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ABSTRACT 
 

This study is divided in two sections: the first one concerns 
dynamic stall in two-dimensional flow, and more precisely the modeling 
of the global aerodynamic forces by means of differential equations. The 
equations used are based on the ONERA dynamic stall model. This 
model considers an airfoil subjected to a free stream with two degrees of 
freedom (dof): the pitch angle 휃and the plunge displacement ℎ. This two 
dof enable the evaluation of the aerodynamic coefficients and forces 
through the implementation of the ONERA model in a MATLAB code. 
The differential equations are solved using the standard ODE solvers 
(ode15s). 

The second section of the paper, which is the most important one 
and that is based on the first one, is about morphing airfoils. The unified 
model presented is composed by three components coupled together. The 
basic idea is that the airfoil motions (given by the angle of attack and the 
morphing dynamics) are transformed into a generalized set of 
coordinates (ℎ  and ℎ′ ). These generalized coordinates with the 
flowfield geometry (푢 , 푣 , 푣 ) and the induced flow 휆  provide the 
boundary conditions used for the linear airloads theory. That process 
provides the generalized loads 퐿  (first component of the theory). The 
second component of the model is the induced flow model. This part is 
obtained by the simultaneous use of the linear loads and the eventual 
modifications due to stall. From the induced flow model is derived the 
flow due to the shed wake 휆 . The third and last part of the model is the 
dynamic stall model: the ONERA model. The idea is that the airfoil 
boundary condition in terms of generalized coordinates is used as a 
representation of the non-linear static stall data in order to get the static 
stall corrections for the loads (Δ퐶 ). These corrections drive the dynamic 
stall model which produces the corrections (Γ ) that have to be applied 
to the loads. This procedure is formulated as a feedback loop. The 
corrections guarantee the time delay and overshoot typical of dynamic 
stall behavior. Finally, the linear loads and the corrections are combined 
to obtain the total airload. 

The validation of the unified model is accomplished  by 
comparison with Theodorsen theory for harmonic motions correlating 
NACA 0012 dynamic stall data. Other simulations have been carried on 
for NACA 0012 airfoil with trailing edge flap and for the SC-1095 airfoil 
with leading edge droop. These correlations show good agreement with 
the experimental data obtained in wind tunnel tests. 
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1) INTRODUCTION TO 
DYNAMIC STALL AND 
MORPHING AIRFOILS 
 

An airfoil is dynamically stalling when its angle of incidence leads 
to a vortex-like disturbance. This disturbance, which originates near the 
leading edge and moves along the airfoil, is responsible for a highly non-
linear pressure disturbance. The non-linearity causes the divergence 
between the airloads predicted from the linear thin-airfoil theory and 
those obtained by experimental tests. 

Dynamic stall is one of the most challenging problems in 
aerodynamics and is a typical phenomenon of helicopters rotors. The 
difficulty is related to the fact that the rotor faces with different 
aerodynamic environments simultaneously: the advanced side of the 
rotor is characterized by a large Mach number and low angles of attack 
while the retreating side experiences lower Mach numbers and larger 
angles of attack, causing the airfoil to stall. This cyclic variation leads to 
the phenomenon of dynamic stall. The bigger difference between static 
and dynamic stall is that the dynamic stall limits the maximum forward 
velocity of the rotor. In addition, it causes torsional solicitations and 
vibrations [29]. All these effects are time-dependent and this is the 
reason why this type of stall has to be studied from a dynamic point of 
view. 

There is a large number of works concerning the static stall that 
uses data collected from wind tunnels. This is partially due to the 
simplicity of setting up the static experiments: the airfoil is simply fixed 
in a particular position with a determinate angle of attack relative to the 
free stream. It has only one degree of freedom, i.e. the angle of attack 
(pitch). Data are collected at different angles in order to evaluate the 
aerodynamic forces in each configuration. The static stall phenomenon is 
well understood and it is not the purpose of this work to deal with it, but 
it has a key role in the determination of the dynamic stall’s parameters. 

On the other hand there are only a few theories of dynamic stall 
and there is not a complete physical model yet. The models are designed 
to match experimental data through the application of nonlinear 
equations. The main problem of this approach is that the equations need 
some empirical coefficients that are strictly correlated with the 



2 
 

experimental data and thus, if there are no data available for a particular 
airfoil or flow condition, it is impossible to obtain realistic information. 
Several semi-empirical models exist that can be used to simulate 
dynamical stall behavior. One of these models is the ONERA model, 
implemented by Petot [1] and extended by Peters and Rudy [3]. ONERA 
developed a model of dynamic stall in which a first-order equation 
coupled with mass terms is used to get a reasonable approximation of the 
rigid unstalled airfoil behavior. A second-order filter is then fed by the 
changes in stall observed in static test data to simulate the delay of stall 
onset and the stall overshoot. This semi-empirical model is adopted in 
this work to compute dynamic stall.  

This study makes a further step towards the comprehension of this 
phenomenon and investigates the possibility to create morphing airfoils 
to improve their efficiency and alleviate the dynamic stall. There has 
been increasing interest in dynamically morphing airfoils, due to the 
need for heavy-lift applications as well as noise and vibration reduction. 
This is also more feasible thanks to the improvements in structural 
technology, materials and adaptive controls. Reference [8] describe the 
use of a trailing edge droop to mitigate the effects of dynamic stall 
including testing data. In Reference [22] Mac Gaunaa shows that it is 
possible to obtain a load reduction using deformable trailing edge 
geometry (DTEG). The model implemented was used to investigate the 
effect of the DTEG control system on flutter velocity in two-dimensional 
cases. The results indicate that the relative air velocity at which 
instabilities occurs may be reduced significantly with the addition of a 
DTEG control system. This is directly related with the load reduction 
because the instabilities cause a reduction of effectiveness in creating lift. 

  
In Reference [24] the authors investigate a possible reduction of 

the cost of wind-generated electricity by mitigating  fatigue loads acting 
on the blades of wind turbine rotors. The study adopts active 
aerodynamic load control devices like trailing edge tabs and flaps for 
mitigation. The work is focused on the time-dependent effects on 
sectional lift, drag and pitching moment given by the use of these micro-
devices and their effectiveness in mitigating high frequency loads on the 
wind turbine. The goal of the study is to compare the transient 
aerodynamic characteristics of the microtab and microflap, to determine 
the deployment time requirements for these devices, and to assess the 
occurrence of any nonlinear aerodynamic phenomena during their 
deployment. The results show that the deployment transients dissipate 
leading to an asymptotic rise towards a steady-state response. Reference 
[25] also makes an analysis of the operating conditions of wind turbines, 
which are subjected to fluctuating loads that create fatigue damage on 
their components. The results show that the use of variable geometry 
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airfoils is an effective way to reduce vibration on an airfoil when 
subjected to stochastic wind signals. 
 

In Reference [23], the author derived analytical expressions for 
distributed and integral unsteady two-dimensional forces on a variable 
geometry airfoil undergoing arbitrary motion under the assumption of 
incompressible, irrotational, inviscid flow. The airfoil is represented by 
its camber line as in classic thin-airfoil theory and the deflection of the 
airfoil is given by superposition of chord-wise deflection mode shapes. 
The analytical expressions derived for the forces simplify to the thin-
airfoil results by Theodorsen [11] in case of unsteady flow over a flat 
airfoil with a flat flap. The thrust predicted with the algorithm 
implemented is in complete agreement with Garrick’s [15] results. 

1.1) OBJECTIVES OF THE PROJECT 

This work follows the studies conducted by Loren A. Ahaus [4]. 
The most important goal is to derive a unified airloads theory for 
morphing airfoils integrated with ONERA dynamic stall model. This 
theory is not developed to supplant wind tunnel tests and CFD analysis 
but rather is intended for preliminary design calculations and 
simulations. In fact, due to the complex non-linearity of the 
phenomenon, CFD methods need adequate transition models and must 
solve Navier-Stokes equations to obtain reasonable solution. This is very 
onerous in terms of time integration and computing time and hence semi-
empirical models are quite popular for the calculation of dynamic stall 
for rotors used in helicopters propellers and wind turbines, also because 
they provide better results than most CFD computations. 

The work presents a brief but complete description of the dynamic 
stall phenomenon (Chapter 2) in which are analyzed all the typical 
phases: from the unstalled airfoil to the complete flow separation when 
the leading edge vortex reaches the trailing edge of the airfoil. 

In Chapter 3 are described the basis of the ONERA model and its 
applications to dynamic stall of airfoils as developed by Petot [1]. 

Chapter 4 contains the verification and validation of the ONERA 
model through some simulations regarding an airfoil subjected to three 
different forced oscillation. The results are then compared with 
McCroskey experimental data [9]. 

Peters, et al., developed a finite-state aerodynamic model via 
expansions in Glauert series [13], [18], [19]. This model is adopted in the 
current work to evaluate the linear airloads and it is the subject of 
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Chapter 5. The model is based on two-dimensional potential flow theory 
with the non-penetration boundary condition applied on the airfoil and 
the Kutta condition applied at the trailing edge. The theory is developed 
in terms of the Chebyshev polynomials which are a natural coordinate 
systems for airfoil motions. Further, only a limited numbers of 
polynomials are required to capture the essential physics of the 
phenomenon. For example, a symmetric airfoil like NACA 0012 
undergoing simple pitch motions requires only two terms of the 
expansion. Obviously, if a more complicated airfoil is studied (like a 
cambered one), then more terms have to be added. For this reason the 
model is considered general and  computationally efficient, making it a 
good tool for preliminary design calculations. Another interesting feature 
is that any induced-flow model can be incorporated in the theory (both  
two- or three-dimensional). 

Chapter 6 contains the static airfoil section characteristics. These 
are essential for the calculation of the residuals both for NACA 0012 and 
SC-1095 airfoils, which are the driver of the dynamic stall model. 

In Chapter 7 is outlined the procedure used to identify appropriate 
stall parameters. Through large amplitude test data the parameters are 
obtained both for NACA 0012 and SC-1095 airfoils and are then 
implemented into the ONERA model’s equations. 

In Chapter 8 is verified the accuracy of the airload theory with the 
dynamic stall data. NACA 0012 airfoil is used both for harmonic pitch 
and flap simulations and combined pitch and flap oscillations whereas 
the SC-1095 airfoil is used to predict airloads for a drooped leading edge. 
The results obtained are satisfying. 

Chapter 9 shows the camber effects in dynamic stall with 
harmonic oscillations. The airfoils selected are NACA 0012 and NACA 
6712. The simulations demonstrate that a relevant parameter for the 
dynamic stall is the reduced frequency 푘. In fact, when the frequency is 
raised it is possible to notice a significant dynamic stall effect. 

Finally, in Chapter 10 is presented a comparison between the 
results obtained from the original ONERA model and the unified model. 
From the simulations, it is possible to conclude that the implementations 
of the ONERA model are in good agreement with the experimental data 
only when the lift coefficient is considered. 
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2) DESCRIPTION OF THE 
DYNAMIC STALL 
PHENOMENON 
 

This section describes the physics of dynamic stall. The 
information are taken from Ing. C. Marongiu [5] and from Reference 
[10]. J. G. Leishman [28] provides a complete description of this 
phenomenon, reported here for clarity. 

“The phenomenon of dynamic stall has long been known to be a 
factor that limits helicopter performance. The problem of dynamic stall 
usually occurs on the rotor at high forward flight speed or during 
maneuvers with high load factors and is accompanied by the onset of 
large torsional airloads and vibrations on the rotor blades. Whereas for 
fixed wing aircraft, stall occurs at low flight speeds, stall on a helicopter 
rotor will occur at relatively high airspeeds as the advancing and 
retreating blades begin to operate close  to the limits where the flow can 
feasibly remain attached to the airfoil surfaces. The advancing blades 
operates at low values of angle of attack but close to its shock induced 
flow separation boundary. The retreating blade operates at much lower 
Mach numbers but encounters very high values of angle of attack  close 
to stall. Because of the time varying blade element angle of attack 
resulting from blade flapping, cyclic pitch inputs and wake inflow, the 
flow separation and stall ultimately occurs on a rotor in a very much 
more dynamic or time dependent manner. This stall phenomenon is, 
therefore, referred to as “dynamic stall”. 

Dynamic stall will occur on any airfoil or other lifting surface 
when it is subjected to time dependent pitching, plunging or vertical 
translation or other type of non-steady motion that takes the effective 
angle of attack above its normal static stall angle. Under these 
circumstances, the physics of flow separation and the development of 
stall have been shown to be fundamentally different from the stall 
mechanism exhibited by the same airfoil under static quasi-steady 
conditions. Dynamic stall is in part distinguished by a delay in the onset 
of flow separation to a higher angle of attack than would occur statically. 
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This initial delay in stall onset is obviously advantageous as far as the 
performance and operational flight envelope of a helicopter is concerned. 
However, when dynamic flow separation does occur, it is found to be 
characterized by the shedding of a concentrated vertical disturbance from 
the leading edge region of the airfoil. As long as this vortex disturbance 
stays over the airfoil upper surface, it acts to enhance the lift being 
produced. Yet, the vortex flow patterns is not stable, and the vortex is 
quickly swept over the chord of the blade by the oncoming flow. This 
produces a rapid aft movement of the center of pressure, which results in 
large nose-down pitching moments on the blade section and an increase 
in torsional loads on the blades. This is the main characteristic of 
dynamic stall that concerns the rotor analyst, for which the effects have 
proved difficult to predict. 

Nonlinearities in the airloads associated with dynamic stall can 
introduce further effects that give rise to dangerously high blade stresses, 
vibrations, and control loads. Because of the significant hysteresis in the 
airloads as functions of angle of attack that take place during dynamic 
stall, and also because of the possibilities of lower aerodynamic 
damping, an otherwise stable elastic blade mode can become unstable if 
flow separation is present. Therefore, the onset of dynamic stall generally 
defines the overall lifting, propulsive, and aeroelastic performance limits 
of an helicopter rotor. 

The effects of unsteady motion on unsteady airfoil behavior and 
dynamic flow separation have been recognized for many years, mainly 
through studies of oscillating airfoils in wind tunnel tests. As mentioned 
previously, for an increasing angle of attack it has been observed that the 
flow remains attached to the upper surface of an airfoil to an angle of 
attack much higher than that could be attained quasi-statically, giving a 
corresponding increase in maximum lift. The delay in the onset of flow 
separation under unsteady conditions is a result of three primary 
unsteady phenomena. First, during the conditions where the angle of 
attack is increasing with respect to time, the unsteadiness of the flow 
resulting from circulation that is shed into the wake at the trailing edge of 
the airfoil causes a reduction in the lift and adverse pressure gradients 
compared to the steady case at the same angle of attack. Second, by 
virtue of a kinematic induced camber effect, a positive pitch rate further 
decreases the leading edge pressure and pressure gradients for a given 
value of lift. This can be considered a quasi-steady effect. Third, in 
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response to the external pressure gradients, there are also additional 
unsteady effects that occur within the boundary layer, including the 
existence of flow reversals in the absence of any significant flow 
separation. The onset of flow separation on airfoils is generally found to 
be delayed by unsteady effects such as those associated with increasing 
pitch rate. Coupled with the aforementioned pressure gradient reductions, 
the resulting lag in the formation of the boundary layer separation  causes 
the onset of dynamic stall to be averted to a significantly higher angle of 
attack that would be obtained under quasi-steady conditions. 

Ultimately, with increasing angle of attack, the high adverse 
pressure gradient that builds up near the leading edge under dynamic 
conditions causes flow separation to occur there. Experimental evidence 
suggests the formation of a free shear layer that forms just downstream 
of the leading edge which quickly rolls up and forms a vortical 
disturbance. This feature is now known to be a very characteristic aspect 
of dynamic stall. Not long after it is formed, this vortical disturbance 
leaves the leading edge region and begins to convect over the upper 
surface of the airfoil. This induces a pressure wave that sustains lift and 
produces airloads well in excess of those obtained under steady 
conditions at the same angle of attack.” 

Figure 2.1 shows typical static lift and dynamic curves for an 
aerofoil. The dynamic curve corresponds to an oscillatory motion in 
pitch. 

 

 
Figure 2.1: Static and dynamic lift curves. 
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Up to point 1, the behavior is linear and consistent with the 
unsteady linear thin-airfoil theory. If the angle of attack is increased 
(Point 2 in Figure 2.1), the linear behavior extends further than the angle 
of static stall. Flow reversal might be present between the points 1 and 2 
and therefore the linear trend could not be considered exactly as linear 
behavior (Figure 2.2). 

 

 
Figure 2.2: Airfoil exceeds static stall angle and flow reversal takes place in the boundary 

layer. 

 

The additional lift depicted in the figure is due to a strong vortex 
(leading edge vortex, LEV) that forms and grows from the leading edge 
of the airfoil (Figure 2.3) and spread rearward. The presence of this 
vortex affects the pressure distribution and the total lift: it creates a low 
pressure zone that increases the lift. Its strength  monotonically increases 
well past the aerofoil mid-chord. In some cases, primarily at low Mach 
numbers, the additional lift overshoots produced by this process may be 
between 50 and 100% higher than the static value of maximum lift. The 
LEV is also responsible for the differences in pitching moment from its 
previous trend to large negative values (Figure 2.7, Point 2), which result 
from an aft moving center of pressure as the vortex disturbance is swept 
downstream across the chord. The drag begins to rise dramatically 
(Figure 2.8, Point 2). However, until the vortex reaches the back of the 
profile, the lift does not collapse even though the flow separation zone 
increases (Figure 2.4).  

 

 
Figure 2.3: Flow separation at the leading edge. 
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Figure 2.4: The leading edge vortex increases in strength and moves towards the trailing 

edge. 

 

When the vortex reach the trailing edge, the maximum value in 
the cycle is obtained (Point 3) and then the lift drops dramatically. This 
drop of the lift coefficient occurs at a higher angle of attack than that for 
the divergence in the pitching moment; that is, the pitching moment 
break occurs at the onset of vortex shedding (Point 2 in Figure 2.7) 
whereas the lift break occurs when the vortex passes into the wake (Point 
3 in Figure 2.1). The drag follow the same trend of the lift. After this 
point, the vortex detaches from the surface of the airfoil and it 
accompanies a sudden loss of lift (Point 4), a peak in the pressure drag 
(Point 3) and a maximum in the nose-down pitching moment (Point 3). 
Many secondary vortices could be obtained. These latter vortices are not 
as strong as the LEV so they are not able to generate as much lift. They 
could also be the cause of fluctuations in the lift curve (Figure 2.5). 

 

 
Figure 2.5: Lift stall. When the LEV reaches the trailing edge, the flow is fully separated. 

 

The flow is now completely detached but, as the angle of attack is 
reduced, the flow gradually reattaches, eventually returning to its static 
value (Point 5). The angle of reattachment is lower than the initial angle 
of static stall. The result is a hysteresis loop in the lift, moment and drag 
curves. The lag in the reorganization of the flow is  due to the reverse 
kinematic induced camber effect on the leading edge pressure gradient 
by the negative pitch rate. The resulting lift curve is asymmetrical 
(Figure 2.6).  
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Figure 2.6: At lower angles of attack the flow reattaches front to back. 

 

Figures 2.7 and 2.8 show the static and dynamic moment and drag 
curves, respectively. 

 

 
Figure 2.7: Static and dynamic moment curves. 

 

 
Figure 2.8: Static and dynamic drag curves. 
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All these phases increase greatly the complexity of the study of 
the dynamic stall phenomenon. Separation, transition to turbulent flow 
and final reattachment are really difficult to simulate. This is the reason 
why only semi-empirical models have been developed till now although 
numerous efforts are constantly carried out to obtain the best model 
possible. 

Some features of the lift curve should be noted. First of all, for an 
oscillating airfoil, the maximum 퐶  in dynamic stall is delayed 
significantly compared to the static curve. On the other hand, when stall 
occurs, the drop in lift for the dynamic case is heavier and more 
persistent than in the case of the static one. Secondly, as the frequency of 
oscillation increases, the amount of hysteresis increases. For low 
frequencies of oscillation, the dynamic curve is similar to the static one, 
with a small hysteresis. However, at higher frequencies, the lift curve 
barely recovers the linear value before beginning another loop (Figure 
2.9). In the steady case the aerodynamic forces are functions of the angle 
of attack 훼. In the unsteady case, the reduced frequency, 푘 = 푤푏 푢⁄ , is 
another important parameter (see Chapter 9). An example of the effect of 
frequency on the lift curve is depicted in Figure 2.9 that clearly shows 
how the amplitude of the hysteresis loop increases with reduced 
frequency. 

 

 
Figure 2.9: Lift coefficient for VR-12 airfoil with a reduced frequency k<0.1. 

Figure 4.2 from Reference [4] reprinted here for comparison. 
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3) ONERA MODEL THEORY 
 

This section presents the ONERA model and verifies its capability 
and accuracy to predict the dynamic stall phenomenon for a NACA 0012  
airfoil. The ONERA model theory used here is based on the work of D. 
Petot [1] and is implemented in a Matlab code developed by O. Celebi 
[2] (see Appendix G). 

Several semi-empirical models have been proposed in the 
literature to quantify the effect of dynamic stall on airloads. Flow over 
airfoils in dynamic stall is highly non-linear and typically models are 
built through empirical corrections applied to steady data and are based 
on wind tunnel tests. The French aerospace research institute ONERA 
developed a model of dynamic stall [1]. The purpose of this chapter is to 
describe such a model (the original ONERA model), following Petot [1]. 

3.1) BASIS OF THE MODEL 

The basic idea is that a non-linear system generally behaves 
linearly for small variations of its parameters. Nevertheless this rule has 
not general application, it has been demonstrated by experiments that, for 
unsteady stall, the lift and moment are linear for angle of attack 
variations of around 0.5 degrees. These variations are well described by a 
second-order transfer function that is valid only for small perturbations 
about the mean angle of attack considered. However, if the test is 
repeated over a wide range of mean angles, it is possible to obtain a 
global transfer function whose coefficients depend on the angle of attack. 
This is the procedure followed by ONERA to derive the mathematical 
model for dynamic stall. The results obtained confirm that this model is 
capable of providing reasonable correlation with experimental data as 
good as other more sophisticated models. Further, it provides a 
functional form for the parameters that seems to vary with Δ퐶  (where 
Δ퐶  is the static residual, see Chapter 6.2). Reference [1] suggests a 
range of values for the parameters which can be used for the 
optimization. 

The principle of modeling consists of finding a differential 
equation that correlates a generic aerodynamic coefficient 퐶  with 
changes, 훿휃, of a control parameter of the system 휃 (angle of attack) 

푎훿퐶 	+ 	푏훿퐶 ′ 	+ 	푐훿퐶 ′′ = 푑훿휃 + 푒훿휃 ′ + 	푓훿휃 ′′												(3.1) 
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such that it correctly expresses the transfer function measured. 

This differential equation, is valid for any low amplitude variation 
around an average position 휃 . For this reason it is possible to write 

푎(휃 )훿퐶 	+ 	푏(휃 )훿퐶 ′ 	+ 	푐(휃 )훿퐶 ′′

= 푑(휃 )훿휃 + 푒(휃 )훿휃 ′ + 	푓(휃 )훿휃 ′′												(3.2) 

If the coefficients 푎, 푏, … , 푒, 푓 do not vary too rapidly with the 
average value	휃  , then it is possible to apply the equation to a high 
amplitude variation of 휃(푡) with a negligible error, therefore we choose 

훿퐶 = 	 퐶 −	퐶 												(3.3) 

훿휃 = 	휃 − 	휃 												(3.4) 

where 퐶  is the static value of 퐶 . Substituting 휃 for 휃  yield the final 
form of the equation 

푎(휃)퐶 	+ 	푏(휃)퐶 ′ 	+ ⋯ = 푎(휃)퐶 + 푒(휃)휃 ′ + ⋯												(3.5) 

This represents a model of the system as a differential equation 
which gives the response to any variation 휃(푡) of the test parameter. 
However, the movement 휃(푡) must not to be too rapid in order to take 
into account the hypothesis of small variations of the parameters. 

3.2) APPLICATION TO DYNAMIC STALL OF AIRFOILS 

Difficulties arise when the method is directly applied to dynamic 
stall because the domain of large angles of attack is strongly nonlinear; 
transition from unstalled to stalled state does not occur at a specific angle 
of attack. In general, a physical system may be modeled as transfer 
functions and their associated differential equations. ONERA assumed 
that in the linear regime the behavior of the airloads can be described by 
a first order transfer function while in the non linear one a second order 
transfer function is introduced. This is due to the time delay and 
overshoot due to the passing of shed vorticity. These assumptions, 
confirmed by extensive experimental correlations, lead up to the 
following system of differential equations 

푄 = 	푄 + 푄 	
푄̇ + 휆푄 = 	 휆푄 + 	 휆푠̂ + 	휎 휃̇ + 	 푠̂휃̈
푄̈ + 	푎푄̇ + 	 푟̂푄 = 	 −(푟̂∆푄 + 푒̂푄)̇

												(3.6) 
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where 휆, 푠̂,휎,푎, 푟̂, 푒̂ are semi-empirical coefficients of ONERA model 
(for more information about the values of these parameters, see reference 
[1]) and the load 푄 is expressed as a sum of two terms: 

- 푄 , that represents the load in absence of stall. In the case of lift, 
the second equation in the  system (3.6) must be a first-order 
differential while in the case of moment or drag it is an explicit 
expression 
 

푄 = 	 푄 + 	(푠̂ + 휎)휃̇ + 	 푠̂휃̈												(3.7) 
 
It depends on 푄  which is the steady value of the aerodynamic 
coefficient in the absence of stall. 
 

- 푄  , that represents what must be added to 푄  to obtain the total 
load (푄  is the load due to dynamic stall). The variable ∆푄 =
	푄 −	푄  determines the entrance and exit from the stalled region. 

These equations are written in terms of reduced time parameter 

 

휏 =
푈푡
푏
												(3.8) 

where 푈 is the free stream velocity, b the semi-chord and t  the time. 

Moreover, as mentioned in Chapter 2, high amplitude tests show 
that effective stalling occurred at higher angles of attack than during 
static testing and this delay in stalling is constant when expressed in 
reduced time. 

Although the form of  푟̂, 푎 and 푒̂	is not known, it is found that 
these parameters of the equations fit the data remarkably well if they are 
expressed as 

√푟̂ = 	 푟 + 	 푟 ∆퐶 												(3.9) 

푎 = 	 푎 + 	푎 ∆퐶 												(3.10) 

푒̂ = 	 푒 ∆퐶 												(3.11) 

where ∆퐶  is the measure of stall given by the difference between the 
linear static aerodynamic coefficient extrapolated to the stalled domain 
and its real value measured at the angle of attack considered (Figure 3.1). 
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Figure 3.1: Definition of ∆Cz. 

 

This choice of equations and the choice of the maximum order of 
the differentials led to results in remarkable agreement with the 
experiment. 

The equation in 푄  must often be completed by a corrective term 
in ∆퐶  given by 

휎 = 	 휎 + 	휎 |∆퐶 |												(3.12) 

The inclusion of this term (that vanishes at low angle of attack) in 
an equation designed for linear loading is required by the tests done by 
ONERA to match the results with experimental data. 

The above model was extended following the ideas of Peters [20]. 
He remarked that the equations could be written in many forms and that 
the variable used in aerodynamic theories is not the lift coefficient but 
the circulation. Therefore he rewrote the differential equations in terms 
of circulation. We will see later in Chapter 5.2 how this can be used to 
extend the ONERA model to flexible airfoils. 

3.3) MODIFIED ONERA MODEL BY LAXMAN AND 
VENKATESAN 

Laxman & Venkatesan [21] modified the ONERA model by 
incorporating a second-order approximation of Theodorsen’s lift 
deficiency function 퐶(푘) (see Appendix E). The total lift expression 
derived from Theodorsen and Garrick aerodynamic theory is given by 
equation (E.39), re-written here for clarity (see Appendix E for more 
details) 
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퐿 = 퐿 + 퐿 = −휋휌푏 푈훼̇ + ℎ̈ −
푏
8
푘̈ − 2휋휌푈푏푄퐶(푘)

= −휋휌푏 푈훼̇ + ℎ̈ −
푏
8
푘̈

− 2휋휌푈푏퐶(푘) 푈훼 + ℎ̇ +
푏
2
훼̇ +

푈푏
2
푘 +

푈푏
8

푘

+
푈푏
48

푘 												(3.13) 

where 휌 is the density, 훼̇ and ℎ̇ are the time derivative of the pitch and 
plunge variables respectively and 푘 , 푘 , 푘  are the curvature variables.   

The only difference between the original ONERA model and the 
modified one is given by Theodorsen’s function 퐶(푘) that is replaced 
here with a second order approximation in the form of: 

퐶(푘) ≅
퐴 푖푤푏

푈 + 퐴 푖푤푏
푈 + 퐴

푖푤푏
푈 + 퐵 푖푤푏

푈 + 퐵
																													(3.14) 

whit 퐴 = 0.50, 퐴 = 0.393, 퐴 = 0.0439425, 퐵 = 0.5515 and 
퐵 = 0.0439075. 푈 is the free stream velocity, 푤 the excitation 
frequency and 푖 the complex variable. Comparing the second order 
approximation with the first order approximation of the original ONERA 
model and the exact Theodorsen function 퐶(푘) one can see that the 
second order approximation provides a better agreement (Figure 3.2). 

 

 

Figure 3.2: Comparison among different approximation of Theodorsen function. 
Source of the figure: Reference [2].   
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4) VERIFICATION AND 
VALIDATION OF ONERA 
MODEL 
 

A MATLAB code [2] has been written to validate the ONERA 
model. The outputs of the code are the lift, moment and drag forces, that 
can be plotted as function of the pitch angle (Appendix G). From these 
aerodynamic forces is possible to obtain the lift, moment and drag 
coefficients, that are more interesting. To validate the code, the results 
will be compared with experimental data by McCroskey [9] for an 
oscillating airfoil. 

The forced oscillation is of the form 

휃(푡) = 휃 + 휃 sin(푤 푡) = 휃 + 휃 sin(푘휏) 												(4.1) 

where 휃  is the mean angle of attack of the airfoil, 휃  is the amplitude of 
the oscillation, 푘 is the reduced frequency and 휏 the reduced time. 

Three cases are considered, with all the same parameters except 
휃  that assumes three different values: 5°, 10° and 15°. It is therefore 
possible to obtain the following form of the forced oscillation 

휃(푡) = 5° + 10° sin(0.1휏) 

휃(푡) = 10° + 10° sin(0.1휏) 										휃(푡) = 15° + 10° sin(0.1휏) 

(4.2) 

Figures 4.1, 4.2 and 4.3 show a comparison of predicted and 
experimental results of 퐶 , 퐶  and 퐶  for 휃 = 5, 10, 15° respectively. 
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Figure 4.1: Variation of the lift coefficient as a function of the pitch angle. 

(a) 휽풎 = ퟓ°, (b) 휽풎 = ퟏퟎ°, (c) 휽풎 = ퟏퟓ°. 
 

(a) 

(b) 

(c) 



 

21 
 

 
Figure 4.2: Variation of the moment coefficient as a function of the pitch angle. 

(a) 휽풎 = ퟓ°, (b) 휽풎 = ퟏퟎ°, (c) 휽풎 = ퟏퟓ°. 

(a) 

(b) 

(c) 
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Figure 4.3: Variation of the drag coefficient as a function of the pitch angle. 

(a) 휽풎 = ퟓ°, (b) 휽풎 = ퟏퟎ°, (c) 휽풎 = ퟏퟓ°. 
 

(a) 

(b) 

(c) 
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The arrows indicate the hysteresis and the black line with the 
square marks represent the experimental data. 

 As it can be seen, the original model (the black line) shows a good 
correlation with the experimental data, especially for the lift coefficient 
that is considered the most important one. It denotes less agreement 
when it is used to calculate the moment and drag coefficients. The 
modified model by Laxman and Venkatesan [21] (the dotted line in lift 
plots) provides good results particularly in the region of reattachment of 
the flow but this result is obtained with a higher computational cost. 

 The correlation with experimental data can be increased by 
conducting an optimization of the empirical coefficients of the model. 
This could be the subject of future work. 
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5) JOHNSON/PETERS FLEXIBLE 
AIRLOAD THEORY 
 

This section concerns Johnson/Peters flexible airloads theory. The 
theory is selected to investigate the dynamic stall phenomenon and is 
implemented in a MATLAB code. The results obtained are then 
compared with Theodorsen [14] and  Garrick [15] theory (see Appendix 
E for more details). 

The Johnson/Peters theory is a general linear aerodynamic theory 
for flexible airfoils. The geometry of the deformed airfoil is 
accomplished through the use of Chebyshev polynomials. The first three 
polynomials correspond to plunge, pitch and camber motions about the 
mid-chord respectively. Therefore, the first two polynomials can be used 
to take into account the rigid body motion and the rest of the infinite 
series of polynomials can be used for the deformations. The use of these 
polynomials guarantees a natural coordinate system for airfoil motions. 
Peters developed a finite-state aerodynamic model via expansions in a 
Glauert series which is based on a two-dimensional potential flow, with 
the non-penetration boundary condition applied on the airfoil and the 
Kutta condition applied at the trailing edge. The theory can be coupled 
with any two or three dimensional induced-flow model and therefore it 
can be applied into rotorcraft aerodynamic analysis tools. 

Theodorsen and Garrick theory is used here for comparison with 
Peters theory (for more information regarding this theory, see Appendix 
E). In order to make such a comparison, the Chebyshev polynomials are 
used also for this theory. Theodorsen used two dimensional elementary 
flows to develop the flow around a flat plate with a flap undergoing pitch 
and plunge motions [14]. This flow was modeled using the Joukowski 
conformal transformation, that maps the flow around a circle to a flow 
around a flat plate. The boundary condition was satisfied by using 
source/sink distribution for the airfoil whereas vortices were used for the 
wake model. Bernoulli’s equation was finally used to obtain the airloads. 
Theodorsen considered small perturbations and harmonic motions. These 
assumptions allowed the creation of a vortex sheet for the wake 
(Appendix F) which extend from the trailing edge to infinity and, more 
important, they permit the integration of the sheet leading to a solution in 
the form of Bessel functions. In this way, Theodorsen was able to show 
that the lift due to the circulation (i.e. the lift due to the wake) was a 
function of the reduced frequency. Garrick [15] extended Theodorsen 
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theory to develop the thrust force generated by a flat plate in unsteady 
flow. Following the work of W. P. Walker [16] this theory is also applied 
to deformable airfoils. 

The solution is obtained by representing the aerofoil and its wake 
(both assumed to be straight) by a distribution of vorticity per unit 
length. The derivation of the Johnson/Peters flexible airloads theory from 
first principles is presented here, following reference [18]. Consider a 
thin-airfoil of arbitrary shape and length equal to 2푏 (where 푏 is the 
length of the semi-chord) moving through a mass of still air (Figure 5.1). 
The coordinate system is centered at the mid-chord so that −푏 ≤ 푥 ≤ +푏 
with the x-axis as horizontal axis (positive on the right) and the y-axis as 
vertical axis (positive down). The coordinate system is moving with 
arbitrary motion described by a horizontal velocity 푢 , a vertical velocity 
푣  and a rotation 푣 . The velocities are constant in modulus and depends 
on Mach number and air speed. The deformations of the airfoil are 
considered to be small, ℎ ≪ 푏, 휕ℎ/휕푥 ≪ 1 and 휕ℎ 휕푡⁄ ≪ 푢  where with 
ℎ is denoted the airfoil shape. The bound circulation per unit length is 
given by 훾  while the wake circulation per unit length is 훾  and is shed 
along the x-axis. The wake is considered flat for simplicity (Appendix 
F). 

 

 
Figure 5.1: Thin airfoil of arbitrary shape and its associated coordinate system. 

Source of the figure: Reference [5]. 
 

As in the case of thin-airfoil theory, the system is constrained by 
the non-penetration boundary condition at the airfoil surface. This 
condition could be expressed as: 
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푤 = 푣̅ + 휆 = 푢
휕ℎ
휕푥

+
휕ℎ
휕푡

+ 푣 + 푣
푥
푏
												(5.1) 

where 푤 is the total induced flow, 푣̅ is the induced flow from bound 
circulation and 휆 is the induced flow from shed circulation. The first two 
terms on the right side are the result of the shape of the airfoil mean-line 
whereas the second two terms originate from the frame motion. The 
equation represents both static and dynamic shape changes and this is 
why it could be applied to morphing airfoils. 

From the Biot-Savart law, the induced flow may be expressed in 
terms of circulation per unit length over the interval −푏 ≤ 푥 ≤ +푏 
corresponding to the airfoil surface. Thus we obtain 

푣̅ = −
1

2π
γ (ξ, t)
x − ξ

dξ												(5.2) 

휆 = −
1

2π
γ (ξ, t)

x − ξ

∞
dξ												(5.3) 

where 휉 is the variable of integration. From the vorticity equation, the 
loading due to the circulation is 

Δ푃(푥, 푡) = 휌푢 γ + ρ
∂γ (ξ, t)

∂t
dξ														 − b ≤ 푥 ≤ +푏												(5.4) 

The loading across the shed wake must be zero therefore 

0 = 푢 훾 +
푑Γ
푑푡

+
휕훾
휕푡

푑휉										푏 < 푥 												(5.5) 

where Γ is the total bound circulation on the airfoil given by 

Γ = 훾 푑푥 												(5.6) 

The solution of equation (5.5) implies that circulation is shed into 
the air mass and maintains its strength at that point in space as the airfoil 
moves on (Appendix F). A corollary of this result is that the spatial 
gradient of induced flow due to the shed wake is related to the temporal 
gradient of the induced flow  

휕휆
휕푡

+ 푢
휕휆
휕푥

=
1

2휋
푑Γ 푑푡⁄
푏 − 푥

												(5.7) 
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Now these equations (5.1, 5.2, 5.4, 5.7) represent the airloads 
theory and must be transformed in order to derive a general formulation 
that does not depend on the coordinate system. In order to do this, all the 
variables are expressed as expansions with respect to the Glauert variable 
휑, represented by the change in variable 

푥 = 푏 cos휑 																												− 푏 ≤ 푥 ≤ +푏, 0 ≤ 휑 ≤ 휋												(5.8) 

The expansions for the circulation and the loading (Reference [4]) 
are defined as  

γ = 2
+훾

sin(휑) −
훾 cos(휑)

sin(휑) + 훾
∞

sin(푛휑) 												(5.9) 

and 

∆푃 = 2휌
+휏

sin(휑) −
휏 cos(휑)

sin(휑) + 휏
∞

sin(휑) 												(5.10) 

where the first two terms of each expansion (훾 , 훾 , 휏  and 휏 ) are the 
singular potential functions that allow suction peaks at either end of the 
airfoil. The 훾  coefficients are the components of velocity due to bound 
circulation whereas the 휏  coefficients are simply the expansion 
coefficients for ∆푃. 

The airfoil deformation, the total velocity and the induced flow 
can be transformed with the Glauert variable as 

ℎ = ℎ
∞

cos(푛휑)												(5.11) 

푤 = 푤
∞

cos(푛휑) 											(5.12) 

휆 = 휆
∞

cos(푛휑) 												(5.13) 

where  ℎ , 푤 , and 휆  are the components of the generalized airfoil 
deformation, of the total velocity field and of the velocity due to the shed 
wake, respectively. The 푐표푠(푛휑) terms are equivalent to Chebyshev 
polynomials and represent the shape functions of the system. The first 
three terms correspond to plunge, pitch and camber deformation 
respectively. For 푛 = 0,	we have 
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cos(푛휑) = cos(0휑) = 1												(5.14) 

which represents a plunge motion (Figure 5.2) 

 

 
Figure 5.2: Plunge motion. 

 

For 푛 = 1, we have 

cos(푛휑) = cos(1휑) =
푥
푏
												(5.15) 

i.e. a pitch motion (Figure 5.3) 

 

 
Figure 5.3: Pitch motion. 

 

Finally, for 푛 = 2 we have 

cos(2휑) = 2cos (휑) − 1 = 2
푥
푏

− 1												(5.16) 

that corresponds to a camber deformation (Figure 5.4) with fixed points 

at = ± . 

 



30 
 

 
Figure 5.4: Camber deformation. 

 

It is possible to obtain a general form of the loads first by using 
the Glauert transformation (equation 5.8) and secondly by expressing 
them entirely in terms of 푤  and 휆 . From equation (5.1) we have 

푣̅ = 푤 − 휆												(5.17) 

Then, substituting the expansion of the total velocity (equation 
5.12) and recalling the expression of 푣̅ (5.2) it is possible to obtain an 
expression in terms of 훾 , 푤  and 휆. The final step consist of substituting 
the expansion in equation (5.13) for the induced flow 휆 and the 
expansion for the circulation 훾  in equation (5.9). The final result is an 
expression in terms of 훾 , 푤  and 휆  which substituted into equation 
(5.10) leads to 

휏 = 푢 (푤 − 휆 )												(5.18) 

휏 = 푢 푤 + 푏 푤̇ −
1
2
푤̇ 												(5.19) 

휏 = 푢 푤 +
푏

2푛
(푤̇ − 푤̇ )										푛 > 2												(5.20) 

where 푤̇  are the components of the total acceleration. 

The generalized loads are obtained from the integration of ∆푃 

퐿 = ∆푃 cos(푛휑)푑푥 = − (푏∆푃cos(푛휑) sin휑)푑휑												(5.21) 

Using (5.10) and carrying out the integration we get 

퐿 = −2휋휌푏푓푢 (푤 − 휆 ) − 휋휌푏푢 푤 − 휋휌푏 푤̇ −
1
2
푤̇  

퐿 = 휋휌푏푢 (푤 − 휆 ) −
1
2
휋휌푏푢 푤 −

1
8
휋휌푏 (푤̇ − 푤̇ ) 
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퐿 =
1
2
휋휌푏푢 (푤 −푤 ) +

1
2
휋휌푏 푤̇ −

1
2
푤̇ −

1
12

휋휌푏 (푤̇ − 푤̇ ) 

퐿 =
1
2
휋휌푏푢 (푤 −푤 ) +

1
4(푛 − 1)휋휌푏

(푤̇ − 푤̇ )

−
1

4(푛 + 1)휋휌푏
(푤̇ − 푤̇ )								푛 ≥ 3 

(5.22) 

These loads correspond to the virtual work of each shape function. 
퐿  is a uniform force acting in the negative y direction and thus it can be 
assumed as the forcing of the plunge motion whereas 퐿  is a linear force 
distribution that can be associated to the pitch moment.  휆  is a 
component of the induced flow velocity. 

The terms 푤  (with 푖 = 0, … ,푛) can be obtained from the airfoil as 

푤 = 푣 + ℎ̇ + 푢 푛ℎ
∞

, , ,…

/푏												(5.23) 

푤 = 푣 + ℎ̇ + 2푢 푛ℎ
∞

, , ,…

/푏												(5.24) 

푤 = ℎ̇ + 2푢 푛ℎ
∞

, ,…

/푏											푚 ≥ 2												(5.25) 

Substituting equation (5.9) into equation (5.6) and resolving the 
integral it is possible to obtain 

Γ = 2휋푏 훾 +
훾
2

												(5.26) 

and from this it is possible to obtain the total bound circulation in terms 
of 푤  and 휆  as 

Γ = 2휋푏 푤 − 휆 +
1
2
푤 −

1
2
휆 												(5.27) 

 Considering that the local lift is always perpendicular to the local 
deformed airfoil surface, the drag force is given by 

퐷 = 푏∆푃
휕ℎ
휕푥

sin휑 푑휑 − 2휋휌푏(푤 − 휆 ) 												(5.28) 
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In compact matrix form, all these equations can be written as 

1
2휋휌

{퐿 } = −푏 [푀] ℎ̈ + 푣̇ − 푏푢 [퐶] ℎ̇ + 푣 − 휆 − 푢 [퐾]{ℎ }

− 푏[퐺]{푢̇ ℎ − 푢 푣 + 푢 휆 } 

(5.29) 

1
2휋

{Γ } = 푏{1} [퐶 − 퐺] ℎ̇ + 푣 − 휆 + 푢 {1} [퐾]{ℎ }												(5.30) 

1
2휋휌

{퐷 } = −푏 ℎ̇ + 푣 − 휆 [푆] ℎ̇ + 푣 − 휆

+ 푏 ℎ̈ + 푣̇ [퐺]{ℎ }− 푢 ℎ̇ + 푣 − 휆 [퐾 −퐻]{ℎ }
+ {푢̇ ℎ − 푢 푣 + 푢 휆 } [퐻]{ℎ } 

(5.31) 

All the matrices [ ] and vectors { } are define in Appendix A. 

5.1) TWO-DIMENSIONAL DYNAMIC INDUCED FLOW MODEL 

The airloads theory requires the knowledge of the 휆  component 
of the induced flow (inflow). The amount of decrease in the total 
circulation Γ(푡) is equal to the amount of vorticity shed from the trailing 
edge. The expansion of the relationship between the spatial gradient of 
the induced flow due to the shed wake and the temporal gradient of the 
induced flow (equation 5.7 in the previous Chapter) 

 
휕휆
휕푡

+ 푢
휕휆
휕푥

=
1

2휋
푑Γ 푑푡⁄
푏 − 푥

												(5.32) 

leads to the differential equation for the generalized inflow 

푏 휆 ̇ −
1
2
휆̇ + 푢 휆 =

Γ̇
휋
												(5.33) 

푏
2푛

휆̇ − 휆̇ + 푢 휆 =
Γ̇
푛휋

																											푛 ≥ 2												(5.34) 

This is a system of 푁 differential equations in 푁 + 1 coefficients 
휆 , … , 휆  that is valid for any wake geometry (Appendix F). 휆̇  are the 
accelerations due to the shed wake while 푁 is the number of induced 
flow states considered. Reference [13] shows that a good approximation 
of Theodorsen’s results is obtainable with 푁 = 8. A flat wake model is 
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implemented here (see Appendix F for more details) and 휆  can be 
approximated by 

휆 =
1
2

푏 휆 												(5.35) 

with 

푏 = (−1)
(푁 + 푛 − 1)!

(푁 − 푛 − 1)! (푛!)
											푛 = 1,2,3, … ,푁 − 1										(5.36) 

푏 = (−1) 												(5.37) 

The coefficients should also satisfy the constraint 

푏 = 1 												(5.38) 

It is now possible to obtain the following differential equation for 
Γ by the derivative of the expression of the total bound circulation 
(equation 5.27) and the substitutions of the terms above (equations 
5.35, 5.36 and 5.37) 

Γ̇ = 2휋푏 푤̇ −
1
2

{푏} 휆̇ +
푤̇ − 휆̇

2
+ Γ̇ 												(5.39) 

where Γ̇  is the variation in total bound circulation due to stall. The 
presence of this term will be explained later in Chapter 5.2. Substitution 
of this result into the differential equations for the generalized inflow 
(5.33 − 5.34) gives 

1
2

{푏} 휆̇ + 휆̇ −
1
2
휆̇ = 2 푤̇ +

1
2
푤̇ +

1
푏휋

Γ̇ −
푢
푏
휆 									푛 = 1 

(5.40) 

1
2

{푏} 휆̇ +
3
4
휆̇ −

1
4
휆̇ = 2 푤̇ +

1
2
푤̇ +

1
2푏휋

Γ̇ −
푢
푏
휆 								푛 = 2 

(5.41) 

1
푛

{푏} 휆̇ +
1
푛
휆̇ −

1
2푛

휆̇ =
2
푛

푤̇ +
1
2
푤̇ +

1
푛푏휋

Γ̇ −
푢
푏
휆 						푛 ≥ 3 

(5.42) 

that can be rewritten in matrix form as follows 
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[퐴] 휆̇ = {푐} 푤̇ +
1
2
푤̇ +

1
2푏휋

Γ̇ −
푢
푏

{휆}												(5.43) 

The matrices and vectors are defined in Appendix A. The total 
velocity vector {푤} can be expanded in function of the airfoil motions	ℎ̇  
(velocities) and ℎ̈  (accelerations) and the free stream accelerations 푣̇ . 
The result is 

휆̇ = [퐴] 	{푐} 	 	{푒} 	 푣̇ + ℎ̈ + 	
푢
푏
		{푓} 	 ℎ̇ +

1
2푏휋

Γ̇ −
푢
푏

{휆}	  

(5.44) 

5.2) DYNAMIC STALL MODEL: ONERA MODEL 

Now that the equations of the airloads and the inflow model are 
set, the only thing that remains to do is to define the dynamic stall model. 
The model used herein is the ONERA model, which has been presented 
in Chapter 3. 

As discussed in Chapter 2, up to a certain static stall angle 훼  
(which is characteristic of every airfoil and depends on the Reinolds’ 
number), the airfoil behaves linearly. After that point the airfoil begins to 
stall and its behavior cannot be considered longer linear: there is a 
deficiency between the projection of the linear lift and the real lift. That 
difference, denoted with Δ퐶 , is the static loss of lift that drives ONERA 
differential equations (static stall residual). The evaluation of this 
deficiency is the focal point of the theory, because it is the forcing 
function which guides the dynamic stall. In general, we will require to 
define a static loss Δ퐶 , for each of the airloads 퐶  considered. 

 

 
Figure 5.5: Lift residual. Source of the figure: Reference [4]. 
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As explained before, the ONERA model is based on two 
differential equations: the first one is a first-order transfer function used 
to calculate the linear lift coefficient. This equation describes the linear 
regime below 훼  as 

Γ̇ + 휆Γ = 휆푎휃 + 휆푠̂ + 휎 휃̇ + 푠̂휃̈												(5.45) 

where here 휆,푎, 푠̂, 휎 are empirical coefficients and 휃 is the angle of 
attack. 

 The second one is a second-order transfer function that describes 
the stalled regime, where the airloads display a time delay and overshoot 
due to the shed vorticity. This function evaluates the loss of lift due to 
dynamic stall as 

푏
푈
Γ̈ + 휂̂

푏
푈
Γ̇ + 휔 Γ = −푏푢휔 Δ퐶 + 휖̂

푑Δ퐶
푑푡

푏
푈
												(5.46) 

where 휔, 휂̂ and 휖̂ are stall coefficients derived from a series of small-
amplitude tests as explained after-written. 

The results are finally combined to give the total lift coefficient 

C =
Γ

(푈푏)
+

Γ
(푈푏)

= 퐶 	( ) +
Γ

(푈푏)
												(5.47) 

where 퐶 	( ) is the linear part of the static stall curve. 

Equations (5.45 − 5.46) can be written both as functions of the 
lift or of the lift coefficient but studies confirmed that the best match 
with experimental data are obtained when the equations are expressed in 
terms of circulation. This is somewhat obvious as dynamic stall is due to 
a loss of circulation for the presence of the vortices shed at the leading 
edge. 

These differential equations have time-varying coefficients that in 
turn depend on a dynamic variations of the angle of attack. ONERA 
identifies these parameters by dynamic perturbations considering some 
mean angles of attack. The assumption made is that the coefficients 
varies sufficiently slowly to allow the perturbation results to define the 
coefficients. If these stall parameters are identified in such a way, it is 
possible to obtain good agreement with experimental data. Both ONERA 
and NASA executed a series of small-amplitude tests to determine the 
stall parameters (References [26] and [27]). The tests have provided the 
following form for the stall coefficients: 
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휔 = 휔 + 휔 Δ퐶
휂̂ = 휂 + η Δ퐶
휖̂ = 휖 + 휖 Δ퐶

												(5.48) 

where 휔 ,휔 , 휂 , 휂 , 휖 , 휖 are all empirical coefficients. 

5.3) UNIFIED MODEL 

To incorporate stall modeling within the flexible airfoil theory, 
each generalized load 퐿  is presented with its own ONERA-like stall 
correction. The linear airloads are calculated by Johnson/Peters state-
space airloads theory with their own appropriate inflow model. The total 
loads including dynamic stall for each generalized coordinate are 
computed by the use of the second-order differential equation of ONERA 
model as 

푏
푈
Γ̈ + 휂̂

푏
푈
Γ̇ + 휔 Γ = −푏푢휔 Δ퐶 + 휖̂

푑(Δ퐶 )
푑푡

푏
푈
												(5.49) 

where the time derivative 푑(Δ퐶 ) 푑푡⁄  is calculated through the time 
derivative of stall residuals explained in Appendix D. Γ  is the loss in 
generalized circulation due to dynamic stall of the 푛th generalized load. 

 Once the dynamic stall is computed, it is possible to obtain the 
total lift coefficient by simply adding the linear part (obtained from the 
first-order differential equation) to the non-linear part (obtained by the 
second-order differential equation re-written above) as 

퐶 = 퐶 ( ) +
Γ
푈푏

												(5.50) 

The stall correction then feeds back through the induced flow and 
modifies the linear loads (see the term Γ̇  in equation 5.39 in Chapter 
5.1). The coefficients of interest (like the lift and moment coefficients) 
can then be calculated from the generalized airloads. Figure 5.6 shows 
this feedback loop and how the equations of the unified model are linked. 
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Figure 5.6: Feedback loop. 

퐿 = −2휋휌푏푓푢 (푤 − 휆 ) − 휋휌푏푢 푤 − 휋휌푏 푤̇ −
1
2
푤̇  

푏 = (−1)
(푀 + 푛 − 1)!

(푀 − 푛 − 1)! (푛!)
							푛 = 1,2,3, … ,푁 − 1		 

푏 = (−1)  

 

휆 =
1
2

푏 휆  

 

퐶 	( ) = −
퐿

휌푈 푏
	 

 

휆̇ = [퐴] 	{푐} 	 	{푒} 	 푣̇ + ℎ̈ + 	
푢
푏
		{푓} 	 ℎ̇ +

1
2푏휋

Γ̇ −
푢
푏

{휆}	  

⎩
⎪
⎨

⎪
⎧푤 = 푣 + ℎ̇ + 푢 푛ℎ /푏

, ,

			

푤̇ = ℎ̈ + 푢 푛ℎ̇
, ,

/푏			

																																							

⎩
⎪
⎨

⎪
⎧푤 = ℎ̇ + 2푢 푛ℎ

,

/푏	

푤 ̇ = ℎ̈ + 2푢 푛ℎ
,

/푏

 

																																																																																																																											푚 ≥ 2 

푪풍	(푻푶푻푨푳) = 푪풍	(푳푶푨푫푺) +
횪퐎퐍퐄퐑퐀
풃푼

 

푏
푈
Γ̈ + 휂

푏
푈
Γ̇ + 휔 Γ = −푏푢휔 Δ퐶 + 휖

푑Δ퐶
푑푡

푏
푈
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5.4) STATIC CORRECTION FACTOR 

To account for thickness and compressibility effects some 
corrections factors must be added to correlate with experimental data. 
NASA performed various wind tunnel tests for the NACA 0012 airfoil 
which show that the slope of the lift curve is not 2휋 (like thin airfoil 
theory predicts) but is a function of both Reynolds and Mach numbers. 
For Reynolds numbers between 2 ∙ 10  and 2 ∙ 10  the lift curve slope is 
approximated by 

퐶 =
5.8728 + 0.2997log	(푅푒 10 )⁄

√1 −푀푎
												(5.51) 

This correction is used in this theory instead of the factor 2휋. 

 Other static correction factors are considered in the case of an 
airfoil with a trailing edge flap (or a leading edge slat). The flap 
deflection change effectively the shape of the camber line of the airfoil 
and thus the lift coefficient change accordingly. Viscous effects decrease 
significantly the ability of the flap to generate lift. The presence of the 
flap creates a discontinuity in the thick turbulent boundary layer, the flap 
hinge creates an adverse pressure gradient and the gaps alter the 
boundary layer. Corrective factors needed to take into account this loss 
of effectiveness are presented later in Chapter 8.2. 
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6) STATIC AIRFOIL SECTION 
CHARACTERISTICS 
 

As in Chapter 5.2 the dynamic stall model is driven by the static 
stall residuals, which depends on the airfoil shape. For airfoil with fixed 
geometry these data can be obtained easily from tables or wind tunnel 
tests but for morphing airfoils is different: their static characteristics 
change with the airfoil shape and there is no tables that can predict the 
values. Only limited wind testing data are available. 

In order to get these data, static airload values for the baseline 
airfoil are needed, as well as values of the morphing variables 
considered. 

The generalized spatial gradient coefficients ℎ  (see Appendix B) 
are calculated by a transformation from the morphing variables and then 
used to parameterized the curves. In this manner it is possible to obtain a 
static database in terms of generalized coordinates that can be used for 
every arbitrary morphed airfoil. The airfoil considered here are the 
symmetric NACA 0012 and the cambered SC-1095. These two airfoils 
behave linearly for small angles of attack and so the thin-airfoil theory 
can be adopted. This theory states that 

퐶 ( ) = 퐶 (훼 − 훼 )												(6.1) 

where 훼  is the angle of attack at which zero lift is produced. For a 
symmetric airfoil, like NACA 0012, 훼  is zero. 

All the lift curves of different airfoils pass through the origin if 
they are plotted as function of 훼 − 훼  and therefore it is possible to have 
a general overview about the trend. 
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Figure 6.1: Static stall curves for 18 NACA four digit airfoils. 

 

The linear portion of each curve collapse onto a single line and 
only the non-linear part (the post-stall behavior) has a different trend for 
each airfoil. This is the part that properly distinguish each airfoil from 
the others and depends on the angle at which stall occurs. A more 
interesting graph is obtained when airfoils of the same family are 
considered (Figure 6.1), since this makes it possible to approximate them 
by a single lift curve by the synthesis of the linear portion of the lift 
curve and the post stall behavior. The transition from one regime to the 
other is defined by the static stall angle 훼  which is a function of the 
generalized coordinates. The static stall angle could be considered the 
angle at which the experimental lift deviate from the linear. This could 
be problematic because each airfoil has its own static stall trend. For 
simplicity, the angle of static stall is considered to be the angle where 
maximum lift occurs. 

The lift residuals are the difference between the expected linear 
lift given by thin-airfoil theory (equation 6.1) and the experimental lift. 
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The only difference is that another angle has to be considered in order to 
collapse all the curves of the residuals in one unique curve (Figure 6.2). 
This angle is 훼  and it is used to align the curves of the residuals with 
the one of the baseline: 

훼 = 훼 ( ) − 훼 ( ) − 훼 ( ) − 훼 ( ) 												(6.2) 

where subscripts (m) and (b) imply the morphed and the baseline airfoil 
respectively. 

훼  is thus zero for the baseline airfoil. Plotting the residual 
curves as function of 훼 − 훼 −훼  permit to align and fit them with a 
polynomial to provide the approximate static lift for any morphed airfoil. 
This is extremely useful because the polynomial provides a unique 
function that can be used for any arbitrary morphology of the baseline 
airfoil, i.e. it is possible to obtain the characteristics of any morphed 
airfoil by knowing the characteristics of its baseline. This is a remarkable 
result obtained by the parameterization with the generalized spatial 
gradient coefficients ℎ . 

 

 

Figure 6.2: Static stall residuals shifted for 18 NACA four digit airfoils. 
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To be of general value, all the angles are parameterized in terms 
of generalized morphing variables. As said before, every generalized 
load residual Δ퐶  will be zero until 훼 approaches the static stall angle 
훼 . That is, the residuals are negligible for angles of attack lower than 
훼 . As it can be seen in the following section, Δ퐶  is a function of 푧, 
where  

푧 = 훼 − α ( )										for	푧 ≥ 훼 												(6.3) 

and 푧  is the value of 푧 below which the stall residual is negligible. The 
selection of the right 푧  is given to the user. This particular value of 푧  
allows the transition between unstalled and stalled behavior at α . In 
terms of the shifted parameters, 푧 can be re-written as follows: 

z = α − α ( ) = α − α ( ) − 훼 − 훼 ( ) − α ( ) 																			(6.4) 

For the baseline airfoil 훼 = 0 and the morphed variable 
becomes the baseline one so 푧 is given by 

푧 = 훼 − 훼 ( )												(6.5) 

6.1) LINEAR AIRLOADS 

In this section are considered the contributions due to the variable 
geometry of the airfoil to the linear airloads. These contributions are 
obtained by the expansion in a Glauert series of the spatial gradients ℎ  
(Appendix B). 

 The boundary condition (non-penetration) is given by  

푤 = 푣̅ + 휆 = 푢
휕ℎ
휕푥

+
휕ℎ
휕푡

+ 푣 + 푣
푥
푏

= 푤 cos(푛휑) 												(6.6) 

If the airfoil considered has an arbitrary shape and it is at a fixed 
angle of attack in a steady horizontal free stream it is possible to make 
some simplifications to obtain 

푤 = 푢 훼 +
휕ℎ
휕푥

= 푤 cos(푛휑) 												(6.7) 
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This new condition contains only the contribution of the morphing 
geometry. The spatial gradients can now be expanded in Glauert series as 
done before for the generalized deformations, velocities and induced 
flow (Chapter 5). It follows that 

휕ℎ
휕푥

= ℎ cos(푛휑) 												(6.8) 

Substitution of this result in the previous equation and the 
grouping of like terms gives the generalized velocities in a Glauert 
expansion due to morphing only, where the driver parameters are the 
spatial gradient coefficients ℎ  (Appendix B): 

푤 = 푢 (훼 + ℎ )																					(6.9) 

푤 = 푢 ℎ 										푛 ≥ 1												(6.10) 

From thin-airfoil theory the lift coefficient is given by 

퐶 ( ) =
퐶
푢

(푤 + 0.5푤 )												(6.11) 

and the ideal zero lift condition is 

훼 = −(ℎ + 0.5ℎ )												(6.12) 

For a symmetric airfoil ℎ = ℎ = 0 and thus 훼 = 0. 

6.2) STATIC STALL RESIDUALS 

 Static stall residuals are the forcing functions of the second order 
differential equation of ONERA model. In order to solve this equation, 
one must know the static stall residuals. If available, these data must be 
computed from experimental data by 

훥퐶 = 퐶 ( ) − 퐶 ( ) = 퐶 푐표푠(훼) + 퐶 푠푖푛(훼) − 퐶 ( )									(6.13) 

훥퐶 = 퐶 푐표푠 (훼) + 퐶 푠푖푛(훼) cos(훼) +
푎
2
퐶 sin(훼) − 퐶 ( ) 

(6.14) 

where 퐶  and 퐶  are the magnitude and the slope of the lift curve at 
훼 = 0 respectively and similarly 퐶  and 퐶  for the moment curve. 
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퐶 ( ) is the coefficient of lift due to stall and 퐶 ( ) is the experimental 
value of 퐶 . 퐶  is the static correction factor presented in Chapter 5.4 
whereas  퐶  , 퐶  and 퐶  can be computed from thin-airfoil theory as 

퐶 = 퐶 (ℎ + 0.5ℎ )												(6.15) 

퐶 = −
휋
4

(ℎ + ℎ )													(6.16) 

퐶 = 0												(6.17) 

6.3) NACA 0012 AIRFOIL 

 NACA 0012 airfoil is frequently used as the baseline to 
demonstrate the validity of a new theory or a computational approach 
because there are so many static and dynamic data available (See 
Reference [9] for a complete evaluation of NACA 0012 wind test data). 
NACA four digit airfoils, like NACA 0012, are usually denoted like 
NACA mpxy where the first digit, m, denote the maximum ordinate mean 
line in percent chord; the second digit, p, denote the chord-wise position 
of maximum ordinate in tenths of chord and finally the last two digit, xy, 
denote the maximum thickness of the airfoil in percent of chord. 
Therefore the NACA 0012 airfoil is a symmetric airfoil with a thickness 
equal to 12% of the chord. The meanline has no slope or curvature. 

It is not necessary to perform tests for every combination of 
morphed airfoil and angle of attack to obtain a database of static data: 
this would be quite complex and would limit the value of the present 
theory. What it is proposed is that a small subset of static data collected 
at various values of the morphing variables are parameterized in terms of 
the generalized spatial gradients coefficients. This database can then be 
used to analyze any morphing airfoil in terms of the generalized 
coordinates without taking into account the particular morphology used 
to create them. 

 
6.3.1) LIFT RESIDUAL 

 For NACA four digit airfoils, the mean line is known in closed 
form, so the velocity due to the shape of the airfoil can be computed 
directly. The first three terms of the generalized spatial gradients 
coefficients are 
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ℎ =
4푚푞

(1 − 푞 )
4
휋

(푞푠푖푛 푞 + 1 − 푞 ) − (1 + 푞 ) 												(6.18) 

ℎ =
4푚

(1 − 푞 )
(1 + 푞 ) −

4
휋

(푞푠푖푛 푞 + 푞 1 − 푞 ) 												(6.19) 

ℎ =
32푚
3휋

푞
1 − 푞

												(6.20) 

where 푞 = 2푝 − 1. 

The derivations of these terms and of the fourth one are included 
in Appendix B. However, only the first three terms are used here to build 
up the static stall database. 

Following section 6.1, the equation for 훼  is given by −(ℎ +
0.5ℎ ) but to improve the fit an empirical correction is made by adding a 
term in ℎ . The new angle of zero lift becomes 

훼 = −0.87(ℎ + 0.5ℎ ) + 0.087ℎ 												(6.21) 

The correction factor is added in order to take into account 
thickness and viscous effects. With such a correction, the equation agrees 
well with the experimental values of 훼 . To make sure that the lift 
curves collapse onto a single curve, the plot  has to be done in function of 
the angle difference 훼 − 훼 . This difference is obtained by an 
approximation in terms of ℎ  and ℎ  and is valid for any NACA four 
digit airfoil  

훼 − 훼 = 0.293 + 0.336ℎ + 0.403ℎ 												(6.22) 

in which the constant value 0.293 represents the stall angle of the 
baseline NACA 0012 airfoil, for which, as it has been said before, 
ℎ = ℎ = ℎ = 0 because it is a symmetric airfoil. 

Equation (6.22) seems to indicate that the contribution of ℎ  is 
none, but the effect of this term is included in the definition of 훼 . 
Combining (6.21) and (6.22) it is possible to obtain the angle of static 
stall as 

훼 = 0.293 − 0.870ℎ − 0.099ℎ + 0.490ℎ 												(6.23) 
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From such an expression, the angle of static stall of every other 
airfoil can be calculated by simply using their characteristic spatial 
gradients coefficients. The last angle needed is the angle of shift, that 
ensures the alignment of all the residual curves with the baseline one. 
This angle, as expected, is function only of the morphing ℎ  and ℎ  and 
is given by 

훼 = 0.336ℎ + 0.403ℎ 												(6.24) 

If the airfoils considered belong to the same family, they have a 
similar post-stall behavior that differ from each other only on the value at 
which the maximum 퐶  occurs, i.e. they differ only by the angle of static 
stall that is a function of the airfoil shape as said at the beginning of this 
Chapter. 

This procedure permits to obtain a single typical curve or 
polynomial fit that gives the static lift residual for any morphed airfoil in 
terms of ℎ , ℎ  and ℎ . The approximate closed-form expression for the 
mean lift residual is (Reference [4]) 

훥퐶 = 0.2689 푡푎푛 (54.54푧) + 15.89(푧 + 0.3192) + 0.4070					푧 ≥ 0 
(6.25) 

 
6.3.2) PITCHING MOMENT RESIDUAL 

What has been said for the lift coefficient works also for the 
pitching moment coefficient. The only thing that change is that there is a 
vertical offset in the moment curves due to the non-zero pitching 
moment created by a cambered airfoil. This offset is approximately 20% 
smaller than the theoretical value of −휋 4⁄ (ℎ + ℎ ) and it is consistent 
with the static corrections made in the linear airload theory. It is given by 

 
퐶 = −0.615(ℎ + ℎ )												(6.26) 

For simplicity, the angle of static stall used to calculate the 
pitching moment is the same of the lift curves. For a more accurate 
description of the pitching moment, this angle should be derived 
independently. With this assumption, the shift angle has the same 
expression of the one used to obtain the lift residuals. Similarly, the fit 
curve that approximate the whole pitching curves is given by (see 
Reference [4]) 



 

49 
 

Δ퐶 = 0.0276 tan (54.54푧) + 2.177(푧 + 0.3048) + 0.0435				푧 ≥ 0 

(6.27) 

6.4) SC-1095 AIRFOIL 

SC-1095 airfoil is a cambered airfoil used in the UH-60A 
helicopter. Reference [7] shows a study on different morphologies of this 
airfoil. The ones interesting to verify this new theory approach are the 
leading and trailing edge deflections. Nevertheless the geometric details 
of this airfoil were not released, only the meanline shape of the airfoil is 
needed to validate this theory and fortunately an approximate parabolic 
representation of the meanline is sufficient. An accurate description to 
obtain such a shape, with a leading and trailing edge droop, can be found 
in Appendix C. As for NACA 0012, the static characteristics of the 
airfoil are parameterized in terms of ℎ , ℎ  and ℎ . The only difference 
in this case is that these spatial gradient coefficients are functions both of 
the deflection angles and the transition points to the baseline geometry 
(the points at which the deflection is applied). 

Based on the meanline equation of the airfoil, the angle of zero lift 
obtained from the CFD data (see Reference [7]) is 

훼 = −0.88(ℎ + 0.5ℎ ) − 0.012												(6.28) 

in which it can be seen that the correction factor is nearly identical to the 
NACA 0012. This correlation is really interesting, because indicates that 
this is truly the angle of zero lift for the SC-1095 airfoil. Another 
interesting element of the expression is the constant offset of −0.012. 
This is due to the fact that the airfoil is not symmetric and it has a 
cambered meanline. 

It is possible to obtain all the static stall data for the SC-1095 
airfoil from the same steps followed for the NACA 0012 airfoil (Figures 
6.3-6.4). The shift angle is 

훼 = 0.481ℎ + 1.10ℎ 												(6.29) 

whereas the approximate fits for Δ퐶  and Δ퐶  are  

  
Δ퐶 = 0.2959 tan (42.76푧) + 21.83(푧 + 0.2320) + 0.4351				(6.30) 
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Δ퐶 = 0.9246 tan (7.940푧) + 5.956푧 − 0.166푧 + 50.23푧
+ 5.354푧 − 248.9푧 + 0.0561 

(6.31) 

both valid when 푧 is higher than −0.22. This is equivalent to have 
훼 − 훼 − 훼 > 0. 

 The expression for 푧 is 

푧 = 훼 − 훼 = 훼 − 훼 − 훼 − 훼 	( ) − 훼 	( ) 												(6.32) 

with 

훼 	( ) = 0.21											훼 	( ) = −0.012												(6.33) 

These equations permit to have a generalized expression for the 
static stall residuals as a function of only the generalized spatial gradients 
ℎ . 

 

 

           Figure 6.3: SC-1095 Coefficient of lift with different leading edge deflections. 
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         Figure 6.4: SC-1095 Shifted lift residuals with different leading edge deflections. 

 

All the figures presented can be obtained also for the moment 
coefficient, the trailing edge deflection and a simultaneous leading and 
trailing edge deflection. For further information about these latter see 
Reference [4]. 

6.5) CONCLUSIONS 

The airfoil’s meanlines of NACA 0012 and SC-1095 has been 
expanded into the spatial gradients coefficients in order to obtain the 
static data parameterized in terms of these first three components of the 
expansion. The result is a single curve or polynomial that fit the data and 
can be used to predict the static section characteristics for any arbitrary 
morphology of the baseline airfoil. This means that it is possible to 
obtain the characteristics of any morphed airfoil by knowing only the 
characteristics of its baseline. Remembering from chapter 5.2 that the 
function responsible for the evaluation of the loss of lift due to dynamic 
stall is given by 

푏
푈
Γ̈ + 휂̂

푏
푈
Γ̇ + 휔 Γ = −푏푈휔 Δ퐶 + 휖̂

푑Δ퐶
푑푡

푏
푈
												(6.34) 

with the stall parameters defined as 
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휔 = 휔 + 휔 Δ퐶
휂̂ = 휂 + η Δ퐶
휖̂ = 휖 + 휖 Δ퐶

												(6.35) 

it is possible to shown clearly the dependence of the dynamic stall on lift 
residuals (static section characteristics). Therefore, having a single curve 
(or polynomial) that fit all the residuals is a powerful tool for predicting 
the dynamic stall: with a single curve it is possible to describe the 
dynamic stall of any arbitrary morphology of the baseline airfoil. 
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7) DETERMINATION OF STALL 
PARAMETERS 
 

This section outlines the procedure used to identify appropriate 
stall parameters using large-amplitude test data (Reference [8]). A 
genetic algorithm is used to find the optimum set of parameters. The 
airfoil selected to validate the theory are a morphed NACA 0012 and the 
SC-1095 as well. The airfoil used to obtain the expressions is instead the 
modified Boeing VR-12 airfoil with a variable-droop leading edge. All 
the experimental data can be found in Reference [8] and [28]. In the tests 
executed by the authors, the forward 25% of the airfoils remains at zero 
angle of attack with respect to the free stream whereas the rear 75% 
perform a pitch oscillation given by: 

훼 = 10° + 10°sin	(푘휏)												(7.1) 

The tests were done at reduced frequencies 
푘 = 0.025, 0.05, 0.075	and 0.1. 휏 is the reduced time. The first case is 
considered quasi-steady and, as explained in Chapter 2 (Figure 2.9), the 
dynamic lift curve approximates the static one. The lift residual Δ퐶 , 
calculated from the experimental data, is used by ONERA model to 
calculate the loss of circulation. This latter is obtained by the numerical 
solution of the second-order differential equation in MATLAB. The 
numerical solution is then compared to the experimental data and finally 
a fitness function 퐸 is extrapolated, which is simply the sum of the error 
norms at each of the four reduced frequencies 
 

퐸 = 퐸 . + 퐸 . + 퐸 . + 퐸 . 																			(7.2) 
 
where 퐸 is given by 
 

퐸 =
1
푁∑ |푔 (훼) − 푔 (훼)|

푔 − 푔
																(7.3) 

 
in which 푔 is the experimental data of interest, 푔 is the numerical 
solution and 푁 is the number of points at which the function is evaluated. 
Further information about the fitness function can be found in Reference 
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[4]. This is the procedure followed for the Boeing VR-12 and used also 
for NACA 0012 airfoil and SC-1095. 

7.1) FOR NACA 0012 AIRFOIL 

In a report which describes the phenomenon of dynamic stall, 
McCroskey [10] published static and dynamic lift and pitching moment 
results for several airfoils, including the NACA 0012. These data are 
used to identify stall parameters for the 0012 airfoil. The static lift 
residual is computed as explained in Chapter 6.3.1 and is then passed 
through the dynamic stall second-order differential equation of ONERA 
model. The optimal stall parameters are then identified through a genetic 
algorithm optimization. The final set of these stall parameters for the 
NACA 0012 are 

휔 = 0.27 + 0.13Δ퐶
휂̂ 	= 0.52 + 0.22Δ퐶
휖̂ = 									−0.10Δ퐶

												(7.4) 

Figure 7.1 shows a comparison between the numerical results and 
the real data collected in Reference [10]. In this case of Figure 7.1, the 
stall parameters selected for an optimal fit are the following 

휔 = 					0.2581− 0.0264Δ퐶
휂̂ = 0.3861 + 0.223973Δ퐶
휖̂ = 	−0.0294 − 0.1607Δ퐶

												(7.5) 

agreeing with reference [16] from which these values of  휔, 휂̂, and 휖̂ are 
obtained. 

 The numerical simulations are run with two induced flow models: 
Theodorsen’s inflow model and the model developed in Reference [13]. 
Figure 7.1, shows that Theodorsen’s inflow model matches closely the 
data: the linear part collapses onto the experimental data while the non-
linear part departs from them only slightly. 

Regarding the curve obtained with the model [13], the trend is 
quite similar but it is possible to see the action of the feedback through 
the induced flow that modifies the linear airloads (see Figure 5.6). This 
can be observed in the linear part of the curve but it also affects the 
whole curve obtained during the first cycle of integration. The feedback 
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starts instantly after the first time step of integration and the model needs 
three cycles to converge. 

 

 

Figure 7.1: NACA 0012 Dynamic stall with two different inflow models. 

 

7.2) STALL PARAMETERS FOR SC-1095 AIRFOIL 

The dynamic stall parameters for the SC-1095 airfoil are 
estimated by the method used for the NACA 0012 airfoil. The estimated 
parameters are 

휔 = 	0.26 + 0.51Δ퐶
휂̂ = 0.49 + 0.21Δ퐶
휖̂ = 											0.013Δ퐶

												(7.6) 

Figures 7.2, 7.3 and 7.4 show the comparison between the 
experimental data and the numerical results obtained with the 
implementation of the unified model. Similarly to the previous case 
Theodorsen’s inflow model matches closely the data. The linear part 
collapses onto the experimental data while the non-linear part departs 
from them only slightly. Regarding the curve produced by the unified 
model, the trend is quite similar and it is possible to see again the action 
of the feedback through the induced flow that modifies the linear 
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airloads. The effect of the feedback is more emphasized here and the 
results with Theodorsen’s inflow model fit the real data quite well, 
except from the small region around zero. It is interesting to point out 
that a better correlation is obtained for higher reduced frequencies. 

All the stall parameters used for NACA 0012 and SC-1095 
airfoils are listed in Table 7.1 below. 

 

Table 7.1: Stall parameters of the airfoils. 

 흎ퟎ 흎ퟏ 휼ퟎ 휼ퟏ 흐ퟎ 흐ퟏ 
NACA 
0012 0.2581 -0.0264 0.3861 0.223973 -0.0294 -0.1607 

SC-1095 0.26 0.51 0.49 0.21 - 0.013 
 

 

 

Figure 7.2: SC-1095 Dynamic stall with two different inflow models. 
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Figure 7.3: SC-1095 Dynamic stall with two different inflow models. 

 

 

Figure 7.4: SC-1095 Dynamic stall with two different inflow models. 
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8) DYNAMIC AIRLOAD 
CORRELATIONS WITH 
DYNAMIC STALL DATA 
 

In this section the accuracy of Johnson/Peters flexible airload 
theory will be verified by comparison with dynamic stall data. The 
theory is used to predict airloads for a drooped leading edge SC-1095 
airfoil. This is a very important case because it has a variable geometry 
which is not present in the other examples of Chapter 7 and Chapter 9. In 
addition, correlations are presented for experimental data on NACA 0012 
airfoil with trailing edge flap deflections. 

8.1) SC-1095 WITH LEADING EDGE DROOP 

 Here we consider the SC-1095 airfoil with a leading edge droop to 
demonstrate that the unified model is applicable to cambered airfoils 
with a leading edge droop. Of particular interest is to investigate the 
mitigation of the dynamic stall due to a dynamic droop deployment 
(Figure 8.2) for high-thrust forward flight conditions. The motion of the 
main airfoil 훼 and leading edge droop 휃  are given by 

훼 = 10° + 10° sin(푘휏) 												(8.1) 

휃 = 휃 sin(푛푘휏 + 휙) 												(8.2) 

respectively, where 휃  is the amplitude of the trailing edge droop, 휙 is 
the phase angle and 푛 is the number of times per revolution the droop is 
deployed. The reduced frequency used is 푘 = 0.05 and the corrections 
factors are 푓 = 1.044 and 1 for all the others. This means that only a 
small correction of the slope of the lift curve is needed. The two 
conditions that provide the best performance improvement - in terms of 
the percent change in maximum L/D from the baseline airfoil - are the 2° 
1/rev droop with a phase angle of 120° and the 3° 2/rev droop with a 
phase angle of 60° (Figure 8.1). 
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Figure 8.1: Change in airfoil L/D for various leading edge deflections. 
Figure 5.25 from Reference [4] reprinted here for explanation. 

 

Analyzing the results, it is possible to observe that there is a big 
difference between the two cases: in the first one the maximum lift is 
increased, and thus also the efficiency is increased, but the hysteresis in 
the lift curve is higher in respect of the second case. Actually, this is not 
a mitigation of the effects of dynamic stall. On the other hand, in the 
second case the maximum lift is not increased but the hysteresis is less 
than the previous one, and the mitigation of dynamic stall is higher. 
Therefore this is the configuration that should be adopted. 
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Figure 8.2: Lift coefficient for dynamic leading edge deflection. 

 

8.2) HARMONIC PITCH AND FLAP SIMULATIONS 

 The data used in this section are obtained for airfoils subjected to 
forced motions. We consider harmonic variations in pitch angle and 
trailing edge flap deflection. But first, I will show that the present theory 
matches Theodorsen’s linear theory for pitch and flap deflections. Two 
cases are considered here 

1) a symmetric airfoil undergoing simple harmonic pitching 
motion 훼 about a point located 푎푏 aft of the mid-chord; 

2) an airfoil at zero angle of attack and with a trailing edge flap 
that moves with simple harmonic deflections. 

The first case considered is the one of a symmetric airfoil 
undergoing simple harmonic pitching motion about a point located 푎푏 aft 
of the mid-chord (Figure 8.3), where 푏 is the semi-chord and 푎 is the 
distance respect to 푏 at which the pitching motion is applied. The theory 
of Theodorsen in Reference [11], which is included in Appendix E, 
shows that the lift coefficient is 

퐶 	( ) = 2휋
1
2
휕훼
휕휏

−
푎
2
휕 훼
휕휏

+ 퐶(푘) 훼 +
1
2
− 푎

휕훼
휕휏

												(8.3) 

where 퐶(푘) is Theodorsen lift deficiency function (Figures E.6 and E.7). 
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For the unified model, with ℎ = −푏푎훼 and ℎ = 푏훼, the 
coefficient of lift 퐶 	( ) is given by 

퐶 	( ) = 2휋 −푎
휕훼
휕휏

−
푎
2
휕 훼
휕휏

+
휕훼
휕휏

−
휆
푢

+ 훼 												(8.4) 

and thus comparing these two expressions the steady-state induced flow 
is obtained as 

휆 = 훼 +
1
2
− 푎

휕훼
휕휏

[1 − 퐶(푘)]												(8.5) 

which is the same result obtained by Theodorsen (see Appendix E, 
equation 퐸. 43). This achievement is very important, because it means 
that with the unified model it is possible to obtain results comparable 
with Theodorsen’s ones, which are supported by experimental data. 
Figure 8.3 shows the excellent agreement between Theodorsen’s theory 
and the unified model. 

 

 

Figure 8.3: Comparison with Theodorsen’s theory for harmonic pitch oscillations. 
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harmonic deflections. The flap location is ab aft of the mid-chord. 
Theodorsen [11] showed that the lift in this case is given by 

퐶 	( ) = −푇
휕훽
휕휏

− 푇
휕 훽
휕휏

+ 퐶(푘) 2푇 훽 + 푇
휕훽
휕휏

												(8.6) 

where 훽 is the flap harmonic motion in the form of equation (8.15) and 

푇 = −
1
3

1 − 푑 (2 + 푑 ) + 푑 cos (푑)												(8.7) 

푇 = − cos (푑) + 푑 1 − 푑 												(8.8) 

푇 = 1 − 푑 + cos (푑) 												(8.9) 

푇 = cos (푑) (1 − 2푑) + 1 − 푑 (2 − 푑)												(8.10) 

with 푑 the location of the trailing edge flap. 

The Glauert expansion for the deflected flap is {ℎ} = {푇} 훽  
where {푇}  is given by 

{푇} =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

1
휋

[sin휑 − 휑 cos휑 ]

1
휋

[휑 − sin휑 cos휑 ]

1
휋

1
1 + 푛

sin[(푛 + 1)φ ] +
1

푛 − 1
sin[(푛 − 1)φ ]

−
2
푛

sin(푛휑 ) cos휑
.
.
.

			(8.11) 

The lift coefficient becomes 

퐶 	( ) = 2휋
1
2
푡 −

1
4
푡

휕 훽
휕휏

+ (푡 + 푡 )
휕훽
휕휏

− 휆 + 푛푡 훽  

(8.12) 

where 푡 ’s are the components of vector {푇} . The induced flow is 
given by 
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휆 = 푡 + 푡 +
푇
2휋

휕훽
휕휏

−
퐶(푘)

2휋
2푇 훽 + 푇

휕훽
휕휏

+ 푛푡 훽						(8.13) 

It should be noted that the term 휕 훽 휕휏⁄  is absent because of the 
cancellation of terms and the infinite sum of the generalized blade 
deformations. For the validation, only ten terms of the geometric 
expansion are used. Figure 8.4 show that the unified model recovers 
perfectly Theodorsen results for harmonic flap oscillations agreeing with 
Reference [4]. Appendix E describes the relation between 
Theodorsen/Garrick theory with Johnson/Peters theory.  

 

 

Figure 8.4: Comparison with Theodorsen’s theory for harmonic flap oscillations. 

 

8.3) COMBINED PITCH AND FLAP OSCILLATIONS 

 Reference [12] provides the wind tunnel tests data used to 
correlate the simulations. The NACA 0012 airfoil is oscillated in pitch 
about a center of rotation located 35% chord from the leading edge at a 
reduced frequency 푘 = 0.02. At the same time, a 20% trailing edge flap 
is oscillated at twice the pitch frequency of oscillation of the main airfoil, 
i.e. 푘 = 0.04. 

The equations describing the motion of the airfoil 훼 and the flap 훽 
are 

훼 = 훼 + 훼 sin(푘휏) 												(8.14) 
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훽 = 훽 + 훽̅ sin(2푘휏 + 휙) 												(8.15) 

respectively, where 휙 is the phase lag between pitch and flap motions. 
The parameters 훼 , 훽 , are the nominal angles of attack and 훼, 훽̅ are the 
magnitude of the oscillations. 휏 is the reduced time. Figures 8.5 to 8.9 
show examples of this kind of oscillations for various values of 푘. 

The flap geometry is expanded in Glauert series and it has the 
form  {ℎ} = {푇} 훽  in terms of 훽 derived in equation (8.11). 

A transformation between the user variables 훼 and 훽 and the 

generalized blade deformations ℎ  is given by {ℎ } = [푇]
훼
훽  where the 

matrix [푇] is defined as 

[푇] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−푏푎

푏
휋

[sin휑 − 휑 cos휑 ]

푏
푏
휋

[휑 − sin휑 cos휑 ]

0 																			
푏
휋

1
1 + 푛

sin[(푛 + 1)φ ] +
1

푛 − 1
sin[(푛 − 1)φ ]

−
2
푛

sin(푛휑 ) cos휑
⋮ ⋮ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(8.16) 

The system is implemented in MATLAB and the simulations 
resolve simultaneously the differential equations of Jonhson/Peters 
flexible airloads theory ((5.29) and (5.44)) and the ONERA model 
(equations (5.49) and (5.50)) via time marching. The results are then 
used as feedback to adjust the values of the loads as explained by the 
feedback loop of Figure (5.6). The static airfoil data are evaluated 
through the expressions derived in the previous Chapter 6 and are used as 
input for the dynamic stall model as explained in Chapter 5. 

Static corrections are determined to match the slope of the 
experimental static lift and pitching moment curves. One of the 
assumption made at the beginning to validate the approach of 
Jonhson/Peters theory is that the loads are quasi-static. Considering this, 
the experimental partial derivatives of the loads can be determined in 
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order to calculate the appropriate corrections. The data are fitted by the 
least-squares method. The fitting curves obtained are 

퐶 	( ) = 5.394훼 + 1.944훽 − 0.04331												(8.17) 

퐶 	( ) = 0.1194훼 − 0.4719훽 + 0.007395												(8.18) 

with a fitting error less than 4% (equation 7.3). 

It is possible to obtain the corrections from the derivative of these 
fitting curves. For the lift force, the correction becomes 

푓 =

휕퐶 	( )
휕훼

휕퐶 	( )
휕훼 푓

												(8.19) 

where 푓 = 1 is a corrective factor referred to the variable 훼. 

Following the same reasoning, the flap correction is given by 

푓 =

휕퐶 	( )
휕훽

휕퐶 	( )
휕훽 푓

												(8.20) 

For the pitching moment correction the derivation becomes more 
difficult, because the pitching moment about the center of rotation is 
comprised of two components: the moment about the mid-chord and the 
one generated by the lift force that is applied out of the center of rotation. 
For this reason, a correction about the center of rotation is made in order 
to take into account this offset and thus obtain the overall pitching 
moment. Therefore, the pitching moment correction 푓  must satisfy 

푓 	=

휕퐶 	( )
휕훼

휕퐶 	( )
휕훼 푓

=

휕퐶 	( )
휕훽

휕퐶 	( )
휕훽 푓

												(8.21) 

From the definition of the force coefficients 

퐶 	( ) =
1

2휌푢 푏
(퐿 − 푎 푏퐿 )												(8.22) 

and its derivatives are 
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휕퐶 	( )

휕훼
=

1
2휌푢 푏

퐿
휕훼

− 푎 푏
퐿
휕훼

												(8.23) 

   
휕퐶 	( )

휕훽
=

1
2휌푢 푏

퐿
휕훽

− 푎 푏
퐿
휕훽

												(8.24) 

The four equations above can be combined to obtain the 
correction factors 푓  and 푎 . The final set of correction can be found as 

푓 = 1 

푓 = 0.8584 

푎 = −0.4692												(8.25) 

푓 = 0.6497 

푓 = 1.2352 

Figures 8.5 to 8.8 show a prescribed flap oscillation as a function 
of the angle of attack and the 퐶  of NACA 0012 airfoil with this 
oscillating trailing edge flap. The purpose of these examples is to verify 
the accuracy of the airload theory with dynamic stall data taken from 
Reference [12]. From the Figures, it is possible to see that the 
simulations results fit quite well the experimental data. For Figures 8.5 
and 8.6, the range of the oscillations does not give rise to dynamic stall 
and therefore the airload behavior is linear. The stall residual ∆퐶  is zero 
and there is no loss in circulation due to dynamic stall. These figures 
were also used to validate the static correction factors derived above. 
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Figure 8.5: (a) Flap oscillation in function of the angle of attack and (b) coefficient of lift 
of NACA 0012 airfoil with oscillating trailing edge flap. 

Airfoil motion: 훂 = ퟔ°퐬퐢퐧(ퟎ.ퟎퟐ훕), flap motion: 휷 = ퟎ.ퟓퟎ° + ퟓ.ퟓퟎ°퐬퐢퐧(ퟎ.ퟎퟒ훕+ ퟓퟗ°), 
M=0.4. Error norm: 0.039. 
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Figure 8.6: (a) Flap oscillation in function of the angle of attack and (b) coefficient of lift 
of NACA 0012 airfoil with oscillating trailing edge flap. 

Airfoil motion:	훂 = ퟔ°퐬퐢퐧(ퟎ.ퟎퟐ훕), flap motion: 훃 = ퟎ.ퟓퟎ° + ퟓ.ퟓퟎ°퐬퐢퐧(ퟎ.ퟎퟒ훕+ ퟐퟑퟗ°), 
M=0.4. Error norm: 0.035. 

 

Figures 8.7 and 8.8 show that this range of oscillation gives rise to 
a moderate dynamic stall. The stall residuals are therefore not zero and 
they are used to correct the circulation as explained in Chapter 5. 
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Figure 8.7: (a) Flap oscillation in function of the angle of attack and (b) coefficient of lift 
of NACA 0012 airfoil with oscillating trailing edge flap. 

Airfoil motion:  훂 = ퟓ° + ퟓ.ퟓퟎ°퐬퐢퐧(ퟎ.ퟎퟐ훕), flap motion: 훃 = ퟓ°퐬퐢퐧(ퟎ.ퟎퟒ훕+ ퟏퟒퟖ°), 
M=0.4. Error norm: 0.036. 

 

 

 

 

-0,2
-0,1

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1
1,1

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Cl

Angle of attack α [°]

NACA 0012 combined pitch and flap 
oscillations

Theory

Experiment

-4

-2

0

2

4

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Fl
ap

 a
ng

le
 β

 [°
]

Pitch angle α [°]

Flap oscillation in function of the angle of 
attack

(a) 

(b) 



 

71 
 

 

Figure 8.8: (a) Flap oscillation in function of the angle of attack and (b) coefficient of lift 
of NACA 0012 airfoil with oscillating trailing edge flap. 

Airfoil motion: 훂 = ퟓ.ퟕퟓ° + ퟒ.ퟐퟓ°퐬퐢퐧(ퟎ.ퟎퟐ훕), flap motion: 
훃 = −ퟎ.ퟓퟎ° + ퟓ.ퟓퟎ°퐬퐢퐧(ퟎ.ퟎퟒ훕+ ퟐퟗퟖ°), M=0.4. Error norm: 0.033. 

 

It is possible to establish that the theory is in good correlation with 
experimental data when moderate dynamic stall is considered. In 
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9) REDUCED FREQUENCY 
EFFECTS IN DYNAMIC STALL 
WITH HARMONIC 
OSCILLATIONS 
 

In this chapter are investigated the effects of the reduced frequency 푘 
in dynamic stall with harmonic oscillations. Two airfoils are considered: 
the NACA 0012 airfoil, which is symmetric and has no camber, and the 
NACA 6712 which is cambered. The aim is to compare the effect of the 
harmonic oscillations in cambered and not cambered airfoils. For these 
tests, two different motions at different reduced frequencies are choose. 
For a small mean angle of attack, the motion follows this expression: 

훼 = 훼 + 훼 sin(푘휏) = 5° + 12° sin(푘휏) 												(9.1) 

where 푘 = 0.001, 0.01, 0.03, 0.05, 0.07, 0.09, 0.11	and	0.13 (Figure 
9.1). 훼  is equal to 12° because in this manner the angle of static stall is 
overshoot only by a small amount (for NACA 0012 airfoils the angle of 
static stall is equal to 0.293	푟푎푑 and the maximum angle reached with 
this kind of oscillation is 17° = 0.296	푟푎푑). The figure shows that for 
푘 = 0.001 the static stall curve is obtained as expected and that 
increasing the reduced frequency a more significant dynamic stall is 
obtained. 
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Figure 9.1: Effect of small harmonic oscillations on dynamic stall for NACA 0012 airfoil. 
It is important to notice the trend of the curve for 풌 = ퟎ.ퟎퟎퟏ that collapse onto the static 

stall curve. 

 

Figures 9.2-9.5 show the comparison between NACA 0012 and 
NACA 6712. Of particular interest is Figure 9.2 where it is possible to 
see clearly the exact match between the static and dynamic stall curves.  

 

 
Figure 9.2: Comparison between NACA 0012 and 6712 for a reduced frequency equal to 

0.001. 
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Figure 9.3: Comparison between NACA 0012 and 6712 for a reduced frequency equal to 

0.01. 

 

 
Figure 9.4: Comparison between NACA 0012 and 6712 for a reduced frequency equal to 

0.05. 
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Figure 9.5: Comparison between NACA 0012 and 6712 for a reduced frequency equal to 

0.11. 

 

For bigger mean angle of attack the motion adopted is the following: 

훼 = 훼 + 훼 sin(푘휏) = 10° + 12° sin(푘휏) 												(9.2) 

which permits a deep overshoot of the angle of static stall and therefore a 
higher dynamic stall effect (Figure 9.6). 
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Figure 9.6: Effect of large harmonic oscillations on dynamic stall for NACA 0012 airfoil. 

It is important to notice the trend of the curve for k=0.001 that collapse onto the static 
stall curve also in this case of large oscillations. 

 

Following the theory, for small angle of attack and small oscillations 
the lift coefficient does not differ from the one predicted from the thin-
airfoil theory. In particular, for small angles and small reduced 
frequencies the trend is the same: the static stall curve and the dynamic 
one collapse onto each other (Figure 9.2). Only when the frequency is 
raised it is possible to notice a significant dynamic stall effect (Figures 
9.3-9.5). Analogous results can be obtained if harmonic oscillations of 
large amplitude are considered, with the difference that the dynamic stall 
in these cases is more relevant (Figure 9.6). 
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10) COMPARISON BETWEEN 
ORIGINAL ONERA MODEL 
AND UNIFIED MODEL 

 

 In this section the results obtained by the implementation of the 
original ONERA model (Chapter 4, Reference [2]) are compared with 
the results obtained by the implementation of the Unified model. The aim 
of this chapter is to compare the 퐶  produced by the two different model 
when they are used to predict dynamic stall.  

All the conditions regarding the forced motions are the same of 
Chapter 4 (equation 4.1). Figures 10.1, 10.2 and 10.3 show the lift 
coefficient in function of the pitch angle. Figure 10.1 shows that, for 
small oscillations, the unified model fit better the experimental data. In 
particular, the curve collapse onto the original ONERA model results for 
low angle of attack whereas it follows better the real trend for high and 
positive angles. This is the part where the new model fits with more 
accuracy the experimental data.  

 

 
Figure 10.1: Lift coefficient comparison among McCroskey experimental data, the 

original ONERA model implementation and unified model implementation. The forced 
oscillation is 휶(풕) = ퟓ° + ퟏퟎ°풔풊풏(ퟎ.ퟏ흉). 
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Figure 10.2 shows a better agreement between the experimental 
data and the unified model results. The linear part of the curve follows 
the experimental curve better than the original ONERA model 
implementation, except near the maximum 퐶 . In the non-linear part, the 
unified model matches well the experimental data. At low incidences 
there is no loop at the end of the cycle (from 5°	to	0°) and the curve 
matches almost exactly the real data around zero. In fact, the lift 
coefficient obtained from the unified model is zero for 훼 = 0° as it 
should be from theory and following the experimental results obtained by 
McCroskey [9]. On the contrary this result is not obtained by the original 
ONERA model implementation, from which 퐶 ≠ 0 when 훼 = 0°. 

 

 
Figure 10.2: Lift coefficient comparison among McCroskey experimental data, the 

original ONERA model implementation and unified model implementation. The forced 
oscillation is 훂(퐭) = ퟏퟎ° + ퟏퟎ° 퐬퐢퐧(ퟎ.ퟏ훕). 

 

Finally, Figure 10.3 compares the results with the experimental 
data for 훼(푡) = 15° + 10° 푠푖푛(0.1휏). Here there are no significant 
differences between the original ONERA model and the implementation 
of the unified model, except if the modified ONERA model 
implementation by Laxman & Venkatesan (Chapter 3.3, Reference [21]) 
is considered (see Figure 4.1). 
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Figure 10.3: Lift coefficient comparison among McCroskey experimental data, the 

original ONERA model implementation and unified model implementation. The forced 
oscillation is 훂(퐭) = ퟏퟓ° + ퟏퟎ° 퐬퐢퐧(ퟎ.ퟏ훕). 

 

For the moment coefficient, two forced motions are considered:              
훼(푡) = 10° + 10° 푠푖푛(0.1푡) in Figures 10.4, 10.5, and 훼(푡) = 15° +
10° 푠푖푛(0.1푡) in Figures 10.6 and 10.7. The comparison is carried out 
among the moment coefficients calculated with the original ONERA 
model, the unified model and experimental data. For the unified model, 
two inflow models are considered: the one developed in Reference [13] 
(Figures 10.5 and 10.7) and used as the main theory in this work and the 
induced flow model developed by Theodorsen (Figures 10.4 and 10.6, 
see Appendix E for more details on Theodorsen’s theory). This is 
possible because the ONERA model can be coupled with any desired 
wake model. Table 10.1 resume all cases. 
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Table 10.1: Cases of study for the moment coefficient with dynamic stall corrections. 

Figure Forced motion Inflow model 
Figure 10.4 훼(푡) = 10° + 10° 푠푖푛(0.1푡) Theodorsen model 
Figure 10.5 훼(푡) = 10° + 10° 푠푖푛(0.1푡) Unified model [13] 
Figure 10.6 훼(푡) = 15° + 10° 푠푖푛(0.1푡) Theodorsen model 
Figure 10.7 훼(푡) = 15° + 10° 푠푖푛(0.1푡) Unified model [13] 

  

Figure 10.4 shows that the theory with Theodorsen’s inflow 
model is very similar to the original ONERA model result and it does not 
give a better solution. 

 

 

Figure 10.4: Moment coefficient comparison among McCroskey experimental data, the 
original ONERA model implementation and unified model implementation with 
Theodorsen’s inflow model. The forced oscillation is 훂(퐭) = ퟏퟎ° + ퟏퟎ° 퐬퐢퐧(ퟎ.ퟏ퐭). 

 

On the other hand, the unified model which considers the inflow 
model developed in Reference [13] (Figure 10.5) has a better trend for 
higher angle of attack (i.e. it reaches more negative values of 퐶 ) but it 
does not match the experimental data. Moreover, the trend for small 
angle of attack is completely wrong. 
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Figure 10.5: Moment coefficient comparison among McCroskey experimental data, the 
original ONERA model implementation and unified model implementation with the 

inflow model developed in Reference [13]. 
The forced oscillation is 훂(퐭) = ퟏퟎ° + ퟏퟎ° 퐬퐢퐧(ퟎ.ퟏ퐭). 

 

The same considerations can be expressed for Figures 10.6 and 
10.7, even if the trends of the curves fit better the experimental data if 
compared with the previous example. 

 

 

Figure 10.6: Moment coefficient comparison among McCroskey experimental data, the 
original ONERA model implementation and unified model implementation with 
Theodorsen’s inflow model. The forced oscillation is 훂(퐭) = ퟏퟓ° + ퟏퟎ° 퐬퐢퐧(ퟎ.ퟏ퐭). 
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Figure 10.7: Moment coefficient comparison among McCroskey experimental data, the 
original ONERA model implementation and unified model implementation with the 

inflow model developed in Reference [13]. 
The forced oscillation is 훂(퐭) = ퟏퟓ° + ퟏퟎ° 퐬퐢퐧(ퟎ.ퟏ퐭). 

 

10.1) CONCLUSIONS 

These implementations of the ONERA model are in good 
agreement with the experimental data only when the lift coefficient is 
considered: lift coefficients predictions are better than moment 
coefficient predictions. Furthermore, the unified model seems to provide 
a better agreement with experimental data than the original ONERA 
model implementation. An estimation of the relative error between real 
data curves and numerical curves can confirm this assertion and could be 
the topic of a future work. 

For the moment coefficient is necessary a different 
implementation of the model because the phenomenon of the dynamic 
stall affects these loads in a different way. In general, it is more difficult 
to obtain good agreement with experimental pitching moment data 
because they depend on the lift, the shape of the camber line and the 
location of the center of pressure (Chapter 2). Experience has shown that 
the effective center of pressure in the thin-airfoil coordinate system may 
need to be adjusted slightly in order to correlate experimental moment 
data. 
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11) CONCLUSIONS AND 
FURTHER WORK 

 

This thesis, following the work of Ahaus [4], presents a unified 
model for determining the dynamic airloads for morphing airfoils. The 
model is composed by three main parts: 

- Johnson/Peters flexible thin-airfoil theory for the calculations of 
the linear loads. This theory is developed considering an inviscid, 
incompressible two-dimensional potential flow. All the equations 
are derived in terms of generalized airfoil deformations to allow 
the description of any general arbitrary morphing of the meanline 
geometry; 

- an induced flow model to take into account the effect of the wake; 
the inflow model is based on the study of Karunamoorthy [13] 
which present great agreement with Theodorsen lift deficiency 
function when developed with eight states; 

- a dynamic stall model (ONERA model) to describe accurately this 
phenomenon. In the present work, only the second-order ordinary 
differential equation is implemented to obtain the dynamic stall 
correction. This equation is written in terms of circulation, 
because it is the variation of this parameter that cause the dynamic 
stall. 

Each component of the model is essential and is validated by 
correlation with classical aerodynamic theories and experimental data. In 
order to use ONERA dynamic stall model, the static stall residuals are 
computed from available static data for every airfoil considered (in this 
case, NACA 0012 and SC-1095). The residuals are then parameterized in 
terms of generalized gradients of the airfoil’s meanline in order to obtain 
a general static database that can be adopted for any morphology of the 
baseline airfoil. In this manner, one needs only be able to find the 
gradients in terms of the morphing variables of interest to predict the 
corresponding lift and moment coefficients. This is the main 
achievement of this project: by using a general formulation (arbitrary 
geometry) it is possible to reproduce results for single airfoils, airfoils 
with flaps or airfoils with drooping leading edge both in the low and high 
angles of incidence. 

Furthermore, the stall parameters are obtained from large-
amplitude test data (instead of a large number of small-amplitude pitch 



86 
 

oscillations as ONERA did) with a genetic optimization algorithm. Also 
the angle of static stall for various combinations of morphing variables 
has to be extract from experimental data. This angle is crucial for the 
theory, because is the angle from which the dynamic stall correction is 
applied using the ONERA model. 

Finally, the model is validated by correlation with Theodorsen 
results for harmonic pitch motions and harmonic trailing edge 
deflections. The validation is confirmed also by comparison with 
experimental data on dynamic stall behavior: the theory captures the 
essential characteristics of the phenomenon. It is important to underline 
that  the required experimental constants to implement the theory are 
remarkably low. If, for example, one would calculate the dynamic stall 
effect on the lift and moment coefficients for a baseline airfoil, the 
experimental constants that has to implement are the following: 

- nine constants are required to completely parameterize the 
baseline airfoil. In particular: two correction factors to match the 
theoretical lift curve and moment slopes with the data; if the lift 
and moment offset have to be matched as well, other two shift 
terms have to be added in the residual formulation; to implement 
the dynamic stall model, other five constants are required. 
Therefore, the final number of experimental constants for the 
baseline airfoil is 9.  
 

- considering the 푁  morphing variables introduced into the airfoil 
with 푁  required morphing loads. In the linear region 
Johnson/Peters theory can fit experimental data by using one 
correction factor for the pitching moment, one for each morphing 
variable and one for each morphing load. Therefore the correction 
factors are 1 + 푁 + 푁 . In addition, for the morphed airfoil, 
another angle is needed in order to apply the theory. This angle is 
function of the generalized gradients of the airfoil’s meanline and 
so other two additional constants are needed. The total number of 
constants is then 푁 + 푁 + 3. 

If one morphing variable and two morphing loads are considered, 
only fourteen constants are required to analyze dynamic stall. 

The results presented here show that the proposed methods can 
predict with reasonable accuracy the behavior of morphing airfoils in 
dynamic stall from their static aerodynamic characteristics. There are 
many directions that can be choose from this point. 

- Implementation of the flutter behavior in order to discover the 
realms of aeroelastic stability and instability of this phenomenon. 
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Some investigations relatively the linear regime on flexible 
airfoils have been made by J. Murua, R. Palacios and J. Peirò [17] 
but there are no information about the stall regime. This could be 
an interesting direction to follow. 
 

- Flutter (linear) analysis for cambered airfoils with further degrees 
of freedom. 
 

- Application to stall flutter. Nothing has been done beyond pitch 
and plunge. 
 

- Optimal parameters of the model and study of sensitivity of the 
model response to the variations in the parameters. Do the 
parameters change significantly within airofoils? 
 

- Incorporation of the model into a 3D simulation (for example, into 
blade-element momentum theory). 
 

- Characterization of other airfoils used in rotorcraft. All the steps 
executed here for the NACA 0012 and SC-1095 can be followed 
to study other airfoils. 
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APPENDIX A: MATRICES AND 
VECTORS FOR THE UNIFIED 
MODEL 

 

This appendix define the matrices an vectors used in the 
formulation of the unified model. M refers to the numbers of states in the 
Glauert expansion and  thus the matrices and vectors are of the following 
form: 

(푀 + 1) × (푀 + 1)	and	(푀 + 1) × 1. 

N refers to the numbers of inflow states and, as said in Chapter 5.1 
for the numbers of coefficients 휆 , … , 휆  , the matrices and vectors are in 
the following form: 

(푁 × 푁)	and	푁 × 1 

 

The vectors used are 

{1} = {1		0		0		0		0	… }  

{푏 } = {	푏 		푏 		푏 		푏 		푏 … 	푏 }  

{푑} =
1
2
		0		0		0		0 …  

{푒} = 1		
1
2
		0		0		0 …  

{푓} = {0		1		2		3		4 … 	푀}  

{ℎ } = {	ℎ 		ℎ 		ℎ 		ℎ 		ℎ 	… 	ℎ }  

{푣 } = {	푣 		푣 		0		0		0	… }  

푣̇ + ℎ̈ = 푣̇ + ℎ̈ 		푣̇ + ℎ̈ 		0		0		0 …  

{휆 } = {휆 		0		0		0		0	… }  

{휆 } = {휆 		휆 		0		0		0	… }  
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The matrices used are 

[퐴] = 퐷 + {푑}{푏} + {푐}{푑} +
1
2

{푐}{푏}  

[퐶] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
				푓 				1 				0 				0 0 ⋯

−
1
2

				0 				
1
2

				0 0 ⋯

				0 −
1
2

				0 				
1
2

0 ⋯

					0 				0 −
1
2

				0
1
2

⋱

					0 				0 				0 −
1
2

0 ⋱
				⋮ 				⋮ 				⋮ 				⋱ ⋱ ⋱⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

											 

[퐷] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡0 −

1
2

				0 				0 ⋯ 0
1
4

				0 −
1
4

				0 ⋯ 0

0 				
1
6

				0 −
1
6

⋱ 0

0 				0 				
1
8

				⋱ ⋱ 0

⋮ 				⋮ 				⋱ 				⋱ 0 ⋱

0 				0 				0 				0
1

2푁
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	 

[퐺] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡0 				

1
2

				0 				0 0 ⋯

0 				0 				
1
4

				0 0 ⋯

	0 −
1
4

				0 				
1
4

0 ⋯

0 				0 −
1
4

				0
1
4

⋱

0 				0 				0 −
1
4

0 ⋱
⋮ 				⋮ 				⋮ 				⋱ ⋱ ⋱⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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	[퐻] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 ⋯

0 	
1
2

0 0 0 ⋯

0 0 	
2
2

0 0 ⋯

0 0 0
3
2

0 ⋯

0 0 0 0
4
2

⋯
⋮ ⋮ 		⋮ 	⋮ ⋮ ⋱⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

[퐾] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 				푓 				2 			3푓 4 				⋯

0 −
1
2

				0 				0 0 				⋯

	0 				0 −
2
2

				0 0 				⋯

0 				0 				0 −
3
2

0 				⋱
0 				0 				0 				0 ⋱ 				⋱

⋮ 				⋮ 				⋮ 					⋮ ⋱ −
푀
2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

[푀] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡					

1
2

				0 −
1
4

				0 0 ⋯

				0 				
1

16
				0 −

1
16

0 ⋯

−
1
4

				0 					
1
6

				0 ⋱ ⋱

				0 −
1

16
				0 				⋱ 0 ⋱

				0 				0 				⋱ 				0 ⋱ ⋱

				⋮ 				⋮ 			⋱ 	−
1

8푀
⋮

푀
4(푀 − 1)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

[푆] =

⎣
⎢
⎢
⎢
⎢
⎡
푓 0 0 0 0 ⋯
0 	0 0 0 0 ⋯
0 0 	0 0 0 ⋯
0 0 0 0 0 ⋯
0 0 0 0 0 ⋯
⋮ ⋮ 		⋮ 	⋮ ⋮ ⋱ ⎦

⎥
⎥
⎥
⎥
⎤

 

 

where 푓 is the reversed flow parameter (equal to 1 in the present work). 

 



92 
 

 

  

 



 

93 
 

APPENDIX B: SPATIAL GRADIENT 
COMPONENTS 

 

This appendix define the spatial gradients for a NACA four digit 
airfoil. As discussed in Chapter 6.3, the NACA 0012 airfoil is a four digit 
airfoil. In the designation, every digit has a meaning that recalls the 
characteristics of the airfoil. For four digits airfoils the equation of the 
meanline is known in closed form as 

푦
푐

=

푚
푝

[2푝푥̅ − 푥̅ ]																																												0 ≤ 푥̅ ≤ 푝

푚
(1 − 푝)

[1 − 2푝 + 2푝푥̅ − 푥̅ ]																푝 < 푥̅ ≤ 1	
 

(퐵. 1) 

where 

푚 = 0.01푚									푝 = 0.1푝̅										푞 = 2푝 − 1										 

푥̅ =
1 + 푥

푏
2

												(퐵. 2) 

The expression above is defined for 푥̅ = [0,1] but for the thin-
airfoil theory the mean line has to be defined on the interval 푥 = [−푏, 푏]. 
The variables have to be transformed accordingly. The transformation is 

푥 = 푏(2푥̅ − 1),										푏 =
푐
2
												(퐵. 3) 

and the new expressions for the mean line are 

푦
푐

=

⎩
⎨

⎧
2푚

푏 (1 + 푞)
[푏 (1 + 2푞) + 2푏푞푥 − 푥 ] 						− 푏 ≤ 푥 ≤ 푞푏

2푚
푏 (1 − 푞)

[푏 (1 − 2푞) + 2푏푞푥 − 푥 ]											푞푏 < 푥 ≤ 푏	
 

(퐵. 4) 

Since ℎ ≡ −푦 ,  also the spatial gradient is calculated in 
closed form as 
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휕ℎ
휕푥

=

⎩
⎪
⎨

⎪
⎧ 4푚(푥 − 푏푞)

푏(1 + 푞) 										− 푏 ≤ 푥 ≤ 푞푏

4푚(푥 − 푏푞)
푏(1 − 푞) 															푞푏 < 푥 ≤ 푏			

												(퐵. 5) 

and with the Glauert change of variable, 푥 = 푏cos	휑, the final form of 
the spatial gradient is 

휕ℎ
휕푥

=

⎩
⎪
⎨

⎪
⎧4푚(cos휑 − 푞)

(1 − 푞) 													0 ≤ 휑 ≤ 휑

4푚(cos휑 − 푞)
(1 + 푞) 												휑 < 휑 ≤ 휋		

												(퐵. 6) 

where 휑  is the Glauert variable evaluated at q. In this form, the gradient 
can be integrated to solve for the Glauert expansions coefficients. The 
first four terms are 

ℎ =
1
휋

휕ℎ
휕푥

푑휑

=
4푚푞

(1 − 푞 )
4
휋

(푞푠푖푛 푞 + 1 − 푞 ) − (1 + 푞 ) 				(퐵. 7) 

ℎ =
2
휋

휕ℎ
휕푥

cos휑 푑휑

=
4푚

(1 − 푞 )
(1 + 푞 ) −

4
휋

(푞푠푖푛 푞 + 푞 1 − 푞 )  

(퐵. 8) 

ℎ =
2
휋

휕ℎ
휕푥

cos휑 2푑휑 =
32푚
3휋

푞
1 − 푞

												(퐵. 9) 

ℎ =
2
휋

휕ℎ
휕푥

cos 3휑 푑휑 =
32푚
3휋

푞
1 − 푞

												(퐵. 10) 
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APPENDIX C: MEAN LINE 
EXPANSION FOR THE TRAILING 
EDGE AND LEADING EDGE 
DROOP 

 

This appendix explains how to derive a simple closed form 
expression for a parabolic leading or trailing edge droop, like the one 
adopted to obtain the mean line of the SC-1095 airfoil. In fact, only the 
mean line of the airfoil is needed for the airloads calculation in this 
theory. This geometry is similar to the one adopted in Reference [7] in 
which the authors deflect the leading edge and the trailing edge of the 
airfoil by fitting a parabola to the main mean line. The new shape is 
defined by two angles, 휃  and 훿 , that represent respectively the angle 
deflection of the leading and trailing edges. The angles are measured 
from the leading or trailing edge to the initiation point of the droop and 
the deflections are easily derived as 

푦 = −
휃
푏

(푥 + 푒푏)
1 − 푒

					− 푏 ≤ 푥 ≤ −푒푏				leading − edge	droop			(퐶. 1) 

푦 = −
훿
푏

(푥 − 푑푏)
1 − 푑

							푑푏 ≤ 푥 ≤ 푏								trailing − edge	droop				(퐶. 2) 

The slope of the mean line becomes 

푑푦
푑푥

=

⎩
⎪
⎨

⎪
⎧−2휃 푥

푏 + 푒

1 − 푒
																					− 푏 ≤ 푥 < −푏푒

															0																															 − 푏푒 ≤ 푥 ≤ 푏푑
−2훿 푥

푏 − 푑

1 − 푑
																											푏푑 < 푥 ≤ 푏

												(퐶. 3) 

with 0 ≤ 푒 ≤ 1	and	0 ≤ 푑 ≤ 1. 

The generalized deformations ℎ  and the generalized spatial 
gradients ℎ 	can be calculated as 
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ℎ = −
1
휋

푦(휑)푑휑												(퐶. 4) 

ℎ = −
2
휋

푦(휑) cos(푛휑) 푑휑 										푛 ≥ 1												(퐶. 5) 

ℎ = −
1
휋

푑푦(휑)
푑푥

푑휑												(퐶. 6) 

ℎ = −
2
휋

푑푦(휑)
푑푥

cos(푛휑)푑휑 										푛 ≥ 1												(퐶. 7) 

The resultant integrals are 

ℎ =
푏훿

2휋(1 − 푑)
(1 + 2푑 ) cos 푑 − 3푑 1 − 푑

+
푏휃

2휋(1 − 푒)
(1 + 2푒 ) cos 푒 − 3푒 1 − 푒 									(퐶. 8) 

ℎ =
2푏훿

3휋(1 − 푑) −3푑 cos 푑 + (2 + 푑 ) 1 − 푑

+
2푏휃

3휋(1 − 푒) 3푒 cos 푒 − (2 + 푒 ) 1 − 푒 												(퐶. 9) 

ℎ =
푏훿

6휋(1 − 푑) 3 cos 푑 + (5 − 2푑 )푑 1 − 푑

+
푏휃

6휋(1 − 푒) 3 cos 푒 − (5 − 2푒 )푒 1 − 푒 							(퐶. 10) 

ℎ = 푄 [1 − 푛

+ 푑 (2
+ 푛 )] sin(푛 cos 푑)3푑 1 − 푑 푛 cos(푛 cos 푑)

+ 푄 [1 − 푛 + 푒 (2 + 푛 )] sin(푛 cos 푒)

− 3푒 1 − 푒 푛 cos(푛 cos 푒) 									푛 ≥ 3												(퐶. 11) 

with 

푄 =
4푏훿

푛휋(1 − 푑)(푛 − 4)(푛 − 1) 												(퐶. 12) 
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푄 =
4푏휃 (−1)

푛휋(1 − 푑)(푛 − 4)(푛 − 1)
												(퐶. 13) 

and 

ℎ =
2훿

휋(1 − 푑)
−푑 cos 푑 + 1 − 푑

+
2휃

휋(1 − 푒)
푒 cos 푒 − 1 − 푒 												(퐶. 14) 

ℎ =
2훿

휋(1 − 푑)
cos 푑 − 푑 1 − 푑

+
2휃

휋(1 − 푒)
cos 푒 − 푒 1 − 푒 												(퐶. 15) 

ℎ =
4훿

푛휋(1 − 푑)(푛 − 1) 푑 sin(푛 cos 푑)

− 푛 1 − 푑 cos(푛 cos 푑)

+
4휃

푛휋(1 − 푒)(푛 − 1)
푒 sin(푛 cos 푒)

+ (−1) 푛 1 − 푒 cos(푛 cos 푒) 								푛 ≥ 2									(퐶. 16) 
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APPENDIX D: TIME DERIVATIVE 
OF STALL RESIDUALS 

 

This appendix illustrates the method to calculate the total 
derivative of the stall residuals, which are used in the second order 
differential equation in ONERA model. From Chapter 6.3, where the 
static stall residuals are presented, it is possible to see the dependence on 
훼,훼 	and	훼  which in turn are functions of both ℎ  and 푧. 

The total derivative is therefore 

푑(∆퐶 )
푑푡

=
휕(∆퐶 )
휕푧

푑푧
푑푡

=
휕(∆퐶 )
휕푧

휕푧
휕훼

푑훼
푑푡

+
휕푧
휕ℎ

푑ℎ
푑푡

+
휕푧
휕ℎ

푑ℎ
푑푡

+ ⋯ 											(퐷. 1) 

Now the process will be illustrate considering NACA 0012 airfoil. 
From Chapter 6.3.1 the variable 푧 and the expression of ∆퐶  are given by 

푧 = 훼 − 훼 = 훼 − 0.293 + 0.870ℎ + 0.099ℎ − 0.490ℎ 												(퐷. 2) 

Δ퐶 = 0.2689 tan (54.54푧) + 15.89(푧 + 0.3192) + 0.4070					(퐷. 3) 

and thus the total derivative of 푧 and the partial derivative of ∆퐶   are 

푑푧
푑푡

=
푑훼
푑푡

+ 0.870
푑ℎ
푑푡

+ 0.099
푑ℎ
푑푡

− 0.490
ℎ
푑푡
												(퐷. 4) 

휕(∆퐶 )
휕푧

=
14.67

1 + 2975푧
+ 63.56(푧 + 0.3192) 												(퐷. 5) 

Finally, from the latest two expressions, it is possible to obtain the 
total derivative of the residuals 

푑(∆퐶 )
푑푡

=
휕(∆퐶 )
휕푧

푑푧
푑푡

=
14.67

1 + 2975푧
+ 63.56(푧 + 0.3192)

푑훼
푑푡

+ 0.870
푑ℎ
푑푡

+ 0.099
푑ℎ
푑푡

− 0.490
ℎ
푑푡

												(퐷. 6) 
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If a morphing variable is used, like a flap with the deflection 
characterized by the angle 훽, this total derivative can be written 
alternatively in terms of this variable obtaining 

푑(∆퐶 )
푑푡

=
휕(∆퐶 )
휕푧

푑푧
푑푡

=
14.67

1 + 2975푧
+ 63.56(푧 + 0.3192)

푑훼
푑푡

+ 0.870
휕ℎ
푑훽

+ 0.099
휕ℎ
푑훽

− 0.490
휕ℎ
푑훽

	
푑훽
푑푡

										(퐷. 7) 

For an airfoil with a trailing edge flap the first three terms of the 
partial derivatives 휕ℎ 휕훽⁄  are 

휕ℎ
푑훽

=
1
휋

cos 푑 												(퐷. 8) 

휕ℎ
푑훽

=
2
휋

1 − 푑 												(퐷. 9) 

휕ℎ
푑훽

=
2
휋
푑 1 − 푑 												(퐷. 10) 
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APPENDIX E: THEODORSEN AND 
GARRICK AERODYNAMIC 
THEORY 

 

This chapter presents the original theories developed by 
Theodorsen/Garrick that confirm the unsteady airloads theory developed 
by Peters. A thin oscillating deformable airfoil is considered here and the 
aerodynamic loads are derived. The presentation here follows the work 
of W. P. Walker [6]. 

E.1) LIFT DERIVATION 

Theodorsen’s method for thin oscillating airfoils is based on ideal 
flow in two dimensions. The flow is composed by two main parts: the 
flow due to the presence of the airfoil in the flow, also known as the flow 
due to the circulation around the airfoil, and the flow due to the vortices 
in the wake (Appendix F). These components of the flow are elementary 
flow solutions to Laplace’s equation and their sum is still a solution to 
this equation.  Laplace’s equation is 

 
∇ 휙 = 0												(퐸. 1) 

where  휙 is the velocity potential. 

The airloads model is developed for a flat plate. The non-
circulatory flow (the flow due to the presence of the airfoil in the flow) is 
developed with a source-sink pair distributed along the chord. The 
strength of the sheet is obtained by the imposition of the boundary 
condition: the absence of flow through the surface of the airfoil. 
Similarly, the circulatory flow (the flow due to the wake) is developed by 
using a vortex sheet on the airfoil and in the wake which extends to 
infinity. The strength of this sheet is obtained by the imposition of the 
Kutta condition: the flow must leave the trailing edge smoothly. 

E.2) AIRFOIL SHAPE 

The airfoil motion is represented by plunge, pitch and different 
forms of camber shapes. These last shapes are obtained by using 
Chebyshev orthogonal polynomials, which permit the representation of 
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any deformed shape by considering enough polynomials in the solution. 
These polynomials are chosen  to guarantee the verification between this 
theory and Peters’s one (Chapter 5), that uses Chebyshev polynomials 
too, but it is not compulsory: any set of orthogonal polynomials could be 
chosen. In general, Chebyshev polynomials are given as 

 
푇 (푥) = 1 

푇 (푥) = 푥												(퐸. 2) 

푇 (푥) = 2푥푇 (푥) − 푇 (푥) 

where  푥 is the non-dimensional variable along the chord that varies from 
-1 at the leading edge to 1 at the trailing edge. The first five polynomials, 
that are used for the development of this theory, are given below and 
shown in Figure E.1. Note that the first three are the same derived in 
Peters theory: 

푇 (푥) = 1 

푇 (푥) = 푥 

푇 (푥) = 2푥 − 1												(퐸. 3) 

푇 (푥) = 4푥 − 3푥 

푇 (푥) = 8푥 − 8푥 + 1 

 

 
Figure E.1: Chebyshev polynomials. 
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The first Chebyshev polynomial is a constant in space and it 
represents the vertical displacement, plunge. The second polynomial 
represents a linear function which can be associated to the flat plate 
subjected to an angle of attack, pitch. From the third polynomial onwards 
the functions are no more linear: these polynomials represents the 
camber’s deformations. It is possible to obtain a generalized airfoil shape 
in terms of Chebyshev polynomials as 

푦(푥) = 퐴 푇 (푥) + 퐴 푇 (푥) + 퐴 푇 (푥) + ⋯+ 퐴 푇 (푥) + ⋯+ 퐴 푇 (푥) 

(퐸. 4) 

where the 퐴 ’s are the magnitude of each polynomial contributing to the 
complete airfoil shape. The 퐴 ’s can be related to the usual airfoil 
variables, such as ℎ for plunge and 훼 for pitch. In this manner it is 
possible to obtain 

푦(푥, 푡) =
ℎ
푏
푇 (푥) + 훼푇 (푥) +

푏푘
4
푇 (푥) +

푏 푘
24

푇 (푥) +
푏 푘
192

푇 (푥)

+ ⋯+ 퐴 (푡)푇 (푥)														(퐸. 5) 

where the 푘 ’s coefficients are the curvature variables of the airfoil and b 
is the semi-chord. The 퐴 ’s are written in terms of the physically 
relevant deformation variables by adding a scaling factor corresponding 
to the highest nonzero derivative (the terms that multiply the Chebyshev 
polynomials): 

퐴 =
푏
휕 푇
휕푥

휕 푦
휕푥

												(퐸. 6) 

E.3)LIFT DUE TO THE NON-CIRCULATORY FLOW 

As it has been said previously (Chapter E.1) the non-circulatory 
lift is developed using a source-sink pair distributed along the chord. The 
velocity potential due to a source or a sink 휙 /  is given by 

 
휙 / =

휎
4휋

log	((푋 − 푋 ) + (푌 − 푌 ) )												(퐸. 7) 

where 휙 is the strength and 푋 , 푌  are the location of the source/sink. 푋 
and 푌 are non-dimensional spatial variables in the unmapped domain. 
The Joukowski conformal mapping function is used here to map the 
circle of radius 푏 in a flat plate of semi-chord 푏. With this special 
conformal transformation all the points on the circle are mapped directly 
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to the flat plate whereas all the other points are mapped outside the circle 
(Figure E.2). The transformation is the following 

푥 + 푖푦 = 푋 + 푖푌 +
푏

푋 + 푖푌
												(퐸. 8) 

 

 
Figure E.2: Transformation of the circle points into the flat plate. 

 

If a double source of strength 2휎 is placed at a point (푋 ,푌 ) and a 
double sink of strength −2휎 is placed at a point (푋 ,−푌 ), like in Figure 
E.3, the total velocity potential of the source/sink pair is found by 
summing  the singular velocity potential expressions, obtaining 

휙 / =
휎

2휋
log	

(푋 − 푋 ) + (푌 − 푌 )
(푋 − 푋 ) + (푌 + 푌 ) 												(퐸. 9) 

 

 
Figure E.3: Locations of the double sources. 
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Now, using the conformal transformation on the surface of the 
circle, it is possible to obtain the following expression for the mapped 
velocity potential on the surface of the airfoil: 

휙 / =
휎

2휋
log	

(푥 − 푥 ) + √1 − 푥 − 1 − 푥

(푥 − 푥 ) + √1 − 푥 + 1 − 푥
												(퐸. 10) 

Integrating the expression along the chord gives a general 
relationship for the velocity potential due to the source/sink pair sheet 

휙 =
푏

2휋
σ(x, t) log

(푥 − 푥 ) + √1 − 푥 − 1 − 푥

(푥 − 푥 ) + √1 − 푥 + 1 − 푥
푑푥  

(퐸. 11) 

 

The velocity must satisfy the boundary condition of 
impermeability and, as it has been said previously in Chapter E.1, the 
strength of the source/sink sheet depend on this condition. Approaching 
the surface of the source/sink sheet, the velocity must be perpendicular to 
the surface: the velocity of the flow which is flowing out of the source 
represent the strength of the source. For a generic airfoil shape, the 
strength of the source/sink could be written as 

휎(푥, 푡) / = 푈
휕푦(푥, 푡)
휕푥

+ 푏
휕푦(푥, 푡)
휕푡

												(퐸. 12) 

where 푈 is the free stream velocity. 

If the airfoil deformation expression 푦(푥, 푡) (equation 퐸. 5) is 
substituted into the source/sink strength equation (퐸. 12) and this 
equation is substituted into the velocity potential expression (equation 
퐸. 11), it is possible to obtain the potential for the non-circulatory flow 
as a function of 푥. 

Now that the potential is calculated, it is necessary to obtain an 
expression for the lift force in order to compare the results with the 
Peters’s ones. Therefore, the next step is to calculate the pressure with 
Bernoulli’s equation 

푝 = 푝 +
1
2
휌푈 + 휌

휕휙
휕푡
												(퐸. 13) 
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that gives the following expression for the total pressure in the free 
stream flow 

푝 = 푝 +
1
2
휌푈 												(퐸. 14) 

where 휌 is the density of the air.  

Considering small disturbances, it is possible to linearize and 
rewrite the equation as 

푝 − 푝 = −휌
푈
푏
휕휙
휕푥

+
휕휙
휕푡

												(퐸. 15) 

The difference between the velocity potential of two locations is 
equal to the integral of the velocity along the surface between the two 
locations. This assertion gives 

휙 − 휙 = 푈′푑푥 												(퐸. 16) 

 where 푥  and  푥  are the locations and  휙  and 휙  are the velocity 
potentials respectively. 

In the unmapped domain (the circle), the flows in two locations 
that are antisymmetric must be the same. This condition has to be 
satisfied also in the mapped domain (the flat plate) giving the following 
result: 

		휙 − 휙 (푥) = 휙 (푥) − 휙 												(퐸. 17) 

where 휙  is the potential at the leading edge, 휙  is the potential in a 
location on the upper surface of the circle and 휙  is the potential in the 
antisymmetric location respect to the previous one in the lower surface. 
Thus the pressure difference between the upper and lower surface is 

푝 − 푝 = −2휌
푈
푏
휕휙
휕푥

+
휕휙
휕푡

												(퐸. 18) 

The integration of the previous equation gives the lift force for the 
non-circulatory flow 

퐿 = 푏 (푝 − 푝 )푑푥 = −휋휌푏 푈훼̇ + ℎ̈ −
푏
8
푘̈ 												(퐸. 19) 

where 훼̇ is the pitch velocity, ℎ̈ is the plunge acceleration and 푘̈  is the 
second derivative of the first high order shape term. 
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E.4) LIFT DUE TO CIRCULATORY FLOW 

The non-circulatory flow does not satisfy the Kutta condition, 
which states that the pressure difference at the trailing edge should be 
zero. This can be seen if 푥 = 1 is put in the pressure difference equation: 
a nonzero value is obtained. Thus, a second flow has to be developed to 
satisfy this condition. 
 The circulatory flow is the answer and is developed using a sheet 
of vortices on the body and on the wake. The velocity potential for a 
point vortex 휙  is 

휙 =
Γ

2휋
tan

푌 − 푌
푋 − 푋

												(퐸. 20) 

where Γ is the strength of the vortex. 

 In general, the locations of the vortex on the wake follow the 
motion of the airfoil but for small disturbances the wake can be 
approximated by a flat wake with negligible errors. Under these 
hypothesis, the vortex sheet of the wake can be considered moving 
downstream along the x-axis at the free stream velocity U. accordingly 
with Kelvin’s condition, the magnitude of the wake circulation will be 
always equal and opposite to the circulation of the airfoil, and constant in 
time. 

 In the unmapped domain, the point vortices are located one into 
the circle at (1 푋 , 0⁄ ) and the other one outside the circle, in the wake at 
(푋 , 0) respectively (Figure E.4). 

 

 
Figure E.4: Locations of the vortices. 
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The singularities have equal but opposite strength: this guarantee 
the condition that the total circulation is zero and, in addition, the 
condition of impermeability of the surface. The velocity potential for 
such a pair of vortices is given as, 

휙 =
Γ

2휋
tan

푌 − 푌
푋 − 푋

− tan
푌 − 푌

푋 − 1
푋

												(퐸. 21) 

where Γ is the strength of each point vortex. 

 Applying the Joukowski mapping (equation E.18), the expression 
above become 

휙 = −
Γ

2휋
tan

√1 − 푥 푥 − 1
1 − 푥푥

												(퐸. 22) 

where 푥 is the chord variable in the mapped plane and 푥  is the location 
of the vortices, which is on the x-axis as it was in the unmapped 
dominion. 

 The pressure difference due to the circulatory flow is given as, 

Δ푝 = −
2휌푈
푏

휕휙
휕푥

+
휕휙
휕푥

												(퐸. 23) 

Differentiating equation (퐸. 21) and substituting it into the 
pressure difference expression lead to the following result 

Δ푝 = −
휌푈푏Γ
휋

푥 + 푥

√1 − 푥 푥 − 1
												(퐸. 24) 

The integration of equation (퐸. 24) along the chord permits to 
obtain the expression of the lift for the circulatory flow, which is: 

퐿 = −휌푈Γ
푥

푥 − 1
												(퐸. 25) 

where the strength of the circulation is given by  Γ = 푏훾 (푥 , 푡)푑푥  with 
훾 (푥 , 푡) the circulation per unit length. 

Substituting this expression of the circulation into the lift equation 
gives 
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퐿 = −휌푈푏
푥

푥 − 1
훾 (푥 , 푡)푑푥 												(퐸. 26) 

that is the lift for the circulatory flow. 

 The velocity potential for the vortex sheet is then 

휙 = −
푏

2휋
tan

√1 − 푥 푥 − 1
1 − 푥푥

훾 (푥 , 푡)푑푥 												(퐸. 27) 

The magnitude of the circulation, 훾 (푥 , 푡), is determined by the 
Kutta condition, which force the flow to leave the trailing edge smoothly 
or, in other words, that force the velocity at the trailing edge to be finite. 
This latter assumption permit to have a useful equation for the 
deformation shape  

1
2휋

푥 + 1
푥 − 1

훾 (푥 , 푡)푑푥 = 푈훼 + ℎ̇ +
푏
2
훼̇ +

푈푏
2
푘 +

푈푏
8

푘 +
푈푏
48

푘 = 푄 

(퐸. 28) 

that can be used to calculate the lift 

퐿 = −2휋휌푈푏푄
∫ 푥

푥 − 1
훾 (푥 , 푡)푑푥

∫ 푥 + 1
푥 − 1 훾 (푥 , 푡)푑푥

= −2휋휌푈푏푄퐶(푘)							(퐸. 29) 

where 퐶(푘) is the Theodorsen’s function, explained in the following 
Chapter. 

E.5) THEODORSEN’S FUNCTION 

The hypothesis which validate the equations written till now is the 
assumption of small disturbances. If the motion is considered harmonic, 
there is a solution to the ratio of integrals above and therefore it is 
possible to calculate the lift force. To obtain this result, the motion is 
written as a function of frequency of harmonic oscillation 

 
훼(푥, 푡) = 훼푒 ( )												(퐸. 30) 

ℎ(푥, 푡) = ℎ푒 ( )												(퐸. 31) 

푘 (푥, 푡) = 푘 푒 																			푘 (푥, 푡) = 푘 푒  
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푘 (푥, 푡) = 푘 푒 	 

(퐸. 32) 

where 훼, ℎ,푘 , 푘 , 푘 	 are the magnitude of the oscillation, 푤 is the 
frequency and 푡 the time. The terms in 휑 are the phases of the motion. 

 Also the wake vortex sheet strength is written in terms of 
oscillatory motion 

훾 (푥, 푡) = 훾̅ 푒 ( )												(퐸. 33) 

where 푘 = 푤푏 푈⁄  is the reduced frequency. 

As said before, the motion written as an harmonic oscillation 
permits to calculate the ratio of integrals with Theodorsen’s function 
denoted by 퐶(푘). This function depend only on the reduced frequency 푘 
and take the form of Hankel functions: 

퐶(푘) = 퐹(푘) + 푖퐺(푘) =
퐻( )(푘)

퐻( )(푘) + 푖퐻( )(푘)
												(퐸. 34) 

where 

퐹(푘) =
퐽 (푘) 퐽 (푘) + 푌 (푘) + 푌 (푘)(푌 (푘) − 퐽 (푘))

(퐽 (푘) + 푌 (푘)) + (푌 (푘) − 퐽 (푘))
												(퐸. 35) 

퐺(푘) =
푌 (푘)푌 (푘) + 퐽 (푘)퐽 (푘)

(퐽 (푘) + 푌 (푘)) + (푌 (푘) − 퐽 (푘))
												(퐸. 36) 

are the real and imaginary parts of 퐶(푘) plotted in Figure E.5. 
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Figure E.5: Theodorsen's function. Real (F) and imaginary (G) parts. 

 

A complex plot of  퐶(푘) is given in Figure E.6 below. 

 

 
Figure E.6: Theodorsen's function C(k). 

 

The function reduces the amplitude of the circulatory lift with 
increasing reduced frequency of oscillation: it is a reduction factor which 
depends on the frequency of oscillation. It can be seen as a measure of 
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unsteadiness and it gives information about which combination of 
frequency, chord length and free-stream velocity give an equal unsteady 
flow. With such information it is possible to ignore the effect of the 
wake. 

The Hankel functions are a complex combinations of Bessel 
function of the first  퐽 (푘) and second  푌 (푘) kind (Figures E.7 and E.8 
respectively). 

퐻( )(푘) = 퐽 (푘) − 푖푌 (푘)												(퐸. 37) 

퐻( )(푘) = 퐽 (푘) − 푖푌 (푘)									퐻( )(푘) = 퐽 (푘) − 푖푌 (푘)												(퐸. 38) 

 

 
Figure E.7: Bessel functions of the first kind. 
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Figure E.8: Bessel functions of the second kind. 

 

E.6) TOTAL LIFT EXPRESSION 

 The addition of the circulatory and non-circulatory components 
give the complete lift. The final expression is complex, where the 
amplitude of the complex number is the amplitude of oscillation and the 
phase is the phase of the force relative to the phase of the motion. 

퐿 = 퐿 + 퐿 = −휋휌푏 푈훼̇ + ℎ̈ −
푏
8
푘̈ − 2휋휌푈푏푄퐶(푘)

= −휋휌푏 푈훼̇ + ℎ̈ −
푏
8
푘̈

− 2휋휌푈푏퐶(푘) 푈훼 + ℎ̇ +
푏
2
훼̇ +

푈푏
2
푘 +

푈푏
8

푘

+
푈푏
48

푘 												(퐸. 39) 

From the expression above, it is possible to obtain the lift 
contributions due to each deformation shape, corresponding velocities 
and accelerations. Table E.1 shows these contributions. The first two 
rows of the table match Theodorsen’s results. 
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Table E.1: Lift contributions derived from Theodorsen/Garrick theory. 

 1 
흏
흏풕

 흏ퟐ

흏풕ퟐ
 

h 0 −2휋휌푈푏퐶(푘) −휋휌푏  
휶 −2휋휌푈 푏퐶(푘) −휋푈휌푏 [퐶(푘) + 1] 0 

풌ퟏ −휋휌푈 푏 퐶(푘) 0 −
1
8
휋휌푏  

풌ퟐ −
1
4
휋휌푈 푏 퐶(푘) 0 0 

풌ퟑ −
1

24
휋휌푈 푏 퐶(푘) 0 0 

 

 

The table shows easily which airfoil motion shape contribute to 
the lift and also the existence of Theodorsen’s term 퐶(푘) display 
instantly if the lift force is due to circulatory or non-circulatory flow. The 
first column represent only the circulatory forces (static airfoil shapes) 
because there are no acceleration or velocities that can contribute to the 
circulatory flow. The second column shows that the plunge velocity 
contributes to the lift force in the same form as a static angle of attack. 
This is quite obvious because a constant velocity in the plunge direction 
can resemble a static angle of attack. The third column shows that only 
two airfoil motion shapes contribute to the lift force and that both terms 
are non-circulatory. 

Now, if a generic airfoil is forced to a small harmonic motion, 
Peters theory gives the same results as Theodorsen and Garrick. From 
Chapter 5 (equation 5.22) the lift force is given by 

퐿 = −2휋휌푏푓푢 (푤 − 휆 ) − 휋휌푏푢 푤 − 휋휌푏 푤̇ −
1
2
푤̇ 								(퐸. 40) 

If the components of the total velocity field 푤  and the 
accelerations 푤̇  are replaced with the ones derived in Chapter 5 and 휆  
is substituted by 

휆 = (푤 + 푤 )[1 − 퐶(푘)]												(퐸. 41) 

the results are quite the same obtained in table E.1 and shown in table 
E.2. This means that the two theories are really similar and can both be 
implemented in ONERA model. 
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Table E.2: Lift contributions derived from Peters’ theory. 

 1 
흏
흏풕

 흏ퟐ

흏풕ퟐ
 

풉ퟎ 0 −2휋휌푢 푏퐶(푘) −휋휌푏  
풉ퟏ −2휋휌푢 퐶(푘) −휋푢 휌푏 [퐶(푘) + 1] 0 

풉ퟐ −4휋휌푢 퐶(푘) 0 −
1
2
휋휌푏  

풉ퟑ −6휋휌푢 퐶(푘) 0 0 
풉ퟒ −8휋휌푢 퐶(푘) 0 0 

 

 

This result was also shown in Section 8.2 for harmonic pitch and flap 
simulations. 
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APPENDIX F: WAKE MODEL 
 

The formation of lift around an airfoil is associated to the presence 
of a circulation Γ(푡) ≠ 0 (Figure F.1). Every variation in the condition of 
motion of the airfoil is followed by a variation in the circulation. Since 
the global circulation must be preserved, as a consequence, a vortex must 
detaches from the trailing edge of the airfoil. 

 

 
               Figure F.1: Circulation variation and formation of a trailing edge vortex. 

Source of the figure: Reference [5]. 
 

The strength of this vortex must be equal to the variation in the 
circulation and its rotation must be opposite the one of the circulation. If 
the condition of motion of the airfoil varies with continuity, then a 
continuous detachment of vorticies is produced and gives the formation 
of a wake. 

The wake shed from the trailing edge of an airfoil can be modeled 
by doublet or vortex distributions (Figure F.2). For simplicity, a discrete 
vortex model of this continuous vortex sheet is adopted here. The 
strength of each vortex is equal to the vorticity shed during the 
corresponding time step and therefore the location and strength of each 
vortex element must be specified at every step. 
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Figure F.2: Wake shed from the trailing edge. Source of the figure: Reference [5]. 

 

What is needed is the components of velocity due to the shed 
wake, {휆 }, because they induce a velocity field in the plane of motion of 
the airfoil that alter the overall flow around the body. These components 
are obtained by the calculation of the downwash due to the wake. Before 
doing this, the wake’s circulation at each time step is necessary and it can 
be found applying the Kelvin’s condition. The components of velocity 
are so important because once they are collected it is possible to proceed 
on with the calculation of the generalized loads. 

Consider now the airfoil. At the beginning of the motion the first 
wake element is produced. The location of this first element is the 
trailing edge, where 푥 = 푏 in concordance with the position of the 
coordinate system (mid-chord). Although the airfoil can moves in the 푥푧 
plane, the wake is considered mono-dimensional and it spreads along the 
x-axis. Therefore, at each time step, the position of the wake’s elements 
is specified by only the 푥 coordinate. The strength of this element is 
found by the application of the Kelvin’s condition: 

푑Γ
푑푡

=
푑Γ(푡)
푑푡

+
푑Γ
푑푡

= 0												(퐹. 1) 

where Γ(푡) is the airfoil’s circulation and Γ  is the wake’s circulation. 
For the first time step the Kelvin’s condition led to: 

Γ(푡) + Γ = 0												(퐹. 2) 

from which is obtained the value of  Γ . 
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At the second time step the first wake’s element moves along the 
x-axis of a specific quantity that is given by 푈Δ푡, where 푈 is the flow 
velocity whereas Δ푡 is the time step. Contemporaneously a second 
wake’s element forms at the trailing edge of the airfoil. Once again the 
Kelvin’s condition has to be met and thus, for this second element, it is 
possible to write the following equation: 

Γ = −[Γ(t ) + Γ ]												(퐹. 3) 

where Γ(t ) is the total circulation of the airfoil (that has changed) at the 
second time step and Γ  is the previous wake’s circulation due to the 
first wake’s element. The assumption made here is that there is no vortex 
decay. Accordingly to Helmholtz theorems, if a wake vortex element is 
shed from the trailing edge, its strength will be conserved. 

By assuming that the Kelvin condition was met at each previous 
time step, it is possible to write the following equation for the 푖th time 
step: 

Γ = − Γ(t ) + Γ 												(퐹. 4) 

where 푘 is the counter of the wake vorticies. 

Now, recalling that the downwash induced by the airfoil bound 
circulation γ (ξ, t) (Chapter 5) is 

푣̅ = −
1

2π
γ (ξ, t)
x − ξ

dξ												(퐹. 5) 

it is possible to calculate the total downwash induced on the airfoil by 
simply adding the downwash due to the 푁  discrete vortices of the wake 

푤 =
휕휙
휕푧

(푥, 푡) =
−Γ
2휋

1
(푥 − 푥 )

												(퐹. 6) 

where 푥  is the position of the 푘th wake’s vortex. 

Finally, imposing boundary condition, the unsteady motion of a 
two-dimensional thin airfoil theory gives 

휕휙
휕푧

= 푣̅ = −
1

2π
γ (ξ, t)
x − ξ

dξ = 

푈(푡)
휕휂(푥, 푡)
휕푥

− 푤 − 휃̇(푡)푥 +
휕휂(푥, 푡)
휕푡

										0 < 푥 < 푐												(퐹. 7) 
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which is the time-dependent equivalent of the steady-state boundary 
condition and must hold for each point 푥 on the airfoil’s chord. In 
addition, the Kutta condition must be respected for this flow, i.e. 

γ (c, t) = 0												(퐹. 8) 
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APPENDIX G: MATLAB CODE 
FLOW CHART OF ONERA MODEL 

 

The following flow chart recap what the MATLAB code 
implemented by Onur [2] does. The code, developed to validate ONERA 
model, is divided into three files: 

- the main program, that defines the testing conditions and 
integrates the system of differential equations; 

- the original ONERA Edlin Model, that contains all the differential 
equations of structure and the Onera Model; 

- the modified ONERA Model by Laxman, that contains all the 
differential equations of structure and the Onera Model. 

In addition, there are other four files that contain the 
characteristics and the parameters of the airfoils, calculate the linear 
flutter and plot the results. These files are called from the main program 
or from the ONERA model in order to integrate the differential equations 
with the ODE15s solver. 
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Figure G.1: Matlab code’s flowchart. 

 

The main program is called test_model.m. When the simulation 
starts, it begins with the initialization of the global variables (i.e. 
variables that are shared with the other sub-functions of the code) and the 
structural parameters. The flutter speed is not considered for the 
validation. 

START MAIN PROGRAM 
(test_model.m) 

Initialize global variables 

Initialize structural parameters 

Compute linear flutter speed 

Write parameters into file 

 

- Time-stepping parameters 
 

- Model parameters 
 

- Initialize conditions for 
solving differential equations 
 

- Set up variables for up-wash 
derivative calculation 
 

- Set up different variables for 
ONERA model 
 

- Integration of the system 

 

Plot results 

END MAIN PROGRAM 

 

Lin_flutter.m 

It sets up 
parameters to 
calculate the 
flutter speed 

parameters.m 

It sets up 
parameter for 
the ONERA 
model: lift, 
moment, and 
drag 

ONERA_Edlin.m 

It sets up 
equations and 
derivatives for 
the integrations 

Airfoil_char.m 

It uses the pitch 
angle to 
calculate the 
airfoil’s data lift, 
moment and 
drag 
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Flutter is a self-feeding and potentially destructive vibration that 
produces rapid periodic motion of an airfoil. It occurs when aerodynamic 
forces on the airfoil couple with his natural mode of vibration. This 
phenomenon is self-fed because the vibrational movement increases the 
aerodynamic load which in turn drives the airfoil to move further. It 
could create a vicious circle in which, if the energy input by the 
aerodynamic excitation is larger than the one dissipated by the damping 
in the system, the amplitude of vibration will increase, resulting in a self-
exciting oscillation that could lead to rapid failure. 

The core of the main program is the time-step integration of the 
system. The goal of this part of the program is to calculate the 
differential equations of the ONERA model. Therefore it calls the 
parameters for the model (parameters.m) and starts the integration of the 
equations contained in the sub-function ONERA_Edlin.m. The final step 
is the plot of the results. 
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