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Abstract. Many effective and efficient learning algorithms assume inde-
pendence of attributes. They often perform well even in domains where
this assumption is not really true. However, they may fail badly when
the degree of attribute dependencies becomes critical. In this paper, we
examine methods for detecting deviations from independence. These de-
pendencies give rise to “interactions” between attributes which affect
the performance of learning algorithms. We first formally define the de-
gree of interaction between attributes through the deviation of the best
possible “voting” classifier from the true relation between the class and
the attributes in a domain. Then we propose a practical heuristic for
detecting attribute interactions, called interaction gain. We experimen-
tally investigate the suitability of interaction gain for handling attribute
interactions in machine learning. We also propose visualization methods
for graphical exploration of interactions in a domain.

1 Introduction

Many learning algorithms assume independence of attributes, such as the näıve
Bayesian classifier (NBC), logistic regression, and several others. The indepen-
dence assumption licenses the classifier to collect the evidence for a class from
individual attributes separately. An attribute’s contribution to class evidence is
thus determined independently of other attributes. The independence assump-
tion does not merely simplify the learning algorithm; it also results in robust
performance and in simplicity of the learned models.

Estimating evidence from given training data with the independence assump-
tion is more robust than when attribute dependencies are taken into account.
The evidence from individual attributes can be estimated from larger data sam-
ples, whereas the handling of attribute dependencies leads to fragmentation of
available data and consequently to unreliable estimates of evidence. This increase
in robustness is particularly important when data is scarce, a common problem
in many applications. In practice these unreliable estimates often cause inferior
performance of more sophisticated methods.

Methods like NBC that consider one attribute at a time are called “myopic.”
Such methods compute evidence about the class separately for each attribute
(independently from other attributes), and then simply “sum up” all these pieces
of evidence. This “voting” does not have to be an actual arithmetic sum (for
example, it can be the product, that is the sum of logarithms, as in NBC). The
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aggregation of pieces of evidence coming from individual attributes does not
depend on the relations among the attributes. We will refer to such methods as
“voting methods;” they employ “voting classifiers.”

A well-known example where the myopia of voting methods results in com-
plete failure, is the concept of exclusive OR: C = XOR(X, Y ), where C is a
Boolean class, and X and Y are Boolean attributes. Myopically looking at at-
tribute X alone provides no evidence about the value of C. The reason is that
the relation between X and C critically depends on Y . For Y = 0, C = X; for
Y = 1, C 6= X. Similarly, Y alone fails. However, X and Y together perfectly
determine C. We say that there is a positive interaction between X and Y with
respect to C. In the case of a positive interaction the evidence from jointly X and
Y about C is greater than the sum of the evidence from X alone and evidence
from Y alone.

The opposite may also happen, namely that the evidence from X and Y
jointly is worth less than the sum of the individual pieces of evidence. In such
cases we say that there is a negative interaction between X and Y w.r.t. C.
A simple example is when attribute Y is (essentially) a duplicate of X. For
example, the length of the diagonal of a square duplicates the side of the square.
Voting classifiers are confused by negative interactions as well by positive ones.

2 Attribute Interactions

Let us first define the concept of interaction among attributes formally. Let there
be a supervised learning problem with class C and attributes X1, X2, . . .. Under
conditions of noise or incomplete information, the attributes need not determine
the class values perfectly. Instead, they provide some “degree of evidence” for or
against particular class values. For example, given an attribute-value vector, the
degrees of evidence for all possible class values may be a probability distribution
over the class values given the attribute values.

Let the evidence function f(C,X1, X2, . . . , Xk) define some chosen “true”
degree of evidence for class C in the domain. The task of machine learning is to
induce an approximation to function f from training data. In this sense, f is the
target concept for learning. In classification, f (or its approximation) would be
used as follows: if for given attribute values x1, x2, . . . , xk : f(c1, x1, x2, . . . , xk) >
f(c2, x1, . . . , xk), then the class c1 is more likely than c2.

We define the presence, or absence, of interactions among the attributes as
follows. If the evidence function can be written as a (“voting”) sum:

f(C,X1, X2, . . . , Xk) = v

 ∑
i=1,...,k

ei(C,Xi)

 (1)

for some voting function v, and myopic predictor functions e1, e2, . . . , ek, then
there is no interaction between the attributes. Equation (1) requires that the
joint evidence of all the attributes can essentially be reduced to the sum of
the pieces of evidence ei(C,Xi) from individual attributes. The function ei is



a predictor that investigates the relationship between an attribute Xi and the
class C.

If, on the other hand, no such functions v, e1, e2, . . . , ek exist for which (1)
holds, then there are interactions among the attributes. The strength of inter-
actions IS can be defined as

IS := f(C,X1, X2, . . . , Xk)− v

(∑
i

ei(C,Xi)

)
. (2)

IS greater than some positive threshold would indicate a positive interaction,
and IS less than some negative threshold would indicate a negative interaction.
Positive interactions indicate that a holistic view of the attributes unveils new
evidence. Negative interactions are caused by multiple attributes providing the
same evidence, while the evidence should count only once.

Many classifiers are based on the linear form of (1): näıve Bayesian classifier,
logistic and linear regression, linear discriminants, support vector machines with
linear kernels, and others. Hence, interaction analysis is relevant for all these
methods. All we have written about relationships between attributes also carries
over to relationships between predictors in an ensemble.

3 Interaction Gain: A Heuristic for Detecting Interactions

The above definition of an interaction provides a “golden standard” for deciding,
in principle, whether there is interaction between two attributes. The definition
is, however, hard to use as a procedure for detecting interactions in practice. Its
implementation would require combinatorial optimization.

We will not refine the above definition of interactions to make it applicable
in a practical learning setting. Instead, we propose a heuristic test, called inter-
action gain, for detecting positive and negative interactions in the data, in the
spirit of the above definition. Our heuristic will be based on information-theoretic
notion of entropy as the measure of classifier performance, joint probability dis-
tribution as the predictor, and the chain rule as the voting function. Entropy
has many useful properties, such as linear additivity of entropy with independent
sources. We will consider discriminative learning, where our task is to study the
class probability distribution. That is why we will always investigate relation-
ships between an attribute and the class, or between attributes with respect to
the class.

Interaction gain is based on the well-known idea of information gain. Infor-
mation gain of a single attribute X with respect to class C, also known as mutual
information between X and C, measured in bits:

GainC(X) = I(X;C) =
∑

x

∑
c

P (x, c) log
P (x, c)

P (x)P (c)
. (3)

Information gain can be regarded as a measure of the strength of a 2-way inter-
action between an attribute X and the class C. In this spirit, we can generalize



it to 3-way interactions by introducing the interaction gain [1] or interaction
information [2]:

I(X;Y ;C) := I(X, Y ;C)− I(X;C)− I(Y ;C). (4)

Interaction gain is also measured in bits, and can be understood as the difference
between the actual decrease in entropy achieved by the joint attribute XY and
the expected decrease in entropy with the assumption of independence between
attributes X and Y . The higher the interaction gain, the more information was
gained by joining the attributes in the Cartesian product, in comparison with the
information gained from single attributes. When the interaction gain is negative,
both X and Y carry the same evidence, which was consequently subtracted twice.

To simplify our understanding, we can use the entropy H(X) to measure
the uncertainty of an information source X through the identity I(X;Y ) =
H(X) + H(Y ) − H(X, Y ). It it then not difficult to show that I(X;Y ;C) =
I(X;Y |C) − I(X;Y ). Here, I(X;Y |C) = H(X|C) + H(Y |C) − H(X, Y |C) is
conditional mutual information, a measure of dependence of two attributes given
the context of C. I(X;Y ) is an information-theoretic measure of dependence or
“correlation” between the attributes X and Y regardless of the context.

Interaction gain (4) describes the change in a dependence of a pair of at-
tributes X, Y by introducing context C. It is quite easy to see that when inter-
action gain is negative, context decreased the amount of dependence. When the
interaction gain is positive, context increased the amount of dependence. When
the interaction gain is zero, context did not affect the dependence between the
two attributes. Interaction gain is identical to the notion of mutual information
among three random variables [3].

4 Detecting and Resolving Interactions

A number of methods have been proposed to account for dependencies in ma-
chine learning, in particular with respect to the näıve Bayesian classification
model [4–6], showing improvement in comparison with the basic model. The first
two of these methods, in a sense, perform feature construction; new features are
constructed from interacting attributes, by relying on detection of interactions.
On the other hand, tree augmentation [6], merely makes the dependence ex-
plicit, but this is more a syntactic distinction. In this section we experimentally
investigate the relevance of interaction gain as a heuristic for guiding feature
construction.

The main questions addressed in this section are: Is interaction gain a good
heuristic for detecting interactions? Does it correspond well to the principled
definition of interactions in Section 2?

The experimental scenario is as follows:

1. We formulate an operational approximation to our definition of interaction.
This is a reasonable and easy to implement special case of formula (1) as



follows: the degree of evidence is a probability, and the formula (1) is in-
stantiated to the näıve Bayesian formula. It provides an efficient test for
interactions. We refer to this test as BS.

2. In each experimental data set, we select the most interacting pair of at-
tributes according to (a) BS, (b) positive interaction gain (PIG), and (c)
negative interaction gain (NIG).

3. We build näıve Bayesian classifiers (NBC) in which the selected interactions
are “resolved.” That is, the selected pair of most interacting attributes is
replaced in NBC by its Cartesian product. This interaction resolution is done
for the result of each of the three interaction detection heuristics (BS, PIG
and NIG), and the performance of the three resulting classifiers is compared.

We chose to measure the performance of a classifier with Brier score (de-
scribed below). We avoided classification accuracy as a performance measure for
the following reasons. Classification accuracy is not very sensitive in the context
of probabilistic classification: it usually does not matter for classification accu-
racy whether a classifier predicted the true class with the probability of 1 or
with the probability of, e.g., 0.51. To account for the precision of probabilistic
predictions, we employed Brier score. Given two probability distributions, the
predicted class probability distribution p̂, and the actual class probability distri-
bution p, where the class can take N values, the Brier score [7] of the prediction
is:

b(p̂, p) :=
1
N

N∑
i=1

(p̂i − pi)
2 (5)

The larger the Brier score, the worse a prediction. Error rate is a special case of
Brier score for deterministic classifiers, while Brier score could additionally re-
ward a probabilistic classifier for better estimating the probability. In a practical
evaluation of a classifier given a particular testing instance, we approximate the
actual class distribution by assigning a probability of 1 to the true class of the
testing instance. For multiple testing instances, we compute the average Brier
score.

We used two information-theoretic heuristics, based on interaction gain:
the interaction with the maximal positive magnitude (PIG), and the interac-
tion with the minimal negative magnitude (NIG). We also used a wrapper-like
heuristic: the interaction with the maximum improvement in the näıve Bayesian
classifier performance after merging the attribute pair, as measured with the
Brier score or classification accuracy on the training set, b(NBC(C|X)(C|Y ))−
b(NBC(C|X, Y )), the first term corresponding to the independence-assuming
näıve Bayesian classifier and the second to the Bayesian classifier assuming de-
pendence. This heuristic (BS) is closely related to the notion of mutual condi-
tional information, which can be understood as the Kullback-Leibler divergence
between the two possible models.

As the basic learning algorithm, we have used the näıve Bayesian classifier.
After the most important interaction was determined outside the context of other
attributes, we modified the NBC model created with all the domain’s attributes



by taking the single most interacting pair of attributes and replacing them with
their Cartesian product, thus eliminating that particular dependence. All the
numerical attributes in the domains were discretized beforehand, and missing
values represented as special values. Evaluations of the default NBC model and
of its modifications with different guiding heuristics were performed with 10-
fold cross-validation. For each fold, we computed the average score. For each
domain, we computed the score mean and the standard error over the 10 fold
experiments. We performed all our experiments with the Orange toolkit [8].

domain NB PIG NIG BS

lung 0.230
√

0.208 0.247 0.243

soy-small 0.016 0.016 0.016 0.016

zoo 0.018 0.019
√

0.018 0.018

lymph 0.079
√

0.094 0.077
√

0.075

wine 0.010 0.010
√

0.015 0.014

glass 0.070 0.071
√

0.071
√

0.073
√

breast 0.212 0.242 0.212
√

0.221
√

ecoli 0.032 0.033
√

0.039 0.046

horse-col 0.108
√

0.127 0.106
√

0.104

voting 0.089 0.098 0.089 0.063

monk3† 0.042 0.027 0.042 0.027

monk1† 0.175 0.012 0.176 0.012

monk2† 0.226
√

0.223 0.224
√

0.226
√

domain NB PIG NIG BS

soy-large 0.008
√

0.007 0.008
√

0.008
√

wisc-canc 0.024
√

0.023 0.024
√

0.026
√

austral 0.120
√

0.127 0.114 0.116
√

credit 0.116
√

0.122 0.111 0.115
√

pima 0.159
√

0.159
√

0.158 0.159
√

vehicle 0.142 0.136 0.138 0.127

heart 0.095 0.098 0.095
√

0.095
√

german 0.173 0.175
√

0.174
√

0.175
√

cmc 0.199
√

0.194 0.195
√

0.198
√

segment 0.016 0.017 0.017 0.015

krkp† 0.092 0.077
√

0.088 0.076

mushroom 0.002 0.006 0.002 0.002

adult 0.119 0.120 0.115 0.119

Table 1. The table lists Brier scores obtained with 10-fold cross validation after re-
solving the most important interaction, as assessed with different methods. A result is
set in bold face if it is the best for the domain, and checked if it is within the standard
error of the best result for the domain. We marked the artificial† domains.

In Table 1 we sorted 26 of the UCI KDD archive [9] domains according to
the number of instances in the domain, from the smallest on the top left to the
largest on the bottom right, along with the results obtained in the above manner.
We can observe that in two domains resolution methods matched the original
result. In 6 domains resolution methods worsened the results, in 10 domains the
original performance was within a standard error of the best, and in 8 domains,
the improvement was significant beyond a standard error. We can thus confirm
that accounting for interactions in this primitive way did help in ∼70% of the
domains.

If comparing different resolution algorithms, the Brier-score driven interac-
tion detection was superior to either of the information-based heuristics PIG or
NIG, achieving the best result in 11 domains. However, in only two domains,
‘voting’ and ‘segment,’ neither of PIG and NIG was able to improve the result
while BS did. Thus, information-theoretic heuristics are a reasonable and effec-
tive choice for interaction detection, providing competitive results even if the BS
heuristic had the advantage of using the same evaluation function as the final
classifier evaluation. PIG improved the results in 5 natural domains, and in 4



artificial domains. This confirms earlier intuitions that the XOR-type phenom-
ena occur more often in synthetic domains. NIG provided an improvement in 7
domains, all of them natural. Negative interactions are generally very frequent,
but probabilistic overfitting cannot always be resolved to a satisfactory extent
by merely resolving the strongest interaction because the result is dependent on
the balance between multiple negatively interacting attributes.

times NB PIG NIG BS AIG

best 8 8 7 11 10

good
√

10 7 10 11 7

bad 8 11 9 4 9

Table 2. A summary of results shows that BS-driven interaction resolution provides
the most robust approach, while AIG follows closely behind.

In Table 2, we summarize the performance of different methods, including
AIG as a simple approach deciding between the application of NIG and PIG in
a given domain. AIG suggests resolving the interaction with the largest absolute
interaction gain. We can also observe that success is more likely when the do-
main contains a large number of instances. It is a known result from statistical
literature that a lot of evidence is needed to show the significance of higher-order
interactions [10].

5 Visualization of Interactions

The analysis of attribute relationships can be facilitated by methods of infor-
mation visualization. We propose two methods for visualization of attribute in-
teractions. Interaction dendrogram illustrates groups of mutually interacting at-
tributes. Interaction graph provides detailed insight into the nature of attribute
relationships in a given domain.

5.1 Interaction Dendrograms

Interaction dendrogram illustrates the change in dependence between pairs of
attributes after introducing the context. The direction of change is not impor-
tant: we will distinguish this later. If we bind proximity in our presentation to
the change in level of dependence, either positive or negative, we can define the
distance dm between two attributes X, Y as:

dm(X, Y ) :=

{
|I(X;Y ;C)|−1 if |I(X;Y ;C)|−1 < 1000,

1000 otherwise.
(6)

Here, 1000 is a chosen upper bound as to prevent attribute independence from
disproportionately affecting the graphical representation. To present the func-
tion dm to a human analyst, we tabulate it in a dissimilarity matrix and apply



Fig. 1. An interaction dendrogram illustrates which attributes interact, positively or
negatively, in the ‘census/adult’ (left) and ‘cmc’ (right) data sets. We used the Ward’s
method for agglomerative hierarchical clustering [11].

the techniques of hierarchical clustering or multi-dimensional scaling. Depen-
dent attributes will hence appear close to one another; independent attributes
will appear far from one another. This visualization is an approach to variable
clustering, which is normally applied to numerical variables outside the context
of supervised learning. Diagrams, such as those in Fig. 1, may be directly useful
for feature selection: the search for the best model starts by only picking the
individually best attribute from each cluster. We must note, however, that an
attribute’s membership in a cluster merely indicates its average relationship with
other cluster members.

5.2 Interaction Graphs

The analysis described in the previous section was limited to rendering the mag-
nitude of interaction gains between attributes. We cannot use the dendrogram
to identify whether an interaction is positive or negative, nor can we see the im-
portance of each attribute. An interaction graph presents the proximity matrix
better. To reduce clutter, only the strongest N interactions are shown, usually
5 ≤ N ≤ 20. With an interactive method for graph exploration, this trick would
not be necessary. We also noticed that the distribution of interaction gains usu-
ally follows a Gaussian-like distribution, with only a few interactions standing
out from the crowd, either on the positive or on the negative side.

Each node in the interaction graph corresponds to an attribute. The infor-
mation gain of each attribute is expressed as a percentage of the class entropy
(although some other uncertainty measure, such as the error rate or Brier score,
could be used in the place of class entropy), and written below the attribute
name. There are two kinds of edges, bidirectional arrows and undirected dashed
arcs. Arcs indicate negative interactions, implying that the two attributes pro-
vide partly the same information. The amount of shared information, as a per-



centage of the class entropy, labels the arc. Analogously, the amount of novel
information labels the arrow, indicating a positive interaction between a pair of
attributes. Figure 2 explains the interpretation of the interaction graph, while
Figs. 3 and 4 illustrate two domains. We used the ‘dot’ utility [12] for generating
the graph.

6 Implications for Classification

In discussing implications of interaction analysis for classification, there are two
relevant questions. The first is the question of significance: when is a particular
interaction worth considering. The second is the question of how to treat negative
and positive interactions between attributes in the data.

In theory, we should react whenever the conditional mutual information
I(X;Y |C) deviates sufficiently from zero: it is a test of conditional dependence.
In practice, using a joint probability distribution for XY would increase the
complexity of the classifier, and this is often not justified when the training
data is scarce. Namely, introducing the joint conditional probability distribution
P (X, Y |C) in place of two marginal probability distributions P (X|C)P (Y |C) in-
creases the degrees of freedom of the model, thus increasing the likelihood that
the fit was accidental. In the spirit of Occam’s razor, we should increase the com-
plexity of a classifier only to obtain a significant improvement in classification
performance. Hence, the true test in practical applications is improvement in
generalization performance, measured with devices such as the training/testing
set separation and cross-validation. When the improvement after accounting for
an interaction is significant, the interaction itself is significant.

6.1 Negative Interactions

If X and Y are interacting negatively, they both provide the same information.
If we disregard a negative interaction, we are modifying the class probability
distribution with the same information twice. If the duplicated evidence is bi-
ased towards one of the classes, this may shift the prediction. The estimated
class probabilities may become excessively confident for one of the classes, an-
other case of overfitting. Unbalanced class probability estimates by themselves
do not necessarily bother several classification performance measures, such as
the classification accuracy and the ROC, because they do not always change the
classifications.

Even if the näıve Bayesian classifier sometimes works optimally in spite of
negative interactions, it often useful to resolve them. The most frequent method
is feature selection. However, we observe that two noisy measurements of the
same quantity are better than a single measurement, so other approaches may
be preferable. One approach is assigning weights to attributes, such as feature
weighting or least-squares regression. Alternatively, a latent attribute L can be
inferred, to provide evidence for all three attributes: X, Y and C. The trivial ap-
proach to latent attribute inference is the introduction of the Cartesian product



Fig. 2. The four most informative attributes were selected from a real medical domain.
In the interaction graph (left), the most important attribute A alone eliminates 78%
of class entropy. The second most important attribute B alone eliminates 76% of class
entropy, but A and B interact negatively (dashed arc), and share 75% of class entropy.
So B reduces class entropy by only 76-75=1% of its truly own once we have accounted
for A: but if we leave B out in feature subset selection, we are giving this information up.
Similarly, C provides 4% of its own information, while the remaining 13% is contained
in both, A and B. Attribute D provides ‘only’ 16% of information, but if we account
for the positive interaction between A and D (solid bidirectional arrow), we provide for
78+16+6=100% of class entropy. Consequently, only attributes A and D are needed,
and they should be treated as dependent. A Bayesian network [13] learned from the
domain data (right) is arguably less informative.

Fig. 3. An interaction graph for the ‘census/adult’ domain confirms our intuitions
about natural relationships between the attributes. All interactions in this graph are
negative, but there are two clusters of them.

Fig. 4. In this illustration of the ‘horse colic’ domain, one attribute appears to moderate
a number of other attributes’ relationships with the class. There is a separate and
independent negative interaction on the right.



between attributes, the technique we applied in our experiments, but methods
like factor analysis, independent component analysis are also applicable here.
This kind of attribute dependence is a simple and obvious explanation for con-
ditional dependence. Negative interactions allow us to simplify the model in the
sense of reducing the quantity of evidence being dealt with.

6.2 Positive Interactions

The second cause of independence assumption violation is when two attributes
together explain more than what we estimated from each attribute individually.
There could be some unexplained moderating effect of the first attribute onto
the second attribute’s evidence for C. There could be a functional dependence
involving X, Y and C, possibly resolved by feature construction. Such positive
interactions can be inferred from a positive value of interaction gain. Positive in-
teractions are interesting subjects for additional study of the domain, indicating
complex regularities. They too can be handled with latent attribute inference.
Positive interactions indicate a possible benefit of complicating the model.

If we disregard a positive interaction by assuming attribute independence,
we are not taking advantage of all the information available: we are underfitting.
Of course, one should note that the probabilities, on the basis of which entropy
is calculated, might not be realistic. Since the probabilities of a joint probability
distribution of two values of two attributes and the class are computed with fewer
supporting examples than those computed with only one attribute value and the
class, the 3-way interaction gains are less trustworthy than 2-way interaction
gains. Consequently, positive interaction gains may in small domains indicate
only a coincidental regularity. Taking accidental dependencies into consideration
is a well-known cause of overfitting, but there are several ways of remedying this
probability estimation problem, e.g. [14].

7 Conclusion

In this paper we studied the detection and resolution of dependencies between
attributes in machine learning. First we formally defined the degree of interaction
between attributes through the deviation of the best possible “voting” classifier
from the true relation between the class and the attributes in a domain. Then
we proposed the interaction gain as a practical heuristic for detecting attribute
interactions. We experimentally investigated the suitability of interaction gain
(IG) for handling attribute dependencies in machine learning. Experimental re-
sults can be summarized as follows:

– IG as a heuristic for detecting interactions performs similarly as the BS
criterion (a heuristic that was directly derived from the principled formal
definition of attribute interaction), and enables the resolution of interactions
in classification learning with similar performance as BS.

– IG enables the distinction between positive and negative interactions while
BS does not distinguish between these two types of interaction.



– According to empirical results in real-world domains, strong positive interac-
tions are rare, but negative interactions are ubiquitous. It may help assuming
attribute dependence in case of negative interactions.

– In typical artificial domains, strong interactions are more frequent, particu-
larly positive interactions. The IG heuristic reliably detects them.

We also presented visualization methods for graphical exploration of interactions
in a domain. These are useful tools that should help expert’s understanding of
the domain under study, and could possibly be used in constructing a predictive
model.

Problems for future work include: handling of n-way interactions where n >
3; building learning algorithms that will incorporate interaction detection facil-
ities, and provide superior means of resolving these interactions when building
classifiers.
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