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Sommario

La ricerca di metodi per la trasmissione sicura di informazioni ricopre un ruolo sem-
pre più centrale nelle moderne reti di telecomunicazione. In particolare, la protezione
delle comunicazioni in spazio libero è di importanza cruciale, poiché, in tali ambienti, i
collegamenti sono facilmente accessibili da eventuali intrusioni esterne.
Sin dall’antichità, una moltitudine di metodi per lo scambio sicuro di messaggi sono

stati implementati mediante l’uso della crittogra�a1 e della steganogra�a2. L’occultamento
del messaggio, in un sistema steganogra�co, può essere realizzato sfruttando in modo
opportuno il concetto di caos deterministico3, che può essere de�nito come il comporta-
mento totalmente aperiodico e apparentemente casuale di alcuni sistemi non lineari, la cui
evoluzione, completamente deterministica, è fortemente in�uenzata da un’elevata dipen-
denza dalle condizioni iniziali e da qualsiasi perturbazione esterna. In particolare, piccole
variazioni nelle condizioni iniziali di un sistema caotico determinano una divergenza
esponenziale della sua evoluzione dalla traiettoria originale.
La sincronizzazione del caos è una caratteristica peculiare dei sistemi caotici, scoperta

da L. Pecora e T. Carroll, a metà degli anni ‘80: un sistema caotico, chiamato master,
può, sotto opportune condizioni, forzare un sistema simile, chiamato slave, a seguire la
sua stessa evoluzione [1]. Questo fenomeno viene usato nei sistemi di comunicazione
caotica per ottenere un elevato livello di sicurezza tra il trasmettitore e il ricevitore. In
particolare, al trasmettitore di un sistema caotico steganogra�co, un dispositivo non
lineare (ad esempio un laser) viene indotto in un regime caotico attraverso un’appropriata
con�gurazione a retroazione, e un messaggio viene sovrapposto alla portante caotica
così generata, ottenendo la steganogra�a del messaggio. Al ricevitore, il processo di
sincronizzazione con lo slave permette il recupero del messaggio, mediante un’operazione
di di�erenza e un opportuno �ltraggio. L’e�cacia di tale tecnica si basa sulla qualità
della sincronizzazione, che dipende prima di tutto dalla disponibilità di una coppia di
master-slave avente parametri molto simili, e inoltre dall’in�uenza degli e�etti distorsivi e
del rumore introdotti dal canale di trasmissione.
In questa Tesi viene studiato numericamente un sistema di comunicazione stegano-

gra�ca su portante ottica caotica in spazio libero. La portante caotica viene generata, al
trasmettitore, mediante l’utilizzo di un laser a semiconduttore con retroazione optoelet-

1crittogra�a: dalle parole greche “kryptós” (nascosto), e “gráphein” (scrivere), signi�ca nascondere il
signi�cato di un messaggio.

2steganogra�a: dalle parole greche “stéganos” (segreto), e “gráphein” (scrivere), signi�ca nascondere
l’esistenza stessa di un messaggio.

3Nell’uso comune, la parola caos denota una assenza di ordine, e sembrerebbe un controsenso a�ancarla
al concetto di determinismo, che signi�ca ordine. La spiegazione risiede nella de�nizione matematica di caos,
cioè quella di un sistema deterministico non lineare, dal quale, in particolari circostanze, può emergere un
disordine apparente.
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tronica ritardata. Il messaggio, assunto con codi�ca PPM4, viene poi sovrapposto alla
portante caotica così generata. Al ricevitore il messaggio viene recuperato usando un
laser a semiconduttore, simile a quello usato al trasmettitore, in con�gurazione ad anello
aperto.
Le prestazioni del sistema sono valutate numericamente in termini dell’errore di

sincronizzazione e del fattore Q misurato in due diversi punti del sistema. L’analisi delle
prestazioni è volta a determinare sia la qualità della copertura delmessaggio in trasmissione
(un ascoltatore non autorizzato non deve essere in grado di recuperare il messaggio), sia la
qualità di recupero dell’informazione in ricezione, dopo la sincronizzazione. Una accurata
analisi numerica è e�ettuata prima in con�gurazione back to back (BTB), ovvero in assenza
del canale, e poi considerando la propagazione in spazio libero all’interno di un ambiente
chiuso.
Il lavoro di Tesi è dunque lo studio e l’analisi numerica di un modello matematico per

la generazione e la sincronizzazione del caos ottico mediante laser a semiconduttore, del
loro utilizzo al �ne di realizzare la steganogra�a caotica di un messaggio, e degli e�etti
introdotti da una propagazione in spazio libero.

4La codi�ca pulse position modulation (PPM) è utilizzata in molti standard per le comunicazioni ottiche
nell’infrarosso, per esempio negli standard IEEE 802.11 e Irda.
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Abstract

An optical communication system for the secure transmission of an information message
in free-space is investigated.

�e message hiding, at the transmitter, is achieved by a steganographic encryption
process onto an optical chaotic carrier generated by a semiconductor laser subjected to
delayed optoelectronic feedback.

�e message recovery, at the receiver, is attained by subtracting the received signal
from a reconstructed carrier obtained through the synchronization of a semiconductor
laser similar to that used at the transmitter.
A detailed numerical analysis of the system performance is performed for various

con�gurations. �e aim is to determine the quality of both the message masking and
recovering.
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Chapter1
Introduction

ej π +1 = 0
Leonhard Paul Euler (1707 – 1783)

In modern world-wide communication networks, the research of methods for the secure
transmission of critical information is gaining more and more attention. In particular,
the protection of free-space communications is of a crucial importance, since in such
environments the communication is easily accessible by an eavesdropper.
Since the ancient times, several methods to secure a message have been implemented,

through cryptography1 and steganography2. �e process of hiding a message in a stegano-
graphic system can be achieved by opportunely exploiting the concept of deterministic
chaos3, which can be de�ned as a totally aperiodic and apparently random behavior of
some nonlinear systems, whose evolution is completely deterministic, but strongly de-
pendent on their initial conditions and to any small perturbation. In particular, small
variations in the initial conditions of a chaotic system lead to an exponential divergence
of its evolution from the unperturbed trajectory.
Chaos synchronization is a peculiar behavior of chaotic systems, discovered by L. Pecora

and T. Carroll, in the mid-80s: a chaotic system, called master, can, under proper con-
ditions, force another similar system, called slave, to follow its same evolution [1]. �is
phenomenon is employed in chaotic communication systems to achieve the goal of provid-
ing an high level of privacy between the transmitter and the receiver. In particular, at the
transmitter of a steganographic system, a nonlinear device, e.g., a semiconductor laser, can

1cryptography: from the Greek words “kryptós” (hidden), and “gráphein” (writing), means to hide the
meaning of the message.

2steganography: from the Greek words “stéganos” (secret), and “gráphein” (writing), means to hide the
existence of the message.

3In the usual meaning, the word chaos denotes an absence of order, and it seems a nonsense to compare
it with the concept of determinism, which means order. �e explanation comes from the mathematical
de�nition of chaos, i.e., that of a nonlinear deterministic system, from which an apparent disorder can
appear in some particular circumstances.
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CHAPTER 1. INTRODUCTION

be routed into a chaotic state through a proper feedback con�guration, and a message can
then be embedded onto the generated chaotic carrier, obtaining the steganography of the
message. At the receiver, the synchronization of the slave with the master, together with a
di�erence operation and an opportune �ltering, permits the recovery of the message.

�e security resides in the fact that an eavesdropper cannot easily identify a chaotic
signal, because it is noise-like, and cannot reproduce the chaotic carrier exactly, which
is needed for the message recovery process. Furthermore, the synchronization quality
depends on the availability of “twin” master-slave systems4, having very close parameters,
and also on the in�uence of the transmission impairments and noise.

In recent years, optical chaotic systems have been heavily studied by considering the
propagation on an optical �ber, as explained in some of the several works developed over
the years [2–7]. In particular, a fully functional chaotic link over optical �bers has been
realized in Athens, Greece [4]. �e aim of this �esis is to extend the study of an optical
chaotic system to a free-space link. Wireless infrared links are becoming more attractive
over traditional radio ones, for several reasons: infrared communications have very large,
free and unlicensed available bandwidth, and the wide availability of low cost hardware
devices makes such systems preferable in terms of �nal product prices. Moreover, infrared
radiation is already physically con�ned in closed environments, due to the presence of
walls. Furthermore, optical systems typically require higher power consumptions than
system operating in the microwave band, posing problems for mobile devices with low
power availability. Also, particular attention must be done for the eye safety.5

In this �esis, an optical chaotic steganographic free space communication system
is studied numerically. �e chaotic optical carrier generation, at the transmitter, is ob-
tained by using a semiconductor laser with delayed optoelectronic feedback. �e message,
assumed to be PPM encoded6, is embedded onto the generated chaotic carrier through
superposition. At the receiver, the message is recovered by using a semiconductor laser
similar to that used at the transmitter, but operated in an open loop con�guration. �e
system performance is evaluated in terms of the synchronization error and of the Q factor
measured at two di�erent points of the system. �e performance analysis is aimed to verify
both the e�ective masking of the message at the transmitter (an eavesdropper should not
be able to recover the hidden message) and the quality of the message recovery at the
receiver, a�er the synchronization. Furthermore, a detailed numerical analysis is done �rst
in a BTB con�guration, and then by considering the free-space propagation in a closed
indoor environment.

4For instance, for a couple of semiconductor lasers, in order to have very similar parameters, they must
be built in the same wafer.

5Su�ciently powerful visible to near infrared laser radiation (400nm to 1400nm) penetrates the eyeball
and may cause heating of the retina, whereas exposure to laser radiation with wavelengths less than 400nm
and greater than 1400nm are largely absorbed by the cornea and lens, leading to the development of cataracts
or burn injuries [8]. However, in this �esis, the lasers operate at a wavelength of 1550nm with a maximum
average optical power of 0.1mW. A laser of this type is classi�ed as a Class 1 laser, i.e., its emitted radiation
is not dangerous under reasonable conditions of use [9].

6PPM is employed in several standards for optical infrared communications, e.g., in IEEE 802.11 and
Irda standards.
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1.1. OVERVIEW OF THE THESIS

1.1 Overview of the�esis
�e�esis is organized as follows.

Chapter 2 Here it will be brie�y explained how a semiconductor laser works. �e con-
ditions needed to achieve laser emission will be brie�y reviewed in the case of a
Fabry-Perot cavity, and the rate equations describing the dynamics of the laser will
be derived.

Chapter 3 In this chapter, the concept of chaos will be introduced, by de�ning the main
peculiarities of generic chaotic systems.
�en, the generation and the synchronization of optical chaos through semiconduc-
tor lasers will be treated, by introducing a numerical model to simulate and analyze
the chaotic behaviors of such systems.

Chapter 4 �is chapter provides an overview of an optical chaotic communication system
operating in free-space. �e building blocks and their interconnections will be
explained in detail, together with some design choices which will be used in the
numerical analysis of the system.
Furthermore, the estimation of the system performance will be de�ned.

Chapter 5 �e main results of numerical simulations are presented and commented,
together with possible solutions to prevent some noticed problems and limitations.
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Chapter2
Semiconductor Lasers

Truth is much too complicated to allow
anything but approximations.

John von Neumann (1903 – 1957)

�e simplest setup of a semiconductor laser is constituted by a pn-junction diode com-
bined with an optical resonant cavity �lled by an active medium. When the junction is
forward polarized, the injected carriers recombine, generating photons through stimulated
emission [10]. If the carrier density exceeds a certain threshold value, the generated light
is ampli�ed, yielding the laser emission [10].
In this chapter, by following the treatment explained in [11] and [12], the conditions

needed to achieve laser emission will be brie�y reviewed in the case of a Fabry-Perot cavity,
and the rate equations describing the dynamics of the laser will be derived.

2.1 Conditions for Laser Oscillation
�emodel of a Fabry-Perot resonator shown in Fig. 2.1 is used to approximate the physics
of the active region of a semiconductor laser [11, 12]. Basically, it is constituted by a gain
medium, delimited by two partially re�ecting mirrors; usually the mirrors are built by
appropriately cleaving the back and front facets of the laser diode.

�e cavity length is l , and the amplitude re�ectivities of the front and back facets are r1
and r2 respectively. �e active medium inside the cavity has a power gain per unit length
g (Npm−1), and a (Npm−1) is the total power loss per unit length due to absorption and
scattering.

�e phase constant in the medium, for a wave with frequency ν, is

β = n2πν
c

= nω
c
, (2.1)
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z
0 l

M1 M2

Injection Current

active layerr1 r2
Ef(z)

Eb(z)Eout,l

Ef0

Eout,r

Figure 2.1: Model of a Fabry-Perot resonant cavity.

where c is the speed of light in vacuum, ω is the angular frequency, and n is the refractive
index of the medium.
Due to the presence of gain and loss, a wave propagates with a complex propagation

constant given by [11, 12]:
k = j β − g − a

2
, (2.2)

with j = √−1 being the imaginary unit.
If a photon enters the cavity from the le� mirror M1, a forward wave Ef propagates

toward the right mirror M2, where it is partially transmitted out (Eout,r), and partially
bounced back (Eb) up to M1, where, again, it is partially transmitted out (Eout,l), and
partially bounced back, and the entire process can restart.
A stable oscillation is reached if two conditions are satis�ed [11]:

• the gain balances the losses introduced by the medium and the mirrors;

• the backward wave couples back in phase with the forward one.

Moreover, by using Steinmetz representation, a generic electric �eld e(z, t), at an
angular frequency ω = 2πν, can be described by [13]:

e(z, t) = Re{E(z) ejωt} , (2.3)

where E(z) is the complex amplitude of the �eld.
�e forward propagating wave Ef, assumed to be a plane wave, starts to propagate

inside the cavity at z = 0 with a complex amplitude E if,0 and angular frequency ω.1 �e
evolution of the forward propagating �eld can be, therefore, described by:

E if(z) = E if,0 e−kz . (2.4)

At z = l , the wave is partially re�ected by the right facetM2, and the backward propagating
wave is then described by:

E ib(z) = E ib,0 ek(l−z) , (2.5)
1�e superscript i is used to referring to the i-th round trip.
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2.1. CONDITIONS FOR LASER OSCILLATION

with the initial amplitude E ib,0 given by the boundary condition at the right mirrorM2:

E ib(l) = r2E if(l) . (2.6)

By combining Eqs. (2.4) to (2.6), at z = l , E ib,0 can be expressed in terms of E if,0:
E ib,0 = r2E if,0 e−kl . (2.7)

�e amplitude of the wave transmitted out, at z = l , is given by:
E iout,r = (1 − r2)E if(l) . (2.8)

Similar considerations hold at the le� mirrorM1. In particular, at z = 0, a re�ection of the
backward propagating wave takes place, under the boundary condition

E i+1f (0) = r1E ib(0) , (2.9)

and the amplitude of the forward propagating wave, for the next round trip i + 1, easily
becomes:

E i+1f,0 = r1r2E if,0 e−2kl . (2.10)

�e amplitude of the wave transmitted out, atM1, is given by:

E iout,l = (1 − r1)E ib(0) . (2.11)

�e complex round trip gain Grt can be de�ned as the ratio between the amplitude of the
forward propagating waves for two consecutive round trips, i.e., between E i+1f,0 and E if,0:

Grt = E i+1f,0E if,0 = r1r2 e−2kl
= r1r2 e−2 j βl+(g−a)l ,

(2.12)

where the last equality is achieved by using the Eq. (2.2). A stable laser output is attained if

Grt = 1 , (2.13)

which can be rewritten as:
r1r2 e−2 j βl+(g−a)l = 1 . (2.14)

Eq. (2.13) leads to two conditions: one for the modulus and one for the phase of Grt. In
particular, by taking the modulus of Eq. (2.14), the condition

r1r2 e(g−a)l = 1 (2.15)

must be satis�ed.
�e value of the power gain g for which Eq. (2.15) is satis�ed is indicated with gth, as

follows:
gth = a + 1l ln 1

r1r2
. (2.16)

�e value gth de�nes the threshold value of the medium gain necessary to have laser
oscillation. �is condition is reached by opportunely controlling the injection current.
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ν

∣E(ν)∣2

νm−1 νm−1 νm νm+1 νm+2 νm+3
∆ν

Figure 2.2: Possible frequencies of oscillation for longitudinal modes in a Fabry-Perot
cavity.

w = 200µm

wa = 3 µm

ha = 0.1 µm
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burying layers
(nAlzGa1−zAs)

n GaAs substratepGaAs active layer

emitting region

nAlxGa1−xAs

pAlyGa1−yAs

bottommetallic contact

Figure 2.3: Front view of a buried double heterostructure edge emitting semiconductor
laser with a single active region [10].

�e phase of Eq. (2.14) yields:
e−2 j βl = 0 , (2.17)

which is veri�ed for
βl = mπ , ∀m ∈ Z (2.18)

Eq. (2.18), by replacing β with Eq. (2.1), becomes:

νm = m c
2nl
, ∀m ∈ Z . (2.19)

�e νm values represent the only possible values of the oscillation frequencies, sketched in
Fig. 2.2. Each νm corresponds to a “so-called” longitudinal mode of the cavity [11].

2.1.1 E�ective Refractive Index
Most modern semiconductor lasers adopt particular structures in order to keep the in-
jection current low and to control the distribution of the optical �eld [10]. A schematic
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2.1. CONDITIONS FOR LASER OSCILLATION

illustration of the front section of a buried double heterostructure semiconductor laser [10]
is shown in Fig. 2.3. �e burying layers, and the layers on the top and bottom of the active
region, have a lower refractive index than that of the active region, hence a built-in guiding
structure is present. For this reason, these type of lasers are also called “index-guided”
lasers. Moreover, these four layers, surrounding the active region, form a double het-
erostructure junction, which have high e�ciency. �e particular structure pro�le allows
the oscillation of a single longitudinal mode [12].
Furthermore, the oxide insulating layers force the injection current to �ow only

through a small region, so that the total required current is reduced [10, 14].
�e structure of a real laser is, indeed, more complicated than that of a single isolated

Fabry-Perot cavity, and, consequently, the e�ects of the particular structure design have to
be considered in the preceding Fabry-Perot model.

�e e�ective refractive index ne, which can be calculated from the refractive indexes
of the laser structure by using methods developed in the �eld of dielectric waveguides
engineering, e.g., with the Marcatili’s method [15], is used to account for the guiding
properties of the structure. Just as an example, for the buried double heterostructure of
Fig. 2.3, the e�ective refractive index can be approximated by [16]:

ne = √
Γn2a + (1 − Γ)n2c , (2.20)

where na is the refractive index of the active region and nc is that of the surrounding
cladding layers (assumed to be equal for all layers). �e con�nement factor Γ represents
the fraction of the power con�ned in the active region [14, 17, 18].
Consequently, the threshold gain gth from Eq. (2.16) should be expressed by taking

into account for Γ:
Γgth = a + 1l ln 1

r1r2
. (2.21)

For the sake of clarity, in the following, the con�nement factor will be considered as unity.
By substituting the refractive index n with the e�ective refractive index ne, the phase

constant in Eq. (2.1) becomes:

β = neωc = ne 2πν
c
, (2.22)

and the frequencies of oscillation νm, given by Eq. (2.19), are modi�ed into:

νm = m c
2ne l

. (2.23)

In order to account for the dispersion of the material, which is induced by the dependence
of the refractive index on the frequency ν, from the de�nition of the group velocity [13]:

vg = ( ∂β
∂ω

)−1 , (2.24)

the e�ective group refractive index ng is de�ned as:

ng = cvg = c ∂β
∂ω

= ∂neν
∂ν

= ne + ν ∂ne
∂ν
. (2.25)

�erefore, the round trip time τrt is de�ned as the time necessary to do a round trip in the
cavity and is given by:

τrt = 2lvg =
2lng
c
. (2.26)
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2.1.2 Free Spectral Range
From Eq. (2.23), the product of the oscillation frequency and the e�ective refractive index
νne is a constant:

νne = m c2l . (2.27)

An implicit di�erentiation, with respect to m, yields:

∂νne
∂m

= ne ∂ν
∂m

+ ν ∂ne
∂m

= ne ∂ν
∂m

+ ν ∂ne
∂ν

∂ν
∂m

= ∂ν
∂m

(ne + ν ∂ne
∂ν

)
= ∂ν
∂m
ng = c2l .

(2.28)

Eq. (2.28) permits to de�ne the spacing between two adjacent emission frequencies, νm+1
and νm, also known in the literature as the free spectral range (FSR):

∆ν = νm+1 − νm = ∂ν
∂m

= c
2lng

= 1
τrt
. (2.29)

2.1.3 Photon Density
�e photon density S inside the cavity is related to the square of the modulus of the electric
�eld E by the following relation [12]:

S(t) = 1
hν

ε0nng
2V

∣E∣2 , (2.30)

where h = 6.626 × 10−34 J s is the Planck’s constant, hν is the energy of a photon, ε0 =
8.854 × 10−12 Fm−1 is the electric permittivity of vacuum, n is the modal refractive index
and V is the volume.
For the sake of simplicity, in the following, the photon density S will be considered

normalized to the square of the modulus of the electric �eld E:

S = ∣E∣2 . (2.31)

Furthermore, in absence of gain, i.e., if g = 0, the photon density S(t) = ∣E(t)∣2 inside the
cavity decays with a rate given by the following di�erential equation [10]:

dS(t)
dt

= −S(t)
τph

= −γcS(t) , (2.32)

where τph is the photon lifetime and γc = 1/τph is the photon decay rate (also known in the
literature as the cavity decay rate).

�e general solution of Eq. (2.32) is:

S(t) = S(0) e−t/τph , (2.33)
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2.1. CONDITIONS FOR LASER OSCILLATION

which, a�er a round trip time τrt, gives:

S(τrt) = S(0) e−τrt/τph . (2.34)

�e square of the modulus of the round trip gain Grt, of Eq. (2.12), is, for g = 0:
∣Grt∣2 = ∣r1r2∣2 e−2al , (2.35)

and it can be expressed also in terms of the photon density S as:

∣Grt∣2 = S(τrt)
S(0) = e−τrt/τph . (2.36)

By equating Eq. (2.34) with Eq. (2.36), and by using the de�nition of the round trip time
from Eq. (2.26), the photon decay rate becomes:

1
τph

= vg (a + 1l ln 1
r1r2

) = vggth . (2.37)

2.1.4 Carrier Induced Frequency Shi�
�e power gain g of the active medium depends on the carrier density N [10–12]. �e
threshold carrier density Nth is de�ned as the carrier density required to approach the
threshold gain gth of Eq. (2.16):

g(Nth) = gth . (2.38)

�e e�ective refractive index ne depends on the frequency ν and also on the carrier density
N [11], and it can be rewritten in terms of its �rst order Taylor expansion around the
threshold point (νth,Nth):

ne = ne,th + ∂ne
∂ν

∣
ν=νth

(ν − νth) + ∂ne
∂N

∣
N=Nth (N − Nth) . (2.39)

For a given mode m, from Eq. (2.23), the frequencies ν and νth can be expressed as:

ν = m c
2ne l

(2.40a)

νth = m c
2ne,th l

. (2.40b)

A change of the refractive index ne, in Eq. (2.40a), implies a change of the frequency ν.
�e induced frequency shi� is de�ned as [11]:

ν − νth = − νth
ng,th

∂ne
∂N

∣
N=Nth (N − Nth) . (2.41)

Eq. (2.41) de�nes the shi� of the oscillation frequency caused by a change in the carrier
density. �is means that the power spectrum of the longitudinal modes is not constituted
only by discrete components, as shown in Fig. 2.2. Instead, each oscillation mode covers
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Figure 2.4: Linewidth broadening in a semiconductor laser due to changes in carrier
density.

a �nite continuous band of frequencies. �is e�ect is called linewidth broadening. Fur-
thermore, it can be shown that the shape of these broadened lines, near their resonant
frequencies νth, is approximatively of Lorentzian form [10]:

∣E(ν)∣2 ≈ ∣E(νth)∣2 γ2(ν − νth)2 + γ2
, (2.42)

where, as shown in Fig. 2.4, γ is the half-width at half-maximum (HWHM).
Similar considerations can be also applied to the phase constant β. Eq. (2.22) can be

rewritten in terms of its �rst order Taylor expansion around the threshold point (ωth,Nth):

β = βth + ∂β
∂ω

∣
ω=ωth

(ω − ωth) + ∂β
∂N

∣
N=Nth (N − Nth)

= ωth
c

(ne,th + ng,thωth
(ω − ωth) + ∂ne

∂N
∣
N=Nth (N − Nth)) , (2.43)

where both Eq. (2.25) and the following relation,

βth = β(ωth,Nth) = ωthne,th
c

, (2.44)

have been used.
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2.2. DERIVATION OF THE RATE EQUATIONS

2.2 Derivation of the Rate Equations

2.2.1 Gain at Laser Oscillation
In the expression of the round trip gain Grt of Eq. (2.12), the term −2 j βl can be rewritten
by using the expansion of β introduced in Eq. (2.43), yielding:

−2 j βl = −2 j l ωth
c

(ne,th + ng,thωth
(ω − ωth) + ∂ne

∂N
∣
N=Nth (N − Nth))

= − j 2mπ − j τrt(ω − ωth) − j 2l ωthc ∂ne
∂N

∣
N=Nth (N − Nth) .

(2.45)

�e �rst term − j 2mπ is attained from Eq. (2.44), whereas the second term − j τrt(ω−ωth)
is derived by using the relations in Eqs. (2.25) and (2.26).

�e round trip gain Grt is, actually, a function of the frequency, and can be written as
a product of a frequency independent function G(1)rt , and of a function G(2)rt (ω) directly
dependent on the frequency:

Grt(ω) = G(1)rt G(2)rt (ω) . (2.46)

By considering the Eqs. (2.12) and (2.45), G(1)rt and G(2)rt (ω) can be expressed by:
G(1)rt = r1r2 e(g−a)l+j φ (2.47a)

G(2)rt (ω) = e− j τrt(ω−ωth) , (2.47b)

where the phase term φ is given by:

φ = −2l ωth
c

∂ne
∂N

∣
N=Nth (N − Nth) . (2.48)

�e term e− j 2mπ = 1 , ∀m ∈ Z has been eliminated.
2.2.2 Rate Equation for the Electric Field
In Eq. (2.4), the initial complex amplitude Ef,0 was assumed to be constant. By relaxing
this condition, and assuming Ef,0 to be slowly varying, i.e., having the form:

Ef,0(t) = Ẽf,0(t) ejωth t , (2.49)

where Ẽf,0(t) satis�es the slowly varying envelope approximation (SVEA)2, it can be shown
that the total intra-cavity electric �eld E(t) is given by [12]:

E(t) = G(1)rt E(t − τrt) . (2.51)
2 �e SVEA is a common approximation based on the assumption that the envelope of a traveling wave

pulse varies slowly in time or space compared to a period or wavelength.
�is requires the spectrum of the signal to be narrow band respect to the carrier frequency ω0, and for a

signal A(t) ej φ(t) the requirements are [13]:

∣dA(t)
dt

∣ ≪ ω0∣A(t)∣ , (2.50a)

∣dφ(t)
dt

∣ ≪ ω0∣φ(t)∣ . (2.50b)

13



CHAPTER 2. SEMICONDUCTOR LASERS

By replacing E(t − τrt) with its �rst order Taylor expansion,
E(t − τrt) = E(t) − τrt

dE(t)
dt

, (2.52)

into Eq. (2.51), E(t) can be expressed by:
E(t) = G(1)rt (E(t) − τrt

dE(t)
dt

) , (2.53)

which can be written in following form:

dE(t)
dt

= 1
τrt

(1 − 1
G(1)rt

)E(t) . (2.54)

For laser operation, the round trip gain Grt should be close to unity, and so G(1)rt should do.
By using the common approximation of an exponential function:

ex ≈ 1 + x , for x ≈ 0 , (2.55)

the reciprocal of Eq. (2.47a) is:

1
G(1)rt

= (r1r2 e(g−a)l+j φ)−1 = eln 1
r1 r2

−gl+al−j φ

≈ 1 + ln 1
r1r2

− gl + al − jφ . (2.56)

By inserting Eq. (2.56) into Eq. (2.54), the electric �eld evolution is given by the following
di�erential equation:

dE(t)
dt

= 1
τrt

(− ln 1
r1r2

+ gl − al + jφ)E(t) . (2.57)

�e term φ/τrt can be rewritten as ω − ωth by using Eqs. (2.26) and (2.41), whereas, by
combining the de�nition of the photon lifetime τph from Eq. (2.37), and the de�nition of
the round trip time τrt from Eq. (2.26), the term

1
τrt

(− ln 1
r1r2

+ gl − al) (2.58)

can be rewritten as:
1
2
(gvg − 1

τph
) . (2.59)

�erefore, the rate equation of the cavity electric �eld �nally becomes:

dE(t)
dt

= [j(ω − ωth) + 12 (gvg − 1
τph

)]E(t) . (2.60)
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2.2.3 �e Linewidth Enhancement Factor
It can be demonstrated that the dependence of the refractive index on the carrier density
causes a broadening in the emission spectrum, as already mentioned. �is e�ect can be
quanti�ed by considering the linewidth enhancement factor [19]:

α = −2ω
c
∂ne/∂N
∂g/∂N . (2.61)

By using Eq. (2.61) into Eq. (2.41), for the angular frequency ω = 2πν, a new relation for
the angular frequency shi� can be obtained:

ω − ωth = − ωth
ng,th

∂ne
∂N

∣
N=Nth (N − Nth)

= 1
2

αvg
∂g
∂N

∣
N=Nth (N − Nth) . (2.62)

Moreover, the rate equation for the electric �eld, given in Eq. (2.60), can be rewritten as:

dE(t)
dt

= 1
2
[j αvg ∂g∂N ∣

N=Nth (N − Nth) + gvg − 1
τph

]E(t) . (2.63)

�e power gain g near the threshold can be expanded as [11]:

g ≈ gth + ∂g
∂N

∣
N=Nth (N − Nth) , (2.64)

and by considering the following position, from Eq. (2.37):

1
τph

= vggth , (2.65)

the rate equation is simpli�ed to:

dE(t)
dt

= 1
2
[(1 + j α)vg ∂g∂N ∣

N=Nth (N − Nth)]E(t)
= 1
2
(1 + j α)GN(N − Nth)E(t) ,

(2.66)

where GN is the modal optical gain, de�ned as [12]:

GN = vggN = vg ∂g∂N ∣
N=Nth . (2.67)

2.2.4 Rate Equation for the Photon Density
�e rate equation for the photon density S(t) = ∣E(t)∣2 is easily derived by taking the
derivative of S(t) = E(t)E∗(t), which yields:

dS(t)
dt

= dE(t)E∗(t)
dt

= E∗(t)dE(t)
dt

+ E(t)dE∗(t)
dt

, (2.68)
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which, by using Eq. (2.66), yields:

dS(t)
dt

= GN(N(t) − Nth)S(t) . (2.69)

By reintroducing the con�nement factor Γ and the photon decay rate γc, Eq. (2.69) can be
rewritten as [12]:

dS(t)
dt

= −γcS(t) + ΓgS(t) . (2.70)

2.2.5 Rate Equation for the Carrier Density
�e rate equation for the carrier density N(t) is given by [11, 12, 14]:

dN(t)
dt

= J(t)
eha

− N(t)
τs

−GN(N(t) − Ntr)S(t) , (2.71)

where J(t) is the injection current density, ha is the thickness of active layer and e =
1.602 × 10−19C is the electric charge constant.

�e �rst term J(t)/eha is the current pumping, whereas the second termN(t)/τs is the
carrier recombination due to spontaneous emissions. �e last termGN(N(t)−Ntr)S(t) is
the carrier recombination induced by the laser emission, with Ntr being the carrier density
at the transparency. �e carrier density at the transparency Ntr is related to the threshold
gain gth and to the threshold carrier density Nth by [12]:

gth = gN(Nth − Ntr) . (2.72)

By de�ning the spontaneous carrier decay rate:

γs = 1τs , (2.73)

Eq. (2.71) can be rewritten as:

dN(t)
dt

= J(t)
eha

− γsN(t) − gS(t) . (2.74)
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Chapter3
Chaos in Semiconductor Lasers

Chaos is inherent in all compounded things.
Strive on with diligence.

Gautama Buddha (566 BCE – 486 BCE)

In this chapter, the concept of chaos will be introduced, by de�ning the main peculiarities
of generic chaotic systems.

�en, the generation of optical chaos through semiconductor lasers will be explained,
by introducing a numerical model to simulate and analyze the chaotic behaviors of such
systems.
Finally, it will be explained how two chaotic systems can be synchronized.

3.1 What is Chaos?
Chaos is a phenomenon related to the occurrence of apparent randomness, aperiodic and
irregular behavior, and unpredictability in completely deterministic systems. �e main
feature of a chaotic system is that small changes of initial conditions lead to exponential
changes of trajectories, even when no external perturbations are present. �is also implies
that it is not possible to make any accurate long-term prediction about the behavior of the
system.
A classical example of a dynamical continuous system exhibiting chaotic behavior is

the Lorenz’s attractor [20], introduced in 1963 by the meteorologist Edward Lorenz, who
was working on the problem of weather forecast.

�e system is described by the following di�erential equations:

dx(t)
dt

= σ(y − x)
dy(t)
dt

= x(ρ − z) − y
dz(t)
dt

= xy − βz,

(3.1)
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CHAPTER 3. CHAOS IN SEMICONDUCTOR LASERS

Figure 3.1: Time evolution in the phase space of the Lorenz’s attractor (the “butter�y”)
of Eq. (3.1) with the parameters given in Eq. (3.2) and initial condition u(0) = (5, 5, 5),
where u(t) = (x(t), y(t), z(t)).
with σ and ρ being the Prandtl and the Rayleigh numbers.
In Fig. 3.1, the system evolution in the phase space is shown, when the following

parameters are considered:

σ = 10
ρ = 28
β = 8
3
.

(3.2)

�e evolution is described by a complex and non repeating curve, a double spiral. �e
trajectory repeatedly leaves one spiral and enters the other. �e sequence of the number
of turns that the trajectory spends in one spiral and then in the other is not predictable.
Fig. 3.2 shows the time evolution of the x components of two realization of the Lorenz’s

attractor with initial conditions that di�er of 0.1%. �is clearly shows that a small change
in initial conditions leads to a big change in the system trajectories evolution.

3.2 Chaos Synchronization
As alreadymentioned, chaotic systems have strong sensitivity to initial condition variations
and to any perturbation. In the phase space, two identical isolated chaotic systems follow
di�erent and uncorrelated trajectories, because they start from di�erent initial points, or
because some perturbation alters their trajectories.
Chaos synchronization is a peculiar property of chaotic systems discovered by L. Pecora

and T. Carroll, in mid-80s: two similar chaotic systems can synchronize, showing the
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3.2. CHAOS SYNCHRONIZATION

Figure 3.2: Time evolution of the x components of two realization of the Lorenz’s attractor
of Eq. (3.1) with the parameters given in Eq. (3.2) and initial conditions u1(0) = (5, 5, 5),
u2(0) = (5.005, 5, 5), where, for i = 1, 2, ui(t) = (xi(t), yi(t), zi(t)).
same evolution, if the �rst, called master, forces, under proper conditions, the evolution of
the second, called slave [1, 21].

�e theory proposed in [1] has demonstrated the feasibility of chaos synchronization
when a proper driving signal is used to couple the two systems. In particular, it can be
shown that the di�erence signal between the outputs of two coupled chaotic systems has a
stable �xed point in the origin of the phase space, i.e., the di�erence signal is near zero as
the time evolves.

�ere are several schemes to achieve synchronization of two chaotic systems. In the
following, two schemes will be brie�y examined: the complete replacement method and
the active-passive method.

3.2.1 �e Complete Replacement Method

�e complete replacement method was the �rst scheme proposed in [1, 21] to obtain the
synchronization of two isolated chaotic systems using a proper coupling signal.
Two n-dimensional chaotic systems can be described by their generic dynamical

equations:

duM
dt

= FM(uM) (3.3a)

duS
dt

= FS(uS) , (3.3b)

where the subscripts M and S refer to master and slave, respectively.
Each of the two systems can be decomposed into two subsystems v andw by separating
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CHAPTER 3. CHAOS IN SEMICONDUCTOR LASERS

the variables ui = (vi ,wi), obtaining, for i =M, S:
dvi
dt

= Gi(vi ,wi) (3.4a)

dwi
dt

= Hi(vi ,wi) , (3.4b)

where

vi = (ui ,1, . . . , ui ,m) (3.5)
wi = (ui ,m+1, . . . , ui ,n) (3.6)
Gi = (Fi ,1(ui), . . . , Fi ,m(ui)) (3.7)
Hi = (Fi ,m+1(ui), . . . , Fi ,n(ui)) . (3.8)

�e subsystem vM is used as the driving signal to couple the two chaotic systems and, at the
same time, to replace the corresponding dynamical variables vS in the slave chaotic system.
Synchronization is achieved when the remaining subsystems wM andwS are synchronized.
In terms of system equations, this method is mathematically described as:

dvM
dt

= GM(vM,wM) (3.9a)

dwM
dt

= HM(vM,wM) (3.9b)

dwS
dt

= HS(vM,wS) , (3.9c)

where in Eq. (3.9c) the slave subsystem vS is completely replaced by the master subsystem
vM.
When synchronization is obtained, the error (or di�erence signal)

e = wM −wS (3.10)

approaches zero. �e condition
HS = HM (3.11)

de�nes the fact that the two subsystems are identical, and it is required to attain a perfect
synchronization.

�e proper choice of the subsystem used as the driving signal is fundamental for chaos
synchronization, and the driving subsystem must be fully extractable and separable from
the master chaotic system.

3.2.2 �e Active-Passive Method
�e active-passive method [22] is a generalization of the complete replacement method,
and it is more suitable in practical applications.
By considering the generic dynamical equations for master and slave of Eqs. 3.3, the

driving signal s(t) can be de�ned as a function of the variables uM of the master system:
s(t) = h(uM) . (3.12)
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For two chaotic systems that are physically coupled by a signal s(t), the equations that
describe each system can be mathematically rewritten, by using an appropriate choice of
F ′, and by considering a common driving signal D(s(t)) for both systems, as:

duM
dt

= F ′M(uM,D(s(t))) (3.13a)

duS
dt

= F ′S(uS,D(s(t))) . (3.13b)

If the error
e = uM − uS (3.14)

has a stable �xed point in the origin of the phase space, the two chaotic systems can
synchronize. �e existence of such a �xed point is guaranteed only if the average Lyapunov
exponents1 of the error e are all negative, and only if the systems are identical, i.e., if:

F ′S = F ′M . (3.16)

Di�erently from the case of the complete replacement method, in the active-passive
method the driving signal does not replace any dynamical variable of the slave system.
Moreover, the variables of the slave system which correspond to those contained in the
driving signal asymptotically approach the correspondent variables of the master system.
When the two systems are synchronized, the remaining variables of the slave system also
synchronize with those of the master system.

3.3 Chaotic Lasers
Semiconductor lasers, because of their intrinsic nonlinear nature, under proper conditions
show chaotic behaviors, exhibiting fast, irregular and aperiodic pulsing of the optical
emission. �e generation of optical chaos is generally obtained by lasers subjected to
feedback [12, 24, 25].
In the following, two approaches are presented. �e �rst, called all-optical scheme,

will be brie�y introduced. �e second, called optoelectronic scheme, will be investigated
in details, through a proper numerical model.

Chaotic Lasers with Delayed All-Optical Feedback

A semiconductor laser with delayed all-optical feedback [24, 26, 27] is sketched in Fig. 3.3.
�e optical chaos is obtained by optical feedback from an external cavity, realized through
a mirror Mext. �e re�ected injection stimulates the nonlinear dynamics for the chaos
generation. Furthermore, the dynamics of this scheme depends on both the amplitude
and phase of the injected �eld.

1�e Lyapunov exponents are used to quantify the rate of exponential divergence from perturbed initial
conditions. By de�ning δ(t) as the average deviation from the unperturbed trajectory at time t, then the
Lyapunov exponents are de�ned as [23]:

λ i = limt→+∞
1
t
ln ∣δ i(t)∣ . (3.15)
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LD

Jbias

Mext
OC

E(t) rext

Eout(t)
Figure 3.3: Schematic diagram of a semiconductor laser with delayed all-optical feedback
(LD: semiconductor laser diode, OC: optical coupler).

LD

+
Jbias

A PD

Sout(t)S(t)

ξS(t − τ)

τ

Figure 3.4: Schematic diagram of a semiconductor laser with delayed optoelectronic feed-
back (LD: semiconductor laser diode, PD: photodiode, A: ampli�er, solid lines represent
electrical links, whereas dashed lines are optical paths).

3.3.1 Chaotic Lasers with Delayed Optoelectronic Feedback

A semiconductor laser with delayed optoelectronic feedback [28–30] is schematically
shown in Fig. 3.4. As it can be seen, a photodetector (PD), followed by an electric ampli�er
(A), is used to convert the optical output S(t) of the laser into an electrical signal ξS(t− τ)
that is fed back to the laser by adding it to the injection current. �is injection disturbs
the “normal” laser bias, stimulating the generation of chaos.

�e photodetector output depends solely on the intensity of the input light, so the
feedback signal only contains information about the laser intensity, which is proportional
to the photon density in the laser cavity. Contrary to systems with an external cavity
optical feedback, the dynamics of this con�guration does not include informations about
the phase of the optical �eld.

�e dynamical equations of the system, in terms of photon and carrier density, are
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3.3. CHAOTIC LASERS

Figure 3.5: Time evolution of two realization of the output power of the same laser: the
di�erent evolutions are due only by internal noises.

derived by starting from Eqs. (2.70) and (2.74):

dS(t)
dt

= −γcS(t) + ΓgS(t) + 2√S0S(t)FS (3.17a)

dN(t)
dt

= J(t)
eha

[1 + ξy(t − τ)] − γsN(t) − gS(t) (3.17b)

y(t) = ∫ t−∞ f (t − η)S(η)
S0

dη , (3.17c)

where ξ is the feedback strength, τ is the feedback delay time, and the term f (t) is
the normalized response function of the optoelectronic feedback loop. �e function
f (t) contains the information about the �nite bandwidth of both the photodetector and
ampli�er, and also accounts for any electric parasitic e�ect of the loop. �e normalization
term S0 is the steady state value of the photon density for the free running laser. �e term
2
√
S0S(t)FS is a Langevin noise accounting for spontaneous emissions.2
Fig. 3.5 shows the time evolution of two realization of the output power of the same

laser with same parameters: the di�erent behaviors are due only to the Langevin internal
noises, which, acting as very small perturbations, give totally di�erent dynamics.
In the ideal case, the feedback loop has a �at and unlimited frequency response, so

f (t) = δ(t) and y(t) = S(t)/S0. In a realistic situation, however, f (t) ≠ δ(t), and the
dynamical system of Eqs. 3.17 is a system of coupled, stochastic and delayed integral-
di�erential equations.

2A Langevin noise source F(t) is a Gaussian stochastic processes satisfying the following conditions:

E [F(t)] = 0 (3.18a)
E [F(t)F(s)] = 2Dδ(t − s) , (3.18b)

with D being the noise force, and δ(t) being the Dirac’s delta function:

δ(t) =
⎧⎪⎪⎨⎪⎪⎩
1 t = 0
0 t ≠ 0 . (3.19)
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By de�ning the following normalized variables, as [30]:

s̃(t) = S(t) − S0
S0

(3.20a)

ñ(t) = N(t) − N0
N0

(3.20b)

J̃(t) = 1
γsN0

[ J(t)
eha

− γsN0] (3.20c)

F̃S = √
S0FS , (3.20d)

where, analogously to S0, N0 is the steady state carrier density, the coupled system of
Eqs. 3.17 can be rewritten in the following normalized form:

d s̃(t)
dt

= γcγn
J̃(t)γs

ñ(t) [̃s(t) + 1] − γp s̃(t) [̃s(t) + 1] + 2√S0 [̃s(t) + 1]F̃S (3.21a)

dñ(t)
dt

= γsξy(t − τ) [1 + J̃(t)] − γsñ(t) − γs J̃(t)s̃(t)
− γnñ(t) [̃s(t) + 1] + γsγp

γc
J̃(t)s̃(t) [̃s(t) + 1]

(3.21b)

y(t) = ∫ t−∞ f (t − η) [̃s(η) + 1]dη . (3.21c)

�e gain g is expanded near the free running condition (S0,N0) as [31]:
g ≈ g0 + gN (N(t) − N0) + gS (S(t) − S0) , (3.22)

where g0 = γc/Γ is the gain coe�cient at free-running condition, gN = ∂g/∂N is the
di�erential gain parameter, and gS = ∂g/∂S is the nonlinear gain parameter. It has been
demonstrated that both gN and gS are constant and independent of the laser output power
over a large range [28]. �e di�erential carrier relaxation rate γn and the nonlinear carrier
relaxation rate γp are de�ned as [29]:

γn = gNS0 (3.23)
γp = −ΓgSS0 . (3.24)

�e system of Eqs. 3.21 is composed by two equations in terms s̃ and ñ, which are real
scalar quantities. �e system can exhibit chaotic behavior because, for a su�ciently long
delay time τ, it can improve its intrinsic dimensionality.

�e dynamics of the system is determined by the parameters γc, γs, γn, γp. �e param-
eters that can be externally controlled are the bias current J̃, the feedback strength ξ and
the feedback delay time τ. �e feedback strength ξ is an important parameter, and it can
be positive [28], ξ > 0, or negative [30], ξ < 0. �e choice of the sign of ξ in�uences the
system dynamics, but both options can lead to chaotic behavior. In this �esis, a positive
feedback strength will be assumed.
Finally, it can be observed that the response function f (t) of the feedback loop has

an important role in the dynamics of the system [28]. In particular, if f (t) is a narrow
bandpass �lter, the chaotic dynamics can be completely eliminated. Such a �ltering is
used for example to stabilize the laser output. Because the aim of this �esis is to exploit
the chaotic behavior of a semiconductor laser, the function f (t) should have a broad
bandwidth [28]. More informations about the photodetection process can be found in
Appendix B.
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Figure 3.6: Optical output of a semiconductor laser with optoelectronic feedback for
various normalized feedback delay times τ̂.

Route to Chaos

As already mentioned, the optoelectronic delayed feedback induces chaos generation in
semiconductor lasers, and the “quality” of such chaotic behaviors depends on the time
delay.
Fig. 3.6 shows the time series and the spectra of the output of an optoelectronic

feedback laser for various normalized feedback delay time τ̂ = τ fr, where fr is the relaxation
resonance frequency of the free running laser, de�ned as [12]:

fr = 1
2π

√
γcγn + γsγp . (3.25)

For τ̂ = 1 the pulses have constant peaks and spacing, and the spectrum has a clear line
component at the frequency f ′r , which is close to the relaxation frequency fr3. For instance,
this choice of feedback time can be used to stabilize the laser output and to narrow its
bandwidth, which is the opposite of the aim of this �esis.
By increasing the normalized time delay τ̂, the laser output starts to show chaotic

characteristics. For example, as it can be viewed, for τ̂ = 4.35 the pulses peaks and spacings
are not constant anymore, nor they are periodic; also the spectrum is broader than before,
with more line components. For τ̂ = 9.12 the generated chaos is further improved, with an
even broader spectrum.

3For stable pulsing states, the shi� of the pulsing frequency f ′r from the relaxation frequency fr depends
mainly on the bias current [12].
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3.3.2 Synchronization of Semiconductor Lasers with Optoelectronic
Feedback

Chaos synchronization of semiconductor lasers cannot be realized by using the complete
replacement method, described in Section 3.2.1, because the dynamical variables used for
the driving signal are not separable from others, and not extractable from the laser. For
instance, the carrier density is not directly accessible, so it cannot be used as the driving
signal from the master to the slave laser. Moreover, a semiconductor laser is an integrated
entity, and therefore all the dynamical variables are de�nitely not replaceable.
Fortunately, chaos synchronization of semiconductor lasers can be achieved by using

the active-passive method, described in Section 3.2.2.
�e driving signal D(s(t)) is de�ned as αD(uM), where α is the coupling strength

between master and slave, and the general system of Eqs. 3.13 can be rewritten as:

duM
dt

= F ′M(uM, αD(uM)) (3.26a)

duS
dt

= F ′S(uS, αD(uM)) , (3.26b)

which can be simpli�ed by de�ning the following functions:

fM(uM) = F ′M(uM, αD(uM)) (3.27a)
fS(uS) = F ′S(uS, αD(uS)) , (3.27b)

to obtain:

duM
dt

= fM(uM) (3.28a)

duS
dt

= fS(uS) + α(D(uM) − D(uS)) . (3.28b)

In order to have perfect synchronization, all the parameters of master and slave lasers have
to be matched, i.e., it must be FS = FM and fS = fM. Any mismatch between the equations
describing the two systems can either deteriorate the quality of synchronization, or make
the synchronization impossible.

�erefore, by assuming matched parameters, Eqs. 3.28 is rewritten as:

duM
dt

= f (uM) (3.29a)

duS
dt

= f (uS) + α(D(uM) − D(uS)) , (3.29b)

where f = fM = fS. If the error e = uM − uS has a stable �xed point in the origin of the
phase space, then D(uM) − D(uS) = 0, i.e., the two outputs are equal.
In optoelectronic feedback systems, considered in this �esis, the coupling between

the two lasers is achieved through the photon density S. Furthermore, the slave system
is operated with an open loop con�guration, i.e., there is not a feedback loop. �e open
loop con�guration for the slave is more stable, with smaller synchronization error, than
the closed loop con�guration, because the synchronization error is strongly dependent on
mismatches between the feedback delay times of the master and the slave [29,31]. For other
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Jbias
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Figure 3.7: Schematic diagram of the connection from master to slave for synchronization
(ML: master laser, SL: slave laser, PD: photodiode, A: ampli�er, solid lines represent
electrical links, whereas dashed lines are optical paths).

parameters, the dependence of the synchronization error is less impacted by mismatches,
but still present [29].

�erefore for the dynamical system of Eqs. 3.17, the variables uM, uS are de�ned as:

uM(t) = (SM(t),NM(t)) (3.30a)
uS(t) = (SS(t),NS(t)) . (3.30b)

and the driving signal is:
D(s(t)) = αSM(t) . (3.31)

�e scheme of the coupling between the master and slave systems is shown in Fig. 3.7.

Synchronization Error

In order to quantify the synchronization quality, a synchronization error can be de�ned in
terms of the statistical correlation coe�cient ΓM,S4 between the master and slave outputs.

�e synchronization error ρ is then de�ned as the complement to one of the modulus
of the correlation coe�cient between the master and slave output power:

ρ = 1 − ∣ΓM,S∣ , (3.33)

where values near 0 indicate good synchronization, while values near 1 indicate very bad
synchronization.
For instance, in Fig. 3.8, the outputs of the master laser (ML) and the slave laser (SL)

for perfect matching of laser parameters are shown. �e temporal range is taken a�er a
4For two signals X and Y , the correlation coe�cient is a measure of the statistical dependence of the

two signals. It is de�ned as:

ΓX ,Y = corr(X ,Y) = cov(X ,Y)σXσY
= E [(X − µX)(Y − µY)]

σXσY
, (3.32)

where µ and σ refer to the mean and the standard deviation, and ΓX ,Y is bounded in −1 ≤ ΓX ,Y ≤ 1. A value
of ΓX ,Y near 0 indicates that the two signals X and Y are weakly correlated, while values near 1 indicates a
strong correlation.
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transient of t = 250ns, where the system is in a full chaotic state. Clearly, the output of
the SL follow exactly the same evolution of the ML output. �e synchronization diagram,
shown in Fig. 3.9, represents the output of the SL as a function of the output of theML.�e
diagram is very narrow, and this indicates a very good synchronization. Fig. 3.10 shows the
time evolution of the master and slave outputs, when the di�erential gain parameter gN of
the SL di�ers of 10% from that of the ML, and, as shown in Fig. 3.11, the synchronization
diagram is very confused and broad, indicating very poor synchronization.
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Figure 3.8: Outputs of the ML and SL with matched parameters.

Figure 3.9: Synchronization diagram of the outputs of the ML and SL with matched
parameters (the synchronization error is ρ = 1.72 × 10−3).
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Figure 3.10: Outputs of the ML and SL with a di�erence of 10% in the SL di�erential gain
parameter gN in respect to that of the ML.

Figure 3.11: Synchronization diagram of the outputs of theML and SL, when the di�erential
gain parameter gN of the SL di�er of 10% from that of the ML (the synchronization error
is ρ = 9.92 × 10−2).
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Chapter4
Chaotic Communication System

Scientists investigate that which already is;
engineers create that which has never been.

Albert Einstein (1879 – 1955)

�is chapter provides an overview of an optical chaotic communication system operating
in free-space. �e building blocks and their interconnections will be explained in detail,
together with some design choices which will be used in the numerical analysis of the
system. Furthermore, the measure of the system performance will be de�ned.
Finally, an example of the signals at various points of the system, and for various

parameters, is given.

4.1 Overview of the System
A picture of a secure digital communication system is given in Fig. 4.1, where the names
Alice, Bob and Eve are commonly used in cryptography: Alice wants to send a message m
to Bob in a way that Eve, the eavesdropper, can’t understand.
To this aim the information message m must be appropriately transformed by the

transmitter. If Eve intercepts the optical power signal Ptx at the transmitter output, or in
any other point between the transmitter and the receiver, then she cannot recover the
message m, because it is hidden or encrypted. At the receiver, the inverse transformation
operated by the transmitter is applied to the power signal Prx, and a message m̂, close to
the original message m, is recovered by Bob. All methods that operate in this way are
called steganographic or cryptographic systems.1

�e aim of this �esis is to analyze the performance of one of this schemes: a chaotic
steganographic communication system working at the wireless infrared physical layer

1A cryptographic system hides the meaning of the message, while a steganographic system hides its
existence.
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Source Transmitter

Channel

ReceiverDestination

m Ptx

Prx
m̂

Alice
Eve

Bob

Figure 4.1: Generic model of a digital communication system.

Transmitter Channel Receiver
m(t) m̂(t)

Chaotic Steganographic Channel

Figure 4.2: Chaotic communication channel.

(PHY/IR) (layer 1 of the ISO/OSI stack), which uses delayed optoelectronic feedback
semiconductor lasers for the message hiding and recovering processes.

�e message generated from the source is assumed to be PPM encoded, because PPM
modulation is employed in most optical infrared communication systems, e.g., in IEEE
802.11 and Irda standards.
Moreover, as shown in Fig. 4.2, for the source Alice, and the destination Bob, the

system is equivalent to a digital channel.

4.2 �e Source
As shown in Fig. 4.3, the source (Alice), generates a sequence of bits an, which encodes
the information message m. �e sequence an is then passed to the bit mapper. �e bit
mapper splits the sequence into groups, and then encodes each group into a symbol l . �e

Bit Mapper PPM Modulator
an l sl(t)

PPM encoder

Figure 4.3: Scheme of a PPM encoder.
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bits l

00 0
01 1
10 2
11 3

Table 4.1: Bit mapping for 4-PPM.

PPMmodulator, then, generates an appropriate signal sl(t) for each symbol, which will
be passed to the transmitter for the chaotic masking and transmitting processes.

4.2.1 PPM Encoder
PPM is a baseband orthogonal modulation scheme in which the value of a symbol is
encoded in the time position of a de�ned pulse within a given temporal frame.
InM-PPM, the bit mapper associates to each sequence of k = log2M bits a symbol l

from the alphabetA = {0, 1, 2, . . . ,M − 1}.
A common choice is to associate to each group of bits its decimal representation. An

example of such a choice for the case of 4-PPM is shown in Table 4.1.
�e modulator, then, generates an appropriate signal sl(t) based on the symbol l . For

M-PPM, each signal sl(t) has the same duration Tframe = Tbit log2M. Given a pulse shape
g(t), with unitary maximum duration and support in − 12 ≤ t ≤ 1

2 , the signal sl(t) is simply
a shi�ed version of the pulse g(t) with maximum duration Tslot = Tframe/M. �e pulse
can be shorter than the maximum allowed duration, i.e., the pulse can have duration
Tpulse = dTslot, where 0 < d ≤ 1 is the duty cycle. Reducing the pulse duration can increase
slot synchronization [32], at the cost of a larger bandwidth. A common choice used in this
�esis is d = 0.5.

�e signal for symbol l is given by:

sl(t) = g ⎛⎝ t −
(l + 1

2)Tslot
Tpulse

⎞⎠ . (4.1)

For instance, for the pulse g(t) = rect(t), the signals are de�ned as:
sl(t) = rect⎛⎝ t −

(l + 1
2)Tslot

Tpulse
⎞⎠ . (4.2)

An example of transmitted signal for the symbol l = 1 is shown in Fig. 4.4, and in Fig. 4.5,
the four signals in the case of 4-PPM, using the map given in Table 4.1, are presented. In
Fig. 4.6, an example of a 4-PPM encoded signal is compared to a standard Non Return to
Zero (NRZ) format, for the bit sequence 0100101101.

4.3 �e Transmitter
�e block scheme of the transmitter is shown in Fig. 4.7. �e semiconductor laser with
delayed optoelectronic feedback generates the optical chaotic carrier, as explained in
Section 3.3.1.
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t/Tslot
0 1 2 3 (M − 1)

l = 1

Tpulse

Tframe

Figure 4.4: M-PPM signal structure for symbol l = 1 and pulse g(t) = rect(t).

t/Tframe
0 1/4 1/2 3/4 1

a0 = (0, 0)

t/Tframe
0 1/4 1/2 3/4 1

a1 = (0, 1)

t/Tframe
0 1/4 1/2 3/4 1

a2 = (1, 0)

t/Tframe
0 1/4 1/2 3/4 1

a3 = (1, 1)

Figure 4.5: Signals used in 4-PPM.

t/Tbit
0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 1 0 1 1 0 1

t/Tbit
0 1 2 3 4 5 6 7 8 9 10

01 00 10 11 01

Figure 4.6: Example of a 4-PPM encoded signal compared to a standard NRZ encoding.
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ML

+
Jbias

A PD

+ +
m(t) m(t)

Ptx(t)P(t)

ACM CMS

Figure 4.7: Scheme of the transmitter (ML: master laser, PD: photodiode, A: ampli�er,
solid lines represent electrical links, whereas dashed lines are optical paths).

�ere are di�erent methods to superpose the message onto the chaotic carrier [12, 27].
Two of these schemes, considered in this �esis, are the chaos masking (CMS) and the
additive chaos modulation (ACM). Both of these two schemes work in a similar way: the
message is simply superimposed on the optical chaotic carrier by an intensity modulation,
e.g., by using a Mach-Zehnder modulator, and the transmitted power can be expressed as:

Ptx(t) = [1 + ζm(t)]P(t) , (4.3)

where ζ is the modulation depth, and P(t) is the optical power emitted by the ML.�e
main di�erence is the point of the message injection. In CMS, the message is injected
just before the transmitter output, while in ACM case the message is injected inside the
feedback loop, and thus, contrary to the CMS, the message will alter the dynamics of the
ML.
An example of message injection is shown in Fig. 4.8. As can be seen, the total

transmitted optical power Ptx(t) is the result of the superposition of the optical power
P(t), coming from the ML, and of a version of P(t) itself modulated by the information
message m(t). In the �gure, for the sake of clarity, the modulation depth ζ = 1 has been
chosen very high. Optimal values of the modulation depth ζ, to obtain good message
masking, are in the order of 10−2.

4.4 �e Channel

4.4.1 Model of the Channel
�emodel of an infrared channel is illustrated in Fig. 4.9. �e transmitter emits an optical
power signal Ptx(t). �e optical power at the receiver is [33]:

Prx(t) = (Ptx ∗ h)(t) + N(t) , (4.4)
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Figure 4.8: Example of a message injection onto a chaotic optical carrier: the bit rate is
Rbit = 100MHz. �e upper plot is the transmitted power. �e high peak is due to the
exaggerated choice of ζ = 1, as clari�ed in the bottom plot.

Ptx(t) h(t) + Prx(t)
N(t)

Channel

Figure 4.9: Model of an infrared channel.
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where h(t) is the impulse response of the channel, and N(t) is an additive noise.
Eq. (4.4) is simply a linear �lter with an additive noise. �e input signal Ptx(t) repre-

sents an instantaneous optical power, so it is a non negative quantity:

Ptx(t) ≥ 0 . (4.5)

�e average transmitted optical power is given by:

Ptx = lim
T→∞

1
2T ∫ T−T Ptx(t)dt . (4.6)

Excluding noise, the average received optical power is given by:

Prx = H(0)Ptx , (4.7)

where H( f ) is the Fourier transform of h(t):
H( f ) = ∫ +∞

−∞ h(t) e− j 2π f t dt , (4.8)

and H(0) is the channel direct current (DC) gain:
H(0) = ∫ +∞

−∞ h(t)dt . (4.9)

4.4.2 Back To Back Channel
�e BTB con�guration is fundamental to analyze the generic system behavior.
It consists of studying the system in complete absence of the channel, with the optical

power output Ptx of the transmitter directly injected, as the input power Prx, to the receiver.
Indeed, referring to the general model of Fig. 4.9 and Eq. (4.4), the impulse response

of the channel is a Dirac’s delta:
h(t) = δ(t) , (4.10)

and the noise in always zero:
N(t) = 0 . (4.11)

�is con�guration permits to test and analyze all the components of the system without
the distortions and degradations introduced by the channel.

�e system performance measured in BTB will serve primarily to search for good
parameters of the system, e.g., the modulation depth ζ , and will also serve as a reference
for the performance that will be measured when including the channel e�ects.

4.4.3 Indoor Channel
For a given set of source properties S, receiver properties R, and environment properties
E, the baseband impulse response h(t) is �xed and completely determined [34, 35], so the
impulse response h(t) can be written as hE(t; S , R).
In this�esis the computation of the response function hE(t; S , R) is carried out using

the so�ware package IrSimIt [34]. In IrSimIt, the environment E is modeled as a set
of Nb boxes {B1, B2, . . . , BNb}, as shown in Fig. 4.10. �e box B1 is the largest one, and
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E

B1

B2 B3

B4

B5

x

y

z

S

R

Figure 4.10: Model of an indoor environment.

n̂S

ϕ

n̂R

θ

S(or εSj )

R(or εRi )

Figure 4.11: Source and receiver speci�cation.
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n̂S

n̂R

d
S R

ϕ
θ

Figure 4.12: Geometric model for LOS propagation.

can represent a room, a �oor or an entire building. �e other boxes represent all internal
objects, such as tables, windows, doors and so on.
As shown in Fig. 4.11, the source S is described by a position vector rS , an orienta-

tion vector n̂S , and a radiation pattern T(ϕ). �e radiation pattern is assumed to be a
generalized Lambertian pattern of order n, de�ned as [33, 36]:

T(ϕ) = n + 1
2
cosn ϕ . (4.12)

�e order n can be calculated from the HWHM ϕ−3 dB, by taking the logarithm base cosϕ
of Eq. (4.12) for ϕ = ϕ−3 dB (and so T(ϕ−3 dB) = 1/2), which gives:

n = ln 1/2
ln cosϕ−3 dB . (4.13)

Each box Bi can have di�erent re�ection coe�cients for each of its six faces. Each face
F j is modeled as a Lambertian di�usive surface of re�ectivity ρFi , i.e., with a generalized
Lambertian pattern of order n = 1:

T(ϕ) = cosϕ . (4.14)

�e receiver R is described by a position vector rR, an orientation vector n̂R, an optical
collection area AR, and an e�ective optical area at incident angles θ de�ned as [34]:

A(θ) = ARg(θ) = ⎧⎪⎪⎨⎪⎪⎩
AR cos(θ) θ ≤ ΨFOV
0 otherwise .

(4.15)

�e angle ΨFOV is the HWHM at the receiver, i.e., its �eld of view.

Line of Sight Impulse Response

�e calculation of the line of sight (LOS) response function is quite straightforward.
�e transmitter emits a radiant intensity Itx (Wsr−1), which is related to the average

transmitted power Ptx of Eq. (4.6) by [33]:

Itx(ϕ) = PtxT(ϕ) . (4.16)
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�e irradiance Irx (Wm−2) at the receiver is:

Irx(d , ϕ) = Itx(ϕ)d2
= PtxT(ϕ)

d2
, (4.17)

where, as shown in Fig. 4.12, d = ∣rS − rR∣ is the distance between the transmitter and the
receiver, and T(ϕ) is assumed to be normalized so that:

2π ∫ π

0
T(ϕ)dϕ = 1 . (4.18)

�e average received power is:

Prx = Irx(d , ϕ)A(θ) = PtxT(ϕ)A(θ)
d2

, (4.19)

so the DC gain of the channel is, from Eqs. (4.7) and (4.15):

HLOS(0) = PrxPtx =
⎧⎪⎪⎨⎪⎪⎩
AR
d2 T(ϕ) cos(θ) θ ≤ ΨFOV
0 otherwise .

(4.20)

Furthermore, in the time domain, the impulse response becomes:

h(t) = HLOS(0)δ (t − d
c
) , (4.21)

where c is the speed of light.

Total Impulse Response

To calculate the total impulse response, the re�ections due to walls and objects have to be
taken into account. If h(k)E (t; S , R) is the impulse response due to signal undergoing exactly
k bounces during its path from the transmitter to the receiver, then the total impulse
response is given by [34]:

hE(t; S , R) = ∞∑
k=0 h

(k)
E (t; S , R) . (4.22)

�e k-bounce impulse response h(k)E (t; S , R) is calculated from the (k−1)-bounce impulse
response h(k−1)E (t; S , R) as [34]:

h(k)E (t; S , R) = ∫E ρdεh(k−1)E (t; S , dεR) ∗ h(0)E (t; dεS , R)dε , (4.23)

where dε is a di�erential surface in E, with re�ectivity ρdε, and the quantities dεR and dεS
represent a di�erential surface acting �rst as a receiver from the transmitter S, and then,
as a transmitter to the receiver R.
Considering only M bounces, the total response hE(t; S , R) can be approximated

as [34]:

hE(t; S , R) ≈ M∑
k=0 h

(k)
E (t; S , R) . (4.24)
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�e integration of Eq. (4.24) is achieved by discretization of the faces Fi into smaller
elements of size 1/P ⋅ 1/P, for a total of Ni = P2 partitions εi . �e total number of elements
N is the sum of the number of elements per face Ni , over all faces Fi .
Eq. (4.23) is then estimated as [34]:

h(k)E (t; S , R) ≈ N∑
i=1 ρdεRi

h(k−1)E (t; S , dεRi ) ∗ h(0)E (t; dεSi , R) . (4.25)

�e term h(k−1)E (t; S , dεRi ) in Eq. (4.25) can be rewritten by using Eq. (4.25) itself with
R = εRi , which gives:

h(k)E (t; S , εRi ) ≈ N∑
j=1 ρdεRj

h(k−1)E (t; S , dεRj ) ∗ h(0)E (t; dεSj , dεRi )
= N∑
j=1 αi jh(k−1)E (t − τi j; S , dεRj ) ,

(4.26)

where

αi j = V(rεSj
, rεRi
, E)ρεRj

T(ϕi j)g(θ i j)
P2d2i j

, (4.27)

and

τi j = di jc = ∣rεSj
− rεRi

∣
c

. (4.28)

�e function V(rεSj
, rεRi
, E) is a visibility function which is 1 if the elements εSj and εRi are

in line of sight, and 0 otherwise.
In Fig. 4.13, the �rst 4-bounces impulse responses for the environment de�ned in

Table 4.2 are shown. �e response in the bottom graph is the e�ective response of the
channel excluding the LOS component (k = 0). �e DC gain of each component is
compared with that of the LOS in Fig. 4.14.

4.5 �e Receiver
�e scheme of the receiver is shown in Fig. 4.15. First, the received optical power Prx is
demodulated by a direct detection (DD) process using a photodetector. �e electrical signal
resulting from the photodetection is then injected to the SL. As explained in Section 3.3.2,
the slave laser is operated with an open loop con�guration, i.e., there is not a feedback
loop.

�emessage m̂(t) is then recovered by a simple di�erence between the signal photode-
tected from the received power, and the SL output, a�er another photodetection process.
�e low-pass �lter (LPF) used a�er the di�erence has a bandwidth of BLPF = 1/Tpulse, where
Tpulse is the pulse duration of the message, as explained in Section 4.2.
If the SL is matched with the ML, the output of the SL is a replica of the carrier

generated by the ML through the synchronization process. By considering the message
m(t) injected at the transmitter as a perturbation of its natural chaotic evolution, the
di�erence operation just reveals this perturbation, i.e., it recovers a message m̂(t) which
should be a replica of the source message m(t).
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Figure 4.13: Example of k-bounces impulse responses: in the upper are shown the k-
bounces responses (normalized to 1), and in the bottom the global response excluding the
LOS component for k = 0.

Description Parameter Value

divisions per meter P 4

room size
Lx 7.5m
Ly 5.5m
Lz 3.5m

walls re�ectivities

ρ(x = 0) 0.58
ρ(x = Lx) 0.56
ρ(y = 0) 0.12
ρ(y = Ly) 0.30
ρ(z = 0) 0.69
ρ(z = Lz) 0.09

location of S rS (0.75, 2.75, 1.75)m
elevation of S (angle from x-y plane) 0deg
azimuth of S (angle in x-y plane) 0deg
transmitter HWHM ϕ−3 dB 15 deg
location of R rR (6.75, 2.75, 1.75)m
elevation of R (angle from x-y plane) 0deg
azimuth of R (angle in x-y plane) 180deg
receiver area AR 1 × 10−4m2
receiver FOV ΨFOV 60deg

Table 4.2: Parameters used for the channel of Fig. 4.13.
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Figure 4.14: DC gain of the components shown in Fig. 4.13.

PD A

+
Jbias

SL PD A

− LPF

Prx(t)

m̂(t)

Figure 4.15: Scheme of the receiver (SL: slave laser, PD: photodiode, A: ampli�er, LPF:
low-pass �lter, solid lines represent electrical links, whereas dashed lines are optical paths).
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PPM Demodulator Inverse Bit Mapper
m̂(t) l̂ ân

PPM decoder

Figure 4.16: Block scheme of a PPM decoder.

r(t)
select

l̂ = argmax
l

rl

l̂

×

φ∗0(t)

∫ Tframe

0
(⋅)dt r0

×

φ∗1 (t)

∫ Tframe

0
(⋅)dt r1

×

φ∗M−1(t)

∫ Tframe

0
(⋅)dt rM−1

⋮ ⋮ ⋮

Figure 4.17: Block scheme of a MLD [37].

4.6 Message Decoding
�e scheme of a PPM decoder is shown in Fig. 4.16. �e recovered message signal m̂(t),
a�er a synchronization with a proper clock, is split in frames of duration Tframe; each frame
is then passed to the PPM demodulator, which, using a maximum likelihood detector
(MLD), estimates which one of theM symbols l = 0, 1, . . . ,M− 1 has been transmitted. An
inverse bit mapper, then, applies the inverse mapping used at the source, e.g., the mapping
in Table 4.1, and gives out the bit sequence ân.

4.6.1 PPM decoder
�eMLD [37], shown in Fig. 4.17, by observing the received signal r(t) = m̂(t), estimates
which one of theM symbols l = 0, 1, . . . ,M − 1 has been transmitted.
As discussed in Section 4.2, the source sends one of the signal sl(t). �e received

signal r(t), in the case of additive noise n(t), is then given by:
r(t) = sl(t) + n(t) . (4.29)
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�e MLD calculates the projections of r(t) over the base {φ0, φ1, . . . , φM−1}, and then
selects the one which is maximum. �is is equivalent to choose the signal sl(t) with the
minimum distance from the received signal r(t). Moreover, the simplest setup of a MLD,
for the case of a PPM constellation, is to integrate the received signal over each slot, and
then to select the one which yields the maximum in the frame.

4.6.2 Symbol Error Probability
�e isolated signals sl(t) of Eq. (4.1) are orthogonal with support in [0, Tframe], each of
them with energy:

Es = ∫ Tframe0
∣sl(t)∣2 dt . (4.30)

A basis for these signals is:

φl(t) = sl(t)√
Es
, l = 0, 1, . . . ,M − 1 (4.31)

and each signal can be represented in a vectorial space by [37]:

s0 = √
Es(1, 0, 0, . . . , 0)

s1 = √
Es(0, 1, 0, . . . , 0)⋮ ⋮

sM−1 = √
Es(0, 0, 0, . . . , 1) .

(4.32)

Under the hypothesis that signal sl(t) is transmitted, the conditional probability of the
received signal r(t) being correct is given by [37]:

P [r = s∣ s = sl] = P
⎡⎢⎢⎢⎢⎢⎣
M−1⋂
i=0
i≠l
rl > ri

⎤⎥⎥⎥⎥⎥⎦
= ∫ +∞

−∞ pr l (a)M−1∏
i=0
i≠l

∫ a−∞ pr i(bi)dbi da .
(4.33)

�e components ri are given by:

ri = ⟨r∣ sl⟩ = Esδi l +√
Eswi , (4.34)

where δi l is the Kronecker’s delta, and wi are the noise components. By assuming additive
white Gaussian noise (AWGN), the probability of the symbol of being correct is:

Pc = P [r = s∣ s = sl]
= 1√

2πσ2l
∫ +∞
−∞ e

− (a−µl )2
2σ2l

⎡⎢⎢⎢⎢⎣1 −
1
2
erfc

⎛⎝a − µn√
2σ 2n

⎞⎠
⎤⎥⎥⎥⎥⎦
M−1
da ,

(4.35)

where µl , σ 2l are the mean and the variance of the decision point, and µi , σ2i , for i ≠ l ,
are those of the noise components. �e complementary error function erfc(a) is de�ned
as [37]:

erfc(a) = 2√
π ∫ +∞

a
e−b2 db . (4.36)
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Finally, the symbol error probability is given by:

Pe = 1 − Pc . (4.37)

4.6.3 Bit Error Probability
If M = 2k is a power of two, then each signal sl has a binary representation of k bits. A
signal error occurs if any of the bits is incorrectly received, which happens with probability
Pe given by Eq. (4.37). For each transmitted symbol, of theM − 1 possible wrong received
symbols, onlyM/2 yield a wrong bit, indeed, the bit error probability is given by [37]:

Pbit = M/2
M − 1Pe = 2k−1

2k − 1Pe . (4.38)

4.6.4 Bit Error Rate and Q Factor
�e bit error rate (BER) is the ratio of the wrong detected bits to the total number of
transmitted bits:

BER = # of wrong bits
# of transmitted bits

. (4.39)

�e Q factor is a parameter implicitly de�ned as [38]:

BER = 1
2
erfc( Q√

2
) , (4.40)

Indeed, the Q factor is calculated from the BER, by inverting Eq. (4.40), as:

Q = √
2 erfc−1 (2BER) . (4.41)

For a typical optical communication system, a BER of 10−9 is the reference value of a good
system. A BER of 10−9 corresponds to a QdB = 15.6 dB, with QdB = 20 log10Q. A plot of the
Q factor as a function of the BER is shown in Fig. 4.18.

�e usual way to estimate the BER (or the Q factor) via numeric simulations is to
use a Monte Carlo method [39]. �e use of such a method requires a huge amount of
computational time and memory, due to the high accuracy needed to numerical modeling
the chaotic carrier generation and processing through the various stages of the system.
Furthermore, in this �esis, the Q factor is estimated as follows:

1. each simulation is performed for an adequate number N of random realizations;

2. for each realization i, the bit error probability Pbit(i) is estimated by using Eq. (4.38);
3. the BER for the realization i is taken equal to the bit error probability Pbit(i), and
the Q factor is calculated, by using Eq. (4.41);

4. the �nal Q factor is estimated by a mean over all the realizations:

Qavg = 1N
N∑
i=1 Q(i) (4.42a)

QdB = 20 log10Qavg . (4.42b)

46



4.7. SYSTEM PERFORMANCE

Figure 4.18: Q factor vs. BER.

4.7 System Performance
�e system performances of the system are evaluated in terms of the synchronization error
ρ, de�ned in Section 3.3.2, and of theQ factors at two di�erent points. �e synchronization
error gives an indication of the goodness of the coupling between the ML and the SL,
where as the Q factor measured just a�er the transmitter serves to quantify how good is
the system in hiding the message, and the Q factor measured a�er the receiver gives an
evidence of how good is the system in recovering the message.

4.7.1 Example
An example of the message as seen by the source Alice, by the eavesdropper Eve (with
DD) and by the destination Bob, with the receiver explained in Section 4.5, is shown in
Fig. 4.19. As it can be seen, the message is absolutely undetectable by Eve. �e negative
ripple following the positive pulse, seen by Bob, is an e�ect caused by the synchronization
process with the CMS scheme. �e eye diagrams at the frame level, for a message of 24
bits, are shown in In Fig. 4.20, together with the values of the Q factor. If the modulation
depth ζ is too strong, the transmitted power Ptx can show up some information about the
message. �e same message as in Figs. 4.19 and 4.20, but with an higher modulation depth
ζ , is shown in Figs. 4.21 and 4.22. �ese �gures clearly shows that now Eve can decode the
message. As mentioned in Section 3.3.2, the SL must be similar as possible to the ML. For
instance, in Figs. 4.23 and 4.24 the recovered message in the case the parameters of the SL
are not matched with those of the ML, is shown. If Eve uses such a receiver, instead of
a DD, then she cannot recover the message. As a drawback, if such a receiver is used by
Bob, then the communication becomes totally unreliable.
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Figure 4.19: Example of a message (bits 01) as seen by Alice, Bob and Eve for the CMS
scheme with a modulation depth of ζ = 0.03 and bit rate Rbit = 150MHz.

Figure 4.20: Frame level eye diagrams as seen by Bob and Eve for the CMS scheme with a
modulation depth of ζ = 0.03, bit rate Rbit = 150MHz, and a message of 24 bits.
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Figure 4.21: Example of a message (bits 01) as seen by Alice, Bob and Eve for the CMS
scheme with a modulation depth of ζ = 0.2 and bit rate Rbit = 150MHz.

Figure 4.22: Frame level eye diagrams as seen by Bob and Eve for the CMS scheme with a
modulation depth of ζ = 0.2, bit rate Rbit = 150MHz, and a message of 24 bits.
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Figure 4.23: Example of a message (bits 01) as seen Bob (or Eve) for the CMS scheme with
a modulation depth of ζ = 0.03, bit rate Rbit = 150MHz, and where the receiver di�ers of
10% in the SL di�erential gain parameters gN in respect to that of the ML.

Figure 4.24: Frame level eye diagrams as seen by Bob (or Eve) for the CMS scheme with a
modulation depth of ζ = 0.03, bit rate Rbit = 150MHz, and a message of 24 bits, and where
the receiver di�ers of 10% in the SL di�erential gain parameters gN in respect to that of
the ML.
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Chapter5
Numerical Analysis

No amount of experimentation can ever
prove me right; a single experiment can
prove me wrong.

Albert Einstein (1879 – 1955)

In this chapter the main results obtained from numerical simulations are presented.
At �rst, several simulations are performed for the BTB channel con�guration, obtain-

ing useful information regarding the setting of some parameters of the system, e.g., the
modulation depth ζ and the maximum allowed bit rate.

�en, a simulation for the LOS propagation will show that the receiver must employ a
variable gain ampli�er in order to maintain the synchronization error into an acceptable
range.
Finally, the propagation in a closed indoor environment is considered, and several

simulations are performed by varying the transmitter position, orientation and radiation
pattern.
Furthermore, while some proposed solutions are easily implementable in an existing

system, e.g., the variable ampli�er stage, others must be carefully considered at the design
phase, e.g., the semiconductor lasers parameters.

5.1 System Speci�cations
�e numerical analysis has been performed by using the scienti�c computational so�ware
Matlab. All the simulations are performed for a minimum of 100 statistical realizations
of the chaotic waveform and noise, and for each realization a pseudo random message
of 128 bit is generated. �e system performance is calculated as explained in Section 4.7.
�e transient time a�er which the message is embedded onto the chaotic carrier has been
chosen to be 250ns, where the ML output is in a fully chaotic state.
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Description Parameter Value

wavelength λ 1550nm
active region area Aa 10 × 10−21m2
active region volume Va 150 × 10−18m3
active region refractive index na 3.6
linewidth enhancement factor α 4
con�nement factor Γ 0.4
photon decay rate γc 240 × 109 s−1
photon lifetime τph 4.1667 × 10−12 s−1
carrier decay rate γs 1.458 × 109 s−1
carrier lifetime τs 685.8711 × 10−12 s−1
steady-state carrier density N0 1 × 1024m−3
steady-state photon density S0 202.5 × 1018m−3
normalized bias current density J̃bias 1/3
bias current Ibias 46.7143 × 10−3A
di�erential gain gN 5 × 10−12m3 s−1
gain saturation gS −15 × 10−12m3 s−1
di�erential carrier relaxation rate γn 1.0125 × 109 s−1
nonlinear carrier relaxation rate γp 1.2150 × 109 s−1
relaxation frequency fr 2.49GHz
feedback delay time τ 2.6024ns
normalized feedback delay time τ̂ 6.48
feedback strength ξ 0.1

Table 5.1: Parameters of the semiconductor lasers.

�e two semiconductor lasers, the one at the transmitter and the one at the receiver,
are modeled by using Eqs. 3.21. �e simulations are performed by using the numerical
integration scheme explained in Appendix A. �e time step h is appropriately adjusted
based on the type of the message and channel being used, but it is always upper bounded
by hMAX = 1 ps. �e parameters of both semiconductor lasers are listed in Table 5.1.

�e photodetector in the feedback loop of the transmitter has been considered ideal,
i.e., in the Eqs. 3.21, f (t) = δ(t). �e other photodetectors are modeled as explained in
Appendix B, and their band limited behavior is modeled by using a 3rd order Butterworth
�lter. �e parameters of the photodetectors are listed in Table 5.2.

5.2 Modulation Depth
�e system performance for 4-PPM, by varying the bit rate Rbit and the modulation depth
ζ , are shown in Figs. 5.1 to 5.3.

�e synchronization error ρ, shown in Fig. 5.1, decreases by increasing the bit rate,
and also by decreasing the modulation depth. �is can be explained by considering, for
example, Fig. 4.8: if the bit rate is increased (or if the modulation depth is decreased) then
the net e�ect is a reduction of the pulse duration (or amplitude), i.e., of the pulse energy.
By reducing the pulse energy, the perturbation superimposed onto the chaotic carrier by
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Description Parameter Value

responsivity R 0.95AW−1
dark current ID 20nA
ambient temperature T 290K
equivalent load resistance Req 50Ω
bandwidth Bph 30GHz

Table 5.2: Parameters of the photodetectors.

the message injection, at the transmitter, gets lower and, indeed, the synchronization error
is expected to diminish.

�e behavior of the Q factor is shown in Figs. 5.2 and 5.3. �e quality of the system
in hiding the message can be viewed in Fig. 5.2, where, except for the 100Mbit s−1 and
ζ = 0.2 cases, all the values are below the 7.33 dB line. Clearly, for higher values of the
modulation depth ζ, the probability for Eve to intercept the message is also higher. At
100Mbit s−1, the message tends to emerge, due to its higher energy, and also due to the
low amplitude of the chaotic signal in the base band. �e ACM scheme performs better
than the CMS, because, as explained in Section 3.3.1, in the ACM case, the dynamics of
the ML is a�ected by the message, and thus the message gains higher masking.

�e recovery of the message at the receiver is more problematic, as shown in Fig. 5.3.
For both modulation schemes, the quality of the recovery rapidly decay a�er 300Mbit s−1
and tends to saturate for high ζ. In particular, for ζ = 0.03, the ACM scheme behave
optimally up to 250Mbit s−1, whereas the CMS scheme is optimal only for 150Mbit s−1 and
300Mbit s−1. For 200Mbit s−1 and 250Mbit s−1 the CMS scheme performs worse, because
for these bit rates the negative retarded ripple created by the synchronization process
tends to overlap the correct one and to lower it by the di�erence process (see, for example,
Fig. 4.19).
By inspecting Figs. 5.2 and 5.3, a bit rate Rbit = 150Mbit s−1, together with a message

depth of ζ = 0.03, leads to an high hiding of the message from Eve, and at the same time
to a good message recovery at the receiver Bob, with both the CMS and ACM schemes.
Furthermore, when not otherwise speci�ed, in the following these two parameters values
will be used. In Figs. 5.4 and 5.5, the behavior of the CMS and ACM schemes are compared
with this choice of parameters.

5.3 Lasers Mismatches
�e need for good matching of lasers parameters is shown in Fig. 5.6. �e system, for
example, can tolerate a maximum change of about 5% of the gain parameter gN of the SL
in respect to that of the ML. An higher variation leads to a fast decay of the performance.
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Figure 5.1: Synchronization error vs. bit rate for various modulation depths ζ .

Figure 5.2: Q factor for Eve vs. bit rate for various modulation depths ζ .
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Figure 5.3: Q factor for Bob vs. bit rate for various modulation depths ζ .

Figure 5.4: Q factor vs. modulation depth ζ , for a bit rate of Rbit = 150Mbit s−1.
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Figure 5.5: Q factor vs. bit rate Rbit, for a modulation depth of ζ = 0.03.

Figure 5.6: Q factor vs. SL gain parameter gN variation in respect to that of the ML.

56



5.4. THE ROLE OF THE RELAXATION FREQUENCY FR

5.4 �e Role of the Relaxation Frequency fr
In Figs. 5.7 to 5.12 the system performance are shown by varying the PPM order and duty
cycle. �e synchronization errors, shown in Figs. 5.7 and 5.8, all follow similar behaviors,
which can be explained with the same arguments given in Section 5.2: by increasing
the PPM order or the bit rate, the net pulse energy decreases and the synchronization is
improved.
By inspecting the Q factor, shown in Figs. 5.9 to 5.12, the ACM scheme performs better

than the CMS in both message hiding and recovery. Clearly, by increasing the duty cycle
the message recovery quality in increased, at the cost of enhancing also the possibility
for Eve to decode the message. However, by increasing the duty cycle, as it can be seen,
another good working point for both scheme is at a bit rate of Rbit = 300MHz.

�e maximum achievable bit rate is limited by the relaxation frequency fr of the laser:
a qualitative demonstration can be carried out by considering, for example, Fig. 3.6: for
stable pulsing, the pulsing frequency is close to the relaxation frequency fr of Eq. (3.25).
In chaotic state, the pulse spacing is not constant, but as a roughly approximation, it can
be considered to be equal to that of stable oscillation:

Tr ≈ 1fr . (5.1)

By observing Fig. 4.8, in order for a message pulse to modulate at least one entire laser
pulse, it must be:

Tpulse > Tr , (5.2)

which, by using the following relation with the bit time

Tpulse = d log2MM Tbit , (5.3)

can be rewritten as:
Tbit > M

d log2M
Tr . (5.4)

By taking the reciprocal the relation becomes:

Rbit < d log2MM fr , (5.5)

which is an intrinsic limit for the speci�c system used in this �esis. For instance, by
following these arguments, the maximum achievable bit rate in the case of 4-PPM with
duty cycle d = 0.5 and, from Table 5.1, with a relaxation frequency of fr = 2.49GHz, is:

Rbit,MAX = 14 fr = 622.5Mbit s−1 . (5.6)

�is result, however, is not strictly related with the e�ective achievable bit rate having good
performance, which, as it has been shown in the previous section, is about one half of it.
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Figure 5.7: Synchronization error vs. bit rate for various PPM orders, CMS case.

Figure 5.8: Synchronization error vs. bit rate for various PPM orders, ACM case.
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Figure 5.9: Q factor for Bob vs. bit rate for various PPM orders, CMS case.

Figure 5.10: Q factor for Bob vs. bit rate for various PPM orders, ACM case.
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Figure 5.11: Q factor for Eve vs. bit rate for various PPM orders, CMS case.

Figure 5.12: Q factor for Eve vs. bit rate for various PPM orders, ACM case.
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5.5 Line of Sight Propagation
�e main impairment to optical propagation in free-space environments is due to the
free-space attenuation. �e results presented in this section are obtained by considering
only a direct LOS path between the transmitter and the receiver, i.e., by neglecting all
non-LOS contributions to the impulse response of the channel. Furthermore, it has been
considered also the unrealistic case of an amplifying propagation, which permits to include
the e�ect of the receiver preampli�er.

�e synchronization error has acceptable values only within a narrow window of±0.5 dB around 0dB, as shown in Fig. 5.13. Furthermore, the peak of the synchronization
error is not exactly centered at 0dB, but it is slightly shi�ed to smaller negative values.
�is can lead to the consideration that, at the receiver, the injection strength to the SL
should be slightly lowered. However, in spite of the fact that the LOS attenuation has
to be compensated, this peak shi� can be ignored. In particular, in order to maintain
the synchronization error within the synchronization window, the receiver must employ
a variable ampli�er, which, being an electronic ampli�er (and not optical), it could be
also made adaptive and controlled by the mean value of the receiver power or even by
an estimation of the synchronization error measured a�er the di�erence block (where,
however, there is also the presence of the message disturbing the estimation).

�e Q factor measured by Bob, shown in Fig. 5.14, con�rms the need of a good LOS
compensation. Furthermore, the CMS scheme has a wider good range and fall down
slowly compared to the ACM scheme. However, the ACM scheme, as in previous results,
within its window is more stable and performs better than the CMS.
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Figure 5.13: Synchronization error vs. LOS DC gain.

Figure 5.14: Q factor for Bob vs. LOS DC gain.
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x

y

z

S

R

Figure 5.15: Sketch of the indoor environment used in simulations.

5.6 Multipath impairments

All wireless communication systems su�er of multipath impairments due to the re�ective
nature of real environments. �is section considers an indoor propagation within the
environment described by the parameters given in Table 4.2, and sketched in Fig. 5.15. In
particular, the receiver has been chosen with a Lambertian pattern, i.e., withΨFOV = 60deg.
A receiver with such a large pattern collects many high order re�ections, so this can be
considered as a sort of worst case. In Fig. 5.16 the DC gain and the minimum delay of
the channel are shown by varying the transmitter azimuthal angle. In particular, from
the plot of the delay, it can be observed that the LOS path persists up to a rotation of
more than 80deg of the transmitter, but, as shown in the upper plot, at about 40deg the
LOS component is strongly attenuated and comparable with the non-LOS re�ections
(see Fig. 4.14). Just for reference, in Figs. 5.17 and 5.18 the DC gain is shown for a LOS
propagation but by varying either the distance or the radiation pattern of the transmitter.
More important is the graph in Fig. 5.19, which shows how the ratio of the LOS component
to the non-LOS components varies by rotating the transmitter. �is �gure will serve in
the following to understand the crucial role of the LOS path in reducing the distortion
e�ects introduced by the non-LOS components.
In Figs. 5.20 to 5.22, the Q factor is shown as a function of the distance, transmitter

radiation pattern and transmitter rotation. �e free-space attenuation has already been
compensated, i.e., a variable gain ampli�er is assumed at the receiver. �e results are
optimal, because in every investigated con�guration there is always a su�ciently strong
LOS path (in respect to the non-LOS re�ections), and thus, these graphs are in accordance
with the BTB choice made in Section 5.2 (see, for instance, Fig. 5.4 for ζ = 0.03).
Worse performance occurs if the power of the LOS component decreases. In Figs. 5.23

and 5.24 the case of a transmitter with an HWHM of 5deg is considered. As can be seen,
a�er a rotation of more than 15 deg, the system performance drops down very fast. Finally,
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Figure 5.16: Channel DC gain and delay vs. transmitter azimuth.

Figs. 5.25 and 5.26 show what are the Q factor and the synchronization error for a given
LOS to non-LOS ratio, or more usefully, what the LOS to non-LOS ratio must be to achieve
a su�cient Q factor or synchronization error. In particular, in order to maintain good
system performance, the ratio must be higher than 15 dB. �e same analysis, for a bit rate
of Rbit = 250Mbit s−1 is shown in Fig. 5.27, and at least for the ACM scheme, it is quite
satisfactory.
For instance, by sending a clear message, i.e., without the chaotic steganographic

process, the minimum LOS to non-LOS ratio about 0dB, as shown in Fig. 5.28.1 �is is
quite obvious: by considering, for instance, only one non-LOS re�ection, a ratio of 0 dB
means that the LOS and non-LOS components have the same power, and, thus, the non-
LOS bounce will arrive a�er the LOS, possibly covering a di�erent slot, and as the ratio
decreases, this retarded slot has more power than the right one, degrading the detection.
On the contrary, PPM is in fact very good in re�ective environments, because even if the
�rst non-LOS component has more power than the LOS, the receiver should synchronize
on the non-LOS and the communication remains totally reliable. �is is not possible in
the steganographic system explored in this �esis, because the PPM decoding is done
a�er chaos synchronization, which is very sensible to impairments, as shown before.

1In this �gure, the slot synchronization is assumed to happen on the LOS slot, even if it is not present.
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Figure 5.17: Channel DC gain and delay vs. distance.

Figure 5.18: Channel DC gain and delay vs. transmitter HWHM.
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Figure 5.19: Channel LOS to non-LOS ratio vs. transmitter azimuth.

Figure 5.20: Indoor Q factor vs. distance.
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Figure 5.21: Indoor Q factor vs. transmitter HWHM.

Figure 5.22: Indoor Q factor vs. transmitter azimuth.
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Figure 5.23: Indoor Q factor vs. transmitter azimuth, with a transmitter HWHM of 5deg.

Figure 5.24: Indoor synchronization error vs. transmitter azimuth, with a transmitter
HWHM of 5deg.
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Figure 5.25: Indoor Q factor vs. LOS to non-LOS ratio.

Figure 5.26: Indoor synchronization error vs. LOS to non-LOS ratio.
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Figure 5.27: Indoor Q factor vs. LOS to non-LOS ratio, for a bit rate of Rbit = 250Mbit s−1.

Figure 5.28: Indoor Q factor vs. LOS to non-LOS ratio, by only considering an unmasked
message propagation.
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Conclusions

�e aim of this �esis has been to study an optical free-space communication system,
employing a chaotic carrier, generated by a semiconductor laser with optoelectronic
delayed feedback, to obtain the steganography of an information message. At the receiver,
a semiconductor laser, similar to that at the transmitter, is used to recreate the chaotic
carrier by chaos synchronization and to recover the message by a di�erence and an
appropriate �ltering.

�e system has been analyzed numerically for di�erent con�gurations, and its perfor-
mance evaluated by measuring the synchronization error and the Q factor at two di�erent
points: at the receiver to quantify the quality of message recovery, and a�er the transmitter
to quantify the quality of message masking.
A set of BTB simulations has provided information about the maximum performance

achievable for a given con�guration, and has permitted to extrapolate a good starting
point to search optimal values of key parameters, such as the modulation depth ζ and the
bit rate Rbit.
Next, an analysis of LOS propagation has shown the need of employing a variable gain

ampli�er stage, at the receiver, to compensate the free-space attenuation.
Finally, the propagation in a closed indoor environment has been considered, where

the optical power undergoes multiple re�ections in its path between the transmitter and
the receiver, with a consequent degradation in the quality of the recovered message. �is
multipath impairments can be reduced only by achieving a su�ciently high LOS to non-
LOS ratio, found to be in the order of 20dB for the considered environment.
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Numeric Integration Scheme

Knowing the equations and knowing the
solution are two different things. Far, far
away.

Tsung-Dao Lee (1926 – )

A.1 Heun’s Method
�e Heun’s method [40] (also called the modi�ed Euler’s method [41] or the explicit
trapezoidal rule [42]) is a numerical procedure to solve initial value problems (IVPs)
within ordinary di�erential equations (ODEs). It can be seen as an extension of the Euler’s
method into a two-stage second-order Runge-Kutta method.
In order to solve the following IVP:

dx(t)
dt

= q(t, x(t)) (A.1a)

x(t0) = x0 , (A.1b)

the Euler’s method de�nes the predictor for the step h as:

x(t + h) = x(t) + hq(t, x(t)) , (A.2)

which is modi�ed into the following implicit equation:

x(t + h) = x(t) + h
2
[q(t, x(t)) + q(t + h, x(t + h))] . (A.3)

To make it explicit the term x(t + h) on the right hand side can be replaced by the Euler’s
predictor given in Eq. (A.2) to obtain:

x(t + h) = x(t) + h
2
[q(t, x(t)) + q(t + h, x(t) + hq(t, x(t)))] , (A.4)
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which is usually rewritten as:

k = hq(t, x(t)) (A.5a)

x(t + h) = x(t) + h
2
[q(t, x(t)) + q(t + h, x(t) + k)] . (A.5b)

A.2 Stochastic Di�erential Equations
�e stochastic di�erential equation (SDE) with white noise, also known as a Langevin’s
equation, is:

dx(t)
dt

= q(t, x(t) + g(t, x(t)))ξ(t) , (A.6)

where ξ(t) is a Gaussian stochastic process satisfying:
E [ξ(t)] = 0 (A.7a)

E [ξ(t)ξ(s)] = δ(t − s) , (A.7b)

with δ(t) being the delta function:
δ(t) = ⎧⎪⎪⎨⎪⎪⎩

1 t = 0
0 t ≠ 0 . (A.8)

It can be shown that the optimal Heun’s method required to solve Eq. (A.6) is given by [43]:

k = hq(t, x(t)) (A.9a)

l = √
hu(t)g(t, x(t)) (A.9b)

x(t + h) = x(t) + h
2
[q(t, x(t)) + q(t + h, x(t) + k + l)]

+ √
h
2
u(t)[g(t, x(t)) + g(t + h, x(t) + k + l)] ,

(A.9c)

where u(t) is a Gaussian random variable with zero mean and unitary variance:
E [u] = 0 (A.10a)
E [u2] = 1 . (A.10b)

�is scheme, called the stochastic Heun’s scheme (SHS), can be extended to the case of a
system of n Langevin’s equations [44]:

dxi(t)
dt

= qi(t, x(t) +∑
k
gik(t, x(t)))ξk(t) , (A.11)

where x = (x1, . . . , xn) are the dynamical variables of the system, and the noise sources
ξk(t) are Gaussian stochastic processes satisfying:

E [ξk(t)] = 0 (A.12a)
E [ξk(t)ξl(s)] = δklδ(t − s) , (A.12b)
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with δkl being the Kronecker’s delta function:

δkl = ⎧⎪⎪⎨⎪⎪⎩
1 k = l
0 k ≠ l . (A.13)

In the particular case of diagonal noise, i.e., if gik = 0, ∀i ≠ k:
dxi(t)
dt

= qi(t, x(t) + gi(t, x(t)))ξi(t) , (A.14)

the Heun’s scheme becomes:

ki = hq(t, x(t)) (A.15a)

li = √
hui(t)gi(t, x(t))) (A.15b)

xi(t + h) = xi(t) + h2 [qi(t, x(t)) + qi(t + h, x(t) + ki + li)]
+ √

h
2
u(t)[gi(t, x(t)) + gi(t + h, x(t) + ki + li)] .

(A.15c)

�is method has been used to integrate the dynamical equations of chaotic lasers given in
Section 3.3.1.
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Photodetection

A theory has only the alternative of being
right or wrong. A model has a third
possibility: it may be right, but irrelevant.

Manfred Eigen (1927 – )

Photodetectors are used to convert a light signal into an electrical signal, such as a voltage
or a current.
In photodiodes, this conversion is typically achieved by the creation of electron-hole

pairs (EHPs) by the absorption of photons. �ere are two types of low-cost andwidely avail-
able photodiodes: ordinary positive-intrinsic-negative (p-i-n) photodiodes and avalanche
photodiodes (APDs) [33, 45].
An APD is essentially a p-i-n photodiode that is operated at very high reverse bias,

resulting in internal gain caused by the avalanche e�ect. APDs are favored in optical
receivers only in situations where the external noise induced by ambient light is low.
Presently, the majority of commercial infrared links use ordinary p-i-n photodiodes [33].

B.1 Photodiodes
Fig. B.2 shows a schematic of the equivalent circuit of the photodiode in Fig. B.1. �e
ideal current source models the internal photocurrent I0 generated by the photodetection
process. �e current I0 has a simple linear relation with the incident optical power Pinc:

I0 = RPinc , (B.1)

where R (AW−1) is the photodiode responsivity. �e responsivity R is related to the
quantum e�ciency η of the photodiode by the relation

R = η e
hν
. (B.2)
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Figure B.1: Scheme of a photodiode connection.
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Figure B.2: Schematic of the equivalent circuit of a photodiode.

Eq. (B.2) clearly shows the dependence of the responsivity R on the frequency ν, and it has
to be remarked that the quantum e�ciency η is also frequency dependent. Fortunately, the
responsivity R results constant over the typical frequency bandwidth emitted by a single-
mode semiconductor laser. A typical value of the responsivity R for a p-i-n photodiode
operating at the wavelength of 1550nm is:

R(λ = 1550nm) = 0.95AW−1 . (B.3)

�e ideal diode in Fig. B.2 represents the internal junction of the photodiode, which is
responsible of creating the dark current ID, present even in absence of incident optical
power. Usually photodiodes are operated in reverse bias, so the dark current ID is the
reverse saturation current of the junction. A typical value of the dark current is ID = 20nA.

�e capacitance CP is the junction parasitic capacitance. Its value depends mainly on
the detector area and on the bias current, in particular it increases approximately linearly
with the detector area, and decreases with increasing reverse bias.

�e shunt resistance RSH is the leakage resistance of the diode and it has a direct impact
on the dark current ID.

�e series resistance RS takes into account for all other parasitic resistances: the bulk
resistance of the photodiode substrate, the ohmic contact di�usions and the resistances of
the leads. In normal detection operations the series resistance RS has a very low impact
on the detection performances.

�e total current IP delivered to the load is then:

IP = I0 + ID − ISH = RPinc + ID − ISH , (B.4)

where ISH is the current �owing into the shunt resistance RSH.
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B.1.1 Noise in Photodiodes
�e total noise characteristic of a photodiode comes mainly from two contributions: the
shot noise and the thermal noise.

Shot Noise

�e shot noise is related to the uncertainty in determining the magnitude of a current due
to its �uctuations around its local mean value.
Shot noise can be described as a white noise with a constant power spectral density

(PSD) given by [37, 45]:
Sshot( f ) = eIP . (B.5)

Indeed, being Bph the bandwidth, the variance of the shot noise current is:

σ2shot = ∫ +Bph
−Bph Sshot( f )d f = 2eIPBph . (B.6)

�ermal Noise

�e thermal noise (also known as Johnson-Nyquist’s noise [46, 47]) is a phenomenon
associated with Brownian’s motion of electrons in a conductor. Indeed, it is present in all
resistors at a temperature above absolute zero, even when no external current is �owing.

�e thermal noise of a conductor of resistance R can be modeled as a noise current
generator in parallel with a noiseless resistance R. For frequencies strongly below the
visible range, the thermal noise current is white with a PSD given by [37, 48]:

Sthermal( f ) = 2kTR , for f ≪ kT
h
, (B.7)

where k = 1.38 × 10−23 JK−1 is the Boltzmann’s constant, h = 6.626 × 10−34 J s is the Planck’s
constant, and T (K) is the temperature. �e thermal noise current can be modeled as a
Gaussian distribution with zero mean and variance:

σ2thermal = ∫ +Bph
−Bph Sthermal( f )d f =

4kTBph
R

. (B.8)

Total Noise

�e total noise is the sum of the shot and thermal noises, and it can be described as a white
noise with a PSD of:

Stotal( f ) = Sshot( f ) + Sthermal( f )
= eIP + 2kTR ,

(B.9)

and, thus, it can be modeled as a Gaussian distribution with zero mean and variance:

σ 2total = σ2shot + σ2thermal

= 2eIPBph + 4kTBphReq
,

(B.10)

where Req is the total equivalent shunt resistance.
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Figure B.3: Schematic of a transimpedance ampli�er.

B.2 Preampli�ers
For infrared link applications, one of the most commonly used preampli�er stage used
is the trans-impedance ampli�er (TIA) (see Fig. B.3), which transforms the current IP,
injected by the photodiode, into a voltage signal, while guaranteeing a large dynamic range
and a wide bandwidth, without the need for equalization [33].

B.2.1 Noise in Preampli�ers
In addiction to shot and thermal noises induced by the feedback resistor RF , the total noise
of an ampli�er circuit depends on the ampli�er itself, and it is a function of the ampli�er
design: three common designs for ampli�ers are bipolar, JFET-input, and CMOS-input.
While each design can provide low-noise performance, their performances are not equal.
Usually, ampli�er speci�cations comes with a total input-referred noise current that take
into account the speci�c ampli�er structure.
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