
Macchine Virtuali per Sistemi
Orientati agli Aspetti

Tesi di Laurea Specialistica in Ingegneria
Informatica

Giordano Battilana

Relatore: Prof. Sergio Congiu

Università di Padova

Padova, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Padua@thesis

https://core.ac.uk/display/11653164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Virtual Machines for
Aspect-Oriented Systems

Master Thesis

Giordano Battilana
s060675

IMM

Technical University of Denmark

Kongens Lyngby 2008

Preface

This report constitutes my Master of Science Thesis, written in the period
between February 1st, 2008 and September 1st, 2008, in the Language-Based
Technology group of the Computer Science and Engineering section at the In-
formatics and Mathematical Modeling department of the Technical University
of Denmark. My supervisor has been Associate Professor Christian W. Probst.

I would like to thank the people that made it possible for me to face this chal-
lenge.
I sincerely thank my supervisor Christian W. Probst for being always available
whenever I needed guidance, for finding the time to answer my questions and
for supporting me in the making of my thesis.
Special thanks to my friend and fellow student Risto Gligorov for the frequent
exchanges of opinions about our projects and for the infinite number of fruitful
discussions that we had during these months.
Thanks to all the members of the Language-Based Technology group for the
Wednesday meetings and for providing an always warm and motivating envi-
ronment.
Thanks to Emilie, Rajesh, Michal, Birgir, Lukasz and Marco for the coffees, the
meals and your valuable company.

I cannot thank enough my family, my father Gianfranco, my mother Paola,
Marco and Matteo, for their continuous support and affection. Thank you.

Copenhagen, September 1st, 2008

Giordano Battilana

ii

Abstract

Aspect Oriented Programming is a programming paradigm that allows sepa-
rating frequently used functionalities (concerns) from the application logic, de
facto enhancing the modularization of the code. Aspects are generally woven
into the code at compilation time and thereafter left untouched. If an aspect is
modified, a re-compilation is required in order to propagate the change into the
code. In a scenario where aspects are used to dynamically change the behavior
of an application according to environmental conditions, this is a relevant limi-
tation.
In recent years, virtual-machines-based solutions for the dynamic weaving of
aspects have started to gain popularity [1, 2, 3].

This thesis presents the design and implementation of the AspectK virtual ma-
chine, a virtual machine that supports the dynamic weaving and unweaving of
aspects while a program is in execution. AspectK [4] is a coordination language
that natively supports the Aspect-Oriented Programming paradigm.

The dynamic weaving of aspects in the code is performed by a special compo-
nent of the virtual machine, the weaver. The weaver supports three different
strategies for weaving the aspects, each of them targeted to a different type of
workload. The thesis presents the details of such strategies and the implications
that their implementation have on the overall design of the virtual machine.

iv

Contents

1 Introduction 1

1.1 Thesis Objectives . 3

1.2 Thesis Outline . 4

2 The AspectK Language 5

2.1 KLAIM . 5

2.2 AspectK . 9

2.3 Dynamic Weaving in AspectK . 16

3 Virtual Machines 21

3.1 System Virtual Machines . 23

3.2 Process Virtual Machines . 24

3.3 Virtual Machines and AOP . 26

4 The AspectK Interpreter 29

vi CONTENTS

4.1 Design . 29

4.2 Interpretation . 32

4.3 Scheduling Of Processes . 34

4.4 Dynamic Weaving of Aspects . 37

4.5 Lessons Learned and Considerations 40

5 The AspectK Virtual Machine 41

5.1 Overview . 42

5.2 Runtime Data Areas . 47

5.3 Frames . 49

5.4 The Scheduler . 54

5.5 Instruction Set Summary . 56

5.6 The AspectK Compiler . 63

5.7 The Weaver . 77

5.8 Weaving Techniques . 89

5.9 Garbage Collection . 94

5.10 Optimizations . 95

6 Supporting Other Calculi 97

7 Final Considerations 99

7.1 Analysis of the Results . 100

7.2 Conclusions . 101

7.3 Further Work . 102

CONTENTS vii

A Example Code 103

B Software 109

B.1 The AspectK Compiler . 109

B.2 The AspectK GUI . 110

B.3 The AspectK Interpreter . 113

C Instruction Set 115

viii CONTENTS

Chapter 1

Introduction

Software systems occupy an important role in our everyday life.

Since their first steps in our society some decades ago, software systems have
evolved a lot, moving from being tools exclusive to the academia to efficient
assistants now familiar to the masses.
The extraordinary diffusion of electronic devices such as mobile phones and
personal computers has certainly improved the quality of our lives but on the
other hand it has brought under the spotlight a new major concern, namely
security.

Everyday, computers copy, move and transform an incredibly large amount of
confidential data, exposing it to the risk of malicious or even accidental access
from unauthorized parties. Enforcing an adequate level of protection against
such threats is one of the primary concerns for software engineers and system
administrators.
Unfortunately, designing a secure system is a true challenge and over the years
companies and other organizations devoted significant amounts of capital and
men-power to improve the level of security of their software products. Further-
more, the level of complexity of software systems is growing at a fast pace and
often the technologies used to enforce security seem to be scarcely effective and
sometimes even inadequate.

2 Introduction

An explanation to this problem could be that some of the technologies that are
still used for designing and developing software were created at a time when
Internet and software security were at the embryonal stages and few people
could possibly foresee their future worldwide adoption. In the last two decades
a lot of research has been conduct to try to improve this situation and new
solutions have quickly gained popularity.

The employment of virtualization in the field of security is one first example.
Virtual machines have been around since the 60s, when the very first steps into
this field were moved. It is only recently, however, with the release of the Java
virtual machine [5], that virtualization has known large diffusion as a technology
used to enforce security.
Originally, virtual machines were developed with the intention to overcome the
limitations in the design of the hardware and permit the simultaneous execution
of multiple instances of an operating system at the same time.
Popek and Goldberg [6] define the virtual machine as an efficient, isolated du-
plicate of the real machine. Hence, a virtual machine can be turned into a
sandbox where any type of untrusted code can be safely executed: if any dis-
ruptive/malicious behavior of the program arises, its effects are confined within
the virtual environment.
Secondly, a virtual machine can be used to closely follow the execution of the
guest code confined in the virtual environment, hence it can work as a reference
monitor [7] that can check every instruction against a security policy.

Besides virtualization, research in software engineering has recently [8] pro-
duced another interesting technology, namely the Aspect Oriented Programming
paradigm (also known as AOP).

Aspect Oriented Programming, similarly to virtualization, did originally not
target security, but tried to solve a very common programming issue.
The Object-Oriented programming paradigm enables the software engineer to
design software in a more rational and effective way than what the procedural
programming paradigm allows to. Unfortunately there are some programming
problems (concerns) for which even Object-Oriented programming seems to be
inadequate. The common property that is at the basis of these problems is that
they cross-cut the system architecture and it is not sufficiently easy or even
possible to separate these aspects of the system into confined modules.
The consequence of this fact is that the code belonging to these concerns is
scattered through the entire system, affecting significantly its maintainability.
Examples of these cross-cutting concerns are debugging or logging.
The goal of Aspect Oriented Programming is to provide a programming tech-
nique that allows the separation of these cross-cutting concerns into confined
modules called aspects.

1.1 Thesis Objectives 3

The employment of AOP in the field of security is obvious when one realizes that
the code that enforces security is usually scattered through the entire system
and it fits perfectly the definition of cross-cutting concern. AOP can be used to
separate the security concern from the rest of the system, making it possible to
treat it as a confined module. There are several examples ([4] and [9] are two
of them) on how researchers are trying to exploit AOP in this sense.

A close look to virtualization and AOP highlights the possibility of combining
them to join their strengths.
The point of contact is represented by the following consideration. AOP allows
to separate the cross-cutting concerns of the system into separate modules, the
aspects. Usually, the aspects are then merged (woven) into the rest of the
system at compile time and thereafter left untouched. From this point of view,
we can state that aspects are statically merged into the code, since they are
never changed after the compilation. The problem with this approach emerges
when security itself is considered as an aspect. Security policies are generally
expected to change over time, and if we are willing to enforce it by mean of
aspects we must re-compile the program each time the security policy changes.
Clearly, for large applications, this could be a non-viable solution and other
alternatives should be considered. The idea is to somehow weave the new aspects
within the application without requiring it’s complete recompilation.
Virtual machines enter the scene at this point. Because of their nature, virtual
machines can closely follow the execution of a program, thus they are the perfect
tool for “manipulating” the program itself or change some parts of its execution
at run time possibly requiring the re-compilation of a minor portion of the code.

1.1 Thesis Objectives

This thesis presents the design and the implementation of the AspectK virtual
machine, a virtual machine capable of supporting the weaving of aspects at
run time. The language supported by the virtual machine is AspectK [4], a
coordination language developed at the Informatics and Mathematical Modeling
department of the Technical University of Denmark. AspectK is the language
of choice for at least two reasons.
AspectK has native support for Aspect-Oriented Programming, hence the effort
could be focused on creating the virtual machine rather than on extending some
existing language or even designing a new one.
Secondly, AspectK is simple enough to make this project feasible in the given
amount of time.

The work carried out consists of the following parts:

4 Introduction

• Design and implementation of the virtual machine.

• Design and implementation of a compiler that compiles an AspectK net
into the virtual machine’s bytecode.

• Design and implementation of the apparatus (the weaver) that enables the
dynamic weaving of aspects.

• Analysis of the properties of AspectK and subsequent implementation of
three different techniques for the dynamic weaving of code.

1.2 Thesis Outline

The thesis consists of seven chapters and the introduction is the first of them.

In Chapter 2 we present the AspectK language and how it provides support for
Aspect-Oriented Programming.
Chapter 3 provides some basic background on virtual machines. The concepts
presented here are useful for understanding the architecture of the AspectK vir-
tual machine.
Chapter 4 outlines a prototype of the virtual machine, the AspectK Interpreter
that was developed before the real virtual machine. This small sub-project was
very useful for gaining some knowledge on what the major challenges to take
into account in the design of the virtual machine were. Moreover it gave me
the chance to start brainstorming some of the infrastructure that would have
eventually make it into the real virtual machine.
Chapter 5 analyzes all the components that form the virtual machine. All the
phases of the development are outlined here.
In Chapter 6 we analyze what could be the major challenges to take into con-
sideration if the virtual machine had to be extended to support more process
calculi besides AspectK.
Finally, Chapter 7 draws some conclusive comments on the outcome of this
project and presents some possible ideas for further improving and extending
the work presented in this thesis.

Appendix A contains an example of the code generated in the compilation of
an AspectK net.
Appendix B gives an overview on the software included with this thesis, namely
the AspectK compiler aspectkc, the AspectK GUI aspectKgui and the AspectK
Interpreter.
Appendix C contains the full specification of the bytecode instructions.

Chapter 2

The AspectK Language

This chapter presents AspectK [4], a coordination language that supports Aspect-
Oriented Programming.
AspectK is based on a fragment of the KLAIM [10, 11, 12] language.

Section 2.1 presents the KLAIM kernel language which is at the core of AspectK,
whereas Section 2.2 outlines the Aspect-Oriented part of AspectK. Finally, Sec-
tion 2.3 provides an overview on how the specification of this language could be
modified to support different approaches for dynamically weaving code at run
time.

2.1 KLAIM

The syntax of the fragment of KLAIM incorporated in AspectK is shown in
Figure 2.1.

A net N is either a parallel composition of located processes or located tuples.
The components of tuples can be location constants only. Nets must be closed,
meaning that all the variables must be in scope of a defining occurrence.

6 The AspectK Language

N ∈ Net N ::= N1||N2 | l :: P | l :: 〈
−→
l 〉

P ∈ Proc P ::= P1|P2 |
∑
i ai.Pi | ∗ P

a ∈ Act a ::= out(
−→
`)@` | in(

−→
`)@` | read(

−→
`)@`

`, `λ ∈ Loc ` ::= u | l `λ ::= ` | !u

Figure 2.1: KLAIM Nets and Processes syntax

A process P is either a parallel composition of processes, a guarded sum of
action-prefixed processes or a replicating process (prefixed by *). The guarded
sum

∑
i ai.Pi is written 0 if the index set is empty.

A tuple can be output (out action), input (in action) or read (read action) from
a location. If a tuple is read, it is not removed from the location.

The parameters can be location constants l, defining occurrences of location
variables !u and applied occurrences of a location variable u.
The scope of a defining occurrence is the entire process to the right of the
occurrence.

An example of Net is provided in Figure 2.2. This example describes a restaurant
environment.

The location IngrDB stores a record for each of the available groceries, whereas
the RecipeDB location stores a record for each recipe that the cooks are able to
prepare.
The two waiter processes WaiterAlfredo and WaitressLaura are in charge of
gathering the orders from the customers and outputting them at the Board loca-
tion. Specifically, WaiterAlfredo is in charge of the pasta-based dishes, whereas
WaiterLaura is in charge of handling the pizza orders and the desserts orders.
Both the waiters also deliver the meal to the customers when it is ready, which
is achieved by outputting the meal at the Customer location.
The process CookLuigi inputs the order from the board, reads the correspond-
ing recipe from the database and collects the required ingredients. The selected
ingredients are removed from the database once CookLuigi has used them. Even-
tually, when the meal is ready, it is output at the location whose name is the
“category” of the dish and the waiter in charge of that category can deliver the
dish to the hungry customer.
The GroceryProvider process makes sure that the restaurant is never out of
ingredients.

2.1 KLAIM 7

IngrDB :: <Spaghetti>

|| IngrDB :: <Tomato>

|| IngrDB :: <Eggs>

|| IngrDB :: <PecorinoCheese>

|| IngrDB :: <ParmigianoCheese>

|| IngrDB :: <Bacon>

|| RecipeDB :: <Pasta,Pesto,Spaghetti,Basil,Oil,ParmigianoCheese>

|| RecipeDB :: <Pasta,Carbonara,Spaghetti,Eggs,PecorinoCheese,Bacon>

|| RecipeDB :: <Pizza,Margherita,Pasta,Tomato,Mozzarella,Basil>

|| RecipeDB :: <Cake,Tiramisu,Biscuits,Eggs,Sugar,Coffee>

|| CookLuigi :: *in(!cathegory,!name)@Board.

read(cathegory,name,!ingr1,!ingr2,!ingr3,!ingr4)@RecipeDB.

in(ingr1)@IngrDB.

in(ingr2)@IngrDB.

in(ingr3)@IngrDB.

in(ingr4)@IngrDB.

out(name)@cathegory.0

|| WaiterAlfredo :: *(out(Pasta,Pesto)@Board.0

+ out(Pasta,Carbonara)@Board.0

| in(!meal)@Pasta.out(meal)@Customer.0)

|| WaitressLaura :: *(out(Cake,Tiramisu)@Board.

in(!meal)@Cake.out(meal)@Customer.0

+ out(Pizza,Margherita)@Board.

in(!meal)@Pizza.out(meal)@Customer.0)

|| GroceryProvider :: *(out(ParmigianoCheese)@IngrDB.0

| out(PecorinoCheese)@IngrDB.0

| out(Coffee)@IngrDB.0

| out(Mozzarella)@IngrDB.0 | out(Pasta)@IngrDB.0

| out(Spaghetti)@IngrDB.0 | out(Tomato)@IngrDB.0

| out(Basil)@IngrDB.0 | out(Eggs)@IngrDB.0

| out(Bacon)@IngrDB.0 | out(Oil)@IngrDB.0

| out(Biscuits)@IngrDB.0 | out(Sugar)@IngrDB.0)

Figure 2.2: An example of Net

8 The AspectK Language

Well-formedness of Locations and Actions. To express the well-formedness
of locations we need to introduce two functions:

• bv, for calculating the bound variables of the various types of location that
may occur in actions, i.e. bv(l, u, !v) = v;

• fv, for calculating the free variables of the various types of location that
may occur in actions, i.e. fv(l, u, !v) = u.

An input action is well formed if its sequence
−→
`λ = `1, · · · , `k of locations is well

formed. A sequence of locations is well formed if the following two conditions
are fulfilled.

∀i, j ∈ {1, · · · , k} : i 6= j ⇒ bv(`λi) ∩ bv(`λj) = ∅
bv(
−→
`λ) ∩ fv(

−→
`λ) = ∅

These conditions pose the following constraints:

• no multiple defining occurrences of the same variable in an action;

• in a single action, bound variables and free variables cannot share any
name.

2.1.1 Semantics

Figure 2.3 outlines the rules of structural congruence of nets, whereas Figure
2.4 illustrates the one-step reduction relation on nets.

l :: P1 | P2 ≡ l :: P1 || l :: P2 l :: ∗P ≡ l :: P | ∗ P

N1 ≡ N2

N || N1 ≡ N || N2

Figure 2.3: KLAIM structural congruence

Figure 2.4 introduces the function match, which is shown in Figure 2.5.

2.2 AspectK 9

ls :: out(
−→
l)@l0.P + · · · → ls :: P || l0 :: 〈

−→
l 〉

ls :: in(
−→
`λ)@l0.P + · · · || l0 :: 〈

−→
l 〉 → ls :: Pθ if match

(−→
`λ;
−→
l
)

= θ

ls :: read(
−→
`λ)@l0.P + · · · || l0 :: 〈

−→
l 〉 → ls :: Pθ || l0 :: 〈

−→
l 〉 if match

(−→
`λ;
−→
l
)

= θ

N1 → N ′1
N1 || N2 → N ′1 || N2

N ≡ N ′ N ′ → N ′′ N ′′ ≡ N ′′′

N → N ′′′

Figure 2.4: KLAIM reaction semantics (on closed nets)

match(〈〉, 〈〉) = id
match(〈`′λ1 , · · · , `′λk 〉; 〈l1, · · · , lk〉) = let θ = case `′λ1 of

l′1 : if l′1 = l1 then id else fail
!u : [l1/u]

in θ ◦ match(〈`′λ2 , · · · , `′λk 〉; 〈l2, · · · , lk〉)

Figure 2.5: KLAIM pattern matching of templates against tuples

2.2 AspectK

This section presents the syntax and the semantics of AspectK, a language that
extends the portion of KLAIM presented in the previous section to incorporate
Aspect-Oriented Programming features.
But before going into the internals of the language we present the core principles
of the Aspect-Oriented Programming paradigm. These concepts are necessary
to understand what are the possible ways to support AspectK and the dynamic
weaving in the virtual machine.

2.2.1 Aspect-Oriented Programming

Methodologies such as Object-Oriented Programming proved to be satisfactory
in capturing the essence of core concerns of software systems but they were
not that effective in treating cross-cutting concerns. Cross-cutting concerns are
aspects of a program which affect other concerns.
Aspect-Oriented Programming [8] (also AOP) was designed with the goal of
providing means for separating the cross-cutting concerns from the core concerns
and confining them into stand-alone modules.

10 The AspectK Language

AOP is a rather new technology, as a matter of fact the term itself was coined
by Gregor Kiczales in 1996. He and Cristina Lopes, of the Palo Alto Research
Center (subsidiary of Xerox Corp.), were among the early contributors of AOP
[13].

Gregor Kiczales led the team at Xerox that created AspectJ, one of the first
implementations of AOP. Since then, a lot of work on this new technology
was carried out by universities all around the world and this resulted into the
proliferation of AOP-dialects for a large variety of languages, including the well-
known C/C++, Python, C# and Perl.

A close look on the AOP methodology reveals the presence of three major phases
[13]:

Aspectual Decomposition. In this phase the design of the system is ana-
lyzed and two categories of concerns are identified:

1. Core concerns, namely the components that define the core business logic
of a software system.

2. Cross-cutting concerns, namely aspects of the system that affect many
other components. Traditional examples are logging, security and debug-
ging.

Concern Implementation. The two categories of concerns previously identi-
fied are implemented with the appropriate methodologies:

• the core concerns using a traditional methodology such as Object-Oriented
Programming;

• the cross-cutting concerns using Aspect-Oriented Programming.

Aspectual Re-composition. This process, also known as weaving or integrat-
ing consists in specifying re-composition rules by creating modularization units
also called aspects. Each aspect is characterized by the following structures:

• The pointcut, namely a construct that selects identifiable points in the
execution of a program, called joinpoints.

• The Advice, which defines the code that must be executed at the joinpoints
selected by the pointcuts.

2.2 AspectK 11

During the re-composition phase, the aspects are analyzed and whenever a point-
cut selects a joinpoint in the code, the code specified in the advice is injected.

2.2.1.1 Implementation

The basic AOP language implementation is composed by two logical steps [13]:

1. The individual concerns (core and cross-cutting) are combined using the
weaving rules.

2. The resulting information is converted into executable code.

The process that combines the individual concerns according to the weaving
rules is called weaving and the processor that performs this job is called weaver.
Figure 2.6 illustrates how the traditional process of compilation (Figure 2.6a) is
changed when the AOP weaver is incorporated in the compiler (Figure 2.6b).

The method presented in Figure 2.6b describes the compile-time weaving and
it suggests how, in the basic implementation of AOP, the weaving of aspects
is a one-time process which modifies in a definitive way the program. We will
explore, instead, dynamic weaving techniques, whose aims are:

• enable the weaving of code in the program after the compilation.

• enable the unweaving of previously woven code.

2.2.1.2 Some Terminology

This section summarizes some terminology specific to the Aspect-Oriented Pro-
gramming paradigm.

Compile-time Weaving. The operation of weaving performed on the program
at compile-time.

Dynamic Weaving. The operation of weaving performed on the program at
run-time.

Just-In-Time Weaving. The operation of weaving performed at run-time on
the portion of code that is about to be executed.

12 The AspectK Language

(a) Traditional compilation

(b) Compilation involving the AOP weaver

Figure 2.6: Comparison of the traditional compilation and the compilation in-
volving the AOP weaver

Join Point. The join point is an identifiable point in the execution of a pro-
gram.

Pointcut or Cut. The pointcut is a program construct that selects join points
an collect context at those points.

Advice. The advice is the code to be executed at a join point that has been
selected by a pointcut.

Aspect. The aspect is the central unit of AOP. Pointcuts and advices are
combined in an aspect.

2.2 AspectK 13

2.2.2 AspectK Syntax

The syntax of AspectK, which is shown in Figure 2.7, extends the syntax of
KLAIM (Figure 2.1).

S ∈ System S ::= let −→asp in N

asp ∈ Asp asp ::= A[cut]
4
= body

body ∈ Advice body ::= case(cond) sbody; body | sbody
sbody ::= as break | as proceed as

as ∈ Act∗ as ::= a.as | ε
cond ∈ BExp cond ::= test(

−→
`λ)@` | `1 = `2 | cond1 ∧ cond2 | ¬ cond

cut ∈ Cut cut ::= ` :: a
`λ ∈ Loc `λ ::= ` | !u | ?u

Figure 2.7: AspectK Syntax

AspectK introduces some new constructs, outlined below.

Aspects. AspectK introduces the notion of System, which is a Net prefixed
by a sequence of Aspect declarations.

An aspect declaration takes the form of A[cut]
4
= body where:

- A is the name of the aspect;
- cut is the action to be trapped by A (the pointcut);
- body specifies the advice that handles the trapped action.

Cut. A cut is formed by a cut action located by a location `.

The definition of `λ is extended to incorporate the new location expression ?u,
which traps !u and l occurring in actions. The definition of the check function
(Figure 2.12) clarifies the semantics of ?u. If ?u or !u is used in a cut pattern, u
should only occur in after (or post) actions. u is not allowed in neither before
actions or conditionals.

Well-formedness of Cuts. In addition to the conditions of well-formedness of
KLAIM a new condition is added to express the well-formedness of cuts.
Given the function cl(cut) that generates the list of entities involved in a cut,
for example:

cl(ls :: in(!x, y, ?z)@l0) = 〈ls, x, y, z, l0〉

14 The AspectK Language

the well-formedness condition requires that the variables returned by cl(cut) are
pairwise distinct.

Advice. In the definition of an advice the following rules hold:

• The keyword break indicates that the original action is suppressed and
the process is prevented from further execution.

• The keyword proceed allows the original action to be executed. In case
of multiple aspects trapping the action, break takes precedence over pro-
ceed.

• In case of multiple aspects trapping an action, all the before actions (or
pre-actions) are executed; then, if no break applied, the original action is
executed and finally the after actions (or post-actions), in reverse order of
declaration.

Condition. A condition cond is equivalent to a standard boolean expression.

The primitive test(
−→
`λ)@` succeeds if there is a tuple at location ` that matches

−→
`λ. ?u is not allowed within test conditions.

AspectK Example

An example of the usage of the syntax of AspectK is outlined in Figure 2.8,
which reports four aspects defined for the net of Figure 2.2.

The first aspect limits the activity of the GroceryProvider process: the aspect
prevents the delivery of ingredients that are already available at the IngrDB loca-
tion. The second aspect is activated when Pasta is not served at the restaurant,
it stops the WaiterAlfredo process whenever the action out(Pasta,x)@Board is
going to be fired. The third aspect is used to log the type of dishes prepared by
process CookAlfredo. This is achieved by inserting a post-action that outputs
at a special location Notes the category and the name of the dish.
Finally, the fourth aspect enhances the quality of service at the restaurant.
Whenever one of the waiters is about to serve the meal to the customer
(out(meal)@Customer), the aspect inserts a pre-action that takes care of plac-
ing a fork and a knife at the table of the customer (out(Fork,Knife)@Customer)
and two post-actions that remove the dirty fork and knife and the dirty dish
from the Customer location and output them at the WashingMachine location.

2.2 AspectK 15

let

A[$GroceryProvider :: out(x)@$IngrDB] ^=

case(test(x)@$IngrDB)

break;

proceed,

A[$WaiterAlfredo :: out($Pasta,x)@$Board] ^=

break,

A[$CookLuigi :: in(!cat,!name)@$Board] ^=

proceed out(cat,name)@Notes,

A[waiter :: out(meal)@$Customer] ^=

out(Fork,Knife)@Customer

proceed

in(!dirtyFork,!dirtyKnife)@Customer.in(!dirtyDishes)@Customer.

out(dirtyFork,dirtyKnife,dirtyDishes)@WashingMachine

in

[...]

Figure 2.8: Specification of aspects for the Net of Figure 2.2

2.2.3 AspectK Semantics

Figure 2.9 illustrates the one-step reduction rules that define the semantics of
AspectK. Rules from figures 2.4 and 2.3 should be also taken into account. The
rules for the actions come in pair.
The first rule defines the semantics for the action when no advice is allowed to
interrupt it (syntactically, this is defined as underlining).
The second rule makes use of the function Φ defined in Figure 2.10.
The result of Φf (ΓA; ` :: a) is a sequence of actions that trap ` :: a. ΓA is the
global set of aspects.
f can be either break or proceed. The former case arises if at least one
“break” advice applies, otherwise f will be proceed. If f is proceed, the
action a is eventually emitted, otherwise it is replaced by stop

Figure 2.11 shows the auxiliary function trap used by Φ, whilst Figure 2.12
presents the function check, which is used by trap to determine whether a cut
matches an action.
If so, check produces a list of substitutions for the variables occurring in the
cut.

Figure 2.13 outlines the kΓA,`::a
f function, which processes the advice associated

16 The AspectK Language

N1 → N ′1 (where globally ΓA = −→asp)
let −→asp in N → let −→asp in N ′

ls :: stop.P + · · · → ls :: 0

ls :: out(
−→
l)@l0.P + · · · → ls :: P || l0 :: 〈

−→
l 〉

ls :: in(
−→
`λ)@l0.P + · · · || l0 :: 〈

−→
l 〉 → ls :: Pθ if match

(−→
`λ;
−→
l
)

= θ

ls :: read(
−→
`λ)@l0.P + · · · || l0 :: 〈

−→
l 〉 → ls :: Pθ || l0 :: 〈

−→
l 〉 if match

(−→
`λ;
−→
l
)

= θ

ls :: Φproceed(ΓA; ls :: out(
−→
l)@l0).P → N

ls :: out(
−→
l)@l0.P + · · · → N

ls :: Φproceed(ΓA; ls :: in(
−→
`λ)@l0).P || N ′ → N

ls :: out(
−→
`λ)@l0.P + · · · || N ′ → N

ls :: Φproceed(ΓA; ls :: read(
−→
`λ)@l0).P || N ′ → N

ls :: read(
−→
`λ)@l0.P + · · · || N ′ → N

Figure 2.9: Reaction semantics (on closed nets)

to a matching cut. kΓA,`::a
f makes use of the auxiliary function B which is

reported in Figure 2.14.

2.3 Dynamic Weaving in AspectK

The semantics of AspectK defines a just-in-time weaving strategy.

The trap (Figure 2.11) operation is attempted at run-time, whenever an action is

Φf (A[cut]
4
= body; ΓA; ` :: a) = case trap(cut, ` :: a) of fail : Φf (ΓA; ` :: a)

θ : kΓA,`::a
f (body θ)

Φf (ε; ` :: a) = case f of proceed : a
break : stop

Figure 2.10: Trapping Aspects: Step 1

2.3 Dynamic Weaving in AspectK 17

trap(cut, ` :: a) = case (cut, ` :: a) of

(`s :: out(
−→
`)@`0, ls :: out(

−→
l)@l0) : check(〈`s,

−→
` , `0〉, 〈ls,

−→
l , l0〉)

(`s :: in(
−→
`λ)@`0, ls :: in(

−→
`′λ)@l0) : check(〈`s,

−→
`λ, `0〉, 〈ls,

−→
`′λ, l0〉)

(`s :: read(
−→
`λ)@`0, ls :: read(

−→
`′λ)@l0) : check(〈`s,

−→
`λ, `0〉, 〈ls,

−→
`′λ, l0〉)

otherwise fail

Figure 2.11: Trapping Aspects: Step 2

check(〈〉, 〈〉) = id
check(〈`λ1 , `λ2 , · · · , `λk〉, 〈`′λ1 , · · · , `′λk 〉) = let θ = case (`λ1 , `

′λ
1) of

(!u, !u′) : [u′/u]
(?u, !u′) : [u′/u]
(?u, l′) : [l′/u]
(u, l′) : [l′/u]
(l, l′) : if l = l′ then id else fail

otherwise fail
in θ ◦ check(〈`λ2 , · · · , `λk〉, 〈`′λ2 , · · · , `′λk 〉)

Figure 2.12: Trapping Aspects: Step 3

encountered in the execution path. Trap uses the check (Figure 2.12) function,
which matches the template defined in the cut against the trapped action.

In the implementation of the interpreter first and the virtual machine then, I
decided to explore the possibility of adapting the AspectK semantics to support
a dynamic weaving approach.
Both the dynamic weaving and the JIT weaving are performed at run time,
but the advantage of using dynamic weaving is that the injection of code is
performed once (for the successfully trapped actions) and it is not needed to

kΓA,`::a
f (case cond sbody; body) = case B(cond) of tt : kΓA,`::a

f (sbody)

ff : kΓA,`::a
f (body)

kΓA,`::a
f (sbody) = case sbody of as1 proceed as2 : as1.Φf (ΓA; ` :: a).as2

as break : as.Φbreak(ΓA; ` :: a)

Figure 2.13: Trapping Aspects: Step 4

18 The AspectK Language

B(test(
−→
`λ)@l) =

tt if there exists a tuple

−→
l at location l

such that match(
−→
`λ,
−→
l) 6= fail

ff otherwise

B(l1 = l2) =

tt if l1 = l2

such that match(
−→
`λ,
−→
l) 6= fail

ff otherwise

B(cond1 ∧ cond2) =

{
tt if B(cond1) = tt and B(cond2) = tt
ff if B(cond1) = ff or B(cond2) = ff

B(¬cond) =

{
tt if B(cond) = ff
ff if B(cond) = tt

Figure 2.14: Trapping Aspects: Step 5

attempt it anymore, at least as long as the set of aspects ΓA does not change.

The dynamic weaving can be successfully performed whenever the operation
of trapping does not require knowledge of run time context: if we observe the
AspectK semantics there are two places were run time information is needed
while performing a trap:

1. within the check function. When a constant location of the cut template is
matched against a variable of the trapped action it is necessary to retrieve
the value of such variable to perform the comparison of the two values.

2. within the B function, whenever a test or an equality (=) condition is
evaluated. In general, according to the semantics of AspectK, conditions
must be evaluated when the trapped action is about to be executed and
cannot be evaluated at a different time.

In order to support dynamic weaving we have to deal with both the two cases
just described. The semantics of AspectK specifies that the trapping is to be
performed at run time when the action is about to be fired. This implies that
the check function is specified so that it matches only against either constants l
or variable definitions !u. The match against variable occurrences, which arises
if the trapping is attempted at dynamic time, is not considered.

Figure 2.15 illustrates a prototype of the check function extended to support
dynamic weaving. The modifications are highlighted in bold.
In the two cases (?u, u′) and (u, u′) the trapped location is substituted to the
template location.

2.3 Dynamic Weaving in AspectK 19

check(〈〉, 〈〉) = id
check(〈`λ1 , `λ2 , · · · , `λk〉, 〈`′λ1 , · · · , `′λk 〉) = let θ = case (`λ1 , `

′λ
1) of

(!u, !u′) : [u′/u]
(?u, !u′) : [u′/u]
(?u,u′) : [u′/u]
(?u, l′) : [l′/u]
(u,u′) : [u′/u]
(u, l′) : [l′/u]
(l,u′) : exception
(l, l′) : if l = l′ then id else fail

otherwise fail
in θ ◦ check(〈`λ2 , · · · , `λk〉, 〈`′λ2 , · · · , `′λk 〉)

Figure 2.15: The check function modified to support dynamic weaving

The case (l, u′) is probably the most interesting one. The value of u′ cannot
be fetched and compared to l because the value of u′ is unpredictable and can
be retrieved only when the action is being fired. Its value could be one of the
following ones:

• The value could be undefined, because the variable u was not defined yet
(one should remember that dynamic weaving can happen at any time);

• The value could be defined but different from the one that would be avail-
able if the check was executed when the trapped action is being fired.

The solution is to return an exception that signals the necessity of trapping the
action following the original AspectK semantics, namely with a JIT weaving
strategy.

The B function cannot be modified anyhow. In fact, conditional advices must
be evaluated only when the action is about to be executed. This means that
dynamic weaving cannot be performed on actions trapped by aspects containing
conditional advices.

In conclusion, supporting dynamic weaving in AspectK requires the following
changes to the semantics:

• The check function is changed to support the substitutions (?u, u′) and
(u, u′) and to handle the (l, u′) case.

20 The AspectK Language

kΓA,`::a
f (case cond sbody; body) = exception

kΓA,`::a
f (sbody) = case sbody of as1 proceed as2 : as1.Φf (ΓA; ` :: a).as2

as break : as.Φbreak(ΓA; ` :: a)

Figure 2.16: Prototype of function kΓA,`::a
f modified for dynamic weaving

• The kΓA,`::a
f function (Figure 2.13) is changed as shown in Figure 2.16.

• The function Φf is modified as shown in Figure 2.17.

Some remarks:

• dynamic weaving, in general, cannot fully substitute the JIT weaving. It
may be considered as an optimization of the JIT weaving, since in those
cases where no run-time information is required, the injection of actions
is performed only once for the trapped action.

• If the exception is raised by any aspect involved in the weaving, the process
must be aborted. Continuing the weaving by simply skipping the aspect
that threw the exception would be wrong, because that same aspect might
successfully trap the action if the trap is executed when the action is being
fired.

• TheB function is never used in the dynamic weaving, since if a conditional-
advice is encountered an exception is returned.

Φf (A[cut]
4
= body; ΓA; ` :: a) = case trap(cut, ` :: a) of fail : Φf (ΓA; ` :: a)

θ : kΓA,`::a
f (body θ)

exception : abort

Φf (ε; ` :: a) = case f of proceed : a
break : stop

Figure 2.17: Prototype of function Φf modified for dynamic weaving

Chapter 3

Virtual Machines

A virtual machine is taken to be an efficient, isolated duplicate
of the real machine

This citation comes from the work of Popek and Goldberg, “Formal requirements
for virtualizable third generation architectures”, which dates back to 1974 [6].
Virtual machines have evolved a lot since that time but these words still capture
the nature of virtual machines.

Formally, the process of virtualization is the construction of an isomorphism [6]
that maps a virtual guest system to a real host (Figure 3.1).

The isomorphism maps the guest state to the host state (function V). Moreover,
for a sequence of operations e that modifies the state in the guest (the function
e changes the state Si into the state Sj) there is a corresponding sequence of
operations e′ that performs an equivalent modification to the host’s state (the
function e′ changes the state S′i into the state S′j).

Popek and Goldberg have defined a list of characteristics that any virtual ma-
chine should possess. The software layer providing virtualization is referred to as
the “Virtual Machine Monitor” (also VMM). The VMM fundamental features
are outlined in the sequel:

22 Virtual Machines

Figure 3.1: Virtualization is the construction of an isomorphism between a guest
system and a host application e′ ◦ V (Si) = V ◦ e(Si)

1. the VMM should provide an essentially identical environment to the orig-
inal machine; this means that an application executed on the virtual ma-
chine should exhibit the same behavior as if it was run on the real machine.

2. The VMM should be efficient, thus a statistically dominant subset of
the virtual processor’s intructions should be executed directly by the real
processor, with no software intervention by the VMM.

3. The VMM should posses a complete control over the resources, namely:

• a program running in the virtual environment cannot access any re-
source not explicitly allocated to it.

• under certain condition the VMM can regain control of resources
already allocated.

Given the requirements, we shall now see what the process of virtualization
consists of. Smith and Nair [14] describe it as a process characterized by two
properties:

1. It maps the virtual resources like registers, memory or files to real resources
in the underlying machine.

2. It uses real machine instructions and/or system calls to carry out the
actions specified by the virtual machine instructions and/or system calls.

We can identify two classes of virtual machines:

• System virtual machines.

3.1 System Virtual Machines 23

• Process virtual machines.

Both of these classes satisfy the properties exposed by Popek and Goldberg and
implement the process of virtualization described by Smith and Nair. Never-
theless, as we shall see in the following subsections, these two classes of virtual
machines are significantly different from several points of view.

3.1 System Virtual Machines

The System virtual machines embodies the more “traditional” concept of virtual
machines, namely a software that virtualizes a certain set of hardware.

Figure 3.2: Instruction Set Architecture (ISA) interface.

In order to understand what a system virtual machine must virtualize, we should
consider the system from the perspective of an operating system. In this case,
the “machine” is represented by the the whole hardware platform and the In-
struction Set Architecture (ISA) provides the interface between the system and
the machine. These concepts are depicted in Figure 3.2.
A system virtual machine can translate the ISA used by one hardware platform
to another (Figure 3.3).

There are several types of system virtual machines:

Classic virtual machine. The most obvious application of system virtual
machines is to virtualize the hardware and enable the simultaneous execution of
several guest operating systems. Both the host and the guest ISA are the same.

Hosted virtual machine. This application is equivalent to the previous one,
with the difference that the virtual machine runs on top of a host operating
system and not on bare hardware.

24 Virtual Machines

Figure 3.3: The System virtual machine.

Whole-System virtual machine. These virtual machines differ from the
classic ones in the fact that the guest system is compiled for a ISA which differs
from the host system ISA. Hence, the Whole-System virtual machine emulates
the guest ISA.

Codesigned virtual machine. This type of virtual machine is usually adopted
in conjunction with hardware that supports some kind of innovative ISA and/or
hardware implementations for improved efficiency or performance or both. The
virtual machine is part of the hardware implementation and is used to enable
the extended features that it features.

3.2 Process Virtual Machines

Process virtual machines support the execution of a single process.

In order to understand what the process virtual machine must virtualize, we
should consider the system from the perspective of a process. In this case, the
“machine” consists of the following components:

• A logical memory address space that was assigned to the process.

• A set of user-registers and user-instructions that permit the execution of
code belonging to the process.

• A set of system calls that the process uses to access the I/O system.

In conclusion the “machine” consists of a combination of operating system calls
and underlying user-level hardware. The interface that enables the process to
interact with the “machine” that we have just defined is called Application

3.2 Process Virtual Machines 25

Binary Interface (ABI).
These concepts are depicted in Figure 3.4.

Figure 3.4: Application Binary Interface.

A process virtual machine implements the guest process ABI, consequently it
translates a set of OS and user-level instructions composing one platform to
another. Figure 3.5 illustrates these concepts.

Figure 3.5: The Process virtual machine.

Process virtual machines have multiple applications:

Multiprogramming. This kind of process virtual machine is present in every
operating system supporting the execution of multiple user processes. Each
process is provided with a process virtual machine and its task it to give to the
process the “illusion” of having exclusive access to the hardware.

Emulators and Dynamic Binary Translators. Process virtual machines
can be used to execute programs compiled for an instruction set different than
the ones executed by the host hardware. This can be achieved through emula-
tion, also called interpretation, which fetches and decodes each instruction and
then emulates its semantics using host instructions. This can be a slow process,
requiring tens of the host instructions.

26 Virtual Machines

Dynamic binary translation can be used to improve this process. In this case
“blocks” of guest instructions are translated into host instructions that perform
equivalent functions.

Same-ISA Binary Optimizers. As then name suggests, these process virtual
machines simply work as run-time optimizers of the binary code of an applica-
tion.

Platform Independence. Process virtual machines can be used to create
platform-independent software. In this case the process virtual machine works
as a translator from a virtual ISA, namely an ISA which is paired with the
virtual machine and is not necessarily implemented in any real hardware, to the
host ISA.
The idea is to compile the guest process into the virtual ISA and distribute it
for execution on different platforms. Then, for each platform, a virtual machine
capable of executing the virtual ISA is implemented.
Sun Microsystems JAVA VM and Microsoft CLI are widely known examples of
this type of Process Virtual Machine.

3.3 Virtual Machines and AOP

In recent years, several solutions have been based on virtual machines to imple-
ment the dynamic weaving of aspects on code.

The JRockit [1], AspectWerkz [3], SteamLoom [2] virtual machines are three
examples of virtual machines that natively support the weaving of aspects. They
are all based on the Java virtual machine and this is not mere coincidence: the
Java specification [5] enforces a strict and well defined definition of the class
binary files that contains the compiled bytecode. This means that the format
of the file is constrained and this simplifies a lot the process of identification of
joinpoints and weaving of code at run time.

These virtual machines use different techniques for identifying the joinpoints
within the bytecode. The JRockit virtual machine identifies the joinpoints as
events within the virtual machine, such as method calls. The SteamLoom virtual
machine, instead, defines the concept of joinpoint shadows, which are sets of one
or more bytecode instructions that the virtual machine can identify within the
compiled code of a method. AspectWerkz instead recognizes joinpoint markers
that were inserted in the code at compilation time.

At run time, when the joinpoint in the code are encountered during the exe-

3.3 Virtual Machines and AOP 27

cution, all these virtual machines substantially substitute or modify and then
re-compile the original code with the code defined in the aspect. This is a rather
efficient solution because the weaving is triggered by the virtual machine itself
at the right time and only if needed.
This strategy for code manipulation at run time provides several benefits [1] if
compared with approaches that involve code instrumentation (approach adopted
by Javassist [15]) which consists in parsing and manipulating the code after com-
pilation, possibly while the program is executing.

AspectK Virtual Machine. The dynamic weaving in the AspectK virtual
machine adopts methodologies which are equivalent to those of the virtual ma-
chines just presented.
In the AspectK virtual machine the joinpoints are identified by mean of marks
(the aspect tags) that are inserted in the bytecode at compilation time, similarly
to the approach adopted by the AspectWerkz virtual machine.

Moreover, whenever a cut matches a joinpoint at run time, the virtual machine
invokes the weaver, which attempt the trap on the action (the only joinpoint in
AspectK) and if this operation succeeds the weaver compiles the code contained
in the advice using the just in time compiler and then weaves it into the original
code.

28 Virtual Machines

Chapter 4

The AspectK Interpreter

This chapter describes the architecture of the AspectK interpreter, which is a
software that was designed and implemented with the objective of exploring
possible solutions for supporting the dynamic weaving of aspects within a vir-
tual machine.
The work on the interpreter was useful to determine how to challenge the de-
velopment of the virtual machine and to track down the pivotal issues of the
dynamic weaving in AspectK at an early stage of my work.
The interpreter is implemented in Java.

4.1 Design

The design of the interpreter is rather simple. Figure 4.1 illustrates the major
components at play.

The front-end component is represented by the parser. The parser is in charge of
analyzing the AspectK source code and transforming the data therein contained
into a suitable form1.

1More information on the parser will be provided in Section 5.6.1.

30 The AspectK Interpreter

Figure 4.1: Overview of the interpreter

The parser divides the information into two parts, namely:

• the net specification, a collection of process definitions and tuples;

• a (optional) collection of aspects associated to that net.

After the parser comes the core component, which is the central part of the
interpreter. Its task is to setup the environment defined by the net and then
execute the processes, action after action, until no process is able to evolve any
more. Furthermore, the core can inject actions whenever one or more of the
aspects trap the actions in the net.
Figure 4.1 illustrates additional element, the trace component, which is used by
the interpreter to record and save the evolution of the net.

The software architecture of the interpreter is shown in Figure 4.2.

Figure 4.2: Software Components

4.1.1 Interpreter Features and Limitations

The important features implemented in the interpreter are:

• recording of the execution;

4.1 Design 31

• possibility to choose which process to execute, or otherwise let the system
choose;

• possibility to enable/disable aspects at runtime;

• possibility to add and remove aspects at runtime;

• support of the actions eval(P)@` and newloc(
−→
`).

On the other side there are some significant limitations, due to the fact that
this is a prototype:

• the trapping of actions is not attempted on the injected actions, thus the
interpreter behaves differently from the AspectK specification presented
in the “Advice for Coordination” [4] paper;

• the condition evaluator has a rather incomplete implementation. test con-
ditions can bind variables and the truth value of the condition may depend
on the value of such variables. If multiple bindings exist, the condition
evaluator chooses one and commits to it: if the condition evaluates to
false for such choice, no backtracking is performed and no other binding
is attempted.

• some of the features supported by the core are not made available to the
user through the user interface. For example it is not possible to enable
or disable the aspects.

4.1.2 Net Internal Representation

In order to understand the working of the interpreter it is necessary to spend
some words on the data structure that is used to model the net. The example
of Figure 4.3 will be used to facilitate the explanation and the comprehension
of this matter.

loc1 :: <t1, t2>

||

loc2 :: read(!x, !y)@loc1.0 + read(!z)@loc3.out(z)@loc1.0

||

loc3 :: *out(a)@loc3.0

Figure 4.3: Code example

32 The AspectK Interpreter

A net definition is encoded into a tree data structure. Each internal node of the
tree describes an operator, which can be one of those reported in the following
list:

• ||, parallel composition of nets;

• ::, location of a process or a tuple;

• |, parallel composition of processes;

• +, guarded sum of processes;

• *, replication of processes;

• ., sequential composition of actions.

Each leaf node, instead, describes one of the following entities:

• a location;

• a tuple;

• an action;

• a null process (0).

The net in the example is transformed into the tree depicted in Figure 4.4.

4.2 Interpretation

The interpreter features a multithreaded architecture, each process in the net is
emulated by a different Java thread. In the previous section we described how
tuples and processes are encoded into sub-trees of the || nodes.

The interpreter identifies these sub-trees and then it initializes the environment
as follows:

1. it scans the net tree and creates a set of tuple sub-trees and a set of process
sub-trees;

4.2 Interpretation 33

Figure 4.4: Net tree

2. for each tuple, the location the tuple is located at is registered among the
“known” locations. Moreover, the tuple is added to the set associated to
this location;

3. for each process, the location the process is located at is registered among
the “known” locations. Moreover, a new thread is allocated for such pro-
cess, it is bound to the sub-tree representing the process and it is added to
the set of threads associated to this location. Each thread has a variables
table associated to it, where it records what variables are available at a
certain point of the execution and what their values are.

Each thread walks the branch of the net tree it is bound to and it executes two
kind of tasks:

1. actions, encoded into the action nodes, which may affect the global en-
vironment by removing/creating tuples and binding new variables in the
process’ variable table;

2. operators, encoded into the operator nodes, which affect the process’ be-
havior.

Two or more threads are bound to a same sub-tree only in case of replication.

34 The AspectK Interpreter

Figure 4.5: Processes and tuples are evidenced on the example net tree

Figure 4.5 illustrates the two sets of tuples and processes defined by the inter-
preter in the example introduced in Section 4.1.2. The set of tuples initially
contains only one tuple and the set of processes contains two processes. Process
2 is a process that replicates thus, each time it executes, it spawns a new thread
bound to the sub-tree which is the children of the operator node *.

Processes that replicate never terminate. This means that in presence of a
process that replicates the evolution of the net never reaches a termination
point.

4.3 Scheduling Of Processes

At any point during its execution, a process can be in one of the following states:

1. active execution;

2. termination, namely the process is the null process 0.

3. block, namely the process hasn’t terminated it’s execution but it cannot
proceed further. This situation occurs because of the absence of a tuple
at a certain location that prevents a read or in action from being fired.

4.3 Scheduling Of Processes 35

A net can evolve only if it contains some active processes. If no active process
is present, the net has reached a final state from which it cannot evolve.

This idea of different states for a process can be used to categorize them and
determine the global state of execution of the net:

Green Set: a process is green if it is guaranteed that it can successfully perform
the next task.

Yellow Set: a process is yellow if it is unknown whether it can perform the
next task.

Red Set: a process is red if it is guaranteed, given the current state of the net,
that it will fail to perform the next task.

Grey Set: a process is grey if it is the null process.

Replication Set: a process is in the replication set if it replicates. These
processes could be placed in the green set, however having them in a
separate set adds additional information on the nature of the processes
present in the net.

Using these categories it is possible to define several scheduling strategies.

4.3.1 Interactive Execution

This execution mode allows the user to manually select which process to execute.

The algorithm works as follows:

1. At the beginning the threads are created. Each of them is tested (not
executed) and:

• if it can successfully perform the next task, given the current state
of the net, it is inserted in the green set;

• if it cannot because the next task is an in or a read action and the
matching tuple for the action is missing, it is inserted in the red set;

• if the process replicates, it is inserted in the replication set.

2. The processes belonging to the green and replication set are exposed for
selection and the user chooses one of them. If, instead, these sets are
empty, the execution terminates;

36 The AspectK Interpreter

3. The process executes the task;

4. One of the following choices is performed:

• if the process that was executed was a process that could replicate,
jump to step 2;

• if an action was performed and such an action was an out action,
all the processes in the red set are tested again and placed either in
the green or back in the red set. In fact, the out action might have
generated a tuple that is required by one or more of the red processes.
Jump to step 2;

• if an action was performed and such an action was an in action,
all the processes in the green set are tested again and placed either
back in the green set or in the red set. In fact, the in action might
have removed a tuple that is required by one or more of the green
processes. Jump to step 2;

4.3.2 Non-Interactive Parallel Execution

This execution mode does not allow the user to select which process to execute.
The algorithm works as follows:

1. at the beginning the threads are created. They are all inserted in the
yellow set. The other sets are all empty;

2. all the threads in the yellow and replication set are executed. If such sets
are both empty, terminate.

3. For each thread:

• if the thread successfully performed its task, it remains in the yellow
set;

• if the thread failed (missing tuple) it is moved to the red set, unless
one of the threads in the yellow set performed an out action. In fact,
all the threads are executed in parallel and the threads in the red set
might have failed before that the tuple was created;

• if the thread replicates, it is moved to the replication set;

• if the thread has become the null process, it is moved to the grey set.

4. Go back to step 2.

4.4 Dynamic Weaving of Aspects 37

4.3.3 Non-Interactive Sequential Execution

This execution mode is equivalent to the one of the previous section, except for
the fact that only one thread from the (yellow ∪ replication) set is executed
instead of launching all of them in parallel.

1. at the beginning the threads are created. They are all inserted in the
yellow set. The other sets are all empty;

2. One thread in the (yellow ∪ replication set) set is executed. If, instead,
those two sets are both empty, execution terminates.

3. One of the following:

• if the thread successfully performed its task, it remains in the yellow
set;

• if the thread failed (missing tuple) it is moved to the red set;

• if the thread replicates, it is moved to the replication set;

• if the thread has become the null process, it is moved to the grey set.

4. Go back to step 2.

4.4 Dynamic Weaving of Aspects

The interpreter features two strategies for the dynamic weaving of aspects. They
are presented in this section.
It is assumed that the aspects are available in the environment within a set (the
aspect pool) and that they can be added/removed or enabled/disabled at any
time during the execution, except at the very moment of the weaving.

4.4.1 Lazy Weaving

This first technique implements the Just-In-Time Weaving.
The name lazy suggests the fact that the weaving of actions is performed at the
very last moment, when the trapped action is about to be executed.

The algorithm is given below:

38 The AspectK Interpreter

1. lock the aspect pool. No aspects can be add/removed or enabled/disabled
while the aspect pool is locked.

2. iterate through the aspects, following their order of declaration (see Sec-
tion 2.2.3). For each enabled aspect attempt the trap and:

• If the trap succeeds, extract from the advice the actions to inject.

• If the trap does not succeed move to the next aspect.

3. create the list of pre-actions and post-actions to inject, by assembling all
the pre-actions and post-actions extracted by the aspects.

4. create a sub-tree using the set of injected actions and link it to the original
net tree.

5. move the execution pointer to the first pre-action.

6. unlock the aspect pool.

For example, we may consider the following AspectK net:

let

A[$User :: out(x)@y] ^= read(x)@y proceed out(y)@x

in

loc :: out(sweet)@home.0

The net tree is shown in Figure 4.6.

Figure 4.6: loc :: out(sweet)@home.0

Step 4 of the algorithm is depicted in Figure 4.7. The sub-tree contains the
pre-action, the post-action and the original action. The original action must be
included in order to avoid any modification of the links in the original net tree.

The sub tree has an “open” link, which is attached to the original net tree, as
shown in Figure 4.8. The execution pointer is moved too.

4.4 Dynamic Weaving of Aspects 39

Figure 4.7: Sub-tree

Figure 4.8: The net tree after the weaving

4.4.2 Balanced Weaving

The Balanced weaving approach implements the dynamic weaving described in
Section 2.3. This strategy tries to reduce the amount of computational power
required by the weaving at run-time by moving part of the work at the time
when an aspect is either added or enabled in the system.
It is possible to categorize the aspects into two different sets: the ones that can
be used in the dynamic weaving and the ones that can only be used for the JIT
weaving (see Section 2.3 for more information about this issue).

Whenever an aspect is added in the system (or it is re-enabled if it was dis-
abled), the net tree is traversed and trap is attempted on each action. If dy-
namic weaving is not feasible, the weaving process is aborted and the action
skipped, otherwise the list of substitutions returned by the check function is
cached for being used when the JIT weaving is re-attempted when the action
is executed. The balanced weaving cannot substitute the JIT weaving but (in

40 The AspectK Interpreter

certain conditions) it can optimize it.

4.5 Lessons Learned and Considerations

The work on the interpreter underlined some interesting aspects to be taken
care of in the design of the virtual machine.

First of all Aspectk is a coordination language that describes systems of pro-
cesses running in parallel. Hence, a first requirement for the virtual machine is
to support the execution of multiple threads executing in parallel.

Aspects can be modified or disabled/enabled at any time, and this implies that
the injected may need to be modified several times during the execution. This
fact underlined the importance of keeping the injected code separated from the
net to facilitate its removal and re-injection

Using categories for classifying the state of the processes seemed to be a use-
ful technique that could improve the activity of the scheduler and that could
facilitate the determination of the state of the net. In Chapter 5 we see that
the most suitable scheduling strategy for the virtual machine is the one that
enforces the “non-interactive sequential” execution.

The experience with the interpreter was beneficial in understanding what the
possible strategies for weaving could be, besides of course the one defined in
AspectK itself, identified by the lazy weaving. In the interpreter, the balanced
weaving strategy can be considered as a mere optimization however, as we will
see in the next chapter, in the virtual machine it is extended to become a stand-
alone weaving technique.

Chapter 5

The AspectK Virtual Machine

This chapter discusses the design and the implementation of the AspectK virtual
machine.
Section 5.1 provides an overview on the architecture of the virtual machine.
Sections 5.2 and 5.3 describe the memory layout of the virtual machine.
Section 5.4 presents the scheduler.
Section 5.5 provides an overview on the format of the bytecode and on the
instruction set of the virtual machine.
Section 5.6 illustrates the compilation scheme and the implementation of the
AspectK compiler.
Section 5.7 analyzes the design of the weaver.
Section 5.8 describes the weaving strategies implemented in the virtual machine.
Section 5.9 provides a brief description of the garbage collector.
Section 5.10 illustrates the optimizations implemented in the virtual machine.

A note on the terminology: unless explicitely stated, the locations that compose
a tuple will be referred to as terms and the term location will be reserved to
define the “location” at which a process or a tuple is located.
Moreover, the expression pre-actions is used to define those actions that, when-
ever a trap operation succeeds, are injected before the trapped action. Post-
action, instead, defines those actions injected after the trapped action.

42 The AspectK Virtual Machine

5.1 Overview

The AspectK virtual machine is a process virtual machine designed to support
the AspectK coordination language.
The design of the AspectK virtual machine is inspired by the one of two other
virtual machines, namely the Java [5] and the TyCO [16] virtual machines.
The Java virtual machine was taken as a model for the initial definition of the
instruction set and for the design of the bytecode layout. The TyCO virtual
machine is an example of virtual machine for process calculi and it provided some
overall insights on how a process calculus can be compiled for the execution on
a virtual machine.

Popek and Goldberg defined efficiency as one of the fundamental characteristics
that every virtual machine should possess. The AspectK virtual machine was
designed and developed seeking a compromise between efficiency and simplicity
of design and implementation. Given the time constraints and the absolute lack
of experience in the development of virtual machines Java was the language
of choice for the development. In general, I tried to focus the effort on the
completion of the virtual machine rather than its optimization. However, some
small optimizations are present and they are discussed in Section 5.10.

The basic characteristics of the virtual machine are:

• Big endian format

• 32-bit long words

• 231 − 1 bytes addressable1.

• The virtual machine is implemented as an emulator (see Section 3.2). Each
bytecode instruction is fetched, decoded and emulated using Java code.
Using the terminology of chapter 3, the host ISA is the Java bytecode,
whereas the guest ISA is the AspectK bytecode.

The architecture of the virtual machine is quite simple. Two major components
can be identified, namely the virtual machine core2 and the weaver3. The core
part implements the emulator and the weaver is in charge of weaving the code
specified by the aspects that are stored in the aspect pool4.
Two other major components in the core are

1This limitation is due to Java, since the native types are signed and the most significant
bit is used for the sign.

2File vm.VirtualMachine.java
3Package vm.aop.weaver.*
4File vm.aop.AspectPool.java

5.1 Overview 43

• The scheduler, in charge of the scheduling of the threads in the Thread
Queue (see Section 5.2.3). The scheduler is discussed in Section 5.4.

• The garbage collector, which takes care of freeing the memory not being
accessed anymore (see Section 5.9).

The other components of major interest used by the weaver are:

• The trapper (see Section 5.7) which is the component providing the meth-
ods for trapping actions.

• The just-in-time compiler (see Section 5.7.3), which compiles on-the-fly
the actions to be injected into bytecode.

• The condition evaluator (see Section 5.7.4), which can evaluate the truth
value of the conditions embedded in the advices (with backtracking).

A final module of interest is represented by the library package5 that contains
code which is shared by many classes. An important component of the library is
the bytecode reader6, an utility that can be used to read and extract information
from the bytecode. This utility is used by the weaver and by the disassembler
(see Section 5.6).

5.1.1 Net Representation and Execution

This section presents an overview on the scheme used to compile a net into
bytecode and it explains how it is executed. The objective of this section is
to provide an high level understanding on how the virtual machine operates,
whereas details about the single components of the virtual machine will be then
provided in the next sections.

A net is formed by two classes of components:

• the processes;

• the tuples;

5Package lib.*
6File lib.memory.BytecodeReader.java

44 The AspectK Virtual Machine

Processes

The action is the atomic component of a process. Process operators can be
used to create new processes by modifying the behavior of a process or by
composing multiple processes together. Processes describe a concurrent system,
they coexist and execute in parallel at the same time.

The design of virtual machine has to support the concurrent execution of mul-
tiple processes: no process should be allowed to keep the processor busy for the
entire duration of its execution.

The fact that a process is composed by atomic parts, the actions, can be used
to split the execution of a process in multiple chunks. The idea is to allow a
process to control the processor for the amount of time necessary to execute the
action and then possibly move the control to another process. For the moment
we can simplify the discussion by ignoring the presence of operators such as ∗,
| or + and consider a process as a simple sequence of actions.

In the AspectK virtual machine the state of each process is traced using a special
frame, the thread frame. The thread frames are placed in a special region in the
memory, the thread queue and the scheduler, takes care of determining in which
order the processes are executed.

The actions are compiled into a chunk of code whose structure is shown in Figure
5.1. A process is allowed to execute one action chunk before passing the control
of the execution back to the scheduler.

Figure 5.1: A chunk of code.

Three parts are identifiable in a chunk:

1. the first part, containing the bytecode that executes the action;

2. the second part, colored in green, is executed only if the action was suc-
cessfully performed.

3. the third and final part contains the code executed only if the action
couldn’t be performed.

5.1 Overview 45

Tuples

The tuple is an array of terms and each term is a string. The string is encoded
in the virtual machine using a special frame, the byte array. the sequence of
byte arrays that model a tuple are stored in an additional frame, the reference
array. The reference array stores in each cell the reference of the byte array
representing the corresponding term.

The frames encoding the tuples, along with all the other frames with the ex-
ception of the thread frames, are placed in a special area of the memory, the
heap.

Other Components

There are other two important structures used by the virtual machine to track
the execution of the net. They are both allocated on the heap:

• The global constants table. AspectK does not support input coming from
the user, thus the number of constant locations present in the net is in-
variant7. It seems reasonable then to pre-allocate all these constants and
place them in a global table, thus avoiding the need to allocate them again
whenever they are needed within a process or a tuple.

• The channel list. Locations are the point of synchronization for the pro-
cesses. They are asynchronous channels since a process can post a message
in a location without waiting for another process to receive it. Each time
a new location is created (because a tuple or a process is located there) a
new channel frame is allocated in the channel list, which is implemented
using the frame reference list.

Execution

We have briefly seen in the previous paragraphs how tuples and process are
treated internally by the virtual machine. In order to understand how a net is
executed we need first to present how it is compiled into code. The compiled
program representing a net is made of two parts:

7The weaving of actions may introduce new constants. In Section 5.7.2 we will see how to
face this challenge.

46 The AspectK Virtual Machine

1. the first part is the initialization area. It is the equivalent to the main
method of languages like Java. It performs the following tasks, in order:

(a) It allocates all the global constants in the global constants table.

(b) For each tuple, it allocates in memory its memory representation,
it creates, if it does not exists yet, the channel in the channel list
corresponding to the location; finally it binds the tuple’s memory
representation to the channel frame.

(c) For each process, it allocates in the thread queue a frame which
represents it. Each frame points to the address of its first instruction
in the code.

2. the second part contains the code of the processes. Each process is basi-
cally a sequence of chunks of code similar to the one shown in Figure 5.1,
plus some other special chunks representing some of the operators.

Initially the virtual machine starts the execution from the beginning of the ini-
tialization part of the program. At its end the control is passed to the scheduler,
which schedules the first thread frame.

The thread frame contains some information about the process, among which the
value of its program counter and the reference to the variable table of the process,
which is a reference array containing the values of the variables appearing in
the process. The scheduler changes the value of the program counter to the
one stored in the thread frame and the virtual machine starts the execution of
the instructions of the chunk pointed by the program counter. At the end of
the chunk the control is passed back to the scheduler, which schedules the next
thread frame, and so on.
When no more thread frames are available, the virtual machine terminates the
execution.

Whenever an input action is performed the variable table of the corresponding
thread frame is updated.

If an in action is performed, the selected tuple/reference array is removed from
the list of tuples (implemented using reference list frames) pointed by the loca-
tion/channel frame.

Similarly, whenever an out action is performed a tuple is added to the list
pointed by the target channel.

The virtual machine supports an additional kind of frame, the code frame, which
is used to encapsulate the code woven by the weaver.

5.2 Runtime Data Areas 47

5.1.2 Remarks

There are some remarks to take into account, regarding the design of the virtual
machine.

• Some of the logic of the execution and part of the information on how to
manipulate the program data are embedded in the bytecode instructions
(see for example the MATCH instruction that implements the logic of the
AspectK match function). This approach simplifies the design and make
it easier to support other functions or other data structures. In fact, it is
enough to implement additional bytecode instructions that can manipulate
them.

• The string is the only type used in AspectK. The virtual machine features
a limited set of instructions and the only instruction that manipulates
strings is NEWSTRING that permits to create a string.

• The virtual machine, internally, handles several types of data, namely the
reference (4 bytes), the byte (1 bytes), the unsigned integer (4 bytes),
the signed short integer (2 bytes) and the unsigned short integer (2 bytes)
types. None of these types is exposed through the virtual ISA (Instruction
Set Architecture).

• The virtual machine defines the null reference as a reference of value
0x00000000.

5.2 Runtime Data Areas

This section presents the memory architecture of the virtual machine, which is
illustrated by Figure 5.2.

The Heap and the Thread Queue grow towards each other. When the two areas
collide an exception signalling memory exhaustion is thrown.
There are four major memory areas that are used for the execution.

5.2.1 The Program Area

The program area is the place where the program bytecode is stored. The first
4 bytes of the program are used to store the size of the global constant table,

48 The AspectK Virtual Machine

Figure 5.2: Memory layout of the virtual machine.

which is initialized by the virtual machine. After the initialization of the global
constant table the program counter is moved to the address 4.
The machine register PC stores the value of the program counter.

5.2.2 Heap

The heap is the area in the memory where the dynamic data structures are
stored. The basic building block of the heap is the byte and the basic allocation
unit is the frame.
The heap is created at the virtual machine start-up and its start address is
recorded in the HEAP START POINTER register.
Heap storage for frames is reclaimed by the garbage collector. No frame is ever
explicitly deallocated.
The HP register stores the first free byte of the heap.

5.2.2.1 Global Constant Table

The global constant table is a reference array which stores all the constants
defined within the net. This structure is initialized at the virtual machine start-
up and its size is stored in the first 4 bytes of the program code.
The address of the global constant table is available at the machine register
CONSTANTS TABLE POINTER.

5.3 Frames 49

5.2.2.2 Channel List

The channel list is a list (implemented using the reference list frame) of channel
frames. Each channel frame encodes one location at which one or more tuples
and/or processes can be located.
This structure is initialized at the virtual machine start-up.
The address of the channel list is stored at the machine register CHANNELS LIST POINTER.

5.2.3 Thread Queue

The thread queue stores the thread frames representing the processes in execu-
tion.
The register CTP stores the address of the thread frame currently in execution.
The register TQP stores the address of the last thread added in the queue.
No thread frame is ever explicitly deallocated, instead it is the garbage collector
that is in charge of removing the frames of threads not in execution anymore.

5.2.4 Operand Stack

The operand stack is used by the instructions to read some of their arguments
or store the result of their computation.
For example, the MATCH instruction, which implements the match function of
Figure 2.5 (page 9), reads the reference of the tuple to match from the operand
stack and outputs the result of the matching, which could be either the null

value or the reference of the returned frame, again on the operand stack.
A cell of the operand stack is 32 bit of size.
The index of the top value in the stack is stored in the OS machine register.

5.3 Frames

This section presents the frames, which are the basic unit of allocation of mem-
ory of the virtual machine. The next sections present each frame. In the figures,
large cells indicate that the field has a size of 32 bits, tiny cells indicate a size
of 8 bits. Italic font indicates that the field is a reference.
Every frame has a first field named Descriptor. This special field is used by the
garbage collector to determine the type of the frame and to mark the frames
when they are visited during the collection process.

50 The AspectK Virtual Machine

5.3.1 Byte Array Frame

Descriptor
Length

Byte 0
...

Byte n-1

Figure 5.3: The byte array frame.

The byte array frame, presented in Figure 5.3 holds a sequence of bytes.
The 32-bit-long field size allows the instantiation a byte array of at most 231−1
cells.
When allocated, all the cells of the byte array are initialized to null.

5.3.2 Reference Array Frame

Descriptor
Size

Reference 0

...

Reference n-1

Figure 5.4: The reference array frame.

The reference array frame, presented in Figure 5.4 holds a sequence of references.
The 32-bit-long field size allows the instantiation of reference arrays of at most
231 − 1 cells.
When allocated, all the cells of the reference array are initialized to the null

value.

5.3.3 Reference List Frame

The reference list frame (Figure 5.5) is a frame that can be used to build lists
of frames. It has three fields:

5.3 Frames 51

Descriptor
Element

Previous

Next

Figure 5.5: The reference list frame.

• Element. Stores the reference to the frame that constitutes the element
at this position of the list.

• Previous. Stores the reference to the previous reference list frame.

• Next. Stores the reference to the next reference list frame.

Reference lists may be not allocated using any instruction of the ISA. They are
handled internally by some instructions of the ISA.

5.3.4 Channel Frame

Descriptor
Name

Tuple List

Figure 5.6: The channel frame.

The channel frame (Figure 5.6) encodes the location in AspectK. The channel
has two fields:

• Name. Stores the reference to a byte array defining the string name of the
current channel.

• Tuple List. Stores the reference to the first reference list frame of the list
of tuples that are located at this location. If there is no tuple, the value
of this field is null.

Channels are created using the NEWCHAN instruction, which reads the reference
of the byte array containing the name of the channel from the operand stack.

52 The AspectK Virtual Machine

A tuple can be appended to the channel using the APPEND instruction, which
reads the reference of the reference array representing the tuple from the operand
stack and appends it to the list pointed by Tuple List.

5.3.5 Thread Frame

Descriptor
Status

Channel

Variable Table

Program Counter

Aspect Code
Reference

Aspect Variable
Table Table

Aspect Constants
Table Table

Figure 5.7: The thread frame.

The thread frame (Figure 5.7) stores the execution state of a thread.
It contains the following fields:

• Status. This field is a flag that signals whether the thread is active or gray
(see Section 5.4).

• Channel. This field stores the reference to the channel/location at which
the thread/process is located.

• Variable Table. This field stores the reference to the variable table, which
contains all the variables defined in the process.

• Program Counter. Stores the reference of the chunk of code that the thread
executes next.

• Aspect Code Reference. Stores the reference of the code frame of which
the thread is currently executing a chunk.

• Aspect Variable Table table. Stores the reference to the table (reference
array) that contains the references to the variable tables associated to the
current aspect code frame and its parents.

5.3 Frames 53

• Aspect Constant Table Table. Stores the reference to the table (reference
array) that contains the references to the constant tables associated to the
current aspect code frame and its parents.

The last three fields are specific to the weaving of code at run time. Their
function is clarified in Section 5.7.
Thread frames are allocated using the instruction NEWTHREAD. The program
counter is updated using the scheduling instructions (Section 5.5.2).

5.3.6 Code Frame

Descriptor
Freshness

Static Flag
Size

Parent

Number of Variables
(16 bits)

Number of Constants
(16 bits)
Code ...
Code ...

Figure 5.8: The code frame.

This frame (Figure 5.8) is used to store the code woven by the weaver.
The code frame contains the following fields:

• Freshness. This field is used to determine whether the code stored in this
frame reflects the current state of the aspect pool.

• Static Flag. This field is used by the balanced weaver (Section 5.8.3) only.

• Size of Code. This field stores the size in bytes of the code stored in this
frame.

• Number of Variables. Stores the number of variables that are defined
within the woven code. This field is used in the balanced weaving approach
(Section 5.8.3).

54 The AspectK Virtual Machine

• Number of Constants. Stores the number of constants that are defined
within the woven code. This field is used in the balanced weaving approach
(Section 5.8.3).

• Code. This is a variable-length field that stores the woven code.

5.4 The Scheduler

The virtual machine determines the order of execution of the threads inserted
in the Thread Queue by using a special component, namely the scheduler. The
scheduler is implemented using some of the ideas presented in the section about
the interpreter (4.3).
In fact, the scheduler classifies the threads in four sets:

YELLOW set. In this set fall those threads that have just been created (using
the instruction TH NEW) and those threads that have successfully executed
a chunk of code and are ready to execute the next.

RED set. Contains the threads that failed to execute their chunk of code.

GREY set. Those threads that terminate fall in this set.

REPLICATION set. The threads that can replicate fall in this set.

Threads belonging to the YELLOW and REPLICATION sets can be scheduled
for execution.
Moreover if the execution of a chunk of code ends with a tuple being output in
the environment, the threads belonging to the RED set are re-inserted into the
YELLOW set.
Threads belonging to the GREY set are simply ignored by the scheduler.

The scheduler can use two different strategies for deciding which thread to sched-
ule:

FIFO. First-In-First-Out, namely the threads are scheduled according to the
order they entered the queue.

RANDOM. The new thread to schedule is chosen randomly among the avail-
able ones.

5.4 The Scheduler 55

In the random strategy, the random choice done for the scheduling may lead
to the starvation of one of more threads, which may be then forbidden the
execution for an indefinite time. In order to avoid this problem the following
technique is used: the threads are ordered by the value of the expression key =
(c− cstamp) + rnd, where:

• c is a global counter, incremented by 1 each time a thread is inserted in
the scheduler.

• cstamp is the value of c when the thread was inserted in the scheduler.

• rnd is a random value between 1 and n, both ends included.

The scheduler always schedules the thread with the highest key.
The more a thread waits in the queue the more the value (c− cstamp) grows and
the less it is likely that a thread just added obtains a key bigger than its. In
the worst case scenario a thread has to wait for the execution of at most n− 1
threads. In fact:

• When the “unlucky” thread A is inserted in the scheduler, (c − cA) = 1,
rnd = 1 and key = 1 + 1.

• Each time a new thread is inserted in the scheduler, the expression (c−cA)
increments by 1.
Thus

keyA > keyother ⇐⇒ (c− cA) + rndA > (c− cother) + rndother
⇐⇒ 1 + t+ 1 > 1 + n
⇐⇒ t > n− 1

t counts the number of threads inserted after A and in the worst case
scenario rndother = n.

• After n − 1 threads have been inserted in the scheduler, the key of the
thread A will be always bigger than the one of any other newly inserted
thread. Hence, it is guaranteed that thread A will be executed after at
most n− 1 threads since its insertion in the scheduler.

The algorithm used by the scheduler corresponds to the one used for the “non-
interactive sequential” execution implemented in the interpreter, described in
Section 4.3.3.

56 The AspectK Virtual Machine

5.5 Instruction Set Summary

This section provides an overview on the instruction set of the virtual machine.
Complex instructions receive a brief analysis. All the instructions can be found
in alphabetical order in Appendix C.

5.5.1 Bytecode

AspectK programs are compiled by the AspectK compiler directly into byte-
code.
The layout of a bytecode instruction is rather simple. The first byte of the
instruction represents the operation code. The subsequent bytes instead deter-
mine the arguments.
Arguments can be of different sizes, namely 1, 2 or 4 bytes depending on the
instruction.
The type of operation code usually determines the number of arguments, but
some operation codes have a variable number of them. In such cases the first
argument reports the total number of arguments of the instruction.

5.5.2 General

In this section we present instructions used for general tasks.

Branching

The branching instructions are:

JMP ABS Unconditioned jump, jumps to an absolute address provided as an
argument.

JMP OFF Unconditioned jump. The address is provided by mean of an offset.

JMP NULL Jump if the top element of the operand stack is null. The address is
provided by mean of an offset.

JMP NOTNULL Jump if the top element of the operand stack is not null. The
address is provided by mean of an offset.

5.5 Instruction Set Summary 57

SWITCH This instruction has variable number of arguments. The first argument
is 1 byte long and determines the number n of subsequent arguments, thus
there can be at most 256 more arguments. Each of the subsequent n ar-
gument is an offset, 2 bytes long.
Switch reads a value v : 0 ≤ v ≤ 255 and jumps to the address corre-
sponding to the vth offset (the first argument size is not considered in the
count).

Byte Array Creation and Manipulation

The instructions for manipulating a byte array are given below:

NEWBARRAY Creates a new byte array, the size is given as a 4-byte-long argument.
The reference of the newly allocated array is stored in the operand stack.

BASTORE Stores a byte provided as an argument in a byte array at a certain
position.

Strings

Only one instruction is provided:

NEWSTRING It is a variable-length instruction. The first argument is unsigned 1
byte long and determines the length “l” of the string. The subsequent “l”
arguments are 1 byte long and they encode a char in ASCII format.
This instruction allocates a byte array with the content of its arguments.
The reference of the newly allocated array is stored in the operand stack.

Reference Array Creation and Manipulation

The instructions for manipulating a reference array:

NEWARRAY Creates a new reference array, the size is given as an argument. The
reference of the newly allocated array is stored in the operand stack.

ALOAD Loads on the operand stack a reference from a reference array.

58 The AspectK Virtual Machine

ASTORE Stores in the index provided as an argument a reference into a reference
array. Both the reference and the reference array’s reference are found in
the operand stack.

Channel Creation and Manipulation

NEWCHAN Creates a new channel frame. Reads from the operand stack the ref-
erence of the string of the name of the channel. Returns on the operand
stack the reference of the newly allocated channel.

GETCHAN Given the string’s reference on the operand stack, this instruction
returns the channel associated to it. The instruction traverses the channel
list and when the channel with a matching name is found, it copies its
reference on the operand stack. If no channel is found, null is returned
on the operand stack.

APPEND Appends the reference of a tuple at a channel’s tuple list.

MATCH This instruction attempts a match on the tuples located at a certain
location. This instruction implements the match function of Figure 2.5.
First it reads the reference of the tuple to match from the operand stack.
Each cell of the reference array representing the tuple to match, contains
one the following values:

• If the term of the tuple is a variable definition !u the cell contains
the null value.

• Otherwise the cell contains the reference to the constant term (string).

MATCH visits all the tuples of the tuple list bound to the target channel and
attempts to find a matching tuple. If the tuple is found, MATCH returns a
reference array containing the substitutions. If the tuple to match didn’t
contain any variable definition, the array has length 0 and simply signals
the success of the operation.
In case of success, the array of substitutions contains the references to
the strings that should be substituted to the variable definitions that were
present the tuple to match. The substitutions are in the same order of
appearance of the variable definitions in the original tuple to match. For
example:

• (!a, const1, !b, const2, const3) is the tuple to match.

• MATCH finds a matching tuple 〈val1, const1, val2, const2, const3〉.
• The array returned by MATCH is (val1, val2) and val1 is substituted

to a and val2 is substituted to b.

5.5 Instruction Set Summary 59

If a matching tuple is not found, MATCH returns the null value.

DMATCH This instruction operates as MATCH. The only difference is that whenever
a matching tuple is found, it is removed from the tuple list of the channel.

Global Constants Access

The instructions that enable the access to the global constant table are given
below:

CT STORE Stores at a given index (provided as an argument) the reference of a
string in the global constant table. The reference is read from the operand
stack.

CT LOAD Loads on the operand stack a reference read from the global constant
table. The index is given as an argument.

Thread Creation and Manipulation

TH NEW This instruction allocates a new thread frame. The reference of the new
thread is copied on the operand stack.

TH VT STORE This instruction stores a reference (of a string) in the variable
table of the thread in execution. The variable table is implemented as
a reference array. The index of the position in the variable table is the
argument of this instruction.

TH VT LOAD This instruction loads on the operand stack a reference read from
the variable table of the thread currently in execution. The index of the
position in the variable table is provided as argument.

TH VT STORE IND This instruction stores a reference (of a string) in the variable
table of the thread whose reference is on the top of the operand stack.
The index of the position in the variable table is the argument of this
instruction.

TH GETCHAN This instruction loads on the operand stack the content of the chan-
nel field of the thread frame in execution.

60 The AspectK Virtual Machine

Garbage Collection

GC CHECK This instruction forces the garbage collector to check whether some
memory should be freed. This instruction is inserted at the beginning of
each code chunk and its argument specifies the number of bytes of memory
that the execution of the chunk would require in the worst case scenario.
The garbage collector can check before the execution of the chunk if there
is enough memory. If not, a garbage collection is triggered.

Miscellaneous

NOP The traditional “No Operation”.

DNOP “Destructive” NOP. Same as NOP, with the difference that the top element
of the operand stack is removed.

SWAP Swaps the two top elements of the operand stack.

DUP Pushes on the operand stack a copy of its top element.

RNDSEQ Fills the stack with a randomized sequence of values that span from 0
to n. n is given as a 2 bytes argument.

CLEARSTACK Empties the operand stack.

ISSTACKEMPTY Pushes 0x00000001 on top of the operand stack if it is empty,
otherwise it pushes null.

Scheduling Instructions

The instructions used for scheduling are presented below:

SCHED YELLOW This instruction signals the scheduler that the current thread
should be inserted in the YELLOW set, because it successfully executed
the last chunk of code. The instruction also copies in the program counter
field of the thread frame the absolute address of the beginning of the next
chunk. The next time that the scheduler selects this thread frame the
value of the program counter field is copied in the PC register.

SCHED TPL YELLOW This instruction is the same as the previous one with the
only difference that it signals the scheduler that in the execution of the
last chunk of code a tuple was output. The consequence of this additional
information is that the threads in the RED set will be reconsidered by the
scheduler for the execution.

5.5 Instruction Set Summary 61

SCHED RED This instruction signals the scheduler that the current thread failed
to execute the chunk of code. The thread is inserted into the RED set.

SCHED GREY This instruction signals the scheduler that the thread has termi-
nated the execution of the chunk but there are no more chunks to execute.
The status field of the thread frame currently in execution is then changed
to a flag value that indicates its termination and the frame is discarded
by the scheduler.

SCHED TPL GREY The same as SCHED GREY, with the difference that in the last
chunk of code the thread outputs a tuple and the red threads must be
rescheduled.

SCHED REP Signals the scheduler that the current thread replicates.

5.5.3 AOP Support

The instructions presented in this section are exploited by the weaver to inject
code whenever the aspects available in the aspect pool can trap an action. More
about the usage of these instructions will be presented in Section 5.7.

Tags

Tag instructions are used to facilitate the work of the trapper, the component
of the virtual machine that checks whether an action can be trapped by any
aspect. Generally, they provide contextual information that can be used by the
trapper to perform its duty in an efficient way.

ASP OUTACTION TAG This instruction specifies that the chunk being currently
executed is the one of an out action. This instruction has the following
arguments:

• one byte that specifies the number n of arguments of the action (not
of the instruction).

• for each term of the tuple, 4 bytes are added:

– the first encodes the type of the term: variable definition, vari-
able or constant;

– the second specifies the code (id) of the table where such term is
stored. In Section 5.7 we will see what this means.

– The last two bytes specify the index of the argument in the table.

62 The AspectK Virtual Machine

• At the end of the tuple terms, one more 4-bytes-long argument, with
the same format shown above, is inserted, specifying the target loca-
tion for the action.

• two last bytes are used to specify the index of the global constants
table where it is stored the string of the location to which the process
that executes this action is bound to.

All these information is needed to attempt the trap as specified in Figure
2.11.

ASP INACTION TAG Equivalent of ASP OUTACTION TAG but for the in action.

ASP READACTION TAG Equivalent of ASP OUTACTION TAG but for the read action.

ASP STOPACTION TAG Tags the current chunk of code as stop action. This in-
struction has no arguments.

ASP GUARD TAG Tags the current chunk of code as guard action. This instruction
has no arguments and it simply informs the weaver that this action is the
guard in a sum of guarded processes. As we will see in Section 5.7, guards
require special treatment.

Weaving

ASP PREACTIONS This instruction marks the beginning of the code implement-
ing the action and it marks where the pre-actions should be inserted. This
instruction has one argument, whose purpose will be disclosed in Section
5.7.

ASP POSTACTIONS This instruction marks the border between the action code
and the beginning of the area executed in case of successful execution of
the action (see Figure 5.1). Ideally, it is the place where the post-actions
should be hooked. This instruction has no arguments.

ASP VT STORE This instruction stores a reference in the variable table that con-
tains the variables defined in the woven code (stored within a code frame)
being currently executed.

ASP VT LOAD Loads on the operand stack the value of a variable defined in the
injected code being currently executed.

ASP CT STORE This instruction stores a reference in the constant table that con-
tains the constants defined in the injected code being currently executed.

ASP CT LOAD Loads on the operand stack the value of a constant defined in the
injected code being currently executed.

5.6 The AspectK Compiler 63

ASP SCHED YELLOW Equivalent to SCHED YELLOW, but the argument is an offset
(2 bytes) instead of an absolute address. Used within the injected code.

ASP SCHED TPL YELLOW Equivalent to SCHED TPL YELLOW, but the argument is
an offset (2 bytes) instead of an absolute address. Used within the injected
code.

ASP CLEAN When the thread abandons a code frame where the injected code was
contained, this instruction is the last one to be executed and it makes sure
that the link (if present) to this code frame from another code frame or
from the original program is removed, thus allowing the garbage collector
to recall the memory used by this frame. Moreover, this instruction moves
the execution of the thread back to the code that originated the weaving,
to continue the execution.

5.6 The AspectK Compiler

This section presents the procedure used to compile an AspectK source file into
bytecode.

There are two compilers that can compile AspectK code:

1. The first one is provided as an external utility, named aspectkc and it
compiles net specifications into object files with extension “ako” and the
set of aspects into files with extension “as”. This is the compiler that is
discussed in this section;

2. The second compiler is embedded inside the virtual machine and it com-
piles the code that the weaver weaves into to the original program. This
compiler is discussed in Section 5.7.3.

The AspectK compiler is structured as a chain of three components (Figure 5.9):

1. The Parser.

2. The Compiler.

3. The Code Generator.

64 The AspectK Virtual Machine

Figure 5.9: The AspectK compiler architecture.

5.6.1 The Parser

The parser is written using a parser generator for Java named JavaCC [17].
JavaCC generates top-down parsers and it outputs LL(k)-class grammars. JavaCC
does not support left recursion, thus the the AspectK grammar specification had
to be transformed into an equivalent one that had left recursion removed.
The Net grammar of KLAIM of Figure 2.1 is transformed as shown in Figure
5.10.

N ∈ Net N ::= Na | Na||N | (N)

Na ::= l :: P | l :: 〈
−→
l 〉

P ∈ Proc P ::= Pr | Pg | Pb | Pr|P | Pb|P | Pg|P
Pr ::= ∗Pd | ∗ Pb | ∗ Pr
Pg ::= Pd | Pd + Pg
Pd ::= a.Pd | a.Pb | a.Pr
Pb ::= (P) | 0

a ∈ Act a ::= out(
−→
`)@` | in(

−→
`)@` | read(

−→
`)@`

`, `λ ∈ Loc ` ::= u | l `λ ::= ` | !u

Figure 5.10: KLAIM Nets and Processes syntax transformed to remove left
recursion

The AspectK grammar of Figure 2.7 is modified into the grammar shown in

5.6 The AspectK Compiler 65

Figure 5.11.

S ∈ System S ::= let aspects in N
aspects ::= asp | asp, aspects

asp ∈ Asp asp ::= A[cut]
4
= body

body ∈ Advice body ::= case(cond) sbody; body | sbody
sbody ::= as break | as proceed as

as ∈ Act∗ as ::= a.as | ε
cond ∈ BExp cond ::= condb | condb ∧ cond

condb ::= test(
−→
`λ)@` | `1 = `2 | ¬cond | (cond)

cut ∈ Cut cut ::= ` :: a
`λ ∈ Loc `λ ::= ` | !u | ?u

Figure 5.11: AspectK Syntax transformed to remove left recursion

The parser returns two data structures:

1. A tree datastructure representing the net, which is the same to the one
described in Section 4.1.2.

2. A collection of objects representing the aspects. The collection of aspects
can be output to a file at this phase already.

While reading the source code, the parser checks that the syntax respects the
well formedness rules for nets and aspects, described in sections 2.1 and 2.2.

5.6.2 Compilation Scheme

The component coming after the parser is the compiler.
In the AspectK net we can find two class of components, the tuples and the
processes. The compilation of the tuples is rather straight forward and it will
be presented in Section 5.6.2.1. The compilation of the process is performed by
a recursive routine, which transforms a process in a sequence of chunks of code.
There are essentially three categories of chunks of code:

• The action chunk of code, which has the structure shown in Figure 5.1.
Every action is transformed into this kind of chunk of code.

66 The AspectK Virtual Machine

• The operator chunks of code, which result from the compilation of the two
operators sum of guarded processes + and replication operator ∗.

• The null process 0 chunk.

The other operators are not compiled into separate chunks:

• the Net parallel composition || is not compiled at all.

• The sequential composition operator . can be identified into the code that
links two different action chunks of code.

• The parallel composition of processes | operator splits the execution of one
process into two or more paths. For each path a new thread is allocated:
this is why this operator is basically compiled into code that instantiates
new threads. This code may be present in three areas of the program:

– the initialization area of the compiled program where the initial pro-
cesses are created.

– Within the success area of the chunk of code of an action. In cases
like a.(P | Q), after the action has been successfully executed two
new parallel threads are created.

– Within the code for the replication ∗ operator, in cases like ∗(P | Q)
where the process that replicate is a parallel composition of processes.

In order to clarify what discussed so far, we can see how the net reported in
Figure 5.12 is transformed into chunks of code. When the compiler analyzes the
tree derived from this net, it produces the chunks illustrated in Figure 5.13

loc1 :: <t1>

||

loc2 :: * out(t2)@loc1.(in(!a)@loc1.0 | read(!b)@loc1.0)

||

loc3 :: out(t2)@loc1.0 + read(!b)@loc2.0

Figure 5.12: Example net.

The arrows indicate that the connected chunks are executed by the same thread.
Whenever the thread has completed the execution of one chunk its program
counter is moved to the initial address of the next pointed chunk.

The first block A, the init area, initializes the global constant table, allocates the
tuples and allocates one thread frame for each process present in the beginning

5.6 The AspectK Compiler 67

Figure 5.13: The program compiled into chunks.

of the execution (in the example there are 2). At the end of this portion of code,
the instruction SCHED GREY is executed and the control passes to the scheduler,
which selects one of the available threads for the execution.

The first process is compiled into the following chunks:

• The replication chunk B. This code creates a new thread frame that points
the block C. At the end of this block the SCHED REP is present, and it
reschedules the thread frame on this same chunk. Each time this chunk is
executed, a new thread is spawned.

• Chunk C contains the code for the out action. The code placed in the
“success” area of this chunk creates two thread frames for the processes
starting at blocks D and F. At the end this chunk has a SCHED TPL GREY

instruction, which moves the thread frame executing this chunk into the
grey set (basically it terminates). This is the reason why no arrow origi-
nates from this block of code.

• chunks D and F are again two action chunks of code. At run time, they
will be associated to two different thread frames, which will execute them
at different times.

68 The AspectK Virtual Machine

• chunks E and G are the “null process” chunks and they simply contain
code that move the thread frames that are executing them into the grey
set of the scheduler.

The second process starts with the block containing the code for the sum of
guarded processes operator +. The operations performed by this portion of
code are given in the sequel:

1. Chunk H selects one of the available paths (in the example there are 2).

2. The execution moves directly to that block, without scheduling the chunk
first.

• If the execution of the action succeeds (this happens for sure if block
I is selected, because out actions never fail) the subsequent block is
scheduled and the control is given to the scheduler.

• If the execution of the action does not succeed (this may happen when
K block is chosen) the program counter is moved back to chunk H
where another path is selected.

3. If all the paths have been tested and all of them have failed, the thread
is moved into the red set and the program counter of such thread is still
pointing to the beginning of block H.

Blocks H, I and K can be seen as one big chunk of code, since blocks I and K
are never scheduled singularly. The two blocks I and K are marked with “G”
because their code is slightly different from the one of the non-guard actions.

In the next subsections we will see what the code of the single chunks contains.
The code derived from the compilation of the net of Figure 5.12 will be used
as an example8. The code is obtained with the disassembler utility provided
along with the compiler. The instructions output by the disassembler have the
format:

address: INSTRUCTION arguments

5.6.2.1 The Initialization Area

This code initializes three things.
First of all it fills the global constant table (Figure 5.14).

8The full code can be found in Appendix A

5.6 The AspectK Compiler 69

4: GC_CHECK 155

9: NEWSTRING "t2"

13: CT_STORE 3

16: NEWSTRING "t1"

20: CT_STORE 1

23: NEWSTRING "loc1"

29: CT_STORE 0

32: NEWSTRING "loc3"

38: CT_STORE 4

41: NEWSTRING "loc2"

47: CT_STORE 2

Figure 5.14: Init area: allocation of the strings and initialization of the global
constant table.

The strings are allocated in memory and stored in predefined indexes. Secondly,
once that the constants are available in the memory, the tuples are allocated
(Figure 5.15)

50: CT_LOAD 0

53: DUP

54: GETCHAN

55: JMP_NOTNULL 7

58: NEWCHAN

59: JMP_OFF 4

62: GETCHAN

63: NEWARRAY 1

68: DUP

69: CT_LOAD 1

72: ASTORE 0

77: APPEND

Figure 5.15: Init area: allocation of the tuple loc1::<t1> .

The location/channel to which each tuple is bound to is retrieved and if it does
not exist it is created (instruction NEWCHAN in the code). Then the reference
array representing the tuple is allocated and the constants (in the example only
one) are copied in the array. Finally, the tuple is appended on the tuple list of
the channel.
The last task accomplished by the initialization area is to create the thread
frames for the processes that are present in the net (Figure 5.16).

Similarly to what happens with the tuples, for processes too the channel is first

70 The AspectK Virtual Machine

78: CT_LOAD 2

81: DUP

82: GETCHAN

83: DUP

84: JMP_NOTNULL 5

87: SWAP

88: NEWCHAN

89: TH_NEW vt size:0 ref:119

98: CT_LOAD 4

101: DUP

102: GETCHAN

103: DUP

104: JMP_NOTNULL 5

107: SWAP

108: NEWCHAN

109: TH_NEW vt size:1 ref:351

118: SCHED_GREY

Figure 5.16: Init area: allocation of the two processes.

retrieved and if it does not yet exist it is created. Then, a new thread frame
bound to the channel is allocated.

5.6.2.2 The Replication Chunk

An example of replication chunk is shown in Figure 5.17.

119: GC_CHECK 31

124: TH_GETCHAN

125: TH_NEW vt size:0 ref:135

134: SCHED_REP

Figure 5.17: Replication chunk.

The code of this chunk simply creates a new thread frame for each process it
spans over — if the parallel composition operator is present, there can be two
or more.

5.6 The AspectK Compiler 71

356: CLEARSTACK

357: RNDSEQ 2

360: ISSTACKEMPTY

361: JMP_NULL 4

364: SCHED_RED

365: SWITCH

2 choices

6

60

Figure 5.18: Sum of guarded processes chunk.

5.6.2.3 The Sum of Guarded Processes Chunk

This chunk works as follows (Figure 5.18):

1. It clears the operand stack.

2. A randomized sequence of n numbers 0, · · · , n, pairwise different, is pushed
into the stack. n is the number of guarded actions9.

3. SWITCH pops the top of the stack and uses it to select one of the offsets
it has as arguments. It jumps to the given address, where one of the
possible guarded actions is located. It does so until either one of the
guards is successfully executed or the operand stack is emptied, which is
equivalent to having unsuccessfully attempted all the possible paths.

5.6.2.4 The Null Process Chunk

The null process chunk is very simple, it consists of the single SCHED GREY in-
struction. The code from the example is shown in Figure 5.19.

350: SCHED_GREY

Figure 5.19: The Null Process chunk.

9There can be at most 256 guarded actions, because the number of arguments allowed by
SWITCH is at most 256.

72 The AspectK Virtual Machine

5.6.2.5 The OUT Action Chunk

The out action chunk (Figure 5.20) has the structure outlined in Figure 5.1.

135: GC_CHECK 83

140: ASP_OUTACTION_TAG

1 arguments

c 3

152: ASP_PREACTIONS 0

157: CT_LOAD 0

160: DUP

161: GETCHAN

162: DUP

163: JMP_NOTNULL 5

166: SWAP

167: NEWCHAN

168: NEWARRAY 1

173: DUP

174: CT_LOAD 3

177: ASTORE 0

182: APPEND

183: ASP_POSTACTIONS

184: TH_GETCHAN

185: TH_NEW vt size:1 ref:205

194: TH_GETCHAN

195: TH_NEW vt size:1 ref:278

204: SCHED_TPL_GREY

Figure 5.20: The out action chunk.

The first area (in the example from address 140 to 183 both included) contains
the code that implements the action. First we find the tags, which will be used
by the weaver. They record the type of the action, the type of its arguments,
the type of its target location and the name of the location that the process
executing the action is bound to. Then following steps are carried out:

• The channel of the target location is retrieved or created.

• The tuple is created.

• The tuple is appended at the channel’s tuple list.

After the action code, comes the “success” area, which is executed in case the

5.6 The AspectK Compiler 73

action succeeds (this is always the case for out). In the example this section
creates (and thus schedules) two threads and then the thread terminates (it
signals the scheduler to be moved in the grey set).
The out action has no “failure” section.

5.6.2.6 The IN and READ Action Chunks

The in and the read action chunks have both the structure of the chunk shown
in Figure 5.1. These two actions are very similar, they differ only in the fact
that in removes the matched tuple from the environment and read does not.
In Figure 5.21 we can see an example of in action.

205: GC_CHECK 9

210: ASP_INACTION_TAG

1 arguments

vd 0

222: ASP_PREACTIONS 0

227: CT_LOAD 0

230: GETCHAN

231: DUP

232: JMP_NOTNULL 7

235: DNOP

236: JMP_OFF 40

239: NEWARRAY 1

244: DUP

245: TH_VT_LOAD 0

248: ASTORE 0

253: DMATCH

254: DUP

255: JMP_NOTNULL 7

258: DNOP

259: JMP_OFF 17

262: ALOAD 0

267: TH_VT_STORE 0

270: ASP_POSTACTIONS

271: SCHED_YELLOW 277

276: SCHED_RED

Figure 5.21: The in action chunk.

The initial part of the “action” area is similar to the one of the other two actions.

74 The AspectK Virtual Machine

In fact, first we can see that the compiler inserts the tags describing the action
and then the code to retrieve the channel of the target location.
Then the tuple to match is created and the match against the tuples present
at the target location is attempted. The DMATCH instruction removes the tuple
from the channel, if the match is found, whilst the MATCH instruction (used in
read) does not. If a match is found, the returned substitutions are stored in the
thread’s variable table.
In the example of Figure 5.21 the chunk has only one instruction in both the
“success” area (address 271) and in the “failure” area (address 276).

425: ASP_GUARD_TAG 360

430: ASP_READACTION_TAG

1 arguments

vd 0

442: ASP_PREACTIONS 0

447: CT_LOAD 2

450: GETCHAN

451: DUP

452: JMP_NOTNULL 7

455: DNOP

456: JMP_OFF 40

459: NEWARRAY 1

464: DUP

465: TH_VT_LOAD 0

468: ASTORE 0

473: MATCH

474: DUP

475: JMP_NOTNULL 7

478: DNOP

479: JMP_OFF 17

482: ALOAD 0

487: TH_VT_STORE 0

490: ASP_POSTACTIONS

491: SCHED_YELLOW 502

496: JMP_ABS 360

Figure 5.22: The read action chunk. The action is a guard.

Figure 5.22 shows the chunk of code for the read action. The interesting details
of this example reside in the fact that this action is a guard. There are some
differences in the code of a guard action respect to the code of a non-guard
action:

5.6 The AspectK Compiler 75

• There is one more tag instruction, ASP GUARD TAG.

• The “failure” area contains the jump instruction JMP ABS (it jumps to the
beginning of the + chunk) instead of the SCHED RED instruction.

5.6.2.7 The STOP Action Chunk

The stop action chunk is outlined in Figure 5.23.

ASP_STOPACTION_TAG

SCHED_GREY

Figure 5.23: The stop action chunk.

The tag is inserted only to differentiate the code of the action from the code of
the null process (for presentation purposes).

5.6.3 The Code Generator

After the compiler has compiled the program into code chunks, the code gener-
ator merges and streamlines them (this is shown in Figure 5.24).

The different parts of code are linked using labels, that now need to be trans-
formed into addresses. The code generator scans the code and resolves the
address of each label by computing the length of each instruction. Then, using
this information, it scans again the code and it generates the binary code (byte-
code). Every time a label is encountered, it is substituted with an address or
with an offset, depending on the instructions.
After the code generator has finished its task, the code is output into a file that
can be executed by the virtual machine.

76 The AspectK Virtual Machine

Figure 5.24: The chunks are serialized.

5.7 The Weaver 77

5.7 The Weaver

In this section we will analyze how the process of weaving of new code is per-
formed in the AspectK virtual machine.
The weaver supports three different techniques for weaving:

• Lazy Weaving. This technique implements the just-in-time weaving tech-
nique, namely the trap is attempted only when the process is about to
execute the action. This technique corresponds to the one specified in the
AspectK semantics of Section 2.2.3. The lazy weaving was implemented
in the interpreter too (see Section 4.4.1).

• Greedy Weaving. This weaving technique is similar to the lazy one. The
difference resides in the fact that whenever an action is successfully trapped
and some pre-actions or post-action are injected, the weaver recursively
attempts the trap on the injected actions before injecting them.

• Balanced Weaving. This weaving technique attempts to optimize the
greedy weaving by extending it with dynamic weaving techniques. The
implementation of the dynamic weaving in the virtual machine is slightly
different from the one implemented in the interpreter. In the virtual ma-
chine the balanced weaving can save to the virtual machine the overhead
of trapping certain action. This technique extends the greedy weaving and
it will be explained in detail in Section 5.8.3.

The differences between these weaving techniques reside mainly in the way the
actions are trapped and in “when” the weaver is invoked by the virtual machine.
However, all the weavers use the same infrastructure to weave the code into the
original program.

The weaving process, in general, can be summarized in the following steps:

1. The weaver traps an action, and we assume that the trapping returns some
pre-actions and some post-actions.

2. The weaver uses the JIT compiler (Section 5.7.3) to transform these ac-
tions into code.

3. A new code frame (see Section 5.3) is allocated and the code is copied into
it.

4. Depending on the chosen weaving technique, either the execution is moved
to the code contained in the frame or the injected code is simply linked to
the original program.

78 The AspectK Virtual Machine

An example that demonstrates these concepts is shown in Figure 5.25.

Figure 5.25: An action is trapped and as a result some code is hooked to the
original program.

The tag instructions, present in the beginning of the “action” code, provide the
trapper with the necessary information for performing the trap, namely:

• type of the action;

• number and type (variable definition, variable, constant) of the argu-
ments;

• target location;

• location that the process executing the action is bound to.

Then, when the instruction ASP PREACTIONS is encountered, the virtual machine
triggers the weaver, which attempts the trap.

NOTE: there can be multiple “levels” of code frames: if one of the pre-actions
of the post-actions contained into a code frame is trapped, a new code frame is
allocated and it is linked to it.

NOTE(2): the trapped action, whenever it is included in the injected code, it
is re-compiled without the ASP PREACTIONS and ASP POSTACTIONS instructions.
This prevents the action from being trapped again, because the virtual machine
triggers the weaver whenever it encounters an ASP PREACTIONS action. The tag
instructions that signal the type of the action (i.e. ASP OUTACTION TAG) could

5.7 The Weaver 79

be removed too, but they are kept for facilitate the recognition of the type of
action to the memory analyzers (used in the GUI, for example).

The last instruction being executed in the code placed in the code frame is
ASP CLEAN which performs two operations:

1. if its argument is different from null it moves the program counter to the
parent frame (which can be another code frame or the original program)
otherwise the instruction performs the same operations as SCHED GREY.

2. if the virtual machine is using the balanced weaver, the code frame may
be linked by the argument of the ASP PREACTIONS instruction. If so,
ASP CLEAN removes such link, enabling the garbage collector to reclaim
the memory used by this code frame, the next time it is executed.

The original program physically links the injected code frame only in certain
cases in the balanced strategy, when a reference of the code frame is stored as the
argument of the ASP PREACTIONS instruction. In the other weaving strategies
the injection is performed when the action is trapped and there is no need to
physically link the frame: it is just necessary to move the execution to the code
it contains.
Conversely, the code contained into the code frame links to the parent code
(which can be either the code of another code frame of the code of the program)
with the ASP CLEAN instruction.
The next section gives an overview of the possible cases that may arise in the
trapping and injection of code and illustrates how the weaving is actually per-
formed.

5.7.1 Weaving and Linking the Code

After the function Φf
10 of Figure 2.10 has been executed there are six possible

alternatives for the outcome:

• no pre-actions, proceed, no post-actions;

• no pre-actions, break, no post-actions;

• pre-actions, proceed, no post-actions;

10In the code, the function Φf corresponds to the invocation of the method tryTrap JIT()

in the trapper implementations. There also exists a tryTrap Dynamic() which, as the name
suggests, attempts the dynamic version of the trap (see section5.8.3 for more information).
The outcome of a trap is enclosed in the vm.aop.TrapOutput object.

80 The AspectK Virtual Machine

• pre-actions, break, no post-actions;

• no pre-actions, proceed, post-actions;

• pre-actions, proceed, post-actions;

The cases where break is present cannot have post-actions, because the execution
is interrupted by break. The number of cases is doubled when we realize that
the actions that are guards need a different treatment from the non-guard ones.
This makes a total of twelve cases , but some of the cases can be grouped
together.
We analyze now each single case. In the figures the expression ASP CLEAN(0)

means that the argument of such instruction is null.

5.7.1.1 No pre-actions, proceed, no post-actions, any action

The execution is not modified.

5.7.1.2 No pre-actions, break, no post-actions, any action

Figure 5.26: No pre-actions, break, no post-actions, any action.

The code frame (Figure 5.26) contains the stop action. The woven code remains
the same whether the trapped action is a guard or not.

5.7 The Weaver 81

Figure 5.27: Pre-actions, proceed, no post-actions, non-guard action.

5.7.1.3 Pre-actions, proceed, no post-actions, non-guard action

The code frame contains the pre-actions code (Figure 5.27).
The last instruction executed in the frame is ASP CLEAN, which jumps back to
the code of the parent frame. There, the execution proceeds from the first
instruction after ASP PREACTIONS.

5.7.1.4 Pre-actions, proceed, no post-actions, guard action

Figure 5.28: Pre-actions, proceed, no post-actions, guard action.

Figure 5.28 illustrates this case, which differs from the previous one only in
the fact that the trapped action is a guard. However, the fact that the trapped

82 The AspectK Virtual Machine

action is a guard requires some special measures. First of all, the first pre-action
that is injected will be the new guard. This implies that:

1. it must contain the ASP GUARD TAG, in case this action is trapped in the
future.

2. In the “failure” section the execution must jump back to the first instruc-
tion of the sum of guarded processes + chunk of code. This is achieved by
using the ASP CLEAN instruction, which whenever the argument is different
from the null value it has the behavior of a jump to an absolute address
(like JMP ABS) besides removing the code frame it is called from.

Moreover, the trapped action needs to be changed too, since from now on it
won’t be a guard anymore. The action is then re-compiled without the ASP *

tags and the following changes are made to its “success” and “failure” sections:

• The “success” section is copied from the trapped action, but the last
instruction which would pass the control to the scheduler is changed to
either ASP SCHED YELLOW or ASP SCHED TPL YELLOW which schedules the
next chunk of code on the code frame, that contains only ASP CLEAN.
The argument of ASP CLEAN contains the address that was stored in the
trapped action’s scheduling instruction.

• The “failure” area (unless the action is not an out action, which doesn’t
have a “failure” section) is changed to the SCHED RED instruction.

5.7.1.5 Pre-actions, break, no post-actions, non-guard action

The code frame (Figure 5.29) contains two portions of code:

• the pre-actions code.

• the code for the stop action.

5.7.1.6 Pre-actions, break, no post-actions, guard action

This case (Figure 5.30) is very much similar to the one outlined in Section
5.7.1.4. However, in this case, after the pre-actions we do not find the code of
the recompiled trapped-action bu instead a stop action.

5.7 The Weaver 83

Figure 5.29: Pre-actions, break, no post-actions, non-guard action.

Figure 5.30: Pre-actions, break, no post-actions, guard action.

5.7.1.7 Pre-actions, proceed, post-actions, non-guard action

In this case (Figure 5.31) the code frame contains the pre-actions, the code of
the recompiled trapped-action and then the post-actions.
The “success” section of the trapped action is copied in the “success” area of the
last post-action. The last instruction of the copied “success” section is modified
into a scheduling instruction that schedules the next chunk on the code frame,
which contains the ASP CLEAN instruction only.

84 The AspectK Virtual Machine

Figure 5.31: Pre-actions, proceed, post-actions, non-guard action.

Figure 5.32: Pre-actions, proceed, post-actions, guard action.

5.7.1.8 Pre-actions, proceed, post-actions, guard action

This case (Figure 5.32) does not contain anything new, and it is simply a com-
position of cases already presented.

5.7.1.9 No Pre-actions, proceed, post-actions, non-guard action

In this case (Figure 5.33) the code frame contains the code of the re-compiled
trapped action and the code of the post-actions.
The “success” area of the last post-action contains the “success” area of the

5.7 The Weaver 85

trapped action. The scheduling instruction in the copied “success” area is mod-
ified into one that schedules the chunk of code represented by the ASP CLEAN

instruction.

Figure 5.33: No Pre-actions, proceed, post-actions, non-guard action.

5.7.1.10 No Pre-actions, proceed, post-actions, guard action

This case (Figure 5.34) is fairly similar to the previous one.
The only real difference is in the “failure” section of the recompiled version of the
trapped action is changed from the jump to an absolute address to ASP CLEAN.
This ensures that if the action fails to execute, the execution moves to the
guarded-processes sum chunk of code and at the same time the code frame is
removed.

Figure 5.34: No Pre-actions, proceed, post-actions, guard action.

86 The AspectK Virtual Machine

5.7.2 Managing Variables and Constants Introduced by
the Woven Code

Sometimes the actions woven in the code introduce new variables and new con-
stants.
The example reported below introduces 2 new constants (const1 and const2)
and 2 new variables (w and e).

A[User :: out(x)@y] ^=

out(const1)@x.read(y,!w,!e)@DB proceed out(const2)@w

One possibility for handling these new temporary constants and variables could
be to extend the existing global constant table and the variable table of the
thread executing the code.
However, this is not an efficient solution, for several reasons:

• the global constant table and the variable table have fixed size. Extending
a table to include new values implies the allocation of a new table and the
copy in the new table of all the old values.

• If actions containing new constants and new variables are woven in the
code often (which can easily be the case) the operation described in the
previous point would be performed often too, and this would greatly affect
the performances of the system and the memory would be filled quite soon.

Things are even more complicated when we think that the injected actions can
be trapped too, and this may introduce even more temporary symbols.
A more efficient solution for the storage of these values is provided in the sequel.
For the sake of clarity the discussion is presented for the temporary variables,
but it is valid for the temporary constants too.

The overall idea is to associate a new table that contains the temporary variables
each time the thread moves to a new code frame allocated by the weaver. So:

• Every time the execution moves to the the code contained in a code frame,
a new table for the temporary variables is created. If there are no tempo-
rary variables, the table is not allocated and it is substituted by the null

value.

• The (possibly null) reference to this new table is saved in a second ta-
ble, which is defined as aspect variable table table, namely the table that

5.7 The Weaver 87

contains reference to the aspect variable tables. This table contains the
references to the temporary variable tables created for the code frames.
Moreover, the size of this table is always equal to the number of connected
code frames that have been encountered by the thread so far.

For example we can imagine that the action of the original program is success-
fully trapped and a code frame with three pre-actions compiled in it is created.
The pre-actions define some temporary variables. The aspect variable table table
has size 1 and it contains the reference to another table that holds the values of
the temporary variables.
Then one of the pre-actions is trapped and this leads to a new code frame. A
new aspect variable table table for the thread is created, and it substitutes the
previous one. Its first cell stores the content of the old table’s first cell. The
second cell contains the reference to a new table for the temporary variables of
the second frame.
And so on.
When the thread moves from the second code frame back to the first one, a
new aspect variable table table of size 1 is allocated. Its only cell contains the
reference to the temporary variable table associated to the first frame.

The instructions that can access these tables are ASP VT LOAD, ASP VT STORE,
ASP CT LOAD and ASP CT STORE. They are given two arguments:

• The id of the table, which is a number comprised between 1 and n, where
n is the number of code frames stacked one on top of each other. In the
previous example, when there were two code frames n was 2. The global
constant table and the variable table of the thread are associated to the
id 0.

• The index of the constant or variable on the table.

5.7.3 The Just-In-Time Compiler

The Just-In-Time compiler is a compiler embodied in the virtual machine.
This compiler is a reduced version of the compiler described in Section 5.6. It
is used by the weaver to compile the sequences of pre-actions and post-actions
that the trapper creates whenever the trap of an action succeeds.
This compiler supports only the compilation of sequences of actions, because
this is the only type of code that can be injected in AspectK.
The actions are compiled in the same way as in the stand-alone compiler, with
some minor differences:

88 The AspectK Virtual Machine

• The SCHED YELLOW and SCHED TPL YELLOW instructions are substituted by
ASP SCHED YELLOW and ASP SCHED TPL YELLOW. These instructions use off-
sets to point the next chunk of code. The original instructions cannot be
used because if the code frame is re-located by the garbage collector the
addresses become invalid.

• The code created by this compiler can contain the instructions ASP VT LOAD,
ASP VT STORE, ASP CT LOAD and ASP CT STORE which are used to access
the temporary variables and constants introduced by the injected code.

• If temporary constants are present, the initial part of the injected code is
used to initialize them.

• It is possible to avoid the compilation of the tags in the woven actions.
This is useful when the trapped action is recompiled and inserted in the
code frame — it is an underlined action — and it is also useful whenever
the greedy trapping is used (see Section 5.8.2).

5.7.4 The Condition Evaluator

This component is used to evaluate the conditions within the conditional ad-
vices. The condition evaluator supports backtracking. Backtracking is useful
because of the presence of test conditions, which may bind variables that may
be used in the rest of the condition.
The condition evaluator tries one combination of bindings for the variables. If
the condition is true for such bindings, no more combinations need to be at-
tempted. Otherwise, the condition evaluator backtracks to find other bindings
and attempt new combinations. If no new combinations are possible, the con-
dition evaluates to false.

For example:

test(!a, const1)@loc1 ∧ a = const2

The test condition may evaluate to true for more than just one tuple.
If the equality condition a = const2 evaluates to false for a certain tuple matched
by test, another tuple is tried and the condition is evaluated again.
The process continues until either the condition becomes true or test cannot
match any other tuple and the condition is then evaluated to false.

5.8 Weaving Techniques 89

5.8 Weaving Techniques

This section presents the three weaving strategies supported by the virtual ma-
chine.
The weaver, no matter what strategy is chosen, is activated by mean of the tag
bytecodes:

1. If the ASP GUARD TAG is encountered, the virtual machine sets a flag within
the weaver that signals that the current action is a guard.

2. When the ASP *ACTION TAG is encountered, the virtual machine sets within
the weaver the type of the action, the number and the type (constant,
variable or variable definition) of its arguments along with the necessary
information to retrieve them, the target location and the location that the
process executing this action is located at.

3. When the ASP PREACTIONS is encountered, the virtual machine finally in-
vokes the weaver.

5.8.1 Lazy Weaving

The lazy weaving approach implements the JIT weaving defined by the AspectK
semantics.
The weaver, first of all, attempts a trap on the action, using the information
provided by the tags. If the trap succeeds, the weaver uses the JIT compiler to
compile the new code and then it copies it into a new code frame allocated on
the heap.
The content of the program counter is set to the address of the first instruction
of the injected code and the execution continues from there. The injected code
is not physically linked to the original code.
If the trap does not succeed, the execution continues with the instruction coming
after ASP PREACTIONS.

The lazy weaving approach has some advantages:

• It uses a limited quantity of memory, since the weaving and the consequent
allocation of code frames happen only when ultimately needed. Moreover,
the trap is not directly attempted on the injected actions, and this fact
keeps the size of the injected code frame rather small, if compared with
the greedy weaving.

90 The AspectK Virtual Machine

• This weaving technique is very convenient if the aspect pool ΓA is expected
to change frequently because the changes are immediately effective on all
the actions that are trapped right then. This may be not the case in the
greedy weaving, where some actions are compiled without tags or in the
balanced weaving which is based on the greedy weaving.

On the other side, the major disadvantage of this approach is that the trap and
the weaving operations can be quite demanding in terms of performances and
in general it is not possible to reuse the injected code. All the computation is
carried out at the last moment, when the action is about to be executed. The
other two strategies try to produce some improvements in this area.

5.8.2 Greedy Weaving

The greedy weaving differs from the lazy weaving in the way that the trapping
is performed.
The greedy trapper, in fact, does not stop with the trapping of the single action,
but it recursively attempts the trap operation on the injected actions before
returning the definitive set of pre-actions and post-actions. In general, we can
expect four possible outcomes when the trap is attempted on one of the injected
actions by a recursive call of the greedy trapper:

1. The trap succeeds and more actions are injected.

2. The trap fails because no cut matches the action.

3. The trap fails because the action being trapped uses some temporary
variables whose value is undefined at the moment of the trap.

4. The trap fails because the aspect contains some conditional advices. In
order to ensure the accuracy of the weaving, these must be evaluated at
run time.

In the first case the trapper recursively attempts the trap on the newly injected
actions.
In the second case the action is skipped.
In the third and fourth cases the trap on the injected action must be re-
attempted when the execution will reach it.

The actions falling into the second category are compiled without the AOP tags,
because with the current state of the aspect set ΓA no aspect can trap them

5.8 Weaving Techniques 91

and then it gives no benefit attempting the trap on them again. Of course there
is a chance that the set of aspects may change just after the actions have been
compiled and injected. If it must be guaranteed that any action at any time is
trapped or re-trapped if the aspect pool is changed, then this weaving technique
may be not appropriate.

The greedy trapper is vulnerable to recursive cycles, namely situations like the
one described below:

• a first aspect traps one action and weaves some other actions;

• a second aspect traps actions woven by the first one and weaves other
actions that the first one can trap.

There is no mechanism to detect such situations, however the trapper poses a
limit to the depth of the recursion tree, in order to avoid infinite recursion.

In the best cases, the greedy weaving greatly reduces the number of code frames
that are allocated, since it favors the injection of bigger portions of code respect
to the lazy technique. This fact may produce important benefits in terms of
performances. However this technique has some disadvantages:

• we already discussed the fact that it is less responsive to changes operated
on the aspects pool ΓA. Some actions may be compiled without tags,
hence even if the set of aspects is modified the trap is not attempted on
these actions.

• it may require a even bigger computational effort in the trap and weaving
phase. If no injected action is trapped, what remains is only overhead and
no benefit

In conclusion, the greedy weaving provides some advantages over the lazy weav-
ing in those cases where the majority of aspects contain non-conditional advices,
thus providing more chances that the injected actions are trapped too.

5.8.3 Balanced Weaving

The balanced weaving is a third approach for weaving. In the interpreter the
balanced solution is simply an optimization: in fact, whenever the aspect pool
is modified, the net tree is traversed and the dynamic trapping is attempted

92 The AspectK Virtual Machine

on the actions. If the trapping for the single aspect succeeds, the substitutions
returned by check are cached, for being used when the action is encountered
and just-in-time trapped during the execution.
The virtual machine implementation of the balanced weaving, instead, is more
evoluted. Whenever the aspect pool is modified11, the program is scanned and
the dynamic version12 of the greedy trap is attempted on every action. There
are three possible outcomes:

• The trap succeeds.

• The trap fails because no aspect can trap the action.

• The trap fails because run time knowledge is required, namely:

– The cut of one or more of the aspects requires the knowledge of the
value of one or more variables.

– One or more of the aspects contain conditional advices.

In the third case there is not much that can be done, since the no weaving can
be attempted until the needed run time information is available.
In the first case the weaver allocates a static code frame in the heap, that
can be used and reused until the ΓA set does not change. In fact, the code
contained in static code frames is derived from aspects that do not require any
run time condition or information. However, when the ΓA set is changed the
code contained in the static code frames may be not valid, since some new
aspects might have been introduced.
Then the weaver scans the entire program again and creates, when possible,
new static code frames. Frames that are being executed by threads cannot be
removed and recomputed, they must be left untouched in order to avoid the
corruption of the execution process.

Static frames need to be distinguished from the frames allocated and used only
once. Frames contain a special flag-field named “static flag” signaling whether
they are static or not. Moreover, code frames store in the field “freshness” a
number, which is used to determine whether a static frame is updated to the
current configuration of the aspect pool. This number is indeed obtained from
the aspect pool. Whenever the aspect pool is modified, the ”freshness“ of the

11The aspects may be added into the virtual machine at any time. However, the information
needed by the weaver to check if the cuts match a certain joinpoint is available in memory
only after the execution of the initialization area of the program. For this reason, the dynamic
weaving is always delayed by the virtual machine until the initialization part of the program
has been executed.

12With dynamic version we mean an implementation containing functions that have the
properties of the prototypes outlined in section 2.3.

5.8 Weaving Techniques 93

aspect pool is modified too.
When a thread encounters a static frame, it checks if the value contained in the
aspect pool and the one contained in the code frame differ: if so the code frame
must be removed and the trap re-attempted.
Whenever an action is trapped and a static frame is created, its reference is
stored as an argument of the ASP PREACTIONS instructions. In this way any
further execution of the same action reuses the same code frame.

Static frames can be used not only for actions successfully trapped at dynamic
time, but also for actions which failed to be trapped because no aspect could
trap them (and not because run time information was required).
In these cases the weaver allocates and links an empty static code frame, which
is used as a ”flag“ that signals that with the current state of the aspect pool
the flagged action is not trapped by any aspect.

Whenever a thread executes the ASP PREACTIONS one of the following possible
choices is taken:

• If its argument is null, the weaver is invoked and it attempts a JIT
(greedy) trap.

• Otherwise, the argument is the address of a static code frame:

– If the static code frame is outdated, namely its freshness value is dif-
ferent from the one of the aspect pool, the dynamic trap is attempted
again. If it succeeds, the new static code frame is linked to the code
and the execution continues on the code it contains.
If it fails, a JIT (greedy) trap is attempted and if it succeeds (and a
code frame is allocated) the execution continues on the code it con-
tains. In this case, the code frame created is not static, thus it is not
linked to the original program.

– If the static code frame is updated and it is a non-empty code frame,
the execution moves on the code it contains. Otherwise, if the code
frame is empty, the execution simply continues with the next instruc-
tion.

The balanced weaving is an optimization of the greedy weaving technique that
exploits the dynamic weaving of aspects rather than limiting itself to the just-
in-time solution. In fact it provides better performances in those cases where
the aspects contain a non-conditional advice and the aspect pool is not modified
frequently. In the best case the weaving is purely dynamic and no trapping is
performed during the execution, because all the injected actions are compiled
without tags. But if the aspects contain conditional advices or the aspect pool
is modified frequently the overhead may become unacceptable.

94 The AspectK Virtual Machine

5.9 Garbage Collection

The execution of processes leads to the creation of a large number of frames.
Some of these frames are persistent, namely they are used throughout the entire
evolution of the net. Some other frames, instead, have a transient life, like

• the reference frames created for the execution of MATCH and DMATCH in-
structions.

• Thread frames of threads not active anymore (in the grey set).

• Frames of tuples that have been removed by an in action.

• Code frames containing code that was injected by the weaver and that
now is not required anymore.

The garbage collector is the component of the virtual machine which takes care
of recalling the memory which is used by dead frames.
It adopts a moving mark-and-sweep strategy. The process of collection operates
as follows:

1. All the frames that are reachable from active memory are marked (a bit
of the descriptor is set).

2. The heap is scanned and all the non-marked frames are removed.

3. The heap is compacted.

The garbage collector can be executed only in the window of time that intercurs
between the execution of two chunks of code. That is the only moment when it
is guaranteed that the operand stack does not contain information useful during
the execution and that would be otherwise lost if the garbage collection were
triggered at a different time.
The GC CHECK instruction is used to achieve this goal. It is placed by the compiler
at the beginning of every chunk and its argument contains an over-estimation of
the number of bytes required for the execution of the chunk it tops. Whenever
GC CHECK is executed, the virtual machine checks whether there is enough mem-
ory available to execute the chunk. If not, the garbage collector is executed.
This dedicated instruction also makes it more efficient to test the necessity of
garbage collection, because this task is carried out only at certain moments of
the execution and not for example after every instruction.

5.10 Optimizations 95

However this solution is not perfect, because it is not possible to predict at
compile time the memory used by the weaver when it injects code. Moreover, for
the reasons explained before, the weaver cannot activate the garbage collector
but it can only force its execution when the next GC CHECK instruction will
be encountered. In order to mitigate this limitation, the garbage collector is
triggered when more than 2/3s of the memory are used. This is done in the
attempt to guarantee that at any time there is at least 1/3 of memory that can
be used for the injection of new code. When the execution reaches the point
that more than 2/3 of the memory are permanently used and cannot be freed,
the garbage collector is disabled, because executing it would not provide any
benefit. It is re-enabled when either new aspects are added or enabled/disabled,
since these facts might provide the opportunity to free some memory.

5.10 Optimizations

The virtual machine contains few optimizations:

• The weaver keeps a cache of the strings extracted from the memory when
the trap operation is performed.

• The weaver caches the tuples extracted from memory when conditions
containing test constructs are evaluated. This caching system increments
the performances of the backtracker that can save some of the overhead
necessary to reconstruct the tuple from the memory.

Both the caches are cleared when the garbage collector executes, because after
it has been executed the frames storing the strings and the tuples may have
been moved or removed.

96 The AspectK Virtual Machine

Chapter 6

Supporting Other Calculi

The virtual machine presented in this thesis was designed and implemented for
the execution of the AspectK coordination language. Many of the structures and
the instructions are specific to the AspectK language and may not be suitable
for other languages. Some examples are:

• The channel frame, which may be not suitable to be used as a communi-
cation channel in other languages. In these channels there is no notion of
synchronous communication which instead is featured in languages such
as CSP.

• The MATCH and DMATCH instructions, which implement the logic of the
AspectK match function and rely on a specific structure of the memory,
namely the presence of channel frames bound to tuple lists.

Moreover the AspectK language uses only one data type, namely the string.
Other languages may require instructions for the comparison of strings, their
concatenation and so on. Other process calculi may also support the declaration
of other data types, such as integers or floats, which the current virtual machine
does not support at all.
In general, in order to support a new process calculus the virtual machine should
be updated with new instructions and/or new memory allocation units.

98 Supporting Other Calculi

However it is possible to determine a general set [18] of operators for processes
modelling, which are supported by numerous process calculi such as CSP, CCS
and π-calculus. The operators are:

• Basic Process. The basic process is of two kinds: the inactive process,
which usually appears as 0, nil or stop and the termination process which
is denoted by skip or stop.

• Action Prefixing.

• Sequentialization.

• Choice. Choice can be non-deterministic, external or internal.

• Parallel Composition. The parallel composition of processes may also
involve interaction: processes may synchronize their execution and pass
messages between them.

• Abstraction. Abstraction can be restriction, hiding and renaming.

• Infinite Behaviours. Namely recursion, replication and iteration.

One direction to simplify the support of other process calculi could be to extend
the design of the AspectK virtual machine to support all of these operators.
Providing native structures to natively support these operators may require the
addition of new frames, new instructions or the extension of the existent ones.
On the other hand some of the operators may be handled at compile time and
they would not affect anyhow the design of the virtual machine.
For example, the virtual machine does not provide support for synchronous in-
teraction of processes. The support of this kind of interaction (present in CSP)
may require the design of a new channel frame and/or the addition of new
structures that can provide means for connecting two processes to operate the
synchronization.
Conversely, restriction could be implemented at compile time by renaming the
restricted channels with new names that are not used for any other channel
present in the net: hence the support of restriction would not affect the virtual
machine design.
Almost the totality of the process calculi do not have AOP support. However,
had any new AOP-oriented process calculus to be supported in the virtual ma-
chine, this would require the creation of a new trapper and weaver and possibly
the extension of the current set of tag instructions.

Chapter 7

Final Considerations

In the first part of the thesis we analyzed the syntax and the semantics of
AspectK. We also presented a possible extension/modification of the semantics
of the language that can be used to optimize, under certain conditions, the
dynamic weaving of aspects. Then, we overviewed some basic concepts about
virtual machines, and we presented some existing solutions based on virtual
machines that support the dynamic weaving of aspects.

In the subsequent part of the thesis we presented the interpreter. The interpreter
is a prototype software that was conceived for obtaining an understanding of
what the challenges in creating the virtual machine could be at an early stage
of the work. The time spent on this prototype payed off, because by the time I
had built up the knowledge necessary to develop the AspectK virtual machine,
I was already aware of what the most sensible points in the design were. While
working on the interpreter I developed the thread scheduling strategy based on
sets, I identified possible issues in trapping actions that are guards in a guarded-
processes sum and I refined the lazy and the balanced weaving techniques.

In the third part of the thesis we studied the design of the virtual machine and
the working of its internals. We analyzed how a net is compiled into a chunk-
of-code based structure and we presented how the net is stored in memory and
then executed. Then we discussed the weaver and the three dynamic weaving
strategies it features. Finally we presented the garbage collector and explained

100 Final Considerations

its role in ensuring the availability of memory for the injection of new code.

In the final chapter we briefly considered what should be done for supporting
more process calculi in the virtual machine.

7.1 Analysis of the Results

The work on the AspectK virtual machine highlighted some interesting facts
concerning the native support of Aspect-Oriented Programming in a virtual
machine.

First of all, the virtual machine seems to be an efficient solution for implementing
the dynamic weaving of aspects. The process of identification of the joinpoints
and injection of new code can be triggered by the virtual machine itself which can
efficiently activate the weaver whenever certain instructions or certain conditions
are encountered during the execution.

The AspectK virtual machine ships with three different strategies for dynami-
cally weaving aspects and none of them can be considered optimal under every
type of workload. This fact suggests that better performances can be achieved
by matching the most convenient weaving strategy with the workload that the
virtual machine is undertaking. If the set of aspects is invariant in time and the
majority of aspects are non-conditional, the balanced technique may be the most
appropriate. Conversely, if the set of aspects is expected to change frequently,
it may be more convenient to use the lazy weaver.

Weaving aspects at run-time in general requires the knowledge about the archi-
tecture of the binary code of the original program. In the rather simple case of
AspectK the actions were compiled into chunks that have a well defined struc-
ture. It was then relatively easy to define strategies for weaving new code and
linking it to the original one. The situation may become very different if the
structure of the code is arbitrarily changed by compiler optimizations or other
causes. In such case the weaving of new code may become very complex or even
impossible. This consideration seems to explain why there exist many solutions
for dynamic weaving of aspects in the Java virtual machine (AspectWerkz [3]
or Steamloom [2]) since the class format is well specified, whereas this is not
the case for other languages like C++ where the structure of the compiled code
may be much more difficult to derive.

7.2 Conclusions 101

7.2 Conclusions

The initial goal of this thesis was to explore how Aspect-Oriented Programming
and virtual machines could be combined to implement the dynamic weaving of
aspects in the code. This objective was further extended into the analysis of the
properties of the AspectK language and the identification of ways to extend it
to support different solutions for the dynamic weaving.

The first challenge to face was to build the necessary knowledge base that could
enable me to confront this project and exploit it in the right direction. It
was very important to keep the design simple and avoid excessively complex
solutions. I encountered some obstacles in specifying a satisfactory design of
the bytecode, because it had to be expressive enough to permit the compilation
of the net and at the same time simple enough to facilitate the operations
of trapping and weaving. The compromise was found in moving some of the
complexity into the design of the instructions, and the result is that some of
them execute rather sophisticated operations (MATCH for example). On the other
hand this choice pays off for at least two reasons: first of all the structure of
the compiled program is more compact and easier to manipulate, secondly the
porting of the virtual machine to other process calculi is facilitated, because
the business logic of new operations can be almost fully confined within new
instructions. As a matter of fact this kind of design choice was made for the
same reason by the developers of other virtual machines for process calculi, for
example TyCO [16].

The subsequent challenge was represented by the development of the weaver.
The lazy weaving solution was designed by closely following the semantics of
AspectK, whereas for the greedy and balanced strategies a new semantics was
derived from the original one and then implemented.

There was not enough time to attempt the port of the virtual machine to other
process calculi however, some possible directions for this kind of task were con-
sidered and reported in the thesis.

Overall, the project resulted in a fully functional implementation of a virtual
machine for AspectK.

102 Final Considerations

7.3 Further Work

There are several directions that can be taken to further extend the project
presented in this thesis. Some of them have already been mentioned, namely
the porting of the virtual machine to other process calculi or the improvement
of the design of the bytecode for allowing the execution of the garbage collector
at any time.

Other possibilities are the improvement of the design of the aspects tags. For
example, the tag instruction that “informs” the weaver about the type of action,
the number and type (constant, variable, ...) of its arguments and the type of its
target location can consume quite a lot of space. Maybe the same information
can be obtained by other means.

Most of the woven code is discarded once it has been used. It might be possible
to cache part of it for future re-use. This solution would be beneficial for the
performances of the virtual machine.

The virtual machine could be equipped with a component capable of automati-
cally selecting the most adequate weaver given the detected workload and set of
aspects. Again, the performances of the virtual machine would obtain discrete
benefits from this solution.

Finally, an important improvement would be the creation of a static analyzer
that detects the presence of cycles in the set of aspects. Currently, the virtual
machine can partially control this situation but it can not avoid it. If a cycle is
present the virtual machine keeps allocating code frames, and after some cycles
all the available virtual memory is filled.

Appendix A

Example Code

This appendix contains the output of the disassembled bytecode for the compiled
net

loc1 :: <t1>

||

loc2 :: * out(t2)@loc1.(in(!a)@loc1.0 | read(!b)@loc1.0)

||

loc3 :: out(t2)@loc1.0 + read(!b)@loc2.0

The code is reported below.

Size of the Constants Table: 5

4: GC_CHECK 155

9: NEWSTRING "t2"

13: CT_STORE 3

16: NEWSTRING "t1"

20: CT_STORE 1

23: NEWSTRING "loc1"

104 Example Code

29: CT_STORE 0

32: NEWSTRING "loc3"

38: CT_STORE 4

41: NEWSTRING "loc2"

47: CT_STORE 2

50: CT_LOAD 0

53: DUP

54: GETCHAN

55: JMP_NOTNULL 7

58: NEWCHAN

59: JMP_OFF 4

62: GETCHAN

63: NEWARRAY 1

68: DUP

69: CT_LOAD 1

72: ASTORE 0

77: APPEND

78: CT_LOAD 2

81: DUP

82: GETCHAN

83: DUP

84: JMP_NOTNULL 5

87: SWAP

88: NEWCHAN

89: TH_NEW vt size:0 ref:119

98: CT_LOAD 4

101: DUP

102: GETCHAN

103: DUP

104: JMP_NOTNULL 5

107: SWAP

108: NEWCHAN

109: TH_NEW vt size:1 ref:351

118: SCHED_GREY

119: GC_CHECK 31

124: TH_GETCHAN

125: TH_NEW vt size:0 ref:135

134: SCHED_REP

135: GC_CHECK 83

140: ASP_OUTACTION_TAG

1 arguments

c 3

105

152: ASP_PREACTIONS 0

157: CT_LOAD 0

160: DUP

161: GETCHAN

162: DUP

163: JMP_NOTNULL 5

166: SWAP

167: NEWCHAN

168: NEWARRAY 1

173: DUP

174: CT_LOAD 3

177: ASTORE 0

182: APPEND

183: ASP_POSTACTIONS

184: TH_GETCHAN

185: TH_NEW vt size:1 ref:205

194: TH_GETCHAN

195: TH_NEW vt size:1 ref:278

204: SCHED_TPL_GREY

205: GC_CHECK 9

210: ASP_INACTION_TAG

1 arguments

vd 0

222: ASP_PREACTIONS 0

227: CT_LOAD 0

230: GETCHAN

231: DUP

232: JMP_NOTNULL 7

235: DNOP

236: JMP_OFF 40

239: NEWARRAY 1

244: DUP

245: TH_VT_LOAD 0

248: ASTORE 0

253: DMATCH

254: DUP

255: JMP_NOTNULL 7

258: DNOP

259: JMP_OFF 17

262: ALOAD 0

267: TH_VT_STORE 0

270: ASP_POSTACTIONS

271: SCHED_YELLOW 277

106 Example Code

276: SCHED_RED

277: SCHED_GREY

278: GC_CHECK 9

283: ASP_READACTION_TAG

1 arguments

vd 0

295: ASP_PREACTIONS 0

300: CT_LOAD 0

303: GETCHAN

304: DUP

305: JMP_NOTNULL 7

308: DNOP

309: JMP_OFF 40

312: NEWARRAY 1

317: DUP

318: TH_VT_LOAD 0

321: ASTORE 0

326: MATCH

327: DUP

328: JMP_NOTNULL 7

331: DNOP

332: JMP_OFF 17

335: ALOAD 0

340: TH_VT_STORE 0

343: ASP_POSTACTIONS

344: SCHED_YELLOW 350

349: SCHED_RED

350: SCHED_GREY

351: GC_CHECK 40

356: CLEARSTACK

357: RNDSEQ 2

360: ISSTACKEMPTY

361: JMP_NULL 4

364: SCHED_RED

365: SWITCH

2 choices

6

60

371: ASP_GUARD_TAG 360

376: ASP_OUTACTION_TAG

1 arguments

c 3

107

388: ASP_PREACTIONS 0

393: CT_LOAD 0

396: DUP

397: GETCHAN

398: DUP

399: JMP_NOTNULL 5

402: SWAP

403: NEWCHAN

404: NEWARRAY 1

409: DUP

410: CT_LOAD 3

413: ASTORE 0

418: APPEND

419: ASP_POSTACTIONS

420: SCHED_TPL_YELLOW 501

425: ASP_GUARD_TAG 360

430: ASP_READACTION_TAG

1 arguments

vd 0

442: ASP_PREACTIONS 0

447: CT_LOAD 2

450: GETCHAN

451: DUP

452: JMP_NOTNULL 7

455: DNOP

456: JMP_OFF 40

459: NEWARRAY 1

464: DUP

465: TH_VT_LOAD 0

468: ASTORE 0

473: MATCH

474: DUP

475: JMP_NOTNULL 7

478: DNOP

479: JMP_OFF 17

482: ALOAD 0

487: TH_VT_STORE 0

490: ASP_POSTACTIONS

491: SCHED_YELLOW 502

496: JMP_ABS 360

501: SCHED_GREY

502: SCHED_GREY

108 Example Code

Appendix B

Software

This appendix presents some information about the software developed while
working on this thesis.

B.1 The AspectK Compiler

The AspectK compiler described in Section 5.6 is implemented by the aspectKc
application.

The aspectKc program can perform two tasks: it can either compile an AspectK
source file or it can disassemble a compiled net.
When it is used to compile, aspectKc produces two files:

• One file with extension “ako”, containing the compiled net.

• One file with extension “as”, containing the compiled aspects.

If aspectKc used to disassemble a compiled program, aspectKc can output the
disassembled representation either to the standard output or into a file.

110 Software

The contextual help of this program can be invoked by passing either the -h or
--help switch to the program from the command line.

B.1.1 Syntax Accepted by the Parser

The parser accepts the syntax of AspectK defined in Chapter 2, with minor
modifications:

• Aspects are defined using the ^= symbol, which corresponds to
4
=.

• Multiple aspect definitions are separated by comma.

• Constants, within cuts, must be prefixed by the $ symbol, in order to
differentiate them from the variables.

• Within conditions, the and keyword is used to define and conditions.

• The parser does not accepts tabs.

• Variables cannot start with a number.

• Comments are enclosed between * *\

B.2 The AspectK GUI

aspectKgui is a graphical user interface to the virtual machine.
Thus tool may be used to load in the virtual machine an AspectK net compiled
into bytecode and a collection of aspects. Then, the net can be executed and the
interface allows to inspect the virtual machine internals to see how the different
parts change during the execution.

Figure B.1 shows the main window of aspectKgui. There are three menus:

• Main. This menu contains the sub-menus:

– Options. Here it is possible to control some options of the virtual
machine, like the size of the virtual memory or the weaving strategy
to use.

– About. Shows information about the author.

– Exit. Exits the application.

B.2 The AspectK GUI 111

Figure B.1: aspectKgui, Execution tab.

• Execution. Contains three sub-menus:

– Load Program. Creates a virtual machine instance and loads a pro-
gram in it. If aspects had been previously loaded, they are loaded in
the aspect pool of the virtual machine too.

– Program Bytecode. Opens a window containing the disassembled rep-
resentation of the program.

– Restart VM. Restarts the virtual machine.

• Aspects. Contains two sub-menus:

– Add. Permits to load aspects in the virtual machine.

– Manage. Opens a windows where it is possible to consult the loaded
aspects and enable/disable them.

112 Software

The body of the application is divided by a split panel into two parts. The left
part contains the main body of the application, distributed into two tab panels.
The right part of the interface displays the content of the channel list and the
content of the global constant table.
Figure B.1 shows the Execution tab. The upper part of the tab panel displays
the active threads and the red threads. All the numbers displayed are memory
addresses.
The Go! button triggers the execution of the chunk scheduled for execution.
The Force Execution button changes the thread selected for execution with the
one selected in the Active Threads list.
If the thread selected for the execution or one of the active threads or one of
the read threads is clicked over, the lower part of the window is filled with
information about such thread. The Paths table shows the execution paths for
the thread. There is always at least one path, representing the original program.
Whenever some code is woven and new frames are allocated, they are appended
at the end of this table, so it is possible to consult the new code frames.
In the figure, one code frame was allocated, and the code it contains is shown
in the text area under the table. The text representation of the locations have
this encoding: t{c,v}i.

• t is the table id. 0 for the global constant table or for the variable table
of the thread, a number greater or equal to 1 for constants and variables
that are temporary introduced by the injected code.

• {c,v}: c if the location is a constant, v if it is a variable.

• i is the index of the symbol on the table

For example, in the figure, the last location is 1c0, which indicates:

• a constant;

• stored in the temporary constant table allocated for the code frame number
1, in this case the only code frame allocated;

• the constant is stored at index 0 of such table.

There are two tables in the bottom part of Execution panel:

• Variable Table. Shows the content of the variable table of the process,
if the path corresponding to the main program is selected, otherwise it
displays the content of the temporary variable table of the selected code
frame.

B.3 The AspectK Interpreter 113

• Const Table (Asp). Displays the content of the temporary constant table
associated to the selected code frame. When the user selects the path
corresponding to the main program, the table is obviously empty.

Figure B.2: aspectKgui, Memory tab.

Figure B.2 shows the content of the Memory tab of the application.
The upper part displays some general information about the memory usage,
whereas the bottom part displays the content of the heap.
The View button opens a window that displays the content of the selected frame.

B.3 The AspectK Interpreter

Figure B.3 shows how the interpreter appears to the user. The interface does
not allow to perform many operations.

114 Software

Figure B.3: The AspectK Interpreter

The Load Source program permits to locate an AspectK source file and to load
it. After the source has been loaded, the execution is controlled by the two
buttons Next — it executes the next task of the process scheduled for execution
— and Stop — which stops the execution.
After Stop has been pressed, the evolution of the net is stopped and it can be
saved into a trace by using the Save Trace button.

A trace can be loaded by using the Load Trace button. It is possible to move
forward or backward in the evolution of the net recorded in the trace by using
the Next and the Previous buttons.
The trace is closed by pressing the Stop button.

NOTE: The interpreter is simply a prototype and it was neither developed nor
tested with accuracy, hence it may show malfunctions.

Appendix C

Instruction Set

ALOAD

Operation Loads on the operand stack a reference from a reference
array

Format

ALOAD
index byte1
index byte2
index byte3
index byte4

Opcode 12 (0x0c)

Stack
...,array reference ⇒
...,reference

116 Instruction Set

APPEND

Operation Appends a tuple (array of strings) to the end of the tuple
list of the given channel. The reference of the channel and
of the tuple are on the operand stack.

Format APPEND

Opcode 16 (0x10)

Stack
...,chan reference,tuple reference ⇒
...,

ASP CLEAN

Operation Removes the link to the aspect’s code in the program code
(if present) an jumps to the “parent” code (it could be
another code frame or the original code) or schedules the
process for termination

Format

ASP CLEAN
reference byte1
reference byte2
reference byte3
reference byte4

Opcode 46 (0x2e)

Stack No change

117

ASP CT LOAD

Operation Loads on the operand stack a reference of a string from the
constants table associated to the code frame being executed
by the thread

Format

ASP CT LOAD
table id

index byte1
index byte2

Opcode 43 (0x2b)

Stack
..., ⇒
...,reference

ASP CT STORE

Operation Stores a reference (loaded on the operand stack) of a string
in the constants table associated to the code frame being
executed by the thread

Format

ASP CT STORE
table id

index byte1
index byte2

Opcode 42 (0x2a)

Stack
...,reference ⇒
...,

118 Instruction Set

ASP GUARD TAG

Operation Tags the fact that the action encoded in the current chunk
of code is a guard, in a guarded process sum

Format

ASP GUARD TAG
switch ref byte1
switch ref byte2
switch ref byte3
switch ref byte4

Opcode 37 (0x25)

Stack No change

119

ASP INACTION TAG

Operation Tags the beginning of the “in” action

Format

ASP INACTION TAG
number of arguments

table id
type arg1
arg1 byte1
arg1 byte2

...
table id

type argn
argn byte1
argn byte2

table id
type tgtloc
tgtloc byte1
tgtloc byte2

loc byte1
loc byte2

Opcode 34 (0x22)

Stack No change

120 Instruction Set

ASP OUTACTION TAG

Operation Tags the beginning of the “out” action

Format

ASP OUTACTION TAG
number of arguments

table id
type arg1
arg1 byte1
arg1 byte2

...
table id

type argn
argn byte1
argn byte2

table id
type tgtloc
tgtloc byte1
tgtloc byte2

loc byte1
loc byte2

Opcode 33 (0x21)

Stack No change

121

ASP READACTION TAG

Operation Tags the beginning of the “read” action

Format

ASP READACTION TAG
number of arguments

table id
type arg1
arg1 byte1
arg1 byte2

...
table id

type argn
argn byte1
argn byte2

table id
type tgtloc
tgtloc byte1
tgtloc byte2

loc byte1
loc byte2

Opcode 35 (0x23)

Stack No change

ASP POSTACTIONS

Operation Tags the place where post-actions should be inserted, in the
code.

Format ASP POSTACTIONS

Opcode 39 (0x27)

Stack No change

122 Instruction Set

ASP PREACTIONS

Operation Tags the place where post-actions should be inserted, in the
code. It also triggers the weaver, which attempts the trap
and if this succeeds the code is injected.

Format

ASP PREACTIONS
reference byte1
reference byte2
reference byte3
reference byte4

Opcode 38 (0x26)

Stack No change

ASP SCHED TPL YELLOW

Operation Schedule the next chunk of code in this thread (within a
code frame) and signal that a tuple was created.

Format
ASP SCHED TPL YELLOW

offset byte1
offset byte2

Opcode 45 (0x2d)

Stack No change

123

ASP SCHED YELLOW

Operation Schedule the next chunk of code in this process, within a
code frame.

Format

ASP SCHED YELLOW
offset byte1
offset byte2

Opcode 44 (0x2c)

Stack No change

ASP STOPACTION TAG

Operation Tags the stop action

Format ASP STOPACTION TAG

Opcode 36 (0x24)

Stack No change

124 Instruction Set

ASP VT LOAD

Operation Loads on the operand stack a reference from the variable
table associated to the code frame being executed by the
thread

Format

ASP VT LOAD
table id

index byte1
index byte2

Opcode 41 (0x29)

Stack
..., ⇒
...,reference

ASP VT STORE

Operation Stores a reference (loaded on the operand stack) in the sym-
bol table associated to the code frame being executed by
the thread

Format

ASP VT STORE
table id

index byte1
index byte2

Opcode 40 (0x28)

Stack
...,reference ⇒
...,

125

ASTORE

Operation Stores a reference (loaded on the operand stack) in a refer-
ence array

Format

ASTORE
index byte1
index byte2
index byte3
index byte4

Opcode 13 (0x0d)

Stack
...,array reference,reference ⇒
...,

BASTORE

Operation Stores a byte in a byte array

Format

BASTORE
index byte1
index byte2
index byte3
index byte4

byte

Opcode 10 (0x0a)

Stack
...,array reference ⇒
...,

126 Instruction Set

CLEARSTACK

Operation Empties the operand stack

Format CLEARSTACK

Opcode 48 (0x30)

Stack
..., ⇒
\

CT LOAD

Operation Loads on the operand stack a reference of a string from the
global constant table

Format

CT LOAD
index byte1
index byte2

Opcode 21 (0x15)

Stack
..., ⇒
...,reference

CT STORE

Operation Stores the reference (loaded on the operand stack) of a
string in the global constant table

Format

CT STORE
position byte1
position byte2

Opcode 20 (0x14)

Stack
...,reference ⇒
...,

127

DMATCH

Operation Returns an array of substitutions, if a match is found, oth-
erwise null. Additionally, it removes the matched tuple
from the channel.

Format DMATCH

Opcode 18 (0x12)

Stack
...,chan reference,args reference ⇒
...,subs reference

DNOP

Operation No operation. It also removes the top element of the
operand stack.

Format DNOP

Opcode 1 (0x01)

Stack No change

DUP

Operation Duplicate the top operand stack word.

Format DUP

Opcode 3 (0x03)

Stack
...,word ⇒
...,word,word

128 Instruction Set

GC CHECK

Operation Checks whether the garbage collector should be executed.

Format

GC CHECK
nbytes byte1
nbytes byte2
nbytes byte3
nbytes byte4

Opcode 50 (0x32)

Stack No change

GETCHAN

Operation Returns the reference of the channel bound to the given
string.

Format GETCHAN

Opcode 15 (0x0f)

Stack
...,string reference ⇒
...,chan reference

ISSTACKEMPTY

Operation pushes 1 on the top of the operand stack if the stack is
empty, otherwise null.

Format ISSTACKEMPTY

Opcode 49 (0x31)

Stack
..., ⇒
...,value

129

JMP ABS

Operation Jump to an absolute address.

Format

JMP ABS
address byte1
address byte2
address byte3
address byte4

Opcode 4 (0x04)

Stack No change

JMP OFF

Operation Jump to an offset-address.

Format

JMP OFF
offset byte1
offset byte2

Opcode 5 (0x05)

Stack No change

130 Instruction Set

JMP NOTNULL

Operation Jump to an offset-address if the value is not null.

Format

JMP NOTNULL
offset byte1
offset byte2

Opcode 7 (0x07)

Stack No change

JMP NULL

Operation Jump to an offset-address if the value is null (0x00000000)

Format

JMP NULL
offset byte1
offset byte2

Opcode 6 (0x06)

Stack No change

MATCH

Operation Returns an array of substitutions, if a match is found, oth-
erwise null.

Format MATCH

Opcode 17 (0x11)

Stack
...,chan reference,array reference ⇒
...,array reference

131

NEWARRAY

Operation Instantiates a new array of references

Format

NEWARRAY
size byte1
size byte2
size byte3
size byte4

Opcode 11 (0x0b)

Stack
..., ⇒
...,array reference

NEWBARRAY

Operation Instantiates a new array of bytes

Format

NEWBARRAY
size byte1
size byte2
size byte3
size byte4

Opcode 9 (0x09)

Stack
..., ⇒
...,array reference

132 Instruction Set

NEWCHAN

Operation Instantiates a new channel bound to a given name (string)

Format NEWCHAN

Opcode 14 (0x0e)

Stack
...,string reference ⇒
...,chan reference

NEWSTRING

Operation Instantiates a new string (short cut for using byte arrays)

Format

NEWSTRING
size byte1

char1
...

charN

Opcode 19 (0x13)

Stack
..., ⇒
...,array reference

NOP

Operation No operation

Format NOP

Opcode 0 (0x00)

Stack No change

133

RNDSEQ

Operation
Pushes on the Operand Stack the sequence of values
0, · · ·, n in random order (n ≤ 255)

Format
RNDSEQ
n byte1
n byte2

Opcode 47 (0x2f)

Stack
..., ⇒
...,valuen,...,value1

SCHED GREY

Operation Signals the scheduler to move the current thread in the
“grey” set.

Format SCHED GREY

Opcode 31 (0x1f)

Stack No change

SCHED REP

Operation Signals the scheduler to move the current thread in the
“replication” set

Format SCHED REP

Opcode 32 (0x20)

Stack No change

134 Instruction Set

SCHED RED

Operation Signals the scheduler to move the current thread in the
“red” set

Format SCHED RED

Opcode 28 (0x1c)

Stack No change

SCHED TPL GREY

Operation Signals the scheduler to move the current thread in the
“grey” set. Signals the scheduler to move the red threads
in the “yellow” set.

Format SCHED TPL GREY

Opcode 29 (0x1d)

Stack No change

135

SCHED TPL YELLOW

Operation Signals the scheduler to move the current thread in the
“yellow” set. Schedules the next chunk of code for this
thread. Signals the scheduler to move the red threads in
the “yellow” set.

Format

SCHED TPL YELLOW
address byte1
address byte2
address byte3
address byte4

Opcode 30 (0x1e)

Stack No change

SCHED YELLOW

Operation Signals the scheduler to move the current thread in the
“yellow” set. Schedules the next chunk of code for this
thread.

Format

SCHED YELLOW
address byte1
address byte2
address byte3
address byte4

Opcode 27 (0x1b)

Stack No change

136 Instruction Set

SWAP

Operation Swaps the top 2 values of the operand stack.

Format SWAP

Opcode 2 (0x02)

Stack
...,value1,value2 ⇒
...,value2,value1

SWITCH

Operation Reads the top value of the operand stack and selects one of
the offsets provided as arguments. Them, it jumps to the
address derived from the selected offset.

Format

SWITCH
n choices

offset1 byte1
offset1 byte2

.

.

.
offsetN byte1
offsetN byte2

Opcode 8 (0x08)

Stack
...,value ⇒
...,

137

TH GETCHAN

Operation Pushes on the operand stack the reference of the channel
associated to this thread.

Format TH GETCHAN

Opcode 26 (0x1a)

Stack
..., ⇒
chan reference

TH NEW

Operation Instantiates a new thread. The arguments determine the
size of the variable table and the address of the initial chunk
of code.

Format

TH NEW
vt size byte1
vt size byte2
vt size byte3
vt size byte4
address byte1
address byte2
address byte3
address byte4

Opcode 22 (0x16)

Stack
...,chan reference ⇒
..., thread reference

138 Instruction Set

TH VT LOAD

Operation Loads the value of a variable from the variable table of the
thread in execution.

Format
TH VT LOAD

index byte1
index byte2

Opcode 24 (0x18)

Stack
..., ⇒
...,reference

TH VT STORE

Operation Stores a reference in the variable table of the thread in
execution.

Format

TH VT STORE
index byte1
index byte2

Opcode 23 (0x17)

Stack
...,reference ⇒
...,

139

TH VT STORE IND

Operation Stores a reference in the variable table of a thread whose
reference is on the operand stack.

Format

TH VT STORE IND
index byte1
index byte2

Opcode 25 (0x19)

Stack
...,th reference,reference ⇒
...,

140 Instruction Set

Bibliography

[1] Jonas Bonér Joakim Dahlstedt, Alexandre Vasseur. Java virtual machine
support for aspect-oriented programming. In 5th International Conference
on Aspect-Oriented Software Development (AOSD’2006).

[2] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Ostermann.
Virtual machine support for dynamic join points. In AOSD, pages 83–92,
2004.

[3] Aspectwerkz home page. http://aspectwerkz.codehaus.org/, retrieved
15-08-2008.

[4] Chris Hankin, Flemming Nielson, Hanne Riis Nielson, and Fan Yang. Ad-
vice for coordination. In COORDINATION, pages 153–168, 2008.

[5] Tim Lindholm and Frank Yellin. The Java(TM) Virtual Machine Specifi-
cation (2nd Edition). Prentice Hall PTR, April 1999.

[6] Gerald J. Popek and Robert P. Goldberg. Formal requirements for vir-
tualizable third generation architectures. Commun. ACM, 17(7):412–421,
1974.

[7] Dieter Gollmann. Computer security. John Wiley & Sons, Inc., New York,
NY, USA, 1999.

[8] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean marc Loingtier, and John Irwin. Aspect-oriented programming.
pages 220–242. Springer-Verlag, 1997.

[9] Geri Georg, Indrakshi Ray, and Robert France. Using aspects to design
a secure system. In ICECCS ’02: Proceedings of the Eighth International

http://aspectwerkz.codehaus.org/

142 BIBLIOGRAPHY

Conference on Engineering of Complex Computer Systems, page 117, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[10] L. Bettini, V. Bono, R. Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, and B. Venneri. The klaim project: Theory and
practice, 2003.

[11] Rocco de Nicola, Gian Luigi Ferrari, and R. Pugliese. klaim: a kernel lan-
guage for agents interaction and mobility. IEEE Transactions on Software
Engineering (Special Issue on Mobility and Network Aware Computing),
1998.

[12] Rocco De Nicola, GianLuigi Ferrari, and Rosario Pugliese. Programming
access control: The KLAIM Experience. Lecture Notes in Computer Sci-
ence, 1877:48–??, 2000.

[13] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Program-
ming. Manning Publications Co., Greenwich, CT, USA, 2003.

[14] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Sys-
tems and Processes. Morgan Kaufmann, June 2005.

[15] Javassist home page. http://www.csg.is.titech.ac.jp/~chiba/

javassist/, retrieved 20-08-2008.

[16] L. Lopes. On the Design and Implementation of a Virtual Machine for Pro-
cess Calculi. PhD thesis, Faculty of Science, University of Porto, Portugal,
1999.

[17] Javacc home page. https://javacc.dev.java.net/, retrieved 20-08-2008.

[18] M. Wirsing. Process algebra: Operators for process algebras, WS 07/08.
Set of slides.

[19] Michael Engel and Bernd Freisleben. Using a low-level virtual machine to
improve dynamic aspect support in operating system kernels. In Proceed-
ings of the 4th AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS), Chicago, USA, 2005.

[20] M. Haupt and M. Mezini. Virtual Machine Support for Aspects with Advice
Instance Tables. L’Objet, 11(3):9–30, 2005.

[21] Terracotta Jonas Bonér and Terracotta Eugene Kuleshov. Clustering the
java virtual machine using aspect-oriented programming. In AOSD Con-
ference 2007.

[22] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
August 2006.

http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://www.csg.is.titech.ac.jp/~chiba/javassist/
https://javacc.dev.java.net/

BIBLIOGRAPHY 143

[23] S. Gao. Applying aspect-orientation in designing security systems: A case
study, 2004.

[24] Luis M. B. Lopes, Fernando M. A. Silva, and Vasco Thudichum Vascon-
celos. A virtual machine for a process calculus. In PPDP ’99: Proceed-
ings of the International Conference PPDP’99 on Principles and Practice
of Declarative Programming, pages 244–260, London, UK, 1999. Springer-
Verlag.

[25] J. E. Smith and Ravi Nair. The architecture of virtual machines. Computer,
38(5):32–38, 2005.

[26] R. Filman and D. Friedman. Aspect-oriented programming is quantification
and obliviousness, 2000.

[27] J.T. Bloch J. Viega and P. Chandri. Applying Aspect-Oriented Program-
ming to Security. Cutter IT Journal, 14(2):31–39, 2001.

[28] Robert P. Goldberg. Survey of Virtual Machines Research. IEEE Com-
puter, pages 34–45, 1974.

[29] Aspectj home page. http://www.eclipse.org/aspectj/, retrieved 15-08-
2008.

http://www.eclipse.org/aspectj/

	1 Introduction
	1.1 Thesis Objectives
	1.2 Thesis Outline

	2 The AspectK Language
	2.1 KLAIM
	2.2 AspectK
	2.3 Dynamic Weaving in AspectK

	3 Virtual Machines
	3.1 System Virtual Machines
	3.2 Process Virtual Machines
	3.3 Virtual Machines and AOP

	4 The AspectK Interpreter
	4.1 Design
	4.2 Interpretation
	4.3 Scheduling Of Processes
	4.4 Dynamic Weaving of Aspects
	4.5 Lessons Learned and Considerations

	5 The AspectK Virtual Machine
	5.1 Overview
	5.2 Runtime Data Areas
	5.3 Frames
	5.4 The Scheduler
	5.5 Instruction Set Summary
	5.6 The AspectK Compiler
	5.7 The Weaver
	5.8 Weaving Techniques
	5.9 Garbage Collection
	5.10 Optimizations

	6 Supporting Other Calculi
	7 Final Considerations
	7.1 Analysis of the Results
	7.2 Conclusions
	7.3 Further Work

	A Example Code
	B Software
	B.1 The AspectK Compiler
	B.2 The AspectK GUI
	B.3 The AspectK Interpreter

	C Instruction Set

