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UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

TESI DI LAUREA MAGISTRALE IN INGEGNERIA DELLE

TELECOMUNICAZIONI

MICROFLUIDIC NETWORKING:

MODELLING AND ANALYSIS

RELATORE: Ch.mo Prof. Andrea Zanella

LAUREANDO: Andrea Biral

Padova, 10 dicembre 2012





Abstract

Droplets microfluidics refers to manipulation and control of little amounts of flu-

ids flowing into channels of micro-scale size. Our aim, pursued in the present

thesis, is to design a network formed by such microchannels and define a model

to properly route the droplets inside them. However, this kind of study relies on

the preliminary deep knowledge of microfluidic flow dynamics and typical prop-

agation characteristics. Accordingly, we begin our dissertation by introducing

the physical laws that govern microfluidics. Then, we discuss the current under-

standings about droplets formation, transport and their behavior in bifurcating

channels, corroborating all with simulative results. Furthermore, we show how

such concepts can be integrated in our networking solution and, lastly, we imple-

ment a microfluidic network with bus topology and illustrate its performance.
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Chapter 1

Introduction

Microfluidic is both a science and a technology that deals with the control of small

amounts of fluids flowing through microchannels. These have dimension in the

order of micrometers and are usually fabricated in PDMS, i.e., Polydimethylsilox-

ane, which is a silicon based organic polymer. In this thesis we are specifically

interested in droplets microfluidics which is a science related to the control of

the motion dynamics of droplets in such microchannels. In this scenario, small

drops are dispersed into another fluid, which is immiscible with them; this is why

in literature they are conventionally called dispersed phase, while the immiscible

substance in which they are immersed is called continuous phase.

This line of reserch has emerged strongly in the past few years but the field

is still at an early stage of development. Nevertheless its capabilities and advan-

tages are already well known. The so called droplet microfluidics technology, in

fact, exploits both its most obvious characteristic (small size) and less obvious

characteristics of fluid in microchannels (such as laminar flow) to provide new

capabilities in the control and concentrations of molecules in space and time.

Moreover it has the potential to influence many subject areas from chemical syn-

thesis and biological analysis to optics and information technology.

Nowadays, applications of microfluidics span from inkjet printheads to DNA

chips, from micro-propulsion to micro-thermal technologies. However, the most

promising utilization of microfluidic technologies have just been in analysis, for

which they offer a number of useful capabilities: the ability to use very small

quantity of samples and reagents and to carry out separations and detections

with high resolution and sensitivity, low cost, short time for analysis and small
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1. INTRODUCTION

footprint for the analytical devices. All these advantages however come at the

price of raise a new set of fluid dynamical problems that appear due to the de-

formable interface of the droplets, the need to take into account interfacial tension

and its variations, and the complexity of singular events such as splitting drops.

In the physicist’s vocabulary, droplets introduce nonlinear laws into the otherwise

linear Stokes flows. Evidence of this nonlinearity can be found, for instance, by

considering that different flow regimes can appear in the same channel and under

similar forcing conditions. These transitions between widely different behaviors

are possible because modifications in the drop geometry couple back to the flow

profiles and amplify initially small variations. A large body of work has recently

attempted to tackle these fluid dynamical questions, leading along the way to cre-

ative new design for microfluidic devices -e.g., Labs-on-a-Chip (see Figure 1.1)-

and new physical approaches to control the behavior of drops.

Figure 1.1: Example of Lab-on-a-chip: a microfluidic chemostat used to study the

growth of microbial populations.

In the future, one may envision microfluidic systems with mazes of microchan-

nels along which droplets conveying solutes, materials and particles undergo

transformations and reactions. These devices could be used to perform all sort of

bio-/physiochemical analysis or to produce novel entities by means of specific “mi-

crofluidic machines” able to process fluids at such a scale. This particular scenario
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has inspired the following work. Indeed, our idea is to create a network, consisting

of microchannels, in order to connect with each other more microfluidic machines.

In this way, we could miniaturize and automate in a single device an entire labora-

tory gaining, at the same time, in versatility and flexibility. In fact, once a specific

microfluidic machine has opportunely processed an incoming droplet, the latter

might be reinjected in the network to reach another target microfluidic machine

undergoing further transformations and so on. Moreover, we could parallelize

the tasks undertaken by different microfluidic machines obtaining a consequent,

significant time saving. Such a prospective requires, however, preliminarily, the

control over elementary operations like droplet production, breakup, transport

and redirection. This motivated us to structure the present thesis as described

below.

In Chapter 2 we introduce the main underlying concepts of droplets microflu-

idics in order to let the reader familiarize with the notation and the physical

ingredients typical of this science.

Chapter 3, instead, is dedicated to the study of droplet production in mi-

crochannels. In particular, it contains a brief review of the three main approaches

proposed, in this regard, in literature with a particular focus on the solution that

satisfy our requirements the most. Furthermore, here we also present a set of

simulative results obtained with the CFD software OpenFOAM (see Appendix

A) in order to validate the theoretical basis introduced.

In the first half of Chapter 4 we treat the dynamics of droplet breakup in a

junction. The latter is, of course, a founding part of our microfluidic network

since it is an indispensable element to direct the droplets to the various target

microfluidic machines. This topic is very important to us because we need to

preserve the integrity of the droplets throughout the entire network and, thus,

even when they face “sensitive points” like bifurcations. Therefore, here, we’ll

analyze in details the conditions that allow us to transport droplets avoiding their

splitting in the channels’ ramifications.

Then, in the second part of the chapter, we present a model for the pro-

grammable partitioning of droplets at a T-junction illustrating how we can direct
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1. INTRODUCTION

them in the desired branch of the bifurcation. Once again, we corroborate our

conclusions with corresponding numerical simulations obtained at the calculator.

In Chapter 5 we finally introduce a microfluidic bus-shaped network, discuss

the mathematical and physical constraints that we need to respect in order to

correctly dimension it and then illustrate the performance of such a system.

Lastly, Chapter 6 focuses on the possible future developments of the thesis,

anticipating eventual improvements and alternative solutions.
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Chapter 2

Basic microfluidic concepts

The present chapter is intended to give an overview of the microfluidic’s physical

basis by collecting and describing the main parameters and models which rule

fluid transport and droplet dynamics in microfluidic systems. Thus, the aim

of this section is to allow the reader to familiarize with the principal concepts

of microfluidic that will be recalled and further analyzed throughout the entire

work.

2.1 Viscosity

Viscosity is a measure of the resistance of a fluid which is being deformed by

either shear stress or tensile stress. In simple terms, it describes a fluid’s internal

resistance to flow and may be thought of as a measure of fluid friction: the greater

the viscosity, the greater its resistance to flow and vice versa. With the exception

of superfluids, all real fluids have some resistance to stress and therefore are

viscous. In common usage, a liquid with a viscosity less than water is known as

mobile liquid while, in the opposite case, it is called viscous liquid. Synthetically,

the physical behavior associated with viscosity can be described as follows: in any

flow, molecule’s layers move at different velocities and the fluid’s viscosity arises

from the shear stress between the layers that ultimately opposes any applied

force. The relationship between the shear stress and the velocity gradient can be

obtained by considering two plates closely spaced at a distance y, and separated

by a homogeneous substance. Assuming that the plates are very large, with a

large area A, such that edge effects may be ignored, and that the lower plate
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2. BASIC MICROFLUIDIC CONCEPTS

is fixed, let a force F be applied to the upper plate. If this force causes the

substance between the plates to undergo shear flow with a velocity gradient u/y,

it results:

F = µA
u

y
, (2.1)

where µ[Pa · s] is the proportionality factor called dynamic viscosity. It should

be noted that viscosity is a function of temperature: fluid become less viscous

as temperature increases. In this thesis, however, we assume the temperature

is constant during the operation of microfluidic devices. Water at 20� has a

characteristic dynamic viscosity of 1.002 · 10−3Pa · s.
Equation (2.1) can also be expressed in terms of shear stress (τ = F

A
). In

particular, as reported in differential form by Isaac Newton for straight, parallel

and uniform flow, the shear stress between layers is proportional to the velocity

gradient in the direction perpendicular to the layers: τ = µ∂u
∂y
. Newton’s law

of viscosity, given above, is a constitutive equation which holds for the so called

Newtonian fluids. Non-Newtonian fluids, instead, exhibit a more complicated

relationship between shear stress and velocity gradient than simple linearity. The

analysis of the latter, however, is beyond the scope of this work since we will be

dealing only with Newtonian fluid.

Finally, in many situations we are concerned with the ratio between the dy-

namic viscosity and the density of the fluid: ν = µ
ρ
which is a coefficient named

kinematic viscosity. The SI physical unit of ν is [m2/s]. Water at 20� has a

characteristic dynamic viscosity of about 10−6m2/s.

2.2 Capillary number

In fluid dynamics, the Capillary number represents the relative magnitude of

viscous forces versus surface tension acting across an interface between a liquid

and a gas, or between two immiscible liquids. It is a dimensionless parameter

defined as:

Ca =
µu

σ
(2.2)

where µ[Pa · s] is the viscosity of the main liquid, u[m/s] is its mean velocity

and σ[N/m] is the surface or interfacial tension coefficient between the two fluid

phases.
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2.4 REYNOLDS NUMBER

With reference to the droplet microfluidic context:

Ca =
µcuc

σ
(2.3)

where µc[Pa ·s] is the viscosity of the carrier fluid in which droplets are immersed,

uc[m/s] is its mean velocity and σ[N/m] is the interfacial tension coefficient be-

tween continuous and dispersed phase.

Since viscous stress represents a destructive force while interfacial tension

acts as a cohesive force, Capillary number may be thought of as a measure of

the cohesion of the droplet: the greater is the Capillary number, the greater the

probability of droplet splitting and vice versa.

2.3 Reynolds number

In fluid dynamics the Reynolds number is a dimensionless parameter that gives a

measure of the ratio of inertial forces to viscous forces and consequently quantifies

the relative importance of these two types of forces for given flow conditions.

Reynolds numbers frequently arise when performing dimensional analysis of

fluid dynamics problems, and as such can be used to determine dynamic simil-

itude between different experimental cases. They are also used to characterize

different flow regimes, such as laminar or turbulent flow: laminar flow (see Section

§2.4) occurs at low Reynolds numbers, where viscous forces are dominant, and

is characterized by smooth, constant fluid motion; turbulent flow occurs at high

Reynolds numbers and is dominated by inertial forces, which tend to produce

chaotic eddies, vortices and other flow instabilities.

Mathematically, Reynolds number is defined as follows:

Re =
ρuL

µ
(2.4)

where µ[Pa·s] is the viscosity of the liquid, u[m/s] is its mean velocity, ρ[kg/m3] is

its density and L[m] is a characteristic linear dimension of the system. Declining

it in the microfluidic context, L is conventionally considered equal to the hydraulic

diameter of the channel (DH = 4A/P , where A is the cross sectional area of the

channel and P is the wetted perimeter of the channel), µ is the viscosity of the

carrier liquid (µc), u is its mean velocity (uc) and ρ is its density (ρc). Thus:

Re =
4Aρcuc

Pµc

(2.5)
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2. BASIC MICROFLUIDIC CONCEPTS

2.4 Laminar flow

In fluid dynamics, laminar flow, sometimes known as streamline flow, is a flow

regime characterized by high momentum diffusion and low momentum convection

that involves a very orderly motion of fluid’s particles which are organized in

parallel layers (or laminae). Although all the molecules move in straight lines,

they are not all uniform in velocity: if the mean velocity of the flow is u, then

the molecules at the centre of the tube are moving at approximately 2u, whilst

the molecules at the side of the tube are almost stationary. Moreover, in this

regime, the fluid tends to flow without lateral mixing, there are no cross currents

perpendicular to the direction of flow, nor eddies or swirls of fluids.

This kind of behavior occurs as long as the Reynolds number (see Section §2.3)

is below a specific critical value ReCR ≃ 2000 that depends on the particular flow

geometry and can be sensitive to disturbance levels and imperfections present in

a given configuration. Bearing in mind this condition, laminar flow is exactly

the regime we would expect to see in typical microfluidic systems since their

characteristic small length-scales (L ≃ 10−6m) and slow fluid velocities (u ≃
10−3m/s) lead to very low Reynolds number (Re = ρuL

µ
≃ 10−3).

Further, when Reynolds number is much less than 1, which is the case of our

competence, creeping motion (or Stokes flow) occurs. This is an extreme case

of laminar flow where viscous (friction) effects are much greater than inertial

forces. This physical phenomenon entails two additional interesting properties in

incompressible Newtoninan fluids:

� Instantaneity: a Stokes flow has no dependence on time other than through

time-dependent boundary conditions. This means that, given the boundary

conditions of a Stokes flow, the flow can be found without knowledge of the

flow at any other time;

� Time-reversibility: a time-reversed Stokes flow solves the same equations

as the original Stokes flow. Practically, it implies that it is difficult to mix

two fluids using creeping flow.
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2.5 HAGEN-POISEUILLE’S LAW

2.5 Hagen-Poiseuille’s law

In fluid dynamics, the Hagen-Poiseuille equation is a physical law that relates the

pressure drop in a fluid flowing through a long pipe with its volumetric flow rate.

The assumptions of the equation are that the fluid is viscous and incompressible,

the flow is laminar through a channel of constant cross-section and there is no

acceleration of fluid. These hypotheses, as we already pointed out, are fully

satisfied in the typical microfluidic systems.

Now, in order to derive Hagen-Poiseuille’s law, let’s begin considering the

incompressible Navier-Stokes equation for uniform-viscous Newtonian fluids with

no body forces:

ρ
∂u⃗

∂t
= −ρu⃗∇u⃗−∇p+ µ∇2u⃗ (2.6)

where u⃗ [m/s] is the velocity field, which is the description of the velocity of the

fluid at a given point in space and time, and is denoted by u⃗ = u⃗(r⃗, t), where r⃗ [m]

is a position vector specifying a location in space and t [s] is time; ρ [kg/m3] is the

fluid density; µ [Pa · s] is the dynamic viscosity and p [Pa] is the pressure. More

specifically, in Equation (2.6), ρ∂u⃗
∂t

represents the rate of change of momentum,

−ρu⃗∇u⃗ concerns convective force, −∇p describes the pressure force while viscous

force is indicated in the term µ∇2u⃗.

Let’s then consider a long cylindrical channel with the x-direction along the

axis of the channel. In the steady-state of fully developed fluid flow in the channel,

its velocity field is unidirectional and laminar and there is no acceleration of the

fluid. Thus, the unsteady and convection terms are all zero, and Equation (2.6)

becomes:

∇p = µ∇2u⃗ (2.7)

Equation (2.7) highlights the balance between the net pressure force and the net

viscous force. Due to the geometric simplifications and the boundary conditions

(u = 0 at r = R), the pressure driven motion, named Poiseuille flow, in the

circular channel of radius R [m] is parabolic across the diameter:

u =
R2 − r2

4µ

(
−dp

dx

)
= umax

(
1− r2

R2

)
(2.8)

where umax is the maximum velocity: umax = R2

4µ

(
− dp

dx

)
at r = 0. The Poiseuille

flow is characterized by a parabolic velocity profile (see Figure 2.1): the velocity

of flow in the center of the channel is greater than that toward the outer walls.

9



2. BASIC MICROFLUIDIC CONCEPTS

In contrast, electrically driven flow that is a useful alternative to pressure-driven

flow of water, known as electro-osmotic flow (EOF), offers a flat velocity profile

across the channel. The next step requires the calculation of the total volumetric

u

r

x

r=R

r=-R

Figure 2.1: Parabolic velocity profile of the Poiseuille flow.

flow rate Q [m3/s] in the circular channel. In order to get it, we need to spacially

integrate the velocity contributions (Equation (2.8)) from each lamina. Accord-

ingly, the volumetric flow rate for the steady-state pressure-driven fluid flow in

the channel, described by the Hagen-Poiseuille’s law, becomes:

Q =
πR4

8µ

(
−dp

dx

)
. (2.9)

Normalizing Equation (2.9) by the cross-sectional area, we generate the area-

averaged velocity U [m/s]:

U =
Q

πR2
=

R2

8µ

(
−dp

dx

)
. (2.10)

To be precise, the Hagen-Poiseuille’s law applies only for a channel that is per-

fectly straight and infinitely long. However, we can reasonably apply Equation

(2.9) even to a channel with finite length L [m] as long as this is by far the

prevalent dimension of the geometry.

For most pressure-driven microfluidic devices, we can assume that the pressure

gradient along the channel length is uniform. Then, we can approximate the term

− dp
dx

to ∆p
L
, where ∆p [Pa] is the pressure difference through a finite channel length

L. With this approximation, Equation (2.9) becomes simply:

Q =
πR4

8µ

∆p

L
(2.11)

where Q is defined as positive for flow from inlet to outlet.

10



2.5 HAGEN-POISEUILLE’S LAW

Equation (2.11) gives the flow-pressure relation in pressure-driven channels

and can be simplified as:

Q =
∆p

RH

(2.12)

where the hydraulic resistance RH [Pas3/m] is defined, for a cylindrical tube, as:

RH =
8µL

πR4
. (2.13)

In general, Equation (2.13) can be applied for non-circular channels, by replacing

the channel radius R with the hydraulic radius rH or diameter DH = 2rH . The

hydraulic radius of the channel rH [m] is a geometric constant defined as rH = 2A
P
,

where A [m2] is the cross-sectional area of the channel and P [m] is the wetted

perimeter.

In microfluidic networks, most channel geometries are rectangular. For a

rectangular microchannel with a low aspect ratio (w ≈ h), the reciprocal of the

hydraulic radius becomes the sum of the reciprocals of the channel width w [m]

and the channel height h [m]: 1/rH = 1/w+ 1/h or rH = wh/(w+ h). However,

this estimate gives about 20% error and thus it isn’t much satisfying.

Actually, the solution to Equation (2.7) for a rectangular channel is quite

complicated to derive, and it can be only calculated exactly as the summation

of a Fourier series. The hydraulic resistance for the rectangular microchannel, in

fact, is given by:

RH =
12µL

wh3
(
1− h

w

(
192
π5

∑∞
n=1

1
(2n−1)5

tanh
(

(2n−1)πw
2h

))) . (2.14)

Note that when the aspect ratio is high1 (h/w < 1), the Fourier series can be

truncated at the first harmonica (n = 1 in Equation (2.14)) since the other terms

become negligible and we obtain the simplified formula:

RH =
12µL

wh3

[
1− 192h

π5w
tanh

(πw
2h

)]−1

. (2.15)

This Equation is accurate to within 0.26% for any rectangular channel that has
w
h
< 1, provided that the Reynolds number Re is below 103.

Finally, by reversing Equation (2.12) and combining it with Equation (2.15),

it results:

∆p =
12µLQ

wh3

[
1− 192h

π5w
tanh

(πw
2h

)]−1

. (2.16)

1This condition is always verified in the microfluidic systems we considered.
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2. BASIC MICROFLUIDIC CONCEPTS

which is the Hagen-Poiseuille’s law we’ll use hereafter to describe the flow in our

rectangular microfluidic channels.

2.6 Rayleigh-Plateau instability

Rayleigh-Plateau instability explains why and how a falling stream of fluid breaks

up into smaller drops. The driving force of the process arises from the intrinsic

tendency of the liquids to minimize their surface area.

The explanation of this instability begins with the existance of tiny perturba-

tions in the surface of the liquid. These are always present, no matter how smooth

the stream is. If the perturbations are resolved into sinusoidal components, the

equation for the radius of the stream can be written as: r(z) = r0 + Akcos(kz),

where r0 is the radius of the umperturbated stream, Ak is the amplitude of the

perturbation, z is the distance along the axis of the stream and k is the wave

number (a measure of how many peaks and troughs per meter are present in the

liquid surface). We thus find that some components grow with time while others

decay with time. Among those that grow with time, some grow at faster rates

than others. Whether a component decays or grows, and how fast it grows is

entirely a function of its wave number k and the radius of the original cylindrical

stream r0.

By assuming that all possible components exist initially in roughly equal (but

minuscule) amplitudes, the size of the final drops can be predicted by determining,

through wave number, which component grows the fastest. As time passes, in

fact, the component whose growth rate is maximum will come to dominate and

will eventually be the one that pinches the stream into drops.

We observe that at the troughs the radius of the stream is smaller, hence,

according to the Young-Laplace equation reported below, the pressure due to

surface tension is increased:

∆p = σ(
1

r1
+

1

r2
) (2.17)

where σ is the so called surface tension coefficient, r1 is the radius of the stream

and r2 is the curvature of the sinusoidal wave describing the liquid surface profile.

Likewise, at the peaks the radius of the stream is greater and, by the same

reasoning, pressure due to surface tension is reduced.

12
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If this were the only effect, we would expect that the higher pressure in the

trough would squeeze liquid into the lower pressure region in the peak, under-

standing how the wave grows in amplitude with time. But the Young-Laplace

equation is influenced by two separate radius coponents. In this case, one is the

radius, already discussed, of the stream itself (r1). The other is the radius of the

curvature of the wave (r2). Observe that the radius of curvature at the trough is

negative meaning that, according to Yoiung-Laplace, it decreases the pressure in

the trough. Likewise, the radius of curvature at the peak is positive and increases

the pressure in that region. The effect of these components is in opposite with

the action of the radius of the stream itself. The two phenomena, in general,

do not exactly cancel. One of them will have greater magnitude than the other,

depending upon wave number k and the initial radius of the stream r0. In par-

ticular, when the wave number is such that the radius of curvature of the wave

dominates the stream’s one, such components will decay over time. Conversely,

when the radius of the stream dominates the wave’s curvature, such components

grow exponentially with time and promote drops formation.

When all the math is done, it can be found that unstable components (ie, the

components that grow over time) are only those where the product of the wave

number with the initial radius is less than unity: kr0 < 1.

2.7 Analogy between fluidic and electric circuit

It is quite intuitive to consider the flow of a fluid like the flow of electricity: indeed,

the molecules of fluid in a hydraulic circuit behave much like the electrons in an

electrical circuit. On this purpose, the present Section is intended to highlight

the main physical similarities between microfluidic circuits and electric circuits,

mapping the electric circuit elements and theory onto corresponding microfluidic

circuit elements and models. This well-known hydraulic-electric circuit analogy

can be straightforwardly used to prescribe the flow/pressure relation in complex

microfluidic networks based on conventional electric circuit theory. Starting from

the basics, in electronics, linear resistors are the simplest circuit element and their

resistance RE[Ω] is predetermined by physical parameters:

RE =
ρEL

A
(2.18)

13



2. BASIC MICROFLUIDIC CONCEPTS

where ρE[Ωm] is the reisistivity of the conductor, L[m] is the length of the con-

ductor and A[m2] is its cross-sectional area (see Figure 2.2(a)). The resistance of

the resistors can be prescribed by Ohm’s law:

V = REI (2.19)

where V [V ] is the voltage across the conducting material and I[A] is the current

flowing through the conductor (see Figure 2.2(b)). This formulae and relations

between voltage, current, electric resistance and conductor length are physically

similar to those between pressure, flow, hydraulic resistance and channel length

in a microfluidic context. In particular, Ohm’s law (Equation (2.19)) finds its

counterpart in the so called Hagen-Poiseuille’s law (see Section §2.5):

∆p = RHQ (2.20)

where ∆p[Pa] is the pressure difference across a microfluidic channel, Q[m3/s]

is the volumetric flow rate that crosses the channel and RH [Pa · s/m3] is the

hydraulic resistance (see Figure 2.2(d)). Since we are interested in microfluidic

channels of rectangular cross-section, the approximated formula for the hydraulic

resistance to which we have to refer is the following:

RH =
aµL

wh3
(2.21)

where L[m] is the length of the channel, w[m] is the width of the channel, h[m]

is the height of the channel and a is a dimensionless parameter defined as a =

12[1− 192h
π5w

tanh(πw
2h
)]−1 (see Figure 2.2(c)).

Continuing with the electric circuit analogy, if N fluidic resistors (microfluidic

channels) are collectively arranged in series, an equivalent single fluidic resistor

has a hydraulic resistance equal to the sum of the N hydraulic resistances:

RH,s = RH,1 +RH,2 + ...+RH,N . (2.22)

This is due to series-connected fluidic resistors carrying the same volumetric flow

from one terminal to the other. Similar simplification can be applied to parallel-

connected fluidic resistors. In a circuit containing N fluidic resistors in parallel,

the equivalent single fluidic resistor has a hydraulic resistance equal to the recip-

rocal of the sum of reciprocals of each hydraulic resistance:

RH,p = RH,1 ∥ RH,2 ∥ ... ∥ RH,N

RH,p =
1

1
RH,1

+ 1
RH,2

+...+ 1
RH,N

.
(2.23)
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L

A electric resistor

(a)

I

RE

V+ V-

(b)

L

w

h

microfluidic channel

(c)

Q

RH

p+ p-

(d)

Figure 2.2: Physical similarities between the flow of a fluid in a rectangular mi-

crochannel and the flow of electricity in a resistor.

Another very useful fluidic/electric similarity concerns sources. Most pressure-

driven microfluidic devices, in fact, need to be powered using external pressure

sources. Conventionally, external pumps such as syringe and peristaltic pumps

are widely used to supply constant fluid flow to devices. The volumetric flow

supplied by the pumps is completely independent of the pressure drop across

the inlet and outlet ports of a device. It cannot be known a priori the pressure

drop across an independent fluid flow source, because it depends entirely on the

equivalent hydraulic resistance of the circuit to which it is connected. In this case,

an independent constant fluid flow source QS is analogous to an independent DC

current source. Actually, in order to introduce the intrinsic non-ideality of the

sources, we need also to consider an internal resistance ri ≫ in parallel to the

ideal current generator (see Figure 2.3).

riQS

Figure 2.3: Analogy between constant fluidic flow source and current generator.
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2. BASIC MICROFLUIDIC CONCEPTS

An alternative method is to connect an independent pressure source to in-

let ports. Basically, the flow is controlled by the gravity-driven flow induced

by the hydraulic head difference, ∆h[m], between the vertical source-inlet and

drain-outlet reservoirs of microfluidic devices. For an independent and constant

pressure source, ∆h has to be held constant all the time. Alternatively, pres-

surized reservoirs connected with external pneumatic sources are used to provide

independent, constant and controllable pressure to a device. The independent

constant pressure source pS is analogous to the corresponding independent DC

voltage source. In this case the intrinsic non-ideality of the source is rendered

once we add a series internal resistance ri ≪ to the ideal voltage generator (see

Figure 2.4).

ri

ΔpS 

+

-

Figure 2.4: Analogy between constant fluidic pressure source and voltage genera-

tor.

Most microfluidic network-based devices, however, are fed with two or more

pumping sources for the source-inlet ports (for example, continuous phase and

dispersed phase pumps for droplet production) physically disconnected from the

drain-outlet ports. In electric circuit analogy, the latter can be treated as earth

or floating ground since the output port is normally open to atmosphere pressure

patm.

Another fundamental concept in electric circuit theory concerns charge con-

servation which states that the algebraic sum of the currents entering any node

is zero:
N∑

n=1

In = 0. (2.24)
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2.7 ANALOGY BETWEEN FLUIDIC AND ELECTRIC CIRCUIT

This physical law is called Kirchhoff’s current law (KCL). Similarly, the conser-

vation of mass in fluidic circuits implies that the sum of the flows into a node

should be equal to the sum of the flows leaving the node. Therefore the flow

relation for the mass conservation at a node, analogous to KCL, is:

N∑
n=1

Qn = 0. (2.25)

Energy conservation, instead, imposes that, in an electric circuit, the energy

required to move a unit charge from point X to point Y must have a value

independent of the path chosen to get from X to Y. Any route must lead to

the same value for the energy or the voltage. We may assert this fact through

Kirchhof’s voltage law (KVL): the algebraic sum of the voltages around any closed

path is zero
N∑

n=1

Vn = 0. (2.26)

Similarly, conservation of energy in fluidic networks implies that the sum of each

pressure drop along the closed path is zero. Thus, the pressure drop relation for

energy conservation in a closed path, analogous to KVL, is:

N∑
n=1

∆pn = 0. (2.27)

Moreover, in electric circuit theory, the application of concepts such as voltage

and current division can greatly simplify the analysis.

Voltage division is used to express the voltage across one of several series resis-

tors in terms of the voltage across the series combination. Thus, if a microfluidic

network includes N series fluidic resistors, we can apply this rule to obtain the

general result for pressure division across the n-th fluidic resistor:

∆pn =
RH,n

RH,1 +RH,2 + ...+RH,N

∆pS (2.28)

where ∆pS = pS − patm is the pressure drop across the inlet pump.

The dual of voltage division in electric circuit theory is current division. It is

used to describe the current across one of several parallel resistors in terms of the

current across the parallel combination. Transferring this rule to the analogous

microfluidic circuit, if a total flow of QS is supplied to N parallel fluidic resistors,

17



2. BASIC MICROFLUIDIC CONCEPTS

then the volumetric flow rate Qn through the fluidic resistor RH,n is given by:

Qn =

1
RH,n

1
RH,1

+ 1
RH,2

+ ...+ 1
RH,N

QS. (2.29)

Notice that smaller fluidic resistors in a parallel network carry proportionally

larger flows, thus providing shortcut path-ways through microfluidic networks.

This concept is very useful in droplet based networks since drops in a bifurcation

normally follow the path at least resistance (see Chapter §4).

In order to provide a more immediate overview of the parallelism between

microfluidic and electric circuits we collected in Table 2.1 the similarities discussed

so far.

Microfluidics Electronics

Fluid molecules Electrons

Flow of fluid Flow of electricity

Volumetric flow rate Q[m3/s] Electric current I[A]

Pressure drop ∆p[Pa] Voltage drop ∆V [V ]

Microchannel segment (fluidic resistor) Conductive wire (electric resistor)

Hydraulic resistance RH [Pa · s3/m] Electric resistance RE [Ω]

Hagen-Poiseuille’s law: ∆p = RHQ Ohm’s law: V = REI

Equivalent series fluidic resistors: Equivalent series electric resistors:

RH,s = RH,1 + ...+RH,N RE,s = RE,1 + ...+RE,N

Equivalent parallel fluidic resistors: Equivalent parallel electric resistors:

RH,p = RH,1 ∥ ... ∥ RH,N RE,p = RE,1 ∥ ... ∥ RE,N

External pump Power supply or battery

Independent, constant fluid flow source Independet, constant current generator

Independent, constant pressure source Independet, constant voltage generator

Atmospheric pressure patm Earth or floating ground

Law of mass conservation: Kirchhof’s current law (KCL):∑
Qn = 0 at a node

∑
In = 0 at a node

Law of energy conservation: Kirchhof’s voltage law (KVL):∑
∆pn = 0 in a closed path

∑
Vn = 0 in a closed path

Flow division Current division

Pressure division Voltage division

Table 2.1: List of physical similarities between microfluidics and electronics

It is worth to point out that we limited our analysis to the physical similari-

ties which we’re interested in assessing, but, actually, the fluidic/electric analogy
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2.7 ANALOGY BETWEEN FLUIDIC AND ELECTRIC CIRCUIT

involves many other aspects[1].

If taken too far, however, the electric circuit analogy can create misconceptions

when analyzing a microfluidic system. Recall that Ohm’s law cannot explain the

details of the miscroscopic transport of electrons in electrical systems. Rather, it

describes an average effect (e.g., current flow) that is consistent with the net flux of

electrons in a conductor. In the similar manner, Hagen-Poiseuille’s law, analogous

to Ohm’s law, describes the average volumetric flow in a microchannel. Thus, the

application of electric circuits methods to microfluidics does not provide detailed

information about the flow field itself (e.g., the spatial distribution of the velocity

field within a channel). Numerically based CFD simulations are reccomended to

investigate the details of such behavior, expecially in 2D and 3D systems. The

droplets based networks itself are examples where the electric circuit analogy

must be verified carefully since there are multiple types of fluids (e.g., dispersed

and continuous phase) but only one type of electron.
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Chapter 3

Droplet generation

In the study of a microfluidic network, the first aspect to be analyzed is, of course,

the method of generating and introducing droplets in the system. This is achieved

through passive techniques which generate a uniform, evenly spaced, continuous

stream. Not only should these devices produce a regular and stable monodisperse

droplet stream, they also need to be flexible enough to easily provide droplets of

prescribed volume at prescribed rates. To this end, three main approaches have

emerged so far based on different physical mechanisms:

� breakup in co-flowing streams;

� breakup in elongational strained flows (flow focusing devices);

� breakup in cross-flowing streams (T-junction).

3.1 Breakup in co-flowing streams

The geometry of co-flowing devices is reported in Figure 3.1. It simply corre-

sponds to a cylindrical glass tube that is coaxially aligned with a rectangular

outer microchannel.

In this system, the dispersed phase is firstly produced by the thin internal

round capillary and then enters through a nozzle into the main rectangular chan-

nel where the continuous phase flows. Here the inner fluid is subjected to the

pressure due to the immiscible carrier fluid which, together with the viscous shear

stresses, deforms it and eventually leads to droplet pinch off.
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3. DROPLET GENERATION

dispersed phase

continuous phase

win

wout

Figure 3.1: Example of droplet production in a co-axial injection device (top

view).

As reported by Baroud et al. [2], two distinct regimes, concerning liquid

breakup, has emerged in co-flowing streams devices: dripping, in which droplets

pinch off near the capillary tube’s tip, and jetting, in which droplets pinch off

from an extended thread downstream of the nozzle. In both cases, the physics at

the origin of droplet production is related to a sort of Rayleigh-Plateau instabil-

ity (see Section §2.6). In particular, the transition from dripping to jetting can

be interpreted as a transition from an absolute to a convective instability. This

phenomenon occurs when the continuous phase velocity increases above a critical

value U*. Recent studies [3] pointed out how this threshold decreases as the flow

rate of the dispersed phase increases and reported its further dependence on the

viscosity of the inner and outer flow, as well as on the interfacial tension between

the two phases.

The co-flowing system for droplet production, however, shows a considerable

weak point if applied in soft lithography Lab on Chips (LoCs), which are nowadays

the most common microfluidic devices. The cylindrical geometry of the injector,

in fact, is a serious obstacle to its implementation in LoCs since the latter present

a typical rectangular cross sectional geometry. In contrast, the two alternative

geometries of flow focusing and T-junction are well suited to planar geometries

but introduce more complex fluid dynamics, as detailed below.

3.2 Breakup in elongational strained flows

The typical geometry of flow focusing devices is depicted in Figure 3.2.

As can be appreciated, the dispersed stream, once injected into the system

through a rectangular microchannel, is immediately squeezed by two counter-

flowing streams of the continuous phase. The pressure exerted, in this way, by the

continuous flow on the interface with the dispersed stream leads to the progressive
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continuous phase

continuous phase

dispersed phase wd

wc

w

Lo

D

Figure 3.2: Example of droplet production in a flow-focusing device (top view).

thinning of the latter until breakup occurs. The droplet thus generated passes

through an orifice of width D and length Lo and is then conveyed in a collector

channel of width w.

Given the complexity of the device, many geometrical parameters play a role

in this system. Above these, five main quantities can be identified: the width of

the continuous phase’s inlet channels wc, the width of the dispersed phase’s inlet

channel wd, the length of the orifice Lo and its width D, as well as the collector

channel width w. As these parameters are varied, four regimes can be observed:

squeezing, dripping, jetting and thread formation. However, the large number of

geometrical aspect ratios characterizing flow-focusing devices has prevented the

determination of simple scaling laws to predict the transition between various

regimes, the droplet size, distribution and rate of emission as a function of the

key parameters previously mentioned.

Recent velocity field measurements[4] suggest that the squeezing phenomenon

is governed by the build up of a pressure difference as the advancing finger par-

tially blocks the outlet channel, via a mechanism very similar to the one we

will see in more details in T-junctions. Other reports[5], however, state that

squeezing/dripping droplet breakup depends solely on the upstream geometry

and associated flow field, and not on the geometry of the channel downstream

of the flow focusing orifice. By contrast, the elongation and breakup of the fine
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3. DROPLET GENERATION

thread during the thread formation mode of breakup seems to depend solely on

the geometry and flow field in the downstream channel. In light of these pa-

pers and despite the widespread use of flow-focusing devices, it is clear that the

understanding of their detailed dynamics still warrants further research.

These issues, combined with the drawbacks already underlined for the co-

flowing devices, led us to choose the T-junction as the method for droplet pro-

duction in our analyses and simulations of microfluidic circuits. Indeed, the

mechanism of breakup in cross-flowing stream (T-junction) has none of the dis-

advantages emerged for co-flowing and flow-focusing devices: it is well suited for

planar geometries and has clear-cut scaling laws for its physical behavior.

Let us, then, examine carefully this method for droplet generation.

3.3 Breakup in cross-flowing streams

Figure 3.3 illustrate the geometry of a T-junction. Very simply, it consists of

two channels merged at right angle. The main channel carries the continuous (or

carrier) fluid and the orthogonal channel supplies the fluid that will be dispersed

(hereafter dispersed or discontinuous fluid). The channels have rectangular cross

sections, and there are only three geometrical parameters that define completely

the size and shape of the T-junction: the width wc of the main channel, the

width wd of the channel supplying the discontinuous fluid and the height h of

the channels. In this regard, we focused on planar geometries, with identical

rectangular cross-section for every channel, in which the width is slightly greater

than the height. Liquid flows are commonly controlled via independent syringe

pumps imposing the inlet volumetric flow rates Qc and Qd for each phase.

dispersed phase

continuous phase

wd

wc

Figure 3.3: Example of droplet production in a T-junction (top view).
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3.3 BREAKUP IN CROSS-FLOWING STREAMS

3.3.1 Forces anlysis

The process of droplet formation actually begins as soon as the dispersed phase

starts penetrating into the outer channel. Here, three main forces act on the

emerging interface and influence droplet breakup: the viscous shear-stress force

(Fτ ), the surface (or interfacial) tension force (Fσ) and the force arising from

the increased resistance to flow of the continuous fluid around the tip (hereafter

“squeezing force”, FS). The understanding of their balance is crucial for draw-

ing the correct model of the breakup process so, in the next paragraphs, we

will examine, one by one, the contribution given by these forces during droplet

generation.

Viscous shear-stress force A viscous shear stress is defined as the component

of stress co-planar with a material cross section. In our case, this kind of stress

is exerted on the dispersed phase by the cross-flow of the continuous phase. Its

magnitude is estimated by the product µcG, where µc is the viscosity of the carrier

fluid and G is a characteristic rate of shear strain that is proportional to Qc and is

a function of the T-junction and the emerging interface geometry. More in detail,

we can approximate this stress as τ = µcugap/ϵ, where ugap = Qc/(hϵ) is the

speed of the continuous fluid flowing through the gap, of characteristic thickness

ϵ, between the interface and the wall of the channel (see Figure 3.4). In order to

estimate the net force acting on the immiscible tip, we then multiply the shear

stress τ = µcQc/(hϵ
2) by the surface area of the interface in the gap Agap ∼ hw1,

where we take w as the characteristic axial length-scale of the tip (see Figure 3.4).

Finally, the corresponding net force on the tip is pointed downstream and has

the magnitude of:

Fτ ≈ µcQc
w

ϵ2
. (3.1)

Squeezing force The so called squeezing force comes into play when the thread

of the discontinuous fluid almost obstructs the cross section of the main channel

(see Figure 3.4). In this situation, the available area through which continuous

fluid can pass is significantly restricted leading to an increased pressure directly

upstream of the junction. As detailed below, the magnitude of the squeezing

1The shear stress, in fact, is given by the ratio between the force applied and the surface

affected by the stress τ = Fτ

A .
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Figure 3.4: Schematic illustration (top view) of the shape of the immiscible

thread’s tip at an intermediate stage of break-up in a T-junction.

pressure increases dramatically as the distance between the emerging interface

and the opposing wall of the main microchannel (ϵ) decreases. For ϵ ∼ w, using

the Hagen-Poiseuille’s law referred to a rectangular channel (see Section §2.5),

we can estimate the pressure drop ∆p over the length (∼ w) of the immiscible

tip: ∆p ≈ µcQcw/(h
2ϵ2). When ϵ ≪ w, instead, we evaluate ∆p for a thin film of

typical thickness ϵ, width h and length w (Figure 3.4): ∆p ≈ µcQcw/(hϵ
3), and

the corresponding net force obtained, oriented downstream, is equal to:

FS ≈ ∆phw = µcQc
w2

ϵ3
. (3.2)

The exact value of the exponent n to which the thickness of the film ϵ should

be raised in the above expression can be derived from a detailed lubrication

analysis[6] for flow around objects near-filling the cross-sections of capillaries: n

depends on the geometry of the cross-section of the capillary and on the geom-

etry and material parameters of the object. Importantly, n is larger than 2 and

consequently we can expect that FS > Fτ when ϵ ≪ w.

Interfacial tension force Surface tension is a contractile tendency of the sur-

face of a liquid that allows it to resist an external force. The cohesive forces

among liquid molecules are responsible for the phenomenon of surface tension.

Very simply, it can be interpreted as follows: in the bulk of the liquid, each

molecule is pulled equally in every direction by neighboring molecules, resulting

in a net force of zero. The molecules at the surface, differently, are not surrounded

by similar molecules on all sides and therefore are pulled inwards.
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3.3 BREAKUP IN CROSS-FLOWING STREAMS

In our case, in particular, the surface tension is ruled by the interaction

between dissimilar liquid (dispersed and continuous phase). This kind of sur-

face tension is called interfacial tension, but its physics are almost the same.

It resists deformation due to continuous fluid by establishing a pressure jump

across the curved edge of the growing droplet. In particular, the surface tension

force is associated with the Laplace pressure jump ∆pL across a static interface,

∆pL = σ(r−1
a + r−1

r ) where σ is the interfacial tension coefficient (sometimes de-

noted γ), ra is the axial curvature (in the plane of the device) and rr is the radius

of the radial curvature (in the cross-section of the neck joining the inlet for the

discontinuous fluid with the tip). In the intermediate stage of the process of for-

mation of a droplet (Figure 3.4) the radial curvature is bounded by the height

of the channels (h < w) and rr ≈ h/2 (or less) everywhere. The axial curvature

is more emphasized at the downstream tip of the immiscible thread (rtipa ≈ w/2)

than at the upstream side of it (rupa ≈ w): the interface on the downstream side of

the thread acts on the liquid inside the thread with a stress pL ≈ −σ(2/w + 2/h)

(the minus sign signifies that the stress is oriented upstream), and the interface lo-

cated upstream acts on the discontinuous liquid with a stress pL ≈ σ(1/w + 2/h)

(oriented downstream). The sum of the two, multiplied by the cross-section of

the channel gives the following estimation of the interfacial tension force:

Fσ ≈ −σh, (3.3)

which has a stabilizing effect on the tip: in the absence of any other stresses or

forces, surface tension would position the tip symmetrically about the axis of the

inlet channel for the dispersed phase.

To summarize the order-of-magnitude estimates of the forces acting on the tip,

we note that the only stabilizing force arises from the interfacial tension effects

(see Equation (3.3)). On the other hand, there are two destabilizing forces (see

Equation (3.2) and (3.1)), both of which increase sharply upon the decrease of

the separation ϵ between the interface and the opposing wall of the main channel.

As stated by several studies[7, 8, 9], the balance of these forces leads to the

definition of two principal regimes of breakup in T-junction:

� squeezing regime;

� dripping regime.
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Importantly, the transition between them is governed by the Capillary number

(Ca) which is a dimensionless parameter that describes the relative magnitude of

the viscous shear stress compared with the interfacial tension (see Section §2.2).

A simple definition for Ca in microfluidics is given in terms of the average velocity

uc of the continuous phase, the dynamic viscosity µc of the continuous phase and

the interfacial tension coefficient σ:

Ca =
µcuc

σ
=

µcQc

σwh
. (3.4)

In particular, for low values of the Capillary number (Ca < CaCR), ie when the

interfacial forces dominate the shear stress, the dynamics of breakup of immiscible

thread in T-junction is dominated by the squeezing force across the droplet as

it forms (squeezing regime). In the opposite case (Ca > CaCR), the shear stress

starts playing an important role and the system starts operating in the so called

dripping regime. As reported in recent papers[8] and confirmed in our numerical

simulations, this threshold is given by:

CaCR ≈ 10−2. (3.5)

Let us now examine in more detail the two regimes mentioned above with a

particular focus on the squeezing regime which is the one we will adopt later on for

our microfluidic networks because it shows the best flexibility and controllability

over the shape of the droplets generated.

3.3.2 Squeezing regime

The typical process of droplets formation via squeezing regime is visually de-

picted in the simulation of Figure 3.5 where the principal geometrical and phys-

ical parameters imposed are the following: h = 50µm,wc = wd = 150µm,Qc =

3.75nL/s,Qd = 1.875nL/s. Keeping it in mind and on the basis of the previous

analysis and observations, the mechnism in question can be briefly described as

follows: the two immiscible fluids form an interface at the junction of the dis-

persed inlet channel with the main channel. The stream of the discontinuous

phase starts penetrating into the main channel and a droplet begins to grow

under the effect of the viscous shear-stress force (Figure 3.5(a)). The latter, how-

ever, is not sufficient to distort the interface significantly because this operating

regime works under the condition Ca < CaCR ⇒ interfacial tension dominates
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shear stress. Consequently, the emerging droplet manages to fill the junction and

restricts the available area through which continuous fluid can pass, leading to an

increased pressure directly upstream of the junction (Figure 3.5(b)). When the

corresponding squeezing force overcomes the interfacial tension force, the neck of

the emerging droplet squeezes (Figure 3.5(c)), promoting its breakup. Finally,

the disconnected liquid plug flows downstream of the main channel, while the tip

of the dispersed phase retracts to the end of the inlet and the process repeats

(Figure 3.5(d)). The intrinsic high reproducibility shown by this mechanism is

fundamental for the stable production of uniform droplets with identical length

and shape (Figure 3.5(e)) over a wide range of flow rates. This is also the reason

why we chose to work under squeezing regime in our simulations of T-shaped

droplet inlet systems.

(a) (b)

(c) (d)

(e)

Figure 3.5: Typical process of droplet formation in squeezing regime.
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Droplets length Applying the model of evolution of breakup at the T-junction

in the squeezing regime presented so far, Garstecki et al.[8] obtain a simple for-

mula for the length Ld of the resulting droplets:

Ld = w(1 + α
Qd

Qc
) (3.6)

where w is the width of the main channel, Qd is the flow of the dispersed phase,

Qc is the flow of the carrier fluid and α is a dimensionless parameter of order

one. Equation (3.6) can be intuitively understood by arguing that detachment

begins once the emerging discontinuous thread fills totally the main channel,

i.e. when the squeezing force is stronger. At this moment, the length of the

droplet is approximately equal to the width of the channel w and the thickness of

the neck in the junction starts decreasing at a rate which depends on the mean

speed of the continuous fluid uc. So, the flow of the carrier fluid (Qc = uchw)

sets the time for the growth of the droplet because it determines the “squeezing

time” necessary for the neck to break. This results in an inverse proportionality

between droplet length and continuous phase flow (Ld ∝ 1
Qc
). In fact, considering

an equal input discontinuous phase flow, the greater the continuous flow the lower

the squeezing time and thus the length of the resulting droplets. On the other

hand, there is a direct proportionality between droplet length and dispersed phase

flow (Ld ∝ Qd) because Qd determines how much discontinuous fluid manages to

flow in the droplet before the squeezing time imposed by the flow of the carrier

fluid ends and breakup occurs.

Interdistance between droplets Another physical parameter to be consid-

ered, that’ll be useful later on, concerns the spacing δ[m] between droplets gener-

ated in squeezing regime. Its scaling relation can be deduced, as reported below,

thanks to the application of the mass conservation law.

Let us consider a sufficiently long time τ and the related distance x = u′
dτ

along the main channel (being u′
d the velocity of the dispersed fluid in the main

channel). The number of droplets along x in the time interval τ is given by:

nd(τ) =
x

Ld + δ
=

u′
dτ

Ld + δ
, (3.7)

where Ld is the length of the single droplet and δ is the interdistance between

them (see Figure 3.6).
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dispersed phase
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Figure 3.6: Schematic illustration of a train of droplets created by a T-junction.

Now, the mass conservation law imposes that the volume of dispersed liquid

injected by the discontinuous phase inlet channel throughout the time interval τ

(V old,in = Qdτ = udwhτ) corresponds to the volume of dispersed fluid along x in

the main channel (V old,x = Ldropletwhnd = Ldwh
u′
dτ

Ld+δ
):

udwhτ = Ldwh
u′
dτ

Ld + δ
⇒ ud(Ld + δ) = Ldu

′
d. (3.8)

The next step requires the evaluation of the velocity of the dispersed fluid in the

main channel u′
d. To determine it, we make the hypothesis that dispersed and

continuous phase flow at the same velocity (u′
d = u′

c = u) in the main channel,

though it is not always true[10]. Then, we can exploit the parallelism that exist

between the microfluidic and electrical circuit (see Section §2.7) as reported in

Figure 3.7: in particular, we can associate the flow of the fluids (Qd, Qc, Q) in the

microchannels of the T-junction to the current in the analogous electrical circuit

(Id, Ic, I). In this way, by applying Kirchhoff’s law we obtain I = Id + Ic and

thus:

Q = Qd +Qc ⇒ u = ud + uc.
2 (3.9)

Substituting Equation (3.9) in (3.8), it results:

ud(Ld + δ) = Ld(ud + uc) ⇒ δ = Ld
uc

ud

= Ld
Qc

Qd

. (3.10)

Finally, replacing (3.6) in (3.10), we obtain the desired formula for the interdis-

tance between droplets generated in a T-junction in the squeezing regime:

δ =
Qc

Qd

w(1 + α
Qd

Qc
). (3.11)

2The last implication follows from the fact that we always consider channels with identical

cross section.
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Qd

Qc Q

Ic

Id

I

ri

ri

R

Figure 3.7: Analogy between microfluidic T-junction and electric circuit.

Lingering on Equation (3.10), it can be noted that droplets length and inter-

distance are strictly correlated since δ depends on Ld. Consequently, once fixed

the geometry of the system and the physical parameters of the liquids, bubbles

with a specific length will have a corresponding precise interdistance between

them. In order to decorrelate the two values and make δ independent of Ld the

solution proposed by Jullien et al.[11] can be adopted. Basically, it consists in

arranging, downstream of the T-shaped droplet generator, a series of small entries

forming a comb (see Figure 3.8) which injects additional continuous phase, sepa-

rating the droplets by variable lengths, typically several hundred of micrometers.

On the contrary, if we want to near the bubbles, the comb can be employed to

eject part of the continuous fluid between the droplets. In this way, we are able

to modulate droplet interdistance irrespective of their length.

dispersed phase

continuous phase

continuous phase

Figure 3.8: Sketch of droplet generator and comb to modulate droplet interdis-

tance.

Simulations and numerical results In order to validate the theoretical anal-

ysis presented so far, we made use of the cfd software OpenFOAM (see Appendix

A) to implement a T-junction device for droplet generation. The microchannels

geometries imposed in our simulations are listed in Table 3.1 while in Table 3.2
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3.3 BREAKUP IN CROSS-FLOWING STREAMS

are reported the common physical properties of the fluids considered.

System geometry

Channels’ height h 50 µm

Main channel’s width wc 150 µm

Dispersed channel’s width wd 150 µm

Table 3.1: Geometrical properties of the reference system

Fluids’ properties

Continuous phase→water

Dynamic viscosity µc 1.002 mPa · s
Density ρc 1000 Kg/m3

Kinematic viscosity νc 1.002 mm2/s

Dispersed phase→silicone oil

Dynamic viscosity µd 145.5 mPa · s
Density ρd 970 Kg/m3

Kinematic viscosity νd 150 mm2/s

Interfacial tension coefficient σ 46 mN/m

Table 3.2: Physical properties of the fluids considered

For this reference system, we plot the droplet length and interdistance as

a function of the flow rate ratio φ = Qd/Qc obtained in our simulations. In

particular, we selected three different fixed inlet velocities for the continuous

phase, namely uc = k · uc,st [m/s] such that Qc = k · whuc,st [m
3/s] with uc,st =

0.0005 m/s and k = 0.5, 1, 2 and collected the relative results in Figure 3.9,

3.10 and 3.11 respectively. For each fixed continuous flow, the quantity φ =

Qd/Qc is varied in the range from 0.25 to 6.5 by opportunely incrementing the

dispersed phase inlet flow Qd. The simulative data (denoted by markers in the

graphs) agrees very well, both for droplet length and droplet interdistance, with

the theoretical model (continuous lines in the figures) expressed in Equations

(3.6) and (3.11).

In addition, in Figure 3.12 we reported all together the graphs obtained for the

three cases under examination. Analyzing the latter, it transpires the dependence

of the fitting parameter α of Equation (3.6) from the absolute velocity set for

the continuous phase. The various slopes obtained for the theoretical curves, in

fact, denote different values of the prameter α: in particular, an increase in uc

corresponds to a decrease in α.
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Figure 3.9: (a) Length and (b) spacing between droplets produced in a T-junction

for a fixed value of uc = 0.5mm/s ⇒ Qc = 3.75nL/s. Continuous lines represents

the theoretical curves obtained from (a) Eq. (3.6) and (b) Eq. (3.11) with α = 1.3.

Markers corresponds to the simulative results obtained with OpenFOAM.
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Figure 3.10: (a) Length and (b) spacing between droplets produced in a T-junction

for a fixed value of uc = 0.25mm/s ⇒ Qc = 1.875nL/s. Continuous lines rep-

resents the theoretical curves obtained from (a) Eq. (3.6) and (b) Eq. (3.11)

with α = 1.5. Markers corresponds to the simulative results obtained with Open-

FOAM.
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Figure 3.11: (a) Length and (b) spacing between droplets produced in a T-junction

for a fixed value of uc = 1mm/s ⇒ Qc = 7.5nL/s. Continuous line represents the

theoretical curves obtained from (a) Eq. (3.6) and (b) Eq. (3.11) with α = 1.1.

Markers corresponds to the simulative results obtained with OpenFOAM.
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Figure 3.12: Collection and comparison of the data (a) from Figure 3.9(a), 3.10(a),

3.11(a) and (b) from Figure 3.9(b), 3.10(b), 3.11(b).
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Finally, we noted that for low values of φ = Qd/Qc the numerical results

follows almost ideally our model while non linearity and anomalous behaviors

emerge as soon as φ is increased too much. Indeed, when Qd > 7Qc the squeez-

ing regime further evolves in a sort of “parallel flow” regime, visually repre-

sented in the simulation of Figure 3.13 where the parameters considered are

h = 50µm,wc = wd = 150µm,Qc = 3.75nL/s,Qd = 37.5nL/s. Remember-

ing Equations (3.6) and (3.11), this simulative evidence, translates in an upper

bound for the droplet length and in a lower bound for the droplet interdistance

achievable once imposed the reference geometry.

Figure 3.13: Degeneration of squeezing regime for high values of φ = Qd/Qc.

3.3.3 Dripping regime

As already stated, the dripping regime occurs when we work under the condition

CaCR > 10−2. In this case, contrary to the squeezing regime, droplet formation

is entirely due to the action of the shear stress which is large enough to overcome

the interfacial tension, analogous to spherical droplet breakup.

The typical mechanism of bubble production under dripping regime is illus-

trated step by step in the simulation reported in Figure 3.14 (the reference system

considered here has got h = 50µm,wc = wd = 150µm, the continuous phase is

characterized by µc = 145.5 mPa · s and Qc = 7.5nL/s while for the dispersed

phase we imposed µc = 1.002 mPa · s and Qd = 7.125nL/s). As soon as the

dispersed phase enters the main channel (Figure 3.14(a)), it is affected by the
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3.3 BREAKUP IN CROSS-FLOWING STREAMS

strong viscous shear-stress force Fτ caused by the carrier fluid. Accordingly,

the emerging interface is sensitively distorted (Figure 3.14(b))and droplets are

emitted before they can block the main channel (Figure 3.14(c)). This physical

behavior, however, involves a strong limitation on the production of droplet which

will consequently always be shorter than the width of the main channel w. For

the same reason, the frequency of production of droplets is much higher than the

corresponding one in the squeezing regime. This closeness between droplets can,

in the worst case, entail the fusion of the same in the outer channel.

(a) (b)

(c)

Figure 3.14: Typical process of droplet formation in dripping regime.

Scaling models[2] developed to describe this process also demonstrate that the

droplet size depends predominantly on the capillary number Ca and not on the

flow rate ratio φ: de facto, it decreases strongly as the capillary number increases.

Furthermore, larger viscosity ratios λ = µd

µc
lead to smaller droplets.

As long as the inlet velocities imposed for the continuous and dispersed phase

are quite low (uc, ud < 10−2), our simulations agrees well with the theoretical

background presented (see Figure 3.14 for a practical example). At greater orders

of magnitude, instead, we observed that the dripping regime evolves into the

formation of stable parallel flowing streams, as reported in Figure 3.15 for a

reference system with h = 50µm,wc = wd = 150µm,Qc = 97.5nL/s,Qd =

71.25nL/s. We conjecture that the origin of this phenomenon lies in the fact
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that, for the reference velocities, the frequency of droplet production is so high

that it degenerates in a continuous stream.

Figure 3.15: Degeneration of dripping regime for high values of ud and uc.
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Chapter 4

Characterization of droplet

dynamics in a bifurcating channel

After analyzing in detail the process of droplets generation, the next topic to be

addressed, in order to understand the complex dynamics at the basis of microflu-

idic systems, concerns the behavior of droplets once they meet a bifurcation along

the network.

Our interest in understanding the physics governing droplet dynamics in bi-

furcating channels, stem from the fact that we wish to convey droplets to the

microfluidic machines. The latters are, in fact, physically connected to the net-

work by means of ramifications.

On this purpose, we’ll divide the present chapter in two main section: in the

former one we are going to outline the so called droplet’s breaking/non-breaking

regions while in the latter we are going to point out how to passively pilot the

droplets in a specific target arm of the bifurcation.

4.1 Droplet breakup in a bifurcating channel

If we consider the droplets, in analogy with the world of telecommunications, as

the “packets” we want to deliver to the “end users” (microfluidic machines) of

our network, we need to preserve their integrity throughout the entire system

and, thus, even when they pass through “sensitive points” such as bifurcating

channel.

Several studies, numerical simulations and experimental evidencies[12, 13, 14]
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have been published in literature on this subject. Most of the studies focus on the

T-junctions, where a channel splits into two symmetric arms, forming a T. In such

systems, as we are going to formalize, depending on droplet size, capillary number

and viscosity ratio of the dispersed and continuous phase, droplets arriving at the

junction may either split or flow completely along one of the arm of the T.

Hereafter, we’ll seek in particular to define the parameter range that controls

the transition between breaking and non-breaking regime. Proceeding with order,

we now describe the physics behind breakup and non-breakup regimes.

4.1.1 Breakup regime

Figure 4.1 describes the temporal droplet evolution obtained from a simulation

characterized by the reference geometrical and physical parameters listed in Ta-

bles 3.1 and 3.2 and an inlet velocity of uc = 0.00075m/s.

(a) (b)

(c) (d)

Figure 4.1: Typical droplet dynamics in breakup regime at the bifurcation.

Figure 4.1(a) shows the elongated droplet as it is just about to come in contact

with the edge of the junction. Immediately, it deforms symmetrically forming two

identical liquid fingers in the upper and lower branch, which almost completely

fill the channel (see Figure 4.1(b)). Then, the droplet rear forms a curvature

at the entrance of the bifurcation bulging in the upstream direction. In this
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4.1 DROPLET BREAKUP IN A BIFURCATING CHANNEL

process a neck forms in the central part of the junction with a width decreasing

in time (see Figure 4.1(c)). This behavior is presumably due to the flow of the

carrier phase which actually flattens the dispersed phase against the sidewall of

the bifurcation. As the circumference of the thread becomes less than its normal

length, the surface tension starts to contract it radially promoting the incipience

and growth of an instability similar to the Rayleigh-Plateau (see Section §2.6).

This eventually results in a pinch-off and the formation of two almost equally

sized daughter droplets that propagate downstream in the channel branches (see

Figure 4.1(d)).

4.1.2 Non-breakup regime

By reducing the Ca number, in comparison with the preceeding case, cohesion

forces become more relevant (see section 2.2), and thus we observe a radically

different droplet behavior as reported in Figure 4.2 for a system with halved

velocity uc compared to the previous one. Here, initially, the droplet reduces

its speed and approaches the junction in a similar fashion as reported above

(see Figure 4.2(a)). However, now, the dominating surface tension force reduces

the ability of the inertia and viscous force to deform the droplet which obtains

a quasi steady-state condition, with no internal flow, as it sticks in the junc-

tion. Due to the stronger interfacial force, a larger curvature is generated at the

droplet rear, resulting in a larger radius of the liquid thread (see Figure 4.2(b)).

This has a direct consequence on the resulting droplet dynamics, as the birth of

a Rayleigh-Plateau instability is prevented. The incipience of a random distur-

bance, generates a slightly asymmetric flow in the film formed between the droplet

interface and the channel surface opening a tunnel on one side of the junction

(see Figure 4.2(c)). As this perturbation grows, the droplet starts steering in the

opposite arm (see Figure 4.2(d)) and eventually migrates entirely in this direction

(see Figure 4.2(e)). This leaves an asymmetric distribution of the phases in the

daughter branches and the droplet wrapping generates a continuous phase’s flow

recirculation in the other arm.

A mathematical formalization of the physical phenomena involved in breakup

and non-breakup regimes has been proposed in a recent paper by Leshansky

and Pismen[14]. Indeed, they developed an analytical theory that describes the
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(a) (b)

(c) (d)

(e)

Figure 4.2: Typical droplet dynamics in non-breakup regime at the bifurcation.
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breakup process in a symmetric two-dimensional T-junction driven by the obser-

vation of the pressure evolution in the droplet at the bifurcation. Although this

analysis works in a limited 2D setting, the formula derived by Leshansky and

Pismen agrees well with both 2D and 3D simulations and experimental findings

from literature[15].

In particular, they could determine the conditions under which stationary

solutions exist. This range corresponds, physically, to non-breakup case that is,

as already stated, the case we are interested in. On this purpose, the boundary

between non-breakup and breakup regions is given by the following important

formula (continuous line in Figure 4.3):

Ld

w
≈ χCa−0.21 (4.1)

where Ld [m] is the length of the droplet that approaches the T-junction, w [m]

is the width of the channels, Ca is the Capillary number (see Section §2.2) and

χ is a dimensionless parameter that depends on the ratio between the viscosities

of dispersed and continuous phase λ = µd

µc
: experimental evidences[11] demon-

strate that the fitting χ decreases as λ increases. It can be noted that, once we

fix λ, the transition between non-breakup and breakup regions is ruled only by

two parameters: Ca and Ld (w is, in fact, a fixed geometrical parameter of the

microfluidic system). In details, if we consider Ld as a constant, lower Capillary

numbers lead to a wider non-breakup region. This behavior can be intuitively

explained by ascertaining that small Capillary numbers mean that interfacial ten-

sion force dominates viscous force and thus it correspond to a situation of big

cohesion between droplet’s molecules.

On the other side, if we fix Ca, the greater is the droplet’s length, the lower the

corresponding non-breakup region. In turn, this phenomenon finds the following

intuitive explanation: the least energy configuration for a droplet corresponds to

the spherical geometry. Now, since physical systems tend intrinsically to move

to the minimum energy state, breakup will affect more easily the most elongated

drops (which are also the most energetic ones) in order to take them back to a

spherical shape.
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4.1.3 Simulations and numerical results

In order to validate the theoretical background presented, we carried out a se-

ries of simulations in symmetric 3D T-junctions using the finite volume based

open-source code OpenFOAM (see Appendix A). The breakup has been simu-

lated in a confined T-junction with uniform channels’ width w = 150µm and

height h = 50µm at varying Capillary numbers Ca = µcuc

σ
and different initial

length Ld of the parent droplet. Our simulations almost successfully capture the

transition between breaking and non-breaking regimes. It is shown (Figure 4.3)

that if Capillary number is smaller than a critical number given by Equation

(4.1), the droplet will move either to the left or right instead of breaking into

two daughter droplets. Moreover, the critical Capillary number decreases with

increasing droplet length. The χ parameter of Equation (4.1) considered in the

theoretical curve of Figure 4.3 is equal to 0.187.
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Figure 4.3: Phase diagram of numerical simulations for a drop in a symmetric

T-junction. The solid line is the theoretical curve given by Equation (4.1) for

χ = 0.187. The symbols correspond to numerical results for nonbreaking (◦) and
breaking (�) drops.
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4.2 Regulation of droplet traffic in a T-junction

The next logical step we need to deal with, is the definition of a method to

precisely carry the non-splitting droplets in the desired arm of the T-junction.

The solution to this problem is provided by a simple property of microfluidic

droplet systems[16, 17] at a T-junction (neglecting splitting, direct interactions

and collisions) an arriving droplet follows the instantaneously leading flow rate.

So, if the total original flow rate Q of the parent channel divides between Q1 and

Q2 = Q−Q1 in the two daughter branches (see Figure 4.4(a)), the sign of Q1−Q2

decides in which arm the arriving droplet goes. More precisely, if Q1 > Q2 the

choice falls on the daughter channel number 1 and vice versa.

Accordingly, if we manage to create an asymmetry in the flows of the two

arms of a bifurcation, we are able to predict exactly the direction of the coming

droplets. In order to do this, let’s start noting that the T-junction depicted

in Figure 4.4(a) corresponds, thanks to the electric circuit analogy (see Section

§2.7), to the parallel resistance reported in Figure 4.4(b).

Q

Q1

Q2

L1

L2

(a)

Q1

Q2

Q

RH,2

RH,1

(b)

Figure 4.4: (a) Microfluidic symmetric T-junction and (b) its analogous electric

circuit.

Moreover, we remember the concept of hydraulic resistance of a generical

microfluidic channel introduced in Section §2.7, which is given by:

RH,i =
aµcLi

wh3
(4.2)
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where µc[Pa · s] is the dynamic viscosity of the flowing liquid, Li[m] is the length

of the channel, w[m] is the width of the channel, h[m] is the height of the channel

and a is a dimensionless parameter defined as a = 12[1− 192h
π5w

tanh(πw
2h
)]−1.

Premising that w, h and consequently a are normally identical for the two

arms of a T-junction, we can opportunely change L1 and L2
1 (see Figure 4.5(a))

in order to obtain RH,1 ̸= RH,2. In particular, L1 > L2 ⇒ RH,1 > RH,2. In this

way, we are able to achieve the desired initial unbalance between Q1 and Q2 that

can be calculated using the current division law (see Section §2.7):

Q1 =
RH,2

RH,1 +RH,2

Q Q2 =
RH,1

RH,1 +RH,2

Q (4.3)

Therefore, relying on the previous equation, the arm with the leading flow

rate Qi in the bifurcation is the one with lower hydraulic resistance RH,i (channel

1 in figure Figure 4.5(a)) and the choice of the incoming non-splitting droplet will

fall on this one (see Figure 4.5(b)).

The last aspect left to evaluate concerns the analysis of the effects induced by

the presence of a droplet in one arm of the bifurcation. As we already pointed

out in the non-breaking regime description, flows involving non-splitting droplets

are inherently asymmetric since the presence of the latter in one arm of the T-

junction increases the volumetric flow rate of the opposite channel. In this way,

droplets act as a series flow resistance in the branch they occupy.

In order to quantify the additional resistance involved by droplets, we should

notice that their presence in a channel change the dynamic viscosity µd of the por-

tion Ld they occupy. Thus, referring to Equation (2.21), the hydraulic resistance

ascribable to the droplet is given by:

RH,d =
µdLda

wh3
(4.4)

Then, the new resistance (R
′
H,i) of the channel, can be obtained by summing

RH,d to the original hydraulic resistance (RH,i) of the same and subtracting the

quantity µcLda
wh3 (this is due to the fact that the original RH,i considered a channel

completely filled by continuous phase which is not true anymore for the portion

1For the moment, we exclude the presence of any droplets in the bifurcation, so µ1 = µ2 = µc,

because we are interested in the behavior of the first drop that approach the T-junction. The

opposite case is discussed later.
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Ld occupied by the droplet). So, we can rewrite R
′
H,i as follows:

R
′

H,i = RH,i + δr =
aµcLi

wh3
+ (µd − µc)

Lda

wh3
(4.5)

where δr = (µd − µc)
Lda
wh3 is the additional resistance per droplet.

Accordingly, in the case of Figure 4.5(b), the current division law returns:

Q
′

1 =
RH,2

RH,1 + δr +RH,2

Q Q
′

2 =
RH,1 + δr

RH,1 + δr +RH,2

Q (4.6)

Finally, two different cases may occur:

� if Q
′
1 is still greater than Q

′
2 in Figure 4.5(b), the next coming droplet will

select, in turn, channel number 1 in the bifurcation (see Figure 4.5(c));

� if δr is great enough to invert the channel with the leading flow rate (Q
′
2 >

Q
′
1 in Figure 4.5(b)), the next coming droplet will select branch 2 differently

from the first bubble’s choice (see Figure 4.5(d)).

From this examination, we can appreciate how the droplet sorting problem is

intrinsically non linear and complex. The hydrodynamic resistance of each arm

of the bifurcation depends, in fact, both from its geometrical properties and from

the number and size of the droplets it contains. Consequently, the instantaneous

“choice” of the droplets depends on the past hystory of the flow. Such a nonlinear

“memory kernel” renders the process very sensitive and complicates significantly

its analysis.

4.2.1 Simulative example

In order to validate the model introduced for the droplet sorting problem, we ran

several simulations using OpenFOAM, experiencing an almost perfect agreement

with our theoretical solution.

On this purpose, Figure 4.6 represent a significant example. Here, we collect

the results obtained from a simulation characterized by the following settings:

We can observe, in accordance with the theory, that the first droplet approach-

ing the bifurcation (Figure 4.6(a)) turns to the right channel (lower channel in

Figure 4.6(b)): this branch, in fact, is shorter than the other one and has, conse-

quently, the lowest initial hydraulic resistance (see Equation (4.2)):

RH,1 =
aµcL1

wh3 ≈ 1.62 · 1012Pa · s/m3

RH,2 =
aµcL2

wh3 ≈ 4.05 · 1012Pa · s/m3
(4.7)
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Figure 4.5: Example of droplet sorting problem.
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Simulation settings

Dispersed phase viscosity µd = 145.5 mPa · s
Continuous phase viscosity µc = 1.002 mPa · s
Droplets’ length Ld1 = Ld2 = 200 µm

Channels’ width w = 150 µm

Channels’ height h = 50 µm

First branch’s length L1 = 2mm

Second branch’s length L2 = 5mm

Input volumetric flow rate Q = 2.625nL/s

Table 4.1: Geometrical and physical properties of the reference system

and thus the leading flow rate (see Equation (4.3)):

Q1 =
RH,2

RH,1+RH,2
Q ≈ 1.88nL/s

Q2 =
RH,1

RH,1+RH,2
Q ≈ 0.75nL/s

(4.8)

Immediately, the presence of the droplet in the right arm, increases its resistance

in accordance with Equation (4.5):

R
′
H,1 = RH,1 + δr1 =

aµcL1

wh3 + (µd − µc)
Ld1

a

wh3 ≈ 2.50 · 1013Pa · s/m3

R
′
H,2 = RH,2 =

aµcL2

wh3 ≈ 4.05 · 1012Pa · s/m3
(4.9)

This additional resistance is great enough to make Q
′
2 > Q

′
1:

Q
′
1 =

R
′
H,2

R
′
H,1+R

′
H,2

Q ≈ 0.37nL/s

Q
′
2 =

R
′
H,1

R
′
H,1+R

′
H,2

Q ≈ 2.26nL/s
(4.10)

and, thus, the next coming droplet will move, contrary to the previous case, to

the left channel (upper channel in Figure 4.6(c)).

Our idea is to exploit this physical behavior to direct the droplets in our

microfluidic network as illustrated in the next chapter.

In conclusion, it is important to note that our theoretical model predicts an

increase in the hydraulic resistance of the channel caused by the presence of a

droplet if and only if µd > µc (in accordance with Equation (4.5)). This phe-

nomenon can be explained remembering that viscosity (see Section §2.1) describes

the fluid’s internal resistance to flow: the greater the viscosity, the greater its re-

sistance to flow and vice versa.
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(a) (b)

(c)

Figure 4.6: Simulation of droplet sorting problem.

So, if droplets have a characteristic dynamic viscosity µd > µc we, effectively,

inject in the microfluidic system a substance that opposes strongly to the motion

and ultimately increases the resistivity of the channel it occupies (the term δr in

Equation (4.5) is positive). Otherwise, if µd < µc, we inject a mobile liquid which

decreases the hydraulic resistance of the carrier channel (the term δr in Equation

(4.5) becomes negative).

This dynamic is consistent with the simulations we obtained with OpenFOAM

though some experiments from research groups prove that there is an increase

in channel resistance even if we inject a dispersed phase having µd < µc. On

this purpose, we suppose that the lack of the occurrance of this behavior in

our simulations is imputable to the limitations of the solver used (see Appendix

A). Most likely, in fact, it isn’t able to capture the friction’s sources different

from viscous force (e.g., the pressure exerted to the droplet by the thin films of

continuous phase that wrap the dispersed fluid).

Consequently, the model proposed may fail for situations in which viscous

forces are not the dominant friction contribution and thus it is mainly applicable

when µd ≫ µc.
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Chapter 5

Design and performance of a

microfluidic bus network

As anticipated, our aim is to create a programmable LoC in which several ele-

ments (microfluidic machines), able to perform specific laboratory functions, are

deployed in a single “unit” and connected together to form a network. Accord-

ingly, it is possible to support different complex laboratory processes in the same

chip simultaneously, which has several advantages: cost of LoCs could be reduced,

their reusability could be increased and their effectiveness could be improved by

supporting higher flexibility and time saving.

A crucial step in this direction is the identification of an appropriate approach

to transmit “packets” (droplets) to the “end users” (microfluidic machines) of the

microfluidic network. In this chapter we’ll analyze a promising solution to this

problem and discuss the performance obtained for a microfluidic network with

bus topology.

5.1 Mechanism for droplet routing

First of all, let’s then consider a microfluidic bus network topology as depicted

in Figure 5.1, where N is the number of microfluidic machines (MM) connected.

Physically, it simply consists of a main “transmission channel” ramified several

times in order to reach all the microfluidic machines. Let’s note that, for the sake

of simplicity, we considered a uniform spacing (L) between the various branches.

In such configuration, a drop destined to the i-th MM is injected into the network
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through a generator (see Section §3.3) placed at the “input port” on the left, cross

the main channel until it’s finally diverted in the i-th target branch.

Q

MM # 1

MM # 2

MM # 3

MM # N

LLL

L1

L2

L3

LN

Figure 5.1: Design of a microfluidic network with bus topology.

Once again, in order to fully understand the mechanism we developed for

routing the drops, comes in handy the fluidic/electric parallelism (see Section

§2.7). Accordingly, in Figure 5.2 we reported the electric circuit that correspond

to the fluidic network depicted in Figure 5.1 where R is the hydraulic resistance

due to the linking stretches of length L, Rn is the characteristic resistance of the

n-th branch and Req,n is the equivalent resistance seen downstream of the n-th

branch in case of droplets’ absence. Another important premise, that will be

understood later on, is to impose the common main channel to be the path with

the starting leading flow.

RRR

R3 R2 R1RNQ

Req,2 Req,1Req,3Req,N

Figure 5.2: Electric circuit analogous to the microfluidic bus network.

Suppose, now, that we want to bring a droplet cargo with a certain volume at

the i-th MM. Our solution to fulfill this goal requires the injection of two very close

droplets in the system: a “header droplet” and a “payload droplet”. As already
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discussed, the first one (hereafter header droplet) will always follow the path

with the original leading flow, i.e. the main microchannel, due to the hypothesis

just made. Furthermore, it will increment, time after time, the resistance of the

duct it occupies in accordance with Equation (4.5). This physical behavior may

allow us to deflect the following droplet in the desired target branch. Let’s, in

fact, focus on the generic i-th bifurcation which is constituted by two parallel

arms with characteristic original hydraulic resistances respectively equal to Ri

and Req,i = R + Ri−1 ∥ Req,i−1 (see Figure 5.2). The presence of the header

droplet in the portion connecting ramification i and i − 1 will change Req,i as

follows:

R
′

eq,i = R + δri +Ri−1 ∥ Req,i−1 (5.1)

where δri =
(µd−µc)aLdi

wh3 is the resistance increment due to the header droplet1.

If δri is large enough to reverse the leading flow arm at the i-th bifurcation, the

second drop (hereafter payload droplet) won’t flow anymore in the main channel

but it will rather enter in the i-th branch reaching the desired target microfluidic

machine. The header droplet, in turn, continues along the main channel and

it’s eventually discarded from the system via the output port on the right (see

Figure 5.1): this droplet, in fact, doesn’t carry “useful fluid” but it rather serves

only to divert the actual payload droplet to the correct destination.

So far, we have given a qualitative description of the routing process we devel-

oped. Now, however, we have to mathematically formalize it in order to correctly

model the microfluidic network of Figure 5.1.

5.2 Bus network dimensioning

First of all, we have seen that the header droplet must always flow along the

whole main channel without being deflected at any ramifications. Only in this

way, in fact, it may opportunely affect the payload droplets’ route deviating them

in the correct branch. This requirement translates, ultimately, in the following

1Note that we implicitly impose that the header droplet is in the channel connecting ramifi-

cation i and i− 1 when the payload droplet approaches the i-th bifurcation because we assume

that they are injected very closely to each other.
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condition:

Rn > Req,n, ∀n = 1, ..., N (5.2)

where Rn is the characteristic hydraulic resistance of the n-th branch and Req,n is

the equivalent parallel resistance seen downstream of the n-th branch in case of

droplet’s absence. Equation (5.2) can be rewritten by observing that the circuit

configuration of Figure 5.2 has an intrinsic redundancy. Indeed, the following

recursive pattern can be identified:

Req,n = R +Rn−1 ∥ Req,n−1, ∀n = 1, ..., N (5.3)

with Req,1 = R (or equivalently Req,0 = 0). This logical step allows us to calculate

Req,n as a function of Req,n−1. Substituting it in Equation (5.2), in fact, we obtain:

Rn > R +Rn−1 ∥ Req,n−1, ∀n = 1, ..., N (5.4)

This condition imposes, therefore, a lower bound to the various Rn which, con-

sequently, can be calculated as follows:

Rn = αReq,n = α(R +Rn−1 ∥ Req,n−1), ∀n = 1, ..., N (5.5)

with α being a dimensionless discretionary parameter strictly greater than 1

(α > 1).

Now, we need to establish the correct resistance increment δri caused by a

header droplet in order to deflect the cargo in a generic i-th branch of the network.

Thus, we have to impose two different conditions:

1. The payload droplet must select the branch containing the i-th microfluidic

machine when it arrives at the corresponding bifurcation. Mathematically,

it consists in having R
′
eq,i = R + δri + Ri−1 ∥ Req,i−1 > Ri, where R

′
eq,i is

the equivalent resistance seen downstream of the i-th branch in case of i-th

header droplet’s presence. Consequently, δri > Ri−Req,i = Ri−(R+Ri−1 ∥
Req,i−1).

2. Moreover, we must ensure that the payload droplet doesn’t enter into any of

the outreaches it encounters before the i-th bifurcation, which means that:

R
′

eq,k = R+ δri +Rk−1 ∥ Req,k−1 < Rk, ∀k = i+ 1, ..., N . It can be demon-

strated that condition necessary and sufficient to satisfy this requirement
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is: R
′
eq,i+1 = R+ δri +Ri ∥ Req,i < Ri+1. Therefore, δri < Ri+1 −Req,i+1 =

Ri+1 − (R +Ri ∥ Req,i)

Generalizing the previous reasoning, we obtain both a lower and an upper bound

for the various δrn, ∀n = 1, ..., N (i.e. the resistance increments that a header

must entail in order to route the following payload droplet to the various n-th

microfluidic machine of the bus network). In particular, condition number 1.

implies:

δrn > Rn −Req,n, ∀n = 1, ..., N (5.6)

whereas, condition number 2. entails:

δrn < Rn+1 −Req,n+1, ∀n = 1, ..., N (5.7)

Furthermore, substituting Equation (5.3) in Equations (5.6) and (5.7), we obtain,

respectively:

δrn > Rn − (R +Rn−1 ∥ Req,n−1), ∀n = 1, ..., N (5.8)

δrn < Rn+1 − (R +Rn ∥ Req,n), ∀n = 1, ..., N (5.9)

Finally, δrn can be calculated as follows:

δrn = β(Rn+1 −Req,n+1) + (1− β)(Rn −Req,n), ∀n = 1, ..., N (5.10)

with β being a dimensionless discretionary parameter between 0 and 1 (0 < β <

1). For the sake of simplicity, we chose the convention to take the mean value

between lower and upper bound thus always considering β = 0.5.

Let’s now remember (see Section §4.2) that δrn is linked to the geometrical

and physical parameters of the system in accordance with the following formula:

δrn =
(µd − µc)aLdn

wh3
(5.11)

where µd is the viscosity of the header droplet, µc is the viscosity of the continuous

phase, w is the width of the channels, h is the height of the channels, a is a

geometrical parameter which depends on the ratio w/h and Ldn is the length of

the header droplet.

If we consider that µd, µc, w and h are normally fixed, the only parameter

we can change, in order to vary δrn, is Ldn . So, we can create a header droplet

able to divert the payload exactly at the desired ramification just by modulat-

ing opportunely its length Ldn . Nonetheless, if we want the model introduced

above to work correctly, we need to respect a series of mathematical and physical

constraints that are the topic of the next Section.
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5.2.1 Mathematical and physical constraints

First of all, it is important to note that the two formulas in Equations (5.8) and

(5.9) impose us to respect a very precise mathematical constraint. The lower

bound, in fact, must always be smaller than the upper bound otherwise the

problem won’t have solution:

Rn −Req,n < Rn+1 −Req,n+1, ∀n = 1, ..., N (5.12)

Substituting Equation (5.5), we obtain:

Rn

(
1− 1

α

)
< Rn+1

(
1− 1

α

)
⇒ Rn < Rn+1, ∀n = 1, ..., N (5.13)

A transversal result deductible from Equation (5.13) is that L1 < L2 < ... < LN .

In fact, if we retrieve the concept of hydraulic resistance (see Equation (4.2)), we

can express Rn as aµcLn

wh3 . Then, Equation (5.13) becomes:

aµcLn

wh3
<

aµcLn+1

wh3
⇒ Ln < Ln+1, ∀n = 1, ..., N (5.14)

leading us to the anticipated result (indeed, it is no concidence that in Figure 5.1

we placed the branches, from left to right, in rigorous decreasing order of length).

After this dutiful parenthesis, we shall continue our analysis expliciting Equa-

tion (5.13). In particular, availing of Equation (5.5), we obtain:

Rn < α(R +Rn ∥ Req,n), ∀n = 1, ..., N (5.15)

and, applying the well-known rule for parallel resistance:

Rn < α(R + RnReq,n

Rn+Req,n
) = αR + α

Rn
Rn
α

Rn+
Rn
α

=

= αR + α
1+α

Rn, ∀n = 1, ..., N
(5.16)

Moreover, simplifying and inverting Equation (5.16), it results:

R >
Rn

α(1 + α)
, ∀n = 1, ..., N (5.17)

Of course, we are writing the same thing if we substitute the previous equation

with:

R >
max{Rn}
α(1 + α)

(5.18)
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and, reminding Equation (5.13), we can also infer that max{Rn} = RN . So,

Equation (5.18) becomes:

R >
RN

α(1 + α)
(5.19)

However, in this formula, we still have to render explicit RN which we know to

be, in turn, a function of R and α.

In order to get it, we may exploit the intrinsic redundancy of the system.

Let’s, in fact, start calculating R1. Taking advantage of Equation (5.5), it simply

results:

R1 = αR (5.20)

For the same reason, we obtain:

R2 = α(R +R1 ∥ Req,1) = α(R + αR ∥ R) =
αR

1 + α
[(1 + α) + α] (5.21)

R3 = α(R +R2 ∥ Req,2) =
αR

(1 + α)2
{(1 + α)2 + α[(1 + α) + α]} (5.22)

and so on.

The way we wrote the results highlights the common pattern recognizable at

the basis of the previous formulas. In particular we can express a generic Ri as:

Ri =
αR

(1 + α)i−1
[(1 + α)i−1 + α(1 + α)i−2 + ...+ αi−2(1 + α) + αi−1] (5.23)

Furthermore, we can compact the notation in Equation (5.23) by means of the

following summation:

Ri =
αR

(1 + α)i−1

i∑
k=1

αk−1(1 + α)i−k (5.24)

Finally, we are now able to calculate the desired resistance RN as:

RN =
αR

(1 + α)N−1

N∑
k=1

αk−1(1 + α)N−k (5.25)

Substituting this important result in Equation (5.19), we gather:

R >

αR
(1+α)N−1

∑N
k=1 α

k−1(1 + α)N−k

α(1 + α)
=

R

(1 + α)N

N∑
k=1

αk−1(1 + α)N−k (5.26)

Thus, lastly, by simplifying the above formula, we obtain a constraint that de-

pends solely by the parameter α and the number of microfluidic machine N in

the system: ∑N
k=1 α

k−1(1 + α)N−k

(1 + α)N
< 1 (5.27)
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For the sake of simplicity, hereafter we’ll indicate the quantity
∑N

k=1 α
k−1(1+α)N−k

(1+α)N

with C1(α,N) so, the previous equation becomes:

C1(α,N) < 1 (5.28)

As we see in the next graph (Figure 5.3), this condition is always satisfied for any

α > 1 and N . However, if C1 is nearly equal to 1, it means that the lower bound

for δrn (see Equation 5.8) is almost identical to its upper bound (see Equation

5.9) and thus the system is very unstable and strongly susceptible to ”noise” due

to fabrication or setting imperfections2. In order to improve its robustness we
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Figure 5.3: Trend of C1(α,N) as a function of α for various N (number of mi-

crofluidic machines).

thus need to impose a certain margin on C1 that cannot be too close to 1. Then,

we have to strengthen the bond in Equation (5.28) by choosing a new threshold

t1 strictly less than 1:

C1(α,N) < t1 (5.29)

For example, if we fix t1 = 0.9, it means that in Figure 5.3 we are interested in

the portion of the curves located below t1 = 0.9. Essentially, this implies that,

2This case occurs for for small values of α as N increases.
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for increasing values of N we are forced to select higher values of α in order to

respect the condition above.

This result is visually represented in Figure 5.4 where we plot, for various t1,

the curve which represents the minimum value that α can assume in order to

satisfy Equation (5.29) as a function of N .
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Figure 5.4: Minimum value of α imposed by Equation (5.29) as a function of N

for various thresholds t1.

Another very important constraint, of physical nature, that we need to respect

concerns the fact that the header droplets must be entirely contained in the

connecting channels between the branches otherwise it couldn’t opportunely force

the payload droplet to deviate towards the desired microfluidic machine. Only

in this situation, in fact, the header droplet would increase the resistance of the

duct it occupies in accordance with Equation (5.11). Therefore, the condition

that we need to impose is:

Ldn < L, ∀n = 1, ..., N (5.30)

which coincides with:

max{Ldn} < L (5.31)
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However, looking at Equation (5.11), we can deduce that the longest header drop

is the one with the greatest δrn, i.e. δrN .
3 So, max{Ldn} = LdN and the previous

formula turns into:

LdN < L (5.32)

Furthermore, inverting Equations (5.11) and (2.21), and subtituting them in the

formula above, we obtain:

δrNwh
3

(µd − µc)a
<

Rwh3

µca
⇒ δrN <

(µd − µc)

µc

R (5.33)

Now, exploiting Equation (5.10), it results:

β(RN+1 −Req,N+1) + (1− β)(RN −Req,N) <
(µd − µc)

µc

R (5.34)

that, thanks to Equation (5.5), corresponds to:

β(α− 1)

(
R +

1

1 + α
RN

)
+ (1− β)RN

(
α− 1

α

)
<

(µd − µc)

µc

R (5.35)

Then, after some basic math, we gain:

R >
α2 − βα + β − 1

α(α+ 1)
[
(µd−µc)

µc
+ β(1− α)

]RN (5.36)

Now, again, we have to express RN in explicit form as reported in Equation

(5.25). So, we obtain:

R >
α2 − βα + β − 1
(µd−µc)

µc
+ β(1− α)

R

(1 + α)N

N∑
k=1

αk−1(1 + α)N−k (5.37)

Dividing both sides by R, it finally results:

1 >
α2 − βα + β − 1
(µd−µc)

µc
+ β(1− α)

1

(1 + α)N

N∑
k=1

αk−1(1 + α)N−k (5.38)

which is, once again, a condition that depends solely on α and N (in fact, we

always consider a fixed β = 0.5 while µd and µc are physical parameters proper of

the substances considered). Denoting the right member in Equation (5.38) with

C2(α,N), we can rewrite the formula above as:

C2(α,N) < 1 (5.39)

3This is a consequence of Equations (5.8) and (5.9).
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In Figure 5.5 we collected the results obtained for C2 as a function of α and for

various values ofN . It can be noted that, contrary to C1, the curves characterizing

C2 start from 0 and are monotonically increasing: consequently, for low α the

condition above is largely satisfied while when α exceeds a critical maximum value

the constraint isn’t fullfilled anymore. Moreover, it results that, if N increases,

this critical value decreases. Once again it is advisable to introduce a certain
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Figure 5.5: Trend of C2(α,N) as a function of α for various N (number of mi-

crofluidic machines).

tolerance on the constraint of Equation (5.38) by imposing a threshold t2 strictly

lower than 1:

C2(α,N) < t2 (5.40)

In fact, if C2 is nearly equal to 1, it means that the longest header droplet fits

exactly the linking channel of length L leaving no margin and thus making the

system unstable. Suppose now that we fix t2 = 0.9. This choice involves that in

Figure 5.5 we are interested in the portion of the curves located below t2 = 0.9.

Essentially, it implies that, for increasing values of N we’ll have lower upper

bound on α in order to respect the condition of Equation (5.40).

This reasoning is confirmed by looking at the graph in Figure 5.6 where we

plot, for various t2, the curve which represents the maximum value that α can
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assume as a function of N .
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Figure 5.6: Maximum value of α imposed by Equation (5.40) as a function of N

for various thresholds t2.

The two constraints analyzed so far are clearly in contraposition with each

other: the former (Equation (5.29)), in fact, imposes a minimum α while the latter

(Equation (5.40)) fixes a maximum value for the same prameter. In Figure 5.7 we

report the graph obtained combining and processing both the curves in Figure 5.4

and in Figure 5.6.

The conclusions that can be drawn are that, fixing the thresholds t1 and

t2,
4 there exists a specific region where the problem has solution (i.e., the area

enclosed by the couples of curves with the same shape in Figure 5.7). Beyond

this range no solution can be found. Consequently, the point where the two

curves above intersect discriminates between the systems with solution and with

no solution: αmin, in fact, must always stay under αmax in order to respect both

constraints. Therefore, for N higher than the value of the abscissa where the two

4In our study we choose, for convenience, the same t1 and t2 though, obviously, they might

be selected independently.
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Figure 5.7: Minimum and maximum values of α imposed respectively by Equation

(5.29) and (5.40) as a function of N for various thresholds t1 = t2.

curves cross each other, no solution can be found and, in such a situation, we

may only proceed in two ways:

� we can choose a lower number of microfluidic machine N for our network,

losing, however, in system scalability;

� we can loosen the bonds of Equations (5.29) and (5.40) selecting two new

thresholds t1 and t2 greater than the previous ones. Accordingly, however,

we’ll lose in system robustness.

The last condition we have to satisfy in our model derives from the droplet

generator we have chosen for our network. In fact, looking at the Equation (3.6),

which defines the droplets length achievable by means of a cross-flowing generator

in squeezing regime, it results that we cannot produce droplets shorter than w

(with w being the width of the channels). This means that all the header droplets

we consider need to be longer than w:

Ldn > w, ∀n = 1, ..., N (5.41)
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which corresponds to impose:

min{Ldn} > w (5.42)

We have already seen that min{Ldn} = Ld1 , so, it becomes:

Ld1 > w (5.43)

Now, substituting Equation (5.11), we get:

δr1wh
3

(µd − µc)a
> w ⇒ δr1 >

(µd − µc)a

h3
(5.44)

Remembering Equation (5.6), it results that condition necessary but not sufficient

to satisfy this constraint is:

R1

(
1− 1

α

)
>

(µd − µc)a

h3
(5.45)

Finally, exploiting Equation (5.5), we obtain

R >
(µd − µc)a

(α− 1)h3
(5.46)

So, once we select the suitable parameter α thanks to the graph of Figure 5.7,

we’ll consequently have a specific lower bound for the resistance of the linking

channels in our network. It can be noted that if α increases it is easier to fullfil

the previous condition. An increment in this parameter, in fact, corresponds to

having more unbalancing between Rn and Req,n (see Equation (5.5)), thus leading

to use longer header droplets in order to deviate the payload in the right branch.

In this way, it is more likely that we need header droplets longer than w.

5.3 Bus network performance

In the previous section we focused our attention on studying the concepts and

requirements useful to opportunely size a microfluidic bus network such as the

one in Figure 5.1. However, a key aspect is still missing before we can move to

illustrate of the system performance. The latters, in fact, are strongly affected

by a parameter that we haven’t considered yet: the input velocity u of the liquid

flows in the network. It is patent that, as u increases we will have a corresponding

higher “throughput” and vice versa.
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Accordingly, we need to find the physical constraints that rule the maximum

input velocity (u) sustainable by our network, or, equivalently, the maximum flow

rate (Q) since Q = u∗w∗h where w is the width of the channel and h is its height.

Of course, this quantity is influenced by both the necessity of having laminar flow

and, thus, low Reynolds number (see Section §2.3) in a microfluidic system and

preventing flow degeneration in droplet production (see Section §3.3.2). However,

for the typical flow velocities of microfluidic devices (up to tens of mm/s), these

requirements are largely satisfied.

Actually, there is another aspect which limits u the most, i.e. the requirement

of maintaining the integrity of the drops in correspondence of the bifurcations (see

Section §4.1).5 Let’s, in fact, consider Equation (4.1) which discriminates between

breakup and non-breakup regime in a T-junction. Specifically, in order to avoid

the split of the droplet, we need to satisfy the condition:

Ld

w
< χCa−0.21 (5.47)

Now, it is appropriate to express Ca as µcu
σ

(see Section §2.2). In this way, in

fact, it is evident its dependance on u. So, substituting it in Equation (5.47), we

get:
Ld

w
< χ

(µcu

σ

)−0.21

(5.48)

and, inverting the previous formula, we finally obtain:

u <
σ

µc

(
χw

Ld

) 1
0.21

(5.49)

This result tells us that, in general, the maximum input velocity u is limited

by both the physical properties of the dispersed and continuous phase (σ, µc,

χ which depends on the ratio µd

µc
and Ld) and the geometry of the system (w).

However, realistically, the only parameters that may vary in the network are σ, χ

and Ld. The former two depends on the substance that constitutes the dispersed

phase but, so as not to weigh down the notation, hereafter we’ll consider them

constant and equal for both the header and the payload droplets.6 Conversely,

Ld (the length of the droplets) is intrinsically a highly changeable parameter.

5It is important to notice that, at the first bifurcation of Figure 5.1, uc = ud = u which is the

velocity setted by the droplet generator. Furthermore, uc ≤ u throughout the entire network,

as a consequence of Kirchhoff’s current law.
6The generalization of this case is, anyway, elementary.
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Following this reasoning, in Figure 5.8 we reported the typical trend of the

maximum velocity (u) allowed by the system as a function of the droplets length

(Ld) in order to avoid their breakup at the bifurcations. The other reference

parameters considered here are: µc = 1.002mPa·s, µd = 145.5mPa·s, χ = 0.187,

w = 150 µm and σ = 46 mN/m.

3 4 5 6 7 8

x 10
−4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x 10
−4

L
d
 [m]

u 
[m

/s
]

Figure 5.8: Maximum input velocity u allowed for the system as a function of the

droplet’s length Ld.

Analyzing the graph in Figure 5.8, we notice that u decreases drastically as

soon as Ld increases a bit. The latter parameter will, thus, impact strongly on

the throughput of the network.

On this purpose, we have seen in Section §5.2 that the header droplet’s length

varies depending on the number of microfluidic machines (N) in the network

and the destination of the payload drop in accordance with Equation (5.11).

Specifically, we have realized that we need longer header droplets as N increases.

Therefore, the system performance will expire quickly once we add microfluidic

machines to the network.

The payload droplet’s length, in turn, is defined by the volume of liquid that

we want to convey to the microfluidic machine. Now, referring to Equation (5.49),

it follows that the longest droplet injected in the system controls the maximum
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inlet velocity u allowed. So, as long as the payload droplet is shorter than the

header droplet (LH) the maximum u is fixed by the condition:

u <
σ

µc

(
χw

LH

) 1
0.21

(5.50)

while, if the length of the payload droplet LP exceeds LH , we get:7

u <
σ

µc

(
χw

LP

) 1
0.21

(5.51)

5.3.1 Numerical results

At the end of this dissertation, we are finally able to completely configure the

generical microfluidic bus network of Figure 5.1 by setting all its appropriate

geometrical and physical parameters. Consequently, we can extract the time re-

quired to forward any payload droplet to the target microfluidic machines and,

thus, evaluate the “throughput” of the network which is the main aim of the

present Section. However, we must first choose a sensible way to define the con-

cept of throughput in a microfluidic system. Reasoning by analogy with the

world of telecommunications, the “packets” we want to deliver in a microfluidic

network are represented by the droplets. Furthermore, remembering that packets

in telecommunication networks are usually weighed according to the amount of

information they transport (number of bits), we’ll reasonably have to weigh the

droplets in microfluidic networks by the amount of substance they carry (volume

of liquid). Hence, hereafter, we’ll express the throughput in the microfluidic con-

text as the volume of fluid delivered to the output nodes (microfluidic machines)

per unit time denoting it with the symbol R [m3/s].

Another dutiful premise, before illustrating the results, concerns the protocol

we used to commit resources in our system, i.e. the scheduling policy used to

inject droplets in the network. In this regard, we chose the crudest but, at the

same time, simplest possible solution which, in practice, consists in sending a

couple of header/payload droplets at a time and wait until they have completely

left the system before injecting the next one. This rule (a sort of “Stop & Wait”

protocol) ensures that the droplets will follow the theoretical dynamics previously

exposed. The presence of additional droplets in the systems may, in fact, affect

7This is true only if we use the same substances for header and payload droplets.
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negatively the behavior of the other bubbles, leading to unexpected results. In

this regard, we remember that a droplet arriving at a junction, if it does not

break, usually goes to the outlet characterized by the highest flow rate. Since

droplets can increase hydrodynamic resistance of a channel, the presence of addi-

tional droplets downstream in each outlet arm can affect the respective flow rates

and, therefore, the partitioning at the bifurcation. This collective hydrodynamic

feedback modulated by the increased flow resistance introduced by the droplets

can alter the probability of partitioning and, thus, governs the traffic in capillary

tubes.

Thus, implementing the “Stop & Wait” protocol, in order to calculate the

mean throughput of a generic network with N microfluidic machines we proceed

in the following way:

� We fix a uniform length for the payload droplets and size the network basing

on the theoretical background seen in the previous sections.

� We reckon the times required to reach each microfluidic machine of the

network applying the “Stop & Wait” protocol already described. This could

be done by simulating, one at a time, the flow of each pair header/payload.8

In particular, we obtain, with the aid of Matlab, the so called busy period

bi, ∀i = 1, ..., N which is the time during which at least one the two droplets

(header and payload) occupies the system. Clearly, it also coincides with

the time we have to wait before injective the successive bubbles due to the

“Stop & Wait” mechanism.

� We average these results out of all the destinations, obtaining the mean

busy time to reach a microfluidic machines in the referring network: B =∑N
i=1 bipi, where pi is the probability of having a payload droplet destined

to the i-th microfluidic machine. Hereafter we’ll assume a discrete uniform

distribution whereby pi =
1
N
, ∀i = 1, ..., N .

� We make the ratio between the volume of the payload droplets and the

mean busy period obtaining the desired mean throughput of the network:

R = V ol
B
.

8We remember that we need different header droplets in order to deviate the payload droplet

to different microfluidic machines.
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In Figure 5.9 we collect the results obtained for systems with 2, 3, 4 and

5 microfluidic machines considering, from time to time, payload droplets with

length equal to LdN , i.e. the length of the corresponding biggest header droplet

of the network. This entails that the maximum input velocity (u) associated to the

network is always limited by the payload length (in fact, LP ≥ Ldn ∀n = 1, ..., N)

in accordance with Equation (5.51).

The general performance ahieved are quite low. This is because we used wide

margins to comply the conditions expressed by Equations (5.29) and (5.40), at

the expense of throughput. Moreover, the dispersed phase chosen had a very

high dynamic viscosity compared to the continuous phase. This implies that we

inject in the network a fluid very reluctant to motion (see Section §2.1) which

increases considerably the resistance of the channel it occupies and thus decreases

the corresponding flow rate. Furthermore, as we already stated, since µd ≫ µc,

the parameter χ in Equation (5.49) is accordingly quite low. This acts, again, as

a detriment to performance by limiting significantly the input velocity u of the

system.
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Figure 5.9: Mean throughput of the microfluidic bus network as a function of N

for a single payload droplet.

As we expected, the “capacity” of the network expires quickly as N increases.
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This is due to three main reasons:

� If we augment N we’ll necessarily have greater networks and, thus, the

droplets will have to face longer paths before leaving the system.

� In turn, the “Stop & Wait” model adopted to manage the entry of droplets

in the systems, strongly penalizes networks with many microfluidic ma-

chines. In fact, as we already discussed, it doesn’t provide for the simulta-

neous sending of multiple payload droplets. In this way, we’ll have to wait

longer before injecting the next payload droplet, as N increases.

� Finally, we have already argued that, once we add microfluidic machines in

the system, we’ll need corresponding longer header droplets according to

Equation (5.11). This will limit the maximum input velocity of the system

(see Equation (5.49)) affecting, once again, negatively the throughput of

the network.

To conclude our analysis, in Figure 5.10 has been reported the graph, analo-

gous to that of Figure 5.9, obtained by splitting the payload droplet previously

considered in two sub-droplets with halved length. In practice, compared to the

former case, we have transmitted the same volume of fluid to the microfluidic ma-

chines by injecting two bubbles with halved length. The latters, of course, have

been sent in two separate sessions because of the “Stop & Wait” model adopted.

The results show a fairly good improvement in the throughput (see Fig-

ure 5.11). This could seem counterintuitive since, by halving the payload droplet,

we need to forward the resulting pair of sub-droplets in two separate tranche due

to the “Stop & Wait” protocol while, in the previous case, a single transmis-

sion was sufficient to convey the same volume of fluid to the desired microfluidic

machine. However, the reduced dimension of the payload droplets allows us to

increase the input velocity of the system in accordance with Equation (5.49).

Moreover, as we have already seen, by decreasing the length of the droplets we

will also introduce “less resistance” in the channels they occupy and, consequently,

the bubbles will move faster. In the case just described, the union of these two

factors prevails over the burden of sending droplets in two rounds and, thus, is

explained the throughput gain observed.

Therefore, if we have a very long payload droplet, this result tells us that it is

convenient to split it in numerous sub-droplets and send them one at a time along
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Figure 5.10: Mean throughput of the microfluidic bus network as a function of N

for two halved payload droplets.
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Figure 5.11: Comparison of the mean throughput obtained forwarding a single

payload droplet or two halved drops.
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our network. Obviously, this rule applies up to a certain point. Indeed, if the

granularity of the sub-droplets exceeds a certain threshold, the positive factors

seen previously disappear and the splitting acts negatively on the throughput due

to the increased number of transmissions required. This critical value is equivalent

to the length of the header droplet forwarded with the payload itself. In fact, if we

further divide the cargo droplet over this limit, we can’t consequently increase the

input velocity of the system since, in this case, it is anyhow limited by the header.

In the next chapter we’ll give additional tips in order to improve the perfor-

mance analyzed and we’ll introduce alternative networking solutions.

72



Chapter 6

Future developments

The topic covered in this thesis lends itself easily to improvements and future

developments. Among them, a couple of interesting proposals will be briefly

discussed in this conclusive chapter.

6.1 Scheduling

In order to enhance the performance of the bus network previously described, it

might be thought to a more sophisticated scheduling algorithm, compared to the

“Stop &Wait” one, able to manage opportunely the contemporaneous presence of

more than one payload droplet in the system. This scenario, unfortunately, entails

an exponential increment in the complexity of the system itself. In fact, we’ve

already seen that every drop raises the hydrodynamic resistance of the channel

that contains it. Therefore, whenever we inject additional droplets in the network,

we vary the volumetric flow rate of the corresponding channel and, cascading, the

distribution of the flow rates downstream in each parallel arm. This collective

hydrodynamic feedback modulated by the increased flow resistance introduced by

the droplets can alter the probability of partitioning and, thus, governs the traffic

in capillary tubes leading, in the worst case, to uncontrollable “fluctuations”.

However, if kept under control, we could exploit in our behalf such a presence

of numerous droplets in the network. Suppose, in fact, that we want to deliver a

single droplet to each microfluidic machine connected to the network of Figure 5.1.

With the “Stop & Wait” protocol introduced in the previous Chapter we would

have to inject a pair of droplets header/payload at a time, wait until they left the
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system and then forward the next one.

Conversely, with a more sophisticated scheduler, we could achieve the same

goal by injecting toghether all of the payload droplets in the network. This,

in fact, would lead to the formation of a train of droplets where the first ones

can act as header droplets for the following ones redirecting them to the target

microfluidic machines as we saw in Section §4.2. Obviously, this brainwave re-

quires a more thorough analysis of the network and works only if we synchronize

opportunely the forwarding of the droplets.

On the other hand, the benefits compared to the “Stop & Wait” algorithm

are numerous:

� we can save in terms of physical resources because we don’t need anymore

to employ a dedicated header droplet for each payload droplet but rather

use the payload itself to deviate the following drops;

� we can gain in terms of throughput because we are not forced anymore to

wait for the payload droplet to reach its destination before forwarding a

new one;

� we are able to commit more effectively the network resources. In this new

scenario, in fact, we can convey simultaneously the droplets to the microflu-

idic machines which can, thus, work in parallel.

6.2 Network topology

Lastly, another interesting flexibility aspect which characterizes a microfluidic

network concerns its topology. The bus geometry introduced in this work, in

fact, is only one of the configuration that the system may assume. Indeed, at

such scale, it is possible to reassemble the network in many different ways de-

pending on our purpose. For instance, a tree-shaped geometry (see Figure 6.1)

could be suitably implemented in order to arrange hierarchically the microfluidic

machines in the system.

At the end of this thesis it is evident how microfluidics offers great - perhaps

even revolutionary - new capabilities for the future. However, a great deal of

work remains to be done before it can be claimed to be more than an active

74



6.2 NETWORK TOPOLOGY

Q

MM # 1

MM # 2

MM # 3

MM # 4

MM # 5

MM # 6

MM # 7

MM # 8

Figure 6.1: Design of a microfluidic tree network.

field of academic research. Nonethless, the fundamentals of the field are very

strong: much of the world’s technology requires the manipulation of fluids, and

extending those manipulations to small volumes, with precise dynamic control

over concentrations, while discovering and expoliting new phenomena occurring

in fluids at the microscale level must, ultimately, be very important.
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Appendix A

OpenFOAM

OpenFOAM (Open Source Field Operation and Manipulation) is a free, open

source software package developed by OpenCFD Ltd at ESI Group and dis-

tributed by the OpenFOAM Foundation. Basically it works as a C++ toolbox for

the creation of customized numerical solvers, and pre-/post-processing utilities

for the solution of continuum mechanics problems, including computational fluid

dynamics (CFD).

In the present thesis, we presented a microfluidic study using OpenFOAM to

simulate many of the processes described. In particular, the solver to which we

have referred is called interFoam.

We have used the Volume of Fluid (VoF) method to model the flow of two

immiscible fluid (dispersed and continuous phase). In VoF a single set of Navier-

Stokes equations for both phases is combined with an advection equation for

the fluid fraction α of one of the fluids. In the present work, it is important to

underline that both phases are assumed incompressible and Newtonian and the

flow is assumed laminar. Hence the general governing equations can be written

as: 
∇U = 0
∂ρU
∂t

+∇ · (ρUU) = −∇p+∇ · µ(∇U +∇UT ) + ρF + FS

∂α
∂t

+∇ · (αU)−∇ · (α(1− α)Ur) = 0

(A.1)

where U is the fluid velocity, p is the pressure, ρ the density, µ the viscosity, F

a body force and α the volume fraction, which is one in the the bulk of fluid

1 (dispersed phase), zero in the bulk of fluid 2 (continuous phase), and has an
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intermediate value in near the interface between the two fluids. FS, instead, is

the surface tension force, modeled as a volumetric force active in the vicinity of

the interface only, as described below. The bulk density ρ and viscosity µ in the

above Equation (A.1) are computed as weighted averages of two phase properties,

based on the fluid fraction α.

The fluid interface is sharpened by introducing the artificial compression term

∇ · (α(1−α)Ur) in the last formula of Equation (A.1), in which Ur describes the

artificial compression velocity. This term acts to counteract interface diffusion

and is active only on the fluid interface.

The interfacial tension force is approximated as a body force active in inter-

facial grid cells only, and is formulated as FS = σκ(∇α) where σ is the interfacial

tension coefficient and κ = ∇ · (∇α/|∇α|) is the curvature of the interface.

The PIMPLE scheme is applied for pressure-velocity coupling. We used a first

order Euler scheme for the transient terms, controlling the time step by setting

the Courant maximum number to 0.9. Courant number reflects the portion of a

cell that a solute will traverse by advection in one time step and is defined as:

Co =
u∆t

∆l
(A.2)

where ∆l is the dimension of the grid cell at each location, u is the average

linear velocity at that location and ∆t is the maximum time step size. When

advection dominates dispersion, designing a model with Co < 1 will decrease

oscillations, improve accuracy and decrease numerical dispersion. Therefore, we

are interested in satisfying this condition. A first Gauss linear scheme was used

for the discretization of the gradient terms.

The geometry of the three-dimensional channel used has fixed common param-

eters. In particular, we imposed an uniform width and height for every channel

equal to w = 150µm and h = 50µm respectively. The computational domains

and meshes were generated with blockMesh, an internal mesh generator of Open-

FOAM while the graphical results were viewed using ParaView (an open source

mutiple-platform application for interactive, scientific visualization).
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