
MASTERARBEIT

Titel der Masterarbeit

”
Goal-driven developmental learning on a mobile robot“

Verfasser

Christian Papauschek, BSc

angestrebter akademischer Grad

Master of Science (MSc)

Wien, 2012

Studienkennzahl lt. Studienblatt: A 066 013

Studienrichtung lt. Studienblatt: Joint Degree Programme MEi:CogSci Cognitive Science

Betreuer: Dipl.-Ing. Dr.techn. Michael Zillich

Kurzfassung

Seit den frühen 1980er Jahren wurden mobile Roboter entwickelt, die Objekten auswe-

ichen und durch verschiedenste Umgebungen navigieren können. Hierfür wurde Vorwis-

sen über das Zusammenspiel zwischen Sensoren und Motoren des Roboters verwendet.

Als man komplexere Anforderungen an Robotik-Systeme stellte, scheiterten traditionelle

Architekturen daran, diesen gerecht zu werden. Einen interessanten Ansatz für dieses

Problem bietet der Forschungsbereich Developmental Robotics, der größtenteils von der

kognitionswissenschaftlichen Community beeinflusst wurde und von den gemeinsamen In-

teressen der Entwicklungspsychologie und der Robotik profitiert. Der Forschungsbereich

beschäftigt sich unter anderem damit, wie ein autonomer Roboter lernen kann komplexe

Aufgaben zu bewältigen indem er seine Umgebung erforscht. Das Komplexitätsproblem

der Robotik soll mit diesem erfahrungsbasierten Ansatz gelöst werden.

In dieser Arbeit wird eine Lernarchitektur auf einem mobilen Roboter implementiert,

welche auf den Kernprinzipien der Developmental Robotics basiert. Herangezogen werden

die Prinzipien der Verifikation, des Embodiment, der Subjektivität, des Grounding und der

inkrementellen Entwicklung. Die Architektur ermöglicht die autonome Konstruktion eines

sensomotorischen Modells, ohne Vorwissen über die Sensorenanordnung. Der Roboter

verwendet die Vorhersagen dieses Modells um bestimmte Sensorenwerte zu erreichen.

Dies resultiert in zielgerichtetem Verhalten.

Die Ergebnisse zeigen, dass die Architektur es dem Roboter ermöglicht, die Sensoren-

werte als Folgen seines Handelns vorherzusagen. Der Roboter war in der Lage, mit Hilfe

seiner Ultraschall-Abstandssensoren bestimmte Entfernungen zu Objekten zu halten, ohne

spezielle Vorprogrammierung. Bei der Auswertung wird gezeigt, dass der Roboter nach

und nach seine Performance verbessert und ein genaueres sensomotorisches Modell kon-

struiert, sobald mehr Daten über die Motoren und die Umgebung gesammelt werden

können. Wir schlussfolgern, dass erfahrungsbasiertes Lernen ein realisierbarer Ansatz in

der Robotik ist, und es ist unsere Überzeugung, dass Forschung aus der Entwicklungspsy-

chologie einen wichtigen Einfluss in diesem Gebiet darstellen wird.

Abstract

Since the early 1980s, mobile robots have been programmed to avoid objects and navigate

environments. Prior knowledge about the robot’s sensors and actuators was used to solve

this problem. But as robotics systems were expected to address more complex tasks,

traditional robot architectures failed to scale up to them.

One interesting approach to this problem can be seen in the field of developmental robotics,

which was influenced in large parts by the cognitive science community and benefits

from the mutual interests of developmental psychology and robotics. The main research

question in this field is how an embodied agent can learn complex tasks by exploring its

environment. This experience-based learning approach aims to solve the scaling problem

of robotics.

In this thesis, a developmental learning architecture is implemented on a mobile robot.

This architecture follows the core principles of developmental robotics: the verification

principle, the principles of embodiment, subjectivity and grounding, as well as the prin-

ciple of incremental development. It allows the robot to autonomously construct a senso-

motoric model, without prior knowledge about its sensor configuration. This model can

then be used to predict the outcome of the robot’s actions. In the proposed architecture,

the agent uses these predictions to reach specific sensor states, resulting in goal-driven

behavior.

The results show that the architecture enables the robot to predict the consequences of

its actions on its sensor states, and it was evaluated in several experiments. The robot

was able to keep specific distances to objects using its ultrasonic distance sensors, without

being preprogrammed with an algorithm that describes the necessary actions.

During the evaluation, we also show that the robot gradually improves its performance

and constructs a more accurate sensomotoric model, as it collects more data about its

motors and its environment. We conclude that experience-based learning is a feasible

approach in robotics, and it is our belief that research from developmental psychology

will become an important influence in this area.

Acknowledgments

I wish to express my gratitude to my supervisor Dipl.-Ing. Dr.techn. Michael Zillich, who

offered invaluable assistance and support also with regard to the technical challenges of

maintaining and repairing a mobile robot.

Special thanks also to the coordinators of the MEi:CogSci master program, which provided

me the opportunity to pick a research project in the field of robotics. Also, I would like

to convey thanks to the University of Vienna and the University of Technology Vienna

for providing the laboratory facilities.

I wish to express my gratitude to my family, for their understanding and support, through

the duration of my studies.

Table of Contents

1 Introduction 8

1.1 Assumptions of learning systems . 8

1.2 Goals . 9

1.3 Overview . 9

2 Background information 11

2.1 Learning in robotics . 11

2.2 Robotics and developmental psychology . 12

2.3 Reinforcement learning . 14

3 Related work 16

3.1 Previous work in developmental robotics 16

3.2 Active learning . 17

3.3 Other related work . 18

3.4 Mobile robot platform . 18

3.5 Developmental robotics and Corvid . 19

4 Hypothesis 21

4.1 Exploration . 21

4.2 Prediction of sensor readings . 21

4.3 Generation of possible outcomes . 23

4.4 Reinforcement learning . 25

4.5 Evaluation . 26

5 Implementation 27

5.1 Hardware description . 27

5.2 Robot interface . 28

5.3 Simulation . 28

6

5.4 Learning architecture implementation . 30

5.4.1 Neural network predictor . 31

5.4.2 Action generation . 32

5.4.3 Reward signal . 32

5.4.4 Action selection . 33

5.5 Software implementation . 34

6 Experimental setup 38

6.1 Learning phases . 39

6.2 Choice of environment . 41

7 Experimental results 42

7.1 Experiment: Hold distance . 43

7.2 Experiment: Maximize distances . 44

7.3 Experiment: Keep forward distance . 46

7.4 Qualitative results . 47

7.5 Predictor performance testing results . 47

7.5.1 Prediction of direction . 48

7.5.2 Prediction of distances . 50

8 Discussion 53

8.1 Goal-oriented behavior performance . 53

8.2 Neural network prediction performance . 54

8.3 Principles of developmental robotics . 56

9 Conclusion 57

9.1 Future of developmental robotics . 57

9.2 Outlook . 58

References 62

7

1 INTRODUCTION

1 Introduction

In the past few decades, there have been countless advances in the field of robotics. Among

them are new approaches and improvements to systems which try to capture data and

learn from it in a meaningful way during the deployment of the robot. In some cases,

these systems are biologically inspired or claim to apply some mechanisms from nature in

a robotics problem.

1.1 Assumptions of learning systems

Tasks like object grasping, that seem to be very easy from a human perspective, are still

relatively hard problems in robotics. There are many ongoing projects that deal with

the grasping problem alone. The general approach is to build a mathematical model

of grasping, sometimes using machine learning techniques, based on a set of successful

behaviors. The “training” set of these successful behaviors can be created manually or

via an automated process, or a combination of both. Using the output of this model, we

can then control the arm hoping that it will grasp in the right way, or from the right

direction. If it fails however, we have to go back and improve our model. Since the robot

learned from outside instructions, the robot cannot actually perceive its own failure. It

follows that it cannot improve upon the model on its own.

Even though most projects that deal with object grasping use some kind of learning

algorithm in order to train the software in performing the task better, robotics is still

struggling with this seemingly simple task.

In this thesis we are going to argue that we need to take a closer look at the assumptions

of these learning systems. In every implementation there are assumptions which may

differ substantially from one system to the other. It is our belief that we should take a

closer look at nature when it comes to designing learning systems. For a robotics system

8

1 INTRODUCTION 1.2 Goals

that needs to learn how to move, it makes sense to ask oneself how a developing human

child learns how to move.

The field of developmental psychology deals with this kind of learning, but it is nowhere

near offering a complete algorithm that can be implemented in software, ready for use in

robotics. There are however some basic ideas about what a child in its early development

phase might try to learn. One thing that may be very important is the idea that the

brain constantly produces expectations and predictions about how current movements

will influence the environment and consequently sensor experience.

1.2 Goals

Motivated by this idea, this work will show an implementation of a learning system that is

not motivated by outside goals, but learns mostly about its body. Even though the system

is not oriented towards given behaviors, it will use these predictions to fulfill certain goals.

This will show that a system which is able to predict some of the outcomes of its actions

can more easily perform new tasks which it had not performed before.

A mobile robot will be programmed to learn autonomously by exploring its environment

and collecting data about it. A learning system will be implemented, that will con-

tinuously construct a model of the interactions between the robots actuators and the

environment. After learning from the observations, this experience-based model will be

evaluated in three different situations. In each situation, the robot will have to reach a

certain target sensor state. by using its predictions to reach certain sensor states.

1.3 Overview

This work deals with the development of a learning system for a mobile robot, that

will enable it to learn autonomously about its interactions with the world, and use this

9

1.3 Overview 1 INTRODUCTION

knowledge to reach specific goal states. The document is structured in sections that will

deal with different aspects of this work:

• Chapter 2: Background information introduces the young field of development

robotics and its basic research assumptions, as well as a quick overview of rein-

forcement learning.

• Chapter 3: Related work discusses related research in the areas of developmental

robotics and reinforcement learning, as well as the mobile robot that will be used

for the experiments.

• Chapter 4: Hypothesis proposes a reinforcement learning architecture that follows

the principles of developmental robotics, and will be implemented on the mobile

robot.

• Chapter 5: Implementation outlines the implementation of the proposed learning

architecture on the mobile robot Corvid, including hardware and software descrip-

tions.

• Chapter 6: Experimental setup shows the experimental setup that was chosen for

the robot experiments.

• Chapter 7: Experimental results summarizes the results that have been obtained

from the experiments with the mobile robot.

• Chapter 8: Discussion discusses the previously obtained experimental results with

regard to the behavior of the robot and its prediction performance, as well as their

relation to the principles of developmental robotics.

• Chapter 9: Conclusion summarizes the conclusions of this work and their application

to future research.

10

2 BACKGROUND INFORMATION

2 Background information

Autonomous robots are often controlled by algorithms which are specifically tailored to

the sensory information they receive, and to the goals that the robot should be able to

perform in the end. This approach is widely used and has its advantages, if the robots goals

are simple enough or do not change fundamentally. Also, some solutions include machine

learning methods which allow the robot to learn while it is deployed in its environment

[SMS09].

2.1 Learning in robotics

A lot of research in robotics involves some kind of learning, but there are many different

approaches. We can describe the world in some abstract mathematical way, and then let

a robot use this model to predict the outcome of different actions. The robot can then

choose the best option and act accordingly.

For example: Robots that use SLAM techniques (Simultaneous Localization and Map-

ping) use their laser distance sensors to build a 3D-model of the world as they move

around [LCJ10]. While constantly updating this world model, the robot can calculate

whether moving forward is a good idea, depending on whether there is an obstacle in

front of it or not. The world model can also be used for path planning, in order to nav-

igate longer distances efficiently. While SLAM allows the robot to autonomously learn

about its environment in real-time, the way the world model is derived from the sensor

readings is fixed and usually not verifiable by the robot.

This way of programming a robot is very practical and has led to many successes in

robotics, as it allows engineers to use their existing knowledge about the world. It is a

top-down approach to learning, and it does not try to model the way humans acquire

knowledge about the world.

11

2.2 Robotics and developmental psychology 2 BACKGROUND INFORMATION

However, it seems that these traditional approaches are not able to scale up to tasks that

require a higher level of intelligence. This includes seemingly simple motor tasks, such

as walking and catching objects, that children are able to quickly learn and master. It is

simply not feasible to preprogram all the domain knowledge that a robot needs, before

it is deployed in its environment. As a reaction to these difficulties, a new approach of

dealing with learning tasks in robotics emerged.

2.2 Robotics and developmental psychology

In the past decade, the fields of robotics and developmental psychology discovered their

mutual interest in the big question of how embodied systems are able to learn au-

tonomously. Developmental psychologists are looking at the development of children,

and develop theories how babies are eventually able to understand their body and use it

as they grow older. The field of robotics would benefit greatly from a theory that could be

used in a system that allows robots to learn like children do. Hence, a new field emerged:

developmental robotics, also called epigenetic robotics.

The basic research assumption behind developmental robotics, which was influenced in

large parts by the cognitive science community, is that

“true intelligence in natural and (possibly) artificial systems presupposes

three crucial properties:

1. the embodiment of the system;

2. its situatedness in a physical and social environment;

3. a prolonged epigenetic developmental process through which increasingly

more complex cognitive structures emerge in the system as a result of

interactions with the physical and social environment.”

[ZB01, emphasis in original]

12

2 BACKGROUND INFORMATION 2.2 Robotics and developmental psychology

Even though developmental robotics is a very young field, some basic principles have been

proposed. Following from the research assumptions, these five principles are: [Sto09]

1. The verification principle, which serves as the basis for all the following principles,

and says that an agent “can create and maintain knowledge only to the extent that

it can verify that knowledge itself.” [Sto09]

2. The principle of embodiment says that an agent has to have the ability to affect its

environment, and stands in contrast to early AI systems in which data processing

occurred without any interaction with an environment. This follows from the veri-

fication principle, as a body is needed for the actions that allow verification of what

the agent learned.

3. The principle of subjectivity also follows from the verification principle and deals

with the question of learning: agents should only learn from their own experiences,

their own history of interactions with the environment. One interesting aspect that

follows from this principle is that robots with different bodies will learn different

object affordances, depending on how each robot can interact with the object.

4. The principle of grounding is a necessity of the verification principle in that all

verifications must have some basis, that does not have to be further examined. It is

proposed that grounding consists of the reproducible observation of action-outcome

pairs.

5. The principle of incremental development follows from the time-constraints of sub-

jective learning, and says that learning can only occur gradually, as an agent accu-

mulates more and more experience in dealing with the environment. This relates to

many theories in developmental psychology, as it is often stated that development

of a child proceeds in stages, or milestones.

The importance of the verification principle cannot be overstated, and developmental

robotics makes this assumption explicit. This does not mean, however, that the principle

13

2.3 Reinforcement learning 2 BACKGROUND INFORMATION

is ignored in other robotics research. In some cases, monitoring systems are implemented

that constantly observe the robots own performance. It can be argued that these systems

allow the robot to verify its own actions.

Many self-regulatory systems may implement the verification principle, without explicitly

considering it. Artificial robotic immune systems are an example of this, which are cur-

rently being developed for use in the RoboCup robots [SK11]. The proposal of a Robotic

Immune System (RIS) is a reaction to the increase in complexity of robotic systems, and

aims to improve the fault tolerance of these systems by detecting anomalies:

“Our work meets this challenge by developing a mechanism for robotic sys-

tems that is capable of detecting defects, selecting feasible counter measures,

and hence keeping robots in a sane and and consequently safe state.” [SK11]

While not strictly in the realm of developmental robotics, this research has many parallels

and some of the same motivations behind it. One of these parallels are self-inspecting

systems: “Introspection is an inevitable feature for any immune system, biological as

much as artificial.” [SK11]

2.3 Reinforcement learning

Reinforcement learning is a model that fits particularly well to the requirements of de-

velopmental robotics, including the five principles mentioned before. It has been used in

this field of research before, and an example of this will be given in Chapter 3.

The reason is that the reinforcement learning model generally assumes an embodied agent

which learns from its environment gradually, via systematic trial and error. It is a super-

vised learning technique in which only a reward signal has to be provided to the agent

[KLM96]. The reward signal tells the robot how well it is currently doing. In contrast to

14

2 BACKGROUND INFORMATION 2.3 Reinforcement learning

other supervised learning mechanisms, the robot is not told which action is the best in

each situation. A variation of reinforcement learning will also be used in this thesis.

The proposed software architecture uses these five principles as a basis, as it allows a

robot to learn about the influences of its actuators on the environment by experience.

The learning progress is expected to be incremental, and is measured by using the robots

self-acquired knowledge to reach different sensor states. It will be explained in more detail

in Chapter 4.

15

3 RELATED WORK

3 Related work

As mentioned in the previous section, the reinforcement learning model fits particularly

well to the principles of developmental robotics. This chapter will discuss the related

research in this area and the reinforcement learning models used.

3.1 Previous work in developmental robotics

One important influence on this thesis was the work by Odeyer et al., on what is called

an “Intrinsic Motivation System” [OK04]. The phenomenon that they addressed in their

research is learning by self-motivated actions. It seems that children learn a great deal

about the world by exploratory activities and are intrinsically rewarded by engaging in

these activities. Furthermore, in developmental psychology, a child’s learning progress is

often described as going through several developmental stages.

In their work, they present a developmental algorithm called “Intelligent adaptive cu-

riosity” (IAC) [OK04]. Using this algorithm, a robot learns to predict the position of a

toy using reinforcement learning. In this publication, the experiments were conducted in

a simulated 3D-environment. Unlike other reinforcement learning systems however, this

system rewards itself by trying to focus on “learnable” tasks, therefore being intrinsically

rewarded. What is learnable is measured by keeping track of the learning progress of the

predictor, constantly measuring its prediction accuracy. The system then tries to split

the sensomotoric space into so-called regions which are explored separately by the agent.

The idea is that the robot will focus on learning affordances that can actually be learned,

and tries to ignore tasks that appear to be unpredictable at the moment.

From a reinforcement learning perspective, the reward is not given by the experimenter,

but is intrinsically given by the “progress of learning”. In other words, the system rewards

itself for being in situations where it is learning the most.

16

3 RELATED WORK 3.2 Active learning

The algorithm has been successfully applied not only to simulated robots but also to

real devices [OKH07] [BO09]. These experiments did not involve mobile robots, but an

implementation of the IAC algorithm on the Corvid mobile robot, which will also be used

for the experiments in this thesis, has been done [Län10] (see Section 3.5).

Of particular interest in the IAC experiments is the way the system was evaluated. The

focus here was to reproduce something similar to the learning stages that occur in children.

The authors argue, that this has been achieved [OK04].

3.2 Active learning

Another important related project deals with active learning [SMS09], in which a hu-

manoid robot learns to use its arm in order to reach objects. The robot used motor

babbling (random movements) in order to explore its environment and collect data about

it. Using this data, the authors trained a system that predicts the robot’s state in the

next time step. In addition, the system reflected on its own prediction and measured its

own prediction confidence. The confidence data was then chosen in order to guide further

exploration. The authors used a learning strategy that distinguished between learning

and exploration phases. A similar system is also used in this thesis:

“A robot explores the environment to collect learning data, and evalu-

ates sensorimotor functions on-line. After exploration, the robot optimizes

sensorimotor functions with the collected learning samples off-line. These two

processes are repeated alternatingly until the desired performance is reached.”

[SMS09]

There is an interesting parallel between this active learning approach and the IAC (Intel-

ligent Adaptive Curiosity) algorithm mentioned in the previous section: both use some

kind of measurement of confidence in order to direct the robot to explore more interesting

environments.

17

3.3 Other related work 3 RELATED WORK

3.3 Other related work

Many research projects follow some of the principles of developmental robotics, even if

they do not explicitly state it. One of these projects has already been mentioned in

Section 2.2 [SK11], but many other works implement some type of self-monitoring or

self-regulating systems that follow part of the verification principle.

Another example of this is a project in which machine learning methods are used to

acquire visual 3D object models [ZPMV11]. The authors of this work propose a system

that allows online learning of these object models, and implemented a way in which the

system is able to assess its own object detection performance. They used “three learned

probabilistic measures for observed detection success, predicted detection success and model

completeness” [ZPMV11]. This self-assessment of performance is a way of verifying the

knowledge that the system already gained. In this case however, the system was not

embodied and therefore not able to gain the knowledge in a subjective matter. It does

not follow the principles of developmental robotics outlined in Section 2.2, but the authors

plan to develop a complete system as a next step of the project.

3.4 Mobile robot platform

In this thesis, a mobile robot is used in order to implement the proposed learning archi-

tecture. The platform we used is the recently developed Corvid [ZBKL10]. The robot

was previously used in developmental robotics experiments (see Section 3.5).

Corvid is a robot capable of traversing rough terrain, high resolution vision and manip-

ulation of objects via arm and grasper (see Figure 1). In addition to its camera, the

robot is capable of avoiding obstacles through eight distance sensors. In some previous

experiments, the robot also used a compass sensor for navigation. To facilitate quicker

development and testing of the implementation, a virtual 3D model of the robot and its

environment has been previously created using the simulation platform Player/Gazebo.

18

3 RELATED WORK 3.5 Developmental robotics and Corvid

This also allows basic testing of controlling software in a virtual environment before mak-

ing experiments on the real device.

Figure 1: The Corvid mobile robot. It is capable of traversing rough terrain, high resolution

vision and manipulation of objects via arm and grasper [ZBKL10]. In addition to

its camera, the robot can measure distances in all directions by using its eight ultra-

sound distance sensors.

3.5 Developmental robotics and Corvid

The robot platform Corvid has been previously used in experiments involving the In-

telligent Adaptive Curiosity algorithm [OK04] mentioned in Section 3.1. The question

of this work was whether a mobile robot could learn affordances using this architecture.

19

3.5 Developmental robotics and Corvid 3 RELATED WORK

During the experiments [Län10], the robot had to learn which movements can be made

in a restricted environment much like the one used in this thesis. The conclusion was

that some affordances could be learned, but they do not include longer behaviors such as

object avoidance or wall following.

However, because the agent does not try to reach specific goals in the Intrinsic Moti-

vation System, the evaluation of such a system is difficult. Part of the evaluation was

done by measuring how well the system could predict its environment, and find learnable

movements, or affordances.

Here, we will evaluate not only how well the system predicts its environment, but mainly

also if and how well it can perform certain tasks using the learned model. The authors of

the IAC focused on splitting the learning tasks into regions that can be learned separately,

also in order to avoid trying to learn unpredictable events. In this thesis, the focus lies

on the evaluation of such autonomously learned predictive models. We therefore use

a number of goals that the robot will have to reach, in order to allow a quantitative

evaluation.

20

4 HYPOTHESIS

4 Hypothesis

One central idea of developmental robotics is that agents need to learn incrementally and

from their own interaction with the environment, in order to become more robust against

unexpected properties of the sensors and the environment.

This chapter will describe a reinforcement learning architecture that should enable an

agent to learn about its sensors and motors autonomously. The robot will start with

exploring its motors and sensors, and therefore its environment. While exploring, the

proposed system collects sensomotoric data that will be used to build a predictive forward

model of its actuators. After collecting enough data, it is expected that the agent can

perform some simple tasks using this autonomously learned forward model.

In order to evaluate this model, the architecture will be implemented in the mobile robot

Corvid.

4.1 Exploration

Each agent can be thought of having a vector of sensor readings S(t) and a number of

motor outputs M(t) at each time step t. For example, the mobile robot Corvid has 8

real-valued distance sensor readings from its ultrasonic sensors, and 2 real-valued motor

outputs for going forward and turning, respectively, at each time step t (see Figure 2).

In the beginning, the agent may use its motors randomly in order to collect some basic

data about the relationship between its actuators and sensors. This data can then be

used to build a first predictive model, as explained in the next section.

4.2 Prediction of sensor readings

A simple forward model tries to predict future sensors S(t+ 1) while using current sensor

values S(t) and motor values M(t) as a basis (Figure 3).

21

4.2 Prediction of sensor readings 4 HYPOTHESIS

US:0 US:7

US:1

US:2

US:6

US:5

US:3 US:4

M:left M:right

front

back

left right

Figure 2: Illustration showing the arrangement of the 8 ultra-sound sensors of Corvid, as well

as left and right motors.

This forward model can be learned by any machine learning algorithm that allows training

by example, including neural networks and many other techniques. This section will focus

on a possible implementation using feed-forward neural networks or similar algorithms.

These models do not have memory and therefore cannot take into account past sensor

readings. Some alternatives have been proposed, including back-propagation through

time [Moz95] and more elaborate systems such as EVOLINO [SWGG07].

When using predictors that do not remember past inputs, historical data can be provided

to the model as additional inputs (Figure 4). Of course, depending on the implementation,

dealing with many additional inputs can be a practical problem. For neural networks, the

computational complexity of deriving a model rises at least with polynomial time as the

number of inputs increases. Nevertheless, providing the network with a limited amount

of past inputs is still an option.

22

4 HYPOTHESIS 4.3 Generation of possible outcomes

S(t)

M(t)

t

S(t+1)

Predictor

M(t+1)

Figure 3: A simple forward model which predicts future sensor data S(t + 1) from current

sensomotoric values S(t) and M(t).

S(t)

M(t)

t

S(t+1)

Predictor

M(t+1)

S(t-1)

M(t-1)

S(t-n)

M(t-n)

Figure 4: A forward model which predicts future sensor data S(t + 1) and takes into account

previous sensomotoric values from n + 1 time steps.

After training a predictor using the collected sensomotoric data, it can be used to select

actions with specific outcomes, as the next section explains.

This way of building a sensomotoric model also satisfies the principle of subjectivity (see

Section 2.2) in developmental robotics: no data from outside the subjective experience of

the robot is used in creating the predictor.

4.3 Generation of possible outcomes

It is proposed that the autonomously learned sensomotoric model can be used to allow the

agent to reach specific goals, as long as these are easily expressible through sensomotoric

states. One way this can be done is by predicting the outcome of different motor actions,

23

4.3 Generation of possible outcomes 4 HYPOTHESIS

by feeding different generated M(t + 1) values into the predictor.

If the predictions were perfect, it would be possible to predict sensor states far into the

future by chaining predictions: predicted sensor states S̄(t + 1) can again be used as

current inputs for the predictor, and a prediction of S̄(t + 2) can be made. In practice

however, it is expected that predictions will degrade too much in their quality as to make

useful predictions far into the future.

By generating possible motor actions of the agent, it is possible to generate a tree of

possible future sensor states that it can reach.

S(t)

M1(t)

t

S1(t+1) P

S2(t+1) P

S3(t+1) P

S4(t+1) P

S5(t+1) P

M2(t)

M3(t)

M4(t)

M5(t)

Figure 5: Tree of possible future states showing predicted sensor states for five different actions

at each time t, resulting in 5 possible outcomes S1(t + 1) to S5(t + 1) at depth 1.

In Figure 5, the robot is able to choose between 5 different actions at each time t, resulting

in 5 possible outcomes. When using the predictor at t + 1 again, it is possible to predict

24

4 HYPOTHESIS 4.4 Reinforcement learning

all 25 possible outcomes at t + 2.

In order to make use of the predicted possible outcomes, a reward signal is introduced by

the experimenter, in order to tell the agent how well it is doing with a given task. With

this addition, the architecture becomes a type of reinforcement learning system.

4.4 Reinforcement learning

By introducing a real-valued reward signal rt at each time-step t we enable the robot

to evaluate each sensomotoric state SM(t), which is a combination of the sensor state

S(t) and the motor state M(t). This reward depends on the goal state that we want the

agent to reach. The agent can then predict the reward from each possible future state

SM(t + x). The final architecture can be seen in Figure 6.

Environment

Sensors
Agent

Prediction
of possible

future
states

Motors
Selection

of best
action

Reward

Figure 6: Final architecture showing the interaction between the agent and its environment,

typical for a reinforcement learning setup.

25

4.5 Evaluation 4 HYPOTHESIS

On the basis of its current and past sensor readings, the agent generates possible future

states and evaluates them based on the current goal. At depth 2 (when predicting states

until t + 2) we get two predicted rewards rt+1 and rt+2 for each predicted outcome.

We propose to select the action with the highest predicted sum of these rewards rtotal,

weighting future rewards higher than immediate rewards, as formulated in Equation 1.

rtotal = 1rt+1 + 2rt+2 + · · ·+ nrt+n (1)

Weighting the rewards by depth should ensure that the robot considers actions that have

high reward in future, even if they result in lower immediate reward.

After choosing the action, the agent influences the environment and receives new sensor

data and reward. This reinforcement learning architecture allows the sensomotoric pre-

diction model to be trained independently from the reward signal. That means it should

be possible to use the agents experience with its actuators and sensors to be used with

novel goals, as will be tested in our implementation.

4.5 Evaluation

In order to test how well this architecture can be used for the purposes of goal-oriented

behavior, the robot will have to reach three different goal states (or maximize three

different reward signals) using the same sensomotoric prediction model. It is expected

that the robot will not be able to reach the goal states very well in the beginning, since

there is no data to base the predictions on. After collecting more and more data, it is

expected that the robot will improve its ability to perform the given tasks.

The next sections will explain more details about the mobile robot that will be used, and

the specific implementation of the learning architecture.

26

5 IMPLEMENTATION

5 Implementation

The previous sections described a general autonomous learning architecture. To evaluate

this architecture, it was implemented on the mobile robot Corvid which was introduced

in Section 3.4. Now follows a more detailed description of the hardware and software

implementation.

5.1 Hardware description

The mobile robot Corvid was previously developed at ACIN (Automation and Control

Institute) at the University of Technology Vienna [ZBKL10]. The name is derived from the

configuration of the arm, grasper and camera. The camera is mounted on the arm directly

above the grasper, resulting in a “eye in hand” setup much like the fixed relationship

between the beak and the eyes of crows (corvids).

The robot lends itself to student research with reinforcement learning because of its inex-

pensive hardware and maintenance costs. The basis of the platform is the commercially

available Lynxmotion Tri-Track Chassis. The tracks of the vehicle are moved by two

motors, resulting in a differential drive system. There is a manipulator directly mounted

on this basis, which carries the camera and grasper. For the purposes of our experiments,

the arm was retracted and disabled in order to prevent damage to the more fragile parts.

The most important hardware for this project are the ultrasonic sensors. These Devantech

SRF02 sensors can measure distances from 0.15 to 6 meters by sending out inaudible

sound waves and measuring the time until they are reflected back from a surface. Eight

of these sensors are mounted on the robot, sensing in different directions (see Figure 2).

The brain of the robot is a Gumstix Overo Fire Board, which uses an energy-saving ARM

processor (the same processor used in most smartphones today). With a clock frequency

of 600[MHz] and 256[MB] of RAM, the robot is able to run a full Linux operating system,

27

5.2 Robot interface 5 IMPLEMENTATION

including a graphical user interface. In order to work on the operating system, monitor

and keyboard can be attached. In most cases however, the robot is accessed via wireless

network (W-LAN), which is also included on the main board.

The energy consumption of the robot allows it to be active for at least 23 minutes with a

fully charged 3200[mAh] battery pack, assuming that all its motors constantly draw the

maximum of energy. In practice however, not all motors are constantly used at full speed,

and therefore the robot can usually be used longer than half an hour.

5.2 Robot interface

For controlling the sensors and motors of the robot, a Player driver has previously been

developed. Player provides an interface and a protocol for standardized communication

with robots and their sensors [GVH03] (such as motor position sensors, distance sensors,

cameras), as well as actuators (such as servo motors, LEDs and LCD displays). All of the

robot’s capabilities can be accessed via the interface provided by Player. This interface

is used via a network protocol, and is therefore hardware-independent.

An overview of the experimental setup can be seen in Figure 7. The motors and sensors

of the robot are accessed in a hardware-dependent manner via the Player drivers. The

Player server offers this functionality in a platform-independent manner over a network

protocol. The controller program runs on a computer that is connected via network to

the robot, and is able to remote control the robot. The implementation details of the

controller are further discussed in Section 5.5.

5.3 Simulation

Since the Player interface to the robot is platform-independent, a simulated robot can

be exchanged for the real robot. A simulation tool for Player is provided by a separate

28

5 IMPLEMENTATION 5.3 Simulation

Sensors Motors

Corvid mobile robot
(Linux operating system)

PC
(OS-independent)

Wireless network Wireless network

Player server

Player drivers

Player client

Scala controller

Robot object

Predicting
action selector

Sensomotoric
model

Figure 7: Experimental setup with the Corvid mobile robot.

project, Gazebo1. Gazebo is a 3D robot simulator which uses a physics engine to simulate

realistic sensor feedback. In principle, and this is the goal of Player, a controller program

can be used for a simulated robot and for the hardware without any changes. For this

project, Player/Gazebo was used to simulate the robot before testing the controller on

the real device.

1Player and Gazebo are open source projects and can be found here: http://playerstage.

sourceforge.net/

29

http://playerstage.sourceforge.net/
http://playerstage.sourceforge.net/

5.4 Learning architecture implementation 5 IMPLEMENTATION

Figure 8: The simulated version of the robot. A 3D description of Corvid was created in order

to simulate its motors, distance sensors and camera with the Gazebo simulator.

The software uses a physics engine to simulate the robots interactions with the

environment, and to provide realistic sensor feedback.

5.4 Learning architecture implementation

As mentioned previously, the Corvid mobile robot is a tracked vehicle that is equipped

with 8 ultrasonic sensors which measure horizontal distances in every direction. For the

purposes of this project, only those distance sensors and the movement motors are used.

The 8 distance sensors deliver real-valued measurements which are used as the sensor

inputs S(t) (from Section 4.1) that the agent should learn to predict. The actuator

output M(t) consists of two values, forward speed and turn speed respectively, both in

the interval [-1;1]. A negative forward speed causes the robot to go backwards, while a

30

5 IMPLEMENTATION 5.4 Learning architecture implementation

positive or negative turn speed causes the robot to turn right or left, respectively. One

time step will last 0.3 seconds, since that is the update interval of the robots ultrasonic

sensors.

5.4.1 Neural network predictor

As a prediction module, a standard feed-forward neural network is used [RHW86], that

receives motor and sensor data from the past two time steps, as well as future motor

states as input (a concatenation of the vectors SM(t−1), SM(t), M(t+1), which results

in a total of 22 input values). The desired output of the predictor is the vector of future

sensor state changes ∆S(t + 1). Therefore, the neural network will only predict changes

in distance measurements, instead of total distance values. The neural network outputs

are normalized to [-1;1], where the maximum value of 1 corresponds to 10 centimeters.

The absolute predicted measurement values are then given by Equation 2.

S(t + 1) = ∆S(t + 1) + S(t) (2)

For the purposes of neural network training, the values of the distance sensors are nor-

malized to the interval [0; 1], representing 0 to 3 meters, while the motor values are in

[-1;+1].

The neural network was trained with an optimized version of the backpropagation al-

gorithm, “resilient backpropagation” (RPROP) [Rie94]. After some preliminary testing,

the neural network was set to have one hidden layer and 8 hidden units. Given by the

sensomotoric inputs and sensor outputs, the network has 22 input units and 8 output

units. As RPROP is self-adjusting, no additional parameters are needed.

31

5.4 Learning architecture implementation 5 IMPLEMENTATION

5.4.2 Action generation

In order to use the predictions from the neural network, actions have to be generated. At

each time step t, the robot is allowed to choose between 5 actions:

1. stop (or slow down, if moving fast),

2. accelerate (go forward)

3. decelerate (go backward)

4. turn right

5. turn left

Using the predictor model, it is now possible to calculate predicted outcomes Sx(t + 1)

for each of the five actions x.

5.4.3 Reward signal

In order to evaluate the predictive model, we will consider 3 different goal states that

the robot should try to reach. To communicate how well the agent is doing, it receives a

real-valued reward signal.

Also, the agent needs a way to predict reward signals from its state. This reward predictor

module was described previously in Section 4.4. For our purposes, the reward signals will

be formalized in a way that can be calculated directly from the robots state SM(t).

It is therefore not necessary to train a separate neural network that predicts rewards. The

following goals and reward formulas are used in the experiments:

32

5 IMPLEMENTATION 5.4 Learning architecture implementation

1. “hold a distance of 1 meter to surrounding objects” (which can be formalized as

Equation 3)

reward = −|min(S(t))− 1| (3)

where (min(S(t)) is the minimum of the 8 distance sensor values at time t.

2. “drive to the center of the room” (or “maximize the distance sensor readings” which

can be formalized as Equation 4)

reward =
7∑

i=0

√
Si(t) (4)

which is just the sum of the square roots of all 8 distance sensor values, therefore

giving smaller distances more weight on the reward.

3. “keep a forward distance of 80 centimeters” (which can be formalized as Equation

5)

reward = −|S0(t)− 0.8| − |S7(t)− 0.8| (5)

where S0(t) and S7(t) are the two distance values from the forward ultra-sound

sensors.

5.4.4 Action selection

The goal of the agent is to maximize the reward signal. Using the generated actions from

Section 5.4.2, it is possible to generate many possible future states of the robot. In order

to maximize the rewards, the agent will have to choose an action that will lead to the

best possible future state.

Another way to describe this problem is by using a decision tree, in which the nodes

represent states of the agent, connected by different decision branches.

In our implementation, the agent will enumerate all possible actions 2 time steps into

the future, beginning with all 5 predictions of S(t + 1), since we consider the 5 different

33

5.5 Software implementation 5 IMPLEMENTATION

actions from Section 5.4.2. Starting with each of these 5 outcomes as a current agent

state, the predictor can be used to predict all 25 possible outcomes of S(t + 2).

Depending on which task the robot should try to perform, the possible outcomes S(t+ 2)

can be evaluated using one of the reward formulas from Section 5.4.3. In our experiments,

the robot always chooses the action with the highest predicted reward. Since one time

step lasts about 0.3 seconds in our experiments, the robot is able to “plan ahead” about

0.6 seconds.

Chapter 6 will explain how this method of selecting actions will be tested experimentally.

5.5 Software implementation

Since the Player interface uses a network protocol, the controller program could be de-

veloped and run entirely on a standalone computer, that was connected to the robot via

wireless network. This means that the controlling software was not actually running on

the robot, but was instead communicating with it in order to receive current sensor data

and to control the actuators.

The software was written in the programming language Scala, which is a relatively new

Java-compatible language. It was chosen because of its expressiveness, as it allows the

programmer to use mathematical and functional expressions as well as object-oriented

programming principles, while at the same time being relatively performant and capable

of accessing existing machine learning algorithms written in Java.

The source code is an integral part of this master thesis, and is available as a separate

download 2. The controlling software has a simple graphical user interface that allows

to select basic operations for our experiments (see Figure 9). Many parameters have to

be provided in the source code itself. The screen displays the current distance data as

received by the robot from all 8 ultrasonic distance sensors.

2For the full source code see http://github.com/papauschek/corvid-devrob (MIT/X11 license)

34

http://github.com/papauschek/corvid-devrob

5 IMPLEMENTATION 5.5 Software implementation

front

left right

back

1 meter

Figure 9: Graphical user interface of the controller software.

The program is structured into different classes. A combination of object-oriented and

functional programming paradigms has been used during the software development pro-

cess. The following list describes the most important classes and their function.

• Main: This object is the main entry point of the application. It shows the graphical

user interface (as specified in the MainWindow class) which allows basic interaction

with the software. Simultaneously, a network connection to the robot is established

by an instance of the Controller class. If the robot cannot be reached, the robot

controller cannot be used and only offline functionality is available (such as training

a sensomotoric model from previously recorded sensor experiences).

35

5.5 Software implementation 5 IMPLEMENTATION

• Controller: This class is responsible for establishing a network connection to the

robot and controlling it. Different controlling routines can be used. For the ex-

periments here, we used two different implementations which can be found in the

PredictingControl and RandomControl classes. The controller makes sure that new

sensor readings are taken about every 300 milliseconds from the robot, and stores

the collected sensor, motor and reward data on disk. This data can later be used for

building a sensomotoric model from the robots experience, or evaluating the average

reward.

• Robot: The robot class encapsulates all capabilities of the robot and provides a

standard interface for them. For example, all units are converted to meters, and

the full forward speed is always 1.0, while full reverse speed is always −1.0. This

class makes it possible to use the real robot in the same way as the virtual robot

in simulation. Calibration data is provided via the object RobotParameters, which

contains default settings for both simulation and the real device.

• SensorModel: After collecting sensomotoric data via the Controller class and a

controlling mechanism such as RandomControl, the routines in the SensorModel ob-

ject can be used to train a sensomotoric model. The main routine loads sensomotoric

data from disk and filters it. The filter excludes duplicate sensor readings and se-

quences of readings which are too short or have time-delays outside the normal range

of 250 to 350 milliseconds. This data is then used to train a new neural network

using the Predictor class. The acquired neural network represents the sensomotoric

model and is then saved to disk, and can be later used by the PredictingControl

class to control the robot.

• Predictor: The predictor class represents a neural network that predicts future

36

5 IMPLEMENTATION 5.5 Software implementation

sensor states from current and past sensomotoric experience. For neural network

training, the well-known Java library Encog3 is used. Our implementation uses the

R-PROP training algorithm [Rie94], which needs no parameters except the number

of hidden layers and neurons.

• PredictingControl: This class loads a previously trained Predictor (the sensomo-

toric model) from disk and uses it to predict future sensor data in order to choose

optimal actions for the robot. It implements the action generation (see Section 4.3)

and action selection part from the hypothesis (see Section 4.4). It also expresses

the three reward formulas from Section 5.4.3 as Scala functions. The class takes

an exploration parameter, which determines the probability of random exploration

versus exploitation of the sensomotoric model.

• Evaluation: The Evaluation object contains routines for calculating the average

reward from previously recorded experiments, including statistics such as confidence

intervals. It also contains the routine used to evaluate the neural network prediction

performance after training with different amounts of sensomotoric data.

For more detailed information and documentation of all other classes and objects, please

refer to the full source code at http://github.com/papauschek/corvid-devrob.

3For further information about the Java library Encog see http://github.com/encog and

http://www.heatonresearch.com

37

http://github.com/papauschek/corvid-devrob
http://github.com/encog
http://www.heatonresearch.com

6 EXPERIMENTAL SETUP

6 Experimental setup

In order to test how well the system is able to perform the given tasks from Section 5.4.3,

the system first needed to gain some experience using its sensors and motors, in the form

of collecting data.

In all the following experiments, the robot was be put into a closed environment (see

Figure 10) with a diameter of about 3.5 meters.

Figure 10: The closed area in which the mobile robot was free to move around. The largest

diameter is about 3.5 meters long.

38

6 EXPERIMENTAL SETUP 6.1 Learning phases

6.1 Learning phases

In order to measure how the robot improves its behavior over time, the experiments

were split into many learning phases. After each learning phase, the neural network was

trained with the new sensor and motor data, in order to build a prediction model. In fact,

many neural networks with different parameters were trained (one hidden layer, varying

amounts of hidden neurons), and the best one was kept.

Learning phase 1

In the first learning phase, the agent was not actually given data to learn and was tested

with a randomly initialized neural network predictor. As can be expected from an un-

trained neural network, its predictions were not useful to the agent. But these experiments

served as a baseline, which were then compared to the trained predictors. The robot was

tested with all 3 goals with this random predictor, each for about 1000 time steps (around

5 minutes):

1. hold a distance of 1 meter to surrounding objects

2. drive to the center of the room

3. keep a forward distance of 80 centimeters

During testing, in all phases, the robot is always configured to pick the action with the

highest predicted reward.

Learning phase 2

To collect some initial training data for the next learning phase, the robot was first put

into an exploration phase, where it selected random actions (see Section 5.4.2 for an

39

6.1 Learning phases 6 EXPERIMENTAL SETUP

overview of all possible actions) for a very short period of time of 100 time steps, which

took about 30 seconds. Now, in learning phase two, the neural network was trained with

the collected data from this exploration phase.

Again, the robot was tested on all goals for about 5 minutes.

Learning phases 3 and 4

For the remaining learning phases 3 and 4, this procedure was repeated, with a few

differences. The time of collecting sensor data was increased, and instead of randomly

selecting actions all the time, the robot was selecting random actions only with 50%

chance, and spent the other time trying to maximize reward of a goal that was randomly

selected every 30 seconds. This was done so that the robot could already exploit some

of the knowledge it acquired in previous learning phases. It helps to make sure that the

robot collects sensor data that is somewhat relevant to the tasks it will have to perform.

An overview of the number of training data collected after each learning phase can be

seen in Table 1.

Learning phases overview

Learning phase Total time trained Total time steps trained

1 0 minutes 0

2 0.5 minutes 100

3 5 minutes 1000

4 25 minutes 5000

Table 1: Total time steps trained after each learning phase. Each time step corresponds to 0.3

seconds real-time.

As mentioned before, after each learning phase the robot was evaluated for each task

for about 5 minutes. It is expected that the average rewards will become higher as the

40

6 EXPERIMENTAL SETUP 6.2 Choice of environment

robot improves its predictive model after each learning phase. Furthermore, the predictive

model will cease to improve significantly after a certain point. We expect that it will not

make sense to continue learning after the fourth learning phase, in which the robot was

trained with about 25 minutes worth of data.

6.2 Choice of environment

In the preliminary experiments, there was the problem that the robot has to be allowed

to move in a random manner. This would normally cause the platform to hit obstacles

and walls, and be in danger of damaging itself. To avoid mechanical damage, we had

to implement a safety mechanism that automatically slows the robot down when the

distance sensors measure a distance of less than 0.4 meters. This is a general problem

of reinforcement learning, or learning by experience, in robotics. It will be further dis-

cussed in Chapter 8, as this topic will apply to a wider range of developmental robotics

experiments.

Furthermore, depending on the angle of reflection, some objects cannot be recognized

reliably by the ultrasonic sensors, as Figure 11 illustrates. It shows one of the ultrasonic

distance sensors of the robot on the left side, sending a sound in the direction of the

obstacle on the right. In the first case, a surface with about 45% degrees angle reflects

the sound away from the sensor, which cannot pick up the signal to measure the travel

distance. As the second case indicates, round objects are very well detectable by ultrasonic

sensors, as they reflect sound back in all directions.

In this sense, the chosen environment for the experiments was not optimal. An optimal

environment for ultrasonic sensors would consist only of round objects, such as the legs

of the green chair that was placed in the middle of the environment, or the yellow pillars

(see Figure 10).

41

7 EXPERIMENTAL RESULTS

Obstacle

Obstacle

Figure 11: Illustration showing the reflections of sound by different objects. The ultrasonic

sensors on the left side need to measure a reflection of the sound wave they are

sending out, in order to calculate a distance to an obstacle. Some obstacles, espe-

cially flat objects, do not reflect back the sound very well, making their detection

difficult.

The following section will give a detailed account of all the results obtained from the

experiments.

7 Experimental results

The experiments with the learning architecture have been performed in different learning

phases, as described in the previous section. After each learning phase, there was a 5-

minute evaluation of each task. This section will describe the results of each of these

5-minute evaluations, and focus on only one task at a time.

42

7 EXPERIMENTAL RESULTS 7.1 Experiment: Hold distance

In all of the following results, the displayed results are average reward values measured

after each learning phase. Table 1 shows how many samples the agent was able to use to

build its prediction model.

7.1 Experiment: Hold distance

In this experiment, the goal of the robot is to keep a constant minimum distance of 1

meter to its surroundings. The results from this experiments can be seen in Figure 12,

which shows the average reward after each learning phase.

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

1 2 3 4

A
ve

ra
ge

 r
e

w
ar

d

(w
it

h
 9

5
%

 c
o

n
fi

d
e

n
ce

 in
te

rv
al

)

Learning phase

Hold distance average reward

Figure 12: Results from “hold distance” experiment, showing the average rewards after each

learning phase. The error bars show the 95% confidence interval. The maximum

possible reward in this experiment is 0. Table 1 shows how much time the agent

was trained before each learning phase.

As can be seen from the equation that was used to calculate the reward for this goal (see

43

7.2 Experiment: Maximize distances 7 EXPERIMENTAL RESULTS

Equation 3), the result is necessarily a negative value. The best possible reward is 0,

which can only be achieved if the smallest sensor reading is exactly 1 meter. Due to the

noise of the sensors, this could never be achieved for a long duration. The best result was

an average reward of −0.25, which corresponds to an average distance of 25 centimeters

to the optimum.

In phase 1 of the experiment, the robot was moving around aimlessly, since the prediction

model was randomly initialized and not useful. The safety mechanism outlined in Section

6.2 prevented the robot from damaging itself. After phase 2, the robot already exhibited

some goal-directed behavior, but never managed to stay at an optimal solution. In phases

3 and 4, the robot would sometimes stop at an optimal position when the reward was very

high, and when predictions would indicate that any movement would result in a lower

reward. If the robot would find such an optimal place, an obstacle would be placed close

to the robot, forcing it to find another optimal solution. This was done in order to make

certain that it was not just by chance that a solution was found, and to ensure that the

different performances after each learning phase were reproducible.

7.2 Experiment: Maximize distances

In this experiment, the goal of the robot is to maximize the distance sensor readings,

which can be interpreted as trying to find the center of the room. The results from this

experiment can be seen in Figure 13, which shows the average reward after each learning

phase.

The equation that was used to calculate the reward is Equation 4), which always gives a

positive value that depends on the sum of the square root of all distance sensor readings.

Therefore, the maximum reward depends on the size of the environment. Since the

environment here is very small, the maximum reward is about 10.0. If the room would be

large enough to allow a maximum distance measurement of 6 meters for all 8 sensors, the

44

7 EXPERIMENTAL RESULTS 7.2 Experiment: Maximize distances

7,4

7,6

7,8

8

8,2

8,4

8,6

8,8

1 2 3 4

A
ve

ra
ge

 r
e

w
ar

d

(w
it

h
 9

5
%

 c
o

n
fi

d
e

n
ce

 in
te

rv
al

)

Learning phase

Maximize distance average
reward

Figure 13: Results from “maximize distances” experiment, showing the average rewards after

each learning phase. The error bars show the 95% confidence interval. The max-

imum possible reward in this experiment is about 10.0. Table 1 shows how much

time the agent was trained before each learning phase.

maximum possible reward would be about 20.0. In the beginning, the untrained robot

was able to achieve an average reward of about 8.1. After learning phase 4, the robot was

getting consistently higher rewards, which averaged to 8.65.

In phase 2, the robot did not move at all, except when an obstacle was placed very close to

it. After learning phase 3, the robot was spinning constantly. When placed close to a wall,

it would gain some distance to the wall and continue spinning, but getting relatively good

rewards. In phase 4, the robot was wandering around normally, keeping large distances

to the walls and sometimes crossing the middle of the room, but not staying there.

45

7.3 Experiment: Keep forward distance 7 EXPERIMENTAL RESULTS

7.3 Experiment: Keep forward distance

In this experiment, the goal of the robot is to keep a forward distance of 0.8 meters to

obstacles. The results from this experiment can be seen in Figure 14, which shows the

average reward after each learning phase.

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

1 2 3 4

A
ve

ra
ge

 r
e

w
ar

d

(w
it

h
 9

5
%

 c
o

n
fi

d
e

n
ce

 in
te

rv
al

)

Learning phase

Keep forward distance average
reward

Figure 14: Results from “keep forward distance” experiment, showing the average rewards

after each learning phase. The error bars show the 95% confidence interval. The

maximum possible reward in this experiment is 0. Table 1 shows how much time

the agent was trained before each learning phase.

The reward was calculated using Equation 5, which gives a negative reward for the distance

to the desired 0.8 meters of both forward ultrasonic sensors. Similar to the “hold distance”

experiment, the maximum reward is 0.

In phase 1, in which the robot had no useful prediction model, the result was a behavior

46

7 EXPERIMENTAL RESULTS 7.4 Qualitative results

in which it was switching between going forward and backward, never turning around.

In phase 2, the robot started to turn around often, sometimes being able to find a flat

wall and stay within the goal distance. After phase 3, the behavior was improved, and

following learning phase 4, the robot was often able to find a flat wall and stay within

the target distance. The highest average reward achieved was −0.5 after the last learning

phase. Since this value is the negated sum of two distance differences measured in meters,

the difference to the goal of 0.8 meters was 25 centimeters on average, on each sensor.

7.4 Qualitative results

Overall, the robot was already showing goal-oriented behavior after the second learning

phase. In two of the experiments, the “hold distance” and the “keep forward distance”

experiments, the robot was able to find locally optimal solutions and stay close to those so-

lutions after the third and fourth learning phase. In the “maximize distances” experiment

however, the robot still was in constant movement after the last learning phase. It did

not find a locally optimal solution and stop moving, in contrast to the other experiments.

In some cases, the robot was not able to keep a safe distance to obstacles. This can be

attributed to the properties of the ultrasonic distance sensors. The sensors only have a

40◦ receptive field, as illustrated in Figure 15. Because the way the sensors are placed on

the robot, there is a blind spot in which objects cannot be sensed.

7.5 Predictor performance testing results

After each learning phase during the experiments, neural networks were trained with the

collected training data, and the best neural network was chosen for evaluation purposes.

In this section we analyze in more detail what the neural networks were able to learn, and

how well they predicted sensor readings.

47

7.5 Predictor performance testing results 7 EXPERIMENTAL RESULTS

Blind
spot

Figure 15: Illustration showing the arrangement and 40◦ receptive field of Corvids ultra-sound

sensors, as well as several areas where no obstacles can be detected (“blind spot”).

The sensors have a maximum range of 6 meters.

For this purpose, the neural networks were evaluated after training them with a different

amount of data pairs. The testing set always consisted of 10000 data pairs (time steps),

which corresponds to about one hour of collecting sensor data. In order to get the best

results, the neural networks were trained with different parameters. The networks were

trained with 2, 4, 6, 8, 10, 12, 14 and 16 hidden neurons each, with a single hidden layer.

Each neural network configuration was trained three times to get reproducible results.

Only the best result is displayed in the following graphs.

7.5.1 Prediction of direction

Figure 16 shows how often the neural network was able to correctly predict whether the

distance sensor reading would increase or decrease. In other words, the percentage of

48

7 EXPERIMENTAL RESULTS 7.5 Predictor performance testing results

correctly predicting the sign of the distance change was measured, and averaged over all

8 distance sensors. It can be seen that the prediction performance of an untrained neural

network is about 50% as expected, and increases steadily after providing more and more

training data to the network. A maximum performance of about 64% was reached after

training and testing with a set of 10000 time steps.

40%

45%

50%

55%

60%

65%

70%

0 50 500 2500 10000

P
e

rc
e

n
ta

ge
 o

f
co

rr
e

ct
 p

re
d

ic
ti

o
n

s

Size of training set

Prediction of direction (average all sensors)

Correct predictions

Figure 16: Percentage of correct predictions of the direction of change of all distance sensors.

Only the best neural network results are shown, while varying the training set sizes,

and keeping the testing set size at a constant 10000 time steps.

As it was interesting to see whether there was any difference in prediction performance

between the forward/backward sensors and the sensors on the side of the robot, we also

measured the percentages for both sensor sets. Figure 17 shows the results for this com-

parison. It can be seen that it was easier for the network to predict the front and back

facing sensor readings, as compared to the distance readings on both sides of the robot.

The quality of the prediction of both sensor sets increases as more training data is pro-

vided, up to a maximum of 69% for the forward/backward facing sensors, and 59% for

49

7.5 Predictor performance testing results 7 EXPERIMENTAL RESULTS

the sensors on the side, as the training set is increased to 10000 time steps.

40%

45%

50%

55%

60%

65%

70%

0 50 500 2500 10000

P
e

rc
e

n
ta

ge
 o

f
co

rr
e

ct
 p

re
d

ic
ti

o
n

s

Size of training set

Prediction of direction (selected sensors)

Forward/back sensor predictions

Side sensor predictions

Figure 17: Percentage of correct predictions of the direction of change of forward/backward

and side distance sensors. Only the best neural network results are shown, while

varying the training set sizes, and keeping the testing set size at a constant 10000

time steps.

7.5.2 Prediction of distances

The performance of the neural networks was further analyzed by measuring the difference

between the predicted and the actual sensor readings. This was done by calculating the

root mean squared error (RMSE) of the differences (in centimeters) after testing each

neural network. Figure 18 shows the results for each training set.

In addition to the neural network prediction performance, the residuals of the naive

predictor are shown. The naive predictor simply always assumes that the sensor value

will not change, and is used as a baseline for comparison. In the beginning, the neural

network actually performs worse than the naive predictor, but this quickly changes after

50

7 EXPERIMENTAL RESULTS 7.5 Predictor performance testing results

3.00

3.50

4.00

4.50

5.00

5.50

0 50 500 2500 10000

R
M

SE
 o

f
p

re
d

ic
ti

o
n

 in
 c

e
n

ti
m

e
te

rs

(l
o

w
e

r
is

 b
e

tt
e

r)

Size of training set

Prediction residuals (RMSE, all sensors)

Neural network prediction

Naive prediction

Figure 18: Residuals (root mean squared error) of neural network predictions of all sensor

readings compared to the naive prediction. Only the best neural network results

are shown, while varying the training set sizes, and keeping the testing set size at

a constant 10000 time steps.

a training set size of 500, which corresponds to about 2.5 minutes of collecting sensor

readings, is reached.

Again, it was interesting to see if there is a difference between the prediction performance

for the forward/backward facing sensors and the sensors on the side of the robot. The

results can be seen in Figure 19. Here, the results of the neural networks should only be

compared to the respective naive prediction, as comparisons between them are meaningless

due to the different nature of the sensor data. The results show that the forward/backward

facing predictions are much better compared to the side sensor predictions, when using

the naive predictions as a baseline.

51

7.5 Predictor performance testing results 7 EXPERIMENTAL RESULTS

3.00

3.50

4.00

4.50

5.00

5.50

0 50 500 2500 10000

R
M

SE
 o

f
p

re
d

ic
ti

o
n

 in
 c

e
n

ti
m

e
te

rs

(l
o

w
e

r
is

 b
e

tt
e

r)

Size of training set

Prediction residuals (RMSE, selected sensors)

Neural network prediction (front/back)

Naive prediction (front/back)

Neural network prediction (sides)

Naive prediction (sides)

Figure 19: Residuals (root mean squared error) of neural network predictions of back-

ward/forward and side sensor readings compared to the naive prediction. Only

the best neural network results are shown, while varying the training set sizes, and

keeping the testing set size at a constant 10000 time steps.

52

8 DISCUSSION

8 Discussion

In Chapter 4 we introduced a system that would be able to learn automatically. After

presenting the experimental results in the previous section, we will now discuss what

follows from these outcomes.

One of the central ideas of developmental robotics is incremental learning. To test whether

the robot would improve its goal-driven behavior incrementally, the experimental setup

was chosen in a way that makes it possible to measure this. Experimental results were

presented in Chapter 7. In all of the three experiments, the robots goal-directed behavior

changed over the course of the 4 learning phases, and the received rewards increased after

each phase, or at least stayed the same within the confidence interval (see Figures 12, 13

and 14).

8.1 Goal-oriented behavior performance

In the “hold distance” experiment for example, the average reward steadily improved after

each learning phase. Even after the second learning phase, which used very little data

(just 100 time steps), performance improved much compared to the initialized predictor

of the first phase. This can be attributed to the way the neural network starts to build

a model of the training data. As shown in Section 7.5.1, even after a training set of 50,

the neural network is able to start predicting the distance change directions better than

a random predictor (see Figure 16 in that section).

The “maximize distance” experiment shows a slightly lower reward result after the second

learning phase, which can again be attributed to the generalization properties of the neural

network after being trained with just 50 data points (and tested with the other 50). The

generalization tests in Section 7.5.2 support this: Figure 18 shows that the neural network

has a worse performance after training with 50 data points, than before. The prediction of

the distance sensor values seems important for this experiment. This stands in contrast to

53

8.2 Neural network prediction performance 8 DISCUSSION

the “hold distance” experiment, where it was only important for the predictor to correctly

predict the sign of the distance change.

Similar to the first experiment, the results from the “keep forward distance” experiment

also show steady improvement after each learning phase. We can assume that this is the

case due to the similar nature of the experiments: in both cases, a correct prediction of

distance change direction was needed to keep the desired distance. The only difference

was the number of sensors involved.

From these experiments it can be seen that the initial belief was correct: after each

training phase, the system generally achieved better results than before. Also, the im-

provements became less and less significant after each learning phase, especially in the

first two experiments. In Figure 12 we can see that the improvement from the second

phase to the third phase was similar to the improvement to the last phase. However, we

have to keep in mind that in the last phase we used 5 times more training data than

before. Even more convincing are the results from the second experiment in Figure 13:

The improvements in the last learning phase are minimal compared to the ones before.

Indeed, we can conclude that the neural network predictor reached a point of diminish-

ing returns after training with more than 1000 time steps of sensor data. The following

analysis of the neural network predictors also supports this idea.

8.2 Neural network prediction performance

In order to get a sense of what the neural network was able to learn from the data, fur-

ther tests were conducted in Sections 7.5.1 and 7.5.2, each measuring different prediction

characteristics. As was expected and can be seen in Figure 16, the prediction of the sign

of the distance change improves as the system receives more training data. Maybe more

unexpected, after a training set of 50 time steps the prediction of the actual distance val-

ues was even worse than the naive prediction, (see Figure 18, and only started to improve

with bigger training sets.

54

8 DISCUSSION 8.2 Neural network prediction performance

We can assume that it is very easy for a neural network to learn some of the basic cor-

relations between motor control and sensor input. Furthermore, the correlations between

forward/back motor control and forward/backward sensors should be especially easy to

train. Even in a complex environment, the forward distance sensor readings would gen-

erally decrease as the forward motor speed is positive. In order to see whether this was

indeed picked up by the neural network, a comparison was made between the prediction

performance of the forward/backward facing sensors, and the sensors on the side, which

can be seen in Figures 17 and 19. Both graphs suggest that front/back facing prediction

was much easier to learn than prediction on the left and right side of the robot. For-

ward sensor prediction of the sign of the distance change was about 19% higher than the

prediction percentage of the side sensors (see Figure 17). In a similar fashion, Figure 19

shows that the forward/backward facing distance predictions are much better compared

to the side sensor predictions, when using the naive predictions as a baseline.

These differences in prediction quality between the differently facing ultrasonic sensors

also show some of the important limitations of this implementation: the robot does not

try to build a map of its environment, and has no real memory of its current location.

The focus here was to show that a basic motor/sensor model of the robot can be used, in

combination with a reinforcement learning architecture, to reach certain goal states.

During the implementation of this architecture, the agent was never explicitly told how to

reach the goal state. The robot was able to do that by building the sensomotoric model,

and by picking the best action according to the expected reward. This architecture has the

advantage, that it is general enough to be useful with different kind of sensors and robotic

platforms. Even though our implementation was able to better predict the forward facing

distance measurements than the distances on the side, this knowledge was not provided

to the system beforehand. In fact, no knowledge about the sensor configuration was

represented. If the sensors would be switched around, and the robot be allowed to train

everything again from the beginning, the results would be the same.

55

8.3 Principles of developmental robotics 8 DISCUSSION

8.3 Principles of developmental robotics

Section 2.2 explained five principles of developmental robotics: the principles of verifica-

tion, embodiment, subjectivity, grounding and the principle of incremental development.

Have these principles been implemented in this work?

1. Verification principle: Our agent cannot actually be sure that it reached a target

distance of 1 meter, as in the first experiment, because the ultrasonic sensors are

prone to certain inaccuracies. But given the limitations of its own sensors, the robot

built a model if its own sensors and motors, and validated it during each learning

phase. Therefore, the verification principle has been satisfied.

2. Principle of embodiment: Since the robot has a body, this principle has been fol-

lowed.

3. Principle of subjectivity: All of the data that has been used by the robot to build its

model, has been collected by the robot itself. Therefore, the principle of subjectivity

has been implemented. The time constraints of developmental robotics have also

been shown implicitly: there is no quick solution to learning. All learning involves

real environments and real sensor experience. The trained model can only be used

on robots with identical hardware configuration.

4. Principle of grounding: Grounding has been achieved through the coupling of the

robots actions and their observable outcomes. The repeatability of these actions

and outcomes is reflected in the trained sensomotoric model.

5. Principle of incremental development: There were some challenges in experimenting

with a robot that, in the beginning, was just motor babbling and exploring its

environment without any experience, and was in danger of damaging itself. But

after the average received reward was evaluated after different time spans of learning,

incremental improvements in the robots behavior could be observed.

56

9 CONCLUSION

9 Conclusion

In this work, we have shown how a robot can learn autonomously by exploring its envi-

ronment and collecting data about it. After learning from the observations, it was able

to build a model of the interactions between its actuators and the environment, which

were indicated by its sensors. After training, this experience-based model was verified by

using its predictions to reach certain sensor states. The learning architecture has been

evaluated using three different goals, and the robot successfully used its sensomotoric

model to reach them.

During the evaluation, we were able to show a progress in learning, as the robot was able

to collect more and more data about its motors and its environment. In the beginning, the

robot failed to meet its goals. After several learning phases the robot was able to reach

the goal states in the “hold distance”, “maximize distance” and “keep forward distance”

experiments with consistently good results. In the last two learning stages, it could be

seen that the performance did not improve significantly after increasing the amount of

sensor data with which the prediction model was trained.

In the earlier stages of training, the robot needed to be allowed to experiment with its

actuators, which can result in mechanical damage. This may be one of the reasons why

reinforcement learning is difficult to implement in robotics, as many robotic systems are

not able to detect such failures or would need expensive repairs after being damaged.

9.1 Future of developmental robotics

The principle of verification is at the heart of developmental robotics, and has far-reaching

implications. It follows from it, that the key to understanding is the ability to question.

Robots that use a lot of preprogrammed knowledge cannot question whether a reading

from a sensor has a certain meaning, or not. Many assumptions may be built in from

the beginning, and cannot be falsified. If assumptions are wrong in some cases, the robot

57

9.2 Outlook 9 CONCLUSION

cannot learn from that failure. Experimentation and allowing for failure is crucial for

systems which need to be able to verify their own actions.

It will also allow building robots that are more robust to changes in their environment,

or even programming robots with different sensor and motor configurations. We have

shown this by implementing a system which did not have any prior knowledge about the

direction and configuration of its sensors and motors.

However there are also a lot of drawbacks when developmental robotic solutions are di-

rectly compared to classical top-down robotics. Developmental robotics may only in a

few cases be already practical, in the sense that solutions perform better than their non-

developmental counterparts. If the principle of subjectivity is taken seriously, the robots

will have to spend a lot more time with learning about their environment, compared to

their non-developmental counterparts.

But developmental robotics it is a very young and promising field, and progress in robotics

will depend on research in many related fields, including cognitive science. Developmen-

tal robotics is in a position to combine some of the promising ideas of fields such as

developmental psychology, in order to find a way to solve the problem of scaling out in

robotics.

9.2 Outlook

In contrast to previous developmental robotics research on the robot platform Corvid,

which evaluated an intrinsic motivation system, we showed how an autonomously learned

model can be used to induce goal-oriented behavior. The next challenge would be to

implement a system that combines the learning of affordances in an architecture that

allows to define goals for the robot. This would also make it easier to evaluate these

acquired affordances. But related work with affordance learning has shown that there are

58

9 CONCLUSION 9.2 Outlook

still new approaches needed for this to work on a mobile robot, because of the potential

vastness of the exploration space.

Learning autonomously becomes more and more important in robotics, and it is our belief

that research from developmental psychology will play an important role here. It is still

very challenging to develop robots that learn about their environment without the direct

aid and explicit programming by humans. We believe it is possible to leverage some of

the knowledge of both fields, robotics and developmental psychology, and to push the

boundaries of what robots are able to learn autonomously in the near future.

59

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 The Corvid mobile robot. 19

2 The arrangement of the 8 ultra-sound sensors of Corvid 22

3 A simple forward model which predicts future sensor data from current

sensomotoric values . 23

4 A forward model which predicts future sensor data and takes into account

previous sensomotoric values . 23

5 Tree of possible future states showing predicted sensor states for five dif-

ferent actions . 24

6 Final architecture showing the interaction between the agent and its envi-

ronment . 25

7 Experimental setup with the Corvid mobile robot. 29

8 The simulated version of the robot . 30

9 Graphical user interface of the controller software. 35

10 The closed area in which the mobile robot was free to move around 38

11 Illustration showing the reflections of sound by different objects 42

12 Results from “hold distance” experiment 43

13 Results from “maximize distances” experiment 45

14 Results from “keep forward distance” experiment 46

15 Illustration showing the arrangement of Corvids ultra-sound sensors and

blind spots . 48

16 Percentage of correct predictions of the direction of change of all distance

sensors . 49

60

LIST OF FIGURES LIST OF FIGURES

17 Percentage of correct predictions of the direction of change of forward/backward

and side distance sensors . 50

18 Residuals of neural network predictions of all sensor readings compared to

the naive prediction . 51

19 Residuals of neural network predictions of backward/forward and side sen-

sor readings compared to the naive prediction 52

61

REFERENCES REFERENCES

References

[BO09] Adrien Baranès and Pierre-Yves Oudeyer. R-IAC: Robust Intrinsically Moti-

vated Exploration and Active Learning. IEEE Transactions on Autonomous

Mental Development, 1(3):155–169, 2009.

[GVH03] B. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage Project: Tools

for Multi-Robot and Distributed Sensor Systems. In Proceedings of the 11th

International Conference on Advanced Robotics (ICAR’03), pages 317–323,

2003.

[KLM96] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Rein-

forcement learning: A survey. Journal of Artificial Intelligence Research,

4:237–285, 1996.

[LCJ10] Xiuzhi Li, Wei Cui, and Songmin Jia. Range scan matching and Particle Filter

based mobile robot SLAM. In IEEE International Conference on Robotics and

Biomimetics (ROBIO) 2010, pages 779–784, 2010.

[Län10] Christoph Längauer. Lernen von Affordance für die Roboter Navigation. PhD

thesis, Fachhochschule Technikum Wien, Austria, 2010.

[Moz95] Michael C. Mozer. A focused backpropagation algorithm for temporal pattern

recognition, pages 137–169. L. Erlbaum Associates Inc., 1995.

[OK04] P-Y. Oudeyer and F. Kaplan. Intelligent Adaptive Curiosity: a source of

Self-Development. In Proceedings of the Fourth International Workshop on

Epigenetic Robotics, 2004.

[OKH07] P-Y. Oudeyer, F. Kaplan, and V. Hafner. Intrinsic Motivation Systems for

Autonomous Mental Development. IEEE Transactions on Evolutionary Com-

putation, 11(2):265–286, 2007.

62

REFERENCES REFERENCES

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-

sentations by error propagation, chapter 8, pages 318–362. MIT Press, Cam-

bridge, MA, USA, 1986.

[Rie94] Martin Riedmiller. Advanced supervised learning in multi-layer perceptrons –

from backpropagation to adaptive learning algorithms. Computer Standards

& Interfaces, 16(3):265 – 278, 1994.

[SK11] Dietmar Schreiner and Jens Knoop. iRIS - Towards a Robotic Immune Sys-

tem. In In Proceedings of the Austrian Robotics Workshop 2011, UMIT -

Lecture Notes in Biomedical Computer Science and Mechatronics, pages 22–

35, 2011.

[SMS09] Ryo Saegusa, Giorgio Metta, and Giulio Sandini. Active learning for multiple

sensorimotor coordination based on state confidence. In Proceedings of the

2009 IEEE/RSJ international conference on Intelligent robots and systems,

IROS’09, pages 2598–2603. IEEE Press, 2009.

[Sto09] A. Stoytchev. Some basic principles of developmental robotics. Autonomous

Mental Development, IEEE Transactions on, 1(2):122–130, 2009.

[SWGG07] Jürgen Schmidhuber, Daan Wierstra, Matteo Gagliolo, and Faustino Gomez.

Training Recurrent Networks by Evolino. Neural Computation, 19(3):757–779,

2007.

[ZB01] J. Zlatev and C. Balkenius. Introduction: Why epigenetic robotics? In

Proceedings of the First International Workshop on Epigenetic Robotics, 2001.

[ZBKL10] Michael Zillich, Michael Baumann, Wolfgang Knefel, and Christoph Längauer.

Corvid: A Versatile Platform for Exploring Mobile Manipulation. In Jackie

Chappell, Susannah Thorpe, Nick Hawes, and Aaron Sloman, editors, Sym-

posium on AI-Inspired Biology (AIIB), 2010.

63

REFERENCES REFERENCES

[ZPMV11] Michael Zillich, Johann Prankl, Thomas Mörwald, and Markus Vincze.

Knowing your limits - self-evaluation and prediction in object recognition.

In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 813–820, 2011.

64

CURRICULUM VITAE

Curriculum Vitae

Personal Information

First name / Surname Christian Papauschek

Address Zeillergasse 13/28, 1170 Vienna, Austria

E-mail christian@papauschek.at

Date of birth January 2nd, 1985

Education

2009 - 2012 Middle European interdisciplinary master programme in Cog-

nitive Science at University of Vienna. ERASMUS mobility

semester at Comenius University of Bratislava.

2003 - 2009 Bachelor of Science (B.Sc.) in Software & Information Engi-

neering at University of Technology Vienna.

1994 - 2003 Matura (General University Maturity) at Kollegium Kalksburg,

Realgymnasium, Vienna.

Work experience

October 2010 – now Software developer at runIT

(IT infrastructure, business intelligence software development)

Gutheil-Schoder-Gasse 8-12, 1100 Vienna

Sept. 2007 – now Self-employed IT service provider and freelance software

developer

65

CURRICULUM VITAE

Other projects and activities

December 2010 Speaker at the IEEE ROBIO 2010 conference in Beijing, China

(see publication below)

August 2009 Attended European Forum Alpbach 2009, “Trust” (received a

return scholarship)

August 2008 Attended European Forum Alpbach 2008, “Perception and de-

cision” (received a return scholarship)

August 2007 Attended European Forum Alpbach 2007, “Emergence” (re-

ceived a scholarship from Europäisches Forum Alpbach

gemeinnützige Privatstiftung, Vienna)

Publications

December 2010 Christian Papauschek, Michael Zillich. Biologically inspired

navigation on a mobile robot. In Proceedings of the IEEE In-

ternational Conference on Robotics and Biomimetics (ROBIO),

pages 519–524, 2010.

66

	Titlepage
	Table of Contents
	Introduction
	Assumptions of learning systems
	Goals
	Overview

	Background information
	Learning in robotics
	Robotics and developmental psychology
	Reinforcement learning

	Related work
	Previous work in developmental robotics
	Active learning
	Other related work
	Mobile robot platform
	Developmental robotics and Corvid

	Hypothesis
	Exploration
	Prediction of sensor readings
	Generation of possible outcomes
	Reinforcement learning
	Evaluation

	Implementation
	Hardware description
	Robot interface
	Simulation
	Learning architecture implementation
	Neural network predictor
	Action generation
	Reward signal
	Action selection

	Software implementation

	Experimental setup
	Learning phases
	Choice of environment

	Experimental results
	Experiment: Hold distance
	Experiment: Maximize distances
	Experiment: Keep forward distance
	Qualitative results
	Predictor performance testing results
	Prediction of direction
	Prediction of distances

	Discussion
	Goal-oriented behavior performance
	Neural network prediction performance
	Principles of developmental robotics

	Conclusion
	Future of developmental robotics
	Outlook

	References

