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1 Introduction  

 

1.1 Enantioselective Liquid Chromatography 

Enantioselective high performance liquid chromatography (HPLC), often termed chiral 

HPLC, has evolved as a powerful tool for analysis and separation of enantiomers in both 

industry and academia [1-5]. In contrast to other enantioselective chromatographic 

techniques, such as gas chromatography (GC), supercritical fluid chromatography (SFC), 

thin-layer chromatography (TLC), or centrifugal partition chromatography (CPC), chiral 

HPLC exhibits the broadest applicability ranging from trace analysis of enantiomeric 

impurities to multi-kilogram-scale preparative enantioseparations [6, 7]. In fact, the need for 

optically pure compounds in the pharmaceutical and agrochemical industry has made chiral 

HPLC playing an important role in the drug development process. It enables facile and 

straightforward access to single enantiomers in the gram- to kilogram-scale, thereby avoiding 

potentially laborious and expensive stereoselective synthesis approaches. Indeed, owing to the 

implementation of cost-efficient preparative separation techniques, such as simulated moving 

bed chromatography (SMB) [8], chiral liquid chromatography is nowadays even applied in 

production-scale enantiomer separations [1, 9].  

Since the emergence of HPLC in the early 1970s, two approaches have been applied for 

chromatographic resolution of enantiomers, namely the indirect and direct approach. The first 

one involves the formation of a covalent bond between an enantiomerically pure chiral 

derivatizing agent (CDA) and the racemate thus yielding two diastereomeric molecules. After 

chromatographic separation on an achiral stationary phase, the diastereomers can be cleaved 

to recover the CDA and the corresponding pure enantiomers. However, this method suffers 

from drawbacks like the need for CDAs of utmost enantiomeric purity (otherwise two pairs of 

enantiomers may be formed), the requirement of functional groups in the racemate being 

suitable for derivatization, or undesired kinetic resolution phenomena. Hence, the indirect 

method is of rather historic importance and not in widespread use anymore.  

In the direct approach, a chiral selector (SO) is immobilized or adsorbed onto a 

chromatographic support material (mostly spherical silica gel) yielding a chiral stationary 

phase (CSP). Upon approaching of the analyte (selectand, SA) to the SO, transient and 

reversible SO-SA associates are formed (Eq. 1). The energetic difference in binding energy 

between the two diastereomeric associates, which is the manifestation of unequal equilibrium 

constants KRR and KRS, is responsible for and thus the fundamental basis of enantioseparation.  
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     (1) 

 

Nowadays, a plethora of CSPs is available on the market enabling successful HPLC 

resolution of enantiomers of broad structural diversity, thereby employing normal phase-, 

reversed phase- and polar organic mode as elution conditions. Finally, enantioselective 

chromatography has also advanced to the field of ultra (high) performance liquid 

chromatography (UPLC® or UHPLC) by immobilizing SOs on sub 3 µm particle size or 

superficially porous silica gel [10, 11].  

 

1.2 (Enantioselective) Supercritical Fluid Chromatography 

SFC is a chromatographic technique that mostly applies the same stationary phases like in 

HPLC, but employs a supercritical (sc) fluid as mobile phase. Usually, CO2 is used as sc fluid 

due to its easily obtainable critical point (31.1°C and 73.8 bar), relatively low toxicity and 

inexpensiveness. However, the rather non-polar properties of neat sc CO2 necessitates the 

addition of polar organic modifiers to enhance analyte solubility and elution strength of the 

mobile phase. The unique physicochemical properties of a supercritical mobile phase enable 

distinct advantages as compared to HPLC: (i) the reduced viscosity allows the use of higher 

mobile phase flow rates and thus shortens analysis time, (ii) the greater diffusion coefficient 

in SFC enables faster mass transfer often resulting in higher theoretical plate numbers and, 

also, shifts the Van-Deemter minimum to higher mobile phase flow rates.  

It is noteworthy that most of the SFC applications are nowadays carried out using 

subcritical mobile phases, because either the applied temperature is below 31°C or the 

presence of organic modifier shifts the operation condition to the subcritical regime. 

However, no phase separation or any major chromatographic discontinuities are observed 

between the two states [12-14]. In literature, the abbreviation SFC is used synonymously for 

both subcritical and supercritical fluid chromatography, although some authors prefer the 

abbreviation SubFC for subcritical fluid chromatography.  

SFC instruments for packed columns are nowadays similarly built to HPLC instruments 

using binary pumps (one for the organic modifier and a chilled pump with a high range of 

compressibility compensation for CO2) and mainly the same columns like in HPLC. Two 
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differences in instrumentation are the use of an additional back pressure regulator (to keep the 

mobile phase in sub/supercritical state) and pressure resistant UV detector cells in SFC.  

Since the first use of SFC as a form of supercritical GC by Klesper et al. in 1962, it was 

mainly applied in capillary or open-tubular formats with neat sc CO2 in the following decades, 

thus limiting its application range to non-polar or moderately polar solutes [15]. Owing to a 

study which overestimated the polarity and thus elution strength of sc CO2 [16], it was tried to 

improve elution strength and analyte solubility by density programming of neat sc CO2 rather 

than by mixing polar organic co-solvents to the mobile phase. It took until the end of the 

1990s, when packed column SFC displaced open-tubular SFC from the market, to reattract 

attention for a broader chromatographic community. Since the beginning of the 2000s, with 

the introduction of more robust and reliable instruments, SFC has emerged as a powerful 

chiral and achiral separation technique [13, 17-19]. It gained special popularity in the 

pharmaceutical industry for chiral screening, owing to its inherent speed, high efficiency and 

fast column equilibration times. Currently, SFC is in process of replacing HPLC for carrying 

out (chiral and achiral) normal phase separations, because of benefits in terms of faster 

column equilibration, tolerance to water in the mobile phase, and less environmental impact 

[15, 20]. Several companies have recently started to commercialize dedicated polar stationary 

phases for SFC to enable unique selectivity profiles [15]. Most recently, and similar to chiral 

HPLC, the first applications of sub 3 µm and/or superficially porous silica gels for CSPs in 

(chiral) SFC were reported [21, 22]. 

 

1.3 Chiral Recognition in Chromatography and Related Thermodynamic 

Principles 

Several models were proposed to rationalize the basic requirements for succesful chiral 

recognition at a molecular level. In 1933, Easson and Stedman proposed a “three-point 

attachment model” to explain stereoselective binding of chiral compounds to a protein 

receptor [23]. This model stipulated that a minimum of three configuration-dependent 

attractive contact points between a chiral receptor and a chiral substrate is required for chiral 

discrimination. However, the model neglected a fourth precondition, namely that the binding 

site had to be on a planar surface and that the receptor could not be approached from the 

interior. Nineteen years later in 1952, Dalgliesh adapted this model for chromatography 

(TLC) [24].  

An extended and slightly modified definition of the three-point attachment model is 

known as the “three-point (interaction) rule”. It states that a minimum of three simultaneous 
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interactions between the selector and at least one of the selectands is required for chiral 

recognition, in which at least one of these interactions must be stereochemically dependent 

[25, 26]. The interactions can be of attractive or repulsive character. Even two interactions 

may be repulsive, as long as the third one is strong enough to facilitate at least one 

diastereomeric associate [25]. The “three-point rule” is nowadays commonly accepted, 

although intermittently challenged [27-29].  

Furthermore, it is important to distinguish between single-point and multi-point 

interactions. Electrostatic forces, hydrogen bonding, or end-to-end dipole interactions are of 

single-point quality. In contrast, other interactions involving 2D-polarized functionalities, 

such as dipole-dipole stacking or aromatic interactions, are considered as two-point 

interactions. Concerning the three-point model, the combination of a single-point and a two-

point interaction may already suffice to facilitate chiral recognition.   

The three-point model is graphically illustrated in Fig. 1. In the course of the chromatographic 

process, the enantiomers (SAs) approach the SO which is bound or adsorbed onto the 

chromatographic support material. However, due to steric constraints, only one enantiomer is 

capable of forming three simultaneous interactions with the SO (ideal fit), thus being stronger 

retained than the other SA enantiomer.   

 

           

 

Figure 1. Graphical illustration of the three-point interaction model. With ΔGRR = - RT ln KRR and ΔGRS = - RT 

ln KRS, it follows that ΔGRR ≠ ΔGRS. 

 

Taking Eq. 1 and Fig. 1 into account, it can be concluded that two conditions are required for 

enantiomers to be separated. Diastereomeric associates must be formed between the SO and at 
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least one of the enantiomers and, additionally, they must exhibit different Gibbs energies 

(ΔG) of formation. ΔG is related to the equilibrium constants as depicted in Eq. (2) 

 ΔG = - RT ln K      (2) 

 

R denotes the universal gas constant (8.3144 J mol-1 K-1) and T the absolute temperature in K. 

The retention factors kR and kS of the corresponding enantiomers are given by the product of 

their equilibrium constants for complex formation and the volume phase ratio Φ. 

 

    kR = KRR . Φ  kS = KRS . Φ    (3) 

 

By convention, enantioselectivity α is defined as in Eq. (4), with kR > kS. 

 

    α R,S = kR / kS       (4) 

 

Since retention factor k and enantioselectivity α are thermodynamically controlled, and 

different Gibbs energies of diastereomeric complex formation are required for enantiomer 

separation, Eq. (2) and Eq. (4) can be combined as follows (with KRR > KRS). 

.   

  ΔΔGR,S = ΔGRR - ΔGRS = - RT ln (KRR / KRS) = - RT ln α R,S      (5) 

 

For deconvolution of enthalpic and entropic increments to retention and enantioselectivity, 

respectively, one can rewrite Eq. (5) according to the Gibbs-Helmholtz equation (ΔG = ΔH - 

T ΔS), resulting in the modified van`t Hoff equations (6) and (7). 

    ln α R,S = - ΔΔHR,S / RT + ΔΔSR,S / R     (6)     ln k = - ΔH / RT + ΔS / R + ln Φ     (7) 
 

As is evident from Eqs. 6 and 7, the enthalpic and entropic contributions can conveniently be 

extracted by measuring α- and k values over a certain temperature range. Then, graphical 

analysis is applied via plotting of ln k or ln αR,S against the reciprocal absolute temperature 

1/T [K-1]. Van`t Hoff plots for ln α normally give a linear relationship, from which ΔΔH and 

ΔΔS can be calculated from the slope (-ΔΔH / R) and intercept (ΔΔS / R), respectively. 
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Equations (5) to (7) pinpoint two salient points for discussion of thermodynamic influence on 

chromatographic enantioseparation. Owing to the nature of chromatography, even low 

ΔΔGR,S values are sufficient for proper enantioseparation. For instance, 240 J mol-1 

correspond to an α R,S = 1.1, which often enables baseline separation on many CSPs (with 5 

µm particle size).  

However, when carrying out mechanistic interpretations of thermodynamic 

contributions on a certain CSP-SA system, one has to be aware of enantioselective (es) and 

non-enantioselective (ns) interactions. Since CSPs are prepared via immobilization 

(adsorption) onto chromatographic support materials, there is the inherent possibility for the 

SA to undergo not only es interactions with the SO, but also ns interactions with, for instance, 

residual silanol groups of the silica gel. Strictly speaking, retention factors of the 

corresponding enantiomers should be displayed as kapp,R and kapp,S.  

     kapp,R = kns + kes,R       (8) 

     kapp,S = kns + kes,S       (9) 

 

Hence, the chromatographically observed (apparent) αapp is defined as 

 

   αapp =  kapp,R / kapp,S = (kns + kes,R) / (kns + kes,S)    (10)     αintr =  kes,R / kes,S       (11) 
 

Equations (6) and (7) illustrate that in case of present non-enantioselective interactions, the 

chromatographically observed enantioselectivity αapp is decreased compared to the intrinsic 

(“true”) enantioselectivity αintr. Therefore, from a practical point of view, special care has to 

be taken for investigation of thermodynamic influences on chromatographic parameters. In 

such cases, the chromatographer has either to select CSPs with negligible kns values (e.g. 

cinchona alkaloid-based weak anion exchanger CSPs, as applied in this thesis) or to put effort 

on suppressing those non-selective interactions (e.g. by choosing a particular mobile phase 

system). 
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1.4 Chiral Stationary Phases for HPLC and SFC 

 

1.4.1 Overview and General Remarks 

In the following chapters only those CSPs are discussed which possess SOs with ionizable 

functionalities and thus are employed to address ionizable solutes. This is because the main 

objective of this thesis was to prepare and/or chromatographically evaluate ion exchange-type 

CSPs for separation of highly polar chiral acidic and zwitterionic compounds. Hence, the brief 

review presented herein aims at giving an overview of already established CSPs capable of 

resolving chiral acids and amphoteric compounds (viz. free amino acids and small peptides), 

including a discussion of their merits and limitations. Furthermore, it will be stated if the 

particular CSPs were also investigated in SFC.  

A prevalent classification of CSPs and thus of their corresponding SOs divides them 

into three main categories:  

 Polymeric selectors  

o Biopolymers: polysaccharide-derivatives, proteins  

o Synthetic polymers: poly(meth)acrylamides, polytartaramides  

 Macrocyclic selectors  

o Macrocyclic antibiotics  

o Cyclodextrins  

o Cyclofructans  

o Chiral crown ethers  

 Low molecular weight selectors 

o Pirkle-type (donor-acceptor-type) selectors 

o Ligand-exchange selectors  

o Chiral ion exchange-type selectors  
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1.4.2 Protein-based CSPs  

With growing need for chiral separations of drug compounds by liquid chromatography in the 

1970s, proteins immediately gained interest as SOs for liquid chromatography separations, 

mainly because they were easily accessible from nature and experienced continuous interest 

for pharmacological (drug-receptor) studies [30]. Protein families which are applied as SOs 

for CSPs include albumins, such as bovine serum albumin (BSA) and human serum albumin 

(HSA), glycoproteins (e.g. α1-acid glycoprotein, AGP, and ovomucoid, OMCHI) and 

enzymes (e.g. cellobiohydrolase I, CBH I) [31]. The proteins are covalently attached to the 

silica support material via their carboxylic or amino functions. The application of protein 

CSPs covers acidic, neutral and basic solutes for which AGP exhibits the broadest 

enantioseparation capability [30]. AGP and HSA are particularly useful for separation of 

acidic solutes, such as N-derivatized amino acids, but also for aromatic amino acids and 

sulfoxides [31, 32].  

Numerous SO – SA interaction studies, including X-ray crystallography [33], molecular 

modelling [34] and thermodynamic studies by chromatography [35], state that chiral 

recognition is driven by electrostatic, hydrophobic and hydrogen bonding interactions. 

Furthermore, conformational changes occur by variation of mobile phase pH, modifier 

content and temperature, which can be visualized in obtaining non-linear van`t Hoff plots 

[36].  

Protein CSPs suffer from major drawback like low organic solvent tolerance and limited 

pH application range (e.g. <25 % and pH 3 – 7.5 for AGP), low efficiency (due to slow mass 

transfer kinetics) and poor sample loading capacity. Hence, they lost some popularity in 

industry but are still used in bioanalytical screening of chiral drugs. Apparently, protein CSPs 

cannot be employed in SFC due to their restriction to highly aqueous mobile phases.  

 

1.4.3 Polysaccharide-type CSPs 

Although these phases do not possess ionizable functionalities within their SOs, they should 

briefly be discussed here because of their widespread use in the field of enantioselective 

chromatography. In fact, amylose- and/or cellulose carbamate-type CSPs are extensively 

applied in the pharmaceutical industry in analytical and especially in preparative scale owing 

to their high column loadabilities [2, 9]. The SOs can either be coated or covalently bound to 

silica gel, whereas the immobilized CSPs are superior to their coated analogues with regard to 

their global solvent compatibility [30, 37]. However, both coated and immobilized CSPs, 
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even if identical polysaccharide derivatives are incorporated, can provide unique selectivity 

profiles [38, 39]. Polysaccharide-type columns exhibit the broadest scope of application, in 

resolving analytes of a broad structural diversity [40], and can interchangeably be used in 

HPLC and SFC [41]. Nevertheless, they are of limited use for resolving chiral amphoteric 

compounds (amino acids) and are restricted in enantioseparating primary amine containing 

analytes [42, 43], whereas separation of chiral acids has been reported in both HPLC and 

SFC[41, 44-46]. Also, the macromolecular SOs offer multiple interaction possibilities which 

complicates the understanding of the chiral recognition process [5]. For further reading on 

mechanistic studies on chiral recognition the reader is referred to dedicated reviews [5, 47]. 

 

1.4.4 Macrocyclic Antibiotic CSPs 

Armstrong et al. introduced macrocyclic antibiotics as chiral selectors for HPLC [48]. The 

most popular representatives are those from the glycopeptide family, such as avoparcin, 

vancomycin, ristocetin A, teicoplanin (Fig. 2) and teicoplanin aglycon [49-55]. They have a 

rather broad scope of applicability, including separations of acidic, basic and zwitterionic 

enantiomers. Teicoplanin and its aglycone show the best ability for enantioseparation of 

underivatized α-, β-, and γ-amino acids and small peptides [49, 50, 56-58]. Overall, 

glycopeptide antibiotic CSPs show some complementarity in their enantioselectivity profiles, 

which means that if one solute cannot be separated on one particular column, there is a high 

chance for separation on another CSP. Macrocyclic antibiotic CSPs can be successfully 

operated in normal phase-, reversed phase and polar organic mode and were also applied in 

SFC [59, 60]. 

In the course of extensive investigations on their antibiotic properties [61], it was found 

that macrocyclic antibiotics bind to D-Ala-D-Ala terminating peptides to inhibit bacteria cell 

wall assembling. Thus, chromatographic enantioselectivity derives from the stronger binding 

of D-amino acids and peptides in the basket shaped aglycone cavity. Consequently, elution 

order for amino acids and peptides on all glycopeptide antibiotic CSPs is L before D with 

very few exceptions [56].  

However, a detailed understanding of the chiral recognition mechanism is still lacking. 

Dominating SO-SA interactions were found to be hydrogen bonding, hydrophobic 

interactions and the steric fit into the aglycone cavity. Depending on the analyte structure, 

supporting interactions may be π-π interactions, electrostatic forces. The basket shaped 

aglycone plays a pivotal role for enantiorecognition of amino acids and peptides, as the 

carboxylate group binds to the aglycone in proximity to the ureido group via hydrogen 
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bonding [62]. This finding is further corroborated by studies on teicoplanin aglycon CSPs, 

which provide higher selectivity values for amino acids than teicoplanin due to the absence of 

the sugar moieties, which are hampering access for amino acid solutes to the aglycon cavity 

[54]. Usually, the acidic group is deprotonated under the applied mobile phase conditions 

giving the SO an overall negative net charge. Consequently, protonated basic compounds can 

be separated via a cation exchange mechanism. Interestingly, deprotonated chiral acids (e.g. 

N-Ac-amino acids) thus having the same charge as the SO can be separated via 

enantioselective ion-exclusion phenomena i.e. the L-enantiomer is repulsed from the column 

and the inherently stronger bound D-congener can enter the aglycone cavity and thus is 

retained [62, 63].  
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Figure 2. Structure of teicoplanin CSP 

 

1.4.5 Crown Ether CSPs 

Crown ether CSPs are restricted for enantioseparation of primary amine containing 

compounds, most importantly amino alcohols, primary amino acids, di- and tripeptides, and 

primary amine group containing bases. The chiral recognition mechanism is shown in Fig 3. It 

requires strongly acidic aqueous mobile phase conditions to protonate the primary amine of 

the solute, which then forms triple hydrogen bonding interactions with the selector to undergo 

inclusion complexation [64]. For this reason, chiral crown ether CSPs are not applicable SFC. 
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One of the most successful crown ether SOs is (18-crown-6)-2,3,11,12-tetracarboxylic acid, 

which is covalently bonded to aminopropyl-modified silica gel [65]. Since crown ethers are 

prepared by chemical synthesis rather than from chiral natural compounds, both enantiomeric 

forms of the SOs are available. Usually, enantiomer elution order can be conveniently 

reversed when switching from one SO to the opposite enantiomeric form.  

 

 
Figure 3. (18-crown-6)-2,3,11,12-tetracarboxylic acid crown ether CSP undergoing a triple hydrogen bond 

interaction with the protonated primary amine containing analyte  

 

1.4.6 Ligand Exchange CSPs 

Chiral ligand exchange chromatography (CLEC) was developed by Davankov in the late 

1960s, which made them the first (and for a long time the only) option for direct enantiomer 

separation of free amino acids [66]. The separation principle of CLEC is based on formation 

of transient diastereomeric ternary complexes including a divalent metal-ion, a bidentate 

selector and the solute (Fig. 4). The SOs consists of a covalently bonded or adsorbed 

bidentate chiral ligand, such as proline, hydroxyproline or penicillamine, and a coordinated 

divalent metal ion like Cu(II), Ni(II) or Zn(II) [67, 68]. The particular stereochemical features 

of the analytes cause different thermodynamic stabilities and/or formation rates thus enabling 

separation of the enantiomers. 

As mentioned above, CLEC is specifically addressed for enantiomer separation of α-amino 

acids, but also for other bidentate or tridentate compounds with electron donating groups, 

such as amino alcohols and α-hydroxy acids. During chromatography, the ternary reversible 
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complexes are continuously formed via adsorption/desorption of the corresponding solutes 

acting as ligands. In addition, solvent molecules (e.g. water) stabilize the complex via 

coordination to the metal ion in axial positions. Generally, metal-ions are added to the 

aqueous/organic mobile phase to compensate for metal-ion removal during elution.  

Parameters for method optimization include temperature, type and amount of the 

organic modifier, buffer salts and metal-ions, respectively [67, 69, 70]. Generally, CLEC 

suffers from drawbacks such as slow exchange kinetics resulting in low column efficiency 

and the inherent problem of toxic and chelating metal-ions present in the chromatographic 

system. Consequently, CLEC has been largely replaced by more favorable alternatives for 

HPLC enantioseparation of amino acids.   
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Figure 4. Chiral ligand exchange CSPs 

 

1.4.7 Ion Exchange-type CSPs 

Low molecular weight selectors which are dominated by ion exchange retention mechanisms 

have been reported for anion exchange (AX), cation exchange (CX) and zwitterion exchange 

(ZWIX) modes, respectively [5]. 

Most popular representatives are chiral anion exchangers derived from cinchona 

alkaloids quinine or quinidine, respectively, although anion exchange CSPs based on 

derivatized ergot alkaloids are also reported [71-74]. Salvadori and coworkers first 

investigated cinchona alkaloids as SOs for HPLC [75]. However, Lämmerhofer and Lindner 

significantly improved the enantiodiscrimination abilities by introduction of bulky 

substituents via a carbamate bond at the OH-group in C9 position [76]. Fig. 5 depicts tert-

butylcarbamoyl-quinine and quinidine CSPs (QN-AX CSP and QD-AX CSP, respectively). 

 QN-AX and QD-AX CSPs are preferentially operated in weakly acidic hydro-organic 

or polar organic mobile phases, which enable a weak anion exchange (WAX) dominated 
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retention mechanism between the protonated quinuclidine tertiary amine and the deprotonated 

(negatively charged) acidic analyte. In these CSPs, the long range but non-directed 

electrostatic forces are supported by short range directing interactions, such as hydrogen 

bonding, π-π stacking, van der Waals or steric interactions [77], which in concert facilitate 

chiral discrimination of the acidic enantiomers. The carbamate motif in the SOs acts as a 

potent hydrogen donor and acceptor and is crucially involved in the chiral recognition 

process. The quinoline moiety can undergo charge transfer interactions (π-π) with aromatic 

solutes (Fig. 5) [77-80]. Moreover, different substitution patterns at the carbamoyl moiety 

also influence enantioselectivity, thereby confirming that van der Waals or steric interactions 

must play a supportive role [81, 82] 

Due to their nature as chiral anion exchangers, QN-AX and QD-AX can resolve many 

classes of chiral acidic compounds with particularly high enantioselectivities for N-protected 

amino acids. Other enantioseparations of arylcarboxylic acids (profens), aryloxycarboxylic 

aicds, N-protected aminophosphinic and –phosphonic acids and few sulfonic acids are also 

reported [83].  

 

 

 

 

Figure 5. QN-AX (left) and QD-AX CSPs (right) 

 

Recently, Lindner and co-workers introduced low molecular weight strong cation 

exchange-type (SCX) CSPs for HPLC. They were preferentially applied in buffered polar 

organic mobile phases and proved to be suitable for enantioselective and chemoselective 

separations of secondary and tertiary amines. Due to their nature as low molecular weight 

SCX CSPs, they also showed fast mass transfer kinetics resulting in high column efficiencies 

[84, 85].  

With the aim to extend the limited applicability of the single anion and cation exchanger 

CSPs, cinchona alkaloids were merged with sulfonic acid moieties, thus creating a 

zwitterionic SO. After immobilization onto silica gel, the corresponding zwitterionic CSPs 

(ZWIX-CSPs) enabled all three modes of ion exchange and were therefore suitable for 
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resolving chiral acids, bases and amphoteric compounds (e.g. free amino acids and 

aminosulfonic acids) [86]. Fig. 6 exemplarily depicts a quinine-based ZWIX-CSP.  

Due to their zwitterionic nature, the ZWIX CSPs exhibited unique properties as 

compared to their parent uni-ionic WAX or SCX-type SOs. The presence of an oppositely 

charged group on the SO molecule caused significantly reduced retention times for separation 

of acids in the anion-exchange mode or bases in the cation exchange mode, respectively. This 

was termed the “intra-molecular counterion (IMCI) effect” [86, 87]. Vice versa, compared to 

the WAX and SCX-type CSPS, the IMCI effect enables isoelution conditions in the AX and 

CX mode with reduced buffer amounts (ionic strength) in the mobile phase.  

However, the preparation of ZWIX-CSPs was motivated by enabling separations of 

chiral zwitterionic (amphoteric) compounds, which are generally poorly or even not retained 

and thus not separated on uni-ionic WAX or SCX-type CSPs (although some examples exist 

[88]). Indeed, a broad range of structurally diverse free amino acids could be resolved. 

However, the chiral discrimination properties were strongly depending on the structure of the 

strong cation exchange subunit. The stereocenter in vicinity to the SCX moiety was found to 

enhance the enantioselectivity profile towards basic and zwitterionic solutes [86, 87] (Fig. 6). 

Moreover, enantiomer elution order could be inverted by switching from the quinine- to the 

pseudoenantiomeric quinidine-based CSP, which underlined that the cinchona alkaloid moiety 

played a pivotal role in the chiral recognition process. 

Molecular recognition between the SO and the zwitterionic SA is assumed to be driven 

by a simultaneous double ion pairing process. Depending on the solute structure, additional 

intermolecular interactions can come into play, such as hydrogen bonding with the carbamate 

moiety of the SO, π-π stacking with the quinoline moiety, van der Waals or steric interactions.  

 

 
Figure 6. Quinine-based zwitterionic chiral stationary phase (ZWIX-CSP) 

 

 

ZWIX-CSPs express most favorable enantioseparation profiles in all three ion exchange 

modes when applying weakly acidic mobile phase conditions with polar organic bulk 

solvents. Hydro-organic (reversed phase) conditions decreased retention due to strong 
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solvation effects of the charged sites of the ZWIX-SOs and the analytes, respectively. 

However, for amino acids with hydrophobic moieties, retention increased at high water 

content as supportive hydrophobic increments became active. Buffer concentration (ionic 

strength) had only moderate impact on retention and negligible influence on 

enantioselectivity, especially in the zwitterion exchange mode. This was particularly 

exemplified by separation of tryptophan without any buffer salts in the mobile phase (neat 

MeOH) [89].  

 

1.5 Retention Mechanisms in Chiral Ion Exchange Chromatography 

Several models exist for the description of the retention process in ion-exchange 

chromatography. Generally, models based on the diffuse double-layer theory are the most 

accurate ones but are very complex and require the solution of the Poisson-Boltzmann 

equation, a second order differential equation (e.g. the Gouy-Chapman model). Furthermore, 

they also rest on a number of assumptions that are in conflict with the physical realities (e.g. 

that ions are considered as point charges). A related, well-established physical concept is the 

Donnan model, a simplified version of the diffuse double-layer model [90].  

A more practical and conceptually simpler approach is the often applied stoichiometric 

displacement model [83, 90-92], which states that counterions displace the solute ions from 

the oppositely charged selector site. According to this empirical model, ion exchange-based 

retention mechanisms show a linear relationship between the logarithm of the retention factor 

k and the logarithm of the molar counterion concentration [C], as shown in Eq. 12. 

 

                                               
][logloglog CZKk z     (12)  

 

Z is the slope of the linear regression line and is proportional to m/n, wherein m is the charge 

number of the analyte ion and n the charge number of the counterion. Thus, the slope Z 

indicates the number of charges being involved in the ion-exchange process.  

The constant KZ, which can be calculated from the intercept, is defined by Eq. 13.  
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K is the ion-exchange equilibrium constant (in L mol-1), S is the surface area (in m2 g-1), qx is 

the charge density on the surface (in mol m-2) (i.e. the number of ion-exchange sites available 

for adsorption) and V0 is the mobile phase volume (in L). Consequently, log KZ can be seen as 

a system-specific constant and represents the log k value at a 1 mol/L counterion 

concentration.  

Hence, the elution strength of a particular counterion can de deduced from the slope and 

intercept of the linear regression line. Generally, the ion-exchange mechanism is the same for 

both enantiomers following that enantioselectivity remains unaltered by changing the 

counterion concentration.  

In the case of weak ion-exchange systems, acid-base equilibria are superimposed on the ion-

exchange process (this is valid for both weak ion-exchanger CSPs and weakly acidic/basic 

solutes). The influence of the pH (or apparent proton activity pHa, respectively) on retention 

in ion exchange chromatography was illustrated by Sellergren and co-workers [93], as shown 

in Eq. (14)  

 

                                               
totSOSA SOK

C
k ][

][

1
 

    (14)
 

 

where SA  and SO  are the ionization states of the selectand and the selector, respectively, 

and [SO]tot is the total ion exchange capacity of the stationary phase (i.e. the surface 

concentration of SO which is tantamount to qx). From Eq. 14 it follows that retention is 

strongest where the degree of ionization of both SO and SA is highest, which, in turn, can be 

controlled by the (apparent) pH of the mobile phase.  
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2 Objectives 

 

The aim of the present dissertation was to design and prepare novel ion exchange-type CSPs, 

followed by their evaluation in HPLC and SFC towards their enantiodiscrimination 

capabilities for ionizable solutes. The field of research was mainly divided in two areas:  

In the first part, the applicability of quinine- and quinidine-based chiral anion 

exchangers, which had already been extensively characterized in HPLC, should be further 

extended to SFC. First, it was planned to principally investigate the suitability of these anion 

exchange driven CSPs for enantiomer separation of chiral carboxylic acids in SFC. Second, a 

detailed analysis of the influence of particular parameters (e.g. buffer composition, 

temperature) on separation performance should be carried out. Overall, the merits and 

limitations of anion-exchange-type CSPs in SFC mode were to be discussed. In another study, 

the anion exchanger CSPs were evaluated for enantioseparation of sulfonic acids (or their 

sodium-salts, respectively) in HPLC and also SFC. 

The second aim of the thesis included synthesis and chromatographic evaluation of 

zwitterionic CSPs. Following a semisynthetic approach, quinine and quinidine molecules 

should be modified with chiral strong cation exchange subunits, thus generating amphoteric 

chiral selectors. Due to their zwitterionic nature, the emerging CSPs can be operated in all 

three modes of ion exchange (i.e. anion, cation, and zwitterion exchange), but are specifically 

employed for enantioseparation of amphoteric compounds, such as free amino acids. Via 

systematic structural modifications of the strong cation exchange subunits, we aimed at (i) 

generating selectors with a broad scope of applicability for amino acid enantiomer separation 

and (ii) drawing conclusions on the involved chiral recognition mechanism between the 

zwitterionic selector and the amphoteric analyte.  
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3 Results and Discussion  

 

3.1 General Remarks 

This chapter primarily outlines those results that have already been published in peer-

reviewed journals or have been included in manuscript drafts submitted for publication. 

Results that are closely related with the topic of the thesis, but have not yet been published are 

presented in 3.4.  

Chapter 3 aims at putting the results of the individual publications and manuscript drafts 

in context. In order to allow straightforward reading and to avoid redundant information, the 

contents are only briefly summarized, and the abstracts of the corresponding articles are 

included within this chapter. For obtaining detailed information the reader is referred to the 

publications and manuscript drafts given in the appendix.  

 

3.2 Anion Exchange-type CSPs  

 

3.2.1 Application of Anion Exchanger CSPs for Indirect Chromatographic 

Absolute Configuration Assignment  

Generally, determination of absolute configuration of individual enantiomers is commonly 

accomplished by X-ray diffraction analysis [94, 95], NMR [94, 96, 97], circular dichroism 

spectroscopy (CD) [98, 99] and vibrational circular dichroism spectroscopy (VCD) [100]. 

However, application of these methods can be laborious, be restricted to certain classes of 

compounds or may need considerable amounts of sample.  

Indirect assignment of absolute configuration via chromatography can be a faster and 

more straightforward alternative to the above mentioned techniques and was frequently 

applied in the past [101]. It is carried out by comparison of the elution orders of the unknown 

enantiomer with those of a reference compound with known absolute configuration. Thus, the 

indirect chromatographic method implies several prerequisites to allow correct assignment of 

the absolute configuration (i) it requires a detailed understanding of the chiral recognition 

mechanism between the SO and the SA (ii) the sample compound must be structurally closely 

related to the reference compound in order avoid ambiguity due to potential changes in the 

chiral recognition mechanism [101] (iii) the applied CSP has to show consistent elution orders 
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for the investigated class of solutes, independently from changes in chromatographic 

conditions such as variation in mobile phase parameters.  

Hence, among the numerous CSP available, only a few fulfil the above mentioned 

requirements. Tert-butylcarbamoyl quinine and its pseudoenantiomeric quinidine-based CSP 

belong to this class of CSPs, thereby exhibiting consistent enantiomer elution orders for 

certain classes of chiral acids (vide supra). We compared both anion exchanger phases with a 

polysaccharide-based CSP regarding their enantioseparation ability towards pirinixic acid 

derivatives and their potential for indirect absolute configuration assignment. The results are 

presented and discussed in the following publication (M. Lämmerhofer, R. Pell, M. Mahut, 

M. Richter, S. Schiesel, H. Zettl, M. Dittrich, M. Schubert-Zsilavecz, W. Lindner. Journal of 

Chromatography A 2010, 1217, p. 1033-1040; for the complete article see Appendix I) 

 

 

Enantiomer separation and indirect chromatographic absolute configuration prediction 

of chiral pirinixic acid derivatives: Limitations of polysaccharide-type chiral stationary 

phases in comparison to chiral anion-exchangers 

Michael Lämmerhofer a, *, Reinhard Pell a, Marek Mahut a, Martin Richter a, Simone Schiesel a, Heiko Zettl b, 

Michaela Dittrich b, Manfred Schubert-Zsilavecz b, Wolfgang Lindner a  

 
a Christian-Doppler Laboratory for Molecular Recognition Materials, University of Vienna, Department of 

Analytical Chemistry & Food Chemistry, Waehringer Strasse 38, A-1090 Vienna, Austria 
b Institute of Pharmaceutical Chemistry/ZAFES/LiFF, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-

60348 Frankfurt/M., Germany  

* Corresponding author 

 

Abstract 

Chiral α-arylthiocarboxylic acids with different substitution patterns, representing new pirinixic acid derivatives 

with dual PPAR α /γ agonistic activities, have been separated into enantiomers on tert-butylcarbamoylquinine 

and quinidine based chiral anion-exchangers and amylose tris(3,5-dimethylphenylcarbamate) coated silica on 

analytical and preparative scale. Absolute configurations of individual enantiomers were assigned 

chromatographically via elution orders on the chiral anion exchangers and were confirmed by stereoselective 

syntheses via Ewans auxiliaries that have lead to enantiomeric products with known absolute configurations. The 

results of both methods were in full agreement. Moreover, the receptor stereoselectivity in PPARα 

transactivation activities was consistent within the test set of structurally related compounds. Limited correlation 

(between elution order and substitution) was observed within the set of α-arylthiocarboxylic acids on the 

amylose tris (3,5-dimethylphenylcarbamate) based chiral stationary phase (CSP), in particular the elution order 

changed with remote substitution. This clearly demonstrates the risks of chromatographic absolute configuration 

assignments by prediction from one structural analog to another one, especially with CSPs such as 
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polysaccharide CSPs that are recognized for their broad applicability due to multiple binding and chiral 

recognition modes. It is therefore of utmost importance that such chromatographic absolute configuration 

predictions by extrapolation to structural analogs are combined with orthogonal methods for verification of the 

results.  

 

Keywords: Chiral stationary phase; Chiral anion-exchanger; Quinine and quinidine carbamates; Polysaccharide; 

Amylose tris (3,5-dimethylphenylcarbamate); Chiral separation; HPLC; Pirinixic acid derivatives; 2-

Aryloxyalkanoic acids; 2-Arylthioalkanoic acids; Enantioselective synthesis; Peroxisome proliferator activated 

receptors (PPAR)  
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3.2.2 Evaluation of Anion Exchange-type CSPs in SFC and HPLC for 

Separation of Chiral Carboxylic- and Sulfonic Acids 

As outlined in chapter 1.4.7, cinchona-alkaloid based weak anion exchangers were 

successfully employed in HPLC for enantioseparation of chiral acids in reversed phase-, polar 

organic- and normal phase mode. In an effort to further extending their application range, we 

evaluated tert-butylcarbamoyl quinine and –quinidine CSPs in another chromatographic 

separation technique, namely Subcritical Fluid Chromatography (SFC).  

Supercritical CO2 and a methanolic modifier with acidic and basic additives was employed to 

enantioseparate a broad set of N-protected amino acids and chiral arylcarboxylic acids. 

Actually, we applied a 25% modifier amount, a temperature of 40°C and a backpressure of 

150 bars for the measurements, which results in a mobile phase of subcritical state.  

A similar enantioselectivity profile for the investigated analytes was obtained which 

underlined the same chiral recognition mechanism as observed in HPLC. Moreover, retention 

also followed an ion exchange process, thereby exhibiting decreased retention times with 

increasing buffer concentrations in the mobile phase (at a constant acid to base ratio in the 

methanolic modifier). Interestingly, we could realize anion-exchange mediated chiral 

separations by merely applying sc CO2 with neat MeOH (without any addition of acidic or 

basic additives to the modifier).  

This phenomenon can be explained by the in situ formation of methylcarbonic acid in 

pressurized CO2 - methanolic systems [66, 102]. The acid can then dissociate to 

methylcarbonate and a proton, as outlined in Eq. (15).  
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(15) 

 

Hence, we could chromatographically confirm that the often coined “inherent acidity” of sc 

CO2-methanolic systems is based on the in situ formation of methylcarbonate, which then acts 

as a counterion in the SFC mobile phase thus enabling elution of the acidic compounds. This 

finding enables high potential for preparative separations of chiral acids on cinchona-alkaloid 

based anion exchanger columns by avoiding potentially troublesome additives in the mobile 

phase, because after pressure release the acid disproportionate into CO2 and methanol.  

Detailed investigations on QN-AX and QD-AX CSPs in SFC mode are given in the 

following publication (R. Pell, W. Lindner, Journal of Chromatography A 2012, in press; 

Appendix II)  

 

 

Potential of Chiral Anion-Exchangers Operated in Various Subcritical Fluid 

Chromatography Modes for Resolution of Chiral Acids 

Reinhard Pell, Wolfgang Lindner* 

 

Department of Analytical Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria 
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Abstract  

Anion-exchange-type chiral stationary phases (CSPs) derived from quinine or quinidine were applied in 

subcritical fluid chromatography (SFC) for the direct separation of chiral acidic compounds. Employing 

subcritical (sc) mobile phase modes (CO2 + methanol as co-solvent and acids and bases as additives) first the 

influence of type and amount of acidic and basic additives on separation performance was investigated. 

Secondly, water was tested as a neutral additive and the influence of temperature variation on enantioselectivity 

was studied. Thirdly, we could chromatographically confirm that the often verbalized “inherent acidity” of sc 

CO2 + methanol is manifested by the in situ formation of methylcarbonic acids in the sc mobile phase and thus 

functioning as acidic additive. Accordingly the dissociated methylcarbonic acid, acting as a counterion, enables 

an anion exchange mechanism between the cationic CSP and the corresponding acidic analyte. In the absence of 

a dissociable acid in the mobile phase such an ion exchange mode would not work following a stoichiometric 

displacement model. This finding is further corroborated by the use of ammonia in methanol as co-solvent thus 

generating in situ the ammonium salt of methylcarbonic acid. In summary, we report on ion-exchange mediated 

chromatographic separations in SFC modes by merely using (i) sc CO2 and MeOH, (ii) sc CO2 and ammonia in 

MeOH, and (iii) sc CO2 and MeOH plus acids and bases as additives. Comparisons to HPLC mode have been 

undertaken to evaluate merits and limitations. This mode exhibits high potential for preparative chromatography 

of chiral acids combining pronounced enantioselectivity with high column loadability and avoiding possibly 
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troublesome mobile phase additives, as the in situ formed methylcarbonic acid disintegrates to CO2 and 

methanol upon pressure release.  

 

Keywords: Enantiomer separation, Supercritical fluid chromatography, Subcritical mobile phase, Chiral 

Stationary phase, Chiral anion exchangers  
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As already stated in the introduction, QN-AX and QD-AX columns proved to be suitable for 

retention and enantioseparation of all types of organic acids due to their nature as weak anion 

exchange-type CSPs. However, only a few chiral sulfonic acids or sulfonate salts, 

respectively, have been applied as analytes until now.  

Hence, within the following publication QN-AX and QD-AX CSPs were applied to 

investigate the enantioseparation performance towards a set of sodium β-ketosulfonates in 

HPLC and subcritical fluid chromatography. The results have been published in the following 

paper (R. Pell, G. Schuster, M. Lämmerhofer, W. Lindner, Journal of Separation Science 

2012, accepted; for the full article see Appendix III) 
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Abstract  

Tert-butylcarbamoyl-quinine and –quinidine weak anion exchange chiral stationary phases (Chiralpak® QN-AX 

and QD-AX) have been applied for the separation of sodium β-ketosulfonates, such as sodium 

chalconesulfonates and derivatives thereof. The influence of type and amount of co- and counterions on retention 

and enantioresolution was investigated using polar organic mobile phases. Both columns exhibited remarkable 

enantiodiscrimination properties for the investigated test solutes, in which the quinidine-based column showed 

better enantioselectivity and slightly stronger retention for all analytes compared to the quinine-derived chiral 

stationary phase. With an optimized mobile phase (MeOH, 50 mM HOAc, 25 mM NH3) 12 out of 13 chiral 

sulfonates could be baseline separated within 8 minutes using the quinidine-derivatized column. Furthermore, 

subcritical fluid chromatography (SubFC) mode with a CO2-based mobile phase using a buffered methanolic 
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modifier was compared to HPLC. Generally, SubFC exhibited slightly inferior enantioselectivities and lower 

elution power but also provided unique baseline resolution for one compound. 

 

Keywords: chiral sulfonates, chiral separation, cinchona alkaloid, subcritical fluid chromatography, liquid 

chromatography 
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3.3 Zwitterionic CSPs: Preparation and Evaluation by HPLC 

In 2008, Hoffmann et al. initially reported on preparation and HPLC-evaluation of novel 

zwitterion-exchange-type CSPs [86]. The remarkable enantiodiscrimination properties of 

these brush-type ZWIX-CSPs for resolving chiral acidic, basic and zwitterionic analytes 

prompted us to further develop this concept. The synthetic strategy focused on using cinchona 

alkaloids quinine or quinidine as weak anion exchange moieties and carrying out systematic 

variations of the sulfonic acid based strong cation exchange units (Scheme 1).  

Hence, we synthesized aminosulfonic acid subunits and fused them with either QN or 

QD via a carbamate linkage to form novel zwitterionic low molecular weight selectors. Upon 

immobilization on mercaptopropyl-modified silica gel, the corresponding ZWIX-CSPs were 

chromatographically evaluated by HPLC in three different projects.  

First, we investigated the impact of the intramolecular distance of the oppositely 

charged groups within the zwitterionic SO on the enantiodiscrimination properties. In doing 

so, ZWIX CSPs with increasing alkyl side chains at the SCX site were evaluated by HPLC for 

enantioseparation of chiral amines, acids and zwitterionic compounds, such as free amino 

acids and small peptides. The results were published in the following article (S. Wernisch, R. 

Pell, W. Lindner. Journal of Separation Science 2012, in press; for the full paper see 

Appendix IV) 
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Scheme 1. Synthetic concept of novel ZWIX-CSPs 

 

 

Increments to chiral recognition facilitating enantiomer separations of chiral acids, 

bases, and ampholytes using Cinchona-based zwitterion exchanger  

chiral stationary phases 

Stefanie Wernisch, Reinhard Pell, Wolfgang Lindner* 
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Abstract 

The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases 

represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of 

alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric 

molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion 

and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion 

effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. 

Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups 

with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation 

exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for 

separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful 

in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more 

flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived 

chiral stationary phases facilitating reversal of elution orders for all analytes.  
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Amongst other issues, the article reported the necessity of a chiral center in the vicinity of the 

SCX moiety to successfully separate a broad range of chiral bases and free amino acids, 

thereby confirming earlier findings by Hoffmann et al. [86, 87].  

Therefore, the focus was on design and synthesis of novel quinine- or quinidine-based 

ZWIX-SOs bearing a stereocenter close to the sulfonic acid group. A major effort was to 

synthesize chiral β-aminosulfonic acids, which were then used as synthons in the following 

step for ZWIX-SO preparation (for a general scheme on ZWIX-SO synthesis see Appendix 

IV or Appendix V in the Supporting information).  

Briefly, three synthesis approaches were extracted from the rather limited amount of literature 

on synthesis of chiral β- or γ-aminosulfonic acids. First, reductive amination of (1S)-10-

camphorsulfonic acid was applied to obtain diastereomeric endo/exo mixtures of the 

corresponding aminocamphorsulfonic acid (see Scheme 2) [103]. However, we could neither 

reproduce these results nor apply the reductive amination step for synthesis of γ-

aminosulfonic acids from chalconesulfonic acid starting materials (Scheme 2). Consequently, 

it was tried to circumvent the reductive amination step via synthesis of stable ketoxim-

intermediates and a subsequent reduction step to yield the corresponding aminosulfonic acid. 

However, whereas the synthesis of the ketoxim products worked straightforward, we failed in 

the following reduction step.  
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Scheme 2. Reductive amination strategy  

 

 

 

Scheme 3. Aminosulfonation strategy 
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In the second approach, chiral trans-aminosulfonic acids were synthesized from their 

corresponding alkene-starting materials in a straightforward two-step conversion by Cordero 

et al. [104]. The reaction was applied to prepare trans-2-aminocyclohexanesulfonic acid 

required as a synthon for the preparation of SCX- and ZWIX-SOs [84, 86, 87, 105]. However, 

the reaction turned out to be not applicable for sterically hindered starting materials, such as 

α-pinene or just norbornene.  

Third, the group of Xu and coworkers reported in several publications on synthesis of β-

aminosulfonic acids (2-substituted taurines), thereby also exhibiting minor drawbacks such as 

multistep synthesis [106-108] or the tedious isolation of the zwitterionic product from 

inorganic salts [109, 110]. However recently, they reported on a smooth two-step synthesis, in 

which enantiomeric vicinal amino alcohols were transformed to thiazolidine-2-thione 

intermediates and subsequently oxidized with performic acid to the corresponding mono-

substituted β-aminosulfonic acids [111].  

We applied this rather cheap and salt-free method to synthesize a small library of 

enantiomerically pure 2-substituted taurine analogs, which were subsequently fused with 

quinine-or quinidine activated esters to obtain novel ZWIX-SOs with chiral subunits on the 

SCX site. After SO immobilization onto mercaptopropyl-modified silica gel, a set of novel 

ZWIX-CSPs with systematic structural variations at their SCX- or WAX subunits were 

obtained. In a following study, the ZWIX-CSPs were used for (i) deconvolution of the chiral 

recognition mechanism between ZWIX-SOs and zwitterionic analytes (ii) evaluation of the 

enantiodiscrimination properties of the particular CSPs for amino acid solutes and (iii) 

carrying out a systematic mobile phase optimization applying protic and aprotic bulk solvents 

in polar organic mode. The results are presented in the following manuscript (R. Pell, S. Sić, 

W. Lindner. Journal of Chromatography A 2012, submitted) 

 

 

Mechanistic investigations of cinchona alkaloid-based  

zwitterionic chiral stationary phases 

Reinhard Pell, Siniša Sić, Wolfgang Lindner*  

 

Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria 

* Corresponding author: 

 

Abstract 

Novel zwitterionic cinchona alkaloid-based chiral selectors (SOs) were synthesized and immobilized on silica 

gel. The corresponding brush-type chiral stationary phases (CSPs) were characterized as zwitterionic ion-
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exchange-type materials and exhibited remarkable enantioselectivity for their zwitterionic target analytes, viz. 

underivatized amino acids and aminosulfonic acids. We rationally designed structural modifications on the 

strong cation exchange (SCX) subunit of the zwitterionic SO and investigated the influence on chiral recognition 

power for amphoteric solutes. SOs with chiral isopropyl- or cyclohexyl-moieties in vicinity to the SCX site 

showed broadest application range by baseline resolving 39 out of 53 test compounds, including α-, β-, and γ-

amino acids with different substitution patterns. Furthermore, we introduced two pseudoenantiomeric 

zwitterionic CSPs which combined the unique features of providing comparable enantioselectivities but reversed 

enantiomer elution orders. By application of slightly acidic polar organic mobile phases as preferred elution 

mode, we found that certain amounts of aprotic acetonitrile in protic methanol substantially increased 

enantioselectivity and resolution of amino acids in a structure-dependent manner.  

 

Keywords: enantioseparation, amino acid, aminosulfonic acid, chiral stationary phase, zwitterionic selector 

Received 25 May, 2012 

 

 

The reported results provide evidence that ZWIX-CSPs have a high potential for resolving 

amino acids and dipeptides of a broad structural diversity. In an attempt to further extend the 

application range towards larger amphoteric molecules, three ZWIX-CSPs were applied for 

enantioseparation of novel peptidomimetic drug candidates considered for antithrombotic 

therapy. Following a bioisosteric replacement approach, a research partner designed and 

synthesized structural analogs to the antiplatelet drug tirofiban, thereby introducing 

carboxylic-, phosphinic-, phosphonic and thiophosphonic acid moieties. However, as 

racemization occurred during synthesis, there was a need for chiral separations in the mg scale 

to enable biological tests with enantiomerically pure compounds.  

Fig. 7 exemplarily outlines the broad applicability of particular ZWIX-CSPs by 

enantioseparating acidic and zwitterionic solutes of different acidic functionality on the same 

column under the same mobile phase conditions.  
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Figure 7. Conditions: CSP A185 (for CSP structure see Appendix VI, supporting info); MeOH, 50 mM HOAc, 

25 mM NH3; 25°C;flow 1.0 mL/min; UV detection; t0 = 1.51 min 

 

The analytical scale enantioseparations of four tirofiban analogs are shortly commented in the 

main article and described in detail in the supporting information in the following publication 

(M. Bollinger, F. Manzenrieder, R. Kolb, A. Bochen, S. Neubauer, L. Marinelli, V. 

Limongelli, E. Novellino, G. Moessmer, R. Pell, W. Lindner, J. Fanous, A. Hoffman, H. 

Kessler. Journal of medicinal Chemistry, 2012, 55, 871-88; for the full article see Appendix 

VI) 
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Abstract: 

Intervention in integrin-mediated cell adhesion and integrin signaling pathways is an ongoing area of research in 

medicinal chemistry and drug development. One key element in integrin−ligand interaction is the coordination 

of the bivalent cation at the metal ion-dependent adhesion site (MIDAS) by a carboxylic acid function, a 

consistent feature of all integrin ligands. With the exception of the recently discovered hydroxamic acids, all 

bioisosteric attempts to replace the carboxylic acid of integrin ligands failed. We report that phosphinates as well 

as monomethyl phosphonates represent excellent isosters, when introduced into integrin antagonists for the 

platelet integrin αIIbβ3. The novel inhibitors exhibit in vitro and ex vivo activities in the low nanomolar range. 

Steric and charge requirements of the MIDAS region were unraveled, thus paving the way for an in silico 

prediction of ligand activity and in turn the rational design of the next generation of integrin antagonists.  

Received: October 14, 2011; Accepted December 19, 2011 

 

 

 

3.4 Unpublished Results: Zwitterionic CSPs in SFC-Mode for Separation of 

Chiral Acids 

The successful application of cinchona alkaloid-based weak anion exchange CSPs in SFC 

(Appendix II, Appendix III) motivated to investigate a zwitterionic CSP in subcritical fluid 

chromatography.  

Hence, we applied an already established quinine-based ZWIX-CSP (see Fig. 8; note that 

the SO is identical with the one of “CSP 4” in Appendix IV, but was immobilized onto 5µm 

silica gel packed into a 150 x 4 mm i.d. column) and investigated its chromatographic 

performance first in anion-exchange and second in zwitterion exchange operation mode.  

Interestingly, despite its nature as a zwitterionic and thus highly polar SO, it proved to be 

perfectly applicable for SFC operation in anion exchange mode for enantioseparation of chiral 

acids. Higher plate numbers and substantially lower retention times were obtained compared 

to the parent weak anion exchange columns (QN-AX or QD-AX CSP, respectively). 

Consequently, the sulfonic acid moiety of the ZWIX-SO works as an intramolecular 

counterion (IMCI, see 1.x) thereby increasing the total amount of counterions in the mobile 

phase thus leading to decreased retention times according to a stoichiometric displacement 

model. Unfortunately, the benefits of shortened retention times are overshadowed by lower 
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enantioselectivity values obtained on the ZWIX-CSP compared to QN-AX (Fig. 9). However, 

this could be attributed to an inherently lower enantiodiscrimination ability of this particular 

ZWIX-SO, as alpha values could neither be enhanced in HPLC mode (data not shown).  

 

 

 

Figure 8. Applied ZWIX-CSP 4 for SFC study 

 

 

Table 1. Enantioseparation of chiral acids on a ZWIX CSP in SFC modea 

Analyte  ZWIX CSP 4  

 t1[min] k1 α Rs N1[m
-1] EO 

Suprofen 3.01 4.90 1.00 0.0 12100  

Chromane-2-COOH 4.19 7.22 1.12 1.7 36500 n.d. 

Naproxen 1.99 2.90 1.00 0.0 21100  

Fmoc-Abu 4.48 7.78 1.12 1.7 32900 D 

Bz-Phe 4.41 7.65 1.15 2.0 35900 D 

Boc-Tyr 5.36 9.51 1.00 0.0 11100  

Z-Ser 6.61 11.96 1.03 0.5 34400 D 

DNB-Pro 3.52 5.90 1.14 1.9 38900 n.d. 

Fmoc-Leu 3.80 6.45 1.10 1.3 34100 D 

Bz-Leu 2.12 3.16 1.18 2.6 49000 D 

DNB-N-Me-Leu 2.69 2.78 1.04 0.5 31700 D 

Fmoc-Met 6.84 12.41 1.11 1.7 34200 n.d. 
aConditions: 25% modifier (MeOH, 100 mM HOAc, 50 mM NH3); 4.0 mL/min, 40°C, 

150 bar backpressure; detection 254 and 230 nm; t0 = 0.51 min; for analyte structures  

see Appendix II  

 

On the contrary, application of the ZWIX CSP in zwitterion exchange mode for 

enantioseparation of a few aromatic amino acids exhibited exceedingly long retention times 

(data not shown). We assume that the subcritical fluid mobile phase, which inherently 

exhibits lower dielectric constants and thus renders electrostatic interactions stronger, cannot 

properly balance the strong double ionic interaction between the zwitterionic SO and SA. It 
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seems that SFC has reached its limit of application in separation of zwitterionic compounds 

mediated by a double ion pairing process. However, it has to be stated that no dedicated 

modifier optimization was carried out (e.g. application of stronger co- and counterions) in 

order to potentially reduce retention times. 

In conclusion, these initial studies of ZWIX CSPs in SFC mode yielded some promising 

results and encouraged to carry out further investigations in both anion exchange mode for 

separation of chiral acids and cation exchange mode for enantioseparation of chiral bases 

(amines). Especially, the IMCI feature of the zwitterionic selectors seems to be helpful in both 

ion exchange modes, thereby promoting significantly faster elution compared to their parent 

single-ionic WAX-type or SCX-type CSPs.   

 
Figure 9. Retention factors of the first eluted enantiomer and alpha-values of 7 chiral acids on QN-AX- and 

ZWIX-CSP (column dimension 150 x 4 mm i.d., 5 µm particle size). Conditions: 25% modifier (MeOH, 100 

mM HOAc, 50 mM NH3), flow 4.0 mL/min; 40°C, 150 bar backpressure; UV detection 
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4 Concluding Remarks 
 

The present dissertation describes the synthesis and chromatographic evaluation of low 

molecular weight ion exchange-type CSPs. The research carried out within this thesis can be 

categorized into two main areas:  

In the first part, cinchona alkaloid-based WAX-type CSPs (QN-AX and QD-AX CSPs) 

were investigated in terms of (i) their chromatographic performance in SFC and (ii) their 

enantiodiscrimination properties for chiral sulfonic acids (or their sulfonate salts, 

respectively). QN-AX and QD-AX CSPs proved to be fully applicable in SFC which was 

manifested in similar enantioseparation properties for chiral carboxylic acids as compared to 

HPLC. Retention was found to be dominated by an anion-exchange mechanism and 

thermodynamic analysis confirmed an enthalpically controlled chiral recognition mechanism, 

thus resembling HPLC behavior. However, SFC exhibited the unique property of in situ 

formation of methylcarbonic acid in the sc CO2-based methanolic mobile phase. The 

dissociated methylcarbonic acid functions as a counterion and thus enables elution of acidic 

solutes according to a stoichiometric displacement model. This finding opens up new 

possibilities for salt free anion exchange chromatography by application of sc CO2 and 

MeOH, because the methylcarbonic acid disproportionates after pressure release.  

Furthermore, QN-AX and QD-AX CSPs were applied to resolve novel chiral β-

ketosulfonates in both HPLC and SFC. As enantioseparations of sulfonic acids (sulfonates) 

are scarcely reported in the literature, we could establish a novel straightforward method 

yielding high enantioselectivities and column efficiencies.  

In an application study, QN-AX CSP was successfully applied for indirect 

chromatographic absolute configuration assignment of chiral acidic drug compounds of the 

pirinixic acid family. In this context, the merits and limitations of chiral chromatography for 

absolute configuration determination were discussed and exemplified.  

In the second part of the thesis, novel zwitterionic CSPs were synthesized which were 

thus capable of exhibiting three modes of ion exchange, namely weak anion exchange 

(WAX), strong cation exchange (SCX) and, most importantly, zwitterion exchange mode 

(ZWIX). With the aim of carrying out detailed SO-structure – enantioselectivity relationships 

in the zwitterion exchange mode, structurally related zwitterionic CSPs were prepared and 

their enantiodiscrimination properties towards zwitterionic solutes (amino acids, small 

peptides) were chromatographically evaluated. In doing so, cinchona alkaloids quinine or 
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quinidine were derivatized at their C9 position via a carbamate bond for the introduction of 

structurally different sulfonic acid group comprising moieties.  

Briefly, the following trends were observed: (i) an achiral side chain at the SCX site 

exhibited only a narrow application range for amino acids, whereas dipeptides were generally 

well resolved; (ii) elongation of the achiral alkyl side chain at the SCX site had only minor 

influence on the enantioselectivity profile of amphoteric compounds (amino acids, 

dipeptides); (iii) the introduction of a chiral moiety at the SCX side chain generally improved 

enantioselectivity for amino acids, however, in a structure dependent manner. For instance, 

most promising SOs incorporated 2-aminocyclohexanesulfonate or 2-isopropyl-

aminoethanesulfonate moieties; (iv) elution orders of amino acid enantiomers could be 

inverted by switching from a quinine-based CSP to its pseudoenantiomeric quinidine-based 

CSP; (v) the applicability of ZWIX-CSPs is not restricted to amino acids and dipeptides, as 

peptidomimetics, such as tirofiban analogs, could also be baseline resolved.  

Finally, apart from ZWIX-SO-structure optimization studies, also mobile phase 

optimization in terms of bulk solvent composition was carried out. Weakly acidic polar 

organic mobile phases were found to be the most favorable elution mode. Thereby, it was 

found that certain amounts of acetonitrile, as an aprotic co-modifier, in protic methanol 

substantially increased enantioselectivity and resolution of amino acids in a structure-

dependent manner.  
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a b s t r a c t

Chiral �-arylthiocarboxylic acids with different substitution patterns, representing new pirinixic
acid derivatives with dual PPAR�/� agonistic activities, have been separated into enantiomers
on tert-butylcarbamoylquinine and quinidine based chiral anion-exchangers and amylose tris(3,5-
dimethylphenylcarbamate) coated silica on analytical and preparative scale. Absolute configurations
of individual enantiomers were assigned chromatographically via elution orders on the chiral anion-
exchangers and were confirmed by stereoselective syntheses via Ewans auxiliaries that have lead to
enantiomeric products with known absolute configurations. The results of both methods were in full
agreement. Moreover, the receptor stereoselectivity in PPAR� transactivation activities was consis-
tent within the test set of structurally related compounds. Limited correlation (between elution order
and substitution) was observed within the set of �-arylthiocarboxylic acids on the amylose tris(3,5-
PLC
irinixic acid derivatives
-Aryloxyalkanoic acids
-Arylthioalkanoic acids
nantioselective synthesis
eroxisome proliferator activated receptors
PPAR)

dimethylphenylcarbamate) based chiral stationary phase (CSP), in particular the elution order changed
with remote substitution. This clearly demonstrates the risks of chromatographic absolute configura-
tion assignments by prediction from one structural analog to another one, especially with CSPs such as
polysaccharide CSPs that are recognized for their broad applicability due to multiple binding and chiral
recognition modes. It is therefore of utmost importance that such chromatographic absolute configu-
ration predictions by extrapolation to structural analogs are combined with orthogonal methods for

.
verification of the results

. Introduction

Pirinixic acid (Fig. 1) has been proposed as a moderate agonist
f alpha and gamma peroxisome proliferator activated receptors
PPAR). It represents a potential lead structure for the develop-

ent of new chemical entities for treatment of metabolic disorders
uch as dyslipidemia and type 2 diabetes. Alkyl substitution in �-
osition to the carboxylic acid group yields chiral pirinixic acid
erivatives with enhanced PPAR alpha and gamma activities which
an be further optimized by variation of the aryl-substitution pat-

ern [1]. Through �-substitution chiral �-arylthio carboxylic acids
re obtained for which enantioselectivities in terms of PPAR acti-
ation have to be considered.

∗ Corresponding author. Tel.: +43 1 4277 52323; fax: +43 1 4277 9523.
E-mail address: Michael.Laemmerhofer@univie.ac.at (M. Lämmerhofer).

021-9673/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2009.10.048
© 2009 Elsevier B.V. All rights reserved.

Drug discovery of such chiral compounds involves the syn-
thesis of individual enantiomers for biological activity tests and
requires the determination of absolute configurations of the enan-
tiomeric compounds as stereochemical descriptors to pinpoint
their identity [2]. Preparative liquid chromatography is a viable
route for straightforward and rapid access to both enantiomers
with little efforts and minimal time for method development [3].
It provides the target enantiomers in high enantiomeric purities
and yields. The most common methodologies for absolute con-
figuration assignment nowadays [4–6] are NMR [5,7–13], X-ray
diffraction analysis [5,9–11,14–22] and circular dichroism (CD)
spectroscopy [19,23,24] (including VCD [4,17,23,25,26]). Single-
crystal X-ray diffraction analysis is the most preferred direct

method to determine absolute configurations. Yet, it is only
amenable for enantiomeric compounds that provide crystals with
adequate resonant scattering and has also some caveats espe-
cially for compounds which contain only light atoms (as critically
reviewed recently by Flack and Bernardinelli [27]). It requires

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:Michael.Laemmerhofer@univie.ac.at
dx.doi.org/10.1016/j.chroma.2009.10.048
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Chromatographic measurements were carried out on a 1100
ig. 1. Pirinixic acid and chiral �-arylthiocarboxylic acid analogs that have been
nvestigated in the present study.

ritical evaluation of characteristic parameters such as the Flack
arameter which is sometimes not reported yet indicates satisfac-
ory absolute-structure determination, in order to avoid erroneous
esults [27]. By means of CD and VCD absolute configurations can
e determined by comparison of experimental CD or VCD spectra
ith those that have been calculated by quantum chemistry calcu-

ations. Agreement between calculated and experimental spectra
s an indication for a correct absolute configuration assignment.

For sake of simplicity indirect methods such as assignment of
bsolute configurations by chromatographic elution orders have
lso been frequently employed [4,28–32]. It is based on the
nowledge of the absolute configuration of a structurally related
eference compound which follows the same chiral recognition
echanism in the chromatographic enantiomer separation process

n a given chiral stationary phase [4]. It is a simple, straightfor-

ard and cheap methodology which can be employed for a larger

et of structurally related compounds, yet requires some deeper
nderstanding on how the chiral stationary phase recognizes and
istinguishes enantiomers for a given class of test solutes featuring
gr. A 1217 (2010) 1033–1040

more or less structural variability. Unfortunately, chiral recogni-
tion mechanisms on chiral stationary phases may be sensitive to
even minor structural or conditional changes. This becomes clearly
evident, for instance, by reversals of elution orders upon minor
variations of experimental conditions such as changes of modi-
fier type [33,34] or percentage [34,35]. It has also been reported
that elution orders can be reversed upon deposition of polysaccha-
ride selectors onto the silica surface from distinct solvents, i.e. with
slightly altered preparation conditions, probably due to altered
supramolecular structures of the polymeric selectors [36]. Last but
not least, numerous examples can be found in the literature that
showed reversals of elution orders on a given CSP with minute
structural alterations within a homologous compound series, i.e. of
structurally closely related compounds [37,38]. In particular the lat-
ter phenomenon poses some serious risks on the chromatographic
absolute configuration assignment which is based on consistent
elution orders within a series of structural homologs. Therefore,
it exists consensus that verification of the chromatographic abso-
lute configuration assignment must be performed by a second
independent methodology in order to minimize the risk for false
assignments.

Herein we report on a methodology for the chromato-
graphic enantiomer separation of pirinixic acid analogs (Fig. 1)
by enantioselective liquid chromatography as well as the abso-
lute configuration assignment after preparative chromatographic
resolution. Absolute configuration determinations were con-
firmed by independent methods such as chemical correlations
via stereoselective synthesis and consistency in receptor subtype
enantioselectivity. The risk of false assignments is illustrated by
use of two distinct types of chiral stationary phases, low molec-
ular brush-type chiral anion-exchangers (Chiralpak QD-AX and
QN-AX) and polymeric type CSP based on a polysaccharide selec-
tor (Chiralpak AD-H), which differed in their consistencies of chiral
recognition mechanisms within the set of investigated solutes, i.e.
of chiral 2-arylthiocarboxylic acids.

2. Experimental

2.1. Materials

The pirinixic acid analogs 1–3 were synthesized as described
elsewhere [1]. Enantiomers of 4 were synthesized as described
below. The �-aryloxycarboxylic acid reference compounds 5–8
were research samples from former studies. Dichlorprop, 2-
(2,4-dichlorophenoxy)propionic acid 9, was supplied by Aldrich
(Sigma–Aldrich, Vienna, Austria).

For enantioselective HPLC 150 mm × 4 mm I.D. Chiralpak
QD-AX and QN-AX (5 �m diameter particles) as well as a
250 mm × 4 mm I.D. Chiralpak AD-H (5 �m) from Chiral Technolo-
gies Europe (Illkirch, France) were employed as columns. (S)-(−)-
and (R)-(+)-2-bromopropionic acid, caesium carbonate, and 2-
mercaptopyrimidine were from Sigma–Aldrich (Vienna, Austria).
Methanol (gradient grade), n-heptane and 2-propanol (both HPLC
grade) were supplied by Merck (Darmstadt, Germany). Trifluo-
roacetic acid (TFA) was from Fluka. DMF (purum >99%, Fluka,
Vienna, Austria), toluene (>99%, VWR, Vienna) and ethyl acetate
(technical quality) were used as solvents for the synthesis.

2.2. Enantioselective HPLC experiments
Series HPLC system from Agilent Technologies (Waldbronn, Ger-
many) equipped with an autosampler, a binary pump, a degasser
for the mobile phase, and a multiple wavelength detector (MWD).
In some preliminary runs an optical rotation detector OR-990
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Table 1
Chromatographic data.

Compound Chiralpak QD-AXa Chiralpak QN-AXa Chiralpak AD-Hb

k1 ˛ RS e.o. k1 ˛ RS e.o. k1 ˛ RS e.o.

1 2.53 1.33 2.4 (R)-(+) < (S)-(−) 2.66 1.21 1.8 (S)-(−) < (R)-(+) 0.49 1.23 1.8 S < R
2 1.98 1.30 2.3 (R)-(+) < (S)-(−) 2.52 1.20 1.7 (S)-(−) < (R)-(+) 0.47 1.25 1.9 S < R
3 5.04 1.77 6.5 R < S 5.31 1.83 7.2 S < R 2.14 1.68 6.4 R < S
4 8.70c 1.03 0.6 R < S 1.96d 1.06 1.0 S < R 1.25 1.12 1.7 S < R

/min;
, ambi
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a Methanol–glacial acetic acid–ammonium acetate (98:2:0.5; v/v/w); 25 ◦C; 1 mL
b Heptane–2-propanol–TFA (80:20:0.1; v/v/v); flow rate, 1 mL/min; temperature
c Methanol–glacial acetic acid (98:2; v/v); flow rate, 0.25 mL/min; temperature, 2
d Methanol–glacial acetic acid–ammonium acetate (98:2:0.5; v/v/w); 25 ◦C; flow

rom Jasco (Gross-Umstadt, Germany) was coupled in series
ith a Corona charged aerosol detector (CAD) (ESA Analytical,
ylesbury, UK) to monitor the sign of optical rotation for the indi-
idual enantiomers. For analytical separations the sample was
issolved in methanol (Chiralpak QN-AX and QD-AX) and n-
eptane/2-propanol (80:20; v/v) (Chiralpak AD-H), respectively,
t a concentration of about 0.5 mg/mL and an aliquot of 2 �L
as injected. UV detection was performed at 250 nm. The column

emperature was kept constant at 25 ◦C. The data analysis was per-
ormed with the Chemstation chromatographic data software from
gilent Technologies. The chromatographic results are summarized

n Table 1.
Preparative chromatography runs were carried out on a VWR

liteChrom HPLC System equipped with a quaternary gradient
ump, a UV detector, a manual injector from Rheodyne with a
00 �L loop. The data were acquired and processed by EZ-Chrom
oftware. The column was a 150 mm × 4 mm I.D. Chiralpak QD-AX.
eparations were performed at ambient temperature employing an
luent consisting of a mixture of methanol–acetic acid–ammonium
cetate (98:2:0.5; v/v/w) and a flow rate of 1 mL/min. The detec-
ion wavelength was 250 nm. For preparative scale separations
n Chiralpak QD-AX, the sample was dissolved in methanol at
concentration of about 20 mg/mL. Depending on the type of

olute and separation factor, about 5–10 mg sample masses per
un were injected onto the analytical 150 mm × 4 mm I.D. column.
ndividual enantiomer fractions were collected separately and the
ombined fractions were evaporated to dryness. The obtained
esidues were extracted from slightly HCl-acidic saturated brine
olution into ethyl acetate. The combined organic phases were
ried over Na2SO4, filtrated and evaporated to dryness yielding
he final enantiomeric products. Enantiomeric excess values of the
btained enantiomers are summarized in Table 2.

.3. Synthesis of 2-(pyrimidin-2-ylthio)propionic acid (4)
nantiomers
.3.1. Synthesis
First, 0.50 g (4.5 mmol) of 2-mercaptopyrimidine was con-

erted into its caesium salt by addition of 0.5 equiv. of Cs2CO3
methanolic solution, 0.72 g, 2.25 mmol). After stirring for 1 h the
olvent was evaporated and the residue dissolved in 40 mL of

Table 2
Enantiomeric excess (%) and CSP employed for preparative scale
as well as their PPAR� activity [1].

ee (%)

(R)-1 94
(S)-1 93
(R)-2 91
(S)-2 93
(R)-3 99
(S)-3 97
150 mm × 4 mm I.D.
ent; 250 mm × 4 mm I.D.

L/min.

DMF (turbid solution). 1 equiv. (0.40 mL, 4.5 mmol) of (S)- or (R)-
2-bromopropionic acid was added with a Hamilton syringe. The
reaction mixture was stirred at room temperature (r.t.) for 14 h
under N2-atmosphere. The reaction progress was controlled by TLC
(eluent: ethyl acetate–methanol (9/1); Rf = 0.49).

After that DMF was evaporated, the residue suspended in
toluene and again evaporated to remove all of the DMF. The crude
product was extracted with an acidic (pH ∼ 3–4), saturated NaCl-
solution and ethyl acetate. The aqueous phase was washed with
ethyl acetate (3× 20 mL) and the combined organic phases were
dried over MgSO4. After evaporation of the solvent a yellowish or
white powder was furnished.

(R)-2-(pyrimidin-2-ylthio)-propionic acid (from (S)-(+)-
2-bromopropionic acid): yield: 88% of a yellowish powder;
enantiomeric excess (ee), 57%.

(S)-2-(pyrimidin-2-ylthio)-propionic acid (from (R)-(+)-2-bro-
mopropionic acid): yield: 95% of a white powder; ee, 89%.

2.3.2. Characterization
1H NMR and 13C NMR were recorded at room temperature with

a Bruker DRX400 spectrometer. Spectra were recorded in CD3OD
and the solvent signals were used as reference. Raw data were pro-
cessed with SpinWorks Version 2.5.5. software. ESI-mass spectra
were recorded on a PE Sciex API 365 spectrometer. Analytical thin-
layer chromatography (TLC) was performed on Kieselgel 60 F254
plates from Merck (Darmstadt, Germany).

NMR and MS spectra were identical for both enantiomers, as
expected.

1H NMR [CD3OD]: ı = 1.60 (3H, d, J = 7.5 Hz), 4.49 (1H, q,
J = 22.0 Hz), 7.13 (1H, t, J = 10.0 Hz), 8.56 (2H, d, J = 4.9 Hz); MS (ESI,
negative): 182.8 [M−H]−.

3. Results and discussion

3.1. Analytical and preparative HPLC
Chiral pirinixic acid derivatives and analogs, respectively, are
prime candidates to be separated into enantiomers on O-9-(tert-
butylcarbamoyl)quinidine and corresponding quinine-based chiral
stationary phases (Fig. 2) [30,31,39–41]. These acidic compounds
are retained on such CSPs according to a primary anion-exchange

separation of pirinixic acid analogs on Chiralpak QD-AX

PPAR� activity, EC50 (�M) ± SD (rel. activation
compared to control means ± SD)

2.2 ± 0.1 (151 ± 4%)
9.7 ± 0.3 (147 ± 3%)
0.5 ± 0.2 (159 ± 26%)

5.61 ± 0.7 (166 ± 14%)
0.03 ± 0.005 (113 ± 4%)

2.2 ± 0.4 (147 ± 13%)
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Table 3
Enantiomer separation data of reference aryloxycarboxylic acidsa.

Chiralpak QN-AX Chiralpak QD-AX Chiralpak AD-H

Compound R Ar k1 ˛ e.o. k1 ˛ e.o. k1 ˛ e.o.

Mobile phase, methanol–acetic acid–ammonium acetate
(98:2:0.5; v/v/w)

Mobile phase,
heptane–2-propanol (80:20;
v/v) + 0.1% (v/v) TFA

5 CH3 2-Naphthyl 2.78 1.17 S < R 2.73 1.24 R < S 0.71 1.33 S < R
6 CH3 4-Chlorophenyl 1.93 1.08 S < R 1.90 1.18 R < S 0.57 1.50 S < R
7 C2H5 4-Chlorophenyl 1.67 1.13 S < R 1.70 1.19 R < S 0.54 1.25 S < R
8 CH(CH3)2 4-Chlorophenyl 1.52 1.21 S < R 1.44 1.18 R < S 0.44 1.10 R < S
9 (Dichloroprop) CH3 2,4-Dichlorophenyl 2.38 1.21 S < R 2.47 1.42 R < S 0.40 1.88 S < R

Mobile phase, methanol–0.1 M ammonium acetate buffer
(80:20; v/v) (pHa = 6.0)

5 CH3 2-Naphthyl 11.10 1.11 S < R 1.61 1.18 R < S – – –
6 CH 4-Chlorophenyl 7.59 1.08 S < R 1.00 1.15 R < S – – –

1.
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7 C2H5 4-Chlorophenyl 7.09
9 (Dichloroprop) CH3 2,4-Dichlorophenyl 10.94

a Experimental conditions: flow rate, 1 mL/min; temperature, 25 ◦C.

etention process. Hence, the eluent must contain a certain amount
f chiral acids and counter-ions, respectively, that compete for
inding at the ion-exchange site and allow the elution of solutes
y their displacement from these primary interaction sites. A
ethanol-based mobile phase consisting of acetic acid and ammo-

ium acetate providing counter- and co-ions was employed in the
rst instance for separation of the target solutes. The enantiomer
eparation results obtained with these two anion-exchangers are
ummarized in Table 1. It is obvious that arylthiocarboxylic acids
ith electron-withdrawing chlorine substitution (compounds 1,

, and 3) are much better separated than the analog which lacks
uch an electron-withdrawing group (4). These trends give rise
o the conclusion that the aromatic moiety of the solutes is
nvolved in �–�-interactions with the electron-rich quinoline moi-
ty of cinchona alkaloid derived selectors. This points towards
chiral recognition mechanism resembling that of aryloxy car-

oxylic acids of the type Ar–X–CH(R1)–COOH with X being –O– for
hich the enantioselectivity factor ˛ increased with the electron-
ithdrawing effect of the aromatic substituents (Table 3) [42].

ig. 3 depicts chromatograms of separations obtained for 1 and
on quinidine and quinine carbamate-based anion-exchangers
ith charged aerosol detector (CAD) along with optical rotation
etector (ORD) traces (corrected for delay times between detec-
ors). It is worth noting that elution orders are reversed when the
uinidine based CSP is exchanged for its quinine-based counter-

art (Fig. 3). This “pseudo-enantiomeric” behaviour of quinidine-
nd quinine-derived CSPs which possess opposite configurations
t the stereogenic centers of C8 and C9 (Fig. 1), but equal config-
rations in positions 1, 3, and 4 is also in agreement with what is
nown from corresponding �-aryloxy carboxylic acid type herbi-

ig. 2. Quinine and quinidine carbamate-based chiral stationary phases. Chiralpak
N-AX: (8S,9R), quinine derived; Chiralpak QD-AX: (8R,9S), quinidine derived.
09 S < R n.d. – – – – –
19 S < R 7.21 1.29 R < S – – –

cides. Fig. 4 shows the enantiomer separation of compound 3 on
the quinine carbamate CSP.

Chromatographic separations of compounds 1, 2, and 3 were
finally performed preparatively in 20–100 mg scale employing the
quinidine carbamate-based CSP to produce single enantiomers for
in vitro activity tests on PPAR� and PPAR� receptor subtypes [1].
Table 2 summarizes the results in terms of enantiomeric excess
that was measured for each enantiomer along with information
on employed column type. Throughout single enantiomers with a
high enantiomeric excess could be obtained (typically between 90%
and 99% ee). Such ee-values are certainly good enough for support-
ing unambiguous in vitro tests to elucidate the receptor subtype
stereoselectivities (Table 2).

3.2. Absolute configuration assignment

3.2.1. By correlation with aryloxycarboxylic acids as reference
system

Prior information on chromatographic enantiomer separation
data and on preferred binding affinities of quinidine and quinine
carbamate selectors existed for a wider set of aryloxycarboxylic
acids of the type Ar–X–CH(R1)–COOH with X being –O– as men-
tioned above [42]. A selection of such data is shown in Table 3.
The quinidine CSP displays slightly better enantioselectivities than
the quinine CSP which showed reversed elution order. Most
importantly, R-enantiomers exhibit throughout higher affinities to
quinine carbamate selectors, while S-enantiomers show consis-
tently higher binding strength to quinidine carbamate selectors.

The thio ether group is isosteric to the ether group. Thus the
chiral recognition mechanism is supposed to be identical for these
two sets of chiral acids Ar–X–CH(R1)–COOH with X being –O– and
–S–. Enantiomers of 2-arylthiocarboxylic acids eluting first from
the quinidine carbamate CSP should therefore have R-configuration
and the second eluted enantiomers S-configuration.

3.2.2. Via chemical correlation
No single enantiomer standards with known absolute config-
uration were available from the thioether subset to validate that
the substitution of the oxygen by a sulphur as well as replace-
ment of the phenyl ring by a pyrimidine ring does not perturb
the molecular recognition mechanism of cinchonan carbamate
selectors. Thus, we considered to synthesize single enantiomers of
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Fig. 3. HPLC-CAD chromatograms with overlaid ORD traces of compounds 1 (a
and c) and 2 (b and d) on O-9-(tert-butylcarbamoyl) quinidine (a and b) and qui-
nine (c and d) based CSPs. Experimental conditions: eluent, methanol–glacial acetic
acid–ammonium acetate (98:2:0.5; v/v/w); flow rate, 1 mL/min; temperature, 25 ◦C.
(Note, the extra peaks in chromatogram c represent detector noise/spikes! The ORD
traces were shifted for the delay time between the detectors to align the correspond-
ing chromatograms!).

Fig. 5. Reaction scheme for the preparation of 2-(pyrimidin-2-ylthio)propionic acid (4)
(S)-bromopropionic acid.
Fig. 4. HPLC enantiomer separations of 3 on O-9-(tert-butylcarbamoyl)
quinine-based CSP. Experimental conditions: Eluent, methanol–glacial acetic
acid–ammonium acetate (98:2:0.5; v/v/w); flow rate, 1 mL/min; temperature,
25 ◦C.

2-(2-pyrimidinylthio)propionic acid. They were readily accessible
from (R)- and (S)-2-bromopropionic acid by nucleophilic substi-
tution (SN2) with pyrimidine-2-thiol (Fig. 5). Due to inversion of
the stereoconfiguration in the course of SN2, the S-enantiomer of
the 2-(2-pyrimidinylthio)propionic acid should be obtained from
(R)-bromopropionic acid and the R-enantiomer of the product
from (S)-bromopropionic acid. It turned out that high enantiomeric
excess values of the products are solely afforded if the reaction
is carried out with caesium thiolate as nucleophile while nearly
racemic products were obtained with thiol as reagent [43]. As can
be seen from Fig. 6, relatively high ee values of 57% and 89% for
R- and S-products, respectively, resulted when caesium thiolate
was employed for the nucleophilic substitution reaction (vs. ∼10%

ee with thiol). Moreover, on the quinine carbamate CSP the S-
enantiomer eluted prior to the R-enantiomer (Fig. 6a and b) while
the elution order is reversed on the quinidine carbamate CSP (not
shown). These results confirm the above chromatographic absolute

enantiomers. (a) S-product from (R)-bromopropionic acid, and (b) R-product from
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Fig. 6. Analytical quality control of the synthesized enantiomers of 2-(pyrimidin-2-
ylthio)propionic acid (4) on a O-9-(tert-butylcarbamoyl) quinine-based CSP (a and b)
a
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Fig. 8. Enantiomeric purity determination of (R)-1 (a) and (S)-1 (b) obtained
from enantioselective synthesis via Evan’s auxiliary. Chiral stationary phase, Chi-
nd an amylose tris(3,5-dimethylphenylcarbamate) type CSP (c and d). Conditions:
a and b) mobile phase, methanol-acetic acid (98:2; v/v); flow rate, 0.25 mL/min;
mbient temperature; (c and d) mobile phase, heptane–2-propanol–TFA (80:20:0.1;
/v/v); flow rate, 1.0 mL/min; ambient temperature; UV detection at 254 nm.

onfiguration assignment on basis of elution orders of �-aryloxy
lkanoic acids as reference compounds.

.2.3. Via stereoselective synthesis employing Evan’s auxiliary
The above chromatographic absolute configuration assignment

epresents an indirect method that makes use of reference com-
ound(s) with known configuration and assumes consistencies
f chiral recognition mechanisms between reference and sample
ompounds. Since this is not necessarily always the case, veri-

cation by an independent method is of utmost importance. In
he present study, an enantioselective synthesis method has been
evised for preparation of �-substituted carboxylic acid enan-
iomers employing the established method of Evan’s auxiliary [44]
Fig. 7). It starts from the R- or S-enantiomer of benzyloxazo-

ig. 7. Reaction scheme for stereoselective synthesis of (R)-1 via Evan’s auxiliary (R)-
enzyloxazolidinone). Reagents and conditions: (a) potassium-tert-butoxide, pentanoyl
-ethyl isopropyl amine, THF, reflux, 3.5 d; (d) LiOH, THF, H2O, 0 ◦C → r.t., 3 h. Experimen
ralpak QD-AX; column dimension, 150 mm × 4 mm I.D.; Eluent, methanol–glacial
acetic acid–ammonium acetate (98:2:0.5; v/v/w); flow rate, 1 mL/min; temperature,
25 ◦C; sample, (R)-1 (2.56 mg/0.5 mL in methanol); sample, (S)-1 (2.86 mg/0.5 mL in
methanol); injection volume, 1 �L; detection, UV 254 nm.

lidinone which was first converted into its N-alkanoyl derivative.
The following �-substitution reaction involves an intermediary
metal-chelated (Z)-enolate in which the C4-substitutent of the oxa-
zolidinone ring dictates the diastereoface selection of nucleophilic
reagent [44]. By starting from (R)-4-benzyloxazolidinone primarily
R-configurated intermediates and end products, respectively, are
expected to be obtained (Fig. 7). In fact, (R)-1 could be obtained from
(R)-benzyloxazolidinone with an ee of about 80% and the resul-
tant enantiomeric product showed the expected elution order on
the quinidine carbamate CSP as predicted by above described con-
benzyloxazolidinone (corresponding (S)-1 can be obtained by starting with (S)-
chloride, abs. THF, 0 ◦C, 1 h (b) LDA, abs. THF, −78 ◦C, 3 h; (c) 2,3-dimethylaniline,
tal details have been described elsewhere [1].

siderations (Fig. 8a). The corresponding (S)-4-benzyloxazolidinone
starting material gives rise to formation of the S-enantiomers of
the target �-arylthio carboxylic acids as demonstrated by the chro-
matogram for (S)-1 in Fig. 8b (ee = 87%). Similar results could be
achieved for 2 (e.g. 90% ee for S-enantiomer) with the elution order
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eing fully in agreement with predictions of the indirect chromato-
raphic assignment.

.3. Changes in molecular recognition mechanisms as risks for
alse assignments exemplified by polysaccharide CSP

Enantioselective liquid chromatography is probably the most
mportant method for absolute configuration assignment of enan-
iomers via their elution order if it has been previously proven for
he same pair of enantiomers under the same conditions. Any CSP
an be safely applied for this purpose provided that the enantiose-
ectivity of the CSP is good enough and the elution order has been
alidated before.

A frequent important task in drug discovery is to determine the
bsolute configurations of a set of structural congeners synthesized
or sake of lead optimization. X-ray and CD spectroscopy may be
oo time consuming to apply them for all individual members of a
est set. Hence, some sort of correlations such as chromatographic
ssignments may be put in place instead for sake of simplicity.
owever, one must bear in mind that the prediction of absolute
onfigurations of structural analogs based on elution orders that
ave been established with a reference system of the same lead
tructure, but distinct substitution patterns (like herein) is by far
ore critical. Considerable precaution is of utmost importance as

ariations in molecular recognition within a congeneric set of com-
ounds may easily occur upon different substitutions of a lead
tructure. In principle, this holds for all type of CSPs, yet polysac-
haride CSPs may be particularly prone to such perturbations and
lterations in chiral recognition mechanisms and elution orders in
ependence of substitution patterns. This may be attributed to the
ultiple binding modes that may exist for such polymeric selectors

as opposed to more well-defined receptor-like brush-type selec-
ors). It is also obvious that the risk for perturbations in the chiral
ecognition mechanism within a congeneric series increases with
ecreasing similarity of the substitutions around the stereogenic
enter. The problem will be illustrated hereafter for the current
est set with a polysaccharide CSP.

The target test compounds 1–4 were also injected on an amylose
ris(3,5-dimethylphenylcarbamate) coated polysaccharide-type
SP. This CSP exhibited good enantioselectivities for the target
olutes as pointed out above (Table 1). However, it is striking
hat the elution orders within the test set of �-arylthiocarboxylic
cids are less consistent than with quinidine and quinine car-
amate CSPs. Most notably, the elution order was reversed for
-(pyrimidin-2-ylthio)propionic acid derivative 3 as compared to
he other �-arylthiocarboxylic acids. A similar observation is found
or the �-aryloxycarboxylic acid 8 (see Table 3). Such reversals of
lution order with minor structural changes have been frequently
eported in the literature for polysaccharide type CSPs (e.g. Ref.
35]). They constitute a serious problem limiting polysaccharide
SPs for the purpose of chromatographic absolute configuration
redictions of structural analogs. For example, if the synthesized
-(pyrimidin-2-ylthio)propionic acid enantiomers were taken as
eference compounds to chromatographically assign configura-
ions of pirinixic acid analogs 1–3, one would have run into
roblems with false absolute configuration assignments for 3.

Polysaccharide CSPs are widely applicable for enantiomer sep-
rations of various types of solutes. However, the molecular
ecognition mechanisms with which they distinguish between
nantiomers remains mostly concealed because of the structural
omplexity of polymeric selectors. Understanding of interac-

ion mechanisms, though, would be helpful or even necessary
or unequivocal indirect chromatographic absolute configuration
ssignments. Current knowledge states that hydrogen bonding,
ipole–dipole interaction as well as �–�-interactions are driving
orces for inclusion complexation into the grooves formed by the
gr. A 1217 (2010) 1033–1040 1039

pendant aryl carbamate residues of the polysaccharide selectors
[35,45]. Steric factors may play a major role which enantiomer is the
stronger bound one. Such mechanisms are sensitive to structure-
induced binding mode alterations, even within a congeneric series.
This has been demonstrated, for example, in a recent paper by Ma
et al. in which they described the reversal of the elution order for
two structural analogs that differed solely in �-acidity/basicity of
an aromatic group [35]. Even minor variations of steric factors,
�-electron density and substitution patterns may easily lead to
perturbation of molecular recognition mechanisms within a series
of structural analogs on polysaccharide CSPs leading to altered
elution orders. While this may provide the basis for the broad
applicability, it makes polysaccharide CSPs virtually useless for
chromatographic absolute configuration assignments of structural
analogs for which elution orders have not been validated before.
In the given case, the reversal of elution order for compound 3 as
compared to the other arylthiocarboxylic acids could be triggered
by the additional aromatic substitutions on the arylthio ring system
(“remote effects”), while the change in elution order of compound 8
in comparison to the remaining set of aryloxycarboxylic acids may
have been induced by the steric bulkiness of the R-substituent (see
Table 3).

In contrast, on quinine and quinidine carbamate CSPs elution
orders were found to be more consistent [39–41,46,47], and this
seems to be valid for aryloxy carboxylic acids [42] and arylthiocar-
boxylic acids likewise. The primary driving force for interaction of
acidic solutes with the selectors is an ionic hydrogen bond at the
fixed anion-exchange site. Thus, all test analytes are equally ori-
ented towards the quinuclidine ring. They are similarly aligned in
the active binding and chiral distinction site of the selector which
is spanned by moieties arranged around the C9-stereogenic center
[18,46]. Short-range secondary interactions that only become acti-
vated if steric dispositions are spatially favorable are then deciding
on the preferentially established chiral recognition mechanism and
the elution order. For the present aryloxy- and arylthio carboxylic
acids �–�-interaction of the �-aryl group with quinoline is tenta-
tively driving enantioselectivity and elution order on the cinchona
alkaloid CSPs. The degree of enantioselectivity usually increases
significantly with �-acidity, yet also �-basic solutes are sepa-
rated. The elution order does not change with �-acidity/basicity
(see Table 3). Thus, the chiral recognition mechanism is more
consistent facilitating the application for absolute configuration
assignment. Substitutions farther away from the stereogenic center
such as structural decorations at the �-arylthio moiety have usu-
ally less effect on the principal chiral recognition mechanism and
the elution order, as they are exposed to unoccupied open space
of the chiral selector’s binding site (see X-ray crystal structures in
Refs. [18,46,48]). Scrambling of the enantiorecognition mechanism
might be envisaged by acidic groups in the alkyl side chain of the
solutes which are, however, not present in the current solute set.
Being aware of mechanistic fundamentals on such low molecular
anion-exchangers, its use for predictions of absolute configurations
of structural analogs is feasible with high confidence, unlike with
polymeric polysaccharide CSPs.

4. Conclusion

Enantiomers of pirinixic acid analogs were obtained by prepar-
ative chromatography and enantioselective synthesis. Absolute
configuration assignments were based, in the first instance, on
chromatographic elution orders on cinchona alkaloid derived CSPs

taking a set of �-aryloxycarboxylic acids with known absolute
configurations as reference system. Since this methodology bears
some considerable risks for false assignments, several attempts for
verification of the absolute configuration predictions were under-
taken. First, 2-(pyrimidin-2-ylthio)propionic acid enantiomers
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ith established configurations were synthesized stereoselec-
ively. Second, enantiomers of two pirinixic acid derivatives were
ynthesized by enantioselective synthesis via Evan’s auxiliary.
oth approaches confirmed the assigned configurations. Moreover,
eceptor stereoselectivity in terms of preferential activity was con-
istent within the tested series with significantly lower EC50 values
t the PPAR� receptor for the R-enantiomers (more active) of 1, 2,
nd 3 being a further indication for a correct assignment [1].

In general, it turned out that the chiral recognition mecha-
ism is more consistent within the test set of �-arylthiocarboxylic
cids on the cinchonan carbamate-based CSPs while limited cor-
elation (between elution order and substitution) was observed
ith the polysaccharide type CSP. This finding suggests that chro-
atographic absolute configuration assignments based on elution

rders which have been validated for a pair of enantiomers with
nown configuration is always safely possible for this pair of
nantiomers, while predictions for structural analogs assuming an
dentical chiral recognition mechanism bears a considerable risk
or false assignments if the molecular recognition mechanism is
nknown. Confirmations by an orthogonal methodology are there-
ore absolutely required. Yet, configuration predictions of structural
nalogs based on elution orders on polysaccharide CSPs are strongly
iscouraged because of the high susceptibility to alterations of
he chiral recognition mechanisms even with minute structural
hanges. CD and X-ray diffraction methodologies appear to be bet-
er choices if such technologies are readily available, but are more
aborious and time consuming. They are therefore usually applied
or one or two members of a congeneric series. For the rest of the

olecules indirect assignments are still frequently employed.
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a  b  s  t  r  a  c  t

Anion-exchange-type  chiral  stationary  phases  (CSPs)  derived  from  quinine  or quinidine  were  applied  in
subcritical fluid  chromatography  (SFC)  for  the  direct  separation  of  chiral  acidic  compounds.  Employing
subcritical  (sc)  mobile  phase  modes  (CO2 +  methanol  as co-solvent  and  acids  and  bases as additives)  first
the  influence  of  type  and  amount  of  acidic  and  basic  additives  on separation  performance  was  investi-
gated.  Secondly,  water  was tested  as a neutral  additive  and  the  influence  of  temperature  variation  on
enantioselectivity  was  studied.  Thirdly,  we  could  chromatographically  confirm  that  the  often  verbalized
“inherent  acidity”  of  sc  CO2 +  methanol  is manifested  by  the  in situ formation  of methylcarbonic  acids
in  the  sc  mobile  phase  and  thus  functioning  as  acidic  additive.  Accordingly  the dissociated  methylcar-
bonic  acid,  acting  as a counterion,  enables  an  anion  exchange  mechanism  between  the  cationic  CSP and
the corresponding  acidic  analyte.  In the  absence  of  a dissociable  acid  in  the  mobile  phase  such  an  ion
exchange  mode  would  not  work  following  a stoichiometric  displacement  model.  This  finding  is further
corroborated  by the  use  of  ammonia  in  methanol  as  co-solvent  thus  generating  in situ  the  ammonium
salt  of methylcarbonic  acid.  In summary,  we  report  on  ion-exchange  mediated  chromatographic  sepa-

rations  in  SFC  modes  by merely  using  (i)  sc  CO2 and  MeOH,  (ii) sc CO2 and  ammonia  in  MeOH,  and  (iii)
sc  CO2 and  MeOH  plus  acids  and  bases  as  additives.  Comparisons  to HPLC  mode  have  been  undertaken
to  evaluate  merits  and  limitations.  This  mode  exhibits  high  potential  for preparative  chromatography  of
chiral acids  combining  pronounced  enantioselectivity  with  high  column  loadability  and  avoiding  possi-
bly  troublesome  mobile  phase  additives,  as  the  in  situ  formed  methylcarbonic  acid  disintegrates  to  CO2

and  methanol  upon  pressure  release.
. Introduction

The first use of a CO2-based supercritical fluid as a mobile phase
n chromatography dates back to 1962 [1].  During the follow-
ng decades, instrumental development of CO2-type supercritical
uid chromatography (SFC) focused on capillary SFC as a form of
xtended gas chromatography (GC), thereby limiting its applica-
ion range compared to high performance liquid chromatography
HPLC). Therefore, the breakthrough of SFC from a niche chro-

atographic technique began with the use of packed columns as
tationary phases in combination with the development of more
roadly applicable SFC instruments in the 1990s [2]. Nowadays,
FC is established as a flourishing separation technique on both
Please cite this article in press as: R. Pell, W. Lindner, J. Chromatogr. A (201

nalytical and preparative scale, especially in the pharmaceutical
ndustry [3,4].
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Carbon dioxide became the fluid of choice in SFC mainly because
of its moderate critical pressure and temperature (31 ◦C and
74 bars), its low toxicity and low detector response. However, the
limited polarity of supercritical CO2 necessitates certain amounts
of polar (mostly protic) organic solvents as modifiers or co-solvents
to enhance the overall elution strength, thereby increasing the crit-
ical conditions and thus transforming the supercritical fluid into a
subcritical (sc) fluid. In fact, most of the SFC separations nowadays
are carried out in the subcritical range (but phase separation was
not observed chromatographically) [5].  Often, the addition of an
acidic or basic compound to the dominantly used protic co-solvent
facilitates efficient elution of ionizable compounds, thus occasion-
ally enhancing also (enantio)selectivity and improving peak shape
[6,7]. Especially basic additives reduce peak tailing in chiral and
achiral SFC due to their masking effects of residual silanol groups,
thus suppressing interactions with basic compounds [8,9].

For enantiomer separations under SFC conditions a plethora
2), http://dx.doi.org/10.1016/j.chroma.2012.05.023

of chiral stationary phases (CSPs) has been used [10–12],  in
particular polysaccharide-type CSPs [13], but also glycopeptide
antibiotic-based CSPs [14], cyclodextrin-based CSPs [15] or Pirkle-
type CSPs [16]. Until now, SFC-enantioseparations of highly polar
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Fig. 1. Structures of weak anion exc

ionizable) compounds, such as chiral acids, were carried out on
ynthetic polymeric chiral phases [17,18],  on derivatized amylose
nd cellulose-based CSPs [19] and on macrocyclic glycopeptide-
ype stationary phases [20].

Hence, this work presents the application of weak anion
xchange (WAX)-type CSPs under various SFC conditions for the
nantioseparation of chiral acidic compounds. The chiral selectors
SOs), which are immobilized onto porous silica gel, are tert-
utyl-carbamoyl-derivatives of quinine and quinidine, respectively
QN-AX and QD-AX, Fig. 1). We  show that an anion-exchange
AX) process as primary interaction force is maintained under SFC
onditions. The influence of different types and amounts of addi-
ives (acids, bases and water, each in MeOH as a co-solvent) and
f temperature on chromatographic performance is described. In
ddition, a detailed study on the so-called “inherent acidity” of the
c CO2–methanol mobile phases is undertaken.

. Experimental

.1. General information and materials

The preparation of QN-AX- and QD-AX-CSPs was reported
reviously [21]. The columns were made in house but are iden-
ical in terms of selector structure and silica gel endcapping
ith the commercially available columns CHIRALPAK®-QN-AX and
HIRALPAK®-QD-AX from Chiral Technologies (Illkirch, France).
he SO loading of both columns was around 390 �mol/g, unless
therwise stated. Column dimensions were 150 mm  × 4 mm I.D.
he silica gel used had a particle size of 5 �m,  a pore size of 120 Å,

 surface area of 300 m2/g and was obtained from Daiso Chem-
cals (Osaka, Japan). Methanol (MeOH) was purchased in HPLC
rade quality from VWR  (Vienna, Austria). Water was  double dis-
illed in house. Liquid carbon dioxide was purchased from Air
iquide Austria (Schwechat, Austria). Modifier additives ammo-
ium acetate (NH4OAc), ammonium formiate (NH4FA), acetic acid
HOAc), formic acid (FA), diethylamine (DEA) and NH3 (7 N solu-
ion in MeOH) were purchased in analytical grade quality from
igma–Aldrich. The chiral solutes were either commercially avail-
ble or kind gifts of research partners.

.2. Instrumentation and chromatography

Supercritical fluid chromatography studies were performed on
 Thar Discovery system from Thar Technologies Inc., equipped
ith a combined CO2 and modifier pump, a combined column oven

nd column selector valve for 6 columns, an automated back pres-
ure regulator, a water bath and a Gilson UV variable wavelength
etector. Instrument control and data acquisition were carried out
ith Thar SuperChrome software and Thar ChromScope software,

espectively. Elution was performed in isocratic mode with 25%
Please cite this article in press as: R. Pell, W.  Lindner, J. Chromatogr. A (201

o-solvent (modifier) content at a flow rate of 4.0 mL/min. Unless
therwise stated, column temperature was 40 ◦C and the back-
ressure was adjusted to 150 bars. UV detection was used in a
ange from 220 to 280 nm.  The analytes were dissolved in MeOH
ers QN-AX (left) and QD-AX (right).

in concentrations between 3 and 5 mg/mL. The injection volume
was between 5 and 20 �L. The elution order of selected analytes
was determined by injecting single enantiomers of known con-
figuration. Column equilibration times were at least 20 min and
each run was  carried out twice. HPLC measurements were car-
ried out on an 1100 Series HPLC system from Agilent Technologies
(Waldbronn, Germany) consisting of a solvent degasser, a qua-
ternary pump, an autosampler, a column thermostat and a diode
array UV–vis detector. Data acquisition and instrument control
were accomplished with ChemStation software from Agilent Tech-
nologies. Elution was carried out at a flow rate of 1.0 mL/min and
at a temperature of 40 ◦C. The HPLC mobile phase consisted of
MeOH with acidic and basic additives in a 2:1 ratio. The solutes
were applied as methanolic solutions of 1.0–1.5 mg/mL. Injection
volumes were in the range of 5–10 �L. The void volume was deter-
mined by injecting a solution of acetone in MeOH (for both HPLC
and SFC measurements).

3. Results and discussion

3.1. General aspects

Experimental conditions were chosen to facilitate high enan-
tioresolution values with reasonably fast solute elution times.
Therefore, the mobile phase composition throughout the studies
consisted of 25% methanol as co-solvent to ensure high eluotropic
strength for the elution of the very polar (ionized) analytes. The
temperature was set to 40 ◦C (unless otherwise stated) and a
backpressure of 150 bars was used. Applying these parameters,
the mobile phase is no longer a supercritical fluid but is consid-
ered as subcritical (sc). However, numerous studies demonstrated
that there are no discontinuities in chromatographic properties
between the subcritical and supercritical range, which was  also
confirmed within this work. QN-AX CSP and QD-AX CSP exhibit
remarkable separation performance towards chiral acidic com-
pounds in HPLC using buffered polar organic (methanolic) or
buffered reversed phase conditions [22–26].  The chiral recognition
mechanism is driven by a non-directed or directed ion-exchange
process between the protonated quinuclidine-tertiary amine (the
positively charged ionic interaction site of the SO) and the disso-
ciated (anionic) analyte (selectand, SA) depending on the overall
interaction model. Ion-pair formation is supported by additional
SO-SA interactions such as hydrogen bonding, �–� stacking,
van der Waals and steric interactions, thus enabling chiral dis-
crimination [21,27–30].  Consequently, analyte retention is mainly
controlled by the concentration of the salt- and acidic additives
without compromising enantioselectivity following the stoichio-
metric displacement model. Both retention and enantioselectivity
can be adjusted by the mobile phase pH, the nature and con-
2), http://dx.doi.org/10.1016/j.chroma.2012.05.023

tent of the organic additives and the temperature. Based on these
investigations in HPLC mode, the impact of the aforementioned
parameters on the chromatographic behavior was now scrutinized
for SFC conditions.

dx.doi.org/10.1016/j.chroma.2012.05.023
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Table  1
SFC enantiomer separation of chiral acidic analytes on QN-AX- and QD-AX CSP.a

Racemic solutes QN-AX CSP QD-AX CSP

EO t1 [min]b
 ̨ Rs EO t1 [min]b

 ̨ Rs

1, Suprofen n.d. 3.80 1.12 1.8 n.d. 4.08 1.11 1.7
2,  Chromane-2-carb. acid n.d. 3.15 1.13 1.9 2.85 1.00 0.0
3,  Flurbiprofen n.d. 2.16 1.05 0.7 n.d. 2.40 1.06 0.8
4,  Ibuprofen 1.08 1.00 0.0 1.16 1.00 0.0
5,  Naproxen 2.18 1.00 0.0 R 2.45 1.08 1.2
6,  Carprofen n.d 8.05 1.13 2.0 n.d. 9.70 1.13 2.2
7,  Dichlorprop n.d. 2.98 1.19 2.8 n.d. 3.10 1.36 4.1
8,  Tropic acid n.d. 2.65 1.03 0.5 n.d. 2.75 1.06 0.8
9,  2-Phenylbutyric acid 1.15 1.00 0.0 1.22 1.00 0.0
10,  Fmoc-Abu n.d. 4.84 1.48 5.5 n.d. 4.79 1.46 4.8
11,  Bz-Phe D 4.75 1.47 5.1 L 4.44 1.58 5.5
12,  Ac-Phe D 2.84 1.31 3.6 L 2.60 1.37 4.4
13,  Cbz-Phe D 4.48 1.13 1.8 L 4.59 1.18 2.5
14,  Cbz-beta-Phe n.d. 3.05 1.13 1.9 n.d. 3.17 1.23 3.1
15,  Boc-Phe D 2.33 1.10 1.7 L 2.37 1.16 2.3
16,  Ac-Trp D 8.86 1.52 5.3 L 8.40 1.50 5.6
17,  Boc-Tyr D 5.08 1.13 1.7 L 5.44 1.19 2.7
18,  Cbz-Ser D 4.28 1.16 2.1 L 4.27 1.27 3.6
19,  Cbz-Arg D 5.41 1.13 1.5 L 4.65 1.13 1.4
20,  DNB-Pro 3.85 1.00 0.0 4.36 1.00 0.0
21,  Fmoc-Pro 3.70 1.00 0.0 L 3.70 1.10 1.6
22,  Fmoc-Aze 4.28 1.00 0.0 L 4.20 1.08 1.3
23,  Fmoc-Leu D 3.95 1.56 5.7 L 4.13 1.52 5.3
24,  Bz-Leu D 2.38 1.97 7.6 L 2.25 1.95 7.3
25,  DNB-Leu D 3.97 12.51 14.4 L 4.43 9.30 10.5
26,  DNB-N-Methyl-Leu n.d. 3.39 1.08 1.4 n.d. 4.34 1.07 1.3
27,  Fmoc-Ile D 4.28 1.61 6.3 L 4.30 1.63 6.0
28,  Fmoc-Asn D 7.98 1.17 2.4 L 7.69 1.23 3.2
29,  Fmoc-Gln D 8.80 1.24 3.2 L 8.24 1.28 3.8
30,  Fmoc-Met n.d. 7.81 1.40 4.9 n.d. 7.32 1.48 5.2
31,  Ac-Tyr D 6.10 1.36 3.7 L 4.88 1.37 4.0

a Conditions: column dimensions 150 mm × 4 mm I.D.; 25% modifier (MeOH, 200 mM HOAc, 100 mM NH3); 40 ◦C, 150 bar, flow rate 4.0 mL/min; EO, elution order
(configuration of the first eluted enantiomer); n.d., not determined.
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b t1 [min], retention time of first eluted peak; void times on both columns: 0.49 m

.2. General performance and molecular recognition of QN-AX
nd QD-AX CSPs in SFC mode

Retention of chiral acids on QN-AX and QD-AX CSPs is pri-
arily driven by long-range electrostatic interactions. Thus, the

on exchange process is strongly dependent on the ionization
tate of SO and SAs and on the ionic strength (equal to buffer
alt content) in the mobile phase. The mobile phase was opti-
ized concerning the amounts of acidic and basic additives in the
ethanolic modifier: The applied acid to base ratios of 20:1 to 2:1

190 mM HOAc/10 mM NH4OAc to 10 mM HOAc/10 mM NH4OAc)
evealed that with increasing amounts of acidic additives (with-
ut increasing the total salt concentration) retention decreased
nly marginally, whereas selectivity remained unaltered (data not
hown). Thus, an acid to base ratio of 2:1 (e.g. 100 mM NH4OAc
nd 100 mM HOAc in MeOH) was used to investigate the separa-
ion performance of QN-AX and QD-AX CSPs for chiral acidic test
olutes such as propionic acid derivatives and N-protected amino
cids (see Fig. 2).

Table 1 summarizes the results obtained on both QN-AX and
D-AX CSPs. In general, enantioselectivities in SFC mode equal

hose obtained in HPLC-polar organic mode using MeOH with
cid and salt additives. For the sake of clarity, the test solutes
ere also measured by HPLC using a mobile phase of the same

ype as the modifier in SFC measurements. Differences in enan-
ioselectivity values were negligible while plate numbers (and
Please cite this article in press as: R. Pell, W. Lindner, J. Chromatogr. A (201

hus resolutions) slightly exceeded the values observed in HPLC
data not shown). Additionally, measuring a Van Deemter curve
evealed that the applied SFC flow rate of 4.0 mL/min exceeds
he Van Deemter minimum, however, it is common practice
to accept this for the sake of shorter elution times (data not
shown).

Although QN-AX SO and QD-AX SO are diastereomers to each
other (2 out of the five stereogenic centers are of opposite configu-
ration), they possess “pseudo-enantiomeric” attributes. This relies
on the fact that enantiorecognition of the solutes is mainly con-
trolled by the configuration of the C8 and C9 stereocenters of the
binding pocket of this chiral selector family (see Fig. 1) [21]. The
“pseudo-enantiomeric” behavior is chromatographically reflected
in a switch of elution orders of the enantiomers on a quinine- and
quinidine-based CSP. A change of elution orders for all tested com-
pounds was  also observed in SFC mode between the QN-AX and
QD-AX columns (Table 1 and Fig. 3) which is in full agreement with
HPLC data. A unique feature in SFC is the ability of the QD-AX CSP to
baseline resolve N-protected, cyclic amino acids such as Fmoc-Pro,
21 or Fmoc-Aze, 22.  These types of amino acids could only be par-
tially separated on QN- or QD-AX CSPs in HPLC mode [31] whereas
the majority of their �-substituted derivatives can be resolved. Fur-
thermore, both columns show “complementary enantioselectivity”
regarding some compounds like chromane-2-carboxylic acid, 2. To
conclude, the observed selectivities and separation characteristics
are to a large extent comparable to those in HPLC, which suggests
that molecular interaction and thus chiral recognition is of the same
mechanism as in HPLC. Using QN-AX and QD-AX CSPs in SFC mode
can therefore be regarded as an useful alternative to HPLC, addi-
tionally taking advantage of SFC conditions leading, e.g. to shorter
2), http://dx.doi.org/10.1016/j.chroma.2012.05.023

column equilibration times compared to HPLC, etc. However, since
the separations are based on ion exchange mechanisms the SFC
modus cannot significantly speed up such type processes. This has
to be accepted.

dx.doi.org/10.1016/j.chroma.2012.05.023
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Fig. 2. Structural formulas of the chiral test analytes.
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Fig. 3. Enantioseparation of Ac-Tyr, 31 on QN-AX (left) and QD-AX CSP (right). 25% modifier: (MeOH, 200 mM HOAc, 100 mM NH3); 40 ◦C, 150 bar, 4.0 mL/min; d-enantiomer
enriched sample.
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.3. Influence of type and amount of methanolic SFC mobile
hase additives

As previously discussed, an ion pairing process between the SO
nd the SA dominates retention of the WAX-type CSPs in HPLC
ode. In practice, this means that run times can be adjusted by the

mount of co- and counterions in the mobile phase. To ascertain
hether the anion-exchange mechanism also controls retention in

c CO2 based mobile phases, the counterion concentration in the
odifier was varied in the range of 50–200 mM  of acid (the acid to

ase ratio was kept constant to ensure identical ionization states of
O and SA). Increasing acid and thus counterion concentrations led
o a decrease in retention along with a linear relationship between
og k and log c (Fig. 4). This clearly indicates that also in SFC we
ollow an ion exchange mechanism according to a stoichiometric
isplacement model as primary interaction force. Moreover, both
nantiomers of the respective solute exhibit very similar slopes
hich confirms that the ion exchange process is “of the same qual-

ty” for both enantiomers (data not shown). This in turn means
hat enantioselectivity is mainly unaffected by a change of the
ounterion concentration enabling the unique feature of adjusting
etention times without compromising enantioselectivity (Fig. 4).

In a following study the effect of the additive-type was  investi-
ated. At a constant acid to base ratio of 100 mM acid and 50 mM
Please cite this article in press as: R. Pell, W. Lindner, J. Chromatogr. A (201

ase in the methanolic co-solvent the HOAc/NH4OAC additives
ere replaced by stronger acids and bases such as FA and DEA.

he data revealed rather analyte specific but no general effect of
he additive type on retention. Enantioselectivity almost remained

CH3OH CO2 
r and (b) selectivity. ( ) Suprofen ( ) Bz-Phe ( ) Ac-Tyr ( ) Fmoc-Leu.
.0 mL/min.

unaltered whereas the combination of FA/DEA in the methanolic
solvent modifier achieved best peak shapes and thus highest res-
olution for the investigated analytes (Fig. 5). However, the effect
of the different additive combinations on chromatographic perfor-
mance remained to be marginal and the use of a specific co- or
counterion is incumbent to the chromatographer. Additionally, the
combination of FA/NH4FA was  also tested (200 mM acid/100 mM
base) and revealed similar chromatographic performance to the
already mentioned additive combinations. Generally, in terms of
high salt volatility and suitability for a potential SFC-MS hyphen-
ation HOAc/NH4OAc or FA/NH4FA are recommended as additives
for SFC enantioseparations on QN-AX or QD-AX columns.

3.4. Acidity of methanol–carbon dioxide subcritical fluids and
their benefit for the operation of weak anion exchange (QN-AX
and QD-AX) CSPs

As extracted from literature, although in a different context, sc
CO2–MeOH mixtures exhibit distinct acidity due to the in situ for-
mation of methylcarbonic acid [32,33]. Formally, this is based on
the addition reaction of MeOH to liquid CO2 for which we  need
pressurized conditions. By this finding it becomes evident that the
often verbalized “slight acidity of CO2” is actually caused by the
pressurized methanolic CO2 and thus the formed methylcarbonic
acid in the SFC mobile phase (reaction Eq. (1)). The in situ generated
and dissociated acid could then act as a co- or counterionic addi-
tive for the operation of WAX-type CSPs such as QN-AX or QD-AX
following again the stoichiometric displacement model.
2), http://dx.doi.org/10.1016/j.chroma.2012.05.023

O
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To examine this concept which apparently is less of an issue
or e.g. neutral polysaccharide-type CSPs and columns, we applied
dditive free sc CO2–MeOH as mobile phase for SFC operation
f QN-AX and QD-AX columns. The data summarized in Table 2
emonstrate convincingly the proposed SFC operational mode as
ne reaches similar enantioselectivity- and resolution values of
elected analytes matching those measured with SFC mobile phases
ontaining acidic and basic additives (for instance, compare data of
ables 1 and 2). With these results the “proof of principle” could
e demonstrated although the plate numbers were in the average
lightly lower than with the “benchmark” modifier (MeOH, 200 mM
OAc, 100 mM NH3) in combination with unfavorably high reten-

ion times. Therefore, we applied a QN-AX column with a lower
O coverage (140 �mol  SO/g silica instead of “standard” 390 �mol
O/g) applying again only sc CO2–MeOH (25%) in order to check the
alidity of the stoichiometric displacement model also for these
onditions. As prognosticated, the retention times were signifi-
antly reduced while maintaining enantioselectivity (Table 2, right
olumn).

The data demonstrate that the “inherent acidity” of CO2–MeOH
ubcritical fluids has to be traced back to the in situ formation
f methylcarbonic acid. As a consequence, it supports an ion-
xchange mechanism between the SO and the SA thus allowing
alt additive-free mobile phase conditions for the elution of chiral
cids on anion exchangers in general and on QN-AX and QD-AX
SPs in particular. Such a phenomenon can only be explained by
he dissociation of the in situ formed methylcarbonic acid into the

ethylcarbonate anion and the proton. The methylcarbonate acts
s a counterion and the hydron guarantees protonation of the SO-
ertiary amine thus enabling the ion-exchange mechanism. The
Please cite this article in press as: R. Pell, W.  Lindner, J. Chromatogr. A (201

nique feature of the common methanolic SFC conditions open up
ew possibilities also for preparative enantioseparations of chiral
cids on chiral anion exchangers without the use of acidic or basic
dditives in the SFC mobile phase. The ingenious thing about it is

able 2
nantioseparations on QN-AX CSPs with different SO coverages using a sc CO2 + MeOH m

Racemic solutes QN-AX (390 �mol  SO/g) 

t1 [min]b
 ̨ Rs N

1, Suprofen 6.62 1.13 1.7 3
2,  Chromane-2-carb. acid 15.38 1.16 2.2 3
7,  Dichlorprop 28.32 1.25 3.2 2
11,  Bz-Phe 32.79 1.49 5.3 3
16,  Ac-Trp 41.53 1.56 5.4 2
17,  Boc-Tyr 18.11 1.15 1.7 2
23,  Fmoc-Leu 12.87 1.59 5.1 3
30,  Fmoc-Met 36.25 1.48 5.5 3

a Conditions: column dimension 150 mm × 4 mm I.D.; 25% modifier (neat MeOH), 40 ◦C
b t1 [min] retention time of first eluted peak.
c N1 [m−1] plate number/meter of first eluted peak.
ght) by applying different types and combinations of additives: HOAc/NH3, FA/DEA
; 40 ◦C, 150 bar, 4.0 mL/min; Chrom.-2-COOH = chromane-2-carboxylic acid, 2.

that the methylcarbonic acid disproportionate into CO2 and MeOH
when the pressurized mobile phase medium gets released.

3.5. Ammonia in methanol used as additive and co-solvent

To further corroborate our hypothesis, a control experiment was
carried out in both HPLC and SFC. A basic methanolic solution con-
taining 25 mM NH3 was  applied as a mobile phase or modifier,
respectively. In the case of HPLC the alkaline mobile phase led to a
“breakdown” of the chromatographic performance. First, the acidic
analytes are not eluted from the anion exchanger (infinite reten-
tion times) as the ion pairing process between the SO and the SA is
taking place but elution cannot be enforced as there is no salt in the
mobile phase acting as a displacer. On the contrary, in SFC mode the
ammonia containing methanolic co-solvent (25% in sc CO2) yielded
proper enantioselectivity, peak shape and strongly reduced reten-
tion times compared to the pure methanolic modifier (Fig. 6). The
results are consistent with the hypothesis of the in situ formation
of methylcarbonic acid which then forms with ammonia its ammo-
nium salt. Following the stoichiometric displacement model, this
salt dissolved in the SFC mobile phase leads then to significantly
shortened retention times. This finding opens up an extended use
of sc methanolic CO2 as a mobile phase in chromatography as via
the addition of an amine easily ammonium salts can be generated in
situ. Conceptual, this is a significant extension of the recently pub-
lished work of Ventura et al. describing the value of ammonia as
additive to methanol and respective SFC resolution of enantiomers
on polysaccharide-type chiral columns [9].

3.6. Water as additive in sc CO2–MeOH mobile phases
2), http://dx.doi.org/10.1016/j.chroma.2012.05.023

In the late 1980s water was  first used as a modifier in packed
column SFC [34,35].  Due to its low solubility in pure sc CO2 (<0.5%,
w/w) water only gained some importance as neutral additive in

obile phase.a

QN-AX (140 �mol SO/g)

1 [m−1]c t1 [min]b
 ̨ Rs N1 [m−1]c

2,000 3.28 1.11 1.6 39,800
0,700 7.51 1.17 2.1 24,500
9,600 14.29 1.27 2.4 26,500
0,000 15.25 1.42 4.0 20,500
1,200 14.41 1.61 5.8 30,700
0,600 7.63 1.14 1.7 26,800
1,300 7.17 1.55 4.6 23,700
2,300 18.13 1.43 3.7 19,400

, 150 bar, 4.0 mL/min.

dx.doi.org/10.1016/j.chroma.2012.05.023
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c CO2–alcohol mobile phases. However, in the limited amount of
ublications available, water was used either to facilitate elution of
ighly polar compounds on polar stationary phases or to improve
eak shapes due to enhanced analyte solubility in the mobile phase
36–38].

In our study, water was used as a neutral additive in the sc
O2–MeOH mobile phase. Increasing amounts of water in the
odifier (1–8%, v/v, equates 0.25–2% in the mobile phase) led to

 decrease in retention times and an increase in plate numbers
Fig. 7). However, the use of 10% water in the methanolic modifier
aused already potential phase separation in the SFC system (no
eaningful chromatograms could be obtained even after several

epetitions) confirming an earlier study by Li and Thurbide [36]. The
ecrease in retention times can be explained by an increased forma-
ion of counterions in the sc hydroorganic mobile phase via reaction
f CO2 with water yielding carbonic acid dissociating to hydro-
en carbonate and a proton. Moreover, the use of small amounts
f water can be used to enhance solubility of highly hydrophilic
ompounds in the sc mobile phase and thus leading to improved
eak shapes (e.g. for Cbz-Arginine, being inherently zwitterionic

n sc CO2–MeOH mobile phases, fourfold higher plate numbers
ere achieved when increasing the water content from 0% to 8% in

he modifier). In other words, the addition of a limited amount of
ater to an alcoholic SFC mobile phase can cause beneficial effects.
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owever, more investigations are needed to deconvolute also the
xtended water adsorption on the silica based stationary phase.
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3.7. Influence of temperature on the chromatographic
performance

Dependence of retention on temperature variations is known to
be more complex in SFC than in HPLC. Supercritical fluid mobile
phases tend to possess a “retention minimum”, i.e. with increas-
ing temperature retention is first decreased and then starts to
increase due to lower fluid density (and thus decreased elution
strength). In contrast, in a subcritical fluid retention is reduced
with increasing temperature (and thus resembles liquid behavior
like in HPLC). Van’t Hoff analysis (Fig. 8, logarithm of the reten-
tion factor versus 1/T) gave non-linear plots showing a decrease in
retention with increasing temperature. On the other hand, a lin-
ear relationship was  obtained for Van’t Hoff plots of ln  ̨ vs. 1/T,
thereby confirming that enantiorecognition is enthalpically con-
trolled (Fig. 9). Moreover, temperature dependence of retention
and enantioselectivity follows the same rules as observed in HPLC
studies [39]. As expected, plate numbers (efficiencies) are increas-
ing with increasing temperature (Fig. 9) due to enhanced mass
transfer between the mobile and stationary phase. As a practical
aspect, a change in temperature can be a powerful tool for chal-
lenging enantioseparations. Ambient column temperatures up to
40 ◦C turned out to be promising in terms of separation perfor-
mance, because reduced enantioselectivity at higher temperature
gets outperformed by higher column efficiency thus providing the
highest resolution values.
2), http://dx.doi.org/10.1016/j.chroma.2012.05.023

4. Conclusions

Weak anion-exchange-type chiral stationary phases were
investigated in SFC mode exhibiting a separation performance

dx.doi.org/10.1016/j.chroma.2012.05.023
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omparable to HPLC mode: (1) Enantioselectivity followed the
ame pattern as observed in HPLC which indicates the same chi-
al recognition mechanism. (2) As ion exchange is the driving
nteraction force between the SO and SA, retention can be tuned
y the amounts and types of co- and counterions (salts) in the
odifier while enantioselectivity remains almost unaltered. (3)

emperature changes offer potential for improving enantioselec-
ivity, which is increased at decreasing temperature, manifesting an
nthalpically controlled chiral recognition mechanism. Moreover,

 temperature increase led to significantly enhanced peak efficien-
ies and to better resolution combined with shortened retention
imes. (4) The early findings of Eckert and co-workers [32,33]
escribing the phenomenon of in situ formation of methylcarbonic
cid (and its dissociated species methylcarbonate, respectively) in
ressurized methanolic CO2 solutions could be confirmed indi-
ectly. (5) Due to this reaction scheme it is possible to use
hiral anion exchangers QN-AX and QD-AX with only pressur-
zed methanolic CO2. (6) Given the existence of methylcarbonic
cid the addition of ammonia to methanol as co-solvent and
odifier for CO2 leads to the in situ formation of ammonium
ethylcarbonate which acts as a salt in the mobile phase. It

upports again the stoichiometric displacement model of action
n the use of anion exchangers. (7) QN-AX and QD-AX CSPs
perated in SFC mode have a high potential for preparative chro-
atography due to their high column loading capacity (data not

hown).
To conclude, (chiral) anion exchange columns can equally

ell be operated in HPLC and SFC mode, whereby the latter
ode opens up the use of salt-free mobile phase condi-

ions due to the in situ generation of volatile acid and salt
omponents.
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Abstract:  12 

Tert-butylcarbamoyl-quinine and –quinidine weak anion exchange chiral stationary phases 13 

(Chiralpak® QN-AX and QD-AX) have been applied for the separation of sodium β-14 

ketosulfonates, such as sodium chalconesulfonates and derivatives thereof. The influence of 15 

type and amount of co- and counterions on retention and enantioresolution was investigated 16 

using polar organic mobile phases. Both columns exhibited remarkable enantiodiscrimination 17 

properties for the investigated test solutes, in which the quinidine-based column showed better 18 

enantioselectivity and slightly stronger retention for all analytes compared to the quinine-19 

derived chiral stationary phase. With an optimized mobile phase (MeOH, 50 mM HOAc, 25 20 

mM NH3) 12 out of 13 chiral sulfonates could be baseline separated within 8 minutes using 21 

the quinidine-derivatized column. Furthermore, subcritical fluid chromatography (SubFC) 22 

mode with a CO2-based mobile phase using a buffered methanolic modifier was compared to 23 

HPLC. Generally, SubFC exhibited slightly inferior enantioselectivities and lower elution 24 

power but also provided unique baseline resolution for one compound. 25 

 26 



2 

 

Keywords: chiral sulfonates, chiral separation, cinchona alkaloid, subcritical fluid 27 

chromatography, liquid chromatography 28 

Abbreviations: CSP, chiral stationary phase; QN-AX, tert-butylcarbamoyl-quinine anion 29 

exchanger; QD-AX, tert-butylcarbamoyl-quinidine anion exchanger; SO, chiral selector; SA, 30 

selectand; FA, formic acid; HOAc, acetic acid; CitOH, citric acid; MalOH, malonic acid; 31 

SucOH, succinic acid; DEA, diethylamine; TEA, triethylamine; MeOH, methanol; 32 

1. Introduction:  33 

Liquid chromatography using chiral stationary phases (CSPs) is nowadays routinely used for 34 

direct separation of enantiomers in both analytical and preparative scale [1]. Among the vast 35 

number of commercially available CSPs, tert-butylcarbamoyl-quinine- and -quinidine (Figure 36 

1) exhibit remarkable enantiodiscrimation properties towards chiral acids, such as N-protected 37 

amino acids, aryl carboxylic acids, N-protected aminophosphonic and -phosphinic acids [2-5]. 38 

The CSPs are preferentially operated with slightly acidic polar organic or hydro organic 39 

mobile phases, which protonates the quinuclidine tertiary amine of the chiral selector (SO) 40 

and deprotonates the acidic selectand (SA) thus enabling a weak anion exchange retention 41 

mechanism. Additional interactions between the SO and SA, such as hydrogen bonding, π – π 42 

stacking, van der Waals or steric interactions working in concert with each other, may support 43 

the ion pairing process and thus facilitate enantiodiscrimination [6, 7].  44 

Chiral sulfonic acids (or their sulfonate salts, respectively) gained distinct importance as 45 

resolving agents. For instance, camphor sulfonic acid, 3-bromocamphorsulfonic acid and 1-46 

phenylethanesulfonic acid were successfully employed for resolving racemic amines and 47 

amino acids via diastereomeric salt formation [8]. Chalconesulfonic acid and derivatives 48 

thereof were used in the “Dutch Resolution” process, a smooth variation of the classical 49 



3 

 

Pasteur resolution, where mixtures of resolving agents are used instead of one single resolving 50 

agent [9]. Since sulfonic acids are isosteric to carboxylates, they show potential for 51 

pharmaceutical applications. For example, 6-gingesulfonic acid, a 1,3-ketosulfonic acid 52 

derivative found in ginger (zingiberis rhizoma), shows anti-ulcer acitivity [10, 11]. (R)-53 

saclofen, the sulfonic acid analogue of baclofen, is a potent GABAA receptor antagonist [12].  54 

Acquiring enantiomerically pure sulfonic acids was either achieved by asymmetric 55 

synthesis or synthesis of the racemate following a resolution via diastereomeric salt 56 

formation. For example, the preparation of enantiopure chalconesulfonic acid was 57 

accomplished via homogenous catalysis using a quinine-or quinidine-modified catalyst [13] 58 

or via Dutch Resolution with (R)-4-methylphenylglycinol [14]. However, enantioresolution of 59 

a broad set of free (unprotected) sulfonic acids via chromatography has not been reported so 60 

far. Only camphorsulfonic acid, three N-protected aminosulfonic acids and alpha-61 

perfluoromethyl branched perfluorooctane sulfonate (1m-PFOS) were separated in their 62 

enantiomers on a quinine-carbamate type weak anion exchange CSP [2, 3, 15]. Furthermore, 63 

camphorsulfonic acid was resolved by indirect enantioseparation using an achiral diol 64 

stationary phase with quinine as chiral mobile phase additive [16]. 65 

Hence, we herein report the application of tert-butylcarbamoyl-quinine and –quinidine 66 

CSPs (Figure 1) for enantioseparation of β-ketosulfonic acids (applied as their sodium salts) 67 

by HPLC and SubFC. Employing a polar organic mobile phase, the influence of type and 68 

amounts of acidic and basic additives was investigated. Additionally, the separation 69 

performance of subcritical fluid chromatography (SubFC) for the same analyte set was also 70 

examined.  71 

<insert Figure 1>  72 
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 73 

<insert Figure 2> 74 

 75 

2. Experimental:  76 

2.1 Materials  77 

Compounds 1-4 were kind gifts of Syncom (Groningen, Netherlands). 2,4-78 

dichlorobenzaldehyde, acetophenone, benzaldehyde, 2’,4’-dichloroacetophenone, 2,4-79 

dimethoxybenzaldehyde, 2’,4’-dimethoxyacetophenone, 2-methoxybenzaldehyde, 2’-80 

methoxyacetophenone, coumarin, phenalen-1-one, NaHSO3 and NaOH were purchased from 81 

Sigma-Aldrich (Vienna, Austria) in reagent grade or higher quality. Ethanol (96%), CH2Cl2 82 

and methanol (MeOH) was purchased from VWR (Vienna, Austria) and water was bidistilled 83 

in house. Mobile phases for HPLC (or modifiers for SubFC, respectively) were prepared with 84 

HPLC-grade solvents and analytical grade reagents and were degassed in the ultrasonication 85 

bath prior to use. Mobile phases containing HOAC/NH3 buffers were prepared by combining 86 

ammonium acetate with acetic acid. 87 

 88 

2.2 Synthesis of sodium β-ketosulfonate test compounds  89 

The synthesis of chalconesulfonate derivatives 6-12 was accomplished by 1,4-addition (Thia-90 

Michael addition) of sodium bisulfite to the corresponding chalcone derivatives, which were 91 

synthesized via aldol condensation. The synthetic protocol followed the published procedure 92 

by Kellogg et al [14]. Accordingly, sodium β-ketosulfonates 5 and 13 were also prepared via 93 

1,4 - addition of NaHSO3 to the α,β unsaturated carbonyl compound starting materials: 20.0 94 
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mmol of coumarin (2.93 g, for synthesis of 5) or phenalen-1-one (3.61 g, for synthesis of 13) 95 

were suspended in 20 mL 96% ethanol. 2.08 g (20.0 mmol, 1 eq.) NaHSO3 were dissolved in 96 

10 mL water and added to the ethanolic solution. The mixture was heated and refluxed 97 

overnight. After cooling to r.t. and evaporation of solvent crude 5 or 13 were obtained, which 98 

were then purified by flash chromatography (CH2Cl2 : MeOH 10:1, then 1:1; v/v).  99 

5, yield 45%, white powder; 1H-NMR [CD3OD]: δ = 3.22 (m, 2H), 4.34 (dd, 1H), 6.87 (m, 100 

2H), 7.17 (m, 2H). 13C-NMR [CD3OD]: δ = 31.2 (CH2), 56.3 (CH), 116.6 (CarH), 121.0 101 

(CarH), 122.7 (Car), 125.4 (CarH), 130.7 (CarH), 154.8 (Car), 170.5 (C=O). MS (ESI, negative): 102 

227.1 [M-Na]- 103 

6, yield 33%, white crystals; 1H-NMR [D2O]: δ = 3.72 (dd, 1H), 3.82 (dd, 1H), 5.14 (dd, 1H), 104 

7.05 (dd, 1H), 7.26 (t, 2H), 7.32 (t, 2H), 7.41 (t, 1H), 7.66 (d, 2H). 13C-NMR [D2O]: δ = 40.7 105 

(CH2), 57.0 (CH), 127.7 (CarH), 128.5 (CarH), 129.2 (CarH), 129.6 (CarH), 129.9 (CarH), 132.5 106 

(Car), 134.2 (Car), 134.6 (CarH), 135.9 (Car), 136.2 (Car), 200.3 (C=O). MS (ESI, negative): 107 

357.0 [M-Na]-  108 

7, yield 34%, white powder; 1H-NMR [D2O]: δ = 3.68 (dd, 1H), 3.81 (dd, 1H), 4.48 (dd, 1H), 109 

7.11 (dd, 1H), 7.17-7.31 (m, 7H). 13C-NMR [D2O]: δ = 44.2 (CH2), 62.2 (CH), 127.8 (CarH), 110 

128.8 (CarH), 129.0 (CarH), 129.6 (CarH), 130.7 (CarH), 130.9 (CarH), 132.0 (Car), 135.2 (Car), 111 

135.8 (Car), 138.0 (Car), 201.8 (C=O). MS (ESI, negative): 357.0 [M-Na]-  112 

8, yield 50%, white powder; 1H-NMR [D2O]: δ = 3.60 (s, 6H), 3.63-3.78 (m, 2H), 5.02 (dd, 113 

1H), 6.37 (d, 2H), 7.21 (d, 1H), 7.29 (t, 2H), 7.45 (t, 1H), 7.67 (d, 2H). 13C-NMR [D2O]: δ = 114 

40.7 (CH2), 53.9 (CH), 55.7 (OCH3), 56.4 (OCH3), 99.2 (CarH), 105.9 (CarH), 116.8 (CarH), 115 

128.5 (CarH), 129.2 (CarH), 129.4 (CarH), 134.4 (CarH), 136.3 (Car), 159.0 (Car), 160.3 (Car), 116 

201.7 (C=O). MS (ESI, negative): 349.1 [M-Na]-  117 
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9, yield 66%, white powder; 1H-NMR [D2O]: δ = 3.68 (d, 6H), 3.72 (d, 2H), 4.45 (dd, 1H), 118 

6.31 (m, 2H), 7.26 (m, 6H). 13C-NMR [D2O]: δ = 44.5 (CH2), 55.9 (OCH3), 56.0 (OCH3), 119 

62.8 (CH), 98.7 (CarH), 106.4 (CarH), 119.7 (Car), 128.6 (CarH), 128.9 (CarH), 129.5 (CarH), 120 

132.9 (CarH), 135.7 (Car), 161.4 (Car), 165.2 (Car), 200.7 (C=O). MS (ESI, negative): 349.1 121 

[M-Na]-  122 

10, yield 97%, yellowish powder; 1H-NMR [D2O]: δ = 3.66 (s, 3H), 3.69-3.85 (m, 2H), 5.14 123 

(dd, 1H), 6.87 (dd, 2H), 7.20 (t, 1H), 7.36 (t, 3H), 7.51 (t, 1H), 7.73 (d, 2H). 13C-NMR [D2O]: 124 

δ = 40.7 (CH2), 54.2 (CH), 56.5 (OCH3), 112.4 (CarH), 121.3 (CarH), 124.1 (CarH), 128.5 125 

(CarH), 128.6 (CarH), 129.2 (CarH), 129.9 (CarH), 134.5 (CarH), 136.3 (Car), 157.9 (Car), 201.8 126 

(C=O). MS (ESI, negative): 319.0 [M-Na]-  127 

11, yield 74%, white powder; 1H-NMR [D2O]: δ = 3.72 (s, 3H), 3.73-3.85 (m, 2H), 4.45 (dd, 128 

1H), 6.84 (t, 1H), 6.96 (d, 1H), 7.24 (m, 6H), 7.41 (t, 1H). 13C-NMR [D2O]: δ = 44.8 (CH2), 129 

56.0 (CH), 62.7 (OCH3), 112.9 (CarH), 121.1 (CarH), 127.0 (Car), 128.7 (CarH), 128.9 (CarH), 130 

129.6 (CarH), 130.2 (CarH), 135.2 (CarH), 135.5 (Car), 158.6 (Car), 203.7 (C=O). MS (ESI, 131 

negative): 319.1 [M-Na]-  132 

12, yield 60%, yellowish powder; 1H-NMR [D2O]: δ = 3.64 (dd, 2H), 4.50 (dd, 1H), 6.58 (d, 133 

2H), 7.17 (d, 2H), 7.25 (d, 2H), 7.57 (d, 2H). 13C-NMR [D2O]: δ = 39.8 (CH2), 61.2 (CH), 134 

115.7 (CarH), 126.1 (CarH), 126.8 (CarH), 126.9 (Car), 128.4 (Car), 128.9 (CarH), 130.6 (CarH), 135 

131.0 (Car), 133.4 (Car), 135.7 (CarH), 200.2 (C=O). MS (ESI, negative): 338.1 [M-Na]-  136 

13, yield 65%, yellow powder; 1H-NMR [D2O]: δ = 3.04 (dd, 1H), 3.27 (dd, 1H), 4.63 (m, 137 

1H), 7.47 (m, 2H), 7.57 (d, 1H), 7.82 (d, 1H), 7.92 (d, 1H), 8.01 (d, 1H). 13C-NMR [D2O]: δ = 138 

39.2 (CH2), 62.2 (CH), 114.9 (CarH), 126.3 (Car), 128.9 (CarH), 130.9 (CarH), 131.5 (CarH), 139 

133.8 (Car), 134.4 (Car), 153.6 (Car), 198.8 (C=O). MS (ESI, negative): 261.1 [M-Na]-  140 
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2.3 Instrumentation and Chromatography  141 

All HPLC experiments were conducted on a 1200 series HPLC systems from Agilent 142 

Technologies (Waldbronn, Germany) consisting of a solvent degasser, a quaternary pump, an 143 

autosampler, a column thermostat and a diode array detector. Chemstation software version 144 

Rev. B.01.03 was used for data acquisition and analysis. The mobile phase flow rate was 1.0 145 

mL/min using a 5 µm particle size, 150 x 4 mm i.d. column. The test compounds were 146 

dissolved in MeOH in a concentration of 1.0-2.0 mg/mL. The injection volume varied 147 

between 5 and 10 µL and column temperature was 25°C. The void volume was determined by 148 

injecting a solution of acetone in MeOH. Before switching from stronger to weaker acid as 149 

mobile phase counter ion, the CSP was washed with MeOH containing 1% (v/v) TEA with a 150 

flow of 2 ml/min for about 10 minutes followed by plain MeOH with 2 ml/min for 10 151 

minutes, in order to remove the high-affinity counter-ion and achieve reproducible retention 152 

times with subsequent additive. 153 

SubFC experiments were carried out on a Thar Discovery system from Thar 154 

Technologies Inc., equipped with a combined CO2 and modifier pump, a combined column 155 

oven and column selector valve for 6 columns, an automated back pressure regulator, a water 156 

bath and a Gilson UV variable wavelength detector. Instrument control and data acquisition 157 

were carried out with Thar SuperChrome software and Thar ChromScope software, 158 

respectively. The runs were performed in isocratic mode with 25% modifier content at a flow 159 

rate of 4.0 mL/min, 40°C and 150 bar backpressure. The analytes were dissolved in MeOH in 160 

a concentration of 3-5 mg/mL and the void time was determined by injecting a methanolic 161 

solution of acetone.  162 

 163 
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3. Results and Discussion   164 

 165 

3.1 General remarks  166 

First, the sulfonic acid test compounds were applied as their sodium salts. However, no 167 

differences in chromatographic separation properties are observed between sulfonic acid- and 168 

sodium sulfonate analytes, as sulfonic acids are strong acids and thus fully dissociated under 169 

the applied mobile phase conditions. Second, polar organic mode with MeOH as bulk solvent 170 

was chosen for the HPLC studies. The sulfonate analytes 1-13 show high solubility in MeOH 171 

which is advantageous for potential preparative separations. Taking analyte solubility into 172 

account, also reversed phase mode could have been chosen. However, operation of QN-AX or 173 

QD-AX CSPs with hydro organic mobile phases cause prolonged retention and eventually 174 

decreased enantioselectivity due to the activation of nonspecific hydrophobic interactions [2]. 175 

Moreover, regarding preparative separations, one tries to avoid water in the mobile phase due 176 

to higher energy costs in the evaporation process. 177 

3.2 Influence of counterion type and strength   178 

The interaction, and thus retention and separation, between the quinine carbamate type SOs 179 

and the SAs is dominated by long range electrostatic forces [6, 7]. Hence, under slightly 180 

acidic mobile phase conditions the protonated tertiary amine in the quinuclidine moiety (see 181 

Figure 1) undergoes an ionic interaction with the corresponding deprotonated (ionized) acidic 182 

analyte. The anion exchange retention mechanism following a stoichiometric displacement 183 

model is strongly dependent on the type and amount of counterions in the mobile phase. 184 

The counterion effect was systematically studied by Gyimesi-Forrás et al [17] for 185 

carboxylic acid analytes. Sulfonic acids have not yet been explored in this regard. We 186 

therefore investigated five different mono-, bi, and trivalent acids as acidic additives 187 

(counterions) using MeOH as bulk solvent (the apparent pH was adjusted to 6.1 with 188 
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triethylamine, TEA). An increase of competitor acid (counterion) concentration in the mobile 189 

phase led to a decrease of retention times for all sulfonate test compounds 1-13. Plots of the 190 

logarithm of the retention factor (log k1) versus the logarithm of the counterion concentration 191 

(log [C]) gave a linear relationship which clearly indicates an anion exchange mechanism 192 

following the stoichiometric displacement model (Equation 1) [2, 18].  193 

][logloglog CZKk z    (1) 194 

wherein k is the retention factor, [C] the molar concentration of the counterion in the eluent, Z 195 

is the slope of the linear regression line, and log Kz the intercept with the system-specific 196 

constant KZ being defined by equation 2.  197 

 
0V

qSK
K

Z
x

z


   (2)  198 

wherein K is the ion-exchange equilibrium constant, S the surface area, qx the charge density 199 

on the surface i.e. the number of ion-exchange sites available for adsorption and V0 the mobile 200 

phase volume. Hence, the intercept log Kz can be regarded as measure for the affinity of the 201 

solute towards the ion-exchanger under given conditions and represents the log k-value at 1M 202 

concentration of counterion. The slope Z  in eq. 1 is indicative for the charges involved in the 203 

ion-exchange process and is directly proportionally depending on the ratio of the effective 204 

charge numbers of solute (zeff,S) and counterion (zeff,C) [19, 20]. 205 

Thus, both intercept and slope are characteristic for the given ion-exchange process and 206 

can be used for retention prediction. Table 1 depicts the values of slopes and intercepts of the 207 

linear relationship for compounds 9 and 11. They can also be used to illustrate the elution 208 

strength of different counterions.  209 
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As can be seen from Table 1, the strongest acids within this study, citric acid and 210 

malonic acid, exhibited the lowest values for the intercept (-1.19 and -1.92, respectively). On 211 

the contrary, for acetic acid as the weakest acid investigated, the value was 0.55. Hence, the 212 

more competitive the counterion (the stronger and polyprotic the acid) the lesser amount is 213 

needed to achieve isoeluotropic conditions. This findings corroborate earlier investigations 214 

made for carboxylic acid analytes [17], but the effect is more pronounced for the sulfonate 215 

compounds. For instance, to adjust k1 to 4.5 for compound 9, only 2 mM of citric acid are 216 

needed compared to 214 mM of acetic acid (Table 1). However, employing such low 217 

concentrations of counterions may be detrimental for the peak shapes or for the 218 

reproducibility of retention times (especially in preparative chromatography under high 219 

sample loads). Thus, citric acid or malonic acid may be avoided as counterions, unless 220 

analytes are extremely strongly retained like polyprotic acids.  221 

In sharp contrast, a variation of the counterion concentration showed insignificant 222 

effects on enantioselectivity. Moreover, the type of counterion (acidic additive) exhibited also 223 

only a minor influence on α (note: the pHa was always adjusted to 6.1 with TEA). For 224 

instance, the α-value for 9 varied from 1.31 to 1.36 using different types of acidic additives 225 

(data not shown).  226 

To summarize, separation of sodium β-ketosulfonates on quinine- and quinidine derived 227 

CSPs follows an ion-exchange mechanism as it was observed for other acidic (anionic) 228 

analytes such as carboxylic-, phosphonic- and phosphinic acids. This means in practical terms 229 

that retention can easily be adjusted by the amount or type of acidic additive without 230 

significantly changing enantioselectivity.  231 

<insert Table 1> 232 
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3.3 Influence of the co-ion  233 

Basic additives act as co-ions in the anion-exchange dominated retention process and can also 234 

be influential for separation of chiral acids on cinchona alkaloid derived CSPs. Primarily, they 235 

are utilized to adjust the pH of the eluent. Since cinchona carbamate type SOs are weak anion 236 

exchangers and are operated with weak acids as mobile phase additives, the apparent pH (and 237 

thus the ionization state of SOs and SAs) plays a decisive role for retention and 238 

enantioselectivity [21]. Typically, small amounts of organic amines are only needed to 239 

establish weakly acidic conditions, which also favours repeatability, shortens retention times 240 

and improves peak shape (compared to the sole addition of acidic additives) [22]. Under the 241 

given slightly acidic mobile phase conditions, the decreased retention can be explained by the 242 

competition between the protonated quinuclidinium moiety of the SO and the protonated 243 

amine additive to form ion pairs with the deprotonated acidic analyte. It seems that the 244 

competitive effect is necessary to balance the electrostatic interaction between the SO and SA.  245 

In this study, three amines with differing alkyl substitution degree, namely NH3, DEA 246 

and TEA, were chosen as basic additives. In previous studies for carboxylic acid solutes they 247 

showed increasing elution strength on QN-AX or QD-AX CSPs in the following order: 248 

NH3<DEA<TEA [22]. First, the mobile phase acid to base ratio (i.e. the pHa of the mobile 249 

phase being responsible for the protonation state of the SO and dissociation state of the SA) 250 

was optimized in matters of short retention times with adequate resolution of the chiral 251 

compounds (data not shown). Hence, an acid to base ratio of 2:1 was chosen with HOAc as 252 

acidic additive. Figure 3 depicts the influence of the various amine additives on 253 

chromatographic parameters (retention k1, enantioselectivity α, plate number N1 and 254 

resolution Rs). Unlike for the acidic counterions, the type of the basic co-ions showed 255 

negligible influence on separation performance (note that the pHa for all three additive 256 
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combinations was almost constant, namely 6.8 for HOAc/NH3, 6.9 for HOAc/DEA and 6.9 257 

for HOAC/TEA, each 50 mM acid and 25 mM base).  258 

On the contrary, employing a different combination of acidic and basic additives, such 259 

as FA and DEA, yielded strongly differing results (see right bars in Figure 3). Compared to 260 

HOAc/DEA, the use of FA/DEA led to a 6-fold increased retention, but also to a better 261 

separation performance. The higher retention times may be related to the lower pHa of 262 

FA/DEA (pHa = 5.6 for 50 mM FA and 25 mM DEA in MeOH) and may be a combined 263 

effect of altered ionization states, in particular reduced counterion dissociation. Therefore, the 264 

observed overall ionic interaction of the analytes with the SOs is strengthened because of less 265 

counterion competition.  266 

<insert Figure 3>  267 

3.4 Separation Performance of QN-AX and QD-AX CSP  268 

A set of 13 sodium β-ketosulfonates was chosen to investigate the separation performance of 269 

QN-AX and QD-AX CSP towards chiral sulfonate compounds. Analytes 2-4 and 6-12 are 270 

derivatives of chalconesulfonate 1. They comprise either electron donating or electron 271 

withdrawing groups on their phenyl-rings turning them π-basic or π-acidic. Besides, 272 

compounds 5 and 13 possess a more rigid molecular structure compared to the 273 

conformationally more flexible chalconesulfonates (and derivatives thereof).  274 

MeOH with 50 mM HOAc and 25 mM NH3 was employed as mobile phase which was 275 

a good compromise between fast analyte elution, good separation performance and high 276 

buffer volatility for a potential LC-MS hyphenation. As summarized in Table 2, QD-AX CSP 277 

outperformed the QN-AX column in terms of enantioselectivity and resolution values, and 278 

yielded baseline resolution for 12 out of the 13 test compounds. Nevertheless, also the 279 
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quinine-based column achieved at least partial separation of 11 sodium β-ketosulfonates with 280 

8 of them being baseline resolved with the given conditions.  281 

Regarding the structure-enantioselectivity relationship, some trends became evident: 282 

disubstituted chalconesulfonates derivatives with their substituents at the phenyl ring next to 283 

the carbonyl group were better resolved on both columns than their constitutional isomers 284 

having the phenyl-substitution in vicinity of the sulfonate group (for instance, 7 and 9 showed 285 

higher α-values than 6 and 8). Ortho-substitution at the sulfonate-group containing aromatic 286 

ring seems to be detrimental for the enantiodiscrimination properties , as α-values for 10 are 287 

lower than for its para-substituted isomer 4 (Figure 4).  288 

Furthermore, pronounced retention characteristics were not observed. Both electron 289 

donating and electron withdrawing substituents caused slightly increased retention for the 290 

chalconesulfonate derivatives compared to the unsubstituted chalconesulfonate. Furthermore, 291 

naphtyl-group containing compounds 3 and 13 were retained strongest.  292 

 293 

<insert Table 2>  294 

<insert Figure 4> 295 

 296 

3.5 SubFC Enantioseparation of sodium β-ketosulfonates 297 

Recently, we reported on separation of chiral carboxylic acids on QN-AX and QD-AX CSPs 298 

by subcritical fluid chromatography [23]. By applying supercritical (sc) CO2 and a methanolic 299 

modifier (containing buffer salts) we achieved separation performance similar to HPLC 300 

experiments using polar organic mobile phases. Although SubFC does not appear to be the 301 

first choice technique for separation of such polar compounds like sulfonic acids (sulfonates), 302 
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it was examined herein for SubFC enantioseparation of the sulfonate analytes on QN-AX and 303 

QD-AX CSP, respectively (Figure 5).  304 

Table 3 summarizes the data obtained for both columns in SubFC mode using sc CO2 305 

with 25% modifier content (MeOH, 200 mM HOAc, 100 mM NH3). Generally, 306 

enantioselectivity and plate numbers are slightly lower than in HPLC mode using MeOH, 50 307 

mM HOAc, 25 mM NH3 as mobile phase (compare Table 2 and 3). However, compound 6 308 

could only be baseline separated when applying QD-AX CSP in SubFC mode. Moreover, the 309 

“separation profile” for all analytes on both CSPs is similar for SubFC and HPLC, which 310 

implies the same chiral recognition mechanism in both modes.  311 

Elution strength is lower in SubFC due to a lower dielectric constant of the eluent which 312 

renders electrostatic interactions stronger and is reflected in roughly fivefold higher k1 values. 313 

However, due to the low viscosity of the sc CO2-methanolic mobile phase, this disadvantage 314 

can almost be compensated by application of a fourfold higher mobile phase flow rate. 315 

Additionally, the higher temperature for SubFC measurements (40°C compared to 25°C in 316 

HPLC) caused slightly decreased selectivity according to the enthalpically controlled chiral 317 

recognition mechanism observed on cinchona carbamate type CSPs [23, 24].  318 

<insert Table 3> 319 

    <insert Figure 5> 320 

4. Concluding remarks 321 

Chiral sodium β-ketosulfonates, such as chalconesulfonates and derivatives thereof, were 322 

successfully separated on cinchona-alkaloid derivatized CSPs using HPLC and SubFC. It was 323 

demonstrated that also for sulfonic acid compounds anion-exchange is the dominating 324 
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retention mechanism. Hence, retention can be adjusted by using different counterion 325 

concentrations without affecting enantioselectivity. However, acid-base equilibria are 326 

superimposed to the ion exchange-process, as the protonation state of both weak anion-327 

exchange-type SO and weak competitor acid is dependent on the apparent pH. From a 328 

practical point of view this means that the ratio or type of the acidic and basic additives, 329 

respectively, cause pronounced influence not only on retention but also on enantioselectivity 330 

and peak shape.  331 

HPLC turned out to be superior to SubFC in terms of faster solute elution but 332 

employing the same co- and counterion strength in the mobile phase. However, for some 333 

analytes SubFC afforded the highest magnitude of resolution values. Moreover, SubFC could 334 

be considered a valuable alternative for preparative applications due to ease of solvent 335 

evaporation.  336 
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Table 1. Influence of counterion concentration on retention of first eluted enantiomers of 9 and 11 on 391 

CSP 2a according to eq. 1. 392 

 compound 9  compound 11  

Acid (counter-ion) c [mM]b slope intercept ciso [M]c c [mM]b slope intercept ciso [M]c

HOAc 25-100 -0.33 0.43 0.214 25-100 -0.33 0.39 0.166 

FA 25-100 -0.70 -0.23 0.055 25-100 -0.71 -0.28 0.048 

CitOH 2-10 -0.70 -1.19 0.002 2-10 -0.76 -1.36 0.002 

SucOH 25-100 -0.64 -0.16 0.053 25-100 -0.64 -0.20 0.048 

MalOH 2-10 -1.22 -1.92 0.008 2-10 -1.28 -2.01 0.008 

a pHa of methanolic mobile phase was adjusted with TEA to 6.1; b employed concentration range of 393 
acid in MP; c calculated concentrations for isoeluotropic conditions (k1 = 4.5)  394 

 395 

 396 

 397 

Table 2. Enantiomer separation of compounds 1-13 on QN-AX and QD-AX CSP in HPLC modea 398 

Analyte QN-AX CSP QD-AX CSP 
 k1 α Rs N1[m

-1] k1 α Rs N1[m
-1] 

1 1.75 1.21 2.5 47700 2.14 1.23 2.8 47800 
2 1.86 1.21 2.3 38000 2.27 1.24 2.9 46300 
3 2.86 1.16 2.0 38400 3.74 1.17 2.4 45200 
4 1.94 1.22 2.4 40200 2.63 1.27 3.2 42100 
5 1.88 1.10 1.2 12900 2.12 1.24 3.0 45200 
6 1.90 1.00 0.0 18000 2.33 1.05 0.7 36200 
7 2.09 1.14 1.8 43200 2.64 1.15 2.0 44900 
8 1.92 1.07 0.8 21600 2.39 1.24 2.8 39800 
9 1.88 1.29 3.2 44200 2.37 1.32 3.6 42900 
10 1.90 1.00 0.0 20800 2.16 1.19 2.4 45300 
11 1.77 1.23 2.6 40800 2.21 1.26 3.0 44400 
12 1.88 1.19 2.0 35700 2.33 1.26 2.9 38500 
13 2.96 1.05 0.6 35500 3.26 1.28 3.5 44000 

aConditions: mobile phase: MeOH, 50 mM HOAc, 25 mM NH3; 1.0 mL/min, 25°C, detection 254 and 399 
230 nm; t0 = 1.51 min 400 
 401 

 402 

 403 
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 404 

Table 3. Enantioseparation of analytes 1-13 on QN-AX and QD-AX CSP in SubFC modea 405 

Analyte QN-AX CSP QD-AX CSP 
 k1 α Rs N1[m

-1] k1 α Rs N1[m
-1] 

1 10.35 1.16 2.2 31100 10.27 1.25 3.3 36800 
2 9.37 1.08 1.2 34400   9.61 1.21 2.9 35900 
3 21.29 1.10 1.5 33700 21.98 1.15 2.3 36500 
4 10.31 1.18 2.5 30900 11.04 1.24 3.2 38200 
5 10.59 1.12 1.7 35400   9.98 1.18 2.8 42600 
6 14.37 1.05 0.7 23300 13.82 1.09 1.5 41400 
7 12.02 1.11 1.7 34700 12.16 1.15 2.2 38400 
8   8.96 1.05 0.7 20200   9.12 1.16 2.3 36300 
9 10.73 1.26 3.1 36300 11.22 1.29 3.6 39400 
10   9.76 1.00 0.0 27900   9.22 1.15 2.3 37100 
11 10.49 1.21 2.7 29300 10.90 1.23 3.1 37400 
12 38.22 1.13 1.7 26600 35.08 1.20 3.3 35900 
13 14.69 1.00 0.0 25700 13.71 1.19 2.9 40900 

aConditions: 25% modifier (MeOH, 200 mM HOAc, 100 mM NH3); 4.0 mL/min, 40°C,150 bar 406 
backpressure; detection 254 and 230 nm; t0 = 0.49 min 407 
 408 

 409 
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 416 

 417 
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 419 

 420 

 421 

 422 
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 427 

 428 

Figure 1. Structures of weak anion exchangers QN-AX (left) and QD-AX (right) 429 
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Figure 3. Effect of acidic and basic additives on chromatographic behavior of compounds 1, 12 and 13 455 

on QD-AX CSP. Left diagram: retention factors and plate numbers of the first eluted peak. Right 456 

diagram: enantioselectivity and resolution. Mobile phases: MeOH, 50 mM acid and 25 mM base;  457 
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Figure 4. HPLC enantioseparations of 1 (top), 4 (middle) and 10 (bottom) on QD-AX CSP. Mobile 472 

Phase: MeOH, 50 mM HOAc, 25 mM NH3; 1.0 mL/min, 25°C UV detection at 280 nm.  473 
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Increments to chiral recognition facilitating
enantiomer separations of chiral acids,
bases, and ampholytes using
Cinchona-based zwitterion exchanger chiral
stationary phasesQ1

The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral
stationary phases represent potential tuning sites for enantiomer selectivity. In this contri-
bution, we investigate the influence of alkanesulfonic acid chain length and flexibility on
enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona
alkaloid-based chiral stationary phases in comparison with structurally related anion and
cation exchangers. Employing polar-organic elution conditions, we observed an intramolec-
ular counterion effect for acidic analytes which led to reduced retention times but did not
impair enantiomer selectivities. Retention of amphoteric analytes is based on simultane-
ous double ion pairing of their charged functional groups with the acidic and basic sites
of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger
site is vital for chiral separations of bases. Sterically demanding side chains are beneficial
for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides
were particularly successful in stationary phases with straight-chain alkanesulfonic acid
sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed
pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases
facilitating reversal of elution orders for all analytes.

Keywords: Amino acid / Chiral stationary phase / Ion exchange / Liquid chro-
matography / Peptide / Zwitterion
DOI 10.1002/jssc.201200103

1 Introduction

1.1 Structural properties of Cinchona alkaloids

Quinine (QN) and its pseudo-enantiomer quinidine (QD) are
the most prominent representatives of Cinchona alkaloids, a
group of molecules with anti-malarial properties isolated in
multi-ton scale from the bark of Cinchona ladgeriana. These
natural chiral compounds comprise several interesting struc-
tural features: a vinyl group attached to a sterically demanding

Correspondence: Prof. Dr. Wolfgang Lindner, Institute for Analyti-
cal Chemistry, University of Vienna, Währinger Straße 38, A-1090
Vienna, Austria
E-mail: wolfgang.lindner@univie.ac.at
Fax: +43 1 4277 9523

Abbreviations: AIBN, N,N′-azobisisobutyronitrile; AX, an-
ion exchanger; BSA, N,O-bis(trimethylsilyl)acetamide;
CAD, charged aerosol detector; CSP, chiral stationary
phase; CX, cation exchanger; DAD, diode array detector;
DCM, dichloromethane; DNB, 3,5-dinitrobenzoyl; DNP,
2,4-dinitrophenyl; Htau, homotaurine; IMCI, intramolecular
counterion; MFQ, mefloquine; MWD, multiple wavelength
detector; QD, quinidine; QN, quinine; Tau, taurine; SO,
selector; ZWIX, zwitterion exchanger

1-azabicylo[2.2.2]octane (quinuclidine) moiety, a secondary
hydroxyl group, a �-basic quinoline ring system, two nitrogen
atoms with different basicity, and a total of five stereogenic
centers including the tertiary amino group (Fig. 1).

Investigations regarding the structure [1] and (total) syn-
thesis [2–5] of quinine as well as modifications of the alkaloid
scaffold [6–10] have led to a huge number of publications
since the middle of the 19th century. Among chemists, Cin-
chona alkaloids enjoy a reputation as powerful chiral catalysts.

1.2 Application of Cinchona alkaloid-based chiral

stationary phases for high-performance liquid

chromatography (HPLC)

Today, chiral stationary phase (CSP)-mode HPLC is consid-
ered a very elegant way to achieve analytical and preparative
enantiomer separations. The surface of a solid support ma-
terial (e.g. highly porous spherical silica) is modified with an
enantiomerically pure selector (SO) either by covalent bond-
ing or adsorption (coating). The separation of the “selectand”
(SA) enantiomers is facilitated by the formation of intermedi-
ate diastereomeric SO–SA complexes on the stationary phase.
For charged solutes, the ion pairing/ion exchange principles

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.jss-journal.com
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Figure 1. Structural features of cinchona alkaloids. Quinine
(QN) and quinidine (QD) are pseudo-enantiomers with op-
posite configuration of two out of their five stereocenters.
The vinyl group (A) is often used for immobilization. The
bulky quinuclidine system (B) contains a basic nitrogen
atom (E) that engages in protonation and, subsequently,
ionic interactions. Due to its fixed conformation, it cannot
flip and therefore represents a chiral center. The secondary
OH group at C-9 (C) can act as H-bond donor or metal coordi-
nation site or can be the target of derivatization procedures
carried out under inversion or retention of configuration.
The quinoline moiety (D) is capable of �–� stacking and
steric interaction and contains a methoxy group sometimes
used for immobilization. (Adapted from [20].)

that rely on comparatively strong long-range electrostatic in-
teractions can serve to establish the close contact between a
charged selector and the analyte that gives rise to chiral recog-
nition. Besides the Cinchona-based chiral ion exchangers dis-
cussed in [9], a large number of commercially available CSPs
allow chemists to choose from a legion of elution conditions
to address diverse separation problems. The most popular
ones employ polysaccharides, proteins, crown ethers, macro-
cyclic antibiotics, or low-molecular weight selectors [10].

The first report of a Cinchona alkaloid derivative as chiral
selector in a brush-type silica-supported CSP dates back to
the 1980s [11] and was followed by various structural modifi-
cations that failed to achieve substantial improvements on
the mediocre enantiomer selectivities and low chromato-
graphic resolution values obtained with these early weak
anion exchanger (WAX)-type CSPs. In the 1990s, Lindner
and coworkers reported a carbamoyl modification of the sec-
ondary hydroxyl group at C-9. It significantly enhanced the
enantiorecognition capabilities of a native QN-based WAX
CSP toward diverse chiral acids [10,12], especially when com-
bined with a sterically demanding residue [13].

In 2008, Hoffmann et al. reported the fusion of the
Cinchona alkaloid WAX motif with sulfonic acid-based SCX
structures via a carbamate bond that yielded zwitterion ex-Q2
changer (ZWIX)-type chiral selectors [14]. Employing a non-
aqueous, polar-organic mobile phase with low concentrations
of ionic additives, they managed to overcome the limited
applicability inherent to single-charge ion exchangers and
achieved reasonable to excellent results in separations of chi-
ral acids and bases. In addition, the novel CSPs facilitated
the retention and enantioseparation of amphoteric analytes
such as free amino acids and peptides based on simultaneous
double ion pairing. This challenge cannot be met by the cor-
responding SCX or WAX-type CSPs due to the electrostatic
repulsion exerted on the second charge of the zwitterionic an-
alyte which compromises retention and leads to a complete
loss of enantioselectivity.

1.3 Cinchona alkaloid-based ZWIX-type CSPs with

non-chiral homologous alkanesulfonic acid SCX

motifs

From the results of Hoffmann et al. [14], the existence of
chiral centers in the vicinity of the cyclic SCX site (CSP 10

in Fig. 2) seemed essential for enantiomer separations of
free amino acids. As an extension of the studies conducted
by Hoffmann et al., we synthesized two pseudo-enantiomeric
series of ZWIX-type CSPs by fusion of Cinchona alkaloids QN
and QD with straight-chain aminoalkanesulfonic acids of dif-
ferent chain lengths (CSPs 1–6 in Fig. 2). Our objectives were
(a) the systematic evaluation of the influence of intramolec-
ular distances between anion and cation exchanger sites on
the separation of enantiomers and (b) the elucidation of the
role of a chiral element or a flexible alkyl chain close to the
SCX site.

2 Materials and methods

2.1 CSP synthesis

2.1.1 General information and materials

Reactions were carried out under exclusion of moisture (ni-
trogen atmosphere) and with oven-dried glassware. Technical
grade solvents were obtained from Merck (via VWR, Vienna,
Austria) and HPLC grade solvents and mobile phase addi-
tives (diethylamine, ammonium acetate, formic, and acetic
acid) from Merck, Carl Roth GmbH (Karlsruhe, Germany) or
Sigma-Aldrich (Vienna, Austria). Dichloromethane was dis-
tilled over CaCl2 and water was removed from toluene by
azeotropic distillation before use.

Bulk chemicals and reagents (synthesis grade or higher
purity, from Sigma-Aldrich) were used without further purifi-
cation. Quinine (QN) and quinidine (QD) were from Buch-
ler (Braunschweig, Germany), taurine from EGA Chemie
Gesellschaft (Steinheim, Germany) and 1,4-butanesultone
from Tokyo Chemical Industries (Eschborn, Germany). Sil-
ica gel 60 (40–63 �m) for flash chromatography and N,N′-
azobisisobutyronitrile (AIBN) for selector immobilization
were from Merck. Silica for selector immobilization (Daisogel
120-5P, particle size: 5 �m, pore diameter: 120 Å, surface area:
300 m2/g) was obtained from Daiso Co., Ltd. (Düsseldorf,
Germany) and mercaptopropyl-modified and end-capped in-
house (SH content: 680 �mol/g silica). Reactions were mon-
itored by thin-layer chromatography (TLC). Q3

Nuclear magnetic resonance (NMR) solvents were from
Deutero GmbH (Kastellaun, Germany). NMR experiments
were carried out using a Bruker DRX 400 MHz NMR

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.jss-journal.com
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Figure 2. Chemical structures of chiral stationary phases
(CSPs) 1–10. CSPs 1–6 and CSP 10: zwitterion exchanger-
type (ZWIX); CSPs 7–8: weak anion exchanger-type (WAX);
CSP 9: strong cation exchanger-type (SCX).

spectrometer (Bruker Austria GmbH, Vienna, Austria).
Spectra were recorded in CD3OD or CDCl3 and chemical
shifts are stated in ppm with tetramethylsilane as inter-
nal standard. Solvent signals were used as reference sig-
nals. NMR spectra were processed with SpinWorks 2.2.5
software.

MS experiments were performed using a PE Sciex API
365 triple-quadrupole mass spectrometer equipped with an
electrospray ion source and an Agilent 1100 Series CL/MSD
Trap ion-trap MS system.

Surface coverages (�mol selector/g silica gel) of the CSPs
were determined by elemental analysis (CHNS) of the mod-
ified silica gel using an EA 1108 CHNS-O Element Analyser
(Carlo Erba, now Thermo Scientific). Selector coverage of theQ4
silica was calculated from the nitrogen content (accuracy ac-
cording to manufacturer specifications: ±8%).

The modified silica CSPs were slurry-packed into 150
mm × 4 mm i.d. stainless steel columns (Bischoff, Leonberg,
Germany) in-house.

2.1.2 Synthesis of ZWIX CSPs based on

aminoalkanesulfonic acids and Cinchona alkaloids

Aminopropane- and aminobutanesulfonic acid were pre-
pared from commercially available 1,3-propanesultone and
1,4-butanesultone according to [15] and [16]. The respective
sultone was filled into a reaction flask and cooled with a 3:1
mixture of ice and NaCl. A three-fold excess of NH3 (as a 7N
solution in MeOH) was added slowly while stirring and cool-
ing was continued for 2 h. The ice was allowed to melt and
the mixture was stirred at ambient temperature overnight.
The internal salts of the aminosulfonic acids precipitated as
white solids and were recrystallized from water/ethanol 1:1
(v/v). They were obtained in good yields (>80%) and excellent
purities.

For the fusion of aminosulfonic acids with activated 4-
nitrophenyl ester hydrochlorides of quinine and quinidine
we followed the procedure reported previously by Hoffmann
et al. [14] and illustrated in Fig. 3. The zwitterionic selectors
were purified by flash chromatography on silica gel employ-
ing a stepwise elution with a mixture of dichloromethane
and methanol. The side-product para-nitrophenol was eluted
with dichloromethane (DCM)/MeOH 9:1 (v/v) followed by
a switch to DCM/MeOH 5:1 for the elution of unwanted

alkaloid derivatives. Eventually, the selector was eluted with
DCM/MeOH 1:1 and the fractions containing the main prod-
uct were pooled and concentrated in vacuo. The last eluting
fractions were discarded because they contained the silylation
by-product acetamide which adversely affects the immobiliza-
tion of the selectors.

Product identification was achieved by MS and NMR. Ex-
emplary NMR data are reported for novel selectors “Aminobu-
tanesulfonic acid-QN” (CSP 3) and “Homotaurine-QD”
(CSP 5).

The selectors were immobilized onto mercaptopropyl-
modified silica via a radical addition reaction (radical initia-
tor: AIBN) in boiling MeOH [14] employing the “thio-click”
concept.

The synthetic routes toward weak anion exchanger-type
CSPs 7 and 8 were carried out in analogy to the published
procedure for the preparation of carbamoylated derivatives
of Cinchona alkaloids [13]. The synthesis procedures for the
strong cation exchanger-type CSP 9 and the reference zwitte-
rion exchanger-type CSP 10 were reported previously [14,17].

CSP 1—based on selector N-[[[(8S,9R)-6′-methoxycinchonan-
9-yl]oxy]carbonyl]-aminoethanesulfonic acid (“Tau-QN”):

Light yellow crystals, 86% yield.
MS (ESI, positive): 476.4 [M + H]+, 498.4 [M + Na]+. MS

(ESI, negative): 474.2 [M − H]̄.
Elemental analysis of modified silica gel: 250 �mol SO/g

silica.

CSP 2—based on selector N-[[[(8S,9R)-6′-methoxycinchonan-
9-yl]oxy]carbonyl]-aminopropanesulfonic acid (“Homotau-
QN”):

Light yellow crystals, 70% yield.
MS (ESI, positive): 490.2 [M + H]+; MS (ESI, negative):

488.0 [M − H]̄.
Elemental analysis of modified silica gel: 280 �mol SO/g

silica.

CSP 3—based on selector N-[[[(8S,9R)-6′-methoxycinchonan-
9-yl]oxy]carbonyl]-aminobutanesulfonic acid (“Aminobutane-
sulfonic acid-QN”):

Light yellow crystals, 40% yield.
1H-NMR [CD3OD]: � = 7.88 (d, 1H), 7.48 (d, 1H), 7.39

(m, 2H), 6.69 (s, 1H), 5.74–5.62 (m, 1H), 5.04–4.98 (d, 1H),
4.95–4.90 (d, 1H), 3.93 (s, 3H), 3.62–3.57 (s, 1H), 3.54–3.48 (s,
1H), 3.15–3.04 (m, 3H), 3.04–2.98 (m, 1H), 2.87–2.83 (d, 1H),

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.jss-journal.com
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Figure 3. Synthetic route to CSPs 1–6. Conditions: (A) 4-nitrophenyl chloroformate, toluene(dest), r.t., 24 h. (B) Aminoalkanesulfonic acid,
BSA, CH2Cl2dest, reflux, 24 h. (c) AIBN, mercaptopropylsilane-modified silica gel, MeOHHPLC, reflux, 5 h.

2.78–2.68 (m, 3H), 2.61 (s, 1H), 2.10–1.90 (m, 3H), 1.83–1.48
(m, 6H).

MS (ESI, negative): 502.8 [M − H]−.
Elemental analysis of modified silica gel: 254 �mol SO/g

silica.

CSP 4—based on selector N-[[[(8R,9S)-6′-methoxycinchonan-
9-yl]oxy]carbonyl]-aminoethanesulfonic acid (“Tau-QD”):

Yellow crystals, 58% yield.
MS (ESI, positive): 476.2 [M + H]+, 498.2 [M + Na]+,

951.4 [2M + H]+, 973.4 [2M + Na]+.
Elemental analysis of modified silica gel: 150 �mol SO/g

silica.

CSP 5—based on selector N-[[[(8R,9S)-6′-methoxycinchonan-
9-yl]oxy]carbonyl]-aminopropanesulfonic acid (“Homotau-
QD”):

Yellow crystals, 50% yield.
1H-NMR [CD3OD]: � = 8.79 (d, 1H), 7.88 (d, 1H), 7.81 (d,

1H), 7.55 (m, 2H), 7.00 (s, 1H), 6.11–6.0 (m, 1H), 5.2–5.1 (m,
2H), 3.94 (s, 3H), 3.76 (m, 1H), 3.49 (m, 3H), 3.27 (s, 1H),
3.13 (m, 2H), 2.84–2.61 (m, 3H), 2.31 (m, 1H), 2.08–1.70 (m,
5H), 1.36 (m, 1H).

MS (ESI, negative): 488.1 [M − H]−.
Elemental analysis of modified silica gel: 188 �mol SO/g

silica.

CSP 6—based on selector N-[[[(8R,9S)-6′-methoxycinchonan-
9-yl]oxy]carbonyl]-aminobutanesulfonic acid (“Aminobutane-
sulfonic acid-QD”):

Yellow crystals, 20 % yield.
MS (ESI, negative): 502.6 [M − H]−.
Elemental analysis of modified silica gel: 187 �mol SO/g

silica.

CSP 7—based on selector O9-N-butyl carbamoylated quinine
(“N-Bu-CQN”):

White crystals, 55 % yield.
MS (ESI, positive): 424.8 [M + H]+.
Elemental analysis of modified silica gel: 281 �mol SO/g

silica.

CSP 8—based on selector O9-N-butyl carbamoylated quini-
dine (“N-Bu-CQD”):

Off-white solid, 80 % yield.
MS (ESI, positive): 424.6 [M + H]+.

Elemental analysis of modified silica gel: 252 �mol SO/g
silica.

2.2 CSP evaluation

2.2.1 Instrumentation

HPLC experiments were performed at 25�C using an Agilent
1100 HPLC system equipped with a binary pump and a mul-
tiple wavelength detector (MWD) and an Agilent 1200 HPLC
system (Agilent, Waldbronn, Germany) with a quaternary
pump and a diode array detector (DAD) with detection wave-
length set to 254 nm for aromatic analytes. Non-UV active
compounds were detected using a Corona Charged Aerosol
Detector (ESA Biosciences, Inc., now a part of Dionex, Sun-
nyvale, CA, USA).

Void times were determined by the injection of 10 �L
of acetone (MWD, DAD) or toluene (CAD) diluted with
methanol (1:1, v/v).

2.2.2 Analytes

Acidic (Table 2) and basic analytes (Table 3) used in this study
were either commercially available or synthesized in-house
according to established procedures (amino acid derivatives,
modified mefloquine). Zwitterionic analytes (Table 4) were
commercially available (Bachem, Weil am Rhein, Germany),
custom synthesized (PiChem, Graz, Austria and Genecust
Europe, Dudelange, Luxembourg), or gifts from research
partners.

Analytes were dissolved in methanol at concentrations of
ca. 1 mg/mL. If available, single enantiomers were injected
to determine elution orders. Injection volumes were between
5 (CAD detection) and 20 �L. Elution was performed in iso-
cratic mode with methanol as the bulk solvent and 50 mM
formic acid and 25 mM diethylamine as mobile phase addi-
tives corresponding to an apparent pH of 5.6.

Data acquisition and processing were achieved with Ag-
ilent ChemStation software and evaluation was carried out
using Microsoft Excel.

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.jss-journal.com

Wernisch
Durchstreichen

Wernisch
Ersatztext
a

Wernisch
Durchstreichen

Wernisch
Ersatztext
b



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

UNCORRECTED
PROOF

J. Sep. Sci. 2012, 00, 1–13 Liquid Chromatography 5

Table 1. Aminosulfonic acid-Cinchona ZWIX-type CSPs and reference WAX-type and SCX-type CSPs Q5

CSP # Abbreviation SCX site WAX site SO loading (�mol SO/g silica)

1 Tau-QN Taurine Quinine 219
2 Htau-QN Homotaurine (aminopropanesulfonic acid) Quinine 280
3 ABSA-QN Aminobutanesulfonic acid Quinine 254
4 Tau-QD Taurine Quinidine 150
5 Htau-QD Homotaurine (aminopropanesulfonic acid) Quinidine 188
6 ABSA-QD Aminobutanesulfonic acid Quinidine 187
7 N-Bu-CQN – N-Butyl carbamoylated QN 281
8 N-Bu-CQD – N-Butyl carbamoylated QD 252
9 ACHSA-SCX (S,S)-trans-2-(N-4-allyloxy-3,5-dichlorobenzoyl)-ACHSA – 200
10 ACHSA-QN (1S,2S)-ACHSA Quinine 215

ACHSA, aminocyclohexanesulfonic acid.

Table 2. Acidic analytes Q6

Analyte CSP # k2 � RS CSP # k2 � RS

Fmoc-Phe CSP 1 1.08 1.31 1.69 CSP 4 0.54 1.33 1.52
CSP 2 1.79 1.30 2.80 CSP 5 0.71 1.28 1.52
CSP 3 1.86 1.33 2.74 CSP 6 0.59 1.34 1.50
CSP 7 3.99 1.47 5.34 CSP 8 5.88 1.42 5.11

Fmoc-Ser CSP 1 0.98 1.35 1.86 CSP 4 0.55 1.54 1.89
CSP 2 1.69 1.30 2.81 CSP 5 0.66 1.34 1.5
CSP 3 1.77 1.31 2.39 CSP 6 0.54 1.38 1.36
CSP 7 3.24 1.37 4.35 CSP 8 4.55 1.35 3.47

Z-Phe CSP 1 0.56 1.16 0.62 CSP 4 0.28 1.23 0.65
CSP 2 0.99 1.14 1.17 CSP 5 0.39 1.19 0.60
CSP 3 1.07 1.15 1.22 CSP 6 0.31 1.25 0.69
CSP 7 2.38 1.30 3.40 CSP 8 3.25 1.21 2.70

Z-β-Phe CSP 1 0.28 1.48 1.28 CSP 4 0.15 1.00 0.00
CSP 2 0.76 1.90 3.99 CSP 5 0.20 1.62 1.20
CSP 3 0.41 1.34 1.52 CSP 6 0.17 1.59 1.03
CSP 7 CSP 8

Z-Pro CSP 1 0.25 1.00 0.00 CSP 4
CSP 2 0.41 1.00 0.00 CSP 5
CSP 3 0.48 1.00 0.00 CSP 6
CSP 7 1.06 1.00 0.00 CSP 8

Ac-Phe CSP 1 0.30 1.45 1.40 CSP 4
CSP 2 0.54 1.40 2.29 CSP 5
CSP 3 0.65 1.39 2.12 CSP 6
CSP 7 1.49 1.53 4.65 CSP 8

Ac-Pro CSP 1 0.15 1.16 0.32 CSP 4
CSP 2 1.88 1.87 6.77 CSP 5
CSP 3 0.36 1.00 0.00 CSP 6
CSP 7 CSP 8

Ac-Trp CSP 1 0.93 1.75 3.48 CSP 4 0.52 1.96 3.53
CSP 2 0.77 1.37 2.14 CSP 5 0.69 1.87 3.76
CSP 3 1.70 1.65 4.86 CSP 6 0.49 1.64 2.28
CSP 7 2.41 1.44 4.54 CSP 8 3.95 1.64 6.69

DNB-Leu CSP 1 CSP 4 1.33 6.00 10.08
CSP 2 CSP 5 2.14 5.71 13.01
CSP 3 CSP 6 1.62 5.78 11.39
CSP 7 CSP 8 23.25 9.45 26.08
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Table 2. Continued

Analyte CSP # k2 � RS CSP # k2 � RS

DNB-Glu CSP 1 4.20 3.95 8.44 CSP 4 1.73 3.93 10.39
CSP 2 11.48 4.70 16.91 CSP 5 3.48 3.99 11.77
CSP 3 10.71 4.10 15.07 CSP 6 2.53 4.23 11.71
CSP 7 CSP 8

DNB-Asp CSP 1 4.90 1.88 4.41 CSP 4 2.18 1.34 2.99
CSP 2 12.00 1.62 n.d. CSP 5 4.01 1.23 1.98
CSP 3 11.87 1.40 3.66 CSP 6 2.74 1.32 2.73
CSP 7 CSP 8

DNB-Phe CSP 1 7.62 5.36 9.55 CSP 4 4.13 6.61 16.31
CSP 2 15.29 5.67 18.29 CSP 5 5.09 4.87 15.19
CSP 3 12.95 4.73 n.d. CSP 6 4.22 5.49 12.79
CSP 7 CSP 8

DNP-Glu CSP 1 2.48 1.31 1.83 CSP 4 1.01 1.25 1.85
CSP 2 6.14 1.25 2.78 CSP 5 1.81 1.13 1.11
CSP 3 6.53 1.17 1.90 CSP 6 1.37 1.14 1.17
CSP 7 CSP 8

DNP-Phe CSP 1 CSP 4 1.13 1.35 2.75
CSP 2 CSP 5 1.69 1.24 2.36
CSP 3 CSP 6 1.35 1.27 2.20
CSP 7 CSP 8

DNP-Asp CSP 1 3.62 1.43 2.44 CSP 4 1.33 1.34 2.74
CSP 2 10.04 1.47 5.19 CSP 5 2.67 1.23 1.87
CSP 3 11.57 1.38 3.88 CSP 6 1.87 1.25 2.11
CSP 7 CSP 8

Dichlorprop CSP 1 0.56 1.36 1.34 CSP 4 0.32 1.96 2.49
CSP 2 1.08 1.25 2.21 CSP 5 0.49 1.64 2.56
CSP 3 1.26 1.21 1.77 CSP 6 0.37 1.65 1.95
CSP 7 2.97 1.33 3.95 CSP 8 3.55 1.22 3.08

Mecoprop CSP 1 0.33 1.28 0.87 CSP 4 0.18 1.68 1.34
CSP 2 0.64 1.20 1.44 CSP 5 0.28 1.44 1.25
CSP 3 0.78 1.16 1.14 CSP 6 0.21 1.43 0.89
CSP 7 1.93 1.19 2.06 CSP 8 2.49 1.14 1.85

Conditions: CSPs 1–8: 150 mm × 4 mm i.d., 5 �m material, selector coverage = 150–280 �mol SO/g silica. Mobile phase: methanol, 50 mM
formic acid, 25 mM diethylamine, 1 mL/min, 25�C. Detection: UV @ 254 nm, CAD (non-UV active analytes). k2: retention factor of second
eluting enantiomer.

3 Results and discussion

In this contribution, we present the synthesis of six chi-
ral zwitterion exchange (ZWIX) selectors and the compre-
hensive evaluation of the corresponding brush-type chi-
ral stationary phases (CSPs) for their enantioseparation
performance toward chiral acids, bases, and ampholytes
(Tables 2–4).

Figure 2 depicts all CSPs used in this study: ZWIX CSPs
1–3 are based on quinine (QN); CSPs 4–6 represent their
pseudo-enantiomeric quinidine (QD) analogs. The two series
of selectors are homologous with regard to their alkanesul-
fonic acid side chains.

WAX-type CSPs 7 (QN-based) and 8 (QD-based) were
synthesized as control phases to evaluate the performance of
ZWIX CSPs in the enantioseparations of acids and to verify

the necessity of the presence of the sulfonic acid SCX moi-
ety for separations of bases and ampholytes. SCX-type CSP
9 was used as a reference CSP for chiral separations of basic
analytes. ZWIX-type CSP 10, which incorporates as SCX site
(1S,2S)-aminocyclohexanesulfonic acid—a chiral cyclic ana-
log of taurine—was expected to aid the elucidation of interac-
tion increments contributing to the overall chiral recognition
concept of SCX-WAX (ZWIX)-type selectors and CSPs.

3.1 Synthesis of SCX-WAX (ZWIX)-type selectors by

fusion of aminoalkanesulfonic acids and

Cinchona alkaloids

CSPs 1 and 4 have been described briefly before [14] but it
was reasonable to expect a systematic evaluation of CSPs 1–6
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

UNCORRECTED
PROOF

J. Sep. Sci. 2012, 00, 1–13 Liquid Chromatography 7

Table 3. Basic analytes

Analyte CSP # k2 � RS CSP # k2 � RS

Nitresolve CSP 1 1.61 1.01 n.d. CSP 4 1.17 1.00 0.00
CSP 2 1.77 1.01 n.d. CSP 5 1.26 1.00 0.00
CSP 3 0.73 1.00 n.d. CSP 6 1.47 1.00 0.00
CSP 9 11.36 1.02 n.d.

1 CSP 1 1.01 1.24 1.98 CSP 4 0.69 1.20 1.38
CSP 2 1.09 1.23 2.24 CSP 5 0.70 1.18 1.05
CSP 3 0.45 1.15 0.66 CSP 6 0.78 1.06 0.47
CSP 9 7.43 1.16 2.85

(+/−) Ephedrin CSP 1 0.85 1.08 n.d. CSP 4 0.59 1.06 n.d.
CSP 2 0.93 1.00 n.d. CSP 5 0.63 1.06 n.d.
CSP 3 0.42 1.11 n.d. CSP 6 0.81 1.09 n.d.
CSP 9 5.58 1.23 n.d.

Ephedrin HCl CSP 1 0.85 1.00 0.00 CSP 4 0.61 1.00 0.00
CSP 2 0.95 1.00 0.00 CSP 5 0.65 1.00 0.00
CSP 3 0.42 1.00 0.00 CSP 6 0.81 1.00 0.00
CSP 9 5.61 1.05 1.16

Propranolol CSP 1 1.29 1.00 0.00 CSP 4 0.95 1.00 0.00
CSP 2 1.44 1.00 0.00 CSP 5 1.02 1.00 0.00
CSP 3 0.65 1.00 0.00 CSP 6 1.21 1.00 0.00
CSP 9 8.68 1.00 0.00

2 CSP 1 1.83 1.34 3.12 CSP 4 1.57 1.50 4.17
CSP 2 1.76 1.11 1.42 CSP 5 1.32 1.09 0.68
CSP 3 0.75 1.00 0.00 CSP 6 1.42 1.00 0.00
CSP 9 15.33 1.27 5.17

3 CSP 1 0.20 1.00 0.00 CSP 4 0.11 1.00 0.00
CSP 2 0.30 1.00 0.00 CSP 5 0.13 1.00 0.00
CSP 3 0.28 1.00 0.00 CSP 6 0.10 1.00 0.00
CSP 9 0.02 1.00 0.00

4 CSP 1 1.09 1.20 1.72 CSP 4 0.79 1.23 1.82
CSP 2 1.20 1.17 1.86 CSP 5 0.79 1.15 1.00
CSP 3 0.52 1.10 0.57 CSP 6 0.92 1.09 0.65
CSP 9 7.15 1.10 2.07

5 CSP 1 1.36 1.04 0.44 CSP 4 0.98 1.00 0.00
CSP 2 1.53 1.09 1.04 CSP 5 1.06 1.00 0.00
CSP 3 0.69 1.00 0.00 CSP 6 1.23 1.00 0.00
CSP 9 17.53 1.61 9.77

6 CSP 1 0.51 1.00 0.00 CSP 4 0.41 1.00 0.00
CSP 2 0.57 1.19 0.86 CSP 5 0.41 1.00 0.00
CSP 3 0.23 1.00 0.00 CSP 6 0.49 1.00 0.00
CSP 9 4.77 1.08 1.25

QN/QD CSP 1 1.88 1.11 n.d. CSP 4 1.84 1.11 n.d.
CSP 2 2.06 1.04 n.d. CSP 5 1.64 1.02 n.d.
CSP 3 1.02 1.04 n.d. CSP 6 1.88 1.03 n.d.
CSP 9 23.38 4.30 n.d.

tBu-Propranolol CSP 1 1.18 1.00 0.00 CSP 4 0.88 1.00 0.00
CSP 2 1.33 1.00 0.00 CSP 5 0.95 1.00 0.00
CSP 3 0.61 1.00 0.00 CSP 6 1.12 1.00 0.00
CSP 9 7.96 1.03 0.59
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Table 3. Continued

Analyte CSP # k2 � RS CSP # k2 � RS

7 CSP 1 1.45 1.18 n.d. CSP 4 1.07 1.07 n.d.
CSP 2 1.43 1.07 n.d. CSP 5
CSP 3 0.77 1.07 n.d. CSP 6 1.14 1.02 n.d.
CSP 9 48.39 5.02 n.d.

Clenbuterol HCl CSP 1 0.94 1.00 0.00 CSP 4 0.65 1.00 0.00
CSP 2 1.09 1.00 0.00 CSP 5 0.73 1.00 0.00
CSP 3 0.50 1.00 0.00 CSP 6 0.89 1.00 0.00
CSP 9 6.65 1.16 3.11

Analytes: 1: (R,S)/(S,R)-N-undecenoyl-MFQ; 2: (R,S)/(S,R)-MFQ HCl, 3: (R,S)/(S,R)-N-allyl-MFQ HCl, 4: (R,S)/(S,R)-N-allyl-MFQ, 5: (R,S)/(S,R)-
tert-butyl-carbamoylated MFQ, 6: (R,S)/(S,R)-N-allyl-MFQ carbamate, and 7: O9-tert-butyl carbamoylated QN/QD.
Conditions: CSPs 1–9: 150 mm × 4 mm i.d., 5 �m material, selector coverage = 150–280 �mol SO/g silica. Mobile phase: methanol, 50 mM
formic acid, 25 mM diethylamine, 1 mL/min, 25�C. Detection: UV @ 254 nm. k2: retention factor of second eluting enantiomer.

to help our understanding of the underlying chiral recogni-
tion mechanism. Indisputably, the intramolecular distances
of anion and cation exchanger sites of the zwitterionic se-
lectors and the conformational flexibilities residing in the
alkyl spacer represent increments modifying the selector mo-
tif and its conformational preferences and, thereby, poten-
tially, enantiomer distinction on ZWIX CSPs.

While taurine is available commercially, aminopropane-
sulfonic acid and aminobutanesulfonic acid had to be pre-
pared from 1,3-propanesultone and 1,4-butanesultone via
ring opening with NH3 according to [15] and [16].

To increase solubility and thereby optimize the yield of
the crucial fusion step, the aminosulfonic acids were sily-
lated with N,O-bis(trimethylsilyl)acetamide (BSA) in dried
boiling dichloromethane. Fusion with the respective activated
Cinchona alkaloid 4-nitrophenyl ester hydrochlorides as de-
scribed by Hoffmann et al. [14] yielded the carbamoylated
zwitterionic selectors (Fig. 3).

Yields decreased from taurine- to aminobutanesulfonic
acid-based selectors even though the solubility of the longer
aminoalkanesulfonic acids in the reaction solvent is higher.
We believe that the explanation is to be found in the increas-
ing basicity of the NH2 group in the order taurine < homo-
taurine < aminobutanesulfonic acid. It encourages a higher
level of internal salt formation; it decreases nucleophilicity
and thus affects the nucleophilic attack on the activated alka-
loid ester.

Figure 3 also illustrates the preparation of CSPs 1–
6 by immobilization of the selectors onto mercaptopropyl-
modified silica in a radical reaction. The covalent anchoring
strategy is used to ensure the compatibility of the CSPs with a
broad range of commonly used chromatographic conditions.

We applied exactly the same synthesis procedure for the
two series of pseudo-enantiomeric CSPs but product yields
and surface coverages were found to be higher for QN-based
selectors. In this context it must be noted again that, strictly
speaking, the QN and QD intermediates are diastereomers
(not enantiomers). Due to different steric effects arising in
the course of the selector synthesis and the thio-click immo-

bilization, the reactive center and the vinyl group of the QD
intermediate are less accessible compared to those of the QN
intermediate.

3.2 CSP evaluation

3.2.1 General remarks

As summarized in Table 1, selector coverages of CSPs 1–6
range from 150 to 280 �mol/g silica. Such a broad distribu-
tion could be suspected to compromise a comparative CSP
study. However, our results demonstrate clearly that while
retention (reflected in the retention factor k) is strongly de-
pendent on the number of interaction sites available, lower
selector loading does not impair the main parameter of inter-
est of this study, the enantioselectivity (� value).

We used a previously optimized polar-organic mobile
phase with methanol as the bulk solvent and a 2:1 ratio of
acidic and basic additives (50 mM formic acid, 25 mM di-
ethylamine) [18] corresponding to slightly acidic conditions
(apparent pH 5.6). It facilitates protonation of the quinucli-
dine nitrogen (WAX site) while providing sufficient elution
power for isocratic elution and permitting both UV and CAD
detection. The polar aprotic solvent acetonitrile can be of value
in method development on ZWIX CSPs but the use of water
is not advisable due to an increased solvation effect on the
SCX and WAX sites compared to methanol that leads to de-
creasing retention factors and ultimately to complete loss of
enantioselectivity.

Overall enantioselectivity of Cinchona alkaloid-based
CSPs originates from multiple intermolecular interactions
occurring simultaneously between the respective functional
groups of selector and selectand. Among them are electro-
static, H bond-type, polar, aromatic (�–�) and steric as well
as Van der Waals (dispersive) interactions [13]. Eventually,
chiral recognition is achieved by the fixed arrangement of the
interaction sites in the selector.
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Table 4. Amphoteric (zwitterionic) analytes

Analyte CSP # k2 � RS CSP # k2 � RS

Phe CSP 1 0.76 1.04 0.42 CSP 4 0.46 1.00 0.00
CSP 2 1.00 1.12 1.14 CSP 5 0.45 1.00 0.00
CSP 3 0.62 1.11 0.63 CSP 6 0.44 1.00 0.00
CSP 10 1.47 1.18 1.36

Trp CSP 1 2.18 1.53 4.31 CSP 4 1.10 1.39 3.01
CSP 2 3.55 1.86 7.95 CSP 5 1.25 1.50 3.41
CSP 3 1.98 1.67 5.04 CSP 6 1.06 1.27 1.75
CSP 10 4.12 1.66 6.12

Tyr CSP 1 0.97 1.07 0.46 CSP 4 0.50 1.00 0.00
CSP 2 1.34 1.16 1.35 CSP 5 0.63 1.00 0.00
CSP 3 0.87 1.15 0.77 CSP 6 0.55 1.00 0.00
CSP 10 1.82 1.10 0.79

β-Phe CSP 1 1.35 1.00 0.00 CSP 4 1.01 1.09 0.78
CSP 2 1.50 1.00 0.00 CSP 5 0.75 1.00 0.00
CSP 3 0.93 1.07 0.55 CSP 6 0.85 1.00 0.00
CSP 10

β-homo-Phe CSP 1 1.53 1.00 0.00 CSP 4
CSP 2 1.68 1.00 0.00 CSP 5
CSP 3 1.00 1.00 0.00 CSP 6
CSP 10

�-Me-Phe CSP 1 0.03 1.00 0.00 CSP 4 0.47 1.25 1.37
CSP 2 1.05 1.32 2.50 CSP 5 0.48 1.28 1.31
CSP 3 0.63 1.32 1.78 CSP 6 0.46 1.23 1.02
CSP 10 1.09 1.12 0.59

�-Me-Trp CSP 1 3.22 2.42 10.34 CSP 4 1.68 2.35 8.38
CSP 2 6.73 2.90 8.79 CSP 5 2.30 2.38 5.17
CSP 3 3.20 2.30 5.21 CSP 6 1.80 1.83 3.28
CSP 10 6.34 3.13 10.03

�-Me-DOPA CSP 1 1.57 1.44 3.36 CSP 4 0.88 1.57 3.51
CSP 2 2.28 1.54 4.84 CSP 5 0.85 1.42 2.39
CSP 3 1.44 1.53 3.28 CSP 6 0.84 1.36 1.84
CSP 10

5-OH-Trp CSP 1 CSP 4 1.33 1.32 2.71
CSP 2 CSP 5 1.51 1.47 3.46
CSP 3 CSP 6 1.35 1.29 1.95
CSP 10

DOPA CSP 1 1.46 1.00 0.00 CSP 4 0.72 1.00 0.00
CSP 2 1.96 1.21 2.03 CSP 5 0.73 1.10 0.56
CSP 3 1.21 1.21 1.50 CSP 6 0.74 1.00 0.00
CSP 10 2.26 2.42 1.07

p-Br-Phe CSP 1 1.02 1.00 0.00 CSP 4 0.66 1.00 0.00
CSP 2 1.35 1.08 0.71 CSP 5 0.62 1.00 0.00
CSP 3 0.83 1.09 0.61 CSP 6 0.59 1.00 0.00
CSP 10 2.14 1.11 0.63

p-Cl-Phe CSP 1 0.90 1.00 0.00 CSP 4 0.58 1.00 0.00
CSP 2 1.18 1.08 0.67 CSP 5 0.55 1.00 0.00
CSP 3 0.74 1.09 0.58 CSP 6 0.53 1.00 0.00
CSP 10 1.87 1.13 0.92

Pro-Phe CSP 1 3.52 1.89 8.31 CSP 4 2.00 2.37 9.24
CSP 2 4.22 2.01 9.63 CSP 5 2.54 3.10 10.63
CSP 3 2.32 2.08 7.55 CSP 6 1.86 2.26 7.42
CSP 10
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Table 4. Continued

Analyte CSP # k2 � RS CSP # k2 � RS

Ala-Phe CSP 1 2.71 1.75 7.15 CSP 4 1.45 2.34 8.13
CSP 2 3.27 1.77 7.65 CSP 5 1.67 2.60 8.33
CSP 3 1.88 1.95 6.52 CSP 6 1.38 2.09 6.14
CSP 10 2.39 1.28 2.08

Gly-Phe CSP 1 2.54 1.33 3.47 CSP 4 1.29 1.68 5.11
CSP 2 3.00 1.35 4.07 CSP 5 1.35 1.76 4.67
CSP 3 1.65 1.49 3.93 CSP 6 1.18 1.60 3.69
CSP 10 3.43 1.11 0.72

Gly-Val CSP 1 1.81 1.13 0.95 CSP 4 1.20 1.20 0.48
CSP 2 2.05 1.17 1.94 CSP 5 0.86 1.30 1.03
CSP 3 1.27 1.27 1.60 CSP 6 0.93 1.27 1.21
CSP 10 2.49 1.17 0.98

Gly-Leu CSP 1 1.68 1.00 0.00 CSP 4 1.13 1.00 0.00
CSP 2 1.84 1.00 0.00 CSP 5 0.77 1.19 0.51
CSP 3 1.12 1.00 0.00 CSP 6 0.83 1.13 0.58
CSP 10 2.37 1.00 0.00

Ala-Val CSP 1 1.69 1.28 1.67 CSP 4 1.17 1.29 0.74
CSP 2 1.99 1.36 2.85 CSP 5 0.80 1.60 1.06
CSP 3 1.28 1.45 2.25 CSP 6 0.90 1.37 1.41
CSP 10 1.72 1.26 1.71

Gly-Trp CSP 1 4.18 1.00 0.00 CSP 4
CSP 2 5.16 2.13 7.21 CSP 5
CSP 3 6.88 2.52 7.98 CSP 6
CSP 10

Gly-Pro CSP 1 1.93 1.07 0.31 CSP 4
CSP 2 1.91 1.47 1.09 CSP 5
CSP 3 1.15 1.73 1.47 CSP 6
CSP 10 4.46 1.63 2.44

Pro-Gly CSP 1 2.21 1.08 0.74 CSP 4
CSP 2 2.56 1.09 0.86 CSP 5
CSP 3 1.57 1.10 0.68 CSP 6
CSP 10

Gly-Thr CSP 1 2.42 1.30 2.37 CSP 4
CSP 2 2.85 1.30 2.45 CSP 5
CSP 3 1.81 1.40 2.13 CSP 6
CSP 10 4.24 1.56 3.55

Gly-Asp CSP 1 3.74 1.18 2.13 CSP 4
CSP 2 5.33 1.20 2.00 CSP 5
CSP 3 3.16 1.21 1.80 CSP 6
CSP 10 4.48 1.00 0.00

Conditions: CSPs 1–6, CSP 10: 150 mm × 4 mm i.d., 5 �m material, selector coverage = 150–280 �mol SO/g silica. Mobile phase: methanol,
50 mM formic acid, 25 mM diethylamine, 1 mL/min, 25�C. Detection: UV @ 254 nm, CAD (non-UV active analytes). k2: retention factor of
second eluting enantiomer.

To study the influence of the homologous aminosulfonic
acid side chains and the effect of the pseudo-enantiomeric
alkaloid scaffolds of CSPs 1–6, we evaluated the enantiomer
separations of acids (Table 2), bases (Table 3), and ampholytes
(Table 4):

For a large number of acidic analytes, enantiomer se-
lectivities (�) of ZWIX CSPs were comparable and in some
cases even superior to those of dedicated anion exchanger-

type CSPs 7 and 8 (Table 2 and Fig. 2). The ZWIX CSPs
showed the particularly high enantiomer recognition capa-
bilities toward DNB-protected amino acids that have been
recognized before in structurally related WAX-type CSPs [13].
This is understandable because they also comprise the well-
established carbamate moiety that engages in H bond donor–
acceptor interactions with the amide group of this analyte
class.

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.jss-journal.com
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In contrast to this, their overall performance in the sep-
aration of basic analytes was rather weak and did not match
that of the dedicated strong cation exchanger-type CSP 9
(Table 3). The reasons for this are most likely the lack of
(a) a chiral element in the vicinity of the cation exchanger
site and (b) a �-acidic aryl system near the amide group
of CSPs 1–6. However, more successful separation perfor-
mance with regard to basic analytes might be feasible after
mobile phase optimization (type of bulk solvent and addi-
tives, pH adjustment) but this was outside the scope of this
study.

Generally, retention factors for single-charge analytes
were significantly lower on ZWIX CSPs than on the ref-
erence WAX or SCX CSPs. This can be attributed to an
intramolecular counterion (IMCI) effect which is exerted
on the analyte by the functional group of the selector that
bears a charge of the same name and leads to shortened
retention times of acidic and basic analytes due to partial
repulsion.

As can be deducted from Table 4, the enantiomers of am-
photeric molecules—the main conceptual target analytes of
ZWIX CSPs—could be separated especially well if they com-
prised aromatic systems which are capable of engaging in
�–� interactions with the aromatic quinoline system of the
selectors. Un-derivatized Phe, Tyr, and Trp were typical exam-
ples for successful enantiomer separations of proteinogenic
amino acids on ZWIX CSPs 1–6, while the enantiomers of
aliphatic ones such as Ala, Leu, or Val eluted unresolved (data
not shown). Strikingly, enantiomer distinction of �-methyl
substituted amino acids was more eminent than that of their
un-substituted analogs on all aminosulfonic acid-Cinchona
ZWIX-type CSPs.

3.2.2 Influence of the distance of SCX and WAX

sites on enantioselectivity

The two pseudo-enantiomeric series of CSPs (CSPs 1–3 and
4–6) are characterized by a “non-chiral” variation of the alkyl
chain connecting the sulfonic acid SCX site to the alkaloid
WAX part of the selector molecule (Fig. 2). The number of
carbon atoms in the side chain increases from 2 (taurine)
via 3 (aminopropanesulfonic acid) to 4 (aminobutanesulfonic
acid), corresponding to increasing distances between the an-
ionic and cationic sites of the chiral selectors.

Obviously, this structural modification does not intro-
duce an additional chiral center into the selector but mod-
ifies its flexibility and capacity for Van der Waals interac-
tions. It can therefore be expected to influence the qual-
ity of enantioseparations reflected in the selectivity coef-
ficient � while the underlying chiral recognition mecha-
nism remains essentially unchanged (no reversal of elution
orders).

Evaluation of the enantioseparation characteristics re-
vealed that the effect of the alkyl chain length is of mi-
nor importance for acids, bases and un-protected (free)
amino acids. For acidic and basic analytes we observed
only irregular or slightly decreasing selectivities in the order

Figure 4. Separation of free amino acid Trp on ZWIX-type CSPs.
On quinine-based CSPs 1–3, the D enantiomers of tryptophan
elute before their L counterparts, while on quinidine-based CSPs
4–6, the D enantiomers elute first (not shown). The enhanced
flexibility of the aminosulfonic acid side chains of CSPs 2/3 com-
pared to CSP 1 is reflected in higher enantioselectivity values.
Chromatographic conditions: CSPs 1–3: 150 mm × 4 mm i.d., 5
�m material. Mobile phase: methanol (50 mM formic acid, 25 mM
diethylamine), 1 mL/min, 25�C. Detection: UV (254 nm).

taurine-QN > homotaurine-QN > aminobutanesulfonic acid-
QN while for amphoteric solutes we found either irregular
or slightly increasing selectivities. In most cases however,
no significant difference in enantioselectivity was observed
between CSPs 1–3 and 4–6 and no general connection be-
tween the number of bonds separating the SCX and WAX
interactions sites of the ZWIX selector and its enantiomer
separation capabilities could be established. As an example,
Fig. 4 depicts the separation of Trp on CSPs 1–3. In addition,
conflicting trends were observed for individual analytes on
QN- and QD-based CSPs. This confirmed our presupposi-
tion that the increase in non-polar interaction areas provided
by the longer alkyl chains of CSPs 2/4 and 3/6 does not suf-
fice to induce a significant change in enantiomer selectivity
because the most influential structural features contributing
to chiral recognition—the polar carbamate moiety, the aro-
matic quinoline residue, and the highly asymmetric, spatially
demanding quinuclidine ring system—reside within the al-
kaloid scaffold.

In contrast to the statement made above, for all-L and
all-D peptide enantiomers we found an increase in enan-
tiomer selectivities of >10% when comparing the selectivi-
ties of CSP 1 and CSP 3. Also for QD-based selectors, at least
one of the CSPs with longer aminosulfonic acid chains al-
ways performed better than CSP 4. These results suggest
that a more flexible alkyl spacer and its potential to en-
gage in Van der Waals interactions with the amino acid side
chains are of advantage for successful separations of small
peptides. Recent experiments with homologous series of
oligopeptides revealed the versatility of CSPs 1–6 not only for
enantiomer separations but also for separations of sequential

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.jss-journal.com
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and conformational stereoisomers of peptides (publication in
preparation).

3.2.3 Variations of the SCX motif (straight chain

and cyclic SCX sites)

The chiral selectors of CSPs 1 and 10 represent structural
analogs (Fig. 2). While CSP 1 is prepared by the fusion of
QN with achiral taurine, CSP 10 is derived from its chiral
cyclic relative (1S,2S)-trans-aminocyclohexanesulfonic acid.
The higher enantiomer selectivities achieved with CSP 10
for chiral acids (Table 2) and bases (Table 3) compared to
CSP 1 led to the conclusion that the sterically demanding,
rigid side chain of CSP 10 contributes strongly to the over-
all chiral recognition. In addition, we found that a chiral
center in the vicinity (� and/or β position) of the sulfonic
acid SCX site is essential for successful separation of most
free (un-derivatized) proteinogenic amino acids: Of the 20
proteinogenic amino acids, only Phe, Tyr, and Trp could be
separated on one or more of the CSPs 1–6, albeit with com-
paratively low enantiomer selectivities and chromatographic
resolutions (Table 4). The ZWIX reference CSP 10 performed
better in separations of free amino acids than any of the
CSPs 1–6. Our findings suggest that rigid SCX side chains
comprising at least one chiral element are also beneficial for
chiral separations of N-protected amino acids and bases on
Cinchona-based ZWIX CSPs.

However, we found that ZWIX CSPs with achiral side
chains were more successful in achieving enantiomer sepa-

rations of small non-protected peptides with selectivity val-
ues typically above 1.2 (Table 4). These separations bene-
fit from a higher level of conformational flexibility offered
by the straight-chain aminosulfonic acids in CSPs 1–6 com-
pared to CSP 10. The additional steric/chiral discrimination
increments provided by a rigid, chiral SCX site are of minor
influence for small peptide analytes.

3.2.4 Variation of the WAX moiety (quinine- and

quinidine-based CSPs)

Due to their status as pseudo-enantiomers (different config-
urations of two out of five stereocenters), quinine (8S,9R)
and quinidine (8R,9S) are known to give rise to comparable
chromatographic results (in particular selectivities and res-
olutions) but reversed elution orders when used as selector
scaffolds in CSPs [12]. We therefore compared the chromato-
graphic performance of CSPs 1–3 to that of their pseudo-
enantiomeric analogs and were able to show that, indeed, sim-
ilar enantiomer selectivities and resolutions were achieved
on CSPs 1 and 4, CSPs 2 and 5, and CSPs 3 and 6, respec-
tively. We observed reversal of elution orders in all cases un-
der investigation. With the exception of DNP derivatives, the
D enantiomers of (�-N-acyl-type derivatives of) amino acids
were eluted first from QN-based CSPs while the respective L
enantiomers were eluted first from QD-based CSPs. This fur-
ther supports earlier findings stating that chiral recognition
on Cinchona-based CSPs is governed by the configuration of
C-9 (QN: 9R, QD: 9S) of the alkaloid scaffold [19].

Figure 5. Dipeptide enantioseparations on CSP 6. Bulky and rigid amino acid side chains increase enantioselectivity. Elution order: DD
before LL (QN-based CSP). Chromatographic conditions: CSP 3: 150 mm × 4 mm i.d., 5 �m material. Mobile phase: methanol (50 mM
formic acid, 25 mM diethylamine), 1 mL/min, 25�C. Detection: UV (254 nm).

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.jss-journal.com
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Due to their different selector coverages, QN- and QD-
based CSPs gave rise to strikingly different retention factors
especially for single-charge analytes. For example, for acids
they were almost twice as high on CSP 1 (219 �mol SO/g
silica) as they were on CSP 4 (150 �mol SO/g silica). Still, �

and RS values were found to be within a very close range of
±10–20%.

It is worth mentioning that the QD-based CSPs seem
better suited for the enantiomer separation of small un-
derivatized peptides such as the ones resolved on CSP 6 in
Fig. 5.

These separations also illustrated the statement made be-
fore about there being no significant influence of SO loading
on enantiomer selectivity. The QN-based CSPs have higher
coverage but their separation performance was inferior to
that of the QD-based CSPs. Selectivities and chromatographic
resolution were higher on QD-based CSPs than on their QN
analogs, pointing to the fact that they are, strictly speaking,
not enantiomers, but of diastereomeric nature. As with other
analytes, the reversal of elution orders of peptides was fea-
sible by switching from a QD-based (all-L enantiomers elute
first) to a QN-based (all-D enantiomers elute first) CSP.

4 Concluding remarks

By synthesizing and evaluating a total of six novel aminosul-
fonic acid-Cinchona-based SCX-WAX/ZWIX-type CSPs, we
were able to show that such media can be successfully em-
ployed for enantiomer separations of chiral acids, bases, and
ampholytes in many cases. Retention times of single-charge
analytes on zwitterion exchangers were significantly shorter
than on structurally related dedicated anion or cation ex-
changers while equally high selectivities and resolutions were
achieved. The CSPs, which were run in non-aqueous, polar-
organic mobile phase mode, exhibited especially favorable
separation characteristics toward the enantiomers of small
peptides. It is appropriate to mention the added benefits of
straightforward applicability and easily accomplished rever-
sal of elution orders by switching from QN-based to QD-
based CSPs. We found that numerous challenging chiral
separations are feasible with the ZWIX CSPs introduced in
this publication, but the correlation of enantiomer selectivity
with the number of carbon atoms in the alkanesulfonic acid-
carbamoyl motif of the selector is not universal. It can vary
strongly from one analyte to the other, making predictions of
the separation performance very difficult.

The ZWIX CSPs are currently the subject of a
study regarding stereoselective separations of small, non-
enantiomeric peptides.
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Abstract:  11 

Novel zwitterionic cinchona alkaloid-based chiral selectors (SOs) were synthesized and 12 

immobilized on silica gel. The corresponding brush-type chiral stationary phases (CSPs) were 13 

characterized as zwitterionic ion-exchange-type materials and exhibited remarkable 14 

enantioselectivity for their zwitterionic target analytes, viz. underivatized amino acids and 15 

aminosulfonic acids. We rationally designed structural modifications on the strong cation 16 

exchange (SCX) subunit of the zwitterionic SO and investigated the influence on chiral 17 

recognition power for amphoteric solutes. SOs with chiral isopropyl- or cyclohexyl-moieties 18 

in vicinity to the SCX site showed broadest application range by baseline resolving 39 out of 19 

53 test compounds, including α-, β-, and γ-amino acids with different substitution patterns. 20 

Furthermore, we introduced two pseudoenantiomeric zwitterionic CSPs which combined the 21 

unique features of providing comparable enantioselectivities but reversed enantiomer elution 22 

orders. By application of slightly acidic polar organic mobile phases as preferred elution 23 

mode, we found that certain amounts of aprotic acetonitrile in protic methanol substantially 24 

increased enantioselectivity and resolution of amino acids in a structure-dependent manner. 25 



2 
 

Keywords: enantioseparation, amino acid, aminosulfonic acid, chiral stationary phase, 26 

zwitterionic selector 27 

1. Introduction:  28 

The biological and pharmacological properties of amino acids strongly depend on their 29 

stereochemistry. Whereas it was long believed that mammalian organisms exclusively consist 30 

of L-amino acids, several D-amino acids were found in higher animals and humans over the 31 

last two decades [1, 2]. For instance, D-serine was identified to play an eminent role as a 32 

neuromodulator and concentrations of up to one third of those of its L-enantiomer were 33 

quantified in the human central nervous system [3, 4]. D-aspartate, being produced in 34 

mammalian brain and concentrated in endocrine glands, is involved in hormone regulation [5, 35 

6] Furthermore, amino acids have significant importance as chiral building blocks for 36 

synthetic therapeutic peptides, one class of drugs which regained importance in the 37 

pharmaceutical industry [7]. Consequently, the enantiomeric purity of amino acids is of 38 

utmost importance to avoid diastereomeric impurities in the final peptidic drug.  39 

Hence, there is a need for straightforward and robust techniques to either analyse minute 40 

enantiomeric impurities or separate amino acid enantiomers, or both. Several approaches for 41 

resolving underivatized amino acids have been successfully applied, such as resolution via 42 

preferential crystallization [8] or diastereomeric salt formation [9], or enantioseparation by 43 

gas-chromatography [10], thin-layer chromatography [11] and capillary electrophoresis [12]. 44 

However, high performance liquid chromatography (HPLC) employing chiral stationary 45 

phases (CSPs) often evolved as method of choice, as it combines the capability for both chiral 46 

analysis and preparative separation of enantiomers. Among the limited number of CSPs 47 

available for separation of free (native) amino acids and small peptides, crown ether- [13-16], 48 

protein-[17, 18], glycopeptide-[19-23]- and ligand-exchange-type CSPs [24, 25] exhibit the 49 
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broadest application range. However, ligand exchange-type and crown ether phases require 50 

the use of transition metal ions or strong mineral acids, respectively, in the mobile phase, 51 

which makes them practically unsuitable for preparative separations or hyphenation with mass 52 

spectrometry. On the other hand, protein based CSPs suffer from drawbacks such as 53 

denaturation in nonaqueous organic solvents and a low loading capacity [26].  54 

Recently, we reported on cinchona alkaloid-based zwitterionic ion exchange-type chiral 55 

selectors (SOs) which were immobilized onto silica gel yielding brush-type CSPs [27-30]. 56 

The columns were preferentially operated in slightly acidic polar organic mobile phases 57 

enabling three modes of ion-exchange: anion-exchange mode for separation of chiral acids, 58 

cation exchange mode for resolving chiral amines and, most importantly, zwitterion exchange 59 

for enantioseparation of amphoteric compounds such as native amino acids and small 60 

peptides. The type and chiral environment of the single cation and anion-exchange sites had a 61 

strong impact on enantioselectivity for the target analytes in all three ion-exchange modi.  62 

Based on these initial findings, we herein present the synthesis and HPLC evaluation of 63 

novel zwitterionic ion exchange-type chiral stationary phases (ZWIX-CSPs). Rationally 64 

designed structural modifications at both the strong cation exchange site (SCX) and weak 65 

anion exchange moiety (WAX) will be presented and their impact on the chiral recognition 66 

power for zwitterionic analytes will be discussed. Using nonaqueous mobile phases, we 67 

investigated the influence of protic and aprotic solvent compositions on the separation 68 

performance.  69 

 70 
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2. Experimental:  71 

2.1 General Information and Materials 72 

The preparation of CSPs 1 and 3 (see Figure 1) was reported previously [27]. The synthesis of 73 

CSPs 2 and 4-8, including a general synthetic scheme (Figure S-1) and spectroscopic data of 74 

the corresponding SOs, is described in detail in the supporting information. The SO loadings 75 

of CSPs 1-8 were 190, 255, 232, 203, 265, 186, 260 and 274 µmol SO / g totally porous silica 76 

(12 nm pore size), respectively. CSPs 1-6 and 8 were prepared with 3 µm particle size silica 77 

gel and packed into 250 x 3 mm i.d. stainless steel columns, whereas CSP 7 was made with 5 78 

µm particle size silica and packed in house into a stainless steel column with a dimension of 79 

150 x 4 mm i.d.  80 

HPLC solvents Methanol (MeOH) and Acetonitril (ACN) were of HPLC-grade quality from 81 

Carl-Roth GmbH (Karlsruhe, Germany). Mobile phase additives formic acid (FA) and 82 

diethylamine (DEA) were of analytical grade from Sigma-Aldrich (Vienna, Austria). The 83 

amino acid test solutes were either commercially available or kind gifts of research partners.   84 

2.2 HPLC method  85 

All experiments were conducted on a 1200 series HPLC system from Agilent Technologies 86 

(Waldbronn, Germany) consisting of a solvent degasser, a quaternary pump, an autosampler, 87 

a column thermostat and a variable wavelength UV detector (VWD) for the detection of 88 

aromatic test solutes. Non UV-active compounds were detected on a corona charged aerosol 89 

detector (CAD) from Dionex (Sunnyvale, CA, USA). Chemstation software version Rev. 90 

B.01.03 was used for data acquisition and analysis. The mobile phase flow rate was 0.4 91 

mL/min for the 3 µm, 250 x 3mm i.d. columns and 1.0 mL/min for the 5 µm, 150 x 4 mm i.d. 92 

column. The test compounds were dissolved in MeOH or MeOH-water mixtures in a 93 

concentration of 1.0-1.5 mg/mL. The injection volume varied between 5 and 15 µL and 94 

column temperature was set to 25°C. The void volume was determined by injecting a solution 95 
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of acetone in MeOH. For determination of the elution order the single enantiomer, if 96 

available, was injected. 97 

 98 

3. Results and Discussion  99 

Figure 1 displays the chemical structures of CSPs 1-8. The corresponding chiral selectors are 100 

based on the cinchona alkaloids quinine (CSPs 1-7) and quinidine (CSP 8) which are linked to 101 

chiral or achiral sulfonic acid moieties via a carbamate bond. The corresponding chiral SOs, 102 

being of zwitterionic character under the applied mobile phase conditions, were immobilized 103 

onto mercaptopropyl-modified spherical silica yielding brush type CSPs. Mechanistically 104 

speaking, molecular interaction between the SOs and the amphoteric selectands (SAs) is 105 

dominated by a double ionic attraction i.e. the protonated amine and the dissociated acid of 106 

the zwitterionic SA are recognized simultaneously by both charged sites of the zwitterionic 107 

SO. The simultaneous double ion pairing process may be supported by additional interactions 108 

such as hydrogen bonding, π – π -, dipole dipole – or van der Waals (dispersive) interactions 109 

which then can lead to chiral discrimination of one enantiomeric analyte.  110 

The analyte portfolio comprised 48 free (underivatized) amino acids and five 111 

aminosulfonic acids possessing chiral centers in α -, β - or γ - position. Furthermore, the 112 

solutes contained different substitution patterns, as α-methyl-, halogen atom- and hydroxyl-113 

substituted amino acids were employed in this study (for structures also see Table 1).  114 

   <insert Figure 1>  115 

<insert Table 1> 116 
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3.1 Overall CSP enantioselectivity and separation performance 117 

Previous studies revealed that CSP 3, which comprises two chiral centers in the vicinity of the 118 

SCX site, exhibited remarkable enantioselectivity towards a broad spectrum of amino acid 119 

analytes [27, 28]. In order to further improve the enantiodiscrimination capability for chiral 120 

amino acids, we designed and synthesized novel zwitterionic SOs with chiral moieties close 121 

to their SCX binding site. Another goal of the study was to gain more insights on the chiral 122 

recognition mechanism between the zwitterionic SOs and SAs by making a systematic 123 

variation of the ZWIX-SOs structural motifs and to evaluate chromatographically their 124 

influence on enantioselectivity. For instance, quinine-based CSP 4 and quinidine-based CSP 8 125 

each possess chiral isopropyl residues of different absolute configuration in β-position to their 126 

sulfonic acid groups. Other SOs (and their corresponding CSPs, respectively) consist of more 127 

spatially demanding substituents of the same or opposite absolute configuration, such as (S)-128 

isobutyl (CSP 5), (S)-phenyl (CSP 6) or (R)-phenyl (CSP 7) substituents.  129 

Table 1 lists comprehensively the chromatographic data for all tested amino acids using 130 

MeOH and MeOH-ACN mixtures as mobile phase bulk solvents. Regarding overall 131 

enantioseparation performance, some trends became visible: first, a chiral moiety at the SCX 132 

binding site is highly beneficial for the chiral recognition power, as CSP 1 and CSP 2 both 133 

comprising achiral SCX subunits, were outperformed by all other investigated CSPs in the 134 

study, thereby confirming earlier findings [27, 30]. Neither the presence of a more bulky 135 

achiral side chain (CSP 2), which could theoretically display stronger stereodirecting 136 

properties, improved enantiodiscrimination capability compared to CSP 1.  137 

Generally, highest alpha- and resolution values were achieved on CSPs 4 and 8. The 138 

isopropyl-moiety on the SCX site seemed to favour chiral recognition, as both the quinine-139 

based and quinidine-based CSP yielded highest alpha values for all classes of investigated 140 

amino acids. For instance, 38 out of 53 solutes could be baseline separated (Rs ≥1.5) and 14 141 
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compounds were at least partially separated (0.4 ≤ Rs ≤1.5). Only for serine (entry A11) no 142 

separation was observed, however, serine could not be resolved on any of the presented CSPs. 143 

We found a similar separation profile for CSP 8, which baseline resolved 39 of the amino 144 

acids and additionally yielded highest overall resolution values for 25 analytes. CSP 3, the 145 

only ZWIX-SO comprising two stereogenic centers in vicinity to the sulfonic acid group, but 146 

being conformationally less flexible than the SOs of the other CSPs, performed roughly equal 147 

to CSP 4 and baseline resolved 39 compounds. Additionally, the column showed some 148 

complementary separation behaviour to CSPs 4 and 8 which was manifested in baseline 149 

resolving those compounds which were only partially separated on the other columns and vice 150 

versa.  151 

Interestingly, for CSP 4 and CSP 5, which have close structural similarity and differ only 152 

in one methylene group at the SCX binding site, we encountered a profoundly different 153 

separation behaviour. Enantioselectivity was inferior on CSP 5 for the majority of the solutes 154 

and even when similar α-values were obtained, we observed lower resolution due to bad peak 155 

shapes. The low efficiency may also originate from a badly packed column as ascertained via 156 

injection of neutral nonpolar test compounds such as toluene.  157 

In order to trace the influence of a more rigid and spatially demanding SCX side chain, we 158 

prepared CSPs 6 and 7 which both comprise phenyl residues of opposite absolute 159 

configuration. The bulky and rigid aromatic groups proved to be detrimental for chiral 160 

recognition, as both columns showed a limited separation capabilities (Table 2 lists 161 

compounds which could be resolved on both columns) comparable to those of CSPs 1 and 2 162 

(which comprise achiral SCX units only). We hypothesize that the flat but spatially 163 

demanding phenyl ring hampers accessibility to the cleft-like binding pocket and thus causes 164 

diminished enantiodiscrimination.  165 
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Regarding the trends among the different classes of amino acid structures, tryptophan and 166 

its derivatives were exceptionally well separated on all CSPs. Moreover, halogen atom 167 

substituted aromatic amino acids could be equally well resolved independently from their 168 

substitution patterns. Generally, β-amino (carboxylic and sulfonic) acids exhibited higher 169 

enantioselectivity values than most of the corresponding α-amino acids whereas some of the 170 

hydroxyl-substituted AAs, such as serine or DOPA, were not or only partially resolved. 171 

Interestingly, high enantioseparation factors were observed for trans-hydroxy-proline (entry 172 

C3) on all CSPs, while cis-hydroxy-proline (C4) was only partially resolved. Finally, the 173 

ZWIX-CSPs exhibited better enantiodiscrimination properties for amino(sulfonic) acids with 174 

bulkier substituents than with smaller ones. For instance, tert-leucine (F6) and 2-tert-175 

butyltaurine (H4) were better resolved than alanine (A1) or 2-methyltaurine (H1). These 176 

findings suggest that steric and van der Waal interactions must support the ion-exchange 177 

dominated chiral recognition process. 178 

 179 

3.2 Mobile phase aspects 180 

Nonaqueous polar organic solvents in combination with acidic and basic additives (often 181 

referred to as polar organic mode) turned out to be the preferential mobile phase for 182 

separation of zwitterionic solutes on ZWIX CSPs [29]. Polar organic mode proved to be 183 

superior to reversed phase mode due to potential inactivation of nonspecific hydrophobic 184 

interactions with the stationary phase and thus enhancing enantioselectivity [29, 31]. We 185 

assume that in aqueous mobile phases a strong solvation of both zwitterionic SAs and SOs 186 

takes place thus reducing on the one side the strength of the ion pairing process and on the 187 

other side hydrogen bonding effects, if possible. Additionally, the solvation must hamper non-188 

ionic, but stereodiscriminating interactions, as a decrease of enantioselectivity was observed 189 

with increasing water content in the mobile phase.  190 
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Hence, polar organic mode was chosen for the mobile phase optimization study. We used 191 

MeOH as a protic solvent (which can suppress H-bonding interactions) and additionally 192 

selected acetonitrile, being an aprotic solvent known to support ionic interactions but to 193 

interfere with aromatic (π-π) interactions [32]. We scrutinized the impact of protic and aprotic 194 

bulk solvent composition on the chromatographic parameters, thereby increasing the amount 195 

of ACN in MeOH (0%, 25%, 50% and 75% v/v; the acid to base ratio was kept constant at 196 

2:1).  197 

The use of high acetonitrile contents in the mobile phase (such as 75% in MeOH) is not 198 

recommended because of the limited solubility of the very polar zwitterionic solutes. This 199 

leads to a disrupted mass transfer between the stationary and the mobile phase resulting in bad 200 

peak shapes (severe tailing). However, application of 25 % or 50% acetonitrile content could 201 

substantially increase enantioselectivity and resolution. Figure 2 exemplarily depicts 202 

chromatographic behaviour of 4 representative analytes in presence of different MeOH-ACN 203 

mixtures as mobile phase bulk solvents. For tryptophan and its derivatives, such as 5-HTP 204 

(C2), both selectivity and resolution were decreasing with increasing ACN content which 205 

corroborates the effect of ACN on weakening π-π interactions. 206 

However, especially for non-aromatic (aliphatic) amino acids, a certain amount of aprotic 207 

acetonitrile most often enhanced enantioselectivity in special and separation performance in 208 

general (Figure 2 and Figure 3). The stronger tailing observed at higher ACN content was 209 

outbalanced by the gain in selectivity and thus resolution was often improved by application 210 

of up to 50% ACN in the mobile phase (Figure 3). For instance, β-homo-Phe (D2) only 211 

yielded a single peak using a methanolic mobile phase but was baseline separated upon using 212 

50% acetonitrile. Generally, for all β-amino acids a marked increase in separation 213 

performance was observed at 50% ACN content on every CSP (Table 1). Without exception, 214 
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retention increased with increasing acetonitrile percentage for all amino (carboxylic) acid 215 

solutes.  216 

Mechanistically, the observed chromatographic behaviour can be summarized in the 217 

following way: (i) acetonitrile deficient mobile phases enabled better analyte solubility and 218 

therefore enhanced mass transfer, which was chromatographically manifested in reduced 219 

tailing and higher efficiency. Additionally, high percentage of (protic) MeOH causes stronger 220 

solvation of the zwitterionic solutes, thereby weakening the electrostatic SO-SA interactions 221 

and thus shortening retention times. (ii) The trend in selectivity enhancement for ACN rich 222 

mobile phases can be explained by promotion of electrostatic and hydrogen-bonding 223 

interactions which seem to substantially support the chiral recognition process. With 224 

increasing methanol content analyte solvation is more pronounced than in aprotic acetonitrile. 225 

We conclude that augmented solvation by protic metanol can distract chiral recognition by 226 

potentially blocking accessibility between the SO and SA.  227 

From a practical point of view, recommended mobile phase optimization for separation of 228 

zwitterionic compounds on ZWIX-CSPs is carried out by a mobile phase screening 229 

employing both neat methanol and an equal mixture of MeOH and ACN as bulk solvents.  230 

     <insert Figure 2>  231 

     <insert Figure 3> 232 

3.3 Considerations on the chiral recognition mechanism  233 

A tentative chiral recognition model between amphoteric compounds and zwitterionic 234 

cinchona alkaloid-based SOs was described by Hoffmann et al. [27]. It stated that SO-SA 235 

interaction is dominated by a simultaneous double-ion pairing process which mainly controls 236 

solute retention. The non-stereodirecting electrostatic forces must be accompanied by 237 

additional interactions (of single-point or multipoint quality according to the three-point-rule 238 
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[33]) to enable chiral recognition and thus facilitate separation of enantiomers. Depending on 239 

the analyte structure, such interactions can be hydrogen bonding with the SOs carbamate 240 

group, π- π interactions with the π-basic quinoline ring, and steric / van der Waals interactions 241 

with hydrophobic moieties of the SO (Figure 1).  242 

Generally, deductions from elution orders of single enantiomers on CSPs may provide 243 

useful information about molecular interaction between the SO and the SA. In the case of the 244 

present quinine- or quinidine-based ZWIX-SOs, either the cinchona alkaloid WAX unit or the 245 

sulfonic acid-based SCX moiety unit may exhibit stereodiscriminating properties.  246 

As can be extracted from Table 1, quinine-based CSPs 1-7 exhibit reversed elution orders 247 

compared to quinidine-derived CSP 8 for almost all resolved amino acids (however, there are 248 

few exceptions). These findings corroborate our previously established hypothesis of the 249 

cinchona alkaloid playing the dominant role in the chiral recognition process and of the chiral 250 

sulfonic acid subunit exhibiting rather supporting than stereodirecting character. More 251 

strikingly, CSPs 4 and CSP 8, which SOs can be referred to as pseudoenatiomeric, show 252 

inverted elution orders for all but two analytes. In a chromatographic context, the term 253 

pseudoenantiomeric means that two diastereomeric SOs behave like enantiomers, which is 254 

expressed in a switch of elution order of the single enantiomers but preserving 255 

enantioselectivity upon interchanging the (pseudoenantiomeric) CSP. Indeed, as can be seen 256 

on the selectivity plot in Figure 4, CSP 4 and CSP 8 exhibit similar enantioselectivities for 257 

most of the investigated amino acid analytes, thereby confirming their pseudoenantiomeric 258 

properties.      259 

    <insert Figure 4> 260 

 In a further control experiment we compared elution orders of CSP 6 and CSP 7 (Table 2), 261 

which comprise the same quinine-based SOs but with opposite absolute configuration at the 262 
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chiral center at the SCX site. Hence, if the sulfonic acid cation exchange unit played a 263 

dominant role in chiral recognition of amino acid analytes, we would expect inverted elution 264 

orders between both CSPs. However, as expected, no inversion was observed with one single 265 

exception.  266 

To summarize, we could chromatographically confirm the importance of the cinchona-267 

alkaloid WAX subunits for chiral recognition of amphoteric compounds. The corresponding 268 

chiral SCX moieties are substantially important for yielding proper enantioselectivites but 269 

play a rather supportive role in chiral recognition. Hence, this also means that elution orders 270 

of amphoteric compounds can, in most cases, easily be inverted by simply exchanging the 271 

pseudoenantiomeric CSP. 272 

     <insert Table 2> 273 

4. Conclusion 274 

Novel zwitterionic low molecular weight selectors were prepared by combining cinchona 275 

alkaloid weak anion exchange motifs with sulfonic acid-based strong cation exchange 276 

moieties. The corresponding brush-type zwitterion exchange chiral stationary phases were 277 

evaluated by HPLC. Due to their zwitterionic nature these CSPs are primarily suited for 278 

enantioseparation of amphoteric analytes, such as free amino acids, via a simultaneous double 279 

ion pairing process. Chiral recognition of amino acids was dominated by the cinchona 280 

alkaloid anion exchange subunit, whereas the chiral substitution pattern in vicinity to the 281 

cation exchanger site exhibited marked influence on enhancing enantioselectivity. Hence, via 282 

a systematic structure variation of the sulfonic acid moiety we could identify zwitterionic 283 

selectors with remarkable enantiodiscrimination properties for underivatized amino acids, 284 

namely CSP 3, 4 and 8. Further enhancement of enantioseparation performance was realized 285 

by application of polar organic mobile phases using acetonitrile-methanol mixtures as bulk 286 
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solvents. A beneficial feature of the presented CSPs is their ability to systematically switch 287 

elution orders of single amino acid enantiomers when changing from a quinine- to a 288 

quinidine-based CSP. Finally, the inherently high loading capacities of ion-exchange-type 289 

CSPs make them ideally suited for preparative enantioseparations.  290 
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Figure 1. Chemical structures of quinine-based CSPs 1-7 and quinidine based CSP 8  358 
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H2N COOH

HN

COOH

H2N COOH

H2N COOH

OH

Table 1. Enantioseparation of zwitterionic analytes on CSP 1-5 and CSP 8a 424 

100 % MeOH MeOH/ACN  50/50  v/v 
Class A, proteinogenic amino acids   
      k1 α Rs EOb k1 α Rs EOb 
A1, Alanine CSP 1 0.34 1.00 0.0 - 0.85 1.04 0.5 L 

CSP 2 0.45 1.00 0.0 - 1.01 1.00 0.0 - 
    CSP 3 1.05 1.15 0.5 L 2.46 1.17 0.6 L 

CSP 4 0.89 1.13 0.5 L 2.38 1.11 0.6 L 
CSP 5 0.98 1.00 0.0 - 2.77 1.00 0.0 - 

    CSP 8 0.70 1.22 1.6 D 2.28 1.18 1.8 D 
A2, Valine CSP 1 0.42 1.00 0.0 - 0.80 1.04 0.5 L 

CSP 2 0.40 1.00 0.0 - 0.91 1.00 0.0 - 
 

CSP 3 0.93 1.26 1.7 L 2.27 1.33 2.4 L 
CSP 4 0.74 1.22 1.5 L 2.12 1.22 1.9 L 
CSP 5 0.85 1.25 1.2 L 2.24 1.27 0.9 L 

    CSP 8 0.60 1.35 2.1 D 2.06 1.27 2.4 D 
A3, Leucine CSP 1 0.43 1.05 0.5 L 0.83 1.07 0.7 L 

CSP 2 0.42 1.13 0.6 L 0.92 1.11 0.6 L 
CSP 3 1.05 1.22 1.7 L 2.44 1.27 2.2 L 
CSP 4 0.86 1.22 1.6 L 2.35 1.19 2.0 L 
CSP 5 0.98 1.23 1.1 L 2.53 1.21 0.6 L 

    CSP 8 0.74 1.34 3.1 D 2.41 1.31 4.0 D 
A4, Isoleucine CSP 1 0.43 1.00 0.0 - 0.83 1.05 0.5 L 

CSP 2 0.37 1.00 0.0 - 0.85 1.00 0.0 - 
CSP 3 0.98 1.26 2.0 L 2.35 1.33 2.4 L 
CSP 4 0.80 1.24 2.0 L 2.25 1.24 2.6 L 
CSP 5 0.88 1.28 1.3 L 2.39 1.28 0.8 L 

    CSP 8 0.65 1.33 1.9 D 2.27 1.24 2.3 D 
A5, Methionine CSP 1 0.59 1.00 0.0 - 1.01 1.05 0.5 L 

CSP 2 0.60 1.00 0.0 - 1.16 1.00 0.0 - 
CSP 3 1.47 1.14 1.2 L 3.18 1.17 1.2 L 
CSP 4 1.24 1.10 1.0 L 3.01 1.11 1.0 L 
CSP 5 1.34 1.07 0.3 L 3.53 1.00 0.0 - 

    CSP 8 0.99 1.24 1.6 D 3.02 1.27 1.9 D 
A6, Proline CSP 1 0.54 1.15 1.3 L 0.68 1.19 1.9 L 

CSP 2 0.61 1.00 0.0 - 0.90 1.00 0.0 - 
CSP 3 1.15 1.57 4.0 L 1.55 1.86 5.9 L 
CSP 4 1.07 1.56 4.3 L 1.44 1.94 6.0 L 
CSP 5 1.14 1.52 2.3 L 1.54 1.81 3.3 L 

    CSP 8 0.94 1.80 6.7 D 1.43 2.34 10.2 D 
A7, Phenylalanine CSP 1 0.54 1.06 0.5 D 0.88 1.00 0.0 - 

CSP 2 0.58 1.00 0.0 - 1.04 1.00 0.0 - 
CSP 3 1.03 1.15 1.0 L 2.25 1.21 1.6 - 
CSP 4 1.03 1.16 1.1 L 2.50 1.19 1.2 L 
CSP 5 0.91 1.21 1.2 L 2.09 1.23 0.9 L 

    CSP 8 0.80 1.34 3.5 D 2.21 1.34 4.3 D 
A8, Tryptophan CSP 1 0.98 1.58 6.3 D 1.41 1.37 4.2 D 

CSP 2 1.02 1.68 5.8 D 1.69 1.34 2.3 - 
CSP 3 2.18 1.57 7.1 D 4.02 1.25 3.1 D 
CSP 4 1.98 1.61 7.6 D 3.93 1.26 3.2 D 
CSP 5 1.79 1.44 3.0 D 3.55 1.15 0.8 D 

    CSP 8 1.45 1.26 2.9 L 3.27 1.05 0.6 L 
A9, Tyrosine CSP 1 0.67 1.00 0.0 - 1.17 1.00 0.0 - 

CSP 2 0.68 1.00 0.0 - 1.36 1.00 0.0 - 
CSP 3 1.30 1.15 1.1 L 2.89 1.30 1.8 L 
CSP 4 1.20 1.13 0.9 L 2.89 1.24 1.6 L 
CSP 5 1.11 1.15 0.6 L 2.73 1.21 0.6 L 

    CSP 8 0.86 1.28 2.1 D 2.42 1.30 2.3 D 
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H2N COOH

COOH

H2N COOH

F

H2N COOH

F

A10, Threonine CSP 1 0.55 1.00 0.0 - 0.97 1.06 0.5 L 
 

CSP 2 0.56 1.00 0.0 - 1.13 1.00 0.0 - 
CSP 3 1.33 1.23 1.3 L 3.14 1.30 2.0 L 
CSP 4 1.03 1.25 1.3 L 2.67 1.30 1.5 L 
CSP 5 1.15 1.21 0.5 L 3.05 1.20 0.4 L 

    CSP 8 0.77 1.26 0.8 D 2.37 1.29 1.2 D 
A11, Serine CSP 1 0.61 1.00 0.0 - 1.11 1.00 0.0 - 
 

CSP 2 0.63 1.00 0.0 - 1.38 1.00 0.0 - 
CSP 3 1.68 1.00 0.0 - 4.24 1.00 0.0 - 
CSP 4 1.26 1.00 0.0 - 3.80 1.00 0.0 - 
CSP 5 1.40 1.00 0.0 - 3.68 1.00 0.0 - 

    CSP 8 1.05 1.00 0.0 - 3.42 1.00 0.0 - 
A12, Asparagine CSP 1 0.72 1.00 0.0 - 1.08 1.03 0.3 L 
 

CSP 2 0.72 1.00 0.0 - 1.36 1.00 0.0 - 
CSP 3 2.17 1.00 0.0 - 3.38 1.33 1.6 L 
CSP 4 3.44 1.87 1.5 L 4.96 1.30 2.8 L 
CSP 5 1.60 1.12 0.4 n.d. 3.90 1.00 0.0 

    CSP 8 1.20 1.15 1.3 D 2.74 1.24 2.4 D 
A13, Glutamine CSP 1 0.58 1.00 0.0 - 0.89 1.15 0.6 L 

CSP 2 0.59 1.00 0.0 - 1.03 1.00 0.0 - 
CSP 3 1.50 1.16 0.7 L 2.94 1.27 0.9 L 
CSP 4 2.09 1.12 1.0 n.d. 3.38 1.21 2.2 n.d. 
CSP 5 1.26 1.00 0.0 - 2.40 1.00 0.0 - 

    CSP 8 0.86 1.26 0.7 D 2.22 1.25 0.8 D 
A14, Aspartic acid CSP 1 1.45 1.00 0.0 - 2.36 1.00 0.0 - 

CSP 2 1.71 1.05 0.4 L 3.18 1.00 0.0 - 
CSP 3 6.00 1.00 0.0 - 11.40 1.00 0.0 - 
CSP 4 6.19 1.07 0.7 D 12.69 1.07 0.6 D 
CSP 5 7.52 1.00 0.0 - 5.60 1.00 0.0 - 

    CSP 8 2.53 1.00 0.0 - 6.56 1.00 0.0 - 
A15, Glutamic acid CSP 1 0.90 1.00 0.0 - 1.49 1.09 0.6 D 

CSP 2 0.99 1.00 0.0 - 2.14 1.00 0.0 - 
CSP 3 2.57 1.06 0.5 n.d. 6.56 1.15 1.0 D 
CSP 4 3.12 1.08 0.7 D 7.74 1.13 1.3 D 
CSP 5 3.07 1.12 0.6 D 4.67 1.86 0.5 D 

    CSP 8 1.38 1.00 0.0 - 4.20 1.00 0.0 - 
Class B, halogen atom-substituted amino acids 

k1 α Rs EO k1 α Rs EO 
B1, p-F-Phenylalanine CSP 1 0.53 1.00 0.0 - 0.87 1.00 0.0 - 

CSP 2 0.55 1.00 0.0 - 1.07 1.00 0.0 - 
CSP 3 1.10 1.13 1.3 L 2.38 1.19 2.0 L 
CSP 4 1.10 1.11 1.1 L 2.60 1.18 2.1 L 
CSP 5 0.98 1.13 0.7 L 2.32 1.18 0.7 L 

    CSP 8 0.84 1.33 1.9 D 2.38 1.39 2.4 D 
B2, p-Cl-Phenylalanine CSP 1 0.57 1.11 0.5 D 1.04 1.00 0.0 - 

CSP 2 0.66 1.00 0.0 - 1.28 1.00 0.0 - 
CSP 3 1.36 1.14 1.5 L 2.97 1.19 1.3 L 
CSP 4 1.34 1.12 1.5 L 3.14 1.20 2.5 L 
CSP 5 1.20 1.14 0.7 L 2.85 1.18 0.7 L 

    CSP 8 1.05 1.39 3.3 D 2.94 1.46 3.6 D 
B3, p-Br-Phenylalanine CSP 1 0.67 1.04 0.4 - 1.14 1.00 0.0 - 

CSP 2 0.74 1.00 0.0 - 1.41 1.00 0.0 - 
CSP 3 1.53 1.14 1.8 n.d. 3.29 1.18 2.1 n.d. 
CSP 4 1.48 1.13 1.6 n.d. 3.40 1.21 2.7 n.d. 
CSP 5 1.34 1.14 0.7 n.d. 3.16 1.18 0.7 n.d. 

    CSP 8 1.16 1.42 4.4 n.d. 3.22 1.48 5.1 n.d. 
B4, o-F-Phenylalanine CSP 1 0.56 1.00 0.0 - 0.91 1.00 0.0 - 

CSP 2 0.55 1.00 0.0 - 1.01 1.13 0.6 n.d. 
CSP 3 1.03 1.16 1.8 n.d. 2.08 1.21 2.8 n.d. 
CSP 4 1.00 1.16 1.1 n.d. 2.29 1.21 1.6 n.d. 
CSP 5 0.91 1.17 0.7 n.d. 2.10 1.21 0.7 n.d. 
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    CSP 8 0.78 1.35 3.6 n.d. 2.18 1.37 5.1 n.d. 
B5, Baclofen CSP 1 1.13 1.09 1.1 n.d. 1.70 1.11 1.6 n.d. 
 CSP 2 0.83 1.00 0.0 - 1.53 1.00 0.0 - 

CSP 3 4.01 1.25 3.4 n.d. 9.55 1.32 4.0 n.d. 
 CSP 4 4.63 1.28 5.4 n.d. 11.92 1.34 7.0 n.d. 

CSP 5 3.48 1.33 3.3 n.d. 7.35 1.41 3.8 n.d. 
    CSP 8 2.72 1.32 2.3 n.d. 8.96 1.42 3.9 n.d. 
Class C, hydroxy-substituted amino acids 

k1 α Rs EO k1 α Rs EO 
C1, DOPA CSP 1 0.80 1.14 0.9 D 1.43 1.00 0.0 - 
 

CSP 2 0.86 1.00 0.0 - 1.81 1.00 0.0 - 
CSP 3 1.91 1.07 0.6 L 4.10 1.16 0.8 L 
CSP 4 1.71 1.00 0.0 - 4.30 1.07 0.4 L 
CSP 5 1.84 1.00 0.0 - 2.86 1.51 1.0 L 

    CSP 8 1.36 1.00 0.0 - 3.68 1.00 0.0 - 
C2, 5-HTP CSP 1 1.16 1.58 5.8 D 1.60 1.37 3.1 D 

CSP 2 1.14 1.67 5.3 D 1.75 1.33 1.8 D 
CSP 3 2.63 1.38 4.9 D 4.67 1.10 1.2 D 
CSP 4 2.24 1.43 5.2 D 4.48 1.13 1.3 D 
CSP 5 2.06 1.38 2.5 D 3.82 1.11 0.6 D 

    CSP 8 1.78 1.14 1.5 L 3.66 1.00 0.0 - 
C3, trans-4-OH-Proline CSP 1 0.57 1.73 1.5 L 0.71 1.83 2.0 L 

CSP 2 0.50 1.99 1.8 L 0.89 1.61 1.1 L 
CSP 3 1.07 3.90 6.5 L 1.77 3.78 5.9 L 
CSP 4 0.95 3.88 6.0 L 1.58 3.77 6.7 L 
CSP 5 1.05 3.42 3.5 L 1.77 3.08 3.1 L 

    CSP 8 1.24 2.37 2.7 L 3.22 1.33 0.8 L 
C4, cis-4-OH-Proline CSP 1 0.99 1.00 0.0 - 1.24 1.00 0.0 - 

CSP 2 1.00 1.13 0.6 D 1.46 1.00 0.0 - 
CSP 3 4.16 1.00 0.0 - 6.36 1.05 0.4 L 
CSP 4 3.66 1.20 1.1 D 5.89 1.00 0.0 - 
CSP 5 3.56 1.00 0.0 - 5.43 1.00 0.0 - 

    CSP 8 2.93 1.00 0.0 - 4.27 1.24 0.7 D 
Class D, beta-amino acids     
      k1 α Rs EO k1 α Rs EO 
D1, β-Phenylalanine CSP 1 0.96 1.00 0.0 - 1.43 1.11 1.2 n.d. 
 

CSP 2 0.85 1.16 0.8 n.d. 1.55 1.16 0.8 n.d. 
CSP 3 3.28 1.11 1.2 n.d. 6.71 1.26 2.7 n.d. 
CSP 4 3.22 1.15 2.0 n.d. 7.09 1.31 5.8 n.d. 
CSP 5 2.84 1.08 0.8 n.d. 5.81 1.28 1.8 n.d. 

    CSP 8 2.36 1.26 2.1 n.d. 5.89 1.56 4.3 n.d. 
D2, β-homo-Phenylalanine CSP 1 1.10 1.00 0.0 - 1.59 1.03 0.5 n.d. 

CSP 2 0.95 1.11 1.2 n.d. 1.59 1.06 0.6 n.d. 
CSP 3 4.20 1.03 0.5 n.d. 7.55 1.10 1.9 n.d. 
CSP 4 4.16 1.00 0.0 - 7.77 1.11 1.8 n.d. 
CSP 5 3.32 1.06 0.7 n.d. 6.21 1.08 1.0 n.d. 

    CSP 8 3.18 1.00 0.0 - 7.05 1.18 3.2 n.d. 
D3, β-Neopentylglycine CSP 1 0.66 1.12 0.8 n.d. 0.99 1.16 1.6 n.d. 

CSP 2 0.51 1.00 0.0 - 1.04 1.12 0.4 n.d. 
CSP 3 2.10 1.33 2.0 n.d. 3.87 1.50 3.2 n.d. 
CSP 4 2.01 1.35 2.6 n.d. 3.98 1.53 4.4 n.d. 
CSP 5 2.03 1.33 1.9 n.d. 3.89 1.49 2.7 n.d. 

    CSP 8 1.88 1.36 3.4 n.d. 4.29 1.59 6.2 n.d. 
D4, Nipecotic acid CSP 1 1.00 1.17 1.8 R 1.38 1.22 2.5 R 

CSP 2 0.92 1.00 0.0 - 1.56 1.00 0.0 - 
CSP 3 2.19 1.99 4.1 R 3.68 2.40 5.7 R 
CSP 4 2.22 2.23 5.7 R 3.82 2.89 10.0 R 
CSP 5 2.02 2.04 3.2 R 8.22 1.10 0.7 R 

    CSP 8 1.23 2.52 9.0 S 2.72 2.99 11.8 S 
D5, β-Leucine CSP 1 0.76 1.04 0.5 n.d. 1.17 1.11 1.3 n.d. 

CSP 2 0.58 1.14 0.5 n.d. 1.03 1.16 1.3 n.d. 
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CSP 3 2.62 1.06 0.6 n.d. 5.14 1.23 2.9 n.d. 
CSP 4 2.40 1.06 0.6 n.d. 5.13 1.23 3.6 n.d. 
CSP 5 2.42 1.04 0.5 n.d. 4.76 1.22 2.8 n.d. 

    CSP 8 2.06 1.11 1.4 n.d. 5.05 1.33 4.7 n.d. 
Class E, alpha- and N-methylated amino acids 
      k1 α Rs EO k1 α Rs EO 
E1, α-Me-Phenylalanine CSP 1 0.44 1.31 2.6 D 0.80 1.19 2.2 D 
 

CSP 2 0.47 1.00 0.0 - 0.96 1.08 0.5 D 
CSP 3 0.72 1.13 0.5 D 1.58 1.00 0.0 - 
CSP 4 0.66 1.18 0.6 D 1.68 1.00 0.0 - 
CSP 5 0.64 1.10 0.5 D 1.53 1.00 0.0 - 

    CSP 8 0.49 1.08 0.6 L 1.44 1.06 0.7 L 
E2, α-Me-m-Tyrosine CSP 1 0.58 1.48 4.6 n.d. 1.02 1.31 4.0 n.d. 
 

CSP 2 0.57 1.45 1.5 n.d. 1.10 1.24 1.4 n.d. 
CSP 3 0.93 1.42 2.7 n.d. 2.04 1.29 2.0 n.d. 
CSP 4 0.83 1.42 2.5 n.d. 1.98 1.31 2.2 n.d. 
CSP 5 0.77 1.41 2.4 n.d. 1.76 1.26 1.3 n.d. 

    CSP 8 0.56 1.63 5.6 n.d. 1.55 1.50 7.4 n.d. 
E3, α-Me-DOPA CSP 1 0.71 1.53 4.3 D 1.29 1.29 2.0 D 

CSP 2 0.71 1.47 1.0 D 1.81 1.00 0.0 - 
CSP 3 1.26 1.46 3.2 D 2.86 1.22 1.6 D 
CSP 4 1.05 1.52 2.5 D 2.62 1.29 1.7 D 
CSP 5 1.59 1.00 0.0 - 3.38 1.00 0.0 - 

    CSP 8 0.66 2.11 3.1 L 1.84 1.85 5.1 L 
E4, α-Me-Tryptophan CSP 1 0.90 2.64 13.4 n.d. 1.36 2.01 11.1 n.d. 

CSP 2 0.89 3.32 16.8 n.d. 1.55 2.10 10.4 n.d. 
CSP 3 1.47 3.40 20.6 n.d. 2.98 2.14 13.3 n.d. 
CSP 4 1.35 3.56 20.5 n.d. 2.94 2.07 13.3 n.d. 
CSP 5 1.21 3.06 14.6 n.d. 2.46 1.95 8.0 n.d. 

    CSP 8 0.83 3.04 11.1 n.d. 1.94 1.91 7.0 n.d. 
E5, α-Me-Leucine CSP 1 0.30 1.15 0.5 n.d. 0.66 1.09 0.9 n.d. 

CSP 2 0.33 1.00 0.0 - 0.81 1.00 0.0 - 
CSP 3 0.63 1.00 0.0 - 1.50 1.12 1.0 n.d. 
CSP 4 0.44 1.08 0.5 n.d. 1.35 1.18 1.3 n.d. 
CSP 5 0.56 1.00 0.0 - 1.44 1.16 0.8 n.d. 

    CSP 8 0.56 1.00 0.0 - 1.44 1.16 0.8 n.d. 
E6, α-Me-Serine CSP 1 0.56 1.09 0.8 n.d. 1.02 1.07 0.7 n.d. 

CSP 2 0.60 1.00 0.0 - 1.27 1.00 0.0 - 
CSP 3 1.21 1.13 0.8 n.d. 2.89 1.11 0.9 n.d. 
CSP 4 0.94 1.11 0.6 n.d. 2.61 1.08 0.5 n.d. 
CSP 5 1.10 1.00 0.0 - 2.75 1.00 0.0 - 

    CSP 8 1.10 1.00 0.0 - 2.75 1.00 0.0 - 
E7, 1-Me-Tryptophan CSP 1 0.94 1.33 3.4 D 1.30 1.13 2.1 D 

CSP 2 0.98 1.72 6.1 D 1.50 1.32 1.8 D 
CSP 3 2.00 1.33 4.5 D 3.33 1.10 1.3 D 
CSP 4 1.94 1.36 5.0 D 3.68 1.12 1.6 D 
CSP 5 1.78 1.28 1.6 D 3.51 1.00 0.0 - 

    CSP 8 1.69 1.14 1.8 L 3.42 1.06 0.6 D 
E8, N-Me-Leucine CSP 1 0.35 1.00 0.0 - 0.55 1.00 0.0 - 

CSP 2 0.34 1.06 0.4 n.d. 0.62 1.07 0.4 n.d. 
CSP 3 0.66 1.09 0.5 D 1.08 1.18 1.0 D 
CSP 4 0.55 1.01 0.9 D 0.95 1.28 1.9 D 
CSP 5 0.63 1.10 0.5 D 1.15 1.18 1.0 D 

    CSP 8 0.63 1.10 0.5 D 1.15 1.18 1.0 D 
Class F, remaining aliphatic amino acids 
      k1 α Rs EO k1 α Rs EO 
F1, Pipecolic acid CSP 1 0.48 1.07 0.6 L 0.77 1.06 0.6 L 

CSP 2 0.47 1.19 1.0 L 0.88 1.20 1.0 L 
CSP 3 0.92 1.13 0.8 L 1.64 1.12 1.0 L 
CSP 4 0.79 1.18 1.2 L 1.63 1.17 1.3 L 
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CSP 5 0.91 1.19 0.9 L 1.73 1.19 1.1 L 
    CSP 8 0.65 1.31 1.9 D 1.59 1.36 2.7 D 
F2, erythro-β-Me-cyclohexylala CSP 1 0.57 1.00 0.0 - 1.05 1.06 0.6 n.d. 
 

CSP 2 0.54 1.19 0.5 n.d. 1.25 1.12 0.5 n.d. 
CSP 3 1.28 1.27 1.9 n.d. 3.17 1.39 2.7 n.d. 
CSP 4 1.11 1.31 2.8 n.d. 3.06 1.36 3.6 n.d. 
CSP 5 1.18 1.39 1.5 n.d. 3.10 1.54 1.7 n.d. 

    CSP 8 0.98 1.49 5.1 n.d. 3.41 1.43 6.2 n.d. 
F3, threo-β-Me-cyclohexylala CSP 1 0.54 1.00 0.0 - 0.92 1.06 0.5 n.d. 
 

CSP 2 0.55 1.00 0.0 - 1.11 1.00 0.0 - 
CSP 3 1.17 1.23 1.6 n.d. 2.74 1.26 2.0 n.d. 
CSP 4 1.00 1.29 2.3 n.d. 2.70 1.22 2.0 n.d. 
CSP 5 1.14 1.29 1.4 n.d. 2.99 1.27 0.8 n.d. 

    CSP 8 1.03 1.30 1.5 n.d. 3.49 1.13 0.9 n.d. 
F4, allo-Isoleucine CSP 1 0.43 1.00 0.0 - 0.81 1.05 0.5 L 
 

CSP 2 0.37 1.00 0.0 - 0.84 1.00 0.0 - 
CSP 3 0.97 1.26 1.6 L 2.26 1.32 2.2 L 
CSP 4 0.76 1.25 1.5 L 2.21 1.22 2.2 L 
CSP 5 0.89 1.28 1.3 L 2.55 1.23 0.6 L 

    CSP 8 0.64 1.36 2.1 D 2.26 1.24 2.1 D 
F5, Neopentylglycine CSP 1 0.46 1.09 0.7 L 0.81 1.12 1.1 L 

CSP 2 0.43 1.12 0.6 L 0.95 1.08 0.4 L 
CSP 3 1.18 1.38 3.0 L 2.56 1.40 3.1 L 
CSP 4 0.98 1.38 3.0 L 2.47 1.32 2.8 L 
CSP 5 1.07 1.38 1.7 L 2.66 1.33 0.8 L 

    CSP 8 0.87 1.44 3.9 D 2.71 1.31 3.8 D 
F6, tert-Leucine CSP 1 0.41 1.00 0.0 - 0.83 1.07 0.8 L 

CSP 2 0.36 1.00 0.0 - 0.95 1.09 0.3 L 
CSP 3 0.90 1.43 2.6 L 2.14 1.57 4.2 L 
CSP 4 0.73 1.37 2.3 L 2.14 1.43 3.9 L 
CSP 5 0.81 1.40 1.9 L 2.32 1.50 2.2 L 

    CSP 8 0.62 1.57 4.1 D 2.22 1.53 5.8 D 
F7, Norvaline CSP 1 0.44 1.00 0.0 - 0.82 1.05 0.5 L 

CSP 2 0.42 1.06 0.4 L 0.95 1.05 0.3 L 
CSP 3 1.00 1.22 1.6 L 2.31 1.27 2.1 L 
CSP 4 0.81 1.21 1.6 L 2.21 1.20 1.9 L 
CSP 5 0.91 1.21 0.9 L 2.36 1.20 0.6 L 

    CSP 8 0.63 1.33 1.8 D 2.19 1.28 2.1 D 
Class G, remaining aromatic amino acids 
      k1 α Rs EO k1 α Rs EO 
G1, Kynurenine CSP 1 1.02 1.05 0.6 D 1.35 1.00 0.0 - 

CSP 2 1.11 1.00 0.0 - 1.72 1.00 0.0 - 
CSP 3 2.07 1.24 2.6 L 3.54 1.23 1.9 L 
CSP 4 1.98 1.10 1.3 L 3.79 1.12 1.6 L 
CSP 5 1.98 1.00 0.0 - 3.18 1.13 0.5 L 

    CSP 8 1.39 1.26 3.3 D 3.13 1.28 4.1 D 
G2, 1-Naphtylalanine CSP 1 0.85 1.00 0.0 - 1.21 1.00 0.0 - 

CSP 2 0.89 1.00 0.0 - 1.42 1.09 0.5 n.d 
CSP 3 1.68 1.14 1.5 L 3.16 1.16 1.5 L 
CSP 4 1.60 1.12 1.7 L 3.44 1.14 1.7 L 
CSP 5 1.44 1.13 0.6 L 3.22 1.10 0.4 L 

    CSP 8 1.20 1.53 5.3 D 3.01 1.56 4.7 D 
G3, Tic   CSP 1 0.59 1.11 1.1 S 0.84 1.11 1.3 S 

CSP 2 0.64 1.25 0.6 S 1.06 1.25 0.9 S 
CSP 3 1.13 1.33 2.3 S 1.96 1.29 1.9 S 
CSP 4 1.11 1.32 2.2 S 2.17 1.27 2.1 S 
CSP 5 1.01 1.38 1.4 S 1.99 1.32 1.1 S 

  CSP 8 0.91 1.34 4.1 R 1.94 1.32 4.9 R 
G4, OMe-Tyrosine CSP 1 0.63 1.07 0.6 L 0.98 1.00 0.0 - 
 

CSP 2 0.68 1.00 0.0 - 1.15 1.00 0.0 - 
CSP 3 1.25 1.14 1.2 L 2.54 1.17 1.2 L 
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CSP 4 1.21 1.15 1.4 L 2.74 1.19 1.7 L 
CSP 5 1.12 1.16 0.6 L 2.39 1.19 0.8 L 

    CSP 8 0.92 1.39 3.9 D 2.38 1.40 5.0 D 
 Class H, aminosulfonic acids 
      k1 α Rs EO k1 α Rs EO 
H1, 2-Methyltaurine CSP 1 0.59 1.00 0.0 - 0.52 1.00 0.0 - 

CSP 2 0.52 1.00 0.0 - 0.47 1.25 0.5 n.d. 
 

CSP 3 3.32 1.08 0.6 R 4.10 1.08 0.5 R 
CSP 4 2.81 1.16 0.8 R 3.65 1.17 0.7 R 
CSP 5 2.44 1.16 0.7 R 3.16 1.22 0.8 R 

    CSP 8 1.95 1.00 0.0 - 2.69 1.00 0.0 - 
H2, 2-Ethyltaurine CSP 1 0.55 1.00 0.0 - 0.52 1.00 0.0 - 

CSP 2 0.49 1.29 0.5 n.d. 0.41 1.30 0.5 n.d. 
 

CSP 3 2.70 1.39 2.3 R 3.18 1.43 2.0 R 
CSP 4 2.27 1.52 2.5 R 2.85 1.54 2.2 R 
CSP 5 2.09 1.50 2.2 R 2.58 1.56 2.0 R 

    CSP 8 1.69 1.43 1.3 S 1.97 1.65 1.2 S 
H3, 2-Isopropyltaurine CSP 1 0.53 1.00 0.0 - 0.45 1.00 0.0 

CSP 2 0.43 1.00 0.0 - 0.35 1.30 0.4 n.d. 
CSP 3 2.05 1.47 4.4 R 2.54 1.53 4.0 R 
CSP 4 1.91 1.63 3.0 R 2.36 1.67 2.6 R 
CSP 5 1.82 1.60 2.6 R 2.25 1.66 2.2 R 

    CSP 8 1.45 1.56 1.6 S 1.86 1.55 0.8 S 
H4, 2-tert-Butyltaurine CSP 1 0.61 1.00 0.0 - 0.36 1.49 0.5 - 

CSP 2 0.35 1.00 0.0 - 0.35 1.00 0.0 - 
CSP 3 1.29 2.46 5.8 R 1.46 2.52 4.3 R 
CSP 4 1.18 2.79 6.5 R 1.52 2.62 5.0 R 
CSP 5 1.25 2.61 5.7 R 1.55 2.51 4.1 R 

    CSP 8 1.06 2.27 2.9 S 1.41 2.04 1.7 S 
H5, 2-Phenyltaurine CSP 1 0.53 1.00 0.0 - 0.47 1.00 0.0 - 

CSP 2 0.43 1.00 0.0 - 0.41 1.33 0.5 - 
CSP 3 2.31 1.21 2.6 R 3.21 1.16 1.7 R 
CSP 4 1.91 1.37 2.8 R 2.57 1.31 1.8 R 
CSP 5 1.86 1.27 1.9 R 2.52 1.24 1.4 R 

    CSP 8 1.44 1.28 1.2 S 2.57 1.00 0.0 - 
a Conditions: column dimensions 250x3 mm i.d., 3 µm particle size; Mobile phase: 50 mM FA and 25 mM DEA 425 

in 100% MeOH (left column) or ACN-MeOH 50/50 v/v (right column); flow rate 0.4 mL/min, 25°C; t0 = 3.68 426 

min; UV detection 254 nm and CAD detection; b EO: absolute configuration of the first eluted enantiomer 427 

 428 

 429 

 430 

 431 

 432 

 433 
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Table 2. Enantiomer separation of amino acids on CSP 6 and CSP 7a 434 

Analyte CSP 6 CSP 7 
 k1 α EOb k1 α EOb 

A6, Pro 0.55 1.32 L 1.24 1.07 L 
A8, Trp 0.99 1.81 D 1.57 2.14 D 

C2, 5-HTP 0.99 1.88 D 1.92 1.86 D 
C3, trans-4-OH-Pro 0.51 2.84 L 1.15 1.53 L 

C4,cis-4-OH-Pro 1.45 1.12 D 1.76 1.33 D 
D4, Nipe 0.96 1.67 (R)  2.12 1.09 (S) 

E3, α-Me-DOPA 0.61 1.50 D 1.25 1.34 D 
E7, 1-Me-Trp 1.04 1.42 D 1.38 1.26 D 

G3, Tic 0.68 1.21 (S) 0.97 1.13 (S) 
aColumns: CSP 6: 250 x 3 mm i.d., 3 µm particle size; CSP 7: 150 x 4mm i.d., 5 µm particle size; Mobile phase: 435 

MeOH, 50 mM FA, 25 mM DEA;25°C; flow rate CSP 6 0.4 mL/min, CSP 7 1.0 mL/min, UV detection 254 nm; 436 

b EO: absolute configuration of the first eluted enantiomer   437 
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1. Discussion on the preparation of CSPs 2 and 4-8  

 

The preparation of the zwitterionic chiral selectors 6-11 was accomplished by fusion of β-aminosulfonic 

acids 5a-f and the activated 4-nitrophenyl ester hydrochlorides of quinine 2a or quinidine 2b, 

respectively. The synthesis of 2 and the fusion step to prepare selectors 6-11 followed the procedure 

reported previously by Hoffmann et al.[1]. The chiral selectors were purified by flash chromatography 

in order to remove byproducts such as 4-nitrophenol and cinchona-alkaloid derivatives.  
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100°C

48-90 % 32-81 %

HCOOH, H2O2,
0°C

21-86 %

 

 

 

Figure S-1. Synthetic scheme for the preparation of CSPs 2 and 4-8 
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The chiral and achiral β-aminosulfonic acids 5a-f were synthesized from corresponding amino alcohols 

3a-f in a two-step synthesis according to a procedure from Xu et al.[2]. In the first step the 4-substituted 

thiazolidine-2-thiones 4a-f were prepared by reaction of the corresponding vicinal amino alcohols with 

carbon disulfide in an aqueous potassium hydroxide solution.  

For all six reactions we observed the formation of oxazolidine-2-thione byproducts, which had to be 

removed by flash chromatography. The second step involved the oxidation of thiazolidine-2-thiones 4 

with peroxyformic acid, which was prepared in situ by mixing formic acid with a 30 % aqueous 

hydrogen peroxide solution. The β-aminosulfonic acids 5a-f were isolated in moderate yields and high 

purity after crystallization from the concentrated reaction solution. Furthermore, the synthesis of the 

chiral β-aminosulfonic acids from the optically active amino alcohols was carried out without any 

racemization (the enantiomeric purity of 5b-f was measured by HPLC using CSP 3 and gave 

enantiomeric excess values >99%).  

The silica gel for SO immobilization was mercaptopropyl-modified and trimethylsilyl-endcapped in 

house. The covalent immobilization of the chiral selector onto the 3-mercaptopropyl-modified silica gel 

was carried out via radical addition reaction[1]. It has to be noted that for immobilization of the 

quinidine-based SO 11 the ten-fold amount of azobisisobutyronitrile (AIBN) had to be employed to 

achieve comparable SO coverage. The reason is presumably the less accessible vinyl group of the 

quinidine-molecule compared to quinine. 

 

2. Experimental part  

 

2.1 General information and materials  

 

All chemical reactions were carried out under anhydrous conditions (nitrogen atmosphere and oven 

dried glassware) unless otherwise stated. Technical grade solvents, which were used for flash 

chromatography only, were obtained from VWR (Vienna, Austria) and HPLC grade solvents were 

obtained from Carl-Roth GmbH (Karlsruhe, Germany). All chemical reagents were purchased from 

Sigma-Aldrich (synthesis grade or higher purity), except for quinine and quinidine which were obtained 

from Buchler (Braunschweig, Germany). Flash chromatography was carried out with Silica 60 (0.040-

0.063 mm particle size) from Merck (Darmstadt, Germany).  

 1H and 13C NMR spectra were acquired on a Bruker DRX 400 MHz or on a Bruker DRX 600 Mhz 

spectrometer. Chemical shifts are given in ppm. Spectra were recorded in CDCl3, CD3OD or D2O and 

the solvent signals were used as reference signals. For data processing Spinworks 2.2.5 software was 
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used. MS experiments were performed using an ion trap mass spectrometer with an electrospray 

ionization source (Agilent 1100 series CL/MSD Trap ion-trap MS System).  

Silica gel for selector immobilization (Daisogel 120-3P or Daisogel 120-5P, particle size 3 or 5 µm; 

pore diameter 12 nm, surface area 300 m² / g) was purchased from Daiso Co., Ltd. (Osaka, Japan). 

Surface coverages of the CSPs were calculated by elemental analysis (CHNS) using an EA 1108 

CHNS-O Element analyzer (Carlo Erba, now Thermo Scientific). The SO coverage on the silica was 

calculated from the nitrogen content (accuracy according to manufacturer specifications: ±8%).  

The CSP with 5 µm particle size was slurry packed in house into a 150 x 4 mm i.d. stainless steel 

column. The 3 µm particle size CSPs were packed at Bischoff (Leonberg, Germany) into 250 x 3 mm 

i.d. stainless steel columns.  

 

2.2 Procedures 

 

2.2.1 Procedures for compounds 2a-b, 4a-f and 5a-f 

The synthetic procedure of activated quinine- and quinidine ester 2a and 2b including spectroscopic 

data is described elsewhere[1]. The preparation of aminosulfonic acids 5a-f from the corresponding 

amino alcohols 3a-f via thiazolidine-2-thiones 4a-f followed strictly the published protocol by Xu et 

al.[2].  

 

2.2.2 General procedures for zwitterionic SOs 6-11 

The synthesis followed a protocol already described by Hoffmann et al. [1, 3]. Finely ground 

aminosulfonic acid 5 (4.0 mmol; 5a 0.61 g, 5b/5f 0.67 g, 5c 0.73 g, 5d/5e 0.81 g) was suspended in dry 

CH2Cl2 (ca. 100 mL). N,O-bis(trimethylsilyl)acetamide (3.0 mL, 12.0 mmol, 3 equiv.) was added 

portionwise to the suspension. The resulting solution was refluxed until it became clear (12-24 hours). 

After cooling to room temperature, activated cinchona alkaloid ester 2 was added portionwise in a 

counterstream of N2. The solution was stirred over night at room temperature turning pale yellow. After 

quenching with MeOH (5 mL), the reaction mixture was concentrated and purified by flash 

chromatography (CH2Cl2 : MeOH 9:1 to 1:1) yielding the zwitterionic SO.  

 

2.2.3 General procedures for SO immobilization  

2.20 g of thiol-modified and endcapped silica (SH-content: 680 µmol / g silica) were suspended in 10 

mL MeOH. The SO (1.0 mmol) was dissolved in 15 mL of MeOH and added to the silica slurry. A 

methanolic solution of AIBN (60 mg, 0.37 mmol; for quinidine based SO 11: 600 mg, 3.65 mmol, each 

in 5 mL) was added in a counterstream of N2. The suspension was stirred under reflux for 6 hrs. Then it 
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was cooled to ambient temperature, filtered and washed with MeOH (3 x 20 mL) and dichloromethane 

(2 x 20 mL). The immobilized silica was dried in vacuum at 60°C. 

 

2.3 Analytical data  

 

 

SO 6 (SO for CSP 2): 25 % yield, white crystals. 1H-NMR [CD3OD]: δ =8.71 (d, 1H), 8.00 (d, 1H), 

7.62 (d, 1H), 7.50 (dd, 1H), 7.45 (s, 1H) 6.66 (s, 1H),  5.79 (m,1H), 5.11 (d, 1H), 5.03 (d, 1H), 4.04 (s, 

3H), 3.81 (s, 1H), 3.65 (s, 1H), 3.40 (d, 1 H), 2.94 (d, 1H), 2.71 (s, 1H) 2.22-2.14 (m, 2H), 1.88 (m, 1H), 

1.72 (m, 1H), 1.54 (s, 2 H), 1.48 (s, 3H), 1,42 (s, 3H). 13C-NMR [CD3OD]: δ = 160.8 (Car), 155.3 

(C=O), 148.74 (CarH), 145.5 (Car), 143.6 (Car), 138.9 (CH=), 132.3 (CarH), 128.0 (CH2=), 127.4 (Car), 

124.3 (CarH), 120.5 (CarH), 102.7 (CarH), 71.1 (CH), 60.6 (CH), 59.4 (CH2SO3H), 57.2 (OCH3), 45.6 

(CH2), 38.3 (CH2), 38.3 (CH), 28.9 (CH3), 28.4 (C4), 28.3 (CH3), 25.0 (CH2), 20.7 (CH2).  

MS (ESI, positive): 504.2 [M + H]+.  

 

N O

N

MeO O

H
N

SO3H

 

SO 7 (SO for CSP 4): 53 % yield, yellowish crystals. 1H-NMR [CD3OD]: δ =8.86 (d, 1H), 8.06 (d, 

1H), 7.89 (d, 1H), 7.64 (d, 1H), 7.60 (dd, 1H), 7.06 (s, 1H), 5.74 (m, 1H), 5.09 (d, 1H), 4.99 (d, 1H), 

3.99 (s, 3H), 3.91 (m, 2H), 3.81 (m, 1H), 3.68 (t, 1H), 3.30 (m, 2H), 2.94 (m, 2H), 2.81 (s, 1H), 2.34 (m, 

1H), 2.25 (m, 1H), 2.09 (s, 1H), 1.94 (m, 1H), 1.75 (m, 2H), 0.85 (d, 3H), 0.83 (d, 3H). 13C-NMR 

[CD3OD]: δ =162.2 (Car), 156.7 (C=O), 149.9 (Car), 145.0 (CarH), 139.8 (Car), 139.5 (CH=), 128.8 (Car), 

127.9 (CarH), 127.5 (CarH), 120.6 (CarH), 117.8 (CH2=), 103.7 (CarH), 71.4 (CH), 60.1 (CH), 58.0 

(OCH3), 56.4 (CH2SO3H), 55.8 (CH), 54.5 (CH2), 46.2 (CH2), 38.8 (CH), 34.3 (CH), 28.7 (CH), 25.4 

(CH2), 21.0 (CH2), 20.1 (CH3), 18.8 (CH3). MS (ESI, positive): 518.4 [M+H]+. 
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SO 8 (SO for CSP 5): 35 % yield, yellowish crystals. 1H-NMR [CD3OD]: δ =8.59 (m, 1H), 7.86 (d, 

1H), 7.47 (d, 1H), 7.40-7.31 (m, 2H), 6.97 (s, 1H), 5.67 (m, 1H), 5.04-4.88 (m, 2H), 3.89 (s, 3H), 3.59 

(m, 1H), 3.52 (m, 1H), 3.15 (m, 2H), 3.00 (d, 1H), 2.96 (m, 1H), 2.82 (m, 1H), 2.19-2.02 (m, 2H), 1.96 

(m, 1H), 1.63 (m, 2H), 1.51 (m, 3H), 1.40 (m, 1H), 1.25 (m, 1H), 0.87 (dd, 6H). 13C-NMR [CD3OD]: δ 

=160.8 (Car), 156.5 (C=O), 148.4 (CarH), 145.4 (Car), 144.3 (Car), 140.0 (CH=), 132.0 (CarH), 127.8 

(Car), 124.5 (CarH), 119.8 (CarH), 117.5 (CH2=), 102.6 (CarH), 60.5 (CH), 57.7 (CH2), 57.5 (CH), 56.6 

(CH2), 53.5 (CH2), 49.1 (CH), 48.5 (CH), 45.9 (CH2), 43.1 (CH2), 39.2 (CH), 28.8 (CH), 26.4 (CH), 

25.8 (CH2), 25.7 (CH), 22.7 (CH3), 22.5 (CH3). MS (ESI, positive): 532.2 [M+H]+. 

 

 

 

 

 

 

 

SO 9 (SO for CSP 6): 50 % yield, brownish crystals. 1H-NMR [CD3OD]: δ =8.88 (d, 1H), 8.12 (d, 1H), 

7.97 (d, 1H), 7.75 (dd, 1H), 7.68 (d, 1H),  7.32 (m, 3H), 7.30 (m, 3H), 7.03 (s, 1H), 5.25 (m, 1H), 5.17 

(d, 1H), 4.75 (m, 1H), 4.07 (s, 3H), 3.87 - 3.72 (m, 2 H), 3.68 (s, 1H), 3.49 (m, 1H), 3.23 (d, 1H), 3.13 

(d, 1H), 2.30 - 2.17 (m, 2H), 2.03 (m, 2H), 1.82 (m, 1H). 13C-NMR [CD3OD]: δ = 160.3 (Car), 155.6 

(C=O), 148.3 (CarH), 145.0 (Car), 143.5 (Car), 139.5 (CH=), 131.2 (CarH), 131.0 (CarH), 130.2 (CarH), 

128.8 (CarH), 125.6 (Car), 120.9 (CarH), 119.6 (CarH), 118.1 (CH2=), 102.2 (CarH), 71.4 (CH), 60.2 

(CH), 58.1 (OCH3), 55.3 (CH2), 54.3 (CH), 46.4 (CH2), 39.6 (CH2), 38.93 (CH), 35.0 (CH2), 28.8 (CH), 

25.5 (CH2), 21.7 (CH2). MS (ESI, positive): 552.4 [M+H]+.  
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SO 10 (SO for CSP 7): 86 % yield, colorless crystals. 1H-NMR [CD3OD]: δ =8.63 (d, 1H), 7.85 (d, 

1H), 7.72 (d, 1H), 7.31 (m, 2H), 7.27 (d, 2H), 7.20 (t, 2H), 7.11 (t, 1H), 6.87 (s, 1H), 5.58 (m, 1H), 5.09 

(d, 1H), 4.95 (d, 1H), 4.87 (d, 1H), 3.78 (s, 3H), 3.68 (t, 1H), 3.47 (t, 1H), 3.40 (t, 1H), 3.33 (dt, 1H), 

3.20 (t, 1H), 3.18-3.12 (m, 1H), 3.07-3.01 (m, 1H), 2.53 (s, 1H), 2.14-2.00 (m, 2H), 1.94 (s, 1H), 1.73 

(m, 1H), 1.52 (t, 1H). 13C-NMR [CD3OD]: δ = 161.2 (Car), 155.9 (C=O), 147.8 (CarH), 145.0 (Car), 

144.7 (Car), 143.3 (Car), 139.3 (CH=), 131.1 (CarH), 130.8 (CarH), 129.7 (CarH), 129.1 (CarH), 127.9 

(Car), 125.3 (CarH), 121.1 (CarH), 117.8 (CH2=), 102.9 (CarH), 71.5 (CH), 60.3 (CH), 58.3 (OCH3), 56.2 

(CH2), 54.5 (CH), 50.3 (CH), 45.6 (CH2), 38.6 (CH), 28.4 (CH), 25.2 (CH2), 21.0 (CH2). MS (ESI, 

positive): 552.4 [M+H]+.  

 

 

 

 

 

 

 

SO 11 (SO for CSP 8): 50 % yield, brownish crystals. 1H-NMR [CD3OD]: δ = 8.69 (d, 1H), 7.95 (d, 

1H), 7.62 (d, 1H), 7.54 (d, 1H), 7.42 (d, 1H), 7.09 (s, 1H), 6.26 (h, 1H), 5.27 (d, 1H), 3.99 (s, 3H), 3.95 

(m, 1H), 3.71 (m, 1H), 3.61 (m, 1H), 3.21-3.14 (m, 2H), 3.01(m, 2H), 2.95(m, 2H), 2.64(dd, 1H), 2.41 

(m, 1H), 1.98 (s, 1H), 1.82 (m, 3H), 1.46 (m, 1H), 0.88 (d, 3H), 0.85 (d, 3H). 13C-NMR [CD3OD]: δ 

=160.3 (Car), 156.9 (C=O), 147.9 (CarH), 145.0 (Car), 144.3 (Car), 139.4 (CH=), 131.5 (CarH), 127.7 

(Car), 124.2 (CarH), 119.6 (CarH), 117.6 (CH2=), 102.3 (CarH), 72.0 (CH), 60.1 (CH), 57.1 (CH2SO3H), 

55.6 (OCH3), 55.2 (CH), 54.5 (CH2), 50.8 (2CH2), 50.4 (CH2), 39.2 (CH), 33.5 (CH), 29.2 (CH3), 24.6 

(CH2), 21.2 (CH2), 19.7 (CH3), 18.3 (CH3). MS (ESI, positive): 518.4 [M+H]+. 
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ABSTRACT: Intervention in integrin-mediated cell adhesion and
integrin signaling pathways is an ongoing area of research in
medicinal chemistry and drug development. One key element in
integrin−ligand interaction is the coordination of the bivalent
cation at the metal ion-dependent adhesion site (MIDAS) by a
carboxylic acid function, a consistent feature of all integrin ligands.
With the exception of the recently discovered hydroxamic acids, all
bioisosteric attempts to replace the carboxylic acid of integrin
ligands failed. We report that phosphinates as well as monomethyl
phosphonates represent excellent isosters, when introduced into
integrin antagonists for the platelet integrin αIIbβ3. The novel
inhibitors exhibit in vitro and ex vivo activities in the low
nanomolar range. Steric and charge requirements of the MIDAS
region were unraveled, thus paving the way for an in silico
prediction of ligand activity and in turn the rational design of the next generation of integrin antagonists.

■ INTRODUCTION
Integrin signaling is profoundly implicated in numerous
physiological processes, such as tissue remodeling or angio-
genesis, as well as in important pathological disorders such as
thrombosis, cancer, osteoporosis, and autoimmune diseases.
Because of their biological relevance in many diseases, integrins
represent highly important targets for medicinal chemistry.1,2

From a structural point of view, integrins are heterodimers of a
noncovalently linked α-subunit and a β-subunit. Each domain is
composed of an extracellular domain, a single membrane-
spanning helical domain, and a short cytoplasmic tail. The β-
subunit contains a metal ion-dependent adhesion site (MIDAS)
in the ligand binding domain.3−5 Among the 24 known
integrins, a number of them, known as the RGD-dependent
integrins, recognize the tripeptide sequence arginine-glycine-
aspartic acid (RGD) of extracellular matrix (ECM) proteins
(e.g., fibronectin for α5β1, fibrinogen for platelet integrin
αIIbβ3, and vitronectin for αvβ3 and other αv integrins) or
other ligands, such as ADAMs, snake venoms, or viruses

(FMD).1,6,7 Constraining and mimicking RGD has successfully
been used to develop thousands of integrin ligands, all
containing an essential carboxylate moiety as a metal-
coordinating group in the MIDAS. Recently, we found
hydroxamic acids as a first potent isosteric replacement of the
carboxylic group in integrins αvβ3 and α5β1.8 The known
tendency of phosphate groups to coordinate bivalent metal ions
(calcium, manganese, or magnesium) prompted us to develop
new phosphorus-containing integrin ligands with the aim of
unraveling the steric and electrostatic requirements of the
MIDAS region and obtaining significant new insights into the
binding mode of integrins for further optimizing integrin
ligands.
To date, extensive efforts have been made to discover and

develop integrin antagonists for clinical applications. However,
only for three integrins9 (αIIbβ3, α4β1, and αLβ2), of the 24
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known, have small molecular ligands been approved as drugs.
Candidates for other integrins, such as αvβ3, are in clinical
phase III trials.10 In contrast, significant advances have been
made in targeting platelet integrin αIIbβ3.9,11 In fact, the
αIIbβ3 integrin inhibitor tirofiban12 is being successfully used
in acute antithrombotic therapy;12−14 thus, inhibition of this
receptor is now a validated way of inhibiting fibrinogen-
dependent platelet aggregation.
In this work, integrin antagonists 1−4 (Figure 1) were

developed on the basis of tirofiban analogue 5 (Figure 1)
previously described by Duggan et al.15 Compounds 1−4 allow
us to explore the sensitivity of the MIDAS region for
coordination of differently charged groups. Synthetic methods

for obtaining the desired compounds 1−4 have been developed
(Scheme 1). Enantiomers due to the chiral center in α-position
of the phosphorus-containing group were resolved via
chromatography on chiral columns and tested independently.
The ability of the novel ligands to inhibit the binding of integrin
αIIbβ3 to its corresponding ECM protein fibrinogen was tested
in a competitive ELISA, and the efficacy of the most active
compounds was proven in ex vivo experiments. To understand
the dependency of the charge of the metal-coordinating group
and the corresponding biological activities, we studied the
protonation states of compounds 1−4 by means of extensive
theoretical calculations and 31P NMR titration experiments.
The combination of ab initio calculations and molecular

Figure 1. Bioisosteric replacement of the carboxylic MIDAS binding motif for the development of new αIIbβ3 integrin antagonists: phosphinic acid
1, phosphonic acid 2, monomethyl phosphonic acid 3, thiophosphonic acid 4, tirofiban analogue 5, and tirofiban 6.

Scheme 1. Synthesis of Integrin Ligands 1−4a

a(a) Fmoc-Cl, 10% Na2CO3, room temperature (RT), 2 h; (b) IBX, DMSO, RT, 16 h; (c) NH2OH·HCl, DIEA, DCM, RT, 16 h; (d) anhydrous
crystalline H3PO2, MeOH, reflux, 4 h; (e) PhSO2Cl, 10% Na2CO3, dioxane, RT, 3 h; (f) 20% piperidine/DMF, RT, 2 h; (g) HATU, DIEA, DMF,
RT, 16 h; (h) TFA/H2O/TIPS, RT, 16 h; (i) (1) BSA, air, DCM, RT, 1 h; (2) TFA/H2O/TIPS, 16 h; (j) (1) BSA, air, DCM, RT, 1 h; (2)
EDC·HCl, DMAP, MeOH, RT, 1 h; (3) TFA/H2O/TIPS, 16 h; (k) BSA, sulfur, DCM, RT, 1 h. All compounds were purified by RP-HPLC (for
more details, see the Supporting Information).
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docking simulations has defined the binding modes of the new
ligands 1 and 2 identifying the molecular requisites for
achieving a high inhibitory activity, and on the basis of these,
a prediction of the activity of 3 and 4 was successfully executed.

■ CHEMISTRY
To prepare compounds 1−4, two major fragments (12 and 15)
were connected via an amide bond (Scheme 1). For the
synthesis of 12, commercially available 2-aminoethanol was
Fmoc-protected followed by oxidation with IBX.16,17 The
corresponding aldehyde 8 was converted with hydroxylamine
hydrochloride in DCM to oxime 9 in high yield.18 Refluxing
oxime 9 with anhydrous crystalline phosphinic acid in dry
methanol resulted in racemic phosphinate intermediate 10,18,19

which was sulfonylated upon treatment with phenylsulfonyl
chloride in aqueous Na2CO3 to provide Fmoc-protected
derivative 11. Fmoc deprotection and purification by reverse-
phase high-performance liquid chromatography (RP-HPLC)
afforded fragment 12 as a racemic mixture.
The second fragment containing the arginine mimic as a

piperidine moiety had already been described by Duggan et
al.15 Herein, Cbz protection was used instead of the more acid
labile Boc group, to avoid any deprotection of the secondary
amine during synthesis. Furthermore, during purification of 13,
the Cbz group allows UV detection. 2-[N-(Benzyloxycarbonyl)-
piperidin-4-yl]ethanol (13) was coupled to methyl-4-hydrox-
ybenzoate via Mitsunobu reaction with tributylphosphine and
1,1′-(azodicarbonyl)dipiperidine.20,21 Saponification of methyl
ester 14 gave benzoic acid derivative 15. Activation of 15 by use
of O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium
hexafluorophosphate (HATU) and subsequent condensation
with 12 gave Cbz-protected precursor 16.
Deprotection of 16 with trifluoroacetic acid yielded

molecular probe 1, while the conversion of phosphinic acid
16 to the bis(trimethylsilyl)phosphonite intermediate, which
was oxidized by atmospheric oxygen, afforded after Cbz
deprotection phosphonic acid ligand 2 in high yield. When

this process was applied to 1 and an excess of sulfur was added,
thiophosphonic acid 4 was obtained. Furthermore, Cbz-
protected phosphonic acid 2 undergoes rapid monoesterifica-
tion at room temperature in the presence of N-[3-
(dimethylamino)propyl]-N′-ethylcarbodiimide (EDC) and 2
equiv of 4-dimethylaminopyridine (DMAP) in dry methanol.
Without DMAP, the reaction results in exclusive formation of
the dimethyl ester and no desired product 3 is observed.
We decided to synthesize all molecular probes as racemic

mixtures, as “libraries of enantiomers”. However, for a more
detailed biological evaluation, it was necessary to determine the
activity of the optically pure compounds.
Enantiomer separation was successfully performed on

quinine-based chiral zwitterionic ion-exchange-type stationary
phases developed by Hoffmann et al.22 Here, a sulfonic acid
derivative of quinine served as a zwitterionic chiral selector.23

The concept of the resolution of the racemic ampholytes, as
compounds 1−3 can be classified, is based on a simultaneous
ion pair formation of the zwitterionic chiral selector motif of
the chiral stationary phase with the individual enantiomers of
the analytes. These two diastereomerically behaving selector−
(R)-enantiomer and selector−(S)-enantiomer associates are the
basis for the enantiomer separations.22 The preference and
magnitude of molecular recognition and chiral discrimination
are based on the stereochemical properties of the chiral selector
and the ampholytes that include additional intermolecular
interaction sites like hydrogen bonding and π−π interactions
that determine the overall chromatographic enantioselectivity
and elution order.
For N-acyl-protected amino acid-type analytes with known

absolute configurations, we formulated a general model of
intermolecular interactions and chromatographic elution order
that correlates with the absolute configuration of the α-carbon
of an α-amino acid.24,25 Accordingly, we assigned the
stereocenter of compounds 1−3, taking into account the
isosteric behavior of the analytes and the Cahn−Ingold−Prelog

Table 1. Biological Evaluation of Activities of Ligands 1−6 on Integrin αIIbβ3

compd R IC50
a (nM) (αIIbβ3) EC50

b (nM) (αIIbβ3)

(R)-1 PHOOH 1.2 ± 0.06 7.8 ± 0.9
(S)-1 6.3 ± 0.73
(R)-2 PO(OH)2 22.7 ± 2.7 276 ± 15.6
(S)-2 136 ± 10.7
(R)-3 PO(OH)(OMe) 3.3 ± 0.4 40.8 ± 1.9
(S)-3 1154 ± 272
(R)-4 PS(OH)2 62.5 ± 6.0
(S)-4 1322 ± 498
(S)-5 COOH 0.81 ± 0.05
(R)-5 4.4 ± 0.3
6 tirofiban 0.95 ± 0.09 13.6 ± 3.3

aIC50 values were derived from a competitive ELISA using immobilized fibrinogen and soluble integrin αIIbβ3. bEffective concentrations (EC50) of
some key compounds for inhibition of platelet aggregation were derived from aggregation measurements using multiple-electrode aggregometry in
hirudin-anticoagulated TRAP-6-activated blood.
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(CIP) convention (for more details, see the Supporting
Information).

■ RESULTS
In Vitro Inhibition of Integrin αIIbβ3. To validate the

inhibition properties of the compounds against αIIbβ3, a
competitive ELISA (αIIbβ3 fibrinogen assay) was performed
using soluble integrin αIIbβ3 and the immobilized natural
ligand fibrinogen.26,27 The clinically used αIIbβ3 inhibitor
tirofiban was used as an internal control (Table 1, IC50).
Carboxylic acid (S)-5 is similar in potency to tirofiban (6),

whereas the (R)-configuration is 6 times less active (0.8 nM vs
4.4 nM). Isosteric replacement of the carboxylic acid with a
phosphinic acid results in retained activity depending on its
relative configuration [1.2 nM for (R)-1 and 6.3 nM for (S)-1].
However, the phosphonic acid derivatives 2 are 20 times less
active [22.7 nM for (R)-2 and 136 nM for (S)-2] than
phosphinic acid 1, clearly indicating that additional negative
charge is not well tolerated in the MIDAS. Being aware that
phosphonic acid 2 might exist in several different protonation
states at the given pH, we used thiophosphonic acid 4 as a
molecular probe existing only in the double-negative
protonation state (Figure 2). The higher IC50 of 4 [62.5 nM
for (R)-4 and 1322 nM for the less favored (S)-4 enantiomer]
indicates that the additional charge in phosphonates and
thiophosphonates reduces the binding affinity for the MIDAS.
To further prove and underline this concept, we evaluated
monomethyl ester 3 of phosphonic acid 2, resulting in the
elimination of the additional negative charge. The (R)-3
phosphonic methyl ester regains nearly all of the activity (3.3
nM) compared to the phosphinic acid (R)-1, whereas the (S)-3
methyl ester is far less potent (1154 nM). This could indicate a
steric hindrance by the methyl group pointing toward the
binding pocket. Similar indications were obtained from the
docking calculations (for more details, see the Supporting
Information).

Platelet Aggregation in Whole Blood. In an attempt to
compare the potencies of binding of various compounds to
isolated platelet integrin αIIbβ3 (IC50) with their predicted
inhibitory potency for the complex biological process of platelet
aggregation, the effects of synthetic ligands (R)-1, (R)-2, (R)-3,
and tirofiban on ex vivo platelet aggregation were assessed
using impedance-based platelet aggregometry28,29 in hirudin-
anticoagulated TRAP-6-activated whole blood (Table 1, EC50).
Phosphinic acid (R)-1 was found to behave like tirofiban in

terms of platelet aggregation inhibition, whereas phosphonic
acid derivative (R)-2 was ∼20 times less potent. Phosphonic
methyl ester (R)-3 showed intermediate efficacy. There is a
very good correlation between the inhibitory potencies of
compounds in the ELISA (IC50) and their inhibitory potencies
in the platelet aggregation assay (EC50).

In Vitro Permeability Study. We have tested pharmaco-
kinetic properties (including disposition and membrane
permeability) of ligands 1−3 and tirofiban (6) by evaluating
their permeability properties with an enterocyte monolayer
derived from human colonic carcinoma cells (Caco-2 model).30

This model is commonly used to predict the degree of
intestinal permeability of therapeutic compounds as well as to
gain a certain indication regarding their likelihood of
penetrating the brain. The results could not differentiate
between the permeability properties of the four compounds in
cases where all of them exhibit poor permeability properties
(Papp < 1 × 10−8 cm/s). It should be noted that the permeability
of mannitol (positive control) used in this study was 2.4 × 10−6

cm/s. The permeability mechanism of mannitol is paracellular,
using the pores between the cells (tight junctions), with no
transcellular component. The fact that all of the tested tirofiban
analogues had significantly lower permeability values indicates
that the charged moiety of these analogues (at physiological
pH, 7.2) restricted the paracellular transport properties in an
effective manner. However, to validate this argument, we
prepared the corresponding dimethyl ester of 2 [inactive in the

Figure 2. Assessing the protonation state of the molecular probes. Comparison of 31P NMR titration curves (top) and computed microspecies
distributions (middle) for molecular probes 1−4 (a−d, respectively). The physiological pH of 7.2 is shown as a dotted line to highlight the presence
of either a single protonation state [horizontal line for 1 (a), 3 (c), and 4 (d)] or two protonation states [descending line for 2 (b)]. In the calculated
microspecies distribution (bottom), structures of the most dominant protonation states are shown. The dotted line and the intersection with the
presentation of microspecies represent the protonation states at the physiological pH of 7.2.
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αIIbβ3 fibrinogen assay (data not shown] and tested its
permeability. Unfortunately, this compound also exhibited poor
permeability.
Assessment of the Protonation State of 1−4. To

elucidate the molecular properties responsible for the different
activity profiles of the investigated compounds (Table 1) and
the mechanism of recognition between the inhibitors and the
αIIbβ3 integrin receptor (see the docking section), we
conducted an extensive computational study. First, the
protonation states of compounds 1−4 were computed for
each compound, and the distribution of microspecies between
pH 0 and 14 was calculated with the Marvin Sketch package.
The results were validated via titration experiments monitored
by 31P NMR chemical shifts that are very sensitive to ionization
state31−35 (Figure 2; for more details, see the Supporting
Information).
While 1 and 3 are characterized by two pKa values,

corresponding to the acidities of the phosphorus acid moiety
(pKa1) and the piperidinium group (pKa3), for 2 and 4 a total of
three pKa values are found [phosphonic and thiophosphonic
acid (pKa1 and pKa2, respectively) and piperidinium group
(pKa3)]. The experimental as well as the calculated (in
parentheses) pKa values show that at the physiological pH of
7.2 all piperidine moieties are protonated with pKa3 values of
10.44 (10.48) for 1, 10.06 (10.48) for 2, 11.02 (10.57) for 3,
and 12.03 (10.58) for 4. Furthermore, the first acid
functionality of the phosphorus unit (pKa1) of all compounds
1−4 is present in the completely deprotonated form at pH 7.2
with pKa1 values of greater than 1.56 (1.90) for 1, 1.01 (1.63)
for 2, 1.13 (1.63) for 3, and 1.27 (1.94) for 4. All in all, we
found that the experimental NMR results fully corroborate the
trends in the computational calculations.
At the physiological pH of 7.2, the piperidine moiety (pKa3)

of 1 is protonated and the phosphinate group (pKa1) is fully
deprotonated (Figure 2a). For 2, two microspecies can be

found at physiological pH, both having a protonated piperidine
unit; however, in one case, the phosphonic acid is monoanionic
(∼86% in silico and 63% in vitro), and in the other case, it is in
the dianionic form (∼14% in silico and 37% in vitro) (Figure
2b). To further investigate the effect of the charge of the
different substituents on the phosphorus atom, two more
molecular probes, 3 and 4, were studied. In particular, the
thiophosphonate group of compound 4, like the phosphonate
group of 2, coexists at neutral pH as mono- and dianionic
species, but a shift toward the dianionic form (∼82% in silico
and 99% in vitro) was observed (Figure 2d). The in vitro
measurements showed that the second acid functionality (pKa2)
of compounds 2 and 4 is more acidic than calculated. For 2 a
pKa2 of 6.97 (7.99) and for 4 a pKa2 of 5.27 (6.53) can be
extracted from the obtained data points. Compound 3, like 1,
possesses only one single microspecies (Figure 2c).

Molecular Docking and Electrostatic Potential Calcu-
lations of 1−4. Compounds 1−4 were docked into the
αIIbβ3 RGD binding site with the aid of AutoDock version
4.0.36,37 Both enantiomers were studied. Results of the (S)-
enantiomers are reported in the Supporting Information along
with an explanation of the lower inhibitory potency observed
for (S)-1, (S)-2, and (S)-3 with respect to those of the
corresponding (R)-enantiomers.
As for (R)-1, in accordance with the protonation state

assessment (Figure 2a), only the neutral ligand form
(piperidine moiety protonated, phosphinate deprotonated)
was used for docking simulations. As a result, a binding
mode highly similar to that of tirofiban was observed (Figure
3A,B and Figure S2 of the Supporting Information). In fact, the
phosphinate group coordinates the magnesium ion occupying
in the MIDAS the same region that hosts the carboxylate group
of tirofiban. In particular, one of the oxygen atoms coordinates
the metal, while the other one engages two H-bonds with the
backbone NH groups of (β3)-Asn215 and (β3)-Tyr122, like

Figure 3. Modes of binding of tirofiban (A), (R)-1 (B), (R)-2 in the overall neutral form (C) and in the overall anionic form (D), (R)-3 (E), and
(R)-4 (F). The αIIb domain is displayed as a yellow cartoon, while the β3 domain is colored green. The interacting residues and the ligands are
shown as licorice, while the magnesium ion is represented as a red sphere. For the sake of clarity, only the polar hydrogens are displayed. The
stereoview version of each complex is provided in Figure S3 of the Supporting Information.
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tirofiban in αIIbβ3 and Cilengetide in αvβ3 [Protein Data Bank
(PDB) entries 2vdm and 1L5G]. The benzenesulfonamide
moiety forms H-bonds with the (β3)-Asn215 backbone CO
group, while the phenyl ring occupies the aromatic pocket
formed by (αIIb)-Phe160, (αIIb)-Tyr190, and (β3)-Tyr166.
The aromatic ring of the p-hydroxybenzoate scaffold is close
enough to form a π−π interaction with (αIIb)-Tyr190, the
hydroxyl group of which is involved in an H-bond interaction
with the inhibitor amide CO group. This allows the piperidine
moiety to point toward the αIIb subunit, where the protonated
nitrogen group makes a salt bridge interaction with the (αIIb)-
Asp224 side chain and an H-bond with the (αIIb)-Ser225
backbone CO group. All these favorable interactions are
certainly responsible for the low nanomolar activity of (R)-1
toward the αIIbβ3 receptor.
Because phosphonic acid 2 is present at the physiological pH

of 7.2 both in the monoanionic form and in the dianionic form
(Figure 2b), docking calculations for (R)-2 were performed for
both protonation states, and the results showed a binding
conformation similar to that of tirofiban and (R)-1 (Figure
3C,D). This suggests that although the phosphonic group is
bulkier than the phosphinate moiety, it can fit in the MIDAS
region. Nevertheless, because (R)-2 shows reduced activity
compared to that of (R)-1 (Table 1), reasons different from the
steric hindrance should be responsible for the experimentally
observed lower activity. In this regard, it has to be clarified that
all docking algorithms, either based on classical force fields38 or
based on empirical free energy scoring functions39 or
knowledge-based scoring functions,40 cannot accurately predict

properties like the exact metal coordination geometry or
particular charge effects. Thus, to overcome this limitation and
to shed light on the different activity profiles of (R)-1 and (R)-
2, more accurate computational techniques must be used.
Recent progress made in the force field parametrization of
bivalent ions41 and some theoretical studies on a Mg2+

protein42,43 would suggest the use of molecular dynamics-
based approaches to sample more accurately the specific
ligand−protein interaction of each complex. Another possibility
might be to perform QM/MM calculations to accurately
describe the ligand−protein interaction at the binding site.
Unfortunately, both these approaches are computationally time
intensive and are useful for the study of only a few compounds.
To perform calculations on most of the ligands of the series in a
reasonable computational time, we decided to conduct
quantum mechanical calculations only on the ligands, thus
elucidating their different electrostatic potential profiles.
Quantum mechanical calculations revealed that (R)-1 has an

electrostatic potential profile highly similar to that of tirofiban,
particularly with regard to the metal-coordinating group, while
(R)-2 is similar to tirofiban only in its neutral form (Figure 4).
In fact, with regard to (R)-2, the electrostatic potential of the
phosphonate group in the dianionic form, existing at
physiological pH, is highly negative. Indeed, if on one hand
this improves the coordination of the metal ion, on the other
hand, it causes electrostatic repulsion effects with the
surrounding atoms in the MIDAS such as the backbone CO
groups of (β3)-Asn215 and (β3)-Asp217 or the (β3)-Glu220
side chain (Figures 3D and 4). Thus, our computational study

Figure 4. Electrostatic potential mapped onto the molecular surface of tirofiban, 1, 2 in the overall neutral form and in the anionic form, 3, and 4. At
the top right, the electrostatic surface of the integrin αIIbβ3 binding site complexed with compound (R)-1 is shown. Both for ligands and for the
protein, the scale of the electrostatic potential ranges from −294.178 (red) to 294.178 (blue) kbT/ec.
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of (R)-1 and (R)-2 suggests that electrostatic properties, more
than steric features, are the crucial factors for the different
activities of the two compounds.
Also in the case of (R)-3 and (R)-4, it was not possible to

predict the αIIbβ3 activities solely on the basis of the docking
calculations (see Figure 3E,F for the predicted binding modes
and the Supporting Information for further details about
docking). As shown in Figure 4, the electrostatic potential
profile calculated for (R)-3 is highly similar to those of tirofiban
and (R)-1, while compound (R)-4, like (R)-2, has a highly
negative potential localized on the thiophosphonate group
(dianionic form). Those results are in perfect line with the
ELISA data reported in Table 1. In fact, (R)-4 possesses a
reduced activity because of the preponderance (∼82% in silico
and 99% in vitro) of its dianionic form, which has the less
favorable electrostatic profile for its interaction with αIIbβ3.
Accordingly, (R)-3 has an electrostatic potential profile and an
activity comparable to those of (R)-1.

■ DISCUSSION
The strong binding affinity of phosphorus ligands for bivalent
metal ions stimulated us to investigate those groups as
pharmacophores for binding to the MIDAS region of integrins.
As a proof of principle, we investigated analogues of αIIbβ3
integrin inhibitor 5, previously described by Duggan et al.,15

which is structurally related to the drug tirofiban (6) and
exhibits a similar binding affinity. The essential carboxyl group
of 5 was modified by different phosphorus-containing groups.
We found that phosphinate groups as well as a phosphonate
monomethyl ester are suitable isosteres for the carboxyl group
in integrin ligands while phosphonate and thiophosphonate
groups could not be used for this purpose. Docking of ligands
1−4 in the αIIbβ3 receptor did not reveal substantial
differences with respect to the tirofiban binding mode (Figure
3 and Figure S2 of the Supporting Information), thus excluding
steric effects as a reason for different binding potencies. On the
basis of ab initio studies, the high affinity of phosphinate 1 and
phosphonate monomethyl ester 3 can be attributed to the
lower negative charge of the ligand metal binding groups, if
compared to those of 2 and 4 (Figure 4). The differences in
charges among compounds 1 and 4 have been investigated
both by theoretical calculations and by 31P NMR measure-
ments. In phosphonate 2 and thiophosphonate 4 at neutral pH,
there are considerable amounts of dianionic species in the
equilibrium (Figure 2). Obviously, the high negative charge is
not tolerated by the MIDAS region, which is already negatively
charged (Figure 4).
The dominating charge effect is accompanied by second-

order steric effects induced by substituents in α-position to the
phosphorus atom expressed in the different acceptance of
stereoisomers. Synthesis and the biological assays of the pure
(R)- and (S)-stereoisomers of 5 reveal that the (R)-enantiomer
is ∼5 times less active than the (S)-enantiomer. The same
general trend was found for compounds 1−4, bearing in mind
the fact that according to the CIP rules the notation in the
phosphorus compounds is reversed (Table 1). Molecular
docking revealed that in the case of compounds 1−4, although
the (S)-enantiomers are also able to bind the receptor, they lose
a number of favorable interactions within the binding pocket,
particularly in the case of phosphonic compounds (S)-2 and
(S)-3 (see the Supporting Information for details).
In the biological evaluation of the new αIIbβ3 antagonists,

we have shown that the in vitro binding affinity fully correlates

with the ex vivo prevention of platelet aggregation measured by
multiple-electrode aggregometry in hirudin-anticoagulated
TRAP-6-activated blood. Both assays yield the same order of
activities for all tested compounds. Approximately 10-fold
higher EC50 values are required compared to inhibition of
binding of integrin to fibrinogen (Table 1, IC50).
The pharmacotherapeutic activity of tirofiban is provided

following intravenous administration and is confined to the
systemic blood circulation. The results of the permeability
studies can be regarded as an indication that the new ligands
will also be restricted to the central compartment. Thus, once
administered by a parenteral route, the molecules will be
distributed within the central compartment where they produce
their antiplatelet aggregation activity. In case the novel
analogues will be further developed for clinical use (e.g., for
molecular imaging), the restricted distribution predicted for
these analogues ensures minimal side effects that could be
derived by interaction with peripheral tissues, including the
central nervous system. Thus, the poor membrane permeability
contributes to the safety profile of these analogues.
Pharmacokinetically wise, the polar moieties of these analogues
at the physiological pH of 7.2 did not allow passive diffusion
across the biological membrane, like enterocytes. It also
inhibited the transport via the tight junctions pores as
evidenced by the significantly lower permeability compared to
that of mannitol.
In summary, we here report a successful case of drug design

on the αIIbβ3 integrin that allowed us to identify the molecular
and electrostatic requisites for achieving strong αIIbβ3
inhibition. In particular, we have found that even a space-
demanding group such as methyl phosphonate (R)-3 can bind
to the αIIbβ3 MIDAS without strongly affecting the activity.
We have found that highly negatively charged metal-
coordinating groups are not well tolerated in the αIIbβ3
MIDAS. All these findings, on one hand, are extremely useful
for an easy and quick tuning of both the steric and electrostatic
features of αIIbβ3 inhibitors; on the other hand, they
demonstrate that docking calculations together with more
rigorous computational procedures, such as ab initio studies,
can be successfully used in rational design of new inhibitors
active on integrin receptors different from αIIbβ3.
The modification of the carboxylate group into a phosphinate

or a phosphonate monomethyl ester yields an attractive new
way of optimizing integrin ligands. The successful design of
non-carboxylate-containing ligands as integrin antagonists
surely opens a new era in the design and finding of novel
integrin ligands.

■ EXPERIMENTAL SECTION
All technical solvents were distilled prior to use. Dry solvents were
purchased from Aldrich, Fluka, or Merck. Reactions sensitive to
oxygen or water were performed in flame-dried reaction vessels under
an argon atmosphere (99.996%). Fmoc-protected amino acids and
coupling reagents were purchased from Novabiochem (Schwalbach,
Germany), Iris Biotech GmbH (Marktredwitz, Germany), and
Medalchemy (Alicante, Spain). All other chemicals and organic
solvents were purchased from commercial suppliers at the highest
purity available and used without further purification.

TLC monitoring was performed on Merck DC silica gel plates (60
F-254 on aluminum foil). Spots were detected by UV absorption at
254 nm and/or by staining with a 5% solution of ninhydrine in ethanol
or mostain [6.25 g of phosphomolybdic acid, 2.5 g of cerium(IV)
sulfate, and 15 mL of sulfuric acid in 235 mL of water] or potassium
permanganate (5% in 1 N aqueous NaOH).
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Flash column chromatography was performed using silica gel 60
(40−63 μm) from Merck at a pressure of 1−1.5 atm.
Analytical HPLC was performed using Amersham Pharmacia

Biotech Äkta Basic 10F equipment, with a P-900 pump system, a
reversed-phase YMC-ODS-A C18 column (12 nm pore size, 5 μm
particle size, 250 mm × 4.6 mm), and UV detection (UV-900; 220 and
254 nm). The system was run at a flow rate of 1.0 mL/min over 30
min using H2O (0.1% TFA) and MeCN (0.1% TFA) as solvents.
Semipreparative HPLC was performed using Waters equipment:

System Breeze; pump system 1525, UV detector 2487 dual (220 and
254 nm); Driver Software Breeze version 3.20; column material, YMC-
ODS-A C18 (12 nm pore size, 5 μm particle size, 250 mm × 20 mm),
YMC-ODS-AQ C18 (12 nm pore size, 5 μm particle size, 250 mm ×
20 mm), or YMCbasic (proprietary, 5 μm particle size, 250 mm × 20
mm).
HPLC−ESI-MS analyses were performed on a Hewlett-Packard

Series HP 1100 system with a Finnigan LCQ mass spectrometer using
a YMC-Hydrosphere C18 column (12 nm pore size, 3 μm particle size,
125 mm × 2.1 mm) or a YMC-Octyl C8 column (20 nm pore size, 5
μm particle size, 250 mm × 2.1 mm). The system uses H2O (0.1%
formic acid) and MeCN (0.1% formic acid) as eluents.
High-resolution mass spectrometry was conducted on a Thermo

Finnigan LTQ-FT (ESI-ICR) spectrometer.
1H NMR,13C NMR, and 31P NMR spectra were recorded at 295 K

on 500 MHz Bruker DMX, 360 MHz Bruker AV, and a 250 MHz
Bruker AV spectrometers, respectively (Bruker, Karlsruhe, Germany).
Chemical shifts (δ) are given in parts per million. The following
solvent peaks were used as internal standards: DMSO-d5, 2.50 ppm
(1H NMR) and 39.52 ppm (13C NMR); CHCl3, 7.26 ppm (1H NMR)
and 77.16 ppm (13C NMR); MeOH-d3, 3.31 ppm (1H NMR) and
49.00 ppm (13C NMR).44 With MeOH-d3 as the solvent, standard
pulse sequences provided by Bruker were used to eliminate the solvent
peak (watergate, P3919GP; presaturation, ZGPR). For 31P NMR
spectra, 85% phosphoric acid was used as an external standard.
Duggan ligand (S)-5 was synthesized according to literature

procedures,15 starting from Nα-Fmoc-L-2,3-diaminopropionic acid.
Synthesis of the corresponding (R)-enantiomer was conducted as
described here, starting from Nα-Boc-Nβ-Fmoc-D-2,3-diaminopropionic
acid. Standard peptide coupling techniques were employed.
All yields are not optimized. The analytical data of compounds 7−

18 are listed in the Supporting Information. All tested compounds
were ≥95% pure as determined by RP-HPLC-(MS).
1-(Phenylsulfonamido)-2-{4-[2-(piperidin-4-yl)ethoxy]-

benzamido}ethylphosphinic Acid (1). A mixture of TFA, TIPS,
and water [5 mL, 95:2.5:2.5 (v/v/v) TFA/TIPS/H2O] was added to
16 (36.0 mg, 0.057 mmol) and the mixture stirred at room
temperature (RT) for 16 h. Purification by semi-preparative RP-
HPLC and lyophilization gave 1 (23.5 mg, 0.047 mmol, 83%) as a
white solid: 1H NMR (500 MHz, MeOH-d3, RT) δ 8.53 (br s, 1 H),
8.24 (br s, 1 H), 8.10 (t, 3J = 5.0 Hz, 1 H), 7.83 (d, 3J = 7.6 Hz, 2 H),
7.66 (d, 3J = 9.0 Hz, 2 H), 7.42 (t, 3J = 7.3 Hz, 1 H), 7.37 (t, 3J = 7.5
Hz, 2 H), 6.93 (d, 3J = 9.0 Hz, 2 H), 6.83 (d, 1J = 531.3 Hz, 1 H), 4.11
(t, 3J = 6.2 Hz, 2 H), 3.66−3.48 (m, 3 H), 3.43−3.34 (m, 2 H), 3.07−
2.87 (m, 2 H), 2.11−1.94 (m, 2 H), 1.96−1.84 (m, 1 H), 1.80 (dt, 3J =
6.3 Hz, 3J = 6.3 Hz, 2 H), 1.46 (dt, 3J = 14.9 Hz, 3J = 3.9 Hz, 2 H); 13C
NMR (126 MHz, MeOH-d3, RT) δ 169.9, 163.2, 142.6, 133.6, 130.4,
130.2, 128.0, 127.5, 115.2, 66.6, 54.9 (d, 1JPC = 99 Hz), 45.5, 39.4 (d,
2JPC = 5 Hz), 36.2, 32.4, 30.1; 31P NMR (101 MHz, D2O/H2O, RT) δ
25.4 (pH 7.3); MS (ESI) m/z 430.2 [M − PHOOH]+, 496.2 [M +
H]+, 518.2 [M + Na]+, 991.1 [2M + H]+, 1013 [2M + Na]+, 1029.2
[2M + K]+; RP-HPLC tR = 10.5 min (10−90% in 30 min); HRMS
(ESI) m/z calcd for C22H31N3O6P

32S 496.1671 [M + H]+, found
496.1665.
1-(Phenylsulfonamido)-2-{4-[2-(piperidin-4-yl)ethoxy]-

benzamido}ethylphosphonic Acid (2). A mixture of TFA, TIPS,
and water [5 mL, 95:2.5:2.5 (v/v/v) TFA/TIPS/H2O] was added to
17 (24.1 mg, 0.037 mmol) and the mixture stirred at RT for 16 h.
Purification by semipreparative RP-HPLC and lyophilization gave 2
(15.0 mg, 0.029 mmol, 79%) as a white solid: 1H NMR (500 MHz,
MeOH-d3, RT) δ 8.47 (br s, 1 H), 8.18 (br s, 1 H), 8.12−8.05 (m, 1

H), 7.84 (d, 3J = 7.4 Hz, 2 H), 7.70 (d, 3J = 8.9 Hz, 2 H), 7.49−7.32
(m, 3 H), 6.95 (d, 3J = 8.9 Hz, 2 H), 4.13 (t, 3J = 6.0 Hz, 2 H), 3.96−
3.85 (m, 1 H), 3.73−3.62 (m, 1 H), 3.55−3.44 (m, 1 H), 3.43−3.35
(m, 2 H), 3.07−2.93 (m, 2 H), 2.08−1.99 (m, 2 H), 1.98−1.87 (m, 1
H), 1.82 (dd, 3J = 12.4 Hz, 3J = 6.1 Hz, 2 H), 1.51 (m, 2 H); 13C NMR
(126 MHz, D2O/CD3CN/NaOH, RT) δ 167.7, 160.9, 141.4, 131.5,
128.6, 128.5, 125.6, 125.2, 113.7, 65.5, 52.1 (d, 1J = 134 Hz), 44.8, 41.5
(d, 2J = 5 Hz), 35.1, 32.1, 31.8; 31P NMR (101 MHz, D2O/H2O, RT)
δ 13.7 (pH 7.2); MS (EI) m/z 430.1 [M − PO(OH)2]

+, 494.3 [M −
OH]+, 512.2 [M + H]+, 1023.1 [2M + H]+, 1045.1 [2M + Na]+; RP-
HPLC tR = 10.2 min (10−90% in 30 min); HRMS (ESI) m/z calcd for
C22H31N3O7P

32S 512.1615 [M + H]+, found 512.1616.
Methyl-1-(phenylsulfonamido)-2-{4-[2-(piperidin-4-yl)-

ethoxy]benzamido}ethylphosphonate (3). A mixture of TFA,
TIPS, and water [5 mL, 95:2.5:2.5 (v/v/v) TFA/TIPS/H2O] was
added to 18 (16.7 mg, 0.025 mmol) and the mixture stirred at RT for
16 h. Purification by semipreparative RP-HPLC and lyophilization
gave 3 (10.4 mg, 0.020 mmol, 78%) as a white solid: 1H NMR (500
MHz, MeOH-d3, RT) δ 8.60−8.40 (m, 1 H), 8.18 (t, 3J = 5.2 Hz, 1
H), 7.88 (d, 3J = 8.0 Hz, 2 H), 7.74 (d, 3J = 9.0 Hz, 2 H), 7.49 (t, 3J =
7.2 Hz, 1 H), 7.44 (t, 3J = 7.5 Hz, 2 H), 7.18−7.11 (m, 1 H), 6.95 (d,
3J = 9.0 Hz, 2 H), 4.11 (t, 3J = 6.2 Hz, 2 H), 3.73 (ddd, 3J = 16.8 Hz, 3J
= 13.3 Hz, 3J = 8.1 Hz, 1 H), 3.65 (ddd, 2J = 19.2 Hz, 3J = 9.8 Hz, 3J =
4.9 Hz, 1 H), 3.53−3.49 (m, 1 H), 3.42−3.35 (m, 2 H), 3.35 (d, 3J =
10.5 Hz, 3 H), 3.06−2.32 (m, 2 H), 2.06−1.97 (m, 2 H), 1.97−1.86
(m, 1 H), 1.80 (dt, 3J = 6.5 Hz, 3J = 6.3 Hz, 2 H), 1.52−1.39 (m, 2 H);
13C NMR (126 MHz, MeOH-d3, RT) δ 169.7, 163.1, 142.9, 133.5,
130.3, 130.1, 128.1, 127.7, 115.2, 66.5, 52.7 (d, 2J = 6.3 Hz), 50.9 (d, 1J
= 147.1 Hz), 45.5, 42.4 (d, 2J = 6.1 Hz), 36.2, 32.4, 30.1; 31P NMR
(101 MHz, D2O/H2O, RT) δ 17.6 (pH 6.91); MS (ESI) m/z 494.2
[M − OMe]+, 526.2 [M + H]+, 548.2 [M + Na]+, 1051.1 [2M + H]+,
1073.1 [2M + Na]+, 1576.0 [3M + H]+; RP-HPLC tR = 10.8 min (10−
90% in 30 min); HRMS (ESI) m/z calcd for C23H33N3O7P

32S
526.1777 [M + H]+, found 526.1769.

1-(Phenylsulfonamido)-2-{4-[2-(piperidin-4-yl)ethoxy]-
benzamido}ethylthiophosphonic Acid (4). N ,O -Bis-
(trimethylsilyl)acetamide (BSA, 18.6 μL, 0.076 mmol) was added to
a mixture of 1 (9.60 mg, 0.019 mmol) and sulfur powder (1.86 mg,
0.058 mmol) in DCM (dry, 5 mL) at 0 °C under an argon
atmosphere.34 The mixture was allowed to warm to RT and stirred for
1 h. Concentration in vacuo and purification by semipreparative RP-
HPLC gave 4 (7.34 mg, 0.014 mmol, 72%) as a white solid: 1H NMR
(500 MHz, MeOD-d4, RT) δ 7.87 (d, 3J = 7.8 Hz, 2 H), 7.75 (d, 3J =
8.6 Hz, 2 H), 7.46 (dd, 3J = 8.9 Hz, 3J = 15.9 Hz, 1 H), 7.42 (t, 3J = 7.4
Hz, 2 H), 6.96 (d, 3J = 8.6 Hz, 2 H), 4.13 (t, 3J = 6.0 Hz, 2 H), 3.80
(dt, 3J = 11.4 Hz, 3J = 4.5 Hz, 2 H), 3.65−3.56 (m, 1 H), 3.42−3.36
(m, 2 H), 3.04−2.95 (m, 2 H), 2.07−1.99 (m, 2 H), 1.98−1.87 (m, 1
H), 1.85−1.79 (m, 1 H), 1.53−1.42 (m, 2 H); 13C NMR (126 MHz,
MeOD-d4, RT) δ 169.7, 163.1, 142.6, 133.4, 130.3, 129.9, 128.2, 127.7,
115.1, 66.5, 56.8 (d, 1J = 114.7 Hz), 45.3, 42.3 (d, 2J = 11.3 Hz), 36.2,
32.3, 30.0; 31P NMR (101 MHz, D2O/H2O, RT) δ 51.8 (pH 6.73);
MS (ESI) m/z 494.2 [M − 2OH]+, 510.2 [M − OH]+, 528.1 [M +
H]+, 550.2 [M + Na]+, 1055.0 [2M + H]+; RP-HPLC tR = 19.1 min
(10−50% in 30 min); HRMS (ESI) m/z calcd for C22H31N3O6P

32S2
528.1392 [M + H]+, found 528.1374.

(9H-Fluoren-9-yl)methyl (2-Hydroxyethyl)carbamate (7). 9-
Fluorenylmethoxycarbonyl chloride (Fmoc-Cl, 1.55 g, 6.00 mmol) was
added to a solution of 2-aminoethanol (0.330 g, 5.40 mmol) in 10%
aqueous Na2CO3 (50 mL) and the mixture stirred for 2 h at RT. The
reaction mixture was extracted with ethyl acetate (3 × 50 mL). The
organic phases were combined, washed with aqueous HCl (1 M, 2 ×
50 mL) and brine (1 × 50 mL), and dried over MgSO4. Concentration
in vacuo and purification by column chromatography (silica gel, 5:1
ethyl acetate/hexane) gave 7 as a white solid (1.48 g, 5.22 mmol,
97%): TLC Rf = 0.5 (5:1 ethyl acetate/hexane) (UV). 1H NMR and
13C NMR spectra were identical to those previously reported.45

(9H-Fluoren-9-yl)methyl (2-Oxoethyl)carbamate (8). IBX
(7.78 g, 27.8 mmol) was added to a solution of 7 (6.06 g, 21.4
mmol) in DMSO (20 mL) and the mixture stirred at RT for 16 h.17

DCM (1 L) was added to the reaction mixture, and the resulting white
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suspension was stirred for 0.5 h, prior to filtration through Celite. The
organic layer was washed with aqueous saturated Na2CO3 (3 × 300
mL) and brine (2 × 300 mL). Each extraction was followed by
filtration through Celite, if necessary. Drying over MgSO4 and
concentration in vacuo resulted in a yellow crude product, which was
purified by column chromatography (silica gel, 5:1 ethyl acetate/
hexane) to give 8 (4.81 g, 17.1 mmol, 80%) as a white solid: TLC Rf =
0.8 (5:1 ethyl acetate/hexane) (UV). 1H NMR and 13C NMR spectra
were identical to those previously reported.45

(9H-Fluoren-9-yl)methyl [2-(Hydroxyimino)ethyl]carbamate
(9). DIEA (15.3 mL, 89.7 mmol) was added to a mixture of 8 (4.21 g,
15.0 mmol) and hydroxylammonium chloride (3.12 g, 44.9 mmol) in
DCM (dry, 40 mL) and the mixture stirred at RT for 16 h.18

Concentration in vacuo and purification by column chromatography
(silica gel, 3:1 ethyl acetate/hexane) gave 9 (2.45 g, 8.27 mmol, 55%)
as a slightly yellow colored solid.
2-{N-[(9H-Fluoren-9-yl)methoxy]carbonylamino}-1-aminoe-

thylphosphinic Acid (10). Commercial 60 wt % aqueous phosphinic
acid (40.0 g, 364 mmol) was lyophilized to obtain anhydrous
crystalline H3PO2, which was subsequently added to a solution of 9
(2.10 g, 7.09 mmol) in methanol (dry, 100 mL). The reaction mixture
was heated to reflux for 4 h and then concentrated in vacuo.18,19 The
residue was dissolved in aqueous HCl (3 M, 200 mL) and washed with
diethyl ether (3 × 100 mL). The pH was adjusted to 1.5 by addition of
solid Na2CO3. The resulting precipitate was isolated and purified by
RP-HPLC to give 10 (1.25 g, 3.61 mmol, 51%) as a colorless solid.
2-{N-[(9H-Fluoren-9-yl)methoxy]carbonylamino}-1-

(phenylsulfonamido)ethylphosphinic Acid (11). Benzenesulfonyl
chloride (0.507 mL, 3.97 mmol) was added to a solution of 10 (0.310
g, 0.895 mmol) in dioxane and aqueous Na2CO3 [50 mL, 1:1 dioxane/
aqueous Na2CO3 (10 wt %)] and stirred at RT for 3 h. The solvent
was removed in vacuo and the residue dissolved in water (100 mL).
The aqueous phase was acidified (pH 1) by addition of aqueous HCl
(3 M) and extracted with ethyl acetate (3 × 50 mL). The combined
organic phases were washed with brine (3 × 50 mL) and dried over
Na2SO4. Concentration in vacuo and lyophilization from dioxane gave
11 (0.382 g, 0.785 mmol, 88%) as a white solid.
2-Amino-1-(phenylsulfonamido)ethylphosphinic Acid (12).

A solution of piperidine (20%) in DMF (v/v, 50 mL) was added to 11
(0.672 g, 1.38 mmol) and the mixture stirred at RT for 2 h.
Concentration in vacuo and purification by RP-HPLC and
lyophilization gave 12 (0.253 g, 0.96 mmol, 69%) as a white solid.
2-[N-(Benzyloxycarbonyl)piperidin-4-yl]ethanol (13). Benzyl

chloroformate (Cbz-Cl, 6.05 mL, 42.38 mmol) was added to a solution
of 2-(piperidin-4-yl)ethanol (5.00 g, 38.7 mmol) in a dioxane/aqueous
10% Na2CO3 mixture (1:1, 250 mL) and the mixture stirred at RT for
1 h. The reaction mixture was concentrated in vacuo and the residue
dissolved with ethyl acetate (100 mL). The organic phase was washed
with aqueous saturated NaHCO3 (2 × 50 mL), aqueous HCl (1 M, 2
× 50 mL), and brine (1 × 50 mL). Drying over MgSO4 was followed
by column chromatography (silica gel, 5:1 ethyl acetate/hexane) to
give 13 (7.46 g, 28.2 mmol, 73%) as a colorless liquid.
Methyl 4-[2-N-(Benzyloxycarbonyl)piperidin-4-ylethyloxy]-

benzoate (14). 13 (1.17 g, 4.43 mmol) was added to a solution of
methyl 4-hydroxybenzoate (0.62 g, 4.08 mmol) and tributylphosphine
(1.31 mL, 5.25 mmol) in THF (dry, 40 mL) at 0 °C under an argon
atmosphere. A solution of 1,1-(azodicarbonyl)dipiperidine (ADDP,
1.32 g, 5.23 mmol) in THF (dry, 15 mL) was added within 5 h by the
help of a syringe pump, and the reaction mixture was stirred at RT for
16 h.20,21 The white precipitate was removed by filtration and
destroyed. The filtrate was concentrated in vacuo and the residue
dissolved in ethyl acetate (100 mL). The organic phase was washed
with saturated aqueous Na2CO3 (3 × 50 mL), dried over MgSO4, and
concentrated in vacuo. Purification by column chromatography (silica
gel, 1:2 ethyl acetate/hexane) and crystallization from methanol gave
14 (1.39 g, 3.50 mmol, 86%) as a white solid.15

4-[2-N-(Benzyloxycarbonyl)piperidin-4-ylethyloxy]benzoic
Acid (15). Aqueous NaOH (1 M, 100 mL) was added to a solution of
14 (0.50 g, 1.26 mmol) in ethanol (100 mL) and stirred at RT for 16
h. The reaction mixture was concentrated in vacuo, and the residue

was dissolved in water (100 mL) and acidified (pH 1) with HCl (12
M, 10 mL). A white precipitate formed, which was extracted with ethyl
acetate (3 × 100 mL). The combined organic phases were washed
with brine (1 × 100 mL) and dried over MgSO4. Concentration in
vacuo and lyophilization from dioxane gave 15 (0.47 g, 1.23 mmol,
97%) as a white solid.15

2-({4-[2-N-(Benzyloxycarbonyl)piperidin-4-yl]ethoxy}-
benzamido)-1-(phenylsulfonamido)ethylphosphinic Acid (16).
HATU (168 mg, 0.442 mmol), 15 (170 mg, 0.443 mmol), and DIEA
(452 μL, 2.66 mmol) were dissolved in DMF (dry, 10 mL), and the
mixture was stirred at RT for 15 min. A solution of 12 (117 mg, 0.443
mmol) in DMF (dry, 3 mL) was added and the mixture stirred at RT
for 16 h. Concentration in vacuo and purification by RP-HPLC gave
16 (234 mg, 0.372 mmol, 84%) as a white solid.

2-({4-[2-N-(Benzyloxycarbonyl)piperidin-4-yl]ethoxy}-
benzamido)-1-(phenylsulfonamido)ethylphosphonic Acid
(17). N,O-Bis(trimethylsilyl)acetamide (BSA, 98 μL, 0.400 mmol)
was added to a solution of 16 (10.1 mg, 0.016 mmol) in DCM (5 mL)
and the mixture stirred at RT for 1 h under an ambient atmosphere.
Concentration in vacuo, purification by semipreparative HPLC, and
lyophilization gave 17 (9.68 mg, 0.015 mmol, 93%) as a white solid.

Methyl 2-(4-{2-[1-(Benzyloxycarbonyl)piperidin-4-yl]-
ethoxy}benzamido)-1-(phenylsulfonamido)ethylphosphonate
(18). EDC·HCl (25.8 mg, 0.134 mmol) and DMAP (8.3 mg, 0.068
mmol) were added to a solution of 17 (21.7 mg, 0.034 mmol) in
methanol (dry, 5 mL), and the mixture was stirred at RT for 2 h.
Concentration in vacuo and purification via semipreparative RP-HPLC
gave 18 (17.4 mg, 0.026 mmol, 78%) as a white solid.

Integrin Binding Assay (Fibrinogen−αIIbβ3 Assay). The
inhibiting activity of the integrin antagonists was determined in a
solid-phase binding assay using coated extracellular matrix protein
fibrinogen and soluble αIIbβ3 integrin.26 The assay was based on a
previously reported method with some modifications.27 Flat-bottom
96-well ELISA plates (BRAND, Wertheim, Germany) were coated
overnight at 4 °C with 100 μL of 10 μg/mL fibrinogen per well
(Calbiochem, Darmstadt, Germany) in carbonate buffer [15 mM
Na2CO3 and 35 mM NaHCO3 (pH 9.6)]. Wells were then washed
three times with PBST buffer [137 mM NaCl, 2.7 mM KCl, 10 mM
Na2HPO4, 2 mM KH2PO4, and 0.01% Tween 20 (pH 7.4)] and
blocked for 1 h at room temperature with 150 μL of TSB buffer [20
mM Tris-HCl, 150 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 1 mM
MnCl2 (pH 7.5), and 1% BSA] per well. After being washed three
times with PBST, equal amounts of controls (tirofiban, Sigma-Aldrich)
or test compounds were mixed with 5.0 μg/mL human integrin αIIbβ3
(Enzyme Research Laboratory, Swansea, U.K.), resulting in a final TSB
buffer dilution of 0.00013 to 10 μM for the inhibitors and 2.5 μg/mL
for integrin αIIbβ3; 100 μL of these solutions was incubated per well
for 1 h at room temperature. The plate was washed three times with
PBST buffer, and 100 μL of 2.0 μg/mL primary antibody (mouse anti-
human CD41b, BD Biosciences, Heidelberg, Germany) per well was
added to the plate. After incubation for 1 h at room temperature, the
plate was washed three times with PBST, and 100 μL of 1.0 μg/mL
secondary peroxidase-labeled antibody (anti-mouse IgG-POD, Sigma-
Aldrich) per well was added to the plate and the plate incubated for 1
h at room temperature. After the plate had been washed three times
with PBST, the plate was developed by addition of 50 μL of
SeramunBlau fast (Seramun Diagnostic GmbH, Heidesee, Germany)
per well and incubated for 5 min at room temperature. The reaction
was stopped with 50 μL of 3 M H2SO4 per well, and the absorbance
was measured at 450 nm with a plate reader (POLARstar Galaxy,
BMG Labtechnologies). Each compound concentration was tested in
duplicate, and the resulting inhibition curves were analyzed using
OriginPro version 7.5G; the inflection point describes the IC50 value.
Each plate contained tirofiban as an internal control.

In Vitro Permeability Study (Caco-2 test). Growth and
Maintenance of Cells. Caco-2 cells were obtained from ATCC
(Manassas, VA) and then grown in 75 cm2 flasks with approximately
0.5 × 106 cells/flask at 37 °C in a 5% CO2 atmosphere at a relative
humidity of 95%. The culture growth medium consisted of Dulbecco’s
modified Eagle's medium (DMEM) supplemented with 10% heat-
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inactivated fetal bovine serum (FBS), 1% nonessential amino acids, 2
mM L-glutamine, 2 mM sodium pyruvate, and a 2 mM penicillin/
streptomycin solution.
Preparation of Cells. For transport studies, cells in a passage range

of 52−60 were seeded at a density of 25 × 105 cells/cm2 on untreated
culture inserts of a polycarbonate membrane with 0.4 μm pores and a
surface area of 1.1 cm2. The culture inserts containing the Caco-2
monolayer were placed in 24 transwell plates (12 mm, Costar). The
culture medium was changed every other day. Transport studies were
performed 21−23 days after seeding, when the cells were fully
differentiated and the TEER values were stable (300−500 Ω cm2).
Caco-2 Assay. The transport study (apical to basolateral, A to B)

was initiated by removal of medium from both sides of the monolayer
and replacement with apical buffer (600 μL) and basolateral buffer
(1500 μL), both warmed to 37 °C. The cells were incubated for 30
min at 37 °C with shaking (100 cycles/min). After the incubation
period, the buffers were removed and replaced with 1500 μL of
basolateral buffer at the basolateral side. Test solutions were preheated
to 37 °C and added (600 μL) to the apical side of the monolayer; 50
μL samples were taken from the apical side immediately at the
beginning of the experiment, resulting in an apical volume of 550 μL
during the experiment. For the period of the experiment, cells were
kept at 37 °C with shaking. At predetermined times (30, 60, 90, 120,
and 150 min), 200 μL samples were taken from the basolateral side
and replaced with the same volume of fresh basolateral buffer to
maintain a constant volume. A mass balance was performed for each
tested compound to detect instability and/or nonspecific binding of
the peptides. For the basolateral to apical study (B to A), compounds
were placed in the basolateral chamber, followed by sampling of the
apical side, in the same manner used for the A to B protocol.
Blood Samples. Venous blood was collected from a healthy

volunteer who had refrained from taking any medication affecting
platelet function for the two preceding weeks. Blood was drawn by
peripheral venipuncture into 4.5 mL plastic tubes containing
recombinant hirudin as an anticoagulant (specified final concentration
of 25 μg/mL of blood). Measurements were performed 0.5−4 h after
venipuncture.
Platelet Aggregation Assay. Platelet aggregation in hirudin-

anticoagulated whole blood with thrombin receptor-activating peptide
(TRAP-6, final concentration of 33 μM) as an activator was measured
using an impedance-based multiple-electrode platelet aggregometer
(Multiplate, Dynabyte Informationssysteme GmbH, Munich, Ger-
many)28,29 according to the manufacturer’s instructions, i.e., at 37 °C,
minicuvettes with 175 μL of blood, 175 μL of isotonic saline, and 12
μL of TRAP-6 reagent (1 mM). The only modification was the use of
a serial saline dilution of integrin inhibitors instead of pure saline. The
increase in electrical impedance was recorded for 6 min and
transformed into arbitrary aggregation units, and the area under the
curve (AUC) was calculated. Reported AUC values represent the
average from two electrode pairs per cuvette. Inhibition curves were
analyzed using OriginPro version 7.5G; the inflection point indicates
the half-maximal effective concentration (EC50).
Protonation State Calculations. The estimation of pKa values of

compounds 1−4 was conducted using the calculator plugin Marvin
5.3, 2010, from ChemAxon (http://www.chemaxon.com). The
estimation is computed through an algorithm that uses the empirically
calculated atomic charges for each protonation state of a subset of
molecules.46 Each atom of the query molecule is identified in one of
the atom's subsets, and via the algorithm, the pKa is finally calculated.
The concentration of the different microspecies formed by a molecule
at a given pH is predicted using the distribution coefficient (D),
calculated using the previously computed pKa values.

47

Molecular Electrostatic Potential Calculations. For tirofiban (6)
and compounds 1−4, the electrostatic potential was calculated by
means of Gaussian03 and mapped onto the electron density surface for
each compound. The isovalue of 0.0004 electron/Bhor3 was chosen
for the definition of the density surface, while the electrostatic
potential was computed at the Hartree−Fock level of theory using the
6-31G* basis set with a scale of −294.178 (red) to 294.178 (blue)
KbT/ec. The electrostatic potential of the αIIbβ3 receptor was

calculated using the parm99 Amber force field48,49 through apbs,
which is an adaptive Poisson−Boltzmann solver.50

Docking Simulations. Redocking Experiment. The reliability of
AutoDock for this system was assessed through the redocking of the
αIIbβ3 cocrystallized ligand, tirofiban (PDB entry 2vdm). The X-ray
binding conformation of tirofiban has been clearly predicted by
AutoDock among the poses with the best scoring function values
(Figure 3A). One may notice that for tirofiban the (S)-enantiomer is
the bioactive one, while for the phosphorus-containing compounds,
because of the change in priority according to the Cahn−Ingold−
Prelog rules, the (R)-enantiomers are the bioactive ones. Molecular
docking calculations for tirofiban and compounds 1−4 were
conducted using the three-dimensional X-ray structure of αIIbβ3 in
the apo form (PDB entry 2vdm) through AutoDock (version 4.0).36,37

The apo form of αIIbβ3 was obtained via removal of tirofiban from the
X-ray complex.

Ligand Setup. The structures of the inhibitors were first generated
using the PRODRG server.51 Then the ligands and the protein were
charged using the Gasteiger partial charge52 and converted to
AutoDock format files using AutoDockTools (ADT 1.5.4).

Docking Setup. The docking area was defined by a box, centered
approximately on the center of mass of tirofiban cocrystallized with the
protein. Grid points (60 × 60 × 60) with 0.375 Å spacing were
calculated around the docking area for all the ligand atom types using
AutoGrid4. For each ligand, 100 separate docking calculations were
performed. Each docking calculation consisted of 2.5 × 106 energy
evaluations using the Lamarckian genetic algorithm local search
(GALS) method. Otherwise, default docking parameters were applied.
The docking conformations were clustered on the basis of the root-
mean-square deviation (rmsd of 2 Å) calculated for the Cartesian
coordinates of the ligand atoms and then were ranked on the basis of
AutoDock scoring function. The binding mode figures were generated
using PyMOL (http://www.pymol.org), while the molecular electro-
static potential surfaces were rendered using GaussView.
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chen, Lichtenbergstrasse 4, 85747 Garching, Germany. Phone:
+49 (0) 89 289 13300. Fax: +49 (0) 89 289 13210. E-mail:
kessler@tum.de.

■ ACKNOWLEDGMENTS
We gratefully acknowledge financial support from the Interna-
tional Graduate School of Science and Engineering (IGSSE)
and from the Studienstiftung des deutschen Volkes, Werner
Spahl for recording high-resolution mass spectra, Renate Reher
for performing the platelet aggregation measurements, and
Timo Huber for initial support.

■ ABBREVIATIONS
ADAMs, disintegrin and metalloprotease; AUC, area under the
curve; CIP, Cahn−Ingold−Prelog; DMAP, 4-(dimethylamino)-
pyridine; ECM, extracellular matrix; EDC, N-[3-
(dimethylamino)propyl]-N′-ethylcarbodiimide; ELISA, en-
zyme-linked immunosorbent assay; FMD, foot-and-mouth
disease; HATU, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetrame-

Journal of Medicinal Chemistry Article

dx.doi.org/10.1021/jm2013826 | J. Med. Chem. 2012, 55, 871−882880

http://www.chemaxon.com
http://www.pymol.org
http://pubs.acs.org
mailto:kessler@tum.de


thyluronium hexafluorophosphate; IBX, o-iodoxybenzoic acid;
MIDAS, metal ion-dependent adhesion site; RGD, arginine-
glycine-aspartic acid

■ REFERENCES
(1) Meyer, A.; Auernheimer, J.; Modlinger, A.; Kessler, H. Targeting
RGD recognizing integrins: Drug development, biomaterial research,
tumor imaging and targeting. Curr. Pharm. Des. 2006, 12, 2723−2747.
(2) Mousa, S. A. Anti-integrin as novel drug-discovery targets:
Potential therapeutic and diagnostic implications. Curr. Opin. Chem.
Biol. 2002, 6, 534−541.
(3) Humphries, M. J. Integrin structure. Biochem. Soc. Trans. 2000,
28, 311−339.
(4) Arnaout, M. A.; Mahalingam, B.; Xiong, J. P. Integrin structure,
allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 2005,
21, 381−410.
(5) Hynes, R. O. Integrins: Bidirectional, allosteric signaling
machines. Cell 2002, 110, 673−687.
(6) Humphries, J. D.; Byron, A.; Humphries, M. J. Integrin ligands at
a glance. J. Cell Sci. 2006, 119, 3901−3903.
(7) Ruoslahti, E. RGD and other recognition sequences for integrins.
Annu. Rev. Cell Dev. Biol. 1996, 12, 697−715.
(8) Heckmann, D.; Laufer, B.; Marinelli, L.; Limongelli, V.;
Novellino, E.; Zahn, G.; Stragies, R.; Kessler, H. Breaking the
dogma of the metal-coordinating carboxylate group in integrin ligands:
Introducing hydroxamic acids to the MIDAS to tune potency and
selectivity. Angew. Chem., Int. Ed. 2009, 48, 4436−4440.
(9) Cox, D.; Brennan, M.; Moran, N. Integrins as therapeutic targets:
Lessons and opportunities. Nat. Rev. Drug Discovery 2010, 9, 804−820.
(10) Mas-Moruno, C.; Rechenmacher, F.; Kessler, H. Cilengitide:
The first anti-angiogenic small molecule drug candidate. Design,
synthesis and clinical evaluation. Anti-Cancer Agents Med. Chem. 2011,
10, 753−768.
(11) Shimaoka, M.; Springer, T. A. Therapeutic antagonists and
conformational regulation of integrin function. Nat. Rev. Drug
Discovery 2003, 2, 703−716.
(12) Hartman, G. D.; Egbertson, M. S.; Halczenko, W.; Laswell, W.
L.; Duggan, M. E.; Smith, R. L.; Naylor, A. M.; Manno, P. D.; Lynch,
R. J.; Zhang, G.; Chang, C. T.-C.; Gould, R. J. Non-peptide fibrinogen
receptor antagonists. 1. Discovery and design of exosite inhibitors. J.
Med. Chem. 1992, 35, 4640−4642.
(13) Topol, E. J.; Moliterno, D. J.; Herrmann, H. C.; Powers, E. R.;
Grines, C. L.; Cohen, D. J.; Cohen, E. A.; Bertrand, M.; Neumann, F.
J.; Stone, G. W.; DiBattiste, P. M.; Demopoulos, L. Comparison of two
platelet glycoprotein IIb/IIIa inhibitors, tirofiban and abciximab, for
the prevention of ischemic events with percutaneous coronary
revascularization. N. Engl. J. Med. 2001, 344, 1888−1894.
(14) Cannon, C. P.; Weintraub, W. S.; Demopoulos, L. A.; Vicari, R.;
Frey, M. J.; Lakkis, N.; Neumann, F. J.; Robertson, D. H.; DeLucca, P.
T.; DiBattiste, P. M.; Gibson, C. M.; Braunwald, E. Comparison of
early invasive and conservative strategies in patients with unstable
coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor
tirofiban. N. Engl. J. Med. 2001, 344, 1879−1887.
(15) Duggan, M. E.; Duong, L. T.; Fisher, J. E.; Hamill, T. G.;
Hoffman, W. F.; Huff, J. R.; Ihle, N. C.; Leu, C. T.; Nagy, R. M.;
Perkins, J. J.; Rodan, S. B.; Wesolowski, G.; Whitman, D. B.; Zartman,
A. E.; Rodan, G. A.; Hartman, G. D. Nonpeptide αvβ3 antagonists. 1.
Transformation of a potent, integrin-selective αIIbβ3 antagonist into a
potent αvβ3 antagonist. J. Med. Chem. 2000, 43, 3736−3745.
(16) Frigerio, M.; Santagostino, M.; Sputore, S. A user-friendly entry
to 2-iodoxybenzoic acid (IBX). J. Org. Chem. 1999, 64, 4537−4538.
(17) Frigerio, M.; Santagostino, M. A mild oxidizing reagent for
alcohols and 1,2-diols: o-Iodoxybenzoic acid (IBX) in DMSO.
Tetrahedron Lett. 1994, 35, 8019−8022.
(18) Liboska, R.; Pícha, J.; Hanclova,́ I.; Budesínsky,́ M.; Sanda, M.;
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Analytical data of compounds 7-18 

 

(9H-Fluoren-9-yl)methyl (2-hydroxyethyl)carbamate (7). 

MS (ESI): m/z = 179.2 [Fmoc-CO2]
+, 284.1 [M+H]+, 306.2 [M+Na]+; RP-HPLC: tR = 

20.0 min (10-90% in 30 min); HRMS (ESI): m/z calcd for C17H17NO3Na: 306.1106 

[M+Na]+, found: 306.1101. 

 

(9H-Fluoren-9-yl)methyl (2-oxoethyl)carbamate (8). 

MS (ESI): m/z = 179.2 [Fmoc-CO2]
+, 282.0 [M+H]+; RP-HPLC: tR = 19.57 min (10-90% 

in 30 min); HRMS (ESI): m/z calcd for C17H16NO3: 282.1230 [M+H]+, found: 282.1125. 

 

(9H-Fluoren-9-yl)methyl [2-(hydroxyimino)ethyl]carbamate (9). 

TLC: Rf = 0.7 (ethyl acetate/hexane = 3:1) [UV]; 1H NMR (500 MHz, DMSO-d6, RT): 

δ (ppm) = 11.06 (s, 1 H, CHαE/Z), 10.73 (s, 1 H, CHαE/Z), 7.89 (d, 3J = 7.6 Hz, 2 H), 

7.69 (d, 3J = 7.6 Hz, 2 H), 7.42 (t, 3J = 7.6 Hz, 2 H), 7.33 (t, 3J = 6.9 Hz, 2 H), 6.58 (t, 
3J = 3.9 Hz, 1 H), 4.35 (d, 3J = 6.8 Hz, 1 H), 4.31 (d, 3J = 6.9 Hz, 1 H), 4.23 (m, 1 H), 

3.82 (dd, 3J = 5.6 Hz, 3J = 4.0 Hz, 2 H), 3.71 (t, 3J = 5.6 Hz, 2 H), 3.33 (br. s, 1 H); 
13C NMR (126 MHz, DMSO-d6, RT): δ (ppm) = 156.2, 149.2, 146.5, 143.8, 140.7, 

127.6, 127.0, 125.1, 120.1, 65.5, 46.7, 36.4; MS (ESI): m/z = 179.2 [Fmoc-CO2]
+, 

297.0 [M+H]+; RP-HPLC: tR = 21.6 (9), 19.9 (8, decomposition of 9 with TFA) (10-

90% in 30 min). 

 

2-[N-((9H-Fluoren-9-yl)methoxy)carbonylamino)]-1-aminoethyl phosphinic acid 

(10). 

1H NMR (500 MHz, DMSO-d6, RT): δ (ppm) = 8.09 (br. s, 2 H), 7.89 (d, 3J = 7.4 Hz, 

2 H), 7.69 (d, 3J = 7.4 Hz, 2 H), 7.42 (t, 3J = 7.4 Hz, 2 H), 7.33 (t, 3J = 7.4 Hz, 2 H), 

7.01 (d, 3J = 520 Hz, 1 H), 4.32 (d, 3J = 6.8 Hz, 2 H), 4.23 (d, 3J = 6.8 Hz, 1 H), 3.43 

(m, 1 H), 3.32 (m, 1 H), 3.00 (m, 1 H); 13C NMR (126 MHz, DMSO-d6, RT): δ (ppm) = 

156.2, 143.8, 140.7, 127.6, 127.1, 125.1, 120.1, 65.7, 49.7 (d, 1JPC = 83.2 Hz), 46.6, 

38.5; 31P NMR (101 MHz, DMSO-d6, RT): δ (ppm) = 12.2; MS (ESI): m/z = 179.2 

[Fmoc-CO2]
+, 347.0 [M+H]+, 369.3 [M+Na]+, 693.0 [2M+H]+, 715.0 [2M+Na]+, 731.1 

[2M+K]+, 1039.0 [3M+H]+, 1061.0 [3M+Na]+, 1077.0 [3M+K]+; RP-HPLC: tR = 

15.4 min (10-90% in 30 min); HRMS (ESI): m/z calcd for C17H20N2O4P: 347.1161 

[M+H]+, found: 347.1155. 
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2-[N-((9H-Fluoren-9-yl)methoxy)carbonylamino)]-1-(phenylsulfonamido)ethyl 

phosphinic acid (11). 
1H NMR (500 MHz, DMSO-d6, RT): δ (ppm) = 8.03 (br. d, 3J = 7.5 Hz, 1 H), 7.89 (d, 
3J = 7.5 Hz, 2 H), 7.81 (d, 3J = 7.5 Hz, 2 H), 7.66 (d, 3J = 7.4 Hz, 2 H), 7.56 (t, 3J = 

7.4 Hz, 1 H), 7.50 (t, 3J = 7.4 Hz, 2 H), 7.42 (t, 3J = 7.5 Hz, 2 H), 7.33 (t, 3J = 7.5 Hz, 

2 H), 7.01 (t, 3J = 5.3 Hz, 1 H), 6.78 (d, 1J = 535 Hz, 1 H), 4.17-4.13 (m, 2 H), 4.12-

4.05 (m, 1 H), 3.53-3.42 (m, 1 H), 3.29-3.16 (m, 1 H), 3.07-2.96 (m, 1 H); 13C NMR 

(126 MHz, DMSO-d6, RT): δ (ppm) = 155.6, 143.7, 141.2, 140.6, 132.2, 128.9, 127.5, 

127.0, 126.3, 125.1, 119.9, 65.5, 46.5, 38.6 (Cα n.o.); 31P NMR (101 MHz, DMSO-d6, 

RT): δ (ppm) = 23.9; MS (ESI): m/z = 179.3 [Fmoc-CO2]
+, 487.3 [M+H]+, 509.4 

[M+Na]+, 973.1 [2M+H]+, 995.0 [2M+Na]+, 1011.1 [2M+K]+, 1458.7 [3M+H]+, 1480.7 

[3M+Na]+, 1497.8 [3M+K]+, 1945.2 [4M+H]+, 1967.5 [4M+Na]+, 1983.5 [4M+K]+; RP-

HPLC: tR = 20.5 min (10-90% in 30 min); HRMS (ESI): m/z calcd for C23H22N2O6P
32S: 

485.0936 [M-H]-, found: 485.0932. 

 

2-Amino-1-(phenylsulfonamido)ethyl)phosphinic acid (12). 
1H NMR (500 MHz, MeOD-d4, RT): δ (ppm) = 7.95 (d, 3J = 7.4 Hz, 2 H), 7.66 (t, 3J = 

7.4 Hz, 1 H), 7.59 (t, 3J = 7.4 Hz, 2 H), 6.46 (d, 1JPH = 530 Hz, 1 H), 3.75-3.70 (m, 

1 H), 3.29-3.23 (m, 1 H), 3.09-3.00 (m, 1 H); 13C NMR (90 MHz, MeOD-d4, RT): 

δ (ppm) = 141.8, 134.2, 130.5, 128.3, 52.5 (d, 1J = 90.0 Hz), 40.1 (d, 2J = 4.4 Hz); 31P 

NMR (101 MHz, DMSO-d6, RT): δ (ppm) = 15.9; MS (ESI): m/z = 265.2 [M+H]+, 529.1 

[2M+H]+, 551.1 [2M+Na]+, 792.9 [3M+H]+, 814.9 [3M+Na]+, 1056.8 [4M+H]+; RP-

HPLC: tR = 6.1 min (10-90% in 30 min); HRMS (ESI): m/z calcd for C8H14N2O4P
32S: 

265.0412 [M+H]+, found: 265.0407. 

 

2-[N-(benzyloxycarbonyl)piperidine-4-yl]ethanol (13). 

TLC: Rf = 0.5 (ethyl acetate/hexane = 5:1) [UV]; 1H NMR (360 MHz, CDCl3, RT): 

δ (ppm) = 7.34-7.30 (m, 4 H), 7.30-7.25 (m, 1 H), 5.08 (s, 2 H), 4.22-4.02 (m, 2 H), 

3.63 (t, 3J = 6.6 Hz, 2 H), 2.83-2.63 (m, 2 H), 2.54 (br. s, 1 H), 1.72-1.61 (m, 2 H), 

1.61-1.53 (m, 1 H), 1.46 (dt, 3J = 6.6 Hz, 3J = 6.6 Hz, 2 H), 1.17-1.02 (m, 2 H); 13C 

NMR (91 MHz, CDCl3, RT): δ (ppm) = 155.4, 136.9, 128.5, 128.0, 127.9, 67.1, 60.0, 

44.3, 39.2, 32.5, 32.1; MS (ESI): m/z = 264.1 [M+H]+; RP-HPLC: tR = 18.8 min (10-
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90% in 30 min); HRMS (ESI): m/z calcd for C15H22NO3: 264.1600 [M+H]+, found: 

264.1595. 

 

Methyl 4-[2-N-(benzyloxycarbonyl)piperidine-4-ylethyl-oxy]benzoate (14). 

TLC: Rf = 0.4 (ethyl acetate/hexane = 1:2) [UV]; 1H NMR (360 MHz, CDCl3, RT): 

δ (ppm) = 7.96 (d, 3J = 8.9 Hz, 2 H), 7.36-7.31 (m, 4 H), 7.31-7.26 (m, 1 H), 6.87 (d, 
3J = 8.9 Hz, 2 H), 5.11 (s, 2 H), 4.27-4.08 (m, 2 H), 4.02 (t, 3J = 6.0 Hz, 2 H), 3.85 (s, 

3 H), 2.87-2.69 (m, 2 H), 1.78-1.65 (m, 5 H), 1.26-1.09 (m, 2 H); 13C NMR (91 MHz, 

CDCl3, RT): δ (ppm) = 166.9, 162.8, 155.4, 137.0, 131.7, 128.6, 128.1, 128.0, 122.7, 

114.1, 67.1, 65.6, 52.0, 44.2, 35.7, 32.9, 32.1; MS (ESI): m/z = 398.2 [M+H]+, 420.4 

[M+Na]+, 615.9 [(3M+K+H)/2]2+, 1214.0 [3M+Na]+; RP-HPLC: tR = 29.2 min (10-90% 

in 30 min); HRMS (ESI): m/z calcd for C23H27NO5Na23: 420.1787 [M+Na]+, found: 

420.1781. 

 

4-[2-N-(benzyloxycarbonyl)piperidine-4-ylethyloxy]-benzoic acid (15). 

TLC: Rf = 0.5 (ethyl acetate/hexane = 1:1 + 1 % AcOH) [UV]; 1H NMR (500 MHz, 

DMSO-d6, RT): δ (ppm) = 12.62 (s, 1 H), 7.87 (d, 3J = 8.8 Hz, 2 H), 7.40-7.28 (m, 

5 H), 7.00 (d, 3J = 8.8 Hz, 2 H), 5.06 (s, 2 H), 4.07 (t, 3J = 5.9 Hz, 2 H), 4.03-3.95 (m, 

2 H), 2.92-2.67 (m, 2 H), 1.76-1.60 (m, 5 H), 1.16-1.01 (m, 2 H); 13C NMR (91 MHz, 

DMSO-d6, RT): δ (ppm) = 167.0, 162.2, 154.3, 137.1, 131.3, 128.4, 127.8, 127.5, 

122.8, 114.2, 66.0, 65.5, 43.6, 34.9, 32.2, 31.4; MS (ESI): m/z = 384.0 [M+H]+, 767.0 

[2M+H]+, 789.3 [2M+Na]+, 805.2 [2M+K]+, 1171.8 [3M+Na]+; RP-HPLC: tR = 24.7 min 

(10-90% in 30 min); HRMS (ESI): m/z calcd for C22H24NO5: 382.1660 [M-H]-, found: 

382.1654. 

 

2-{4-[2-N-(benzyloxycarbonyl)piperidine-4-yl)ethoxy]-benzamido}-1-

(phenylsulfonamido)ethylphosphinic acid (16). 

1H NMR (500 MHz, MeOD-d4, RT): δ (ppm) = 7.80 (d, 3J = 6.9 Hz, 2 H), 7.58 (d, 3J = 

8.9 Hz, 2 H), 7.39-7.26 (m, 8 H), 6.98 (d, 3J = 567 Hz, 1 H), 6.92 (d, 3J = 8.9 Hz, 2 H), 

5.11 (s, 2 H), 4.19-4.12 (m, 2 H), 4.11 (t, 3J = 6.0 Hz, 2 H), 3.89-3.82 (m, 1 H), 3.62 

(ddd, 2J = 14.1 Hz, 3J = 5.2 Hz, 3J = 5.2 Hz, 1 H), 3.51 (ddd, 2J = 14.1 Hz, 3J = 

9.6 Hz, 3J = 8.5 Hz, 1 H), 3.02-2.70 (m, 2 H), 1.88-1.68 (m, 5 H), 1.27-1.09 (m, 2 H); 
13C NMR (126 MHz, MeOD-d4, RT): δ (ppm) = 170.3, 163.6, 157.1, 142.3, 138.4, 

133.8, 130.5, 130.3, 129.7, 129.2, 129.0, 128.0, 126.9, 115.3, 68.4, 67.0, 54.0 (d, 



S5 
 

1J = 106.5 Hz), 45.5, 38.6 (2J = 7.0 Hz), 36.8, 34.3, 33.3; 31P NMR (101 MHz, MeOD-

d4, RT): δ (ppm) = 29.1; MS (ESI): m/z = 630.1 [M+H]+, 652.2 [2M+H]+, 668.2 [M+K]+, 

1259.1 [2M+H]+, 1281.1 [2M+Na]+, 1297.2 [2M+K]+; RP-HPLC: tR = 22.3 min (10-

90% in 30 min); HRMS (ESI): m/z calcd for C30H37N3O8P
32S: 630.2039 [M+H]+, found: 

630.2034. 

 

2-{4-[2-N-(benzyloxycarbonyl)piperidine-4-yl)ethoxy]-benzamido}-1-(phenyl-

sulfonamido)ethylphosphonic acid (17). 

1H NMR (500 MHz, MeOH-d3, RT): δ (ppm) = 8.11 (t, 3J = 5.3 Hz, 2 H), 7.85 (dd, 3J = 

8.2 Hz, 3J = 1.2 Hz, 2 H), 7.68 (d, 3J = 9.0 Hz, 2 H), 7.45-7.23 (m, 8 H), 6.93 (d, 3J = 

9.0 Hz, 2 H), 5.10 (s, 2 H), 4.18-4.11 (m, 2 H), 4.10 (t, 3J = 6.1 Hz, 2 H), 3.88-3.74 

(m, 1 H), 3.65 (ddd, 2J = 9.1 Hz, 3J = 4.8 Hz, 3J = 4.8 Hz, 1 H), 3.59-3.48 (m, 1 H), 

2.95-2.73 (m, 2 H), 1.87-1.66 (m, 5 H), 1.26-1.09 (m, 2 H); 13C NMR (126 MHz, 

MeOH-d3, RT): δ (ppm) = 169.9, 163.3, 157.0, 142.9, 138.3, 133.4, 130.3, 130.0, 

129.6, 129.1, 128.9, 128.0, 127.4, 115.2, 68.3, 66.8, 52.5 (d, 1J = 151.5 Hz), 45.3, 

42.0 (d, 2J = 6.7 Hz), 36.7, 34.2, 33.2; 31P NMR (101 MHz, MeOH-d3, RT): δ (ppm) = 

17.2; MS (EI): m/z = 646.1 [M+H]+, 668.2 [M+Na]+, 684.2 [M+K]+, 1291.0 [2M+H]+, 

1313.1 [2M+Na]+, 1329.1 [2M+K]+; RP-HPLC: tR = 21.4 min (10-90% in 30 min); 

HRMS (ESI): m/z calcd for C30H37N3O9P
32S: 646.1988 [M+H]+, found: 646.1986. 

 

Methyl 2-{4-[2-(1-(benzyloxycarbonyl)piperidine-4-yl)-ethoxy]benzamido}-1-

(phenylsulfonamido)ethyl-phospho-nate (18). 

1H NMR (500 MHz, MeOD-d4, RT): δ (ppm) = 7.83 (d, 3J = 6.8 Hz, 2 H), 7.66 (d, 3J = 

8.7 Hz, 2 H), 7.44-7.25 (m, 8 H), 6.93 (d, 3J = 8.7 Hz, 2 H), 5.10 (s, 2 H), 4.19-4.12 

(m, 2 H), 4.12-4.08 (m, 2 H), 4.08-4.01 (m, 1 H), 3.63 (d, 3J = 10.7 Hz, 4 H), 3.51-

3.43 (m, 1 H), 2.97-2.73 (m, 2 H), 1.85-1.69 (m, 5 H), 1.26-1.11 (m, 2 H); 13C NMR 

(126 MHz, MeOD-d4, RT): δ (ppm) = 170.1, 163.4, 157.0, 142.9, 138.2, 133.4, 130.4, 

130.0, 129.5, 129.1, 128.8, 127.9, 127.1, 115.1, 68.2, 66.8, 53.5 (d, 2J = 6.5 Hz), 

51.2 (d, 1J = 156.1 Hz), 45.3, 41.3 (d, 2J = 9.1 Hz), 36.7, 34.2, 33.1; 31P NMR 

(101 MHz, MeOD-d4, RT): δ (ppm) = 21.2; MS (EI): m/
z = 616.2 [M-CO2]

+, 660.1 

[M+H]+, 682.2 [M+Na]+; RP-HPLC: tR = 22.5 min (10-90% in 30 min); HRMS (ESI): m/z 

calcd for C30H37N3O9P
32S: 660.2145 [M+H]+, found: 660.2141. 
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HPLC enantiomer separation 

Isocratic semi-preparative chromatographic resolution of phosphinic acid 1, 

phosphonic acid 2 and phosphonic acid monomethylester 3 was performed on a 

1100 Series HPLC system from Agilent Technologies (Waldbronn, Germany) 

equipped with an autosampler, binary pump, degasser for the mobile phase, multiple 

wavelength detector (MWD) and a 6-column switching valve. Due to partial 

racemization during synthesis of compounds 5 it was also necessary to purify them. 

For automated fraction collection a 2/10-switching valve from Agilent Technologies 

was connected to the flow path just behind the UV-detector. UV-detection was 

accomplished at 254 nm. 

The employed stationary phases were taurine-based CSP2, CSP A183 and CSP 

A185 (120 Å pore size, particle size 5 µm each, see Figure S1), which were packed 

in-house into stainless steel columns (150 x 4 mm). For separation of the carboxylic 

acids 5 CSP A185 was used, whereas for the separation of phosphinic- 1 and 

phosphonic acid 2 CSP A183 was used. Phosphonic acid monomethylester 3 was 

separated on taurine based CSP 2. 

As mobile phase 5 mM HOAc and 5 mM NH4Ac in MeOH was used (for separation of 

phosphonic acid 2 95 mM HOAc and 5 mM NH4Ac in MeOH was used). MeOH was 

of HPLC-grade from Merck (Darmstadt, Germany), mobile phase additives acetic 

acid and ammonium acetate were of analytical grade (Sigma-Aldrich, Taufkirchen, 

Germany). The flow rate was set to 1.0 mL/min, column temperature was not 

thermostat-controlled and therefore varied between 25°C and 34°C.  

Phosphinic acid 1 was dissolved in a acetonitrile/water/2,5% TFA mixture at a 

concentration of 16 mg/mL. Phosphonic acid 2 was dissolved in a 

acetonitrile/water/methanol/2,5% TFA mixture at a concentration of 9 mg/mL and 

phosphonic acid monomethylester 3 was dissolved in a acetonitrile/water/0,5% TFA 

mixture at a concentration of 18 mg/mL.  

In a series of injections, the enantiomers were separated and collected in two 

fractions, which were concentrated in vacuum. The purity of the collected 

enantiomers was assessed analytically using the same conditions as for the semi-

preparative separation. The following enantiomeric excess was determined: 

 

(R)-1: ≥96% ee 

(S)-1: ≥92% ee 

(R)-2: ≥90% ee 

(S)-2: ≥85% ee 

(R)-3: ≥97% ee 

(S)-3: ≥96% ee 

(S)-5: ≥97% ee 

(R)-5: ≥97% ee 
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31P NMR titration of compounds 1-4 

For each data point an individual 31P NMR spectra was recorded at 295 K on a 

250 MHz Bruker AV spectrometer. Compounds 1-4 (each about 2 mg) were 

dissolved in H2O (0.5 mL) including 10% D2O. Adjustment of the pH of the solution 

was achieved with small volumes aqueous NaOH (1.0 M) and HCl (1.0 M) solutions. 

The 31P NMR chemical shifts of each compound were plotted against the measured 

pH. To extract and evaluate the individual pKa values the obtained data points were 

plotted in Origin 7.5 SR6 (OriginLab Corp., Northampton, MA). The appropriate 

intervals for each pKa transition were selected and plotted in individual graphs. A 

sigmoidal fit was applied and the inflection point calculated giving the corresponding 

pKa value. In case of pKa1 of compound 1 an additional data point had to be set 

(pH = -2.0/ δ(31P) = 25.5932; δ(31P) = 25.5932 represents the highest measured 

value for pH = 1.2), due to unsatisfactory data points in the pH range of 0 to 1.2. The 

resulted pKa1 for compound 1 represents the lower limit for the real pKa1 and is 

therefore written as pKa1 > 1.56.  

 

Thereby, the set of molecular probes used in this study gradually shifts from mono 

anionic (1, 2) to almost dianionic form (4) as regards the metal-coordinating group. 

Conversely, 3 is a probe for the steric influence on the MIDAS binding, due to the 

single negative charge and a methoxy substituent. 
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Docking of molecular probes (R)-3 and (R)-4 

In one of the best scored binding conformations calculated by the docking program, 

compound (R)-4 binds to the MIDAS similar to Tirofiban with the sulfur atom pointing 

inner in the binding site and the two oxygens involved one in the metal coordination 

and the other in the H-bond interactions with (β3)-Asn215 and (β3)-Tyr122. All the 

other main interactions between the ligand and the receptor are conserved like those 

involving the phenylsulphonamide moiety in the β3 region and those of the piperidine 

ring in the αIIb subunit (see Figure 3). 

A binding conformation similar to that of (R)-4 was found among the best solutions 

also in the case of (R)-3. In this binding pose the methylphosphonic group 

coordinates the magnesium with one oxygen while the other H-bonds with 

(β3)-Asn215 and (β3)-Tyr122. The ester group points in the inner part of the binding 

pocket similar to what was found for the sulfur atom of (R)-4. The benzensulfonamide 

moiety fills properly the β3 region with the sulfonamide group H-bonding with the 

backbone CO of (β3)-Asn215 (see Figure 3). On the other side, the para-hydroxy-

benzoate scaffold of (R)-3 engages π-π interactions with (αIIb)-Tyr190 and the 

piperidine moiety is able to form in the αIIb domain the strong interactions with 

(αIIb)-Asp224 and (αIIb)-Ser225.  

Similarly to (R)-1 and (R)-2, also for (R)-3 and (R)-4 the docking calculations did not 

provide significant differences in the binding mode to the αIIbβ3 receptor. 

 

Docking of the (S)-enantiomers 

In order to understand how the different chirality of the carbon bearing 

phosphinic/phosphonic group influences the inhibitory activity, docking calculations 

on the corresponding (S)-enantiomers of the most potent compounds of the series, 

(R)-1, (R)-2 and (R)-3, were performed. The results showed that in the (S)-

configuration all the three compounds are able to coordinate the metal, however 

some differences in the binding mode are found if compared with the corresponding 

(R)-enantiomers (see Supporting Figure S4). 

In particular, while in the αIIb region the piperidine moiety conserves the interactions 

with (αIIb)-Asp224 and (αIIb)-Ser225, in the β3 region a loss of the H-bond between 

the sulfonamide group and (β3)-Asn215 is observed and the benzenesulfonamide 

moiety is not located in the αIIb/β3 aromatic pocket. Moreover, while in (S)-1, one 

oxygen of the phosphinate group coordinates the metal and the other H-bonds with 
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(β3)-Asn215 and (β3)-Tyr122 as usual, in (S)-2 the (S) configuration induces a 

change in the metal coordination geometry with a consequent loss and weakening of 

the H-bonds formed with (β3)-Asn215 and (β3)-Tyr122, respectively. Differently, in 

case of (S)-3, due to the (S) configuration and the bulkiness of the methylester group, 

all the favorable interactions established with the β3 region by (R)-3 are lost except 

for the metal-coordination (see Supporting Figure S4D). Thus, the loss of one [(S)-1] 

or more interactions [(S)-3] is the reason behind the lower inhibitory potency of 

(S)-compounds if compared with the (R)-enantiomers (see Table 1). 
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Figure S1. Chemical structures of the quinine based chiral zwitterionic 

ion-exchange-type stationary phases CSP 2 (Tau-QN), CSP A183 and CSP A185. 

Stereoconfiguration at the cyclohexan moiety of CSP A183 and CSP A185 has not 

yet determined. 
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Figure S2. Superimposition of the X-ray binding conformation of Tirofiban (pink) and 

the binding mode of (R)-1 (blue) derived from the docking calculations. The αIIb 

domain is displayed as yellow cartoon while the β3 subunit in green. The interacting 

residues and the ligands are in licorice while the magnesium ion is represented as red 

sphere. For the sake of clarity only the polar hydrogens are displayed.  
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Figure S3. Stereoview of the binding mode of Tirofiban (A), (R)-1 (B), (R)-2 in the 

overall neutral form (C) and in the overall anionic form (D), (R)-3 (E), and (R)-4 (F). 

The αIIb domain is displayed as yellow cartoon while the β3 one in green. The 

magnesium ion is represented as red sphere. For the sake of clarity only the polar 

hydrogens are displayed. 
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Figure S4. Comparison between the binding mode of the (R)-enantiomers (left) and 

(S)-enantiomers (right) of 1 (A), 2 in the overall neutral form (B) and in the overall 

anionic form (C), and 3 (D). The αIIb domain is displayed as yellow cartoon while the 

β3 one in green. The interacting residues and the ligands are in licorice while the 

magnesium ion is represented as red sphere. For the sake of clarity only the polar 

hydrogens are displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  



    Abstract  

 

High Performance Liquid Chromatography (HPLC) using chiral stationary phases (CSPs) is 

of central importance in both industry and academia for either analysis of enantiomeric purity 

of chiral molecules or (preparative) separation of enantiomers to obtain enantiomerically pure 

compounds.  

The present dissertation describes the preparation of low molecular weight ion 

exchange-type CSPs and their evaluation using HPLC and Supercritical (or Subcritical) Fluid 

Chromatography (SFC). The research carried out in the thesis can be divided into two 

projects. 

The first part of the thesis presents a comprehensive evaluation of quinine- and 

quinidine-based chiral anion exchanger stationary phases (QN-AX- or QD-AX CSPs, 

respectively) for SFC. Both CSPs proved to be fully applicable in SFC which was manifested 

in similar enantioseparation properties for chiral acids as compared to HPLC. The retention 

mechanism was found to be ion exchange dominated and thermodynamic analysis revealed an 

enthalpically controlled chiral recognition mechanism, thus resembling HPLC behaviour. 

Additionally, we could chromatographically confirm the in situ formation of methylcarbonic 

acid (and its dissociated species methylcarbonate, respectively) in supercritical CO2-based 

methanolic fluids. This phenomenon enables salt free chiral anion exchange chromatography 

by merely applying super(sub)critical CO2-methanolic mobile phases, because the in situ 

formed methylcarbonate functions as a counterion and thus enables elution of the acidic 

analytes. This finding opens up new possibilities for preparative separations of chiral acids, as 

troublesome mobile phase additives, such as salts or acids, can be avoided.  

Furthermore, QN-AX and QD-AX CSPs were applied for enantioseparation of novel 

chiral sulfonic acids with HPLC and SFC. We could establish a straightforward method for 

baseline resolving all of the investigated chiral sulfonic acids (or their sulfonate salts, 

respectively). In another application study, the absolute configuration of structurally related 

chiral acidic drug compounds was indirectly assigned by means of chiral HPLC using QN-AX 

and QD-AX CSPs.  

The second part of the thesis deals with the synthesis of cinchona alkaloid-based 

zwitterionic chiral selectors (ZWIX-SOs) and their immobilization onto silica gel to yield the 

corresponding zwitterionic chiral stationary phases (ZWIX-CSPs). The ZWIX-CSPs provided 

three modes of ion exchange, namely weak anion exchange mode for separation of chiral 

acids, strong cation exchange mode for resolving chiral bases (amines) and, most importantly, 



zwitterion exchange mode for the separation of amphoteric solutes, such as underivatized 

amino acids and small peptides.  

The synthesis followed a semi-synthetic approach using quinine or quinidine as starting 

materials, which were then derivatized with structurally different sulfonate group containing 

moieties (via a carbamate bond at the C9 position of the cinchona alkaloid). A small library of 

either quinine- or quinidine-based ZWIX-CSPs was prepared to carry out structure - 

enantioselectivity relationship studies for zwitterionic analytes by means of chromatography.  

In short, ZWIX-CSPs with chiral moieties in vicinity to their strong cation exchanger 

sites exhibited the broadest scope of application for the enantioseparation of amino acids, 

whereas dipeptides could be well resolved on all ZWIX-CSP independently from the chiral or 

achiral nature of the strong cation exchange subunit. A special benefit of ZWIX-CSPs is their 

ability to invert elution orders of amino acid enantiomers, which is easily accomplished by 

switching from a quinine-based to a pseudoenantiomeric quinidine-based ZWIX-CSP.  



   Zusammenfassung 

Hochleistungsflüssigchromatographie (HPLC) unter Verwendung von chiralen stationären 

Phasen (CSPs) ist in der Enantiomerenanalytik und in den enantioselektiven Trenntechniken 

von größter Bedeutung. So wird diese Technik im universitären Bereich und vor allem in der 

(pharmazeutischen) Industrie massiv eingesetzt, um chirale Verbindungen in 

enantiomerenreiner Form zu gewinnen.  

In der vorliegenden Arbeit wird die Herstellung von CSPs auf Ionenaustauscherbasis 

beschrieben, welche mittels HPLC und Superkritischer (Subkritischer) Fluid 

Chromatographie (SFC) auf ihre chiralen Trenneigenschaften hin evaluiert wurden. Im 

Allgemeinen können die in dieser Dissertation durchgeführten Forschungen auf zwei 

Bereiche aufgeteilt werden:   

Der erste Teil beschreibt eine umfassende Evaluierung von Chinin- und Chinidin- 

basierten Anionenaustauschern (QN-AX – und QD-AX CSP), welche mittels SFC betrieben 

wurden. Die chiralen Anionenaustauscher erwiesen sich als vollkommen SFC tauglich, da die 

Trenneigenschaften im Hinblick auf chirale Säuren vergleichbar waren mit den Ergebnissen 

aus bereits bekannten HPLC Messungen. Weiters konnte festgestellt werden, dass auch in der 

SFC ein ionenaustausch-dominierter Retentionsmechanismus vorliegt und dass die chirale 

Erkennung enthalpisch kontrolliert ist. Des Weiteren konnte chromatographisch die in situ 

Bildung von Methylkohlensäure (und deren dissoziierte Form, nämlich Methylcarbonat) in 

super(sub)kritischen CO2 – Methanol Mischungen festgestellt werden. Dieses chemische 

Phänomen ermöglicht Anionenaustauschchromatographie ohne Zugabe von (Puffer)Salzen, 

da die in situ gebildete Methylkohlensäure als Gegenion fungiert und somit Elution der sauren 

Analytmoleküle ermöglicht. Diese Erkenntnisse eröffnen neue Möglichkeiten und Wege für 

präparative Trennungen von chiralen Säuren, da unerwünschte Salzadditiva in der mobilen 

Phase vermieden werden können.  

Ferner wurden die QN-AX und QD-AX CSPs zur Enantiomerentrennung von 

neuartigen chiralen Sulfonsäuren (bzw. deren Sulfonatsalzen) mittels HPLC und SFC 

verwendet. Es konnte eine unkomplizierte Methode erstellt werden, welche die 

Basislinientrennung aller applizierten Sulfonsäureanalyte ermöglichte. In einer weiteren 

Applikationsstudie wurden beide vorher genannten Säulen zur indirekten Bestimmung der 

Absolutkonfiguration einer Reihe von chiralen sauren Wirkstoffen verwendet.  

Der zweite Teil der vorliegenden Dissertation beschreibt die Synthese von neuartigen 

Cinchona-Alkaloid-basierten zwitterionischen chiralen Selektoren (ZWIX-SOs). Durch 

nachfolgende Immobilisierung der SOs auf Kieselgel wurden zwitterionische chirale 



stationäre Phasen (ZWIX-CSPs) erhalten. Diese ZWIX-CSPs ermöglichten alle drei Arten 

von Ionenaustauschmodi, nämlich den schwachen Anionenaustauschmodus zur Trennung von 

chiralen Säuren, den starken Kationenaustauschmodus zur Trennung von chiralen Basen 

(Aminen) und, am wichtigsten, den Zwitterionenaustauschmodus zur Enantiomerentrennung 

von amphoteren Verbindungen wie freien Aminosäuren und kurzkettigen Peptiden.   

Bei der Synthese dieser ZWIX-SOs wurden Chinin oder Chinidin als Edukte verwendet, 

welche dann mit strukturell unterschiedlichen, sulfonsäuregruppen-enthaltenden Resten 

derivatisiert wurden (jeweils über eine Carbamatbindung an der C9-Position). Auf diese Art 

und Weise konnte ein kleines Set an Chinin- oder Chinidin-basierten ZWIX-CSPs hergestellt 

werden, welche nachfolgend für Studien der Struktur – Enantioselektivitäts-Beziehungen 

mittels HPLC verwendet wurden.  

ZWIX-CSPs mit chiralen Substituenten in Nachbarschaftsstellung zur 

Sulfonsäuregruppe waren ihren Analoga mit achiralen Seitenketten auf der 

Kationenaustauscherseite bezüglich Trennleistungen überlegen. Sie zeigten die größte 

Anwendungsbreite für Aminosäure-Enantiomerentrennungen, wohingegen Dipeptid-Analyte 

auf allen ZWIX-CSPs ähnlich gut getrennt werden konnten. Eine weitere vorteilhafte 

Eigenschaft bei Verwendung dieser ZWIX-CSPs war die Möglichkeit zur Umkehr der 

Elutionsreihenfolge der Aminosäure-Enantiomere, welche durch ein Wechseln von der 

Chinin-basierten zur pseudoenantiomeren Chinidin-basierten ZWIX-CSP realisiert werden 

konnte. 
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