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Zusammenfassung (German)

Eine Vielzahl günstiger Eigenschaften von Legierungen - z. B. Festigkeit, Widerstand ge-
gen Korrosion oder magnetische Anisotropie - hängt von der mikroskopischen Anordnung
der beteiligten Atomsorten auf dem Kristallgitter ab. Um die Kinetik solcher Atomkon-
figurationen in intermetallischen Verbindungen zu untersuchen, werden oft Kinetische
Monte-Carlo Simulationen (KMC) eingesetzt. In sie gehen als einzige kinetische Parame-
ter die Wahrscheinlichkeiten für einzelne Atomsprünge ein. Diese Wahrscheinlichkeiten
werden, unter Zuhilfenahme der Transition State Theory, durch den Energieunterschied
zwischen dem ursprünglichen Gleichgewichtszustand und einem Sattelpunkt (’Transition
State’) bestimmt. Wirft man einen Blick in die existierende Literatur, stellt man oft fest,
dass speziell für die Energie des Sattelpunkts relativ ungenaue Ansätze gemacht werden,
z.B. wird sie auf einen festen Wert gesetzt oder auf die Art des springenden Atoms bezo-
gen.

Diese Dissertation ersetzt diese approximative Behandlung dadurch, dass der Einfluss
der atomaren Umgebung auf den spezifischen Wert der Energie des Sattelpunkts in die
Simulation einfliesst. Für diese Studie wurden die Energieprofile einer grossen Anzahl
von verschiedenen Atomsprüngen mit Hilfe der aktuell genauesten Methode - ab-initio-
Berechnungen basierend auf der Dichtefunktionaltheorie - analysiert. Die Berechnungen
wurden mit dem Vienna Ab Initio Software Package (VASP) durchgeführt, dem am be-
sten entwickelten und meistbenutzten Programm auf diesem Gebiet.

Als Modellsystem wurde die technologisch interessante intermetallische Verbindung Ni3Al,
die in der L12-Struktur kristallisiert, gewählt. In dieser Legierung passiert Diffusion durch
Nächst-Nachbarschaftssprünge von Atomen in Leerstellen. Aufgrund der Kristallstruktur
müssen springende Atome ein enges Fenster passieren, das von gemeinsamen Nachbar-
schaftsatomen von Anfangs- und Endposition gebildet wird. Der Einfluss der Umgebungs-
konfiguration wurde mit Hilfe einer ’reinen’ Barrierenhöhe analysiert, die dem Mittelwert
von Hin- und Rücksprung entspricht. Die Besetzung des 4-Atom-Fensters hat erwartungs-
gemäss den grössten Einfluss auf die Barrierenhöhe. Die Ergebnisse wurden für 2x2x2 und
3x3x3 Simulationszellen als Tabellen angegeben und können, für die Berechnung von ein-
zelnen Sprungwahrscheinlichkeiten benutzt werden.
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Zusammenfassung

Die atomare Besetzung in weiterer Entfernung zum springenden Atom wurde systematisch
untersucht und erwies sich als Einfluss zweiter Ordnung. Der Einfluss der umgebungs-
abhängigen Sattelpunktenergien auf die Kinetik wurde mit Hilfe von KMC Simulatio-
nen an entordnenden Systemen gezeigt. Es wurde ein bemerkenswert geändertes Verhal-
ten sowohl in der gesamten Fernordnungsparameter-Kinetik als auch in den detaillierten
Sprungstatistiken gefunden. Sprungtypen werden stark nach niedrigen Sattelpunktsener-
gien selektiert, und die Gesamtkinetik verlangsamt sich aufgrund von starken Korrelati-
onseffekten.
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Abstract

Most favorable properties like strength, corrosion resistance and magnetic anisotropy of
alloy materials depend on the microscopic arrangement of component atoms on the crystal
lattice. Kinetic Monte-Carlo simulation (KMC) is a widely used and valuable tool for the
investigation of atom configuration kinetics in alloys such as intermetallic compounds. Its
sole input is the probabilities of single atom jumps. According to transition state theory
they are determined by the energy difference between an initial equilibrium state and
a transitional saddle point state of the jumping atom. In existing literature, especially
for the saddle point energy usually only rough assumptions are made, mostly setting it
constant or relating it to the type of jumping atom.

This thesis sets out to remedy this specific weakness taking account of the atomic envi-
ronment of the saddle point. For a systematic study of the influence of atomic surround-
ings, an extensive study of jump energy profiles was undertaken using the currently best
method available for calculating atomic interaction in solids, i. e. ab initio calculations
based on density functional theory. The VASP code was used as the most proven and
elaborate software for this purpose.

The L12-ordered, technically relevant intermetallic Ni3Al was taken as a model system.
Diffusion here takes place via a nearest-neighbor vacancy exchange mechanism. Due to
the crystal structure, jumping atoms have to pass through a narrow window consisting
of nearest neighbors common to the initial and final positions of the jumping atom. The
effect of the atomic neighborhood was investigated in terms of a pure barrier height being
the average of the forward and backward jump barrier heights. The occupancy of the
4-atom window according to expectation exerts the main influence on barrier height.
The results are given both for 2x2x2 and 3x3x3 calculation supercells as tables which
can be used for the construction of individual jump probabilities. The influence of atom
occupation in more distant coordination shells is found to be less important and decays
systematically with distance.

The effect on kinetics of environment dependent saddle point energies was demonstrated
in model KMC simulations of disordering systems. There is a remarkable change both
in overall kinetics of the long range order parameter and detailed jump statistics. Jump
types are strongly selected for low saddle points, and overall kinetics appears slowed down
due to strong correlation effects.
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Chapter 1

Introduction

1.1 General motivation

The desired favorable properties of many alloy materials depend on detailed atomic config-

uration. Chemical long-range order, for instance, imposes strict conditions on the move-

ment of dislocations in intermetallic compounds, thus improving mechanical strength.

Order, by its reduction of crystal symmetry, can also define preferred alignment directions

of magnetic momenta allowing increased writing density in storage media and influences

electric conductivity, corrosion resistance etc. As one is interested both in the service

reliability (stability) and ease of manufacturing of these materials, kinetics of configu-

rational transformations must be understood. Kinetic Monte-Carlo simulation (KMC)

has proved to be a valuable tool for this purpose as it is easy to perform and free from

additional assumptions, its only input being the probabilities for the jumps of individual

atoms. Every effort to improve the determination of the latter will therefore reflect in

the validity of the whole method.

1.2 Organization of this work

This thesis is structured as follows. First we give a short introduction into the role of

Monte-Carlo simulation (MC) in the field of materials science. Then we deal with common

MC methods as found in literature and their respective advantages and problems. We

then explain the motivation for the specific topic treated in this thesis. In the next

sections, we dwell on such technical details as cannot be discussed in detail within the

condensed form of a journal article. The main body of our results is then contained

in two published articles which have been included in the text. In a final section these
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Chapter 1 Introduction

and additional results are further discussed and a general outlook on future work and

prospects is given.

1.3 Overview

In this thesis an improved model for kinetic Monte-Carlo (KMC) simulations of atom con-

figuration in alloys is presented. KMC is a valuable tool to explicitly study development

of a system towards an equilibrium state, allowing a detailed study of the atom kinetics

at work. In chapter 2 the basics of kinetic Monte-Carlo simulation are shown with a focus

on the residence time algorithm (RTA) which was the appropriate choice for my study.

This algorithm is suitable to describe vacancy-mediated diffusion in a substitutional solid

solution like the test system (Ni3Al) chosen. In KMC simulation a valid expression for

the activation barrier for atom jumps is all-important as it is the only input. It extends

from an initial equlibrium position up to a tansitional saddle point, both dependent on

local environment. However, if one takes a look into the literature little work was done

regarding variable saddle points. While some authors (e.g. [1], [2], [3], [4]) set all sad-

dle points to a constant, mostly undefined value, others connect this energy level to the

sort of the jumping atom (e.g. see [5], [6], [7]). Some authors (e.g. [8], [9], [10]) try to

overcome this obstacle by running molecular dynamics simulations (e.g. with EAM po-

tentials) with the limitation of a shorter timescale. Recognizing the pivotal importance of

having reliable and theoretically well-founded values for the individual atom jump rates,

the main endeavor was directed towards their calculation.

As the model alloy for my investigations I took the technically important L12-ordered in-

termetallic compound Ni3Al possessing special high temperature strength characteristics.

In chapter 4 the face centered cubic (fcc) based L12 structure is defined and some prop-

erties are discussed. An important feature of this structure is that an atom jumping into

a nearest-neighbor site has to pass an intervening 4-atom-window consisting of common

nearest neighbors of both - the jumping atom and the vacant lattice site.

It was surmised that the specific atom occupancy of this window exerts a decisive in-

fluence on the saddle point height and therefore on jump energy barrier and the jump

rate according to transition state theory (TST). This is explained and the importance

analysed in chapter 8.
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Chapter 1 Introduction

It was decided to do an extensive ab initio study on jump energy profiles and barriers,

dependent on 4-atom window occupancy and variable surroundings in the next nearest

neighbor positions. For these calculations based on density functional theory (DFT) the

reliable and well established software VASP (Vienna Ab initio Simulation Package) was

employed. An introduction to density functional theory and some comments to VASP can

be found in chapter 5. The impact of our results on kinetics was studied, both globally

and with respect to detailed jump statistics by various KMC simulations based on an

self-developed code.
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Chapter 2

Kinetic Monte-Carlo Simulations

(KMC)

In this chapter the basics of kinetic Monte-Carlo simulations are introduced. The ad-

vantage of this approach is that when studying the kinetics of a system only single atom

jump probabilities have to be calculated (e.g. see [11]). In the following, after the expla-

nation of a Markov process following the way of [12] the three most important algorithms

(Metropolis, Glauber and residence time) for this kind of simulations are introduced.

2.1 The single atom jump as a Markov process

In most intermetallics the elementary diffusion step is the jump of an atom into a nearest-

neighbor (NN) vacancy. Considering the vacancy, any of Z nearest-neighbor atoms sur-

rounding it may change places with it. In a system where the atom states are sufficiently

thermalized between jumps, the jump probabilities depend only on the present configu-

ration of the system as it is and not on how it was reached by previous jumps. This loss

of memory is the hallmark of a Markov process. Let us regard an ensemble of identical

systems with a vacancy on a specified lattice site, which we call state α. Exchange of the

vacancies with any of the Z NN atoms leads to one of the follow-up states βj (j=1,...,Z)

(see Fig. 2.1).

Designating by pα the fraction of systems of the ensemble in state α (and analogously for

pj
β) we have with the jump rate (= jump probability per unit time) Γj

αβ

ṗα = − pα
∑Z

j=1 Γ
j
αβ

ṗjβ = pαΓ
j
αβ.

(2.1)
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Figure 2.1: Schematic picture of the state before the single atom jump: a vacancy
(square) is surrounded by Z nearest-neighbor atoms (dots). Each of this atoms may
exchange their position with the vacancy. This corresponds to the state α of the system.
After the jth atom has jumped into the vacancy the system finally reaches state βj .

Assuming all systems of the ensemble to be in state α at t = 0, this system of equations

is solved by

pα = exp
(
−
∑

j Γ
j
αβt

)

pjβ =
Γj
αβ∑

j Γ
j
αβ

[
1− exp

(
−
∑

j Γ
j
αβt

)]
.

(2.2)

An example of these functions is plotted in Fig. 2.2. It is seen that the probability

of the initial state decays exponentially, while the follow-up states approach their final

probability distribution with the same time constant, just as it happens in radioactive

decay with several decay channels.

1/e

Δt

p i
(t)

t

pβ
j(t)

pα(t)

Figure 2.2: Atom jumps as a Markov process, time evolution of probabilities (ex-
ample): initial state α (dashed line) follow-up states βj (full lines). At the marked

coordinates the probability of the initial state has decreased to 1/e.
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The jump frequencies (jump probabilities per unit time) according to transition state

theory (see chapter 3.1) always have the form

Γj
αβ = Γ0 exp (−

∆Ej
αβ

kBT
), (2.3)

where Γ0 may be called an attempt frequency and ∆Ej
αβ is an energy difference which

must be supplied by thermal activation. The different Monte-Carlo algorithms commonly

used can now be distinguished according to the time at which the equation system in Eq.

2.2 is evaluated.

2.2 Metropolis/Glauber algorithms

The original Metropolis algorithm [16] is obtained if the probabilities in Eq. 2.2 are

evaluated at short times t = ∆tMC = 1/Γ0 and a specific successor state βj = β is pre-

selected by a random variable. The solution of Eq. 2.2 then takes on the very simple

form

pα ≈ 1− exp (−∆Eαβ

kBT ) ≈ 1

pβ = 1− exp (−Γαβt) ≈ exp (−∆Eαβ

kBT ).
(2.4)

If ∆Eαβ ≤ 0 then pβ is assumed to be equal to one, and the jump to take place anyhow.

If ∆Eαβ > 0 it is decided by a second random variable r whether the transition takes

place or not. If r is equally distributed in the interval [0,1] the jump takes places if

0 ≤ r ≤ exp

(
−∆Eαβ

kBT

)
.

The obvious disadvantage of the Metropolis algorithm is a possibly large number of futile

jump attempts if ∆Eαβ/kBT >> 1. The formulation of the probabilities as in Eq. 2.4

has been perceived as unsatisfactory as they do not add up to one. After the introduction

of a renormalizing factor the probabilities are known as those of the Glauber algorithm

[17]

pβ =






1

1+exp
(
− 1

kBT ∆Eαβ

) if ∆Eαβ ≤ 0

exp
(
− 1

kBT ∆Eαβ

)

1+exp
(
− 1

kBT ∆Eαβ

) else.
(2.5)
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2.3 Residence time algorithm (RTA)

If, in contrast to the Metropolis/Glauber variant of kinetic Monte-Carlo simulation, the

time is chosen long enough so that the probability for the system to remain in its initial

state has decreased significantly, then at each Monte-Carlo step a jump can be expected.

With pα(∆t) = (1/e) pα(0) the time interval one has to wait for a jump is given by

∆t =
1

∑Z
i=1 Γ

i
αβ

. (2.6)

(Also compare Fig. 2.2). This is the the so called residence time algorithm (RTA)[13],

[14], [15].

As can easily be shown this time interval also corresponds to the average decay time <t>

of the initial state α.

As the time intervals∆t so calculated vary in the course of the simulation one has to keep a

log of them. If they shall finally be translated into physical time it is necessary (although

by no means easy) to make reasonable assumptions about the attempt frequency Γ0.

Setting Γ0=1 is tantamount to choosing arbitrary time units, which may be sufficient if

only relative variations in the kinetic behavior are to be studied.1

The long-time probability pj
αβ(t = ∞) for a nn atom j to jump into the vacant lattice site

follows from Eq. 2.2 as

pjαβ =
Γj
αβ∑Z

i=1 Γ
i
αβ

. (2.7)

Having determined the average decay time, the jump channel (the follow-up state) is

selected according to the probability distribution in Eq. 2.7 by an equally distributed

random number r ∈ [0,1]. Jump channel j is chosen if

∑j
k=1 p

k
αβ < r ≤

∑j+1
k=j p

k
αβ.

In the RTA transition probabilities to all of the Z follow-up states have to be calculated.

Therefore the algorithm is effective only if Z is not too large, a condition which is fulfilled

for the vacancy mechanism and nearest-neighbor jumps. The advantage of the RTA is

that in each MC time interval a jump does take place.

1In a conceptually even more pure variant of the algorithm not an average decay time of the initial
state is used but the decay times are chosen individually according to the probability distribution given
by pα by means of another random variable. The results however do not seem to justify the extra effort.
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A requirement which is usually invoked is that the thermodynamic equilibrium state shall

also correspond to a dynamic equilibrium of jumps in configuration space. This principle

is known as detailed balance. Denoting the occupancy of state α in equilibrium with fα
etc., we have

fαΓαβ = fβΓβα. (2.8)

If the equilibrium corresponds to a canonical ensemble, and if we can take for granted

that the attempt frequencies for the jump and its reverse are equal, it follows that

fα
fβ

= exp

[
− 1

kBT
(Eβ − Eα)

]
=

Γβα

Γαβ
. (2.9)

We note that the principle of detailed balance is indeed obeyed by the RTA (as is the

case with the Glauber/Metropolis algorithm) although the form of the probabilities in

Eq. 2.7 together with Eq. 2.3 seems to point to the contrary. But in detailed balance the

rates and not the jump probabilities from both sides of a transition are set in relation.

The rates are obtained by dividing the jump probabilities by the (variable) time interval

∆t defined in Eq. 2.6, which just cancels out the denominator in Eq. 2.7.
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Chapter 3

The single atom jump

In this chapter the single atom jump is discussed in terms of the famous transition state

theory, following ref. [18]. For a more detailed treatment of this topic the reader might

refer to this review and references therein.

In the second part of this chapter the Nudged Elastic Band method for calculating saddle

point energies needed for transition rates is introduced.

3.1 Transition State Theory

The transition state theory (TST) [19] is a valuable method to estimate rates of transi-

tions within a system when dealing with rare events or slow transitions. In other words

by invoking TST it is possible to calculate transition rates for most diffusion events in

intermetallics.

Let us have a look at a system (crystal) consisting of N atoms and having therefore 6N

degrees of freedom (coordinates %xi and momenta %pi). A potential Φ of the total internal

energy of the crystal can generally be written as a function of these degrees of freedom

Φ → Φ ( %x1, ... %xN ; %p1, ... %pN).

In a classical system we can assume the momenta and the coordinates to be distributed

independently of each other and treat the potential Φ as a function of the coordinates

only leaving 3N degrees of freedom Φ → Φ ( %x1, ... %xN). A principle sketch of such an

energy landscape in configuration space is shown in Fig. 3.1.
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Chapter 3 The single atom jump

Figure 3.1: Energy landscape of a jump process. From: [18]

After the definition of our potential we want to describe a single atom jump within this

energy landscape. An atom is located at its initial equilibrium position (basin A in

Fig. 3.1). To shift its position to a new equlibrium position (basin B) this atom has to

surmount an energy barrier (point C) lying between these two local minima of internal

energy. The local energy maximum at the transition state topologically defines a saddle

point. In order to take the atom over it, energy fluctuations (vibrations) are needed.

Therefore we call this event a thermally activated process.

We can describe this situation invoking the transition state theory based on two main

assumptions:

• We require that the states of the system can be thermalized sufficiently between two

successive jumps of the atom and are therefore distributed according to a canonical

ensemble up to the saddle point.

• Once the atom (system) has reached the saddle point and has a positive velocity in

the direction of the new site, it will definitely end up there. This means that the

curvature of the energy surface at the saddle point should not be too weak.

Then the transition rate can be calculated by the average number of systems crossing the

saddle point in a time unit divided by the number of systems in A.

From these assumptions it follows that the transition rate Γij (see [18])

12
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Γij = Γ0 exp

[
−(Es − Ei)

kBT

]
, (3.1)

where Γ0 is a quotient of normal frequencies in the original equilibrium state and the

saddle point, and Es, Ei are the (free) energies of the saddle point state and initial equi-

librium state, respectively.

Drawbacks of the TST

The two basic assumptions of the transition state theory are usually fulfilled in strongly

bound metals at not too high temperatures. In this thesis, especially when dealing with

intermetallics like Ni3Al the TST is considered to be valid and appropriate. However, for

completeness other approaches should be mentionend:

• Diffusion theory of thermal activation.

The diffusion theory of thermal activation [20], [21], [22] is more appropriate if the

temperature is elevated and the curvature of the potential in the saddle point state

is small. The reason is that then a reversal of the system motion at or near the

saddle point is possible. In diffusion theory of thermal activation a steady-state

flow of representative system points over the saddle point can then be derived in

analogy with classical nucleation theory. This leads to a reduced attempt frequency

as compared to transition state theory .

• Dynamical theories.

According to the first criterion in the transition state theory the states up to the

saddle point state are thermalized and follow a canonical distribution. If one argues

that a jumping atom does not stay long enough at the saddle point to reach the

equilibrium, a dynamical theory of thermal activation, based on lattice dynamics

has to be constructed (see e.g. [23], [24], [25]).

• Molecular dynamics.

The big alternative to Kinetic Monte-Carlo simulations based on the transition state

theory is Molecular dynamics. In Molecular dynamics one solves the equation of

motion of all atoms involved, including the jumping atom. This enables to take

into account inertial and cooperative effects. To do this, reliable potentials have to

be constructed to treat the interactions. One of the most prominent models for a

potential is the so called (embedded-atom method) EAM. Nevertheless, Molecular

dynamics can only be used on short time scales (pico-seconds) and potentials often

have the flavour of arbitrariness, being based on patchy semi-empirical adaptations.
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3.2 The Nudged Elastic Band (NEB) method

We saw in section 3.1 that a crystal can be described by a potential function in a 3N

dimensional configuration space. Furthermore it was shown that an exchange of position

of an atom with a vacancy leads from one equilibrium state of configuration and energy

to another. To reach the new equilibrium state the system (in our case the jumping

atom) has to pass a saddle point state located between initial and final state. According

to transition state theory a transition rate (Eq. 3.1) can be calculated when explicit

energies of both, the initial and the saddle point state are known.

As we will see in chapter 5.1 the calculation of equilibrium energies (initial and final

states) can be reliably done by using state-of-the-art methods like ab inito calculations.

On the other hand it is not a trivial task to find the optimum path corresponding to low-

est activation energy in the migrational process. Therefore ab initio software packages

like VASP offer the so called Nudged Elastic Band (NEB) [26] [27] method to optimize

this path computationally.

This introduction of the NEB method is following the concept of Jonsson, Mills and Ja-

cobson in [28]. The interested reader is refered to this article and references therein.

In the Nudged Elastic Band method a chain of images between two defined states of

the system (initial and final equilibrium) is considered. These images can be regarded

as replicas of the system as it follows the transition path of a jump along the potential

energy surface V(%R).

They are connected with springs with a spring constant k in an additional dimension

in the phase space. This elastically bound chain of states is now relaxed towards an

optimized jump path that minimizes the energy necessary to do the transition (minimum

energy path).

In detail, this is done as follows. After the definition of initial replicas as a first guess, for

instance by linear interpolation, the force %Fi acting on image i, i.e.

%Fi = −%'V (%Ri) + %F spring
i (3.2)

is calculated. Here the term %F spring
i is the spring force acting on the image, i.e.
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%F spring
i = ki+1(%Ri+1 − %Ri)− ki(%Ri − %Ri−1). (3.3)

These forces are minimized by relaxing all the images simultaneously at each relaxation

step. This minimization could be carried out in several ways. In the NEB method a

’nudging’ is introduced. This means a projection of the perpendicular component of
%'V (%Ri) ⇒ %'V (%Ri)|⊥ and the parallel components of the spring force, i.e.

%F 0
i = −%'V (%Ri)|⊥ + (%F spring

i · %τ‖)%τ‖. (3.4)

%τ‖ is the unit tangent vector parallel to the path and

%'V (%Ri)|⊥ = %'V (%Ri)− (%'V (%Ri) · %τ‖)%τ‖. (3.5)

When the perpendicular components %'V (%Ri)|⊥ for each image i vanish all images lie on

the minimum energy path.

15





Chapter 4

The L12 structure

4.1 General remarks

A lot of technically interesting binary alloys (e.g. Cu3Au, Ni3Al, Ni3Ga, Fe3Pt, ...) with

a stoichiometric composition of A3B crystallize in the L12 structure (Fig. 4.1). This

structure (also called γ′) is based on an underlying face centered cubic lattice (fcc, γ).

In the L12 structure the minority B atoms are located at the cube corners while the

majority A atoms are sitting on the face centers. As all four positions (one cube corner

and three face centers per unit cell) are geometrically equivalent the numerical relation

of A and B atoms is 3:1. The Pearson symbol for this structure is cP4. The symmetry

of this structure allows 48 space group operations (Pm3̄m) corresponding to the fcc lattice.

In the following sections symmetry properties of this structure are discussed. First the

conventional and the primitive unit cell for the L12 lattice are introduced. After a discus-

sion of possible divisions into sublattices the definition of the long range order parameter

(LRO, η) connected to this structure is introduced. Furthermore important geometric

facts are discussed, especially neighbor environments, pair correlation numbers and the

4-atom window between two nearest neighbor sites.
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4.2 Properties of the L12 structure

4.2.1 Conventional and primitive unit cell

A lattice cell of the L12 structure is usually chosen with the minority (B) atoms located

at the cube corners and the majority (A) atoms at the face centers of a simple cubic unit

cell (see Fig. 4.1).

Figure 4.1: Left: Conventional cubic cell of the L12 structure. B atoms (white) are
located on the cube corners and A atoms (black) on the face centers.

This choice is also known as conventional unit cell with primitive (simple cubic) lattice

vectors %A1, %A2, %A3:

%A1 = a%ex
%A2 = a%ey
%A3 = a%ez,

(4.1)

where a is the lattice spacing and %ei are the cartesian unit vectors. The positions %B1, %B2,
%B3, %B4 of the atoms with respect to the lattice vector in Eq. 4.1 - also called the basis -

are then given by

%B1 = 0
%B2 =

1
2
%A2 +

1
2
%A3 = a(12%ey +

1
2%ez)

%B3 =
1
2
%A1 +

1
2
%A3 = a(12%ex +

1
2%ez)

%B4 =
1
2
%A1 +

1
2
%A2 = a(12%ex +

1
2%ey)

(4.2)
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This commonly used choice of unit cell has the advantage of conserving the symmetry of

the underlying cubic lattice. Beside the advantage of orthogonality of lattice vectors it

offers a convenient way to define domains and corresponding order parameters (see Sec.

4.2.2).

However, the conventional unit cell is not the smallest possible choice of a unit cell. Every

structure based on the face centered cubic lattice can also be described by its primitive

vectors

%Ap
1 =

a
2 (%ey + %ez)

%Ap
2 =

a
2 (%ex + %ez)

%Ap
3 =

a
2 (%ex + %ey)

(4.3)

again with the lattice spacing a and the cartesian unit vectors %ei. This choice of unit cell

contains only 1 atom in contrast to Eq. 4.2 where 4 atoms lie within the smallest cell.

%Bp
1 = 0 (4.4)

The coordinates of each point P described by one of these two possibilities (Eq. 4.1 and

Eq.4.3) P[conv], P[prim]
1 can be linearly transformed with multiplication by the matrix T

or its inverse T−1 to the corresponding alternative description by

P[conv] = P[prim] · T−1 and P[prim] = P[conv] · T, (4.5)

where

T =




1 1 −1

−1 1 1

1 −1 1



, T−1 = 1
2




1 0 1

1 1 0

0 1 1



 (4.6)

1The squared brackets indicate the chosen basis set for the coordinates of one specific point in the
lattice.
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4.2.2 Division into sublattices and long range order parameter

According to the basis vectors defined in Eq. 4.2 the lattice of the L12 structure can be

separated into 4 equivalent simple cubic sublattices. This division leads to the fact that

within a crystal based on this lattice, 4 domains (defined by the location of B atoms) are

possible according to which sublattice bears the B atoms.

The other possibility of dividing this structure into sublattices is based on the difference

between cube corners and face centers. This leads to:

• The majority (α-) sublattice containing 3/4 of all lattice sites

• The minority (β-) sublattice containing 1/4 of all lattice sites

containing the A and B atoms respectivly.

This choice points out the following geometric fact. Depending on which sublattice an

atom sits different nearest neighborhood configurations have to be distinguished (Fig. 4.2

left and right). An A atom (α-sublattice) has a neighborhood in the first coordination

shell of 8 A atoms and 4 B atoms. In contrast to this a B atom (β-sublattice) is sur-

rounded by A (α) atoms only. This fact will play an important role with the environment

dependent saddle point heights in atomic diffusion as discussed later.

Figure 4.2: Nearest neighbor environments of the α- (left) and β-sublattice (right)
for the state of perfect order. On the α-sublattice A atoms (black) have 8 further A
atoms and 4 B atoms as nearest neighbors. On the β-sublattice a B atom (white) is

surrounded by 12 A atoms in the first coordination shell.

Now we can define the long range order parameter. Let us regard a structure built by 2

atomic species A and B. When this structure contains NA A atoms and NB B atoms the

overall number of atoms is then given by

N = NA + NB
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with the concentrations cA and cB, where

cA = NA
N and cB = NB

N

and with the constraint

cA + cB = NA+NB
N = N

N = 1

If the structure is an ordered structure then it can be divided into sublattices. We define

fAα as the fraction of the NAα A atoms located on the sublattice α with respect to the

overall number of A atoms NA. The analogous definition is used for the fraction fBβ of

B atoms sitting on the sublattice β.

fAα = NAα
NA

bzw. fBβ = NBβ

NB

We now define the long range order parameter η

η =
fAα − cA
1− cA

=
fBβ − cB
1− cB

, (4.7)

This definition ensures that the value of η lies between -1 and +1. Two special cases

should be mentioned. Let us regard B atoms. Only in the state of perfect order all B

atoms are located on the β-sublattice (NBβ=NB). This leads to a corresponding long

range order parameter of

NB
NB

−cB

1−cB
= 1−cB

1−cB
= 1.

On the other hand in a randomly ordered state the number of B atoms located on the

β-sublattice corresponds the concentration (fBβ=cB) therefore leading to an η of

cB−cB
1−cB

= 0.
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4.2.3 Pair correlation numbers

In a face centered cubic lattice each lattice site is surrounded by 12 nearest neighbors

and 6 next nearest neighbor sites. The further coordination numbers together with their

distance relative to the coordinates of the lattice site in question can be found in Tab.

4.1.

From this table an interesting fact can be seen. Starting from the 9th coordination shell

relative vectors occur that have the same distance to the site but refer to another plane

and a different symmetry. As mentioned in Sec. 4.2.2 and shown in Fig. 4.2 for the L12
structure there are different atomic environments depending on which sublattice this site

is located.

Coordination relative
distance

# neighbors
number Vector (any species)

Z1 (1,1,0)
√
2
2 12

Z2 (2,0,0) 1 6

Z3 (2,1,1)
√
6
2 24

Z4 (2,2,0)
√
8
2 12

Z5 (3,1,0)
√
10
2 24

Z6 (2,2,2)
√
12
2 8

Z7 (3,2,1)
√
14
2 48

Z8 (4,0,0)
√
16
2 6

Z9a (4,1,1)
√
18
2 24

Z9b (3,3,0)
√
18
2 12

Z10 (4,2,0)
√
20
2 24

Z11 (3,3,2)
√
22
2 24

Z12 (4,2,2)
√
24
2 24

Z13a (4,3,1)
√
26
2 48

Z13b (5,0,1)
√
26
2 24

Table 4.1: Neighborhood environment for the first 15 coordination shells in fcc based
structures. The relative vector components are shown in units of 2a for clarity, where
a is the lattice spacing. The distance is in units of a. The total number of neighbors of

any species in this coordination shell is also shown.
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4.2.4 Point defects in the L12 structure

There are two main contributions to equilibrium free energy (entropy) of a non-magnetic

compound at a given temperature. The first one is vibrational modes (vibrational en-

tropy) and electronic excitations (electronic entropy) and they generally play an impor-

tant role at high temperatures close to the Curie temperature. The other one, more

important at not too high elevated temperatures, is the creation of point defects which

directly leads to a change in the chemical order of the compound and therefore to an

increase of the configurational entropy.

In an L12 ordered compound four types of point defects relevant to order occur (Fig. 4.3):

• vacancies (Vα, Vβ) and

• antisite atoms (Bα, Aβ)

These defects can be located on both sublattices, designated by α and β. For completeness

it should be mentioned that it can also be the case that atoms are located on interstitial

sites. These sites are not part of the underlying lattice. In this work we do not consider

interstitials because in a substitutional solid solution like Ni3Al their concentration is

negligible.

While antisite defects lead to a decrease in the degree of order the vacancies act as the

main mechanism of diffusion. Vacant lattice sites allow neighboring atoms to change

their position, whereby antisite defects can be generated. This exchange of position is

just what we call ’a single atom jump’. The energetics of it were discussed in detail in

chapter 3.
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Figure 4.3: Possible point defects (vacancies - left and antisites - right) in the L12
structure on the minority (top) and majority (bottom) sublattice.
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4.3 The 4-atom window in the L12 structure

A further geometric fact of the L12 structure which will play an essential role in the

configurational dependence of the saddle point height in atomic diffusion is the 4-atom

window between two nearest neighbor lattice sites. A detailed discussion of this fact is

given in the following sections.

Let us regard an atom on an arbitrary lattice site and one of its nearest neighbor atoms on

a face centered cubic lattice. When connecting these 2 lattice positions with a line, it has

to pass through a window-like rectangular configuration of 4 common nearest neighbor

atoms to both lattice sites (Fig. 4.4).

Figure 4.4: 4-atom window between an A atom located on the α-sublattice and a
vacancy on the β-sublattice. It is made up of the four common nearest neighbor atoms.

Wheras in pure metals the configuration of this window is (apart from double vacancies)

obviously always the same, in a two component alloy it can assume a set of different

configurations, with probabilities depending on the degree of order and the composition.

In fcc based ordered intermetallics like (L12, L10, ...) the specific configuration of this

window strongly depends on the degree of order and on the sublattices the two atoms in

question are located on (see Fig.4.5). Therefore we have to distinguish the following 2

basic types of the 4-atom window in the case of perfectly ordered L12:

• 4-atom window which consists only of A atoms:

This window consisting only of majority atoms occurs in the case of connecting
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lattice sites located on the minority and majority sublattices. See Fig. 4.5 (a) and

(b) right.

• 4-atom window which consists of 2 A atoms and 2 B atoms:

This window can be found if one connects two lattice sites of the majority sublattice.

See Fig. 4.5 (b) left.

(a) (b)

Figure 4.5: 4-atom window between 2 lattice positions in the L12 structure for (a): B
atoms and (b): A atoms and a neighboring vacancy. Note that in the case of an A atom
the explicit configuration of the window depends on the sublattice of the neighboring

vacant lattice site.
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4.4 Classification of jumps and window types

4.4.1 Classification of jump types in the L12 structure

Classifying possible atom jumps, first we have to distinguish between ordering-disordering

and order-preserving jumps. In ordering-disordering jumps the jumping atom and the

vacancy are located on different sublattices. A jump of this kind leads to a change in the

degree of order. In contrast to this we talk about an order-preserving jump if both are

located on the same sublattice. In this case the degree of order remains the same after

the jump has taken place.

We note that in the L12 structure, this is possible only on the majority α sublattice. The

second distinction reards the jumping atom. This leads to four possible jump types which

can be found in Table 4.2. In this table also the point defects before and after the jump

are shown.

order-preserving ordering-disordering

A:α→α B:α→α A:α→β B:β→α

defects before Vα Vα, Bα Vβ Vα

defects after Vα Vα, Bα Vα, Aβ Vβ, Bα

Table 4.2: Order-preserving (left) and ordering-disordering (right) jump types in the
L12 structure. The jumping atom has to cross a 4-atom window of common nearest
neighbors. In the bottom lines the point defects present before and after the jump are

also shown.
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4.4.2 Classification of window types

After the definition of the four possible jump types in the L12 structure a classification of

all possible configurations of 4-atom windows is given in Fig. 4.6. The easiest and obvious

way to do this is according to the number of B atoms contained within the window. Note

that we now drop the assumption of a perfectly ordered lattice.

Since the shape of the 4-atom window is rectangular with the length of lattice spacing

a along the long side and a/
√
2 along the short side, three different geometrically in-

dependent configurations for the case of a window containing two B atoms have to be

distinguished. All other configurations are symmetrically equivalent to those displayed.

Figure 4.6: Possible configurations for the 4-atom window. Note three different
geometrically independent window types in the case of 2 Al atoms within this window.
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Chapter 5

Density Functional Theory

5.1 General remarks

The focus of this thesis lies on describing and studying the kinetics of an alloy starting

from the most basic step possible - the single atom jump. In section 3 it is shown that

a jump can be described by three important stages and their corresponding energies:

initial, final and saddle point state.

According to transition state theory 3.1 we can calculate transition rates by the knowl-

edge of the difference in energy of initial state and saddle point (Eqn. 3.1). Once we

know transition rates we can use kinetic Monte-Carlo simulations (see section 2) to study

the kinetics of a system.

How can we calculate the energy differences for different atomic configurations around

the jumping atom in practice? For sure this is not possible from experimental data on

order kinetics (for example resistivity measurements) as this data is always an average

over a multitude of individual single atom jumps. Therefore insights into the energetics

on single jumps are not possible from this data.

The presently best available method to obtain binding energies in the solid state is

quantum-mechanical calculation from first principles (ab initio) based on density func-

tional theory (DFT). We have decided therefore to employ it for our energy profile cal-

culations.
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In this chapter a concise overview of the basics of density functional theory is given. For a

more detailed description the reader may refer to various books (e.g. [29], [30]). Starting

from the many-body Schrödinger equation which cannot be solved with reasonable effort

the general way to numerically solve it for total energies of ground states of systems is

shown.

5.2 The many-body Schrödinger equation

We consider a system containing i=1,...,Ne electrons in the field of j=1,...,Nn ions. The

electrons with mass me carry an electronic charge -e and their coordinates %Xi(%ri, si)

depend on positions %ri and spins si. The nuclei have charges Zj · e and masses Mj

depending on the atom type. Their coordinates %Rj only depend on their positions.

For this (non-relativistic) system we can write its time-independent Schrödinger equation,

i.e

ĤΨ = EΨ, (5.1)

with wave function

Ψ = Ψ
(
%X1, ..., %XNe , %R1, ..., %RNn

)
, (5.2)

The Hamilton operator Ĥ for this case is

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂ne (5.3)

containing kinetic energies Te, Tn of electrons and ions and all possible interactions Vee,

Vnn and Vne.

The contributions are defined as (with e=me=!=1)

• electronic kinetic energy Te

T̂e = −1

2

Ne∑

i=1

%'
2

i , (5.4)
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• ionic kinetic energy Tn

T̂n = −1

2

Nn∑

j=1

%'
2

j

Mj
, (5.5)

• electron-electron interaction Vee (with rik = |%rk - %ri|)

V̂ee =
Ne∑

i<k

1

rik
, (5.6)

• nucleus-nucleus interaction Vnn (with Rjl = |%Rl - %Rj|)

V̂nn =
Nn∑

j<l

ZjZl

Rjl
, (5.7)

• electron-nucleus interaction Vne (with rij = |%Rj - %ri|) - ’external potential’

V̂ne = −
Ne∑

i=1

Nn∑

j=1

Zj

rij
. (5.8)

After introducing suitable boundary conditions the energy eigenvalue spectrum is Ea with

an lower limit E0, the so called ground state energy and its corresponding ground state

wavefunction Ψ0. All wavefunctions (eigenstates) Ψa can be normalized:

〈Ψi|Ψj〉 = δij. (5.9)

Furthermore, to obey the fermionic nature of electrons these states have to be antisym-

metric with respect to exchange, i.e.

Ψ
(
%X1, ..., %Xi, ..., %Xj, ..., %XNe

)
= −Ψ

(
%X1, ..., %Xj, ..., %Xi, ..., %XNe

)
. (5.10)

If we further assume the Born-Oppenheimer approximation, the nucleus-nucleus interac-

tions Vnn and the motion of the nuclei are separated from the Hamiltonian in Eq. 5.3.

In order to obtain the total ground state energy E0,tot of the system Vnn has to be added

explicitely, i.e.

E0,tot = E0 + Vnn. (5.11)
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The total energy can be understood as a functional of Ψ,

E [Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (5.12)

and it reaches its minimum for

E0 = min
Ψ→Ψ0

E[Ψ]. (5.13)
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5.3 Density Functional Theory

A system of Ne electrons in its ground state has a one-particle density ρ0 of

ρ0( %X) =

∫
Ψ∗

0( %X, %X2, ..., %XNe)Ψ0( %X, %X2, ..., %XNe)d %X2...d %XNe = |Ψ0( %X)|2 (5.14)

connected to its ground state Ψ0. Integrating the density over the space and spins leads

to the number of electrons

∫
ρ0( %X)d %X = Ne, (5.15)

which is conserved in a non-relativistic case. In the original concept of Hohenberg and

Kohn [31] the energy functional and its minimization in Eq. 5.12 is replaced via Eq. 5.14

to

E0 = E[ρ0] = min
ρ

E[ρ]. (5.16)

In other words instead of being a functional of wavefunctions, E0 is now formulated as

an energy functional of the density. The Hohenberg-Kohn theorem is an exact reformu-

lation (under certain conditions) of the many-body Schrödinger equation invoking the

density as a function of four variables only. This formulation is an improvment since the

wavefunctions are dependent on 4Ne variables.

For practical implementation Kohn and Sham [32] introduced a more feasible concept

employing single particle like wavefunctions (’orbitals’) φ that build up the exact ground

state density in Eq. 5.14, i.e.

ρ0( %X) =
∑

i

φ∗
i ( %Xi)φi( %Xi), (5.17)

The ground state total energy E0 (see Eq. 5.13) is now derived by minimizing E[{φi}]
under the constraint of Eq. 5.15

∫
ρ0( %X)d %X =

∑

i

∫
φ∗
i ( %Xi)φi( %Xi)d %X = Ne (5.18)

From that the so called Kohn-Sham equations

ĥKS,iφi = εiφi (5.19)
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with the Kohn-Sham Hamiltonian hKS,

ĥKS = −1

2
%'

2

i + Veff ( %X) (5.20)

are derived. The Hamiltonian consists of two parts. While the first one is the kinetic

energy of a single particle the second one Veff ( %X) is the effective potential that contains

all interactions, i.e.

Veff ( %X) = Vext + Vcoul + Vxc. (5.21)

The so-called external potential Vext can be identified with the electron-nucleus inter-

actions in Eq. 5.8 and Vcoul is the classical Coulomb interaction. Both can be treated

exactly. The third term Vxc is the so called exchange-correlation potential. It is a

functional derivative of the unknown exchange-correlation energy functional Exc[ρ] that

contains the many-body electron-electron interactions, i.e.

Vxc =
δExc[ρ]

δρ
, (5.22)

Density functional theory in its formulation by Kohn and Sham yields the exact and

correct ground state density as derived from Schrödinger equation. The only quantity

that is to be approximated is the before mentioned exchange-correlation energy functional

Exc[ρ]. In other words these terms, Vxc and Exc, have to be approximated. The usefulness

of the approximation was the key part for the success of the density functional theory.

Ways to treat this term will be discussed in the next chapter.

Having an approximation for Exc the equations in Eq. 5.19 can be solved self-consistently

resulting in the two fundamental quantities of density functional theory, the ground state

density ρ0 and the ground state total energy E0[ρ0].
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5.4 Approximations and Implementation

As seen in the previous chapter the exchange-correlation functional Exc[ρ] is unknown.

For that reason it has to be approximated. The most common approximations are

• the local density approximation (LDA)

ELDA
xc [ρ] =

∫
ρ( %X)εxc(ρ)d %X. (5.23)

Here the exchange-correlation energy Exc is related to an exchange-correlation en-

ergy εxc(ρ) per particle in an (homogenous) free electron gas.

• the general gradient approximation (GGA)

EGGA
xc [ρ, %'ρ] (5.24)

Here the local density approximation is extended by also including the gradient of

the density.

For the actual calculations in this work the GGA [37] parametrisation of Perdew and

Wang (PW91) [38] was chosen.

5.5 VASP

In this thesis for the calculation of ground state energies connected to given atomic ar-

rangements the Vienna ab initio simulation package VASP [33], [34] was chosen. This

software package was developed by Georg Kresse and his group. It is one of the most

powerful DFT (and post-DFT) computer codes available, being a very important tool for

a lot of working groups all over the world.

The first main feature of the VASP code is that it uses for Kohn-Sham orbitals φi (basis

functions) plane waves and is therefore called a plane wave code.

The second (crucial) point is the construction of reliable pseudopotentials for valence

states. For this task the VASP code relies on the projected augmented wave [35], [36]

method.
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Beside these elementary methods a lot of features according to relaxation algorithms,

projections, summations, ... can be set in input files for VASP. Since the possibilities of

simulations done with VASP are very extensive the interested reader is referred to the

VASP manual which is available online [39].

It should only be pointed out here that the Nudged Elastic Band method for calculating

transition paths introduced in chapter 3.2 is a standard tool included in VASP.
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6.1 Abstract

An improved Kinetic Monte-Carlo (KMC) algorithm for the simulation of atom config-

uration kinetics in intermetallics is introduced. In KMC a set of jump probabilities is

computed from energy barriers. In transition state theory the barrier height is the dif-

ference between the initial equilibrium state and a saddle point state. It is on the latter

that traditional treatments have made the most far-reaching assumptions, mostly setting

it constant. A more detailed treatment of the saddle point state based on ab initio cal-

culations of the actual jump profiles is proposed and demonstrated in Ni3Al. It is shown

in preliminary KMC simulations that individually computed saddle point energies make

a considerable difference in jump statistics and overall kinetics of the long range order

parameter.

6.2 Introduction

Intermetallic compounds with near-stoichiometric composition exhibit chemical long-

range order at least below a critical temperature, in many cases even up to the melting

point. Properties of considerable commercial value result from the ordered state. By

imposing conditions on dislocation movement, order strengthens these materials, in some

cases even progressively with rising temperature (flow stress anomaly [1], [2]). Besides

that, many of these materials show good resistance to oxidation and corrosion [3]. When

lattice distortion due to ordering leads to magneto-crystalline anisotropy these materials

are prime candidates for magnetic recording purposes [4], [5]. In all these examples, for

obvious reasons stability of the ordered state is a main concern. By the laws of ther-

modynamics the order parameter is a function of temperature. Starting e.g. from an

equilibrium state at low temperature, after a sudden increase of temperature kinetic pro-

cesses set in striving towards a new equilibrium state of less order. It is very important,

from a standpoint of service reliability of materials, to know the nature and speed of such

processes and the parameters influencing them. Changes of atom configuration in ordered

alloys cannot be explained by a single parameter like migration enthalpy. Atom jumps

must be differentiated as to their influence on order, as order-preserving or ordering-

disordering. The specific atom surroundings have to be taken into account, and often it

is necessary to consider complex hierarchies of energetic interactions. In contrast to other

schemes of kinetic modelling which usually involve some kind of averaging before writ-

ing down the kinetic equations, Monte-Carlo (MC) simulation contains no assumptions

apart from those entering in the single jump probabilities [6]. Its advantage is that it

quite naturally reproduces the kinetics at all scales from atomic detail up to the evolution

of a phase structure, though at corresponding computational cost. MC simulation has
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been successfully applied in materials science, specifically in intermetallic compounds [7],

[8], [9], [10], [11], [12], [13] - for a recent review see Haider, Kozubski, Abinandanan in

[14]. It depends on the temperature range, the crystal structure and the strength of the

inter-atomic bonding how we have to proceed in order to get realistic atom jump proba-

bilities. When, as in intermetallic compounds far enough from the melting temperature,

the transition state model [15] for atom jumps applies, transition probabilities are func-

tions of the energies and vibration frequencies in the initial state and the saddle point

state. We feel that especially saddle point energies have been a much neglected issue in

many treatments based on these assumptions. In this paper in a first step we will try to

improve on this point and so obtain more realistic jump probabilities.

6.3 Jump rates and energy barriers

Models for jump rate calculation

In many instances, so in intermetallics at not too elevated temperatures, transition state

theory [15] may be considered valid 1. The jump frequency Γij from state i to state j is

then given by

Γij = Γ0 exp

[
−(Es − Ei)

kBT

]
, (6.1)

where Γ0 is a quotient of normal frequencies in the initial equilibrium and the saddle

point, and (Es − Ei) is the energy difference between these two positions. In most ex-

isiting treatments making use of transition state theory the initial state is computed by

means of some suitable Hamiltonian whereas the saddle point energy is left constant or

at most made dependent on the type of the jumping atom [11], [12], [13]. Much MC work

calculates the transition probabilities just from the initial and final energy states of the

jumping atom. Saddle point energies enter here only implicitly, setting the time scale

[7], [8], [9], [10]. In some cases saddle point energies were considered explicitly employing

specific fitted potentials, so for instance by Oramus et al. [25]. We have reason to believe

and will try to show quantitatively, that the respective atomic surroundings of the saddle

point position should be considered for each jump.

The 4-atom window in the L12 structure

We discuss our concepts, which are however meant to be quite general, using the L12
ordered intermetallic compound Ni3Al as a model system. The L12 structure is related to

the fcc phase and has a stoichiometric composition of A3B. A unit cell can be chosen with

the B atoms located at the cube corners and the A atoms at the face centers. Henceforth,

when talking about A atoms, these will always be Ni atoms, and B atoms will be Al

1This assumption is questioned by Oramus et al. [32] for Ni3Al on the basis of Molecular Dynamics
calculations especially for highly correlated jumps.
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atoms. As to atomic sizes, Al atoms are distinctly larger than Ni atoms, a fact which will

have dramatic consequences for jump probabilities. The L12 structure can be divided into

two sublattices (majority α- and minority β-sublattice) containing the A and B atoms

respectively. Note that the neighborhood configurations for atoms on the two sublattices

are different (Fig. 6.1).

Figure 6.1: Conventional cubic cell of the L12 structure and nearest neighbor sur-
roundings of the α- and β-sublattice. Majority A atoms are marked by filled dots,
minority B atoms by open circles, respectively. On the α-sublattice an A atom has
8 further A atoms and 4 B atoms as nearest neighbors. An atom of kind B on the

β-sublattice is surrounded by 12 A atoms in the first coordination shell .

When, in fcc-derived ordered structures such as L12, an atom moves to a nearest neighbor

lattice site it has to pass through a rectangular 4-atom window. This window consists of

common nearest neighbors to the original and the new position of the atom (Fig. 6.2).

The specific configuration of this window depends on the degree of order and on the

sublattices on which the atom sits before and after the jump.

Figure 6.2: 4-atom window between an A atom located on the α-sublattice and a
vacancy on the β-sublattice. It is made up of the four common nearest neighbor atoms.

Four types of point defects relevant to order occur in every ordered binary compound:

vacancies (Vα, Vβ) and antisite atoms (Bα, Aβ) located on either sublattice. Based on

the assumption that the elementary jump process is an exchange of a vacancy with one

of its nearest neighbors, each jumping atom has to squeeze through this 4-atom window

to exchange its position with the vacancy. So it is only natural to suppose that the

occupancy of the window exerts the main influence on the the energy of the saddle point

state the atom has to surmount.
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How can we get reliable information on saddle point energies dependent on atom config-

uration? Obviously, this is not possible from experiments on order kinetics, since they

always average over many different single atom jumps. In order to gain explicit insights

into the energetics of atom jumps, we decided to perform first principles (ab initio) cal-

culations according to a classification of possible jump types and window configurations.

6.4 Ab initio calculation of jump profiles

All ab initio calculations in this work are performed within the framework of density

functional theory (DFT) using the Vienna ab initio simulation package VASP [16], [17].

The interaction between ionic cores and valence electrons is treated by the projector

augmented wave method (PAW) [18], [19] with plane waves up to the energy of 350

eV. Exchange and correlation effects are described using generalized gradient corrections

(GGA) [20] in the parametrization of Perdew and Wang (PW91) [21] . The Brillouin

zone is sampled using a Monkhorst-Pack grid of k points [22].

To account for atomic defects in the system, supercells have to be constructed. One should

be aware that supercells of different size correspond to different defect concentrations.

For the present demonstration purposes, supercells composed of 2x2x2 conventional cubic

lattice cells are adopted. For better quantitative values, in a more detailed treatment

calculations will be done in a 3x3x3 supercell. For all supercells describing the defect

structures, the k -mesh has to be adapted for constant sampling density, yielding 6x6x6

for a 2x2x2 supercell. For Brillouin zone integration, the Methfessel-Paxton method with

a smearing width of 0.2 eV is used.

Since we want to model a locally disturbed infinite solid, unwanted interaction with defects

in neighboring supercells has to be avoided. Therefore, the atoms at the boundary of the

supercell are kept fixed at their ideal positions. Only atoms that are fully contained in the

supercell are allowed to relax. Geometry relaxation is performed with a conjugate gradient

algorithm using Hellmann-Feynman forces, as implemented in VASP. It is assumed that

equilibrium is reached if the forces on the non-fixed atoms are less than 0.02 eV/Å.

Jump profiles may be obtained by two approaches: One of them is ’static’ displacement

of the jumping atom along a designated jump path. Having obtained the equilibrium

position of the monitored atom in its initial and final state after a full relaxation, a set of

intermediate states (the jump path) is defined by linear interpolation of these positions.

In each of these states the jumping atom is kept fixed on its intermediate position to avoid

a relaxation into its initial or final position, while the surrounding atoms may relax.
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The other approach, the nudged-elastic-band method (NEB) [23], [24] as implemented

in VASP, is a standard tool for the determination of diffusion barriers. After a full

relaxation of the initial and final state of each jump type, they are kept fixed and a

reaction coordinate relating them is defined. Along the reaction path a set of intermediate

states (images) of the system is defined, which are coupled in an additional dimension of

phase space by spring forces to ensure continuity. To obtain the path that corresponds

to the minimum of energy, each image is fully relaxed in the hyperspace perpendicular to

the reaction coordinate and subject to the spring forces.

For configurations with a setup of high symmetry, straight path calculations and the NEB

method yield the same results. In order to be consistent, in this work, all jump profiles

were calculated using the NEB method, as in a 2x2x2 cell it is not excessively expensive

anyhow.

Jump energy profiles were computed ab initio according to the following classification

of possible jump types. Principally all possible jumps can be distinguished into order-

preserving and ordering-disordering jumps (Fig. 6.3). If A or B atoms (B as antisites)

move within the majority sublattice, order is preserved. In short notation, we will hence-

forth refer to these jumps as A:α→α and B:α→α. If an atom jumps from one sublattice

to the other, antisites are created or annihilated. We refer to these jumps as A:α→β

and B:β→α. Their jump profiles of course also refer to the cases A:β→α and B:α→β

(reverse jumps).
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Figure 6.3: Basic jump types in the L12 structure: Order-preserving (left) and
ordering-disordering jumps (right) with their corresponding jump profiles (in the case
of B: α → α, artificial asymmetry due to limited supercell size was corrected). The

energy profiles were calculated ab initio using VASP. See text for details.

Since we expect the strongest influence on the jump barrier to be exerted by the occupancy

of the 4-atom window the jumping atom has to pass, it is further necessary to obtain

jump profiles for all possible window configurations (Fig. 6.4) for each of these basic

jump types.
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Figure 6.4: The seven geometrically independent window configurations

For the sake of analysis, we define a ’pure’ barrier height E0
barr as the arithmetic mean of

the forward and reverse barriers1:

E0
barr =

(Es − Ei) + (Es − Ej)

2
. (6.2)

6.5 Results for the jump profiles

Order preserving jumps

Our results for order preserving jumps in 2x2x2 supercells are rendered in Table 1. With

these jumps, atoms are only shifted within the majority α-sublattice. In the perfectly

ordered lattice, the configuration of the initial and the final state is geometrically equiva-

lent. Therefore (Ej − Ei) = ∆Eij = 0, and the barrier heights of forward- and backjumps

should to be the same (E0
barr = (Es − Ei) = (Es − Ej)). Any deviation from this rule is

due to numerical artifacts caused by the restrictions we impose on the relaxation of par-

ticular atoms in the supercell. Thus, a slight asymmetry is introduced in the calculation

cell, whereas there is no asymmetry in the real crystal.

Comparing the two possibilities of order-preserving atomic diffusion within the α-sublattice

the following picture arises: As a general trend, the diffusion barrier for antisite (Al)

atoms on the α sublattice is lower than for the majority Ni atoms which regularly sit

there (except for configurations 3 and 4). This behavior corresponds qualitatively with

MD calculations of previous authors [25]. We attribute this to the fact that the antisite

1It has come to the attention of the authors that a very similar concept, there called ’kinetically
resolved activation barrier’ was introduced by Van der Ven et al. (2001) for diffusion of Li in LixCoO2

[33]
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Table 6.1: Pure barrier heights for all possible jump types and window configurations
(definition: see Fig.6.4) in L12 Ni3Al obtained by ab initio calculations. The relative
energy values refer to a 2x2x2 supercell and were obtained by NEB calculation. All
values are in eV. Order preserving jumps: A: α → α, B: α → α (left side) Ordering-

disordering jumps: A: α → β, B: β → α (right side)

window configuration E0
barr window configuration E0

barr

A: α → α A: α → β
0 1.02 0 1.03
1 1.00 1 1.32
2-1 1.10 2-1 1.54
2-2 1.03 2-2 1.28
2-3 1.17 2-3 1.64
3 1.09 3 1.53
4 1.09 4 1.48
B: α → α B: β → α
0 0.29 0 0.72
1 0.55 1 1.20
2-1 0.83 2-1 1.77
2-2 0.83 2-2 1.60
2-3 0.99 2-3 1.96
3 1.28 3 2.35
4 1.76 4 2.92

atoms are less tightly bound on this sublattice than the other atom sort and therefore

move in a shallower effective potential. For a jumping Ni atom, the barrier heights are

remarkably constant for all possible window configurations. Compared to the configu-

ration of highest possible order (window configuration 2-1), the variations (see Tab. 6.1

left side) range from −0.10 (window configuration 1) to +0.07 eV (window configura-

tion 2-3), indicating that this jump type is not very sensitive to the nearest-neighbor

atom configuration of the 4-atom window. On the other hand, for the second possible

order-preserving jump process B:α→α the configuration of the window leads to a large

variation. The jump of an Al atom is easiest through a window formed by 4 surrounding

Ni Atoms (window configuration 0). Compared to this jump type, the barrier is increased

by 1.47 eV for window configuration 4 (four surrounding Al atoms in the window). This

qualitatively different behavior can easily be anticipated if one regards the difference of

the atomic volumes of Ni and Al.

Ordering-disordering jumps

Ordering-disordering jumps (A:α→β, B:β→α and their backjumps) lead to a creation

(annihilation for the backjump) of an antisite (Aβ, Bα) and to a change of the type of

the vacancy (Vα, Vβ). Both contributions enter the energy balance of the jumps.
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Let us compare the two types of disordering jumps: The jump of an Al atom into a Ni

vacancy (Fig. 6.3) leads to a final state of markedly enhanced energy, which is reasonable

as the large Al atom, in its new position on the Ni sublattice is now surrounded by three

equally large Al atoms as nearest neighbors (see Fig. 6.3 right). From that position, there

is only a very low energy barrier to be surmounted for the backjump. It is therefore to be

expected that this antisite-creating jump is immediately followed by the corresponding

backjump with high probability, i.e. these processes show strong correlation.

Quite differently, a Ni atom jumping into an Al vacany (where it fits in without any

problem) in an otherwise perfectly ordered crystal (window configuration 0) is surrounded

in its final state by nearest neighbor Ni atoms only (see Fig. 6.3). The jump transforms

an energetically more expensive Al vacancy into a Ni vacancy [26], which practically

compensates the antisite defect, hence the energy of the final state differs only very little

from that of the initial state (Fig. 6.3).

The pure barrier heights resulting from ab initio calculated energy profiles for the pos-

sible jump types (Fig. 6.3) and window configurations (Fig. 6.4) for an environment of

otherwise perfect long range order are given in Tab. 6.1 (right side).

6.6 MC Simulation results and discussion

In order to show the qualitative and quantitative difference between the traditional ki-

netic model with constant saddle point heights (CSP) and the proposed improved model

with variable saddle point heights (VSP) we performed the following kinetic Monte-Carlo

simulation: From an initial state of perfect long range order we let the system evolve

at a finite temperature below the disorder temperature, towards an equilibrium state of

imperfect order. As a kinetic Monte-Carlo algorithm well suited for the vacancy diffusion

mechanism operative in intermetallics and specifically in Ni3Al we chose the residence

time algorithm (RTA) [27], [28], [29]. Its advantage is that in each MC time interval

considered one atom jump definitely takes place. Therefore futile attempts as in the

Metropolis [30] or Glauber [31] algorithms are avoided. In the RTA the average waiting

time for an atom to jump into a given vacancy is computed as

∆t =
1

∑Z
j=1 Γij

, (6.3)

the Γij being the jump frequencies of any of the Z atoms surrounding the vacancy as

nearest neighbors (Eq. (6.1)). Which of these atoms makes the jump is determined by a

random variable r ∈ [0,1] according to the set of probabilities
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pik =
Γik∑Z
j=1 Γij

. (6.4)

so that atom k jumps if

∑k
j=1 pij < r ≤

∑k+1
j=1 pij.

For VSP the jump frequencies were adjusted making use of the ab initio barrier heights

according to Tab. 6.1 by superimposing E0
barr to 1/2 of the energy difference before and

after the jump (follows directly from Eq. (6.2)):

(Es − Ei) = ∆Eis = E0
barr +

1

2
∆Eij. (6.5)

Other configurations considering neighborhood antisite atoms outside the 4-atom window

were not included in this stage of approximation as they yield effects of second order. The

energies of the system before and after the jump were computed by adopting a simplified

Hamiltonian according to Oramus et al. [3] with pair interactions up to the second coor-

dination shell, with the following independent parameters (combined interaction energies,

in eV per atom) :

ω1 = 0.14, ω2 = -0.066,

ω∗
1 = -0.07, ω∗

2 = -0.004
(6.6)

where ω = (EAA + EBB − 2EAB) is an ordering energy and ω∗ = EAA − EBB is an

asymmetry energy determining the kind of atom which jumps preferentially. The indices

refer to the first and second coordination shell. The authors are aware that a more

rigorous treatment should include many-body contributions, and work on a ternary cluster

expansion (with vacancies) for the Ni-Al system is already under way. For the time being,

the accuracy of the adopted approximation is amply sufficient to show our main point,

the relevance of variable saddle point levels. The simulation cell contained 125,000 lattice

sites and included 1 vacancy. Periodic boundary conditions in all directions were applied.

It is notoriously difficult to translate internal MC simulation time into real physical time.

In order to compare the two conceptually different simulation models we chose to adopt

the number of MC steps as a natural time scale. This is justified because when plotting

elapsed MC time (Fig. 6.5), i.e. the sum of the time intervals ∆t at each step, versus the

number of MC steps, a linear relationship is obtained to a very good approximation.
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Figure 6.5: MC-Time vs. MC-Steps for the CSP (dashed line) and the VSP (solid
line) model as obtained by the RTA algorithm at 1200 K. Although the both models

differ in slope, both curves show a strictly linear behaviour.

In Fig. 6.6 the long-range order parameter is plotted after fitting a weighted sum of two

exponentials to the numerical results

η (t) = A exp

(
− t

τ1

)
+ (1− A) exp

(
− t

τ2

)
(6.7)

with 0 ≤ A ≤ 1; τ2 > τ1

for both models (CSP and VSP) as a function of the number of MC steps for two annealing

temperatures, 1200 K and 1650 K with an initial state of perfect order. The two relaxation

times τ1 and τ2 can be interpreted as a faster and a slower relaxation process [9].

The corresponding equilibrium degrees of long-range order are η=0.97 and η=0.76, re-

spectively. As must be, both models, the traditional one with constant saddle point

heights and the improved one with variable saddle point heights, lead to the same equi-

librium value since the principle of detailed balance is fulfilled in each ansatz. A striking

difference can however be noticed in the kinetics of the system. It is seen in Fig. 6.6 that

more jumps are needed to produce a specified change of order in the improved model.

The reason is a strong correlation effect between antisite-generating MC jumps and their

backjumps.

It is noticed that a two-process kinetics comparable to Oramus et al. [9] was obtained

for both final temperatures in the CSP as well as in the VSP model. The values of the

relaxation times of the faster and the slower process correspond qualitatively with the

published values in [9]. It should be pointed out that Oramus et al. studied situations of

order-order small-step annealing with a different final temperature (1350 K) whereas we

chose a comparatively large temperature step. It is planned to publish a more detailed

comparison with this and other published results in a forthcoming paper. Nevertheless,
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Figure 6.6: Long range order parameter η versus MC step number for the VSP
(full line) and CSP (dashed line) models for the energy parameters adapted to Ni3Al.
Annealing temperatures are 1200 K (left) and 1650 K (right). In both cases the initial
stage was a system corresponding to perfect order and containing 1 vacancy. Dotted

line: final equilibrium value. Note the different scalings.

Table 6.2: Obtained fit parameters A, τ1 and τ2 for CSP and VSP model.

Temperature model A τ1 [MCS*106] τ2 [MCS*106]
1200 K CSP 0.25 0.08 1.18

VSP 0.09 0.22 1.63
1650 K CSP 0.78 0.41 1.98

VSP 0.45 0.52 1.81

we notice that there is no striking difference in the relaxation times of the slower and

the faster process with respect to the CSP and VSP model, especially in the case of the

higher final temperature of 1650 K. In contrast, the weight factors of the processes differ

considerably (see Tab. 6.2).

A detailed jump statistics at different stages was carried out to get a deeper insight into

the kinetics resulting from each ansatz. The first 100,000 steps of independent runs were

analyzed to get a grip on the differences in the initial stages of ordering in both models.

Results for the relative weights in jump statistics of the six standard cases (two kinds

of order-preserving jumps, two kinds of ordering jumps and two kinds of disordering

jumps) for the temperature of 1200 K and 1650 K can be found in Fig. 6.7. There is

a marked difference in the relative frequency of jump types. For the CSP model, the

diffusion of A atoms within the α-sublattice is dominating, leading to a high mobility of

the vacancy within the system. For VSP the majority of jumps are of the type B: β→α

where a B atom exchanges its position with a vacancy located on the α-sublattice and the

corresponding backjump. The reason for this behaviour can be found in Fig. 6.3 and Fig.

6.7. If a B atom jumps into a vacancy located on the α-sublattice, an energetically very

unfavourable antisite is generated and there is a very high probability that the backjump

to the initial configuration of the system is taking place within the next step, since the

barrier to be surmounted is very small due to the enhanced energy of the antisite. This
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behaviour leads to a ’trapping’ of the vacancy on small time scales and to an effective

decrease of mobility.

The same qualitative behaviour is seen in the equilibrium state of the systems. Here

1,000,000 MC steps of independent runs have been analyzed after reaching a stable degree

of long-range order (Fig. 6.7).

Figure 6.7: Fractions of all possible jump types in the the new, improved VSP model
as compared to the CSP model at temperatures of 1200 K and 1650 K in initial and
equilibrium phases of the kinetics. The corresponding long-range order parameter is
0.96 and 0.76, respectively. In the upper row the first 100,000 jumps of independent
runs were analyzed to demonstrate the initial phase of ordering. The bottom row
shows the fractions of jump types after the systems have reached their equilibrium
states. These statistics are based on 1,000,000 jumps for each independent run. In the
initial state, the frequencies of disordering and ordering jumps differ but very slightly.

This is however sufficient to generate the overall disordering effect.

Furthermore a statistics of the window types the jumping atoms pass through was

recorded at the two temperatures considered. Here the behavior strongly depends on

the jump type. As pointed out in the discussion of the ab initio results, the barrier height

of an A atom diffusing on its own sublattice (A: α→α) remains more or less constant

independent of the configuration of the 4-atom window. This fact is also visible in the

window statistics of this jump type comparing the old with the new model (see Fig. 6.8).
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In both stages of the system (initial and equilibrium) the fractions of passed windows are

very similar for each temperature.

In B: α→α jumps, however, a selection for energetically cheaper jumps through windows

with less B atoms becomes evident. The probabilities in the VSP model are strongly

shifted towards the window configuration cases 0 and 1 away from the ’standard case’ 2-1

valid for the perfectly ordered lattice (Fig. 6.8).

In ordering-disordering jumps the energetic preference for low-B windows in the VSP

model leads to a stronger concentration of probabilities towards the window configuration

case 0 than would result in the CSP model out of the statistical occurrence of the various

window types alone (Fig. 6.9).

Figure 6.8: Comparison of fractions of all possible window types that are passed by
A and B atoms in order-preserving jumps at 1200 K and 1650 K and in different phases

of the kinetics (top: initial, bottom: equilibrium).

The results of Figs. 6.7-6.9, especially when comparing the two different temperatures

1200 K and 1650 K, should always be viewed having in mind the two factors from which

they arise: 1) A possibly different distribution of antisites and/or window types due to the

different degree of order, 2) the different energetic bias of jump types and window types

in the two models CSP and VSP. For instance, at higher temperatures in equilibrium

there are more B: α→α jumps just because due to the reduced degree of order there are

more antisite B atoms on the α sublattice. Likewise, when looking at Fig. 6.8 and jump

types B: α→α, there is a distinctly greater preference for window type 0 (as compared

to type 2-1) at 1650 K than is the case at 1200 K, even though the diminished energetic

bias acts in the other direction. Once again, the reason is that at a lesser degree of order
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Figure 6.9: Comparison of fractions of all possible window types that are passed by
A and B atoms in disordering jumps at 1200 K and 1650 K and in different phases of

the kinetics (top: initial, bottom: equilibrium).

the predominance of the standard window type 2-1 for this kind of jump becomes less

pronounced.

These preliminary KMC results are open to improvement regarding (i) a better crystal

configuration Hamiltonian, (ii) calculation of the jump profiles on larger supercells and

(iii) with different surroundings outside the 4-atom window. They show nevertheless the

unmistakable effect which variable jump barriers have on jump statistics and the details

of kinetics.
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6.7 Conclusions

From energy profiles of atom jumps calculated ab initio we derived barrier heights in

a long range ordered Ni3Al model system. Making allowance for the individual atomic

neighborhood of the jumping atom when being in saddle point position turns out to be

vital. Though still preliminary, the results can be summarized as follows:

• Barrier height is strongly influenced by atom environment of saddle point position

(4-atom window).

• Ab initio jump profiles can be consistently analyzed introducing a ’pure barrier

height’. It increases monotonously with the number of B (Al) atoms belonging to

the window.

• In a MC simulation of isothermal kinetics the introduction of variable saddle point

heights (VSP) alters the kinetic details drastically. In the jump statistics the relative

incumbencies of specified jump types are shifted. The long-range order parameter

shows a distinctly changed kinetic behaviour, the main reason being strong corre-

lation effects of disordering Al jumps.
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7.1 Abstract

Kinetic Monte Carlo (KMC) simulation is a valuable tool to investigate configuration

changes in intermetallic compounds. The elementary process is the jump of an atom

from a lattice site to a neighboring vacancy. In classical transition state theory the jump

rate contains the energy difference between the original equilibrium state and the saddle

point (= transition) state. In traditional KMC the saddle point has mostly received rather

careless treatment, setting it constant or relating it to the type of jumping atom. In the

present work, saddle point heights were considered explicitly. Taking L12 ordered Ni3Al

as an example, jump energy profiles for various atom environments were calculated ab

initio in relaxed configurations of a 3x3x3 supercell, employing the Nudged Elastic Band

method where necessary. From these results, effective ’pure’ saddle point heights were

extracted. To show the effect on kinetics, simulations of order-order transitions were done

with jump probabilities based on these results. When compared to the old assumption

of constant saddle point heights, both overall kinetics and detailed jump statistics result

considerably changed.

7.2 Introduction

Monte-Carlo simulation (MC, for a review see e.g. [1]) has been and still is one of the

most important methods to deal in atomistic detail with atom configuration kinetics in

alloys. MC simulation resting on the mathematical assumption of a Markov process, all

modelling is contained in a set of transition probabilities which depend only on the current

state of the system. In many instances, so in most cases in strongly bound intermetallics

at not too high temperatures, these can be calculated by means of the classical transition

state theory [5]. Apart from an attempt frequency given by lattice vibration modes as a

pre-factor, the energy difference between the initial equilibrium and a saddle point state

of the jumping atom enters via a Boltzmann factor. Whereas in treatments existing in

the literature various schemes have been employed to calculate the energy of the initial

state, like attention apparently has not been devoted to the saddle point state (for an

overview see [1]). That its energy value is sensitive to individual atomic environment,

and that these differences have an impact on kinetics, this paper intends to demonstrate,

taking L12-ordered Ni3Al as an example.
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7.3 Jump rates and energy barriers

Jump rate calculation based on transition state theory. In state i an atom lies

adjacent to a vacancy. In state j it has jumped into this vacancy. The corresponding

transition rate is given by

Γij = Γ0 exp

[
−(Es − Ei)

kBT

]
, (7.1)

with Γ0 being a quotient of normal frequencies in the original equilibrium and the saddle

point, and (Es − Ei) being the energy difference between these two positions. Several

authors have taken account of various saddle point environments, mostly using indirect

methods of energy calculation such as EAM potentials, e.g. [2], [3] or cluster expansion

[4]. We want to show via ab initio calculations that the respective atomic surroundings

of the saddle point position should be considered for each jump. In the analysis of jump

barrier heights the following scheme has proved advantageous,

Es − Ei = Eis = E0
barr +

Ei + Ej

2
(7.2)

Here the barrier height Eis is composed of a ’pure’ barrier height E0
barr superimposed on

a baseline connecting the energy values Ei, Ej of the initial and final states. This defini-

tion of the barrier height also allows us to fulfil the principle of ’detailed balance’ in KMC.

Jump types in the L12 structure. For the demonstration of our concepts we chose

the technically interesting L12-ordered intermetallic compound Ni3Al as a model system.

Basic concepts (classification of jumps, window types) hold, however, for all L12 ordered

binary alloys (and partly for other fcc based ordered structures like L10 or L11). For the

perfectly ordered lattice the configuration of the neighboring atoms at each sublattice is

different. While an A atom (α-sublattice) has a neighborhood in the first coordination

shell of 8 A (α) atoms and 4 B (β) atoms, a B atom (β-sublattice) is surrounded by A (α)

atoms only. Therefore nearest-neighbor (NN) jumps can take place only either within the

α-sublattice or between the α- and β-sublattices. In the first case the state of long-range

order is preserved, in the second case it is changed. This allows a classification of jumps

according to Tab. 7.1.

Careful analysis showed that the influence on E0
barr (Eq. 7.2) of an antisite atom in

NN position to the jumping atom is about an order of magnitude lower when it is not

part of the 4-atom window of nearest neighbors common to the atom and the vacancy, as

compared to the case when it belongs to this window. The configuration of this window

therefore exerts the main influence on barrier height. All possible (geometrically inde-

pendent) window configurations are shown in Fig. 7.1. To calculate jump energy profiles

for this set of standard situations we employed ab initio density functional theory as the
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Table 7.1: Order-preserving (left) and ordering-disordering (right) jump types in the
L12 structure and their corresponding energy profiles, calculated ab initio using VASP
(see text for details). The jumping atom has to cross a 4-atom window of common
nearest neighbors. In the bottom lines the point defects present before and after the
jump are also shown, Vα being a vacancy on the α-sublattice, Bα being an antisite B

atom on the α-sublattice etc.
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defects before Vα Vα, Bα Vβ Vα

defects after Vα Vα, Bα Vα, Aβ Vβ, Bα

currently best method available.

Ab initio calculation of jump profiles. For all ab initio calculations based on the

framework of density functional theory (DFT) the Vienna ab initio simulation package

VASP [6], [7] was used with generalized gradient corrections (GGA) [8], [9].

Since our focus is on modeling a locally disturbed (infinite) crystal we have to find a way

to avoid unwanted interactions with the periodically repeated defects in the ’neighboring’

images of the original supercell. Therefore the atoms at the boundary of the supercell

have to be kept fixed at their ideal lattice positions. The merits of this approach have

been discussed by van der Walle [10]. The calculation supercell then has to be chosen

Figure 7.1: Definition of the seven geometrically independent window configurations
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Table 7.2: Pure barrier heights obtained by ab initio calculations for L12 Ni3Al. For
the definition of all possible jump types and window configurations see Tab. 7.1 and
Fig. 7.1. The bold relative energy values refer to a 3x3x3 supercell whereas values for a
2x2x2 supercell are also shown for comparison. All values are in eV. Order-preserving
jumps: A: α → α, B: α → α (left side) Ordering-disordering jumps: A: α → β, B:

β → α (right side)

window configuration E0
barr window configuration E0

barr

A: α → α 2x2x2 3x3x3 A: α → β 2x2x2 3x3x3
0 1.02 0.97 0 1.03 0.95
1 1.00 0.94 1 1.32 1.18
2-1 1.10 0.97 2-1 1.54 1.39
2-2 1.03 0.97 2-2 1.28 1.15
2-3 1.17 1.06 2-3 1.64 1.40
3 1.09 0.97 3 1.53 1.36
4 1.09 0.93 4 1.48 1.34
B: α → α 2x2x2 3x3x3 B: β → α 2x2x2 3x3x3
0 0.29 0.29 0 0.72 0.58
1 0.55 0.49 1 1.20 0.96
2-1 0.83 0.75 2-1 1.77 1.45
2-2 0.83 0.77 2-2 1.60 1.26
2-3 0.99 0.86 2-3 1.96 1.49
3 1.28 1.12 3 2.35 1.85
4 1.76 1.52 4 2.92 2.25

large enough so that residual forces on these atoms due to the elastic distortion around

the defect(s) can be neglected. In our case, a supercell consisting of 3x3x3 conventional

lattice cells (108 lattice positions) has proved sufficient, whereas a 2x2x2 supercell is not.

As the jump path cannot a priori be assumed as straight, in the general case the Nudged

Elastic Band method (NEB) [11], [12] has to be used. It turns out, however, that this is

necessary only for B:α→α jumps [13].

7.4 Results

Results for the jump profiles. We want to point out some features of the values for

the pure barrier height E0
barr shown in Tab. 7.2. Regarding order-preserving jumps, we

see that, except for configurations 3 and 4, barrier heights for antisite atoms (B:α→α)

are lower than for regular A atoms. We explain this behavior by the fact that a B atom

has weaker bonding on this sublattice and therefore moves in a shallower potential. Fur-

thermore it is seen that the occupancy of the 4-atom window has almost no influence at

all on A:α→α jumps. Regarding ordering-disordering jumps, the following picture arises:

The jump barrier for an Al atom (B: β → α) increases with every Al atom in the window
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it has to pass. The same behavior also holds for Ni atom jumps (A: α → β). However,

in this jump a kind of ’saturation’ occurs when it has to pass windows that consist of 2

or more Al atoms.

Results of MC Simulation. As an example to illustrate the consequences of incorporat-

ing variable saddle point heights we performed MC simulations of order-order relaxations.

We chose the residence time algorithm [14] as it is particularly well suited for the vacancy

mechanism of diffusion operative in intermetallics like Ni3Al. Its principal advantage is

that in each MC step an atom jump occurs.

For the jump frequencies we adopt the jump barrier composition according to Eqn. 7.2

where we used the pure barrier heights as calculated ab initio (Tab. 7.2) and for the

energy baseline an Ising-type Hamiltonian adapted to experimental order temperatures

from Oramus et al. [15]. A calculation cell of 125,000 atoms was chosen, periodically

continued in all directions. We let the system evolve from an initial state of perfect order

to an equilibrium state of partial order at 1200K and 1650K, respectively (the critical

temperature for this model being TO/D = 1720 K).
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Figure 7.2: Relaxation curves of the long range order (LRO) parameter η for two
annealing temperatures 1200 K (left) and 1650 K (right). The overall kinetics of the
improved VSP (full line) model and the CSP (dashed line) model are compared for the
energy parameters adapted to Ni3Al. In both cases the simulation was started in an
initial stage of perfect order (containing 1 vacancy) and the system was relaxed towards
its equilibrum state, which is shown by the dotted line. Note the different scalings.

The kinetics of the long-range order parameter is shown in Fig. 7.2, where our model of

variable saddle point heights (VSP) is compared to an alternative one of constant saddle

point heights (CSP). In order to make possible a comparison of these different models,

time is measured in numbers of MC steps. Although in a residence time algorithm individ-

ual time intervals vary considerably, the average time interval is remarkably constant (see

Ref. [13]). In the new, VSP model the the ratio of relaxation rates at the beginning and

at the end of the kinetic process is smaller than in the CSP model. The reason becomes
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clear from a statistics of jump types (Fig. 7.3a, where the results for the VSP model

appear in black). Whereas in the CSP model order-preserving Ni jumps predominate, in

the VSP model antisite-generating Al jumps, linked in strong correlation to their rever-

sals, retard the overall kinetics. This behavior can be understood when looking at the

jump profile of the B: β → α jump in Tab. 7.1: The antisite atom has a very low energy

barrier favoring its immediate return to its regular position on the β-sublattice. Going

Figure 7.3: Initial phase of the kinetics at temperatures of 1200 K and 1650 K:
improved VSP model (black) as compared to the CSP model (grey). The initial phase
of ordering corresponds to the first 100,000 jumps of independent runs. a) Distribution
of jump types according to Tab. 7.1. b) For order-preserving B: β → α jumps, statistics

of jumps through windows with different configurations according to Fig. 7.1

into still more detail by making a statistical evaluation of the jumps through 4-atom

windows with different occupation reveals an expected clear preference of windows with

a lower energy barrier. This becomes especially evident with B: α → α jumps (Fig.7.3b).

Note that although window occupation 2-1 in this case is the sole starting configuration

for a perfectly ordered lattice, it is virtually suppressed in the VSP model, even in the

initial stages of the kinetics. As soon as a slight disordering produces a small number of

energetically ’cheaper’ windows, kinetics prefers them.
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7.5 Conclusions

As a summary of our calculations we state that

• In order to get reliable atom jump energy barriers in L12 ordered Ni3Al a 3x3x3

calculation supercell (108 atom positions) is both mandatory and sufficient.

• For NN jumps the occupancy of a 4-atom window of common nearest neighbors to

the original and final positions exerts the main influence on barrier heights.

• Ab initio jump energy profiles can best be rationalized by defining a pure barrier

height superimposed on a baseline connecting the energies of the initial and final

states.

• Pure barrier heights depend on window occupancy in different degree according to

jump types. The dependence is most pronounced for jumps of B (Al) atoms, where

barrier height strongly increases with the number of B atoms in the window.

• When incorporating variable saddle point heights into KMC simulation the overall

kinetics is altered due to strong correlation effects. The detailed jump statistics

shows a pronounced shift towards energetically more favorable windows.
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Chapter 8

Additional results for L12 Ni3Al

In this chapter considerations and results additional to those published in the papers in

the preceding chapters 6 and 7 are given.

This chapter has the following outline:

• In subsection 8.1 some fundamental controls when seeking equilibrium values by ab

initio calculation are discussed and results for pure Ni, Al and their compound L12
Ni3Al are shown.

• In subsection 8.2 some comments and examples are given as to the choice of the

supercell when dealing with defects and (slightly) disordered intermetallic crystals.

Finally the choice of the supercells used in this thesis is introduced and justified.

• In subsection 8.3 the two most common techniques for calculating jump profiles

(straight path and Nudged Elastic Band method) are introduced, explained and

compared. The applicability of the two methods for various types of jump profiles

is discussed.

• In subsection 8.4 the influence of neighboring defects lying outside the 4-atom win-

dow is investigated.
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Chapter 8 Additional results for L12 Ni3Al

8.1 Ab initio calculations: Convergence and valida-

tion

8.1.1 Methodology

Before starting calculations of ab initio based values for supercells containing point de-

fects, migration energies, etc. the reliability of the the data has to be assured by per-

forming convergency tests for the pure metals and the undisturbed compound. Therefore

the following basic steps were performed:

• The convergency of the choice of grid of k -points was checked for all above mentioned

structures.

• The convergency of the choice of the cut-off energy of the plane waves was checked.

• The consistency with experimental behavior - groundstate, magnetic properties,

was shown.

The commonly used criterion for convergency is (see VASP manual [39]) that the differ-

ence of the energy values between two increasing choices of values (e.g. k -points, cutoff

energy) should be less than ± 1 meV/atom.
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8.1.2 Results: equilibrium values of pure Metals Ni and Al

In this PhD thesis the study and modelling of order-disorder transitions in the L12 ordered

intermetallic compound Ni3Al is in the center of interest. Nevertheless, if it is planned to

use ab initio calculated energies in kinetic Monte-Carlo simulations, it is very important

to check whether the way of calculating these is reliable in pure metallic elements as a

benchmark test.

Both, Ni and Al, condense (at standard conditions) in the face centered cubic structure.

However, when talking about ground states there is one difference. In fcc Ni the ground

state is ferromagnetic while fcc Al is paramagnetic. This behavior is reproduced by VASP.

Following the basic steps listed in Sec. 8.1 it is found (see Fig. 8.1) that a cut-off energy

for plane waves of 450.0 eV and a Γ-centered k -points grid of 16x16x16 leads to reliable

results.
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Figure 8.1: Face centered cubic Aluminum: convergence of the most important pa-
rameters in VASP. On the left the number of k -points in each direction is drawn against
the energy per atom at a fixed volume. On the right side the cut-off energy for plane
waves is plotted versus the energy/atom. The most reliable energy value corresponding
to the highest setting is drawn as a solid line. The area of reliable settings is shown as

dashed lines (± 1 meV/atom).

In static calculations the tetrahedron method with Blöchl corrections is suggested for

very accurate total ground state energies (see VASP manual [39]). The volume of the

supercell was varied by ± 5 % around the equilibrium value and the related energy values

were fitted with the Birch-Murnaghan equation of states [40].

This equation of states has the advantage that its fitting parameters directly yield the

equilibrium parameters of pure fcc Al and spin polarized fcc Ni. This procedure is shown

in Fig. 8.3 and the results are summarized in Tab. 8.1.
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Figure 8.2: Face centered cubic Nickel (spin polarized): convergence of the most
important parameters in VASP. On the left the energy per atom at a fixed volume is
drawn against the number of k -point in each direction. On the right side the ener-
gy/atom is plotted versus the cut-off energy for plane waves. The most reliable energy
value corresponding to the highest setting is drawn as a solid line. The area of reliable

settings is shown as dashed lines (± 1 meV/atom).

-3.698

-3.696

-3.694

-3.692

-3.690

-3.688

-3.686

15.75 16.00 16.25 16.50 16.75 17.00 17.25 17.50

En
er

gy
/a

to
m

 [e
V]

Volume/atom [A3]

fcc Al - Equation of States

-5.464

-5.460

-5.456

-5.452

-5.448

-5.444

10.25 10.50 10.75 11.00 11.25 11.50

En
er

gy
/a

to
m

 [e
V]

Volume/atom [A3]

fcc Ni - Equation of States

Figure 8.3: Energy vs. volume curve for fcc Aluminium and fcc Nickel. All values
are per atom. The symbols show the calculated values.
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Reference a0 B B’

Al
present work 4.047 74.8 4.7
exp. [42],[47] 4.050 72
comp. [41] 4.041 77 4.7

Ni
present work 3.522 195.8 4.9
exp. [42],[47] 3.524 186
comp. [46] 3.540 192

Table 8.1: Calculated equilibrium values of fcc Al and spinpolarized fcc Ni. The
lattice constant a0 is in Å, the bulk modulus B in GPa, B’ is the pressure derivative of
B. The values of E are in eV/atom. Experimental (exp.) and computed (comp.) values

are shown for comparison.

8.1.3 Results: equilibrium values of undisturbed L12 Ni3Al

The L12 unit cell contains 4 atoms (see Fig. 4.1). As pointed out in Section 4, no lattice

distortion in the L12 structure is possible because of symmetry. Based on this fact a

variation of the volume of this structure with the atoms fixed on their lattice sites (i.e. a

simple scale transformation) directly leads to the ground state energy.

Following the basic steps in chapter 8.1 reliable values for the k -points sampling and the

cut-off energy for plane waves were obtained for this 4-atom supercell. The results are

given in Fig. 8.4. The cut off energy was chosen as 460 eV and the Monkhorst-Pack grid

was chosen as 16 x 16 x 16 k -points.

With these settings the equilibrium values of L12 Ni3Al were calculated by varying the

volume of the 4-atom supercell by ± 5% around the equilibrium value and by fitting of

the obtained energy values to the Birch-Murnagahan equation of states. This method is

shown in Fig. 8.5.

A summary of the obtained fitting results is given in Tab. 8.2. An important agreement

should be pointed out here. The obtained lattice constant of 3.57 Å is in good agreement

with the experimental value of 3.58 Å (e.g. [43]). This value is very important as we fix

the volume of bigger supercells. Therefore it is needed for the following calculations.
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Figure 8.4: L12 Ni3Al: convergence of the most important parameters in VASP. On
the left the energy per atom at a fixed volume is drawn against the number of k -point
in each direction. On the right side the energy/atom is plotted versus the cut-off energy
for plane waves. The most reliable energy value corresponding to the highest setting
is drawn as a solid line. The area of reliable settings is shown as dashed lines (± 1

meV/atom).
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Figure 8.5: Energy vs. volume curve L12 Ni3Al. All values are per atom. The
symbols show the calculated values.
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Reference a0 B B’

L12 Ni3Al
present work 3.567 180 4.7
exp. [43],[44] 3.576 175
comp. [45] 3.576 177

Table 8.2: Calculated equilibrium values L12 Ni3Al. The lattice constant a0 is in Å,
the bulk modulus B in GPa, B’ is the pressure derevative of B. Experimental (exp.)

and computed (comp.) values are shown for comparison

8.2 Ab initio calculations: The size of the supercell

8.2.1 Methodology

When dealing with atomic defects in intermetallic systems, one has to be aware that

different sizes of supercells correspond to different defect concentrations due to the limited

size and the periodic boundary conditions (PBC) applied. Embedding one point defect

into a supercell composed of 2x2x2 conventional cubic lattice cells (this corresponds to

32 lattice sites) arithmetically leads to a relatively high amount of defects (3.13 %) in

the whole cristal. Even the computationally more expensive choice of a 3x3x3 supercell

- containing 108 lattice sites - overestimates the density of vacancies (0.72 %) by several

orders of magnitude. Therefore, in order to gain reliable results, it is necessary to use

one of the following setups:

• Sufficently large supercells

This choice is (unfortunately) not feasible with respect to ab initio calculation.

Even the VASP code that is highly optimised with fast algorithms is only able to

handle supercells up to about 300 atoms with proper accuracy.

• Supercell with fixed surface atoms

As suggested in various publications (e.g. see [48]) the atoms at the ’surface’ of

the supercell are kept fixed at their ideal positions. Furthermore only atoms fully

contained in the defined supercell may relax. In other words the fixed atoms act

as a border of the locally disturbed crystal to the undisturbed solid. This choice
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of supercell leads to a study of the number of conventional unit cells needed in

a computation supercell to obtain reliable results. In other words, if the residual

forces on the fixed atoms vanish or are reasonably small the chosen supercell is

sufficiently large.

72



Chapter 8 Additional results for L12 Ni3Al

8.2.2 Results

It was decided to employ the second approach introduced in the previous chapter 8.2.1,

i.e. supercells with fixed surface atoms. Supercells at a constant volume with the lattice

spacing given in Tab. 8.2 were constructed for two sizes: 32 lattice sites (2x2x2 L12 unit

cells) and 108 lattice sites (3x3x3). These two sizes of supercells are the smallest possible

choices for the calculations of defect properties and activation energies in L12 Ni3Al.

After a full relaxation (for technical details of the relaxation procedure see chapter 6.4) of

the ions left free to relax the residual forces on fixed atoms were calculated for both sizes

of supercells. An illustration is shown in Fig. 8.6. Here the forces are shown as arrows.

Fig. 8.6 point out the importance of the choice of the larger 3x3x3 supercell since the

mentioned forces appear to be sufficiently small.

Figure 8.6: [010] side view: Residual forces (black arrows) on fixed ’surface’ atoms of
a 32-atom (left) and 108-atom (right) supercell of L12 Ni3Al containing an Al vacancy.
Aluminum atoms are drawn with larger dots in white (top layer) and grey (lower layers).
Nickel atoms are small black (top layer) and grey (lower layers) circles. The dotted line

indicates the ’surface’ of the supercell.

In order to analyze in more detail the result shown in Fig. 8.6, the relaxations of atoms

surrounding one point defect have been compared for 2x2x2 and 3x3x3 supercells. The

displacements of surrounding atoms related to their specific coordination shell were ana-

lyzed with respect to their equilibrium distance in a perfectly ordered crystal. The results

are given in Figs. 8.8 - 8.14. It is seen that the displacement of atoms with respect to

the equilibrium distance decreases with distance (number of coordination shell). While

it decreases to zero in the case of the larger choice of supercell it does not vanish for a

2x2x2 supercell. In these figures also the atom type is distinguished. Ni atoms are show

with black and Al atoms with blue symbols. It is noted that for the choice of a 2x2x2

supercell in general only the nearest neighbors a re allowed to relax.
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Ni vacancy

Figure 8.7: Local configuration around a Ni vacancy. Here only nearest neighbors are
shown.
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Figure 8.8: Relaxation of neighboring ions of a vacancy located on the majority
sublattice in %. The values are given with respect to the equilibrium distance of the
coordination shell in a perfectly ordered crystal. Two different choices of the size of the
supercell are compared: 2x2x2 with 32 lattice sites (crosses) and 3x3x3 with 108 lattice
sites (dots). Displacements of Ni and Al atoms are shown by black and blue symbols,

respectively.
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Al vacancy

Figure 8.9: Local configuration around an Al vacancy. Here only nearest neighbors
are shown.
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Figure 8.10: Relaxation of neighboring ions of a vacancy located on the minority
sublattice in %. The values are given with respect to the equilibrium distance of the
coordination shell in a perfectly ordered crystal. Two different choices of the size of the
supercell are compared: 2x2x2 with 32 lattice sites (crosses) and 3x3x3 with 108 lattice
sites (dots). Displacements of Ni and Al atoms are shown by black and blue symbols,

respectively.
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Ni antisite

Figure 8.11: Local configuration around an Ni antisite. Here only nearest neighbors
are shown.
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Figure 8.12: Relaxation of neighboring ions of an antisite located on the minority
sublattice in %. The values are given with respect to the equilibrium distance of the
coordination shell in a perfectly ordered crystal. Two different choices of the size of the
supercell are compared: 2x2x2 with 32 lattice sites (crosses) and 3x3x3 with 108 lattice
sites (dots). Displacements of Ni and Al atoms are shown by black and blue symbols,

respectively.
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Al antisite

Figure 8.13: Local configuration around an Al antisite. Here only nearest neighbors
are shown.
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Figure 8.14: Relaxation of neighboring ions of an antisite located on the majority
sublattice in %. The values are given with respect to the equilibrium distance of the
coordination shell in a perfectly ordered crystal. Two different choices of the size of the
supercell are compared: 2x2x2 with 32 lattice sites (crosses) and 3x3x3 with 108 lattice
sites (dots). Displacements of Ni and Al atoms are shown by black and blue symbols,

respectively.
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8.3 Realistic jump paths: straight vs. curved

In this thesis the focus lies on the calculation of reliable energy values of saddle point

states for jumping atoms to apply them to kinetic Monte-Carlo simulations. Generally

speaking there are two main methods of calculating these energies: static displacement

of the jumping atom from its initial towards its final state and the Nudged Elastic Band

method which allows for more degrees of freedom, enabling thus a curved jump path.

In the following both methods are introduced and compared. Since the demand for com-

putational power is dramatically different for these approaches ab initio calculations for

selected jumps were done and checked against each other. After general remarks in chap-

ter 8.3.1, methodology and technical details of the calculations are given in Sec. 8.3.2.

Results and interpretations are shown in chapter 8.3.2.1.

8.3.1 General remarks

Static displacement:

First the initial and final equilibrium positions of the jumping atom are obtained after

relaxation of the supercell. As a second step a jump path between these two equilibrium

positions is defined. Usually this is done by linear interpolation of these positions. In

other words the atom changes its position on a straight path from its initial towards its

final position. Now the jumping atom is moved step by step (’statically’) along this path.

In ab initio calculations of each of the intermediate states the jumping atom is fixed at

its current position and not allowed to relax. This is done in order to avoid a relaxation

towards its initial or final equilibrium postion which is a local minimum of energy and

therefore energetically more favorable than the intermediate state.

The advantage of this approach is that it saves computer time. All states can be treated

as independent of each other and can therefore be calculated one by one.
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Nudged Elastic Band:

On the other hand the Nudged Elastic Band method as introduced in section 3.2 is the

state-of-the-art tool for the calculation of optimum jump paths and corresponding diffu-

sion barriers. However, this method is computationally demanding.

The reason is the following: As pointed out above for each jump path one has to define

a set of images of the whole system along the reaction path. According to the NEB

formalism all of these images have to be relaxed in parallel since they are connected

with ’springs’. Especially when dealing with large supercells (more than 100 atoms) very

large and powerful computer resources are needed to get results within a reasonable time.

Therefore it has to be decided carefully whether the achieved improvement of the results

justifies the increased amount of computing time necessary to do a full NEB calculation.

If we calculate configurations with high symmetries the straight jump path method and

NEB yield the same results. In the next chapter results of VASP calculations of these

two approaches for 2x2x2 calculation supercells are shown and compared allowing thus

to decide for which jump types NEB calculations are mandatory.
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8.3.2 Methodology

For the choice of the 2x2x2 supercell (32 lattice sites) jump profiles for all jump and

selected window types introduced in chapter 4.4 were calculated using the NEB method

and a straight path. For this choice of supercell the Nudged Elastic Band method is not

as expensive as it is for a 3x3x3 supercell (108 lattice sites) and therefore gives insight

whether the achieved improvement of the results justifies the increased amount of com-

puting time necessary to do a full NEB calculation.

This part is designed as follows. First technical details for both the straight jump path

and the NEB method are introduced. Then ab initio results for energies and jump paths

are given and compared, rounded up by an analysis.

General:

All calculations presented here were carried out within a 2x2x2 supercell containing 32

lattice sites. These lattice sites are occupied by an arrangement of 31 atoms and 1

vacancy. In the initial state the vacant spot is always located in the center of the su-

percell. The jumping atom is a nearest neighbor of the vacancy. A Monkhorst-Pack

k -point grid of 6x6x6 is used. All settings are similar to the settings introduced in section

8.2 including the approach that the atoms located at the surface of the supercell are fixed.

Specific: straight jump path

After a full relaxation of the initial and final configuration of each jump type the equilib-

rium positions were linearly interpolated. This interpolation was done for 5 intermediate

positions of the jumping atom. This odd number of steps ensures that the transition

state were the jumping atom is located within the 4-atom window is very near to one of

the calculated positions.

After the calculation of each energy value along the jump path these 5 values were in-

terpolated by cubic splines from which the extrema were determined. Specifically, the

maximum value was taken as the saddle point energy Es. This value is significantly dif-

ferent from the value at half the jump path (within the 4-atom window) only for the case

B:β→α were the maximum is shifted slightly to the final equilibrium position. In all
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other jumps the saddle point is located practically within the window.

Specific: Nudged Elastic Band

All saddle point energies for jump profiles and their corresponding jump paths were cal-

culated with the NEB method as follows. Like above the fully relaxed configurations of

the initial and final states were interpolated linearly as a starting point for the algorithm.

In the case of NEB three relaxable images of the system were defined while the initial and

the final images were kept fixed at their equilibrium states. The criterion that a saddle

point state was found was that the absolute tangential force acting on the image in the

middle of the chain be lower than 0.1 eV/A.

If no image fulfilling this criterion is found after a full relaxation, first the tangential forces

of all calculated images are interpolated to have an estimation for an image correspond-

ing to the saddle point position where the tangential force is zero. Then the two fully

relaxed images lying closest to this estimation and having a change of the sign of their

tangential forces are fixed and linearly interpolated as a starting point for the following

NEB calculation step. This is repeated until the saddle point is identified.
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8.3.2.1 Results

In Tabs. 8.3 - 8.6 the numerical results of the ab initio calculations are summarized and

in Figs. 8.16 - 8.22 the graphical representation of these values is given.

It can easily be seen that in the majority of the calculated jump and window types the

NEB calculations lead to the same results as the straight jump path assumption. This

indicates that the jumping atom stays on its ’direct’ way towards its new equilibrium

position. Only in the case of the order keeping jump B:α→α (see Tab. 8.4) it is found

that the NEB method has to be employed. An example of the jump path for this case

in shown in Fig. 8.23. The jumping B atom takes its optimum jump path by avoiding

other B atoms contained within the 4-atom window.
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Order-keeping Ni jumps

Figure 8.15: Local configuration of order-keeping Ni jumps. This environment corre-
sponds to perfect long range order.

Jump type
Window

Position
∆Eis

configuration
straight NEB

A: α → α
0 0.500 1.03 1.03
1 0.500 1.01 1.01
2-1 0.500 1.11 1.11

Table 8.3: Barrier heights ∆Eis for order-keeping Ni jumps and selected window
configurations calculated with the straight jump path and the Nudged Elastic Band
method. Values were calculated ab initio within a 2x2x2 supercell. All energies are in
eV. The position in fractions of the jump path of the saddle point calculated with the
NEB method is also shown. For the definition of window configurations see Fig. 4.6 in

Sec. 4.4.
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Figure 8.16: Comparision of jump profiles via static displacement along a straight
path (dotted) and the NEB method (full circles) for Ni jumps in the L12 structure with
different window configurations (for definitions see Fig. 4.6 in Sec. 4.4). Energy values

are in eV.
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Orderkeeping Al jumps

Figure 8.17: Local configuration of order-keeping Al jumps. This environment corre-
sponds to the highest possible degree of order.

Jump type
Window

Position
∆Eis

configuration
straight NEB

B: α → α
0 0.500 0.28 0.27
1 0.500 0.57 0.52
2-1 0.500 0.92 0.78

Table 8.4: Barrier heights ∆Eis for order-keeping Al jumps and selected window
configurations calculated with the straight jump path and the Nudged Elastic Band
method. Values were calculated ab initio within a 2x2x2 supercell. All energies are in
eV. The position in fractions of the jump path of the saddle point calculated with the
NEB method is also shown. For the definition of window configurations see Fig. 4.6 in

Sec. 4.4.
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Figure 8.18: Comparision of jump profiles via static displacement along a straight
path (dotted) and the NEB method (full circles) for order-keeping Al jumps in the L12
structure with different window configurations (for definitions see Fig. 4.6 in Sec. 4.4).

Energy values are in eV.
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Ordering - disordering Ni jumps

Figure 8.19: Local configuration of ordering-disordering Ni jumps. This environment
corresponds to perfect long range order.

Jump type
Window

Position
∆Eis

configuration
straight NEB

A: α → β
0 0.500 1.04 1.04
1 0.516 1.44 1.44
2-1 0.531 1.71 1.71
2-2 0.516 1.45 1.45

Table 8.5: Barrier heights∆Eis for ordering-disordering Ni jumps and selected window
configurations calculated with the straight jump path and the Nudged Elastic Band
method. Values were calculated ab initio within a 2x2x2 supercell. All energies are in
eV. The position in fractions of the jump path of the saddle point calculated with the
NEB method is also shown. For the definition of window configurations see Fig. 4.6 in

Sec. 4.4.
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Figure 8.20: Comparision of jump profiles via static displacement along a straight
path (dotted) and the NEB method (full circles) for ordering-disordering Ni jumps in
the L12 structure with different window configurations (for definitions see Fig. 4.6 in

Sec. 4.4). Energy values are in eV.
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Ordering - disordering Al jumps

Figure 8.21: Local configuration of ordering-disordering Al jumps. This environment
corresponds to perfect long range order.

Jump type
Window

Position
∆Eis

configuration
straight NEB

A: α → β
0 0.625 1.08 1.08
1 0.563 1.61 1.59

Table 8.6: Barrier heights∆Eis for ordering-disordering Al jumps and selected window
configurations calculated with the straight jump path and the Nudged Elastic Band
method. Values were calculated ab initio within a 2x2x2 supercell. All energies are in
eV. The position in fractions of the jump path of the saddle point calculated with the
NEB method is also shown. For the definition of window configurations see Fig. 4.6 in

Sec. 4.4.
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Figure 8.22: Comparision of jump profiles via static displacement along a straight
path (dotted) and the NEB method (full circles) for ordering-disordering Al jumps in
the L12 structure with different window configurations (for definitions see Fig. 4.6 in

Sec. 4.4). Energy values are in eV.
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Example for jump paths
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Figure 8.23: Comparision of jump profiles via static displacement along a straight
path (dotted) and the NEB method (full circles) for order preserving jumps in the L12
structure at perfect order. The corresponding jump paths are shown in the lower part

of the columns.
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8.4 Dependence of saddle point on neighboring de-

fects at various distances

For intermetallics like L12 Ni3Al diffusion is known to proceed by a vacancy mechanism.

Therefore vacancies are located on regular lattice sites and allow one atom sitting in their

first coordination shell (nearest neighbors) to exchange its position with it. In order to

perform this jump the atom has to pass a saddle point located between its initial and final

position. After this exchange the vacancy is located on the position where the jumping

atom was sitting before.

The energetics and the geometric relations of a single atom jump can be divided into 3

main stages (Fig. 8.24):

1. Initial equilibrium position with corresponding energy Ei

2. Saddle point state and energy Es

3. Final equlibrium position with energy Ej

In the general case the difference of final energy Ej and initial energy Ei is zero for any

order-preserving jump process while it differs for any ordering-disordering exchanges. A

jump that leads to a higher degree of disorder usually is connected to an elevated final

energy Ej with respect to Ei.

Let us have a closer look on the saddle point state. We already know that to exchange its

position with the vacancy in the L12 structure a jumping atom has to squeeze through a

4-atom window, introduced in Chapter 4.3. This window is located in the middle of the

jump path and can bear different atomic arrangements.

To point out the influence of the configuration of this window on the saddle point en-

ergy of diffusion jumps we regard the following jump process (Fig. 8.24). An A atom

exchanges its position with a vacancy located on the minority sublattice (A:α → β). The

environment is slightly disordered since one antisite Bα is located within the window. In

the initial state of the jump the atom is in an equilibrium position with its equilibrium

energy Ei. Moving towards its final position and final energy Ej the A atom reaches a

saddle point state with the corresponding energy Es and a position within the 4-atom

window.
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Figure 8.24: The energetics of the three main stages of an elementary jump process
and their corresponding atomic configurations: An atom (red) moves from its initial
position (1) to the final position (3). The saddle point state (2) is reached as the

jumping atom enters the 4-atom window (grey).

Intuitively its only natural to expect that the saddle point energy Es strongly depends

on the explicit configuration of this 4-atom window since all atoms contained in it are

nearest neighbors of both, the jumping atom and the vacancy and have to be moved a

little bit out of the way to let the jumping atom pass. Starting from this expectation we

want to study the influence in a more quantitative way.
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A jumps:

First we vary the positions of one Bα antisite within the first seven coordination shells

with respect to the initial position of the jumping A atom and keep the distance to the

vacancy fixed at nearest neighbor distance (Fig. 8.25 and Tab. 8.7).

Now the following picture arises: The biggest change of the barrier height energy due to

the presence of a B antisite in the vicinity is found when it is located within the 4-atom

window. The influence of the location of the antisite decays strongly with its distance

to the initial position of the jumping atom. This is a strong indication that also in the

general case the main influence on the jump barrier is exerted by the configuration of

the 4-atom window. We therefore assume that antisites located outside this window have

only second-order influence.

Index
Distance to

Eis ∆Eijjumping atom

reference barrier height 0.933 -0.03
(a) 0.707 1.227 (+0.294) 0.091
(b) 1.000 1.027 (+0.094) 0.136
(c) 1.225 0.964 (+0.031) 0.148
(d) 1.414 0.946 (+0.013) 0.070

1.732 0.958 (+0.025) -0.05
1.871 0.938 (+0.005) -0.05

Table 8.7: A jumps (for index see Fig. 8.25). The distance of the Al antisite to the
initial position of the jumping atom in units of the lattice spacing a, and all energies
are given in eV. The configurations of the last two rows are not shown in Fig. 8.25.
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Figure 8.25: Top: Initial configurations of the environment for the ordering-
disordering jump A:α → β for B antisites within the first four coordination shells.
Bottom: Change of barrier height with respect to the barrier height of the jump in a
perfectly ordered lattice (through a 4-atom window consisting of A atoms only). The
dotted line is a guide to the eyes to demonstrate the declining influence of antisites with

respect to distance to the jumping atom.
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B jumps:

Secondly we also study the change of the barrier height Eis with respect to the initial

distance of one Bα antisite for a jumping B atom (B:β → α). Here the same behavior is

found (see Fig. 8.26 and Tab. 8.8).

Index
Distance to

Eis ∆Eijjumping atom

reference barrier height 0.937 0.713
0.707 1.354 (+0.417) 0.784
1.225 1.101 (+0.164) 0.964
1.581 1.013 (+0.076) 0.726

Table 8.8: B jumps (for index see Fig. 8.25). The distance of the Al antisite to the
initial position of the jumping atom in units of the lattice spacing a, and all energies
are given in eV. The configurations of the last two rows are not shown in Fig. 8.25.
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Figure 8.26: Change of barrier height for B jumps with respect to the barrier height of
the jump in a perfectly ordered lattice (through a 4-atom window consisting of A atoms
only). The dotted line is a guide to the eyes to demonstrate the declining influence of

antisites with respect to distance to the jumping atom.
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Chapter 9

Summary and Outlook

In this work an improved strategy to calculate energy barriers for atom jumps in Kinetic

Monte-Carlo (KMC) simulations is proposed. The energy barriers enter in the jump fre-

quencies via a Boltzmann factor in the framework of the transition state theory. The

improvement introduced consists in taking explicitly account of the atomic environment

of the transitional saddle point. In order to study the dependence on environmental con-

figuration, extensive ab initio studies of jump energy profiles were undertaken, using the

VASP software package. L12-ordered Ni3Al was taken as a model system, as it is a tech-

nically important intermetallic alloy and fulfils the requirements for the transition state

theory to be applied, its diffusion operating by a nearest neighbor vacancy mechanism.

From the methodological point of view, it was found necessary to adopt a calculation

supercell of at least 3x3x3 conventional lattice cells, so as to keep atoms at the boundary

of the supercell free from constraining forces. A careful study showed that the majority

of jump paths can be considered as practically straight, and for only a small class of

curved jumps the computationally expensive Nudged Elastic Band (NEB) method has to

be employed in order to obtain a minimal energy barrier. In the fcc lattice (on which L12

is based) nearest neighbour jumps into vacant lattice sites have to take place through a

rectangular 4-atom window of nearest neighbors to the initial and final positions of the

jumping atom. As expected, the occupancy of the 4-atom window exerts the predomi-

nant influence on the barrier height. Antisite defects near the jumping atom which do

not form part of this window exert a lesser influence which decays in an exponential-like

way with distance.

The energy profiles as obtained from the ab initio calculations were analyzed extracting

a pure energy barrier as the arithmetic mean of the forward and backward jump barrier.

As a general trend, the pure barrier increases with the number of the larger Al atoms,
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the amount of the increase depending on jump type, however.

Finally, the impact on kinetics of configuration-dependent saddle points was studied by

some model KMC simulations of the transition from perfectly ordered to partly ordered

alloy configurations. Here, the jump barriers were constructed by reversing the analyzing

process, viz. superimposing the pure barrier heights on the energy ramp from the initial to

the final position of a jump. For the energy ramp, a simplified Ising type interaction model

was used. The effect of the new paradigm when compared with fixed saddle point heights

is startling indeed. It can be seen by a statistics of the various jump types that there is a

clear bias towards energetically cheaper jump windows, even if their relative abundance is

smaller. On the integral scale, there is a slowing-down of the order parameter kinetics due

to correlation effects. Making allowance for variable saddle point heights does therefore

make a difference.
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Outlook

As usual no work or model can be considered as being immune against further improve-

ment. Two items of improvement should be mentioned here, and ideas for ways how to

put this into work are given.

As it was shown in the two publications included (chapters 6 and 7) the calculation of

initial (and final) energies used in kinetic Monte-Carlo simulations was based on pair

interaction potentials up to the next nearest neighbor. These potentials have been well

tested and they lead to realistic equilibrium degrees of order. Especially they describe

very well the order-disorder transition temperature of Ni3Al. Since the main focus of this

work is laid on the explicit treatment of saddle point energies these well tested potentials

were used as a basis ramp for barrier heights calculated by ab initio calculations. How-

ever, it would be desirable to also treat the energetics of the initial (and final) state with

higher accuracy and on better theoretical foundation.

One way to obtain reliable potentials with ab initio precision could be the cluster expan-

sion (CE) [49]. In this treatment multi-body interactions between atoms are matched to

values computed with high computational effort. This approach leads to a description of

configuration dependent energy values in a large computational cell with the precision of

calculations based on density functional theory. The cluster expansion approach is well

established for the treatment of binary and ternary systems. However, the treatment of a

binary compound containing vacancies is a non-trivial task and is therefore in the center

of interest of ongoing research.

Undoubtedly the configuration of the 4-atom window has the greatest influence on the

explicit height of the saddle point energy. This was demonstrated in chapter 8.4 for jumps

of atoms of sort A and B with an antisite in their surroundings. However, a certain in-

fluence of antisites at a distance larger than the nearest neighbor distance might not be

negligible. Since ab initio calculations for all possible neighborhood configurations are

not feasible, an other way has to be found to treat this dependence satisfactorily. One

way would be to select some of these neighborhood configurations at random and feed

them into an energy expression that works as a trainable neural network [50].

The cluster expansion might also come in handy since each configuration dependent value

can be - theoretically - fitted by CE. Ways to carry out this tasks are of great interest

and are presently in the focus of various working groups.

So stay tuned!
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10/1997 − 06/2007 Universität Wien, Vienna, Austria

Degree in Physics

Diploma thesis on ’Kinetische Monte-Carlo-Simulation mit
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