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Abstract

The forecast of convective precipitation is still an unsolved issue of numerical weather

prediction, because of the small scales of the involved meteorological processes and

the never optimal model initialization of a global model. The goal of this work is to

improve the short term forecast of convective precipitation by 3DVAR assimilation

of radar reflectivities and station data within a mesoscale model (WRF - Weather and

Research Forecasting). The author therefore implements a RUC (Rapid Update Cy-

cling) system to generate hourly updated analysis, which are serving as new initial

conditions for subsequent forecast runs. Due to the incompleteness of the available

RADAR data in the research domain, the author develops a RADAR merging pro-

cedure where two dimensional RADAR data get expanded to three dimensional data

by using artificial vertical profiles. Finally these data are merged with existing three

dimensional radar over Austria and BOGUS radar data, which are created out of

station observation precipitation.

The impact of the assimilated RADAR reflectivities and all available European SYNOP

stations on the analysis and the computed forecast depends critically on an optimal

configuration of the background error covariances, which are the determining factor

how an observation is spread in space and time in the model. A case study shows

the improved capability to predict severe weather developments in the Alpine region.

The author shows an improvement of the short term precipitation forecast skill scores

over Austria due to a cycled 3DVAR assimiliation of radar and station data.
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Abstract

Die Prognose konvektiver Niederschlagsereignisse stellt aufgrund der Kleinskaligkeit

der meteorologischen Ereignisse und der niemals optimalen Modellinitialisierung

globaler Modelle noch immer ein grosses Problem in der numerischen Wettervorher-

sage dar. Ziel dieser Arbeit ist die kurzfristige Vorhersage konvektiver Niederschlags-

ereignisse mittels 3DVAR Assimilation von RADAR-Reflektiviäten und Stations-

daten innerhalb eines mesoskaligen Modells (WRF - Weather and Research Forecast-

ing) zu verbessern. Der Autor implementiert ein sog. RUC (Rapid Update Cycling)

System um stündlich aktualisierte Analysen zu generieren, die als neue Startbedin-

gungen des nächsten Vorhersagelaufes dienen. Da dem Autor kein vollständiges

dreidimensionales Reflektivitätsfeld Mitteleuropas zur Verfügung steht wird ein Ver-

fahren entwickelt, bei dem künstliche vertikale Radarprofile generiert werden, die

im Anschluss mit dem vorhandenen 3D-RADAR aus Österreich und mit den aus

Stationswerten generierten BOGUS RADAR-Reflektivitäten verschmolzen werden.

Der Einfluss der Assimilation von RADAR-Reflektivitäten und aller verfügbarer

SYNOP Stationsdaten auf die kurzfristige Prognose hängt vorwiegend von der Kon-

figuration und Analyse der Background Error Kovarianzen ab, die für die zeitliche

und räumliche Ausbreitung der assimilierten Observationen ausschlaggebend sind.

Anhand einer ausgewählten Fallstudie soll das Potenzial zur Prognose schadens-

trächtiger Unwettereignisse im Alpenraum aufgezeigt werden. Der Autor zeigt, dass

bei entsprechender Konfiguration des Assimilations- und des Modellsetups eine sig-

nifikante Verbesserung der Kurzfristvorhersage möglich ist.
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1 Introduction

In Numerical Weather Prediction the quality of forecasts is highly dependent on the qual-
ity of the data assimilation process, which uses many different meteorological observation
types to calculate an initial state from which a model can start a forecast. In recent years
it became a major issue in meteorology to improve the short term forecast on smaller
scales, to capture mesoscale processes like convection in space and time. Especially the
(non)-occurrence of thunderstorms and their hazards in a convective atmospheric envi-
ronment is a matter of public interest and it would be desirable to have access to a reliable
nowcasting system. To achieve this it is common to use mesoscale models and feed them
with high resolution observational data (wind profiler, RADAR1, satellite) for a more re-
alistic state vector. The objective of this work is to evaluate the impact of assimilated
RADAR data on short term weather forecasts over Austria and Central Europe using
the non-hydrostatic WRF (Weather Research and Forecasting) model (Skamarock et al.
2008) with the included variational analysis package WRFVAR. The implementation of
a RUC (Rapid Update Cycling) system with one hour cycling seems to be an appropriate
work-flow setup to take advantage of the high spatial and temporal resolution of the radar
data. We will concentrate just on assimilation of the reflectivity factor, although it is al-
ready proven (Kuo et al. et al. 2005) that assimilation of Doppler velocities has a positive
impact on the retrieval of the vertical wind component, which is of course crucial for any
type of precipitation process. A key point of this study is the tuning of the background
error covariances, which determine and spread the impact of the observations in space
and time. To find the best configuration many experiments are verified with the MET
(Meteorological Evaluation Tools) framework.

1Even though RADAR is an acronym, it’s lower case written in the following text.
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2 Data Assimilation

2.1 The data Assimilation Problem

The numerical weather prediction is an initial value problem. For every grid point of the
three dimensional model field, information of the prognostic variables(pressure, specific
humidity, wind and temperature) are needed. Even if one takes all available observa-
tions one has access to on earth, like satellite radiances, sondes, surface station data, wind
profilers, Doppler radars, ships and airplane reports, one will not be able to assign the
corresponding value to every grid point. The meteorological equation system stays under
determined and therefore not solvable. To get rid of this major issue one uses a previous
forecast as background, in other words the model itself. Now the data assimilation pro-
cess takes place and corrects the background(first-guess) in direction of the observation,
wherever differences between observations and background are occurring. The data as-
similation is the missing link between the background and the observations. For the first
run(cold start) ever, the background consists of pure climatology data and is naturally far
away from the true state of atmosphere.
To get a reliable forecast, one has to ensure, that the data assimilation process has done
a good job (Simmons and Hollingsworth 2002). The principle aim is to adjust an exist-
ing model forecast closer to the true state of the atmosphere with as many observations
as possible to generate an analysis from which a new forecast can be launched. In the
beginnings of data assimilation comparatively simple methods were used, for example
the Cressman Scheme (Bouttier and Courtier 1999), a simple interpolation between ob-
servations and background with distance weighting, where physical consistency was not
guaranteed.
The Optimal Interpolation (Bouttier and Courtier 1999) or Statistical Interpolation, where
for the first time in history of NWP error covariances of the background and the obser-
vation field have been used for spreading information more accurate in space and time
was more sophisticated than the Cressman scheme. Finally the variational analysis was
developed, namely 3DVAR and 4DVAR (Talagrand and Courtier 1987, Andersson et al.
1998). To find the most likely state of the current atmosphere a cost function gets min-
imized through an iterative method. One of the biggest benefits of this approach is the
capability to assimilate observation data with a non-linear relationship (forward opera-
tor) to the background variables like satellite radiances or reflectivities. Furthermore the
analysed meteorological fields are consistent with the governing equations of numerical
weather prediction. 3DVAR is using all available observations at one given analysis time
whereas 4DVAR includes the time dimension, hence high frequency observations over a
longer time window (usually 6 hours) can be assimilated at appropriate times. Further
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used in data assimilation, but not focus of this work is the Kalman Filter algorithm (An-
derson, 2001). For this work, emphasis is on the 3D-VAR algorithm as implemented by
WRF(Weather Research and Forecasting Model).
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2.2 Variational Analysis - 3DVAR

There are two approaches to find the derivation of the 3DVAR algorithm, the least squares
method and the maximum likelihood method (Faulwetter 2008, Lenz 2011) which will be
the procedure of our choice. The unknown state of the atmosphere on the model grid is
x. The background state xb is a previous forecast. The background error χ is analogously
defined as

χ = x− xb (1)

The expectation value of all background errors assuming a Gaussian distribution is zero.

E(χ) = 0 (2)

Cov(χ) = E(χχ
T ) = B (3)

Assuming the distribution of x is Gaussian and the background and its covariance matrix
are given, we can estimate the probability of x with the cost function Jb

p(x) =
1

(2π)
n
2 det(B)

1
2

e−Jb(x) (4)

Jb(x) =
1
2
(x− xb)

T B−1(x− xb) (5)

We say that there is a non-linear connection between the observations y and the model
state x.

y = H(x) (6)

The Forward Operator H(x) is transforming data from model space to observation space.
That could be a spatial interpolation from grid points to the location of the observation
or the transformation from radar reflectivity to a corresponding rain water mixing ratio or
from Doppler velocity to a 3D wind vector or from satellite radiances to temperature and
relative humidity.
With the combined representivity and observation error ε this leads to

z = H(x)+ ε (7)

Analogously to χ we define under the assumption of a Gaussian distribution and unbiased
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observations

E(ε) = 0 (8)

Cov(ε) = E(εε
T ) = R (9)

where R holds the covariance observation error data.
It is worth to mention that is not uncommon to deal with biased observations. In that
case, the Bias has to be determined(Dee 2005). Furthermore the observation error and the
background error are assumed to be uncorrelated.

E(εχ
T ) = E(χε

T ) = 0 (10)

The probability density function of an observation z for a given state x is written

p(z|x) = 1

(2π)
m
2 det(R)

1
2

e−Jo(x) (11)

(12)

with Jo as costfunction for the observations

Jo(x) =
1
2
(z−H(x))T R−1(z−H(x)) (13)

For us much more interesting is the probability of x for a given z. For that reason we have
to introduce a formalism for conditional probabilities, the Bayes’ theorem to modify our
equation to get p(x|z):

p(B|A) = p(A|B)p(B)
p(A)

(14)

where P(B|A) is the probability of B given A

p(A∩B) = p(A|B)p(B) = p(B|A)p(A) (15)

In our case

p(z∩ x) = p(z|x)p(x) = p(x|z)p(z) (16)
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which we can convert to

p(x|z) = p(z|x)p(x)
p(z)

(17)

where

p(z) = ∑
j

p(z|x)p(x) (18)

or

p(z) =
∫

Rn
p(z|x)p(x)dx (19)

Since we want to vary x and p(z) does not depend on x, we assume p(z) = constant

K =
1

p(z)
(20)

Inserting equations p(z|x) and p(x) in the equation of p(x|z) we get as result:

p(x|z) = K

(2π)
m+n

2 (det(R)det(B))
1
2

e−(Jo(x)+Jb(x)) (21)

The first term on the right side of the equation doesn’t depend on x, hence we can examine
the maximum of p(x|z), if we try to find the absolut minimum of the exponent of the
exponential function, which is our 3DVAR cost function J(x). The state x, where J(x) is
minimal is the analysis. The scalar J(x) is the distance from x to the observation and the
background weighted with the inverses of the error-covariances.

J(x) : = Jo(x)+ Jb(x) (22)

=
1
2
(z−H(x))T R−1(z−H(x))+(x− xb)

T B−1(x− xb) (23)

In case of a non linear observation operator, like satellite radiances for example, it is
common to use an iterative approach to minimize the cost function. In the following the
Newton method is explained, where the minimum is determined by incremental iterations.
A taylor series of 2nd order for J(x) near to xc is calculated.

Q(y) : = J(xc + y)≈ J(xc)+(∇J(xc))
T y+

1
2

yT
∇

2J(xc)y (24)

(25)
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The gradient is calculated with

∇Q(y) = ∇J(xc)+∇
2J(xc)y (26)

In order of minimization, set ∇Q(y) = 0

∇
2J(xc)y =−∇J(xc) (27)

hence, the result of this equation system, where the Jacobi-matrix ∇J(xc) and the Hesse-
matrix ∇2J(xc) have to be known is

xnew = xc + ymin (28)

The minimum can be seen as an increment and creates the starting point xnew of the
next iteration of minimization until the gradient reaches a convergence criterion, that is
specified in WRFVAR.

Figure 1: From Bouttier and Courtier (1999): Schematic representation of the variational
cost function minimization (here in a two-variable model space): the quadratic cost func-
tion has the shape of a paraboloid, or bowl, with the minimum at the optimal analysis.
The minimization works by performing several line-searches to move the control vari-
able to areas where the cost function is smaller, usually by looking at the local slope (the
gradient) of the cost function.

Next we describe a specific implementation of this algorithm in the WRFVAR framework.
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3 WRFVAR-System

This chapter summarizes the key components of the WRFVAR-System. General informa-
tion comes from the WRF User’s Guide 2011, while more detailed technical and physical
information can be found in the WRF Technical Note(Skamarock et al. 2008).

3.1 WRF Modelcore

The WRF (Weather Research and Forecasting) model is a fully compressible, Eulerian
mesoscale model developed by many institutes worldwide, mainly NCAR and NCEP,
and is available with two different cores

- ARW Advanced Research WRF created from NCAR

- NMM Nonhydrostatic Mesoscale Model created from NCEP

Both model cores are using a 3rd order Runge Kutta time integration scheme and a 2nd
to 6th order spatial discretization. The main difference between these two model cores
is that ARW has more complex dynamic and physics settings than NMM. The WRF of
this work was driven by the ARW core due to these reasons. WRF comes with public
license and is therefore free for private use. WRF can be driven from user-created initial
conditions for meteorological research(reanalysis) or from an external NWP product(real
data case) in an operational forecasting setup.
There are two different downscaling methods available for WRF operation:

- one way nesting downscaling in the common sense, parallel computing of both
domains, the output of the parent domain (coarse grid) works as lateral boundary
condition for the child domain (fine grid).

- two way nesting works like one-way nesting, additionally there is information ex-
change (feedback) between the fine grid and the coarse grid.

ARW uses a staggered ARAKAWA C grid (Fig.2), where the vector values (u,v) are
placed in the middle of two gridpoints and the scalar values (T,q, p) are placed in the cen-
ter of an entire gridcell. In the next picture a nesting based on an ARAKAWA C grid with
the ratio 1:3 like in our setup is illustrated. For the information feedback from the fine
grid to the coarse grid for scalar values the mean of all nine points is fed back, whereas
for the vector values only the mean of three values, the face of a grid is fed back.
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Figure 2: From ARW Technical Note Skamarock et al. 2008: Arakawa C grid

The choice of the integration timestep is limited by the Courant Number

∆tmax <
CR√

3
· ∆x

umax

where ∆tmax is the timestep where the RK3 time integration is still stable, CR(1.08) is
the Courant number taken from Wicker and Skamarock (2002), ∆x is the gridsize of the
domain and umax the highest expected velocity in the entire model domain. As rough rule
of thumb for the estimation of the ARW timestep it is common to use timesteps of 6 times
the gridsize (km). For the precise calculation based on our model setup with gridsize of
12/4 km and a maximum velocity of 100ms−1 we get timesteps for domain one and two
of 130s and 43s. In the WRF user’s guide it is recommended to choose an approximately
25 percent smaller timestep, which leads to values of 90 and 30 seconds, respectively.

3.2 WRF Physics

There are atmospheric mechanisms and exchange processes, which cannot be represented
in discretized equations. These processes need to be parameterized. Within a forecast
model, the parameterizations are referred to as "physics package". The WRF physics
packages (Skamarock et al. 2008) are developed to incorporate these processes through
the computation of tendencies for the velocity components, potential temperature and
moisture fields based on diagnostic equations and parameterizations. The WRF physics
package offers a huge range of different configuration possibilities dependent on the par-
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ticular user application. In general the physics are made up of microphysics, cumulus
parameterization, planetary boundary layer (PBL), land-surface model and radiation. Due
to the countless number of available options, only a short overview is given here. Cumu-
lus parameterization, planetary boundary layer (PBL), land-surface model, and radiation
tendencies are computed in the first Runge Kutta step and stay fixed through the entire RK
timestep integration. Microphysics are parameterizations of water vapor, cloud and pre-
cipitation processes. They are called at the end of every RK3 timestep as a condensation-
adjustment to guarantee that the saturation conditions are fitting with the updated mois-
ture and temperature from the RK3 integration. The microphysics are also estimating
the concentration and number of ice hydrometeors using a function of temperature and
are evaluating the fall speed and finally the amount of precipitation (mixing ratio x fall-
speed), which reaches the ground. It is advantageous to use a more complex microphysics
scheme like WSM6 (Hong and Lim 2006), if high resolution and cloud resolving grids
are targeted. The WSM6 scheme is a good candidate for that, because it’s a mixed-phase
microphysics scheme, taking processes between ice and rain particles(graupel and hail)
into account. Generally the exchange processes between the physics and the model state
variables are very complex as illustrated in the next graphic.

Microphysics Cumulus

PBL

Surface

Radiation

convectivenon convective
cloud
effects

surface
emmision/
albedo

downward
longwave/
shortwave

surface fluxes
latent/sensible
heat

surface
T,q,wind

cloud detrainment

Figure 3: From Skamarock et al. (2008): Physical interactions
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3.3 WRF Workflow

The main work-flow of real-data cases is split up into the execution of Fortran 90 programs
geogrid.exe(serial), ungrib.exe(serial), metgrid.exe(parallel), real.exe(parallel), wrf.exe(parallel).
Parellel means that this program can be executed on parallel distributed-memory com-
puter systems, serial just on one CPU. Geogrid, Ungrib and Metgrid are combined in
the WRF Preprocessing System WPS, which prepares the input data for the later WRF
execution.

WRF
PREPROCESSING
SYSTEM

REAL DATA
ARW

SYSTEM

STATIC
DATA

GEOGRID

UNGRIBGRIB
DATA

METGRID

REAL

WRF

Figure 4: From WRF User’s Guide: Basic WRF workflow

Geogrid creates a netcdf file of all static WRF-relevant data based on the user-configuration
defining the projection type, number of grid points, nest locations, and grid distances.
The content of the netcdf file is data like albedo, Coriolis parameters, terrain elevation,
vegetation/land-use type, land/water mask, map scale factors, vegetation greenness frac-
tion, annual mean temperature and latitude/longitude. It is possible to define a topography
data resolution up to 30m (SRTM - GIS Data).

Ungrib extracts all relevant time varying meteorological fields from GRIB files for WRF
initialization and saves them in an intermediate format for further Metgrid processing.

Metgrid horizontally interpolates the meteorological fields from the intermediate files
to the model grid predefined by Geogrid. For every parameter the most suitable inter-
polation can be selected out of many. To achieve a successful Metgrid completion the
following list of meteorological/geographical data from an external NWP product should
be available:
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- 3-dimensional fields of temperature (K), relative humidity, horizontal wind compo-
nents u,v (m/s)

- 2-dimensional fields of surface pressure and sea-level pressure (Pa), layers of soil
temperature (K) and soil moisture (kg/kg), snow depth (m), skin temperature (K),
sea surface, temperature (K), and a sea ice flag

Real interpolates the Metgrid output (in netcdf format) vertically on the hydrostatic pres-
sure coordinate

η =
p− pT

pS− pT
,

where p is the pressure at a given level, pT is the pressure at the top of atmosphere and
pS is the pressure on the surface. η has values of 1 at the surface and 0 at the top of
the atmosphere and can be seen as a terrain following pressure coordinate. In NWP ter-
rain following coordinates are used with finer vertical spacing near the surface to resolve
smaller scales of the boundary layer and coarser spacing at higher levels of the atmo-
sphere to reduce computational costs.

Real splits the geopotential and the column pressure into a reference state(dry) and a
perturbation(with moisture) form to avoid truncation errors from the discrete ARW solver.
Further the module Real prepares soil fields dependent on the selected land surface scheme,
checks, if the Metgrid interpolated parameters are consistent with each other and creates
a lateral boundary condition netcdf file(wrfbdy_d0x) for WRF initialisation and finally
a wrfinput-file with the initial conditions. The lateral boundary file consists of lateral
boundary values for every forecast time of the Metgrid data and their tendency values to
get to the lateral boundary values in the next time period.
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3.4 Data assimilation in WRF

WRF-ARW comes with WRFVAR, a data assimilation package offering several tech-
niques for data assimilation:

- basic 3DVAR, widely used computationally efficient assimilation method

- FGAT - First guess at appropriate time assimilation

- 4DVAR, best algorithm but computationally expensive

- Hybrid data assimilation with flow dependent background error covariances using
ensemble methods

The differences between 3DVAR and 4DVAR are the longer assimilation window and the
implicitly generated flow-dependent background errors. In reality the benefits of 4DVAR
against 3DVAR are shrinking, if a frequently cycled 3DVAR forecasting system is used.
Like WRF the WRFVAR-package consists of a bundle of program modules - writing
routines for observation preprocessing, guaranteeing the availability of the needed input
data and to produce the proper WRFVAR workflow is user’s business.

3.4.1 WRFVAR System

The WRFVAR workflow is a mixture of already existing WRFDA modules(blue), inter-
acting with user programmed routines (little_r obs-data generation, radar preprocessing
or cloud analysis) as illustrated in the following flow diagram. As already discussed the

Update
Lateral BC
(UPDATE_BC)

Background
Preprocessing
(WPS,real)

Radar
Preprocessing

Observation
Preprocessing
(OBSPROC)

Background
Errors
(GEN_BE)

WRFDA

Update
Low BC
(UPDATE_BC)

Forecast
WRF

BO

xAyO,R

xB
XLBC

xF
cycling

cold
start

Figure 5: WRFVAR workflow(blue: WRFDA implemented modules)
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main goal of WRFVAR is to minimize a cost function J(x) in an iterative way to find an
optimal estimate of the state x of the atmosphere:

J(x) : = Jo(x)+ Jb(x) (29)

=
1
2
(y− yO)

T (E+F︸ ︷︷ ︸
R

)−1(y− yO)+(x− xb)
T B−1(x− xb) (30)

where

- x is the analysis state we’re trying to find

- xb is the "first-guess", a previous forecast (warmstart-cycling) or an analysis of an
external NWP product interpolated to the ARW grid (coldstart-mode)

- yO is the observation

- y is the counterpart of yO computed through the forward operator H(x) from analy-
sis space

- B is the background error covariance matrix

- E is the instrumental observation error covariance matrix

- F is the representivity error covariance matrix

- R is the total observation error covariance matrix

The representivity error is describing the inaccuracy in the transformation from analysis
space to observation space and interpolation from grid points to the observation location
with the forward operator H(x).

There are approaches to tune the radar observation error covariance matrix, described
in Desroziers and Ivanov (2001). In our configuration WRFVAR-default-observation er-
rors are used.

For calculation of B GEN_BE is used. GEN_BE is a WRFDA-integrated tool, which
calculates B out of a forecast series. This procedure will be discussed detailed in a later
chapter of this work.
The parallel executable da_wrfvar.exe solves the cost function and generates important as-
similation statistics, which are helpful for tuning and post-configuration of the WRFVAR-
system. Outer loops (Skamarock et al. 2008) are used as a strategy for more efficient as-
similation of non-linearities (observation operators and balance constraints) and for varia-
tional quality control. Therefore resulting analysis of the first assimilation procedure acts
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as the background for the subsequent minimization. Observations, which were rejected in
the first loop due their too large departures from the background will possibly be ingested
in the next minimization, because the observation-background difference falls under the
maximum-error in the internal quality control. This means that in areas with a high fore-
cast error (probably due to poor assimilation in the global model), valuable observations
are getting accepted in a later outer loop.
After successful completion of da_wrfvar.exe, the wrfvar_output file holds the new analy-
sis data, the new initial conditions for a subsequent forecast. In the next step the WRFDA
included utility update_bc updates the lateral boundary conditions, the tendencies for the
first timestep of the wrfbdy_d01 file.

3.4.2 Rapid Updated Cycle WRF

A RUC system is implemented to take advantage of the high temporal and spatial res-
olution of the radar data. RUC systems are operated e.g by the U.S Storm Prediction
Center(SPC). Start of the cycling-procedure is a cold start. GFS (Global Forecast Sys-
tem) 0.5 degree analyses are taken as background and observations are assimilated for
the first time to create a new analysis, which is used as new initial condition for the cold-
start. For the subsequent cycles (warm-starts) the 1-hour forecasts of the previous WRF
are used as first guess. For the analysis the first guess is updated with fresh RADAR and
observation data. This procedure is continued until the next GFS run is available.

01Z 02Z 03Z 04Z 05Z 06Z 07Z 08Z00Z

COLD

GFS 0.5°

COLD

GFS 0.5°

WARM WARM WARM WARM WARM WARM WARM WARM

WARM
06Z INIT

WARM
06Z INIT

Figure 6: Rapid Update Cycling model procedure
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3.4.3 Background Error Generation with GEN_BE

As already mentioned above, the estimation of the background errors is made with the
WRFVAR tool gen_be. Due to the fact, that the background errors are unknown in reality,
the NMC method(Parrish and Derber 1992) is used to create an approximation of the
error covariances based on averaged forecast differences(24 hour - 12 hour) for the same
forecast step.

B = (xb− xt)(xb− xt)T = εbεT
b ≈ (xT+24− xT+12)(xT+24− xT+12)T (31)

where the overbar means an average over time and/or a geographical area. An alternative
strategy proposed by Fisher (2003) uses ensemble forecast output, defining the ε vec-
tors as ensemble perturbations (ensemble minus ensemble mean). It is recommended by
the WRF user’s guide to calculate the NMC B’s based on a WRF forecast series over a
month. The background errors used for cold-start should differ from the warm-start ones,
because of the different resolution from the driving global model. Unfortunately GFS is
only available in GRIB format, which cannot be read from gen_be. So slightly adapted
warm-start background errors are used for the cold-starts.
The size of B is in the order of 107x107 (number of grid-points x number of independent
variables). The enormously high number comes from the cross-correlation of the physical
variables of the model, namely u,v,T, p and q. The reduction of the cross-correlations can
be achieved by introducing less correlated control variables v. Then the cross-correlations
are neglected to block-diagonalize the background error covariance matrix, leaving only
spatial correlations between individual analysis variables (Barker et al. 2003). Further-
more the computationally most efficient choice of the variables is essential. If e.g. vor-
ticity and divergence are used as control variables, it is computationally more expensive
(solution over poisson equation) to calculate u and v wind components, than to choose
stream function and velocity potential as control variables. The variable transformation
(Barker et al. 2003) is written

x′ =Uv (32)

where x′ = x− xb and B =UUT . The control variables chosen in WRFVAR are

- stream function ψ

- unbalanced part of velocity potential χ

- unbalanced part of temperature T

- relative or specific humidity q
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- unbalanced part of surface pressure ps

According this assumption the 3DVAR equation is modified to

J(v) = Jb + Jo =
1
2

vT v+
1
2
(yo′−HUv)T (E+F)−1(yo′−HUv) (33)

where

yo′ = yo−H(xb) (34)

is the innovation vector. The background error covariance matrix B is now block-diagonalized
and therefore much more efficient for computation. The number of required calculations
is reduced from O(107x107) to 107. A further advantage of preconditioning is the simpli-
fied use of adjoints of the cost function J during minimization process.
In practice the computation of B is divided in three different non-separable operations

B =UhUvUpUh
TUv

TU p
T (35)

where

- Uh is the horizontal transform via recursive filters

- Uv is the vertical transform via EOF eigen-decomposition

- Up is the physical transform from control variables to model variables with regres-
sion coefficients

The inverse transformations of above are calculated in gen_be, which consists of 5 oper-
ational stages(stage 0 - stage 4).
Stage 0: Converts u,v to the control variables ψ and χ and calculate forecast differences
based on the NMC-method. Further the mean is calculated.
Stage 1: Calculate perturbations ψ ′,χ ′,T ′,q′, ps′ by removing the mean of stage 0 of the
control variable fields
Stage 2: The initial conditions have to fulfill the wind - mass balance to prevent/decrease
the model spin-up and permit an optimal data assimilation. The balanced/correlated parts
of the variables χb(k),Tb(k), psb are calculated via statistical regression analysis with the
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stream-function ψ as predictor-field

χb(k) = c(k)ψ(k) (36)

Tb(k) = ∑
k1

G(k1,k)ψ(k1) (37)

psb = ∑
k1

W (k1)ψ(k1) (38)

where c,G,W are the regression coefficients. The regression is allowed, because the rela-
tions between the stream function and the other meteorological variables are linear. The
filtering matrix W is calculated from the correlation between actual pressure forecast dif-
ferences (used in the NMC-method) and balanced pressure increments derived from the
wind forecast difference data (Barker et al. 2003). The factor W is chosen to vary with
height and latitude to represent the fact that geostrophic balance is not appropriate in ei-
ther the tropics or the planetary boundary layer. Studies (Wu et al. 2002) have shown
that e.g. the balanced part of the increment of stream-function integrated over all levels
accounts for 86% of the variance of surface pressure increments.
For the error covariances the balanced/correlated components are not essential and there-
fore neglected/ substracted from covariance calculation.

χu(k) = χ
′(k)− c(k)ψ(k) (39)

Tu(k) = T ′(k)−∑
k1

G(k1,k)ψ(k1) (40)

psu = ps′−∑
k1

W (k1)ψ(k1) (41)

Hence the unbalanced part of the variables χu,Tu,Ps is the difference between full and
balanced increment of the control variables. These results are input for the spatial covari-
ance calculation of the next gen_be stage.
Stage 3: removal of the mean of χu,Tu,Ps. For each control variable a computation of
global (domain-averaged) and local eigenvectors and eigenvalues via eigen decomposi-
tion B = εεT = E ∧ET is made. Then a projection from the entire three dimensional
control variable field onto the EOFs is performed. That yields a significant CPU-saving
during minimization, because of the projection onto the uncorrelated eigenvectors.
Stage 4: horizontal correlations are computed between grid-points of each 2D field,
binned as a function of distance. A Gaussian curve is then fitted to the data as described
in Barker et al. 2004 to provide correlation length scales for use in the recursive filter
algorithm (Skamarock et al. 2008). The influence is local and limited to its neighboring
grid points (depending on the length scale of the filter).
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4 Observation Preprocessing

Before observations can be ingested by WRFVAR, preprocessing and quality control is
performed for station data as well as for radar data to ensure that the best possible input
data is available for data assimilation.

4.1 Station Data Preprocessing

400 weather stations all over Europe are available for hourly ingestion by WRFVAR in
this work. Relevant meteorological parameters are pressure, wind, temperature, relative
humidity and height. The observations must be converted into a proprietary Ascii data
format and are read subsequently from Obsproc, a WRFDA tool for observation pre-
processing. Obsproc calculates momentum components u and v out of wind and wind
direction and applies quality control e.g. stations getting rejected if their altitude differs
more than 100 meters from the model orography. If both pressure and height are missing,
the whole data is discarded. A further important capability of Obsproc is the assignment
of observation errors to the observations, which are not available at the time this work
was created. This originates due the complexity of the calculation of the observations
errors and will be a future issue of research. The output of Obsproc deals as input for
da_wr f var.

Figure 7: Station data distribution over Europe
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4.2 Radar analysis

The data used for radar data assimilation consists of

- MAX-CAPPI CERAD (Central European Radar Network) reflectivity data, with a
spatial resolution of 2km and a temporal resolution of 15min (Fig. 8)

- Austrian ACG (AustroControlGroup) radar reflectivity data located at Patscherkofel
(Tyrol), Zirbitzkogel (Styria), Mattighofen (Salzburg) and Schwechat(Lower Aus-
tria), with a resolution of 1 km and 16 vertical levels, temporal resolution of 5min

- 400 weather stations all over Central Europe, that are used to generate BOGUS-
RADAR data, temporal resolution of 10min

- Reflectivity of model background for 2D to 3D expansion of CERAD

The benefit of radar data compared to weather stations is the much higher spatial(1 km)
and temporal resolution(5 min). In fact a lot of preprocessing is necessary to create a
homogeneous and roughly complete reflectivity field. Reasons of errors and inconsistency
in the data are

- Shadowing effects of the Alps

- Ground Clutter and other noise

- Missing elevations in raw data

- Radar device unavailability

To receive an optimal data preparation of measured radar reflectivity a C++ merging rou-
tine is developed, where CERAD data, ACG-AT radar and BOGUS data are combined to
one final radar analysis for ingestion by WRFVAR.
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Figure 8: CERAD domain, red rectangle: domain of interest for radar assimilation

The raw data from ACG come in binary format in 16 quantised steps in units mm/hour.
The Z-R equation

Z = 10∗ log(200∗R1.6) (42)

provided by AustroControl, is used to convert the precipitation variable R to a reflectivity
Z. Due to the different resolutions of the radar data, data thinning is applied to fit the
data with the model mesh (12 and 4km). Erroneous radar regions (shadowing effects over
the Alps or missing radar stations) are getting corrected with BOGUS radar data derived
from 10 minutes interval station-observations of precipitation by an empirically found
Z-R equation,

Z = 2+10∗ log(300∗R1), (43)

which is based on the fact, that a converted reflectivity of measured 0.1mm-0.3mm precip-
itation would lead to too low reflectivities calculated with Marshall Palmer Z/R. If instead
of ten minutes station data, one hour station data is used for BOGUS data creation, fast
moving systems would generate large areas of reflectivity, falsifying the current image of
precipitation. Next a linear interpolation(inverse distance rating) is used to create areas of
BOGUS reflectivity as shown in Fig.10 and 11.
Another major issue of preprocessing are the missing vertical level data of the ACG Radar.
A simple interpolation is used in order to fill the missing values with interpolated values
from the neighboring upper and lower levels.
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Figure 9: 2011.08.19 12Z: Three-Dimensional Reflectivity[dbZ] over 4km x 4km domain
after Preprocessing; Viewing angle: from Italy to the Alps; plotted with NCAR’s VA-
POR(Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers)
Engine

As next step artificial radar vertical profiles are created in order to expand CERAD from
2 dimensions to 3 dimensions. In the beginning of this work the profiles were created
on base of averaged vertical reflectivity distributions at different latitudes (Troxel and
Engholm 1990). Later on an analysis of a model reflectivity field from a different WRF
without data assimilation was applied, averaging the echo tops over an user-defined grid
area(10x10 grid points) and use this data as vertical profiles. This method is showing more
reliable results. If no reflectivity is found in the background field the artificial profiles
are used. In the end a noise correction is performed deleting all single reflectivity data
points. In the following graphics the merging procedure is illustrated for the coarse and
the fine domain. One can clearly see, how the missing CERAD data over lower Austria
get replaced by BOGUS and Austrian radar data.
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BOGUS ACG

CERAD ALL_NOTCORR

ALL_CORR

Figure 10: Radar analysis merging procedure with BOGUS+ACG+CERAD uncorrected
(ALL_NOTCORR) and final correction of noise echoes(ALL_CORR) on the 12km x
12km domain, date: 2011.08.19 12Z, scale is reflectivity (dBZ)
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BOGUS ACG

CERAD ALL_NOTCORR

ALL_CORR

Figure 11: Radar analysis merging procedure with BOGUS+ACG+CERAD uncorrected
(ALL_NOTCORR) and final correction of noise echoes(ALL_CORR) on the 4km x 4km
domain, date: 2011.08.19 12Z, scale is reflectivity (dBZ)
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5 Reflectivity Assimilation in WRFVAR

The aim of reflectivity factor assimilation is to retrieve the temperature (buoyancy) field
through partitioning total water increment through microphysical processes. The on or
off switch of processes in microphysics is critically important and is triggered through a
warm rain scheme.

5.1 Forward Operator

The observation operator H(x) for reflectivity Z (Sun and Crook 1997) is assuming a
Marshall Palmer drop size distribution and is written

Z = 43.1+17.5log(ρqr) (44)

where Z is only function of ρ the air density(kgm−3) and qr the rainwater mixing ratio(gkg−1),
which means that no ice phases are contributing to Z. H(x) is used to transform a radar
observation Z from observation space to model space qr and vice versa. The moisture
control variable for the radar assimilation is total water mixing ratio qt instead of qv in the
normal WRFVAR control space. Therefore a physical transformation Up is introduced
for partitioning qt in water vapor mixing ratio qv, rain water mixing ratio qr and qc cloud
water mixing ratio. This partitioning process is performed by a simple warm rain micro-
physics scheme(no ice phases included - Sun and Crook 1997). The interactions between
the mixing ratios are shown in the next image.

qr

qv

qc

accretion
conversion

condensation/evaporation

evaporation/deposition

Figure 12: WRFVAR microphysics processes
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The warm rain scheme parameterizes the following microphysical processes:

- evaporation of raindrops in subsaturated air

- autoconversion of cloud to rain

- accretion of cloud by rain

- sedimentation of rain

The work flow of the radar data assimilation in WRFVAR is pictured on a further image.

Control variable transformation x'=Uv'
with microphysics partitioning qt=qv+qc+qr

Radar Observation Operator

Costfunction Jb + Jo

Adjoint of Obs Operator

Adjoint of Microphysics

Adjoint of control variable transform vadj=UTx'adj

Cost function Gradient  

Update control variables

Figure 13: Radarassimilation flowchart

The warm rain scheme works like a one-dimensional column-model (Xiao et al. 2007).
During the minimization iteration procedure reflectivity information gets distributed to
the other corresponding variables(qc,qv and T ). At the beginning of the minimization the
qr and qc increments are zero. If supersaturation is identified in the column cloudwater
and rainwater is created. This leads to moisture and temperature change because of the
condensation and evaporation processes included in the warm rain scheme. It is note-
worthy that zero derivatives of the cost function are inducing computational problems,
when qr gets very small and the gradient becomes large. A minimum threshold for radar
reflectivity data was implemented in preprocessing to avoid this problem.
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It is obvious that this approach is not a perfect solution, because of the missing ice phases
in the warm rain process. This weak point could be solved in future by implementation
of the more complex WSM6 scheme in WRFVAR.
Sugimoto et al. (2009) point out, that it is advantageous to perform a cloud analysis
before the WRFVAR reflectivity assimilation is processed. The WRFVAR assimilation is
only able to insert convection when reflectivity data exists in the area. It cannot reduce
or correct a model state if convection is in the background, but was not measured in
reality. In the cloud analysis the model qr gets blended with the observational qr. If the
observational qr is under a distinct threshold, the model qr is set to zero. This is important
because wrong evaporation effects are taken out, if qr is zero. The model stays in a
consistent physical state, because the internal thermodynamics are not changed. The use
of a simple cloud analysis leads to a more realistic atmospheric model state and therefore
should improve the score of the model. The cloud analysis is a promising method, but
was not implemented at the time the work was written.

5.2 Single OBS experiments

Single observations experiments are realized to determine the spatial and quantitative im-
pact of observations controlled by the error covariances on the analysis. One assimilates
an artificial observation variable to get an insight, how the different model variables are
interacting with each other. After the WRFVAR minimization procedure has created an
analysis, the increments are plotted in multiple ways (horizontal and vertical visualiza-
tion). The background error covariances generated with the NMC-method can be tuned
with variance scaling and/or length scaling. Each control variable has different spatial and
quantitative impacts on the analysis, which makes clear how important and time consum-
ing efficient background error tuning can be. Through variance scaling one can increase
the influence of the observation by decreasing the influence of the background and vice
versa. This results in a higher magnitude of the analysis increments. Length scaling is
used to control how the analysis increments are spread horizontally. Dozens of single
observation experiments and real cases with different variance scalings and length scal-
ings were tested to find the optimal WRFVAR setup. An appropriate configuration for
an operational WRFVAR forecasting system seems to be variance scaling of 0.5 and a
length scaling of 0.1. That indicates that the calculated NMC length scales are too large
for accurate reflectivity assimilation and tuning becomes necessary. Similar results are
found in Sugimoto et al. (2009), even though they recommend a length scaling of 0.3 and
a variance scaling of 0.9, which is not in best agreement with our test cases.
As single observation variable water vapor q is chosen, because it’s the most affected vari-
able from the radar reflectivity forward operator during assimilation. To create reasonable
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analysis increments from a q innovation a value of 0.01 kg/kg is considered for assimila-
tion. In Fig. 14 and 15 different length scalings (0.1 and 0.5) are shown. Especially the
vertical cross sections in Fig. 16-18 are showing explicitly, that the default NMC length
scales wouldn’t be appropriate for radar assimilation, because the increment is spread too
wide in horizontal direction. The increments of the vertical wind component w in Fig. 18
are indicating areas of lifting and sinking air masses and are spread over a larger part of
the air column due to mass continuity reasons.

Figure 14: Single Obs experiment with len_scaling=0.5 and var_scaling=0.5, innovation
variable=q, innovation value=0.01 kg/kg, inserted at eta-level=10(700hPa)

31



Figure 15: Single Obs experiment with len_scaling=0.1 and var_scaling=0.5, assimilated
variable=q, innovation value=0.01 kg/kg, inserted at eta-level=10(700hPa)
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Figure 16: Vertical cross section through fine domain: longitude=constant(domain cen-
ter), latitude=from south to north
Analysis increments of water vapor q in kg/kg with len_scaling=0.1(upper),
len_scaling=0.3(middle) and len_scaling=0.5(lower)
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Figure 17: Vertical cross section through fine domain: longitude=constant(domain
center), latitude=from south to north
Analysis increments of temperature T in K with len_scaling=0.1(upper),
len_scaling=0.3(middle) and len_scaling=0.5(lower)
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Figure 18: Vertical cross section through fine domain: longitude=constant(domain
center), latitude=from south to north
Analysis increments of the vertical wind component w in m/s with
len_scaling=0.1(upper), len_scaling=0.3(middle) and len_scaling=0.5(lower)
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6 Case study 19.08.2011

On 19th August 2011 a low pressure system moved from Northern Germany to South
Scandinavia. The corresponding coldfront moved eastward over Austria, producing an or-
ganized line of in the beginning weak thunderstorms. As the front approached the south-
east region of Austria, labilisation took place and widespread severe thunderstorms de-
veloped. The maximum precipitation amount of 31.6 mm/h was measured at the TAWES
station Eisenkappel in Carinthia. In the regions where the highest radar reflectivity was
measured, hail was reported.

6.1 Analysis increments found in the case study

The increments of the assimilated surface station data can be seen in Fig. 19,20 and 21. A
big problem is the rejection of station data due to the difference of the station altitude to
the model altitude. It is the reason why in broad areas of the alpine region the analysis can
not be improved. That of course is not ideal for a consistent analysis. Nevertheless the
station data have a significant impact on analysis. The temperature increments are verti-
cally spread only to a limited extent as show in the vertical cross section in Fig. 21. The
increments from moisture assimilation of water vapor qv are in the order of 10−4 kg/kg,
hence too small to affect the analysis efficiently. qc,qr are not affected. The statistically
computed NMC length scales of ingested pressure observations are large compared to
others.
The retrieval of the microphysical fields from reflectivity assimilation is shown in Fig.
22,23,24 for the fine domain and in Fig. 25,26 and 27 for the coarse domain. The positive
qv increment in the analysis is a result of an underpredicted qv in the background, which
correlates directly with a positive temperature increment coming from latent heat release
through condensation. If qr is partitioned during the minimization process evaporational
cooling is included by the WRFVAR warm rain scheme. The water vapor spreads broader
than the rainwater since the length scale of the water vapor is larger than the rainwater.
Through the wind and temperature statistical relation in the background covariance, the
wind response is obtained(no Figure of u and v available). The response of w(updrafts
and downdrafts) appears plausible. The pressure increments are small compared to other
variables.
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Figure 19: Analysis increments of multiple variables after SYNOP data (t,u,v,rh,p) assim-
ilation on eta level 1(ground) on fine domain with len_scaling=0.3
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Figure 20: Analysis increments of multiple variables after SYNOP data (t,u,v,rh,p) assim-
ilation on eta level 5(850hPa) on fine domain with len_scaling=0.3
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Figure 21: Vertical cross section through fine domain after SYNOP assimilation: longi-
tude=constant(domain center), latitude=from south to north, Analysis increments of Pres-
sure[hPa](upper) and Temperature[K](lower)
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Figure 22: Analysis increments of multiple variables after radar assimilation on eta level
5(850hPa) on fine domain with len_scaling=0.1
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Figure 23: Analysis increments of multiple variables after radar assimilation on eta level
15(500hPa) on fine domain with len_scaling=0.1
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Figure 24: Vertical cross section through fine domain after radar assimilation: longi-
tude=constant(domain center), latitude=from south to north, Analysis increments of Tem-
perature[K](upper) and water vapor[kg/kg](lower)
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Figure 25: Analysis increments of multiple variables after radar assimilation on eta level
5(850hPa) on coarse domain with len_scaling=0.1
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Figure 26: Analysis increments of multiple variables after radar assimilation on eta level
15(500hPa) on coarse domain with len_scaling=0.1
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Figure 27: Vertical cross section through coarse domain after radar assimilation: longi-
tude=constant(domain center), latitude=from south to north, Analysis increments of Tem-
perature[K](upper) and water vapor[kg/kg](lower)
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6.2 WSM3 vs. WSM6 twin experiment

As shown in the last chapters the configuration of the error covariances is essential for
the quality of the forecast. Furthermore the choice of appropriate microphysics, decides
if the analysis leads to the optimal forecast (Baker et al. 2007).
In the twin experiment two different WRF forecasts are generated for the same forecast
date trying to distinguish the forecast skills of WSM3 and WSM6 microphysics compared
to a regular WRF forecast without data assimilation and the "true" radar reflectivity field.
The meteorological conditions on the 19th of August 2011 are ideal for this twin experi-
ment. Two identical background error configurations are used with var_scaling(0.5) and
len_scaling(0.1) for radar assimilation and len_scaling(0.3) for SYNOP assimilation.
In the Figures 28-31 a qualitative (not quantitative) comparison between "true" radar re-
flectivity and hourly model precipitation is shown. The regular WRF(without data assim-
ilation) underestimates the amount and localisation of precipitation from the beginning,
whereas the cycled 3DVAR WRF assimilates the radar reflectivity properly and captures
intensity, shape and movement of the front for the first 2 to 3 hours from INIT almost
correctly. The unsatisfying forecast of the regular WRF comes probably from a subopti-
mal GFS model initialization due to the much coarser resolution of the global model. In
Fig. 28 the simple WSM3 microphysics scheme is used and shows a decreasing forecast
skill within the third hour (only slight precipitation in the southeast of Austria), whereas
the WSM6 in Fig. 29 shows a significant development of thunderstorms. With the more
complex WSM6 scheme the severe thunderstorm development in the southeast is captured
from WARMSTART INIT 09Z on, whereas WSM3 shows dissipation of the storms after
12Z.
The WARMSTART INIT 12Z(Fig. 30 and 31) shows the ability to create valuable short-
range precipitation forecasts with rapid updated cycled WRF using radar assimilation
with both microphysics schemes, even though the structure and intensity with WSM6
looks more reliable again.
During testing it turned out, that the ground station data has a big impact on the results of
this case study, especially the temperature increments are producing a significant CAPE
increase in the south-eastern parts of Austria. At the moment this work is written the
WRFVAR quality control rejects the data of many higher situated stations, because the
station altitude differs too much from model orography. The revision of this behaviour
will be an issue of future research.
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Figure 28: left: "true" radar reflectivity field, center: WRF forecast without assimilation
1 hour accumulated precipitation, right: 09Z INIT WRFVAR with WSM3 microphysics
1 hour accumulated precipitation
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Figure 29: left: "true" radar reflectivity field, center: WRF forecast without assimilation
1 hour accumulated precipitation, right: 09Z INIT WRFVAR with WSM6 microphysics
1 hour accumulated precipitation
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Figure 30: left: "true" radar reflectivity field, center: WRF forecast without assimilation
1 hour accumulated precipitation, right: 12Z INIT WRFVAR with WSM3 microphysics
1 hour accumulated precipitation
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Figure 31: left: "true" radar reflectivity field, center: WRF forecast without assimilation
1 hour accumulated precipitation, right: 12Z INIT WRFVAR with WSM6 microphysics
1 hour accumulated precipitation

50



7 Verification August 2011

The verification includes 20 runs with occurring precipitation between 3rd of August 2011
and 19th of September 2011. For operational verification MET (Model Evaluation Tools
www.dtcenter.org/met/users/), a free software package developed by the National Center
for Atmospheric Research (NCAR) is used. At this particular time only point-to-point
verification is performed, which means 1 hour accumulated model precipitation of the
fine domain is verified against 1 hour precipitation rates of 200 Austrian TAWES stations.
Higher sophisticated spatial verification of model reflectivity against measured reflectivity
will be an important issue of future research.

7.1 Skill Scores

For point to point precipitation verification following discrete predictands(skill scores)
are chosen for use:

- Critical Success Index(CSI)(also called Threat Score)

- Probabilty of Detection YES(PODY)

- Probability of Detection NO(PODN)

These skill scores are calculated based on a contingency table for binary events(detected
or not detected) in the shape of

Forecasted YES NO TOTAL

Observated
YES hits(a) misses(b) a+b
NO false alarms(c) correct negative(d) c+d
TOTAL a+c b+d a+b+c+d

Table 1: Contingency table
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The Critical Success Index is defined as

CSI =
a

a+b+ c
(45)

CSI =
hits

hits+ f alse alarms+misses
(46)

Its range is 0 to 1, with a value of 1 indicating a perfect forecast. Unlike the False Alarm
Rate (FAR) and the Probability of Detection (POD) the Critical Success Index takes into
account missed events (Observated YES, Forecasted NO) and false alarms (Observated
NO, Forecasted YES).
To verify the accuracy of the forecast the Probability of detection YES (PODY)

PODY =
a

a+b
(47)

PODY =
hits

hits+misses
(48)

and Probability of detection NO(PODN)

PODN =
d

c+d
(49)

PODN =
correct negative

correct negative+ f alse alarms
(50)

are calculated. PODY gives the percentage, how often an event is forecasted and detected.
Values are ranging from 0 to 1, 1 is indicating the perfect forecast.

7.2 Verification results

The verification is performed for three precipitation thresholds: 0.1 mm, 1 mm, 5 mm
precipitation per hour. Rain rates >= 5 mm per hour can be seen as heavy precipitation
as produced in thunderstorms. For illustration only a few contingency tables for the 0.1
mm threshold are shown in the following. The Critical Success Index (CSI) indicates
improvement for the forecast hours 0 - 9 for all thresholds. Probability of Detetection YES
(Fig. 33 ) is increasing in the mean at about 10 percent, with the best skill at forecast hour
7 and reaches values up to 80 percent, whereas Probability of Detection NO decreases
only slightly, remaining on a high level. In Fig. 32 the positive impact of reflectivity
assimilation on the WRFVAR CSI scores decreases from forecast hour 1 to forecast hour 3
after INIT (the displayed WRFVAR runs are initialized at forecast hour 3 and 6). This can
be seen on the slightly downward directed bars. Like Sugimoto et al. 2009 pointed out,
the reason therefore is the inconsistency between moisture and the unretrieved 3D wind
field. The answer to this problem might be additional assimilation of Doppler velocities.
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Forecasted YES NO TOTAL

Observated
YES 1036 390 1426
NO 303 1783 2086
TOTAL 1339 2173 3512

Table 2: Contingency table: hourly precip-
itation of WRFonly at forecast hour 7 for
0.1mm threshold

Forecasted YES NO TOTAL

Observated
YES 882 440 1322
NO 271 1911 2182
TOTAL 1153 2351 3504

Table 3: Contingency table: hourly precip-
itation of WRFonly at forecast hour 9 for
0.1mm threshold

Forecasted YES NO TOTAL

Observated
YES 1150 257 1407
NO 219 1884 2103
TOTAL 1369 2141 3510

Table 4: Contingency table: hourly precip-
itation of WRFVAR at forecast hour 7 for
0.1mm threshold

Forecasted YES NO TOTAL

Observated
YES 995 327 1322
NO 347 1835 2182
TOTAL 1342 2162 3504

Table 5: Contingency table: hourly precip-
itation of WRFVAR at forecast hour 9 for
0.1mm threshold
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Figure 32: Critical Success Index for 0.1, 1.0 and 5.0 mm threshold WRFonly vs. WRF-
VAR
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Figure 33: left: POD YES, right: POD NO for 0.1, 1.0 and 5.0 mm threshold WRFonly
vs. WRFVAR
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8 Conclusion and perspectives for further research

In this work the author could show the ability of improving the short term forecast(up
to three hours) using radar assimilation in an hourly cycled WRF setup in combination
with higher class microphysics scheme like WSM6. The tuning of the background error
variance and length scaling was absolutely essential, determining if an updated analysis
is leading to an usable forecast. Furthermore, the more data is available for assimila-
tion, the better the quality of the analysis gets. That means that great efforts will be
made in assimilating Doppler velocities and satellite radiances to retrieve the three di-
mensional wind-field and cloud motion (over radiances). Like Sugimoto et al. 2009
showed, a background preparation(qr-blending as described in 5.1) before assimilation is
performed would be advantageous. The problem of station-rejection due to altitude differ-
ences between model terrain height and station elevation is also a future issue, increasing
the number of available ground stations for assimilation.
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