Università degli Studi di Padova

Facoltà di Scienze MM.FF.NN.

Dipartimento di Matematica Pura ed Applicata Corso di Laurea in Matematica

Tesi di Laurea

A.A. 2003-2004

Una generalizzazione dei gruppi quasi hamiltoniani

Relatore: Prof. Federico Menegazzo

Controrelatore: Prof. Franco Napolitani

Laureanda: Eleonora Crestani

Indice

In	Introduzione		\mathbf{v}
1	1 Gruppi non nilpotenti		1
2	2 Gruppi nilpotenti		3
	2.1 Gruppi appartenenti a $S(p)$ con $p \ge 3$		3
	2.2 Gruppi appartenenti a S(p) con p=2		5
	2.3 p-gruppi appartenenti a $S(p^i)$ con $i \ge 2$	2 e p>3	10
	2.4 3-gruppi appartenenti a $S(3^i)$ con $i \ge$	2	12
	2.5 2-gruppi appartenenti a $S(4)$		16
	2.6 2-gruppi in $S(2^n)$ con $n > 2$		27
	2.7 Conclusioni		37
3	3 Classi di coniugio dei sottogruppi non	n permutabili	39
\mathbf{B}^{i}	Bibliografia		43

Introduzione

La struttura dei gruppi aventi tutti i sottogruppi normali (gruppi hamiltoniani) è stata completamente determinata da Dedekind nel caso finito e da Baer nel caso generale.

Ci sono state successivamente molte generalizzazioni di questo risultato e ne menziono in particolare due.

Una prima generalizzazione studia gruppi che soddisfano condizioni sul numero dei sottogruppi non normali.

Nel lavoro [1] del 1995 Brandl classifica i gruppi finiti i cui sottogruppi non normali appartengono tutti alla stessa classe di coniugio:

Teorema 0.0.1.

Sia G un gruppo finito. Allora sono equivalenti:

- 1. G ha una sola classe di coniugio di sottogruppi non normali;
- 2. $G = N \rtimes P$ è estensione spezzante non abeliana dove N è di ordine primo q, P è ciclico di ordine potenza di primo p con $p \neq q$ e $[N, \Phi(P)] = 1$ o $G \cong \langle a, b : a^{p^n} = b^p = 1, a^b = a^{1+p^{n-1}} \rangle$ dove p è un primo e $n \geq 2$ se $p \geq 3$, e $n \geq 3$ se p = 2.

Un'ulteriore generalizzazione del risultato di Brandl è stata data da G.Zappa negli articoli [2] e [3]. In questi lavori vengono classificati i gruppi finiti i cui sottogruppi non normali hanno tutti lo stesso ordine. Oltre a quelli visti da Brandl , si trovano solo p-gruppi che sono descritti dal:

Teorema 0.0.2.

Le sequenti affermazioni sono equivalenti:

- 1. $G \ entropy en anno en anti-line proposition in anti-line proposition non normali hanno tutti ordine <math>p^n$;
- 2. G è uno dei seguenti:

vi Introduzione

(a)
$$G = \langle a, b : a^{p^n} = b^{p^m} = 1, b^a = b^{1+p^{m-1}} \rangle$$
 (p qualunque, $n \ge 1$, $m \ge 2, n \le m$);

(b)
$$G = \langle a, b : a^4 = 1, b^4 = a^2, b^a = b^{-1} \rangle$$
 $(p=2, n=2);$

(c)
$$G = \langle a, b, c : a^p = b^p = c^p = 1, a^b = ac, ac = ca, bc = cb \rangle$$
 $(p > 2, n = 1);$

(d)
$$G = \langle a, b, c : a^p = b^p = c^{p^m} = 1, a^b = ac^{p^{m-1}}, ac = ca, bc = cb \rangle$$

 $(p > 2, n = 1, m > 1);$

(e)
$$G = \langle a, b, c : a^4 = b^2 = 1, c^{2^{i-1}} = a^2, a^b = a^{-1}, ac = ca, bc = cb \rangle$$

 $(p = 2, n=1, m > 1);$

(f)
$$G = \langle a, b, c : a^4 = c^4 = 1, a^2 = b^2, b^a = b^3, a^c = a, b^c = b \rangle (p = 2, n = 2)$$

(g)
$$G = \langle a, b, c : a^4 = b^4 = 1, c^2 = b^2, b^a = b^3, ac = ca, b^c = ba^2 \rangle$$

 $(p = 2, n = 2);$

(h)
$$G = \left\langle \begin{array}{l} a, b, c, d: & a^4 = b^2, a^2 = c^2 = d^2, a^b = a^{-1}, c^d = c^{-1}, \\ & ac = ca, bc = cb, ad = da, bd = db \end{array} \right\rangle$$

$$(p=2, n=1);$$

(i)
$$G = \left\langle \begin{array}{l} a, b, c, d : & a^4 = b^4 = 1, b^2 = c^2, d^2 = a^2, ca = ac, \\ & c^b = ca^2, b^a = b^3, db = bd, a^d = aa^2b^2, c^d = cb^2 \end{array} \right\rangle$$

$$(p = 2, n = 2).$$

Una seconda generalizzazione studia gruppi in cui i sottogruppi hanno proprietà simili ma più deboli della normalità.

Se N è sottogruppo normale del gruppo G allora preso H sottogruppo arbitrario di G si ha HN=NH.

Un sottogruppo K del gruppo G si dice permutabile se per ogni H sottogruppo di G si ha HK = KH. I sottogruppi permutabili vengono detti anche quasi normali.

Mentre ogni gruppo normale è permutabile si costruiscono facilmenti esempi di gruppi permutabili non normali.

Uno dei motivi di interesse dei sottogruppi permutabili è che le proiettività tra gruppi finiti non conservano la normalità ma, tranne poche eccezioni ben studiate, conservano la permutabilità.

I gruppi finiti con tutti i sottogruppi permutabili sono detti quasi hamiltoniani e sono stati determinati da Iwasawa(ved. [4]).

Si tratta di gruppi nilpotenti e quindi sono prodotti diretti di *p*-gruppi di Sylow. I *p*-gruppi finiti quasi hamiltoniani sono esattamente quelli con il reticolo dei sottogruppi modulare. Quelli non abeliani sono classificati dal seguente:

Teorema 0.0.3 (di Iwasawa).

Un p-gruppo finito ha reticolo modulare se e solo se:

- 1. G è prodotto diretto di un gruppo dei quaternioni Q_8 di ordine 8 con un 2-gruppo abeliano elementare o,
- 2. G contiene un sottogruppo A abeliano normale con G/A ciclico;inoltre esiste $b \in G$ con $G = A \langle b \rangle$ e un intero positivo s tale che $b^{-1}ab = a^{1+p^s}$ per ogni $a \in A$, con $s \ge 2$ nel caso p=2.

Lo scopo di questa tesi è studiare gruppi finiti che soddisfano condizioni sul numero di sottogruppi non permutabili.

In analogia al lavoro di Zappa si vogliono classificare i gruppi finiti i cui sottogruppi non permutabili hanno lo stesso ordine. Tra questi poi, in analogia con il lavoro di Brandl, si classificano quelli in cui i sottogruppi non permutabili appartengono alla stessa classe di coniugio.

Raccolgo i risultati ottenuti nel seguente:

Teorema 0.0.4.

G è gruppo finito i cui sottogruppi non permutabili hanno tutti lo stesso ordine se e solo se

- 1. $G = N \rtimes P$ estensione spezzante di un sottogruppo $N \subseteq G$ di ordine primo q tramite un p-gruppo ciclico P con $p \neq q$, $[N, P] \neq 1$, $[N, \Phi(P)] = 1$ o G è un p-gruppo e
- 2. $G = \langle a, b : a^4 = 1, b^4 = a^2, b^a = b^{-1} \rangle$;
- 3. $G = \langle a, b, c : a^p = b^p = c^p = 1, [a, b] = c, [a, c] = 1, [b, c] = 1 \rangle$ $con \ p \geq 3;$
- 4. $G = \langle a, b, d : a^p = b^p = d^{p^m} = 1, [a, b] = d^{p^{m-1}}, [a, d] = 1, [b, d] = 1 \rangle$ $con \ p \geq 3, \ m > 1;$
- 5. $G = \langle u, v, x : u^9 = v^3 = 1, x^3 = u^3, uv = vu, u^x = uv, v^x = vu^{-3} \rangle$;
- 6. $G = \langle a, b : a^4 = 1 = b^2, a^b = a^{-1} \rangle$
- 7. $G = \langle a, b, c : a^4 = b^2 = 1, c^{2^{i-1}} = a^2, a^b = a^{-1}, ac = ca, bc = cb \rangle$ $con \ i > 1;$
- 8. $G = \left\langle \begin{array}{ccc} a,b,c,d: & a^4=b^2,a^2=c^2=d^2,a^b=a^{-1},c^d=c^{-1},ac=ca,\\ &bc=cb,ad=da,bd=db \end{array} \right\rangle;$
- 9. $G = \langle a, b, c : a^4 = c^4 = 1, a^2 = b^2, b^a = b^3, a^c = a, b^c = b \rangle;$

viii Introduzione

10.
$$G = \langle a, b, c : a^4 = b^4 = 1, c^2 = b^2, b^a = b^3, ac = ca, b^c = ba^2 \rangle$$
;

11.
$$G = \left\langle \begin{array}{cc} a, b, c, d: & a^4 = b^4 = 1, b^2 = c^2, d^2 = a^2, ca = ac, c^b = ca^2, \\ b^a = b^3, db = bd, a^d = aa^2b^2, c^d = cb^2 \end{array} \right\rangle;$$

12.
$$G = \langle a, b : a^4 = b^{2^n} = 1, a^b = a^3 \rangle \ con \ n \ge 2;$$

13.
$$G = \langle a, b : a^8 = 1, a^4 = b^{2^{n-1}}, a^b = a^7 \rangle$$
 con $n \ge 3$.

Inoltre il gruppo 1 ha una sola classe di coniugio di sottogruppi non permutabili mentre nei p—gruppi sopra elencati le classi di coniugio di sottogruppi non permutabili sono almeno due. Infatti:

- nei gruppi 3, 4, 5, 9 ogni sottogruppo non permutabile ha esattamente p coniugati e le classi di coniugio sono p+1;
- nei gruppi 2, 6, 7, 12,13 ogni sottogruppo non permutabile ha esattamente 2 coniugati e le classi di coniugio sono 2;
- nel gruppo 8 ogni sottogruppo non permutabile ha esattamente 2 coniugati e le classi di coniugio sono 5;
- nel gruppo 10 ogni sottogruppo non permutabile ha esattamente 2 coniugati e le classi di coniugio sono 7;
- nel gruppo 11 ogni sottogruppo non permutabile ha esattamente 2 coniugati e le classi di coniugio sono 15;

Capitolo 1

Gruppi non nilpotenti

Teorema 1.0.5.

G è gruppo finito non nilpotente i cui sottogruppi non permutabili hanno tutti lo stesso ordine se e solo se $G=N\rtimes P$ estensione spezzante di un sottogruppo $N \subseteq G$ di ordine primo q tramite un p-gruppo ciclico P con $p\neq q$. Inoltre:

- $[N, P] \neq 1$;
- $[N, \Phi(P)] = 1;$

Dimostrazione.

G è gruppo finito non nilpotente quindi esiste P p-Sylow non normale e quindi non permutabile.

P è ciclico altrimenti sarebbe prodotto di permutabili.

P è massimale.

Certamente esiste M massimale non normale e quindi non permutabile. Poichè tutti i non permutabili hanno lo stesso ordine |M| = |P| cioè M è p-Sylow, è coniugato a P e P è massimale.

Sia N il sottogruppo generato dai q-Sylow per $q \neq p$. Questi q-sottogruppi, avendo ordine diverso da |P| sono permutabili , quindi normali.

Sia $g \in N$. Allora $\langle g \rangle$ permuta con P e per la massimalità di P dovrà essere $P \langle g \rangle = G$, $N = \langle g \rangle$ e N di ordine primo.

 $\Phi(P) \leq P$ ed essendo permutabile è normalizzato da g; Quindi $\Phi(P) \leq G$ e $[N, \Phi(P)] \subseteq N \cap \Phi(P) = 1$.

Infine P e N non commutano e quindi $[N, P] \neq 1$.

Per quanto provato nel teorema 0.0.1 il gruppo $G = N \rtimes P$ ha una sola classe di coniugio di sottogruppi non normali ed è la classe di coniugio di P che è p-Sylow massimale non normale e quindi non permutabile.

Capitolo 2

Gruppi nilpotenti

Osservazione 1.

Se G è gruppo nilpotente avente tutti i sottogruppi permutabili tranne quelli di ordine fissato allora è un p-gruppo.

Infatti se G non è p-gruppo allora $G = A \times B$ dove A e B sono sottogruppi di Hall $\neq 1$ ed inoltre ogni sottogruppo di G ha forma $H \times K$ con $H \leq A$ e $K \leq B$.

Siano quindi $H_1 \times K_1, H_2 \times K_2$ sottogruppi di G che non permutano. Allora $H_1H_2 \times K_1K_2 \neq H_2H_1 \times K_2K_1$ da cui $H_1H_2 \neq H_2H_1$ o $K_1K_2 \neq K_2K_1$.

Si può supporre $H_1H_2 \neq H_2H_1$ e tutti i sottogruppi non permutabili dovrebbero avere l'ordine di H_1 ma $H_1 \times B$ e $H_2 \times B$ non permutano e hanno ordine strettamente maggiore di H_1 .

Quindi posso supporre G un p-gruppo.

Indicheremo con $S(p^n)$ la classe dei p-gruppi finiti i cui tutti i sottogruppi non permutabili hanno ordine p^n .

2.1 Gruppi appartenenti a S(p) con $p \ge 3$

Siano A_1 e A_2 sottogruppi di G tali che $|A_i|=p,\ A_i=\langle a_i\rangle$ per i=1,2 e $A_1A_2\neq A_2A_1$.

Sia $N \subseteq G$, |N| = p e $N = \langle n \rangle$.

 $A_1N \leq G$ ed essendo $|A_1N| = p^2$, A_1N è permutabile in G. In particolare quindi A_1NA_2 è sottogruppo di G e $|A_1NA_2| = p^3$ da cui

 $A_1 N A_2 = \langle A_1, A_2 \rangle = H.$

Poichè H ha ordine p^3 e contiene sottogruppi non permutabili deve essere isomorfo a $E(p^3)$ cioè

 $H = \langle a_1, a_2 : a_1^p = 1 = a_2^p, [a_1, a_2] = n \in Z(H), n^p = 1 \rangle$. In particolare N è l'unico sottogruppo di G di ordine p permutabile sia con A_1 che con A_2 .

Proposizione 2.1.1.

Se
$$C \leq G$$
 e $|C| = p$ allora $C \leq H$.
Quindi $H = \Omega_1(G)$.

Dimostrazione.

Possiamo supporre $C \neq A_1, C \neq A_2$. Distinguiamo allora i seguenti casi:

1. $A_1C = CA_1$

 $A_1C \leq G$ ed essendo $|A_1C| = p^2$, A_1C è quasi normale in G.

In particolare quindi A_1CA_2 è sottogruppo di $G \in |A_1CA_2| = p^3$ da cui $A_1CA_2 = \langle A_1, A_2 \rangle = H \text{ da cui } C \leq H.$

Inoltre $A_1C \triangleleft H$ e quindi contiene tutti i coniugati di A_1 in H. Analogamente $A_1N \triangleleft H$ e quindi contiene tutti i coniugati di A_1 in H per cui $A_1C = A_1N$ e dunque $C \leq A_1N$.

2. $A_2C = CA_2$

Con gli stessi argomenti del punto (1) si conclude $C \leq H$ ed anzi $C \leq A_2 N$.

3. $A_1C \neq CA_1, A_2C \neq CA_2, C \not\leq \langle A_1, A_2 \rangle$.

Posto $C = \langle a_3 \rangle$ e ripetendo i calcoli di sopra ottengo:

$$\langle A_1, C \rangle = A_1 NC = \langle a_1, a_3 : a_1^p = 1, a_3^p = 1, \\ [a_1, a_3] = n_{1,3} \in Z(\langle A_1, C \rangle), n_{1,3}^p = 1 \rangle.$$

$$\langle A_2, C \rangle = A_2 NC = \langle a_3, a_2 : a_2^p = 1, a_3^p = 1, \\ [a_3, a_2] = n_{3,2} \in Z(\langle A_2, C \rangle), n_{3,2}^p = 1 \rangle.$$

Quindi:

$$K = \langle A_1, A_2, C \rangle = \langle A_1, A_2 \rangle C =$$

 $\langle a_1, a_2, a_3 : a_i^p = 1 \text{ per } i = 1, 2, 3, \quad [a_i, a_j] = n_{i,j}, \text{ con } i \neq j,$
 $n_{i,j} \in Z(K) \text{ e } n_{i,j}^p = 1 \rangle.$

K/N è abeliano elementare e quindi $N=K'=\Phi(K)$.

 $N = K' \subseteq Z(K)$ e quindi K ha classe 2 e $\forall x, y \in K$ di ordine p $(xy)^p = x^p y^p [x, y]^{\binom{p}{2}} = 1$ da cui $\exp(K) = p$.

Se $x \in Z(K)$ e ha ordine p allora x commuta sia con a_1 che con a_2 e per quanto provato ai punti 1 e 2 $\langle x \rangle \subseteq A_1 N \cap A_2 N = N$ cioè Z(K) = N. Quindi $K' = Z(K) = \Phi(K)$ da cui K è extraspeciale ma $|K| = \frac{|\langle A_1, A_2 \rangle| \cdot |C|}{|\langle A_1, A_2 \rangle \cap C|} = p^4$ assurdo.

$$|K| = \frac{|\langle A_1, A_2 \rangle| \cdot |C|}{|\langle A_1, A_2 \rangle \cap C|} = p^4$$
 assurdo.

Teorema 2.1.2.

Sia p un primo $p \ge 2$ e G un p-gruppo finito. Allora $G \in S(p)$ se e solo se G ha la seguente presentazione:

$$G = \left\langle a, b, d : a^p = b^p = d^{p^i} = 1, [a, b] = d^{p^{i-1}}, [a, d] = 1, [b, d] = 1 \right\rangle$$

Dimostrazione.

Osserviamo che $\forall x \in G, A_1^x \subseteq A_1N$

Se $x \in H$ essendo $A_1 N \subseteq H$ ottengo che $A_1^x \subseteq A_1 N$.

Se $x \notin H$ allora l'ordine di x è maggiore di p e quindi $\langle x \rangle$ è

permutabile in $G \in \langle a_1 \rangle \langle x \rangle \leq G$.

Posto $\langle y \rangle = \Omega_1(\langle x \rangle)$ ottengo $\langle a_1 \rangle \langle y \rangle = \langle y \rangle \langle a_1 \rangle$.

Analogamente $\langle a_2 \rangle \langle y \rangle = \langle y \rangle \langle a_2 \rangle$ da cui $\langle y \rangle = N$.

 $A_1 \langle x \rangle \cap H = A_1(\langle x \rangle \cap H) = A_1 \langle y \rangle = A_1 N$ ed essendo $H \subseteq G$ si ottiene $A_1 N \subseteq A_1 \langle x \rangle$ da cui $A_1^x \subseteq A_1 N$.

Quindi posso concludere $A_1N \subseteq G$. Analogamente $A_2N \subseteq G$ e quindi A_1 e A_2 hanno p coniugati in G.

 $C_G(\langle A_1, A_2 \rangle) = C_G(A_1) \cap C_G(A_2).$

 $[G: C_G(A_i)] = p \text{ con i} = 1,2 \text{ e } [G: C_G(A_1) \cap C_G(A_2)] = p^2.$

 $H \cap (C_G(A_1) \cap C_G(A_2)) = Z(H) = N$ e dunque $G = H * C_G(H)$.

Inoltre se $K \leq C_G(H), |K| = p$ si ha $K \leq H$ e K permuta sia con A_1 che con A_2 . Quindi K = N e $C_G(H)$ è ciclico.

Infine il gruppo $\langle a,b,d:a^p=b^p=d^{p^i}=1,[a,b]=d^{p^{i-1}},[a,d]=1,[b,d]=1\rangle$ ha i sottogruppi $\langle a\rangle$, $\langle b\rangle$ che non permutano e hanno ordine p. Tutti gli altri sottogruppi sono normali come prova il teorema 0.0.2

2.2 Gruppi appartenenti a S(p) con p=2

Siano A_1 e A_2 sottogruppi di G tali che $|A_i|=2, A_i=\langle a_i\rangle$ per i=1,2 e $A_1A_2\neq A_2A_1$.

Sia $N \subseteq G$, |N| = 2 e $N = \langle n \rangle$.

 $A_1N \leq G$ ed essendo $|A_1N| = 2^2$, A_1N è permutabile in G.

In particolare quindi A_1NA_2 è sottogruppo di G e $|A_1NA_2|=2^3$ da cui $A_1NA_2=\langle A_1,A_2\rangle=H$.

Poichè H ha ordine 2^3 e contiene sottogruppi non permutabili deve essere isomorfo a D_8 cioè:

$$H = \langle a_1, a_2 : a_1^2 = a_2^2 = 1, [a_1, a_2] = n \in Z(H), n^2 = 1 \rangle.$$

Osservazione 2.

Se $C \in G$, |C| = 2 e $A_1C = CA_1$ o $A_2C = CA_2$ allora $C \subseteq H$.

Infatti supponendo ad esempio $C \neq A_1$ e $A_1C = CA_1$ allora $A_1C \leq G$ e

avendo ordine 2^2 è permutabile in G. In particolare permuta con A_2 , quindi A_1CA_2 è sottogruppo di G di ordine 2^3 e contenete sia A_1 che A_2 da cui $A_1CA_2 = A_1NA_2$.Inoltre A_1C e A_1N sono normali in H e quindi entrambi contengono tutti i coniugati di A_1 in H da cui $A_1C = A_1N$.

Proposizione 2.2.1.

 $\Omega_1(G)$ è di uno dei seguenti tipi:

- D_8 .
- $D_8 * A \ con \ |A| = 4$, $A \ \dot{e} \ ciclico \ e \ A \cap D_8 = Z(D_8)$.
- $D_8 * Q_8$.

Dimostrazione.

Proviamo dapprima che $\not\exists A_1, A_2, A_3, A_4, A_5 \in G, |A_i| = 2 \text{ e } A_i = \langle a_i \rangle \text{ con la proprietà che } \forall i \neq j \ A_i A_j \neq A_j A_i \text{ e } A_j \not\subseteq \langle A_i : i < j \rangle \text{ (*)}.$ In particolare $|\Omega_1(G)| \leq 32$. Se $A_i A_j \neq A_j A_i$ allora ripetendo i calcoli precedenti $\langle A_i, A_j \rangle = \langle a_i, a_j : a_i^2 = a_j^2 = 1, [a_i, a_j] = n, n^2 = 1, [a_i, n] = 1, [a_j, n] = 1 \rangle$. Quindi il sottogruppo generato da $\langle A_1, A_2, A_3, A_4, A_5 \rangle$ è:

Quindi il sottogruppo generato da
$$\langle A_1, A_2, A_3, A_4, A_5 \rangle$$
 è: $\langle a_1, a_2, a_3, a_4, a_5 \rangle$: $a_1^2 = a_2^2 = a_3^2 = a_4^2 = a_5^2 = 1, [a_i, a_j] = n \text{ con } i \neq j,$ $n^2 = 1, [a_1, n] = [a_2, n] = [a_3, n] = [a_4, n] = [a_5, n] = 1 \rangle$.

L'elemento $a_1a_2a_3a_4a_5$ ha ordine 2 e commuta con a_1 e con a_2 . Per l'osservazione precedente $\langle a_1a_2a_3a_4a_5\rangle\subseteq A_1N\cap A_2N=N$ da cui $a_1a_2a_3a_4a_5\in\langle A_1,A_2\rangle$. Quindi $a_5\in\langle A_i:i=1,2,3,4\rangle$ contro l'ipotesi iniziale. Inoltre (teorema 4.12 da [6]) essendo $\Omega_1(G)/N$ abeliano elementare si ha $\Omega_1(G)\cong E*A$ con E extraspeciale e A abeliano. Ho le seguenti possibilità:

- 1. se $|\Omega(G)| = 8$ allora $\Omega(G) \cong D_8$.
- 2. se $|\Omega(G)| = 16$ allora $\Omega(G) \cong D_8 * A$ con |A| = 4 e $A \cap D_8 = Z(D_8)$.
- 3. se $|\Omega(G)| = 32$ allora $\Omega(G) \cong D_8 * Q_8$.

Inoltre se sono nel caso 2 A deve essere ciclico perchè se $C \leq A$ e |C| = 2 allora C commuta con i sottogruppi di ordine 2 di D_8 e per l'osservazione ottengo $C = Z(D_8)$ e quindi A deve essere ciclico.

Proposizione 2.2.2.

Con le notazioni iniziali: $A_1 N \leq G$.

Dimostrazione.

Distinguiamo i casi:

1. $\Omega(G) \cong D_8 = \langle A_1, A_2 \rangle$. Se $x \in \langle A_1, A_2 \rangle$ allora $A_1^x \subseteq A_1 N$. Se $x \notin \langle A_1, A_2 \rangle$ allora $o(x) \geq 4$.Sia $\langle y \rangle = \Omega(\langle x \rangle)$. Essendo $A_1 \langle x \rangle = \langle x \rangle A_1$ si ha $A_1 \langle y \rangle = \langle y \rangle A_1$.

Analogamente si ha $A_2 \langle y \rangle = \langle y \rangle A_2$ e dunque $\langle y \rangle = N$.

Distinguiamo i due casi:

- Se $\langle x \rangle \cap \langle A_1, A_2 \rangle = \langle y \rangle$ allora $A_1 \langle x \rangle \cap \langle A_1, A_2 \rangle = A_1 (\langle x \rangle \cap \langle A_1, A_2 \rangle) = A_1 N$ ed essendo $\Omega(G) \unlhd G$ ottengo $A_1 N \unlhd A_1 \langle x \rangle$ da cui $A_1^x \subseteq A_1 N$.
- Se $|\langle x \rangle \cap \langle A_1, A_2 \rangle| = 4$ ottengo una contraddizione. Infatti deve essere $\langle x \rangle \cap \langle A_1, A_2 \rangle = \langle a_1 a_2 \rangle$ e ottengo $A_1 \langle x \rangle \cap \langle A_1, A_2 \rangle = A_1 (\langle x \rangle \cap \langle A_1, A_2 \rangle) = A_1 \langle a_1 a_2 \rangle = \langle A_1, A_2 \rangle$. Quindi $\langle A_1, A_2 \rangle \subseteq A_1 \langle x \rangle$. $A_1 \langle x \rangle$ è gruppo con massimale ciclico e dunque $A_1 \langle x \rangle \cong M(2^n), D_{2^n}, Q_{2^n}, S(2^n)$ dove $|A_1 \langle x \rangle| = 2^n$ con $n \leq 4$.

 $M(2^n)$ per $n \geq 4$ è un gruppo quasi hamiltoniano e non contiene sottogruppi isomorfi a D_8 .

 \mathbb{D}_{2^n} ha sottogruppi di ordine 4 non permutabili .

 Q_{2^n} se $n \geq 4$ ha sottogruppi di ordine 4 non permutabili .

 S_{2^n} ha sottogruppi di ordine 4 non permutabili .

2. $H = \Omega(G) \cong D_8 * A$

In questo caso:

$$H = \langle a_1, a_2, a : a_1^2 = a_2^2 = a^4 = 1, [a_1, a_2] = a^2, [a_1, a] = 1, [a_2, a] = 1 \rangle$$
. Se $X \in H \Rightarrow A_1^X \subseteq A_1 N \trianglelefteq H$

Se $x \notin H$ allora $o(x) \ge 4$.Sia $\langle y \rangle = \Omega(\langle x \rangle)$.

Essendo $A_1 \langle x \rangle = \langle x \rangle A_1$ si ha $A_1 \langle y \rangle = \langle y \rangle A_1$.

Analogamente si ha $A_2 \langle y \rangle = \langle y \rangle A_2$ e dunque $\langle y \rangle = N$.

Distinguiamo i due casi:

- Se $\langle x \rangle \cap H = N$ allora $A_1 \langle x \rangle \cap H = A_1(\langle x \rangle \cap H) = A_1 N$ ed essendo $H \subseteq G$ ottengo $A_1 N \subseteq A_1 \langle x \rangle$ da cui $A_1^x \subseteq A_1 N$.
- Se $|\langle x \rangle \cap H| = 4$ allora ho le seguenti possibilità:
 - $-\langle x \rangle \cap H = \langle t \rangle$ dove $t = a_1 a_2, a a_2$. $A_1 \langle x \rangle \cap H = A_1 (\langle x \rangle \cap H) = A_1 \langle t \rangle \cong D_8$. Quindi $D_8 \cong \langle A_1, t \rangle \subseteq A_1 \langle x \rangle$ ma come si è visto ciò non è possibile.
 - $\langle x \rangle \cap H = \langle t \rangle \text{ dove } t = a, aa_1.$ $A_1 \langle x \rangle \cap H = A_1(\langle x \rangle \cap H) = A_1 \langle t \rangle = \langle a_1, a \rangle \text{ da cui } A_1 \langle a \rangle \leq A_1 \langle x \rangle. \text{Essendo } A_1 N = \Omega_1(A_1 \langle a \rangle) \text{char } \langle A_1 \langle a \rangle \rangle \text{ si ha } A_1 N \leq A_1 \langle x \rangle.$

3.
$$H = \Omega(G) \cong D_8 * Q_8$$
. In questo caso:
 $H = \langle a_1, a_2, w, z : a_1^2 = a_2^2 = w^4 = 1, w^z = w^{-1}, [a_1, a_2] = w^2 = z^2,$
 $[a_1, w] = 1, [a_2, w] = 1, [a_1, z] = 1, [a_2, z] = 1 \rangle$.

Se $x \in H \Rightarrow A_1^x \subseteq A_1 N \subseteq H$

Se $x \notin H$ allora $o(x) \ge 4$.Sia $\langle y \rangle = \Omega(\langle x \rangle)$.

Essendo $A_1 \langle x \rangle = \langle x \rangle A_1$ si ha $A_1 \langle y \rangle = \langle y \rangle A_1$.

Analogamente si ha $A_2 \langle y \rangle = \langle y \rangle A_2$ e dunque $\langle y \rangle = N$.

Distinguiamo i due casi:

- Se $\langle x \rangle \cap H = N$ allora $A_1 \langle x \rangle \cap H = A_1(\langle x \rangle \cap H) = A_1 N$ ed essendo $H \triangleleft G$ ottengo $A_1 N \unlhd A_1 \langle x \rangle \Rightarrow A_1^x \subseteq A_1 N$.
- Se $|\langle x \rangle \cap H| = 4$ allora ho le seguenti possibilità:
 - $-\langle x\rangle \cap H = \langle t\rangle$ dove $t = a_1a_2, a_2w, a_2z, a_2wz$. In questo caso $A_1\langle x\rangle \cap H = A_1(\langle x\rangle \cap H) = A_1\langle t\rangle \cong D_8$ e come si è visto non è possibibile.
 - $\begin{array}{l} -\langle x\rangle \cap H = \langle t\rangle \mbox{ dove } t = w,z,wz,a_1w,a_1z,a_1wz. \mbox{In questo caso} \\ A_1\langle x\rangle \cap H = A_1(\langle x\rangle \cap H) = A_1\langle t\rangle \unlhd A_1\langle x\rangle. \\ \mbox{Essendo } A_1\langle t\rangle \mbox{ abeliano, } A_1N = \Omega_1(A_1\langle t\rangle) \mbox{ char } A_1\langle t\rangle \mbox{ si ha} \\ A_1N \unlhd A_1\langle x\rangle \mbox{ .} \end{array}$

Teorema 2.2.3.

Sia p = 2 e sia G un 2-gruppo finito. Allora $G \in S(2)$ se e solo se G ha la seguente presentazione:

1.
$$G \cong \langle a, b : a^4 = 1 = b^2, a^b = a^{-1} \rangle$$
.

2.
$$G \cong \langle a, b, c : a^4 = b^2 = 1, c^{2^{i-1}} = a^2, a^b = a^{-1}, ac = ca, bc = cb \rangle$$
.

3.
$$G \cong \left\langle \begin{array}{cc} a, b, c, d : & a^4 = b^2, a^2 = c^2 = d^2, a^b = a^{-1}, c^d = c^{-1}, \\ & ac = ca, bc = cb, ad = da, bd = db \end{array} \right\rangle$$
.

Dimostrazione.

Come si è visto $A_1N \subseteq G$ e analogamente anche $A_2N \subseteq G$ e dunque $\langle A_1, A_2 \rangle \triangleleft G$.

$$C_G(\langle A_1, A_2 \rangle) = C_G(A_1) \cap C_G(A_2)$$

$$[G: C_G(A_i)] = 2 \text{ con i} = 1, 2 \text{ e } [G: C_G(A_1) \cap C_G(A_2)] = 2^2.$$

$$H \cap (C_G(A_1) \cap C_G(A_2)) = Z(H) = N$$
 e dunque $G = H * C_G(H)$.

Inoltre se $K \leq C_G(H), |K| = 2$ allora $K \leq H$ e permuta sia con A_1 che con A_2 da cui K = N. Quindi $C_G(H)$ è ciclico o è il gruppo dei quaternioni. Poichè se $n \geq 4$ Q_{2^n} contiene sottogruppi non permutabili di ordine 4 si

conclude.

Il gruppo $\langle a, b : a^4 = 1 = b^2, a^b = a^{-1} \rangle$ chiaramente è in S(2). Il gruppo $\langle a, b, c : a^4 = b^2 = 1, c^{2^{i-1}} = a^2, a^b = a^{-1}, ac = ca, bc = cb \rangle$ appartiene a S(2). Infatti i sottogruppi $\langle ab \rangle$, $\langle b \rangle$ non permutano e hanno ordine 2. Gli altri sottogruppi sono normali come prova il teorema 0.0.2.

Il gruppo $\left\langle \begin{array}{ccc} a,b,c,d: & a^4=b^2,a^2=c^2=d^2,a^b=a^{-1},c^d=c^{-1},\\ & ac=ca,bc=cb,ad=da,bd=db \end{array} \right\rangle$ appartiene a S(2). Infatti i sottogruppi $\left\langle ab\right\rangle,\left\langle b\right\rangle$ non permutano e hanno ordine 2.

Gli altri sottogruppi sono normali come prova il teorema 0.0.2.

2.3 p-gruppi appartenenti a $S(p^i)$ con $i \ge 2$ e p > 3

In tutto il capitolo G indica un gruppo come nel titolo.

Proposizione 2.3.1.

Se A e B sono sottogruppi di G di ordine p^i tali che $AB \neq BA$ allora A e B sono ciclici e se $A = \langle a \rangle$ e $B = \langle b \rangle$ allora $A \cap B = \langle a^p \rangle = \langle b^p \rangle$.

Dimostrazione.

A e B sono ciclici perche altrimenti sarebbero prodotto di permutabili; poniamo $A = \langle a \rangle$ e $B = \langle b \rangle$.

Consideriamo $\langle a^p \rangle$ e $\langle b^p \rangle$. Avendo ordine p^{i-1} $\langle a^p \rangle$ e $\langle b^p \rangle$ sono permutabili in G e dunque

$$\langle a^p \rangle \langle b \rangle \le G \in \langle b^p \rangle \langle a \rangle \le G$$

Ora
$$(\langle a^p \rangle \langle b \rangle) (\langle b^p \rangle \langle a \rangle) = \langle b \rangle \langle a \rangle e (\langle b^p \rangle \langle a \rangle) (\langle a^p \rangle \langle b \rangle) = \langle a \rangle \langle b \rangle$$

Quindi
$$(\langle a^p \rangle \langle b \rangle)(\langle b^p \rangle \langle a \rangle) \neq (\langle b^p \rangle \langle a \rangle)(\langle a^p \rangle \langle b \rangle)$$

Poichè non permutano dovrà essere:

$$|\langle a^p \rangle \langle b \rangle| = p^i e |\langle b^p \rangle \langle a \rangle| = p^i da cui \langle a^p \rangle \le \langle b \rangle e \langle b^p \rangle \le \langle a \rangle$$

Quindi:
$$\langle a \rangle \cap \langle b \rangle = \langle a^p \rangle = \langle b^p \rangle$$

Proposizione 2.3.2.

 $H = \Omega_1(G) = \{g \in G : g^p = 1\}$ è abeliano elementare $e |H| = p^2$.

Dimostrazione.

 $H = \Omega_1(G) = \{g \in G : g^p = 1\}$ perchè i sottogruppi di ordine p permutano; H è abeliano elementare e poichè G non è ciclico $|H| \geq p^2$.

Proviamo che $|H| = p^2$.

siano $A = \langle a \rangle$, $B = \langle b \rangle$ due sottogruppi non permutabili. Per la proposizione precedente i sottogruppi $\langle a \rangle / \langle a^p \rangle$ e $\langle b \rangle / \langle b^p \rangle$ hanno ordine p, non permutano e generano un sottogruppo di ordine p^3 . Quindi $|\langle a, b \rangle| = p^{i+2}$.

Poichè $\langle a \rangle \cap H = p$ e |H| > p esiste $t \in H, t \notin \langle a \rangle$.

 $\langle a \rangle \langle t \rangle \leq G$ ha ordine p^{i+1} ed è abeliano o isomorfo a $M(p^{i+1})$.

In ogni caso $\langle b \rangle \not\subseteq \langle a \rangle \langle t \rangle$ e $\langle a \rangle \langle t \rangle \langle b \rangle$ ha ordine p^{i+2} da cui $\langle a, b \rangle = \langle a \rangle \langle t \rangle \langle b \rangle$. Ora $\langle a \rangle \langle t \rangle \leq \langle a, b \rangle$ e contiene tutti i coniugati di $\langle a \rangle$ in $\langle a, b \rangle$.

Supponendo che esista $s \in H, s \notin \langle a \rangle \langle t \rangle$ con gli argomenti di sopra si ottiene $\langle a, b \rangle = \langle a \rangle \langle s \rangle \langle b \rangle$, $\langle a \rangle \langle s \rangle \leq \langle a, b \rangle$ e contiene tutti i coniugati di $\langle a \rangle$ in $\langle a, b \rangle$. Quindi $\langle a \rangle \langle s \rangle = \langle a \rangle \langle t \rangle$ contraddizione.

Teorema 2.3.3.

Non esiste un p-gruppo $G \in S(p^i)$ con $i \ge 2$ e p > 3.

Dimostrazione.

In particolare dalla dimostrazione della proposizione 2.3.2 si ottiene che se $A = \langle a \rangle$ e $B = \langle b \rangle$ sono sottogruppi di G di ordine p^i tali che $AB \neq BA$ allora $\langle a, b \rangle = \langle a \rangle \langle t \rangle \langle b \rangle$ dove $t \in H \setminus \Omega_1(A)$.

Inoltre $\langle a \rangle \langle t \rangle \leq G$ ha ordine p^{i+1} è abeliano o isomorfo a $M(p^{i+1})$ e analogamente $\langle b \rangle \langle t \rangle \leq G$ ha ordine p^{i+1} ed è abeliano o isomorfo a $M(p^{i+1})$.

Inoltre per la proposizione 2.3.1 $\langle a^p \rangle = \langle b^p \rangle$ e posso scegliere b in modo che $a^p = b^p$.

Ho i seguenti casi:

• $a^t = a, b^t = b, a^b = at$ (b induce sul sottogruppo abeliano $\langle a \rangle \langle t \rangle$ un automorfismo di ordine p e lascia invariati gli elementi di $\Omega_1(\langle a, t \rangle)$. Per il teorema 4.6 di [6] $a^b = ah$ con $h \in \langle a^{p^{i-1}}, t \rangle$ e a meno di cambiare t con h otteniamo quanto voluto). Poichè $\langle a, b \rangle$ ha classe due ottengo: $(ab^{-1})^p = a^p b^{-p} t^{\binom{p}{2}} = 1$.

Dunque in $\langle a,b\rangle$ esiste un elemento di ordine p che non normalizza $\langle a\rangle$ contro le ipotesi.

- $a^t = a, b^t = b^{1+hp^{i-1}}$ Poichè $\langle a, t \rangle \leq \langle a, b \rangle$ si ha che $a^b = a^i t^r$. Essendo $a^p = b^p$ ottengo $a^p = (a^p)^b = a^{ip} t^{rp} = a^{ip} \Leftrightarrow p \equiv ip \pmod{p^i} \Leftrightarrow i = 1 + kp^{i-1}$. Quindi $a^t = a, b^t = b^{1+hp^{i-1}}, a^b = aa^{kp^{i-1}} t^r$. In particolare $\langle a, b \rangle$ ha classe ≤ 3 e derivato contenuto in $\langle a^{p^{i-1}}, t \rangle$ di esponente p. Il p-gruppo $\langle a, b \rangle$ è regolare. Quindi: $(ba^{-1})^p = b^p a^{-p} x^p$ con $x \in \langle a, b \rangle'$, da cui $(ba^{-1})^p = 1$. Dunque in $\langle a, b \rangle$ esiste un elemento di ordine p che non normalizza $\langle a \rangle$
- contro le ipotesi.
- $a^t = a^{1+h_1p^{i-1}}, b^t = b^{1+h_2p^{i-1}} \text{ con } h_1, h_2 \in \{1, 2, \dots, p-1\}.$ In questo caso posto $s = a^{h_1p^{i-1}}$ ottengo $a^t = as, b^t = bs^k$ con $k \in \{1, 2, \dots, p-1\}.$

Poichè $\langle a,t\rangle \leq \langle a,b\rangle$ si ha $a^b=a^it^r$ ed essendo $a^p=b^p$ ottengo $a^p=(a^p)^b=a^{ip}t^{rp}=a^{ip} \Leftrightarrow p\equiv ip \pmod{p^i} \Leftrightarrow i=1+kp^{i-1}$. Quindi $a^t=as,b^t=bs^k,a^b=aa^{hp^{i-1}}t^r$.

In particolare $\langle a, b \rangle$ ha classe ≤ 3 e derivato contenuto in $\langle a^{p^{i-1}}, t \rangle$ di esponente p. Il p-gruppo $\langle a, b \rangle$ è regolare.

Quindi: $(ba^{-1})^p = b^p a^{-p} x^p$ con $x \in \langle a, b \rangle'$, da cui $(ba^{-1})^p = 1$.

Dunque in $\langle a,b\rangle$ esiste un elemento di ordine p
 che non normalizza $\langle a\rangle$

contro le ipotesi. Dunque in $\langle a, b \rangle$ esiste un elemento di ordine p che non normalizza $\langle a \rangle$ contro le ipotesi.

2.4 3-gruppi appartenenti a $S(3^i)$ con $i \geq 2$

Gli argomenti usati nel caso $p \neq 3$ per provare che $|H| = p^2$, $|\langle a, b \rangle| = p^{i+2}$ e $\langle a,b\rangle = \langle a\rangle \langle t\rangle \langle b\rangle$ continuano a valere anche nel caso p=3. Distinguiamo due casi:

1. i > 3.

Come nel caso $p \neq 3$ ho tre casi possibili:

(a) $a^t=a, b^t=b, a^b=at$ (b induce sul sottogruppo abeliano $\langle a \rangle \langle t \rangle$ un automorfismo di ordine 3 e lascia invariati gli elementi di $\Omega_1(\langle a \rangle \langle t \rangle)).$

Il gruppo $\langle a, b \rangle$ ha classe 2 e $\langle a, b \rangle' = \langle t \rangle$ e quindi: $(ab^{-1})^3 = a^3b^{-3}t^{\binom{3}{2}} = 1.$

Dunque in $\langle a, b \rangle$ esiste un elemento di ordine 3 che non normalizza $\langle a \rangle$ contro le ipotesi.

- (b) $b^t = b, a^t = a^{1+h3^{i-1}}, b^a = bt^{-1} \text{ con } h \in \{1, 2\}.$ $\left\langle a^{3^{i-1}} \right\rangle \leq Z(\langle a, b \rangle), \ \langle a, b \rangle' \leq \left\langle a^{3^{i-1}}, t \right\rangle \text{ ed inoltre } \left\langle a, b \right\rangle / \left\langle a^{3^{i-1}} \right\rangle$ ha classe ≤ 2 . Quindi $(ab^{-1})^3 \langle a^{3^{i-1}} \rangle = 1$ da cui $(ab^{-1})^3 \in \langle a^{3^{i-1}} \rangle$. Quindi ab^{-1} ha ordine 3 o 9 ma non permuta con $\langle a \rangle$:infatti $\langle a, b \rangle = \langle a, ab^{-1} \rangle$ ma se permutassero $|\langle a, ab^{-1} \rangle| \leq \frac{3^{i_0}}{3}$.
- (c) Con gli stessi calcoli e le stesse notazioni del caso $p \neq 3$ abbiamo le relazioni $a^t = as, b^t = bs^k, a^b = at.$ $\langle s \rangle = \langle a^{3^{i-1}} \rangle \leq Z(\langle a, b \rangle), \langle a, b \rangle' \leq \langle s, t \rangle$ ed inoltre $\langle a, b \rangle / \langle a^{3^{i-1}} \rangle$ ha classe ≤ 2 .

Quindi $(ab^{-1})^3 \langle a^{3^{i-1}} \rangle = 1$ da cui $(ab^{-1})^3 \in \langle a^{3^{i-1}} \rangle$.

Quindi ab^{-1} ha ordine 3 o 9 ma non permuta con $\langle a \rangle$:infatti

 $\langle a,b\rangle = \langle a,ab^{-1}\rangle$ ma se permutassero $|\langle a,ab^{-1}\rangle| \leq \frac{3^{i9}}{3}$.

2. i = 2.

Elenchiamo i gruppi non abeliani di ordine 3⁴:

(a) $M(3^4)$

(b)
$$\langle u, v, w, x : x^3 = u^3 = v^3 = w^3 = 1, uv = vu, \\ vw = wv, uw = wu, u^x = uv, w^x = v, v^x = vw \rangle.$$

(c)
$$\langle u, v, w, x : x^3 = u^3 = v^3 = 1, uv = vu, vw = wv, uw = wu, u^x = uv, w^x = v, v^x = v \rangle$$
.

(d)
$$\langle u, v, w, x : u^3 = v^3 = w^3 = 1, x^3 = v, uv = vu, vw = wv, uw = wu, u^x = uv, w^x = v, v^x = v \rangle$$
.

(e)
$$\langle u, v, w, x : u^3 = v^3 = w^3 = 1, x^3 = w, uv = vu, vw = wv, uw = wu, u^x = uv, w^x = v, v^x = v \rangle$$
.

(f)
$$\langle x, y : x^9 = y^9 = 1, x^y = x^4 \rangle$$
.

(g)
$$\langle x, v : x^3 = v^3 = 1, [x, v] \in Z(\langle x, v \rangle) \rangle * \langle u : u^9 = 1 \rangle$$
.

(h)
$$\langle x, y, z : x^3 = y^3 = z^9 = 1, yz = zy, y^x = yz^3, z^x = zy \rangle$$
.

(i)
$$\langle x, y, z : x^3 = y^3 = z^9 = 1, yz = zy, y^x = yz^{3k^2}, z^x = zy \rangle$$
.

(j)
$$\langle u, v, x : u^9 = v^3 = 1, x^3 = u^3, uv = vu, u^x = uv, v^x = vu^{-3} \rangle$$
.

I gruppi (a) e (f) sono un M-gruppo.

I gruppi (b),(c),(d),(e) possiedono un sottogruppo abeliano elementare di tipo (p,p,p).

Il gruppo (g) contiene elementi di ordine 3 che non permutano.

I gruppi (h) e (i) contengono x che è elemento di ordine 3 ma non normalizza $\langle z \rangle$.

Proviamo che il gruppo (j) è del tipo cercato.

Certamente i sottogruppi di ordine 3^3 sono massimali e quindi normali ed esistono sottogruppi di ordine 3^2 che non sono quasi normali. Resta da provare che gli elementi di ordine 3 normalizzano ogni elemento di ordine 9 che non appartenga a $\langle u,v\rangle$. A tal fine basta vedere che ogni elemento di questo tipo ha cubo in $\langle u^3\rangle$.

Osservo che:

$$(v^{j})^{x} = v^{j}u^{-3j}$$

$$(v^{j})^{x^{2}} = v^{j}u^{-6j}$$

$$u^{x} = uv$$

$$u^{x^{2}} = uvvu^{-3}$$

$$(u^{i})^{x} = u^{i}v^{i}$$

$$(u^{i})^{x^{2}} = u^{i}v^{i}v^{i}u^{-3i}$$

Un elemento che non stia in $\langle u, v \rangle$ è della forma $x(u^i v^j)$, o $x^2(u^i v^j)$.

$$\begin{split} [x(u^iv^j)]^3 &= x^3(u^iv^j)^{x^2}(u^iv^j)^x(u^iv^j) \\ &= x^3u^iv^iv^iu^{-3i}v^ju^{-6j}u^iv^iv^ju^{-3j}u^iv^j \\ &= x^3u^{i(1+1+1-3)}u^{-j(3+6)}v^{i(1+1+1)}v^{j(1+1+1)} = x^3 \\ [x^2(u^iv^j)]^3 &= x^6(u^iv^j)^{x^4}(u^iv^j)^{x^2}(u^iv^j) = x^6(u^iv^j)^x(u^iv^j)^{x^2}(u^iv^j) = x^6. \end{split}$$

Teorema 2.4.1.

Dato G 3-gruppo finito sono equivalenti:

- 1. $G \in S(3^i) \ con \ i > 2$;
- 2. $G \in S(3^2)$;
- 3. $G = \langle u, v, x : u^9 = v^3 = 1, x^3 = u^3, uv = vu, u^x = uv, v^x = vu^{-3} \rangle$.

Dimostrazione.

Ho già provato che se

 $G \cong \langle u, v, x : u^9 = v^3 = 1, x^3 = u^3, uv = vu, u^x = uv, v^x = vu^{-3} \rangle$ allora $G \in S(3^2)$ e che non esistono 3-gruppi in $S(3^i)$ con i > 2.

Se $G \in S(3^2)$ allora G contiene un sottogruppo isomorfo a

 $\langle u, v, x : u^9 = v^3 = 1, x^3 = u^3, uv = vu, u^x = uv, v^x = vu^{-3} \rangle.$

Inoltre essendo $\Omega_1(G) = \langle u^3, v \rangle G$ verifica le ipotesi del teorema (4.12) del [6] e dunque $C_G(\Omega_1(G))$ è massimale e metaciclico e $G = \langle x \rangle$ $C_G(\Omega_1(G))$.

Dimostro che $C_G(\Omega_1(G)) = \langle u, v \rangle$.

Suppongo $y \in C_G(\Omega_1(G))$ di ordine 9.

Provo che $y \in \langle u, v \rangle$.

Ho le seguenti possibilità:

- $\bullet \ \langle y \rangle \cap \langle u \rangle = \langle u \rangle$ In questo caso $y \in \langle u, v \rangle$.
- $\langle y \rangle \cap \langle u \rangle = \langle u^3 \rangle$

Allora poichè $\langle u, y \rangle$ non è ciclico ottengo $\Omega_1(\langle u, y \rangle) = \langle u^3, v \rangle$.

Posso sempre supporre $u^3 = y^3$.

Certamente $\langle u \rangle$ e $\langle y \rangle$ permutano. Infatti se così non fosse avrei $\langle u, y \rangle \cong \langle u, x \rangle$ ma $\langle \Omega_1 \langle y, u \rangle \rangle = \langle u^3, v \rangle \subseteq Z(\langle u, y \rangle)$ mentre $\Omega_1(\langle x, u \rangle) \not\subseteq$ $Z(\langle x, u \rangle).$

Quindi $\langle u \rangle$ e $\langle y \rangle$ permutano, $\langle y \rangle \unlhd \langle u,y \rangle$ ed uinduce su $\langle y \rangle$ un automorfismo di ordine 3 che tiene fisso y^3 . Quindi ottengo $y^u = y^{1+3h}$ con $h \in \{1, 2, 3\}$ e trovo che $u^{-1}y$ ha ordine 3.

Ora $u^{-1}y = u^{3i}v^j$ con $i \in \{1, 2, 3\}$ e $j \in \{1, 2\}$ da cui $y \in \langle u, v \rangle$.

• $\langle y \rangle \cap \langle u \rangle = 1$.

Per la proposizione 2.3.1 i sottogruppi $\langle u \rangle$ e $\langle y \rangle$ avendo intersezione identica permutano.

Osservo che $\langle y^3,u^3\rangle=\Omega_1(\langle u,y\rangle)=\langle u^3,v\rangle$ da cui $y^3=u^{3k}v^j$. Inoltre essendo $\langle y, u^3 \rangle \leq \langle u, y \rangle$

$$y^{u} = y^{i}u^{3h}$$
 e
 $y^{3} = (y^{3})^{u} = y^{3i}u^{9h} = y^{3i}$ ottengo

 $y^u = yh \text{ con } h \in \Omega_1(\langle u, y \rangle).$ Considero $(u^k y^{-1})^3 = u^{3k} (y^{-1})^{u^{2k}} (y^{-1})^{u^k} y^{-1} = u^{3k} y^{-1} h^{2k} y^{-1} h^k y^{-1} = u^{3k} y^{-3} = v.$ Quindi posso sempre supporre che sia $y^3 = v$. Avendo intersezione identica i sottogruppi $\langle y \rangle$ e $\langle x \rangle$ permutano e da $\langle y, x^3 \rangle \leq \langle x \rangle$ ottengo $y^x = y^i x^{3h}$ Ora però: $vu^{-3} = v^x = (y^3)^x = (y^i x^{3h})^3 = y^{3i} = v^i$ assurdo.

Suppongo ora $y \in C_G(\Omega_1(G))$ di ordine 27. Ho le seguenti possibilità

- $\langle y \rangle \cap \langle u \rangle = \langle u \rangle$ impossibile perchè x normalizzerebbe $\langle y \rangle$ e quindi anche $\langle u \rangle$.
- $\langle y \rangle \cap \langle u \rangle = \langle u^3 \rangle$. Allora posso prendere y in modo che $u^3 = y^9$ e ho due casi :
 - 1. $\langle u,y\rangle$ è abeliano. In questo caso uy^{-3} ha ordine 3 e avrò $uy^{-3}=u^{3k}v^i$ con $k\in\{1,2,3\}$ e $i\in\{1,2\}$ da cui $u=y^3u^{3k}v^i$. Poichè y ha ordine 27 $\langle x\rangle$ permuta con $\langle y\rangle$ e $\langle y,x\rangle$ o è abeliano o è isomorfo a M(81).In ogni caso $y^x=y^{1+9h}$ con $h\in\{1,2,3\}$ da cui $u^x=(y^x)^3(u^{3k})^x(v^i)^x=y^3u^{3k}v^iu^{-3i}=(y^3u^{3k}v^i)u^{-3i}=uu^{-3i}$ e quindi avrei $u^x\in\langle u\rangle$ assurdo.
 - 2. $\langle u,y\rangle\cong M(81)$. In questo caso $y^x=y^{1+9k}$ con $k\in\{1,2\}$ e come sopra uy^{-3} ha ordine 3 e $uy^{-3}=u^{3k}v^i$ con $k\in\{1,2,3\}$ e $i\in\{1,2\}$ da cui $u=y^3u^{3k}v^i$. Poichè y ha ordine 27 $\langle x\rangle$ permuta con $\langle y\rangle$ e $\langle y,x\rangle$ o è abeliano o è isomorfo a M(81). In ogni caso $y^x=y^{1+9h}$ con $h\in\{1,2,3\}$ da cui $uv=u^x=(y^x)^3(u^{3k})^x(v^i)^x=y^3u^{3k}v^iu^{-3i}=uu^{-3i}$ e quindi avrei $u^x\in\langle u\rangle$ assurdo.
- $\langle y \rangle \cap \langle u \rangle = 1$ Questo significherebbe che esiste un elemento $y \in C_G(\Omega_1(G))$ di ordine 9 che non interseca $\langle u \rangle$ assurdo.

Ho dimostrato che $C_G(\Omega_1(G)) = \langle u, v \rangle$ e quindi $G = \langle u, v, x \rangle$ come si voleva.

2.5 2-gruppi appartenenti a S(4)

Proposizione 2.5.1.

Sia G 2-gruppo, $G \in S(4)$ $e |\Omega_1(G)| = 2$.

Allora G è il gruppo dei quaternioni generalizzato di ordine 16.

Dimostrazione.

Se $|\Omega_1(G)| = 2$ poichè G non può esser ciclico deve essere isomorfo a Q_g gruppo dei quaternioni generalizzato di ordine $g = 2^n$.

 $Q_{16} = \langle a, b : a^4 = 1, b^4 = a^2, b^a = b^{-1} \rangle$ appartiene a S(4). Infatti i sottogruppi $\langle a \rangle$ e $\langle ab \rangle$ non permutano mentre i sottogruppi di ordine 8 sono massimali e quindi normali.

 Q_8 è hamiltoniano e se $n \geq 5$ allora Q_{2^n} contiene sottogruppi non permutabili di ordine diverso da 4. Infatti sia $Q_{2^n} = \left\langle a, b : a^4 = 1, b^{2^{n-2}} = a^2, b^a = b^{-1} \right\rangle$ per $n \geq 5$. Il sottogruppo $\langle ab \rangle$ ha ordine 4, permuta con $\left\langle b^{2^{n-3}} \right\rangle$ e il sottogruppo generato $\left\langle ab, b^{2^{n-3}} \right\rangle$ ha ordine 8. Il sottogruppo $\langle a \rangle$ ha ordine 4, ma $\left\langle ab, b^{2^{n-3}} \right\rangle$ e $\langle a \rangle$ non permutano perchè se permutassero $\left\langle ab, b^{2^{n-3}}, a \right\rangle = \langle a, b \rangle$ avrebbe ordine ≤ 16 assurdo. Quindi ho sottogruppi di ordini diversi non permutabili.

Proposizione 2.5.2.

Sia G gruppo finito $G \in S(2^2)$ con $|\Omega_1(G)| > 2$. Allora $\Omega_1(G)$ ha ordine 4.

Dimostrazione.

Siano $A \in B$ sottogruppi di G aventi ordine 4 e tali che $AB \neq BA$.

A e B sono ciclici altrimenti sarebbero prodotto di permutabili.

Poniamo $A = \langle a \rangle$ e $B = \langle b \rangle$.

La proposizione 2.3.1 vale anche per p=2 e quindi $\langle a \rangle \cap \langle b \rangle = \langle a^2 \rangle$ da cui $a^2=b^2$.

Essendo $|\Omega_1(G)| > 2$ esiste $t \in \Omega_1(G) \setminus \langle a^2 \rangle$.

$$\langle a, t \rangle = \langle a \rangle \langle t \rangle \le G \text{ e } |\langle a, t \rangle| = 2^2.$$

Quindi $\langle a, b \rangle = \langle a \rangle \langle t \rangle \langle b \rangle$.

Inoltre $\langle a, t \rangle \subseteq \langle a, b \rangle$ e dunque $\langle a, t \rangle$ contiene tutti i coniugati di $\langle a \rangle$ in $\langle a, b \rangle$, anzi è la chiusura normale di $\langle a \rangle$ in $\langle a, b \rangle$.

Suppongo ora che esista $s \in \Omega_1(G), s \notin \langle a, t \rangle$.

Con gli stessi argomenti di sopra ottengo $\langle a,b\rangle=\langle a\rangle\,\langle s\rangle\,\langle b\rangle,\,\langle a,s\rangle\unlhd\langle a,b\rangle\,$ da cui $\langle a,t\rangle=\langle a,s\rangle$ contro l'ipotesi.

Nel seguito del capitolo G è 2-gruppo con $\Omega_1(G) > 2$.

Proposizione 2.5.3.

Sia G 2-gruppo finito $G \in S(2^2)$.

Allora G contiene un sottogruppo isomorfo a

$$T = \langle x, y : x^4 = y^4 = 1, y^x = y^3 \rangle.$$

Dimostrazione.

Dalla dimostrazione della proposizione 2.5.2 ottengo che presi $A = \langle a \rangle$ e B = $\langle b \rangle$ sottogruppi con $AB \neq BA$ allora $\langle a, b \rangle = \langle a \rangle \langle t \rangle \langle b \rangle$ dove $t \in \Omega_1(G) \setminus \langle a^2 \rangle$, $|a| \langle a, b \rangle = 2^4$.

Essendo $\langle a, t \rangle \leq \langle a, b \rangle$ dovrà essere $a^b = a^i t$ con $i \in \{1, 3\}$.

Inoltre essendo $\langle a \rangle \leq \langle a, t \rangle$ e $\langle b \rangle \leq \langle b, t \rangle$ trovo i seguenti 4 casi:

1.
$$a^t = a^3 b^t = b$$
 ma $a^2 = (a^2)^b = (a^i t)^2 = a^i t a^i t = a^i (a^i)^t = a^i a^{3i} = a^{4i} = 1$ assurdo.

2.
$$a^t = a \ b^t = b^3$$
 ma $b^2 = (b^2)^a = (b^i t)^2 = b^i t b^i t = b^i (b^i)^t = b^i b^{3i} = b^{4i} = 1$ assurdo.

3.
$$a^t = a^3 b^t = b^3$$
 ma $a^2 = (a^2)^b = (a^i t)^2 = a^i t a^i t = a^i (a^i)^t = a^i a^{3i} = a^{4i} = 1$ assurdo.

4.
$$a^t = a \ b^t = b$$

Quindi $a^2 = (a^2)^b = (a^i t)^2 = a^i t a^i t = a^{2i} \Leftrightarrow 2 \equiv 2i \mod(4) \Leftrightarrow i \in \{1, 3\}$
Se $a^b = a^3 t$ allora sostituendo a $t \ t' = a^2 t$ otteniamo:
 $at' = t'a, bt' = t'b$ e $a^b = at'$.

Quindi un 2-gruppo che appartenga a $S(2^2)$ contiene sempre un sottogruppo isomorfo a $\langle a, b : a^4 = t^2 = 1, b^2 = a^2, at = ta, bt = tb, a^b = at \rangle$.

Osservo che tutti i sottogruppi di ordine 2 sono contenuti nel centro e dunque sono normali, e che i sottogruppi di ordine 8 sono massimali e quindi normali. Inoltre se considero:

$$(ab^{-1})^2 = a^2(b^{-1})^a b^{-1} = a^2 t b^{-2} = t$$

 $(ab^{-1})^a = atb^{-1} = (ab^{-1})^3$
posti: $(ab^{-1}) = x$ e $b = y$ posso concludere che
 $\langle a, b \rangle \cong \langle x, y : x^4 = y^4 = 1, y^x = y^3 \rangle$.

Osservazione 3.

Osservo che

$$T = \{1, x^2, y^2, x^2y^2, x, x^3, xy^2, x^3y^2, xy, x^3y, xy^3, x^3y^3, y, y^3, yx^2, y^3x^2\}.$$

Osservazione 4.

Dalla dimostrazione della proposizione 2.5.2 segue che se due sottogruppi ciclici hanno intersezione identica allora sono permutabili.

Teorema 2.5.4.

Il 2-gruppo $T = \langle x, y : x^4 = y^4 = 1, y^x = y^3 \rangle$ non è immergibile in nessun 2-gruppo $G \in S(4)$ a esponente >4.

Dimostrazione.

Suppongo esista $z \in G$ di ordine 8.

Osservo che detto t elemento di ordine 2 diverso da z^4 , essendo $\langle z \rangle$ permutabile in G, t normalizza $\langle z \rangle$ e ho le seguenti possibilità:

- $z^t = z$;
- $z^t = z^3$ ma in questo caso $(tz^2)^2 = t^2z^6z^2 = 1$ assurdo perchè da $t, tz^2 \in \Omega_1(G) = \Omega_1(T)$ ottengo $z^2 \in \Omega_1(G)$ mentre z ha ordine 8;
- $z^t = z^7$ ma in questo caso $(tz)^2 = t^2 = 1$ assurdo perchè $z \notin T$;

Quindi $\langle z, t \rangle$ è abeliano o isomorfo a M(16). Distinguo due casi:

- 1. Suppongo $z^2 \notin T$;
 - (a) $z^4 = y^2$

Allora essendo $\langle z \rangle \leq \langle z, y \rangle$ ho le seguenti possibilità:

- $z^y = z$ ma allora $(z^2y)^2 = z^4y^2 = 1$ mentre $z^2 \notin T$:
- $z^y = z^3 \text{ ma } (yz)^2 = y^2 z^4 = y^4 = 1 \text{ assurdo};$
- $z^y=z^{1+4}$ ma allora $(yz^2)^2=y^2(z^5)^2z^2=y^2z^4=1$ mentre $z^2\notin T$;
- $z^y = z^7$ $(yz)^2 = y^2$ quindi yz ha ordine $4,\langle yz\rangle$ permuta con $\langle x\rangle$ e $|\langle yz, x\rangle| = 16$ da cui $\langle yz, x\rangle$ è permutabile in G. In particolare permuta con y e $|\langle yz, x, y\rangle| = \frac{16\cdot 4}{2} = 32$ ma $\langle yz, x, y\rangle = \langle x, y, z\rangle$ che ha invece ordine 64.
- (b) $z^4 = x^2$

Allora essendo $\langle z \rangle \leq \langle z, x \rangle$ ho le seguenti possibilità:

- $z^x = z$ ma allora $(z^2x)^2 = z^4x^2 = 1$ mentre $z^2 \notin T$;
- $z^x = z^3$ ma $(xz)^2 = x^2z^4 = x^4 = 1$ assurdo;
- $z^y=z^{1+4}$ ma allora $(xz^2)^2=x^2(z^5)^2z^2=x^2z^4=1$ mentre $z^2\notin T;$

- $z^y = z^7$ $(xz)^2 = x^2$ quindi xz ha ordine 4, $\langle xz \rangle$ permuta con $\langle y \rangle$ e $|\langle xz,y \rangle| = 16$ e $\langle xz,y \rangle$ è permutabile in G. In particolare permuta con $\langle x \rangle$ e $|\langle xz,y,x \rangle| = \frac{16\cdot 4}{2} = 32$ ma $\langle xz,y,z \rangle = \langle x,y,z \rangle$ che ha invece ordine 64.
- (c) $z^4 = x^2y^2$. Essendo $\langle z, x^2 \rangle \triangleleft \langle z, x \rangle$ ho le seguenti possibilità:
 - \bullet $z^x = z$:
 - $z^x = zx^2$; $(zx)^2 = z^2$ ma $|\langle zx, z \rangle| = 16$ mentre $\langle zx, z \rangle = \langle z, x \rangle$ che ha ordine 32.
 - $z^x = z^3$ ma $(xz)^2 = x^2z^3z = y^2$ e quindi $\langle xz \rangle$ permuta con $\langle x \rangle$ e dovrei avere che l'ordine di $\langle xz, x \rangle$ è 16 mentre $\langle xz, x \rangle = \langle z, x \rangle$ che ha ordine 32.
 - $z^x = z^3 x^2$; $x^z = x^{-1} z^6$; $(xz)^2 = x^2 z^3 x^2 z \in \langle z^4 \rangle$ e quindi avrei $|\langle zx, x \rangle| \leq 16$ mentre $\langle zx, x \rangle = \langle z, x \rangle$ che ha ordine 32.
 - $z^x = z^5.$
 - $z^x = z^5 x^2$; $x^z = x^3 z^4$; $(zx)^2 = z^2 x^3 z^4 x = z^6$ e quindi $|\langle zx, z \rangle| = 16$ mentre $\langle zx, z \rangle = \langle z, x \rangle$ che ha ordine 32.
 - $z^{x} = z^{7}$; $x^{z} = xz^{2}$; $(xz)^{2} = x^{2}z^{7}z = x^{2}$

Quindi $\langle xz, y \rangle$ ha ordine 16 ed è quasi normale in G. In particolare dovrebbe permutare con $\langle x \rangle$ e $|\langle xz, y, x \rangle| = 32$ mentre $\langle xz, x, y \rangle = \langle x, z, y \rangle$ che ha ordine 64.

• $z^x = z^7 x^2$; $x^z = x^3 z^2$; $(xz)^2 = x^2 z^7 x^2 z$. Poichè $\langle z, x^2 \rangle \cong M(16)$ o è abeliano ottengo: se $z^{x^2} = z$ allora $(xz)^2 = z^7 z = 1$ assurdo; Se $z^{x^2} = z^5$ allora $(xz)^2 = z^4$ ma $\langle xz, x \rangle$ avrebbe ordine 16 mentre $\langle xz, x \rangle = \langle z, x \rangle$ che ha ordine 32.

Quindi ho le seguenti possibilità: $z^x = z, z^x = z^5$. Con calcoli analoghi si prova che per y ho le possibilità $z^y = z, z^y = z^5$ e quindi ho i seguenti casi:

- $z^x = z, z^y = z$. Ottengo $(xyz)^2 = x^2z^2$ e quindi $|\langle xyz, zx \rangle| = 16$ mentre $\langle xyz, xz \rangle = \langle y, zx \rangle$ ha ordine 32.
- $z^x = z, z^y = z^5$; $y^z = yz^4$. Ottengo $(zxy)^2 = z^2xyz^4xy = z^6x^2$ e $(zx)^2 = z^2x^2$. Quindi $|\langle zx, zxy \rangle| = 16$ mentre $\langle zx, zxy \rangle = \langle zx, y \rangle$ ha ordine 32.
- $z^x = z^5, z^y = z;$ $z^{x^2} = z.$ Ottengo $(xyz)^2 = x^2y^3z^5yz = x^2z^6$ e $(xz)^2 = x^2z^5z = x^2z^6.$ Quindi $|\langle xyz, xz\rangle| = 16$ mentre $\langle xyz, xz\rangle = \langle y, xz\rangle$ ha ordine
- $z^x = z^5, z^y = z^5;$ $x^z = xz^4, y^z = yz^4.$ Ottengo $(xyz)^2 = x^2(y^3z^5y)z = x^2z^2$ e $(xz)^2 = x^2z^6.$ Quindi $|\langle xyz, xz \rangle| = 16$ mentre $\langle xyz, xz \rangle = \langle y, xz \rangle$ ha ordine 32.

2. Suppongo $z^2 \in T$

- (a) $z^4=y^2$ Allora $z^2\in y\langle x^2,y^2\rangle$ e quindi $x^{z^2}=xy^2$. Essendo $\langle z,x^2\rangle \trianglelefteq \langle z,x\rangle$ ottengo:
 - $z^x = z$ ma z^2 normalizzerebbe $\langle x \rangle$ assurdo;
 - $z^x = zx^2$ da cui $x^z = x^3$ ma z^2 normalizzerebbe $\langle x \rangle$ assurdo;
 - $z^x = z^3$; $(xz)^2 = x^2z^4 = x^2y^2$ e quindi $|\langle xz, x \rangle| = 16$ (i due sottogruppi permutano perchè $\langle xz \rangle \cap \langle x \rangle = 1$) ma $|\langle x, z \rangle| = 32$.
 - $z^x = z^3 x^2$; $x^z = x^3 z^6$; $(xz)^2 = x^2 z^3 x^2 z = x^2 z^4 (x^2)^z = x^2 z^4 x^3 z^6 x^3 z^6$ $= x(x^3)^{z^2} = xx^3 y^2 = z^4$

Quindi dovrei avere $|\langle xz,z\rangle|=16$ ma $\langle xz,z\rangle=\langle x,z\rangle$ che ha ordine 32.

- $z^x=z^5$ da cui $x^z=xz^4$ e z^2 normalizzerebbe $\langle x \rangle$ assurdo.
- $z^x = z^5 x^2$ ma $(xz)^2 = x^2 z^5 x^2 z = z^4 z^{x^2} z$ che vale o z^2 o z^6 In ogni caso dovrei avere che $|\langle xz,z\rangle| = \frac{8\cdot 8}{4} = 16$ mentre $\langle xz,z\rangle = \langle x,z\rangle$ che ha ordine 32.

- $z^x = z^7$ $(xz)^2 = x^2$ ma in ogni caso otterrei $|\langle xz, x \rangle| \le 16$.
- $z^x = z^7 x^2$; $x^z = x^3 z^2$ ma

$$(xz)^{2} = x^{2}z^{7}x^{2}z = x^{2}(x^{2})^{z} = x^{2}x^{3}z^{2}x^{3}z^{2}$$
$$= xz^{4}(x^{3})^{z^{2}} = xz^{4}x^{3}y^{2} = z^{4}z^{4} = 1$$

assurdo.

(b) $z^4 = x^2$

Allora:

- $z^2 = x$ ma in questo caso $\langle z \rangle$ e $\langle xy \rangle$ permutano e $\langle z \rangle \leq \langle z, xy \rangle$ ma allora xy normalizzerebbe anche x assurdo.
- $z^2 = x^3$ sostituendo sopra x^3 a x si prova l'assurdo.
- $z^2 = xy^2$ sostituendo sopra xy^2 a x si prova l'assurdo.
- $z^2 = x^3y^2$ sostituendo sopra x^3y^2 a x si prova l'assurdo.
- $z^2 = xy$ invertendo i ruoli di x e xy concludo.
- $z^2 = x^3 y$ sostituendo sopra $x^3 y$ a xy si prova l'assurdo.
- $z^2 = xy^3$ sostituendo sopra xy^3 a x^3y si prova l'assurdo.
- $z^2 = x^3y^3$ sostituendo sopra x^3y^3 a xy^3 si prova l'assurdo.
- (c) $z^4 = x^2 y^2$ ma in T non ci sono elementi il cui quadrato sia $x^2 y^2$.

Osservazione 5.

Se G è 2-gruppo finito a esponente 4 allora $G' \subseteq \Omega_1(G)$.

Infatti $G/\Omega_1(G)$ avendo esponente ≤ 2 è abeliano e quindi $G' \subseteq \Omega_1(G)$. In particolare un 2-gruppo G appartenente a S(4) e a esponente 4 ha il sottogruppo derivato di ordine 2 o 4.

Proposizione 2.5.5.

Sia G 2-gruppo finito
$$G \in S(2^2)$$
 a esponente $4, |G| = 32$ e $|G'| = 2$.
Allora $G \cong \langle a, b, c : c^4 = a^4 = 1, a^2 = b^2, ca = ac, bc = cb, b^a = b^3 \rangle = M$.

Dimostrazione.

Essendo
$$|G|=32, |G'|=2$$
 e $T=\langle a,b:a^4=b^4=1,b^a=b^3\rangle\subseteq G$ ottengo $G'=\langle b^2\rangle.$

Noto che ogni elemento di $G \setminus T$ ha ordine 4. Sia $c \in G \setminus T$.

Allora $c^2 \in \Omega_1(G) = \langle a^2, b^2 \rangle \subseteq Z(G)$.

Poichè $[c, a] \in \langle b^2 \rangle$, $[c, b] \in \langle b^2 \rangle$ posso supporte $[c, a] = b^{2h}$, $[c, b] = b^{2k}$.

Osservo però che c opera su T come a^kb^h e quindi sostituendo a c $c(a^kb^h)$ posso supporre $c \in Z(G)$.

Non può quindi certamente essere $c^2=a^2$ (perchè avrei $(ac)^2=1$) e nemmeno $c^2=b^2$ (perchè avrei $(bc)^2=1$).Quindi deve essere

 $G = \langle a, b, c : a^4 = b^4 = 1, c^2 = a^2b^2, b^a = b^3, ac = ca, bc = cb \rangle.$

Sostituendo ac al posto di a trovo la rappresentazione dell'enunciato.

Infine nel gruppo M i sottogruppi $\langle ac \rangle$ e $\langle bc \rangle$ non permutano e hanno ordine 4. I sottogruppi di ordine diverso da 4 sono normali come prova il teorema 0.0.2

Proposizione 2.5.6.

Sia G 2-gruppo finito
$$G \in S(2^2)$$
 a esponente $4, |G| = 32$ e $|G'| = 4$.
Allora $G \cong \langle a, b, c : a^4 = b^4 = 1, b^2 = c^2, ca = ac, c^b = ca^2, b^a = b^3 \rangle = R$.

Dimostrazione.

Essendo |G| = 32, |G'| = 4, $G' \subseteq \Omega_1(G)$ ed essendo $T = \langle a, b : a^4 = b^4 = 1, b^a = b^3 \rangle \subseteq G$ ottengo $G' = \langle b^2, a^2 \rangle \leq Z(G)$. Sia $c \in G, c \notin T$. Allora $c^2 \in \Omega_1(G) = \langle a^2, b^2 \rangle$, e $c^2 \neq 1$. Poichè $[c, a] \in \langle a^2, b^2 \rangle$, $[c, b] \in \langle a^2, b^2 \rangle$ posso supporre $[c, a] = a^{2i}b^{2j}$, $[c, b] = a^{2h}b^{2k}$ da cui $[cb^ja^k, a] = a^{2i}$, $[cb^ja^k, b] = a^{2i}$ e sostituendo cb^ja^k al posto di

a^{2h}b^{2k} da cui $[cb^ja^k, a] = a^{2i}, [cb^ja^k, b] = a^{2i}$ e sostituendo cb^ja^k al posto di c posso supporre $a^c = a^{1+2^i}$ e $b^c = a^{2h}b$. Poichè $a^2 \in G'$ uno tra i e h deve essere dispari.

Se sono entrambi dispari $(ab)^c = ab$ e sostituisco ab ad a. In conclusione ho due possibili azioni di c su T:

- $a^c = a, b^c = a^2b$. Non può essere $c^2 = a^2$ (perchè avrei $(ac)^2 = 1$)e nemmeno $c^2 = a^2b^2$ (perchè avrei $(cb)^2 = 1$). Quindi ottengo $c^2 = b^2$ e $G \cong R$.
- $a^c = a^{-1}, b^c = b$. Non può essere $c^2 = b^2$ (perchè avrei $(bc)^2 = 1$)e nemmeno $c^2 = a^2$ (perchè avrei $\langle c \rangle \leq G$ e $G/\langle c \rangle$ sarebbe diedrale di ordine 8 con $\langle a \langle c \rangle \rangle$ non permutabile, e quindi $\langle a, c \rangle$ non è permutabile in G). Quindi deve essere $c^2 = a^2b^2$. Ponendo a' = c, b' = a, c' = bc si vede che $G \cong R$.

Infine i sottogruppi di $R \langle ab \rangle$ e $\langle a \rangle$ non permutano e hanno ordine 4 mentre i sottogruppi di ordine diverso da 4 sono tutti normali come prova il teorema 0.0.2.

Osservazione 6.

I soli 2-gruppi a esponente 4 di ordine 32 i cui sottogruppi non normali hanno ordine 4 sono M e R.

Inoltre R non contiene elementi centrali di ordine 4 e non ha sottogruppi di ordine 8 isomorfi al gruppo dei quaternioni.

Proposizione 2.5.7.

M non è contenuto propriamente in nessun G 2-gruppo a esponente 4 appartenente a $S(2^2)$ e di ordine maggiore di 32.

In particulare ogni 2-gruppo a esponente 4 appartenente a $S(2^2)$ con |G'| = 2 ha ordine ≤ 32 .

Dimostrazione.

Suppongo che sia falso. Allora esiste un gruppo G contenente M. Posso supporre che |G|=64 e quindi sarà $G=\langle a,b,c,d\rangle$ con $d\notin M$. Essendo $G'\subseteq\Omega_1(G)=\langle a^2,c^2\rangle$ distinguo i due casi:

1. |G'| = 2 e poichè $\langle b^2 \rangle \subseteq G'$ si ha $G' = \langle b^2 \rangle$. Quindi posso supporre $[a,d] = b^{2h}, [b,d] = b^{2k}, [c,d] = b^{2r}$. Osservo che $b^h a^k$ opera su $\langle a,b \rangle$ come d e quindi prendendo $d(b^h a^k)$ al posto di d, posso supporre di avere $[a,d] = 1, [b,d] = 1, [c,d] = b^{2r}$. Inoltre $d \notin Z(G)$ perchè ogni elemento di $\Omega_1(G)$ è quadrato di un elemento di M e dunque da $d^2 = t^2$ avrei $(dt)^2 = 1$.

Quindi ottengo $[a, d] = 1, [b, d] = 1, [c, d] = b^2$.

Non può essere $d^2=a^2$ perchè avrei $(da)^2=1$ e nemmeno $d^2=a^2c^2$ perchè avrei $(dc)^2=d^2ca^2c=1$. Resta $d^2=c^2$ ma in questo caso $(dac)^2=d^2aca^2ac=1$.

Quindi M non è immergibile in un gruppo con derivato di ordine 2.

- 2. $|G'| = 4 \operatorname{cioè} G' = \langle b^2, c^2 \rangle$. Posso supporre $[a, d] = b^{2h}c^{2k}, [b, d] = b^{2i}c^{2j}, [c, d] = b^{2r}c^{2s}$ da cui $[a, db^h a^i] = c^{2k}, [b, db^h a^i] = c^{2j}, [c, db^h a^i] = b^{2r}c^{2s}$. Quindi prendendo $db^h a^i$ al posto di d posso supporre $[a, d] = c^{2k}, [b, d] = c^{2j}, [c, d] = b^{2r}c^{2s}$. Distinguiamo 3 casi:
 - (a) $d^2 = a^2$. $\langle a, b \rangle \cong Q_8$ è permutabile in G e dunque $[a, d] \in \langle b^2 \rangle$, $[b, d] \in \langle b^2 \rangle$. Quindi deve essere [a, d] = 1, [b, d] = 1 da cui $(ad)^2 = 1$.
 - (b) $d^2=c^2$. Certamente non può essere $[a,d]=c^2$ (perchè $(da)^2=d^2ac^2a=a^2$ ma da non normalizza $\langle a,b\rangle$) e analogamente non può essere $[b,d]=c^2$ (perchè $(db)^2=d^2bc^2b=b^2$ ma db non normalizza $\langle a,b\rangle$).

Non può essere [c, d] = 1 (perchè avrei $(cd)^2 = 1$) e se $[c, d] = b^2$, essendo $(dc)^2 = d^2cb^2c = b^2$, rientro nel primo caso sostituendo dc al posto di d. Quindi restano due casi:

• $[c,d] = c^2b^2, [a,d] = 1$ e [b,d] = 1 ma $\langle dc,ac \rangle \cong Q_8$ (infatti $(dc)^2 = d^2cc^2b^2c = c^2b^2, (ac)^2 = a^2c^2, (ac)^{dc} = (ac)^3$) e non è

permutabile in G. Infatti se fosse permutabile sarebbe normalizzato da (bd) (essendo $(bd)^2 = b^2c^2$) ma $(ac)^{bd} = ac^3 \notin \langle dc, ac \rangle$.

- $[c,d] = c^2, [a,d] = 1$ e [b,d] = 1 ma $\langle ac,db \rangle \cong Q_8$ (infatti $(ac)^2 = a^2c^2 = (bd)^2, (ac)^{bd} = a^3c^3 = (ac)^3$) non è permutabile. Infatti se fosse permutabile sarebbe normalizzato da (ad) (essendo $(ad)^2 = a^2c^2$) ma $(bd)^{ad} = b^3d \notin \langle ac,db \rangle$.
- (c) $d^2=a^2c^2$. Certamente non può essere $[a,d]=c^2$ perchè avrei $(da)^2=d^2ac^2a=1$ e nemmeno $[b,d]=c^2$ (perchè $(db)^2=d^2bc^2b=1$). Non può essere [c,d]=1 (perchè $(dac)^2=1$) e nemmeno $[c,d]=a^2$ (perchè $(dc)^2d^2ca^2c=1$). Se $[c,d]=a^2c^2$ allora $(dc)^2=d^2ca^2c^2c=c^2$ e prendendo (dc) al posto di d rientro nel caso precedente.

Rimane il caso $[c,d]=c^2, [a,d]=1, [b,d]=1$ ma il sottogruppo $\langle dab,c\rangle\cong Q_8$ (infatti $(dab)^2=d^2abab=d^2a^2=c^2$ e $c^{dab}=cc^2$) non è permutabile.Infatti se fosse permutabile dovrebbe essere normalizzato da db (essendo $(db)^2=d^2b^2=c^2$) ma $(dab)^{db}=da^3b\notin\langle dab,c\rangle$.

Quindi M non è immergibile in un gruppo con derivato di ordine 4.

Osservazione 7.

Se G è 2-gruppo a esponente 4 in S(4) ogni sottogruppo di ordine 32 di G è isomorfo a R.

Infatti se K sottogruppo di G di ordine 32, ho due possibilità:

- K contiene sottogruppi non permutabili. In questo caso K è isomorfo a M o a R ma per la proposizione 2.5.7 deve essere $K \cong R$.
- K ha tutti i sottogruppi permutabili. In questo caso K è isomorfo a $Q_8 \times E$ con E abeliano elementare, o è abeliano

Non può essere $K \cong Q_8 \times E$ con E abeliano elementare perchè $|\Omega_1(K)| \leq 4$ e analogamente K non può essere abeliano perchè avendo esponente 4 non è ciclico ed essendo $|\Omega_1(K)| \leq 4$ il suo ordine risulterebbe strettamente minore di 32.

Proposizione 2.5.8. ¹

Sia
$$G \in S(2^2)$$
 2-gruppo a esponente $4 |G| = 64$ allora $G \cong V = \langle a, b, c, d : a^4 = b^4 = 1, b^2 = c^2, d^2 = a^2, ca = ac, c^b = ca^2, b^a = b^3, db = bd, a^d = aa^2b^2, c^d = cb^2 \rangle$

Dimostrazione.

Suppongo che $|G| \ge 32$ e suppongo che |G| = 64. Allora G dovrà contenere K sottogruppo di ordine 32, dovrà essere |K'| = 4 e posso identificarlo con R per l'osservazione 7.

Sia $d \in G, d \notin R$ allora $G = \langle a, b, c, d \rangle$.

Provo che posso sempre supporre $b^d = b, d^2 = a^2$.

Certamente $[b, d] \in \langle a^2, b^2 \rangle$.

Se fosse $b^d = ba^2$ ponendo d' = dc ottengo $b^{d'} = b$.

Se fosse $b^d = bb^2$ ponendo d' = da ottengo $b^{d'} = b$.

Se fosse $b^d = ba^2b^2$ ponendo d' = dac ottengo $b^{d'} = b$.

Quindi posso supporre $b^d = b$.

Certamente $d^2 \neq b^2$.

Se fosse $d^2 = a^2b^2$ ponendo d' = db ottengo $b^{d'} = b$ e $d'^2 = a^2$.

Quindi deve essere $d^2 = a^2$.

Certamente non posso avere $a^d = a$ e nemmeno $a^d = a^3$ perchè $\langle a, d, b \rangle$ sarebbe sottogruppo isomorfo a R contente un sottogruppo isomorfo a Q_8 assurdo. Non può essere $a^d = ab^2$ perchè avrei $bd \in Z(\langle a, b, bd \rangle)$ con $\langle bd, b, a \rangle$ di ordine 32. La sola possibilità è $a^d = aa^2b^2$.

Non può essere $c^d = c$ perchè avrei $d \in Z(\langle b, c, d \rangle)$ e $(dcb)^2 = 1$. Non può essere $c^d = ca^2$ perchè avrei $c \in Z(\langle a, c, bd \rangle)$ con $\langle bd, c, a \rangle$ di ordine 32. Restano quindi i seguenti casi:

1.
$$c^d = c^{-1}$$
, $a^d = ab^2a^2$:

2.
$$c^d = ca^2b^2, a^d = ab^2a^2 \text{ ma } d \in Z(\langle ac, b, d \rangle).$$

Rimane quindi solo il caso 1 che fornisce V.

Infine i sottogruppi di $V\langle ab\rangle$ e $\langle a\rangle$ non permutano e hanno ordine 4 mentre i sottogruppi di ordine diverso da 4 sono normali come prova il teorema 0.0.2.

¹Le dimostrazioni di 2.5.8 e di 2.5.9 sono tratte da [1] con qualche adattamento.

Proposizione 2.5.9.

Sia G 2-gruppo finito a esponente 4. Se $G \in S(4)$ allora $|G| \le 64$.

Dimostrazione.

Posso supporre che |G| = 128.

Allora G contiene un sottogruppo isomorfo a V.

Poichè |G'|=4 i coniugati di a sono tutti e soli a,a^3,ab^2,aa^2b^2 e dunque il centralizzante in G di a ha ordine 32 ed è contenuto in un sottogruppo D di ordine 64.

Essendo $|D \cap V| = 32$ si ha che D contiene un sottogruppo isomorfo a R e dunque per la proposizione 2.5.8 ottengo $D \cong V$.Il centralizzante di a in D ha ordine 32, mentre i centralizzanti degli elementi di ordine 4 di V hanno tutti ordine 16, contraddizione. Quindi $|G| \leq 64$.

Conclusioni

Le proposizioni precedenti dimostrano il seguente teorema:

Teorema 2.5.10.

Sono equivalenti:

- G è 2-gruppo i cui sottogruppi non permutabili hanno ordine 4;
- G è isomorfo a uno dei seguenti gruppi:

$$\begin{aligned} &1. \ \langle a,b:b^8=1,b^4=a^2,b^a=b^{-1}\rangle;\\ &2. \ \langle a,b:a^4=b^4=1,b^a=b^3\rangle;\\ &3. \ \langle a,b,c:a^4=c^4=1,a^2=b^2,b^a=b^3,a^c=a,b^c=b\rangle;\\ &4. \ \langle a,b,c:a^4=b^4=1,c^2=b^2,b^a=b^3,ac=ca,b^c=ba^2\rangle;\\ &5. \ \langle a,b,c,d:\ a^4=b^4=1,b^2=c^2,d^2=a^2,ca=ac,\\ &c^b=ca^2,b^a=b^3,db=bd,a^d=aa^2b^2,c^d=cb^2\rangle\,. \end{aligned}$$

2.6 2-gruppi in $S(2^n)$ con n > 2

In tutto il capitolo n è un intero > 2.

Osservazione 8.

Sia $G \in S(2^n)$. I sottogruppi non permutabili di G sono ciclici altrimenti sarebbero prodotto di permutabili. La proposizione 2.3.1 vale anche per p=2 e quindi se $A=\langle a\rangle$ e $B=\langle b\rangle$ sono sottogruppi di ordine 2^n che non permutano allora $\langle a^2\rangle=\langle b^2\rangle$.

Proposizione 2.6.1.

Sia $G \in S(2^n)$. Allora $\Omega_1(G)$ ha ordine 4.

Dimostrazione.

Sia $G \in S(2^n)$. Certamente G non è ciclico e non può essere isomorfo a un gruppo dei quaternioni generalizzato perchè Q_8 è hamiltoniano e Q_g per $g \ge 16$ ha sottogruppi di ordine 4 non permutabili.

Quindi $\Omega_1(G) > 2$.

Siano $A = \langle a \rangle$ e $B = \langle b \rangle$ sottogruppi di ordine 2^n che non permutano e sia $t \in \Omega_1(G) \setminus \langle a^{2^{n-1}} \rangle$.

 $\langle a \rangle / \langle a^2 \rangle$ e $\langle b \rangle / \langle b^2 \rangle$ hanno ordine 2, non permutano e generano un sottogruppo di ordine 2^3 . Quindi $|\langle a,b \rangle| = 2^{n+2}$.

 $\langle a \rangle \langle t \rangle \leq G$ ha ordine 2^{n+1} . Certamente $\langle b \rangle \not\subseteq \langle a \rangle \langle t \rangle$ (altrimenti b normalizzerebbe $\langle a \rangle$) e $\langle a \rangle \langle t \rangle \langle b \rangle$ ha ordine 2^{n+2} da cui $\langle a, b \rangle = \langle a \rangle \langle t \rangle \langle b \rangle$.

Ora $\langle a \rangle \langle t \rangle \triangleleft \langle a, b \rangle$ e contiene tutti i coniugati di $\langle a \rangle$ in $\langle a, b \rangle$.

Supponendo che esista $s \in \Omega_1(G) \setminus \langle a^{2^{n-1}}, t \rangle$ con gli argomenti di sopra si ottiene $\langle a, b \rangle = \langle a \rangle \langle s \rangle \langle b \rangle$, $\langle a \rangle \langle s \rangle \leq \langle a, b \rangle$ e contiene tutti i coniugati di $\langle a \rangle$ in $\langle a, b \rangle$. Quindi $\langle a \rangle \langle s \rangle = \langle a \rangle \langle t \rangle$ contraddizione.

Teorema 2.6.2.

Sia G un 2-gruppo finito con $G \in S(2^n)$. Allora G contiene uno dei seguenti sottogruppi:

•
$$T_1 = \langle x, y : x^4 = y^{2^n} = 1, x^y = x^3 \rangle$$
.

•
$$T_2 = \langle x, y : x^8 = 1, x^4 = y^{2^{n-1}}, x^y = x^7 \rangle$$
.

Dimostrazione.

Consideriamo $a, b \in G$ tali che $\langle a \rangle$ e $\langle b \rangle$ non pemutano.

Per la proposizione 2.6.1 posso sempre supporre $a^2 = b^2$.

Considero $t \in \Omega_1(G), t \notin \langle a \rangle$. Allora $\langle a, t \rangle \cong M(2^{n+1})$ o è abeliano.

Analogamente $\langle b, t \rangle \cong M(2^{n+1})$ o è abeliano. Quindi ho i seguenti casi:

1. at = ta, bt = tb.

Essendo $\langle a, t \rangle \leq \langle a, b \rangle$ ottengo:

 $a^b = a^i t \operatorname{ma} a^2 = (a^2)^b = a^{2i} \Leftrightarrow 2 \equiv 2i \operatorname{mod}(2^n)$ da cui $a^b = at$ o $a^{b} = a^{1+2^{n-1}}t$ ma nel secondo caso sostituisco t con $a^{2^{n-1}}t$ e ottengo il seguente gruppo:

$$T_1 = \langle a, b, t : a^{2^n} = 1 = t^2, a^2 = b^2, at = ta, bt = tb, a^b = at \rangle$$

 $(ab^{-1})^2 = a^2b^{-1}tb^{-1} = t$
 $(ab^{-1})^a = ab^{-1}t = (ab^{-1})^3$

Quindi ponendo $x=ab^{-1}, y=a$ ottengo: $T_1=\langle x,y:x^4=y^{2^n}=1,x^y=x^3\rangle$

$$T_1 = \langle x, y : x^4 = y^{2^n} = 1, x^y = x^3 \rangle$$

2. $a^t = a^{1+2^{n-1}}, bt = tb$

Essendo $\langle b, t \rangle \leq \langle a, b \rangle$ ottengo:

 $b^a = b^i t$ ma $b^2 = (b^2)^a = b^{2i} \Leftrightarrow 2 \equiv 2i \mod(2^n)$ da cui

 $b^a = bt$ o $b^a = b^{1+2^{n-1}}t$ ma nel secondo caso sostituisco t con $a^{2^{n-1}}t$ e posso sempre supporre $b^a = bt, a^b = at$.

Quindi
$$(a^2)^b = atat = aa^{1+2^{n-1}} \neq a^2$$
 assurdo.

3. at = ta, $b^t = b^{1+2^{n-1}}$

Sostituendo tra loro al punto precedente a e b trovo di nuovo l'assurdo.

4.
$$a^t = a^{1+2^{n-1}}, b^t = b^{1+2^{n-1}}.$$

Essendo $\langle a, t \rangle \leq \langle a, b \rangle$ ottengo:

$$a^b = a^r t$$
 ma

$$a^{2} = (a^{2})^{b} = a^{r}a^{r(1+2^{n-1})} = a^{2r+2^{n-1}}$$

Quindi
$$2 \equiv 2r + 2^{n-1} \mod(2^n) \Leftrightarrow 1 \equiv r + 2^{n-2} \mod(2^{n-1})$$

da cui
$$a^b = a^{1+2^{n-2}}t$$
 o $a^b = a^{1+3\cdot 2^{n-2}}t$.

Nel secondo caso sostituisco t con $a^{2^{n-1}}t$ e posso sempre supporre $a^b=$ $a^{1+2^{n-2}}t$.

Ottengo dunque il gruppo:

Ottengo dunque il gruppo:
$$T_2 = \left\langle a, b, t : a^{2^n} = 1 = t^2, a^2 = b^2, a^t = a^{1+2^{n-1}} , b^t = b^{1+2^{n-1}}, a^b = a^{1+2^{n-2}} t \right\rangle.$$

Considero

$$(ab^{-1})^2 = a^2 a^{2^{n-2}} tb^{-1} b^{-1} = a^2 a^{2^{n-2}} tb^{-1} b^{-1} = a^{2+2^{n-2}} tb^{-2}$$
$$= a^2 a^{2^{n-2}} b^{-2} t = a^{2^{n-2}} t$$

$$(ab^{-1})^b = a^{1+2^{n-2}}tb^{-1} = a^{1+2^{n-2}}b^{-1}b^{2^{n-1}}t = ab^{-1}a^{3\cdot 2^{n-2}}t = (ab^{-1})^7$$

Ponendo $x = ab^{-1}$ e y = b ottengo:

$$T_2 = \langle x, y : x^8 = 1, x^4 = y^{2^{n-1}}, x^y = x^7 \rangle.$$

Il gruppo
$$T_1 = \langle \mathbf{x}, \mathbf{y} : \mathbf{x}^4 = \mathbf{y}^{2^n} = 1, \mathbf{x}^{\mathbf{y}} = \mathbf{x}^3 \rangle$$
.

Proposizione 2.6.3.

Il gruppo
$$T = T_1 = \langle x, y : x^4 = y^{2^n} = 1, x^y = x^3 \rangle \in S(2^n).$$

Dimostrazione.

Osservo dapprima che $Z(T) = \langle x^2, y^2 \rangle$ e quindi ogni elemento di Z(T) al quadrato appartiene a $\langle y^4 \rangle$.

Gli elementi di T sono tutti della forma z, xz_1, xyz_2, yz_3 con $z, z_i \in Z(T)$.

Poichè i sottogruppi $\langle xyz_2\rangle$ e $\langle yz_3\rangle$ hanno ordine 2^n l'unica cosa da provare è che i sottogruppi $\langle xz_1 \rangle$ permutano con i sottogruppi $\langle yz_2 \rangle$ e $\langle xyz_3 \rangle$.

$$xz_1yz_3 = xyz_1z_3 = x^2y^xx^3z_1z_3 = yx^2xz_1z_3 = yz_3(xz_1)^3z_1^{-2}$$
.
Supponendo $z_3^2 = y^{4i}, z_1^2 = y^{4j}$ ottengo:

 $(yz_3)^2 = y^{2(1+2i)}$ e quindi elevando yz_3 ad una opportuna potenza dispari ottengo:

$$xz_1yz_3 = (yz_3)^r(xz_1)^3.$$

Analogo considerando xyz_2 in luogo di yz_3 .

Osservazione 9.

Suppongo $G \in S(2^n), T \subseteq G$.

Ho provato nella proposizione 2.6.1 che $\Omega_1(G)$ ha ordine 4 e quindi $\Omega_1(G)$ = $\Omega_1(T) = \left\langle x^2, y^{2^{n-1}} \right\rangle.$

Poichè $G/\Omega_1(G)$ ha tutti i sottogruppi permutabili (le controimmagini dei sottogruppi di $G/\Omega_1(G)$ non sono cicliche) e così considerando G/K dove K è sottogruppo di G contenente $\Omega_1(G)$, presi $u, v \in G$ tali che l'ordine di uKè 2 e l'ordine di $vK \leq 4$ allora $[v, u] \in K$.

Teorema 2.6.4.

Il gruppo $T = T_1 = \langle x, y : x^4 = y^{2^n} = 1, x^y = x^3 \rangle$ con n > 2 non è immergibile in nessun 2-gruppo appartenente a $S(2^n)$.

Dimostrazione.

Sia
$$G \in S(2^n)$$
 con $T \subseteq G$.

Considero i seguenti casi:

1. Provo che non esistono elementi di ordine 4 fuori da T.

I sottogruppi generati dagli elementi di ordine 2 o 4 sono permutabili e quindi $\Omega_2(G)$ è abeliano o è isomorfo a $Q_8 \times E$ con E abeliano elementare. Poichè $\Omega_2(T)=\langle x^2\rangle\times\left\langle y^{2^{n-2}}\right\rangle$ è abeliano e prodotto diretto di due ciclici di ordine 4 ottengo che $\Omega_2(G)$ è abeliano.

Suppongo $z \in G, z \notin T$ di ordine 4. Ogni elemento di T di ordine 2 è un quadrato e allora avrei $(zt)^2 = 1$ assurdo.

2. Provo che non esistono elementi di ordine $2^m < 2^n$ appartenenti a $G \setminus T$. Ho provato al punto 1 che vale per m=2. Suppongo che non ci siano elementi di ordine 2^m fuori da T e considero z di ordine 2^{m+1} , $(m+1) \leq (n-1)$ e $z^2 \in T$ e quindi $|\langle x, y, z \rangle| = 2^{n+3}$. Gli elementi di ordine 2^m con $m \ge 2$ in T sono: $y^{i2^{n-m}}$ con i dispari, $xy^{i2^{n-m}}$ e $x^3y^{i2^{n-m}}$ con i dispari se $m>2, x^2y^{i2^{n-m}}$ con i dispari.

(a) $z^2 = y^{2^{n-m}}$ ma $|\langle y,z\rangle|=2^{n+1}$ ed è abeliano o isomorfo a $M(2^{n+1})$. Nel primo caso però $(zy^{-2^{n-m-1}})^2=z^2y^{-2^{n-m}}=1$ assurdo. Nel secondo caso $y^z=y^{1+2^{n-1}}$ quindi y^2 commuta con z e ottengo $(zy^{-2^{n-m-1}})^2=z^2y^{-2^{n-m}}=1$ assurdo. Se $z^2=y^{i2^{n-m}}$ con i dispari ripeto i calcoli di prima e concludo.

(b)
$$z^2 = xy^{i2^{n-m}}$$
.
 $z^4 = x^2y^{i2^{n-m+1}}$

Distinguo dunque i 4 casi:

In questo caso posto K = Z(T) essendo |zK| = 4 e |yK| = 2 per l'osservazione 9 ottengo $[y, z] \in K$. Ho le seguenti possibilà:

- i. $y^z = y^{1+2h}$ ma otterrei che z^2 normalizza $\langle y \rangle$ assurdo;
- ii. $y^z = y^{1+2h}x^2 = y^{1+2s}z^4$ In questo caso $y^{z^2} = (y^{1+2s}z^4)^{1+2s}z^4 = y^{1+2h}z^{8(1+2s)} \in \langle y \rangle$ perchè $z^8 \in \langle y^2 \rangle$. Quindi trovo che z^2 normalizza $\langle y \rangle$ assurdo.
- (c) $z^2 = x^3 y^{i2^{n-m}}$ Sostituendo a $z\ z^{-1}$ trovo il caso 2b .
- (d) $z^2 = x^2 y^{2^{n-m}}$ $z^4 = y^{2^{n-m+1}}$ Considero $\langle x, z \rangle$: $|\langle x, z \rangle| = 2^{m+3}$. Inoltre osservo che z^2 commuta con x e che $\langle x, z^2 \rangle \triangleleft \langle x, z \rangle$. Quindi ho le seguenti possibilità:
 - $x^z = x$ ma sostituendo (xz) a z rientro nel caso 2a.
 - $x^z = xz^{2j}$: L'ordine di z è strettamente maggiore di 4 e quindi da $x = x^{z^2} = xz^{4j}$ ottengo che i deve essere pari. Suppongo j=2k e considero

$$(zx)^{2} = z^{2}xz^{4k}x = x^{2}z^{2(1+2k)} = x^{2}(x^{2}y^{2^{n-m}})^{1+2k}$$
$$= x^{2}(x^{2}y^{2^{n-m}})(x^{4}y^{2^{n-m+1}})^{k} = y^{2^{n-m}(1+2k)}$$

e prendendo zx al posto di z trovo il caso 2a.

- $x^z = x^3$; $(zx)^2 = z^2$; Quindi essendo $\langle z \rangle$ permutabile in G ottengo $|\langle zx, x \rangle| = \frac{2^{m+1} \cdot 2^{m+1}}{2^m} = 2^{m+2} \text{ ma } \langle zx, x \rangle = \langle z, x \rangle$ che ha ordine 2^{m+3} assurdo.
- $x^z = x^3 z^{2j}$; $(zx)^2 = z^2 x^3 z^{2j} x = z^{2+2j}$ e dunque $\langle z \rangle$ e $\langle zx \rangle$ non permutano perchè se permutassero $|\langle zx,z \rangle| = 2 \cdot 2^{m+1} = 2^{m+2}$ mentre $\langle zx,z \rangle = \langle z,x \rangle$ che ha ordine 2^{m+3} .
- 3. Provo che non ci sono elementi di ordine 2^n fuori da T.

Sia $z \notin T, z^{2^n} = 1, z^2 \in T$

Gli elementi di ordine 2^{n-1} in T sono: y^{2i} con i dispari, x^2y^{2i} con i dispari, xy^{2i} e x^3y^{2i} con i dispari se n>3.

Distinguo dunque i 4 casi:

(a) $z^2 = y^{2i}$;

Ho due possibilità:

 $\bullet \ \langle z \rangle$ e $\langle y \rangle$ permutano. Allora $\langle y,z \rangle$ è abeliano o isomorfo a $M(2^{n+1})$

Nel primo caso $(yz^{-1})^2 = 1$ assurdo.

Nel secondo caso $(zy^{-1})^2 = z^2y^{-1+2^{n-1}}y^{-1} = y^{2^{n-1}}$ assurdo.

• $\langle z \rangle$ e $\langle y \rangle$ non permutano.

Dai calcoli fatti in generale essendo $yx^2 = x^2y$ ottengo che $x^2z = zx^2$ e che $\langle y, z \rangle \cong T_1$.

In particolare da $|\Omega_2(\langle z,y\rangle)| = |\Omega_2(T)|$ ed essendo $\Omega_2(T) = \Omega_2(G)$ ottengo $\Omega_2(\langle z,y\rangle) = \Omega_2(T)$. Quindi $x \in \langle z,y\rangle$ da cui $T \subseteq \langle z,y\rangle$ ed avendo lo stesso ordine vale uguale cioè $z \in T$ assurdo.

(b) $z^2 = xy^{2i}$; $z^4 = x^2y^{4i}$; $z^8 = y^{8i}$.

Posto K=Z(G) ed essendo |zK|=4 e |yK|=2 per l'osservazione 9 deve essere $[y,z]\in K$.

Quindi ho le seguenti possibilità:

- $y^z = y^{1+2h}$ ma $z^2 = xy^{2i}$ non normalizza $\langle y \rangle$;
- $y^z = y^{1+2h}x^2 = y^{1+2s}z^4$ ma $y^{z^2} = (y^{1+2s}z^4)^{1+2s}z^4 = y^{(1+2h)^2}z^{4(1+2s)}z^4 = y^{(1+2h)^2}z^{8(1+s)} \in \langle y \rangle$ mentre $z^2 = xy^{2i}$ non normalizza $\langle y \rangle$.
- (c) $z^2 = x^3 y^{2i}$ Sostituendo a $z z^{-1}$ trovo il punto 3b.

(d)
$$z^2 = x^2 y^{2i}$$
 con i dispari $z^4 = y^{4i}$

Posto K = Z(T) ed essendo |xK| = 2 e |zK| = 4 per l'osservazione 9 ott
tengo $[x, z] = x^{2r}y^{2s}$ e $[y, z] = x^{2h}y^{2k}$.

Se fosse $[x,z]=y^{2s}$ allora $(zx)^2=z^2xy^{2s}x=z^2x^2y^{2s}\in\langle y^2\rangle$ e sostituendo zx a z trovo il caso 3a o il caso 2a.

Quindi posso supporre $[x, z] = x^2 y^{2s}$.

Se fosse $[y, z] = x^2y^{2k}$ allora sostituendo xz a z otterrei: $[y, zx] = y^{-1}x^{-1}z^{-1}yzx = xy^{-1}z^{-1}yzx = xx^2y^{2k} = y^{2k}$ e quindi posso sempre supporre: $x^z = x^3y^{2s}$ e $y^z = y^{1+2k} = y^j$.

Considero:

$$(zxy)^2 = z^2 x^3 y^{2s} y^j xy = z^2 y^j x^2 yy^{2s}$$

= $x^2 y^{2i} y^j x^2 yy^{2s} = y^{2i+j+1+2s} = y^{2(i+1+k+s)} = y^{2t}$

Ho due possibilità:

- \bullet se $\langle zxy\rangle$ e $\langle y\rangle$ permutano allora $|\langle zxy,y\rangle|=2^{n+1}.$ Tuttavia da $(zx)^2 = z^2x^3y^{2s}x = x^2y^{2i+2s} \notin \langle y^2 \rangle$ ottengo che $|\langle zxy, y \rangle| =$ $|\langle zx, y \rangle| = 2^{n+2}$ assurdo;
- \bullet se $\langle zxy\rangle$ e $\langle y\rangle$ non permutano allora posto z'=zxyessendo $yx^2 = x^2y$ dai calcoli fatti in generale ottengo che $\langle y, z' \rangle$ è isomorfo a T_1 . Quindi $|\Omega_2(\langle y, z' \rangle)| = 16$ ed essendo contenuto in $\Omega_2(G) = \Omega_2(T)$ ottengo $\Omega_2(\langle y, z' \rangle) = \Omega_2(T)$. Quindi $x \in$ $\langle y, z' \rangle$ da cui $T \subseteq \langle z', y \rangle$ ed avendo lo stesso ordine $T = \langle y, z' \rangle$. In particolare $z' = zxy \in T$ assurdo.
- 4. Non esiste un elemento $z \in G, z \notin T$ di ordine 2^{n+1} e tale che $z^2 \in T$. Gli elementi di ordine 2^n sono in $y\langle x^2, y^2\rangle$, $xy\langle x^2, y^2\rangle$.

Suppongo $z^2 \in y \langle x^2, y^2 \rangle$ $z^4 \in y^2 \langle y^4 \rangle$ Quindi $|\langle z, xy \rangle| = \frac{2^{n+1} \cdot 2^n}{2^{n-1}} = 2^{n+2}$ e xy dovrebbe normalizzare $\langle z \rangle$ e anche $\langle z^2 \rangle$.

Ora però i sottogruppi generati da elementi del laterale $y \langle x^2, y^2 \rangle$ non permutano con il sottogruppo generato da xy e trovo una contraddizione.

Analogo se suppongo $z^2 = xy \langle x^2, y^2 \rangle$.

Il gruppo $T_2 = \langle x,y: x^8 = 1, x^4 = y^4, x^y = x^7 \rangle$.

Proposizione 2.6.5.

Il gruppo $T = T_2 = \langle x, y : x^8 = 1, x^4 = y^4, x^y = x^7 \rangle$ appartiene a $S(2^3)$.

Dimostrazione.

$$Z(T) = \langle y^2 \rangle.$$

Gli elementi che non appartengono al centro sono tutti e soli quelli dei laterali $x^2 \langle y^2 \rangle$, $x \langle y^2 \rangle$, $x^3 \langle y^2 \rangle$, $y \langle y^2 \rangle$, $xy \langle y^2 \rangle$, $x^3 y \langle y^2 \rangle$, $x^2 y \langle y^2 \rangle$, $y^2 \rangle$.

Tutti gli elementi hanno ordine 8 tranne quelli di $x^2 \langle y^2 \rangle$, che hanno ordine 4.

I sottogruppi $\langle z \rangle$ con $z \in Z(T)$ permutano con ogni sottogruppo di T. $\Omega_1(G) = \{x^4, x^2y^2, x^6y^2, 1\}$ e $T/\Omega_1(T) \cong Q_8$ e quindi i sottogruppi non ciclici di T sono normali.

$$\Omega_2(T) = \langle x^2, y^2 \rangle = \langle x^2 y^2 \rangle \times \langle y^2 \rangle.$$

Gli elementi di $T \setminus \Omega_2(G)$ hanno ordine 8 e $z^4 = y^4 = x^4$.

 $[x^2y^{2i},T]=[x^2,T]=\langle x^4\rangle$ e dunque x^2y^{2i} normalizza i sottogruppi di ordine 8 ciclici e centralizza i sottogruppi di ordine ≤ 4 .

Teorema 2.6.6.

Il gruppo $T = \langle x, y : x^8 = 1, x^4 = y^4, x^y = x^7 \rangle$ non è contenuto propriamente in nessun 2-gruppo $G \in S(8)$.

Dimostrazione.

Suppongo esista $G \in S(8)$ con $T \subseteq G$ e suppongo [G:T]=2.

 $\Omega_1(T) = \Omega_1(G)$ e ogni sottogruppo di $G/\Omega_1(G)$ è permutabile, $T/\Omega_1(T) \cong Q_8$ e quindi $G/\Omega_1(G) \cong Q_8 \times C_2$. Quindi G ha solo elementi di ordine 4 fuori da T.

Provo invece che non esiste $z \in G \setminus T$ di ordine 4 e con $z^2 \in T$. Ho le seguenti possibilità:

- $z^2 = y^4$. In questo caso $\langle z,y \rangle$ è isomorfo a M(2⁴) o è abeliano. In entrambi i casi $(y^2z)^2 = 1$ assurdo.
- $z^2 = x^2y^2$. In questo caso $|\langle z, y \rangle| = 32$, $y^{z^2} = y^{x^2} = y^5$ e $\langle y, z^2 \rangle \leq \langle z, y \rangle$. Quindi ho le seguenti possibilità:
 - $-y^z = y^i$ con i dispari. In questo caso $y^{z^2} = y^{i^2} = y$ assurdo.
 - $-y^z = yz^2$. In questo caso $y^{z^2} = yz^4 = y$ assurdo.

$$-y^z = y^3 z^2$$
.
 In queso caso si ha $(zy)^2 = z^2 y^3 z^2 y = x^2 y^2 y^3 x^2 y^2 y = x^2 y^5 x^2 y^3 = 1$ assurdo.

$$-y^z=y^5z^2.$$
 In questo caso si ha $(y^5z^2)^2=(y^7x^2)^2=x^6y^6x^2=y^6$ e quindi $y^{z^2}=(y^5z^2)^5z^2=y^4y^5z^2z^2=y$ assurdo.

$$-y^z=y^7z^2$$
. $(zy)^2=z^2y^7z^2y=z^2y^7x^2y^2y=x^2y^2x^6y^2=y^4$ e otterrei $|\langle zy,y\rangle|=16$ mentre $|\langle z,y\rangle|=32$ assurdo.

• $z^2 = x^2 y^6$. In questo caso sostituendo a $y \ y^{-1}$ mi trovo nel caso precedente.

Il gruppo $T_2 = \langle x,y: x^8 = 1, x^4 = y^{2^{n-1}}, x^y = x^7 \rangle \text{ con } n > 3.$

Proposizione 2.6.7.

Il gruppo $T_2 = \left\langle x, y : x^8 = 1, x^4 = y^{2^{n-1}}, x^y = x^7 \right\rangle$ con n > 3 appartiene a $S(2^n)$.

Dimostrazione.

Gli elementi di T sono del tipo seguente:

- $z_1 \in \langle y^2 \rangle$ $z_1 \in Z(T_2)$ e ha ordine $\leq 2^{n-1}$.
- $z_2 \in y \langle y^2 \rangle$ z_2 ha ordine 2^n e $\langle z^2 \rangle = \langle y^2 \rangle$;
- $z_3 \in x \langle y^2 \rangle$ z_3 ha ordine $\leq 2^{n-1}$;
- $z_4 \in x^3 \langle y^2 \rangle$ z_4 ha ordine $\leq 2^{n-1}$;
- $z_5 \in x^2 \langle y^2 \rangle$ z_5 ha ordine $\leq 2^{n-1}$;
- $z_6 \in yx \langle y^2 \rangle$ z_6 ha ordine 2^n e $\langle z^2 \rangle = \langle y^2 \rangle$;
- $z_7 \in yx^3 \langle y^2 \rangle$ z_7 ha ordine 2^n e $\langle z^2 \rangle = \langle y^2 \rangle$;

• $z_8 \in yx^2 \langle y^2 \rangle$ z_8 ha ordine 2^n e $\langle z^2 \rangle = \langle y^2 \rangle$:

Poichè gli elementi z_2, z_6, z_7, z_8 generano sottogruppi di ordine 2^n devo provare che gli elementi z_1, z_3, z_4, z_5 generano ciclici quasi normali.

- I sottogruppi generati da elementi di tipo z_1 sono normali;
- I sottogruppi generati da elementi di tipo $z_3 = xy^{2i}$ sono permutabili: commutano con i sottogruppi generati da elementi z_1, z_3, z_4, z_5 . Permutano con i sottogruppi generati da elementi di tipo $z_2 = yy^{2j}$: $xy^{2i}yy^{2j} = xyy^{2i}y^{2j} = yx^7y^{2i}y^{2j} = yy^{2j}(xy^{2i})^7y^{-12j} \in y^{-12j} \in \langle (yy^{2j})^2 \rangle$ Permutano con i sottogruppi generati da elementi di tipo $z_6 = yxy^{2j}$: $xy^{2i}yxy^{2j} = xyy^{2i}y^{2j} = yx^7xy^{2i}y^{2j} = yxy^{2j}(xy^{2i})^7y^{-12j}$ e $y^{-12j} \in \langle (yxy^{2j})^2 \rangle.$

Permutano con i sottogruppi generati da elementi di tipo z_7, z_8 e lo si prova con gli stessi calcoli del caso precedente;

- I sottogruppi generati da elementi di tipo $z_4=x^3y^{2i}$ sono permutabili perchè $(z_4)^{-1}=(x^3y^{2i})^{-1}=y^{-2i}x^{-3}=y^{-2i}x^5=xy^{2j}$ che è elemento di tipo z_3 ;
- I sottogruppi generati da elementi di tipo $z_5 = x^2 y^{2i}$ sono permutabili: commutano con i sottogruppi generati da elementi di tipo z_1, z_3, z_4, z_5 . Permutano con i sottogruppi generati da elementi di tipo $z_2 = yy^{2j}$: $x^2y^{2i}yy^{2j} = x^2yy^{2i}y^{2j} = yx^6y^{2i}y^{2j} = yy^{2j}(x^2y^{2i})^3y^{-4j}$ e $y^{-4j} \in \langle (yy^{2j})^2 \rangle.$

Con analoghi calcoli si prova che permutano con i sottogruppi generati da elementi di tipo z_6, z_7, z_8 .

Teorema 2.6.8. Il gruppo $T_2 = \left\langle x, y : x^8 = 1, x^4 = y^{2^{n-1}}, x^y = x^7 \right\rangle \ con \ n > 3$ non è immergibile in nessun gruppo $G \in S(2^n)$.

Dimostrazione.

Suppongo esista $G \in S(2^n), T_2 \subseteq G$.

 $\Omega_1(T_2) \cap Z(T_2) = \langle x^4 \rangle$ e poichè $\Omega_1(T_2) \cap Z(G) \neq 1$ deve essere $\Omega_1(T_2) \cap Z(G) = 0$ $\langle x^4 \rangle$.

Provo che $G/\langle x^4 \rangle$ è un gruppo con tutti i sottogruppi permutabili tranne quelli di ordine uguale a $y\langle x^4\rangle$.

I sottogruppi di $G/\langle x^4 \rangle$ sono $H/\langle x^4 \rangle$ con $\langle x^4 \rangle \leq H \leq G$. Siano ora $H/\langle x^4 \rangle$ e $K/\langle x^4 \rangle$ sottogruppi che non permutano.

Allora H e K non permutano in G, sono ciclici, hanno ordine 2^n e $\langle x^4 \rangle \subseteq H$ da cui concludo che $|H/\langle x^4 \rangle| = 2^{n-1} = |y\langle x^4 \rangle|$. Inoltre $G/\langle x^4 \rangle$ ha sottogruppi non permutabili, ad esempio $\langle y\langle x^4 \rangle \rangle$ e $\langle xy\langle x^4 \rangle \rangle$. Quindi $T_1 \cong T_2/\langle x^4 \rangle \subseteq G/\langle x^4 \rangle$ e per il teorema 2.6.4 $T_2/\langle x^4 \rangle = G/\langle x^4 \rangle$ da cui $T_2 = G$.

Quindi \mathcal{T}_2 non è immergibile.

2.7 Conclusioni 37

2.7 Conclusioni

Possiamo quindi concludere con il seguente teorema:

Teorema 2.7.1.

Le seguenti affermazioni sono equivalenti:

- $G \stackrel{.}{e} p$ -gruppo appartenente a $S(p^n)$;
- G è uno dei gruppo sequenti:

1.
$$G \cong \langle a, b : a^4 = 1, b^4 = a^2, b^a = b^{-1} \rangle$$
 con $p=2$ e $n=2$;

2.
$$G \cong \langle a, b, c : a^p = b^p = c^p = 1, [a, b] = c, [a, c] = 1, [b, c] = 1 \rangle$$
 $con \ p \geq 3 \ n=1;$

3.
$$\cong \langle a, b, d : a^p = b^p = d^{p^i} = 1, [a, b] = d^{p^{i-1}}, [a, d] = 1, [b, d] = 1 \rangle$$

 $con \ p \geq 3, \ n=1 \ e \ m > 1;$

4.
$$G \cong \langle u, v, x : u^9 = v^3 = 1, x^3 = u^3, uv = vu, u^x = uv, v^x = vu^{-3} \rangle$$
 con $p=3$ e $n=2$;

5.
$$G \cong \langle a, b : a^4 = 1 = b^2, a^b = a^{-1} \rangle$$
 con $p=2$ e $n=1$;

6.
$$G \cong \langle a, b, c : a^4 = b^2 = 1, c^{2^{i-1}} = a^2, a^b = a^{-1}, ac = ca, bc = cb \rangle$$
 con $p=2$ e $n=1$;

7.
$$G \cong \left\langle \begin{array}{ccc} a,b,c,d: & a^4=b^2, a^2=c^2=d^2, a^b=a^{-1}, c^d=c^{-1}, \\ & ac=ca, bc=cb, ad=da, bd=db \end{array} \right\rangle$$

8.
$$G \cong \langle a, b, c : a^4 = c^4 = 1, a^2 = b^2, b^a = b^3, a^c = a, b^c = b \rangle$$
 con $p=2$ e $n=2$;

9.
$$G \cong \langle a, b, c : a^4 = b^4 = 1, c^2 = b^2, b^a = b^3, ac = ca, b^c = ba^2 \rangle$$

 $con \ p = 2 \ e \ n = 2;$

10.
$$G \cong \left\langle \begin{array}{c} a, b, c, d \\ con \ p = 2 \ e \ n = 2; \end{array} \right.$$
 $: a^4 = b^4 = 1, b^2 = c^2, d^2 = a^2, ca = ac, \\ c^b = ca^2, b^a = b^3, db = bd, a^d = aa^2b^2, c^d = cb^2 \right\rangle$

11.
$$G \cong \langle x, y : x^4 = y^{2^n} = 1, x^y = x^3 \rangle$$
 con $p=2$ e $n \ge 2$;

12.
$$G \cong \langle x, y : x^8 = 1, x^4 = y^{2^{n-1}}, x^y = x^7 \rangle$$
 con $p=2$ e $n \geq 3$.

Capitolo 3

Classi di coniugio dei sottogruppi non permutabili

Considero il gruppo non nilpotente $G = N \rtimes P$ con $N \subseteq G$ di ordine primo q e P p-gruppo ciclico con $p \neq q, [N, P] \neq 1, [N, \Phi(P)] = 1$.

G ha una sola classe di coniugio di sottogruppi non permutabili rappresentata da P e il numero dei coniugati di P è esattamente q.

Provo invece che in ognuno dei gruppi del teorema 2.7.1 le classi di coniugio dei sottogruppi non permutabili sono almeno due. Infatti:

- 1. $G\cong\langle a,b:a^4=1,b^4=a^2,b^a=b^{-1}\rangle$ (p=2, n=2). In questo caso i sottogruppi $\langle a\rangle$ e $\langle ab\rangle$ non permutano e non sono coniugati perchè $\langle a,b^2\rangle$ è massimale e quindi normale in G ma non contiene $\langle ab\rangle$.
- 2. $G \cong \langle a, b, c : a^p = b^p = c^p = 1, [a, b] = c, [a, c] = 1, [b, c] = 1 \rangle$ (p > 2, n = 1) In questo caso i sottogruppi $\langle a \rangle$ e $\langle b \rangle$ non permutano e non sono coniugati perchè $\langle a, c \rangle$ è massimale e quindi normale in G ma non contiene $\langle b \rangle$.
- 3. $G \cong \langle a, b, d : a^p = b^p = d^{p^i} = 1, [a, b] = d^{p^{i-1}}, [a, d] = 1, [b, d] = 1 \rangle$ ($p \geq 3$ e n=1). In questo caso i sottogruppi $\langle a \rangle$ e $\langle b \rangle$ non permutano e non sono coniugati perchè $\langle a, d \rangle$ è massimale e quindi normale in G ma non contiene $\langle b \rangle$.
- 4. $G \cong \langle u, v, x : u^9 = v^3 = 1, x^3 = u^3, uv = vu, u^x = uv, v^x = vu^{-3} \rangle$ (p = 3, n=2).

In questo caso i sottogruppi $\langle u \rangle$ e $\langle x \rangle$ non permutano e non sono coniugati perchè $\langle u, v \rangle$ è massimale e quindi normale in G ma non contiene $\langle x \rangle$.

- 5. $G \cong \langle a, b : a^4 = 1 = b^2, a^b = a^{-1} \rangle$ (p = 2 e n=1). In questo caso i sottogruppi $\langle ab \rangle$ e $\langle b \rangle$ non permutano e non sono coniugati perchè $\langle b, a^2 \rangle$ è massimale e quindi normale in G ma non contiene $\langle ab \rangle$.
- 6. $G \cong \langle a, b, c : a^4 = b^2 = 1, c^{2^{i-1}} = a^2, a^b = a^{-1}, ac = ca, bc = cb \rangle$ (p = 2, n=1, i > 1).

In questo caso i sottogruppi $\langle ab \rangle$ e $\langle b \rangle$ non permutano e non sono coniugati perchè $\langle b, c \rangle$ è massimale e quindi normale in G ma non contiene $\langle ab \rangle$.

7.
$$G \cong \left\langle \begin{array}{ccc} a, b, c, d : & a^4 = b^2, a^2 = c^2 = d^2, a^b = a^{-1}, c^d = c^{-1}, \\ & ac = ca, bc = cb, ad = da, bd = db \end{array} \right\rangle$$

$$(p = 2 \text{ e n=1}).$$

In questo caso i sottogruppi $\langle ab \rangle$ e $\langle b \rangle$ non permutano e non sono coniugati perchè $\langle b,c,d \rangle$ è massimale e quindi normale in G ma non contiene $\langle ab \rangle$

8.
$$G \cong \langle a, b, c : a^4 = c^4 = 1, a^2 = b^2, b^a = b^3, a^c = a, b^c = b \rangle$$
 $(p = 2, n=2).$

In questo caso i sottogruppi $\langle ac \rangle$ e $\langle bc \rangle$ non permutano e non sono coniugati perchè $\langle ac,c \rangle$ è massimale e quindi normale in G ma non contiene $\langle bc \rangle$.

9.
$$G \cong \langle a, b, c : a^4 = b^4 = 1, c^2 = b^2, b^a = b^3, ac = ca, b^c = ba^2 \rangle$$
 $(p = 2, n=2).$

In questo caso i sottogruppi $\langle ab \rangle$ e $\langle a \rangle$ non permutano e non sono coniugati perchè $\langle c, a \rangle$ è massimale e quindi normale in G ma non contiene $\langle ab \rangle$.

10.
$$G \cong \left\langle \begin{array}{l} a,b,c,d: & a^4=b^4=1, b^2=c^2, d^2=a^2, ca=ac, \\ & c^b=ca^2, b^a=b^3, db=bd, a^d=aa^2b^2, c^d=c^3 \end{array} \right\rangle$$
 $(p=2, n=2).$

In questo caso i sottogruppi $\langle b \rangle$ e $\langle c \rangle$ non permutano e non sono coniugati perchè $\langle c, a, d \rangle$ è massimale e quindi normale in G ma non contiene $\langle b \rangle$.

11.
$$G \cong \langle x, y : x^4 = y^{2^n} = 1, x^y = x^3 \rangle$$
 $(p = 2, n \ge 2)$.
In questo caso i sottogruppi $\langle y \rangle$ e $\langle yx \rangle$ non permutano e non sono

coniugati perchè $\langle y, x^2 \rangle$ è massimale e quindi normale in G ma non contiene $\langle xy \rangle$.

12. $G\cong \left\langle x,y:x^8=1,x^4=y^{2^{n-1}},x^y=x^7\right\rangle$ $(p=2,n\geq 3).$ In questo caso i sottogruppi $\langle y\rangle$ e $\langle yx\rangle$ non permutano e non sono coniugati perchè $\langle y,x^2\rangle$ è massimale e quindi normale in G ma non contiene $\langle yx\rangle$.

Conto ora le classi di coniugio e il numero di coniugati dei sottogruppi non permutabili:

1. $G \cong \langle a, b : a^4 = 1, b^4 = a^2, b^a = b^{-1} \rangle$ I ciclici di ordine $4 \operatorname{sono}:\langle a \rangle, \langle ab \rangle, \langle ab^2 \rangle, \langle ab^3 \rangle, \langle b^2 \rangle$. Il sottogruppo $\langle b^2 \rangle$ è normale in G. $N_G(\langle a \rangle) = \langle a, b^2 \rangle$ e $\langle a \rangle^b = \langle ab^2 \rangle$; $N_G(\langle ab \rangle) = \langle ab, b^2 \rangle$ e $\langle ab \rangle^b = \langle ab^3 \rangle$;

Quindi ho due classi di coniugio di sottogruppi non permutabili e sono rappresentate da $\langle a \rangle$ e da $\langle ab \rangle$.

- 2. $G \cong \langle a,b,c : a^p = b^p = c^p = 1, [a,b] = c, [a,c] = 1, [b,c] = 1 \rangle$. Ogni sottogruppo non permutabile ha esattamente p coniugati. Infatti se x è elemento in G tale che |x| = p e $\langle x \rangle$ non è permutabile allora $\langle x,c \rangle$ è normale in G. Posso quindi concludere che $\langle x \rangle$ ha esattamente p coniugati. Le classi di coniugio di sottogruppi non permutabili sono esattamente p+1 e sono rappresentate da $\langle ab^i \rangle$ con $i \in 1, 2, \cdots, p$ e da $\langle b \rangle$.
- 3. $G \cong \langle a,b,d:a^p=b^p=d^{p^i}=1, [a,b]=d^{p^{i-1}}, [a,d]=1, [b,d]=1 \rangle$. Ogni sottogruppo non permutabile ha esattamente p coniugati. Infatti se x è elemento in G tale che |x|=p e $\langle x \rangle$ non è permutabile allora $\langle x,d \rangle$ è normale in G da cui anche $\langle x,d^{p^{i-1}} \rangle$ è normale in G. Posso quindi concludere che $\langle x \rangle$ ha esattamente p coniugati. Le classi di coniugio di sottogruppi non permutabili sono esattamente p+1 e sono rappresentate da $\langle ab^i \rangle$ con $i \in 1,2,\cdots,p$ e da $\langle b \rangle$.
- 4. G $\cong \langle u, v, x : u^9 = v^3 = 1, x^3 = u^3, uv = vu, u^x = uv, v^x = vu^{-3} \rangle$. I sottogruppi ciclici di ordine 9 sono: $\langle u \rangle$, $\langle uv \rangle$, $\langle uv^2 \rangle$, $\langle x \rangle$, $\langle xv \rangle$, $\langle xv^2 \rangle$, $\langle ux^2 \rangle$, $\langle ux^2 \rangle$, $\langle uxv^2 \rangle$, $\langle uxv^2 \rangle$, $\langle ux^2v^2 \rangle$, e nessuno di essi è permutabile. Poichè $N_G(\langle u \rangle) = \langle u, v \rangle$ ottengo che $\langle u \rangle$ ha esattamente 3 coniugati, e sono $\langle u \rangle$, $\langle uv \rangle$, $\langle uv^2 \rangle$. In 2.4 si è provato che ogni elemento di ordine 9 che non appartiene a $\langle u, v \rangle$ ha cubo in $\langle u^3 \rangle$ ed è normalizzato

da v. Detto t il generatore del sottogruppo di ordine 9 ottengo quindi: $N_G(\langle t \rangle) = \langle t, v \rangle$ da cui $\langle t \rangle$ ha esattamente 3 coniugati.

In conclusione ho 4 classi di coniugio di sottogruppi non permutabili e ogni sottogruppo non permutabile ha esattamente 3 coniugati.

Rappresentanti di tali classsi di coniugio sono: $\langle u \rangle$, $\langle x \rangle$, $\langle ux \rangle$ e $\langle ux^2 \rangle$.

- 5. $G \cong \langle a, b : a^4 = 1 = b^2, a^b = a^{-1} \rangle$. Inoltre essendo G un diedrale ci sono 2 classi di coniugio di sottogruppi non permutabili e ciascun sottogruppo non permutabile ha 2 coniugati. Rappresentanti di tali classi di coniugio sono: $\langle b \rangle$, $\langle ba \rangle$.
- 6. $G \cong \langle a, b, c : a^4 = b^2 = 1, c^{2^{i-1}} = a^2, a^b = a^{-1}, ac = ca, bc = cb \rangle$. Inoltre essendo $\Omega_1(G)$ un diedrale ed essendoci almeno due classi di coniugio di sottogruppi non permutabili posso concludere che ci sono 2 classi di coniugio di sottogruppi non permutabili e ciascun sottogruppo non permutabile ha 2 coniugati. Rappresentanti di tali classi di coniugio sono: $\langle b \rangle$, $\langle ba \rangle$.
- 7. $G \cong \left\langle \begin{array}{c} a,b,c,d: & a^4=b^2=1, a^2=c^2=d^2, a^b=a^{-1}, c^d=c^{-1}, \\ ac=ca, bc=cb, ad=da, bd=db \end{array} \right\rangle$. In questo caso ho 5 classi di coniugio di sottogruppi non permutabili e ciascun sottogruppo non permutabile ha 2 coniugati. Rappresentanti delle classi di coniugio sono: $\langle b \rangle$, $\langle ab \rangle$, $\langle ac \rangle$, $\langle ad \rangle$, $\langle acd \rangle$.
- 8. $G \cong \langle a, b, c : a^4 = c^4 = 1, a^2 = b^2, b^a = b^3, a^c = a, b^c = b \rangle$. Detto t il generatore di un sottogruppo ciclico di ordine 4 e supponendo che $\langle t \rangle$ non sia normale allora $N_G(\langle t \rangle) = \langle t, c \rangle$ che è massimale. In particolare quindi i sottogruppi non permutabili hanno 2 coniugati e le distinte classi di coniugio sono 3 rappresentate da $\langle ac \rangle$, $\langle bc \rangle$, $\langle abc \rangle$.
- 9. $G \cong \langle a, b, c : a^4 = b^4 = 1, c^2 = b^2, b^a = b^3, ac = ca, b^c = ba^2 \rangle$. I sottogruppi ciclici normali di ordine 4 sono $2:\langle ac \rangle, \langle ac^3 \rangle$. Gli altri sottogruppi ciclici di ordine 4 hanno tutti due coniugati. Infatti:

$$N_{G}(\langle a \rangle) = \langle a, c \rangle e \langle a \rangle^{b} = \langle ab^{2} \rangle;$$

$$N_{G}(\langle b \rangle) = \langle a, b \rangle e \langle b \rangle^{c} = \langle a^{2}b \rangle;$$

$$N_{G}(\langle ab \rangle) = \langle ab, c \rangle e \langle ab \rangle^{b} = \langle ab^{3} \rangle;$$

$$N_{G}(\langle c \rangle) = \langle a, c \rangle e \langle c \rangle^{b} = \langle a^{2}c \rangle;$$

$$N_{G}(\langle bc \rangle) = \langle b, bc \rangle e \langle bc \rangle^{a} = \langle bc^{3} \rangle;$$

$$N_{G}(\langle abc \rangle) = \langle abc, a \rangle e \langle abc \rangle^{b} = \langle a^{3}bc^{3} \rangle.$$

In particolare i sottogruppi non permutabili hanno ciasuno due coniugati e le distinte classi di coniugio dei sottogruppi non permutabili sono rappresentate da: $\langle a \rangle$, $\langle ab \rangle$, $\langle ab \rangle$, $\langle ab \rangle$, $\langle b \rangle$, $\langle c \rangle$, $\langle bc \rangle$, $\langle abc \rangle$.

10.
$$G \cong \left\langle \begin{array}{l} a,b,c,d: \quad a^4=b^4=1, b^2=c^2, d^2=a^2, ca=ac, \\ c^b=ca^2, b^a=b^3, db=bd, a^d=aa^2b^2, c^d=c^3 \end{array} \right\rangle$$
. $N_G(\langle a \rangle) = \langle a,c,db \rangle$ che è massimale e $\langle a \rangle^b = \langle ab^2 \rangle$ $N_G(\langle b \rangle) = \langle b,d,a \rangle$ che è massimale e $\langle b \rangle^c = \langle ba^2 \rangle$ $N_G(\langle c \rangle) = \langle c,a,d \rangle$ che è massimale e $\langle c \rangle^b = \langle ca^2 \rangle$ $N_G(\langle ab \rangle) = \langle ab,c,db \rangle$ che è massimale e $\langle ab \rangle^b = \langle ab^3 \rangle$ $N_G(\langle ac \rangle) = \langle a,c,b \rangle$ che è massimale e $\langle ac \rangle^d = \langle a^3c \rangle$ $\langle a^2c \rangle$ è normale. $N_G(\langle bc \rangle) = \langle c,b,ad \rangle$ che è massimale e $\langle abc \rangle^d = \langle a^3bc \rangle$ $N_G(\langle abc \rangle) = \langle a,bc,dc \rangle$ che è massimale e $\langle abc \rangle^d = \langle a^3bc \rangle$ $N_G(\langle abc \rangle) = \langle a,bc,dc \rangle$ che è massimale e $\langle abc \rangle^d = \langle a^3bc \rangle$ $N_G(\langle abc \rangle) = \langle a,bc,c \rangle$ che è massimale e $\langle abc \rangle^b = \langle abb^2 \rangle$. $N_G(\langle abc \rangle) = \langle a,a,bc \rangle$ che è massimale e $\langle abc \rangle^b = \langle abb^2 \rangle$. $N_G(\langle abc \rangle) = \langle a,a,bc \rangle$ che è massimale e $\langle abc \rangle^c = \langle abc^3 \rangle$. $N_G(\langle abc \rangle) = \langle a,ab,ab \rangle$ che è massimale e $\langle abc \rangle^c = \langle abc^3 \rangle$. $N_G(\langle abc \rangle) = \langle a,ab,ab \rangle$ che è massimale e $\langle abc \rangle^c = \langle abca^3 \rangle$. $N_G(\langle abc \rangle) = \langle a,abc,b \rangle$ che è massimale e $\langle abc \rangle^c = \langle abca^3 \rangle$. $N_G(\langle abc \rangle) = \langle a,abc,b \rangle$ che è massimale e $\langle abc \rangle^a = \langle abac^3 \rangle$. $N_G(\langle abc \rangle) = \langle a,abc,b \rangle$ che è massimale e $\langle abc \rangle^a = \langle abca^3 \rangle$. $N_G(\langle abc \rangle) = \langle aa,bc,ac \rangle$ che è massimale e $\langle abc \rangle^a = \langle abca^3 \rangle$. Quindi tutti i sottogruppi non normali hanno due coniugati. I rappresentanti di tali classi di coniugio sono i sottogruppi sopra elencati tranne

11. G $\cong \langle x, y : x^4 = y^{2^n} = 1, x^y = x^3 \rangle$. I sottogruppi non permutabili sono tutti e soli $\langle y \rangle$, $\langle yx^2 \rangle$, $\langle xy \rangle$, $\langle x^3y \rangle$. Osservo che detto t il generatore del sottogruppo non permutabile allora $\langle t, x^2 \rangle$ è il normalizzante di $\langle t \rangle$ che ha quindi esattamente 2 coniugati. Posso concludere che i rappresentanti delle classi di coniugio dei sottogruppi non permutabile sono: $\langle y \rangle$ e $\langle xy \rangle$.

il sottogruppo normale.

12. G $\cong \langle x, y : x^8 = 1, x^4 = y^{2^{n-1}}, x^y = x^7 \rangle$. I sottogruppi non permutabili sono tutti e soli $\langle y \rangle$, $\langle yx^2 \rangle$, $\langle xy \rangle$, $\langle x^3y \rangle$. Osservo che detto t il generatore del sottogruppo non permutabile allora $\langle t, x^2 \rangle$ è il normalizzante di $\langle t \rangle$ che quindi ha esattamente 2 coniugati. Posso concludere che i rappresentanti delle classi di coniugio dei sottogruppi non permutabile sono: $\langle y \rangle$ e $\langle xy \rangle$.

Bibliografia

- [1] R.BRANDL, Groups with few non-normal subgroups, Comm. in Algebra, 23(6), 2091-2098 (1995)
- [2] G. ZAPPA, Sui gruppi finiti i cui sottogruppi non normali hanno tuttti lo stesso ordine, Rend. Mat. Acc. Lincei, s. 9, v.13, 2002, 5-16.
- [3] G. ZAPPA, Sui gruppi finiti i cui sottogruppi non normali hanno tuttti lo stesso ordine, Rend. Mat. Acc. Lincei, s. 9, v.14, 2003, 13-21.
- [4] R.SCHMIDT, Subgroup Lattices of Groups, De Gruyter exposition in mathematics, 14, Walter de Gruyter, Berlin, New-York 1994.
- [5] M.SUZUKI, Group Theory I, Gundlehren der mathematischen Wissenschaften 247, A series of comprehensive studies in Methematics, Berlin, Springer-Verlag, 1982
- [6] M.SUZUKI, Group Theory II, Gundlehren der mathematischen Wissenschaften 248, A series of comprehensive studies in Methematics, New York, Springer- Verlag, 1986
- [7] M.HALL, The Theory of Groups, The Macmillan Company, New York, 1959.