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Abstract 
 
Zn-based alloys with rare-earth metals are an important part of the high strength 

lightweight multinary Mg-based alloy system Mg-Zn-Mn(Ni)-RE for automotive 

applications. Rare earths (RE) improve the mechanical performance, tensile strength, 

hardness and also the corrosion resistance by removing impurities from the grain 

boundaries of their alloys with zinc. The present work provides detailed information 

on phase relations and crystal structures in the quaternary systems Ce-Ni-Zn-(B,Si) at 

800°C backed by light optical microscopy, electron microprobe analysis and x-ray 

powder and single crystal diffraction. 

The isothermal sections at 800°C have been established for the systems Ce-Zn-B, Ni-

Zn-B, Ce-Ni-Zn and Ce-Zn-Si. In the system Ni-Zn-B six ternary compounds were 

found, which in some cases exhibit considerable mutual solid solubilities mostly as an 

exchange of Ni-Zn at constant B-content, but in the case of the so-called τ-phase τ1-

(Ni1-xZnx)21[Zn1-y-z�y(B4)z]2B6 (1.5<x<2.25, 0.07<y<0.53, 0<z<0.3) also with Zn/B 

substitution. Whereas Ni/Zn exchange (at constant B-content) ranges at about 4 to 5 

at. % for τ4-Ni3ZnB2 and τ5-Ni48Zn32B20, it is below 3 at. % for τ2-Ni12ZnB8-x 

(x=0.43), τ3-Ni21Zn2B20 and τ6-Ni47Zn23B30. Phase relations in the system Ce-Ni-Zn 

are characterized by a large region for the liquid phase in the Ce-rich part and a 

continuous solution of the phase Ce(Ni1-xZnx)5 with CaCu5-type through the entire 

section for the full temperature region from 400 to 800°C. Zn/Ni substitution has 

found to stabilize the structure of CeZn11 at 800°C appearing as a ternary solution 

phase Ce(Zn1-xNix)11(0.03≤x≤0.22) and a rather extended solution of Ce2(NixZn1-

x)17(0≤x≤0.53). No ternary compound exists in the ternary system Ce-Zn-B and no 

significant mutual solid solubilities of binary phases have been observed. For the low 

temperature  modification αCeZn7 (Ce1-xZn5+2x; x~0.33) up to 750°C the TbCu7-type 

could be assigned in this work. 

X-ray single crystal and x-ray powder diffraction were employed to study the precise 

site occupation and site preferences in the crystal structures of more than 18 

compounds. The crystal chemistry of the rhombohedral β boron solid solution co-

doped by Ni,Zn metal atoms has been studied on a Ni0.19Zn1.24B34.22 single crystal. Zn 

atoms were found in the E void (occupancy of 28%) whilst random mixtures of Ni, Zn 

atoms (ratio 15.5:84.5) occupy the sites A1, D and Dd. Among the new crystal 
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structures determined a new boron-metal cluster was found in Ni21Zn2B20 (I4/mmm) 

with characteristic isolated B20- cages nesting six nickel atoms in the form of an 

octahedron. Ni3ZnB2 (C2/m) was found to form B4 zigzag chains, Ce7Zn23-xSix, 

x=0.14 (Pbam) consists of AuCu3 and disordered BaAl4 structural units and Ce(Ni1-

xZnx)2Si2, x=0.39 (Pnmm) is CaBe2Ge2-type. 

Physical properties including thermal expansion, hardness, elastic properties, 

resistivity, specific heat and magnetization were studied for the borides Ni21Zn2B20 

and Ni3ZnB2. 
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Kurzfassung 
 
Zinklegierungen mit Seltenerdmetallen sind ein wichtiger Bestandteil des hochfesten 

und ultraleichten Legierungssystems Mg-Zn-Mn(Ni)-Seltenerden für Anwendungen 

in der Automobilbranche. Seltenerdmetalle verbessern die mechanischen 

Eigenschaften wie die Zugfestigkeit, Härte oder die Beständigkeit gegen Korrosion 

indem sie mit Hilfe von Zink Verunreinigungen an den Korngrenzen der Legierungen 

beseitigen. Die hier vorgelegte Arbeit gibt detaillierte Informationen über die 

Phasenbeziehungen und Kristallstrukturen des quaternären Systems Ce-Ni-Zn-(B,Si) 

bei 800°C, unterstützt durch optische Mikroskopie, Elektronenmikrosondenanalysen, 

Röntgenpulver- und Einkristallbeugung. 

Für die Systeme Ce-Zn-B, Ni-Zn-B, Ce-Ni-Zn und Ce-Zn-Si wurden sotherme Schnitte 

bei 800°C erstellt. Im System Ni-Zn-B wurden sechs ternäre Verbindungen gefunden 

die in einigen Fällen beträchtliche homogene Bereiche (Mischkristalle) aufweisen meist 

als Austausch von Ni-Zn bei einem konstanten B-Gehalt, nur im Fall der sogenannten 

τ-Phase τ1-(Ni1-xZnx)21[Zn1-y-x⁪y(B4)z]2B6 kam es auch zu einem Zn/B Ersatz. Während 

der Ni/Zn Austausch (bei konstantem B-Gehalt) ungefähr 4 bis 5 at. % für τ4-Ni3ZnB2 

und τ5-Ni48Zn32B20 beträgt, liegt er für τ2-Ni12ZnB8-x (x = 0.43), τ3-Ni21Zn2B20 und τ6-

Ni47Zn23B30 unter 3 at. %. Phasenbeziehungen im System Ce-Ni-Zn werden durch 

einen großen Bereich einer flüssigen Phase im Ce-reichen Teil und durch eine 

vollständige Lösung der Ce(Ni1-xZnx)5 Phase mit CaCu5-Typ im gesamten 

Konzentrationsschnitt und dem ganzen Temperaturbereich von 400 bis 800°C 

charakterisiert. Zn/Ni Austausch konnte (i) die Struktur von CeZn11 bei 800°C 

stabilisieren, die somit als ternäre Lösungsphase Ce(Zn1-xNix)11 (0.03≤x≤0.22) 

erscheint, sowie auch (ii) die ziemlich ausgedehnte Lösung von Ce2(NixZn1-x)17 

(0≤x≤0.53). Im ternären System Ce-Zn-B existiert keine ternäre Verbindung und es 

wurden keine wesentlichen gemeinsamen Löslichkeiten von binären Phasen festgestellt. 

Für die Tieftemperatur-Modifikation αCeZn7 (Ce1-xZn5+2x; x~0.33) konnte in dieser 

Arbeit bis zu 750°C der TbCu2-Typ zugeordent werden. 

Um die genaue atomare Verteilung in den Kristallstrukturen zu studieren wurden für 

mehr als 18 Verbindungen Röntgenpulver- und Einkristallbeugung angewendet. An 

einem Ni0.19Zn1.24B34.22 Einkristall wurde die Kristallchemie des rhomboedrischen β 

Bormischkristalls, dotiert mit Ni, Zn-Atomen, untersucht. Zinkatome wurden in der E 

Fehlstelle (Besetzung: 28%) gefunden während statistische Mischungen von Nickel und 
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Zinkatomen (Verhältnis 15.5:84.5) die A1, D und Dd Stellen besetzen. Unter den neu 

bestimmten Kristallstrukturen wurde im Ni21Zn2B20 (I4/mmm) ein neuer Bor-Metall 

Cluster gefunden, der als charakteristischer B20-Käfig einen Oktaeder aus sechs 

Nickelatomen umsachliesst. Es wurde weiters entdeckt, dass Ni3ZnB2 (C2/m) B4 

Zickzackketten ausbildet, dass Ce7Zn23-xSix, x = 0.14 (Pbam) aus AuCu3 und 

ungeordneten BaAl4 Struktureinheiten besteht und dass Ce(Ni1-xZnx)2Si2, x = 0.39 

(P 4 21m) eine Variante des CaBe2Ge2-Typs ist.  

Physikalische Eigenschaften, einschließlich thermischer Ausdehnung, Härte, 

elastische und magnetische Eigenschaften sowie spezifische Wärme wurden an den 

Boridverbindungen Ni21Zn2B20 und Ni3ZnB2 untersucht



  

  1

1 
 

Introduction 
 
Anthropologists characterize the different stages of the human cilivilizations 

development, as the Stone Age, Bronze Age, Iron Age and the Modern Age. The 

Modern Age can be called as called Nuclear Age, Space Age or the Age of Science. 

In this Modern Age materials and the knowledge about the materials has a pivot role 

[1]. Technology of the present time is based on the knowledge of properties of the 

materials. Phase diagrams are one of the most important sources of information about 

the behavior of the phases, compounds and solutions. In the present work equilibrated 

alloys mainly, Borides and Silicides have been used for the construction of 

‘Isothermal Sections/Phase Diagrams’ along with the structure elucidation of the new 

compounds via Single Crystal Studies. It is hoped that a better understanding of the 

borides and silicides will emerge. 

 
1.1.Borides 
 

Elemental boron is well known to form three-dimensional framework of covalently 

bonded boron atoms in the structure resulting in the formation of a series of voids (see 

figure 1), which can accommodate metal (M) atoms [2]. Due to the strong covalent 

bonds in β-rhombohedral-boron high temperature modification (Tm(βB) = 2072°C 

[3]) and its solid solutions with transition metals exhibit high (Vickers) hardness 

around 40 GPa as well as high resistance against corrosion and acid [4]. The strong 

covalent bonding of most borides is responsible for their high melting points, moduli, 

and hardness values. Borides generally have high negative free energies of formation, 

which gives them excellent stability under many conditions [5]. 

The B/M ratio and the number of d- and f-electrons of the metal atoms determine 

crystal structure and the properties of the transition metal borides. In case of metal-

rich borides, M≥2B the electron transfer is directed toward the metal, and the metal 

states play the main part in the electronic structure of the compounds. In boron-rich 

borides, such as MB≥2, the electron transfer is directed toward the boron [6]. 

Ferroboron has been observed to be grain refiner for steel, CaB is reported to be a 

strong deoxidizer/defluxing agent for nonferrous metals such as Cu [5]. Zinc-based 
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alloys with rare-earth metals are used in several engineering applications and are often 

employed to replace cast iron because of similar properties and better machinability 

[7]. Rare earths (RE) improve the mechanical performance, tensile strength, hardness 

and also the corrosion resistance by removing impurities from the grain boundaries of 

their alloys with zinc [8]. Zinc alloys with about 15 mass % boron or even less exhibit 

high tensile strength, high degree of hardness, high resistance to oxidation and 

corrosion, low shrinkage factor and low specific gravity [9]. Multi-component zinc 

and boron alloys containing various amounts of elements such as aluminum, copper 

or calcium can be used for the production of bearings, bars, rods, sheets, tubes, plates, 

for the production of ingots, or other finished or semi-finished articles [9]. Generally, 

additions of boron and borides act as grain refiners in many metals and alloys 

increasing cohesive strength but also may clean grain boundaries for superplasticity 

[10]. 

 

 
Figure 1. E, A1, D, and Dd holes in β boron structure [11].  
 
1.2.Silicides 
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Transition metal Silicides have been reported to have outstanding electrical, thermal 

and structural properties [12]. Silicides may find applications in the contact materials 

or in optoelectronic devices or simply as grain refiners [13]. The resistivity of silicides 

is most important criterion for considering them for metallization in integrated 

circuits. Investigations of certain metal-silicon systems have resulted in silicide 

resistivities that are routinely obtainable [14]. 

A majority of (TM) transition metal silicides show metallic properties. Usually Si-rich 

phases with TM from semiconducting materials, nine such semiconducting silicides 

are known: CrSi2, MnSix, β-FeSi2, Ru2Si3, ReSi1.75, OsSi, Os2Si3, OsSi2, and lr3Si5. In 

the recent years numerous research has been observed in the growth of epitaxial 

layers and single crystals of semiconducting silicides. This offers a deeper 

understanding of the fundamental electronic and electrical properties and of silicides 

and their prospects in various applications [15, 16]. As far as high strength 

lightweight alloys for automotive applications are concerned [17], the Ce-Zn system 

is an important part of the multinary Mg-based alloy system Mg-Zn-Mn-RE-(Si).  

 
1.3.Task of the Present Work 
 
In this thesis phase equilibria, crystal structure and physical properties in the ternary 

systems, making the boundaries of the Ce-Ni-Zn(B, Si) quaternary systems, have been 

presented. The keen literature review demanded the detailed study in the systems Ce-

Zn-B, Ce-Ni-Zn, Ni-Zn-B and Ce-Zn-Si. This thesis includes the crystal structure and 

the properties of the binary, ternary and quaternary compounds along with the binary 

and ternary isothermal sections. The work was planed on the bases explained below,  

 

1. To investigation the phase equilibria, presence of ternary phases and 

homogeneity ranges of the binaries at 800°C for the system Ce-Zn-B. 

During this study a low temperature modification of Ce2Zn17 phase and 

problem in the Ce-Zn binary phase relations led this work to include Ce-

Zn system in the process of investigation. 

 

2. Phase equilibria at 800°C for the Ni-Zn-B ternary system has been 

reported by [18] for the Ni rich corner with five ternary phases, out of 

which structure of only one was reported [19].  
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i. The aim of the present work was to reconstruct an isothermal 

section at 800°C for the Ni-Zn-B ternary system covering the entire 

range of the phase diagram.  

 

ii. To determine the crystal structures of all the hitherto unknown 

phases in the Ni-Zn-B system. So the structure of τ1, τ2, τ3, τ4, τ5 

and τ6 was aimed to investigate with help of X-ray single crystal 

and TEM analysis. 

 

iii. After determination of novel Ni-Zn-B compounds; τ3 and τ4 with 

infinite nets of metal atoms, interesting physical properties were 

expected to arise from the metal features arising from the 

covalently bonded metal atoms and ceramic like boron 

aggregations. Therefore it was aimed to study the electrical, 

magnetic and mechanical properties of the τ3 and τ4 compounds, 

which reveal a rather different boron-boron aggregation due to 

their different boron/metal ratio. 

 

  

iv. Consequently in the present work it was intended to employ X-ray 

single crystal structure and EPM analyses in order to elucidate 

details on the site occupation and the void-filling mechanism of 

combined Ni-Zn in the solid solution of β rhombohedral boron and 

the self-compensation of the solid solution of Ni-Zn co-doped β 

boron. 

 

3. An investigation of the isothermal section at 800°C seemed to be 

necessary in order to link phase relations to our investigation of the 

multicomponent system Ce-Ni-Zn-{B,Si}. As a further task, thermal 

stability, crystal symmetry and atom distribution was needed to be 

checked/established for the solution phases Ce(Ni1-xZnx)5, Ce2(NixZn1-x)17 

and Ce(NixZn1-x)11. 
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4. Besides the compound CeZnSi, which has been reported [20] to be 

paramagnetic within the temperature range of 77-300K, no phase diagram 

was reported for the system Ce-Zn-Si. Therefore the present work intends 

to provide detailed information on phase equilibria and crystal structures in 

the Ce-Zn-Si system. 

 

 

Arc melting, sintering or melting in the quartz ampoules have been employed for 

sample preparation for all the investigations. X-ray Powder diffraction and X-ray 

single crystal diffraction were used to solve the crystal structure. Light optical 

microscope, Scanning electron microscope and EPM analysis were used for 

characterization of materials. (Details given: Chapter 2). 
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2 
 

Experimental Techniques 
 
2.1. Synthesis Details and Characterization Procedure  
 
Alloys have been prepared either by Arc melting or sintering of the high purity, i.e, 

99.9% elements. In sintering pieces of rare earth metals, Zn filings or Ni powders 

were used. In case of Arc melting procedure, powders of the arc melted mater alloys 

were cold compacted with the Zn filings and then were sealed in quartz tubes along 

with the Al2O3 crucibles. After heating or melting to the desired temperatures samples 

were water-quenched. These samples were either used for (single crystal) SC 

selection or were further annealed. After synthesis, in some cases, samples were 

powdered for the assurance of the homogeneity, inside the glove box or under 

cyclohexane in order to avoid the oxidation. Re-powdered samples were again cold 

compacted and annealed in the quartz tubes and after water quenching were subjected 

to the XPD and EPMA analysis.  

Single crystals have also been grown through flux method by using Zn in excess to 

act as a matrix. In this case sample’s melts were boiled with the 15% aqueous solution 

of HCl in a water bath. Residues of the samples were separated with the help of the 

filter paper, after washing many times crystals were dried up.  

For the physical properties measurements sample cylinders of 0.8 cm height and 1 cm 

diameter were prepared by arc melting of their master alloys.  These master alloys 

were powderized either by ball milling or hand milling, in case of hand milling 

process was carried out in the glove box. The Zn filings were cold compacted with the 

powders of master alloys and process of synthesis was carried out in the quartz tubes. 

After synthesis samples were again powdered in the glove box and loaded to the 

graphite die for hot pressing. Hot pressed materials were grinded from the surface to 

get rid of the attached carbon, after density measurement small parts were cut down to 

use in the XPD and EPM analysis. Flow sheet diagram of the general synthesis 

procedure has been described in Fig. 1.  
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Figure 1. Flow sheet diagram for the synthesis procedure. 
 
2.2. Instruments 
 
2.2.1. Arc Furnace  
 
Arc melting has been performed on the elemental ingots on a water-cooled Cu hearth 

under argon atmosphere in the presence of Ti getter. Prior to the melting with W 

electrode arc melting chamber is evacuated to 0 bar and then flush Ar up to 07-0.8 bar 

three times. After this Ti getter is melt first in order to ensure the burning of all air if it 

is there in small quantities. Then sample was melted three times after turning its sides, 

in order to ensure its homogeneity. Power is switched off, during complete 

diminishing of the flam it is kept on the Ti getter again. At the end the Ar is flushed to 

the full scale in order to open the chamber for taking the sample out. Schematic view 

of our arc melting chamber is given in Fig.2 
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Figure 2. The arc-melting furnace. 

 
2.2.2. Hot Pressing 
 
In order to densify the materials (HP W 200/250-2200-200KS) HP from FCT System 

GmbH has been used, an overall view of the equipment is shown in Fig. 3. System 

has high-density graphite heater with a limit of 2200°C and the maximum 14 kN 

pressure is possible to be exerted on the material. Process of hot pressing can be 

carried out in the presence of Argon or Nitrogen or in the vacuum. The experimental 

parameters such as temperature, heating/cooling rate, pressure and dewel time had to 

be optimized according to the nature of the material going to be hot pressed. In case 

of volatile material HP was cleaned before and after its application. In present work 

800°C temperature and 56 MP pressure for 1 hour has been employed on both: the 

bulk sample powders loaded in 1 cm graphite die or the 6mm sample pellets loaded in 

two layers by putting three pellets in each layer with a separator, the Al2O3 powder 

(Al2O3 powder was pre heated and cooled down at 800°C in order to get rid water 

vapors).   
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Figure 3. An overall view of FCT Hot Press. 
 
2.2.3. X-Ray Diffraction 
 
2.2.3.1.  IP (Image Plate) and XPD (X-ray Powder Diffraction) 
 
The IP (Huber Gunier Image Plate Camera G 670) with CuKα radiation (λ=0.154051 

nm) has been used for X-ray powder diffraction analysis. In the Guinier camera a 

monochromatic beam (at the angle of 45° to sample normal) is being transmitted 

through the powder sample and the diffracted beams is being recorded on the circular 

focusing detecting film (Fig. 5b). The diameter of the focal circle of the 

monochromator is 360 mm while that of the focal circle of the camera is 180 mm 

(covering the 2θ range from 0 to 100°).  

The aluminum camera housing has two main parts (see Fig. 5a):  

a) The upper inner part of the camera cylinder has the, 

i. Image Plate.  

ii. Halogen lamp (for erasing). 

iii.  X-ray entrance window.  

b)  The lower part has, 

i.  Electromechanical device to actuate the readout unit.  

The red beam (λ=635nm) from the diode laser is focused on the surface of the IP. The 

diffusely scattered blue photo-stimulated luminescence light enters a photomultiplier 
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tube through a blue transmitting filter. The step motor clock triggers the A/D 

converter, i.e. each step of the driving motor generates the corresponding signal value 

of the PMT. One complete diffractogram of a sample within 2θ range (0-100°) 

consists of 20,000 data points for a step resolution of 0.005° 2θ. More details about 

the IP Guinier camera G670 are possible to obtain from the web site: [1] 

ARTICLE IN PRESS 
 

 
Figure 5. a) An overall view of Huber G670 Image Plate, b) schematic view of 

geometry. 

 

2.2.3.2. AXS GADDS 

The morphology, any of kind disorder and twinning in the crystal have been analyzed 

with the help of D8 Discover with GADDS (General Area Detector Diffraction 

System) by Brucker Axs GmbH. Main feature of this instrument is the presence of 2D 

detector as it collects the data in two dimensions.  
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Figure 5. a) View of D8 discover with GADDS, b) Schematic of SC mounted. 
 
 
GADDS has various applications but we use it to ensure the good quality of the 

crystal and its unit cell dimensions. Single crystal is mounted with the transparent 

glue on the tip o f glass fiber mounted inside the brass holder with help of wax as 

shown in the figure 5b. Sample holder is mounted on a xyz stage. Hi –Star area 

detector intercepts the X-rays scattered from the sample finally displays the pattern in 

the 2 dimensional image frames. (Details can be found in the D8 discover with 

GADDS manual). 

 
2.2.3.2. Nonius Kappa diffractometer and area detector CCD 
 
The Bruker’s four-circle diffractometer has been used for (single crystal) SC studies. 

The instrument is equipped with, 

i. Kappa goniometer,  

ii. MoKα X-rays source and  

iii. 2 dimensional CCD detector.  

Position of the SC sample is adjusted with the help of its image on the computer 

screen attached. HV (high voltage) and the rotating anode generators produce MoKα 

X-rays. These X-rays are controlled with the help of main shutter, fast shutter, 

monochromator and collimator before interfering with the sample. X-rays diffracted 
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through the sample hit the detector through the Be window, where these X-rays are 

transferred to the light photons. These photons are converted to the electrons by the 

CCD camera. Detector reads the signals and amplifier, amplifies them. In the 

controller system these signals are digitalized and appear on the computer (Technical 

detail scan be found in the manual). Figure 6a and b are showing the schematic view 

of the instrument. 

 
Figure 6. a) KAPPA APEX II CCD X-Ray diffractometer of the manufacturer Bruker 
AXS, b) detector in bigger view. 
 
2.2.4. EPMA (Electron Microprobe Microanalysis) 
 
In case of compact, solid and hard samples the pieces were embedded inside the 

conducting resin by using AOMPLIMET 3 molding press (Buehler, Lake Bluff: 

Illinoise USA with 2150°C and9*107 Pa). In some cases the samples were embedded 

inside the Technovit with a conducting rim around when samples were required to cut 

in a specific direction. The powder samples were mixed with the conducting glue to 

form the 5 mm molds, after drying, these moulds were embedded inside the 

conducting resin. Samples were grinded on sand papers of different SiC grit size and 

then polished with water, glycerin, ethanol or oil as per requirement of the material. 

Polishing was performed in the presence of 0.05-0.3 µ fine alumina powder on fine 

polishing cloth. 
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Electron microscope Zeiss Supra 55 VP by Oxford Instruments has been used for the 

characterization of composition in the samples (see Fig. 7 L.H.S) its working 

principle is shown in the Fig. 7 (R.H.S). The instrument is equipped with the four 

detectors, working partly under vacuum and partly under low pressure conditions. Out 

of these four detectors, three are sensitive to the secondary electrons, and one is to the 

backscattered electrons. 

Electron beam is bombarded on the polished surface of the sample. These electrons 

can excite the inner shell electrons of the specimen leaving a vacancy in the inner 

shell. This vacancy is filled by the outer shell electrons with a consequence of 

crharacteristics X-rays are emitted. From these characteristic X-rays qualitative (from 

λ) and quantitative (from I) analysis is possible.  

As a result of sample and electron beam interaction heat, X-rays, Bremstrahlung, 

secondary and backscattered electrons are liberated. Secondary electrons are used for 

the topological analysis while backscattered electrons are used to differentiate the 

phases in the sample due to enhanced contrast.  

 

 
Figure 7. Over all view of (L.H.S) SEM-EPMA, schematic drawing (R.H.S) of 
electron and X-rays optics of a combined Sem and EDX. (Fig. (R.H.S): [2] 
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Electron microprobe set up mainly consists of the following parts:  

i) Electron gun (commonly W-filament).  

ii) Series of electromagnetic lenses (to have condense and focused electron 

beam).  

iii) xyz - sample stage in a vacuum chamber.  

iv) Light microscope (to observation the sample). 

v) The detectors (around the sample chamber). 

 
2.3. Data Analysis 
2.3.1. XPD Data  
 
X-ray powder diffraction data of single or multi phase sample powders have been 

recorded on a Huber G670 IP in the Guinier geometry both with and without the Ge 

as an internal standard.  

 
2.3.1.1. PCW (Powder Cell) 
 
The program PCW (Powder Cell) [3] has been used for the comparison of 

experimental XPD data with the patterns of known structures created through the cell 

files. 

 
2.3.1.2. STRUKTURE 
 
X-ray powder diffraction data collected with the Ge as an internal standard are used 

for the calculation of the lattice parameters of the phases present in the single or 

multiphase samples. The peaks of the XPD data of the sample with Ge standard are 

marked at the certain theta positions in the program STRUCTURE [4] form where a 

correction curve for Ge peaks is obtained. After employing this correction to all peaks 

of the pattern, lattice parameters of the phases in the sample are calculated by 

comparing the theoretical and observed peaks in the program X15. LAZY 

PULVARIX and GITTER are present in the package of MENU program. The input 

data for known structures have been provided by the help of LAZY PULVARIX 

while the GITTER program creates a git file from where we can estimate the 

correctness of the lattice parameter values calculated. 

 
2.3.1.3. Rietveld Refinement 
Rietveld refinement is a technique devised by the Hugo Rietveld for the 

characterisation of crystalline materials [5]. The neutron and X-ray diffraction of 
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powders result in the patterns characterised by peaks with the intensities at certain 

positions. Rietveld refinement solves the following system of equations by means of 

least squares minimization,y1
calc = sy1

obsy2
calc = sy2

obsyi
calc = syi

obs where Yi
calc and Yi

obs 
are the calculated and observed intensities at a pont i, respectively. s is the pattern 
scale factor [6].  
The quantity minimized in the least squares refinement is the residual, Sy:Where yci 

and yi are the calculated and observed intensities at the ith point.  

A powder diffraction pattern of the crystalline material is a collection of individual 

reflection profiles, each of which has a certain intensity, 

Ik α |Fk|
2  

Ik is the Bragg intensity (k stands for the Miller indicies, h, k, l).and |Fk| is the 

absolute value of the structure factor. The calculated intensities (yci) are determined 

from the |Fk|
2: calculated from the structural model by summing the calculated 

contributions from neighbouring Bragg reflections and the background,Wher s is the  
scale factor, k represents the Miller indicies, Lk the Lorentz, polarization and 

multiplicity factor, Ø is the reflection profile function, Pk is for the preferred 
rientation function, A is an absorption function, Fk is the structure factor for the k th 
Bragg reflection and ybi is the background at the ith step. Structure factor is calculated 
by the following equation, 

where hkl are the Miller indicies, xj, yj, zj are the position parameters, fj is the 

scattering power of the jth atom it is a fuction of sinθ/λ, 2
jU  stands for the root mean 

square thermal displacement, Nj is the site occupation and Bj is its thermal 
displacement parameter. λθµπ /sinM sj

2228=  
2
sµ , is the root mean square thermal displacement of the jth atom parallel to the 

diffraction vector. Certain parameters, i.e, scale factor, background, lattice 

parameters, shape parameters, temperature factors, site occupation, atomic 

coordinates, asymmetry and preferred orientation are refined in the FULPROF [7] 

until the difference between observed and calculated is reached to its minimum. 

Mathematically following equations are the criteria for a best fit, 

∑ −=
i

ciiiy yywS 2)(

bikki
k

kkci yAPFLsy +−= ∑ )22(2 θθφ

( )[ ] [ ]j
j

jjjjjk MlzkyhxifNF −++=∑ exp2exp π
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R- weighted pattern is more meaningful among all as is because it has the residual 

being minimized in the munerator. So it best reflects the quality of the refinement 

process. 

 
2.3.2. SC (Single Crystal) Data  
 
An X-ray SC measurement through Nonius Kappa diffractometer and area detector 

CCD gives an hkl file and the unit cell dimensions of the crystal. From the analysis of 

systematic extinctions space group is assigned. According to the electron density map 

of the crystal, atom positions are assigned finally the structure is calculated by using 

the WINGIX [8] program, which has SHLEXL97 [9], SHLEXL-97-2 [10], Fourier 

MAP and many other programs in its package. Crystal structure and the polyhedra are 

drawn in the pictorial from by using either DIAMOND and / ATOMS. 
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3 
 

The System Ce-Zn-B at 800°C 
 
3.1.   Introduction 

 
Zinc-based alloys with rare-earth metals are used in several engineering applications 

and are often employed to replace cast iron because of similar properties and better 

machinability [1]. Rare earths (RE) improve the mechanical performance, tensile 

strength, hardness and also the corrosion resistance by removing impurities from the 

grain boundaries of their alloys with zinc [2]. Zinc alloys with about 15 mass% boron 

or even less exhibit high tensile strength, high degree of hardness, high resistance to 

oxidation and corrosion, low shrinkage factor and low specific gravity [3]. Multi-

component zinc and boron alloys containing various amounts of elements such as 

aluminium, copper or calcium can be used for the production of bearings, bars, rods, 

sheets, tubes, plates, for the production of ingots, or other finished or semi-finished 

articles [3].  

As far as high strength lightweight alloys for automotive applications are concerned 

[4], the Ce-Zn system is an important part of the multinary Mg-based alloy system 

Mg-Zn-Mn-RE, however, nothing is yet known on the influence of boron additions 

and no phase diagrams have yet been reported for systems RE-Zn-B. Therefore the 

present work tries to provide detailed information on phase equilibria and crystal 

structures in the Ce-Zn-B system.  

 

3.2.  Experimental 

Samples in a total amount of ca. 0.5 g each were prepared from cerium ingots (Alfa 

Aesar, purity >99.9 mass%), zinc granules (Alfa Aesar, purity >99.9 mass%) and 

boron pieces (ChemPur, Karlsruhe, purity 98 mass%). Zinc drops were purified in an 

evacuated quartz tube by heating them below the boiling temperature of Zn (907°C). 

Cerium was mechanically surface cleaned before use. 

Binary alloys: Ce cuttings and Zn filings in various stiochiometric ratios were 

cold pressed, sealed in quartz tubes under vacuum and then slowly heated to 420 

°C. Samples were kept at this temperature for 12h before heating up to the melting 

range (about 100°C above Tm) at the rate of 1°C/min. prior to cooling down to 

800°C at the same rate. The reguli were annealed at 800°C for 7 days and 



 

 
 

20

quenched by immersing the quartz ampoules in cold water. Selected alloys were 

annealed at various temperatures in the range of 420 °C to 850 °C for 7 days. 

CeB6 and CeBx master alloys were prepared by arc melting cerium cuttings and 

boron pieces under argon. 

Ternary alloys: Two procedures were used for the evaluation of ternary phase 

relations: (i) samples were prepared from intimate blends of powders of arc 

melted CeBx master alloy and fine Zn-filings in proper compositional ratios. The 

blends were cold compacted in a steel die without lubricant, vacuum sealed in 

quartz tubes and heat treated and quenched as described for the binary alloys. 

(ii) samples were prepared from mixtures of arc melted CeB6 and binary CexZny 

master alloys prepared like described in (i). Melting and heat treatment was 

performed as for alloys (i).  

X-ray powder diffraction data were collected from each alloy in as cast and annealed 

state employing a Guinier-Huber image plate system with monochromatic CuKα1 

radiation (8º<2θ<100º). Quantitative Rietveld refinements of the X-ray powder 

diffraction data were performed with the FULLPROF program [5]. 

Single crystals were mechanically isolated from crushed as cast alloys. Inspections on 

an AXS-GADDS texture goniometer assured high crystal quality, unit cell dimensions 

and Laue symmetry of the specimens prior to the X-ray intensity data collections on a 

four-circle Nonius Kappa diffractometer equipped with a CCD area detector 

employing graphite monochromated Mo Kα radiation (λ=0.071069 nm). Orientation 

matrices and unit cell parameters were derived using the program DENZO [6]. No 

absorption corrections were performed because of the rather regular crystal shapes 

and small dimensions of the investigated specimens. The structures were solved by 

direct methods and were refined with the SHELXL-97 program [7,8] within the 

Windows version WINGX [9]. The as cast and annealed samples were polished using 

standard procedures and microstructures and compositions were examined by light 

optical microscopy (LOM) and scanning electron microscopy (SEM) via Electron 

Probe Micro-Analyses (EPMA) on a Zeiss Supra 55 VP equipped with an EDX 

system operated at 20 kV. For binary compounds ßCe2Zn17 was used as EPMA 

standard. The differences between measured and nominal compositions were found to 

be <1 at %. 
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3.3. Results and Discussion 

3.3.1. Binary Boundary Systems 

 

The binary systems Zn-B and Ce-B were used in the version presented by Massalski 

[10]. In agreement with literature data, we observed no evidence of chemical 

interaction between zinc and boron. The formation and crystal structures of 

compounds CeB4 and CeB6 were confirmed. Although several critical assessments 

have been recently published on the phases and phase relations in the Ce-Zn binary 

[11, 12], our work on the ternary Ce-Zn-B system revealed several structural 

inconsistencies for the binary Ce-Zn compounds [10, 13, 14], which made a 

reinvestigation of the crystal structures in the Ce-Zn binary system necessary (see 

below). 

The crystal data relevant to the unary and binary boundary phases in the Ce-Zn-B 

system, including results of our reinvestigation of the Ce-Zn system, are presented in 

Table 1. 

 

3.3.2. The System Ce-Zn 

Crystal structure Rietveld refinements for all those binary compounds, which have 

been already reported earlier, namely CeZn11 [15], CeZn5, CeZn3, CeZn2 and CeZn 

[10, 13], were found to be consistent with data in the literature. Therefore, the 

reinvestigation of crystal structures and phase relations in the Ce-Zn system 

essentially focused on the determination of crystal symmetry, precise atom site 

distribution and positional parameters for those compounds (hexagonal-CeZn~7, 

rhombohedral-Ce2Zn17, Ce3Zn22, Ce13Zn58, and Ce3Zn11), for which crystal structure 

data hitherto have only been derived from X-ray diffraction photographs or have not 

been evaluated (hex-CeZn~7). 

 

3.3.3. Structural Chemistry 

3.3.3.1. X-ray single crystal intensity data refinement of Ce3Zn11 and Ce3Zn22 

Ce3Zn11: The X-ray intensity spectrum of a single crystal selected from the crushed 

sample Ce23.35Zn76.65 (at.%) was fully indexed with an orthorhombic lattice 

(a=0.45242(2) nm, b=0.88942(3) nm, c=1.34754(4) nm). Systematic extinctions only 
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observed for a body-centered Bravais lattice (hkl), h+k+l=2n+1 indicated the space 

groups Immm, I222, Imm2 and I212121. Immm with highest symmetry was used to 

solve the crystal structure employing direct methods. Composition, lattice parameters, 

crystal symmetry, Wyckoff sequence 2a, 2d, 4h, 4i, 8l2 and atom parameters 

prompted isotypism with the structure type of La3Al11. The structure solution 

converged at =2FR 2.6 yielding a residual electron density less than ±2.8 e-/Å3. 

Crystal data and interatomic distances are presented in Table 2a. and 2b. The 

characteristic stacking of face-connected units…AuCu3-BaAl4 ...is documented in Fig. 

1 including the polyhedra of the individual atom sites. Although the structure solution 

provides positional and thermal atom parameters of significantly higher precision it 

confirms the early structure determination of Ce3Zn11 by Lott and Chiotti [16] 

performed on the basis of X-ray Weissenberg and precession photographs.  

 

Figure 1. a. Crystal structure of Ce3Zn11 (La3Al11-type) as an arrangement of building 

blocks of AuCu3-and BaAl4-type, b. Coordination polyhedra for all crystallographic 

sites in Ce3Zn11 with anisotropic displacement ellipsoids from single crystal 

refinement. 
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Ce3Zn22. A first analysis of the crystal structure of Ce3Zn22 from essentially steric 

considerations is due to Kripyakevich et al. [17] providing a set of atom parameters. 

Johnson and Wood [18] compared observed and calculated X-ray powder data for 

Ce3Zn22 and reported isotypism with the structure of Pu3Zn22 for which they solved 

the structure on the basis of single crystal Weissenberg and precession photographs 

(reliability factor RF= 0.096). In order to provide a precise set of atom parameters and 

to check on defects or random distributions, a full structure determination was 

performed on a crystal selected from a crushed sample with nominal composition 

Ce12Zn88 (at.%). X-ray intensity data depicted systematic extinctions, (hkl) for 

h+k+l=2n+1, (hk0) for h,k=2n+1 and (hhl) for 2h+l=4n+1 prompted space group 

I41/amd as the one with highest symmetry. Structure analysis employing direct 

methods ended up at =2FR 2.1 and residual electron densities less than, ±2.4 e-/Å3. 

The refinement with anisotropic ADPs revealed a fully ordered structure without any 

defect atom sites. Crystal data and interatomic distances are presented in Table 2a. 

and 2c, respectively. The crystal structure of Ce3Zn22 is shown in Fig. 2 in three-

dimensional view on the bc plane emphasizing on the interconnectivity of the Ce-

centered polyhedra (Ce1 polyhedra with coordination number 18 and Ce2 polyhedra 

with coordination number 20). Description of the structure, coordination polyhedra 

and interatomic distances are consistent with the description earlier presented for 

isotypic Pu3Zn22 [18].  

 
Figure 2. Unit cell of Ce3Zn22 revealing the coordination polyhedra around atom sites 

for Ce1 and Ce2. Anisotropic displacement parameters comply with single crystal 

refinement. 
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3.3.3.2. Rietveld refinement of Ce13Zn58, rhombohedral ßCe2Zn17 (hT) and of 

hexagonal  αCeZn7 (lT). 

Ce13Zn58: Recently single crystal studies were reported for the RE13Zn58 family of 

hexagonal quasicrystals derived from Gd13Cd58 (RE = Ce, Pr, Nd, Sm, Gd, Tb, Dy) 

[19]. Whereas the Ce and Pr structures were reported to be identical to the prototype, 

different types of disorder were detected for the other members of the series. Our X-

ray powder refinement of Ce13Zn58 revealed significant defects for several atom 

positions e.g. for the sites Ce3, Zn3 and Zn9. With respect to the formation of 

periodic structures for the later members of the rare earth series, we assume that the 

structure of Ce13Zn58 may exhibit a similar variability in local ordering rendering the 

general formula Ce13Zn58.  

 

Rhombohedral ßCe2Zn17: Polymorphism was reported for the compound Ce2Zn17 

with a rhombohedral structure at high temperatures but a hexagonal structure at low 

temperature [20,21]. In agreement with the findings in the literature our X-ray powder 

spectra obtained from samples annealed at 800°C were fully indexed on the basis of a 

rhombohedral lattice (a=0.90916(4) nm, c=1.3286(1) nm) prompting isotypism with 

the structure type of Th2Zn17 (space group mR3 ; No. 166). The results of the 

Rietveld refinement confirm the Th2Zn17–type as defined earlier for a single crystal 

study of the high temperature modification of Ce2Zn17 [22]. 

 

Hexagonal αCeZn7 (αCe2Zn17). As already observed by Iandelli et al. [21], it seems 

extremely difficult to obtain the low temperature form from the high temperature 

modification (ßCe2Zn17) by long term annealing at 500°C. ßCe2Zn17 however, can 

easily be formed by heating the low temperature modification above ~775°C. Slow 

heating of the mixture of components Ce10.5Zn89.5 (at.%) up to 500 °C and annealing 

at this temperature for 5 days produced an alloy with an X-ray powder diffraction 

pattern yielding a majority of the low-temperature phase. Although the X-ray pattern 

was completely indexed with a hexagonal cell (a=0.52424(2) nm, c=0.44274(1) nm) 

for the low temperature form and small amounts of ßCe2Zn17 (P63/mmc) and CeZn11 

(BaCd11-type), the small unit cell parameters do not correspond to the Th2Ni17-type 
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structure as reported for “αCe2Zn17” by Iandelli et al. [21] and Veleckis et al. [23]. 

Much better correspondence between the observed and calculated X-ray powder 

diffraction pattern was achieved applying the atomic model of the TbCu7 type 

structure [24]. The TbCu7-type adopts the CaCu5-type unit cell and is a member of a 

structure family A1-sB5+2s where a fraction s of the A-atoms is randomly or in ordered 

fashion replaced by a dumbbell of B-atoms covering a range of stoichiometries AB5 

to AB9.5 [25]. Rietveld refinement of the “αCe2Zn17” pattern on the basis of this 

model prompted a low residual value RF=0.045 with a random distribution of 0.67 Ce 

in the 1a site of space group P6/mmm, the holes around the vacancies being filled by 

0.33 Zn-dumbbells (Zn2) in site 2e. Accordingly the overall formula is close to 

Ce0.7Zn5.6 (Ce1-xZn5+2x; x~0.33). The Rietveld refinement profile for αCeZn7 is shown 

in Fig. 3.  

 
Figure 3. X-ray powder spectrum of alloy Ce10Zn90 and Rietveld refinement of the 

low temperature phase: hexagonal CeZn7 (Ce1-xZn5+2x, x=0.33) with TbCu7-type. 

(Excluded region contains a small peak from sample holder). 

 

Interatomic distances are depicted in Table 3a, 3b and Fig. 4a. A Fourier map (Fig. 

5b) shows the presence of the electron density, which refers to the Zn2 atoms. 

Formally short distances dCe-Zn2=0.133 nm and dZn2-Zn2=0.174 nm appear for the 

random occupation of Ce and Zn2 atoms. However, either a Ce-atom or a Zn2-
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dumbbell may exist with an acceptable distance dCe-Zn2=0.300 nm and dZn2-Zn2=0.260 

nm. 

 
Figure 4. a. Crystal structure of hexagonal CeZn7 [Ce1-xZn5+2x (x=0.33)] with TbCu7-

type. A Zn-dumbbell replaces the Ce-atom site in the left lower front corner. b. 

Fourier map for hexagonal CeZn7 projected onto the yz plane revealing the Zn-

dumbbells. 

 

3.3.4. The Phase Diagram Ce-Zn 

 

Knowledge on the binary Ce-Zn phase diagram is summarized in two recent critical 

assessments and Calphad-type thermodynamic modelings of the binary system [11, 

12], both relying on the experimental solidus and liquidus data and the reaction 

isotherms determined by Chiotti and Mason [26]. In accordance with the published 

Ce-Zn phase diagram our X-ray reinvestigation confirmed the existence of all 
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compounds hitherto reported. For a listing of crystal data of compounds (unit cell 

parameters, space group and structure type) see Table 1. Whereas the crystal 

structures of CeZn11, CeZn5, CeZn3, CeZn2 and CeZn, were found to be consistent 

with data in the literature (Table 1), precise structural data on atom site distribution, 

atom order and defect formation were provided for hexagonal-CeZn7, Ce3Zn22, 

Ce13Zn58, and Ce3Zn11 (for details see section 3.1.1). We also confirm the irreversible 

character of the transition (about 750 to 800°C on heating) between the low 

temperature form CeZn7 (Ce10Zn90 at.%) and the high temperature form ßCe2Zn17 

(Ce10.6Zn89.4 at.%), both existing at practically identical composition. Once ßCe2Zn17 

has formed it is impossible to revert to αCeZn7 (αCe2Zn17), an observation already 

reported in earlier studies [21]. 

Evaluation of homogeneity regions of the binary compounds with respect to lattice 

parameter and EPMA data generally confirmed the various Ce-zincides as practically 

line-compounds without significant phase regions. Figure 5 documents the two-phase 

regions for the boundary phases. There was no difference between the refined and 

reported lattice parameters of Zn [27] suggesting no solubility of Ce in Zn.  

 

 

Figure 5. Microstructures for selected Ce-Zn samples annealed at 800°C for 7 days: (a) 

40 at.%Ce, (b) 29 at.% Ce, (c) 20 at% Ce, (d) 17.6 at%, (e) 14.3 at.% Ce 

and, (f), 11.27 at.% Ce. 
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3.3.5. The System Ce-Zn-B (<50 at. % Ce) 

 

About 20 ternary alloys were prepared and were analyzed by x-ray powder diffraction 

combined with EPMA. The analysis of the isothermal section at 800°C did not reveal 

the formation of ternary compounds and all three-phase equilibria derived are 

documented in Table 4. Two-phase equilibria between CexZny binaries and CeB4 

range from CeZn to Ce3Zn22, whereas Ce2Zn17 and CeZn11 tie to CeB6 (see Fig.6).  

 

 

Figure 6. Ce-Zn-B. Isothermal section at 800°C. 

 

In order to verify the equilibria a set of samples was made from CeB6 + CeZnx master 

alloys, which on formation of CeB4 for (2<x<7) confirmed the triangulation in Fig. 6. 

Rietveld refinements of representative alloys are summarized in Fig. 7 and document 

that no ternary Ce-Zn-borides were observed in the alloys investigated. It is, however, 

still unclear whether Ce2Zn17 ties to CeB4 or Ce3Zn22 ties to CeB6 (dashed line in Fig. 

6). 
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In analogy to carbon incorporation in the Th2Zn17 type structure of Pr2Mn17C3-x [28] 

we tested the solubility of boron as interstitial in Ce2Zn17 for alloy Ce8.6Zn70.7B20.7 (in 

at%). Rietveld refinement of the powder pattern, however, revealed no change in the 

lattice parameters with respect to binary Ce2Zn17 as well as the absence of B in the 

octahedral voids [Ce2Zn4]. The interatomic distances dB-Ce=0.262 and dB-Zn=0.189 nm 

are unfavourable to form Ce2Zn17B3-x. The evaluation of the Rietveld refinement is 

shown in Table 3a and Fig. 7d.  

 

 
Figure.7. Rietveld refinement for alloys a. Ce43Zn37B20, b. Ce19Zn45B36 
c. Ce16.7Zn50B33.3, and, d. Ce8.6Zn70.7B20.7. (Excluded regions in 7a ad c contain a small 

peak from sample holder). 

 

3.4. Conclusion 

 

With EDX and WDX-electron microprobe analysis and x-ray powder diffraction we 

have derived the isothermal section for the system Ce-Zn-B at 800°C. The section is 

characterized by the absence of ternary compounds and the absence of significant 

mutual solid solubilities of binary phases. In the course of the ternary system 

investigation the binary Ce-Zn system was re-evaluated on about 20 alloys. In the 

concentration range of 10-10.5 at.% Ce two structural modifications have been 
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confirmed, which show irreversible transformation behaviour: high temperature 

ßCe2Zn17 exists above ~750 °C with the Th2Zn17 type ( mR3 , a=0.90916(4) nm, 

c=1.3286(1) nm) and low temperature  CeZn7 (Ce1-xZn5+2x; x~0.33) adopts the TbCu7 

type (Rietveld refinement of X-ray powder data; P6/mmm, a=0.52424(2), 

c=0.44274(1) nm) which irreversibly transfers to the hT phase on heating above 

750°C. X-ray single crystal refinements have been carried out for several compounds, 

for which crystal structure data hitherto have only been derived from X-ray diffraction 

photographs. Thus precise data on atom site distribution and positional parameters 

have been provided for Ce3Zn11 (Immm, a=0.45242(2), b=0.88942(3) and 

c=1.34754(4) nm) and Ce3Zn22 (I41/amd, a=0.89363(2) and c=2.1804(5) nm). 
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Table 2a. Crystal structure data from X-ray single crystal evaluation of Ce3Zn11 and Ce3Zn22  

Compound Ce3Zn11 Ce3Zn22 
Compositionc (at. %) Ce23.35Zn76.65 Ce12Zn88 
Space group Immm; No. 71 I41/amd; No. 141, origin at 1  
Structure type La3Al11 Ce3Zn22 
Formula from 
refinement  

Ce3Zn11 Ce3Zn22 

θ  Range [deg] 2.74 < θ < 36.16 2.47 < θ < 36.26 
Crystal size [µm] 20×30×45 25×30×45 
a [nm] 0.45242(2) 0.89363(2) 
b [nm] 0.88942(3) 0.89363(2) 
c [nm] 1.34754(4)  2.13804(5) 

Reflections in 
refinement 

615 Fo > 4σ(Fo) of 759 875 Fo > 4σ(Fo) of 1131 

Mosaicity  0.55 0.6 
Number of variables 28 39 
RF

2 = Σ|F0
2-Fc

2|/ΣF0
2 0.026 0.021 

RInt  5.6 6.7 
GOF 1.059 1.061 
Extinction 
(Zachariasen) 

0.0009(1) 0.00011(1) 

M1; Occ. 2a (0, 0, 0); 1.00 Ce2 8e (0, ¼, z); z=0.25343(2); 1.00 Ce1 
U11

b; U22; U33;  
U23; U13; U12 

0.0139(3); 0.0239(3); 0.0096(2); 
 0; 0; 0 

0.0084(1); 0.0065(1); 0.0076(1);  
0; 0; 0 

M2; Occ. 4i (0, 0, z); z= 0.29571(2); 1.00 Ce1 4a (0, ¾, 1/8); 1.00 Ce2 
U11

b; U22; U33;  
U23; U13; U12 

0.0089(2); 0.0103(2); 0.0103(2); 
 0; 0; 0 

0.0066(1); 0.006(1); 0.0069(1); 
0; 0; 0 

M3; 
- 
Occ. 

8l (0, y, z); y= 0.35869(7), z=0.34366(4);  
- 
1.00 Zn2 

32i (x, y, z); x=0.23223(4), y=0.00749(4), 
z=0.1889(2);  
1.00 Zn1 

U11
b; U22; U33;  

U23; U13; U12 
0.0119(3); 0.0109(3); 0.0166(3);  
0; 0.002(2); 0 

0.0122(2); 0.0111(2); 0.0096(2); 
0.0017(1); 0.0002(1); 0.0009(1) 

M4;  
Occ. 

8l (0, y, z); y= 0.28363(7), z=0.14007(4);  
1.00 Zn1 

16h (0, y, z) y=0.02584(6), z=0.37681(2);  
1.00 Zn2 

U11
b; U22; U33;  

U23; U13; U12 
0.0107(3); 0.0144(3); 0.0211(3); 
-0.0006(2); 0 

0.0091(2); 0.0147(2); 0.0119(2); 
-0.0021(2); 0; 0; 

M5;  
Occ. 

4h (0, y, ½); z=0.18232(10); 
1.00 Zn3 

16h (0, y, z) y=0.10292(6), z=0.11676(2);  
1.00 Zn3 

U11
b; U22; U33;  

U23; U13; U12 

0.0193(4); 0.0180(4); 0.0118(3); 
0; 0; 0 

0.0112(2); 0.0094(2); 0.0114(2); 
-0. 0012(2); 0; 0; 

M6;  
Occ. 

2d (½, 0, ½);  
1.00 Zn4 

16h (0, y, z) y=0.59875(6); z=0.26315(2);  
1.00 Zn4 

U11
b; U22; U33;  

U23; U13; U12 
0.0187(6); 0.0187(6); 0.0173(5); 
0; 0; 0 

0.0092(2); 0.0099(2); 0.0130(2); 
0. 0017(2); 0; 0; 

M7; Occ.  8c (0, 0, 0); 1.00 Zn5 
U11

b; U22; U33;  
U23; U13; U12 

 0.0083(3); 0.0104(3); 0.0111(3); 
-0.0021(3); 0; 0 

Residual electron 
density; max; min in 
[electrons/nm3] x103 

2.83; -1.85 2.37; -1.33 

acrystal structure data are standardized using the program Structure Tidy [31]. 
banisotropic atomic displacement parameters Uij in [102  nm2]. 
cnominal composition of the alloy from which a single crystal was isolated. 
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Table 2b. Interatomic distances in Ce3Zn11  
Atom Distance (nm) Atom Distance (nm) Atom Distance (nm) 
Ce1 – 4Zn1 0.30935(4) Zn1 – 2Zn2 0.26014(4) Zn3 – 2Zn2 0.26266(7) 
Ce1 – 2Zn3 0.31950(5) Zn1 –   Zn4 0.26956(6) Zn3 – 2Zn4 0.27833(5) 
Ce1 – 4Zn2 0.31975(4) Zn1 –   Zn2 0.28236(7) Zn3 – 4Zn1 0.29616(4) 
Ce1 – 2Zn2 0.32550(6) Zn1 – 2Zn3 0.29616(4) Zn3 –   Zn3 0.32432(13) 
Ce1 – 2Zn1 0.32806(6) Zn1 – 2Ce1 0.30935(4) Zn3 – 2Ce1 0.31950(5) 
Ce1 – 2Zn4 0.35631(3) Zn1 –   Ce2 0.31506(6) Zn3 – 2Ce2 0.36195(7) 
Ce1 –   Ce2 0.39848(3) Zn1 –   Ce1 0.32807(6) Zn4 – 4Zn1 0.26956(6) 
Ce2 – 4Zn1 0.31506(6) Zn2 –   Zn2 0.25137(12) Zn4 – 4Zn3 0.27833(5) 
Ce2 – 8Zn2 0.33369(4) Zn2 – 2Zn1 0.26014(4) Zn4 – 4Ce1 0.35631(3) 
Ce2 – 4Zn3 0.36195(7) Zn2 –   Zn3 0.26266(7)   
Ce2 – 2Ce1 0.39848(3) Zn2 –   Zn1 0.28236(7)   
  Zn2 – 2Ce1 0.31975(4)   
  Zn2 –   Ce1 0.32550(6)   
  Zn2 – 2Ce2 0.33369(4)   
 
Table 2c. Interatomic distances in Ce3Zn22  
Atom Distance (nm) Atom Distance (nm) Atom Distance (nm) 
Ce1 – 2Zn4 0.3124(1) Zn2 – 2Zn1 0.2571(1) Zn4 – 2Zn5 0.2626(1) 
Ce1 – 2Zn3 0.3204(1) Zn2 –   Zn4 0.2673(1) Zn4 –   Zn2 0.2673(1) 
Ce1 – 2Zn2 0.3251(1) Zn2 – 2Zn1 0.2779(1) Zn4 –   Zn4 0.2703(1) 
Ce1 – 4Zn1 0.3303(1) Zn2 – 2Zn3 0.2802(1) Zn4 – 2Zn1 0.2771(1) 
Ce1 – 2Zn2 0.3312(1) Zn2 – 2Zn2 0.2834(1) Zn4 – 2Zn1 0.2780(1) 
Ce1 – 4Zn1 0.3456(1) Zn2 –   Ce1 0.3251(1) Zn4 – 2Zn3 0.2909(1) 
Ce1 – 2Zn2 0.3661(1) Zn2 –   Ce1 0.3312(1) Zn4 –   Ce1 0.3123(1) 
Ce2 – 4Zn3 0.3159(1) Zn2 –   Ce1 0.3661(1) Zn4 –   Ce2 0.3218(1) 
Ce2 – 4Zn4 0.3248(1) Zn3 –   Zn3 0.2629(1) Zn4 –   Zn3 0.3611(1) 
Ce2 – 8Zn1 0.3386(1) Zn3 –   Zn5 0.2660(1) Zn5 – 4Zn4 0.2626(1) 
Ce2 – 4Zn5 0.3483(1) Zn3 – 2Zn1 0.2722(1) Zn5 – 4Zn1 0.2651(1) 
Zn1 –   Zn2 0.2571(1) Zn3 – 2Zn2 0.2802(1) Zn5 – 2Zn3 0.2660(1) 
Zn1 –   Zn1 0.2633(1) Zn3 – 2Zn1 0.2806(1) Zn5 – 2Ce2 0.3483(1) 
Zn1 –   Zn5 0.2651(1) Zn3 – 2Zn4 0.2909(1)   
Zn1 –   Zn3 0.2722(1) Zn3 –   Ce2 0.3158(1)   
Zn1 –   Zn1 0.2750(1) Zn3 –   Ce1 0.3204(1)   
Zn1 –   Zn4 0.2771(1) Zn3 –   Zn4 0.3611(1)   
Zn1 –   Zn2 0.2779(1)     
Zn1 –   Zn4 0.2780(1)     
Zn1 –   Zn3 0.2805(1)     
Zn1 –   Ce1 0.3303(1)     
Zn1 –   Ce2 0.3386(1)     
Zn1 –   Ce1 0.3456(1)     
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Table 3a. Rietveld Refinement data for Ce13Zn58, Ce1-xZn5+2x-hex; (x=0.33; αCeZn7) 
and alloy Ce8.6Zn70.7B20.7 (all from Guinier-Huber Image Plate, CuKα1) 

Compound Ce13Zn58 Ce1-xZn5+2x-hex; (x=0.33) Ce2Zn17-rhombohedral 
Nominal composition (at.%) Ce18.31Zn81.69 Ce10Zn90 Ce8.6Zn70.7B20.7 

Composition from EPMA Ce18.0Zn82.0 - Ce11.08Zn88.92 
Space group P63/mmc; No. 194 P6/mmm; No. 191 mR3 ; No. 166 
Structure type Ce13Zn58 TbCu7 Th2Zn17 
Composition from refinement  Ce16.3Zn82.7 Ce10.6Zn89.4 Ce10.5Zn89.5 
Theta range  8°<2θ<100° 8°<2θ<100° 8°<2θ<100° 
a [nm] 1.4616(1) 0.52424(2) 0.90872(1) 
c [nm] 1.418(1) 0.44274(1) 1.32825(2) 
Reflections in refinement 606 39 146 
No. of parameters refined 103 26 39 
Reliability factors 
RF=ΣFo-Fc/ΣFo 
Rexp=[(N-P+C)/Σwiy2

oi)]1/2 
χ2=(RwP/Re)2 

- 
0.032 
0.032 
11.2 

- 
0.045 
0.035 
5.84 

- 
0.038 
0.024 
4.15 

R1; 
- 
Occ., Biso 

12k (x,2x,z); x=0.2031(4), 
z=0.0529(3);  
0.888(2) Ce1; 0.85(5) 

1a (0,0,0);  
- 
0.67(3)Ce1; 0.29(2) 

6c (0,0,z); z=0.33561(7);  
- 
1.00Ce1; 0.32(2) 

R2 in 6h (x,2x, ¼); Occ.; 
Biso 

x=0.5057(9); 0.448(2) Ce2; 
0.4(1) 

- - 

R3 in 6h (x,2x, ¼); Occ.; 
Biso 

x=0.875(4); 0.486(1) Ce3; 
0.8(1)  

- - 

R4 in 2a (0,0,0); Occ., Biso 0.924(2)Ce4; 0.7(2) - - 
M1; 
- 
 Occ., Biso 

24l (x,y,z); x=0.3725(4), 
y=0.0374(5), z=0.0992(5); 
0.948(8) Zn1; 0.9(1) 

3g (½,0, ½);  
- 
1.00Zn1; 0.15(3) 

18h (x x ,z); x=0.5052(4), 
z=0.15512(7);  
1.00Zn1; 0.20(2) 

M2;  
- 
Occ., Biso 

12k (x,2x,z); x=0.0923(7), 
z=0.1548(6);  
0.868(6) Zn2; 0.9(1) 

2e (0,0,z); z=0.2995(5);  
- 
0.33(1)Zn2; 0.43(2) 

18f (x,0,0); x=0.29213(9);  
- 
1.00Zn2; 0.20(3) 

M3; 
- 
Occ., Biso 

12k (x,2x,z); x=0.247(2), 
z=0.6724(6);  
0.858(8) Zn3; 0.8(2) 

2c (⅓,⅔,0);  
- 
1.00(1)Zn3; 0.46(3) 

9d (½,0, ½);  
- 
1.00Zn3; 0.53(4) 

M4 Occ., Biso 12k (x,2x,z); x=0.549(2), 
z=0.6332(7); 1.00 Zn4; 0.3(2) 

- 6c (0,0,z); z=0.0988(1); 
1.00 Zn4; 0.67(4) 

M5 in 12k (x,2x,z);  
Occ., Biso 

x=0.5995(9), z=0.0521(7);  
1.00 Zn5; 0.8(1) 

- 9e (½,0, 0);  
0.15(4)B; 0.8(-) 

M6 in 12j (x,y, ¼);  
Occ., Biso 

x=0.0910(7), y=0.3728(7); 
0.958(5) Zn6; 0.2(1) 

- - 

M7 in 12i (x,0, 0); Occ., Biso x=0.194(3); 0.552(5); 0.3(3) - - 
M8 in 6h (x,2x, ¼); Occ., Biso  x=0.2701(5), 1.00 Zn8; 0.4(2) - - 
M9 in 6g (½,0,0); Occ., Biso 0.640(4) Zn9; 0.9(3) - - 
M10 in 4f (⅓,⅔, z); Occ., Biso z=0.095(1); 0.882(3) Zn10; 

0.3(3) 
- - 

M11 in 2d (⅓,⅔,¾); Occ., Biso 0.912(2) Zn11; 0.08(48) - - 
M12 in 2b (0,0,¼); Occ., Biso 0.924(2) Zn12; 0.3(5) - - 
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Table3b. Interatomic distances for Ce1-xZn5+2x-hex; (x=0.33) 
Atom Distance (nm) Atom Distance (nm) 
Ce1 – 2Zn2 0.13234 Zn2 –   Ce1 0.13234 
Ce1 – 6Zn3 0.30258 Zn2 –   Zn2 0.17793 
Ce1 – 2Zn2 0.31027 Zn2 –   Zn2 0.26468 
Ce1 –12Zn1 0.34299 Zn2 – 6Zn1 0.27673 
Zn1 – 4Zn1 0.26204 Zn2 –   Ce1 0.31027 
Zn1 – 4Zn3 0.26807 Zn2 – 6Zn3 0.33025 
Zn1 – 4Zn2 0.27673 Zn3 – 6Zn1 0.26807 
Zn1 –   Ce1 0.34299 Zn3 –   Ce1 0.30258 
  Zn3 –   Zn3 0.30258 
  Zn3 – 2Ce1 0.30258 
  Zn3 – 2Zn3 0.30258 
  Zn3 – 6Zn2 0.33025 

 
Table 4. Phase analyses (EPMA and XPD) of Ce-Zn-B alloys, annealed at 800°C  

Lattice Parameters, nm Code Nominal 
composition  
Ce-Zn-B, at % 

Experimental Phase Space 
Group 

Structure 
type 

a b c 
a 8-72-20 CexBy CeZn11 I41/amd BaCd11 1.06589(6) - 0.68602(9) 
  (ArcMelted)+ Ce2Zn17 mR3  Th2Zn17 0.908727(6) - 1.32822(1) 
  Zn CeB6 mPm3  CaB6 0.4149(1) -  
b 17-50-33 CexBy  Ce3Zn22 I41/amd Ce3Zn22 0.89339(2) - 2.13793(6) 
  (ArcMelted)+ CeZn5 P6/mmm CaCu5 0.541078(9) - 0.42778(1) 
  Zn CeB4 mPm3  ThB4 0.72085(1) - 0.409173(8) 
c 19-45-36 CexBy  CeZn5 CeZn5 CaCu5 0.541716(7) - 0.427091(8) 
  (ArcMelted)+ Ce13Zn58 P63/mmc Gd13Cd58 1.46306(9) - 1.4171(1) 
  Zn CeB4 CeB4 ThB4 0.72076(1) - 0.409129(8) 
d 20-70-10 CeB6 Ce13Zn58 P63/mmc Gd13Cd58 1.46278(2) - 1.4163(2) 
  (ArcMelted)+ Ce3Zn11 Immm La3Al11 0.45210(2) 0.88854(5) 1.34685(8) 
  CexZny CeB4 mPm3  ThB4 0.7209(1) - 0.4048(1) 
e 22-69-9 CeB6 Ce3Zn11 Immm La3Al11 0.45260(2) 0.89027(4) 1.34753(7) 
  (ArcMelted)+ CeZn3 Cmcm CeZn3 0.46338(4) 1.0460(1) 0.66440(6) 
  CexZny CeB4 mPm3  ThB4 0.72564(4) - 0.40312(4) 
f 43-37-20 CeB4 CeZn2 Imma CaCu2 0.46422(3) 0.75427(6) 0.75080(6) 
  (ArcMelted)+ CeZn mPm3  CsCl 0.37087(2) - - 
  CexZny CeB4 mPm3  ThB4 0.72022(6) - 0.40860(6) 
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     4       

 

Phase relations and crystal structures in  

the system Ce-Ni-Zn at 800°C 
 
4.1. Introduction 

Addition of rare earths (RE) to Ni-Zn alloys results in local distortion and disorder 

inducing a softening of the metal network [1]. RE furthermore improve the 

mechanical performance, tensile strength, hardness and also the corrosion resistance 

by removing impurities from the grain boundaries of their alloys with zinc [2]. In 

order to thoroughly understand the alloying behaviour of rare earth metals in Ni-Zn 

alloys, the formation of ternary compounds, their crystal structure and particularly the 

phase relations have to be known. For the Ce-Ni-Zn isothermal section at 200°C (see 

Fig. 1) Opainych [3] reported five ternary compounds and some quite extensive solid 

solutions by substitution of Ni and Zn in the Ce-Ni and Ce-Zn binary phases (i.e. 

particularly for the phases Ce(Ni1-xZnx)5 (0≤x≤0.41) and Ce(NixZn1-x)5 (0≤x≤0.35) 

[4]).  

 

 
Figure 1. Isothermal section at 200°C after Opainych et al. [3]. The green square 
denotes the position for Ce2Ni2Zn, a ternary phase reported by Solokha et al [13]. (For 
interpretation of the references to colour in this figure legends, the reader is referred 
to the web version of this article.) 
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The crystal structures of known compounds have been determined and details are 

given in Table 1: CeNiZn [5, 3, 6], CeNi2Zn [7], Ce2Ni5Zn2 [7], and CeNi1.2Zn1.8 [8]. 

Whereas binary Ce2Zn17 (for which a hexagonal low temperature form Ce1+xZn5+2x 

has recently been established by Malik et al. [9]) was shown [3] to form a limited 

solid solution Ce2(NixZn1-x)17 at 200°C (x<0.05), a structural change was noted [10] 

for higher Ni-concentrations forming the ternary compound Ce2Ni2Zn15, which was 

observed with an ordered version of the rhombohedral Th2Zn17-type. It should be 

mentioned that although Ce2Ni3Zn14 [11] was described at 400°C with the Th2Zn17 

type, the Ni/Zn atom order assigned differs from Ce2Ni2Zn15. A recent investigation 

of the La-Ni-Zn system at 400°C revealed seven ternary compounds in the region 

from 16.7 to 100 at.% La [12], among which La2Ni2Zn and corresponding isotypes for 

Ce and Tb have been determined by Solokha et al. [13] to crystallize with the 

Pr2Ni2Al-type. Some further controversy concerns the structure of the compound 

CeNiZn. Although two research groups [5, 6], confirmed the ordered ZrNiAl type 

(space group mP 26 ) for CeNiZn on alloys heat treated at 750°C [5] and 647°C 

[2008Her], using powder photographs and x-ray single crystal analysis, respectively, 

Opainych [3] claimed the LiYSn-type (space group P63mc) for CeNiZn powders 

annealed at 200°C. Magnetic susceptibility data for CeNiZn (ZnNiAl type) showed 

intermediate-valent cerium [6]. 

As a preliminary study of a few alloys in the Ce-Ni-Zn system along the section with 

10 at.% Ce revealed phase relations different from those described at 200°C [3], an 

investigation of the isothermal section at 800°C seemed to be necessary in order to 

link phase relations to our investigation of the multicomponent system Ce-Ni-Zn-

{B,Si} [14,15]. As a further task, thermal stability, crystal symmetry and atom 

distribution need to be checked/established for the solution phases Ce(Ni1-xZnx)5, 

Ce2(NixZn1-x)17 and Ce(NixZn1-x)11. 

4.2. Experimental 

Samples in a total amount of ca. 0.5 g each were prepared from cerium ingots (Alfa 

Aesar, purity >99.9 mass%), zinc granules (Alfa Aesar, purity >99.9 mass%), nickel 

foil (Alfa Aesar, purity >99.8 mass%) and nickel powder (-100 mesh; 99.9 mass%; 

PCR Inc. USA). Zinc drops were purified in an evacuated quartz tube by heating them 
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below the boiling temperature of Zn (907°C). Cerium was mechanically surface 

cleaned before use. 

Two procedures of sample preparation were used for the evaluation of ternary phase 

relations and single crystal investigation: (i) samples were prepared by mixing the 

powders of arc melted CeNix master alloys and fine Zn-filings in proper 

compositional ratios. The blends were cold compacted in a steel die without 

lubricants, were inserted into Al2O3 crucibles, vacuum-sealed in quartz tubes and then 

slowly heated to 420°C and kept at this temperature for 12h. The samples were then 

heated up to 800°C at the rate of 1°C/min and finally were annealed at 800°C for 7 

days and quenched by immersing the quartz ampoules in cold water. (ii) In the 

concentration range up to15 at. % Ce, samples were prepared from ground Ce16Ni84 

master alloy by adding Zn filings and Ni powders. These blends were cold compacted 

and heat-treated as described above. After quenching, samples were powderized under 

cyclohexane and then hot pressed under Ar in a uniaxial hotpress system (HP W 

200/250-2200-200-KS) operated at 800°C and 56 MPa for 1 hour.  

X-ray powder diffraction data were collected from each alloy in as cast, annealed and 

hot pressed state employing a Guinier-Huber image plate system with monochromatic 

CuKα1 radiation (8º<2θ<100º). Quantitative Rietveld refinements of the X-ray powder 

diffraction data were performed with the FULLPROF program [16]. Precise lattice 

parameters were calculated by least-square fits to indexed 2θ values using Ge as an 

internal standard (aGe=0.565791 nm). 

Single crystals were mechanically isolated from crushed alloys which were melted in 

Al2O3 crucibles and then slowly cooled at 0.5°C/min. Inspections on an AXS-

GADDS texture goniometer assured high crystal quality, unit cell dimensions and 

Laue symmetry of the specimens prior to the X-ray intensity data collections on a 

four-circle Nonius Kappa diffractometer equipped with a CCD area detector 

employing graphite monochromated Mo Kα radiation (λ=0.071069 nm). Orientation 

matrices and unit cell parameters were derived using the program DENZO [17]. No 

absorption corrections were performed because of the rather regular crystal shapes 

and small dimensions of the investigated specimens. The structures were solved by 

direct methods and were refined with the SHELXL-97 program [18,19] within the 

Windows version WINGX [20]. The hot pressed samples were polished using 

standard procedures and microstructures and compositions were examined by light 



 41

optical (LOM) and scanning electron microscopy (SEM) via Electron Probe Micro-

Analyses (EPMA) on a Zeiss Supra 55 VP equipped with an EDX system operated at 

20 kV. Ni2Zn11 at the Zn-rich boundary (15.4 at.% Ni [21]) and ßCe2Zn17 (89.5 at.% 

Zn) were used as EPMA standard. Error bars on the measured compositions are <1 at. 

%.  

 

4.3. Results and Discussion 

4.3.1. Binary Boundary Systems 

 

The binary systems Ce-Zn, Ni-Zn and Ce-Ni are based on the versions presented by 

Massalski [22]. Several critical assessments have hitherto been published on the 

phases and phase relations in the Ce-Zn binary [9, 23, 24]. Although the Ni-Zn phase 

diagram listed by Massalski [22] essentially relies on the experimental data derived by 

Nash et al. [25] and comprises four intermediate compounds with extended 

homogeneity regions: cubic β-NiZn (sometimes in literature named as β′ -NiZn), 

tetragonal β1-NiZn, cubic γ-Ni2Zn11 (including orthorhombic or triclinic γ1-NiZn3, 

which formerly was considered to be an independent phase) and monoclinic δ-

Ni3Zn22. More recent investigations of the systems Ni-Zn-Sb and Ni-Zn-Ge [26, 27] at 

297°C reported that γ1-NiZn3 phase does not exist at this temperature, whereas the 

examination of Mn-Ni-Zn [28] at 400°C and Ni-Si-Zn [29] at 600°C claimed the 

existence of this phase. In the present work we therefore checked on the formation of 

γ1-NiZn3 and δ-Ni3Zn22 at the temperature of concern (800°C), employing x-ray 

powder and EPMA analysis. The phases we observed were essentially consistent with 

the phase diagram of Nash and Pan [25]: (Ni), tetragonal low temperature 

modification β1-NiZn (also labeled as NiZn(rT)) and cubic γ-Ni2Zn11. The extension 

of the homogeneity regions of these phases determined by EPMA agrees within 1 at. 

% with the literature data [25], however, due to the heat content of the protective 

Al2O3 crucibles we were unable to quench the cubic high temperature modification of 

β′-NiZn in binary as well as in ternary alloys. Crystal structure data on unary, binary 

and ternary phases have been summarized in Table 1. 
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4.3.2. Structural Chemistry 

4.3.2.1. Crystal Structure of Ce2(NixZn1-x)17, x=0.49: A single crystal was selected 

from the crushed sample with composition Ce22Ni42Zn36 (in at. %). The X-ray 

intensity pattern of this crystal was completely indexed on the basis of a hexagonal 

lattice, a=0.87541(3) nm and c=1.25410(4) nm. The observed systematic extinctions 

hkil (–h+k+l=3n), hh h2 l (l=3n), h h 0l (h+l=3n), 000l (l=3n) and h h 00 (h=3n) were 

consistent with the rhombohedral space groups mR3 , 3R and R3, R3m and R32. 

Structure solution with direct methods in the space group of highest symmetry, mR3 , 

disclosed one position for Ce and four positions for Ni and Zn atoms. A first 

refinement was run with Zn atoms at all four metal atom positions. As the 

coordination figures around the sites 6c and 9d revealed the largest (d6c-ligands = 

0.27341(7) nm) and the shortest distances (d9d-ligands = 0.25047(1) nm) to the ligands, 

we felt inclined to locate the larger Zn-atom in the 6c site and the smaller Ni-atom in 

the 9d site. For the remaining Ni, the average distances for the coordination figures 

around the sites 18f (d18f-ligands = 0.258 nm) and 18h (d18h-ligands = 0.265 nm) are less 

decisive, but favour Ni in 18f: 0.88 Ni + 0.12 Zn. Refinement with anisotropic atom 

displacement parameters (ADP) converged to =2FR 0.06, however prompted a 

residual electron density of about 7 electrons/Å3 at site 3a (0, 0, 0), which lies exactly 

between two Zn1 atoms at dZn1-3a= 0.1353(1) nm, as shown in the difference Fourier 

synthesis map (Fig. 2).  

 
Figure 2. Difference Fourier synthesis map ∆F(0,y,z) showing the residual density of 

7 electrons/Å3 residing between two Zn1 atoms. This density was covered in the 

refinement by a Ce2-atom (Occ=0.02) alternating with Zn1 (Occ.=0.98). 
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Refinement in the lower symmetry space group 3R  neither revealed any further atom 

ordering nor removed the residual density at site 3a (0, 0, 0). Thus mR3 was kept as the 

proper space group. Mutual replacement of rare earth atoms by a dumbbell of small 

metal atoms was encountered to be a special feature in many compounds deriving 

from the structure types CaCu5 - Th2Zn17 - Th2Ni17 [30] and similar cases were 

reported for Ce1+xZn5+2x [9] and GdFe7.7Si1.3 [31]. Therefore, we decided to introduce 

a Ce atom at the 3a site, which alternately but randomly shares the space with the 

Zn1-dumbbell atoms in the 6c-site. Refinement yielded an occupancy of only 2% of 

Ce2 in 3a (alternatively 4% of a Ni atom could cover the residual density). Final 

refinement in space group mR3  arrived at =2FR 0.018 with a residual electron 

density less then ±1.3/Å3 and led to the formula Ce2+y(NixZn1-x)17, y=0.02, x=0.49, 

(Ce10.6Ni43.7Zn45.7) in perfect consistency with the composition measured by EPMA: 

Ce10.8Ni44.1Zn45.1.  

 
Figure 3. Unit cell of Ce2+y(NixZn1-x)17, y=0.02, x=0.49 (Th2Zn17-type) showing the 

layered architecture in three-dimensional view; a) Ni atom layer at z~1/6 with Zn1 

atoms above and below; b) Ce-Zn layer at z ∼1/3 with a small amount (~2%) of Ce2-

atoms randomly substituting for Zn1-atom dumbbells. All atoms are presented with 
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anisotropic displacement parameters from single crystal refinement. Polyhedra for the 

atoms of Ce2+y(NixZn1-x)17, y=0.02, x=0.49 with anisotropic displacement parameters 

from single crystal refinement. 

 
Figure 4. Ni-occupancies for the four atom sites 6c, 9d, 18f and 18h as a function of 

Ni content in the unit cell of Ce2+y(NixZn1-x)17, y=0.02, x=0.49 (red circle-this work, 

purple tilted square-[11], green triangle-[10] and blue circle-[33]). The solid lines 

follow the atom site occupation model derived in this work. The dashed lines are 

according to [10]. 

 

Crystal data along with the interatomic distances are summarized in Table 2 and 3 and 

are consistent with the structure type Th2Zn17 in which a small fraction of Zn-

dumbbells is substituted by Ce (or Ni) atoms. The crystal structure is shown in Figure 

3 in three-dimensional view emphasizing the layer-type building principle as well as 

indicating the statistical replacement of Zn1-dumbbells by Ce2-atoms. The low 

residual density at site 9e (½, 0, 0) as well as the corresponding distances d9e-Zn = 

0.1756, d9e-Ni = 0.1954 and d9e-Ce = 0.25383 nm in the distorted octahedron around 9e 

[Ce2Ni2Zn2] rule out any significant occupation by small interstitial atoms as was for 

instance reported for isotypic Pr2Mn17C1.77 [32].  
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Coordination polyhedra for Ce2+y(NixZn1-x)17, y=0.02, x=0.49 are outlined in Figure 3. 

Whereas the substitution of Zn1-dumbbells by Ce2-atoms is shown for Ce2 as the 

central atom, the polyhedron around the mixed site M (88%Ni+12%Zn) excludes the 

Ce2 atoms. The mode of filling the sites 6c, 9d, 18f and 18h by Ni-atoms in 

Ce2(NixZn1-x)17 is plotted in Fig. 4 as a function of Ni content in the unit cell, 

including data for Ce2Ni2Zn15 [10], Ce2Ni3Zn14 [11] and Ce2Zn17 [33]. In contrast to 

the observations of Opainych [10] for Ce2Ni2Zn15 (Ni atoms in 6, RF 2 =0.118), our 

model seems to confirm that Ni-atoms first replace Zn in the 9d sites as observed for 

Ce2Ni3Zn14 ( =2FR 0.017) [11]. At higher Ni-concentrations Ni-atoms enter the 18f 

site, which will be filled exclusively by Ni at the solubility limit at Ce2Ni9Zn8 at 

800°C (i.e. Ce2(NixZn1-x)17, x=0.53).  

 

4.3.2.2. Crystal Structure of Ce(NixZn1-x)11, x=0.18:  

 
A single crystal was selected from a sample with the nominal composition 

Ce6Ni20Zn74 (in at. %), which was heated up to 990°C and kept at this temperature for 

30 min. and was then cooled down to 810°C at the rate of 1°C/min. The single crystal 

X-ray intensity spectrum was fully indexed on a tetragonal unit cell and extinctions 

were consistent with the space group with the only possible space group; I41/amd. 

Structure solution employing direct methods revealed one position for Ce and three 

positions for Ni and Zn atoms. A first refinement was made with Ce atoms in 4b, but 

with Zn in the remaining positions. The analysis of average distances around these 

sites, 4a, 32i, and 8c (i.e. 0.2773(1), 0.2664(1) and 0.2572(1) nm), suggested the 

larger Zn1 atoms at site 4a, the small Ni2 atoms at 8c and a random mixture Ni1/Zn1 

at 32i. Refinement converged at =2FR 0.049 for a random occupation of 

0.98Zn+0.02Ni in the 32i site and a residual electron density of less then ±2.86 /Å3. 

This yields the formula Ce(NixZn1-x)11, x=0.18 (Ce8.3Ni18Zn73.7), close to the 

composition found by EPMA, Ce8.5Ni18.5Zn73. Crystal structure data and interatomic 

distances are summarized in tables 4 and 5 and reveal consistency with the BaCd11 

type. The low residual density at site 8d (0, 0, ½) as well as the corresponding 

distances d8d-M = 0.186 and d8d-Ce = 0.274 nm in the distorted octahedron around 8d 
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[Ce2M4] rule out any significant occupation by small interstitial atoms as was for 

example observed for isotypic La2Mn11C2-x and [34] RFe9(Fe,Si)2C0.5 [35].  

The architecture of the crystal structure and the atom coordination polyhedra are 

shown in Fig. 5. The structural model of this phase was is confirmed by Rietveld XPD 

refinement. It is interesting to mention here, that for NdZn11 a high temperature 

modification (> 635°C) was reported [36], for which the hexagonal Sm1.1Zn11.8-type 

[37] was tentatively assigned from X-ray rotation and Weissenberg photographs. Our 

search for a corresponding Ce-Ni-Zn phase at 800°C did neither reveal a compound 

with Sm1.1Zn11.8-type nor with ThMn12-type. 

 

 
Fig. 5.The crystal structure of Ce(NixZn1-x)11 (x=0.18, BaCd11-type) along [001] with 

polyhedra drawn for Zn2 and the void in (0, 0, ½) forming distorted octahedra with 

CN=6 (4M+2Ce). Coordination polyhedra are shown for the independent atom sites 

with anisotropic displacement parameters from single crystal refinement. 

 

4.3.3. Phase relations in the isothermal section of the system Ce-Ni-Zn 

 

The isothermal section for the Ce-Ni-Zn system at 800°C (see Fig. 6) has been 

constructed from x-ray powder diffraction analyses combined with EPMA on about 

50 ternary alloys. The results are summarized in Table 6. Phase relations at 800°C are 

characterized by a large region for the liquid phase covering most of the Ce-rich part 



 47

of the diagram, whereas a Zn-rich liquid is confined to a small region near the Zn-

corner of the Gibbs triangle. The Ce-rich liquid completely surrounds at 800°C the 

binary phases CeZn, which dissolves 3.5 at. % Ni, and CeNi2, which dissolves 10 at. 

% Zn in equilibrium with the liquid. A second characteristic concerns the solid 

solution between the isotypes CeNi5 and CeZn5, which at 800°C form a continuous 

solid solution Ce(Ni1-xZnx)5 (details are given in the section below).  

 

 
Fig. 6. Ce-Ni-Zn isothermal section at 800°C. 

 

Micrographs in Fig. 7 reveal that the Ce-rich liquid forms tie lines to the Ce(Ni1-

xZnx)5 phase for a large part of the diagram (see Fig. 7 a to h). In the Zn-poor part 

three-phase equilibria exist among L+Ce2(Ni1-xZnx)7+ Ce(Ni1-xZnx)5 (Fig.7a), 

L+Ce2(Ni1-xZnx)7+Ce(Ni1-xZnx)3 (Fig.7b) and L+Ce(Ni1-xZnx)3+Ce(Ni1-xZnx)2 

(Fig.7c). Similarly, equilibria with a liquid were identified near the Ce-Zn boundary: 

L+Ce3Zn11 (practically no Ni dissolved) and L+Ce13Zn58+Ce(Ni,Zn)5 (Fig.7d). This 

liquid region exists as an "island" in the phase diagram. For the solid region of the 



 48

isothermal section, micrographs in Fig. 7e, Fig. 7f and 7g document the three-phase 

equilibria: Ni48Zn52(rT)+Ni2Zn11+Ce(Ni1.6Zn7.9)11 (Fig.7e), 

Ni48Zn51.8(rT)+Ce(Ni1.91Zn6.36)11+Ce2(Ni1.24Zn4)17 (Fig.7f) and the tie-line 

Ni50Zn50(rT)+Ce2(Ni2.6Zn2.82)17 (Fig.7g). It should be noted, that due to insufficiently 

fast quenching of the alloys (inside protective Al2O3 crucibles within sealed quartz-

walls) we were unable to retain the cubic high temperature modification of β′-NiZn, 

which transfers on cooling to the low temperature form NiZn(rT). Therefore the 

dashed lines in Fig 6 refer to the low temperature form of NiZn(rT). This is 

particularly true for the phase triangle observed with the vertices 

Ce(Ni13.9Zn)5+Ni54.45Zn45.41(β1-NiZn (NiZn(rT))+Ni69.53Zn33.23 (solid solution of Zn in 

Ni) (Fig.7h).  
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Fig. 7. Micrographs for Ce-Ni-Zn samples annealed at 800°C a) Ce20Ni58Zn22 
b) Ce24Ni62Zn14, c) Ce30Ni60Zn10, d) Ce19Ni3Zn78, e) Ce4Ni28Zn68, f) Ce6Ni33Zn61, g) 

Ce9Ni45Zn46 and h) Ce6Ni62Zn32 (all compositions given in at. %). 

 

The phase equilibria determined in Fig. 7 show that the ternary compounds observed 

at 200°C (for comparison see Fig.1, [3]), namely: CeNi1.2Zn1.8, CeNiZn, CeNi2Zn, 

Ce2Zn5Ni2 as well as CeNi2Zn2 (observed at 400°C [13]) are all submersed by the 

liquid at 800°C. From the extent of the solid solution phase Ce2(NixZn1-x)17 

(0≤x≤0.53) we note that nickel has a strong stabilizing influence although no 

compound Ce2Ni17 exists. The inclusion of Ni replacing Zn leads to a decrease in the 

unit cell volume as shown in figure 8.  
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Fig. 8.Cell volume versus Ni content in Ce2(NixZn1-x)17 (Th2Zn17 type). Data taken 

from single crystal (SC) and powder samples. The solid line is a guide to the eye. The 

solid bar at the abscissa outlines the homogeneity range at 800°C. 

 

Similarly, CeNi11 with BaCd11-type has not been reported in literature [9, 23, 24] and 

although CeZn11 already decomposes on heating at 795°C, Ce(NixZn1-x)11 is stabilized 

by Zn/Ni substitution as a ternary phase for the region 0.03≤x≤0.22 at 800°C. The 

lattice parameters and unit cell volume decrease linearly with the Ni addition as 

shown in figure 9. 

 
Fig. 9.Lattice parameters and cell volume versus Ni content in Ce(NixZn1-x)11 

(BaCd11-type) for alloys annealed at 800°C. Data taken from single crystal (SC) and 
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powder samples. The solid line is a guide to the eye. The solid bar at the abscissa 

outlines the homogeneity range at 800°C. 

 

4.3.4. Homogeneity range of Ce(Ni1-xZnx)5 

 

Solid solution ranges along the section CeNi5-CeZn5 have been reported at 200°C 

with the limiting compositions CeNi3.24Zn1.76 for CeNi5-xZnx and CeNi2.03Zn2.97 for 

CeZn5-xNix [4]. At 800°C, however, we observed a continuous solid solution range 

extending from CeNi5 to CeZn5. Figure 10 reveals the lattice parameter variation with 

respect to the Ni, Zn substitution in Ce(Ni1-xZnx)5 as a function of x at 800°C 

including data from the literature. A single-phase sample with composition 

Ce16.5Ni43.75Zn39.76 (in at. %) has been annealed at different temperatures, i.e. 800, 

750, 700, 600 and 400°C up to 350 h in order to trace a possible miscibility gap in the 

continuous solid solution, but at all temperatures the sample remained single-phase 

and showed no signs of decomposition. 
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Fig. 10.Lattice parameter variation with respect to the Ni, Zn substitution in Ce(Ni1-

xZnx)5 (CaCu5-type). Data from powder samples (this work and from the literature 

[51]). The solid line is a guide to the eye. 

 

4.4. Conclusion 

 

Employing EDX electron microprobe analyses and x-ray single crystal and powder 

diffraction, phase relations in the isothermal section and crystal structures have been 

established for the system Ce-Ni-Zn at 800°C. Phase equilibria at 800°C are 

characterized by a large region for the liquid phase covering most of the Ce-rich part 

of the diagram, whereas a Zn-rich liquid is confined to a small region near the Zn-

corner of the Gibbs triangle. For the solid part of the diagram, large mutual 

solubilities of Ni and Zn at a constant Ce content have been observed at 800°C for 

most Ce-Zn and Ce-Ni compounds, whereas solubility of Ce in the binary Ni-Zn 

compounds is negligible. A further characteristic feature of the Ce-Ni-Zn isotherm at 

800°C is the continuous homogeneity region of CeZn5 and CeNi5 phases. Nickel is 

found to stabilize the structure of CeZn11 to higher temperatures and at 800°C Ce(Zn1-

xNix)11 (0.03≤x≤0.22) appears as a ternary solution phase. Similarly, a rather extended 

solution forms for Ce2(NixZn1-x)17 (0≤x≤0.53). Detailed data on atom site occupation 

and atom parameters were derived from X-ray structure analyses for single crystals of 

Ce2+y(NixZn1-x)17, y=0.02, x=0.49 (Th2Zn17 type; =2FR 0.018) and Ce(Ni0.18Zn0.82)11 

(BaCd11 type, =2FR 0.049).  

In comparison to the ternary compounds observed by Opainich at 200°C [3] and 

Solokha at 400°C [13], the phase relations determined at 800°C show that the phases 

CeNi1.2Zn1.8, CeNiZn, CeNi2Zn, Ce2Zn5Ni2 and CeNi2Zn2 appear submersed by the 

Ce-rich liquid. 
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Table 2. X-ray single crystal dataa,b for Ce2+y(NixZn1-x)17, y=0.02, x=0.49; Th2Zn17-
type(MoKα radiation) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

acrystal structure data are standardized using the program Structure Tidy [50]. 
banisotropic atomic displacement parameters Uij in [102  nm2]. 
cnominal composition of the alloy from which a single crystal was isolated. 
dfixed from EMPA. 

Compound Ce2+y(NixZn1-x)17, y=0.02, x=0.49 
Nominal composition [at. %]c Ce22Ni42Zn36 
Composition fro EPMA [at. %] Ce10.8Ni44.1Zn45.1 
Formula from refinement [at. %] Ce10.64Ni43.62Zn45.73 
Space group mR3 ; No. 166 
θ  Range [deg] 3.14 < θ < 36.02  
a [nm] 0.87541(3) 
c [nm] 1.25410(4) 
Reflections in refinement 456 Fo > 4σ (Fo) of 500 
Unit cell volume [nm3] 0.832(5) 
Z, Calculated density [g/cm3] 3, 7.99 
Crystal size [µm] 20×30×45 
Number of variables 25 
RF

2 = Σ|F0
2-Fc

2|/ΣF0
2 0.018 

RInt  0.056 
GOF 1.10 
Extinction (Zachariasen) 0.00048 (6) 
Ce1 in 6c (0, 0, z); Occ. z = 0.35233(3); 1.00(1)  
U11

b= U22; U33; U23 = U13 = 0; U12 0.0131(1); 0.0206(2); 0.0065(1) 
Ce2 in 3a (0, 0, 0); Occ. 0.02(1) 
U11

b= U22; U33; U23 = U13 = 0; U12 0.0145(2); 0.0160(3); 0.0073(1) 
Zn1 in 6c (0, 0, z); Occ. z = 0.10792(6); 0.98(-) 
U11

b= U22; U33; U23 = U13 = 0; U12 0.0145(2); 0.0160(3); 0.0073(1) 
Zn2 in 18h (x, 0, 0); Occ. x = 0.29942(6); 1.00(1) 
U11

b; U22; U33; U23   0.0174(2); 0.0096(2); 0.0101(2); -0.0008(1) ;  
U13; U12 -0.0004(1); 0.0048(1) 
M in 18f (x.y,z)  x = 0.50184(3); y = 0.49816(3); z = 0.15578(3)  
Occ. 0.88 Ni2+ 0.12 Zn3d 

U11
b= U22; U33; U23= -U13; U12 0.0077(1); 0.0105(2); 0.0005(1); 0.0027(1) 

Ni1 in 9d (½ , 0, ½ ); Occ. 1.00(1) 
U11

b; U22; U33; U23  0.0083(2); 0.0111(3); 0.0081(3); 0.0013(2)  
U13; U12 0.0006(1); 0.0056(1) 
Residual electron density; max; min 
in [electrons/nm3] x 10-3 

1.24; -1.35 
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Table 3. Interatomic distances for Ce2+y(NixZn1-x)17, y=0.02, x=0.49 
Bonds Distance (nm) Bonds Distance (nm) 
Ce1 –  Zn1 0.30653(8) M – 2Ni1 0.25170(2) 
Ce1 – 6Zn2 0.30865(3) M – 2M 0.25695(4) 
Ce1 – 3M 0.30776(4) M – 2Zn2 0.25938(5) 
Ce1 – 3M 0.32375(4) M – 2Zn2 0.26271(5) 
Ce1 – 3M 0.33243(4) M –   Ce1 0.30776(4) 
Ce1 – 3Ni1 0.34362(3) M –   Ce1 0.32375(4) 
  M –   Ce1 0.33243(4) 
Ce2 – 2Zn1 0.13533(8) a M –   Zn1 0.26473(5) 
Ce2 – 6Zn2 0.26212(5)   
Ce2 – 6M 0.32794(3) Zn2 – 2Ni1 0.24804(1) 
Ce2 – 6Ni1 0.32795(5) Zn2 – 2M  0.25938(5) 
  Zn2 – 2Zn2 0.26212(5) 
Zn1 –   Ce2   0.13533(8) a Zn2 –   Ce2 0.26212(5) 
Zn1 – 3Ni1   0.26323(2) Zn2 –  2M 0.26271(5) 
Zn1 –  3M 0.26473(5) Zn2 –  2Zn1 0.29500(6) 
Zn1 –   Zn1   0.2707(2) Zn2 –  2Ce1 0.30865(3) 
Zn1 – 6Zn2 0.29500(6)   
Zn1 –   Ce1   0.30653(8)   
  
Ni1 –  4Zn2 0.24804(1) 
Ni1 –  4M 0.25170(2) 
Ni1 –  2Zn1 0.26323(2) 
Ni1 –  2Ce1 0.34362(3) 

 

a dZn1 - Ce2 =0.13533(8) not bonding distance, for description see figure 3 and text. 
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Table 4. Crystal structure dataa for Ce(NixZn1-x)11, x=0.18; BaCd11 type 

(Nonius KappaCCD diffractometer, MoKα radiation) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
acrystal structure data are standardized using the program Structure Tidy [50]. 
banisotropic atomic displacement parameters Uij in [10

2  nm2]. 
cnominal composition of the alloy from which a single crystal was isolated. 

 

Compound Ce(NixZn1-x)11, x=0.18 

Nominal composition [at. %]c Ce6Ni20Zn74 

Composition from EPMA [at. %] Ce8.52Ni18.48Zn73 

Formula from refinement  Ce8.31Ni18.3Zn73.66 

Space group I41/amd; No. 141 

θ  Range [deg] 3.59 < θ < 38.95 

a [nm] 1.04302(2) 

c [nm] 0.67624(3) 

Reflections in refinement 477 Fo > 4σ (Fo) of 568 

Unit cell volume [nm3] 0.735(5) 

Z, Calculated density [gm/cm3] 8, 9.55 

Crystal size [µm] 25×30×30 

Number of variables 20 

RF
2 = Σ|F0

2-Fc
2|/ΣF0

2 0.049 

RInt  0.06 

GOF 0.94 

Extinction (Zachariasen) 0.0008(4) 

Ce1 in 4b (0, ¼, ⅜); Occ. 1.00(1) 

U11
b= U22; U33; U23 = U13 = U12 = 0 0.0063(3); 0.0050(4) 

M in 32i (x, y, z)  x = 0.20451(6); y = 0.12756(6); z = 0.06183(9) 

Occ. 0.98(1) Zn1 + Ni1 0.02  

U11
b; U22; U33; U23  0.0095(3); 0.0071(3); 0,0069(3); 0.0015(2)  

U13; U12 0.0014(2); 0.0003(2) 

Zn2 in 4a (0, ¾, ⅛); Occ. 1.00(1) 

U11
b= U22; U33; U23= U13= U12=0 0.0104(5); 0.0113(8) 

Ni2 in 8c (0, 0, 0); Occ. 1.00(1) 

U11
b; U22; U33; U23;  U13 = U12 = 0 0.0058(6); 0.0152(7); 0.0060(6); 0.0021(5) 

Residual electron density; max; min 

in [electrons/nm3] x 10-3 

2.86; -3.15 
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Table 5. Interatomic distances for Ce(NixZn1-x)11, x=0.18 
Bonds Distance (nm) Bonds Distance (nm) 
Ce1 – 8M 0.32653(5) M   –   2Ni2 0.25105(5) 
Ce1 – 8M 0.33635(5 M   –     M 0.25531(7) 
Ce1 –  2Zn2 0.33812(2) M   –   2M 0.26177(8) 
Ce1 –  4Ni2 0.36373(2) M   –     M 0.26929(7)  
  M   –     M 0.27162(8) 
Zn2 – 4Ni2   0.27411(1) M   –     M 0.27883(5) 
Zn2 – 8M 0.27883(5) M   –     Zn2 0.27903(8) 
Zn2 – 2Ce1 0.33812(5) M   –     M 0.28022(8) 
  M   –     Ce1 0.32653(5) 
Ni2 – 4M 0.25105(5) M   –     Ce1 0.33635(5 
Ni2 – 4M 0.25485(5)   
Ni2 – 2Zn2 0.27411(1)   
Ni2 – 2Ce1 0.36373(2)   
M=98% Zn1+ 2%Ni1  
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Table 6. Ce-Ni-Zn system: Phase equilibria and Lattice Parameters of alloys annealed at 800°C 
EPMA Composition, 
at. % 

Lattice Parameters, nm Phase regions at 800°C 
 

Phase 

Ce Ni Zn a b c 
Ce(Ni1-xZnx)5+Ce2(NixZn1-x)17 CeZn5 / CeNi5 16.7 54 29.3 0.50225(8)  0.41705(7) 
+NiZn (rT) Ce2(NixZn1-x)17 11 49.1 39.9 0.8703(2)  1.252(1) 
 NiZn (rT) 0 50.5 49.5 0.27484(1)  0.31878(1) 
L+Ce(NixZn1-x)11+Ni2Zn11  L1    0.2667(1)  0.4939(1) 
 Ce(NixZn1-x)11 9.1 6.1 84.8 1.0649(1)  0.6842(1) 
 Ni2Zn11 0.1 17.7 82.2 0.89184(7)   
Ce(NixZn1-x)11+Ni2Zn11+NiZn(hT) Ce(NixZn1-x)11 8.6 17.8 73.6 1.0529(2)  0.6776(2) 
Figure 7e Ni2Zn11 0.2 25.5 74.3 0.8865(6)   
 NiZn(rT)2 0.5 47.5 52 0.2944(5)   
NiZn(rT)+Ce(NixZn1-x)11 NiZn(rt)2 0.3 47.9 51.8    
+Ce2(NixZn1-x)17 Ce(NixZn1-x)11 8.5 21.3 70.2 1.0448(2)  0.67729(4) 
Figure 7f Ce2(NixZn1-x)17 10.5 21.1 68.4 0.89123(8)  1.2956(4) 
Ce(Ni1-xZnx)5+NiZn (rT) - (Ni) CeZn5 / CeNi5 17 68.6 14.4 0.4918(1)  0.4074(8) 
Figure 7h NiZn (rT) 0.1 54.5 45.4    
 (Ni) 0.2 66.6 33.2    
L+Ce2(Ni1-xZnx)7+Ce(Ni1-xZnx)5 L 33 28 39    
Figure 7a Ce2Ni7 22 62 16    
 CeZn5 / CeNi5 17 61.3 21.7    
L+Ce2(Ni1-xZnx)7 - Ce(Ni1-xZnx)3 L 25 35 40    
Figure 7b Ce2Ni7 22 64 14    
 CeNi3 25 62 13    
L+Ce(Ni1-xZnx)3+Ce(Ni1-xZnx)2 L 39 43 18    
Figure 7c CeNi3 26 64 10    
 CeNi2 34 56 10    
L+Ce13Zn58+Ce(Ni1-xZnx)5 L 26.3 4.4 69.3    
Figure 7d Ce13Zn58 18.4 3.3 78.3    
 CeZn5 / CeNi5 17 7.3 75.7    
NiZn (rT)+Ce2(NixZn1-x)17 NiZn (rT)2 0.3 49.9 49.8    
Figure 7g Ce2(NixZn1-x)17 10.8 41.4 47.8 0.8747(2)  1.2560(6) 
L+CeZn2 +Ce(Ni1-xZnx)5 L 29.2 10.2 60.6    
 CeZn2 34.2 3.9 61.9    
 CeZn5 / CeNi5 16.8 13.5 69.7    

1Lattice parameter calculation of the liquid formed during quenching appear as that of Zn. 
2 low temperature modification NiZn(rt) (due to insufficiently fast quenching of NiZn (hT).  
 

 



 64

     5       

 

Phase Relations and Structural Chemistry  
    In the System Ni-Zn-B 
 

5.1. Introduction 

 

Alloys with 65-99 mass % zinc, 0.05-25 mass % nickel and 0.01-15 mass % boron 

were noticed to be suitable for casting, forging, stamping, for manufacturing wires, 

rods, bars, sheets, tubes and other articles: they exhibit high tensile strength, high 

degree of hardness, high resistance to oxidation and corrosion, low shrinkage factor 

and low specific gravity [1]. Generally, additions of boron and borides act as grain 

refiners in many metals and alloys increasing cohesive strength but also may clean 

grain boundaries for superplasticity [2]. 

Stadelmaier et al. [3] reported on the Ni-Zn-B phase equilibria at 800°C along with a 

liquidus projection in the composition range up to ∼55 at. % Zn and up to ∼43 at.% B 

identifying four congruently melting ternary compounds (Figure 1, see table 1).  

 

Figure 1. Ni-Zn-B phase equilibria at 800°C with four ternary phases (compositions 

given in table 1), as reported by Stadelmaier [3]. 
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Whereas the structure type of the so-called τ-phase Ni72-61Zn10-13B18-26 (in at.%; 

Cr23B6-type) has been studied from X-ray powder and single crystal rotation 

photographs, merely the compositions have been derived for the remaining three 

phases (labeled ϕ, ψ and χ) from metallography and X-ray powder inspection [3, 4, 

5]. The findings of Stadelmaier [3, 4, 5] were later used by Bhan et al. [6] in a review 

of the Ni-Zn-B system. More recently, the crystal structures and particularly the 

boron-aggregation in two crystals from the Cr23C6-type homogeneity region (τ-phase) 

have been determined: Ni21.4Zn1.6B6 and Ni20Zn2.4B7.75 [7]. In a foregoing paper, we 

have determined the crystal structures of three ternary compounds: τ2-Ni12ZnB8-x 

(x=0.43), τ3-Ni21Zn2B20
1 and τ4-Ni3ZnB2 [8]. Although the composition of τ4 

(Ni3ZnB2) is near that of the ψ-phase (Ni57Zn13B30 [1962Sta1]), the phase relations 

observed by [3] and this work, indicate that the ψ-phase (Ni57Zn13B30, shown to be in 

equilibrium with τ1) rather corresponds to τ2-Ni12ZnB8-x (x=0.43). The other two 

compounds (τ3 and τ4) have to be considered as new compounds in this system. 

Therefore, in view of the new compounds detected, the present work attempts (i) to 

reconstruct the phase equilibria at 800°C covering the entire range of the Ni-Zn-B 

phase diagram and (ii) to determine the crystal structures of all the hitherto unknown 

phases in the Ni-Zn-B system.  

 

5.2. Experimental 

 

Samples in a total amount of ca. 0.5 g each were prepared from Ni foil (Alfa Aesar, 

purity >99.8 mass%), boron pieces (ChemPur, Karlsruhe, 98 mass%), nickel powder 

(-100 mesh; 99.9 mass%; PCR Inc. USA) and zinc granules (Alfa Aesar, >99.9 

mass%), which were purified in an evacuated quartz tube by heating them at 800°C, 

below the boiling temperature of Zn (907°C).  

Binary alloys: Ni-borides were prepared from Ni-cuttings and B-pieces in various 

stiochiometric ratios by arc melting with an inconsumable tungsten electrode under an 

argon atmosphere on a water-cooled copper hearth. To assure the homogeneity of the 

master alloy arc melting has been performed three times.  

                                                 
1 In our previous study we have reported on the crystal structure of Ni21Zn2B24. [2011Mal]. However, 
the boron positions were incorrectly summed up and thus the correct chemical formula is Ni21Zn2B20. 
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Ternary alloys: Ternary samples were prepared from intimate blends of powders of 

NiyBx master alloys and fine Zn-filings in proper compositional ratios. The blends 

were compacted at room temperature in a steel die without lubricants at a pressure of 

130 MPa and then sealed in quartz tubes under vacuum. After slow heating to 420°C, 

the samples were kept at this temperature for 12h before temperature was raised to 

800°C at the rate of 1°C/min. Samples were annealed at 800°C for 7 days. For further 

reaction the pre-annealed samples were powderized and again cold compacted in steel 

dies submersed in Al2O3-powder in graphite cartridges and hot pressed under argon at 

800°C for 1 hour and under a pressure of 56 MPa. All samples were finally subjected 

to an annealing of 7 days at the temperature of 800°C after sealing them in quartz 

tubes along with the Al2O3 crucibles (protecting the alloy from attack by the hot 

quartz walls).  

X-ray powder diffraction data were collected from each alloy in hot pressed and 

annealed state employing a Guinier-Huber image plate system with monochromatic 

CuKα1 radiation (8º<2θ<100º). Quantitative Rietveld refinements of the X-ray powder 

diffraction data were performed with the FULLPROF program [9]. 

Single crystals: specimens of Ni4B3 for single crystal analysis were mechanically 

isolated from the crushed reguli Ni50Zn15B35 and Ni56Zn6B38 (both in at.%) 

respectively, prepared as described (heated to 990°C at the rate of 1°C/min and slowly 

cooled). Single-phase crystalline material of τ5 was obtained from an alloy 

Ni48Zn37B15 (in at. %), prepared in same manner as discussed above, heated to 1100°C 

from 420°C at the rate of 1°C / min, then cooled to 880°C and annealed for 5 days. 

After water-quenching the sample was boiled in 15 % aqueous solution of HCl, in 

order to dissolve the Ni-Zn binary phases. Undissolved τ5 material was washed 

several times with 5% dilute aqueous solution of HCl and finally with distilled water 

and dried.  

Inspections on an AXS-GADDS texture goniometer assured high crystal quality, unit 

cell dimensions and Laue symmetry of the single crystal specimens prior to X-ray 

intensity data collections on a four-circle Nonius Kappa diffractometer equipped with 

a CCD area detector employing graphite-monochromated MoKα radiation 

(λ=0.071069 nm). Orientation matrices and unit cell parameters were derived using 

the program DENZO [10]. No special absorption corrections were performed because 

of the rather regular crystal shapes and small dimensions of the investigated 
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specimens. The structures were solved by direct methods and were refined with the 

SHELXL-97 program [11, 12] within the Windows version WINGX [13].  

EPMA Measurements: Samples were polished using standard procedures, 

microstructures and compositions were examined by light optical microscopy (LOM) 

and scanning electron microscopy (SEM) via Electron Probe Micro-Analyses 

(EPMA) on a Zeiss Supra 55 VP equipped with an EDX system operated at 20 kV. 

For Ni:Zn ratios the binary compound Ni2Zn11 at the Zn-rich boundary (15.0 at.% Ni 

after [14]) was used as EPMA standard. The differences between measured and 

nominal compositions were found to be less than ±1 at. %. Whereas Ni:Zn ratios were 

taken from EPMA, the boron content of the alloys relies upon the single crystal 

studies reported in this work and published previously [8].  

Transmission Electron Microscopy (TEM) was employed to get information about 

crystal symmetry and lattice parameters of the major phase (τ5) extracted from the 

sample of composition Ni48Zn37B15. A Philips CM12 STEM transmission electron 

microscope was used working at acceleration voltage of 120 kV, with an EDAX 

energy dispersive X-ray (EDX) analyzer and Phoenix software [15]. The sample for 

TEM study was prepared in form of a thin lamella (lateral dimensions about 10×7 

µm) roughly perpendicular to the long axis of a needle-like crystal using a focused ion 

beam (FIB) technique in a TESCAN LYRA 3 XMU FEG/SEM×FIB scanning 

electron microscope. 

 

5.3. Results and Discussion. 

5.3.1. Binary Boundary Systems 

 

The binary systems Ni-Zn, Zn-B and Ni-B were used in the version presented by 

Massalski [16]. A critical assessment and thermodynamic calculation of the Ni-B 

system has been recently published [17]. Crystal structure Rietveld refinements for all 

those binary compounds, which have been already reported earlier, namely, βB [18], 

ZnxB1-x 0≤x≤0.043 (ZnB∼22) [19, 20], NixB1-x, x=0.020 (NiB48.5) [21], NiB, m-Ni4B3, 

o-Ni4B3-x [22], Ni2B [18], Ni3B [23], were found to be consistent with the literature. 

Therefore the reinvestigation of crystal structures in the Ni-B system essentially 

focused on the determination of crystal symmetry, precise atom site distribution and 

positional parameters for the compounds, m-Ni4B3, o-Ni4B3-x, for which crystal 
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structure data hitherto have only been derived from X-ray Weissenberg and 

precession photographs. The Ni-Zn phase diagram at 800°C has been corroborated in 

our previous work on Ce-Ni-Zn [24] and was found to be essentially consistent with 

the data derived by Nash and Pan [25]. However, due to the heat content of the 

protective Al2O3 crucibles we were unable in our samples to quench the cubic high 

temperature form NiZn(hT). The crystal data relevant to the unary, binary boundary 

and ternary phases in the Ni-Zn-B system, including results of our reinvestigation of 

the binaries, are presented in Table 1.  

 

5.3.2. Structural Chemistry 

X-ray single crystal structure determination of o-Ni4B3-x and of m-Ni4B3 

o-Ni4B3-x. The X-ray intensity spectrum of a single crystal selected from the crushed 

regulus Ni50Zn15B35 (at.%) was fully indexed with an orthorhombic lattice 

(a=1.19665(4), b=0.29852(1) and c=0.65750(2) nm). No traces of Zn have been 

detected in this boride phase by EPMA. Systematic extinctions prompt the space 

group types Pnma or Pna21 and the highest symmetry was used to solve the crystal 

structure employing the direct methods. The structure solution with anisotropic 

thermal atom displacement parameters (ADPs) for the nickel atoms but isotropic 

temperature factors for the boron atoms converged at =2F
R 0.015 yielding a residual 

electron density less than ±0.97 e-/Å3 with small but significant defects at two of the 

boron sites (B1 and B3). Crystal data are presented in table 2. The refined 

composition, Ni4B3-x (x=0.19), lattice parameters, crystal symmetry, atom positions 

and Wyckoff sequence 4c7 essentially confirm the early structure determination of o-

Ni4B3-x by Rundqvist at RF = 0.083 [26] performed on the basis of Weissenberg and 

precession X-ray photographs. As stated before [26], the crystal structure of o-Ni4B3-x 

is characterized by (i) isolated boron atoms B2 in tetrakaidekahedral metal 

surrounding [Ni9]B and (ii) by infinite B1-B1 and B3-B3 chains running parallel to 

the b direction with B-B distances dB1-B1= 0.1797 nm and dB3-B3= 0.1778 nm, 

respectively (see Fig. 2). It should be pointed out here, that the appearance of about 

10% vacancies in the sites of B1 and B3 cuts the boron chains into fragments. 

Conclusions on possibly defect ordering may come from future neutron diffraction 

experiments. Coordination polyhedra for all crystallographic sites are presented in 

Fig. 2.  
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Figure 2. Crystal structure of o-Ni4B3-x (x=0.19) in three-dimensional view along the 

b-axis. Nickel atoms are presented with ADPs from single crystal refinement; boron 

atoms are shown with isotropic temperature factors. The Ni-polyhedra around the B2 

atoms and the infinite B1-B1 and B3-B3 chains are highlighted. 

 

B3 atoms occupy the centers of triangular Ni-prisms capped by 1Ni + 2B atoms and 

Ni atoms have 6, 7 or 8 next nearest Ni-neighbors, respectively. Supplementary 

material (Table I) provides a comparison of interatomic distances from Rundqvist 

[26] and this work. Despite of the higher precision of our data, B-B distances 

perfectly correspond to those derived earlier. Taking a metal atomic radius of nickel, 

RNi=0.124 nm [27], and a covalent radius for boron, RB=0.088 nm [1988Sla], the Ni-

B distances (0.2066<dNi-B1<0.2147, 0.2042<dNi-B2<0.2424, 0.2039<dNi-B3<0.2197) are 

centered around the ideal sum RNi+RB=0.212 nm and also B-B distances are close to 

the ideal covalent B-B bond of 0.176 nm, but still typical for metal borides with a 

ratio B/M≤1 [28]. The calculation of Voronoi coordination polyhedra around the four 

individual Ni-atoms using program DIDO 95 [29] resulted in 6 to 8 bonding Ni atoms 

excluding those with Ni-Ni bonds longer than 0.26 nm forming a ‘Dirichlet area 

smaller than 20% of the largest. ’The average Ni-Ni bonding distance in the structure 

is dav(Ni-Ni) = 0.2556 nm. 

m-Ni4B3. A single crystal of prismatic shape was selected from the crushed regulus 

with nominal composition Ni56Zn6B38 (at.%). No traces of Zn have been detected in 
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this phase by EPMA. The X-ray diffraction pattern was indexed completely on the 

basis of a monoclinic unit cell (a=0.64356(3), b=0.48867(3), 0.78267(3) nm, 

β=103.288(3)°). Systematic absences were consistent with the space group types C2/c 

and Cc. Direct methods for structure solution in the centrosymmetric space group 

C2/c yielded =2F
R 0.021 and residual electron densities smaller than ±1.2e-/Å3 

employing ADPs for the metal atoms and isotropic temperature factors for the boron 

sites. The final refinement is summarized in Table 2 and confirms the early structure 

determination of m-Ni4B3 by Rundqvist [26] performed on the basis of X-ray 

Weissenberg and precession photographs (RF=0.108). The crystal structure of 

stoichiometric m-Ni4B3 is characterized by infinite chains of boron atoms in a 

sequence B1-B2-B1-B1-B2-B1 and distances dB1-B1= 0.1879 and dB1-B2= 0.1862 nm 

(see Figure 3). The structure combines two different next nearest neighbor 

coordinations around B1 and B2, respectively, which alternate along the boron chains: 

a three-capped triangular prism B1[Ni7B2] and a distorted B-bicapped Archimedean 

antiprism B2[Ni8B2] (see Fig. 3). From a comparison of interatomic distances 

presented earlier [26] and in this work (see Table II of supplementary material) we 

find a slightly narrower distribution for B-B distances, 0.1862<dBB<0.1879 nm, as 

well as for Ni-B distances, 0.2072<dNi-B1<0.2163, 0.2112<dNi-B2<0.2366. The Ni-B 

distances are centered around the ideal sum RNi+RB=0.212 nm, whereas the B-B 

distances are slightly longer than the ideal covalent B-B bond of 0.176 nm, but are 

still typical for metal borides with a ratio B/M≤1 [28]. Coordination polyhedra around 

the Ni atoms adopt rather distorted shapes (see Fig. 3).  

Therefore Voronoi coordination polyhedra around Ni1 and Ni2 were calculated with 

the aid of program DIDO 95 [29] and resulted in 9 Ni atoms for both cases, 

wherefrom two appear at almost equal and rather long distances of 0.2812 nm from 

the central atom but with a significantly different ‘Dirichlet area’. In figure 3 these 

two atoms are differentiated by asterisks. As the atom with a single asterisk has a 

Dirichlet area = 1.164 (50 % of the highest value) it has been kept in the coordination 

polyhedron, whereas the atom with the double asterisk (Dirichlet area = 0.5  i.e. 20 % 

of the highest value) was excluded from the coordination figure. ’The average Ni-Ni 

bonding distance in the structure is dav(Ni-Ni) = 0.2605 nm. 
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Figure 3. Crystal structure of m-Ni4B3 in three-dimensional view along the b-axis with 

polyhedra around B1 atoms. Nickel atoms are presented with ADPs from single 

crystal refinement; boron atoms are shown with isotropic temperature factors. The 

infinite boron chains with distances dB1-B1= 0.188 nm dB1-B2= 0.186 nm are 

highlighted. The Ni-atom with a single asterisk has been kept in the coordination 

polyhedron, whereas the atom with the double asterisk was excluded from the 

Voronoi coordination figure because of its small Dirichlet area = 0.5  i.e. 20 % of the 

highest value. 
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5.3.3. X-ray single crystal structure determination of ternary borides  

5.3.3.1. Crystal structure of the τ1-phase τ1-(Ni1-xZnx)21[Zn1-y-z�y(B4)z]2B6 (x=0.07, 

y=0.125, z=0.30) with Cr23C6-type 

Stadelmaier and coworkers reported a large homogeneity region for the Cr23C6-type 

phase in the Ni-Zn-B system (τ1 at 800°C from Ni20Zn3B5 to Ni19Zn4B8; a = 1.050 to 

1.055 nm [3, 4, 5]), and particularly noted a significant extent in direction of boron 

contents higher than the stoichiometric 20.7 at.% B. More recently crystal structure 

solutions have been reported for Ni21.4Zn1.6B6 and Ni20Zn2.4B7.75 with Ni : Zn atomic 

ratios 93 : 7 and 88 : 12, respectively, [7] with a minor difference in lattice parameters 

(a = 1.05409(17) and a = 1.05521(17) nm; in both cases space group type was 

mFm3 ). Whereas the crystal structure of Ni21.4Zn1.6B6 was isotypic with the Cr23C6-

type, for the crystal Ni20Zn2.4B7.75, however, tetrahedral boron clusters (B in site 32f 

forming a B4-tetrahedron centered around site 8c) were reported to share the space 

with Zn-atoms that partially occupy the 8c site. It should be emphasized, that the 

single crystal of Kotzot et al. [7] was selected from an alloy Ni20Zn3B8 heated at 

1450°C for 1 hour, whilst the crystal we selected from an alloy of same composition, 

which was heated at 1000°C and annealed at 800°C for 7 days, exhibits a much bigger 

lattice parameter a = 1.05800(3) nm at the ratio of Ni : Zn = 88 : 12 defined by 

EPMA. This may indicate an extended homogeneity with respect to boron content at 

the same metal atom ratio and thus warrants a single crystal X-ray investigation. The 

X-ray diffraction pattern of the single crystal was completely indexed with cubic face 

centered symmetry. Systematic extinctions led to the space groups mFm3 , F 4 3m, 

F432, F23 and 3Fm . The structure was solved from Patterson syntheses in 

centrosymmetric mFm3  prompting four metal atom positions consistent with the 

Cr23C6-type. For atoms in 8c (¼,¼,¼) the thermal parameter was rather high i.e. 5-6 

times larger than for the other atoms, suggesting a partial occupancy of ~60% Zn 

yielding an R-value =2F
R 0.067. An additional electron density of ±13.59 e/Å3 was 

found from the Fourier synthesis at a distance of 2.09 Å from the metal atom in 8c 

prompting boron occupation. Analysis of difference Fourier maps revealed the 

presence of boron tetrahedra formed by borons in the 32f site with an occupancy level 

of 30 %. The corresponding refinement smoothly proceeded to =2F
R 0.014 revealing a 
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residual electron density of less than ±0.73 e/Å3 and a formula Ni63.9Zn8.6B27.5 (at. %). 

From this refinement the Ni to Zn ratio was 88.2 : 11.8 in fine agreement with the 

ratio 88:12 defined by EPMA on bulk samples. In accordance with the typical 

behaviour of τ-phases formed by two metals with close atomic radii and similar 

electronegativities, the refinement of occupancies of all metal atom sites showed that 

the larger and more electropositive atoms (Zn) are located in site 8c (¼,¼,¼) and site 

4a (0,0,0), whereas the 48h site is filled with the more electronegative Ni atoms. A 

small part of Zn atoms also enters the 32f metal site displaying an extended 

homogeneity range as reported for ((M, Ir)23B6, M = Cr, Fe, Mn, Co; (M, Re)23B6, M 

= Mn, Fe, Co, Ni) [28, 30].  

In order to check for possible ordering among metal atom/boron tetrahedra, the crystal 

structure was also explored in the lower symmetry space group F 4 3m taking the 

atomic coordinates reported for τ-(Co0.64Ir0.36)21Co0.16B4B6 [30] as initial values for 

structure refinement. Refinement in this space group revealed no further ordering. 

Therefore the atom arrangement in the centrosymmetric space group was considered 

to represent the proper structure with the final formula τ1-(Ni1-xZnx)21[Zn1-y-

z�y(B4)z]2B6 (x=0.07, y=0.125, z=0.30). Results are summarized in tables 3 and 4. 

Rietveld refinement of an X-ray powder spectrum of alloy Ni70Zn5B25 at. % annealed 

at 800°C is presented in Fig.5 confirming the structure model derived from our single 

crystal data.  

 
Figure 4. Rietveld refinement for the alloy Ni70Zn5B25 (τ1-phase). 
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Comparing the obtained structure solution with that reported by Kotzot et al. [7] (table 

3) we found good agreement in atom order and positional parameters whilst a 

significant difference concerns the occupancy of B at 32f (22 % [7]) and 30 % for the 

crystal investigated in the current work. This change of boron content form 22 to 30 at 

% at the same metal ratio may be held responsible for a significant increase in lattice 

parameter. Despite the difference concerns only the boron occupancy on one 

crystallographic site (32f) all interatomic distances in the structure expand by 0.24 % 

proportionally to the increase in lattice parameter.  

 

5.3.3.2. The τ5-phase 

The crystalline τ5 material obtained by acid leaching from Zn-flux (alloy Ni48Zn37B15, 

in at. %; see X-ray powder spectrum in Fig.5) showed single crystals of a needle like 

morphology.  

 
Figure 5. X-ray powder pattern of the τ5-phase grown from Zn-flux from alloy 

Ni48Zn37B15 (at. %), an elaborated area with dense peaks 42<2θ<46. 

 

These needles, however, appeared severely intergrown along the needle axis and 

proved improper for X-ray single crystal structure determination. Therefore TEM was 

employed to gain information on symmetry and unit cell dimensions. TEM diffraction 

patterns were collected from a thin lamella roughly perpendicular to the needle axis 
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and were processed in the following way: Fig. 6a shows the high symmetry selected 

area diffraction (SAD) pattern obtained with the electron beam along the needle axis.  

 

 

Figure 6. TEM analysis of a thin lamella prepared from needle-like crystals of the τ5-

phase. Diffraction pattern obtained with electron beam along the needle axis (tilt 0°). 

The dashed line marks the tilt axis for the following tilt series: (a) tilt series from the 

lamella tilted by 25.15° (b), 30.25° (c), 38.10° (d) and 49.8° (e). Reconstructed 

parallel reciprocal plane (f), where the horizontal region along the tilting axis (in gray) 

cannot be reached by sample tilt, however it can be filled in unambiguously according 

to what is found above and below it. Enlarged central part of the zero tilt diffraction 

(evaluated as [001] zone axis pattern) with two perpendicular reciprocal vectors 

marked (g). 
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This SAD was taken as the reference one with zero sample tilt and a series of 

diffraction patterns from the sample tilted by different angles around the axis marked 

in Fig 6a was obtained (Fig. 6b-e). From this tilt series we can reconstruct the 

intensity distribution in the reciprocal space. Fig. 6f (as a combination of tilt-corrected 

SADs from Fig. 6b-e) shows the next reciprocal plane parallel to the one shown in 

Fig. 6a. By combining the information from the two parallel planes, we arrive at a 

face centered orthorhombic distribution of diffraction spots in the reciprocal space. 

Fig. 6g shows the enlarged central part of Fig. 6a with two reciprocal lattice vectors 

marked and the third reciprocal lattice vector being equal to the distance of the two 

parallel planes. Finally we can conclude that the crystal structure of the τ5 phase is 

body-centered orthorhombic with unit cell parameters a=1.6(2), b=0.63(7), c=0.27(0) 

nm. The needle-like crystals grow along the shortest (c) axis. An estimated error of 

lattice parameters evaluated by this method is ±3%. 

 

5.3.3.3. The τ6-phase  

No single crystals could so far be obtained for this phase. Its composition has been 

defined to be Ni47Zn23B30 (in at. %) from the EPMA Ni:Zn ratio in combination with 

the phases in equilibrium (Fig 8) Figs. 9a and 9b show the micrographs of alloys with 

nominal compositions Ni42Zn44B14 (at. %) and Ni50Zn30B20 (at. %), respectively with 

nicely shaped crystals of τ5 and τ6. However, we were unable to select crystals 

suitable for X-ray single crystal diffraction due to enhanced adhesion of a eutectic 

matrix around the τ5 and τ6 crystals and because of numerous micro-cracks caused by 

the hair-like morphology of these phases. The XPD pattern characteristic for the τ6 

phase is shown in Fig. 7. 
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Figure 7. Three-phase equilibrium (Ni2Zn11+τ5+τ6) confirmed by X-ray powder 

diffraction and EPMA, showing Ni2Zn11 as light gray phase, τ5 as medium gray and τ6 

as dark gray grains. 

 

5.3.4. Phase equilibria in ternary system Ni-Zn-B 

Due to the large differences in the melting temperatures of the constituents, 

thermodynamic equilibrium at 800°C was difficult to achieve for samples prepared by 

melting. However preparation performed from powdered NixBy precursors cold-

pressed with Zn filing by slow heating, annealing at 800°C, re-powderization and hot 

pressing and repeated annealing at 800°C for 60 samples proved sufficient to establish 

the phase eqilibria in this system (see Fig. 8. Table 5 summarizes the XPD and EPMA 

analyses of hot pressed ternary alloys before and after annealing at 800°C.  
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Figure 8. System Ni-Zn-B: isothermal section at 800°C. 

βB+Ni2Zn11+τ3, documented by the microstructure of the alloy with composition 

Ni25Zn49B26 (at. %). 

 

The low melting point of Zn implies a liquid phase at 800°C near the Ni-Zn binary: 

the alloy with Ni10Zn80B10 (at. % nominal composition), shows a narrow three-phase 

field L+Ni2Zn11(Ni:Zn=17.61: 82.39)+βB, where boron appears segregated revealing 

no interaction with Ni and Zn at this composition. The isothermal section Ni-Zn-B is 

dominated by a large three-phase region between βB+Ni2Zn11+τ3, documented by the 

microstructure of the alloy with composition Ni25Zn49B26 (at. %). Prior to annealing 

the micrograph in figure 8c1 (inset of 8c) reveals the presence of boron, which is 

obvious from the particular shape of grains with sharp edges and its characteristic 

colour in LOM. After powderizing and annealing Zn losses have shifted the alloy 

composition to the two-phase region of Ni2Zn11+τ3 (see Fig. 9c). The micrographs of 

Figs. 9d and 9e prove the three-phase equilibrium: τ3+τ4+Ni2Zn11 in the alloy 

Ni37Zn39B24 (at. %) and a narrow three-phase region τ4+τ5+τ6 is obvious from the 

alloy with composition Ni49Zn31B20 (at. %) as shown in Fig. 9e.  
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Figure 9. Samples Ni42Zn44B14 (a) and Ni50Zn30B20 (b) at. %, melted at 990°C, cooled 

at the rate 1°C/min to 990°C and annealed for 5 days at 880°C. Selected micrographs 

of Ni-Zn-B alloys: Ni25Zn49B26 (at. %) hot pressed (c1) and annealed at 800°C (c). 

Alloys annealed at 800°C: Ni37Zn39B24 (d), Ni49Zn31B20 (e), Ni44Zn46B10 (f), 

Ni56Zn28B16 (g) and Ni56Zn6B38 (h) (at. %). 

 

Further three-phase regions define the tie-lines of τ5 to the Ni-Zn binary: 

Ni2Zn11+τ5+NiZn (rT) (see Fig. 9f, alloy Ni44Zn46B10), τ1+τ5+NiZn (rT) (alloy 

Ni56Zn28B16) and τ5+τ6+Ni2Zn11 (alloy Ni41Zn43B16, for microstructure see the insert 

in Fig. 7). XPD has been employed to distinguish between the solid solution of (Ni) 

and NiZn (rT), which reveal insufficiently clear contrast in the micrograph (alloy 

Ni63Zn24B13 at. %). It should be noted, that due to insufficiently fast quenching of the 

alloys (inside the protective Al2O3 crucibles sealed in quartz-walls) we were not able 
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to retain the cubic high temperature modification of β′-NiZn, which transfers on 

cooling to the low temperature form NiZn(rT). In the Ni-rich part of the diagram the 

phase τ1 exists at 800°C in a large homogeneity region (see section below) and 

dominates the phase equilibria: the three-phase field τ1+τ2+τ3 has been determined by 

X ray powder and microprobe analysis of the alloy Ni53Zn7B40. Tie lines between 

τ2+o-Ni4B3 and τ1+Ni2B, respectively, are provided by the samples Ni56Zn6B38 and 

Ni64Zn4B32 at. % and the three-phase triangle τ1+Ni2B+Ni3B is backed by the alloy 

Ni72Zn4B24 at. % (see Rietveld refinement and micrograph in Fig. 10).  

 
Figure 10. a) Rietveld refinement and b) micrograph of alloy Ni72Zn4B24 (at. %) 

annealed at 800°C. 

 

Most of the ternary compounds show at 800°C rather limited solution ranges and 

mainly in form of Ni/Zn exchange at constant B-content i.e. about 4 to 5 at. % for τ4-

Ni3ZnB2 [8] and τ5-Ni48Zn32B20, but below 3 at. % for τ2-Ni12ZnB8-x (x=0.43), τ3-

Ni21Zn2B20 [8] and τ6-Ni47Zn23B30. 

 

5.3.5. Homogeneity range of the τ1- phase 

 

Fig. 11 shows the composition dependence of the average atomic volume (unit 

cell/metal atom) for Ni-Zn binary phases as well as for the Ni-Zn side of the τ1-phase. 
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Interestingly the slope of the dependence for the τ1-phase is the same as that for the 

Ni-Zn binaries. This prompts us to conclude that the increase in lattice parameters of 

the τ1-phase is due to a simple Ni-Zn substitution.  

 
Figure 11. Compositional dependence of atomic volume for Ni-Zn binaries and 

ternary τ1 (pink-gray half-shaded symbols) on the Ni-Zn side of the homogeneity 

range. Literature data for the binary system are presented by open symbols [18]; filled 

symbols represent the data from this work. 

 

However, the lattice parameters of the τ1-phase on the boron-rich side of the 

homogeneity region are significantly higher (Fig. 12b), which thus explains by the 

substitution of Zn-atoms in the 9c sites by B-tetrahedra (for details see chapter 3.3.1). 

This observation was employed to sketch the shape of the homogeneity region for the 

τ1-phase as shown in Fig. 12a.  

Comparing the phase relations derived in this work with those of Stadelmaier et al. 

[3], we see not only a larger number of ternary compounds (labeled τ1 to τ6), but also 

significant changes in phase triangulation. Phase correspondence with those of 

Stadelmaier et al. [3] (given in brackets) can be inferred for τ1 (τ) and τ2 (ψ), but 

correlation between τ4, τ5, τ6 and ϕ,  χ is rather speculative, τ3 being out of the range 

investigated by Stadelmaier et al. [3]. 
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Figure 12. a) Partial isothermal section at 800°C around τ1 phase, b) lattice parameters 

versus Zn fraction [Zn/(Ni+Zn)]*100 at. % after EPMA). Pink-gray half shaded 

symbols and pink star are the data points of powder samples and of the single crystal 

in this work, respectively. Open symbols are the data points from literature, i.e, open 

triangles [7] and open squares [3]. 

 

5.4. Conclusion 

 

Phase equilibria in the isothermal section at 800°C have been established for the 

system Ni-Zn-B using X-ray powder diffraction and electron microprobe analyses and 

were found to be characterized by the formation of six ternary compounds (labeled τ1 

to τ6). Phase relations at 800°C are dominated by a large three-phase field 
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(βB)+Ni2Zn11+τ3, as practically all ternary compounds form at concentrations <50 at. 

%Ni. The Ni-rich part is dominated by the so-called τ-phase τ1-(Ni1-xZnx)21[Zn1-y-

z�y(B4)z]2B6, which exhibits a large homogeneity region (0.07<x<0.11, 0.07<y<0.53, 

0<z<0.3 at 800°C). Whereas B-poor compositions are isotypic with the Cr23C6 type 

(space group mFm3 ), single crystal X-ray data analysis for the composition x=0.07, 

y=0.125, z=0.30, a=1.05800(3) nm revealed partial replacement of Zn-atoms by B4-

tetrahedra (RF
2=0.014, space group mFm3 ). The crystal structures of τ2-Ni12ZnB8-x 

(x=0.43; Ni12AlB8 type), τ3-Ni21Zn2B20 (own type) and τ4-Ni3ZnB2 (own type) have 

been determined in our foregoing paper [8]. Due to bad crystals, the crystal structures 

of τ5-Ni48Zn32B20 (oI, a=1.6(2) nm, b=0.63(7) nm, c=0.27(0) nm, determined from 

TEM) and of τ6-Ni47Zn23B30 have not been elucidated yet. Most of the ternary 

compounds show at 800°C rather limited solution ranges and mainly in form of Ni/Zn 

exchange at constant B-content: about 4 to 5 at. % for τ4-Ni3ZnB2 [8] and τ5-

Ni48Zn32B20, but solubilities are below 3 at.% for τ2-Ni12ZnB8-x (x=0.43), τ3-

Ni21Zn2B20 [8] and τ6-Ni47Zn23B30.  

As a side product of the ternary investigation, precise data on atom site distribution 

and positional parameters have been provided with higher reliability factors from X-

ray single crystal refinements for Ni-borides, for which crystal structures hitherto 

have only been derived from X-ray diffraction photographs: o-Ni4B3 (Pnma, 

a=1.9665(4) nm, b=0.29852(1) nm, c=0.65750(2) nm; RF
2=0.015) and m-Ni4B3 (C2/c, 

a=0.64356(3) nm, b=0.48867(3) nm, c=0.78267(3) nm, β=103.288(3)°; RF
2=0.021). 

 
5.5.Associated Content 
Supporting Information. X-ray crystallographic file in CIF format, tables on 
interatomic distances. This material is available free of charge via the Internet at 
http://pubs.acs.org.
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Table 2. Crystal structure data for o- Ni4B3-x (x=0.19) and m-Ni4B3 (Nonius 

KappaCCD, MoKα) 

acrystal structure data are standardized using the program Structure Tidy [40]. 
banisotropic atomic displacement parameters Uij and isotropic Uiso in [102 nm2]. 
cnominal composition of the alloy from which the single crystal was isolated. 

Compound o-Ni4B3-x m-Ni4B3 

Alloy composition c (at. %) Ni50Zn15B35 Ni56Zn6B38 

Space group Pnma; No. 62 C2/c; No. 15 

Formula from refinement  Ni4B3-x (x=0.19) Ni4B3 

Structure type o-Ni4B3-x m-Ni4B3 

θ  Range [deg] 3.40 < θ < 36.50 5.29 < θ < 36.15 

Crystal size [µm] 25×30×42 20×30×45 

a, b, c [nm] 1.19665(4), 0.29852(1), 0.65750(2) 0.64356(3), 0.48867(3), 0.78267(3) 

β [deg] - 103.288(3) 

Reflections in refinement 591 Fo >4σ(Fo) of 636 493 Fo >4σ(Fo) of 561 

Mosaicity  0.57 0.52 

Number of variables 37 27 

RF
2 = Σ|F0

2-Fc
2|/ΣF0

2 0.015 0.021 

RInt  5.8 6.4 

GOF 1.075 1.008 

Extinction (Zachariasen) 0.0169(8)  0.0055(5)  

M1;  4c (x, ¼, z);  8f (x, y, z); x= 0.20283(4),  

 x= 0.04998(2), z= 0.75077(4); y= 0.43020(6), z= 0.28639(4);  

Occ. 1.00(1) Ni1 1.00(1) Ni1  

U11
b; U22; U33; 0.0050(1); 0.0050(1) 0.0055(1); 0.0066(2); 0.0059(2); 0.0047(1); 

U23; U13; U12 0; -0.0007(1); 0 0.0006(1); 0.0010(1), -0.0007(1) 

M2;  4c (x, ¼, z);  8f (x, y, z); x= 0.45551(4),  

 x= 0.12402(2), z= 0.33323(4); y= 0.25201(5), z= 0.01675(4); 

Occ. 1.00(1) Ni2  1.00(1) Ni2  

U11
b; U22; U33; 0.0050(1); 0.0062(1); 0.0054(1);  0.0051(2); 0.0049(2); 0.0082(1); 

U23; U13; U12 0; 0.0003(1); 0 0.0001(1); 0.0009(1), -0.0002(1) 

M3;  4c (x, ¼, z);  8f (x, y, z); x= 0.23303(39), 

 x= 0.30006(6), z= 0.12129(4); y= 0.08048(49), z= 0.44187(31); 

Occ. 1.00(1) Ni3  1.00(1) B1  

U11
b; U22; U33;  0.0039(1); 0.0058(1); 0.0049(1);  Uiso

b=0.0068(4) 

U13; U23= U12=0 0.; -0.0000(1); 0  

M4;  4c (x, ¼, z);  4e (0, y, ¼); y= 0.0708(7);  

 x= 0.35175(2), z= 0.50899(4);  

Occ.; Uiso
b 1.00(1) Ni4 1.00(1) B2; 0.0078(6)  

U11
b; U22; U33; U13; U23= U12=0 0.0056(1); 0.0058(1); 0.0060(1); 0.0014(1)  

B1 in 4c (x, ¼, z); Occ.; Uiso
b x= 0.0245(2), z= 0.0616(4); 0.89(1); 0.0075(6)  

B2 in 4c (x, ¼, z); Occ.; Uiso
b x=0.2420(2), z= 0.8189(4); 1.00(1) ; 0.0075(4)  

B3 in 4c (x, ¼, z); Occ.; Uiso
b x= 0.4616(2), z= 0.0226(3); 0.92(1); 0.0040(6) - 

Residual electron density; max; 
min in [electrons/nm3] x1000 

0.85; -0.97 1.161; -1.21 
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Table 3. Structural data a for τ1-(Ni1-xZnx)21[Zn1-y-z�y(B4)z]2B6 (x=0.07, y=0.125, 

z=0.30) with Cr23C6-type (space group mFm3 ; No. 225, MoKα radiation) 
Alloy composition (at %)b Ni65Zn10B25 

Ni:Zn atomic ratio, EPMA/refinement 88 : 12/ 88.2 : 11.8 [88 : 12]d 

Composition from refinement  (at %) Ni63.9Zn8.6B27.5 [Ni66.6Zn8B25.4] d 

Formula from refinement  Ni19.52Zn2.62B8.4 

θ -range; sets; frames; time/frame 3.34 < θ < 36.12, 5, 212, 180 sec 

a [nm] 1.05800(3) [1.05521(17)]d 

Crystal size (µm) 30x30x35 

Mosaicity 0.55 

Reflections in refinement 169 Fo >4σ(Fo) of 186 

Number of variables 20 

RF
2 = Σ|F0

2-Fc
2|/ΣF0

2 0.014 

RInt  0.058 

GOF 1.06 

Extinction (Zachariasen) 0.00201(7) 

Ni1 in 48h (0,y,y); Occ. y =0.16987(2) [0.16994(3)] d; 1.00(1) 

U11
c; U22=U33; U23; U13=U12=0 0.00784(2); 0.0062(1);0. 0004(1) 

Ni2+Zn1 in 32f (x,x,x) x=0.3819(9) [0.38242(3)] d 

Occ. 0.94(3)Ni2+0.06Zn1 [0.99+0.01] d 

U11=U22=U33; U23=U13=U12 0.0083(1); 0.0023(1) 

Zn2 8c (¼,¼,¼); Occ. 0.57(4) [0.68(5)] d 

U11=U22=U33; U23=U13=U12=0 0.0109(4) 

Zn3 in 4a (0,0,0); Occ. 1.00(1) [0.99(1)] d 

U11=U22=U33; U23=U13=U12=0 0.0068(2) 

B1 in 24e (x,0,0);  x = 0.2745(4)  

Occ; Uiso 1.00(1) [1.00]d 0.0098(7) 

B2 in 32f (x,x,x); x = 0.1943(9) [0.166] d; 

Occ;  0.30(1) [0.22(16)] d;  

Uiso 0.019(4) [0.025(fixed)] d 

Residual electron density; max;  

min in [electrons/nm3] x1000 

0.73; -0.70 

acrystal structure data are standardized using the program Structure Tidy [40]. 
bnominal composition of the alloy from which a single crystal was isolated. 
catomic displacement parameters Uij  and Uiso in [102  nm2]. 
dstructural parameters after [7] are presented in square brackets. 
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Table 4. Interatomic distances (nm) for τ1-(Ni1-xZnx)21[Zn1-y-z�y(B4)z]2B6. 
Bonds Distance  Bonds Distance  

Ni1 – 2B2 0.2088(1) M2 – 3B1 0.2101(2) 

Ni1 – 2B1 0.2111(2) M2 – 3B2 0.2289(20) 

Ni1 –   Ni1 0.2398(1) M2 –  Zn2 0.2417(20) 

Ni1 – 4Ni1 0.2542(1) M2 – 4M2 0.2499(2) 

Ni1 –   Zn3 0.2542(1) M2 – 6M2 0.2626(1) 

Ni1 – 4M2 0.2626(1) B1  –  4M2 0.2101(2) 

  B1  – 4Ni1 0.2111(2) 

Zn2 – 4M2 0.2417(20) B2  –  3B2 0.1668(25) 

Zn2 – 12Ni1 0.2904(1) B2  –  3Ni1 0.2088(1) 

Zn3 – 12Ni1 0.2542(1) B2  –  3M 0.2289(20) 

M2=94(3) % Ni2+6(3)%Zn1 
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Table 5. Ni-Zn-B system: Phase equilibria and lattice parameters for alloys annealed at 800°C. 
EPMA, at. % Lattice parameters (nm) Ni-Zn-B, at. % 

(Nominal) 
3- and 2-phase regions Phases 

Ni Zn a b c 
10-80-10 L+Ni2Zn11+βB L1 - 100 0.2680(8) - 0.4942(1) 
- - Ni2Zn11 17.6 82.4 0.89229(2)   
- - B - -    
25-49-26 τ3+Ni2Zn11 τ3 91.0 9.0 0.7208(1) - 1.4281(4) 
- Figure 8c Ni2Zn11 20.0 80.0 0.8907(1)   
- - β boron 13.3 86.7 -   
37-39-24 τ4+τ3+Ni2Zn11 τ4 75.1 24.9 0.951(3) 0.2892(1) 0.8434(3) 
- Figure 8d  - - - - β=101.03°  
- - τ3 91.9 8.2 0.7198(2)  1.455(9) 
- - Ni2Zn11 22.0 78.0 0.8892(3)   
49-31-20 τ4+τ5+τ6 τ4 74.7 25.3 - - - 
- Figure 8e τ5 60.6 39.4 - - - 
-  τ6 67.4 32.6  - - 
44-46-10 Ni2Zn11+τ5+ NiZn (rT)2 Ni2Zn11 28.0 72.0 0.8842(3) - - 
- Figure 8f τ5 61.0 39.0 - - - 
- - NiZn (rT)2 51.0 49.0 - - - 
56-28-16 τ1+τ5+NiZn (rT) τ1 83.4 16.6 1.05659(6) - - 
- Figure 8g τ5 63.8 36.2  - - 
- - NiZn (rT) 51.6 48.4 0.27536(4) - 0.31865(9) 
56-6-38 τ3+NiB+β Boron τ3 91.0 9.0 0.7207(2)  1.42770(7) 
 Figure 8h NiB - - 0.2936(5) 0.7396(2) 0.2967(5) 
- - β boron - -  - - 
41-43-16 Ni2Zn11+τ5+τ6 Ni2Zn11 28.0 72.0 0.884(1) - - 
 Figure-10 τ5 61.0 39.0  - - 
  τ6 67.0 33.0  - - 
72-4-24 τ1+Ni2B+Ni3B τ1 90.0 10.0 1.05088(3) - - 
- Figure 11 Ni2B - - 0.4990(2) - 0.4248(2) 
- - Ni3B - - 0.5233(2) 0.66170(7) 0.43844(9) 
53-7-40 τ1+τ2+τ5 τ1 88.7 11.3 1.045(1)   
- - τ2 92.1 7.9 1.0576(4) 1.456(1) 1.460(1) 
- - τ5 62.1 37.9 - - - 
56-6-38 τ2+o-Ni4B3 τ2 92.0 8.0 1.0581(1) 1.4565(2) 1.4603(2) 
  o-Ni4B3 100 - 1.2104(2) 0.1074(1) 0.656(1) 
64-4-32 τ1+Ni2B τ1 90.0 10.0 1.0578(9)   
- - Ni2B 100 - 0.4996(1) - 0.4251(5) 
74-4-22 τ1+Ni3B τ1 91.0 9.0 1.0508(9)   
  Ni3B 100 - 0.5226(9) 0.661(1) 0.4391(9) 
63-24-13 (Ni)+τ1+NiZn (rT)  (Ni) 67.9 32.1 0.3605(2) - - 
- - τ1 87.3 12.8 1.0516(2) - - 
- - NiZn (rT)  57.2 42.8 0.2727(3) - 0.3205(4) 
52-3-45 τ2+τ3+o-Ni4B3 τ2 91 9 - - - 
- - τ3 89 11 - - - 
- - o-Ni4B3 100 - - - - 
58-5-37 m-Ni4B3+τ2+Ni2B  m-Ni4B3 100 -    
- - τ2 90.4 9.6 1.0538(8) 1.4522(2) 1.4543(2) 
- - Ni2B 100 - 0.4995(4) - 0.4249(1) 

1Lattice parameter of Zn formed during quenching. 
2 low temperature modification NiZn(rT) (due to insufficiently fast quenching of NiZn (hT)). 
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Appendix:  
Supporting Information. X-ray crystallographic file in CIF format, tables on 
interatomic distances. This material is available free of charge via the Internet at 
http://pubs.acs.org. 
 

Table I. Comparison of interatomic distances for o-Ni4B3-x (x=0.19) in this work and 

literature [26] 
Bonds Distance range, nm 

[1967Run] 

Distance range, nm 

[This work] 

Ni1-7B 0.2056(3)-0.236(3) 0.2086(2)-0.2341(2) 

    -10Ni 0.2482(4)-0.2981(-) - 

     -6Ni - 0.2485(2)- 0.26208(3) 

Ni2-6B 0.207(2)-0.220(2) 0.2047(2)-0.2197(2) 

    -11Ni 0.2515(5)-0.2981(-) - 

      -7Ni - 0.2526(4)-0.26208(3) 

Ni3-4B 0.205(2)-0.208(3) 0.2042(1)-0.2106(2) 

      -10Ni 0.2458(4)-0.2981(-) - 

      -8Ni - 0.24644(3)- 0.2623(1) 

Ni4-6B 0.208(2)-0.242(3) 0.2119(2)-0.2247(2) 

    -11Ni 0.2458(4)-0.2981(-) - 

      -7Ni - 0.2464(3)-0.2623(4) 

B1 -5B 0.180(3)-0.301(4) - 

      -2B - 0.1797(2) 

      -7Ni 0.206(2)-0.221(2) 0.2066(3)-0.2147(3) 

B2  -4B 0.2981(-)-0.301(4) - 

      -9Ni 0.205(2)-0.242(3) 0.2042(2)-0.2424(2) 

B3 -6B 0.173(3)- 0.2981(-) - 

      -2B - 0.1778(2) 

      -7Ni 0.205(3)-0.220(2) 0.2039(2)-0.2197(2) 
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Table II. Comparison of interatomic distances for m-Ni4B3 in this work and literature 

[26] 

Bonds Distance range, nm 

[1967Run] 

Distance range, nm 

[This work] 

Ni1-5B 0.204(1)-0.219(2) 0.2059(2)-0.2168(2) 

      -10Ni 0.2515(3)-0.3074(3) - 

      -7Ni - 0.2520(4)- 0.2638(4) 

    -  Ni* - 0.2813(4) 

    -   Ni** - 0.28099(4) 

Ni2-6B 0.207(2)-0.234(1) 0.2081(3)-0.2366(2) 

    -10Ni 0.2514(5)-0.3074(3) -- 

    -7Ni - 0.2518(4)-0.2638(4) 

    -  Ni* - 0.2813(4) 

    -   Ni** - 0.28099(4) 

B1 -3B 0.185(1)-0.316(2) - 

      -2B - 0.1862(2)-0.1879(3) 

      -7Ni 0.2037-0.217(1) 0.2072(2)-0.2163(3) 

B2 -3B 0.185(1)-0.316(2) - 

      -2B - 0.1862(2) 

      -8Ni 0.2102(9)-0.235(2) 0.2112(1)-0.2366(2) 
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    6 
 

Crystal Structure of Novel Ni-Zn Borides;  

First Observation of a Boron–Metal Nested Cage Unit: B20Ni6 

 

6.1. Introduction 
 

The system Ce-Ni-Zn-B is part of the multinary Mg-based alloy system Mg-Zn-

Mn(Ni)-RE used as high strength lightweight alloys for automotive applications 

(RE stands for a rare earth element)1,2. Although, little is yet known on the 

influence of nickel-boron additions in these multinary alloys, phase diagram 

information in terms of an isothermal section at 800°C and a liquidus projection 

has been provided for the Ni-rich corner of the Ni-Zn-B sub-system by 

Stadelmaier3. The findings of Stadelmaier3-5 were used in a review of the Ni-Zn-B 

system by Bhan et al6. From the four ternary compounds identified3, 4, only the 

crystal structure of the so-called tau-phase with Cr23C6-type (Ni19.5Zn3.5B6) has 

been defined from X-ray powder and single crystal rotation photographs5. Metal 

borides hitherto are known to form a large variety of compounds, which are 

characterized by a large diversity of boron to boron bonds, reaching from isolated 

boron atoms in metal-rich compositions to boron clusters in “high”-boron 

compounds. Based on the classification of borides with respect to boron-boron 

aggregation as a function of the boron to metal ratio B/M, boron clusters and 

frameworks have commonly been observed only at ratios M/B>4 and comprise a 

quite large variety of regular and/or distorted boron clusters, cages and frameworks 

such as (i) B5-pentagonal pyramids in MgB4
7, (ii) B4-square units connected by 

weak B-B bonds to a channel like framework in CrB4
8 and MnB4

9  hosting the 

metal atoms, (iii) B2-units connecting B6-octahedra in Sm2B5
10 (Gd2B5

11-type) 

borides, (iv) corner-connected boron octahedra B6 in hexaborides forming a cage 

accepting large metal atoms12, (v) corner-linked B12 icosahedra through carbon 

atoms in Mg2B24C13, (vi) interconnected B12 cubooctahedra forming a B24 cage 

centered by metal atoms in dodecaborides14,15, (vii) eight super-icosahedra 

[B12(B12)12] per unit cell of the hectoborides MB66
16,17 forming a framework that 

accepts metal atoms as well as additional borons. Icosahedra bonded via 
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intericosahedral boron bonds create a series of structures such as MgB7, Mg∼5B44
18, 

MgAlB14
19 (viii). Four icosahedra of boron atoms are linked by B-B bonds and 

carbon bridges in AlB24C4
20 (ix). A linear C-B-C chain (B at the centre of 

symmetry) links B12 icosahedra in Al2.1B51C8
21, 22.  The present work intends to 

elucidate the hitherto unknown crystal structures of the ternary Ni-Zn-B 

compounds. 

 

6.2. Experimental 

 

Samples in a total amount of ca. 1 g each were prepared from Ni foil (Alfa Aesar, 

purity >99.8 mass%), zinc granules (Alfa Aesar, purity >99.9 mass%) and boron 

pieces (ChemPur, Karlsruhe, purity 98 mass%). Zinc drops were purified in an 

evacuated quartz tube by heating them 50°C below the boiling temperature of Zn 

(907°C). Samples were prepared from intimate blends of powders of arc melted NiBx 

master alloys and fine Zn-filings in proper compositional ratios. The blends were 

compacted at room temperature in a steel die without lubricants at a pressure of 62 

MPa, and were subsequently sealed in quartz tubes under vacuum. Samples were 

heated to 1150°C, kept at this temperature for 10 minutes, cooled to 800°C at the rate 

of 1°C/min, annealed at 800°C for 7 days and subsequently quenched in water. 

X-ray powder diffraction data were collected from each alloy in as cast and annealed 

state employing a Guinier-Huber image plate system with monochromatic CuKα1 

radiation (8º<2θ<100º). Quantitative Rietveld refinements of the X-ray powder 

diffraction data were performed with the FULLPROF program23. 

Single crystals were mechanically isolated from crushed alloys. Inspections on an AXS-

GADDS texture goniometer assured high crystal quality, unit cell dimensions and Laue 

symmetry of the specimens prior to the X-ray intensity data collections on a four-circle 

Nonius Kappa diffractometer equipped with a CCD area detector employing graphite 

monochromated MoKα radiation (λ=0.071069 nm). Orientation matrices and unit cell 

parameters were derived using the program DENZO24. No absorption corrections were 

performed because of the rather regular crystal shapes and small dimensions of the 

investigated specimens. The structures were solved by direct methods and were refined 

with the SHELXL-97 program25, 26 within the Windows version WINGX27. 
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The as cast and annealed samples were polished using standard procedures and 

microstructures and compositions were examined by light optical microscopy (LOM) 

and scanning electron microscopy (SEM) via Electron Probe Micro-Analyses (EPMA) 

on a Zeiss Supra 55 VP equipped with an EDX system operated at 20 kV. For Ni : Zn 

ratios the binary compound Ni2Zn11 at the Zn-rich boundary (15 at.% Ni 28) was used as 

EPMA standard. The differences between measured and nominal compositions were 

found to be less than ±1 at. %. 

 

6.3.  Results and Discussion 

6.3.1.  Structural Chemistry 

6.3.1.1. Crystal structure of Ni21Zn2B24 – a novel structure type with a metal nested 

cage B20Ni6 

 

A single crystal suitable for X-ray structure determination was selected from the alloy 

Ni30Zn40B30 (in at %) annealed at 800°C for 7 days. The observed extinctions are 

consistent with the body centred tetragonal space groups I4, 4I , I4/m, I422, I4mm, 

mI 24  and I4/mmm. Structure solution was possible in space group mI 24 , however, 

search for missing symmetry prompted the space group I4/mmm. Structure refinement 

in I4/mmm resulted in seven fully occupied metal atom positions and three boron 

positions yielding a structure formula Ni21Zn2B24. With anisotropic atomic 

displacement parameters (ADPs) for the metal atoms and isotropic temperature factors 

for the boron sites the final refinement converged to RF
2=0.017 and residual electron 

densities smaller than ±1.62e-/Å3. Structure data are summarized in table 1 and the 

crystal structure is shown in figures 1 and 2.  

The ratio Ni : Zn obtained from the  refinement is 91.22 : 8.77 in good agreement with 

the ratio 91.0 : 9.0 derived from EPMA on the bulk sample. Rietveld refinement of the 

X-ray powder spectrum confirmed the structure model. The crystal structure of 

Ni21Zn2B24 - shown in figure 1a in three-dimensional view along [001] - is 

characterized by B20-units (Figure 1a, c, d) made of two eight-membered corrugated 

boron rings consisting of B1 and B2 atoms. Two such rings are linked at the four B2 

positions via a B3-atom forming a clamp B2-B3-B2 and thereby building a cage 

around an empty Ni octahedron [Ni6] (figure 1d), which is nested within the B20 unit. 

The cage as well as the Ni-octahedron is centred at site 2b (½,½,0). These cages 
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appear to have eight-membered boron rings on all six sides like the faces of a cube. 

The cages are stacked along [100] directly on top of each other. The boron-boron 

distances within the ring as well as the B2-B3 distances are 0.177 nm close to the sum 

of the covalent radii of two boron atoms (RB=0.088 nm). The distances between the 

centre of the cage and the surrounding Ni atoms are d2b-Ni2 =0.187 nm and d2b-Ni6 

=0.196 nm and are too short for metal-metal bonds. 

 

 
Figure 1. Crystal structure of Ni21Zn2B24; a) perspective view along [100] with 

anisotropic displacement parameters (for metal atoms) from single crystal refinement; 

b) infinite Ni layer formed of -Ni3-Ni4-Ni3-atoms parallel (001); c) Ni21Zn2B24 

structure as arrangement of i) B20-units nesting empty octahedra [Ni6], and ii) 

Ni5[Ni8Zn2B4] polyhedra (for better visualization only the slab within ¼<z<¾ is 

shown); d) enlarged view of B20-units in combination with empty octahedra [Ni6]; e) 

Ni4 squares around B20 unit. 
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It may be noted here, that stabilities of hyper-coordinated d-block metal atoms centred 

in planar boron rings MBn (n = 7, 8, 9, and 10) have recently been explored by density-

function theory (DFT) computations
29
. Whereas the B20-units are flanked by squares of 

Ni1 atoms parallel to (100) and (010) (see figure 1b), a square net formed by Ni3 and 

Ni4 atoms at a distance of 0.255 nm is attached to B1 (Ni4) and to B1 and B2 (Ni3). 

The unit cell contains 2 blocks of [Ni6] nested B20-units, which are linked via B2-B3 

bonds to a hexa-capped square prism around Ni5. These blocks are connected by shared 

infinite planar nets formed of inter-crossed-Ni4-Ni3-Ni4-chains (figure 1b). Along the 

z-direction, the structure can be viewed as composed of Ni-atom chimneys, which 

accommodate the columns formed by alternating [Ni6B20] and Ni5[Ni8Zn2B4] units 

(figure 1c).  

 
Figure 2. Coordination polyhedra of atoms in Ni21Zn2B24. 

 

The atomic environment for every atom site is depicted in figure 2. Boron atoms are in 

tricapped trigonal prismatic coordination (CN=9) in which we encounter seven metal 

atoms (B1 and B3) or six nearest metal neighbours (B2). Due to the smaller affinity of 

Zn to B with respect to Ni-B, the coordination figures around the boron atoms include 

only Ni atoms. The range of metal-boron distances from 0.199 to 0.228 is typical for 

nickel borides
30
. Metal atoms have coordination numbers ranging from 10 to 16, which 

in some cases form irregularly shaped coordination figures. For instance the 

coordination polyhedron around the Ni2-atom is a slightly distorted Archimedian  
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antiprism of metal atoms with a zigzag chain of eight boron atoms around its waist. 

Similarly Zn is at the centre of a bi-capped Archimedian antiprism of metal atoms. Ni3 

resides inside a hexa-capped square prism revealing distorted rhombic and triangular 

faces. The atomic environment of Ni4 is a distorted cuboctahedron. Ni5 is at the centre 

of a square prism of eight Ni-atoms, with the six faces capped by four B and two Zn 

atoms. Ni6 atoms reside in a basket formed by a square Ni atom base and a zigzag ring 

of eight boron atoms capped by a Zn atom. It should be emphasized, that the B20-units 

are a unique boron aggregation that has never been encountered before in metal-boron 

chemistry31. 

In view of borides classification, the crystal structure of Ni21Zn2B24, although its boron 

/ metal ratio it only slightly higher than 1, is a new and first example of the 

combination of a boron cage with a nested empty metal octahedron forming a B20Ni6 

unit linking the electron deficient boron atoms in the cage to the metal framework of 

the crystal structure. It is somewhat surprising that the nested metal octahedron is 

formed by Ni-atoms, which themselves need to fill their d-shell. In order to fully 

elucidate this particularly interesting bonding situation, a current investigation focuses 

on the physico-chemical properties of Ni21Zn2B24 in combination with a DFT 

calculation of the electronic structure. 

 

6.3.1.2. Crystal structure of Ni12ZnB8-x (x=0.43) with Ni12AlB8 structure type 

 

A single crystal was selected from a crushed as cast sample Ni58.34Zn4.86B36.79 (in at 

%). Systematic extinctions for a C-centered orthorhombic unit cell (a=1.05270(2) nm, 

b=1.45236(3) nm and c=1.45537(3) nm) resulted in two possible space group types, 

C2cb (standard setting Aba2) and Cmca. Structure solution with direct methods was 

successful in centrosymmetric Cmca, the space group of highest symmetry. 

Refinement - employing anisotropic atomic displacement parameters (ADPs) for the 

metal atoms and isotropic temperature factors for the boron atoms - converged to 

RF
2=0.028 with residual electron densities less than ±2.0 e-/Å3. With Zn and Ni atoms 

in thirteen independent and fully occupied positions and nine sites for boron atoms of 

which the sites for B8 and B9 were occupied at 70% and 65%, respectively, the 

refinement yielded the composition Ni12ZnB8-x (x=0.43). The ratio Ni : Zn = 92.3 : 7.7 

is in accordance with the value 91.6 : 8.4 found by EPMA. Unit cell parameters, 

crystal symmetry and atom distribution reveal isotypism with the structure type of 
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Ni12AlB8
32. Crystallographic data including occupancy, thermal parameters for 

individual atomic positions are summarized in table 2. Figure 3 portrays the crystal 

structure of Ni12ZnB8-x in three-dimensional view along [100]. 

 

 
Figure 3. Unit cell of Ni12ZnB8-x (x=0.43), a) showing two types of isolated five-

membered boron zigzag chains, b) B6-B3-B8-B3-B6 chain with B-B equidistance 

0.180 nm, c) B6-B4-B9-B1-B2 chain with different B-B distances. 

 

As described earlier32the structure type of Ni12AlB8 is characterized by a stacking of 

two layer units alternating along [100]. Both layers are characterized by five-

membered boron zig-zag chains running along [011] and [01-1]. Whereas the boron 

zig-zag orientation is in the bc plane for the layer at x=0, the zig-zag orientation for the 

layer x=0.5 changes to the plane a - b 2 . Besides the B-B chains, isolated boron 

atoms exist in the layer at x=0.5.  

B-B distances in the chain (B6-B3-B8-B3-B6) parallel to the bc plane are uniformly 

0.180 nm, but B-B distances in the chain (B5-B4-B9-B1-B2) parallel to the a - b 2  

plane range from 0.178 to 0.181 nm, all close to the sum of covalent boron radii. The 

site for B9 is occupied by 65% only and is further bonded to 6 Ni + 1 Zn + 2 B. 

Whereas Ni1 centres a cube of 8 Ni atoms capped by 4 boron atoms, Ni2 has a waist of 

boron atoms B3-B8-B3 and B1-B9-B4 (both from the middle part of two different 5-
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membered zigzag chains); above and below are squares of metal atoms one of which is 

capped by a B7-atom (isolated boron atom in the unit cell). Ni3, Ni6 and Ni11 are at 

the centres of a rather distorted cube with Ni atoms at 8 corners and all 6 faces are 

capped (by 2 Zn + 4 B atoms). Polyhedra of Ni4, Ni5, Ni7 Ni8, Ni9 and Ni10 form 

triangular and square faces with 5 boron and 10 metal atoms. Ni11 has 10 metal and 4 

B atoms in its polyhedron. Zn1 and Zn2 reside in cuboctahedra with additional boron 

atoms. For Zn1, one square is capped by one B atom while for Zn2, two boron atoms 

cap squares (see figure 4a).  

 
 
Figure 4a. Coordination polyhedra around Ni and Zn atoms in Ni12ZnB8-x (x=0.43). 

 

For boron coordination see figure. 4b. Whilst B1, B3, B4, B8 and B9 form tricapped 

trigonal prisms bonding to two boron atoms at a total coordination number 9, atoms 

B2, B5, B6 and B7 are inside square antiprisms, where one square face is capped by a 

boron atom for B2, B5, B6 but by a metal atom in case of B7. Isolated boron atoms 
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(B7) in tetrakaidecahedral metal coordination in combination with boron chain 

fragments are consistent with the low boron to metal ratio in the structure (B : M = 8 : 

13) as a typical feature seen in low-boron structure types33. 

 
Figure 4b. Coordination polyhedra around B atoms in Ni12ZnB8-x (x=0.43). 
 

6.3.1.3.Crystal structure of Ni3ZnB2 – a novel structure type  

 

Single crystals of Ni3ZnB2 were grown from an alloy of composition Ni23Zn67B10 (in at 

%) melted at 1150°C, slowly cooled at 0.5°C/min to 970°C and water quenched. The 

excess of Zn was dissolved in dilute HCl. The observed extinctions are consistent with 

the C-centred monoclinic space groups C2/m, C2 and Cm. Structure refinement in 

C2/m resulted in four fully occupied metal atom positions and two boron positions 

yielding a new and unique structure type Ni3ZnB2. With anisotropic atomic 
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displacement parameters (ADPs) for the metal atoms and isotropic temperature factors 

for the boron atoms the final refinement converged to RF
2=0.020 and residual electron 

densities smaller than ±1.6 e-/Å3. X-rays cannot distinguish well between Ni and Zn 

because both differ by only two electrons; therefore positions of Zn and Ni atoms in 

the unit cell have been defined with respect to interatomic distances. Structure data are 

summarized in table 3. The ratio Ni : Zn obtained from the refinement is 75 : 25 in 

good agreement with the experimental ratio 75 : 25 derived from EPMA on the bulk 

sample.  

 
Figure 5. Crystal structure of Ni3ZnB2. a) AlB2-type fragments and four-membered 
zigzag chains of boron atoms with octahedra around (0,0, ½), and (¾,¾, ½); b) 
slightly puckered 3342 layers of metal-atoms, c) Dy3Ni2 structure along [010] 
projection with outlined AlB2-type fragments and four-membered zigzag chains of 
Ni atoms, d) CrB structure along [100] with AlB2-type fragments containing 
infinite zigzag chains of B atoms. 
 

Figure 5a shows the unit cell drawn along the b axis. Whereas Zn atoms form a 

continuous and slightly puckered 3342 grid of triangles and rectangles (see figure 5b), 

coupled triangular prisms around boron atoms resemble the AlB2 structural fragments. 

Four face-connected triangular prisms form a B4-zigzag chain unit (figure 5a). The B-

B distances (dB1-B2 = 0.1833 nm and dB2-B2 = 0.1855 nm) are consistent with the sum of 

B-B atomic radii. The same kind of B4-units have been observed in the structure types 

of Mo2IrB2
34 and αCr2IrB2

35. The coordination figures of all crystallographic sites are 
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summarized in figure 6. The polyhedron for the Zn-site has one boron and 12 metal 

atoms in a distorted penta-capped square prism remotely reminding the shape of a 

rhombododecahedron with one missing atom. The Ni1 atom has three boron and 11 

metal atoms forming a distorted cube-octahedron. Ni2 has four boron and 11 metal 

atom neighbors resulting in a polyhedron with triangular and square faces. The atom 

environment of Ni3 accounts 7 boron and 10 Ni atoms. B1 and B2 atoms center a 

tricapped prism (CN=9, see figure 6).  

 

 
Figure 6. Coordination polyhedra for the Ni3ZnB2 structure. 

 

The Ni3ZnB2 structure is related to Dy3Ni2
36where infinite columns of face-sharing 

mono-caped triangular prisms Ni[Dy6] are running along the b-direction. Both 

structures, Dy3Ni2 and Ni3ZnB2 originate from the CrB-type structure which in turn is 

an intergrowth structure of AlB2 and W fragments consisting of infinite planar layers 

of face-connected triangular prisms alternating with the columns of face-linked empty 

tetrahedra and empty tetragonal pyramids. In case of Ni3ZnB2, due to insertion of the 

puckered 3342 layers of metal atoms, their rectangular prism faces are coupled by 

empty octahedra. The shortest distances between octahedral centers and metal ligands 
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are only 0.13 - 0.14 nm and therefore these void are too small to accommodate any 

interstitial atom. 

6.4. Conclusion  

 
The crystal structures of three ternary Ni-Zn borides have been elucidated by means of 

X-ray single crystal and powder diffraction techniques assisted by electron microprobe 

analyses defining the Ni/Zn ratio. B-B bonds manifest unique structure formations in 

the Ni-Zn borides. The structure of Ni21Zn2B24 is the first example for characteristic 

isolated cages of B20-units composed of two octogonal boron rings that are fused at 

four positions by boron atoms. All boron atoms are at a distance of 0.177 nm from one 

another. As a new feature, a Ni6-octahedron is nested within the B20-cage. The crystal 

structure of Ni12ZnB8-x (x=0.43) is isotypic with Ni12AlB8 and reveals finite zigzag 

chains of five boron atoms. Ni3ZnB2 adopts a unique structure type with fragments of 

B4-zig-zag chains with B-B bond lengths of 0.180 nm. The compound Ni3ZnB2 

crystallizes in a unique structure type with characteristic B4 zig-zag chain fragments at 

a B-B bond distance of 0.180 nm. 

6.5. Associated Content 

Supporting Information. X-ray crystallographic file in CIF format, tables on 

interatomic distances. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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Table1. Structural data for Ni21Zn2B24  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acrystal structure data are standardized using the program Structure Tidy37. 
bnominal composition of the alloy from which a single crystal was isolated. 
canisotropic atomic displacement parameters Uij in [102  nm2]. 
disotropic atomic displacement parameters Uiso in [102  nm2]. 

Alloy composition (at%)b Ni30Zn40B30 
Ni:Zn atomic ratio, 
EPMA/refinement 

91:9 / 91.2: 8.8 

Formula from refinement  Ni21Zn2B24 
Structure type Ni21Zn2B24 
Space group I4/mmm; No. 139a 
θ -range; sets; frames; time/frame 2.85 < θ < 36.27; 7; 403; 200 sec 
a [nm] 0.72103(1) 
c [nm] 1.42842(5) 
Volume (nm) 74.261(3) 
Z 2 
Data collection/ λ (nm) MoKα radiation/ 7.1073  
Crystal size [µm] 20×30×45 
Mosaicity 0.59 
Reflections in refinement 493 Fo >4σ(Fo) of 561 
Number of variables 34 
RF

2 = Σ|F0
2-Fc

2|/ΣF0
2 0.017 

RInt  0.064 
GOF 0.685 
Extinction (Zachariasen) 0.00070(5) 
Ni1 in 16n (0, y, z); Occ. y=0.30020(5), z=0.10062(3); 1.00(1) 
U11

c;U22; U33; U23; U13=U12= 0 0.0042(2); 0.0059(2); 0.0063(2); -0.0010(1) 
Ni2 in 8j (x, ½, 0); Occ. x=0.24032(8); 1.00(1) 
U11; U22; U33; U23=U13= U12=0 0.0068(2); 0.0042(2); 0.0049(2) 
Ni3 in 8f (¼, ¼, ¼); Occ. 1.00(1) 
U11=U22; U33; U23=U13; U12 0.0113(2); 0.0053(2); -0.0003(1); 0.0051(2) 
Ni4 in 4d (0,½,¼); Occ. 1.00(1) 
U11=U22; U33; U23=U13= U12=0 0.0048(2); 0.0043(3) 
Ni5 in 2a (0, 0, 0); Occ. 1.00(1) 
U11=U22; U33; U23=U13= U12=0 0.0034(2); 0.007(4) 
Ni6 in 4e (0,0,z);Occ. z=0.36216(5); 1.00(1) 
U11=U22; U33; U23=U13= U12=0 0.0043(2); 0.0069(3) 
Zn1 in 4e (0, 0, z); Occ. z=0.19029(5); 1.00(1) 
U11=U22; U33; U23=U13= U12=0 0.0090(2); 0.0073(3) 
B1 in 16n (0, y, z); Occ.; Uiso

d y=0.2984(4); z=0.3453(2) 1.00(1); 0.0061(5) 
B2 in 16m (x, x, z); Occ.; Uiso x=0.2929(3), z=0.1059(2) 1.00(1); 0.0052(5) 
B3 in 16l (x, x, 0); Occ.; Uiso x=0.2025(4); 1.00(1); 0.0052(6) 
Residual electron density; max; 
min in [electrons/nm3] x1000 

1.62; -1.02 
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Table 2. Structural data for Ni12ZnB8-x (x=0.43). 
Alloy composition (at%)b Ni58.34Zn4.86B36.79 
Ni:Zn atomic ratio, 
EPMA/refinement 

91.6: 8.4/ 92.3: 7.7 

Formula from refinement  Ni12ZnB8-x (x=0.43) 
Structure type  Ni12AlB8 
Space group  Cmca; No. 64 a 
θ -range; sets; frames; 
time/frame 

2.77 < θ < 34.99; 7; 516; 200 sec/frame 

a; b; c [nm] 1.05270(2); 1.45236(3); 1.45537(3) 
Volume (nm) 222.511(8) 
Z 1 
Data collection/ λ (nm) MoKα radiation/ 7.1073  
Crystal size [µm] 25×30×40 
Mosaicity 0.48 
Reflections in refinement 1823 Fo >4σ(Fo) of 2554 
Number of variables 129 
RF

2 = Σ|F0
2-Fc

2|/ΣF0
2 0.028 

RInt 0.060 
GOF 1.037 
Extinction (Zachariasen) 0.00017(1) 
Ni1 in 8f (0, y, z); Occ. y=0.42251(4), z=0.08096(4); 1.00(1) 
U11; U22; U33; U23; U13=U12=0 0.0083(3); 0.0102(3); 0.0092(3); -0.0022(2) 
Ni2 in 16g (x, y, z); Occ.; x=0.37254(5), y=0.06824(3), z=0.06440(3); 1.00(1) 
U11

c; U22; U33; U23; U13; U12 0.0112(2); 0.0096(2); 0.0104(2); 0.0008(2); 0.0004(2); 
0.0005(1) 

Ni3 in 8f (0, y, z); Occ. y=0.13668(4), z=0.12413(4); 1.00(1) 
U11; U22; U33; U23; U13=U12=0 0.0092(3); 0.0081(3); 0.0074(3); 0.0007(2)  
Ni4 in 16g (x, y, z); Occ.; x=0.13373(4), y=0.42087(3), z=0.22086(3); 1.00(1) 
U11; U22; U33; U23; U13; U12 0.0087(2); 0.0099(2); 0.0075(2); -0.0006(2); -0.0003(2); 

0.0014(2) 
Ni5 in 16g (x, y, z); Occ.; x=0.16955(4), y=0.00959(3), z=0.13227(3); 1.00(1) 
U11; U22; U33; U23; U13; U12 0.0096(2); 0.0080(2); 0.0088(2); 0.0008(2); 0.0014(2); 

0.0003(2) 
Ni6 in 8f (0, y, z); Occ.; y=0.38296(4), z=0.36934(4); 1.00(1) 
U11; U22=U33; U23; U13=U12=0 0.0089(3); 0.0078(3); -0.0002(2)  
Ni7 in 16g (x, y, z); Occ.; x=0.16960(4), y=0.13245(3), z=0.00178(3); 1.00(1) 
U11=U22; U33; U23; U13; U12 0.0096(2); 0.0088(2); 0.0017(2); 0.0005(2); 0.0015(2) 
Ni8 in 16g (x, y, z); Occ.; x=0.13588(4), y=0.28315(3), z=0.08587(3); 1.00(1) 
U11; U22; U33; U23; U13; U12 0.0089(2); 0.0079(2); 0.0106(2); -0.00003(15); -0.0011(2); 

-0.0002(2) 
Ni9 in 16g (x, y, z); Occ. x=0.36810(4), y=0.23615(3), z=0.10344(3); 1.00(1) 
U11; U22; U33; U23; U13; U12 0.0108(2); 0.0073(2); 0.0088(2); 0.0005(2); 0.0019(2); 

0.0008(2) 
Ni10 in 16g (x, y, z); Occ. x=0.13440(4), y=0.11128(3), z=0.26854(3); 1.00(1) 
U11; U22; U33; U23; U13; U12 0.0120(2); 0.0093(2); 0.0081(2); -0.0004(2); 0.0005(2); -

0.0016(2) 
Ni11 in 8e (¼, y, ¼); Occ. y=0.26391(4); 1.00(1) 
U11; U22; U33; U13; U23=U12=0 0.0090(3); 0.0075(3); 0.0078(3); 0.00058(2) 
Zn1 in 8f (0, y, z); Occ. y=0.26794(4), z=0.23828(4); 1.00(1) 
U11; U22; U33; U23; U13=U12=0 0.0098(3); 0.0111(3); 0.0117(3); -0.0025(2) 
Zn2 in 4a (0, 0, 0); Occ. 1.00(1) 
U11; U22= U33; U23; U13=U12=0 0.0097(4); 0.0096(4); 0.0011(3) 
B1 in 8f (0, y, z); Occ.; Uiso

d y=0.0249(4), z=0.3280(4); 1.00(1); 0.012(1) 
B2 in 8f (0, y, z); Occ.; Uiso y=0.0113(4), z=0.2053(4); 1.00(1); 0.0082(10) 
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B3 in 16g (x, y, z); Occ.; Uiso x=0.1906(4), y=0.4256(3), z=0.0792(3); 1.00(1); 0.0093(7) 
B4 in 8f (0, y, z); Occ.; Uiso y=0.1727(4), z=0.4824(4); 1.00(1); 0.011(1) 
B5 in 8f (0, y, z); Occ.; Uiso y=0.2958(4), z=0.4969(4); 1.00(1); 0.010(1) 
B6 in 16g (x, y, z); Occ.; Uiso x=0.2987(4), y=0.3624(3), z=0.1514(3); 1.00(1); 0.0092(7) 
B7 in 16g (x, y, z); Occ.; Uiso x=0.2115(4), y=0.1546(3), z=0.1426(3); 1.00(1); 0.0121(8) 
B8 in 8d (x, ½, 0); Occ.; Uiso x=0.2722(7); 0.70(2); 0.007(2) 
B9 in 8f (0, y, z); Occ.; Uiso y =0.1428(6), z=0.3615(5); 0.65(2); 0.008(2) 
Residual electron density; max;  
min in [electrons/nm3] x1000 

2.01; -1.49 

acrystal structure data are standardized using the program Structure Tidy37. 
bnominal composition of the alloy from which a single crystal was isolated. 
canisotropic atomic displacement parameters Uij in [102  nm2] 
disotropic atomic displacement parameters Uiso in [102  nm2].
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Table 3. Crystal structure data for Ni3ZnB2  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acrystal structure data are standardized using the program Structure Tidy37. 
bnominal composition of the alloy from which a single crystal was isolated. 
canisotropic atomic displacement parameters Uij in [102  nm2]. 
disotropic atomic displacement parameters Uiso in [102  nm2]. 

Alloy composition (at%)b Ni23Zn67B10 
Ni:Zn atomic ratio, EPMA/refinement 75:25 / 75:25 
Formula from refinement  Ni50Zn16.66B33.34 
Structure type Ni3ZnB2 
Space group  C2/m; No. 12 a 
θ  -Range [°]; sets; frames; time/frame 2.46 < θ < 35.60; 6, 335, 335 sec 
a [nm] 0.95101(4) 
b [nm] 0.2892(4) 
c [nm] 0.84366(3) 
β [°] 101.097(3) 
Volume (nm) 22.77(3) 
Z 4 
Data collection/ λ (nm) MoKα radiation/ 7.1073  
Crystal size [µm] 25x35x40 
Mosaicity 0.48 
Reflections in refinement 527 Fo >4σ(Fo) of 593 
Number of variables 34 
RF

2 = Σ|F0
2-Fc

2|/ΣF0
2 0.020 

RInt  0.058 
GOF 0.692 
Extinction (Zachariasen) 0.0129(7) 
Ni1 in 4i (x, 0, z); Occ. x =0.21879(5), z=0.25127(6); 1.00(1) 
U11; U22; U33; U13; U23=U12=0 0.0041(2); 0.0058(2); 0.0041(2); 0.0008(1) 
Ni2 in 4i (x, 0, z); Occ. x =0.49680(5), z=0.28968(6); 1.00(1) 
U11; U22; U33; U13; U23=U12=0 0.0049(2); 0.0053(2); 0.0051(2); 0.0013(1) 
Ni3 in 4i (x, 0, z); Occ. x =0.63894(5), z=0.00305(6); 1.00(1) 
U11; U22; U33; U13; U23=U12=0 0.0050(2); 0.0052(2); 0.0049(2); 0.0008(1) 
Zn1 in 4i (x, 0, z); Occ. x =0.13845(5), z=0.52534(5); 1.00(1) 
U11; U22; U33; U13; U23=U12=0 0.0068(2); 0.0080(2); 0.0045(2); 0.0013(1) 
B1 in 4i (x, 0, z); Occ.; Uiso

d x =0.1550(5), z=0.8151(5); 1.00(1); 0.0062(7) 
B2 in 4i (x, 0, z); Occ.; Uiso x =0.0145(5), z=0.1119(5); 1.00(1); 0.0069(7) 
Residual electron density; max; min in 
[electrons/nm3] x1000 

1.59; -1.33 
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     7 

 

The crystal structure of Ni-Zn co-doped  

β boron Ni0.19Zn1.24B34.22 

 

7.1.Introduction 

 

Elemental boron is well known to form a three-dimensional framework of covalently 

bonded boron clusters in the structure providing a series of voids which readily 

accommodate metal atoms [1]. Due to the strong covalent bonds, the so-called β-

rhombohedral-boron high temperature modification (Tm(ßB) = 2072°C [2]) and its 

solid solutions with transition metals exhibit high (Vickers) hardness around 40 GPa 

as well as high corrosion and acid resistance [3]. Selective occupation of transition 

metal atoms such as V, Cr, Co, Fe in various voids of the ßB-framework served as a 

tool to increase the conductivity and to render p-type ßB into n-type semiconducting 

behaviour [4]. A series of reports deal with (i) the crystal structure of ßB [5, 6, 7 8, 9, 

10, 11], (ii) the electron counting rules [12,13], (iii) geometrical frustrations [14] and 

(iv) the charge self-compensation phenomenon of several solid solutions of metal 

atoms in β-rhombohedral boron [14]. One of the most detailed investigations of the 

crystal structure of pure β-rhombohedral boron is due to Slack et al. [9], who also 

coined the ‘displacive’ effect of doping in β-B by various metals [10]. A systematic 

catalogue with respect to size and coordination of voids in the boron framework, 

labelled as A1, D, E, S1, etc., is due to Lundström and co-workers [15, 16] and was 

later adopted by Slack et al. [9, 10]. Fig. 1 shows the arrangements of boron atoms 

around the void sites A1, D, Dd and E. Dd was called “disordered void” as its atomic 

coordination varies with the type of dopant in ßB.  
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Figure 1. E, A1, D, and Dd holes in β boron structure. E-void; Zn1 atoms, A1-void; P 

atoms with a mix of 0.414Zn2 and 0.076Ni1. , D-void; Q atoms (0.254Zn3 and 

0.047Ni2) and R (0.118Zn4 and 0.022Ni3). 

 

The incorporation of Zn in the framework of ßB was studied by Kuzma et al. [17] and 

by Korsukova et al. [18], who claimed ZnB∼22 (~4.3 at.%Zn) as the solubility limit of Zn 

in βB in the temperature interval from 600 to 907 ºC. Below 600 ºC the solid solution 

was reported to terminate at ~3 at.% Zn with slightly reduced lattice parameters. The 

solid solution of Ni in β-rhombohedral boron NiB48.5 was investigated by Lundström et 

al. [11] and Slack et al. [10], the latter paper comprising a detailed structural chemical 

study of the dopant incorporation in ßB for the compositions ScB80, ScB64, TiB52, VB167, 

VB63, CrB95, CrB69, CrB67, MnB135, FeB89, CoB65, NiB137, NiB112, NiB60, CuB386, 

CuB129, ZrB143, NbB200, HfB240, HfB50 and TaB96.  

As the multinary Mg-based alloy system Mg-Zn-Mn-RE (RE is a rare earth element) is 

of high importance in view of high strength lightweight alloys for automotive 

applications [19], we have recently focused on two quaternary systems, Ce-Ni-Zn-B and 

Ce-Ni-Zn-Si, because nothing is yet known on the influence of grain refining Ni, Si, B 

additions to the Mg-based alloy system. Whilst the small transition metal atoms readily 

dissolve in ßB, hitherto no solubility has been observed for the larger atoms such as the 

rare earth elements. For the system Ce-Ni-Zn-B we thus expect a significant combined 
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solubility of Ni and Zn in ßB. Consequently the present work intends to employ X-ray 

single crystal structure and EPM analyses in order to elucidate details on the site 

occupation and the void-filling mechanism of combined nickel and zinc in the solid 

solution of beta rhombohedral boron and the self-compensation of the solid solution of 

Ni-Zn co-doped β boron. Comparison will be made with the crystal structures of binary 

NiB60 [10], NiB48.5 [11] and ZnB25 [17]. Particularly the high residual value of R=0.108 

in the structure determination of ZnB25 [17] did not allow to detect all details of Zn 

incorporation and its impact on the ßB framework. 

 

7.1.Experimental 

 

Several alloys in a total amount of about 0.5 g each were prepared from Ni foil (Alfa 

Aesar, purity >99.9 mass%), zinc granules (Alfa Aesar, purity >99.9 mass%) and boron 

pieces (ChemPur, Karlsruhe, purity 98 mass%). Zinc drops were purified in an 

evacuated quartz tube by heating them below the boiling temperature of Zn (907°C). 

Intimate powder blends of an arc melted NiBx master alloy and fine Zn-filings in proper 

compositional ratios were cold compacted in a steel die without lubricants, vacuum 

sealed in quartz tubes and heated up till melt and then annealed at 800 °C for 7 days and 

subsequently water quenched. In order to check on the incorporation of the Ni-

homologues, Pd and Pt in ßB, we prepared two samples, Pd8B92 and Pt4B96 (in at. %) 

from powders of Pd (Alfa Aesar, purity >99.9 mass%), Pt (Alfa Aesar, purity >99.9 

mass%) and crystalline boron of 99% purity (H.C. Starck). The powder blends were cold 

pressed and sintered in a W-heated high vacuum furnace at 1500°C for 12 hours and 

then cooled down to 1250°C and annealed at this temperature for 36 hours. A part of the 

sintered samples were argon arc melted on a water-cooled copper hearth. Again heating 

to 1500°C for 12 hours and annealing at 1250°C for 36 hours was performed in order to 

ensure the solubility of Pd and Pt in B.  

X-ray powder diffraction data were collected from each alloy in as cast and annealed 

state employing a Guinier-Huber image plate system with monochromatic CuKα1 

radiation (8º<2θ<100º). Quantitative Rietveld refinements of the X-ray powder 

diffraction data were performed with the FULLPROF program [20]. Single crystals of 

NiZn-ßB were mechanically isolated from crushed specimens prepared and annealed as 

described above. Inspection on an AXS-GADDS texture goniometer assured crystal 



 

 

 

116

quality, unit cell dimensions and Laue symmetry of the specimens prior to the X-ray 

intensity data collections on a four-circle Nonius Kappa diffractometer equipped with a 

CCD area detector employing graphite monochromated Mo Kα radiation (λ=0.071069 

nm). Orientation matrices and unit cell parameters were derived using the program 

DENZO [21]. No additional absorption corrections were performed because of the rather 

regular crystal shapes, the small dimensions of the investigated specimens and the low 

linear absorption coefficient for Mo Kα radiation. The structure was solved by direct 

methods and was refined with the SHELXL-97 program [22, 23]within the Windows 

version WINGX [24]. 

The annealed samples were polished using standard procedures and microstructures and 

compositions were examined by light optical microscopy (LOM) and scanning electron 

microscopy (SEM) via Electron Probe Micro-Analyses (EPMA) on a Zeiss Supra 55 VP 

equipped with EDX and WDX systems operated at 20 kV. The binary compound 

Ni2Zn11 at the Zn-rich boundary (15 at.% Ni) [25] served as EPMA standard to define 

the Ni : Zn ratio and pure Pt and Pd was used as a standard for PdBx and PtBx samples. 

The differences between measured and nominal compositions were found to be about ±1 

at. %. 

 

7.3. Results and Discussion 

7.3.1. Structural Chemistry 

X-ray single crystal structure of the Ni,Zn solid solution in β boron 

 

A single crystal of prismatic shape was selected from the crushed regulus with nominal 

composition Ni44.4Zn11.2B44.4 (in at.%). The X-ray diffraction pattern of the single crystal 

was fully indexed on the basis of a rhombohedral lattice with ahex=1.10182(2) nm and 

chex=2.40534(5) nm. Systematic absences observed for reflections hkil (–h+k+l=3n), 

hh h2 l (l=3n), h h 0 (h+l=3n), 000l (l=3n) and h h 0h (h=3n) were consistent with the 

space group type of highest rhombohedral symmetry mR3 . Structure solution through 

direct methods in mR3  prompted 15 positions for boron atoms and among them B13 and 

B15 with 64% and 81% occupancy (for atom labels in the ßB structure after 

standardization with program Structure Tidy [26], see below and Table 1a). Four metal 

atom positions have been located by the Patterson method and from difference Fourier 
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syntheses electron densities were assigned to atom positions considering their distances 

to the neighboring atoms. Refining occupancies this procedure converged for four 

partially occupied metal positions in the unit cell filling voids of the boron framework. 

From the previously determined crystal structures of ZnB25 [17], NiB60 [10] and NiB48.5 

[11] it was observed that Ni and Zn atoms reside in the A1, D and Dd voids of β boron, 

whereas the large Zn atoms preferably enter the E void. Following this observation we 

assigned Zn atoms to the E-void. It should be noted here that Ni and Zn atoms differ 

only by 2 electrons and therefore X-ray diffraction techniques can hardly differentiate 

with certainty the two atom types, therefore a statistical mixture of Ni/Zn atoms was 

attributed to the remaining sites i.e. the voids in A1, D and Dd. Taking the overall Ni/Zn 

ratio (13.43 : 86.57) as determined by EPMA of the ßB(Ni,Zn) solution phase, first 

refinements served to find the total occupancy levels for each of the metal sites starting 

from a Ni/Zn ratio of 1 : 5.89 for the metal mixture common to the voids of A1, D and 

Dd. With a mild dependency of the occupancy level on the Ni/Zn-ratio only a few 

iterations were necessary to find the proper Ni/Zn ratio in the voids A1, D and Dd to 

comply with the overall Ni/Zn ratio determined by EPMA. A final refinement of overall 

occupancies of the three sites (A1, D and Dd) with the finally derived average Ni : Zn 

ratio (1:5.41) led to the occupancy values of 0.49, 0.30 and 0.14, respectively. 

Refinement resulted in occupancy value of 0.33 for Zn1 atoms in E void. High Biso 

values for B15 and atoms at the 18f position (0.022(1) Ni3+0.118 Zn4) have been 

controlled by constraining the temperature factor of these positions as equivalent. In the 

following we labeled the mixed metal sites with their individual mixtures as P [0.414(1) 

Zn2+0.076(1) Ni1], Q [0.254(1) Zn3+0.047(1) Ni2] and R [0.118(1) Zn4+0.022(1) Ni3]. 

Structure refinement yielded the formula Ni0.19Zn1.24B34.22 with =2F
R 0.057 and residual 

electron densities ±2.27/Å3. Data on the final atom positions (standardized with program 

Structure Tidy [26]), isotropic and anisotropic atom displacement parameters (ADPs) are 

summarized in Tables 1a,b. As standardization of crystal structures has led to different 

atom labels for framework boron atoms, Table 1b provides the standardized labels for 

the title compound but also provides a conversion list to the atom labels in the original 

publication of the related structures of pure ßB [9], NiB48.5 [11], ZnB25 [17] and 

Ni0.19Zn1.24B34.22  [this work] and the corresponding labels after standardization. The unit 

cell of the Ni, Zn co-doped ßB structure is depicted in Fig. 2. Interatomic distances are 

listed in Table 2 and the corresponding coordination figures for the four metal sites are 
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presented in Fig. 3. Q atoms have two R atoms in their coordination polyhedron with 

rather short distances dQ-R=0.1386(1) nm. Rather distorted polyhedra for R atoms 

contain 5 B atoms and two Q and two R atoms (see Fig. 3). 

 
Figure 2. Unit cell for β-rhombohedral boron in perspective view. a) Interconnected 

B12 units along with Ni and Zn atoms. b) Boron network made of B28 units (three 

icosahedra sharing a common triangle of boron atoms). Zn1 atoms are residing in the 

E void, P (0.414Zn2 + 0.076Ni1) in A1-void, Q (0.254Zn3 + 0.047Ni2) in D-void and 

R (0.118Zn4 + 0.022Ni3) in Dd-void. 

 

 
Figure 3. Coordination polyhedra for metal atoms in Ni,Zn β-boron. Two atoms R can 

be seen at dQ-R=0.1386(1) within the polyhedron around Q atoms. B-atoms are drawn 

in red, Zn atoms in dark blue, and mixed atom positions are given in light blue (P 

site), in yellow (Q-site) and in orange for the R-site. 
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High values of Biso have also been reported for two boron atoms, B15 [3a (0,0,0)], 

B16 [18h (0.2791,0.7209,0.0507)] and for Ni3 [18h (0.5169,0.4831,0.3111)] in 

NiB48.5
 [11] as well as for B15 [3a (0,0,0)], B13 [18h (0.6095,0.3905,0.2778)] and 

Zn4 [18f (0.1754,0,0)] in ZnB25 [17]. This problem has been rectified in the present 

study by constraining equal isotropic temperature factors for B15 and the atoms at the 

18f position (R). This part of unit cell is shown in Fig. 4. 

The unit cell of pure β boron, as reported by Slack et al. [9], exhibits 20 sites for 

boron, out of which five have low occupancies: B16 (27%), B17 (9%), B18 (7%), 

B19 (7%), and B20 (4%) and are considered as non-framework atoms. The structure 

refinement of Ni, Zn co-doped ßB did not reveal these latter atom sites and attempts 

to introduce these positions in the NiZn-β boron crystal were unsuccessful due to the 

formation of negative occupancies at these sites. Thus the Ni,Zn co-doped ßB 

structure does not contain any extra boron atoms besides those forming the three 

dimensional framework of B58=(2B28)B15 and B12 subunits as described for pure ßB 

[10]. In order to discuss the occupational mode in the voids of the boron framework 

we may recall the results on Ni- and Zn-doped binary ßB phases in the literature. 

  
Figure 4. a) Three face-sharing B12 units resulting in a B28 unit: the atom B15 (green 

atom) is joining two B28 units [B28-B15-B28]. b) Surrounding of B15 forming a D-

type void for Q [yellow atoms (0.254Zn3 + 0.047Ni2)] with 0.30 occupancy and 
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Slight but significant differences in boron and metal atom sites are known from the 

structure determinations of NiB48.5 [11] and NiB60 (Ni100) [10]. Nickel atoms in 

NiB48.5 [11] were located in sites of type A1 (Ni1), in Dd (Ni2 in 36i), in D (Ni3) and 

in a “new” type of voids (Ni4), whereby the distances between Ni2 and Ni2, Ni3, Ni4 

are as low as 0.98 Å reflecting the low occupancies per unit cell of atoms not present 

simultaneously. For convenient comparison, Table 3 lists the Wyckoff position, 

atomic coordinates and corresponding void types for the Ni, Zn atoms in the 

structures of NiB48.5 [11], ZnB25 [17] and Ni0.19Zn1.24B34.22. It should be mentioned 

that besides a defect B13 site, NiB48.5 [11] contained a full B15 and a defect B16 site, 

but no further boron atoms. Comparing Lundström’s data on NiB48.5 [11, 16] with 

Slack’s structure model for NiB60 [10] (labelled as Ni100 containing 1.64 at. % Ni 

[10]), Ni atoms in NiB60
 [10] were confirmed in voids i.e. A1, D at slightly different 

occupancies of 37.6(2), 3.8(4)%, [10] but Ni3 (6.6(2)%) is found in site Dd with 

positional parameters different from Ni4 in NiB48.5 [11]. In contrast to pure beta boron 

[9] there is no electron density at the site of B17, 7.3% at the site of for B17d, 

whereas B18 (16.2%) is present at slightly different positional parameters. In NiB60 

[10] B17 is present at the ‘distorted D’ site Dd. In a discussion Slack argued that from 

the general structure-chemical behaviour of doped ßB-phases as well as taking the 

distances to the next-nearest neighbors into account, Ni3 and Ni4 atoms in NiB48.5 

should rather correspond to boron atoms B18 and B17d (disordered B17) [10]. The 

atomic coordinates of Q [this work], Ni3 [11], Zn2 [17] and Ni at the D position in 

NiB60 [10] seem to lie between those of B17 and B18 in pure ß boron (shown in table 

3). 

Considering Zn as dopant in ßB, it is evident from ZnB∼25 [17] that Zn atoms enter 

four positions, 6c (Zn1 in void type A1, 49%), 6c (Zn2, E, 34%), 18f (Zn4, undefined 

void type, 13%) and 18h (Zn3, D, 28%), out of which voids A1 and D are also 

characteristic for smaller Ni as dopant. As typical for doped ßB structures, the defect 

sites B13 (64%) and B15 (78%) appear in ZnB∼25 [17]. 

Following the size constraint only the large Zn atoms in ßB(Zn,Ni) have been 

observed in voids of type E, but the remaining three voids (A1, D and Dd) all exhibit 

random mixtures of Ni and Zn atoms with a majority of Zn (see table 3). In 

comparison to the crystal structure of NiB48.5
 [11] one less boron position (B16) has 
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been observed in ßB(Zn,Ni), but mixtures Ni/Zn (P) in void A1 (filled by Ni1 in 

NiB48.5) and Ni/Zn (Q) in voids D (which corresponds to Ni3 in NiB48.5) have been 

confirmed in this work. In the crystal Ni0.19Zn1.24B34.22 metal atoms are neither 

observed in the “new site” (Ni4 in NiB48.5), nor in the Dd sites (36i, Ni2 in NiB48.5), 

but a Ni, Zn mixture (R) in site 18f (Dd) has been located. Dd is a so-called 

“disordered void” as its atomic coordination varies with the type of dopant in ßB. 

Such D and Dd voids have been reported by Slack et al. 10 only for Cu or Ni dopants 

in ß boron. Fig. 4 depicts the environment of site B15, which is surrounded by Q and 

R atoms along with a residual electron density of ±2.27e-/Å3. The short distances, 

dB15-R=0.1905(3) nm, dR-R=0.1905(6) nm and dQ-R=0.1386(1) nm, are only justified by 

the low occupancies of Q (30%) and R (14%), respectively. This fact is evident from 

the 3D difference Fourier map, which reveals a projection along c direction in Fig. 5. 

Adopting Slack’s suggestion [10] for NiB48.5 i.e. to replace the sites “Ni3” and “Ni4” 

in NiB48.5
 [11] by boron atoms (B17 and B18, as in pure β boron) results for 

ßB(Ni,Zn) in an occupancy of 2.48 and 1.24, respectively. From the occupancy values 

bigger than 1, it is prompted to keep metal atoms in the “Ni3” position (corresponding 

to Q in Ni0.19Zn1.24B34.22) but possibly to replace “Ni4” (corresponding to R in 

Ni0.19Zn1.24B34.22) by a boron atom: this attempt, however, led to RF
2 = 0.33 with an 

unacceptably high temperature factor for “Ni4”. It thus seems that both metal atom 

mixtures should be kept in voids D and Dd, as located originally from a Patterson 

analysis of our crystal data. 

 
Figure 5. 3D Fourier map with F0-Fc coefficient, (projection along c direction ranging 

from 0 to 0.5, x = y both range from –0.3 to 0.3) showing B15 surrounded by Q 
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(0.254Zn3 and 0.047Ni2) occupancy 0.30, R (0.118Zn4 and 0.022Ni3) occupancy 

0.14 and a residual electron density of +2.27e-/Å3. 

 

The short distance dR-R is acceptable because of 14% occupancy for this site, which 

means that Q atom neighbors never exist all in one unit cell. Also Q, B15 and B13 in 

the vicinity of Q atoms are not fully occupied. As elemental boron may contain 

carbon as impurity, we attempted to refine the 18f (R) position for a carbon atom, 

however, the temperature factor turned to a negative value and the reliability factor 

increased to 16%. The average distance of Zn1 of ßB(Ni,Zn) in the A1 void is 

0.2176(3) nm from its neighboring boron atoms and compares well with the 

corresponding values in ZnB25 (0.2166(1) nm) [17]. In a thorough analysis of the 

influence of metal dopants on the void structure in ßB Slack et al [9]. have arrived at 

(i) a rather linear trend for the percentage occupancy of metal atoms in the A1 voids 

versus the average distance to the 12 nearest boron neighbors (see Fig. 6), and (ii) a 

linear dependency of the fractional occupation of dopant metal atoms in site E versus 

the average distance to 15 neighbouring boron atoms (see Fig. 7). Zn atoms in ZnB25 

[17] and the Ni/Zn mixture (P) in ßB(Ni,Zn) seem to follow both these relations (i) 

and (ii). For the sum of percentage occupancies of D and Dd sites Slack et al. [10] 

have formulated a relation Σ2 = P(D) + 2P(Dd). If the B13 site is occupied at 66.7% 

then the maximum value for Σ2 can be 50% for NiB60 [10]. As in ßB(Ni,Zn) the D site 

is filled by 30% (Ni, Zn mixture-Q) and the Dd site is filled by 14% (Ni, Zn mixture-

R), the sum Σ2 in Ni0.19Zn1.24B34.22 yields an occupancy of 58% but the B13 site shows 

a lower occupancy of 64%.  
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Figure 6. The percentage occupancy of the A1 void versus the average distance from 

12 neighboring boron atoms. Gray circles present the data from Slack et al. [10], the 

red circle represents the Ni, Zn mixture (P) at A1 in Ni0.19Zn1.24B34.22 [this work]; the 

green square represents data taken from [17] for Zn1 in ZnB25. 

 
Figure 7. Percentage occupancy of the E site versus the average distance from 15 

neighboring boron atoms: gray circles present data from Slack et al.[10], the red circle 

represents Zn1 in Ni0.19Zn1.24B34.22 [this work] and the green square represents data 

taken from [17] for Zn3 of ZnB25. 

The R- atoms (Ni/Zn at 18f) are at a distance of 0.1386(1) nm from Q (Ni/Zn mixture 

at 18h) in the D void. From Fig. 3 we may conceive R in a distorted D void (called 

Dd) around the B15 atom which is linking the two B28 units. In the literature [10, 11] 

the Dd site has been assigned to a Wyckoff site 36i, but for this work and also for 

ZnB25 [17] Wyckoff position 18f was chosen. Ni4 in NiB48.5 [11] was suggested to be 

in a new void type. However, from table 3 it is obvious that the positional parameters 

of the “new” site in NiB48.5 [11] closely correspond to the 18f (R) parameters of this 

work and ZnB25 [17] (Dd site).  

Lattice parameters and the unit cell volume depend almost linearly on dopant 

concentration as shown in Fig. 8 for pure β boron and Ni, Zn dopants.  
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Figure 8. Correlation between lattice constants, cell volume and dopant concentration 

in pure β boron and in solid solutions with Ni and Zn and co-dopants (Ni, Zn). 

 

The cell distortion parameter S was calculated from the unit cell dimensions by the 

following formula [10]  

410
a1797.2

c1S ×






 −= , 

where 2.17978 is the c/a ratio of pure β boron as determined by Callmer [8]. Positive 

values of S correspond to a decrease in c/a and consequently in an increase of the 

rhombohedral angle αrhomb. For the Ni-Zn co-doped solid solution of β boron 

(Ni0.19Zn1.24B34.22) we calculated S = –15, which fits perfectly between the values of 

S(ZnB25)= –30 [17] and S(NiB60)=+32 [10] or S(NiB48.5)=+16 [11].  
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Refinement of the crystal structure of Ni,Zn β boron in space group R3  

A marked anisotropy of unconstrained displacement parameters of the atom in the 18f 

Wyckoff position (x,0,0; x=0.1729(3)) and a pronounced maximum in the difference 

Fourier map of 2.27 e-/Å3 (in 36i (x=0.0634, y=0.8546, z=0.0002) at a distance 0.61 

Å) (Fig. 5) suggested the possibility of disorder of this atom site, however the 

refinement of atoms on split 18f and 36i Wyckoff sites in space group m3R  neither 

improved the reliability factor nor significantly reduced the residual electron density. 

Refinement was more successful in the space group R3 which offers two 

crystallographically nonequivalent atom sites for each metal atom in accordance with 

the group-subgroup relationships mR3 → 3R →R3. Further steps in refinement 

showed that only one Zn site of each pair is disordered, namely Zn2 and Zn4. While 

for Zn4 the order predominates exhibiting the occupancy ratio 27% Zn4 / 3.6% Zn44 

(D void), the Zn2/Zn22 split sites (18f in mR3 , currently Dd, see above) are occupied 

almost equally (about 6% and 8% respectively). Despite the positional parameters of 

boron atoms refined in the R3 space group deviate only slightly from the 

corresponding atom positions in mR3 , the lower symmetry space group allowed to 

model disorder of Zn atoms. The refinement in space group R3 led to an improved 

value of reliability factor RF
2=0.049 as compared to the refinement in mR3  

(RF
2=0.057) and reduced the residual electron densities to +1.28/-1.67 e-/Å3. The 

positional and displacement parameters of atoms affected by Zn disorder (located 

within the 3.5 Å sphere around B36 in 3a; 0,0,z; z=0.000) as well as atoms in voids E 

and A1 are given in Table 6. At the initial steps of refinement, partial substitutions of 

Zn by Ni have been tested for all metal sites and resulted in negative occupancy of Ni 

atoms in void D, negligible amount of Ni (less than 0.001%) in the atom position (Zn 

at 18f) while the void A1 was found to accommodate Ni atoms randomly mixed with 

Zn. Further refinement considering partial occupancy for only the A1 void rendered 

the formula Zn1.24Ni0.18B34.20. To justify the accommodation of the Ni atoms, one may 

again recall the literature data: for the structure solution suggested in space group 

mR3 , void was reported to host Zn (E void, 6c 0,0,z; z=0.27012) while the remaining 

three sites [A1 void in 6c (0, 0, z; z=0.36496)], [D in 18h (x, x , z; x=0.53079, 

z=0.34807)] and  [Dd void in 18f (x,0,0; x=0.1729)] are favored by both Ni and Zn. 

However, comparing the positional parameters in the current structure of the atom in 
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D, it becomes obvious that this location is more inclined to Zn in the structure 

reported by Kuzma et al. [17] In good agreement with this behaviour, only the void 

A1 was found to accommodate a statistical mixture Zn/Ni in space group R3 

exhibiting different elemental ratios for the two atom sites 3a (Table 6). All atom sites 

were refined anisotropically except i) B4, B11; ii) B36, Zn1, Zn2, Zn22) and iii) 

Zn7/Ni1, Zn8/Ni2; the displacement parameters for atoms within these groups were 

refined to be equivalent. 

 

7.3.2. Charge self-compensation in Ni,Zn β boron 

Table 4 gives a comparison of the number of atoms and electrons in the unit cell of 

pure β boron [9], NiB48.5 [11], ZnB∼25 [17] and Ni0.19Zn1.24B34.22 [this work]. Addition 

of transition metal atoms results in a decreased number of electrons available in the β 

boron solid solution for bonding as compared to that of the total electrons required in 

stabilizing the pure β boron structure (= 320 e/hex unit cell). Table 5 is showing 

somewhat higher values of residual electron densities at the intercluster bonds in 

Ni0.19Zn1.24B34.22 as compared to that in NiB60 [10]. This higher electron number in the 

structural model Ni0.19Zn1.24B34.22 is also obvious in Table 4. Ni0.19Zn1.24B34.22 exhibits 

a dopant concentration of 4.01 at. %, which is higher than for many β boron solid 

solutions listed in table 4.  

Following the argumentation by Ogitsu [14], the B13 site is a partially occupied site 

(POS) with an occupation of 52% [shown in Fig. 1b by Ogitsu [14]]. For a β boron 

crystal to be perfect without any defects and with 105 atoms in the unit cell, this site 

should be fully occupied.  

7.3.3. On the solubility of Pd, Pt in ß boron 

In order to check on the incorporation of the Ni-homologues, Pd and Pt in ßB, 

attempts were made to get good quality single crystals for solid solutions of Pd and Pt 

in β boron. Micrographs for Pd8B92 and Pt4B96 in Fig. 9 show the presence of Pd2B 

and PtBx, respectively, along with β boron.  
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Figure 9 Micrograph for a) Pd8B92 and b) Pt4B96, samples annealed at 1250°C for 36 

hours, showing phase equilibria of practically pure ßB with Pd2B and PtBx, 

respectively. 

 

The Pd2B phase (CaCl2 type) has been identified by x-ray powder diffraction. In case 

of Pt in β-B XPD showed a spectrum for which it was difficult to decide if it arises 

from PtB0.67 (a=0.33532(4), b=0.58092(6), c=0.40924(1) nm, Cmcm, AlB2 derivative) 

or PtB (a=0.335206(8), c=0.40910(1) nm, P63/mmc, NiAs type) [27]. EPMA of the 

samples showed that Pd has negligible solubility (0.13 at. %) in β boron at 1250°C 

while Pt has not any at this temperature. The low solubilities are in accord with earlier 

reports [28] and therefore do not encourage single crystal studies. 

 

7.4. Conclusions 

The crystal chemistry of a solid solution of Ni and Zn in β rhombohedral boron has 

been studied on a single crystal Ni0.19Zn1.24B34.22 (a = 1.10182(2) nm, c = 2.40534(5) 

nm), the composition of which was defined by electron microprobe analyses (EPMA; 

ratio Ni/Zn=1:6.45). Keeping isotypism with the structure type of pure ßB, the 

structure solution in space group mR3  prompted Zn atoms in the E void (occupancy 

of 33%) whilst random mixtures of Ni, Zn atoms (ratio 15.5:84.5) occupy the sites A1, 
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D and Dd with a total occupation of 49, 30 and 14%, respectively. Although the R-

value (RF
2=0.057) and a residual electron density of ±2.27e-/Å3 seems to be 

satisfactory, structure refinement in the lower symmetry space group R3 yields partial 

ordering of metal atom sites revealing a split of Zn atom sites in voids D and Dd, but a 

statistical mixture of Ni/Zn located in void A1 (RF
2=0.049 and a residual electron 

density of ±1.28e-/Å3). As standardization of crystal structures has led to different 

atom labels for framework boron atoms a conversion table has been prepared 

comparing standardized atom site labels with those of the non-standardized settings in 

the original structures of pure ßB and doped ßB compounds. 
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Table 1a. Crystal structure data for β B-type Ni0.19Zn1.24B34.22  
(Nonius KappaCCD diffractometer, MoKα radiation).  
Data on boron atoms are summarized in table 1b below  
Compound Ni0.19Zn1.24B34.22 
Nominal composition in [at.%] d Ni44.44Zn11.12B44.44 
Space group mR3 ; No. 166 
Ni: Zn ratio from EPMA 13.43 : 86.57 
Formula from refinement  Ni0.19Zn1.24B34.22 
Structure type β-B 
θ  Range [deg] 3.70 < θ < 33.47 
a [nm] 1.10182(2) 
c [nm] 2.40534(5) 
Crystal size [µm] 20x30x35  
Mosaicity 0.45 
Reflections in refinement 917 Fo >4σ(Fo) of 1148 
Unit cell volume (Ǻ3) 2528.88(8) 
Z, Calculated X-ray density 
(g/cm3) 

3, 2.70 

Number of variables 115 
RF

2 = Σ|F0
2-Fc

2|/ΣF0
2 0.057 

RInt 0.040 
GOF 1.14 
Extinction (Zachariasen) 0.0000(8) 
Residual electron density; max; 
min in [electrons/nm3] x1000 

2.27; -1.17 

Zn1 in 6c (0, 0, z);Occ. z=0.27013(10); 0.33(1) 
U11

b= U22; U33; U23= U13 =0; U12 0.0080(8); 0.013(1); 0.0040(4) 
6c (0, 0, z); Occ z=0.36495(5); 0.076(-)Ni1+0.414(-)Zn2 (P) 
U11

b= U22; U33; U23= U13 =0; U12 0.0049(4); 0.0066(6); 0.0024(2) 
18h (x, x , z);  x=0.53080(7), x =0.46920(7), z=0.34806(5); 
Occ. 0.047(-)Ni2+0.254(-)Zn3 (Q)  
U11

b= U22; U33; U23= -U13; U12 0.0103(5); 0.0138(7); 0.0021(2); 0.0050(5) 
18f (x, 0,0);  x=0.1729(3);  
Occ; Uiso

c 0.022(-)Ni3+0.118(-)Zn4 (R); 0.0161(9) 
acrystal structure data are standardized using the program Structure Tidy [26]. 
bAnisotropic atomic displacement parameters Uij in [102  nm2].  
cIsotropic atomic displacement parameters Uiso in [102 nm2]. 
dNominal composition of the alloy from which a single crystal was isolated. 
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Table 1b. Boron atom labels and standardized atom positions for the structures 
Ni0.19Zn1.24B34.22, NiB48 [11] and ZnB25 [17] in accordance with the standardized atom labels 
for ßB [9] described in TYPIX [26]. 
 

Atom # a- atom 
# b in NiB48.5; 
Occ. [11] 
 

Atom # a- 
atom # b in 
ZnB25; Occ. 
[17] 

Atom # a- atom 
# b in β B; 
Occ. [10] 

+Atom # in [9] and [this 
work] 

Ni0.19Zn1.24B34.22 
[This work] 

B2a-B2b B2a-B2b B1a-B2b B2 in 36i (x,y,z);  x=0.0141(2), y=0.3723(2), z=0.03844(9); 
   Occ. 1.00(1) 
   U11

b; U22; U33;  0.0062(9); 0.0059(9); 0.0054(9);  
   U23; U13; U12 0.0005(7); 0.0002(7); 0.0030(7) 
B3a-B3b B3a-B3b B2a-B3b B3 in 36i (x.y,z);  x=0.0442(2), y=0.2620(2), z=0.08185(9); 

   Occ. 1.00(1) 
   U11

b; U22; U33;  0.0065(9); 0.0071(9); 0.0051(9);  
   U23;U13; U12 0.0008(7); 0.0002(7) 0.0037(7) 
B1a-B1b B1-B1b B4-B1b B1 in 36i (x.y,z);  x=0.0017(2), y=0.1769(2), z=0.3238(1); 
  With different y Occ. 1.00(7) 
   U11

b; U22; U33;  0.0065(9); 0.0074(9); 0.0087(9);  
   U23; U13; U12 -0.0022(7); -0.0012(7); 0.0037(8) 
B4a-B4b B4a-B4b B5a-B4b B4 in 36i (x,y,z);  x=0.2519(2), y=0.0151(2), z=0.15343(9); 
   Occ. 1.00(1) 
   U11

b; U22; U33;  0.0066(9); 0.0057(9); 0.0066(9);  
   U23; U13; U12 -0.0005(7); -0.0013(7) 0.0028(7) 
B6a-B5b B5a-B5b B7a-B5b B5 in 18h (x, x ,z);  x=0.3878(2), x =0.6122(2), z=0.1110(1); 
   Occ. 1.00(1) 
   U11

b= U22; U33;  0.0055(9); 0.006(1);  
   U23= -U13; U12 0.0005(5);0.003(1) 
B7a-B6b B6a-B6b B8a-B6b B6 in 18h (x, x ,z);  x=0.4191(2), x =0.5809(2), z=0.1798(1); 
   Occ. 1.00(1) 
   U11

b= U22; U33;  0.0042(8); 0.008(1); 
   U23= -U13; U12 0.0003(5); 0.002(1) 
B8a-B7b B7a-b7b B9a-B7b B7 in 18h (x, x ,z);  x=0.4439(2), x =0.5561(2), z=0.0543(1);  
   Occ. 1.00(1) 
   U11

b= U22; U33;  0.0070(9); 0.006(1);  
   U23= -U13; U12 0.0001(5); 0.003(1) 
B9a-B8b B8a-B8b B11a-B8 b B8 in 18h (x, x ,z);  x=0.5029(2), x =0.4971(2), z=0.1942(1);  
   Occ. 1.00(1) 
   U11

b= U22; U33;  0.0057(9); 0.005(1); 
   -U23= U13; U12 0.0002(5); 0.0028(9) 
B10a-B9b B9a-B9b B13 a-B9b B9 in 18h (x, x ,z);  x=0.5372(2), x =0.4628(2), z=0.0668(1); 
   Occ. 1.00(1) 
   U11

b= U22; U33;  0.0065(9); 0.007(1);  
   -U23= U13; U12 0.0007(5); 0.003(1) 
B11 a-B10b B10a-B10 b B14a-B10b B10 in 18h (x, x ,z);  x=0.5649(2), x =0.4351(2), z=0.1346(1); 
   Occ. 1.00(1) 
   U11

b= U22; U33;  0.0062(9); 0.004(1);  
   -U23= U13; U12 0.00005(46); 0.004(1) 
B12a-B13b; B11a-B13b; B16a-B13b;  B13 in 18h (x, x ,z);  x=0.6099(3), x =0.3901(3), z=0.2767(2); 
0.67 0.64 0.75 Occ. 0.64(2) 
   U11

b= U22; U33;  0.009(2); 0.006(2); 
   -U23= U13; U12 0.0004(8); 0.005(2) 
B13a-B11b B12a-B11 b B17 a -B11b B11 in 18h (x, x , z);  x=0.7235(2), x =0.2765(2), z=), 

0.1604(1); 
   Occ. 1.00(1) 
   U11

b= U22; U33;  0.0057(9); 0.005(1); 
   -U23= U13; U12 0.00005(49); 0.002(1) 
B14a-B12b B13a-B12b B18a-12b B12 in 18h (x, x , z);. x=0.7567(2), x =0.2434(2), z=0.2304(1); 
   Occ. 1.00(1) 
   U11

b= U22; U33;  0.0053(9); 0.006(1); 
   -U23= U13; U12 0.0005(5); 0.003(1) 
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B15a-B14b B14a-B14b B19 a -B14b B14 in 6c (0, 0, z); Occ. z=0.1152(2); 1.00(1) 
   U11

b= U22; U33;  0.006(1);  
   U23= U13=0; U12 0.006(2); 0.0033(7) 
B16a-15b B15a-B15b; B20 a -B15b B15 in 3a (0, 0, 0);   
 0.78  Occ.;Uiso 0.81(3); 0.0159(9) 

a non standardised atom label;   
bstandardised atom label,  
+standardized boron atom labels in Slack et al [9]and [this work].  



 

 

 

133

Table 2. Interatomic distances in Ni0.19Zn1.24B34.22. 
Atom  Distance 

(nm) 
Atom Distance 

(nm) 
Atom Distance 

(nm) 
Zn1 –  P 0.2281(3) B3  –  B2 0.1755(5) B10  –  B9 0.1714(4) 
Zn1 –6B1 0.2330(3) B3  –  B8 0.1791(4) B10  –2B11 0.1796(4) 
Zn1 –3B9 0.2473(3) B3  –  B12 0.1798(5) B10  –2B4 0.1858(3) 
Zn1 –3B11 0.2577(4) B3  –  B4 0.1813(3) B10  –  B8 0.1859(4) 
Zn1 –3B10 0.2592(3) B3  –  B13 0.1814(6) B10  –  Zn1 0.2592(3) 
P    – 3B5 0.2172(3) B3  –  B3 0.1913(7) B11  –  B14 0.1764(5) 
P –    6B1 0.2179(3) B3  –  R 0.2145(3) B11  –2B10 0.1796(4) 
P –    3B7 0.2179(2) B3  –  Q 0.2391(4) B11  –  B12 0.1800(4) 
P –      Zn1 0.2281(3) B4  –  B4 0.1680(4) B11  –2B4 0.1858(4) 
Q –    4R 0.1386(1) B4  –  B8 0.1741(3) B11  –2B11 0.1879(4) 
Q –      B13 0.2286(5) B4  –  B3 0.1813(3) B11  –  Zn1 0.2577(4) 
Q –      B12 0.2294(3) B4  –  B12 0.1855(4) B12  –  B14 0.1743(3) 
Q –    2B1 0.2319(4) B4  –  B11 0.1858(4) B12  –2B3 0.1798(5) 
Q –    2B2 0.2353(4) B4  –  B10 0.1858(3) B12  –  B11 0.1800(4) 
Q –    2B3 0.2391(4) B5  –  B7 0.1733(4) B12  –2B4 0.1855(4) 
Q –    2Q 0.2688(2) B5  –3B6 0.1762(4) B12  –2B13 0.1871(6) 
R –    4R 0.1386(1) B5  –2B5 0.1799(4) B12  –2Q 0.2294(3) 
R –    2B13 0.1755(6) B5  –2P 0.2172(3) B13 –  B15 0.1740(5) 
R –      B15 0.1905(3) B6  –  B8 0.1636(3) B13 –4R 0.1755(5) 
R –    4R 0.1905(6) B6  –2B6 0.1754(3) B13 –  B14 0.1778(6) 
R    – 2B3 0.2145(3) B6  –3B5 0.1762(4) B13 – 2B3 0.1813(3) 
B1  –   B2 0.1846(5) B7  –  B5 0.1733(4) B13 – 2B12 0.1871(6) 
B1  –   B9 0.1850(4) B7  –2B2 0.1796(5) B13 – 2B13 0.1876(7) 
B1  –   B7 0.1858(4) B7  –  B9 0.1805(4) B13 –  Q 0.2286(5) 
B1  –   B2 0.1859(4) B7  –2B1 0.1858(4) B14 –3B12 0.1743(3) 
B1  –   B1 0.1913(5) B7  –2P 0.2179(2) B14 – 3B11 0.1764(5) 
B1  –   B1 0.1968(5) B8  –  B6 0.1636(3) B14 – 3B13 0.1778(6) 
B1  –   P 0.2179(3) B8  –2B4 0.1741(3) B15–6B13 0.1740(5) 
B1  –   Zn1 0.2330(3) B8  –2B3 0.1791(4) B15–6R 0.1905(3) 
B1  –   Q 0.2319(4) B8  –  B10 0.1859(4)   
B2  –   B3 0.1755(5) B9  –  B10 0.1714(4)   
B2  –   B7 0.1796(5) B9  –   B7 0.1805(4)   
B2  –   B9 0.1839(5) B9  – 2B2 0.1839(5)   
B2  –   B1 0.1846(5) B9  –  2B1 0.1850(4)   
B2  –   B1 0.1859(4) B9  –    Zn1 0.2473(3)   
B2  –   B2 0.1869(3)     
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Table 6. Positionala and displacement parameters of boron atoms within the 3.5 Å 
environment of B36 and metal atoms refined in the R3 space group 
 
Atom site 
/ Void  
in mR3  

Atom in R3 Ni0.19Zn1.24B34.22 

B3  B3a in 9b (x.y,z);  x=0.4494(7), y= 0.0713(7), z=0.2525(5),  
 Occ. 1.00 
 U11

b; U22; U33;  0.0069(7); 0.0086(8); 0.0064(4);  
 U23; U13; U12 -0.0006(7); -0.0011(7); 0.0047(7) 
B3  B16a in 9b (x.y,z);  x=0.4499(7), y=0.3773(7), z=0.2516(5),  
 Occ. 1.00 
 U11; U22; U33;  0.0069(7); 0.0086(8); 0.0064(4);  
 U23; U13; U12 -0.0006(7); -0.0011(7); 0.0047(7) 
B3  B20a in 9b (x.y,z);  x=0.0442(7), y=0.2631(8), z=0.0821(5),  
 Occ. 1.00  
 U11; U22; U33;  0.0069(7); 0.0086(8); 0.0064(4);  
 U23; U13; U12 -0.0006(7); -0.0011(7); 0.0047(7) 
B3  B21a in 9b (x.y,z);  x=0.2184(7), y=0.2619(7), z=0.0829(5); 
 Occ. 1.00 
 U11; U22; U33;  0.0069(7); 0.0086(8); 0.0064(4);  
 U23; U13; U12 -0.0006(7); -0.0011(7); 0.0047(7) 
B12 B7a in 9b (x.y,z);  x=0.1796(7), y=0.0900(7), z= 0.1037(5),  
 Occ. 1.00 
 U11=U22; U33;  0.0063(10); 0.0065(7);  
 U23; U13; U12 0.0018(9); -0.0004(9); 0.0044(9) 
B12  B15a in 9b (x.y,z);  x=0.4858(7), y=0.2432(7), z=0.2312(5),  

 Occ. 1.00 
 U11=U22; U33;  0.0063(10); 0.0065(7);  
 U23; U13; U12 0.0018(9); -0.0004(9); 0.0044(9) 
B14  B35a in 3a (0, 0,z); Occ. z=0.1140(11), 1.00 
 U11=U22; U33; U23=U13=0; U12 0.0064(7), 0.0048(13), 0.0032(4) 
B14  B37a in 3a (0, 0,z); Occ. z=0.8838(2), 1.00 
 U11=U22; U33; U23=U13=0; U12 0.0064(7), 0.0048(13); 0.0032(4) 
B13  B4a in 9b (x.y,z);  x=0.6104(1), y=0.2211(1), z=0.2783(6);  
 Occ.; Uiso

 c 0.57(2); 0.0076(8) 
B13  B11a in 9b (x.y,z); x=0.0569(10), y=0.1145(10), z=0.0578(6); 
 Occ.; Uiso 0.70(2), 0.0076(8) 
B15  B36a in 3a (0, 0,z);  z=0.0000d,  
 Occ.; Uiso 0.78(1); 0.0088(5) 
18f Zn1a in 9b (x.y,z);  x=0.1722(4), y=0.1719(4), z=0.0009(4),  
 Occ.; Uiso 0.144(2); 0.0088(5) 
18f Zn2a in 9b (x.y,z);  x=0.0331(10), y=0.1920(8), z=0.0010(5),  
 Occ., Uiso 0.062(2); 0.0088(5) 
18f Zn22a in 9b (x.y,z);  x=0.1845(8), y=0.0209(7), z=0.0012(5),  
 Occ.; Uiso 0.082(2); 0.0088(5) 
D, 18h Zn3a in 9b (x.y,z);  x=0.2716(3), y=0.1360(3), z=0.0153(4),  
 Occ. 0.306(2) 
 U11; U22; U33;  0.0087(5); 0.0116(5); 0.0112(4);  
 U23; U13; U12 -0.0016(5); 0.0029(4); 0.0045(5) 
D, 18h Zn4a in 9b (x.y,z);  x=0.3939(3), y=0.1967(3), z=0.3189(4),  
 Occ. 0.270(2) 
 U11; U22; U33;  0.0087(5), 0.0116(5); 0.0112(4); 
 U23; U13; U12 -0.0016(5); 0.0029(4), 0.0045(5)   
D, 18h Zn44a in 9b (x.y,z);  x=0.1272(17), y=0.2322(13), z=0.0017(8),  
 Occ. 0.036(2)   
 U11; U22; U33;  0.0087(5); 0.0116(5); 0.0112(4);  
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 U23; U13; U12 -0.0016(5); 0.0029(4); 0.0045(5)  
E, 6c Zn5a in 3a (0,0,z); Occ. z=0.7302(16); 0.288(4) 
 U11=U22; U33; U23=U13; U12 0.0087(4), 0.0138(6); 0.0043(2) 
E, 6c Zn6a in 3a (0,0,z); Occ. z=0.2704(16), 0.288(4)  
 U11=U22; U33; U23=U13; U12 0.0087(4); 0.0138(6), 0.0043(2) 
A1, 6c Zn7+Ni1a in 3a (0,0,z); Occ. z=0.6356(16), 0.111(4) Zn+0.389(4) Ni 
 Uiso 0.0053(2) 
A1, 6c Zn8+Ni2a in 3a (0,0,z); Occ. z=0.3656(16), 0.359(4) Zn+0.141(4) Ni 
 Uiso 0.0053(2) 
acrystal structure data are standardized using the program Structure Tidy [26]. 
bAnisotropic atomic displacement parameters Uij in [102  nm2].  
cIsotropic atomic displacement parameters Uiso in [102 nm2]. 
b fixed atom coordinate.  
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8     

   

 

Physical Properties of the Ternary Borides  

Ni21Zn2B20 and Ni3ZnB2 

 
8.1.Introduction 

 

Reaction of boron with Ni and Zn leads to the formation of phases with complex 

structures e.g., Ni21Zn2B20 is a unique structure1 with isolated B20 cages and a Ni6-

octahedron nested within each B20-unit [1]. In contrast to this interleaved metal-boron 

clusters in Ni21Zn2B20, the compound Ni3ZnB2 contains four-membered fragments of 

boron zigzag chains [1]. As both structure types in addition contain infinite nets of 

metal atoms, interesting physical properties may arise from the combination of typical 

metal features with the covalently bonded and more ceramic like boron aggregations. 

Therefore the aim of this study is to analyze the mechanical, electrical and magnetic 

properties of the compounds Ni21Zn2B20 and Ni3ZnB2, which reveal a rather different 

boron-boron aggregation due to their different boron/metal ratio. 

 

8.2.Experimental 

 

Starting materials for alloy synthesis were Ni foil (Alfa Aesar, purity >99.8 mass%), zinc 

granules (Alfa Aesar, purity >99.9 mass%), boron pieces (ChemPur, Karlsruhe, purity 98 

mass%) and nickel powder (-100 mesh; 99.9 mass%; PCR Inc. USA). Zinc drops were 

purified in an evacuated quartz tube by heating them 50°C below the boiling point of Zn 

(907°C). Samples of about 5g each were prepared from intimate blends of powders (40µm) 

of arc melted NiBx master alloys and fine Zn-filings in proper compositional ratio. Hand 

milling of the NiBx master alloy to a particle size below 40 µm (in a WC-mortar) was found 

to be necessary for a proper diffusion among Zn and NiBx grains in order to achieve single-

phase material. The powder blends were cold compacted in a steel die without lubricants, 

                                                 
1 In our previous study we have reported on the crystal structure of Ni21Zn2B24. [1]. However, the boron 
positions were incorrectly summed up and thus the correct chemical formula is Ni21Zn2B20. 
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vacuum-sealed in quartz tubes, were heated up till 800°C and then annealed at this 

temperature for 4 days and subsequently water quenched. Then the specimens were hand 

milled in a WC-mortar within an argon filled glove box in which the powders were finally 

loaded into a 10 mm diameter graphite die for hot pressing under Ar in an uniaxial hot press 

system (HP W 200/250-2200-200-KS) at 800°C for 1 hour employing a pressure of 56 

MPa. After removing a 0.5 mm thick surface layer (grinding at an Al2O3-wheel), a 1 mm 

slice of the hot pressed cylinders (~9 mm diameter and 8 mm height was polished using 

standard procedures in order to inspect microstructure and composition by light optical 

microscopy (LOM) and scanning electron microscopy (SEM) via Electron Probe Micro-

Analyses (EPMA) on a Zeiss Supra 55 VP equipped with an EDX system operated at 20 

kV. For Ni:Zn ratios the binary compound Ni2Zn11 at the Zn-rich boundary (defined at 15.0 

at.% Ni [2]) was used as EPMA standard. The differences between measured and nominal 

compositions were found to be less than 1 at. %.  

Percentage porosities were calculated from the differences between the calculated X-ray 

densities of Ni21Zn2B20, Ni3ZnB2 [1] and the densities of the samples measured in distilled 

water using Archimedes’ principle. X-ray powder diffraction data were collected from the 

alloys before and after hot pressing employing a Guinier-Huber image plate system with 

monochromatic CuKα1 radiation (8º<2θ<100º). For both sample specimens quantitative 

Rietveld refinements of the X-ray powder diffraction data with the FULLPROF program 

[3] based on the atom parameters derived from the single crystal studies of Ni21Zn2B20 and 

Ni3ZnB2 [1] confirm the structure types and assured single-phase condition for Ni3ZnB2 but 

traces of Ni2Zn11 as a secondary phase in Ni21Zn2B20 (see Fig. 1).  

Thermal expansion from 4.2 to 300 K was measured in a miniature capacitance dilatometer 

[4], using the tilted plate principle [5, 6]. For the measurement the sample is placed in a 

hole of the lower ring-like silver capacitance plate, which is separated from the silver upper 

capacitor plate by two needle bearings. This equipment can also be used under magnetic 

fields up to 9 Tesla.  

The Vickers hardness (HV) was measured under the load of 0.98, 1.47 and 1.96 N 

(corresponding to loads of 100, 150 and 200 ponds) sustained for 10 seconds in an Anton 

Paar MHT 4 micro-hardness tester, which is mounted on a Reichert POLYVAR optical 

microscope. The micro-hardness HV (Vickers hardness) was computed from the relation: 

2
2

136sin2

d

F
HV

°

=         (1) 
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where F is the load applied and d is the length of the diagonal left by the Vickers diamond 

indenter in the sample. For resonant ultrasonic spectroscopy (RUS) measurements at the 

University of Vienna (RUS2), the cylindrical samples were mounted edge-to-edge between 

the two piezo-transducers and excited via a network analyser in the frequency range from 

25 kHz to 500 kHz. 

 

 
Figure 1. Rietveld refinement of X-ray powder data of Ni21Zn2B20 and Ni3ZnB2. 

 

Electrical resistivity measurements in a temperature range from 4.2 to 300 K were carried 

out in a He4 cryostat, using a home made equipment (four point technique). At 

temperatures above 300 K the electrical resistivity and the Seebeck coefficient were 

measured simultaneously in a commercial equipment (model ZEM-3, ULVAC, Japan; for 

details see ref. [7]). For magnetic measurements a SQUID susceptometer was used.  

The specific heat experiments were performed with a commercial physical property 

measurement system (PPMS) in the temperature range of 2 to 300 K and in a 3He/4He-

dilution refrigerator down to a base temperature of 60 mK employing a standard relaxation 

method [8]. 
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8.3. Results and Discussion.  

8.3.1. Physical properties  

8.3.1.1. Elastic properties  

 

Resonant Ultrasound Spectroscopy was used to determine elastic properties via the 

eigenfrequencies of the samples and knowledge of sample mass and dimensions. The 

RUS theory [9, 10] establishes the relation between kinetic energy and elastic energy 

and hence makes it possible to calculate the eigenfrequencies of a sample based on its 

mass, dimensions and a set of elastic constants. A least squares fit is carried out by 

minimizing the sum of the squared differences between the measured and the 

calculated eigenfrequencies to derive the elastic properties. The parameters of this fit 

were the elastic constants or moduli (i.e. in this case the Young's modulus and the 

Poisson's ratio as the average elastic symmetry of the polycrystalline samples is 

isotropic). The independent variables were the first 25 eigenfrequencies of the 

respective sample and they were fitted via the Nelder-Mead method [11]. Shear 

modulus and bulk modulus were calculated by equations: 

 

)υ1(2
E

G
+

=         (2) 

)υ21(2
E

B =         (3) 

 

The elastic properties derived for Ni21Zn2B20 and Ni3ZnB2 are summarized in Table 1. 

Dependencies of elastic modulus values upon density for Ni21Zn2B20 and Ni3ZnB2 are 

shown in Fig. 2. A linear extrapolation to 100% density yields Young’s moduli of 263 and 

225 GPa for Ni21Zn2B20 and Ni3ZnB2, respectively. 
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Figure 2. Elastic moduli vs. relative density for Ni21Zn2B20 and Ni3ZnB2, extrapolated 
to 100% density: E (Young’s Modulus) 264 and 223 GPa, B (Bulk Modulus) 206 and 
187 GPa and G (Shear Modulus) to 103 and 86 GPa, respectively. 
 

8.3.1.2. Hardness  

Hardness of NiB, Ni21Zn2B20 and Ni3ZnB2 was measured on as cast samples with big 

grains of the phases under investigation in order to ensure the measurement of intrinsic 

hardness of materials. Hardness values decrease with increasing force from 0.98 to 1.47 

N, but saturate from 1.47 N to 1.96 N for all three compounds as shown in Fig. 3 and 

Table 1. The hardness value reported for NiB is 15.3 GPa (as measured for a load of 50 

g) [12]. It corresponds well to that investigated in this work. Due to the low symmetry of 

Ni3ZnB2 the vertical (d1) and transverse (d11) diameters of indentation differ within an 

averaged d1/ d11 ratio of 1.46. Figure 3 clearly shows the dependency of the hardness 

upon the boron content and the boron-boron aggregation in the structure of the 

compounds investigated. NiB with infinite boron chains has a hardness superior to 

Ni21Zn2B20 with Ni-octahedra nested B20Ni6 cages and superior to Ni3ZnB2 with B4-chain 

fragments. This trend is also seen in the mechanical properties where Ni21Zn2B20 exhibits 

higher elastic moduli than boron-poor Ni3ZnB2 (see Table 1). 
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Figure 3. Vickers Hardness vs. load for NiB, Ni21Zn2B20 and Ni3ZnB2. 
 

8.3.1.3. Thermal expansion  

Figure 4 shows the thermal expansion ∆l/l0 of Ni21Zn2B20 and Ni3ZnB2 as a function of 

temperature. It is obvious that ∆l/l0 decreases almost linearly from room temperature to 

about 150 K. The thermal expansion coefficient α follows from a temperature derivative of 

the length change, i.e.,  

0l
1

T
∆l

  α ∂
∂

=          (4) 

α = 8*10-6 and 10.4*10-6 K-1 was derived for Ni21Zn2B20 and Ni3ZnB2 in the temperature 

range from 150 – 250 K, respectively. The temperature dependent thermal expansion was 

analysed following a semi-classical treatment by Mukherjee (details are described in ref. 

[13]) taking into account three- and four-phonon interactions and considering an 

anharmonic potential, using both the Debye model for the acoustic phonons, and the 

Einstein approximation for the optical modes. The length change ∆l/l (T0) is given by 

0
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where  γ is the electronic contribution to the average lattice displacement, θD is the Debye 

temperature, θE is the Einstein temperature, and p is the average number of phonon 

branches actually excited over the temperature range. G, F, c, and g are further material 

dependent constants. Debye (θD) temperatures obtained from least square fits of equations 
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(5) to the experimental data of  Ni21Zn2B20 and Ni3ZnB2 reveal θD = 349 K and 346 K 

respectively.  

Magnetostriction measurements carried out at 4.2 K with magnetic fields up to 9 Tesla did 

not indicate any field induced ordering phenomena. 

 

 
Figure 4. Thermal expansion vs. temperature for Ni21Zn2B20 and Ni3ZnB2. 

 

8.3.1.4. Specific Heat  

Temperature dependent zero-field specific heat measurements, C/T vs. T, for Ni21Zn2B20 

and Ni3ZnB2 are displayed in Figs. 5a, b respectively. For a closer view on the low 

temperature data the inserts of Figs. 5 a, b show the corresponding C/T vs. T² graphs 

revealing for Ni3ZnB2 below 10 K a simple C(T) = γT + βT3 behavior with γ = 7 mJmol-

1K-2 and β= 8.7*10-5 Jmol-1K-4 as typical for a simple Pauli-paramagnetic metal. The β 

coefficient refers to a low temperature Debye temperature of 510 K. For Ni21Zn2B20, 

however, a distinctly different behavior with a small low temperature upturn and 

significant non-linearity in C/T vs. T2 is observed. Instead of a T-linear electronic 

contribution there is a contribution, which is presumably of magnetic origin dominating 

the low temperature heat capacity. At elevated temperatures, the specific heat of both 

compounds, Ni21Zn2B20 and Ni3ZnB2, is clearly dominated by the lattice contribution, 

which is analyzed in terms of Debye and Einstein contributions yielding the lattice heat 

capacity as 
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where R is the gas constant, ωD and ωi are Debye and Einstein frequencies and c0 and ci 

are the corresponding spectral weights. When excluding the low temperature data below 

10 K, the specific heat of Ni21Zn2B20 in Fig. 5a is acceptably approximated by a lattice 

heat capacity Cph which consists of one Debye and two Einstein contributions with ωD= 

251 K and c0= 30, ω1= 306 K and c1= 36 as well as ω2=761 K and c2= 63. The 

corresponding fit is displayed as solid line in Fig. 5a.  
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Figure 5. Specific heat Cp/T vs. T and T2 of Ni21Zn2B20 (a) and Ni3ZnB2  (b) the yellow 

solid lines are fits in terms of Debye and Einstein models (see text). 

 

Introducing a third Einstein frequency by splitting the spectral weight c2 essentially 

reproduces this result (ω3 remains near 750 K). In the case of Ni3ZnB2 (Fig. 5b) the 

specific heat data (from 2 K to 180 K) are rather well accounted for by a lattice heat 

capacity consisting of Debye and three Einstein contributions with ωD= 269 K and c0= 3, 

ω1= 191 K and c1= 3, ω2= 348 K and c2= 6 and ω3=714 K with c3= 6; an electronic 

contribution with γ = 7 mJ mol-1 K-2 was added (see the solid line in figure 4b).  
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This analysis of the lattice heat capacity indicates that the boron related high energy 

Einstein modes display at similar energies in these two compounds with spectral weights 

being in clear correspondence with the boron stoichiometries of Ni21Zn2B20 and Ni3ZnB2.  

 

8.3.1.5. Magnetic properties 

 

The temperature dependent magnetization measurements displayed in Fig. 6 reveal a 

paramagnetic behavior of Ni21Zn2B20 as well as Ni3ZnB2 suggesting almost filled 3d 

states of Ni by contributions from B and Zn valence electrons. There is some discrepancy 

with respect to the expected paramagnetic linear scaling of the 0.1 T and 3 T data, which 

is attributed to the presence of a small amount of Ni2Zn11 impurities in particular in 

Ni3ZnB2 as indicated by a very little peak in the powder pattern. The temperature 

dependent susceptibility, M(T)/H, of Ni21Zn2B20 is clearly dominated by a Curie-Weiss 

like paramagnetic susceptibility, χ(T)=C/(T-θ). A fit of the M(T, 3 T)/H data (see Fig. 6a) 

results in a Curie constant C = 0.48*10-4 emu K g-1 and a paramagnetic Curie temperature 

θ = -5 K yielding a rather small effective moment µeff= 0.17 µB/Ni atom. Any 

temperature independent Pauli paramagnetic like contribution is rather small, i.e. χ0 ~ 

7*10-8 emu g-1 may define an upper limit. In the case of Ni3ZnB2 shown in Fig. 6b, the 

susceptibility is clearly dominated (in particular at temperatures above 50 K) by a weakly 

temperature dependent Pauli susceptibility, χ(T) = χ0 (1-aT2), yielding χ0 = 2.26*10-6 

emu g-1 and a = 2.84*10-6 K-2 when analyzing the 3 T data in Fig. 6b. A Curie like 

contribution due to paramagnetic impurities yields C= 0.91*10-4 emu K g-1 and θ ~ -8 K. 

The effective paramagnetic moment per Ni atom is of similar magnitude for both 

compounds and might relate to paramagnetic impurities and possibly also to an intrinsic 

localization of moments near structural defects. 
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Figure 6. Temperature dependent inverse susceptibility, H/M, of Ni21Zn2B20 (a) and 

Ni3ZnB2 (b) measured at 3 T. Solid lines represent fits as explained in the text. 

 

8.3.1.6. Electrical Resistivity and Seebeck Coefficient 

The temperature dependent electrical resistivity ρ of Ni21Zn2B20 and Ni3ZnB2 is 

shown in Figs. 7a and 7b. While the former exhibits a pronounced curvature of ρ(T) 

in the entire temperature range up to 900 K, the latter is characterized by an almost 

linear temperature dependence for T > 50 K. Similar residual resistivities refer to 

similar sample qualities of both ternary compounds. Furthermore, the inset of Fig. 7a 

shows a tiny increase of the electrical resistivity upon cooling (about 1 µΩcm) below 

20 K for Ni21Zn2B20. Since the material is non-magnetic, this feature is supposed to be 

caused by small amounts of Ni being statistically dispersed in the otherwise non-

magnetic host Ni21Zn2B20, triggering Kondo type of interactions between the 

conduction electrons and the magnetic moments of Ni. Note that the Kondo effect 

occurs already on an impurity level of several ppm in a host metal. The much larger 

overall variation of the electrical resistivity of Ni21Zn2B20 compared to Ni3ZnB2 might 

be a consequence of a much stronger electron-phonon interaction in the former.  
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Figure 7. Temperature dependent resistivity ρ of Ni21Zn2B20 (a) and Ni3ZnB2 (b). The 
inset in panel (a) shows low temperature details of ρ(T). 
 

In order to quantitatively account for the temperature dependence of both data sets 

with the very same model, the parallel resistivity model is selected. Systems with 

resistivities of the order of several hundred µΩcm are prone to reach the saturation 

limit at high temperatures, once the electronic mean free path becomes comparable to 

interatomic distances. In such a case, the parallel resistance model [14] can be used, 

i.e., 

1/ρ = 1/ρi + 1/ρs,      (7) 

where ρi is the ideal resistivity, represented by a proper model able to account for the 

electron-phonon interaction. ρs is a shunt resistivity near to the saturation value. Least 

squares fits employing the Bloch-Grüneisen formula as a representative of 1/ρi fail to 

describe the entire temperature range of Ni21Zn2B20. It turns out that a model 

developed by Hellman and Hartford [15] is best suited to be used in Eqn. 7. When the 

mean free path of electrons in a metal is short, the momentum dependence of 

scattering can be ignored and the resistivity is simply proportional to the weighted 

integral over the phonon density [15]. This model involves essentially two parameters 

Tm1 and Tm2, which confine a flat band of bosons. Least squares fits (solid lines in 

Figs. 7a,b) reveal Tm1 = 50 and Tm2 = 2300 K for Ni21Zn2B20 as well as Tm1 = 140 and 

Tm2 = 165 K for Ni3ZnB2. These distinctly different scales refer to significantly 

different phonon dynamics in both compounds. Different phonon spectra were 

concluded already from heat capacity measurements.  
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Least squares fits below 300 K can be carried out employing the standard Bloch-Grüneisen 

model. In both cases the Debye temperature is of the order of 310 K, but the electron-

phonon interaction constant is more than 4 times larger in the case of Ni21Zn2B20 compared 

to Ni3ZnB2. A similarity of the Debye temperature was derived from the specific heat data, 

too.  

In view of the dominant metallic behaviour of Ni21Zn2B20 and Ni3ZnB2 Seebeck 

coefficients (S) for both compounds are expected to be small and negative. In fact, both 

Ni based compounds vary in the range of a few µV/K (see Fig.8) and the negative sign of 

the thermopower refers to electrons as the majority charge carriers. These low values 

make the thermoelectric power factor S2/ρ small (maximum values: about 0.012 W/mK2 

@ 600 K for Ni21Zn2B20 and 0.04 W/mK2 @ 300 K for Ni3ZnB2).  

Figure 8.Seebeck coefficient S vs. temperature for Ni21Zn2B20 and Ni3ZnB2. 

 

8.4. Conclusion  

The investigation of physical properties (mechanical, electrical and magnetic) revealed 

significant differences for the compounds Ni21Zn2B20 and Ni3ZnB2, which differ in 

boron-boron aggregation and bonding due to their different boron/metal ratio. The higher 

the boron/metal ratio the higher the elastic moduli, the higher Vickers hardness but the 

smaller are the thermal expansion coefficients. At elevated temperatures, the specific heat 

Cp of both compounds is clearly dominated by the lattice contribution and the boron 

related high energy Einstein modes are at similar energies with spectral weights being in 
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clear correspondence with the boron stoichiometries of both borides. Temperature 

dependent magnetization measurements reveal a paramagnetic behavior for both 

compounds suggesting almost filled 3d states of Ni by contributions from B and Zn 

valence electrons. Electrical resistivities attest a dominant metallic behaviour for both 

Ni21Zn2B20 and Ni3ZnB2 yielding negative Seebeck coefficients (electrons as the majority 

charge carriers) in the range of a few µV/K.    

The metallic state of both compounds prevents a significant thermoelectric performance, 

although the complex crystal structure formed by boron rings might favour promising 

thermoelectric properties. Reducing the electron density by proper doping the ternary 

materials will be a future task.  
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Table 1. Nominal compositions, (d) density, (ν) Poisson’s ratio, (E) Young’s modulus, 
(B) Bulk Modulus, (G) Shear modulus, (θD) Debye temperature, (ρo) residual 
resistivity for hotpressed samples of Ni21Zn2B20 and Ni3ZnB2. Vickers microhardness 
was measured for a load of 1.96 N sustained for 10s on melted bulk alloys. 

 
Nominal 
composition 
Ni-Zn-B  
at. % 

Compound NiBx 
grain 

size , µm 

d 
% 

ν 
(±0.01)

E 
GPa
(±1) 

B 
GPa

G 
GPa

θD 
K 

Resistivity

θD 
K 

Thermal 
expansion 

θD 
K 

Specific 
heat 

(low T) 

ρo 
µΩcm 

Hardness 
GPa 

Bulk alloy 

44-6-50 Ni21Zn2B20 20 95 0.28 240 182 94 315 349 - 26 - 
44-6-50 Ni21Zn2B20 40 87 0.26 203 141 81 - - - - 6.87 
50-16-34 Ni3ZnB2 20 98 0.30 216 180 83 320 346 510 20 - 
50-16-34 Ni3ZnB2 40 93 0.29 199 158 77 - - - - 4.99 
50-0-50 NiB >100          12.41 
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9     

   

Phase Equilibria and Crystal Structures in the System Ce-Zn-Si 
 
9.1. Introduction 

 

Zinc-based alloys with rare-earth metals are used in several engineering applications 

and are employed to replace cast iron because of similar properties and higher 

machinability [1]. Rare earths (RE) improve the mechanical performance, tensile 

strength, hardness and also the corrosion resistance by removing impurities from the 

grain boundaries of their alloys with zinc [2]. Silicides may find applications as 

contact materials or in optoelectronic devices or simply as grain refiners [3]. As far as 

high strength lightweight alloys for automotive applications are concerned [4], the Ce-

Zn system is an important part of the multinary Mg-based alloy system Mg-Zn-Mn-

RE-(Si). Besides the compound CeZnSi, which has been reported [5] to be 

paramagnetic within the temperature range of 77-300K, no phase diagram has yet 

been reported for the system Ce-Zn-Si. Therefore the present work intends to provide 

detailed information on phase equilibria and crystal structures in the Ce-Zn-Si system. 

The formation of BaAl4-type structures has been investigation along the sections, 

La(Ni1-xZnx)2Si2 and Ce(Ni1-xZnx)2Si2. 

 

9.2. Experimental 

 

Samples were prepared from cerium ingots (Alfa Aesar, purity >99.9 mass%), 

lanthanum ingots (Auer Remy, 99.9 mass %) zinc granules (Alfa Aesar, >99.9 

mass%), Ni foil (Alfa Aesar, >99.8 mass%) and silicon pieces (Alfa Aesar, 6N). Zinc 
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drops were purified in an evacuated quartz tube by heating them at ∼750°C, below the 

boiling point of Zn (907°C). Cerium and lanthanum ingots were mechanically surface 

cleaned before use. 

Samples for ternary phase analysis were prepared from intimate blends of powders of 

arc melted master alloys CeSix (varius x; powdered under cyclohexane) and fine Zn-

filings in proper compositional ratios. These blends were cold compacted in a steel die 

without lubricants, vacuum-sealed in quartz tubes, heated from 420°C to 800°C at the 

rate of 1°C/min and then annealed at his temperature for 4 days. After water 

quenching the samples were re-powderized under cyclohexane in order to ensure 

homogeneity. The samples were once again cold compacted and annealed at 800°C 

for 7 days and subsequently water quenched. Ce-Ni-Si samples have been prepared by 

direct arc melting of the elements in an Ar atmosphere on a water-cooled Cu hearth 

and were then subjected to annealing at 800°C after sealing in quartz tubes under 

vacuum. Polycrystalline quaternary samples {La,Ce}(Ni1-xZnx)2Si2 were prepared 

from intimate blends of powders of arc melted master alloys {La,Ce}NixSi2 and fine 

Zn-filings in proper compositional ratios. The cold compacts were treated as 

described above, but annealed for 7 days prior to quenching in cold water. 

X-ray powder diffraction data were collected from each alloy in as cast and annealed 

state employing a Guinier-Huber image plate system with monochromatic CuKα1 

radiation (8º<2θ<100º). Precise lattice parameters were calculated by least squares fits 

to the indexed 2θ values calibrated with Ge as internal standard (aGe =0.565791 nm). 

Quantitative Rietveld refinements of the X-ray powder diffraction data were 

performed with the FULLPROF program [6].  

Single crystals were picked either from crushed reguli or from the residue of the flux 

syntheses. Quaternary single crystals were grown from Zn flux starting from a cold 
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compacted pellet (Ce2Ni4Si8 + Zn-filings = Ce2Ni4Si8Zn86 (in at. %)), which was 

heated to 900 °C at the rate of 1°C/min and then cooled to 800°C at the same rate. 

After annealing for 4 days at this temperature the sample was subsequently quenched 

in water and then boiled with 15% aqueous solution of HCl in a water bath in order to 

dissolve the extra Zn. Crystals were washed many times with distilled water and 

dried. Inspections on an AXS-GADDS texture goniometer assured high crystal 

quality, unit cell dimensions and Laue symmetry of the specimens prior to the X-ray 

intensity data collections on a four-circle Nonius Kappa diffractometer equipped with 

a CCD area detector employing graphite monochromated MoKα radiation 

(λ=0.071069 nm). Orientation matrices and unit cell parameters were derived using 

the program DENZO [7]. No special absorption corrections were performed because 

of the rather regular crystal shapes and small dimensions of the investigated 

specimens. The structures were solved by direct methods and were refined with the 

SHELXL-97 program [8, 9] within the Windows version WINGX [10]. 

After reaction during annealing the samples had almost powder-like consistency, too 

soft to be polished by standard procedures. This problem was overcome by casting the 

sample powder along with conducting glue into a cylindrical mould of ~5mm 

diameter. After hardening several of the powder cylinders were hot compacted in 

conductive resin and were ground and polished under glycerin instead of water in 

order to avoid oxidation of the samples. Microstructures and compositions were 

examined by light optical microscopy (LOM) and scanning electron microscopy 

(SEM) via Electron Probe Micro-Analyses (EPMA) on a Zeiss Supra 55 VP equipped 

with an EDX system operated at 20 kV.  
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9.3. Results and Discussion. 

9.3.1. Binary Boundary Systems 

The binary system Ce-Zn was recently reinvestigated by the authors [11]. The latest 

experimentally established phase diagram of the system Ce-Si was reported by 

Bulanova et al. [12]. Additional phases, however, have been described such as Ce2Si3-

x, x=0.3 [13] and the high-pressure phases CeSi5 and Ce2Si7 [14]. The Zn-Si system 

(degenerate eutectic) was taken from [15]. All crystal data relevant to the unary and 

binary boundary phases in the Ce-Zn-Si system are compiled in Table 1.  

 

9.3.2. The System Ce-Zn-Si 

9.3.2.1. Structural Chemistry  

9.3.2.1.1. The crystal structure of a novel cerium zinc silicide Ce7Zn21(Zn1-xSix)2, 

x=0.28 

A single crystal of prismatic shape was selected from the crushed regulus with 

nominal composition Ce25Zn60Si15 (in at.%). The X-ray diffraction pattern of the 

single crystal was fully indexed with orthorhombic symmetry (a=1.55722(3), 

b=1.71942(3), c=0.44772(1) nm). Systematic absences for h0l, h=2n+1, 0kl, k=2n+1 

proved consistency with the space group types Pbam and Pba2. Direct methods 

employing the centrosymmetric space group: Pbam yielded an atom arrangement of 

12 Zn atoms of which one showed smaller electron density due to a possibly partial 

occupation by Si atoms. Results of the refinement for the new structure type 

Ce7Zn21(Zn1-xSix)2 (x=0.28), which converged to RF 2 =0.029 with anisotropic atom 

displacement parameters (ADPs) and with residual electron densities smaller than 

±3.02e-/Å3, are summarized in Tables 2, 3 including interatomic distances. The 

residual electron density peak appears in the structure as a ripple near the heavy Ce-
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atom at a distance 0.60 Å. With the Zn/Si-substitution in one site, the composition 

calculated from the refinement (Ce23.3Zn74.8Si1.9 in at.%) is in good agreement with 

the composition Ce24.1Zn73Si2.9 found from EPMA.  

 
 
Figure 1. The crystal structure of Ce7Zn21(Zn1-xSix)2 (x=0.28) projected on the ab 

plane and the relationship with the structure of La3Al11 as well as the structural units 

AuCu3 and BaAl4. Atoms are presented with anisotropic atom displacement 

parameters from single crystal refinement. 

 

The structure of Ce7Zn21(Zn1-xSix)2 is shown in Fig. 1 in a projection on the ab plane. 

Coordination polyhedra of all atoms are presented in Fig. 2. The nearest neighbor 

shells around Ce-atoms are essentially formed by Zn-atoms and comprise a total of 17 

or 16 atoms, respectively (for details see Fig. 2). Coordination polyhedra for the Zn-

atoms are made up of 9 or 12 atoms, among which Zn atoms in almost all cases 

occupy more than 50% of the vertices. The structure of Ce7Zn21(Zn1-xSix)2 can be 

considered as an arrangement of slightly distorted building blocks of Cu3Au-type 
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(Zn1[Ce4Zn8]) and BaAl4-type (Ce3[Ce2Zn10M4] and Ce4[Ce2Zn13M2]. The 

arrangement of these building blocks is a zig-zag string of face-connected 

units…Cu3Au-BaAl4-BaAl4-BaAl4-Cu3Au… running parallel to the b-axis. A simpler 

and linear arrangement of more regular face-connected units …Cu3Au-BaAl4-

Cu3Au… is known from the closely related structure type of La3Al11 [16] (see Fig. 1).  

Interatomic distances in the Ce-polyhedra are consistent with the sum of metal radii of 

Ce and Zn (dCe-Zn= 0.316 nm) except for Ce2, Ce3 and Ce4 polyhedra, which are 

capped by two Ce atoms each at a long distance of 0.411 nm from the central atom. 

For the polyhedra around the Zn-atoms we found Zn-Zn and Ce-Zn distances in the 

range of 0.2526-0.2975 nm and 0.3113-0.3385 nm, respectively, whereas the actual 

sum of atomic radii [17] for Zn-Zn and Ce-Zn is 0.278 nm and 0.322 nm. Rietveld 

refinements of the X-ray powder spectra for the phase Ce7Zn21(Zn1-xSix)2 confirmed 

the atom arrangement and the mixed Zn/Si-site (4g-site; M-site in Table 2), which at 

the Si-rich end of the homogeneity range, Ce7Zn21(Zn1-xSix)2, 0.28<x<0.98, leads to 

an almost complete replacement of Zn by Si atoms. As only a small amount of about 

2 at.% Si is necessary to stabilize the compound Ce7Zn21(Zn1-xSix)2 at 800°C, we can 

conclude on a small degree of instability for a hypothetical binary phase “Ce7Zn23”. 
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Figure 2. Coordination polyhedra for the independent crystallographic sites in 

Ce7Zn21(Zn1-xSix)2. 

 

Stabilization of a corresponding phase La7Zn21(Zn1-xSix)2 has also been attempted in 

the system La-Zn-Si. XPD in combination with EPM analysis of the alloy with 

composition La23Zn73Si4 (at. %) annealed at 800°C revealed the phase La7Zn21(Zn1-

xSix)2 (x=0.41) suggesting isotypic with the structure type of Ce7Zn21(Zn1-xSix)2 

(La23.7Zn73.5Si2.8 (at. %); Pbam; a=1.569(1) nm, b=1.7311(6) nm, c=0.4514(1) nm). 
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9.3.2.1.2.The crystal structure of Ce(ZnxSi1-x)2, x=0.44, with AlB2-type 

A single crystal suitable for X-ray structure analysis was selected from a crushed 

sample with nominal composition Ce33Zn27Si40 (in at. %). Complete indexation of the 

hexagonal diffraction pattern (a=0.41827(2) nm, c=0.42747(2) nm) and analysis of 

systematic extinctions led to the space group types P6/mmm, mP 26 , 26mP , P622, 

P6/m, 6P  and P6. Refinement in the highest symmetry space group P6/mmm quickly 

converged to the formula Ce(ZnxSi1-x)2 x=0.44 with =2F
R 0.009 and residual electron 

densities smaller than ±1.84e-/Å3 with a fully occupied Ce site and a mixed 2d site for 

Zn and Si with occupancies 44% and 56%, respectively. The phase has been 

confirmed by X-ray powder diffraction and EPMA with a large homogeneity range at 

800°C, Ce(ZnxSi1-x)2, 0.41<x<0.75. Crystal data along with the ADPs are summarized 

in Table 4. Unit cell, crystal symmetry and atom positions confirm isotypism with the 

AlB2 type. XPD and EPM analyses of the alloy, La33Zn42Si25 (at. %) annealed at 

800°C suggest corresponding La(ZnxSi1-x)2, x=0.56, to be an isostructural compound 

in equilibrium with La(Zn0.95Si0.05)2, CeCu2-type. Crystal structure data for La(ZnxSi1-

x)2, x=0.56 are presented in Table 4 and Rietveld refinement data are given in Fig. 3.  
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Figure 3. Rietveld refinement of the XPD pattern of the alloy La33Zn42Si25 (at. %), 

annealed at 800°C. The main phase is La(Zn1-xSix)2, x=0.42, AlB2–type. The 

secondary phase is La(Zn0.95Si0.05)2, CeCu2-type. 

 

9.3.2.2. The system Ce-Zn-Si: isothermal section at 800°C 

About sixty samples have been analyzed by electron microprobe analysis and x-ray 

powder diffraction in order to establish the isothermal phase equilibria for the system 

Ce-Zn-Si at 800°C shown in Fig. 4. Data for tie-lines and the vertices of three-phase 

triangles have been summarized in Table 5 for selected alloys. The system is 

characterized by the presence of 4 ternary compounds, most of which form extended 

homogeneity regions: τ1-Ce7Zn21(Zn1-xSix)2, 0.28<x<0.98, τ2-Ce(ZnxSi1-x)2, 

0.36<x<0.75, τ3-Ce(ZnxSi1-x), 0.17<x<0.23, and τ4-Ce40Zn37Si23 (in at. %). Whereas 

solubility of Si in cerium zinc phases CeZnx is negligible for x>2, and in general less 

than a few percent of Zn can dissolve in cerium silicides (for details see Fig.5 and 
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Table 5), the section CeSi2 – CeZn2 contains a series of compounds with extensive 

Zn/Si substitution at a constant Ce-content. 

 
Figure 4. System Ce-Zn-Si; isothermal section at 800°C.The ternary phases τ5 only 

exists at lower temperature; its homogeneity region at 600°C is outlined. 

 

The sequence of the structurally closely related structure types of αThSi2-type 

(Ce(ZnxSi1-x)2; 0<x<0.32) , AlB2-type (τ2-Ce(ZnxSi1-x)2; 0.36<x<0.75) and CeCu2-

type (Ce(ZnxSi1-x)2; 0<x<0.07) is well known for many ternary systems such as Ce-

Cu-Si [18, 19], Ce-Ag-Si [20] or Ce-Ag-Ge [21]. Fig. 5 shows the volume/per atom 

versus Zn-content along the section CeSi2-CeZn2. Whereas the structure types of 

αThSi2 and AlB2 are closely related by an atom shift and thus yield a linear and 



 164

monotonic increase of the average volume per atom with increasing Zn-content, the 

drop in the volume/atom for Ce(Zn1-xSix)2 with CeCu2-type indicates a change in bond 

type and a better space filling in the latter phase. 

 

Figure 5. Volume per atom vs. Zn-content in Ce(ZnxSi1-x)x phases along the section 

CeSi2 - CeZn2. 

 

A series of three-phase equilibria at 800°C such as τ1+Ce3Zn11+Ce13Zn58 (Fig. 6a), 

Ce2Zn17+CeSi2+Ce3Zn22 (Fig. 6b) and τ1+CeZn5+τ2 (Fig. 6c) are presented in the 

respective micrographs and their related lattice parameters and qualitative EPM 

analysis data are summarized in Table 5. EPMA and XPD confirm for the alloy with 

composition Ce35Zn58Si7 the phase equilibrium Ce(Zn1-xSix)2 + Ce3(ZnxSi1-x)2 (see 

micrograph 6d and Table 5): for this tie-line we are sure about the presence of Ce(Zn1-

xSix)2 (x=0.07) with CeCu2-type structure. 
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Narrow phase triangles Ce(Zn1-xSix)2+Ce3(ZnxSi1-x)2+ τ4 (see Fig. 6e), Ce3(ZnxSi1-

x)2+Ce5(ZnxSi1-x)4+τ4 and τ3+τ4+ τ2 have been observed from the samples 

Ce50Zn22Si28, Ce52Zn32Si16 and Ce37Zn40Si23 (at. %), respectively. XPD was not able 

to unambiguously determine the structure for the Ce(Zn1-xSix)2 phase (CeCu2- or 

AlB2-type ?) for which EPMA defined the composition Ce50Zn22Si28 (at. %) (see 

micrograph Fig. 6e); therefore the Si-rich region of the Ce(Zn1-xSix)2 phase is shown 

by a dashed line in Fig. 5. The phase τ3 forms a two-phase equilibrium with CeSi and 

ranges from 8 to 11 at. % Zn at 50 at.% Ce. For Ce2Si2.7 and CeSi2 with αGdSi2-type 

a rather small solubility of Zn is suggested, as these phases did not appear in alloys 

with Zn-contents above 5 at.% Zn. The sample with composition Ce18Zn58Si24 (in at. 

%), annealed at 800°C mainly showed the αThSi2–type phase Ce(ZnxSi1-x)2 with 

small grains of a novel phase τ5 formed during quenching (see micrograph Fig 6f). 

EPM analysis indicated a composition Ce25.3Zn40.8Si33.9 (in at. %) for the τ5 phase. 

Although τ5 is not present in alloys annealed at 800°C, the amount of τ5 significantly 

increased after annealing at 600°C. From alloys Ce11Zn82Si7 and Ce25Zn42Si33 (in at. 

%, annealed at 600°C) a homogeneity range was defined by EPMA: Ce25Zn41.2-

37.1Si33.8-38 (at. %) suggesting a formula Ce(Zn1-xSix)3. 
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Figure 6. Selected micrographs for Ce-Zn-Si samples annealed at 800°C a) Ce22Zn76Si2, b) 
Ce25Zn48Si26, c) Ce22Zn72Si6 d) Ce35Zn58Si7, e) Ce50Zn22Si28 and f) Ce18Zn58Si24 (all 
compositions given in at. %). 
 
9.3.3. The isopleths La(Ni1-xZnx)2Si2 and Ce(Ni1-xZnx)2Si2 
 
CeNi2Si2 has been reported by Bodak and coworkers [22] to crystallize with the 

ThCr2Si2-type. The same group of authors [23, 24, 25] showed this phase at a point 

composition in the Ce-Ni-Si isothermal section at 800°C. Our re-inspection of alloys 

with compositions Ce20Ni40Si40 and La20Ni40Si40 (at. %; both as cast and annealed at 

800°C for 4 days) by means of X-ray powder and EPMA proved consistency with the 

body-centered tetragonal ThCr2Si2-type. Rietveld refinement data for both compounds 

are summarized in Table 6. Although the 800°C section Ce-Ni-Si showed the 

ThCr2Si2-phase in equilibrium with CeNi~4Si (structure unknown), XPD and EPMA 

analysis of an as cast sample Ce20Ni60Si20 (at. %) revealed a new phase Ce20Ni46.6Si33.4 
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with identical unit cell but with a primitive tetragonal pattern, suggesting the 

CaBe2Ge2-type.  
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Figure 7. Unit cell parameters vs. Zn-content in the phases {La,Ce}[Ni1-xZnx]2Si2 

revealing the transition from body centered to primitive symmetry as a consequence 

of Ni/Zn substitution (compositions from EPMA). 
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9.3.3.1. The crystal structure of CeNi2(NixSi1-x)2, x=0.14 with CaBe2Ge2–type 

The X-ray intensity pattern of a single crystal, extracted from an arc-melted alloy 

Ce20Ni60Si20, was fully indexed on the basis of a primitive tetragonal unit cell (a= 

0.40150(2) and c=0.95210(2) nm). Systematic extinctions were consistent with space 

group type P4/nmm for the highest crystal symmetry. Direct methods prompted Ce, 

Ni, Si atoms in positions typical for the CaBe2Ge2–type. Refinement with anisotropic 

atom displacement parameters (ADPs) converged to =2F
R 0.011 and residual 

electron densities smaller than ±0.82 e-/Å3 with fully occupied metal sites but for a 

statistical occupation of 0.72Ni+0.28Si in site 2a of P4/nmm. Thus, a structure 

formula CeNi2(NixSi1-x)2, x=0.14, results, which corresponds to a composition 

Ce20Ni46.6Si33.4 close to the ThCr2Si2-type phase, but in between CeNi2Si2+CeNi4Si. 

Crystal data for CeNi2(NixSi1-x)2 along with the ADPs have been summarized in Table 

6.  

Combined XPD and EPMA defined the homogeneity range for the CaBe2Ge2-type 

phase at 800°C as CeNi2(Ni1+xSi1-x)2, 0.14<x<0.5, whilst the homogeneity range for 

the ThCr2Si2-type phase extends at lower Ni-concentrations around the stoichiometric 

composition 1:2:2, i.e. for -0.13<x<0.14. Obviously the substitution of Ni by Si in the 

2a site results in a structural change from a body centered to a primitive atom 

arrangement in terms of a group-subgroup relation. 

 
9.3.3.2. The crystal structure of Ce(Ni1-xZnx)2Si2, x=0.39  

From the phase relations in the isothermal section Ce-Zn-Si at 800°C it is obvious that no 

ThCr2Si2 type phase forms. In order to explore the maximal substitution of Ni by Zn, the 

section Ce(Ni1-xZnx)2Si2 was studied starting from stoichiometric CeNi2Si2 with ThCr2Si2-

type. In single-phase alloys Ce(Ni1-xZnx)2Si2, annealed at 800°C, the crystal structure 

remains body centered up to a Zn-content of x=0.15. For higher Zn-contents additional but 
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weak reflections start to appear in the X-ray powder spectra, which are clearly visible in 

the range 0.22<x<0.55 and could be all indexed on a primitive unit cell. At Zn-

concentrations x>0.55 the X-ray spectra get multiphase indicating that the solubility limit 

has been reached. All Zn-contents were obtained from EPMA data in combination with X-

ray powder data analyses. As seen from Fig. 7, Zn addition is linearly associated with an 

increase in lattice parameters, c/a ratio and volume of the unit cell. 

In order to get details on the primitive unit cell a single crystal has been selected from the 

flux residuals of an alloy with composition Ce2Ni4Si8Zn86 (at.%), slowly cooled from 900°C. 

A SEM analysis performed directly on the crystals separated out of the flux (shown in Fig. 

8), defined the composition as Ce19Ni25Zn16Si41 (at. %).  

 
 
Figure 8. Rietveld refinement of the alloy with composition Ce20Ni20Zn20Si40 at.% showing 

Ce(Ni1-xZnx)2Si2 with CaBe2Ge2-type (space group P4/nmm) and the micrograph of the 

single crystal obtained from Zn flux (from sample Ce2Ni4Si8Zn86). 

 

Unit cell, systematic extinctions (indicating P4/nmm as the space group type of highest 

symmetry) as well as the X-ray intensity pattern confirmed a structure solution in terms of 

the CaBe2Ge2-type. Refinement converged to RF
2= 0.012 and residual electron densities less 
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then ±0.96 electrons/Å3 for three metal and two Si positions with a Wyckoff sequence abc3. 

Fixing the Ni/Zn-ratio from the EPMA resulted in the structure formula Ce(Ni1-xZnx)2Si2, 

x=0.39 (i.e. Ce20Ni24.4Zn15.6Si40). It should be mentioned, however, that six reflections; 

violated the space group extinction rules: (010), (210), (210), (3 2 0), (320) and (340). In 

comparison to the highest intensity observed (∼12000), the (210), (210), (3 2 0), (320) 

reflection intensities are below 2 and can be disregarded, whereas the (010) intensity (below 

7) may stem from a ‘Renninger enhancement’ effect. Crystal data for Ce(Ni1-xZnx)2Si2, 

x=0.39, with the CaBe2Ge2-type along with the ADPs are summarized in Table 7; 

coordination polyhedra for all atom sites and a three-dimensional view on the crystal 

structure are presented in Fig. 9. In analogy to the Ce-section phase relations have also been 

explored for the isopleth La(Ni1-xZnx)2Si2 (see Fig. 7). Combined EPM and X-ray powder 

intensity data analyses revealed a solid solution with the ThCr2Si2-type for 0<x<0.15, 

followed by a change to a primitive tetragonal symmetry typical for the CaBe2Ge2-type for 

0.2<x<0.56. The solid solution terminates at x=0.56 as for higher Zn-concentrations 

multiphase X-ray spectra were observed. Rietveld refinement data for La(Ni0.56Zn0.44)2Si2 

are summarized in Table 7 and Figure 10. 
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Figure 9. The crystal structure and coordination polyhedra of Ce(Ni1-xZnx)2Si2, x=0.39. 

 
Figure 10. Rietveld refinement of single phase La(Ni1-xZnx)2Si2; x=0.44 (CaBe2Ge2-type, 

space group P4/nmm) from the alloy with composition La20Ni20Zn20Si40 (at.%), annealed 

at 800°C. 
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9.4. Conclusions  

With EDX electron microprobe analysis and x-ray powder diffraction we have derived the 

isothermal section for the system Ce-Zn-Si at 800°C. The section is characterized by the 

presence of four ternary compounds in some cases with extended homogeneity regions at 

constant Ce-content (Zn/Si exchange). Extended solid solutions along the section CeSi2-

CeZn2 form a structurally related sequence of structure types: Ce(ZnxSi1-x)2, 0<x<0.32 

(αThSi2-type), τ2- Ce(ZnxSi1-x)2, 0.36<x<0.75 (AlΒ2-type) and Ce(Zn1-xSix)2, 0<x<0.07 

(CeCu2-type). Silicon stabilizes the ternary compound τ1-Ce7Zn21(Zn1-xSix)2, 0.28<x<0.98, 

for which the crystal structure has been derived from X-ray single crystal diffraction data 

(Ce7Zn21(Zn1-xSix)2, x=0.28; unique structure type, Pbam; a=1.55722(3) nm, b=1.71942(3) 

nm, c= 0.44772(1) nm). Lanthanum forms a compound La7Zn21(Zn1-xSix)2 at x=0.41 

(assumed Ce7Zn21(Zn1-xSix)2-type; Pbam; a=1.569(1) nm, b=1.7311(6) nm, c=0.4514(1) 

nm). The structure types of the two ternary compounds existing at 800°C: τ3-Ce(ZnxSi1-x), 

0.17<x<0.23 and τ4- Ce40Zn37Si23 at. % are still unknown. Although the ternary systems 

{La,Ce}-Zn-Si at 800°C do not contain a compound “{La, Ce}Zn2Si2”, solid solutions exist 

starting from CeNi2Si2 on substitution of Ni by Zn. Combined XPD and EPMA defined the 

homogeneity range at 800°C {La,Ce}(Ni1-xZnx)2Si2 with a maximum Zn-content of x=0.55. 

The crystal structure remains body centered up to a Zn-content of x=0.15. For higher Zn-

contents additional but weak reflections start to appear in the X-ray powder spectra, which 

are clearly visible in the range 0.22<x<0.55 and could be all indexed on a primitive unit 

cell. Obviously the substitution of Ni by Zn in the 2a site results in a structural change from 

a body centered to a primitive atom arrangement in terms of a group-subgroup relation. The 

symmetry reduction is documented by single crystal X-ray diffraction data for 

Ce(Ni0.61Zn0.39)2Si2 (CaB2Ge2-type; P4/nmm; a=0.41022(1) nm, c=0.98146(4) nm). 

Α compound τ5, stable below 800°C, has been observed with a considerable homogeneity 
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region at 600°C: Ce25Zn41.2-37.1Si33.8-38 (at. %). As a characteristic of the solid solutions with 

CaBe2Ge2-type Ni/Si and Ni/Zn substitutions appear in 2a site.  
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Table 1. Crystallographic data of unary and binary boundary solid phases of the system Ce–
Zn–Si 

Lattice parameters (nm) Phase, Temperature 
range (ºC) 

Space group, 
Prototype a b c 

Comments 

(δCe) mIm3   0.412 - - [15] 
798-700 [15] W  - - - 
(γCe) mFm3  0.51610 - - [15] 

<726 [15] Cu  - -  
(Zn) P63/mmc 0.2665 - 0.4947 [15] 
<420   -  - 
(Si) mFd 3  0.543110 - - [26] 
<1414°C C (Diamond)  - - - 
CeSi2 Imma  - 0.4109(1) Ce37.4Si62.6

a [12] 
<1725°C [12] α GdSi2  -   
CeSi2 I41/amd O2 0.4192(1) - 1.3913(5) Ce33.3Si66.7

a [12] 
∼1575°C [12] α ThSi2 - - - (0≤x≤0.32) [This work] 
   Ce(ZnxSi1-x)2 - 0.4201(1)  1.4312(7) x=0.32 [This work]  
CeSi Pnma  - 0.3961(2) Ce49.9Si50.1

a [12] 
<1630°C [12] FeB  -   
Ce5Si4 P41212 0.7936(1) - 1.5029(5) Ce55.6Si44.4

a [12] 
<1500°C [12] Zr5Si4  -   
Ce3Si2 P4/mbm 0.7780(6) - 0.4367(6) [12] 
<1335°C [12] U3Si2  -   
Ce5Si3 I4/mcm 0.7878(4) - 1.067(1) [12] 

<1260°C [12] Cr5B3 - - - - 
Ce2Si3-x Cmcm - 2.48389 0.39517 x=0.3 [13] 
 V2B3 - - - - 
CeSi5 Immm - 0.60189(4) 0.92979(6) [14] 
<827°C LaGe5 -   high pressure phase; 10GPa 

Ce2Si7 Cmmm - 0.99644(7) 0.44868(4) [14] 
<1127°C Ce2Si7 - - - high pressure phase; 10GPa 

CeZn mPm3  0.3704(1) - - [27] 
<825 [15] CsCl 0.37059(2) - - [11] 
CeZn2 Immm 0.4633(5) 0.7538(5) 0.7499(5) [27] 
<875 [15] CeCu2 0.46393(8) 0.7544(1) 0.7506(1) [11] 
   Ce(Zn1-xSix)2     (0<x<0.07) [This work] 
  0.46119(3) 0.7551(4) 0.754(4) x=0.07 [This work] 
CeZn3 Cmcm  0.4620(5) 1.0440(5) 0.6640(5) [27] 

<820 [15] CeZn3 0.46324(5) 1.0452(1) 0.66557(6) [11] 

Ce3Zn11 Immm 0.45215 0.88855 1.3463 [27] 
<840 [15] La3Al11 0.45242(2) 0.88942(3) 1.34754(4) SC [11] 
Ce13Zn58 P63/mmc 1.4638(1) - 1.4158(1) [28] 
<870 [15] Gd13Zn58 1.4616(1) - 1.4173(1) [11] 
CeZn5 P6/mmm 0.54163(5) - 0.42647(5) [27] 
<885 [15] CaCu5 0.54082(1) - 0.42798(1) [11] 
CeZn5+y  0.54163(5) - 0.42647(5) 0.017≤y≤0.046 <885°C [29] 
Ce3Zn22 I41/amd 0.897(1) - 2.133(5) [30] 
<960 [15] Ce3Zn22 0.8936(2) - 2.1380(5) SC [11] 
β Ce2Zn17 mR3  

0.9090(5) - 1.32844(7) [27] 
<980 [15] Th2Zn17  -   
980-~750 [11]  0.90916(4) - 1.32861(1) [11] 
α Ce2Zn17 P63/mmc 0.9088(4) - 0.8856(5) [31] 
αCe1+xZn5+2x TbCu7 0.52402(2)  - 0.44257(1) x=0.33 [11] 
<~750 [11] - - - - - 
CeZn11 I41/amd 1.0658(6) - 0.6862(8) [32] 
<795 [15] BaCd11 1.06630(1) - 0.686644(7) [11] 
τ1-Ce7Zn21(Zn1-xSix)2  Pbam  1.71942(3)  0.44772(1)  x=0.28 [This work] SC 
 Ce7Zn21(Zn1-xSix)2 -   (0.28<x<0.98) [This work] 
τ2-Ce(Zn1-xSix)2 P6/mmm 0.4223 - 0.4238 [5] 
- AlB2 0.41827(2)  - 0.42747(2)  [This work] SC at x=0.56 
- -  -  (0.36≤x<0.75) [This work] 
- - 0.41315(7) - 0.4295(2) x=0.36 [This work] 
- - 0.4416(1) - 0.3929(1) x=0.75 [This work] 
τ3-Ce(ZnxSi1-x) unknown - - - (0.17<x<0.23) [This work] 
τ4- Ce40Zn37Si23 unknown - - - at. % [This work] 
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τ5- Ce25.3Zn40.8Si33.9 unknown - - - at. %, stable < 800°C  
[This work] 

a composition reported [12]  

b Quenching temperature of samples while the lattice parameters are measured at room temperature. 
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Table 2. X-ray single crystal dataa,b for Ce7Zn21(Zn1-xSix)2, x=0.28 (MoKα radiation) 
Compound Ce7Zn21(Zn1-xSix)2, x=0.28 
EPMA composition [at. %] Ce24.1Zn73Si2.93 
Refinement composition [at. %] Ce23.3Zn74.8Si1.9 
Structure type Ce7Zn21(Zn1-xSix)2 
θ  Range [deg] 2.37 < θ < 36.24 
Space group Pbam; No. 55 
Crystal size  35x40x35 
a [nm] 1.55722(3) 
b [nm] 1.71942(3) 
c [nm] 0.44772(1) 
Reflections in refinement 2414 Fo > 4σ(Fo) of 3119 
Mosaicity  0.55 
Number of variables 102 
RF

2 = Σ|F0
2-Fc

2|/ΣF0
2 0.029 

RInt  0.066 
GOF 1.018 
Extinction (Zachariasen) 0.00011(6)  
Ce1 in 2b (0,0, ½); Occ. 1.00(1) 
U11

b; U22; U33; U23=U13=0; U12 0.0142(2); 0.0217(2); 0.0146(2); -0.0048(2) 
Ce2 in 4g (x, y, 0); Occ. x=0.16411(2), y=0.45496(2); 1.00(1) 
U11

b; U22; U33; U23=U13=0; U12 0.0112(1); 0.0119(1); 0.0088(1); 0.0005(1) 
Ce3 in 4h (x, y, ½); Occ. x=0.16711(2), y=0.18202(2);1.00(1)  
U11

b; U22; U33; U23=U13=0; U12 0.0116(1); 0.0113(1); 0.0091(1); 0.0005(1) 
Ce4 in 4h (x, y, ½); Occ. x=0.41764(2), y=0.25774(2);1.00(1)  
U11

b; U22; U33; U23=U13=0; U12 0.0114(2); 0.0280(2); 0.0146(2); -0.0023(1) 
Zn1 in 2d (0, ½, ½); Occ. 1.00(1) 
U11

b; U22; U33; U23=U13=0; U12 0.0159(5); 0.0219(5); 0.0181(5); 0.0010(4) 
Zn2 in 4g (x, y, 0); Occ. x=0.15113(5), y=0.05238(4); 1.00(1) 
U11

b; U22; U33; U23=U13=0; U12 0.0157(3); 0.0131(3); 0.0119(3); 0.0022(2) 
Zn3 in 4g (x, y, 0); Occ. x=0.46676(4), y=0.09813(4); 1.00(1) 
U11

b; U22; U33; U23=U13=0; U12 0.0117(3); 0.0201(3); 0.0187(3); -0.0026(3) 
Zn4 in 4h (x, y, ½); Occ. x=0.35208(5), y=0.08045(4);1.00(1)  
U11

b; U22; U33; U23=U13=0; U12 0.0255(4); 0.0166(3); 0.0122(3); 0.0031(3) 
Zn5 in 4g (x, y, 0); Occ. x=0.25777(5), y=0.28255(4); 1.00(1) 
U11

b; U22; U33; U23=U13=0; U12 0.0168(3); 0.0116(3); 0.0112(3); 0.00001(23) 
Zn6 in 4g (x, y, 0); Occ. x=0.07430(5), y=0.28324(4); 1.00(1) 
U11

b; U22; U33; U23=U13=0; U12 0.0163(3); 0.0119(3); 0.0125(3); 0.0008(2) 
Zn7 in 4h (x, y, ½); Occ. x=0.29902(5), y=0.49551(4);1.00(1)  
U11

b; U22; U33; U23=U13=0; U12 0.0174(4); 0.0238(3); 0.0118(3); -0.0078(3) 
Zn8 in 4h (x, y, ½); Occ. x=0.07423(5), y=0.35896(4);1.00(1)  
U11

b; U22; U33; U23=U13=0; U12 0.0250(4); 0.0169(3); 0.0116(3); -0.0042(3) 
Zn10 in 4g (x, y, 0); Occ. x=0.36494(5), y=0.40099(4); 1.00(1) 
U11

b; U22; U33; U23=U13=0; U12 0.0124(3); 0.0139(3); 0.0243(3); 0.0006(2) 
Zn11 in 4g (x, y, 0); Occ. x=0.30487(5), y=0.14196(4); 1.00(1) 
U11

b; U22; U33; U23=U13=0; U12 0.0153(3); 0.0146(3); 0.0125(3); 0.0035(2) 
Zn12 in 4h (x, y, ½); Occ. x=0.24993(6), y=0.35461(4);1.00(1)  
U11

b; U22; U33; U23=U13=0; U12 0.0272(4); 0.0147(3); 0.0122(3); 0.0060(3) 
M in 4g (x, y, 0); x=0.02066(6), y=0.14166(5); 
Occ. 0.72(1) Zn9+0.28 Si1 
U11

b; U22; U33; U23=U13=0; U12 0.0119(4); 0.0139(4); 0.0210(4); -0.0000(3) 
Residual electron density; max; 
min in [electrons/nm3] x103 

3.02; -2.27 

acrystal structure data are standardized using the program Structure Tidy [33]. 
banisotropic atomic displacement parameters Uij in [102 nm2].
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Table 3. Interatomic distances for Ce7Zn21(Zn1-xSix)2, x=0.28.  
Bonds Distance (nm) Bonds Distance (nm) Bonds Distance (nm) 
Ce1 –  2Zn7 0.31307(8) Zn2 –   M 0.25464(12) Zn8 – 2Zn6 0.25897(5) 
Ce1 –  4M 0.3238(6) Zn2 – 2Zn7 0.25632(5) Zn8 –   Zn1 0.26865(7) 
Ce1 –  4Zn2 0.33706(6) Zn2 –   Zn10 0.26150(10) Zn8 –   Zn12 0.27371(11) 
Ce1 –  4Zn10 0.35118(6) Zn2 –   Zn11 0.28468(11) Zn8 – 2Zn3 0.28908(6) 
Ce1 –  4Ce2 0.40702(3) Zn2 – 2Ce2 0.31689(5) Zn8 – 2Ce1 0.31137(6) 
  Zn2 –   Ce1 0.33292(8) Zn8 –   Ce4 0.31579(8) 
Ce2 – 2Zn8 0.31137(6) Zn2 – 2Ce3 0.33706(6) Zn8 –   Ce2 0.33686(8) 
Ce2 – 2Zn4 0.31194(5)     
Ce2 – 2Zn12 0.31264(6) Zn3 –   Zn11 0.26312(10) Zn10 –   M 0.25334(12) 
Ce2 – 2Zn7 0.31482(6) Zn3 –   Zn6 0.26391(10) Zn10 –   Zn2 0.26150(10) 
Ce2 –   Zn3 0.31958(7) Zn3 –  2Zn1 0.28506(4) Zn10 –   Zn5 0.26329(10) 
Ce2 –   Zn3 0.32059(7) Zn3 –  2Zn4 0.28797(6) Zn10–  2Zn7  0.29507(7) 
Ce2 –   Zn11 0.32514(8) Zn3 –  2Zn8 0.28908(6) Zn10–  2Zn12 0.29757(7) 
Ce2 –   Zn10 0.32621(8) Zn3 –    Ce1 0.31958(7) Zn10 –   Ce1 0.32621(8) 
Ce2 –   Zn6 0.32671(8) Zn3 –    Ce1 0.32059(7) Zn10 – 2Ce4 0.34281(6) 
Ce2 –   Zn5 0.33038(8)   Zn10 – 2Ce3 0.35118(6) 
Ce2 –   Zn2 0.33292(7) Zn4 – 2Zn11 0.25827(5)   
Ce2 – 2Zn1 0.34845(3) Zn4 –   Zn1 0.26869(8) Zn11 –   Zn5 0.25262(10) 
  Zn4 –   Zn7 0.27694(11) Zn11 –  2Zn4 0.25827(5) 
Ce3 – 2Zn5 0.31611(6) Zn4 – 2Zn3 0.28797(6) Zn11–   Zn3 0.25827(5) 
Ce3 – 2Zn2 0.31689(5) Zn4 – 2Ce1 0.31194(5) Zn11–   Zn2 0.28468(11) 
Ce3 – 2Zn11 0.31761(6) Zn4 –   Ce4 0.32148(8) Zn11 – 2Ce2 0.31761(6) 
Ce3 – 2Zn6 0.31826(6) Zn4 –   Ce2 0.336858) Zn11–   Ce1 0.32514(8) 
Ce3 –   Zn12 0.32357(8)   Zn11– 2Ce4 0.34725(6) 
Ce3 –   Zn7 0.32500(8) Zn5 –   Zn11 0.25262(10)   
Ce3 – 2M 0.32701(7) Zn5 – 2Zn12 0.25615(5) Zn12 –   Zn7 0.25404(10) 
Ce3 –   Zn4 0.33685(8) Zn5 –   Zn10 0.26329(10) Zn12 – 2Zn5 0.25615(5) 
Ce3 –   Zn8 0.33686(8) Zn5 –   Zn6 0.28571(11) Zn12 –   Zn8 0.27371(11) 
Ce3 –   Ce4 0.40205(5) Zn5 – 2Ce2 0.31611(6) Zn12 – 2Zn10 0.29757(7) 
Ce3 –   Ce3 0.40702(3) Zn5 –   Ce1 0.33038(8) Zn12–   Ce4 0.30975(8) 
Ce3 –   Ce4 0.41128(5) Zn5 – 2Ce4 0.33751(6) Zn12– 2Ce1 0.31264(6) 
    Zn12–   Ce2 0.32357(8) 
Ce4 –   Zn12 0.30975(8) Zn6 –   M 0.25737(11)   
Ce4 –   Zn8 0.31579(8) Zn6 – 2Zn8 0.25897(5) M    –   Zn10 0.25334(12) 
Ce4 –   Zn4 0.32148(8) Zn6 –   Zn3 0.26391(10) M    –   Zn2 0.25464(12) 
Ce4 –  2M 0.32522(7) Zn6 –   Zn5 0.28571(11) M    –   Zn6 0.25737(11) 
Ce4 –  2Zn5 0.33751(6) Zn6 – 2Ce2 0.31826(6) M    – 2Ce4 0.32522(7) 
Ce4 –  2Zn6 0.33851(6) Zn6 –   Ce1 0.32671(8) M    – 2Ce2 0.32701(7) 
Ce4 –  2Zn10 0.34281(6) Zn6 – 2Ce4  0.33851(6) M    – 2Ce3 0.33238(6) 
Ce4 –  2Zn11 0.34725(6)     
Ce4 –  2Zn3 0.36233(6) Zn7 –   Zn12 0.25404(10)   
Ce4 –  2Ce2 0.41128(5) Zn7 – 2Zn2 0.25632(5)   
  Zn7 –   Zn4 0.27694(11)   
Zn1 –  2Zn8 0.26865(7) Zn7 – 2Zn10 0.29507(7)   
Zn1 –  2Zn4 0.26869(8) Zn7 –   Ce3 0.31307(8)   
Zn1 –  4Zn3 0.28506(4) Zn7 – 2Ce1 0.31482(6)   
Zn1 – 4Ce1 0.34845(3) Zn7 –   Ce2 0.32500(8)   
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Table 4. X-ray single crystal dataa,b for the compound Ce(ZnxSi1-x)2, x=0.44 and Rietveld 
XPD data for isotypic La(ZnxSi1-x)2, x=0.56 
 
Compound Ce(ZnxSi1-x)2, x=0.44 La(ZnxSi1-x)2, x=0.56 
EPMA composition [at. %] Ce33.7Zn29.34Si36.96 La33.52Zn37.42Si29 
Composition from refinement  Ce33.33Zn29.33Si37.33 La33.52Zn37.43Si29.05 
Space group P6/mmm; No. 191 P6/mmm; No. 191 
Structure type AlB2 AlB2 
Radiation used MoKα CuKα 
2θ Range [deg]° 9.54 < θ < 70.78 8 < θ < 100 
Crystal size [µm] 35x30x40 - 
a [nm] 0.41827(2) 0.42775(4)c 
c [nm] 0.42747(2) 0.42832(4) c 
Reflections in refinement 84 Fo > 4σ(Fo) of 84 28 
Mosaicity  0.57 - 
Number of variables 9 18 
RF

2 = Σ|F0
2-Fc

2|/ΣF0
2 0.0095 RF=0.0515 

RInt  0.064 RI=0.0661 
GOF 1.33 χ2=7.64 
Extinction (Zachariasen) 0.039(3)  - 
RE in 1a (0, 0, 0); Occ. Ce; 1.00(1) La; 1.00 (1) 
U11

b= U22; U33; U23=U13=0; U12 0.0070(2); 0.0058(2); 0.0035(1) Biso=0.57(13) 
M in 2d (⅓, ⅔, ½); Occ.  0.44(1) Zn + 0.56 Si 0.56(2) Zn + 0.44 Si 
U11

b= U22; U33; U23=U13=0; U12 0.0060(3); 0.0157(4); 0.0030(1) Biso=0.71(30) 
Residual electron density; max; 
min in [electrons/nm3] x103 

1.84; -1.19 - 

acrystal structure data are standardized using the program Structure Tidy [33]. 
banisotropic atomic displacement parameters Uij and isotropic Biso in [102 nm2]. 
c Ge standard.
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Table 6. X-ray single crystal data a for CeNi2(NixSi1-x)2, x=0.14 and X-ray powder 
diffraction data for CeNi2Si2 and LaNi2Si2 (samples annealed at 800°C). 
Compound CeNi2(NixSi1-x)2, x=0.14 CeNi2Si2 LaNi2Si2 
EMPA composition [at. %] Ce20.1Ni46.5Si33.4 Ce20.4Ni38Si41.6 La20.3Ni37.9Si41.8 
Refinement composition [at. %] Ce20Ni45.6Si34.4 Ce20.6Ni39.4Si40 La20.6Ni39.2Si40.7 
Space group P4/nmm; No. 129, origin at centre I4/mmm, No. 139 I4/mmm, No. 139 
Structure type CaBe2Ge2 ThCr2Si2 ThCr2Si2 
Data collection Nonius KappaCCD Guinier Image Plate Guinier Image Plate 
Radiation MoKα CuKα1 CuKα1 
2θ range 2.14 < 2θ < 36.16 10 < 2θ < 100 10 < 2θ < 100 
Crystal size [µm] 40x50x50 - - 
a [nm] 0.40150(2) 0.4037(1) 0.411237(2) 
c [nm] 0.95210(2) 0.9571(1) 0.971184(8) 
Reflections in refinement 266 Fo >4σ(Fo) of 262 38 39 
Z, volume [nm3] 2, 153.5(1) 2, 0.156(1) 2, 0.164(1) 
Number of variables 16 22 22 
RF

2 = Σ|F0
2-Fc

2|/ΣF0
2 0.011 RF = 0.024 RF = 0.024 

RInt  0.014 RB = 0.029 RB = 0.028 
GOF 0.927 χ2 = 1.35 χ2 = 2.16 
Extinction (Zachariasen) 0.036(1) Rwp= 2.63 Rwp= 2.74 
RE Ce in 2c (¼, ¼, z); z=0.75072(2); Ce in 2a (0, 0, 0) La in 2a (0, 0, 0) 
Occ.; Biso. 1.00(1) 1.00(1); 0.14(2) 1.00(1); 0.95(2) 
U11

b=U22;U33;U23=U13;U12= 0 0.0054(1); 0.0065(1)   
Ni Ni2 in 2b (¾, ¼, , ½);  Ni in 4d (0, ½, ¼ ) Ni in 4d (0, ½, ¼ ) 
Occ.; Biso. 1.00(1) 1.00(2); 0.60(5) 0.95(2); 0.19(3) 
U11

b=U22;U33;U23=U13;U12= 0 0.0083(1); 0.0073(2)   
M  M in 2a (¾, ¼, 0);   
Occ. 0.28(1) Ni1+0.72 Si2   
U11

b=U22;U33;U23=U13=U12=0 0.0134(4); 0.0066(4)   
Si Si1 in 2c (¼, ¼, z); Si in 4e (0, 0, z); Si in 4e (0, 0, z); 
 z=0.3717(1); z=0.3804(3); z=0.3684(2); 
Occ.; Biso. 1.00(1) 1.00(1); 0.26(7) 1.00(1); 0.49(5) 
U11

b=U22;U33; U23=U13;U12= 0 0.0055(3); 0.0077(4)   
M  Ni1 in 2c (¼, ¼, z); z=0.12643(6);   
Occ. 1.00(1)   
U11

b=U22;U33;U23=U13=U12=0 0.0130(2); 0.0116(3)   
Residual electron density; max; 
min in [electrons/nm3] x 1000 

0.67; -0.82 - - 

a crystal structure data are standardized using the program Structure Tidy [33]. 
banisotropic atomic displacement parameters Uij and isotropic Biso in [102 nm2]. 
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Table 7. X-ray single crystal data for Ce(Ni1-xZnx)2Si2, x=0.39 and Rietveld XPD data 
for La(Ni1-xZnx)2Si2; x=0.44 (space group P4/nmm; No. 129, origin at centre)a 

Compound Ce(Ni1-xZnx)2Si2, x=0.39 La(Ni1-xZnx)2Si2; x=0.44 
EMPA composition [at. %] Ce19.4Ni25.3Zn16.1Si39.2 La19.9Ni22.3Zn17.2Si40.7 
Refinement composition [at. %] Ce20Ni24.4Zn15.6Si40 La20Ni22.6Zn17.4Si40 
Structure type CaBe2Ge2 CaBe2Ge2 
Data collection Nonius KappaCCD Guinier-Huber IP 
Radiation MoKα CuKα 
2θ range 2.08 < 2θ < 36.05 8 < 2θ < 100 
Crystal size [µm] 40x50x50  
a [nm] 0.41022(1) 0.41615(6) c 
c [nm] 0.98146(4) 0.99213(7) c 
Reflections in refinement 266 Fo >4σ(Fo) of 272 72 
Mosaicity  0.65  
Z, density [gm/Cm3] 2, 6.44 2, 6.022 
Number of variables 20 26 
RF

2 = Σ|F0
2-Fc

2|/ΣF0
2 0.012 RF=0.0435 

RInt  0.058 RI=0.024 
GOF 0.806 χ2=2.78 
Extinction (Zachariasen) 0.024(1) Rw=2.75 
RE in 2c (¼, ¼, z); Occ. Biso z=0.73977(2); 1.00(1) z=0.73833(7); 1.00(1);  
U11

b=U22; U33; U23=U13;U12= 0 0.0052(1); 0.0060(1) Biso=0.52(1) 
M in 2a (¾, ¼, 0); Occ. 0.78(1) Zn1+0.22 Ni1 0.87(1) Zn1+0.13 Ni1 
U11

b=U22; U33; U23=U13=U12=0 0.0095(1); 0.0063(2) Biso=0.26(3) 
Ni2 in 2c (¼, ¼, z); Occ.  z=0.38511(6); 1.00(1) z=0.3883(1); 1.00(1);  
U11

b=U22; U33; U23=U13;U12= 0 0.0067(2); 0.0071(2) Biso=0.36(4) 
Si1 in 2b (¾, ¼, , ½); Occ.  1.00(1) 1.00(1);  
U11

b=U22; U33; U23=U13=U12=0 0.0063(3); 0.0062(4) Biso=0.54(6) 
Si2 in 2c (¼, ¼, z); Occ.  z=0.1472(1); 1.00(1) z=0.1537(3); 1.00(1);  
U11

b=U22; U33; U23=U13;U12= 0 0.0111(3); 0.0095(5) Biso=0.68(7) 

Residual electron density; max; 
min in [electrons/nm3] x 1000 

1.22; -0.98  

acrystal structure data are standardized using the program Structure Tidy [33]. 
banisotropic atomic displacement parameters Uij and isotropic Biso in [102  nm2]. 
c Ge standard 
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Table 8. Interatomic distances for Ce(Ni1-xZnx)2Si2, x=0.39 (P4/nmm; No. 129). 

Bonds Distances Bonds Distances 
Ce – 4Si1 0.31044(1) Si1– 4Ni 0.23405(1) 
Ce – 4Si2 0.31217(1) Si1– 4Ce 0.31217(1) 
Ce – 4Ni 0.31492(1) Si1– 4Si1 0.29007(1) 
Ce – 4Zn 0.32756(1)   
  Si2–   Ni 0.23320(1) 
M – 4Si2 0.25108(1) Si2– 4Zn 0.25108(1) 
M – 4Zn 0.29007(1) Si2– 4Ce 0.31044(1) 
M – 4Ce 0.32756(1)   
    
Ni –   Si2 0.23320(1)   
Ni – 4Si1 0.23405(1)   
Ni – 4Ce 0.31492(1)   
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Summary 
 
Zn-based alloys with rare-earth metals are an important part of the high strength 

lightweight multinary Mg-based alloy system Mg-Zn-Mn(Ni)-RE for automotive 

applications. Rare earths (RE) improve the mechanical performance, tensile strength, 

hardness and also the corrosion resistance by removing impurities from the grain 

boundaries of their alloys with zinc. The present work provides detailed information 

on phase relations and crystal structures in the quaternary systems Ce-Ni-Zn-(B,Si) at 

800°C backed by light optical microscopy, electron microprobe analysis and x-ray 

powder and single crystal diffraction. 

The isothermal sections at 800°C have been established for the systems Ce-Zn-B, Ni-

Zn-B, Ce-Ni-Zn and Ce-Zn-Si. In the system Ni-Zn-B six ternary compounds were 

found, which in some cases exhibit considerable mutual solid solubilities mostly as an 

exchange of Ni-Zn at constant B-content, but in the case of the so-called τ-phase τ1-

(Ni1-xZnx)21[Zn1-y-z�y(B4)z]2B6 (1.5<x<2.25, 0.07<y<0.53, 0<z<0.3) also with Zn/B 

substitution. Whereas Ni/Zn exchange (at constant B-content) ranges at about 4 to 5 

at. % for τ4-Ni3ZnB2 and τ5-Ni48Zn32B20, it is below 3 at. % for τ2-Ni12ZnB8-x 

(x=0.43), τ3-Ni21Zn2B20 and τ6-Ni47Zn23B30. Phase relations in the system Ce-Ni-Zn 

are characterized by a large region for the liquid phase in the Ce-rich part and a 

continuous solution of the phase Ce(Ni1-xZnx)5 with CaCu5-type through the entire 

section for the full temperature region from 400 to 800°C. Zn/Ni substitution has 

found to stabilize the structure of CeZn11 at 800°C appearing as a ternary solution 

phase Ce(Zn1-xNix)11(0.03≤x≤0.22) and a rather extended solution of Ce2(NixZn1-

x)17(0≤x≤0.53). No ternary compound exists in the ternary system Ce-Zn-B and no 

significant mutual solid solubilities of binary phases have been observed. For the low 

temperature  modification αCeZn7 (Ce1-xZn5+2x; x~0.33) up to 750°C the TbCu7-type 

could be assigned in this work. 

X-ray single crystal and x-ray powder diffraction were employed to study the precise 

site occupation and site preferences in the crystal structures of more than 18 

compounds. The crystal chemistry of the rhombohedral β boron solid solution co-

doped by Ni,Zn metal atoms has been studied on a Ni0.19Zn1.24B34.22 single crystal. Zn 

atoms were found in the E void (occupancy of 28%) whilst random mixtures of Ni, Zn 

atoms (ratio 15.5:84.5) occupy the sites A1, D and Dd. Among the new crystal 

structures determined a new boron-metal cluster was found in Ni21Zn2B20 (I4/mmm) 
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with characteristic isolated B20- cages nesting six nickel atoms in the form of an 

octahedron. Ni3ZnB2 (C2/m) was found to form B4 zigzag chains, Ce7Zn23-xSix, 

x=0.14 (Pbam) consists of AuCu3 and disordered BaAl4 structural units and Ce(Ni1-

xZnx)2Si2, x=0.39 (Pnmm) is CaBe2Ge2-type. 

Physical properties including thermal expansion, hardness, elastic properties, 

resistivity, specific heat and magnetization were studied for the borides Ni21Zn2B20 

and Ni3ZnB2.
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