising the basic terms, which are a mix
of statistical and artificial intelligence terminology. An
instance i corresponds to an event or an object de-
scribed by a number of attributes. An attribute X is
a unique property of instances that has a finite or an
infinite range <X of mutually exclusive values. The
value of the attribute X for the instance i is xi ∈ <X .
If there are several attributes, we may represent them
together in an attribute vector X = [X1, X2, . . . , XM ],
and we refer to <X as the attribute space. The joint
probability density and mass functions (PDF, PMF)
are models of co-appearance of individual attribute
values in a randomly chosen instance.

Although entropy is often computed for an attribute
or a set of them, Shannon did not define entropy for
attributes, but for a joint model of the attributes, a
particular joint probability mass function (PMF) P .
Entropy should be seen as a characteristic of a model
and not of an attribute or a data set. That is why
expressing entropy as H(A) is somewhat misleading;
a more appropriate expression is H(A|φ,D), where D
is the data and φ is the prior to the posterior predic-
tive probabilistic model P (A|φ,D), the one actually
used for computing the entropy. Although we will not
always express entropy conditionally, the assumptions
are always implicit: entropy is usually computed by
assuming a maximum likelihood multinomial model.

Entropy H is defined for probability mass functions,
not for probability density functions. For a multivari-
ate joint PDF p modelling an attribute vector X, a
somewhat different concept of differential entropy h,
also measured in bits, can be defined as (Cover &
Thomas, 1991):

h(X|p) , −
∫

<X

p(x) log2 p(x)dx = Ep{− log2 p(x)}
(1)

The properties of differential entropy do not fully
match those of ordinary entropy (Shannon, 1948). For
example, differential entropy may be negative or even
zero (e.g., h(X|X ∼ N (·, 1/

√
2πe)) = 0), and is sensi-

tive to the choice of the coordinate system. Nonethe-
less, the magnitude of entropy and the sign of changes
in entropy remain meaningful: the higher the entropy,
the harder the predictions. Entropy should be un-
derstood as the expected loss of the model, given the
model itself. Shannon entropy results from the choice
of the logarithmic loss function. Other loss or util-
ity functions may be employed and a corresponding
generalized notion of entropy thus derived (Grünwald
& Dawid, 2004), but its properties might not match
those of Shannon entropy.

An analytical derivation of differential entropy has

been made only for a few model families. Therefore,
empirical entropy (Yeung, 2002), sometimes also re-
ferred to as sample entropy, often proves to be a useful
approximation. If the data is a multiset of instances
D ⊂ <X , a probabilistic model p(X|D) can be learned
from it. If the modelling is reliable, D can be under-
stood as a representative random sample drawn from
<X using p. The approximation to h is the expected
negative log-likelihood of a training instance given the
model p:

ĥ(X|p,D) , − 1
|D|

∑

x∈D
log2 p(x). (2)

The resulting differential empirical entropy is the av-
erage negative log-likelihood of D given the model p.
Observe that 1/|D| is the probability of choosing a
certain instance in D. The resulting sum can then
be understood as the expectation of entropy given a
uniform probability distribution over the data: all in-
stances in D have equal probability, and those outside
are impossible.

3 MODEL COMPARISON

KL-divergence or relative entropy D(P‖Q) (Kullback
& Leibler, 1951) assesses the difference between two
probability mass functions P and Q (or density func-
tions p and q):

D(P‖Q) ,
∑

x∈<X

P (x) log2

P (x)
Q(x)

(3)

D(p‖q) ,
∫

<X

p(x) log2

p(x)
q(x)

dx (4)

KL-divergence is zero only when the two functions are
equal. It is not a symmetric measure: P is the refer-
ence model, and the KL-divergence is the expected loss
incurred by the alternative model Q when approximat-
ing P . We can understand empirical entropy through
KL-divergence. If UD is the uniform probability mass
function on the data D:

Ĥ(X|P,D) = D(UD‖P )−H(UD), (5)

UD(x) , 1− |D \ {x}|
|D| (6)

The same formula can be used to compute the differen-
tial empirical entropy of a PDF p, mixing probability
mass and probability density functions, but ultimately
yielding the same result as (2). If we interpret entropy
as defined using KL-divergence, some problems of dif-
ferential entropy, such as negativity, would be reme-
died with a better choice of the reference model U .

An important connection between entropy and KL-
divergence appears when q is a marginalization of p:



∫
p(x, y)dx = q(y). In such a case, D(p‖q) = h(p) −

h(q). If q is a factorization of p, the KL-divergence
can be expressed as a sum of entropies. Generally, the
KL-divergence between p and any product of prob-
ability mass or density functions obtained by condi-
tionalizing or marginalizing p is expressible by adding
or subtracting entropies of p’s marginals. For exam-
ple, the divergence between p(x, y, z) and q(x, y, z) =
p(x|z)p(y|z)p(z) is h(x, z) + h(y, z)− h(z)− h(x, y, z).
Mutual and conditional mutual information provide a
short-hand notation, in this case: D(p‖q) = I(x; y|z).
Conditional and marginal entropies can be calcu-
lated through KL-divergence. Assuming x = [a, b, c],
marginalizing over c, the entropy of a conditionalized
on b is h(a)− h(a, b) or:

h(a|b) =
∫

<x

p(x) log2 p(ax|bx)dx = D(p(a, b)‖p(b))

Using conditional KL-divergence, it is possible to com-
pare two conditional probability density functions,
something particularly useful in supervised learning:

D(p(x|y)‖q(x|y)) =
∫∫

p(x, y) log2

p(x|y)
q(x|y)

dxdy (7)

Observe, however, that conditional KL-divergence
cannot be computed without a generative model of
both x and y.

The main contribution of information theory in this
context is the unified notation for model loss (H)
and model comparisons (D). The expected nega-
tive log-likelihood is the agreed-upon model loss func-
tion (entropy), and the logarithm of the Bayes fac-
tor is the agreed-upon model difference function (KL-
divergence). For empirical entropy and divergence, the
expectation over the reference PDF/PMF is replaced
with an expectation in a particular data set. All model
comparisons are made between two probability func-
tions: only models are compared and evaluated, not
data and models.

4 DISTRIBUTIONS OF LOSS

It is customary to view all model comparisons as
scalars. The implication of such an approach is that
model comparisons are always crisp. In reality, how-
ever, one model is only sometimes better than an-
other, and even the true model usually suffers decision-
theoretic loss. For many decision-making purposes,
the high cost of introducing any new model needs to
be offset by the new model being consistently better
than the prior or default one across all contingencies.
These contingencies are often integrated out, but this
yields a false sense of security as the actual loss is often
greater than the expected one.

4.1 ENTROPY DISTRIBUTIONS

Empirical entropy is explicitly conditional on the sam-
ple, but ‘ordinary’ entropy is also conditional to a sam-
ple if the probabilistic model has been derived from
data. There is a nuisance parameter, the hypothe-
sis φ. It may be integrated out within the entropy
computation, because entropy is computed using the
predictive model. This results in a crisp estimate of
entropy, as expected given the prior distribution p(φ)
and the data D:

h(x|D) = h

(
x

∣∣∣∣D,

∫
p(x, φ|D)dφ

)
(8)

Alternatively, we do not integrate it out, but model the
probability distribution of entropy, as weighted by the
probability of the posterior (Wolpert & Wolf, 1995):

Pr{h(x|D) ≤ w} =
∫
I{h(x|D, φ)) ≤ w}p(φ|D)dφ

Here, I is the indicator function, taking the value of
1 when the subscript condition is fulfilled and 0 oth-
erwise. With this, we can investigate the variance of
entropy estimates for an arbitrary probabilistic model.

We have not explained yet how to arrive at the dis-
tribution of KL-divergence. There are essentially two
ways of approaching it. The first is to optimistically
assume that both models, p and q share the same hy-
pothesis φ (and the same evidence), so that one of the
two models is nested within the other:

Pr{Dφ(p‖q) ≤ w} =
∫
I{D(pφ‖qφ) ≤ w}p(φ|D)dφ

This approach helps investigate the impact of a par-
ticular constraint or simplification relative to the orig-
inal model p, and will be used for the examples in the
present paper.

More generally, however, we should assume that the
hypotheses (or evidence) are independently sampled:

Pr{Dφ|ρ(p‖q) ≤ w} =
∫∫

I{D(pφ‖qρ) ≤ w}
p(φ|D)p(ρ|D)dφdρ

An interesting special case of the second approach
is the self-divergence, Dφ|φ(p‖p); if we are uncertain
about the hypothesis, this uncertainty should be re-
flected in the fact that there will generally be a differ-
ence between the two models obtained independently
from the data.

4.2 MULTIPLE HYPOTHESIS TESTING

The notion of self-divergence is useful for hypothe-
sis testing. As a rule of thumb, the expected self-
divergence E{Dφ|φ(p‖p)} of a reference model p should



be an order of magnitude lower than the expected loss
of a model q based with respect to the reference model
p, E{Dφ|ρ(p‖q)}. If this is not the case, the reference
model would be too complex given the data, and the
variance of the estimate is not low enough to reliably
estimate the bias. Both comparisons can be joined
into a unique probability corresponding to a P -value
for the comparison between the null hypothesis space
p(φ|D) and the alternative hypothesis space q(ρ|D),
where KL-divergence is used instead of a test statistic.
There is no need to draw samples from the model as
with ‘Bayesian’ P -values because KL-divergence com-
pares probabilistic models directly. The probability
that q(ρ|D) is worse than an independent p(φ′|D) is:
∫∫∫

I{D(pφ‖qρ) ≤ D(pφ‖pφ′)}p(φ|D)p(ρ|D)p(φ′|D)dφρφ′

Multiple testing is trivial in this framework: all that
needs to be changed is the index function. It would
be an oversimplification to assume independence be-
tween hypotheses, as by Bonferroni correction, if these
hypotheses relate to the same data and potentially to
the same variables. In any case, correct multiple test-
ing becomes increasingly difficult with a large number
of variables without making strong prior assumptions.
For example, the test for the conjunction of statements
“x is independent of y” and “x is independent of z”
would have to be based on models p(x, y, z|D) condi-
tioned on priors φ and ρ with the following indicator
function:

D(p(x, y|φ)‖p(x|ρ)p(y|ρ)) ≤ D(p(x, y|φ)‖p(x, y|φ′))∧
D(p(x, z|φ)‖p(x|ρ)p(z|ρ)) ≤ D(p(x, z|φ)‖p(x, z|φ′))

The entropy and KL-divergence distributions are not
symmetric, so it is often preferable to work with per-
centiles. The distributions can be used to obtain the
entropy confidence intervals, e.g. between the 97.5th
and 2.5th percentiles. If a single-valued estimate is
needed, the practical worst-case loss would be the loss
at the 99th percentile, analogous to value-at-risk de-
cision making. Expected loss is overly optimistic and
can cause gambler’s ruin with a non-negligible proba-
bility, while worst-case loss is usually infinite.

5 EXAMPLES

5.1 CORRELATION

Correlation analysis is one of the most frequently used
tools of classical statistics, yet it is often missing from
textbooks on Bayesian statistics. We will now inves-
tigate correlation analysis as a special case of model
comparison. Correlation will be quantified decision-
theoretically through bits of information gained by al-
lowing a rotation of the input attribute space. As the
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Figure 1: We may express correlation using KL-
divergence instead of the correlation coefficient. While
retaining monotonicity, the scale of KL-divergence is
more intuitive than that of the correlation coefficient,
noting the rule of thumb that correlation coefficients
with the absolute value lower than 0.3 are not inter-
esting. In this figure we plot the importance of corre-
lation for all pairs of attributes in the Boston housing
data. The wide confidence interval on the extreme
right should raise suspicion: the high correlation for
that particular pair of attributes (property tax and
highways) is merely due to a few high property tax
outliers. The next two correlations, (nitric oxides with
employment distance and non-retail acres) are more
meaningful and more stable.

model comparison is based on two random models, the
information gained is a random variable, which can
be subjected to generic model comparisons of Sect. 4.
No special purpose ‘correlation coefficients’ or special
purpose tests of correlation are necessary: we simply
compare different models.

A simple reference model p that allows correlation is a
multivariate normal distribution. The d-dimensional
attribute vector x = [x1, . . . , xd] is treated as a sin-
gle multi-dimensional attribute. On the other hand,
the alternative model q models each attribute inde-
pendently.

p : x ∼ Normal(µ,Σ) (9)

q : x ∼
d∏

i

Normal(µi, σi) (10)

This scheme is not limited to two dimensions, so cor-
relations involving an arbitrary number of attributes
can be investigated easily. Furthermore, it is not nec-
essary for the covariance matrix Σ to be orthogo-
nal: some additional information can be gained by
this. Fig. 1 demonstrates the relationship between
the KL-divergence and the correlation coefficient ρ:
D(p‖q) = − 1

2 log2(1− ρ2) (Billinger, 2004).



5.2 INTERACTION

There are many interpretations of what an interaction
is. Usually, interaction is thought to be a term that
combines multiple attributes. However, we will instead
interpret an interaction decision-theoretically as the
benefit gained from a model of multiple attributes in
comparison to a fusion of models based on subsets of
attributes. Thus, a k-way interaction among k groups
of attributes A = {A1,A2, . . . ,Ak} is the reduction in
loss achievable by using the joint model of k attributes
p(A1,A2, . . . ,Ak) in comparison to its part-to-whole
approximation reconstructed solely from p’s marginals
M = {∫ p(A)dAi; Ai ∈ A} (Jakulin & Bratko, 2004).
A comparison of the reference model p and its part-
to-whole approximation is effectively a test of a k-way
interaction within A in p.

The task of making a general part-to-whole approx-
imation is thought to be a difficult modelling prob-
lem, usually approached through maximum entropy
modelling, iteratively adjusting the joint model to be
consistent with the given marginal models constrain-
ing it (Nemenman, 2004), and maximizing its entropy.
However, it is also possible to employ the notion of
McGill’s interaction information and the correspond-
ing Kirkwood superposition approximation where the
part-to-whole approximation emerges in closed form
composed only from a product of marginalizations of
p (Jakulin & Bratko, 2004). The KL-divergence be-
tween p and its part-to-whole Kirkwood superposition
approximation matches the definition of interaction in-
formation for a set of attributes A:

ı̂(A|p,D) , −
∑

X⊆A
(−1)|A\X|ĥ(X|p,D) (11)

For the case of three variables, interaction information
corresponds to I(A; B; C) = I(A,B; C) − I(A; C) −
I(B;C). This can be interpreted as the difference be-
tween the true informativeness of attributes A and B
about the quantity of interest C on one hand, and the
sum of individual contributions of A and B to infor-
mation about C. If I(A;B; C) is distinctly positive,
we can say that there is a synergy between A and B
when predicting C. If it is distinctly negative, there is
a redundancy where both A and B provide partially
the same information about C.

Interaction information has proven to be a consider-
ably better predictor of validity of the NBC assump-
tion in classification tasks than conditional mutual in-
formation I(A; B|C). This can be apparent from the
identity, remembering (7):

I(A; B; C) = D

(
P (C|A, B)

∥∥∥∥P (C)
P (A|C)P (B|C)

P (A)P (B)

)

The right-hand model closely resembles an non-
normalized näıve Bayesian classifier (NBC). This non-
normalization is what yields a negative interaction in-
formation, and I(A;B;C) should really be seen as an
approximate model comparison (but with many other
convenient properties). Conditional mutual informa-
tion tends to overestimate the deviation, as it is de-
rived from a joint model comparison, and not a con-
ditional one. Conditional independence relations can
also be represented in the part-to-whole context. For
example, if the part-to-whole approximation created
from M = {P (A,B), P (A,C)} is indistinguishable
from P (A,B, C), then B and C are conditionally in-
dependent given A. The part-to-whole approximation
for such marginals can be obtained using the chain rule
in closed form by conditioning on A.

Before applying interaction analysis, we first need the
underlying probabilistic model. It is not necessary to
have a single global model: through local analysis we
build a separate model for each subset of attributes
under investigation, as the global model would match
the local one if the attributes outside the focus were
marginalized away. Really, marginalization can be per-
formed both on the data or on the model. Mixture
models will be our hypothesis space. We will make
the assumption of local independence, so that the la-
tent attribute Z will account for all the dependence
between attributes X = [X1, X2, . . . , Xd]:

p(X|Z) =
K∑

k=1

πk

d∏

i=1

p(Xi|φk,i) (12)

Each individual value of Z can be interpreted both
as a component, a probabilistic prototype, a cluster a
set of instances that correspond to the prototype (to
some extent), or as an axis or dimension of a vec-
tor space where the instances can be represented as
points. The choice of the functions in the mixture
depends on the type of the attribute. Most imple-
mentations are based on normal or Gaussian mixtures,
which work only for continuous attributes. The MUL-
TIMIX program (Hunt & Jorgensen, 1999), however,
handles both continuous and discrete attributes simul-
taneously, adopting the multinomial distribution for
any discrete attribute and the normal distribution for
any continuous attribute.

To demonstrate the analysis of mixture models using
interaction information, we analyzed two UCI regres-
sion data sets, ‘imports-85’ and ‘Boston housing’. For
each potential interaction, a five-component joint mix-
ture model was built. Because both data sets are re-
gression problems, the outcome was always included
in the model. The three kinds of models were: (1) the
outcome alone, (2) each attribute with the outcome,
and (3) each pair of attributes with the outcome. The
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5.96% (>4.94%)

-5.30%
(<-4.40%)
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(<-4.02%)
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(<-5.11%)

1.13%
(>0.58%)

-6.33%
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length
5.42% (>4.37%)

-5.89%
(<-4.98%)

Figure 2: The interaction graph identifies the strongest
2-way and 3-way interactions in the ‘imports-85’ data
set.

interaction information for each of these models was
estimated along with its 95% confidence interval. For
performance reasons we approximated the distribution
of loss by computing the KL-divergence for each in-
stance, and using the bootstrap replications over in-
stances to compute the percentiles.

The models whose deviation from the part-to-whole
approximation was the largest, either with positive
or negative interaction information, were displayed
graphically: the attributes entangled with the outcome
in a 2-way interaction appear as nodes, and the pairs
of attributes entangled with the outcome in a 3-way
interaction appear as links connecting the nodes. The
interaction information was expressed as a percentage
of the outcome entropy alone. The percentages are not
always sensible for probability density functions, but
with care can nevertheless be more interpretable than
bits of information.

Figure 2 shows the interaction graph on the ‘imports-
85’ regression problem. The outcome being predicted
is the value of the car, while other attributes describe
the car’s properties. The numbers below each at-
tribute indicate the proportion of label entropy the
attribute eliminates with a 97.5% bottom bound. For
example, highway mpg alone eliminates 6.7% of un-
certainty about the price on average, but in 97.5% of
cases more than 5.5%. The best individual attribute
is the weight of the car, eliminating more than 8.8%
of outcome uncertainty. Fuel type may appear to be
a useless attribute on its own, eliminating only 0.2%
of outcome entropy, but there is a positive interaction
or a synergy between fuel type and fuel consumption

on the highway, eliminating an additional 1.1% of la-
bel entropy; the fuel consumption should be viewed in
the context of whether the vehicle consumes gasoline
or diesel fuel. Dashed edges indicate negative inter-
actions or redundancies, where two attributes provide
partly the same information about the label. Should
we consider the fuel consumption both on highways
and in the city, the total amount of label entropy elim-
inated is 6.7 + 5.9− 5.1 percent, the 5.1% accounting
for their overlap. Due to the imprecision of empirical
entropy and unsupervised modelling criteria, seeming
illogicalities may appear: the length of the automobile
is hurting the predictions of the car’s price in combi-
nation the car’s weight because the limited complexity
of the model is spent for increasing the likelihood of
the joint model rather than optimizing the prediction
of the outcome.

Figure 3 illustrates the result of interaction analysis
of the ‘Boston housing’ data set. The outcome of in-
terest is the median value of apartment in a certain
area, as predicted by various properties of the area,
such as unemployment, crime rate, pollution, etc. The
most informative attribute is the proportion of lower
status population. In the context of this attribute,
non-retail acres becomes almost totally uninformative
(7.99−7.93 = 0.06). Another useful attribute is crime-
rate, which subsumes most of the information provided
by prior-1940 and employment-dist. Furthermore, a
strong negative interaction between pupil-teacher and
nitric-oxides must be noted. Although most negative
interactions are due to correlations between attributes,
these two are themselves not highly correlated, and
the negative interaction is nonlinear in character. At
low levels of pollution, the housing value is mostly in-
dependent of pollution given the pupil-teacher ratio.
On the other hand, at higher levels of pollution, the
pupil-teacher ratio does not vary. Using the above in-
teraction graph, it is also possible to understand why
non-retail acres and prior 1940 prove to be insignifi-
cant (with P -values of 0.74 and 0.96, respectively) in a
multiple regression model (R Development Core Team,
2004), even if they are significant on their own:

Estimate Std.Error t-val Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crime.rate -1.080e-01 3.286e-02 -3.287 0.001087 **
zoned.lots 4.642e-02 1.373e-02 3.382 0.000778 ***
non.retail.acres 2.056e-02 6.150e-02 0.334 0.738288
Charles.River 2.687e+00 8.616e-01 3.118 0.001925 **
nitric.oxides -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rooms 3.810e+00 4.179e-01 9.116 < 2e-16 ***
prior.1940 6.922e-04 1.321e-02 0.052 0.958230
employment.dist -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
highways 3.060e-01 6.635e-02 4.613 5.07e-06 ***
property.tax -1.233e-02 3.761e-03 -3.280 0.001112 **
pupil.teacher -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
B 9.312e-03 2.686e-03 3.467 0.000573 ***
low.status -5.248e-01 5.072e-02 -10.347 < 2e-16 ***

These attributes are not irrelevant, they merely be-
come insignificant in the context of other attributes,
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-6.30%
(<-5.18%)

-7.33%
(<-6.20%)

nitric
oxides

7.80% (>6.27%)

-6.53%
(<-5.47%)

Figure 3: The strongest two-way and three-way interactions involving the label in the ‘Boston housing’ data set.

such as low status. Of course, deciding which attribute
should get the credit for predicting the outcome is of-
ten arbitrary: we may greedily credit just the best
attribute, or we may be egalitarian in distributing the
information credit among them all.

5.3 STRUCTURE

Another useful discovery that can be made about the
data is evidence for multiple groups in data. Generally,
the decision-theoretic value of structure is the reduc-
tion in entropy achieved by using K instead of K ′ com-
ponents in a finite mixture model, K > K ′. Structure
allows a relatively simple model to capture complex
non-linear relationships in data, not just multimodal-
ity. Through local analysis, we may investigate the
structure aspect in small subsets of attributes, seeking
useful patterns and trying to localize the complexity.
The results of such analysis are illustrated in Fig. 4 for
the ‘Boston housing’ data set, using these two models:

p : x ∼
5∑

k=1

πk

d∏

i

Normal(µk,i, σk,i) (13)

π ∼ Multinomial(λ, 1),
∑

k

λk = 1 (14)

q : x ∼ Normal(µ,Σ) (15)

The purpose of such analysis is to discover interest-
ing projections of the data, thus guiding exploratory
data analysis and data mining. Gain of information
through structure or correlation is what makes a pro-
jection interesting.

6 DISCUSSION

Most problems in estimating entropy of data can be
reduced to finding a good probabilistic model of the
data. Apart from having appealing properties (some
of which are not retained by empirical entropy), en-
tropy can be seen as a prototypical loss function which

measures the quality of a particular model, and, as in-
formation, the worth of changes to the model.

We can also compare different philosophies of statis-
tics. While the Fisherian self-divergence used for sig-
nificance testing arises from the correspondence of
multiple finite samples (all but one hypothetical) of
the same size to the same given (maximum likeli-
hood) model, the Bayesian self-divergence we describe
in Sect. 4 is due to the consistency of multiple mod-
els with the same given finite sample. In Fisherian
significance testing, the the test statistic assesses the
agreement between a sample and a model, whereas in
Bayesian significance testing the divergence functions
quantify the fit between the two models.

We have shown how flexible applications of model com-
parison can be used to discover correlations and struc-
ture, even if the modelling is local, for subsets of at-
tributes. However, both structure and correlation can
be seen just as special cases of interaction: the undesir-
ability of factorizing a probabilistic model. Thinking
in terms of interactions is important for several rea-
sons:

• Interactions of different kinds are often supported
by the data. A flexible hypothesis space, such
as that of log-linear or mixture models, will be
able to capture them, while other approaches to
modelling will often assume them away.

• High-order interactions are intrinsically difficult
to model due to a large number of parameters
and the resulting model uncertainty. Therefore it
is often necessary to assume restrictions on certain
types of interactions.

• The presence or absence of an interaction between
a subset of attributes is highly interpretable and
informative to a human analyst, along with a pro-
jection of the data to just that subset. This kind
of analysis can be performed either for a global
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Figure 4: For the ‘Boston housing’ data set, the scat-
ter plot on the top illustrates the nonlinear dependence
between crime rate and zoned for lots, which has the
highest amount of structure among all attribute pairs.
On the other hand, structure is not of considerable
utility to the model of nitric oxides and rooms (bot-
tom). Axis-aligned ellipses depict the circumference
of each component at one standard deviation in the
reference mixture model.

black-box probabilistic model, or for local mod-
els.

• Conditional modelling may provide misleading in-
sights into the informativeness of individual at-
tributes, due to attribute redundancies and syn-
ergies. It is better to compare models than to
examine model parameters.

We will conclude with a motivational example. Con-
sider this example of a greedily built regression model
for car prices:

Estimate Std.Error t-val Pr(>|t|)
(Intercept) -32254.698 17385.307 -1.855 0.0651 .
curb.weight 13.126 1.406 9.333 <2e-16 ***
width 753.987 313.931 2.402 0.0173 *
height -316.178 148.979 -2.122 0.0351 *
length -119.198 64.586 -1.846 0.0665 .

We could not claim that width, height and length of
an automobile are uninformative about its price, in
spite of the model. This pitfall inherent to conditional

models is avoided by constructing joint models, per-
forming model comparisons, and by using information-
theoretic examination of interactions in the models.
This way, looking at Fig. 2, we would observe that
length gives us very little additional information about
the car price once we already know curb.weight, but in
case the weight is not known, length alone is neverthe-
less quite a useful attribute.
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