
 
 

 

DIPLOMARBEIT 

Titel der Diplomarbeit 

„Solvability of partial differential equations 
with generalized complex coefficients “ 

Verfasserin 

Gudrun Szewieczek 

angestrebter akademischer Grad 

Magistra der Naturwissenschaften (Mag. rer. nat.) 

Wien, im Juli 2012 

 

Studienkennzahl lt. Studienblatt: A  405 

Studienrichtung lt. Studienblatt: Mathematik 

Betreuer: ao. Univ.-Prof. Dr. Günther Hörmann 

 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OTHES

https://core.ac.uk/display/11600802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii



Abstract

The aim of this diploma thesis is to discuss the solvability of partial differential equations with
generalized complex coefficients. Similar to the case of non generalized constant coefficients,
we use the method of fundamental solutions. Since it turns out that in the Colombeau
theoretic setting dual spaces provide an appropriate framework for them, we introduce these
spaces in detail. A special focus is on basic functionals, which are determined by a net of
distributions and play an important role in the context of partial differential operators.

As main results we obtain an adapted version of the Malgrange-Ehrenpreis-Theorem,
which guarantees a fundamental solution, and based on this, equivalent assertions to the
solvability for equations with compactly supported inhomogeneities.
The final part of the thesis begins with an extension of the convolution, which enlarges

the class of possible inhomogeneities. In the following solutions for selected equations such
as the Cauchy-Riemann and a generalized Schrödinger equation are presented.
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Zusammenfassung

Diese Diplomarbeit diskutiert die Lösbarkeit von partiellen Differentialgleichungen mit
verallgemeinerten komplexen Koeffizienten. Ähnlich wie im Fall von nicht verallgemeinerten
konstanten Koeffizienten bedienen wir uns dabei dem Konzept der Fundamentallösungen. Da
im Rahmen von Colombeau Algebren Dualräume den passenden theoretischen Hintergrund
für dieses Vorgehen liefern, geben wir eine ausführliche Einführung in diese. Eine besondere
Stellung nehmen dabei sogenannte Basisfunktionale ein, jene Funktionale die durch Netze
von Distributionen bestimmt werden. Sie spielen im Weiteren eine wichtige Rolle für par-
tielle Differentialgleichungen.

Die Hauptresultate der Arbeit sind eine verallgemeinerte Version des bekannten Malgrange-
Ehrenpreis-Theorems und darauf aufbauend äquivalente Bedingungen zur Lösbarkeit von
Gleichungen mit kompakt getragenen Inhomogenitäten.
Der letzte Teil der Arbeit ist anwendungsorientierter und beginnt mit einer Ausdehnung

der Faltung, die unter bestimmten Bedingungen auch Inhomogenitäten mit nicht kompak-
tem Träger erlaubt. Im Folgenden werden dann einige Lösungen zu bekannten Differential-
gleichungen, unter anderem die Cauchy-Riemann und eine Art der Schrödinger Gleichung,
vorgestellt.
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0 Introduction

Partial differential equations with constant coefficients are undoubtedly an important and
frequently discussed class within the theory of partial differential equations. In order to solve
them in the distributional setting, one can use the method of fundamental solutions. The
main idea of it is simple: Once we have found a fundamental solution, we can construct so-
lutions for equations with inhomogeneities by convolution of the latter with the fundamental
solution. The best known result in this field is the Malgrange-Ehrenpreis Theorem, which
guarantees a fundamental solution for every differential operator with constant coefficients.

This diploma thesis treats these topics combined with Colombeau theory. More precisely,
we investigate the situation of partial differential equations with coefficients in the ring of
complex generalized numbers C̃ and moreover, generalized inhomogeneities or generalized
initial conditions.
It turns out that dual spaces of Colombeau algebras provide the appropriate framework
for fundamental solutions. Elements in these spaces are C̃-linear, continuous functionals
from a Colombeau algebra to C̃. In particular, we concentrate on the subspaces of so-called
basic functionals, which are determined by nets of distributions and additionally fulfill a
continuity-property. They enable us to solve partial differential equations on the level of
representatives and therefore in the distributional setting. This strategy does not only help
in applications as seen in the final part of the thesis, but also to prove a generalized version of
the Malgrange-Ehrenpreis Theorem for an operator whose symbol is invertible at one point.
Based on this, it is also possible to formulate equivalent assertions to the solvability of equa-
tions with compactly supported right hand sides. The result is obtained for dual spaces but
also for Colombeau algebras, because a proof without the notion of fundamental solutions
is possible.

As described above, the convolution has a central role in the theory of fundamental so-
lutions. Therefore we discuss this operation in detail for a functional with compact support
and an arbitrary basic functional, but also the extension to two functionals with non-compact
support under special assumptions.
Finally we study several applications such as the Cauchy-Riemann operator and a general-
ized Schrödinger equation.

We follow several sources: for the theory of dual spaces we mainly use papers by Clau-
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0 Introduction

dia Garetto ([Gar05a], [Gar05b]), for the results on existence also [Gar08] and in addition
[Hör76] and [Hör04].
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1 Topological issues and dual spaces

1.1 Colombeau algebras

In this introductory section we fix some notation and discuss the theoretic background of
this thesis, namely algebras of generalized functions introduced by Colombeau. For details
of the proofs and further results see for example [Gro01] or [Hör10].

Let Ω be always an open subset of Rn. The basic objects of the theory are families
(uε)ε∈(0,1] of smooth functions uε ∈ C∞(Ω) for 0 < ε ≤ 1. We call the factor algebra
G(Ω) := EM (Ω)/N (Ω) the Colombeau algebra, where

EM (Ω) := {(uε)ε ∈ C∞(Ω)(0,1] | ∀K b Ω ∀α ∈ Nn
0 ∃p ∈ N : sup

x∈K
|∂αuε| = O(ε−p) as ε→ 0}

and

N (Ω) := {(uε)ε ∈ C∞(Ω)(0,1] | ∀K b Ω ∀α ∈ Nn
0 ∀q ∈ N : sup

x∈K
|∂αuε| = O(εq) as ε→ 0}.

Thus elements in EM (Ω) satisfy a locally uniform polynomial estimate as ε → 0, together
with all derivatives, while elements in N (Ω) vanish faster than any power of ε. We use the
short-hand notation (uε)ε ∈ u which means that (uε)ε is a representative of u and further-
more denote the class by [(uε)ε]

If Ω1 ⊆ Ω open and u ∈ G(Ω), then the restriction u|Ω1 is defined by (uε|Ω1) + N (Ω1).
Since Ω→ G(Ω) is a sheaf of differential algebras, we may define the support of u ∈ G(Ω) by

supp(u) := Ω \ {x ∈ Ω | ∃ open neighbourhood W (x) ⊆ Ω of x : u|W (x) = 0}

and denote by Gc(Ω) the subalgebra of all compactly supported elements of G(Ω). Moreover,
if K ⊆ Rn is a compact subset, abbreviated by K b Rn, the space GK(Ω) contains all
elements of G(Ω) having their supports in K.

The space of all compactly supported distributions E ′(Ω) is a subspace of Gc(Ω) via the
embedding

ι0 : E ′(Ω)→ G(Ω), ι(w) =
[
(w ∗ (ϕε)|Ω)ε

]
, (1.1)

3



1 Topological issues and dual spaces

where

ϕε(x) = ε−nϕ(x/ε) with ϕ ∈ S(Rn) of integral one with all moments vanishing. (1.2)

Here S(Rn) denotes the space of all rapidly decreasing functions, i.e. all ϕ ∈ C∞(Rn) that
satisfy the estimate

∀α, β ∈ Nn
0 : sup

x∈Rn
|xαDβϕ(x)| <∞. (1.3)

Using the sheaf property, it is possible to extend the embedding ι0 in a unique way to an
embedding of the space of distributions D′(Rn) which we denote by ι. We emphasize that
the embeddings ι0 and ι depend on the chosen function ϕ.
Note that also C∞(Ω) becomes a subspace, the embedding even renders C∞(Ω) a faithful
subalgebra.

Moreover, we consider the ring of complex generalized numbers defined as the factor space
C̃ := EM/N with

EM := {(λε)ε ∈ C(0,1] : ∃N ∈ N |λε| = O(ε−N ) as ε→ 0} (1.4)

and
N := {(λε)ε ∈ C(0,1] : ∀q ∈ N |λε| = O(εq) as ε→ 0}. (1.5)

1.2 Topologies for algebras of generalized functions

Since we want to deal with continuous functionals between spaces of generalized functions,
we need topologies on these spaces. For the construction of them our theoretic model is a
topological vector space which leads us to the notion of a topological C̃-module.

1.2.1 Topological C̃-modules

Investigating C̃-modules, valuations and the induced topology on them, in this section we
follow mainly [Gar05a].

For convenience let us first recall the common definition of a module over the ring R: It
is an abelian group (G,+) together with an operation R × G → G, (c, g) 7→ c.g such that
c1 · (c2 · g) = (c1 · c2) · g, (c1 + c2) · g = c1 · g + c2 · g and c · (g1 + g2) = c · g1 + c · g2.

In our context we choose the ring of complex generalized numbers C̃ for the ring R.
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1.2 Topologies for algebras of generalized functions

Our following aim, the construction of a norm on a C̃-module, requires a kind of absolute
value on C̃. For defining it we have to make a detour using a valuation on C̃.

1.1 Definition. The function ν : EM → (−∞,+∞]

ν((λε)ε) := sup{b ∈ R : |λε| = O(εb) as ε→ 0} (1.6)

is called the valuation on EM .

As an easy consequence of this definition we gain the following properties:

1.2 Lemma. The valuation on EM satisfies
(i) ν((λε)ε) = +∞ ⇔ (λε)ε ∈ N
(ii) ν((λε)ε(µε)ε) ≥ ν((λε)ε) + ν((µε)ε)
(ii)′ ν((λε)ε(µε)ε) = ν((λε)ε) + ν((µε)ε)

if one or both terms are of the form (cεb)ε, c ∈ C, b ∈ R
(iii) ν((λε)ε + (µε)ε) ≥ min{ν((λε)ε), ν((µε)ε)}
(iii)′ ν((λε)ε + (µε)ε) = min{ν((λε)ε), ν((µε)ε)}

if one or both terms are of the form (cεb)ε, c ∈ C, b ∈ R
(iv) ν((λε)ε) = ν((λ′ε)ε) if (λε − λ′ε)ε ∈ N .

Lemma 1.2 (iv) shows that the following valuation is well-defined, i.e. it is independent of
the choice of the representative.

1.3 Definition. For λ = [(λε)ε] ∈ C̃ the valuation is defined as νC̃(λ) := ν((λε)ε) and

furthermore the function |.| : C̃→ [0,+∞) as |λ| :=
{
e−νC̃(λ), if νC̃(λ) 6=∞

0, else.

As we will see later, |.| is an ultra-pseudo-norm on C̃ and can be used as an absolute value
in C̃. But before we pay attention to the construction of norms and topologies, we need to
fix even more notions:

1.4 Definition. Let G be a C̃-module.
(1) A valuation on G is a function ν : G → (−∞,∞] such that

(i) ν(0) = +∞
(ii) ν(λu) ≥ νC̃(λ) + ν(u) for all λ ∈ C̃, u ∈ G
(ii)′ ν(λu) = νC̃(λ) + ν(u) for all λ = [(cεa)ε], c ∈ C, a ∈ R, u ∈ G
(iii) ν(u+ v) ≥ min{ν(u), ν(v)}.
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1 Topological issues and dual spaces

(2) An ultra-pseudo-seminorm on G is a function P : G → [0, +∞) such that
(i) P(0) = 0
(ii) P(λu) ≤ |λ| P(u) for all λ ∈ C̃, u ∈ G
(ii)′ P(λu) = |λ| P(u) for all λ = [(cεa)ε], c ∈ C, a ∈ R, u ∈ G
(iii) P(u+ v) ≤ max{P(u),P(v)}.

(3) An ultra-pseudo-norm is an ultra-pseudo-seminorm P with the additional property
(i)′ P(u) = 0⇒ u = 0.

1.5 Definition. Let G be a C̃-module.
(1) A topology τ on G is said to be C̃-linear, if

(i) G × G → G : (u, v)→ u+ v and
(ii) C̃× G → G : (λ, v)→ λv

are continuous.
(2) A topological C̃-module is a C̃-module with a C̃-linear topology.
(3) A subset B of G is C̃-convex if B +B ⊆ B and [(εb)ε]B ⊆ B for all b ≥ 0.
(4) A locally convex topological C̃-module is a topological C̃-module which has a base of

C̃-convex neighbourhoods of the origin.

As in the theory of locally convex topological spaces, one can show the following theorem
[Gar05a, Thm 1.10]:

1.6 Theorem. Let {Pi}i∈I be a family of ultra-pseudo-seminorms on a C̃-module G. The
topology induced by {Pi} on G, i.e. the coarsest topology such that each ultra-pseudo-
seminorm is continuous, induces the structure of a locally convex topological C̃-module
on G.

1.2.2 Topologies for GE and Gc

The spaces we are interested in can be split into two groups: G(Ω), GDK (Ω) and C̃ have a
similar structure, namely GE , while the algebra of the compactly supported functions, Gc, is
an inductive limit. Again our approach is based on [Gar05a].

Let us begin with the first group and consider the general way to construct spaces of gener-
alized functions based on a locally convex topological vector space E.

1.7 Definition. Let E be a locally convex vector space with the topology induced by the
familiy of seminorms {pi}i∈I . The elements of

ME := {(uε)ε ∈ E(0,1] | ∀i ∈ I ∃N ∈ N : pi(uε) = O(ε−N ) as ε→ 0} (1.7)
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1.2 Topologies for algebras of generalized functions

and
NE := {(uε)ε ∈ E(0,1] | ∀i ∈ I ∀q ∈ N : pi(uε) = O(εq) as ε→ 0} (1.8)

are called E-moderate and E-negligible, respectively. The space of generalized functions based
on E is then defined as the factor space GE :=ME/NE .

Note that the space GE is independent of the family of seminorms {pi}i∈I and as in G(Ω),
there is a natural embedding of E into GE via f 7→ [(f)ε]. Moreover, GE becomes a C̃-module
if we define the product C̃× GE → GE of complex generalized numbers with elements of GE
by ([(λε)ε], [(uε)ε]) 7→ [(λεuε)ε].

Very similar to the previous case of C̃, we can equip GE with a valuation:

1.8 Definition. The function νpi : ME → (−∞,+∞]

νpi((uε)ε) := sup{b ∈ R : pi(uε) = O(εb) as ε→ 0} (1.9)

is called the pi-valuation onME .

1.9 Lemma. The pi-valuation onME has the following properties
(i) νpi((uε)ε) = +∞ for all i ∈ I ⇔ (uε)ε ∈ NE
(ii) νpi((λεuε)ε) ≥ ν((λε)ε) + νpi((uε)ε) for all (λε)ε ∈ EM and (uε)ε ∈ME

(ii)′ νpi((λεuε)ε) = ν((λε)ε) + νpi((uε)ε) for all (λε)ε = (cεb)ε, c ∈ C, b ∈ R
(iii) νpi((uε)ε + (vε)ε) ≥ min{νpi((uε)ε), νpi((vε)ε)}
(iv) νpi((uε)ε) = νpi((u′ε)ε) if (uε − u′ε)ε ∈ NE .

Proof: (i) follows directly from the definition of NE .
(ii), (ii)′ and (iii) can be verified using the properties of the Landau symbol O.
(iv) If (uε − u′ε)ε ∈ NE , then we know that νpi((uε − u′ε)ε) = +∞ and get

νpi((uε)ε) = νpi((uε)ε − (u′ε)ε + (u′ε)ε) ≥ min{νpi((uε − u′ε)ε), νpi((u′ε)ε)} = νpi((u′ε)ε).

Analogously, νpi((u′ε)ε) ≥ νpi((uε)ε) holds. �

1.10 Definition. For a generalized function u = [(uε)ε] ∈ GE the pi-valuation is defined as
νpi(u) := νpi((uε)ε).

Considering Lemma 1.9 we see that the pi-valuation is well-defined, because it does not
depend on the choice of the representative [(iv)] and, moreover, it is a valuation in the sense
of Definition 1.4. Hence we have now the required background to endow GE with a topology.
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1 Topological issues and dual spaces

1.11 Proposition. The familiy {Pi}i∈I defined as Pi(u) := e−νpi (u) is a family of ultra-
pseudo-seminorms on the C̃-module GE . Hence, GE endowed with the topology of these
ultra-pseudo-seminorms {Pi}i∈I is a locally convex topological C̃-module.

Proof: The required properties of the ultra-pseudo-seminorms follow immediately from the
properties (i)-(iii) of Lemma 1.9. Applying Theorem 1.6 yields the second assertion. �

We continue looking at several examples.

1.12 Example. (i) Topology for C̃. Consider E := C with the usual complex absolute
value |.|. In the same way as in 1.2.1 we get the ring of complex generalized numbers GC = C̃

with the ultra-pseudo-norm P(u) = e−ν|.|(u) = e−νC̃(u) = |u|. That makes C̃ a locally convex
topological C̃-module.

(ii) Topology for G(Ω). Let Ω ⊆ Rn be an open subset with a countable and exhausting
sequence of compact subsets K0 ⊆ K1 ⊆ ... of Ω.
Consider E := C∞(Ω) with the topology induced by the family of seminorms

pKi,j(f) := sup
x∈Ki,|α|≤j

|∂αf(x)|. (1.10)

Then it follows with Proposition 1.11 that GE = G(Ω) is a locally convex topological C̃-
module with the family {PKi,j := exp(−νpKi,j (u))}i∈I,j∈J of ultra-pseudo-seminorms.

(iii) Topology for GDK (Ω). Let K ⊆ Rn be a compact subset, then DK(Ω) can be endowed
with the topology of the family of seminorms

pK,j(f) := sup
x∈K,|α|≤j

|∂αf(x)| (1.11)

and in the same way as above, GDK (Ω) becomes a locally convex topological C̃-module.

(iv) Topology for GK(Ω). The C̃-module GK(Ω) is not of the form GE , but with the
following two ideas we can construct a natural and useful topology on GK(Ω). Firstly,
GK(Ω) is linearly embedded into GDK′ (Ω), where K ′ b Ω such that K ⊆ (K ′)◦: Choose a
cut-off χ ∈ D(Ω) with supp(χ) ⊆ (K ′)◦ and χ|K ≡ 1, then if u ∈ GK(Ω) and (uε)ε ∈ u, we
have that (χ · uε)ε ∈ u and supp(χ · uε) ⊆ (K ′)◦. So we get the embedding

ι′ : GK(Ω) ↪→ GDK′ (Ω), [(uε)ε] 7→ [(χ · uε)ε]. (1.12)

Secondly, use for u ∈ GK(Ω) the valuation of GDK′ (Ω): In GDK′ (Ω) we defined the pK′,n -

8



1.2 Topologies for algebras of generalized functions

valuation as

pK′,n(uε) = sup{b ∈ R : sup
x∈K′,|α|≤n

|∂αuε| = O(εb) as ε→ 0}.

Define now the valuation in GK(Ω) as

νK,n(u) := νp
K′,n

(u) for all u ∈ GK(Ω). (1.13)

This valuation is well-defined, because it does not depend on K’: let K ′1 and K ′2 be two
compact subsets of Ω with K ⊆ (K ′j)◦ for j = 1, 2. Define K3 := K ′1 ∩ K ′2, then K3 is
compact in Rn with K ⊆ K◦3 and we can choose a cut-off χ ∈ D(Ω) with χ|K ≡ 1 and
supp(χ) ⊆ K◦3 . If (uε)ε ∈ u ∈ GK(Ω) is an arbitrary representative, then (χuε)ε ∈ u is also
a representative with supp(χuε) ⊆ K◦3 for all ε ∈ (0, 1]. So we have for all ε ∈ (0, 1]

pK′1,n(χuε) = sup
x∈K′1,|α|≤n

|∂αχuε| = sup
x∈K◦3 ,|α|≤n

|∂αχuε| =

= sup
x∈K′2,|α|≤n

|∂αχuε| = pK′2,n(χuε).

Since the valuation is independent of the representatives [1.9 (iv)], it follows that νK′1,n(u) =
νK′2,n(u).

In summary, GK(Ω) with the topology induced by the ultra-pseudo-seminorms {PGK (Ω),n(u) :=
e−νK,n(u)}n∈N is a locally convex topological C̃-module.

Unfortunately Gc(Ω) is not of the form GE and so we need another strategy for constructing
its topology. We adopt the concept of inductive topologies for locally convex vector spaces:

1.13 Definition. Let G be a C̃-module and (Gn)n∈N be a sequence of C̃-submodules of G
such that Gn ⊆ Gn+1 for all n ∈ N and G = ∪n∈NGn. Assume that Gn is equipped with a
locally convex C̃ - linear topology τn such that the topology induced by τn+1 on Gn is τn.
Then G endowed with the inductive limit topology τ is called the strict inductive limit of
the sequence (Gn)n∈N of locally convex topological C̃-modules.

In [Gar05a, §1.3] was shown, that if G is a strict inductive limit, it is a locally convex
topological C̃-module. This allows us to construct the required topology as following:

1.14 Example (Topology for Gc(Ω)).
Let (Kn)n∈N be an exhausting sequence of compact subsets of Ω such that Kn ⊆ Kn+1,
then we have Gc(Ω) =

⋃
n∈N GKn(Ω). Therefore Gc(Ω) endowed with the strict inductive

limit topology of the sequence (GKn(Ω))n is a locally convex topological C̃-module.

9



1 Topological issues and dual spaces

1.3 Continuity issues

Let (G, {Pi}i∈I) and (H, {Qj}j∈J) be locally convex topological C̃-modules and consider a
C̃-linear map T : G → H. It is continuous if and only if for all j ∈ J there is a finite subset
I0 ⊆ I and a constant C > 0 such that for all u ∈ G

Qj(Tu) ≤ C max
i∈I0
Pi(u). (1.14)

In the particular case of a C̃-linear map T : GE → GF , where (E, {pi}i∈I) and (F, {qj}j∈J)
are locally convex topological vector spaces, we obtain that T is continuous if and only if for
all j ∈ J there is a finite subset I0 ⊆ I and a constant C > 0 such that for all u ∈ GE

νqj (Tu) ≥ − logC + min
i∈I0

νpi(u). (1.15)

Also in the case of maps it is useful to be able to argue on the level of representatives:

1.15 Definition. Let T : GE → GF be a C̃-linear map, then we say that T has a repre-
sentative t : E → F , if Tu = [(tuε)ε] for all u ∈ GE and additionally, (uε)ε ∈ ME implies
(tuε)ε ∈MF and (uε)ε ∈ NE implies (tuε)ε ∈ NF .

This approach enables us to construct C̃-linear and continuous maps from GE to GF :

1.16 Proposition. Let t : (E, {pi}i∈I) → (F, {qj}j∈J) be a linear and continuous map of
locally convex topological vector spaces that defines the map T : GE → GF , u 7→ [(tuε)ε].
Then T is C̃-linear, continuous and has t as a representative.

Proof: First of all T is well-defined, i.e. independent of the representative, since t is contin-
uous. The C̃-linearity of T follows directly from the linearity of t, since

λT (u) = λ[(t(uε))ε] = [(t(λuε))ε] = T (λuε).

It remains to show the continuity of T, i.e. in terms of valuations

νqj (Tu) ≥ − logC + min
i∈I0

νpi(u) for a finite subset I0 ⊆ I. (1.16)

By the continuity of t we have qj(tuε) ≤ C1 max
i∈I0

pi(uε) for a constant C1 ≥ 0 and a finite
subset I0 ⊆ I and hence gain that

νqj (Tu) = νqj ([(tuε)ε]) = sup{b ∈ R : qj(tuε) = O(εb)} ≥

10



1.4 Dual spaces of Colombeau algebras

≥ sup{b ∈ R : C1 max
i∈I0

pi(uε) = O(εb)}

= min
i∈I0

sup{b ∈ R : C1pi(uε) = O(εb)}

= min
i∈I0

sup{b ∈ R : pi(uε) = O(εb)} = min
i∈I0

νpi(u).

Setting C := 1, yields (1.16). �

We emphasize that the converse is not true. Namely, a C̃-linear, continuous map T with
representative t does not guarantee the continuity of the representative. A counterexample
can be found in [Gar05a, Remark 3.14 (iii)].

1.4 Dual spaces of Colombeau algebras

We investigate now the dual spaces of diverse topological C̃-modules G, based on [Gar05a]
and [Gar05b].

Let G be a topological C̃-module, then we denote its dual space by L(G, C̃), i.e. the set
of all C̃-linear and continuous maps from G to C̃. We are interested in the choices G(Ω) and
Gc(Ω) for G which we investigate in the following.

1.4.1 The spaces L(G(Ω), C̃), L(Gc(Ω), C̃) and their basic subsets

Clearly we obtain the following inclusion:

L(G(Ω), C̃) ⊆ L(Gc(Ω), C̃). (1.17)

Moreover, using the C̃-linear continuous embedding ιg : u 7→
(
v 7→

∫
u(y)v(y) dy

)
, in

[Gar05b, Theorem 3.1] the further inclusions were shown:

G(Ω) ⊆ L(Gc(Ω), C̃), (1.18)

Gc(Ω) ⊆ L(G(Ω), C̃). (1.19)

Furthermore, distributions can also be interpreted as elements of L(Gc(Ω), C̃): Let w ∈ D′(Ω)
be an arbitrary distribution, i.e. the map w : D(Ω) → C is linear and continuous. By
Proposition 1.16 we obtain that T : GD → C̃, u 7→ [(w(uε))ε], is a C̃-linear and continuous
map and, accordingly, T ∈ L(GD(Ω), C̃). Since Gc can be continuously embedded into GD,

11



1 Topological issues and dual spaces

it follows that L(GD(Ω), C̃) ⊆ L(Gc(Ω), C̃). In summary,

D′(Ω) ↪→ L(Gc(Ω), C̃), w 7→
(
u 7→ [(w(uε))ε]

)
for u ∈ Gc(Ω) (1.20)

is a continuous embedding, that we denote by ιd.

This embedding is in general not the same as

D′(Ω) ι
↪→ G(Ω)

ιg
↪→ L(Gc(Ω), C̃), (1.21)

where the distributions are primarily embedded in G(Ω) and then in L(Gc(Ω), C̃). Consider
for example the delta-distribution δ ∈ D′(Rn), then δ is represented in G(Rn) by a model
delta net [(ρε)ε], i.e. ρε(x) = 1

εn ρ(xε ), where ρ ∈ S(Rn),
∫
Rn
ρ = 1 and for all α ∈ Nn, |α| ≥ 1

the moment conditions
∫
Rn
xαρ(x)dx = 0 hold. Hence we obtain

δ
ι
↪→ [(ρε)ε]

ιg
↪→

(
[(uε)ε] 7→

[( ∫
ρεuεdx

)
ε

])
, (1.22)

whereas embedding δ ∈ D′ directly to L(Gc(Rn), C̃) yields

δ
ιd
↪→

[(
uε 7→ δ(uε) = uε(0)

)
ε

]
. (1.23)

Note that nevertheless these two different embedded elements are associated to each other,
i.e. they coincide in the limit.

Let Ω′ ⊆ Ω be an open subset, then the restriction of T to Ω′ is defined in the obvious way:
T |Ω′ : Gc(Ω′) → C̃, u 7→ Tu and clearly T |Ω′ ∈ L(Gc(Ω′), C̃). This leads to the definition of
the support of T :

supp(T ) := Ω \ Z(T )

with Z(t) := {x ∈ Ω | ∃ V(open) ⊆ Ω, x ∈ V such that T |V = 0}.

The following proposition shows that we may recognize elements in L(G(Ω), C̃) by their
compact supports.

1.17 Proposition. A functional T ∈ L(Gc(Ω), C̃) belongs to L(G(Ω), C̃) if and only if
supp(T ) is a compact subset of Rn.

Proof: Assume first that supp(T ) is a compact subset of Ω and let χ ∈ C∞c (Ω) be a cut-off
with χ = 1 on a neighbourhood of supp(T ). Since for all u ∈ G(Ω) it follows that χu ∈ Gc(Ω),

12



1.4 Dual spaces of Colombeau algebras

we can construct the following C̃-linear map T ′ on G(Ω)

T ′ : G(Ω)→ C̃, u 7→ T (χu). (1.24)

The restriction T ′|Gc(Ω) = T , because (1− χ)u ∈ Gc(Ω \ supp(T )) and therefore

T ′(u)− T (u) = T ((1− χ)u) = 0. (1.25)

It remains to show that T ′ is continuous: Using the notation of Example 1.12 we obtain by
the continuity of T for K := supp(χ) and χu ∈ GK(Ω) that

|T ′(u)|C̃ ≤ C PGK(Ω),m(χu). (1.26)

By the Leibniz rule, PGK(Ω),m(χ.) can be bounded by some ultra-pseudo-seminorms which
determine the sharp topology on G(Ω) and therefore T ′ is a continuous, C̃-linear map from
G(Ω) into C̃.
Conversely, let T be an element of L(G(Ω), C̃) and assume that its support is not a compact
subset of Ω. If K0 ⊆ K1 ⊆ K2 ⊆ · · · is an exhausting sequence of compact sets of Ω, then
for all n ∈ N, we have that supp(T ) ∪ (Ω \Kn) 6= ∅. This means that there is a sequence
(un)n ∈ Gc(Ω)n∈N such that supp(un) ⊆ Ω \Kn and T (un) 6= 0. Denoting the valuation of
T (un) by an, the generalized function vn := [(ε−an)ε]un has its support contained in Ω \Kn

and
|T (vn)|C̃ = exp(an) |T (un)|C̃ = 1. (1.27)

Contrary, we show that the sequence (vn)n converges to 0 in G(Ω), which gives a contradiction
to the continuity of T on G(Ω). Indeed, since for all K ⊆ Ω there exists a parameter n0 ∈ N
such that K ⊆ Kn0 and from Kn0 ⊆ Ω \ supp(vn) for all n ≥ n0 we obtain that

sup
x∈K,|α|≤m

|∂αvn,ε(x)| ≤ sup
x∈Kn0 ,|α|≤m

|∂αvn,ε(x)| = O(εq) (q ∈ N). (1.28)

Hence, (vn)n is a zero-sequence in G(Ω). �

Since for w ∈ D′(Ω) we have supp(w) = supp(ιd(w)), it follows that

E ′(Ω) ↪→ L(G(Ω), C̃),

D′(Ω) \ E ′(Ω) ↪→ L(Gc(Ω), C̃).

In the following we focus on special elements of L(GE , C̃), namely, those that can be repre-
sented by a net of continuous linear maps from E to C fulfilling a continuity-property:

13



1 Topological issues and dual spaces

1.18 Definition. Let (E, {pi}i∈I) be a locally convex topological vector space, then we call
T ∈ L(GE , C̃) basic, if it is of the form Tu = [(Tεuε)ε], where (Tε)ε is a net of continuous
linear maps from E to C satisfying the following property

∃I0 ⊆ I finite ∃N ∈ N ∃η ∈ (0, 1] ∀u ∈ E ∀ε ∈ (0, η] :

|Tε(u)| ≤ ε−N max
i∈I0

pi(u). (1.29)

We denote the space of all basic functionals by Lb(GE , C̃).
We emphasize, that Tu = [(Tεuε)ε] holds for all representatives (uε)ε of u, because by
(1.29) we obtain for (uε)ε ∈ ME that (Tεuε)ε ∈ MC and analogously for (uε)ε ∈ NE that
(Tεuε)ε ∈ NC.

As we know from Example 1.12 (ii), setting E := C∞(Ω) gives the definition for the case
L(G(Ω), C̃). Accordingly, the continuous linear maps from E to C are distributions in E ′(Ω)
and more precisely we get: A Functional T ∈ L(G(Ω), C̃) is called basic, if it is of the
form Tu = [(Tεuε)ε], where (Tε)ε is a net of distributions in E ′(Ω) satisfying the following
property:

∃K b Ω ∃j ∈ N ∃N ∈ N ∃η ∈ (0, 1] ∀u ∈ C∞(Ω) ∀ε ∈ (0, η] :

|Tε(u)| ≤ ε−N sup
x∈K,|α|≤j

|∂αu(x)|. (1.30)

Since Gc(Ω) is not of the form GE , we have to slightly modify the preceding definition
regarding its inductive structure:

1.19 Definition. Let E = span(
⋃
γ∈Γ ιγ(Eγ)), ιγ : Eγ → E be the inductive limit of the

locally convex topological vector spaces (Eγ , {pi,γ}i∈Iγ )γ∈Γ. Let G =C̃-span(
⋃
γ∈Γ ιγ(GEγ )) ⊆

GE be the inductive limit of the locally topological C̃-modules (GEγ )γ∈Γ. Then we call T
∈ L(G, C̃) basic, if it is of the form Tu = [(Tεuε)ε], where (Tε)ε is a net of continuous linear
maps from E to C satisfying the following property

∀γ ∈ Γ ∃I0,γ ⊆ Iγ finite ∃N ∈ N ∃η ∈ (0, 1] ∀u ∈ Eγ ∀ε ∈ (0, η] :

|Tειγ(u)| ≤ ε−N max
i∈I0,γ

pi,γ(u). (1.31)

Again the space of all basic functionals is denoted by Lb(GE , C̃) and as in Definition 1.18
Tu = [(Tεuε)ε] holds for every representative.

We are now also able to name the basic functionals of L(Gc(Ω), C̃). By example 1.14, Gc(Ω)
is an inductive limit and the previous definition gives: A functional T ∈ L(Gc(Ω), C̃) is
called basic, if it is of the form Tu = [(Tεuε)ε], where (Tε)ε is a net of distributions in D′(Ω)
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1.4 Dual spaces of Colombeau algebras

satisfying the following property:

∀K b Ω ∃j ∈ N ∃N ∈ N ∃η ∈ (0, 1] ∀u ∈ DK(Ω) ∀ε ∈ (0, η] :

|Tε(u)| ≤ ε−N sup
x∈K,|α|≤j

|∂αu(x)|. (1.32)

Note that every constant net (T )ε with T ∈ D′(Ω) defines a basic functional in L(Gc(Ω), C̃).
Indeed, by the seminorm-estimate for distributions [Hör09, Theorem 1.26] , we obtain that
∀K b Ω ∃C > 0 ∃m ∈ N ∀u ∈ DK(Ω)

|T (u)| ≤ C
∑
|α|≤m

sup
x∈K
|∂αu(x)| ≤ C1 sup

x∈K,|α|≤m
|∂αu(x)|. (1.33)

Since the constant C1 > 0 does not depend on ε, there are parameters N ∈ N and η ∈ (0, 1]
such that property (1.32) is fulfilled.

A similar argument holds for a constant net (T )ε with T ∈ E ′(Ω) that always determines
an element in Lb(G(Ω), C̃). This can be seen using the seminorm-estimate for compactly
supported distributions [Hör09, Theorem 1.62], i.e. ∃K b Ω ∃C > 0 ∃m ∈ N ∀u ∈ C∞(Ω)

|T (u)| ≤ C
∑
|α|≤m

sup
x∈K
|∂αu(x)|. (1.34)

In particular we obtain that embedded distributions are basic elements in L(Gc(Ω), C̃) and,
respectively, compactly supported distributions are elements in Lb(G(Ω), C̃).

Moreover, a net (Tε)ε ∈ D′(Ω)(0,1] that converges in D′(Ω), defines a basic functional.
Let (Tε)ε be a convergent net in D′(Ω) and K b Ω, then by the seminorm-estimate for
distributions we obtain for every ε ∈ (0, 1] that ∃Cε > 0 ∃mε ∈ N ∀u ∈ DK(Ω)

|Tε(u)| ≤ Cε
∑
|α|≤mε

sup
x∈K
|∂αu(x)|, (1.35)

which means that the set {Tε|ε ∈ (0, 1]} is pointwise bounded on DK(Ω). By the principle
of uniform boundedness (cf. [Hör09, Theorem 1.44], [Sch66, Chapter III, 4.2 Corollary]) this
set is also strongly bounded. Hence there are constants C > 0 and m ∈ N independent of ε,
such that for all ε ∈ (0, 1]

|Tε(u)| ≤ C
∑
|α|≤m

sup
x∈K
|∂αu(x)| (1.36)

and we obtain the required property (1.32) as in the case of a constant net.
Therefore, a net of distributions that does not define a basic element, is not convergent in
D′. But there are also divergent nets of distributions that define a basic functional, e.g.
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1 Topological issues and dual spaces

consider the net (1
εH)ε. Since for a test function u ∈ D(Ω) with support contained in [0,∞)

and
∫
u(t)dt = 1 we have that

〈1
ε
H, u

〉
=
∫ ∞

0

1
ε
u(t)dt = 1

ε
(1.37)

and therefore the net does not converge for ε→ 0.
On the other hand, for all u ∈ DK the following estimate∣∣∣1

ε
H(u)

∣∣∣ ≤ ε−1 sup
x∈K
|u(x)||K| (1.38)

holds and therefore the net defines a basic element.

For the framework of these C̃-linear, continuous functionals, we need some common op-
erations, whose definitions are similar to that for distributions:

1.20 Definition. Let T ∈ L(Gc(Ω), C̃), v ∈ G(Rn) and α ∈ Nn be a multiindex.
(i) The derivative of T is the C̃-linear map ∂α : L(Gc(Ω), C̃)→ L(Gc(Ω), C̃) defined by

∂αT (u) := (−1)|α|T (∂αu). (1.39)

(ii) We define the multiplication, G(Rn)× L(Gc(Rn), C̃)→ L(Gc(Rn), C̃), by

vT (u) = T (vu) for all u ∈ Gc(Rn). (1.40)

If in particular, v ∈ Gc(Rn), it follows that vT has compact support and therefore vT ∈
L(G(Rn), C̃).

Basic functionals are stable under these two operations: First note that basic functionals
remain basic when multiplied with a generalized function, which follows directly from the
definition.
Moreover, if the net (Tε)ε defines a basic functional in L(Gc(Rn), C̃), then for all multiindices
α ∈ Nn, the net (∂αTε)ε is again basic. Indeed, for

|∂αTε(u)| = |Tε(∂αu)| (1.41)

the required estimate (1.32) holds, since for u ∈ DK the derivative ∂αu ∈ DK .
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1.4.2 Convolution for elements of Lb(Gc(Rn), C̃) with L(G(Rn), C̃)

Next, we want to extend the common convolution to the Colombeau theoretic setting
(cf. [Fol95], [Gar06]). For this purpose we have some preparatory observations:

1.21 Definition. A subset W of Rn ×Rn is called proper if π−1
1 (B) ∩W and π−1

2 (B) ∩W
are compact in Rn×Rn for all compact subsets B of Rn. Here, π1 and π2 are the projection
maps from Rn ×Rn onto the first and second factors, respectively.

Because we will use “proper” related with the support, the following observation is quite
helpful : A generalized function on Rn × Rn with a proper support has a representative
(vε)ε such that every vε has proper support. More precisely, let u ∈ G(Rn×Rn) with proper
support and choose a cut-off χ ∈ C∞(Rn×Rn) with χ|supp(u) ≡ 1 and supp(χ) proper, whose
existence is shown in [Fol95, Prop 8.14]. If (uε)ε is a representative of u ∈ G(Rn×Rn), then
(χ.uε)ε is also a representative and the support of (χ.uε) is proper:
By assumption, for all compact subsets B of Rn we have π−1

1 (B) ∩ supp(χ) and π−1
2 (B) ∩

supp(χ) are compact in Rn×Rn, and so in particular closed. Furthermore, since the closed
set supp(χ.uε) is a subset of supp(χ), we know that π−1

1 (B) ∩ supp(χ.uε) is a closed sub-
set of π−1

1 (B) ∩ supp(χ) and therefore compact in Rn × Rn. Doing the same for the set
π−1

2 (B) ∩ supp(χ.uε), we can conclude that supp(χ.uε) is proper.

In the following we have to distinguish exactly between fixed and variable parameters. For
this we establish the following notations: a fixed variable is always denoted by a superscript
star and u(1)(x∗) := u(x∗, .) for u ∈ G(Rn × Rn). More precisely, u(1)(x∗) = [(uε(x∗, .))ε]
depends on the second parameter, while the first parameter is fixed.

1.22 Lemma. Suppose u ∈ G(Rn ×Rn) with proper support, then

u(1)(x∗) = u(x∗, .) ∈ Gc(Rn) for every fixed x∗ ∈ Rn. (1.42)

Proof: Choosing a cut-off χ ∈ C∞(Rn × Rn) with χ|supp(u) ≡ 1 and supp(χ) proper, we
have to show that there is a K b Rn such that supp((χ.uε)(1)(x∗)) ⊆ K for a fixed point
x∗ ∈ Rn.
For this purpose, we define the set K := π2(supp(χ.uε) ∩ π−1

1 (x∗)), which fulfills the fol-
lowing requirements: On the one hand it is compact in Rn, because supp(χ.uε) ∩ π−1

1 (x∗)
is compact by the preceding observation and, on the other hand, if z ∈ Rn \K, it follows
that (x∗, z) ∈ π−1

1 (x∗) and therefore (x∗, z) 6∈ supp(χ.uε). In particular, this means that
z 6∈ (supp((χ.uε)(1)(x∗)))◦. �
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We are now interested in finding out what happens, if we apply a functional to such an
element of the form u(1)(x∗) ∈ Gc(Rn). In the setting of functionals we also introduce a spe-
cial notation: for a basic functional T we denote by T (u(1)(.)) the class of (x 7→ Tε(u(1)

ε (x)))ε
and prove in the following proposition that this gives a well-defined generalized function.

1.23 Proposition. (i) Let T ∈ Lb(Gc(Rn), C̃) and u ∈ Gc(Rn × Rn) then T (u(1)(.)) is a
well-defined element of Gc(Rn).
(ii) Let T ∈ Lb(Gc(Rn), C̃) and u ∈ G(Rn×Rn) with proper support then T (u(1)(.)) ∈ G(Rn).

Proof: (i) Let u ∈ Gc(Rn × Rn) and (uε)ε ∈ u, then there are subsets K1,K2 b Rn such
that supp(uε) ⊆ K1 ×K2 for all ε ∈ (0, 1]. Obviously, u(1)(x∗) ∈ Gc(Rn) for a fixed point
x∗ ∈ Rn and u(1)

ε (x∗) ∈ DK2(Rn). Since T is a basic functional, we obtain:

∃(Tε)ε ∈ D′(Rn)(0,1] ∃N ∈ N ∃j ∈ N ∃η ∈ (0, 1] ∀ε ∈ (0, η] :

|Tε(u(1)
ε (x∗))| ≤ ε−N sup

y∈K2,|β|≤j
|∂βy u(1)

ε (x∗)|. (1.43)

Since x∗ ∈ Rn is arbitrary, (1.43) is true for all x∗ ∈ Rn and it follows that (uε)ε ∈
Ec,M (Rn × Rn) implies (x 7→ Tε(u(1)

ε (x)))ε ∈ Ec,M (Rn) and (uε)ε ∈ Nc(Rn × Rn) implies
(x 7→ Tε(u(1)

ε (x)))ε ∈ Nc(Rn). Let us emphasize that T (u(1)(.)) = [(x 7→ Tε(u(1)
ε (x)))ε]

depends on the parameter x which is no longer fixed.
It remains to show that T (u(1)(.)) is independent of the choice of the net (Tε)ε which deter-
mines T. Suppose (T ′ε)ε ∈ D′(Rn)(0,1] is another net defining T and (xε)ε ∈ x̃ a generalized
point in R̃nc . Since u(1)(x̃) := [(uε(xε, .))ε] ∈ Gc(Rn) we have that ((Tε − T ′ε)(uε(xε, .))) ∈ N
and therefore ((Tε − T ′ε)(uε(x, .))) ∈ Nc(Rn).

(ii) Once more we choose a cut-off χ ∈ C∞(Rn × Rn) with χ|supp(u) ≡ 1 and proper sup-
port. Lemma 1.22 guarantees that u(1)(x∗) ∈ Gc(Rn) and so T (u(1)(x∗)) is a well-defined
element for all x∗ ∈ Rn. Since it is basic, there is a net of distributions (Tε)ε such that
T (u(1)(x∗)) = [(Tε(u(1)

ε (x∗)))ε]. For all ψ ∈ C∞c (Rn) we obtain therefore

ψ(x)T (u(1)(.)) = [(ψ(x)Tε(χ(1)(x)u(1)
ε (x)))ε] ∈ Gc(Rn). (1.44)

Our aim is now to choose a family of cut-off functions ψ ∈ C∞c (Rn) so that (1.44) becomes a
coherent family of generalized functions. Let (Ωλ)λ∈Λ be a locally finite open covering of Rn

and (ψλ)λ∈Λ be a family in C∞c (Rn) such that ψλ|Kλ ≡ 1 with Kλ := π2(supp(u)∩π−1
1 (Ωλ)).

The latter is compact since the support of u is proper. These choices yield the coherent
family (ψλ(x)T (u(1)(.))|Ωλ)λ∈Λ of generalized functions in G(Rn) and therefore by the sheaf
property of G(Rn) the assertion follows. �
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Since the definition of the convolution makes use of generalized functions of the form u(x−y),
we investigate them in the next lemma:

1.24 Lemma. (i) If u ∈ G(Rn) then u(x− y) ∈ G(Rn ×Rn).
(ii) If u ∈ Gc(Rn) then u(x− y) ∈ G(Rn ×Rn) and its support is proper.

Proof: (i) Let (uε)ε be a representative of u ∈ G(Rn), then we have to show that (uε)ε ∈
EM (Rn) implies (uε(x − y))ε ∈ EM (Rn × Rn) and (uε)ε ∈ N (Rn) implies (uε(x − y))ε ∈
N (Rn ×Rn).
If (uε)ε ∈ EM (Rn), then we know that

∀K b Rn ∀α ∈ Nn
0 ∃p ≥ 0 : sup

z∈K
|∂αz uε(z)| = O(ε−p) as ε→ 0 (1.45)

and we have to show that

∀K1,K2 b R
n ∀(β, γ) ∈ Nn

0 ×Nn
0 ∃q ≥ 0 : sup

x∈K1,y∈K2
|∂βx∂γyuε(x− y)| = O(ε−q) as ε→ 0.

Since sup
x∈K1,y∈K2

|∂βx∂γyuε(x− y)| ≤ sup
z∈K1−K2

|∂β+γ
z uε(z)|, follows by (1.45) with K := K1 −K2

compact and α := β + γ the required property. Analogously we gain (uε(x − y))ε ∈
N (Rn ×Rn) for (uε)ε ∈ N (Rn).

(ii) By (i) we know that u(x−y) ∈ G(Rn×Rn) and it remains to show that u(x−y) has proper
support, i.e.∀B b Rn : P1 := supp(u(x− y)) ∩ π−1

1 (B) and P2 := supp(u(x− y)) ∩ π−1
2 (B)

are compact in Rn ×Rn.
Let u ∈ Gc(Rn), then there is a K b Rn with u ∈ GK(Rn). Since supp(u(x∗ − .)) =
x∗ − supp(u) for a fixed x∗ ∈ Rn, u(x∗ − .) ∈ GB−K(Rn) for all x∗ ∈ B. Accordingly we
obtain

P1 = supp(u(x− y)) ∩ (B ×Rn) ⊆
⋃
x∗∈B

supp(u(x∗ − .) ⊆ B −K. (1.46)

Clearly, B −K is compact and supp(u(x− y))∩ (B ×Rn) a closed subset which yields that
P1 is compact since we operate in a metric space. In the same way we can deduce that P2

is compact and therefore the support is proper. �

Assembling the previous results we can state the following definition:

1.25 Definition. The convolution ∗ : Gc(Rn)× Lb(Gc(Rn), C̃)→ G(Rn) is defined by

(u, T ) 7→ u ∗ T (x) = T (u(x− .)). (1.47)

This is well-defined: Using Lemma 1.24(ii) on u ∈ Gc(Rn), we obtain that u(x − y) ∈
G(Rn × Rn) with proper support. Therefore the assumptions of Proposition 1.23(ii) are
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fulfilled and we obtain u ∗ T ∈ G(Rn).
Moreover, one can show that the convolution is separately continuous. For the extension
of the convolution of two functionals, we are in particular interested in the continuity with
respect to the first parameter:

1.26 Proposition. The C̃-bilinear map

∗1 : Gc(Rn)→ G(Rn) : u 7→ u ∗ T (1.48)

is continuous for a fixed T ∈ Lb(Gc(Rn), C̃).

Proof: As we observed in Example 1.14 Gc(Rn) =
⋃
m∈N GKm(Rn) for (Km)m an exhausting

sequence of compact subsets of Rn such that Km ⊆ Km+1. Therefore the continuity of ∗1 is
equivalent to the continuity of (∗1 ◦ ιm) for all m ∈ N and ιm : GKm ↪→ Gc.
Accordingly, we have to show for all m ∈ N the following continuity-property: ∀L b Rn ∀l ∈
Nn ∃K ′ b Rn ∃k ∈ Nn ∃c > 0 such that ∀u ∈ GKm(Rn) and (uε)ε ∈ u

pL,l(∗1(u)) = sup
x∈L,|α|≤l

|∂αxT (uε(x− .))| ≤ c · pK′,k(u) = c · sup
z∈K′,|β|≤k

|∂βz uε(z)|. (1.49)

Let K b Rn be an arbitrary element of (Km)m and L b Rn. Since (uε)ε ∈ u ∈ Gc(Rn),
there is a K ′ b Rn such that K ⊆ (K ′)◦ and supp(uε) ⊆ K ′ for all ε ∈ (0, 1]. Moreover, if
u ∈ GK(Rn) then u(x∗−.) ∈ GL−K(Rn) for all x∗ ∈ L because supp(u(x∗−.)) = x∗−supp(u).
Furthermore, for the basic functional T there is a net (Tε)ε ∈ D′(Rn)(0,1] such that Tu =
[(Tε(uε))ε] satisfies the property (1.32). So we finally obtain that ∃ j,N ∈ N such that the
estimate

sup
x∈L,|α|≤l

|∂αxTε(uε(x− .))| = sup
x∈L,|α|≤l

|Tε(∂αxuε(x− .))|

≤ ε−N sup
x∈L,|α|≤l

sup
y∈L−K′,|β|≤j

|∂αx ∂βy (uε(x− y))|

≤ ε−N sup
z∈K′,|γ|≤l+j

|∂γz (uε(z))|

holds for all ε small enough. This leads to the required property (1.49), if we set k := l + j

and c := ε−N . �

By the previous results, we are now able to define the convolution of two functionals:

1.27 Definition. Let S be in L(G(Rn), C̃) and T ∈ Lb(Gc(Rn), C̃). The convolution S ∗T ∈
L(Gc(Rn), C̃) is defined by

S ∗ T (u) = Sx(Ty(u(x+ y))), (1.50)

in which the index denotes the variable parameter of the functional.
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1.4 Dual spaces of Colombeau algebras

This definition is meaningful, because (1.50) can be rephrased using the continuous map
.̃ : Gc(Rn)→ Gc(Rn), ṽ(y) := v(−y) :

Sx((ũ ∗ Ty )̃ ) = Sx(Ty(u(x+ y))). (1.51)

Moreover, considering Proposition 1.26, we obtain that the map Gc(Rn) → G(Rn) : u 7→
(ũ ∗ T )̃ is continuous. Since S is a C̃-linear and continuous functional, the composition
Sx((ũ ∗ Ty )̃ ) = S ∗ T ∈ L(Gc(Rn), C̃).

1.28 Proposition. If S ∈ L(G(Rn), C̃) and T ∈ Lb(Gc(Rn), C̃), then

supp(S ∗ T ) ⊆ supp(S) + supp(T ). (1.52)

Proof: Set A := supp(T ) and B := supp(S), then the set A + B is a closed subset of
Rn. Let V := Rn \ (A + B) and u ∈ Gc(V ). It follows that (S ∗ T )(u) = 0, because
supp(u(x+ y)) ⊆ {(x, y) : x+ y ∈ V }. �

There is one more situation in which we are interested in, namely the case of two basic
functionals. This is explained in the following corollary.

1.29 Corollary. Let S be in Lb(G(Rn), C̃) and T ∈ Lb(Gc(Rn), C̃), then the convolution
S ∗ T is in Lb(Gc(Rn), C̃).

Proof: Since S is a basic functional, likewise S(T (u(x + y))) is basic, and combining this
with the observations above, yields S ∗ T ∈ Lb(Gc(Rn), C̃). �

As in the case of distributions, ιd(δ) is the neutral element of the convolution of functionals.
This follows immediately from the definitions of the convolution.
Moreover, let us emphasize that different from the distributional convolution, in the Colombeau
theoretic setting of dual spaces convolution is not commutative. More precisely, if for S ∈ L1

and T ∈ L2 the convolution (L1 ×L2)→ L1 ∗ L2, (S, T ) 7→ S ∗ T is defined, then in general
the convolution (L2×L1)→ L2 ∗L1, (T, S) 7→ T ∗S may not be defined. But in the context
of partial differential operators this does not raise problems.
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2 Solvability of partial differential operators
with constant coefficients in C̃

In this chapter we discuss the solvability of partial differential operators with constant coef-
ficients in C̃ that operate in dual spaces. After some observations about the symbol and the
clarification of the meaning of a fundamental solution in dual spaces in 2.1, our aim is to
extend the well-known Malgrange-Ehrenpreis Theorem for functionals. For this we use the
fundamental solution for the distributional case constructed in [Hör76, (3.1.18)]. Since in
dual spaces the fundamental solutions have an ε-dependence via the symbol, they provide a
representative for a functional that solves the differential operator.
The initial point of our considerations in 2.3 is the following solvability result shown in
[Hör04, Corollary 7.9]:

2.1 Theorem. Let P(D) be a differential operator with constant Colombeau coefficients,
then the following two properties are equivalent:
(i) ∀f ∈ Gc(Rn) : ∃u ∈ G(Rn) : P (D)u = f

(ii) P̃ 2 is invertible at some point in Rn.

We extend this equivalence for the case of functionals, using a generalized Malgrange-
Ehrenpreis Theorem, the convolution from the previous chapter and various properties of
the symbol.

2.1 Basics and preparatory observations

Let P(D) be a differential operator of order m with constant Colombeau coefficients, i.e.
coefficients in C̃. For the symbol P (ξ) =

∑
|α|≤m

aαξ
α, we construct a representative (Pε)ε of

P by choosing representatives of the coefficients of P. Note that for (Pε)ε we obtain a net of
polynomials.
Moreover, similar as in the classical case, we consider the function P̃ 2 : R̃n → R̃ defined by

P̃ 2(ξ) =
∑
|α|≤m

∂αP · ∂αP , (2.1)
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2 Solvability of partial differential operators with constant coefficients in C̃

or alternatively in terms of representatives

P̃ 2
ε (ξ) =

∑
|α|≤m

|∂αξ Pε(ξ)|2. (2.2)

This notation is useful, since later we mainly work with P̃ :=
√
P̃ 2 instead of P̃ 2.

In the following we investigate different spaces of functions and distributions that provide
an appropriate background for the desired results.
By K we denote the set of all tempered weight functions, i.e. all positive functions k on Rn

such that for some constants C > 0 and N ∈ N we have

k(ξ + η) ≤ (1 + C|ξ|)Nk(η) for all ξ, η ∈ Rn. (2.3)

Furthermore, for k ∈ K and p ∈ [1,∞] we consider the space Bp,k(Rn) that consists of all
temperate distributions w ∈ S ′(Rn) satisfying

‖w‖p,k := (2π)−
n
p ‖kŵ‖Lp <∞, (2.4)

and respectively, if p =∞,

‖w‖∞,k := ess sup|k(ξ)ŵ(ξ)| <∞, (2.5)

where ŵ denotes the Fourier transformation of w.

As shown in [Hör83, Theorem 10.1.7], Bp,k with the norm ‖w‖p,k is a Banach space, for
p <∞ the space of all test functions D is dense in Bp,k and

S ⊂ Bp,k ⊂ S ′. (2.6)

The situation of the dual spaces of Bp,k is explained in the next proposition proved in [Hör83,
Theorem 10.1.14].

2.2 Proposition. If L is a continuous linear form on Bp,k, p ∈ [1,∞), we have for some
v ∈ Bp′, 1

k
with 1/p+ 1/p′ = 1 and p′ ∈ [1,∞],

L(u) = v̌(u) for u ∈ S and v̌(u) := v(−u). (2.7)

The norm of this linear form is ‖v‖p′, 1
k
and hence Bp′, 1

k
is the dual space of Bp,k.

For later purposes let us also state the next proposition, whose proof can be found in [Hör76,
(2.1.7) and Theorem 2.2.5].
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2.1 Basics and preparatory observations

2.3 Proposition. (i) If we define for k ∈ K the function

Mk(ξ) := sup
η∈Rn

k(ξ + η)
k(η) , ξ ∈ Rn, (2.8)

then Mk is the smallest function such that k(ξ + η) ≤Mk(ξ)k(η) and Mk ∈ K.

(ii) Let u ∈ Bp,k and ϕ ∈ S, then it follows that ϕu ∈ Bp,k and, moreover, we have
the following estimate

‖ϕu‖p,k ≤ ‖ϕ‖1,Mk
‖u‖p,k . (2.9)

The spaces Bp,k provide an appropriate framework for our setting, because as we see in the
next lemma, the above defined functions P̃ε are tempered weight functions for all ε ∈ (0, 1]:

2.4 Lemma. For the representative (Pε)ε there is a constant C > 0 depending only on the
dimension n and the order m of the differential operator such that the inequality

P̃ε(ξ + η) ≤ (1 + C|ξ|)mP̃ε(η) (2.10)

holds for all ξ, η ∈ Rn and all ε ∈ (0, 1].

Proof: Since Pε is a polynomial of order m, from Taylor’s formula follows

|∂αPε(ξ + η)| ≤ |∂αPε(η)|+
m−|α|∑
|β|=1

1
β! |∂

β∂αPε(η)||ξ||β| for all ξ, η ∈ Rn. (2.11)

Therefore there is a constant C > 0, such that for all ε ∈ (0, 1] the asserted inequality (2.10)
holds. We emphasize that the constant C is independent of the parameter ε. �

This leads us to the space B∞,P̃ε(R
n) that turns out to be a meaningful framework for

the existence of a solution of P(D).

But before we can continue with an existence result, we have to clarify the meaning of
the concept of fundamental solutions in dual spaces of Colombeau elements. Since we need
the Dirac delta function in the dual space, we recall from (1.20) that the embedding of
w ∈ D′(Rn) into L(Gc(Rn), C̃) is given by ιd(w)(u) = [(w(uε))ε]. This allows us to give a
similar definition of the fundamental solution as in the classical case:

2.5 Definition. Let P(D) be a partial differential operator with constant Colombeau coef-
ficients, then E ∈ L(Gc(Rn), C̃) is called a fundamental solution of P(D) if P (D)E = ιd(δ)
in L(Gc(Rn), C̃).
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2 Solvability of partial differential operators with constant coefficients in C̃

Analogous to the classical setting, a solution for the inhomogeneous case P (D)U = F can
be found by convolution:

2.6 Proposition. Let P(D) be as above, S ∈ L(G(Rn), C̃) and T ∈ Lb(Gc(Rn), C̃) then

P (D)(S ∗ T ) = P (D)S ∗ T = S ∗ P (D)T. (2.12)

Hence, if F ∈ L(G(Rn), C̃) and E ∈ Lb(Gc(Rn), C̃) is a fundamental solution of P(D), then
U := F ∗ E is a solution for P (D)U = F .

Proof: Let u ∈ Gc(Rn) and denote the transpose of the partial differential operator by
tP (D), then we have

P (D)S ∗ T (u) = (P (D)S)x(Ty(u(x+ y))) = Sx(tP (D)(Ty(u(x+ y)))

= Sx((P (D)T )y(u)(x+ y)) = S ∗ P (D)T (u)

= Sx(Ty(tP (D)u(x+ y))) = (S ∗ T )(tP (D)u)

= P (D)(S ∗ T )(u).

Now suppose that E ∈ Lb(Gc(Rn), C̃) is a fundamental solution and F ∈ L(G(Rn), C̃), then
we obtain by

P (D)U = P (D)(F ∗ E) = F ∗ P (D)E = F ∗ ιd(δ) = F (2.13)

that U := F ∗ E is a solution of the inhomogeneous equation P (D)U = F . �

We emphasize that for using the concept of fundamental solutions as known from distribu-
tion theory in the Colombeau theoretic setting, it is essential to work in dual spaces. In the
Colombeau algebra G the crucial property that the embedded delta-distribution is the neu-
tral element of the convolution is not fulfilled. More precisely, choose a Colombeau-mollifier
% ∈ S(R), such that %̂ ≥ 0, %̂ is symmetric and ‖%̂‖L1 6= 1

2π‖%̂‖
2
L2 , then the corresponding

model delta net %ε(x) := 1
ε%(x% ), (ε ∈ (0, 1]) is a representative of the delta distribution in

G(R), but
(%ε ∗ %ε − %ε)ε 6∈ N (R) (2.14)

and hence ι(δ) ∗ ι(δ) 6= ι(δ). Here ι means the embedding constructed by the above defined
model delta net (%ε)ε.
Indeeed, noting that %(−z) = %(z) and

∫
R
%(z)dz = 1, we obtain

|(%ε ∗ %ε − %ε)(0)| =
∣∣∣ ∫
R
%ε(y)

(
%ε(0− y)− %ε(0)

)
dy
∣∣∣

=
∣∣∣1
ε

∫
R
%(z)

(
%(−z)− %(0)

)
dz
∣∣∣
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2.2 A version of the Malgrange-Ehrenpreis Theorem

=
∣∣∣1
ε

∫
R
|%(z)|2dz − 1

ε
%(0)

∫
R
%(z)dz

∣∣∣
= 1
ε

∣∣∣∣∣ 1
2π‖%̂‖

2
L2 − ‖%̂‖L1

∣∣∣∣∣→ +∞ as ε→ 0

and therefore, since {0} is a compact subset, we can conclude that (%ε ∗ %ε − %ε)ε 6∈ N (R).

2.2 A version of the Malgrange-Ehrenpreis Theorem for
fundamental solutions in the space Lb(Gc(Rn), C̃)

Our aim in this section is the proof of the following theorem, shown in [Gar08] and stemming
from the Malgrange-Ehrenpreis Theorem in [Hör76].

2.7 Theorem. Let P (D) be a differential operator with coefficients in C̃ such that P̃ (ξ) is
invertible at some ξ0 ∈ Rn, then there exists a fundamental solution E ∈ Lb(Gc(Rn), C̃).
More precisely, for every c > 0 and every representative (Pε)ε of P exists a fundamental
solution E given by a net of distributions (Eε)ε such that for all ε ∈ (0, 1]

Eε
cosh(c|x|) ∈ B∞,P̃ε(R

n) and
∥∥∥∥ Eε
cosh(c|x|)

∥∥∥∥
∞,P̃ε

≤ C0, (2.15)

where C0 is a constant depending only on c, the dimension n and the order m.

We postpone the proof of the Theorem to the end of this section and discuss some results
for fundamental solutions on the level of representatives before. The plan is to begin with
investigating the symbol P in detail or rather more precisely, its representative (Pε)ε that
is a net of polynomials. Based on these properties we show the existence of a fundamental
solution for Pε(D) and use this for the proof of the above Theorem.

For convenience let us denote the set of all polynomials on Rn with coefficients in C of
degree less than m +1 by Πm and moreover, for p ∈ Πm we define

p̃(ξ) :=
∑
|α|≤m

|∂αp(ξ)|2. (2.16)

The following three lemmas offer estimates from below and above for p̃ and p ∈ Πm.

2.8 Lemma. Let A ⊆ Rn be a bounded subset such that no polynomial of Πm vanishes in
A without vanishing identically. Then there exists a positive constant C1 depending on A,
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2 Solvability of partial differential operators with constant coefficients in C̃

such that for all p ∈ Πm and ξ ∈ Rn the inequality

C1p̃(ξ) ≤ sup
θ∈A
|p(ξ + θ)| (2.17)

holds.

Proof: Note that by assumption the set A has to contain at least m+1 elements, otherwise
there would be at least one polynomial that vanishes on A. Since we look for an upper bound
we can therefore assume without loss of generality that A has exactly m+1 elements.
Let p ∈ Πm and consider the m+1 equations p(θ) := aθ (θ ∈ A). By Lagrange’s interpolation
formula we then gain a representation of p, namely

p(η) =
∑
θ∈A

p(θ)Rθ(η), (2.18)

where Rθ is the element of Πm that is equal to 1 at θ and vanishes elsewhere in A. Replacing
p(η) by p(ξ + η) in (2.18), leads to

p(ξ + η) =
∑
θ∈A

p(ξ + θ)Rθ(η). (2.19)

By differentiation with respect to η we obtain

∂αp(ξ) =
∑
θ∈A

p(ξ + θ)∂αRθ(0) (2.20)

and conclude by summing up and using the triangle inequality that the required property

C1p̃(ξ) ≤ sup
θ∈A
|p(ξ + θ)| (2.21)

is valid. �

2.9 Lemma. Let p ∈ Πm, then the following estimate holds:

sup
0≤k≤m

inf
|z|=k/m

|p(z)| ≥ (4m+ 1)−m|p(1)|, (2.22)

where k takes integral values.

Proof: Let z1, ..., zµ be the zeros of p, then there is a constant C 6= 0 such that

p(z) = C
µ∏
j=1

(z − zj). (2.23)

Note that the number of zeros µ is less or equal than m. Therefore there is a constant
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2.2 A version of the Malgrange-Ehrenpreis Theorem

r :=k/m where 0 ≤ k ≤ m, k ∈ N, such that
∣∣∣r − ∣∣zj∣∣∣∣∣ ≥ 1/(2m) for all j = 1, ..., µ. For

|z| = r we have

|p(z)| ≥ |C|
µ∏
j=1

∣∣∣|z| − |zj |∣∣∣ ≥ |p(1)|
µ∏
j=1

∣∣∣r − |zj |∣∣∣
1 + |zj |

(2.24)

since |C| ≥ |p(1)| and 1 + |zj | ≥ 1. If we show that for every j = 1, ..., µ∣∣∣r − |zj |∣∣∣
1 + |zj |

≥ 1
4m+ 1 , (2.25)

the proof is finished.
If |zj | < 1 + 1/(2m), the inequality (2.25) follows immediately. In the other case, i.e. if
|zj | ≥ 1 + 1/(2m), from the first derivative it follows that the function |r−|zj ||1+|zj | is increasing
in |zj | and therefore∣∣∣r − |zj |∣∣∣

1 + |zj |
≥ |r − (1 + 1/(2m))|

2 + 1/(2m) = 1− r + 1/(2m)
2 + 1/(2m) ≥ 1/(2m)

2 + 1/(2m) = 1
4m+ 1 .

�

2.10 Lemma. Let A ⊆ Rn be a bounded subset such that no polynomial of Πm vanishes
in A without vanishing identically and set A′ := {kθ/m : 0 ≤ k ≤ m, k ∈ N and θ ∈ A}.
Then there is a constant C2 > 0 such that

p̃(ξ) ≤ C2 sup
θ∈A′

inf
|z|=1
|p(ξ + zθ)| (2.26)

for all p ∈ Πm and ξ ∈ Rn.

Proof: Applying Lemma 2.9 to the polynomial p(ξ + zθ) in z, gives the inequality

(4m+ 1)m sup
0≤k≤m

inf
|z|=k/m

|p(ξ + zθ)| ≥ |p(ξ + θ)|. (2.27)

Taking the supremum gives

(4m+ 1)m sup
θ∈A

sup
0≤k≤m

inf
|z|=k/m

|p(ξ + zθ)| ≥ sup
θ∈A
|p(ξ + θ)| (2.28)

and we can use Lemma 2.8 to obtain a constant C1 > 0 such that

C1p̃(ξ) ≤ (4m+ 1)m sup
θ∈A

sup
0≤k≤m

inf
|z|=k/m

|p(ξ + zθ)| = (4m+ 1)m sup
θ∈A′

inf
|z|=1
|p(ξ + zθ)|.

Choosing C2 := (4m+ 1)m/C1 > 0, concludes the proof. �
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2 Solvability of partial differential operators with constant coefficients in C̃

If we apply Lemma 2.10 to the net (Pε)ε ∈ Π(0,1]
m , we obtain a constant C > 0 such that the

estimate
P̃ε(ξ) ≤ C sup

θ∈A′
inf
|z|=1
|Pε(ξ + zθ)| (2.29)

holds for all ξ ∈ Rn and for all ε ∈ (0, 1].

Although the following proposition only deals with fundamental solutions in the distribu-
tional setting, it plays an important role in the proof of our version of the Malgrange-
Ehrenpreis Theorem. So let us recall some notation:
A distribution E ∈ D′(Rn) is called a fundamental solution for the differential operator
P(D) with constant coefficients, if P (D)E = δ. Introducing Ě(u) := E(−u) = E ∗ u(0) for
u ∈ D(Rn), we obtain that E is a fundamental solution if

Ě(P (D)u) = u(0) for all u ∈ D(Rn). (2.30)

The latter follows from

u(0) = Ě(P (D)u) = E ∗ P (D)u(0) = P (D)E ∗ u(0) (2.31)

and the observation that δ is the neutral element for the convolution of distributions.

Now we have the required background for the following existence result:

2.11 Proposition. Let A′ be a finite subset of the ball |ξ| < c for an arbitrary constant
c > 0, such that (2.29) is valid for every net (Pε)ε ∈ Π(0,1]

m . Let us fix a net (Pε)ε and let
ϕθ,ε (θ ∈ A′, ε ∈ (0, 1]) be measurable functions on Rn such that ϕθ,ε ≥ 0,

∑
θ∈A′

ϕθ,ε = 1 and

ϕθ,ε(ξ) > 0 ⇒ P̃ε(ξ) ≤ C inf
|z|=1
|Pε(ξ + zθ)|. (2.32)

Then the formula

Ěε(u) = (2π)−n
∑
θ∈A′

∫
Rn

ϕθ,ε(ξ)
1

2πi

∫
|z|=1

û(ξ + zθ)
Pε(ξ + zθ) · z dz dξ (u ∈ D(Rn)) (2.33)

defines a fundamental solution Eε(u) := Ěε ∗ u(0) of Pε(D) such that Eε/cosh(c|x|) ∈
B∞,P̃ε(R

n). In particular, there exists a constant C0 depending only on n, m and c such that

∥∥∥∥ Eε
cosh(c|x|)

∥∥∥∥
∞,P̃ε

≤ C0 (2.34)

for all ε ∈ (0, 1].
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2.2 A version of the Malgrange-Ehrenpreis Theorem

Proof: To begin with, we show the existence of the required family (ϕθ,ε)θ∈A′,ε∈(0,1]: for
every ε ∈ (0, 1], let qε(ξ) be the number of elements θ ∈ A′ such that

P̃ε(ξ) ≤ C inf
|z|=1
|Pε(ξ + zθ)| (2.35)

is fulfilled. Lemma 2.10 guarantees that qε(ξ) ≥ 1 and so we can define the required functions
by

ϕθ,ε(ξ) :=

1/qε(ξ), if (2.35) is valid,

0, else.
(2.36)

These functions play an important role for the well-definedness of the integral in (2.33): if
ϕθ,ε > 0, we know by (2.32) that P̃ε(ξ) ≤ C inf |z|=1 |Pε(ξ + zθ)| and hence in particular

0 < C inf
|z|=1
|Pε(ξ + zθ)|. (2.37)

Moreover, since û ∈ S ⊆ L1 and the functions ϕθ,ε are bounded, the integral is convergent.

Next we want to show that Eε/cosh(c|x|) ∈ B∞,P̃ε(R
n): by property (2.32) and

0 ≤ φθ,ε ≤ 1 we obtain for u ∈ D(Rn)

|Ěε(u)| ≤ C(2π)−n−1 ∑
θ∈A′

∫
|z|=1

dz

∫
Rn

|û(ξ + zθ)|
P̃ε(ξ)

dξ (2.38)

= C(2π)−n−1 ∑
θ∈A′

∫
|z|=1

dz

∫
Rn

1
P̃ε(ξ)

|(e−i〈ξ,zθ〉u(ξ))̂ |dξ

= C
1

2π
∑
θ∈A′

∫
|z|=1

dz
∥∥∥e−i〈.,zθ〉u(.)

∥∥∥
1,1/P̃ε

.

We claim that for an arbitrary c > 0 the estimate

∥∥∥e−i〈.,zθ〉u∥∥∥
1,1/P̃ε

≤
∥∥∥∥∥ e−i〈.,zθ〉cosh(c|.|)

∥∥∥∥∥
1,M1/P̃ε

‖cosh(c|.|)u(.)‖1,1/P̃ε

holds.
Since 1/cosh(c|x|) ∈ S and e−i〈x,zθ〉 is a moderate function, it follows that the product
x 7→ e−i〈x,zθ〉

cosh(c|x|) is an element of S. By (2.6), it therefore follows that e−i〈.,zθ〉

cosh(c|.|) ∈ B1,M1/P̃ε
and

we can deduce from Proposition 2.3(ii) that for an arbitrary c > 0

∥∥∥e−i〈.,zθ〉u∥∥∥
1,1/P̃ε

=
∥∥∥∥∥ e−i〈.,zθ〉cosh(c|.|) cosh(c|.|)u(.)

∥∥∥∥∥
1,1/P̃ε

≤
∥∥∥∥∥ e−i〈.,zθ〉cosh(c|.|)

∥∥∥∥∥
1,M1/P̃ε

‖cosh(c|.|)u(.)‖1,1/P̃ε

is true and the claim is proven.
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2 Solvability of partial differential operators with constant coefficients in C̃

Considering that e−i〈.,zθ〉

cosh(c|.|) ∈ B1,M1/P̃ε
is bounded by a constant, this gives in summary that

there is a constant C3 > 0 such that

|Ěε(u)| ≤ C3 ‖cosh(c|.|)u(.)‖1,1/P̃ε . (2.39)

Setting Eε,c := Eε/cosh(c|x|), yields therefore for u ∈ D(Rn)

|Ěε,c(u)| ≤ C3 ‖u‖1,1/P̃ε (2.40)

and that guarantees the continuity of the linear form Ěε,c on (D, ‖.‖1,1/P̃ε). Since D is dense
in B1,1/P̃ε , Ěε,c defines a continuous linear form on B1,1/P̃ε and we can apply Proposition 2.2.
This gives the existence of a v ∈ B∞,P̃ε such that

Ěε,c(u) = v̌(u) for u ∈ S (2.41)

which is equivalent to Eε,c(u) = v(u). Since v ∈ B∞,P̃ε , we therefore obtain that

‖Eε,c‖∞,P̃ε = ‖v‖∞,P̃ε <∞ (2.42)

and this shows that Eε/cosh(c|x|) ∈ B∞,P̃ε(R
n).

It remains to show, that Eε is indeed a fundamental solution: from (2.30) we know that this
is equivalent to Ěε(Pε(D)u) = u(0) for u ∈ D. Setting wε := Pε(D)v where v ∈ D(Rn), we
have ŵε(ζ) = Pε(ζ)v̂(ζ) and

Ě(Pε(D)v) = (2π)−n
∑
θ∈A′

∫
Rn

ϕθ,ε(ξ)
1

2πi

∫
|z|=1

Pε(ξ + zθ)v̂(ξ + zθ)
Pε(ξ + zθ) · z dz dξ

= (2π)−n
∑
θ∈A′

∫
Rn

ϕθ,ε(ξ) v̂(ξ) dξ

= (2π)−n
∫
Rn

1 · v̂(ξ) dξ = v(0).

In the last two steps we used the assumption that
∑
θ∈A′

ϕθ,ε = 1 and Fourier’s inversion for-

mula. This completes the proof. �

In the proof of Theorem 2.7 we use the above constructed fundamental solutions Ěε and
prove that the net (Ěε)ε provide a fundamental solution for P (D).

But before we have to investigate one more property of P̃ 2
ε , namely an estimate from below:

2.12 Lemma. If there is a ξ0 ∈ Rn such that P̃ 2(ξ0) is invertible in C̃ then P̃ 2 is invertible
in G(Rn) and P̃ :=

√
P̃ 2 is a well-defined Colombeau function. More precisely, there are
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2.2 A version of the Malgrange-Ehrenpreis Theorem

constants d > 0, N ≥ 0 and an ε0 ∈ (0, 1] such that

P̃ 2
ε (ξ) ≥ εN (1 + d|ξ0 − ξ|)−2m for all ξ ∈ Rn and ε ∈ (0, ε0]. (2.43)

Proof: By Lemma 2.4 there is a constant d > 0 such that for all ξ, η ∈ Rn and ε ∈ (0, 1]

P̃ 2
ε (ξ + η) ≤ (1 + d|η|)2mP̃ 2

ε (ξ). (2.44)

Since P̃ 2
ε (ξ0) is invertible, it is strictly nonzero, i.e. for some N > 0 and ε0 ∈ (0, 1] is

εN ≤ P̃ 2
ε (ξ0) when ε ∈ (0, ε0).

Substituting η = ξ0 − ξ in (2.44) yields for all ξ ∈ Rn and ε ∈ (0, ε0)

εN ≤ P̃ 2
ε (ξ0) ≤ (1 + d|ξ0 − ξ|)2mP̃ 2

ε (ξ) (2.45)

and therefore shows (2.43) and the smoothness of P̃ε. By (2.43) we can furthermore deduce
that P̃ 2 is invertible as a generalized function on Rn. �

Finally, we have all required results to prove a version of the Malgrange-Ehrenpreis Theorem
for fundamental solutions in the space Lb(Gc(Rn), C̃) as stated in Theorem 2.7.

Proof of Theorem 2.7: Let us fix a representative (Pε)ε of P.
For the existence of a fundamental solution E ∈ Lb(Gc(Rn), C̃) for the differential operator
P(D), we show that the net Ě := (Ěε)ε ∈ D′(Rn)(0,1] given by (2.33) determines a funda-
mental solution in Lb(Gc(Rn), C̃).

So first we have to prove that the net Ě(u) = [(Ěε(uε))ε], u = [(uε)ε] ∈ Gc(Rn), satis-
fies property (1.32), i.e.

∀K b Rn ∃j ∈ N ∃N ∈ N ∃η ∈ (0, 1] ∀u ∈ DK(Rn) ∀ε ∈ (0, η] :

|Ěε(u)| ≤ ε−N sup
x∈K,|α|≤j

|∂αu(x)|. (2.46)

By assumption, P̃ is invertible at some point ξ0 ∈ Rn and therefore with Lemma 2.12 there
are constants d > 0, N ≥ 0 and an ε0 ∈ (0, 1] such that

P̃ 2
ε (ξ) ≥ εN (1 + d|ξ0 − ξ|)−2m for all ξ ∈ Rn and ε ∈ (0, ε0]. (2.47)
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2 Solvability of partial differential operators with constant coefficients in C̃

With (2.38) this yields

|Ěε(u)| ≤ C(2π)−n−1 ∑
θ∈A′

∫
|z|=1

∫
Rn

|û(ξ + zθ)|
εN (1 + C1|ξ0 − ξ|)−m

dξ dz

≤ C ′ε−N
∑
θ∈A′

∫
|z|=1

∫
Rn

(1 + |ξ|)m|û(ξ + zθ)| dξ dz

and since û(ξ + zθ) ∈ S it follows that

|Ěε(u)| ≤ C ′′ε−N sup
y∈K,|β|≤m+n+1

|∂βu(y)| (2.48)

for all u ∈ DK(Rn) and ε small enough. This shows that Ě ∈ Lb(Gc(Rn), C̃).
By construction and Proposition 2.11, we furthermore have that Ě(u) = E ∗ u(0) fulfills
P (D)E = ιd(δ), hence is a fundamental solution and fulfills the properties (2.15). �

2.3 Solvability and its equivalences

To begin with, we state the following proposition about the invertibility of P̃ 2 that is shown
in [Hör04, Theorem 7.8] for generalized functions. Since the main part of the proof is based
on properties of the symbol that are independent of the space of the solution, it can be easily
transferred to functionals.

2.13 Proposition. Let F ∈ L(Gc(Rn), C̃) be such that F (u0) is invertible in C̃ for some
u0 ∈ Gc(Rn). If P (D)U = F is solvable with U ∈ L(G(Rn), C̃), then P̃ 2 is invertible in
G(Rn).

Proof: Suppose that P̃ 2 is not invertible. Then, as observed in Lemma 2.12, P̃ 2(0) cannot
be invertible and therefore is a zero-divisor [Hör10, Theorem 5.9]. Hence we may choose a
representative (bε)ε of P̃ 2(0), which vanishes on a zero sequence of ε-values. This means
that there is a sequence (νk)k ∈ (0, 1]N with νk → 0 as ε→∞ such that bνk = 0 for k ∈ N.
Let us define a generalized number c ∈ R̃ by the representative

cε =

1, if ε = νk for some k ∈ N,

0, else.
(2.49)

Then c 6= 0, but c · aα = 0 for |α| ≤ m: first note that P̃ 2
ε (0) is of the form

P̃ 2
ε (0) =

∑
|α|≤m

|∂αPε(0)|2 =
∑
|α|≤m

(α!)2|aεα|2, (2.50)
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2.3 Solvability and its equivalences

where all terms are nonnegative. Since (bε)ε is a representative of P̃ 2(0), we have for all q
that |bε − P̃ 2

ε (0)| = O(εq) (ε→ 0) and can therefore deduce that |aνkα | = O(νqk) (k →∞) for
all q. Therefore it follows that c · aα = 0 for |α| ≤ m.
Since P (D)U = F and F (u0) is invertible and therefore no zero-divisor, we obtain

0 6= c · F (u0) = c · P (D)U(u0) =
∑
α

caαD
αu(x0) = 0, (2.51)

which produces a contradiction. �

Now the following theorem can be shown combining several previous results.

2.14 Theorem. Let P(D) be a partial differential operator with constant coefficients in C̃,
then the following are equivalent:
(i) P̃ 2 is invertible at some point in Rn.
(ii) For all f ∈ Gc(Rn) there is a u ∈ G(Rn) such that P (D)u = f .
(iii) For all F ∈ L(G(Rn), C̃) there is a U ∈ L(Gc(Rn), C̃) such that P (D)U = F .
(iv) For all F ∈ Lb(G(Rn), C̃) there is a U ∈ Lb(Gc(Rn), C̃) such that P (D)U = F .

Proof: Since in all three cases (ii)-(iv) there is certainly at least one inhomogeneity that is
invertible at one point, we can apply Proposition 2.13 and hence proved that P̃ 2 is invertible
at some point in Rn.
For the other equivalences, suppose (i) is true and let E ∈ Lb(Gc(Rn), C̃) be a fundamental
solution of P(D) whose existence follows from Theorem 2.7.
For assertion (ii) our aim is to show that u := f ∗ E ∈ G(Rn) is a solution for P (D)u = f .
In fact, Definition 1.25 guarantees that f ∗E is a generalized function in G(Rn). Moreover,
since by (1.19) f ∈ Gc(Rn) ⊆ L(G(Rn), C̃), Proposition 2.6 yields that u := f ∗ E is indeed
a fundamental solution.
For (iii) assume that F ∈ L(G(Rn), C̃) and prove that U := F ∗ E ∈ L(Gc(Rn), C̃) solves
P (D)U = F . In this case, by Definition 1.27 we have that F ∗E ∈ L(Gc(Rn), C̃) and by the
virtue of Proposition 2.6 it follows that F ∗ E is the desired solution.
Likewise we can prove (iv), however, that U := F ∗E is a functional in Lb(Gc(Rn), C̃) follows
from Corollary 1.29. �
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3 Extension of the convolution and several
applications for solutions in dual spaces

In this chapter we study specific types of operators with Colombeau coefficients such as a
Cauchy-Riemann operator and a Schrödinger equation with generalized initial data.
Before we discuss these partial differential equations in detail, we investigate once more the
convolution and enlarge the class of functionals for which the operation is defined. In the
following this also enables us to consider certain non-compactly supported inhomogeneities
in partial differential equations and to construct solutions by convolving them with special
fundamental solutions.

3.1 Convolution of two functionals in Lb(Gc(Rn), C̃)

As seen in Chapter 2 we have a guaranteed fundamental solution in Lb(Gc(Rn), C̃) for a
large class of differential operators P (D). By convolution with an inhomogeneity F ∈
L(G(Rn), C̃) this fundamental solution provides a solution for P (D)U = F . Since so far we
only have a definition for the convolution of elements in L(G(Rn), C̃) with Lb(Gc(Rn), C̃),
inhomogeneities with non-compact supports can not be considered. These are for example
distributions in D′(Rn) \ E ′(Rn) like the Heaviside-distribution. Therefore an extended
convolution would be really helpful and can be achieved similarly to the concept used in
the distributional setting, as for example carried out in [Fri98, 5.3] and [Hör09, 4.3]. The
important additional assumption is that the map

supp(S)× supp(T )→ Rn, (x, y) 7→ x+ y (3.1)

is proper.

This property introduced in the following is different from the definition of proper in 1.21,
where it describes a property for sets in Rn ×Rn.

3.1 Definition. Let A ⊆ Rn be a closed subset and f : A → Rm be continuous. The
function f is called proper, if for every compact subset K b Rm the inverse image f−1(K)
is compact in Rn.
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3 Extension of the convolution and several applications for solutions in dual spaces

It can be shown that f is proper if and only if

∀η > 0 ∃γ > 0 ∀x ∈ A : |f(x)| ≤ η ⇒ |x| ≤ γ. (3.2)

The extension of convolution is achieved by the following theorem, in which we choose an
appropriate cut-off-function and reduce the definition to cases already known.

3.2 Theorem. Let S ∈ L(Gc(Rn), C̃) and T ∈ Lb(Gc(Rn), C̃) such that the map

supp(S)× supp(T )→ Rn, (x, y) 7→ x+ y is proper, (3.3)

i.e.∀η > 0 ∃γ > 0: |x+ y| ≤ η ⇒ max(|x|, |y|) ≤ γ.
For every η > 0 let χη ∈ D(Rn) be a cut-off such that χη = 1 on a neighbourhood of Bγ(0),
where γ > 0 is chosen as above. Then the convolution S ∗ T ∈ L(Gc(Rn), C̃) is defined for
every u ∈ Gc(Rn) with supp(u) ⊆ Bη(0) by

S ∗ T (u) := ((χηS) ∗ T )(u) = (χηS)x
(
Ty(u(x+ y))

)
, (3.4)

where the terms on the right-hand side mean convolution as in Definition 1.27 applied to
χηS ∈ L(G(Rn), C̃) and T ∈ Lb(Gc(Rn), C̃). This convolution is well-defined.

Proof: We have to show that the restriction ((χηS)∗T )|Bη(0) is independent of the choice of
the cut-off. For this, let χ1

η ∈ D(Rn) be another cut-off that is equal to 1 on a neighbourhood
of Bγ(0). It follows that supp((χ1

η − χη)S) ∩Bγ(0) = ∅ and furthermore

supp((χ1
η − χη)S ∗ T ) ∩Bη(0) = ∅ (3.5)

holds: let z ∈ Rn with |z| ≤ η and z ∈ supp((χ1
η−χη)S∗T ). Since (χ1

η−χη)S ∈ L(G(Rn), C̃)
and T ∈ Lb(Gc(Rn), C̃), we know by Proposition 1.28 that

z ∈ supp((χ1
η − χη)S ∗ T ) ⊆ supp((χ1

η − χη)S) + supp(T ) ⊂ supp(S) + supp(T ).

Hence z = x + y with x ∈ supp((χ1
η − χη)S) and y ∈ supp(T ) and (3.3) implies that

x, y ∈ Bγ(0). This gives a contradiction, because x ∈ supp((χ1
η − χη)S) ∩ Bγ(0) = ∅.

Therefore (χ1
η − χη)S ∗ T |Bη(0) = 0 and we obtain that the following holds on Bη(0)

(χ1
ηS) ∗ T = (χηS) ∗ T + ((χ1

η − χη)S) ∗ T = (χηS) ∗ T. �

The restriction of the convolution defined above to S ∈ L(G(Rn), C̃) coincides with the
Definition 1.27 for elements in L(G(Rn), C̃) and Lb(G(Rn), C̃):
Since S has compact support, there is a constant R > 0 such that supp(S) ⊆ BR(0). If
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3.1 Convolution of two functionals in Lb(Gc(Rn), C̃)

x ∈ supp(S), y ∈ supp(T ) and |x+ y| < η, then it follows that

|y| ≤ |x+ y|+ |x| ≤ η +R =: γ (3.6)

and therefore the map supp(S)× supp(T )→ Rn, (x, y) 7→ x+ y, is proper. In this case the
cut-off χη in Theorem 3.2 is equal to 1 on a neighbourhood of Bη+R(0). Therefore we have
for all η > 0, that χηS = S and

(χηS) ∗ T (u) = S ∗ T (u). (3.7)

This shows that the two definitions coincide for S ∈ L(G(Rn), C̃).

The convolution defined in Theorem 3.2 fulfills properties analogous to such proved for
the convolution in Definition 1.27: supp(S ∗ T ) ⊆ supp(S) + supp(T ) and P (D)(S ∗ T ) =
(P (D)S) ∗ T = S ∗ (P (D)T ).

In general it is not clear whether a fundamental solution and an inhomogeneity consid-
ered in a partial differential equation will fulfill the property required in Theorem 3.2, but
there are classes of functionals that guarantee this property.

3.3 Example. Consider the space

L+
b (Gc(R), C̃) := {T ∈ Lb(Gc(R), C̃) : ∃a ∈ R such that supp(T ) ⊆ [a,∞)}. (3.8)

Clearly, the embedded Heaviside-function ιd(H) ∈ Lb(Gc(R), C̃) is an element of L+
b .

We show that two elements of L+
b (Gc(R), C̃) fulfill property (3.3), hence can be convolved

according to (3.4). Indeed, let S and T ∈ L+
b (Gc(R), C̃) with supp(S) ⊆ [a1,∞) and

supp(T ) ⊆ [a2,∞), then we have to show, that

[a1,∞)× [a2,∞)→ R, (x, y) 7→ x+ y (3.9)

is proper, i.e. ∀η > 0 ∃γ > 0: |x+ y| ≤ η ⇒ max(|x|, |y|) ≤ γ.
Let η > 0 be arbitrary, x ∈ [a1,∞) and y ∈ [a2,∞) with |x + y| ≤ η. For a := min(a1, a2)
we obtain max(|x|, |y|) ≤ η + 2|a| and therefore the addition is proper on these sets.

Furthermore, since supp(S ∗ T ) ⊆ supp(S) + supp(T ), we may conclude that S ∗ T re-
mains in L+

b (Gc(R), C̃) and therefore L+
b (Gc(R), C̃) is a convolution algebra.

Similarly, the set

L−b (Gc(R), C̃) := {T ∈ Lb(Gc(R), C̃) : ∃a ∈ R such that supp(T ) ⊆ [−∞, a)} (3.10)
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3 Extension of the convolution and several applications for solutions in dual spaces

is a convolution algebra.

This example seems to extend the space of possible inhomogeneities, but the theorem on ex-
istence of a fundamental solution for a partial differential operator with constant Colombeau
coefficients guarantees only a fundamental solution in Lb(Gc(R), C̃) and contains no infor-
mation on the support of the solution. Nevertheless, there are operators with fundamental
solutions in L+

b (Gc(R), C̃) as shown in [Gar08, Chapter 2.3]:

3.4 Definition. A partial differential operator with constant Colombeau coefficients, de-
fined on Rn, is called an evolution operator with respect to Hn := {x ∈ Rn : xn ≥ 0} if it
has a fundamental solution E ∈ Lb(Gc(R), C̃) whose support is contained in Hn.

Since L+
b is a convolution algebra with ιd(δ) as a neutral element, we obtain solutions for

this kind of equations also for inhomogeneities L+
b (Gc(R), C̃).

3.2 Solutions for selected differential operators in dual spaces

Finally we discuss some applications where a solution in L(Gc(Rn), C̃) can be constructed
by convolving the fundamental solution with the inhomogeneity.

3.2.1 A simple ordinary differential equation

We begin with the following ordinary differential operator

La = d

dx
− a, (3.11)

where a ∈ C̃ (cf. [Gar08, 4.1.1]).

In the following we first investigate the operator

L := d

dx
in L(Gc(Rn), C̃) (3.12)

and consider the particular case, where L = 0. We show that every solution T ∈ L(Gc(Rn), C̃)
is of the form T = λ ∈ C̃: Let T be in L(Gc(Rn), C̃) such that d

dxT = 0 and ϕ ∈ C∞c (R) with∫
ϕ = 1, then every u ∈ Gc(R) can be written as

u(x) =
(
u(x)−

∫
u(s)ds ϕ(x)

)
+
∫
u(s)ds ϕ(x). (3.13)
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3.2 Solutions for selected differential operators in dual spaces

Furthermore

u(x)−
∫
u(s)ds ϕ(x) = d

dx

[
−
∫ ∞
x

(
u(t)−

( ∫
u(s) ds

)
ϕ(t)

)
dt

]
:= v(x) ∈ Gc(Rn)

and hence by (3.13)

T (u) = T (v) + T

(∫
u(s)ds ϕ(x)

)
=
∫
u(s)ds T (ϕ). (3.14)

By this, one can conclude that all fundamental solutions of the operator L are of the form

E = ιd(H) + λ (λ ∈ C̃). (3.15)

Let T ′ ∈ L(Gc(Rn), C̃) be another fundamental solution of L, then L(T ′ − ιd(H)) = 0, since
ιd(H) is a fundamental solution. By the above we have that T ′ − ιd(H) ∈ C̃ and therefore
the claim is proven.

To solve an inhomogeneous equation, note that supp(ιd(H)) = supp(H) = [0,∞) and there-
fore ιd(H) ∈ L+

b (Gc(R), C̃). Hence a solution can be found by convolution not only for
right-hand sides in L(G(R), C̃), but also in L+

b (Gc(R), C̃).

Next we investigate the similar operator

La = d

dx
− a (3.16)

for a generalized complex number a ∈ C̃.

For the particular case, where a ∈ C̃ has a real part of log-type, i.e.∃ε0 > 0 such that
|aε| ≤ log 1

ε for all ε ∈ (0, ε0), we can describe the fundamental solution in detail. Namely,
all fundamental solutions of La are then of the form

E = ιd(H)eax + λeax, (3.17)

where λ ∈ C̃: by the condition of a ∈ C̃, the function eax is a well-defined element in G(R).
Let E be a fundamental solution of La, then

d

dx

(
e−axE

)
(u) = −e−axE(u′) = −E(e−axu′)

= −E((e−axu)′ + ae−axu) = d

dx
E(e−axu)− aE(e−axu)

= ιd(δ)(u),
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3 Extension of the convolution and several applications for solutions in dual spaces

and, accordingly, e−axE is a fundamental solution of L = d
dx . By (3.15) it follows that

e−axE = ιd(H) + λ for some λ ∈ C̃ and therefore E = ιd(H)eax + λeax.

3.2.2 A general way of constructing a fundamental solution

Before investigating further examples, let us discuss once more the possible approach to
finding a fundamental solution, where we solve the equation on the level of representatives.

In the following, let P(D) be a differential operator with coefficients in C̃ such that P̃ (ξ) is
invertible at some ξ0 ∈ Rn. Then, by Theorem 2.7, there exists a fundamental solution in
Lb(Gc(Rn), C̃). Let (Pε)ε be a representative of P and Eε ∈ D′(Rn) a fundamental solution
for Pε(D) for all ε ∈ (0, 1] in the distributional sense. If E := [(Eε)ε] ∈ Lb(Gc(Rn), C̃), then
E is a fundamental solution for P (D) in the dual space: Since P (D)E = ιd(δ) means on the
level of representatives Pε(D)Eε(uε) = uε(0) for (uε)ε ∈ u in Gc(Rn) and uε ∈ D(Rn), the
latter is fulfilled by the distributional fundamental solution.

The constructed net (Eε)ε is not automatically basic. In general there are nets that are
solutions on the level of representatives but are not basic. Consider for example the oper-
ator L = d

dx , then the net provided by Eε := H + cε with [(cε)ε] 6∈ C̃ is a distributional
fundamental solution for Pε(D), but (Eε)ε does not define a basic functional, since for
u ∈ D(R) with supp(u) ⊆ [0,∞) and

∫
u(x)dx = 1 we have

|(H + cε)(u)| = |1 + cε| ≥ ε−N (3.18)

for infinitely many ε as ε → 0and all N ∈ N and hence this net does not define a basic
functional.

In the very special case, where P (D)U = F is solvable and the solution Eε for Pε(D)Uε = Fε

for every ε ∈ (0, 1] is uniquely determined, the constructed net [(Eε)ε] is automatically basic,
since it is the only one and a basic solution is guaranteed. Unique solutions are rare, but as
shown in [Hör90, Theorem 7.3.2] there are operators that fulfill this property:

3.5 Theorem. If f ∈ E ′(Rn) then the equation P (D)u = f has a solution u ∈ E ′(Rn) if
and only if f̂(ζ)/P (ζ) is an entire function. In this case the solution is uniquely determined.
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3.2.3 A generalized Cauchy-Riemann operator

Consider the operator

P (D) = ∂t + ic∂x on R×]0,∞[ , where c ∈ R̃ strictly positive . (3.19)

Fixing a representative (cε)ε of c, we find for all ε ∈ (0, 1] a distributional fundamental
solution for Pε(D) := ∂t+icε∂x and show that the functional, determined by these solutions,
is basic.
A fundamental solution Eε(x, t) for Pε(D) can be obtained by modifying the fundamental
solution S := 1

2π(t+ix) for the Cauchy-Riemann-Operator ∂t + i∂x:
defining Ẽε(y, t) := Eε(cεy, t), we obtain

∂tẼε(y, t) + i∂yẼε(y, t) = ∂2Eε(cεy, t) + icε∂1Eε(cεy, t) = δ(cεy, t) = 1
cε
δ (3.20)

and hence cεẼε is a fundamental solution. Setting Ẽε := 1
cε
S, we can conclude that

Eε(x, t) = Ẽε(
1
cε
x, t) = 1

cε
S( 1
cε
x, t) = 1

2π(cεt+ ix) (3.21)

is the desired fundamental solution for Pε(D). To show that (Eε)ε is a basic functional, we
use the following coordinate transformation

1
2π

∫
Rn

1
cεt+ ix

u(x, t)d(x, t) = 1
2π

∫ 2π

0

∫ ∞
0

(cos θ − i sin θ) u(cεr sin θ, r cos θ)dr dθ

and therefore obtain for K b Rn and u ∈ DK(Rn)

|Eε(u)| ≤ 1
2π

∫ 2π

0

∫ ∞
0
|(cos θ − i sin θ) u(cεr sin θ, r cos θ)|dr dθ

≤ 1
2π

∫ 2π

0

∫
C(K) 1

cε

0
|u(cεr sin θ, r cos θ)|dr dθ

≤ C(K) 1
cε

sup
(x,t)∈K

|u(x, t)| ≤ ε−N sup
(x,t)∈K

|u(x, t)|.

Accordingly, E := [(Eε)ε] ∈ Lb(Gc(R2), C̃) is a basic fundamental solution in the sense of
Definition 2.5.
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3 Extension of the convolution and several applications for solutions in dual spaces

3.2.4 A generalized Schrödinger equation

In the following we investigate a Schrödinger equation with a constant generalized coefficient
and a vanishing potential of the form

∂tu− ic∂2
xu = 0 for c ∈ R̃ strictly nonzero. (3.22)

Again we begin by finding a distributional fundamental solution Eε of Lε := ∂t − icε∂2
x by

modifying S := 1√
4πit exp(− x2

4it), a standard fundamental solution of the operator ∂t − i∂2
x.

Similar to Example 3.2.3 we obtain for t > 0 that

Eε(x, t) = 1√
4cεπit

exp
(
− x2

4cεit

)
. (3.23)

The functional defined by (Eε)ε is a fundamental solution in Lb(Gc(R × (0,∞)), C̃) for L:
For a given subset K b R × (0,∞) there are j ∈ N and N ∈ N such that for all ϕ ∈ DK
and ε sufficiently small the estimate

|Eε(ϕ)| ≤
∫
R2

1
|
√

4cεπit|
|ϕ(x, t)| d(x, t) ≤ ε−N sup

x∈K,|α|≤j
|∂αϕ(x, t)|

holds and therefore it is basic.

Based on this fundamental solution, one can solve the Cauchy problem

∂tU − ic∂2
xU = 0 for t > 0 and c ∈ R̃ strictly nonzero (3.24)

U(x, 0) = u0(x), u0 ∈ Gc(R),

by solving the problem

∂tŨ − ic∂2
xŨ = F in R2, (3.25)

where Ũ = [(ũε)ε] with supp(ũε) ⊆ R× [0,∞[

and F := [(fε)ε] with fε(x, t) := u0,ε(x)⊗ δ0(t) ∈ E ′(R2).

To solve this problem by convolution, it has to be guaranteed that the inhomogeneity F :=
[(fε)ε] is an element in Lb(G(R2), C̃). This is always the case: For (u0,ε)ε ∈ u0 there is a
compact subset K ′ b R such that u0,ε ∈ DK′(R) for all ε ∈ (0, 1] and we have that

[(∫
R
u0,ε(x)dx

)
ε

]
∈ C̃, (3.26)
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3.2 Solutions for selected differential operators in dual spaces

i.e. there is a N ∈ N such that
∣∣ ∫

R
u0,ε(x)dx

∣∣ = O(ε−N ) and therefore there is a constant
C > 0 and η ∈ (0, 1] such that for all ε ∈ (0, η]

∣∣∣ ∫
R

u0,ε(x)dx
∣∣∣ ≤ Cε−N . (3.27)

To show that the net [(u0,ε ⊗ δ0)ε] determines an element in Lb(G(R2), C̃), estimate (1.30)
has to be satiesfied: By (3.27) we gain for all ϕ ∈ C∞(Rn) and ε sufficiently small that

|〈u0,ε ⊗ δ0, ϕ〉| = |〈u0,ε(x), ϕ(x, 0)〉| =
∣∣∣∣∣
∫
K′
u0,ε(x)ϕ(x, 0)dx

∣∣∣∣∣
≤ sup

x∈K′
|ϕ(x, 0)|

∣∣∣∣∣
∫
K′
u0,ε(x)dx

∣∣∣∣∣ ≤ Cε−N sup
x∈K′

|ϕ(x, 0)|.

Hence F := [(u0,ε ⊗ δ0)ε] is indeed a functional in Lb(G(R2), C̃) and therefore

∂tŨ − ic∂2
xŨ = F (3.28)

is solved by Ũ := F ∗ E, where E = [(Eε)ε] is the fundamental solution from above.

Setting uε := ũε|R×]0,∞[ we obtain a solution for the Cauchy problem (3.24): For ϕ ∈ D(R2)
we obtain

〈u0(x)⊗ δ0(t), ϕ(x, t)〉
∣∣∣
t>0

= 0, (3.29)

because supp(u0(x)⊗ δ0(t)) = supp(u0(x))×{0} and hence, for t > 0, supp(u0(x)⊗ δ0(t))∩
supp(ϕ) = ∅. Therefore ∂tuε − icε∂2

xuε = 0 for t > 0.
It remains to show that the initial condition is fulfilled. Note that for t > 0 the solution
ũε ∈ C(]0,∞[,D′(R)), because we have

〈ũε, ϕ〉 = 〈Eε ∗ fε, ϕ〉

= 〈(Eε(., t) ∗ u0,ε)(x), ϕ(x, t)〉 =
∫ ∞

0
〈(Eε(., t) ∗ u0,ε)(x), ϕ(x, t)〉dt,

where the convolution is to be understood with respect to x.
That ũε(., t) converges to u0,ε as t → 0, is easier seen on the Fourier-transformed side. By
[Hör90, Theorem 7.6.1] the Fourier transformation of Eε with respect to x is given by

Êε(ξ, t) = exp(−cεitξ2) (3.30)

and therefore Êε(ξ, t) → 1 as t → 0. Hence we obtain that Eε(., t) converges to the delta-
distribution as t goes to 0 and in summary, the initial condition is satisfied and the Cauchy
problem (3.24) is indeed solved.
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3 Extension of the convolution and several applications for solutions in dual spaces

We conclude this section by remarking that this type of Schrödinger equation is subject of
various recent papers and is applicable to several topics of research (cf. [Hoo08]).
Focusing on the initial data, it is discussed in detail in [Hör11], that data which are square
roots of probability measures, hence clearly are no functions in the classical sense, are of
particular interest.
More precisely, in quantum mechanics the square of the modulus of a solution to the standard
Schrödinger equation is usually interpreted as a probability density. Therefore the question
arises to turn this around and consider a generalized initial data which represents a square
root of a given arbitrary probability measure. In [Hör11, Proposition 2.1] it is shown that
for a probability measure µ on R, there is an element φ ∈ G(R), such that φ2 is associated
with µ. This means that for any representative (φε) of φ, φε → µ in D′(R) as ε→ 0 and is
denoted by φ2 ≈ µ.
To avoid problems with the convolution, we additionally assume that the probability measure
µ has compact support and hence φ ∈ Gc(R).
In summary, we obtain the Cauchy problem

∂tU − ic∂2
xU = 0 for c ∈ R̃ strictly nonzero (3.31)

U(x, 0) = φ,

that can also be solved in Lb(Gc(R2), C̃) by the method presented above.

The Schrödinger equation with this kind of coefficients is also discussed in recent papers
on semiclassical quantum dynamics (cf. [Spa12], [Mar10], [Mar12]). The authors rescale all
physical parameters such that only one semi-classical parameter 0 < ε ≤ 1 remains and
investigate the following problem

iε∂tuε + ε2

2 ∂
2
xuε − V (x)uε = 0, (3.32)

uε(x, 0) = u0,ε(x) ∈ L2(R).

This problem is yet not considered in the framework of generalized functions, although this
would be possible: remaining in the case of constant coefficients we neglect the potential
and obtain

∂tuε − i
ε

2∂
2
xuε = 0, (3.33)

which is exactly an equation of the type considered above, since [( ε2)ε] ∈ R̃ and is strictly
nonzero.
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