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Introduction

1.1 Diabetes mellitus

Insulin is a hormone involved in the maintenance of normal blood glucose
levels. When blood glucose levels are elevated, for example due to the intake
of a meal, insulin is secreted by the b-cells of the pancreas. Insulin then leads
to the uptake of glucose into insulin sensitive tissue (liver, muscle and fat),
thus reducing the blood glucose levels.

Diabetes mellitus is a chronic disease which is characterized by the lack of,
or resistance to, insulin action and consequently elevated blood glucose levels.
Health surveys carried out by Statistik Austria in 2006/2007 showed that
390 000 people in Austria are suffering from it, with 91% of them receiving
treatment or medication.1 The number of cases increases with age. From
people older than 75 years, 23% of females and 19% of males had encountered
diabetes, while the average is 6%. Worldwide, the number of cases in the
year 2000 was estimated to be approximately 171 millions, and due to the
increasing aging and urbanization of the population this number is expected
to double until 2030.2

Diabetes mellitus is categorized in different types, with type 1 and 2 being
the most prominent ones. Type 1 diabetes mellitus is characterized by an ab-
solute deficiency of insulin. Here, the b-cells of the pancreas are destroyed by
the immune system. This stops the production of insulin, which then needs

1



2 1. INTRODUCTION

to be provided from external sources. In contrast, type 2 diabetes mellitus
(also non-insulin-dependent diabetes mellitus or mature onset diabetes) is
characterized by a relative insulin deficiency. This relative deficiency can be
caused by a decrease of insulin production, but more importantly by a resis-
tance of the target cells to insulin. The resulting hyperglycemia increases the
risk of microvascular damage such as retinopathy, nephropathy and neuropa-
thy, as well as of macrovascular complications like ischaemic heart disease
and stroke.

The reasons for diabetes are diverse and can include genetic as well as
environmental causes. Major risk factors for type 2 diabetes mellitus are
obesity and the lack of physical exercise, but also genetic factors have been
shown to play a role in several subtypes of the disease.3 A recent study
showed that a high fat diet fed to male rats can lead to impaired insulin
secretion and glucose tolerance in their female offspring, which could also
show a role of epigenetics in type 2 diabetes.4,5 But the exact mechanism
in which insulin resistance evolves are not clear. Two main theories are
currently available.6 The first is that excess lipids can not be stored in fat
tissue anymore and thus accumulate in muscle and liver cells instead, causing
toxic effects in these cells. The other theory states that adipocytes release
inflammatory cytokines, which then cause insulin resistance in other tissues.

Although lifestyle modifications such as a low-fat diet and increased phys-
ical exercise can already lead to a improved insulin sensitivity, additional
medication is necessary in most of the cases. The classical treatments of
type 2 diabetes mellitus include 4 main classes. The sulfonylureas increase
the patient’s insulin secretion from the pancreas by increasing the b-cell’s
glucose sensitivity. Representatives of this class are glibenclamide, gliclazide,
glipizide and glimepiride. The biguanides (for example metformin and phen-
formin) reduce the hepatic glucose production. Thiazolidinediones (glita-
zones) are thought to be agonists of peroxisome proliferator-activated recep-
tor-g (PPARg), thus enhancing the action of insulin. Examples for this class
of compounds are pioglitazone and rosiglitazone. Rosiglitazone was recom-
mended to be taken off the market by the European Medicines Agency in
2010 due to an increased risk of cardiovascular complications.7,8 Acarbose is
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an inhibitor of a-glucosidase, which diminishes the blood glucose levels after
meals by inhibiting the uptake of glucose in the gut. Structures of selected
anti-diabetic drugs are shown in figure 1.1.

(a) Glibenclamide (sulfonylurea) (b) Metformin (biguanide)

(c) Pioglitazone (thiazolidinedione) (d) Acarbose

Figure 1.1: Examples for anti-diabetic compounds

Insulin and its analogues, which are generally used as treatment in type
1 diabetes, can also be used in some cases of type 2 diabetes.

Treatments with anti-diabetic compounds have sometimes severe side-
effects, including weight gain, hypoglycemia, gastrointestinal problems, lactic
acidosis, edema and anemia. Since type 2 diabetes mellitus is often associated
with obesity, new approaches with a loss of weight, or at least no additional
weight gain would be beneficial. Several newer targets are currently under
investigation, leading already to some new drugs approved for the market.
Among these are amylin analogs, peroxisome proliferator-activated receptor-
a/g (PPAR-a/g) agonists, sodium-dependent glucose transporter inhibitors
and fructose bisphosphatase inhibitors.9,10 One target exemplified here in
more detail are incretin mimetics and enhancers. Incretins are hormones in-
creasing the insulin secretion, thus showing glucose lowering activity. They



4 1. INTRODUCTION

are said to aid the regeneration of insulin-secreting cells in the pancreas
and to show heart protecting properties. Examples for incretin mimetics
are exenatide, liraglutide, taspoglutide and lixisenatide, which are analogues
of Glucagon-Like Peptide-1 (GLP-1). Endogenous incretins are rapidly de-
graded by dipeptidyl peptidase 4 (DPP-4). The gliptins (e.g. vildagliptin,
sitagliptin, saxagliptin) are inhibitors of DPP-4 and thereby enhance the
activity of the incretins.

1.2 The insulin receptor

The physiologic responses to the presence of insulin in the blood stream are
mainly initiated by the binding of insulin to its receptor, which then leads to
the activation of several signalling cascades. In the following sections, a brief
overview on the structure and activation mechanism of the insulin receptor,
the main downstream signalling pathways as well as possible reasons for
insulin resistance is given.

1.2.1 Structure of the insulin receptor

The insulin receptor (IR, INSR) is a receptor protein-tyrosine kinase (EC
2.7.10.1). These enzymes pass on signals from their extracellularly bound
ligands to the inside of the cell by transferring phosphate groups from donor
molecules such as ATP to tyrosine residues of their substrates. Receptors
belonging to the same subfamily as the insulin receptor are the insulin-like
growth factor 1 receptor (IGF1R) and the insulin receptor-related protein
(INSRR).11 The human insulin receptor precursor (UniProt-ID: P06213) con-
sists of a short signal peptide and two subunits of the insulin receptor, the
a- and the b-chain. Numbering of the amino acids is varying, depending on
whether the signal peptide is included or excluded. In the present work, the
numbering without the signal peptide is used. To get the UniProt number-
ing, 27 has to be added to the amino acid number. Two different isoforms are
produced by alternative splicing: the isoform Long (HIR-B) and the isoform
Short (HIR-A), which misses 12 amino acids in the a-chain.
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During the maturation process, the insulin receptor precursor is N-glyco-
sylated and intra- and intermolecular disulfide bridges are formed in the
endoplasmic reticulum. The a- and b-chains are subsequently cleaved at
the trans-Golgi network and further glycosylation occurs before the mature
receptor is finally transported to the plasma membrane. The functional form
of the insulin receptor consists of two disulfide-linked a,b-dimers. The a-
subunits are extracellular and contain the insulin binding site. The two
b-monomers each have a single transmembrane helix. The C-terminal region
is intracellular and contains the kinase domain which is responsible for the
activity of the insulin receptor (figure 1.2)

Figure 1.2: Schematic representation of the insulin receptor.

X-ray structures of the extracellular domain,12 as well as the intracellular
kinase domain13–15 have been resolved. A structure of the whole insulin
receptor was determined using electron microscopy.16

1.2.2 Activation of the insulin receptor

The first step of the activation of a receptor tyrosine kinase is in general
the binding of its ligand to the extracellular domain of the receptor. In
many cases this is thought to stabilize the dimerized state of two recep-
tor monomers. Dimerization is necessary to bring the two kinase domains
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close to each other, so that trans-phosphorylation of the subunits can occur.
But dimerization alone is not the only prerequisite for the activation of the
receptor.17 Binding of the ligand leads to a conformational change, which
subsequently leads to the activation of the intracellular kinase domain. For
the epidermal growth factor receptor (EGFR) it was shown, that it can exist
as an inactive dimer on the cell surface without its ligand.18 Binding of the
ligand might lead to a movement in the transmembrane and juxtamembrane
region, bringing the two kinase domains in the right distance for autophos-
phorylation. Another important structural feature in many kinases is the
so called activation-loop. Structural rearrangement of this loop which is of-
ten associated with the phosphorylation of an amino acid residue can be
necessary for activation of the intrinsic kinase.

In the case of the insulin receptor, the dimerization is not necessary as
the subunits are already linked by disulfide bonds. Binding of insulin to
the extracellular part of its receptor induces a conformational change fol-
lowed by trans-phosphorylation of Tyr1158, Tyr1162 and Tyr1163 within the
activation-loop. In the inactive state, the activation-loop sterically blocks
the access for the protein substrate and the ATP binding pocket. Phos-
phorylation of the tyrosine residues leads to a conformational change of the
activation-loop (see figure 1.3), which exposes the binding site and activates
the tyrosine kinase domain.13,14

Recent crystallographic studies identified a possible binding pocket for
an insulin receptor activator binding to the intracellular domain.19 They
showed the possible role of an additional tyrosine residue (Tyr984) for the
activation of the insulin receptor. This tyrosine, which is conserved in all
insulin receptor proteins, seems to be important for the autoinhibition of
the kinase domain. Tyr984 is positioned in the juxtamembrane region next
to the kinase domain. Figure 1.4 shows the N-terminal lobe of the insulin
receptor kinase domain in the active and inactive conformation. In a crystal
structure of the inactive state, Tyr984 is located in a hydrophobic pocket
of the tyrosine kinase domain, whereas in the active state it is not. The
active and inactive structures of the insulin receptor also show a movement
of the aC helix in the N-terminal lobe of the kinase domain. Stabilization
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Figure 1.3: Comparison of the active (1IR3, green) and inactive (1IRK, red)
conformation of the insulin receptor kinase domain. An ATP analogue and
a substrate peptide bound to the activated state are depicted as space filling
molecule and a black ribbon, respectively. Phosphorylated tyrosine residues
on the activation loop are depicted in stick representation.
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Figure 1.4: Comparison of the active (1IR3, green) and inactive (1P14, red)
conformation of the N-terminal lobe of the insulin receptor kinase domain.
Tyr984 of the inactive conformation forms a hydrogen bond to Glu990. Ad-
ditionally, a movement of the aC helix can bee seen.

of the helix in its active position might be important for the positioning of
amino acids in the catalytic site. It was proposed that the binding of small
molecules to the hydrophobic pocket between the aC helix and the b-sheets
can displace Tyr984, leading to insulin receptor activation.19

1.2.3 Insulin receptor signalling

Following the activation of the insulin receptor, several substrate proteins
can bind to and are phosphorylated by the receptor, leading to different
signalling pathways. Insulin receptor signalling has been the topic of sev-
eral reviews.20–27 The two main downstream signalling cascades are the
phosphatidylinositol 3-kinase (PI3K)–Akt pathway and the Ras–MAP ki-
nase pathway. A simplified overview of the insulin signalling can be seen in
figure 1.5.

Different to other receptor tyrosine kinases such as the EGF receptor
and the PDGF receptor, the insulin receptor does not provide a docking
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Figure 1.5: Overview of the main steps of the insulin signalling pathway.
Adapted from reference 27.

site for signal transduction proteins itself, but uses additional substrate pro-
teins instead. The most prominent of these direct substrates are the in-
sulin receptor substrate proteins (IRS proteins),26,28 with IRS1 and IRS2
being the most widely distributed ones. The IRS proteins have a pleckstrin-
homology (PH) domain which mediates binding to membrane phospholipids
and/or a phosphotyrosine-binding (PTB) domain with which they can bind
to the phosphorylated insulin receptor. Additionally, they contain several
tyrosine residues which can be phosphorylated by the insulin receptor, and
are subsequently used as docking sites for proteins showing a Src-homology-
2 (SH2) domain, such as the regulatory subunit of phosphatidylinositol 3-
kinase (PI3K), growth-factor-receptor-bound protein-2 (Grb2) or SH2-do-
main containing tyrosine phosphatase-2 (SHP2). IRS proteins can be nega-
tively regulated by serine phosphorylation.

Activation of PI3K signalling leads to many different insulin regulated
metabolic effects, such as glucose uptake in muscle and adipose tissues,
protein synthesis and glycogen synthesis. The catalytic subunit of PI3K
generates phosphatidylinositol-3,4,5-triphosphate (PIP3) from the 4,5-bis-
phosphate at the plasma membrane. Activation of 3-phosphoinositide-de-
pendent protein kinase-1 (PDK1) and other kinases leads to the activation
of Akt (PKB), which subsequently phosphorylates several targets. One ex-
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ample is the glycogen synthase kinase 3 (GSK3), which is inhibiting glycogen
synthase. Akt-mediated phosphorylation inhibits GSK3 and thereby leads
to the storage of glucose as glycogen.

The Ras–MAPK pathway leads to gene expression, cell growth, survival
and differentiation. Ras is a small GTPase, which is activated following the
association of the guanyl nucleotide-exchange factor son-of-sevenless (SOS)
to Grb2, which is in turn bound to a insulin receptor substrate protein such as
Shc (Src-homology-2-containing protein) or Gab1 (Grb2-associated binder-
1). This initiates a cascade, where in turn Ras, Raf, mitogen-activated pro-
tein (MAP) kinase kinase (MAPKK) and MAP kinase (MAPK, ERK) are
sequentially activated.26,29

1.2.4 Insulin Resistance

When the biologic response to insulin is smaller than normal, one speaks
of insulin resistance. Insulin resistance can have many causes, which can
be either intrinsic to the target cells, or can be external factors affecting
the sensitivity of the target tissue.30 Intrinsic defects can be mutations of
the insulin receptor which are associated with syndromes of severe insulin
resistance, such as type A syndrome, Rabson-Mendenhall syndrome and lep-
rechaunism. Several external factors can influence the sensitivity of the target
tissue to insulin, for example free fatty acids or insulin as well as physiologic
states such as fasting, pregnancy or obesity. In the case of external factors,
the insulin sensitivity is usually restored after removal of these factors. High
levels of insulin (hyperinsulinemia) for example, down-regulate the receptor,
thus rendering the cells less sensitive to it.30 Obesity is one of the major risk
factors for insulin resistance and type 2 diabetes, and weight loss was shown
to improve insulin sensitivity.31

1.3 Small molecule modulators of the IR

As the insulin receptor plays a key role in the signalling of insulin, compounds
activating the insulin receptor might be a possible treatment for both type
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1 and 2 diabetes mellitus. A small molecule could be an orally available
alternative to insulin, and a different activation mode might be able to acti-
vate insulin receptors insensitive to insulin. Currently known activators and
modifiers of the insulin receptor as well as other kinases will be presented in
the following sections.

1.3.1 Demethylasterriquinone B-1

In 1999, Zhang et al.32 discovered a small molecule (1) from a fungal extract
(L-783,281 or demethylasterriquinone B-1, DMAQ-B1, Merck L7, see figure
1.6) in a cell based screening with Chinese hamster ovary cells overexpressing
the human insulin receptor (CHO.IR). After treatment of the cells, the insulin
receptors were immunopurified and the activity of the tyrosine kinase domain
was determined. In this assay, DMAQ-B1 activated the tyrosine kinase of the
insulin receptor with an EC50 value of 3–6 mM. Additionally, it was able to
enhance the action of insulin when administered in lower concentrations (0.6–
2 mM). Unlike insulin, DMAQ-B1 was shown not to bind to the extracellular
part of the receptor, but to the intracellular domain.32 Two research groups
state, based on unpublished results, that the activation of the insulin receptor
can not be attributed to inhibition of phosphatases,32 or more specifically,
PTP1B,33 the major negative regulator of IR phosphorylation.

Figure 1.6: Demethylasterriquinone B-1 (1)

Compound 1 is not only able to activate the insulin receptor, but also
leads to downstream effects of the insulin signalling pathway. Treatment



12 1. INTRODUCTION

with the compound led to increased PI3K activity and Akt phosphorylation
in CHO.IR cells.32 Glucose uptake was increased in rat primary adipocytes,32

vascular smooth muscle cells,34 3T3L1 adipocytes35 and mouse soleus mus-
cle.32 It showed glucose lowering effects in different mouse models of type
2 diabetes32 and enhanced insulin induced IR autophosphorylation in cell
models of insulin resistance, where the binding of insulin does not result in
the necessary conformational change.36

Still, several differences of the action of insulin and 1 were reported.
While insulin induces proliferation of vascular smooth muscle cells (VSMCs),
DMAQ-B1 does not. This could be beneficial if used as an anti-diabetic
agent as it may decrease the development of atherosclerosis.34 In hIRcB
fibroblasts, compound 1 showed a higher phosphorylation of Akt than of
IR, PI3K, and ERK1 and 2, while insulin activated all of the kinases to a
similar extent.35 Similarities and differences of the action of insulin and 1
on gene expression in HepG2 hepatoma cells were also investigated using
microarrays.35 The expression of several genes was different, which could
in some cases be explained by cytotoxic effects of DMAQ-B1. The higher
activation of Akt by 1 could be explained by a down-regulation of a subunit of
the phosphatase PP2A, which is dephosphorylating Akt and is up-regulated
by insulin.35 To identify additional targets of 1, phage display cloning was
performed with a biotinylated derivative. This led to the identification of
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a target.37

In the following years, more than 300 derivatives of DMAQ-B1 were syn-
thesized and tested for their ability to activate the insulin receptor. The
activities of about 100 of these structures (compounds 2–102) have been
published.33,35,38–46 A list of these molecules can be found in table A.1 on
page 123.

It was shown that changes in the prenyl groups had less effect than
changes in the dihydroquinone core, which resulted in a loss of activity.40

With the aim to find regions of the molecule which were not crucial for ac-
tivity and to enable the formation of a biotin conjugate as affinity reagent,
methyl scanning was performed. Here, methyl groups were introduced to dif-
ferent positions of the molecule, showing that the 7-substituted indole, except
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for positions 1 and 2, and the OH groups did not tolerate the introduction
of a methyl group without loss of activity.33 Additionally, compounds with
a simplified structure were found which still activate the insulin receptor.
Compound 15 (2h in reference 38) is more active than DMAQ-B1, and has
additionally a higher selectivity for the insulin receptor compared to homol-
ogous receptors.38 Also, one of the indole rings can be omitted, as was done
for example for compound 65 (ZL-196 in reference 43).

(a) 15 (b) 65

Figure 1.7: Examples for active derivatives of DMAQ-B1 with a simplified
structure.

Since all of the active derivatives at this point contained the quinone
scaffold, which might be problematic when used chronically, effort has been
made to find replacements for this structural feature (see figure 1.8). This led
to the identification of an active kojic acid derivative of 65, while a tropolone
derivative was inactive.45 Recently, a hydroxyfuroic acid derivative of 1 has
been developed, which shows insulin receptor activation, is less cytotoxic
than 1 and shows inhibition of epidermal growth factor.46 These studies
show that the replacement of the quinone scaffold is in principle possible.

1.3.2 Other insulin receptor modulators

Several compounds able to mimic or increase the action of insulin, or to
modify the activity of the insulin receptor have been identified in the last
years. Glucose was shown to have the ability to bind to regions of the in-
sulin receptor which resemble insulin.47 It was shown to lower the binding of
insulin to the receptor, although this effect might be due to glucose binding
to insulin directly. The insulin receptor changes its conformation depending
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(a) 99: tropolone derivative
(inactive )

(b) 100: kojic acid derivative
(active)

(c) 102: hydroxyfuroic acid derivative (active)

Figure 1.8: Attempts to replace the quinone substructure.

on the glucose concentration, as demonstrated using UV spectrophotometry.
Still, this effect might also be due to interaction of glucose with GLUT 1,
which then allosterically modifies the insulin receptor.47 Pentagalloylglucose
(PGG, fig. 1.9a), which is an ester of glucose with five galloyl groups, was
shown to probably bind to the a-subunit of the insulin receptor to a site dif-
ferent to the insulin binding site. It is a partial agonist for glucose transport
activity, but displaces insulin from its binding site.48

With the aim to identify molecules binding to the insulin binding site,
thymolphthalein (fig. 1.9b) was identified as a weak activator of the insulin
receptor. Derivatives, such as erythrosine and iodophenol blue, were found
to compete stronger with insulin, but had no effect on or inhibited autophos-
phorylation of the receptor.49

The role of the anti-diabetic drug metformin (fig. 1.1b) in the activation
of the insulin receptor is controversial. Metformin was reported to activate
the intracellular domain of the insulin receptor b-subunit to 20–30% at ther-
apeutic concentrations.50

Ursolic acid (fig. 1.9c) was found to activate the insulin receptor and to
increase the action of insulin.51 It has been suggested that the compound
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(a) α-Pentagalloylglucose (PGG) (b) Thymolphthalein

(c) Ursolic acid (d) α-Lipoic acid

(e) TLK16998

Figure 1.9: Examples for insulin receptor modulating compounds
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acts by binding to the intracellular domain of the IR, but the mode of action
has not been shown yet to be identical to DMAQ-B1. Besides, earlier studies
showed that ursolic acid is an inhibitor of PTP1B.52

a-Lipoic acid (fig. 1.9d) is another molecule reported to directly activate
the insulin receptor. It was shown to have anti-apoptotic effects in hepa-
tocytes, probably due to activation of the PI3K–Akt pathway. Molecular
dynamics studies of the insulin receptor kinase domain with a-lipoic acid,
placed in a binding pocket different to the one proposed in reference 19,
showed how the molecule could stabilize the activation loop in its active
conformation.53

The insulin sensitizer TLK16998 (fig. 1.9e) and derivatives were shown
to directly interact with the intracellular domain of the insulin receptor, but
different to DMAQ-B1 they do not increase the phosphorylation of the in-
sulin receptor in the absence of insulin.54,55 Further studies showed more
differences in the action of those two compound classes on different cellu-
lar models of insulin resistance.36 Additionally, TLK16998 was shown to
increase the IR autophosphorylation induced by compound 1.36 Recently,
simpler aminonaphthalene-sulfonic acid derivatives with insulin sensitizing
effects have been described.56 Another derivative was described to activate
the insulin receptor without insulin.57

Vanadate is also known to mimic the biological effects of insulin.58 But
the mode of action of vanadates is thought to be either inhibition of protein
tyrosine phosphatases or by another mechanism not involving the phospho-
rylation of the insulin receptor.59,60

The activity of the insulin receptor can also be enhanced by alterations
of the receptor itself. Besides the well known activation by phosphorylation
of the tyrosine residues of the activation loop, also the oxidation of cystein
residues has been reported to play a role. This modification of the insulin
receptor by redox processes might be a necessary intermediate state between
the inactive and the phosphorylated state.61 Additionally, trypsination of the
insulin receptor was observed to lead to the activation of the receptor.62,63

It was proposed that trypsin cleaves the a-subunit, probably at the insulin
binding site, and thereby leads to a conformational change similar to that
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induced by insulin.64

1.3.3 Other kinase activating compounds

A large proportion of the currently ongoing research on kinases aims at find-
ing new inhibitors. With the identification of DMAQ-B1 as insulin receptor
activator, a new focus has been set on finding allosteric activators, although
they are still scarce. Currently known allosteric modulators of protein ki-
nases, including activators of growth factor receptors, have been reviewed
recently.65 Work on two exemplary kinases will be sketched in the following.

The activation of tropomyosin-related kinase receptor B (TrkB) by brain-
derived neurotrophic factor (BDNF) promotes survival, differentiation and
function of neurons. Massa et al.66 used information about regions of BDNF
known to be necessary for activating TrkB to build a pharmacophore model.
Virtual screening of more than one million compounds with this pharma-
cophore, led to the identification of small molecules activating TrkB.

Sphingosine was found to activate phosphoinositide-dependent protein ki-
nase 1 (PDK1).67 Also, a crystal structure of a kinase with a small molecule
activator was published by Hindie et al. in 2009 for PDK1.68 The binding
pocket corresponds to the pocket which was proposed as a possible binding
site for insulin receptor kinase activating compounds (compare figure 1.10
and figure 1.4 on page 8). By linking small molecule fragments with disul-
fide bridges to the kinase, Sadowsky et al.69 identified activators as well as
inhibitors at this site.

1.4 Virtual screening

Virtual (or in silico) screening is a fast way to select molecules which have
a probability to modify a given target with computational methods. It is a
good alternative if classical high-throughput screening (HTS) is not available
to identify new hits for a target.

In general, two main strategies can be followed. One is to use the informa-
tion from available ligands of the target (ligand based methods), the other is
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(a)

(b)

Figure 1.10: Crystal structure (a) and 2D ligand interactions (b) of PDK1
with a small molecule activator (3HRF).
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to implement the information of the target directly (structure or target based
methods). While “retrospective” analyses test the performance of the screen-
ing methods on known datasets, “prospective” studies include selection of new
compounds with screening methods and subsequent experimental evaluation
of the hits. This is usually done to identify new classes of molecules, which is
also known as “scaffold hopping”. Ripphausen et al.70 recently investigated
the current literature of prospective virtual screening studies. They saw that
structure based methods (mainly docking) are used more frequently than
ligand based methods. Still, these docking studies are often combined with
ligand based filters for the reduction of compounds to screen. Comparing
the potency of hits, ligand based methods were in general more successful
in finding higher active molecules. Docking into homology models found in
general more potent hits than docking into X-ray structures.70

In the following sections, first some examples for virtual screening in anti-
diabetic research will be given. This is followed by a general introduction
to similarity methods and a more detailed description of the usage of self-
organizing maps for screening purposes.

1.4.1 Virtual screening for anti-diabetic compounds

Some of the molecules mentioned in chapter 1.3.2 were identified using com-
putational methods. Thymolphthalein was identified using the 3D informa-
tion from three amino acids of insulin which were known to be important for
activity. The 3DB Unity tool from Sybyl was used to find molecules fitting
to this query. Subsequently, other molecules were selected using a substruc-
ture search.49 QSAR modelling was performed for some derivatives of 1,43

but to our knowledge no in silico screening was performed to identify new
molecules.

Apart from these studies, previous implementations of computational
methods in anti-diabetic research have focused on targets other than the in-
sulin receptor, as reviewed in reference 71. Studied targets include PTP1B,
PPARg, and others.

The phosphatase PTP1B regulates insulin signalling by dephosphoryla-



20 1. INTRODUCTION

tion of the insulin receptor, thereby leading to its inhibition. Overexpression
of PTP1B can therefore lead to insulin resistance. As the activity of the
insulin receptor is closely connected with that of PTP1B, virtual screening
efforts for this target will be discussed here in more detail.

Many inhibitors of PTP1B have been identified in the last years, some
of them with the help of virtual screening. As several crystal structures of
PTP1B with substrates and inhibitors are available, the main method of
choice is currently docking. The first in silico screening was performed with
docking using the DOCK program.72 150 000 molecules from the Available
Chemicals Directory were screened using two different approaches, and the
best scored 1000 poses each were manually examined to select 25 molecules
for testing. For seven of these, inhibition was measurable at 100 mM. Doman
et al. compared classical high-throughput screening with virtual screening
using docking.73 For the classical screening, 400 000 compounds from an
in-house collection were tested, leading to 85 molecules with an IC50 value
between 1 and 100 mM. Flexible docking of the ACD, BioSpecs and May-
bridge databases and subsequent evaluation of 365 selected molecules led to
the identification of 127 hits with an IC50 value below 100 mM. However, se-
lection of the molecules from the top-scored poses for experimental validation
included additional considerations, and the docking scores and IC50 values
showed poor correlation. The hits from the two different approaches showed
no structural overlap and the docking hits were in general more drug-like
than the hits from HTS.73 Recently, another application of docking for vir-
tual screening was reported, leading to the identification of nine inhibitors in
the range of 10 to 50 mM.74

Using a ligand based approach, Taha et al. have been successful in identi-
fying new hits for PTP1B.75 They built several pharmacophore models, and
subsequently built a QSAR model using different descriptors and the fit val-
ues of the molecules to the pharmacophores. The best pharmacophore model
was used to screen a database, and the hits were further refined, including
the estimation of activity using the QSAR equation. From 60 selected hits,
five were available for testing. All five molecules showed potent activity, the
most active one with an IC50 value of 0.47 mM.75
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In a comparison of ligand similarity based and docking based virtual
screening on different targets, the ligand based ones were generally outper-
forming the docking approaches.76 An exception was PTP1B, where the
docking program Glide performed better than the other methods. In the
case studies presented in this section, docking was used more frequently for
screening. The ligand based approach75 was more successful in identifying
potent hits, but it was depending on activity data from the literature. A
general statement on which type of method works best in the case of PTP1B
can not be given though, due to contradictory results.

1.4.2 Similarity methods

Ligand based virtual screening is often done by identifying compounds which
are ‘similar’ to a given query structure. Similarity can be defined in different
ways,77 for example by similarity in property/descriptor values, molecular
graph similarity, similarity of fingerprints, or similarity in the three dimen-
sional shape or the pharmacophores of the molecules. The assumption for
this type of screening is that molecules which are similar to each other in
some way, are also similar in bioactivity. Martin et al.78 addressed the ques-
tion whether structurally similar molecules show similar biological activity.
Using Unity fingerprints, a Tanimoto similarity larger than 0.85 is gener-
ally regarded as having similar activity. According to Martin et al. with
this threshold only 30% of the molecules similar to an active one are active
themselves, but it gives an at least 30-fold increased enrichment compared
to random screening.78 Also, there are several examples known, where only
small changes in the structure lead to dramatic changes in activity.79 This
is also the case for derivatives of 1, where for example the introduction of a
methyl group can lead to loss of activity.33

As many different similarity search methods are available, the selection
of the method to use is an important step. Ideally, the method should be
able to discriminate known active from inactive molecules, thus showing the
possibility to identify actives. Additionally, several similarity methods were
found to behave different to each other in the identification of active mole-
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cules.80 Therefore, one should not rely on only one method, but use several
to increase the chance of finding all actives in a database.

The methods used in our study are self-organizing maps using two differ-
ent sets of descriptors, similarity of different types of fingerprints, and shape
similarity.

1.4.3 Self-organizing maps1

In 1982, Teuvo Kohonen developed an artificial neural network able to map
representations of signals onto a one- or two-dimensional array, while preserv-
ing the topology of the primary events.82 This neural network is built up by
a single layer of neurons placed on an ordered lattice (e.g. a two-dimensional
array) with each having a defined set of neighbours. Each neuron contains
a number of weights corresponding to the dimensions of the input objects.
At the beginning of the training process, the weight matrix is generated ran-
domly. Subsequently, each object is presented repeatedly to the network to
determine the winning neuron, i.e. the neuron whose weights are most simi-
lar to the input values. The weights of the winning neuron and its neighbours
are then adjusted to the input descriptors and subsequently the next object
is presented to the network. During the training procedure, the size of the
neighbourhood (the number of neurons near to the winning neuron which
are additionally influenced by the training), as well as the degree to which
the weights are adjusted to the input vectors is decreased. In the final step,
each object is placed on the trained map, with objects being close to each
other in high dimensional space, as represented by the input vector, ending
up in the same or adjacent neurons.

10 years later, this self-organizing (feature) map (SOM, also called Ko-
honen map) found its first applications in the field of chemistry. Rose et
al. used physicochemical parameters of antifilarial antimycin analogues as
input vectors and were able to achieve a good separation of activity val-
ues, whereas principle component analysis failed due to structural outliers.83

Gasteiger et al. used this self-organizing network to depict the 3D properties

1The main part of this section has been published in reference 81.
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of a molecular surface on a topology preserving two-dimensional map.84 A
comprehensive overview of the early uses of self-organizing maps in chemistry
and drug design can be found in a review by Anzali et al.85

In the past decade, self-organizing maps provided exciting results for
datasets which are not showing a clear structure activity relationship, for
example in classifying substrates for polyspecific targets such as P-Glyco-
protein86–88 or the hERG channel,89–92 or to cluster compounds according
to more complex principles such as toxic/non-toxic93 or drug like/non-drug
like.94

The major difference between supervised and unsupervised learning meth-
ods is the use of class values during the training process. Supervised methods,
such as support vector machines, decision trees, binary QSAR and random
forests include class values into the training process and thus allow building a
model best suited to separate the given classes. As an unsupervised method,
self-organizing maps organize objects solely on basis of the similarity of their
input vectors. Thus, they represent a versatile tool for a rapid indicative
check on the applicability of a given input vector (descriptor matrix) for the
classification problem approached. Subsequently, this information can either
be used by utilizing the self-organizing map directly as a screening tool, or by
using the descriptors best suited for the separation of actives and inactives
as input to other classification methods.89,95–97

When applying self-organizing maps for screening, principally two dif-
ferent approaches can be followed. The first one is to train a map with
compounds of known activity and subsequently place compounds with un-
known activity on the trained map. Although being very fast, this method
has the drawback that while placing a new compound on the most similar
neuron of the map, the distance might still be too large to gain meaning-
ful information. It is therefore necessary to judge the applicability of the
network for the respective screening library. The easiest way to do this is
to rank the identified compounds according to the distance to the winning
neuron and to examine only the top ranking ones.98 A more sophisticated
way is the usage of novelty detection with self-organizing maps as described
by Hristozov et al.99 In this method, the average distance of each neuron to



24 1. INTRODUCTION

its neighbours in the trained map is calculated to give a local accuracy. Each
new compound placed on the map is then scored depending on its distance
to the winning neuron and the local accuracy calculated for this neuron.
If the distance is larger than the local accuracy, the compound is classified
as novel and is therefore discarded. The distance threshold used to discard
compounds for which the activity prediction is likely to be wrong is therefore
selected automatically depending on each individual neuron.

The second approach is to train compounds with known and unknown
activity together on a larger map. This approach is based on the basic prin-
ciple that the compounds which are near in the multidimensional space will
be placed in the same neuron. Assuming that the used descriptors are able
to separate active from inactive compounds, molecules from the screening
library that are placed in the same neuron as known actives should also be
active. The separation of different classes of molecules while trained with
compounds not belonging to these classes on a larger map was shown to be
possible by Bauknecht et al.100 They could separate dopamine agonists and
benzodiazepine receptor agonists while training them together with more
than 8000 compounds from a vendor library on a map of 40x30 neurons.
Compounds with unknown activity which were co-localized with compounds
of known activity were suggested as promising for biological testing. Kaiser
et al.88 were successful in implementing this method for the identification
of new inhibitors of P-Glycoprotein. 131 propafenone analogues with known
activity values were trained together with 134 767 compounds of the SPECS
database on 250x250 and 360x360 sized self-organizing maps. Compounds
co-localizing with the most active compounds but having a different type of
scaffold were biologically tested, with only one out of seven being inactive.
On the other hand, from the compounds co-localized with the most inactive
compounds, only one of eight showed modest inhibitory activity. However,
a clear drawback of this method is the increase in calculation time, which
is due to the increased number of neurons as well as the higher number of
training objects.

This type of screening with self-organizing maps was successful in our
group,88 but has so far not been used in other studies. We therefore chose
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this method to further study the abilities of self-organizing maps. While in-
hibitors of P-Glycoprotein are known to have diverse structures, the deriva-
tives of 1 activating the insulin receptors show higher similarity. One of our
interests was therefore to see whether self-organizing maps are able to find
new structures under these conditions.

1.5 Aims

Although there are several drugs available for the treatment of type 2 diabetes
mellitus, these drugs can show side effects and their efficacy can decrease
during the progression of the disease. Failure of the b-cells makes additional
injections of insulin necessary. Demethylasterriquinone B-1 (compound 1)
and derivatives were shown to directly activate the insulin receptor, which
could be an interesting target for the treatment of diabetes.

Based on the structure of compound 1 and its published derivatives we
want to identify new molecules able to activate the insulin signalling path-
way. The main aim of this study is to investigate possible replacements
for the asterriquinone scaffold to find new insulin mimetic compounds with
computational methods. A focus is set on the performance of self-organizing
maps and the comparison of this method to other, more established, virtual
screening methods.

For experimental investigation of the results, some hit compounds should
be selected for testing in biological assays.
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Methods and materials

2.1 Computational part

2.1.1 Databases

Training database: A database with compound 1 and its derivatives (2-
101) was compiled from the literature as training set.32,33,35,38–45 The mole-
cules were drawn by hand and energy minimized using MOE2007.10.101

As the method for determining the activity was different in most of the
papers, we chose to divide the compounds into active and inactive according
to the information available in the papers instead of using the given activity
values directly. The activity of compounds tested in more than one publi-
cation was additionally used to compare the activity values of those papers
and to set the thresholds accordingly.

All compounds from Wood et al.40 were classified as active when having
an activity value higher than 25% (compared to insulin at 100 nM) at a
concentration of 10 mM. As comparison, 1 showed 75% activity under this
conditions. For compounds published by Liu et al.38 the threshold was
set to EC50 ≤ 30 mM. Compounds published by Pirrung et al.33 in 2005
were classified as active when showing at least 40% activation of the insulin
receptor at 30 mM as compared to insulin (50 ng/mL) and classified as inactive
when showing less than 25% activation, as these compounds were stated to be
significally different to 1 (58% activation) by statistical analysis. Compounds

26
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by Lin et al.43 were treated as active when showing at least 30% activation
of the insulin receptor at 30 mM (compared to 17 (or 8.3?) nM insulin).

This led to a total number of 43 active and 58 inactive compounds in the
training set. A new active molecule (102) was published46 after the building
of the models (see figure 1.8 on page 14). This molecule was used for external
validation. A list of all DMAQ-B1 derivatives collected from the literature
can be found in table A.1 in the appendix on page 123.

Screening database: For virtual screening, a compound library provided
by ChemDiv102 was used. The two dimensional graph depictions of the mole-
cules were converted to three dimensional structures using the rebuild 3D
functionality of MOE2008.10101 using the MMFF94x forcefield with a gra-
dient of 0.1, followed by energy minimization with a gradient of 0.01. Ten
entries which were containing more than one molecule each were excluded.
Finally, a total of 620 225 molecules was used for screening. Using 2D au-
tocorrelation descriptors, 6523 structures were excluded as the descriptors
could not be calculated. This was mainly due to charges on the molecules.

To generate smaller subsets of the database, the euclidean distances to
the training database molecules were calculated using the normalized VSA
and 2D autocorrelation descriptors, respectively. With a distance cutoff of
4, 7126 compounds were selected using the VSA descriptors. A distance of 3
was chosen for the 2D autocorrelation descriptors, yielding a subset of 7320
molecules.

2.1.2 Descriptors

Subdivided surface area descriptors (VSA): The subdivided van der
Waals surface area (VSA) descriptors103 as implemented in MOE101 describe
the surface of a molecule in dependency on the atom-wise contributions to
lipophilicity, molar refractivity and partial charges. There are three differ-
ent descriptor sets, the SlogP-VSA, SMR-VSA and PEOE-VSA descriptors.
Each of these descriptor sets uses a different property to choose the atoms
which are used to calculate the surface area. The atomic contributions to the
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van der Waals surface area (in Å2) are calculated using a connection table
approximation. The descriptors therefore do not take into consideration the
three dimensional structure of the molecules, but can be computed from the
two dimensional graph.

2D-autocorrelation descriptors: As described in equation 2.1, the au-
tocorrelation descriptor A(d) is the sum of all products of the properties p
of all pairs of atoms i and j, that have the distance d. This distance is de-
termined by the number of intervening bonds dij between the atoms, using
the shortest path. If dij is equal to d, δij becomes 1, else it is 0.

A(d) =
1

2

∑
i,j

pipjδij(d− dij) (2.1)

Descriptors for different bond distances can be combined to an autocorrela-
tion vector.

The descriptors were calculated using ADRIANA.Code104 (Version 2.0)
for the distances of zero to six bonds. The used properties were sigma charge,
pi charge, total charge, sigma electronegativity, pi electronegativity, lone-
pair electronegativity and polarizability. This lead to a total number of 49
descriptors. Since only uncharged molecules can be processed, the descriptors
could not be provided for the entire screening library.

2.1.3 Self-organizing maps

Self-organizing maps are unsupervised neural networks, which can be used to
place higher dimensional objects onto a two or three dimensional map using
a non-linear projection. The main idea is that two objects which are placed
in the same or adjacent neurons (fields) of the map, are also near to each
other in the higher dimensional space.

Training of self-organizing maps: Each neuron of a self-organizing map
contains a number of weights which have the same dimensionality as the input
objects. In our case, the input objects are molecules, which are represented by
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m descriptors. The descriptors were standardized by subtracting the mean
value and then dividing the resulting number by the standard deviation.
This was done using the script scale.svl by Dominik Kaiser. Mean values
and standard deviations were saved, to allow the inclusion of new molecules
using the original parameters. The training of the self-organizing maps was
performed with SONNIA.105

During the training, the molecules are repeatedly presented to the net-
work. The distances between the molecules X(t) and each neuron Wj from a
total of n neurons are calculated using formula 2.2 to determine the ‘winning
neuron’. This is the neuron with the most similar weights to the descriptors,
thus showing the minimum distance.

m∑
i=1

[xi(t)− wji]
2 (2.2)

The next step is the adaptation of the weights of and near to the winning
neuron c. The adaptation depends on the difference between the pattern
vector xi(t) and the weight vector wji(t) and on the neighbourhood function
hji(t, c). For each time step t (each presentation of a molecule) the weights
of the neurons j are therefore adapted following equation 2.3:

wji(t+ 1) = wji(t) + hji(t, c)
(
xi(t)− wji(t)

)
(2.3)

The neighbourhood function hji(t, c) (equation 2.4) is a combination of
the learning-rate function η(t) and the distance of the neuron to the winning
neuron (ϕj(t, c)).

hji(t, c) = η(t) · ϕj(t, c) (2.4)

During the training process, the learning rate as well as the size of the
neighbourhood is decreased, by multiplying the values with an adaptation
factor. For the training with SONNIA,105 the initial learning rate as well
as the learning rate adaptation factor were kept at their default values of
0.9. For the initial learning span the default and maximum allowed values,
width/2.0 and height/2.0, were used for the small maps. For the training
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with the screening database, width/10.0 and height/10.0 were used.

Analysis of the self-organizing maps: As the number of active and in-
active molecules in the training set was not equal, the threshold to determine
the activity of the neurons was set accordingly. A neuron was classified as
active if all located compounds were active, or if the ratio of active to inac-
tive compounds was larger than the ratio of total active to inactive molecules
(43.0/58.0). A java script (Map.java) was written to change the colours of
the .map files from SONNIA105 according to this threshold.

The colouring was done using the following scheme: red: inactive com-
pounds only, orange: inactive neuron, light green: active neuron, green: ac-
tive compounds only, white: empty. When trained together with the screen-
ing database, neurons containing only new molecules are coloured grey.

Numbering of the neurons was done according to the x- and y-axis, start-
ing with zero for the first neuron and locating the origin to the upper left
corner of the map. For example, 0/0 corresponds to the neuron in the upper
left corner, 1/0 is the second neuron in the first row.

Additionally, the accuracy and precision values were calculated for the
distribution of actives and inactives. For this, the number of correctly as-
signed active molecules (true positives, TP), of correctly assigned inactive
molecules (true negatives, TN), of actives incorrectly placed into an inactive
neuron (false negative, FN) and the number of inactives placed into an active
neuron (false positive, FP) were determined. The total accuracy (equation
2.5) gives the fraction of correctly predicted molecules.

Total accuracy (Acc) =
TP + TN

TP + TN + FP + FN
(2.5)

The accuracy on actives (also called sensitivity) in equation 2.6 gives the
ratio of all true actives to all actives in the dataset. Accordingly, the accuracy
on inactives (specificity) shows the ratio of all correctly predicted inactives
to the total number of inactives (equation 2.7).
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Accuracy on actives (AccAct.) =
TP

TP + FN
(2.6)

Accuracy on inactives (AccInact.) =
TN

TN + FP
(2.7)

Precision values give the ratio of correct classifications to all compounds
which were assigned to that class. These values give an indication on how
high the probability is, that a compound assigned to a class is really a member
of it. The precision on actives and inactives is shown in equations 2.8 and
2.9, respectively.

Precision on actives (PreAct.) =
TP

TP + FP
(2.8)

Precision on inactives (PreInact.) =
TN

TN + FN
(2.9)

2.1.4 Fingerprint similarity

The fingerprint of a molecule is a binary vector, indicating the presence or
absence of a given set of features. The similarity of two molecules can be
accessed by calculating the Tanimoto coefficient of their fingerprints:

T =
N12

N1 +N2 −N12

(2.10)

Here, N1 and N2 represent the number of features present in the fingerprints
of molecules 1 and 2, respectively, and N12 represent the number of features
which are present in both fingerprints.

For calculating the similarity of the active compounds to the screening
library, eight different fingerprint types were calculated with MOE 2008.10:101

1.) MACCS Structural Keys: The MACCS fingerprint of MOE is an
implementation of the 166-bit MACCS fingerprint introduced by MDL.106

This fingerprint was created primarily for substructure searching, and indi-
cates the presence of 166 different substructures or atom types.
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2.) Pharmacophore Atom Triangle (piDAPH3): This fingerprint is
based on a 3-point pharmacophore using the 3D structure of the molecule.
The fingerprint features are built up using the distances and the pharma-
cophoric features (combinations of “in pi system”, “is donor” or “is acceptor”)
of three different atoms.

3.) Pharmacophore Graph Triangle (GpiDAPH3): The Pharma-
cophore Graph Triangle is similar to the Pharmacophore Atom Triangle,
but it uses information from the 2D graph, instead of the 3D conformation.
Distances between the atoms are the number of bonds of the shortest path
between the atoms (graph distance).

4.) Pharmacophore Atom Quadruplet (piDAPH4): The Pharma-
cophore Atom Quadruplet uses the inter-atomic distances and pharmaco-
phoric features (combinations of “in pi system”, “is donor” or “is acceptor”)
of four different atoms.

5.) Typed Graph Distance (TGD): The features of the Typed Graph
Distance fingerprint are built up of the atom types and the graph distance
between two atoms. Atom types can be either acid, base, hydrogen bond
donor, hydrogen bond acceptor, both hydrogen bond acceptor and donor,
hydrophobic ore none of the others.

6.) Typed Graph Triangle (TGT): The Typed Graph Triangle finger-
print utilizes the atom types (either hydrogen bond donor or base, hydrogen
bond acceptor or acid, both hydrogen bond acceptor and donor, or hydropho-
bic) and the graph distances between three atoms. The graph distances are
binned in a way that there is a higher resolution at smaller distances and less
resolution at distances larger than five bonds.

7.) Typed Atom Distance (TAD): This fingerprint is similar to the
Typed Graph Distance, but uses binned distances of the atoms using the
currently available 3D structure of the molecule.
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8.) Typed Atom Triangle (TAT): The Typed Atom Triangle is similar
to the Typed Atom Distance, but uses the atom types and binned distances
of three atoms, using the 3D structure of the molecule.

Implementation: Similarity matrices of the active molecules of the train-
ing database against the compounds from the screening library were cal-
culated using the command ph4_SimilarityMatrix[‘mdb1’,‘mdb2’,‘fp_

code’,‘similarity’,‘output.txt’] in the MOE command line. The op-
tions mdb1 and mdb2 represent the input databases, with the first one be-
ing the larger screening database; fp_code specifies the fingerprint to use
(e. g. FP:MACCS), similarity is the similarity metric (tanimoto), and
output.txt determines the new output file. To produce a human readable
output of this command, the file ph4addfp.svl was modified by Christoph
Waglechner.

For subsequent analysis, the resulting matrices were individually im-
ported into a MySQL database. The table, which is in the following called
sreeningdb, contains three columns (chemdiv for the codes of the screen-
ing library, actives for the codes of the queries and similarity for the
similarity values of each pair of compounds).

Identification of the most similar entries: To find for each entry of the
screening library the most similar query structure, the following commands
were used. First, for each compound the highest similarity value was searched
and written into an intermediate table (screeningdb_maxonly).

insert into screeningdb_maxonly

select chemdiv, max(similarity) as maxsim

from screeningdb

group by chemdiv;

When used to calculate the similarity of the active database to itself, the
entries where identical compounds are compared need to be excluded from the
table before searching the highest similarity value for each compound. This
was done with the command delete from screeningdb where(chemdiv=
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actives);. All steps for importing and preprocessing of the data until here
were included into a Java script (fingerprint.java).

Subsequently, the intermediate table can be merged with the original
table (sreeningdb) to include the names of the active compounds.

select orig.chemdiv, orig.actives, maxsim

from screeningdb as orig

inner join screeningdb_maxonly as maxonly

on (orig.chemdiv = maxonly.chemdiv and maxsim=similarity);

Enrichment factors: To calculate enrichment factors, the similarity val-
ues of all active structures of the training database to each other and the
similarity values of the queries to the screening library were combined.

(Select * from actives_maxonly)

union

(Select * from screeningdb_maxonly)

order by maxsim desc limit 100;

The enrichment factor (EF) was calculated for a given subset size as
shown in equation 2.11.107

EFsubset size =
fraction active in subset
fraction active in library

(2.11)

For the first 1% of the screening hits the subset size is 6203, leading to
a maximum possible enrichment factor of 100. For a subset of the first 100
compounds, the highest enrichment factor is 6203. A random enrichment
would yield a value of 1.

Thresholds: To get an overview on how many compounds are identified
at different similarity thresholds the following MySQL command was used.
Additional similarity thresholds can be added analogously.

SELECT

sum(if(maxsim=1,1,0)) as ’=1’,
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sum(if(maxsim>0.95,1,0)) as ’>0.95’,

sum(if(maxsim>0.90,1,0)) as ’>0.90’,

sum(if(maxsim>0.85,1,0)) as ’>0.85’,

sum(if(maxsim>0.80,1,0)) as ’>0.80’

FROM screeningdb_maxonly;

All identified compounds together with the queries and the similarity val-
ues can be selected using SELECT * FROM screeningdb where similarity

> threshold;, where threshold needs to be replaced with the chosen simi-
larity value. Additionally the output can be sorted by adding order by and
the wanted column name.

2.1.5 Shape similarity

Shape similarity search was performed with Phase 3.0 from Schrödinger.108

There, the similarity of different alignments of a conformer of the screening
library to the query structure is calculated based on overlapping hard-sphere
volumes.

The 43 active molecules of the training database were used as shape
queries. A MacroModel109 conformational search was performed with default
parameters. The used force field was OPLS_2005 and water was used as
solvent. The minimum energy conformation was then used as input for the
shape similarity search.

The screening library was prepared using the Manage 3D Database panel
from Phase. The molecules were imported as 3D sd-file from MOE. A max-
imum number of 100 conformers per structure was generated using 10 steps
per rotable bond using the MacroModel search method ConfGen. The rapid
sampling option was chosen and conformations of amide bonds were varied.
Preprocessing was skipped and no energy minimization was done for post-
processing. Redundant conformers were eliminated using an RMSD cutoff
value of 1 Å.

The shape similarity search itself was done using the Shape Screening
panel from Phase. The volume scoring was done without taking into account
the atom types. Only one alignment per compound was kept and conformers
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with a similarity below 0.65 were discarded. Further processing of the data
was done as described for the fingerprint similarity search.

2.1.6 Compound selection

All compounds identified by the different methods were merged into a data-
base. To compute the scaffolds of the compounds, the script sca.svl from the
MOE exchange server was used.110,111 Subsequently, similar scaffolds (for
example exchanges of one atom in the scaffold) were merged by hand.

To identify the scaffolds which were selected more frequently than other
scaffolds, the combined database (see table A.2 on page 130) was imported
to MySQL.

load data infile ’identified_367.txt’

into table identified_367

fields terminated by ’\t’

lines terminated by ’\r\n’

ignore 1 lines

(name,SOM2d,SOMvsa,Shape,FP,Scaffold);

Subsequently, the counts for each scaffold were calculated:

select Scaffold, sum(SOM2d) as SOM2d, sum(SOMvsa) as SOMvsa,

sum(Shape) as Shape, sum(FP) as FP

from identified_367

group by (Scaffold);

Scaffolds were considered for further investigation, if they were either se-
lected by two different methods, or selected by one method for a minimum of
ten times. Representative structures of the scaffold clusters were chosen ac-
cording to a consensus vote of selection by hand and selection of a representa-
tive structure (the medoid) using three different fingerprint sets. The finger-
print sets were the VSA descriptors, 2D autocorrelation descriptors and a set
of 11 simple physicochemical descriptors (a_acc, a_don, b_rotN, logP(o/w),
mr, PEOE_VSA_HYD, TPSA, vsa_acc, vsa_don, vsa_hyd and Weight
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calculated with MOE). The selection of the medoid was performed using the
partitioning around medoids (pam) functionality of the cluster package112 in
R113 using a script written by Michael Demel. Clusters were set according
to the scaffold clusters, and one medoid per cluster was retrieved.

2.1.7 Docking

Docking studies were performed on a crystal structure of the active intra-
cellular domain of the insulin receptor (PDB-ID: 1IR3) using MOE2008.10
(for preliminary studies) and MOE2009.10. Water molecules and ligands
were deleted and missing side chains were modeled using Prime from Schrö-
dinger.114 Hydrogens and protonation states were calculated with the Proto-
nate 3D functionality in MOE. The binding site was chosen between the aC
helix and the nearby b-sheets as suggested in reference 19. Dummy atoms
were placed in this binding pocket using the Site Finder tool of MOE. The
docking poses presented in the result section were generated using Triangle
Matcher as placement algorithm and London dG as scoring function. The
obtained poses were refined using the LigX functionality of MOE2009.10,
thus allowing the energy minimization of the ligand as well as the adjacent
amino acids.

Common scaffold investigation was done to identify poses which were
found for several ligands, allowing a comparison of activities with the in-
teractions. Common scaffold clustering was implemented successfully in our
group for P-Glycoprotein.115 For this approach, only those molecules con-
taining both indole rings were used. The common scaffold was defined by
the SMILES string n1cc(c2c1cccc2)C=1CC=C(CC=1)c1c2c(nc1)cccc2, en-
coding the structure depicted in figure 2.1.

The structure of this scaffold was written in a new field of the MOE
database using the script DMAQscaffold.svl, which was adapted from a script
by Freya Klepsch and Lars Richter. Subsequently, an RMSD matrix was
calculated comparing all poses with each other on basis of the scaffold. This
calculation was performed using the script rmsd_matix.svl written by Lars
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Figure 2.1: Common scaffold

Richter, which uses mol_rmsd.svl from the SVL Exchange site.116

2.2 Experimental part

2.2.1 Molecules for testing

Demethylasterriquinone B-1 was purchased as positive control from Biotrend
(Cat. No.: BN0178). Compounds identified as hits from virtual screening
were purchased from ChemDiv. All compounds which were soluble enough
were dissolved in DMSO at a concentration of 100 mM and stored in aliquots
at -20°C.

2.2.2 Media and solutions

Growth media

- HCC-1.2 cultivation medium: RPMI-1640 medium (without L-glut-
amine, Lonza Group Ltd.) was supplemented with 10% FBS (fetal
bovine serum; Gibco®, Invitrogen), 2 mM L-glutamine and 1% peni-
cillin/streptomycin mixture.

- HCC-1.2 starvation medium: Identical to HCC-1.2 cultivation medium,
but without FBS.

- MEF cultivation medium: DMEM medium (without L-glutamine and
phenol red, Lonza Group Ltd) was supplemented with 10% FBS, L-
glutamine and 1% penicillin/streptomycin mixture.
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- MEF starvation medium: Identical to MEF cultivation medium, but
instead supplemented with 0.1% FBS.

- 3T3-L1 cultivation medium: DMEMmedium (Lonza Group Ltd., with-
out L-glutamine and phenol red) was supplemented with 10% NBS and
L-glutamine.

- adipocyte cultivation medium: DMEM medium (Lonza Group Ltd.,
without L-glutamine and phenol red) was supplemented with 10% FBS
and L-glutamine.

- 3T3-L1 differentiation medium: Adipocyte cultivation medium was
supplemented with 1 mg/mL insulin, 500 nM dexamethasone and 50 mM
IBMX. Medium was prepared and sterile filtered prior to usage.

Growth media were stored at 4°C and warmed to 37°C in a water bath
before use.

Media supplements

- FBS: fetal bovine serum, Gibco®, Invitrogen

- NBS: newborn bovine serum, Lonza

- Penicillin/streptomycin mixture (Lonza Group Ltd.):
10 000 U/mL potassium penicillin
10 000 mg/mL streptomycin sulfate

- IBMX (3-Isobutyl-1-methylxanthine, Sigma): 50 mM stock solution in
0.5 N KOH.

- Insulin (Sigma): 10 mg/mL stock solution (1.7 mM) in 25 mM HEPES
buffer.

- Dexamethasone (Sigma): 2.5 mM stock solution in ethanol.

Phosphate Buffered Saline (PBS): NaCl (36.0 g), Na2HPO4 (7.4 g)
and KH2PO4 (2.15 g) dissolved in 5 L H2O; pH 7.4, autoclaved.
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Trypsin/EDTA: Trypsin (0.05%,GIBCO) and Na2EDTA (0.02%) dissol-
ved in PBS; sterile filtered.

Crystal violet assay

- Crystal violet solution
0.5% crystal violet dissolved in 20% methanol; filtered.

- Sodium citrate solution
0.05 M sodium citrate tribasic dihydrate (BioChemica) in 50% ethanol.

Western blotting

- RIPA lysis buffer: For the stock solution, Tris/HCl (50 mM, pH 7.4),
NaCl (500 mM), NP40 (5.044 mM), Na-Deoxycholate (12.06 mM),
SDS (3.47 mM) and NaN3(7.7 mM) were dissolved in H2O. Prior to
use, Complete (4%, Roche), PMSF (1 mM), NaF (1 mM) and NaVO3

(1 mM) were added to the stock solution.

- Bradford reagent: Roti®-Quant (Carl Roth) was diluted 1:5 in water
before usage.

- 3x SDS sample buffer: For the stock solution, 37.5 mL Tris-HCl (0.5 M
stock, pH 6.8), 6.0 g SDS, 30.0 mL glycerol and 15.0 mg bromophenol
blue were mixed. Water was added to a total amount of 100 mL of
buffer. 15% of 2-Mercaptoethanol were added to obtain the 3x solution.

- TBS-T: For the tris buffered saline 3.0 g of Tris-base and 11.1 g of NaCl
were dissolved in 1 L of water. To obtain TBS-T, 1 mL of Tween 20
was added. The pH value of 8.0 was set with concentrated HCl.

- Resolving gel: The percentage of polyacrylamide in the gels was varied
according to the protein in investigation. For gels showing the insulin
receptor, 7.5% gels were used. Detection of Akt was done using 10%
gels for separation. 1.875 and 2.5 mL of PAA solution (30% with 0.8%
bisacrylamide) were used for the 7.5 and 10% gels, respectively. PAA
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was mixed with 1.875 mL of Tris-base (1.5 M, pH 8.0), 75 mL SDS
(10%) and 3.675 mL water. The polymerisation was initiated using
7.5 mL TEMED and 37.5 mL APS (10%).

- Stacking gel: 640 mL PAA solution (30% with 0.8% bisacrylamide) was
mixed with 375 mL of Tris-base (1.25 M, pH 6.8), 37.5 mL SDS (10%)
and 2.62 mL water. The polymerisation was initiated using 3.75 mL
TEMED and 18.8 mL APS (10%).

- Electrophoresis buffer: 30 g of Tris-Base, 144 g glycine and 10 g SDS
were dissolved in 1 L of water to prepare the 10x solution. This stock
was then diluted 1:10 for usage.

- Blotting buffer: For the 5x solution, 15.17 g of Tris-base and 72.9 g of
glycine were dissolved in 1 L of water. For usage, 100 mL buffer were
diluted with 100 mL methanol and 300 mL water.

- ECL: The enhanced chemiluminescence (ECL) solution was prepared
directly before usage. Stock solutions (0.44 g luminol in 10 mL of
DMSO and 0.15 g p-coumaric acid in 10 mL of DMSO) were stored
at -20°C. For the final solution, 1 mL TRIS-base (1 M, pH 8.5), 50 mL
luminol stock solution, 22 mL p-coumaric acid stock solution and 3 mL
H2O2 (30%) were diluted in 9 mL of water.

- Antibodies:
Anti-phospho-insulin receptor/insulin-like growth factor-1 receptor p-
Tyr1158, 1162 and 1163 antibody (Sigma),
Anti-IR-b antibody (New England Biolabs),
Anti-phospho-Akt Ser473 antibody (Cell Signal),
Anti-a-tubulin antibody (Santa Cruz),
Anti-actin antibody (Santa Cruz),
Anti-rabbit antibody (New England Biolabs),
Anti-mouse antibody (Upstate).
All antibodies were diluted to their working concentration in TBS-T.
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Glucose uptake assay

- KRH buffer: Hepes (50 mM, from a 1 M stock, pH 7.4), NaCl (136 mM),
KCl (23.5 mM), MgSO4 (1.25 mM), CaCl2 (1.25 mM) and 0.1% BSA
were dissolved in water. The buffer was sterile filtered after completion.

- 3H-Deoxyglucose (DOG): deoxy-d-glucose, 2-[1,2-3H (N)]-, with a spe-
cific activity of 5-10 Ci/mmol and a concentration of 1 mCi/mL (Perkin
Elmer).

- DOG solution: For a 12-well plate, 7.43 mL deoxyglucose (0.1 M) and
3.72 mL of 3H-deoxyglucose were diluted in 789 mL KRH buffer.

- Scintillation cocktail: Ultima GoldTM (Perkin Elmer)

PTP1B inhibition assay

- PTP1B: Recombinant human PTP1B (R&D Systems) was dissolved in
reconstitution buffer to 1 mg/mL and stored at -80°C.

- Reconstitution buffer: 10 mM HEPES, 0.1 mM EGTA, 0.1 mM EDTA,
1 mM dithiothreitol and 0.5 mg/mL BSA, pH 7.5.

- MOPS buffer: 3-(N-morpholino)-propanesulfonic acid (50 mM, pH 6.5)
with or without 4 mM pNPP (para-Nitrophenylphosphate). The buffer
with pNPP was prepared directly before the experiment by dissolving
11.14 mg pNPP in 7.5 mL of MOPS buffer and adding 15 mL DTT
(1M).

2.2.3 Technical equipment

- Cell counter: Vi-Cell™ XR Cell Viability Analyzer (Beckman Coulter).

- Plate reader: Sunrise™ (Tecan).

- Western blot chemoluminescence detector: LAS-3000™ (Fujifilm). Im-
ages were detected using the Image Reader LAS-3000™ software (ver-
sion 2.0) and analyzed using AIDA™ (Advanced Image Data Analyzer,
version 4.06, raytest).
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- Scintillation detector: TRI-CARB 2100TR Liquid Scintillation Ana-
lyzer (Packard)

2.2.4 Cultivation of the cells

Human hepatocytes (liver carcinoma cells, HCC-1.2) were grown
in 75 cm2 cell culture flasks (Greiner Bio-One) using 25 mL of HCC-1.2
cultivation media. Cells were passaged after one week, seeding them at a
density of one million cells per flask. Medium was changed every two or
three days.

Mouse embryonic fibroblasts (MEF) were grown in 75 cm2 cell culture
flasks using 13 mL of MEF cultivation media. Cells were passaged twice per
week and seeded at a density of one million cells per flask.

3T3-L1 preadipocytes were seeded at a density of 0.415 x 106 cells in
175 cm2 flasks using 45 mL of 3T3-L1 cultivation medium. Cells were pas-
saged after three days. To avoid that the cells were loosing their ability to
differentiate into adipocytes, they were used up to a maximum passage of
14, and only if the total amount of cells after passaging did not exceed ten
million cells.

2.2.5 Western blotting

To detect the phosphorylation state of the insulin receptor and of Akt, the
Western blot technique was used. For this, the cells were lysed after treat-
ment and the proteins were seperated by SDS-PAGE (sodium dodecyl sulfate
polyacrylamide gel electrophoresis). Here, the proteins are first denaturated
by SDS and heat. Additionally SDS leads to a uniform negative charge on
the proteins, resulting in the separation of proteins according to their weight
and not their initial charge while they are moving through the polyacry-
lamide gel to the anode. After the separation, proteins are transferred onto
a membrane where the protein of interest can be detected using antibodies.
Usually, the primary antibody against the target protein is applied first. The
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detection of the protein is then made possible by using a secondary antibody
against the primary one, which is linked to a reporter enzyme. In our case,
this enzyme was horseradish peroxidase, which can catalyze the oxidation of
luminol, leading to chemoluminescence.

Sample preparation: Hepatocytes were seeded at a density of 150 000–
200 000 cells per well in 4 mL of HCC-1.2 cultivation medium in 6-well plates.
Cells were grown for two to four days. Two hours before the experiment, the
medium was exchanged to 2 mL starvation medium. Mouse embryonic fi-
broblasts were seeded at a density of 400 000 cells per well in 2 mL cultivation
medium in 6-well plates. After one day, the medium was exchanged to 2 mL
starvation medium and the cells were grown for another day.

Cells were treated with the compounds at a final concentration of 0.5%
DMSO. Insulin (10 nM) and 0.5% DMSO were used as positive and neg-
ative control. After the treatment time (usually 5 or 10 min), cells were
washed with cold PBS and lysed with 100 mL RIPA buffer for 10 min on
ice. Subsequently, cells were scraped out of the wells into reaction tubes and
centrifuged at 13 000 rpm at 4°C for 15 min. Hepatocytes were additionally
sonicated before the centrifugation step. The supernatant was then used
further for protein quantification and Western blotting. The samples were
stored at −20°C. For electrophoresis, the amount for 20 mg protein was mixed
2+1 with 3x SDS sample buffer. The samples were boiled for 5 min at 95°C
to denature the proteins.

Protein quantification: To determine the amount of protein in the sam-
ples, the quantification according to Bradford was carried out. For this, 10 mL
of a 1:10 dilution of the samples was pipetted on a 96-well plate in triplicate
and 190 mL of Bradford reagent were added. The absorbance of the resulting
colour was measured at 595 nm in a plate reader. The protein concentration
was determined using a standard curve of BSA (bovine serum albumin) on
the same plate.
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Electrophoresis and Western blot: The prepared samples were pipet-
ted into the chambers of the stacking gel. Proteins were separated in a Mini-
PROTEAN® 3 Electrophoresis Cell (Bio-Rad) using 25 mA power supply
per gel (PowerPac HC) until the blue colour of the sample buffer reached
the end of the gel. To allow a better separation of Akt from neighbouring
bands, the electrophoresis was performed longer in this case. Subsequently,
proteins were transferred to a PVDF membrane in a Mini Trans-Blot® Elec-
trophoretic Transfer Cell (Bio-Rad) at 100 V for two hours. To block non-
specific binding of the antibodies, the membrane was then treated for one
hour with 0.5% BSA in TBS-T.

The membrane was incubated with the first antibody overnight at 4°C,
and with the secondary antibody for two to three hours at room temperature.
In between and afterwards, the membrane was washed three times with TBS-
T for ten minutes each. Chemoluminescence was initiated with ECL for one
minute and the signal was then detected using the automatically determined
exposure time. Before the application of the next primary antibody, the
membrane was stripped using a solution of NaOH (0.5 M) for 10 min and
washed with TBS-T.

2.2.6 Crystal violet assay

To assess the cytotoxicity of the tested compounds, the amount of remaining
cells after treatment for 24 h was measured using the crystal violet assay.
For quantification, the cells were coloured with crystal violet, a dye that
stains proteins in an unspecific way. After washing away the excess dye,
the remaining crystal violet is dissolved and analyzed photometrically. The
optical density of this solution depends on the concentration of crystal violet
and therefore on the amount of cells.

Mouse embryonic fibroblasts were seeded at a density of 5 000 cells per
well in 198 mL cultivation medium in 96-well plates. Some wells were filled
with medium only to determine its effect on the staining. Cells were grown
near confluence for two days. Compound stock solutions were diluted with
medium to a working solution in 50% DMSO. Cells were treated with 2 mL
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of the working solution, leading to a final DMSO concentration of 0.5%. All
treatments and controls were performed in triplicate. After 24 h, the growth
medium was discarded. Wells were filled with 100 mL crystal violet solution
for 10 min. Then the staining solution was washed away with water. After
air drying of the plates, the remaining crystal violet was dissolved in 100 mL
of a sodium citrate solution and the absorption was measured with a plate
reader at 550 nm. Values were normalized by dividing through the DMSO
control value of each experiment.

2.2.7 Glucose uptake assay

To investigate the effect of selected compounds on a biological outcome more
relevant to diabetes, glucose uptake was measured in adipocytes and my-
ocytes. For this, differentiated cells were treated with the compounds after
a period of starvation. Glucose uptake was then assessed using deoxyglucose
with a radioactive label. The experiments with myocytes were carried out
by Elke Heiss.

Differentiation of adipocytes: 3T3-L1 preadipocytes were seeded at a
density of 1.5x105 cells in 12-well plates using 2 mL of 3T3-L1 cultivation
medium per well. When the cells reached confluency after two to three days,
medium was changed and the cells were grown for another two days. To ini-
tiate the differentiation, the medium was then exchanged for 3T3-L1 differ-
entiation medium. After three days, the medium was replaced by adipocyte
cultivation medium supplemented with 1 mg/mL insulin. Subsequently, the
medium was replaced every second day and on the day before the experiment
with adipocyte cultivation medium (without insulin). Experiments were car-
ried out between day eight and ten after the initiation of differentiation.

Glucose uptake into adipocytes: To prepare the cells for the experi-
ment, serum and glucose were withdrawn. First, the medium was replaced
by 2 mL of DMEM supplemented with 0.1% BSA for four hours to remove
the serum. Then, the medium was exchanged for 1 mL of KRH buffer for one
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hour to remove the glucose. Testing compounds and insulin were dissolved
in KRH buffer and cells were stimulated with a total amount of 450 mL per
well. After the stimulation time, 50 mL of the DOG solution were added.
The cells were incubated for 5–15 minutes at 37°C. The glucose uptake was
terminated by washing the cells with ice-cold PBS. The cells were lysed us-
ing 350 mL NaOH (0.05 M in PBS) at 4°C over night. After shaking, 250 mL
lysate were mixed with 5 mL of scintillation cocktail and measured with the
scintillation detector. The specific activity of the 3H-DOG was assessed by
measuring 50 mL of DOG solution with 5 mL of scintillation cocktail. The
background value was detected using NaOH (0.05 M in PBS). The amount
of protein was determined as described on page 44 with a 1:5 dilution of the
samples.

2.2.8 PTP1B inhibition assay

The phosphatase PTP1B dephosphorylates the insulin receptor leading to
the inactivation of the kinase. Inhibitors of PTP1B could therefore enhance
the signal transduction by the insulin receptor. The inhibition of PTP1B
was investigated directly using an enzymatic in vitro assay. The readout of
this assay is based on the conversion of para-nitrophenylphosphate (pNPP)
to para-nitrophenol. Addition of NaOH gives the yellow-coloured sodium-
para-nitrophenolate, which can be measured photometrically at 405 nm.

Sodium orthovanadate (SOV) and ursolic acid (UA) are known inhibitors
of PTP1B and were used as positive control. The solvent (DMSO, 1%) was
used as negative control. Controls and test substances were diluted in MOPS
buffer (without pNPP) and 50 mL per well were pipetted in a 96-well plate.
For each test substance, 8 wells were used to allow the measurement with
and without enzyme in quadruplicate each. Immediately before usage, an
1.4 mL aliquot of the 1 mg/mL stock solution of PTP1B was diluted with
280 mL of reconstitution buffer to a concentration of 0.005 mg/mL. To avoid
loss of activity, it was kept in a closed tube on ice whenever possible. 5 mL of
this dilution were pipetted to half of the wells. The other half was measured
without enzyme to get a background value of the substances. Here, 5 mL of
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reconstitution buffer were added. Finally, 50 mL of MOPS buffer with pNPP
were added to each well. The final concentrations per well were 0.025 mg
of PTP1B and 2 mM pNPP. The reaction was then carried out for half an
hour. During this time, the absorption was measured at 405 nm in the plate
reader (11 cycles with a measurement every three minutes). The plate was
shaken in between the cycles for five seconds, with two seconds rest before
the next measurement. Before a final measurement, 25 mL NaOH (10 M)
were added to intensify the yellow colour. A more detailed description of the
assay procedure is given in reference 117.

The final measurement was used for further evaluation. The background
mean values were subtracted from the values with the enzyme. This was
done to minimize the influence of coloured substances. Mean values of the
wells with enzyme were then divided by the negative control (DMSO, 1%)
and multiplied with 100 to get the residual PTP1B activity in % control.
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Results

3.1 Computational part

3.1.1 Self-organizing maps

Performance of the method

To judge the ability of the descriptors to separate active from inactive mole-
cules, small self-organizing maps were trained using compounds with known
activity only (1-101). Preliminary studies using different descriptor sets
and network topologies were performed with a smaller training set (data not
shown).

Statistics (quantization error, accuracy and precision) of the resulting
maps are collected in table 3.1 for the VSA descriptors and table 3.2 for the
2D autocorrelation descriptors. The maps are named according to the fol-
lowing scheme: widthxheight,epochs,topology. Here width and height

denote the number of neurons in the x- and y-axis, epochs specifies how often
each molecule is presented to the network during the training and topology

can be either R for rectangular or T for toroidal maps.

The quantization error decreases drastically when changing the training
time from 100 epochs to 500 epochs. An additional increase of the training
time to 1000 epochs has less effect. This can be explained when investigating
the used parameters in the finished network file (.knet). SONNIA stopped

49
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Size,Epochs,Top. QE AccAct. AccInact. PreAct. PreInact.
5x5,100,R 302.9 0.72 0.84 0.78 0.80
5x5,500,R 161.6 0.84 0.79 0.75 0.87
5x5,1000,R 167.8 0.84 0.83 0.78 0.87
7x7,100,R 246.2 0.86 0.78 0.74 0.88
7x7,500,R 89.5 0.84 0.84 0.80 0.88
7x7,1000,R 96.1 0.86 0.83 0.79 0.89
10x10,100,R 162.8 0.88 0.86 0.83 0.91
10x10,500,R 42.1 0.86 0.90 0.86 0.90
10x10,1000,R 41.5 0.91 0.84 0.81 0.92
14x14,100,R 62.4 0.93 0.88 0.85 0.94
14x14,500,R 11.0 0.95 0.90 0.87 0.96
14x14,1000,R 8.4 0.93 0.88 0.85 0.94

Table 3.1: Small maps with VSA descriptors

Size,Epochs,Top. QE AccAct. AccInact. PreAct. PreInact.
5x5,100,R 204.8 0.95 0.57 0.62 0.94
5x5,500,R 132.4 0.79 0.76 0.71 0.83
5x5,1000,R 126.9 0.79 0.78 0.72 0.83
7x7,100,R 156.1 0.88 0.83 0.79 0.91
7x7,500,R 69.3 0.91 0.84 0.81 0.92
7x7,1000,R 60.4 0.93 0.84 0.82 0.94
10x10,100,R 120.3 0.93 0.84 0.82 0.94
10x10,500,R 32.7 0.95 0.84 0.82 0.96
10x10,1000,R 40.3 0.95 0.84 0.82 0.96
14x14,100,R 11.0 0.95 0.93 0.91 0.96
14x14,500,R 7.1 0.98 0.93 0.91 0.98
14x14,1000,R 8.2 1.00 0.90 0.88 1.00

Table 3.2: Small maps with 2D autocorrelation descriptors
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Size,Epochs,Top. 2D VSA

random real random real

5x5,100,R 0.69 0.73 0.71 0.79
5x5,500,R 0.70 0.77 0.69 0.81
5x5,1000,R 0.71 0.78 0.68 0.83
7x7,100,R 0.72 0.85 0.72 0.81
7x7,500,R 0.76 0.87 0.76 0.84
7x7,1000,R 0.79 0.88 0.73 0.84
10x10,100,R 0.84 0.88 0.79 0.87
10x10,500,R 0.85 0.89 0.83 0.88
10x10,1000,R 0.82 0.89 0.84 0.87
14x14,100,R 0.93 0.94 0.89 0.90
14x14,500,R 0.93 0.95 0.89 0.92
14x14,1000,R 0.93 0.94 0.91 0.90

Table 3.3: Comparison of total accuracy values between maps with real and
random activity.

the training after approx. 250–300 epochs in both cases. When judging the
quality of the maps according to the accuracy and precision values, the train-
ing time has in general less influence. Here, the size of the networks largely
influences the results. However, this can be explained by a higher number of
singletons, but it does not necessarily result in a better separation of actives
and inactives. For this, a visual inspection of the maps is necessary. Pictures
of the maps are collected in figure 3.1 for the VSA descriptors and in figure
3.2 for the 2D autocorrelation descriptors.

Some molecules produced conflicts even in the larger maps. Here, struc-
tural changes led only to a small or even no variation in descriptor values, but
had a large influence on activity. This was mostly the case where molecules
differed only in the position of small residues, such as methyl groups, on the
indole ring.

Random shuffling of the activity values was performed to see if activity
clusters are formed by chance. A comparison of the accuracy values resulting
from the random and the real activity distribution is shown in table 3.3. The
accuracy values are generally higher for the maps with the real activity. Only
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(a) 5x5,100,R (b) 5x5,500,R (c) 5x5,1000,R

(d) 7x7,100,R (e) 7x7,500,R (f) 7x7,1000,R

(g) 10x10,100,R (h) 10x10,500,R (i) 10x10,1000,R

(j) 14x14,100,R (k) 14x14,500,R (l) 14x14,1000,R

Figure 3.1: Self-organizing maps of compounds with known activity using
VSA descriptors. Maps are coloured according to the following scheme: red:
inactive compounds only, orange: inactive neuron, light green: active neuron,
green: active compounds only, white: empty.
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(a) 5x5,100,R (b) 5x5,500,R (c) 5x5,1000,R

(d) 7x7,100,R (e) 7x7,500,R (f) 7x7,1000,R

(g) 10x10,100,R (h) 10x10,500,R (i) 10x10,1000,R

(j) 14x14,100,R (k) 14x14,500,R (l) 14x14,1000,R

Figure 3.2: Self-organizing maps of compounds with known activity using
2D autocorrelation descriptors. Maps are coloured according to the following
scheme: red: inactive compounds only, orange: inactive neuron, light green:
active neuron, green: active compounds only, white: empty.
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in one case (map 14x14,1000,R with 2D autocorrelation descriptors), the
random shuffling leads to a 0.01 units higher accuracy value. The differences
tend to be higher for the smaller networks, while for the 14x14 networks
the differences are negligible. This effect can again be explained by a higher
number of singletons on the larger maps. Here a rearrangement of the activity
values has less influence on the accuracy values.

Before the training of the compounds together with the whole screening
database, studies were performed with smaller subsets, allowing the calcu-
lation of a larger amount of maps in a reasonable time scale. These sets
were selected as being similar to the training database according to their
Euclidean distance using the 2D autocorrelation and the VSA descriptors,
respectively. Comparison of one of the maps with the plot of the first two
principal components of the 2D autocorrelation descriptors (explaining 48%
of the variance) shows similar clustering of the compounds (see figure 3.3).
Clusters B and C are in close vicinity to each other on the principal compo-
nent plot, while clusters A and B seem to be nearer on the self organizing
map. This can be explained by the ability of self-organizing maps to focus on
regions where more objects are located. Using this type of visualization, one
has to be careful that the distances between the neurons are not equal, as
larger distances are generally not preserved in the two dimensional mapping.
The distances between the neurons are usually larger in regions where no
objects are located, and smaller in crowded regions. In the case of this map,
cluster A is placed in a corner of the map and separated from the rest by
empty neurons. The small distance allows to focus more on separating the
crowded regions. The principle component plot on the other hand focuses
more on this distance as it focuses on the variance of the dataset. In this
way, outliers can influence the method and prevent it from showing a high
resolution in the more crowded area.

Cluster A in the upper left corner of the map contains the molecules with
both indole rings present. Compound 1 for example can be found in this
cluster. Compounds 19 and 20, which contain triflate (trifluoromethane-
sulfonate) groups on the quinone ring, are found in neurons 0/0 and 0/1,
respectively. Using principal component analysis, these compounds end up
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(a) Self-organizing map

(b) Principal component analysis

Figure 3.3: Comparison of SOM and PCA using 2D autocorrelation descrip-
tors.
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Size,Epochs,Top. Size DB AccAct. AccInact. PreAct. PreInact. Hits

43x43,100,R 7 418 0.78 0.82 0.76 0.84 0
43x43,100,T 7 418 0.85 0.79 0.74 0.88 0
43x43,500,R 7 418 0.85 0.77 0.73 0.88 0
43x43,1000,R 7 418 0.83 0.75 0.71 0.86 0
61x61,100,R 7 418 0.85 0.82 0.78 0.89 0
61x61,100,T 7 418 0.95 0.79 0.76 0.96 1
61x61,500,R 7 418 0.88 0.81 0.77 0.90 1
61x61,1000,R 7 418 0.95 0.79 0.76 0.96 0
392x392,100,R 613 803 0.81 0.79 0.74 0.85 87
392x392,100,T 613 803 0.86 0.79 0.76 0.88 58

Table 3.4: Maps with 2D autocorrelation descriptors

far away from the majority of the molecules. On the map, the molecules
are separated from the screening library molecules by empty neurons. Com-
pounds in cluster B contain scaffolds, where at least one indole ring is missing
or replaced by a phenyl residue, or the quinone ring is replaced with a naph-
thoquinone as described by Lin et al.43 All compounds in cluster C have
a missing indole ring. Derivatives of this type are also found in cluster B,
but there the indole ring has substituents with aromatic rings or conjugated
double bonds, while the substituents in cluster C are in general smaller and
contain one double bond at maximum. Compound 92, a squaric acid deriva-
tive is separated from the rest of the training compounds in both the principle
component plot and on the map (cluster D). As only 8 from the 39 molecules
in cluster C are active, and the only compound in cluster D is inactive, the
map allows to some extend to separate active from inactive molecules.

Table 3.4 gives an overview on the self organizing maps calculated with
2d autocorrelation descriptors, table 3.5 on those calculated with VSA de-
scriptors using the subset as well as the whole screening database. Pictures
of these maps are shown in the appendix (figures A.1–A.7 on pages 141–147).
Accuracy and precision values were calculated, to judge the maps’ abilities
to separate active from inactive compounds. The hits of map 557x557,100,R
were not included into the final list of identified compounds due to its long
calculation time of over 2 months.
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Size,Epochs,Top. Size DB AccAct. AccInact. PreAct. PreInact. Hits

43x43,100,R 7 227 0.86 0.81 0.77 0.89 3
43x43,500,R 7 227 0.84 0.81 0.77 0.87 0
43x43,1000,R 7 227 0.81 0.83 0.78 0.86 0
60x60,100,R 7 227 0.84 0.84 0.80 0.88 1
60x60,500,R 7 227 0.88 0.83 0.79 0.91 0
60x60,1000,R 7 227 0.81 0.88 0.83 0.86 0
85x56,100,R 7 227 0.84 0.86 0.82 0.88 2
85x56,500,R 7 227 0.88 0.83 0.79 0.91 0
85x56,1000,R 7 227 0.88 0.83 0.79 0.91 0
392x392,100,R 620 326 0.88 0.74 0.72 0.90 93
557x557,50,R 620 326 0.84 0.64 0.63 0.84 5
557x557,100,R 620 326 0.81 0.72 0.69 0.84 15

Table 3.5: Maps with VSA descriptors

The maps calculated with the subset of the screening library identify only
a few hits. Most of the hits are identified with the networks with a size of
392x392 neurons, while increasing the size to 557x557 decreases the number
of co-localizations.

Performance on a new active molecule: The new insulin mimetic
molecule (compound 10246) was placed on the trained maps to see if it
would have been identified using this method. Indeed, it was placed in the
same neuron as two active compounds (93 and 96) in some of the maps
trained with the subset using 2D autocorrelation descriptors. It could not
be identified on the maps trained with the whole database or using the VSA
descriptors.

Identified compounds

In the following, we will have a closer look on the compounds from the
screening database which were placed into an active neuron. Using 2D auto-
correlation descriptors to train a subset of the compounds leads to only two
new compounds. The map 61x61,100,T identifies compound 000A-0047 (see
figure 3.4). This compound is co-localized with 79, which shows 69% acti-
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vation of the insulin receptor at 30 mM, as compared to insulin at 17 nM.43

Compound 79 therefore has comparable activity to the original compound
1, which shows 73% activation under the same conditions.

(a) 79 (active) (b) 000A-0047 (new)

Figure 3.4: Co-localization in neuron 45/47 on map 61x61,100,T using 2D
autocorrelation descriptors.

On map 61x61,500,R (see figure 3.5), compound 6877-0609 is co-localized
with one active (91) and one inactive compound (72). While 72 only shows
6% activation at 30 mM, compound 91 shows 99% of the activity of insulin
(17 nM) and is more active than compound 1.43

(a) 72 (inactive) (b) 91 (active) (c) 6877-0609 (new)

Figure 3.5: Co-localization in neuron 21/19 on map 61x61,500,R using 2D
autocorrelation descriptors.

Using VSA descriptors with the selected subset, five molecules have been
selected. One of them (5982-0159) was selected with two different maps, each
using a different query molecule. Map 43x43,100,R shows co-localizations in
two of its neurons (figure 3.6). The first identifies 4161-2736 using query
molecule 91. This very active molecule (99% activity) already identified an-
other compound on map 61x61,500,R using 2D autocorrelation descriptors.
When comparing the two identified compounds one can see how different the
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descriptors behave in identifying similar compounds to the same query (com-
pare figures 3.5c and 3.6b). The second neuron with co-localizations identifies
5982-0100 (105) and 5982-0159 using 95 as query, a molecule comparable in
activity to compound 1.44

Neuron 8/15:

(a) 91 (active) (b) 4161-2736 (new)
Neuron 36/7:

(c) 95 (active) (d) 5982-0100 (105, new) (e) 5982-0159 (new)

Figure 3.6: Co-localizations on map 43x43,100,R using VSA descriptors.

Compound 6049-2038 is placed in the same neuron on map 60x60,100,R as
79, a medium active compound showing 38% activity at 30 mM as compared
to insulin43 (figure 3.7).

(a) 79 (active) (b) 6049-2038 (new)

Figure 3.7: Co-localization in neuron 29/15 on map 60x60,100,R using VSA
descriptors.
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5982-0159, which was already identified using map 43x43,100,R is again
identified in neuron 2/21 on map 85x56,100,R. Here, the query is compound
96, a molecule structurally similar to the earlier query compound 95, but
having the chlorine residue at a different position and a cyclopropane group
instead of a phenyl ring. Additionally, activities of both compounds are com-
parable to compound 1.44 In neuron 84/14 of map 85x56,100,R a structurally
very different molecule (6231-0119) to the query (32) was placed.

Neuron 2/21:

(a) 96 (active) (b) 5982-0159 (new)
Neuron 84/14:

(c) 32 (active) (d) 6231-0119 (new)

Figure 3.8: Co-localizations on map 85x56,100,R using VSA descriptors.

As more than 100 molecules were placed in active neurons on the maps
trained with the whole screening database, not all of them will be discussed
here. Instead, we will focus on those structures identified with compound
1 as query structure, as well as those which were subsequently selected for
biological testing.

The molecules which were co-localized with compound 1 are shown in
figure 3.9). On map 392x392,100,R using VSA descriptors, eight active and
seven inactive molecules (compounds 1–14 and 97) were placed in the same
neuron (258/286) as two new compounds (C493-1072 and K788-5456). With
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Nr. ChemDiv ID Queries

103 4204-0085 67
104 4451-0051 44, 66, 67, 68, 69
105 5982-0100 95
108 8014-1054 27
109 C073-3327 25
110 C090-0245 25
111 D159-0883 67
112 E938-0156 30, 32, 33, 34
113 K788-0448 91

Table 3.6: Molecules selected for testing by self-organizing maps with their
query structures.

the 2D autocorrelation descriptors, ten active and ten inactive compounds
(1–14, 17, 18, 21, 22, 23 and 27) were localized together with six mole-
cules from the screening library (3807-4416, 8017-6445, 8017-6446, F019-
1000, F019-2195 and K786-3665) in neuron 11/124 of map 392x392,100,R.
The corresponding toroidal map has four molecules (4052-4503, 5218-1214,
5218-1215 and 5218-1227) placed in the same neuron (7/382) as nine ac-
tive and seven inactive molecules (compounds 1, 4–14, 21, 24, 27 and 97).
All these new molecules look structurally diverse to compound 1, and the
quinone substructure is no longer present.

As will be discussed later, several compounds were selected for experimen-
tal evaluation in biological assays. In the case of the self-organizing maps,
all those molecules (with the exception of compound 105) were initially se-
lected from the maps trained with the whole screening database. Compounds
104 and 110 were selected on map 392x392,100,R using 2D autocorrelation
descriptors, while compounds 103, 111 and 112 were selected by the cor-
responding toroidal network. Using the VSA descriptors, compounds 108,
109 and 113 were selected on map 392x392,100,R. All these compounds with
their corresponding query molecules are summarized in table 3.6.
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(a) C493-1072: n=2, R=H
K788-5456: n=1, R=Cl

(b) 3807-4416

(c) 8017-6445: R1=H, R2=F
8017-6446: R1=methyl, R2=ethyl

(d) F019-1000: R=Cl
F019-2195: R=methoxy

(e) K786-3665

(f) 4052-4503 (g) 5218-1214: R=2,3-dimethoxy
5218-1215: R=3,5-dimethoxy-4-hydroxy
5218-1227: R=2,4,5-dimethoxy

Figure 3.9: Molecules co-localized with compound 1.



3.1. COMPUTATIONAL PART 63

3.1.2 Fingerprint similarity

Performance of the method

The performance of eight different fingerprint types in retrieving actives was
compared to judge their applicability as a screening method in the present
work. Figure 3.10 shows the most similar molecules to compound 1 according
to these different fingerprints. All of the fingerprints identify a different
molecule as the most similar one, with similarity values ranging from 0.50
to 0.89. To see which features are determining the similarity in the case of
the MACCS fingerprint, the script ph4maccs_x.svl from the SVL Exchange
site118 was used to compare the keys of 1 and K026-0233. Compound 1 has
46 one-bits and K026-0233 shows 49 from a total of 166 possible features. Of
those, 41 are identical in both molecules. The features in common are listed
in table 3.7 and the corresponding structures are shown in figure 3.11.

These features are often overlapping, so that more than one feature ac-
count for a single structural motive. For example, the tertiary butyl group is
found by features 66, 74, 112, 141, 149 and 160 and the benzimidazole group
in K026-0233 as well as the indole group in 1 or its nitrogens are found with
a total of 16 features (65, 83, 96, 105, 120, 121, 125, 131, 137, 142, 151, 156,
161, 162, 163 and 165).

In general, a Tanimoto similarity value of 0.85 is regarded as a threshold for
similarity. As the most similar compounds to 1 had very differing similarity
values depending on which fingerprint was used, a general investigation of
how many compounds are identified at a certain threshold was performed.
The results are shown in figure 3.12. The typed atom/graph distance/triangle
fingerprints find a higher number of compounds from the screening library,
using the insulin mimetic compounds as queries, compared to the rest of
the fingerprints at the same similarity threshold. Taking a threshold of 0.6
for example finds the majority of the compounds with TAD, TAT, TGD
and TGT, but only a smaller fraction of the compounds using GpiDAPH3,
MACCS, piDAPH3 and piDAPH4 fingerprints.
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(a) C370-3764
GpiDAPH3: 0.55

(b) K026-0233
MACCS: 0.76

(c) 7210-2197
piDAPH3: 0.66

(d) K832-3461
piDAPH4: 0.50

(e) K781-8112
TAD: 0.85

(f) 6364-0110
TAT: 0.77

(g) C879-0521
TGD: 0.89

(h) 0167-0107
TGT: 0.87

Figure 3.10: Molecules of the screening library most similar to DMAQ-B1
(compound 1) using different fingerprints.
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Nr. Description

50: C in C=C bonded to >= 3 C
62: non-ring bonds that connect rings
65: N in aromatic bonds with C
66: CX4 bonded to >= 3 carbons
72: O separated by 3 bonds
74: dimethyl substituted atoms
76: C in C=C bonded to >= 3 heavy

atoms
83: heteroatoms in 5 ring
96: atoms in 5-rings
99: C in C=C; hets. ring bonded to a

3-ring bond X
112: atoms with coordination number

>= 4
120: key(137)-1 if key(137)>1; else 0

(comment: >= 2 heterocycle
atoms in rings)

121: N in rings
125: Is # of aromatic rings > 1?
127: key(143)-1 if key(143) > 1; else 0

(comment: >= 2 non ring O
connected to a ring)

131: het atoms with H
136: Is there more than 1 O=?
137: Total # ring heterocycle atoms
139: OH groups

Nr. Description

140: key(164)-3 if key(164)>3; else 0
(comment: >= 4 oxygens)

141: key(160)-2 if key(160)>2; else 0
(comment: >= 3 CH3 groups)

142: key(161)-1 if key(161)>1; else 0
(comment: >= 2 N atoms)

143: non ring O connected to a ring
144: atoms separated by (!:):(!:)
145: #6M ring >1
146: key(164)-2 if key(164)>2; else 0

(comment: >= 3 oxygens)
149: key(160)-1 if key(160)>1; else 0

(comment: >= 2 CH3 groups)
150: #X separated by (!r)-r-(!r)
151: NH
152: C bonded to >=2 C and 1 O
154: O in C=O
156: XN where coord. # of X>=3
157: O in C-O single bonds
159: key(164)-1 if key(164)>1; else 0
160: CH3 groups
161: N
162: aromatics
163: atoms in 6 rings
164: oxygens
165: ring atoms

Table 3.7: MACCS fingerprint features shared by 1 and K026-0233.

Figure 3.11: Compound 1 and K026-0233. Some selected common features
are marked with coloured circles.
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Figure 3.12: Number of identified compounds at different similarity thresh-
olds.

Another description of this effect is given in table 3.8, which shows the
similarity threshold which can be used to find 1% of the combined query
and screening databases. These similarity values range from 0.54 to 0.84.
Additionally, the enrichment factors of active compounds at this value are
given. Although the enrichment factor values are very high, one needs to
consider that the active molecules show a high structural similarity to each
other. The values seem to be higher for those fingerprints where a lower
similarity value is needed to find one percent of all compounds. This effect
is even more pronounced when only the first 100 structures are observed.

FP SV1% EF1% EF100

GpiDAPH3 0.55 100 6203
MACCS 0.64 100 6058
piDAPH3 0.68 97.7 5914
piDAPH4 0.54 100 6058
TAD 0.80 83.7 3173
TAT 0.75 97.7 6058
TGD 0.84 95.3 5193
TGT 0.83 97.7 5770

Table 3.8: Similarity values (SV1%) and enrichment factors at 1% of the
database (EF1%) and for the first 100 compounds (EF100). The maximum
enrichment factors are 100 and 6203, respectively.
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The behaviour of all the investigated fingerprints in retrieving actives as
compared to the identified ratio of actives to inactives is shown in figure 3.13.
While most of the fingerprints find the majority of the active compounds
before the ratio of actives in the identified subset is decreased, the behaviour
is different for the TAD fingerprint. This fingerprint reaches a low ratio of
actives in the selected subset long before all actives are identified.

As the fingerprints are very different in their behaviour, we decided to set
the similarity threshold for selecting new hits separately for each fingerprint.
The threshold was set at the similarity step which identified a ratio of at
least 60% actives. The chosen thresholds are summarized in table 3.9. TAT
was excluded from the screening as no compounds were selected according to
the selected threshold. As can be seen in figure 3.13f, no molecules from the
screening library were identified with a threshold of 0.80, a similarity value
at which nearly all active compounds have already been selected. The ratio
of actives to inactives drops drastically at the next similarity step (> 0.75).

GpiDAPH3 MACCS piDAPH3 piDAPH4 TAD TGD TGT

> 0.70 > 0.80 > 0.85 > 0.70 > 0.95 > 0.95 > 0.90

Table 3.9: Chosen thresholds for the fingerprints.

Performance on a new active molecule: Using compound 102 as ex-
ternal validation, none of the fingerprint methods would have identified this
molecule using the defined thresholds. The most similar molecules to 102
using the different fingerprints and their corresponding similarity values are
given in table 3.10. Only three of the fingerprints have the same query
structure as the most similar one (26). The remaining fingerprints all have
different queries as the most similar structure.
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(a) GpiDAPH3 (b) MACCS

(c) piDAPH3 (d) piDAPH4

(e) TAD (f) TAT

(g) TGD (h) TGT

Figure 3.13: Performance of different fingerprints in retrieving actives.
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fingerprint query similarity

MACCS 79 0.6981
GpiDAPH3 25 0.5684
piDAPH3 69 0.6365
piDAPH4 81 0.4794

TAD 28 0.7324
TAT 26 0.7367
TGD 26 0.8246
TGT 26 0.8384

Table 3.10: Most similar queries to compound 102

Identified compounds

Using the thresholds defined in table 3.9, all selected molecules were found
by using only ten active compounds as queries. These query structures are
summarized in figure 3.14 on page 70. The original insulin mimetic (1)
did not identify any new molecules at the selected thresholds. Instead, the
successful queries showed simpler structures, without large residues on the
indole rings and some with the indole ring substituted by a phenyl/naphthyl
ring or missing at all. Compounds 15, 31 and 32 are all more active than 1,
showing EC50 values of 0.3–1.5 mM as compared to the EC50 of 5 mM of the
original compound.38 Molecule 29 with an EC50 value of 7 mM is comparable
to 1 in activity and structure, but lacks the large chains on the indole ring.38

Compounds 33 and 34, which differ only in the position where the rest of
the molecule is connected on the naphthalene group, have a large difference
in activity (EC50 of 6 and 30 mM, respectively).38 While compounds 79,
80 and 84 are only medium active showing 34–38% activity as compared to
insulin at 30 mM, 91 shows 99% activity. As comparison, compound 1 has an
activity of 73% under the same conditions.43 In the following, an overview
of the identified molecules using these queries is given.

The GpiDAPH3 fingerprint compares the graph distances of three fea-
tures (aromatic system, donor or acceptor). Here, it identified six new com-
pounds using three different queries with a threshold of 0.70. The structures
are depicted in figure 3.15. When comparing the molecules to their query
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Queries:

(a) 15: R=NCH3
31: R=O
32: R=S

(b) 29 (c) 33

(d) 34 (e) 79 (f) 80

(g) 84 (h) 91

Figure 3.14: Fingerprint query structures used for the final selection.
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34:
(a) 8001-9473 (b) 8009-8459

79:
(c) C276-0105

91:
(d) 1683-6896 (e) 5696-0017 (f) 8017-3855

Figure 3.15: Compounds identified with GpiDAPH3

structures, they show in general a similar size and a corresponding distri-
bution of the features. However, 8009-8459 looks different in respect to the
arrangement of the rings. Instead of having the ring systems connected in
a linear way, three rings are connected to a central part. Molecules showing
this type of scaffold have also been identified using self-organizing maps with
2D autocorrelation descriptors.

MACCS identified 21 compounds using eight query structures with a
threshold of 0.80. Together with TGT, this fingerprint selects the highest
number of molecules. However, some of this molecules show a high similarity
to each other (see figures 3.16 and 3.17). Nearly all of the molecules selected
with 15 and 31 share an indane-1,3-dione substructure. With a Tanimoto
value of 0.89 to 80, K815-0024 (figure 3.17e) shows the highest similarity to
an active molecule achieved with MACCS fingerprint.

Using the piDAPH3 fingerprint at a threshold of 0.85, only three mole-
cules were identified (figure 3.18 on page 74). Compound C270-0349 was
identified with three different query structures (15,31 and 32) which are
identical using this type of fingerprint. Compounds 33 and 34, which have
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15:
(a) 4281-2071: R=p-carboxy
4281-2127: R=m-carboxy
4764-3635: R=m,m-dicarboxy
6332-2060: R=o-methyl,p-carboxy

(b) 5775-0353 (106): R=m-carboxy
6463-4542: R=p-carboxy

29:
(c) 5650-0022

31:
(d) 3553-1638

(e) 4057-0014 (f) 5340-2513 (g) 6332-1077

Figure 3.16: Compounds identified with MACCS (part 1)

nearly identical structures, identify two different types of scaffolds. 4659-
0068 has a rhodanine substructure, while 5750-3148 has a structure which is
more similar to the naphthoquinone derivatives found to be mostly inactive
on the insulin receptor.43

The 4-point pharmacophore fingerprint piDAPH4 finds five molecules
with two of the query structures with a similarity higher than 0.70 (see fig-
ure 3.19 on page 75). Using query compound 33 both identified compounds
show a rhodanine substructure, similar to the molecule identified with this
query using the piDAPH3 fingerprint. Using compound 91 as query, three
molecules with a thiazolidinedione substructure are identified. These mole-
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33/34:
(a) 000A-0190

79:
(b) 3029-0578 (c) 8009-3415 (d) K026-0216: R1=H, R2=OBn

K026-0228: R1=OH, R2=H
K026-0229: R1=H, R2=OH

79/80:
(e) K815-0024

79/84:
(f) K815-0023 (114)

80:
(g) 4693-1125 (h) 5408-1692

Figure 3.17: Compounds identified with MACCS (part 2)
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15/31/32:
(a) C270-0349 (121)

33:
(b) 4659-0068

34:
(c) 5750-3148

Figure 3.18: Compounds identified with piDAPH3

cules differ structurally from the molecules identified using GpiDAPH3 with
the same query.

With two query structures only, the TAD fingerprint finds 11 new mole-
cules at a threshold of 0.95 (see figure 3.20 on page 76). Although having
very high similarity values to the queries, they do not contain any quinone
substructures. Instead, the indole ring is more frequently found in structures
identified by TAD.

Using a threshold of 0.95, TGD finds two new molecules, one of them with
two of the query structures (see figure 3.21 on page 77). Here, the similarity
of the query structures is also reflected in a high similarity of the identified
structures to each other.

TGT selects 21 molecules using a threshold of 0.90. Of the selected
molecules, 16 were identified using 91 as query (see figure 3.23). Nearly all
of these molecules have an indole ring in their structure. The query structure
has methoxy- instead of the hydroxyl-groups at the quinone ring. This might
be reflected by a high number of ester and ether groups in the hit list. The
remaining structures were identified by several queries simultaneously (see
figure 3.22).
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33:
(a) 1682-6957 (b) 3057-0993

91:
(c) 2110-0307 (d) 2110-0308 (e) 3232-1864

Figure 3.19: Compounds identified with piDAPH4

Overall, fingerprint similarity identifies a high number of interesting new
structures. Different to self-organizing maps, the utilized selection procedure
did not lead to molecules selected by compound 1 as query. Instead, simpler
query structures were used. The identified molecules look quite diverse when
the results from different fingerprint types, as well as different query struc-
tures are compared. This shows the importance of using a set of queries,
even if there is redundancy in the input structures.
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31:
(a) 2950-0554 (b) C879-1278: R=F

G396-0972: R=H

33:
(c) C753-0198: R1=H, R2=o-F
E518-1612: R1=CH3, R2=p-CH3

(d) C753-1342 (e) E693-0068: R=Cl
E693-0476: R=F

(f) E847-0220 (g) G396-0138: R=CH3
G396-0426: R=F

Figure 3.20: Compounds identified with TAD
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32/33:
(a) 4587-0405

34:
(b) 6843-3207

Figure 3.21: Compounds identified with TGD

15/31/32/33/34:

(a) 1302-0002 (b) 5634-0239 (c) 8012-0041

15/31/32/33:
(d) 8012-0040

34:
(e) 5547-0011

Figure 3.22: Compounds identified with TGT (part 1)
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91:

(a) 000A-0036 (b) 0392-0008 (c) 0883-0041 (d) 3270-0678

(e) 3630-0578 (f) 3989-0098 (g) 4513-0296

(h) 6944-0119 (i) 7244-0063 (107) (j) 8009-7265 (120)

(k) 8012-8948 (l) 8017-5369 (m) 8017-7046

(n) C294-0271 (o) D155-0032 (p) K781-0936

Figure 3.23: Compounds identified with TGT (part 2)
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3.1.3 Shape similarity

Performance of the method

Shape similarity finds the first percent of the compounds at a similarity value
of 0.83. The enrichment factor at this percentage is 97.7, which corresponds
to finding 42 of the 43 active molecules.

Using the same definition of the threshold as done for the fingerprint
similarity, no new compounds would have been selected by shape similarity.
To include at least some hits from shape similarity, the similarity threshold
was decreased by 5% from 0.95 to 0.90. At this threshold, the ratio of actives
to identified compounds was approximately 40% (figure 3.24a).

(a) (b)

Figure 3.24: Performance of shape similarity in retrieving actives. The shown
bars are excluding (a) or including (b) identical molecules.

Interestingly, this method does not identify any active compound at a
similarity higher than 0.95, even if the active molecules are allowed to find
themselves (figure 3.24b). It seems that the generated conformations do not
include the original conformation of the queries.

Using 4 different conformations of compound 1 by rotating the ring sys-
tems leads to a diverse hit list. From the first 100 compounds, only eleven
were identified by two different conformations, and only one (C499-0927) was
identified by three conformations.
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Performance on a new active molecule: As with the fingerprints, the
new active molecule (102) would not have been identified using shape sim-
ilarity at the selected threshold. The most similar query is compound 9,
showing a similarity of 0.71. The aligned structures of those two molecules
are shown in figure 3.25.

Figure 3.25: Shape similarity alignment of query structure 9 (green) with
the new active compound 102 (grey).

Identified compounds

In total, 51 molecules of the screening database were selected with a similarity
value higher than 0.90. Eleven of the query molecules were used for the
selection of this new compounds. Five of them (compounds 33, 79, 80, 84
and 91) have been used as queries for fingerprint similarity as well. Those
structures can be seen in figure 3.14 on page 70, the remaining compounds
are shown in figure 3.26. The compounds most similar to the queries are
depicted in figure 3.27. In many cases, the ring topology remains identical
or very similar to the query structures. However, the quinone substructure
is usually replaced by substituted benzene rings.

As only the shape, but not the properties of the molecules were taken into
account using this screening method, the possibility of finding active mole-
cules with this technique might be lower than that of the previous methods.
Nevertheless, the hits were included for further processing to investigate the
overlap with the other identified molecules.
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(a) 57: R=F
58: R=Cl

(b) 59

(c) 63: R=H
81: R=CH3

(d) 82

Figure 3.26: Shape query structures used for the final selection.

3.1.4 Selection of compounds for testing

One aim of this thesis was to evaluate the results of the in silico screening
with biological experiments. For this, we sought a number of representative
compounds in the hit-lists of the different methods.

Combining the identified compounds by self-organizing maps (VSA or 2D
autocorrelation descriptors) as well as the fingerprint and shape similarity
approaches, a total number of 367 compounds was identified. A summary of
all these compounds can be found in table A.2 on page 130.

None of the compounds was identified with more than one method. There-
fore, the scaffolds of the identified molecules were further investigated to
reduce the number of hits to an amount feasible for testing. In total, 112
scaffolds were retrieved, of which 37 were found more than once with one
method or with at least two different methods. An overview of the number
of compounds and scaffolds identified with the different methods is presented
in table 3.11.

The number of scaffolds was further restricted to those which were found
by at least two different methods and/or at least ten times with one of the
methods. This was done to increase the possibility to find active molecules,
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33:
(a) 5498-2747

57:
(b) 3237-1339

58:
(c) R153-0142

59:
(d) 3546-0632

63:
(e) 6266-1861

79:
(f) R153-0159

80:
(g) C200-2391

81:
(h) R153-0213

82:
(i) C200-4795

84:
(j) 3347-1012

91:
(k) 8017-7602

Figure 3.27: Most similar compounds to the queries according to shape.
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Method Nr. compounds Nr. scaffolds

SOM 2D 145 51
SOM VSA 102 25
FP 69 26
Shape 51 25

Sum 367 127
Total 367 112

Table 3.11: Identified compounds and scaffolds

but also to have a number of derivatives for further investigations in case
that an active molecule is identified. Structures of all scaffolds are shown in
figure 3.28.

Representative structures of these clusters were determined by calculat-
ing the medoid according to three different types of descriptors, as described
in section 2.1.6 on page 36. Independently, one molecule per cluster was se-
lected as representative structure by hand. A consensus of the three medoids
and the selection by hand was searched by counting the votes and the corre-
sponding molecules were purchased for biological evaluation. The structures
of these molecules are shown in figure 3.29. The results of the cellular assay
are presented in section 3.2.2 on page 94.

In a follow-up study, derivatives of the active compound 112 were pur-
chased (figure 3.30) to allow the identification of preliminary structure-ac-
tivity relationships. These were mainly selected out of scaffold cluster 105,
trying to find a representative overview of all molecules in this cluster. Ad-
ditionally, some compounds bearing the same scaffold were chosen out of
the whole screening library, to complement the selection. Compound 116
was picked as substitute for 3331-2182, a compound found by self-organizing
maps with VSA descriptors, which has an additional fluorine at the para
position and was not available for purchase.

An overview of all purchased compounds, as well as the method which
was used to identify them, is given in table A.3 on page 140.



84 3. RESULTS

(a) 20:
all methods

(b) 32:
all methods

(c) 34:
Shape

(d) 87:
all methods

(e) 88:
SOM (2D), FP

(f) 105:
SOM (2D/VSA),
FP

(g) 139:
SOM (VSA), FP

(h) 150:
SOM (2D)

(i) 208:
SOM (VSA), FP

(j) 291: SOM (VSA) (k) 331: SOM
(VSA)

(l) 339: SOM (2D)

(m) 380: FP (n) 385:
SOM (2D/VSA)

Figure 3.28: Final selection of the scaffolds. The scaffold ID corresponds to
the numbers given in table A.2 on pages 130 ff.
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(a) 4204-0085 (103) (b) 4451-0051 (104) (c) 5982-0100 (105) (d) 6463-4542 (106)

(e) 7244-0063 (107) (f) 8014-1054 (108) (g) C073-3327 (109)

(h) C090-0245 (110) (i) D159-0883 (111) (j) E938-0156 (112)

(k) K788-0448 (113) (l) K815-0023 (114) (m) R153-0192 (115)

Figure 3.29: Molecules selected for biological investigation.
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SOM (2D):

(a) 8008-8508 (119): R1=p-phenyl
C301-5215 (123): R1=m-Cl,p-OCH3
C301-5408 (124): R1=m-F, R2=p-OCH3
E938-0003 (126): R1=2-OCH3,5-CH3
E938-0021 (127): R1=m-Cl,p-CH3

(b) E938-0051 (129) (c) E938-0077 (130)

SOM (VSA):
(d) 6623-0410 (117) (e) 7165-0402 (118)

FP:
(f) 8009-7265 (120) (g) C270-0349 (121)

hand-picked:
(h) 0095-0198 (116) (i) C301-4948 (122)

(j) C301-5428 (125) (k) E938-0036 (128): R=methyl ester
E938-0078 (131): R=carboxylic acid

Figure 3.30: Selected derivatives of compound 112.
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3.1.5 Docking

Beside the ligand based screening described in the previous sections, we have
additionally applied docking studies to the activated kinase domain of the in-
sulin receptor (PDB-ID: 1IR3). Aim of this docking study was to investigate
the potential of 1 and its derivatives to interact with previously proposed
binding sites on the kinase and to judge if this method would be applicable
for screening.

First, docking studies of the active compounds to the proposed binding
site at the N-terminal lobe of the kinase domain19 were performed. A sur-
face representation of this binding site is shown in figure 3.31. Potential
H-bonding partners are depicted in purple, mild polar regions are shown in
blue and hydrophobic areas are coloured green. Amino acids of the binding

Figure 3.31: Surface representation of a proposed binding site.

sites which could be important for binding are shown in figure 3.32 using the
same perspective. Arg1041 as well as Lys1052 can form cation/p interactions
to the indole rings of the molecules. Using a different rotamer of Arg1041
could even result in poses where both interactions can be seen simultaneously
in one molecule, when the molecule is placed in parallel to the aC helix. An-
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Figure 3.32: Selected amino acids of the proposed binding site.

other possibility is to place the molecules in an upright position with the
quinone ring forming a hydrogen bond to Glu990. At the same time, one of
the indole rings could be stabilized by a cation/p interaction to Lys1052.

To our knowledge, no information is available in the literature on the
importance of any amino acids for the interaction of compound 1 or its
derivatives with the receptor kinase. Therefore, only the information derived
from the molecules can be used to prioritize one of the docking poses. For
this, only compounds having both indole rings were used to identify binding
poses with the scaffold in a similar orientation. This led to the identification
of a cluster showing poses of all investigated molecules. These poses show
cation/p interactions of Arg1041 to one of the indole rings and a possible
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hydrogen bond of the indole-NH to Gln1070. The latter interaction can only
be seen after energy refinement of the binding pocket. The quinone ring can
form hydrogen bonds to Arg1041 as well as to Thr1072. A comparison of
the active compound 1 and the inactive compound 2 is shown in figure 3.33.
While a large residue on position 7 of the right indole ring fits well into the
pocket, this is not the case for substituents on position 2. This could lead to
a displacement of the indole ring, as well as the adjacent quinone, moving it
outwards of the binding pocket. Methyl substitutions on other positions at
the indole ring as seen in several inactive derivatives of 1 would point to the
inside of the binding pocket.

Compound 3 has a methyl group on the indole nitrogen. The decreasing
activity could be explained by the lost possibility of forming a hydrogen bond
to Gln1070 (figure 3.34a). Still, not all of the activity changes can be easily
explained by this proposed binding mechanism. For example, compounds 23
and 27 differ only by the presence or absence of the methyl group on the
indole nitrogen. But in this case, the molecule with the methylation is the
more active one.40

We also investigated a binding site which was proposed for a-lipoic acid
by Diesel et. al (see figure 3.35).53 The Site-finder tool of MOE was not able
to detect this binding pocket. As compound 1 is larger than a-lipoic acid
(compare figure 1.9d on page 15) we were not able to place the compound
into this binding site. Docking of the compounds might only be possible after
structural rearrangement of the binding site.

While docking to the binding site on the N-terminal lobe could propose
many possible ways in which the molecules could interact with the binding
site residues, the exact binding mode could not be determined with certainty.
A complicating factor is that this site is exposed to solvent, thus increasing
the possible modes in which a molecule could fit into the pocket. Additionally,
the crystal structure only includes the intracellular domain of the insulin
receptor. In the whole receptor, the N-terminal part would be connected to
the transmembrane domain. This, as well as the dimerisation of the receptor,
could alter the properties of the binding site, leading to different interaction
possibilities. We therefore decided not to include docking for screening.
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(a)

(b) 1 (c) 2

Figure 3.33: Comparison of the docking pose of compound 1 (active, in
green) with compound 2 (inactive, in red).
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(a) 3

(b) 23 (c) 27

Figure 3.34: Docking poses of compounds 3, 23 and 27.
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Figure 3.35: Binding site proposed in reference 53. Amino acids mentioned
in the publication are depicted in stick representation, the binding site is
shown as a surface.
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3.2 Experimental part

3.2.1 Preliminary studies with DMAQ-B1

To find the best conditions for the screening, preliminary studies were con-
ducted with demethylasterriquinone B1 (compound 1). First, its ability to
trigger insulin receptor phosphorylation directly was assessed in hepatocytes
(HCC-1.2). Although different concentrations (figure 3.36) and incubation
times (figure 3.37) were tried, compound 1 only elicited a weak increase in
IR phosphorylation. Interestingly, higher concentrations of compound 1 de-
creased the total number of the insulin receptor b-subunit. The strongest
signal was achieved after 5 minutes. Using a concentration of 30 mM, com-
pound 1 led to an approximately five-fold increase of insulin receptor phos-
phorylation as compared to solvent control, while insulin (10 nM) increased
the signal 15-fold under the same conditions (figure 3.37).

Figure 3.36: Phosphorylation of the insulin receptor by stimulation with
insulin and compound 1 at different concentrations for 10 minutes in HCC-
1.2 cells (single experiment).

Since this would not leave much room for the detection of new molecules
which are less active than compound 1, a read-out for screening was selected.
Phosphorylation of Akt on Ser473, which is a downstream target of insulin
signaling, turned out to give a stronger signal, especially when tested in
mouse embryonic fibroblasts (MEF). Detection of Akt Ser473 was therefore
subsequently used to identify active hits.
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(a)

(b)

Figure 3.37: Time course of insulin receptor phosphorylation upon exposure
to insulin and compound 1 (30 mM, 0.5% DMSO) in HCC-1.2 cells. (a)
Representative Western blot; (b) mean values (± SD) of four independent
experiments.

3.2.2 Screening for active compounds

The purchased compounds were screened for inducing Akt Ser473 phospho-
rylation in MEF at 30 mM (figure 3.38). Of the 13 purchased compounds,
ten were soluble in DMSO at a concentration of 100 or 50 mM. One of the
molecules, compound 109 precipitated when diluted in cell culture medium.
Of the tested compounds, three molecules were found to be active by leading
to markedly increased Akt phosphorylation in MEF (compounds 104, 105
and 112).

Derivatives of compound 112 were subsequently tested to allow the inves-
tigation of basic structure activity relationships. The outcome of this exper-
iment is shown in figure 3.39 and the corresponding structures are depicted
in figure 3.40. Different substitutions of the phenyl rings (compounds 123,
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(a)

(b)

Figure 3.38: Akt activation by selected hit compounds (30 mM, 0.5%
DMSO).(a) Representative Western blot; (b) mean values ± standard de-
viation relative to the signal strenght of insulin (n=1 for compounds 109
and 115, n=3 for remaining compounds).

Figure 3.39: Akt activation by derivatives of compound 112 (30 mM). Shown
are the mean values ± standard deviation of the intensities relative to solvent
control (0.5% DMSO) of three independent experiments.
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124, 126 and 127) were generally well tolerated. The only exception found,
was a carboxylic acid group at the para position of the aniline ring (com-
pound 131). This compound was inactive, while the corresponding methyl
ester (128) was medium active. Replacement of the whole aniline ring by a
morpholine group (compound 130) decreases the activity, but replacement
of the nitrogen by a piperazine group (122) does not affect the activity. Not
fully explored is the influence of omitting one of the rings. Compounds 116
and 121 have a carboxy and a carboxylic acid moiety instead of the aniline
ring, respectively, which leads to a complete loss of activity. On the other
hand, compound 117 has an carboxy group instead of the second phenyl
ring and is one of the most active compounds identified in this study. But
this compound also has an amide instead of the nitrogen, thus it is not clear
which feature is finally responsible for the activity.

Dose response studies with compound 117, one of the most active new
molecules, were performed to show the concentration dependency of the ac-
tivity and to compare it to that of compound 1 (figure 3.41). Although 1
was more active at 30 mM, the activity was comparable to that of the original
compound at 10 mM.
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Active compounds:

(a) 112: R=m-Cl,p-F
123: R=m-Cl,p-OCH3
127: R=m-Cl,p-CH3

(b) 117 (c) 122

(d) 124 (e) 126 (f) 129
Medium active compounds:

(g) 128 (h) 130
Inactive compounds:

(i) 116 (j) 120 (k) 121 (l) 131

Figure 3.40: Structure activity relationships of derivatives of compound 112.
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(a)

(b)

Figure 3.41: Comparison of Akt Ser473 phosphorylation elicited by different
concentrations of compounds 1 and 117 in MEFs. (a) Representative West-
ern blot; (b) Mean values (± SD) of at least two independent experiments.
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3.2.3 Further characterization of active compounds

Cytotoxicity: As one of the goals was to identify substances less cytotoxic
than the original compound 1, the influence of the compounds on cell mass
was investigated using the crystal violet assay. While compounds 104 and
112 show no cytotoxic effects at 30 mM, nearly all cells detach from the well
when treated with compound 105. Of the derivatives of compound 112, only
117 shows cytotoxic effects comparable to those of compound 1. The results
of the crystal violet assay are summarized in figure 3.42.

Figure 3.42: Cell mass after treatment with compounds at 30 mM for 24 h
relative to solvent control values, ± standard deviation (n≥3). C: solvent
control (DMSO 0.5%); E: empty wells; M: wells filled with media only.

PTP1B inhibition: The signals of compound 1 observed with the anti-
body against the phosphorylated insulin receptor resembled those seen with
sodium orthovanadate, a known inhibitor of PTP1B (data not shown). We
therefore decided to test the action of 1 against PTP1B. Indeed, compound
1 showed an IC50 of 7.3 mM in vitro, as measured by Renate Baumgartner.117

Subsequently, all compounds from the first screening round were tested at
100 mM to investigate their activity on PTP1B inhibition. The results are
shown in figure 3.43, with especially compound 105 showing a high inhibitory
activity. Compounds 103 and 114 were active in the PTP1B assay, but in-
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Figure 3.43: PTP1B inhibition by the indicated compounds (100 mM). Val-
ues are given as residual PTP1B activity as compared to solvent control
(1% DMSO), ± standard deviation (n≥2). UA: ursolic acid (30 mM), SOV:
sodium orthovanadate (10 mM)

active in phosphorylating Akt in the cellular assay. Both however showed
increased background values in the PTP1B assay and might be false posi-
tives. Especially compound 114 was showing a yellow/orange colour itself,
and thus might interfere with the readout of the assay, which measures the
presence of a yellow coloured product of PTP1B cleavage (see page 47).

Selected derivatives of 112 were tested for PTP1B inhibition by Sophie
Bartenstein (figure 3.44). Although all three compounds are activating Akt,
only compound 117 shows high inhibitory activity against PTP1B.

Glucose uptake: The three active compounds (104, 105 and 112) were
tested in a single glucose uptake experiment in myocytes to get a first over-
view on their activity. Figure 3.45 shows the result of this experiment,
where only compound 112 increased the glucose uptake at a concentration of
100 mM. Compounds 1, 104 and 105 decreased the uptake of glucose, but led
also to a markedly lower protein concentration compared to DMSO-treated
control cells, suggesting a cytotoxic effect.

Dose response studies (30 and 100 mM) of selected compounds are shown
in figure 3.46. Compound 1 led to a dose-dependent decrease in cellular
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Figure 3.44: PTP1B inhibition by the indicated compounds (30 and 100 mM).
Values are given as residual PTP1B activity as compared to solvent control
(1% DMSO), ± standard deviation (n≥2). UA: ursolic acid (30 mM), SOV:
sodium orthovanadate (10 mM)

Figure 3.45: Glucose uptake in myocytes (triplicate from single experiment).
Cells were treated with insulin (100 nM) and compounds (100 mM) for 60 min
before incubation with 3H-DOG (10 min).
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Figure 3.46: Glucose uptake in myocytes relative to solvent control (mean
values ± standard deviation of at least three independent experiments).

Figure 3.47: Glucose uptake in adipocytes relative to solvent control (0.1%
DMSO). Cells were treated with insulin (100 nM, 30 min) or the indicated
compounds (30 mM, 60 min) before incubation with 3H-DOG (5 min). Glu-
cose uptake values are mean ± standard deviation, n=3.

glucose uptake, possibly due to cytotoxic effects. Of the tested compounds,
only compound 112 led to a dose-dependent increase of glucose uptake. Com-
pound 117 showed a small increase of glucose uptake as well, but was too
cytotoxic to be tested at 100 mM.

Contrary to previous reports in the literature, we could not see a relevant
increase of the glucose uptake rate in adipocytes by compound 1 in the tested
concentrations and incubation times (30 and 100 mM, 30 and 60 min, data not
shown), which is consistent with our data obtained in myocytes. Compound
117 was able to increase the glucose uptake (see figure 3.47), but not in a
statistically significant way as assessed by Student’s t-test (p=0.148).
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Discussion

4.1 Computational methods

According to Seifert and Lang, the aim of virtual screening is to “enable the
initiation of a medicinal chemistry program with a reasonable probability
for identifying a lead compound”.119 A virtual screening approach should
therefore find at least one active molecule which can then be further used in
medicinal chemistry. Following this definition, the presented screening was
successful, leading to the identification of an active molecule (112), of which
the activity and cytotoxicity can be modified by slight structural changes.
Another prerequisite for a successful virtual screening method is that the
same result could not have been acquired with much simpler techniques.70

As the training of large self-organizing maps with the screening database is
a time consuming process, this is a valid objection. The performance of the
different methods which were used in this project is therefore discussed in
more detail in the following. The performance of the different methods in
retrieving active hits is shown in table 4.1 for the initial screen, as well as
for compound 112 and its derivatives. The number of compounds soluble
in the stock solutions are indicated in brackets in case they are dissimilar to
the total number.

All initially identified active compounds were found using self-organizing
maps. Additionally, self-organizing maps were the only investigated method

103
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Method active/tested

screening derivatives

SOM (2D autocorr.) 2/5(4) 5/7(6)
SOM (VSA descr.) 1/4(3) 1/2(1)
Fingerprints 0/3(2) 0/2
Shape 0/1 0/0
Picked by hand 0/0 1/5(4)

Total 3/13(10) 7/16(13)

Table 4.1: Number of active vs. amount of purchased (tested) compounds
for the initial screening and for the tested derivatives of compound 112.

able to identify compound 102,46 an active molecule published after the
building of the models. The compound was identified on several maps trained
with 2D autocorrelation descriptors using the subset of the screening library.

Self-organizing maps in general performed well in separating the active
and inactive compounds of the training set. Still, they were not able to
distinguish between molecules of different classes in all cases. Especially
when slight structural changes like the position of a methyl group on an indole
ring were causing a change in activity. Although it might have been possible
to increase the performance of the self-organizing maps to separate active
from inactive derivatives by using different descriptors and feature selection
methods we decided to use more general sets of descriptors. With this, we
intended to allow a separation between molecules similar and dissimilar to
the training set, rather than a separation between slight structural changes
seen to be responsible for activity. Additionally, one has to take into account
that self-organizing maps are unsupervised machine learning methods. They
do not use the class information for the training process, and are thus not
primarily classification tools. Instead, our aim was to identify molecules
which are near to the training compounds in chemical space.

For this, we also investigated whether first selecting a subset of molecules
according to their descriptor similarity would influence the resulting maps.
Of the 145 compounds which were in total selected with self-organizing maps
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using 2D autocorrelation descriptors, 47 were already in the subset which was
selected according to the Euclidean distance. The self-organizing maps with
the VSA descriptors find in total 102 compounds, with 40 of them being
already in the distance based subset. From the nine purchased molecules
selected by self-organizing maps in the first round, five were already in the
subsets, among them all three active compounds. Setting a similarity thresh-
old based on the Euclidean distance to the query compounds might thus be
an additional filter to refine the hits found by a self-organizing map. But
training the compounds with the subset only, would not have led to the
identification of the active hits, as they were localized in active neurons on
the large maps only. Instead of using the Euclidean distance to the train-
ing compounds as a threshold, novelty detection with self-organizing maps99

could be performed to use the distance to the winning neuron as assessment
for the applicability domain. Additionally, increasing the size of the network
could decrease the number of erroneous co-localizations, but this leads to
a significant prolongation of the calculation time, an effect not wanted in
virtual screening approaches.

Fingerprint similarity, which is a very fast method, identified several
molecules with interesting structures. However, all tested molecules identified
with this method were found to be inactive. For example, compound 107
has an indole and a phenyl ring connected by a quinone-like structure (see
figure 3.29e). It therefore resembles the query compounds more than the
identified actives, but was nevertheless inactive in our test system. Still, as
only a small number of the identified compounds has been tested, we might
have missed actives identified with this method.

After knowing the activities of the purchased molecules, we investigated
if changes in our selection criteria for the fingerprints would have led to the
identification of the active compounds. An alternative to setting an overall
threshold for each fingerprint would be to select the most similar molecule
to each of the queries. Indeed, compound 105 was the most similar molecule
of the screening library to compound 32, showing a similarity value of 0.77.
The chosen threshold for the MACCS fingerprint was 0.80, thus not allowing
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the identification of the molecule with this method.

The used criterion for selecting molecules with fingerprints led to a dif-
ferent amount of identified compounds for the different types of fingerprints.
Especially molecules identified with MACCS and TGT fingerprints are there-
fore overrepresented in the dataset, which is, especially for the MACCS fin-
gerprint, in part compensated by a higher similarity of the hits to each other.
When considering the enrichment rates of the different fingerprints for the
first 100 compounds (table 3.8 on page 66), TGT performs worse than TAT,
for which no hits have been selected at all using our thresholds.

Shape similarity: The final selection of compounds for testing included
only one molecule identified by shape similarity. Although this compound
was then inactive in our test system, the usability of this method can not be
judged by one instance only. As the identified hits of this method heavily
depend on the 3D conformation of the query structures it might not be
appropriate to use one query conformation only. Instead, one could use a
different software which allows conformational flexibility of the query as well
as the screening database. A different possibility would be to use the ligand
conformation derived from docking studies, which could be the topic of future
work.

Docking was used to investigate whether compound 1 and its derivatives
could bind to one of the binding sites on the kinase domain of the insulin
receptor proposed in references 19 and 53. While the latter binding site seems
to be too small for the compounds, they should be able to bind to the pocket
between the aC helix and the b-sheets of the N-terminal lobe of the kinase
domain. This binding pocket is large enough in size and contains several
amino acids which could contribute to the binding of the compounds. It is
also equivalent to the binding pocket of activators of PDK1, which is to our
knowledge the only published kinase co-crystallized with an activator.68,69
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4.2 Biological investigations

In our cell systems we could observe that while compound 1 was able to acti-
vate Akt to similar levels as insulin, it was much less able to activate the in-
sulin receptor under the same conditions. This is comparable to observations
made previously in reference 35. We therefore chose Akt phosphorylation as
our screening readout, identifying three active hits. Since, however, Akt is
activated by many different signalling pathways,120 we aimed at showing and
confirming the activity of the identified compounds in an assay more rele-
vant to diabetes. As one of the main goals of anti-diabetic drugs is lowering
of blood glucose levels, the ability of selected molecules to stimulate glucose
uptake in fat- and muscle cells was investigated. Indeed, compound 112 stim-
ulated glucose uptake in myocytes, while the others (including compound 1)
decreased the uptake. Additionally, glucose uptake induced by compound 1
in 3T3L1 adipocytes as reported in the literature35 could not be reproduced
in our system. This could maybe be explained by different handling of the
cells, or that our cells were more susceptible to the cytotoxic effects of the
compound.

Different to previous reports in the literature,32,33 we measured inhibition
of PTP1B by compound 1. None of the cited references reported the assays
used to assess possible inhibitory effects of compound 1. It is therefore
difficult to judge what led to these different results. Also some of our new
compounds (105 and 117) showed this inhibition of PTP1B. Interestingly,
molecules active in the PTP1B assay were also those showing cytotoxic effects
and compounds activating Akt were not necessarily inhibiting PTP1B.

Pan assay interference compounds (PAINS): Baell and Holloway121

published a list of frequent hitters in high throughput screening. They iden-
tified 2 062 compounds which were found in at least four of their assays and
362 which were found with all six assays. From these structures they de-
fined substructures which are potentially problematic. The filters for these
pan assay interference compounds (PAINS) were implemented in a KNIME
workflow recently.122
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Using these filters, already most of the compounds of the training data-
base would have been identified due to their p-quinone structure. From the
active molecules, only compounds 100, 101 and 102 were not recognized by
the filters. Quinones were already reported to be protein-reactive and com-
pound 1 was found to be active against additional targets than the insulin
receptor.

Many of the structure types reported to have the possibility to be PAINS
have been identified with our computational methods. Of the final 367 iden-
tified compounds, 133 failed the check using the KNIME workflow with the
Indigo nodes, 91 using the RDKit nodes. One example are rhodanine-like
structures. Using piDAPH3 and piDAPH4 fingerprints, several molecules
containing a thiazolidinedione or a rhodanine substructure have been iden-
tified. Some of the currently known anti-diabetic compounds belong to the
class of the thiazolidinediones. One of our rhodanine hits, compound 3057-
0993 (figure 3.19b on page 75), was identified by Choi et al. as having a similar
scaffold as active hits in a virtual screening for PPAR-g agonists (compound
SP1802 in reference 123). This compound however only showed little activ-
ity, having only 11.71% PPARg binding activity and 1.21 fold transcriptional
activation of PPAR-g in cells.123 Similar structures were also identified by
virtual screening using docking for PTP1B inhibition.73,74 Other thiazo-
lidinedione derivatives were shown to act both as inhibitor of PTP1B as well
as activator of PPAR-g .124

Even some of our purchased molecules were identified as possible PAINS
with these filters. Compound 103 was identified due to its p-quinone moiety.
This compound showed PTP1B inhibition, but was inactive in the cellu-
lar system. Compounds 106, 108 and 110 were identified by the filtering,
but could not be tested due to poor solubility in the stock solutions. But
also the active molecule 112 and its derivatives were identified because of
their 1,3-indandione substructures (keto_keto_beta_A group in reference
121). Still, 112 seemed to be less cytotoxic than the other initial hits, which
was one of the reasons to choose it for further investigation of derivatives.
Indeed, the cytotoxicity of the compounds did not seem to correlate with
the activity of the molecules. But for one of the molecules it could be true
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that it is a pan assay interference compound. Compound 117 is one of the
most active molecules identified in this study. But it additionally inhibits
PTP1B, and also shows cytotoxic effects. This molecule (PubChem SID:
4242461) was reported before to be an inhibitor of other phosphatases. It
has an IC50 of 14.2 mM against the mitogen-activated protein kinase (MAPK)
phosphatase-1 (MKP-1).125 Furthermore it was reported to have an IC50 of
4.3 mM against human cell division cycle 25 protein B (Cdc25B), but an IC50

larger than 50 mM for MKP-1 and an IC50 of 48.7 mM against MKP-3.126 To
determine if the mode of action of the compound against Cdc25B involves
oxidation, the strong reducing agent dithiothreitol (DTT, 1 mM) in the as-
say was replaced by b-mercaptoethanol (1 mM), reduced glutathione (1 mM)
or DTT (25 mM). Additionally, catalase (100 U) was added to degrade the
produced H2O2 with 1 and 25 mM DTT. Compound 117 had an IC50 larger
than 50 mM in all these conditions. In a redox cycling H2O2 generation as-
say in the presence of 0.5 mM DTT the compound showed a 50% activation
concentration (AC50) value of 28.6 mM. These results indicate that the in-
hibition of Cdc25B by compound 117 is due to the generation of reactive
oxygen species (ROS).126 As PTP1B is susceptible to oxidation as well, this
might be the cause of the compound’s activity against this phosphatase.
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Conclusions

Using our computational screening methods and testing only a few selected
molecules in biological assays, we were successful in identifying possible in-
sulin mimetic compounds. These molecules were shown to activate Akt, a
downstream target of the insulin receptor. One of the compounds was shown
to increase the glucose uptake in myocytes.

Still, only a small proportion of the identified molecules has been tested.
To conclude which of the used methods is superior to the others, a higher
number of tested molecules would be necessary, which was not feasible in
the course of this project. In addition, the other scaffold clusters possibly
also contained some active molecules. It has been shown that there is a high
chance of missing the activity in a set of similars, if only one molecule out of
this set is tested.78 Further research will also be necessary to confirm whether
the mode of action of the new molecules is direct activation of the insulin
receptor, as was done for the original compounds.

Given that the identification of compound 1 needed the cell-based screen-
ing of over 50 000 samples,32 the recent work was a successful start to the
investigation of new insulin receptor activators, showing many possible topics
for future research.
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Appendix A

Databases
Insulin mimetics: Table A.1 shows demethylasterriquinone B1 and all its
derivatives from the literature used in this study. It gives the numbering
used in this work as well as all previously published numbers and codes and
the activity class which the compounds were assigned to. The structures of
the molecules are given in SMILES format.

Nr. Name in literature Activity SMILES

1 L-783,281,32,39

compound 1,38–40

demethylasterri-
quinone B-1,41

demethylasterri-
quinone B1,33,35

demethylasterri-
quinone-B1,43

DMAQ-B1,41

DAQ B1,33,35

DAQ-B143

1 OC1=C(C(=O)C(O)=C(C1=O)c1c2c
([nH]c1)c(ccc2)CC=C(C)C)c1c2c
([nH]c1C(C=C)(C)C)cccc2

2 L-767,82732,41 0 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c([nH]c1C(C=C)(C)C)cccc2)
c1c2c([nH]c1C(C=C)(C)C)cccc2

3 26{1}33 1 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c([nH]c1)c(ccc2)CC=C(C)C)
c1c2c(n(C)c1C(C=C)(C)C)cccc2

4 26{2}33 1 OC1=C(C(=O)C(O)=C(C1=O)c1
c2c([nH]c1)c(ccc2)CC=C(C)C)c1c2c
([nH]c1C(C=C)(C)C)c(ccc2)C

Table A.1: DMAQ-B1 and its derivatives Continued on next page...
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Nr. Name in literature Activity SMILES

5 26{3}33 1 OC1=C(C(=O)C(O)=C(C1=O)c1
c2c([nH]c1)c(ccc2)CC=C(C)C)c1
c2c([nH]c1C(C=C)(C)C)cc(cc2)C

6 26{4}33 1 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c([nH]c1)c(ccc2)CC=C(C)C)
c1c2cc(ccc2[nH]c1C(C=C)(C)C)C

7 26{5}33 1 OC1=C(C(=O)C(O)=C(C1=O)c1c2c
([nH]c1)c(ccc2)CC=C(C)C)c1c2c
([nH]c1C(C=C)(C)C)cccc2C

8 26{6},33 840 1 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c(n(c1)C)c(ccc2)CC=C(C)C)
c1c2c([nH]c1C(C=C)(C)C)cccc2

9 26{7}33 1 OC1=C(C(=O)C(O)=C(C1=O)c1c2c
([nH]c1C)c(ccc2)CC=C(C)C)c1c2c
([nH]c1C(C=C)(C)C)cccc2

10 26{8}33 0 OC1=C(C(=O)C(O)=C(C1=O)c1
c2c([nH]c1)c(ccc2C)CC=C(C)C)c1
c2c([nH]c1C(C=C)(C)C)cccc2

11 26{9}33 0 OC1=C(C(=O)C(O)=C(C1=O)c1c2c
([nH]c1)c(cc(c2)C)CC=C(C)C)c1c2c
([nH]c1C(C=C)(C)C)cccc2

12 26{10}33 0 OC1=C(C(=O)C(O)=C(C1=O)c1c2c
([nH]c1)c(CC=C(C)C)c(cc2)C)c1c2c
([nH]c1C(C=C)(C)C)cccc2

13 26{11}33 0 O(C)C1=C(C(=O)C(O)=C(C1=O)
c1c2c([nH]c1C(C=C)(C)C)cccc2)c1c2
c([nH]c1)c(ccc2)CC=C(C)C

14 26{12},33

340
0 O(C)C1=C(C(=O)C(O)=C(C1=

O)c1c2c([nH]c1)c(ccc2)CC=C(C)C)
c1c2c([nH]c1C(C=C)(C)C)cccc2

15 2h,38

compound 2,39,42

CPD2127

1 OC1=C(C(=O)C(O)=C(C1=O)c1c2c
(n(c1)C)cccc2)c1ccccc1

16 2c,38

compound 339,42
0 O(C)c1ccc(cc1)C=1C(=O)C(O)

=C(C(=O)C=1O)c1ccccc1
17 240 0 O(C)C1=C(C(=O)C(OC)=C(C1

=O)c1c2c([nH]c1)c(ccc2)CC=C(C)
C)c1c2c([nH]c1C(C=C)(C)C)cccc2

18 440 0 O=C1C(=C(NC)C(=O)C(=C1NC)
c1c2c([nH]c1)c(ccc2)CC=C(C)C)
c1c2c([nH]c1C(C=C)(C)C)cccc2

Table A.1: DMAQ-B1 and its derivatives Continued on next page...
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Nr. Name in literature Activity SMILES

19 540 0 S(OC1=C(C(=O)C(OS(=O)(=O)
C(F)(F)F)=C(C1=O)
c1c2c([nH]c1)c(ccc2)CC=C(C)C)
c1c2c([nH]c1C(C=C)(C)C)cccc2)
(=O)(=O)C(F)(F)F

20 640 0 S(OC1=C(C(=O)C(N)=C(C1=O)
c1c2c([nH]c1)c(ccc2)CC=C(C)C)
c1c2c([nH]c1C(C=C)(C)C)
cccc2)(=O)(=O)C(F)(F)F

21 740 0 OC1=C(C(=O)C(N)=C(C1=O)
c1c2c([nH]c1)c(ccc2)CC=C(C)C)
c1c2c([nH]c1C(C=C)(C)C)cccc2

22 940 0 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c(n(c1)C)c(ccc2)CC=C(C)C)
c1c2c(n(C)c1C(C=C)(C)C)cccc2

23 1140 1 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c([nH]c1)c(ccc2)CCC(O)(C)C)
c1c2c(n(C)c1C(C=C)(C)C)cccc2

24 1340 1 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c([nH]c1)c(ccc2)CC=C(C)C)
c1c2c([nH]c1C(CC)(C)C)cccc2

25 1440 1 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c([nH]c1)c(ccc2)CCC(C)C)
c1c2c([nH]c1C(CC)(C)C)cccc2

26 1540 1 FC(F)(F)C(OC(CCc1c2[nH]cc(c2ccc1)
C=1C(=O)C(O)=C(C(=O)C=1O)c1c2c
([nH]c1C(C=C)(C)C)cccc2)(C)C)=O

27 1640 1 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c([nH]c1)c(ccc2)CCC(O)(C)C)
c1c2c([nH]c1C(C=C)(C)C)cccc2

28 1740 1 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c([nH]c1)c(ccc2)CC(O)C(O)(C)C)
c1c2c([nH]c1C(C=C)(C)C)cccc2

29 2a38 1 OC1=C(C(=O)C(O)=C(C1=O)c1c2c
([nH]c1)cccc2)c1c2c([nH]c1)c(ccc2)C

30 2b38 1 OC1=C(C(=O)C(O)=C(C1=O)c1c2c
([nH]c1)cccc2)c1ccccc1

31 2d38 1 o1cc(c2c1cccc2)C=1C(=O)C(O)
=C(C(=O)C=1O)c1ccccc1

32 2e38 1 s1cc(c2c1cccc2)C=1C(=O)C(O)
=C(C(=O)C=1O)c1ccccc1

Table A.1: DMAQ-B1 and its derivatives Continued on next page...
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Nr. Name in literature Activity SMILES

33 2f38 1 OC1=C(C(=O)C(O)=C(C1=O)
c1ccccc1)c1c2c(ccc1)cccc2

34 2g38 1 OC1=C(C(=O)C(O)=C(C1=O)
c1ccccc1)c1cc2c(cc1)cccc2

35 ZL-I-19743 0 OC1=C(C(=O)C(O)=CC1=O)
c1c2c([nH]c1)cccc2

36 ZL-I-18643 0 OC1=C(C(=O)C(O)=CC1=O)
c1c2c([nH]c1C)cccc2

37 ZL-III-24443 0 OC1=C(C(=O)C(O)=CC1=O)
c1c2c([nH]c1CC)cccc2

38 ZL-I-18443 0 OC1=C(C(=O)C(O)=CC1=O)
c1c2c([nH]c1C1CC1)cccc2

39 ZL-I-18543 0 OC1=C(C(=O)C(O)=CC1=O)
c1c2c([nH]c1C(C)C)cccc2

40 LD-I-20543 0 OC1=C(C(=O)C(O)=CC1=O)
c1c2c([nH]c1C1(CC1)C)cccc2

41 ZL-II-20543 0 OC1=C(C(=O)C(O)=CC1=O)
c1c2c([nH]c1C(C)(C)C)cccc2

42 ZL-III_25443 0 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1C1(CCCCC1)C)cccc2

43 ZL-I-20743 0 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1-c1ccccc1)cccc2

44 ZL-202,43 3133 0 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1C(C=C)(C)C)cccc2

45 LD-I-21743 0 Fc1c2c([nH]cc2C=2C(=O)C
(O)=CC(=O)C=2O)ccc1

46 LD9B43 0 Clc1c2c([nH]cc2C=2C(=O)C
(O)=CC(=O)C=2O)ccc1

47 LD11B43 0 Brc1c2c([nH]cc2C=2C(=O)C
(O)=CC(=O)C=2O)ccc1

48 LD19B43 0 O(C)c1c2c([nH]cc2C=2C(=O)C
(O)=CC(=O)C=2O)ccc1

49 ZL-III-24943 0 O(Cc1ccccc1)c1c2c([nH]cc2C=2C(=O)
C(O)=CC(=O)C=2O)ccc1

50 LD13B43 0 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1)cccc2C

51 LD-I-20443 0 Fc1cc2c([nH]cc2C=2C(=O)C
(O)=CC(=O)C=2O)cc1

52 ZL-III-25543 0 Clc1cc2c([nH]cc2C=2C(=O)C
(O)=CC(=O)C=2O)cc1

Table A.1: DMAQ-B1 and its derivatives Continued on next page...
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53 ZL-III-25743 0 Brc1cc2c([nH]cc2C=2C(=O)C
(O)=CC(=O)C=2O)cc1

54 LD-5B43 0 OC1=C(C(=O)C(O)=CC1=O)
c1c2cc(O)ccc2[nH]c1

55 ZL-III-24843 0 O(Cc1ccccc1)c1cc2c([nH]cc2
C=2C(=O)C(O)=CC(=O)C=2O)cc1

56 LD20B43 0 OC1=C(C(=O)C(O)=CC1=O)
c1c2cc(ccc2[nH]c1)C

57 LD-I-21043 1 Fc1cc2[nH]cc(c2cc1)C=1C(=O)C
(O)=CC(=O)C=1O

58 ZL-III-25343 1 Clc1cc2[nH]cc(c2cc1)C=1C(=O)C
(O)=CC(=O)C=1O

59 LD-1-21443 1 O(Cc1ccccc1)c1cc2[nH]cc(c2cc1)
C=1C(=O)C(O)=CC(=O)C=1O

60 ZL-III-25043 0 OC1=C(C(=O)C(O)=CC1=O)
c1c2c([nH]c1)cc(cc2)C

61 LD-I-20743 0 Clc1c2[nH]cc(c2ccc1)C=1C(=O)
C(O)=CC(=O)C=1O

62 LD-I-21643 0 Brc1c2[nH]cc(c2ccc1)C=1C(=O)
C(O)=CC(=O)C=1O

63 ZL-I-17543 1 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1)c(ccc2)C

64 LD-I-21543 0 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1)c(ccc2)CCC

65 ZL-19643,45 1 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1)c(ccc2)CC=C(C)C

66 LD25B43 1 OC1=C(C(=O)C(O)=CC1=O)
c1c2c([nH]c1)c(ccc2)C\C=C
(\CCC=C(C)C)/C

67 LD26B43 1 OC1=C(C(=O)C(O)=CC1=O)
c1c2c([nH]c1)c(ccc2)C\C=C
(\CC\C=C(\CCC=C(C)C)/C)/C

68 LD-I-21943 1 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1)c(ccc2)Cc1ccccc1

69 LD-I-21843 1 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1)c(ccc2)Cc1ccccc1C

70 LD22B43 0 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1)c(ccc2)C(C)(C)C

71 LD-I-14343 0 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1)c(ccc2)-c1ccccc1

Table A.1: DMAQ-B1 and its derivatives Continued on next page...
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72 ZL-III-25643 0 O(C)c1c2[nH]cc(c2ccc1)C=1C(=O)
C(O)=CC(=O)C=1O

73 LD-1743 1 O(Cc1ccccc1)c1c2[nH]cc(c2ccc1)
C=1C(=O)C(O)=CC(=O)C=1O

74 ZL-I-19943 0 OC1=C(C(=O)C(O)=CC1=O)c1c2cc
(ccc2[nH]c1C)C

75 ZL-I-19243 0 O(C)c1cc2c([nH]c(C)c2C=2C(=O)
C(O)=CC(=O)C=2O)cc1

76 ZL-III-24343 0 Clc1cc2c([nH]c(C)c2C=2C
(=O)C(O)=CC(=O)C=2O)cc1

77 LD-I-20943 0 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1C)cc(cc2)C

78 LD15B43 0 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1C)c(ccc2)C

79 LD-I-12543 1 O1c2c(OC1)cc1[nH]cc(c1c2)
C=1C(=O)C(O)=CC(=O)C=1O

80 ZL-III-25143 1 O(C)c1cc2c([nH]cc2C=2C(=O)
C(O)=CC(=O)C=2O)cc1OC

81 LD-I-20843 1 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1)c(C)c(cc2)C

82 LD-I-21343 1 OC1=C(C(=O)C(O)=CC1=O)c1c2c
([nH]c1)c1c(cc2)cccc1

83 ZL19443 0 OC1=C(C(=O)C(O)=CC1=O)c1c2c
(n(c1)C)cccc2

84 ZL-III-168-II43 1 OC1=C(c2c3c([nH]c2C)cccc3)
C(=O)c2c(cccc2O)C1=O

85 ZL-III19843 0 OC1=C(C(=O)c2c(cccc2O)C1=O)
c1c2c([nH]c1)c(ccc2)C

86 ZL-III19943 0 OC1=C(C(=O)c2c(cccc2O)C1=O)
c1c2c([nH]c1)c(ccc2)C(C)(C)C

87 ZL-III20043 0 OC1=C(C(=O)c2c(cccc2O)C1=O)
c1c2c([nH]c1)c(ccc2)CC=C(C)C

88 ZL-III20243 0 OC1=C(C(=O)c2c(cccc2O)C1=O)
c1c2c([nH]c1)c(ccc2)CCC

89 ZL-III21343 0 OC1=C(C(=O)c2c(cccc2O)C1=O)
c1c2c(n(c1)C)cccc2

90 ZL-III21443 0 O(C)c1c2[nH]cc(c2ccc1)C1=C(O)
C(=O)c2c(C1=O)c(O)ccc2

91 LD-I-20643 1 Fc1c2[nH]cc(c2ccc1)C=1C(=O)
C(OC)=CC(=O)C=1OC

Table A.1: DMAQ-B1 and its derivatives Continued on next page...
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92 ZLV-21243 0 OC1=C(C(=O)C1=O)c1c2c([nH]c1)
c(ccc2)CC=C(C)C

93 1444 1 Clc1cc2[nH]cc(c2cc1)C=1C(=O)
C(O)=C(C(=O)C=1O)c1c2c
([nH]c1C(C)(C)C)cccc2

94 1544 1 Clc1cc2[nH]cc(c2cc1)C=1C(=O)
C(O)=C(C(=O)C=1O)c1c2c
([nH]c1CC)cccc2

95 1644 1 Clc1cc2c([nH]cc2C=2C(=O)
C(O)=C(C(=O)C=2O)c2c3c([nH]c2-
c2ccccc2)cccc3)cc1

96 1744 1 Clc1c2[nH]cc(c2ccc1)C=1C
(=O)C(O)=C(C(=O)C=1O)
c1c2c([nH]c1C1CC1)cccc2

97 DAQ A135 0 OC1=C(C(=O)C(O)=C(C1=O)
c1c2c(n(c1)C(C=C)(C)C)cccc2)c1c2c
(n(c1)C(C=C)(C)C)cccc2

98 KP-271-135 0 OC1=C(C(=O)C(O)=C(C1=O)c1c2c
([nH]c1C)cccc2)c1c2c([nH]c1C)cccc2

99 445 0 OC1=C(C=CC=CC1=O)c1c2c
([nH]c1)c(ccc2)CC=C(C)C

100 645 1 O1C(=C(O)C(=O)C=C1CO)c1c2c
([nH]c1)c(ccc2)CC=C(C)C

101 845 1 OC1=C(N(C)C(=CC1=O)CO)c1c2c
([nH]c1)c(ccc2)CC=C(C)C

Used for external validation:
102 D-41063946 1 o1c(C(O)=O)c(-c2c3c([nH]c2)

cccc3)c(O)c1C(=O)c1c2c
([nH]c1)c(ccc2)CCCCCO

Table A.1: DMAQ-B1 and its derivatives
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Identified compounds: Table A.2 summarizes all 367 potentially active
compounds identified with self-organizing maps, fingerprint similarity or shape
similarity.

ChemDiv ID SOM 2D SOM VSA Shape FP Scaffold ID

000A-0009 0 1 0 0 20
000A-0036 0 0 0 1 21
000A-0047 1 0 0 0 20
000A-0190 0 0 0 1 25
0099-0308 1 0 0 0 29
0392-0008 0 0 0 1 32
0457-0021 0 0 1 0 34
0669-0071 0 1 0 0 40
0682-0067 0 0 1 0 32
0828-0235 0 1 0 0 40
0883-0041 0 0 0 1 32
1302-0002 0 0 0 1 49
1306-0027 1 0 0 0 50
1345-2374 1 0 0 0 52
1348-1605 1 0 0 0 53
1574-1707 1 0 0 0 55
1682-6957 0 0 0 1 57
1683-6896 0 0 0 1 32
1773-0151 0 0 1 0 34
2110-0307 0 0 0 1 57
2110-0308 0 0 0 1 57
2367-1224 1 0 0 0 75
2509-0025 1 0 0 0 78
2820-0981 1 0 0 0 81
2950-0554 0 0 0 1 85
3029-0578 0 0 0 1 87/208
3042-5045 1 0 0 0 88
3057-0993 0 0 0 1 57
3093-0115 1 0 0 0 91
3232-1864 0 0 0 1 57
3237-1339 0 0 1 0 95
3254-3796 1 0 0 0 96
3257-2499 0 0 1 0 97
3270-0678 0 0 0 1 32
3296-0057 0 1 0 0 103
3331-2182 0 1 0 0 105

Table A.2: 367 identified compounds Continued on next page...
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3347-1012 0 0 1 0 87
3365-7324 1 0 0 0 107
3379-3178 1 0 0 0 108
3406-0397 0 1 0 0 110
3454-1905 0 1 0 0 114
3480-0282 1 0 0 0 115
3505-6187 1 0 0 0 116
3505-6189 1 0 0 0 116
3546-0632 0 0 1 0 120
3546-0641 0 0 1 0 120
3553-1638 0 0 0 1 121
3555-0175 0 0 1 0 123
3630-0578 0 0 0 1 32
3807-4416 1 0 0 0 130
3902-0345 0 1 0 0 134
3902-0852 0 1 0 0 134
3966-0592 1 0 0 0 20
3989-0098 0 0 0 1 32
4052-4503 1 0 0 0 138
4057-0014 0 0 0 1 139
4076-0245 1 0 0 0 96
4137-1358 1 0 0 0 141
4161-2736 0 1 0 0 142
4204-0085 1 0 0 0 20
4281-2071 0 0 0 1 139
4281-2127 0 0 0 1 139
4333-2466 0 1 0 0 40
4340-0101 1 0 0 0 88
4340-1467 1 0 0 0 88
4451-0051 1 0 0 0 150
4451-0078 1 0 0 0 150
4459-0077 0 0 1 0 123
4478-7661 1 0 0 0 157
4513-0296 0 0 0 1 32
4513-0429 0 0 1 0 20
4522-0096 0 1 0 0 160
4533-0061 0 1 0 0 139
4546-0033 0 0 1 0 163
4587-0405 0 0 0 1 165
4608-0005 1 0 0 0 20
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4608-0014 0 1 0 0 20
4659-0068 0 0 0 1 57
4663-2462 1 0 0 0 150
4673-0543 1 0 0 0 170
4693-1125 0 0 0 1 137
4725-0413 1 0 0 0 150
4764-3635 0 0 0 1 139
4883-0016 1 0 0 0 150
5119-1121 0 1 0 0 185
5181-0618 0 1 0 0 188
5218-0873 1 0 0 0 190
5218-1214 1 0 0 0 191
5218-1215 1 0 0 0 191
5218-1227 1 0 0 0 191
5241-0101 1 0 0 0 150
5340-2513 0 0 0 1 195
5408-1692 0 0 0 1 198
5408-2494 0 0 1 0 200
5408-2497 0 0 1 0 200
5441-1081 1 0 0 0 202
5498-2747 0 0 1 0 203
5547-0011 0 0 0 1 208
5634-0239 0 0 0 1 209
5650-0022 0 0 0 1 32
5683-0379 0 1 0 0 40
5696-0017 0 0 0 1 212
5735-0003 0 0 1 0 213
5750-3148 0 0 0 1 20
5775-0353 0 0 0 1 139
5910-0153 1 0 0 0 218
5977-0726 0 1 0 0 32
5982-0100 0 1 0 0 208
5982-0159 0 1 0 0 208
6049-2038 0 1 0 0 160
6173-0173 1 0 0 0 218
6231-0119 0 1 0 0 444
6253-0655 0 1 0 0 105
6266-1861 0 0 1 0 232
6332-1077 0 0 0 1 139
6332-1304 0 1 0 0 139
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6332-2060 0 0 0 1 139
6463-4542 0 0 0 1 139
6623-0410 0 1 0 0 105
6711-0013 0 0 1 0 200
6725-3881 0 0 1 0 243
6843-3207 0 0 0 1 165
6877-0609 1 0 0 0 229
6944-0119 0 0 0 1 244
6957-0024 1 0 0 0 245
7165-0402 0 1 0 0 105
7217-0005 0 1 0 0 20
7244-0063 0 0 0 1 32
7287-0703 1 0 0 0 252
7407-0808 1 0 0 0 150
7491-0197 0 0 1 0 255
7790-2913 1 0 0 0 258
8001-8409 1 0 0 0 260
8001-9473 0 0 0 1 261
8003-1969 0 1 0 0 134
8003-9632 0 1 0 0 134
8004-2156 1 0 0 0 107
8005-3554 1 0 0 0 267
8006-9874 1 0 0 0 105
8007-3924 0 1 0 0 270
8007-8134 0 0 1 0 271
8008-6172 0 0 1 0 272
8008-8508 1 0 0 0 105
8009-1091 1 0 0 0 88
8009-1933 0 1 0 0 139
8009-3415 0 0 0 1 88
8009-4794 1 0 0 0 279
8009-6199 1 0 0 0 282
8009-7265 0 0 0 1 105
8009-8459 0 0 0 1 88
8010-2269 1 0 0 0 88
8010-2417 0 0 1 0 288
8010-3415 1 0 0 0 289
8010-7159 0 1 0 0 291
8010-8873 1 0 0 0 88
8011-9619 0 1 0 0 291
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8011-9622 0 1 0 0 291
8012-0040 0 0 0 1 296
8012-0041 0 0 0 1 296
8012-4701 1 0 0 0 299
8012-5686 0 0 1 0 300
8012-6056 1 0 0 0 20
8012-6900 1 0 0 0 299
8012-8657 0 1 0 0 291
8012-8742 1 0 0 0 20
8012-8948 0 0 0 1 32
8012-9497 0 1 0 0 291
8012-9499 0 1 0 0 291
8013-0077 0 1 0 0 291
8013-0132 0 1 0 0 291
8013-0156 0 1 0 0 291
8013-0193 1 0 0 0 20
8013-0195 1 0 0 0 20
8013-0282 0 1 0 0 291
8013-0567 1 0 0 0 306
8013-0795 0 1 0 0 291
8013-0806 0 1 0 0 291
8013-1367 0 1 0 0 291
8013-1663 1 0 0 0 20
8013-1838 0 1 0 0 291
8013-1855 0 1 0 0 291
8013-1885 0 1 0 0 291
8013-5362 1 0 0 0 88
8013-5366 1 0 0 0 88
8013-5371 1 0 0 0 88
8013-5372 1 0 0 0 88
8014-1054 0 1 0 0 291
8014-1240 0 1 0 0 291
8014-2596 1 0 0 0 150
8014-8765 0 1 0 0 291
8014-8856 0 1 0 0 291
8014-8857 0 1 0 0 291
8014-9065 0 1 0 0 291
8015-2473 1 0 0 0 32
8015-2557 1 0 0 0 218
8015-4205 1 0 0 0 32
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8017-3855 0 0 0 1 321
8017-5369 0 0 0 1 32
8017-5551 1 0 0 0 32
8017-6445 1 0 0 0 150
8017-6446 1 0 0 0 150
8017-7046 0 0 0 1 328
8017-7602 0 0 1 0 329
C073-3020 0 1 0 0 331
C073-3316 0 1 0 0 331
C073-3327 0 1 0 0 331
C073-3329 0 1 0 0 331
C073-3341 0 1 0 0 331
C073-3342 0 1 0 0 331
C073-3358 0 1 0 0 331
C073-3393 0 1 0 0 331
C073-3426 0 1 0 0 331
C073-3613 0 1 0 0 331
C073-3676 0 1 0 0 331
C073-3687 0 1 0 0 331
C073-3688 0 1 0 0 331
C073-3692 0 1 0 0 331
C073-3700 0 1 0 0 331
C073-3701 0 1 0 0 331
C073-3710 0 1 0 0 331
C073-3718 0 1 0 0 331
C073-3723 0 1 0 0 331
C073-3731 0 1 0 0 331
C090-0051 1 0 0 0 339
C090-0052 1 0 0 0 339
C090-0058 1 0 0 0 339
C090-0059 1 0 0 0 339
C090-0241 1 0 0 0 339
C090-0245 1 0 0 0 339
C090-0250 1 0 0 0 339
C090-0251 1 0 0 0 339
C090-0315 1 0 0 0 339
C090-0316 1 0 0 0 339
C090-0323 1 0 0 0 339
C090-0327 1 0 0 0 339
C090-0328 1 0 0 0 339
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C090-0329 1 0 0 0 339
C090-0334 1 0 0 0 339
C090-0335 1 0 0 0 339
C090-0387 1 0 0 0 339
C090-0388 1 0 0 0 339
C090-0395 1 0 0 0 339
C200-2391 0 0 1 0 346
C200-4795 0 0 1 0 346
C202-0180 0 1 0 0 291
C226-0908 1 0 0 0 347
C226-1592 1 0 0 0 347
C229-0098 0 1 0 0 291
C229-0639 0 1 0 0 291
C229-0783 0 1 0 0 291
C229-0793 0 1 0 0 291
C270-0349 0 0 0 1 105
C276-0105 0 0 0 1 352
C294-0271 0 0 0 1 32
C301-0535 1 0 0 0 354
C301-0544 1 0 0 0 354
C301-0545 1 0 0 0 354
C301-1174 0 0 1 0 355
C301-4173 0 1 0 0 356
C301-5215 1 0 0 0 105
C301-5270 1 0 0 0 105
C301-5408 1 0 0 0 105
C301-5547 1 0 0 0 105
C350-0372 1 0 0 0 360
C350-0374 1 0 0 0 360
C350-0376 1 0 0 0 361
C350-0386 1 0 0 0 361
C350-0702 1 0 0 0 360
C350-0717 1 0 0 0 360
C448-1136 1 0 0 0 363
C493-1072 0 1 0 0 365
C493-1090 0 1 0 0 365
C547-0761 0 1 0 0 87
C607-0621 1 0 0 0 87
C620-0630 1 0 0 0 339
C620-0634 1 0 0 0 339
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C620-0640 1 0 0 0 339
C620-0641 1 0 0 0 339
C620-0647 1 0 0 0 339
C620-0665 1 0 0 0 339
C620-0673 1 0 0 0 339
C620-0678 1 0 0 0 339
C651-0450 1 0 0 0 376
C753-0198 0 0 0 1 380
C753-1342 0 0 0 1 380
C756-0078 0 1 0 0 385
C879-1278 0 0 0 1 380
D052-0102 0 1 0 0 389
D052-0107 0 1 0 0 389
D143-0013 0 0 1 0 390
D155-0032 0 0 0 1 32
D159-0883 1 0 0 0 88
D177-1129 0 1 0 0 389
D252-0128 0 0 1 0 393
E015-0904 0 1 0 0 394
E518-1612 0 0 0 1 380
E693-0068 0 0 0 1 380
E693-0476 0 0 0 1 380
E847-0220 0 0 0 1 380
E938-0003 1 0 0 0 105
E938-0009 1 0 0 0 105
E938-0011 1 0 0 0 105
E938-0021 1 0 0 0 105
E938-0041 1 0 0 0 105
E938-0045 1 0 0 0 105
E938-0046 1 0 0 0 105
E938-0051 1 0 0 0 105
E938-0077 1 0 0 0 105
E938-0096 1 0 0 0 105
E938-0112 1 0 0 0 105
E938-0127 1 0 0 0 105
E938-0129 1 0 0 0 105
E938-0156 1 0 0 0 105
F019-0045 1 0 0 0 410
F019-1000 1 0 0 0 299
F019-2195 1 0 0 0 299
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G396-0138 0 0 0 1 380
G396-0426 0 0 0 1 380
G396-0972 0 0 0 1 380
G856-6183 1 0 0 0 88
G856-6192 1 0 0 0 88
K026-0216 0 0 0 1 87
K026-0228 0 0 0 1 87
K026-0229 0 0 0 1 87
K089-0089 1 0 0 0 417
K235-0065 0 0 1 0 346
K405-3512 0 0 1 0 425
K405-3521 0 0 1 0 425
K780-0810 0 0 1 0 200
K780-0823 0 0 1 0 200
K781-0936 0 0 0 1 32
K784-3063 1 0 0 0 429
K784-4408 0 1 0 0 331
K786-3665 1 0 0 0 150
K786-6896 0 1 0 0 385
K786-6899 0 1 0 0 385
K786-6904 0 1 0 0 385
K786-9821 0 1 0 0 385
K786-9822 0 1 0 0 385
K786-9823 0 1 0 0 385
K786-9832 0 1 0 0 385
K788-0444 0 1 0 0 385
K788-0448 0 1 0 0 385
K788-0705 0 1 0 0 385
K788-4172 1 0 0 0 385
K788-5456 0 1 0 0 366
K788-6130 0 1 0 0 385
K788-6634 0 1 0 0 385
K788-7022 0 1 0 0 385
K815-0023 0 0 0 1 87
K815-0024 0 0 0 1 87
R153-0142 0 0 1 0 34
R153-0143 0 0 1 0 34
R153-0151 0 0 1 0 34
R153-0152 0 0 1 0 34
R153-0159 0 0 1 0 34
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R153-0162 0 0 1 0 34
R153-0168 0 0 1 0 34
R153-0176 0 0 1 0 34
R153-0185 0 0 1 0 34
R153-0186 0 0 1 0 34
R153-0188 0 0 1 0 34
R153-0192 0 0 1 0 34
R153-0196 0 0 1 0 34
R153-0207 0 0 1 0 34
R153-0213 0 0 1 0 34
R153-0221 0 0 1 0 34

Table A.2: 367 identified compounds
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Purchased compounds: The given codes are the numbering as used in
the present work, the internal code during the testing of the compounds and
the ID used in the ChemDiv102 library. Molecules with grey background were
not soluble in the stock solution. Structures of the molecules can be found
on pages 85 and 86.

Nr. Internal Code ChemDiv ID Method

103 CD1 4204-0085 SOM (2D)
104 CD2 4451-0051 SOM (2D)
105 CD3 5982-0100 SOM (VSA)
106 CD4 6463-4542 FP
107 CD5 7244-0063 FP
108 CD6 8014-1054 SOM (VSA)
109 CD7 C073-3327 SOM (VSA)
110 CD8 C090-0245 SOM (2D)
111 CD9 D159-0883 SOM (2D)
112 CD10 E938-0156 SOM (2D)
113 CD11 K788-0448 SOM (VSA)
114 CD12 K815-0023 FP
115 CD13 R153-0196 Shape

116 CD14 0095-0198 hand-picked
117 CD15 6623-0410 SOM (VSA)
118 CD16 7165-0402 SOM (VSA)
119 CD17 8008-8508 SOM (2D)
120 CD18 8009-7265 FP
121 CD19 C270-0349 FP
122 CD20 C301-4948 hand-picked
123 CD21 C301-5215 SOM (2D)
124 CD22 C301-5408 SOM (2D)
125 CD23 C301-5428 hand-picked
126 CD24 E938-0003 SOM (2D)
127 CD25 E938-0021 SOM (2D)
128 CD26 E938-0036 hand-picked
129 CD27 E938-0051 SOM (2D)
130 CD28 E938-0077 SOM (2D)
131 CD29 E938-0078 hand-picked

Table A.3: Purchased compounds.
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Self-organizing maps

(a) 43x43,100,R (b) 43x43,500,R (c) 43x43,1000,R

(d) 61x61,100,R (e) 61x61,500,R (f) 61x61,1000,R

(g) 43x43,100,T (h) 61x61,100,T

Figure A.1: Self-organizing maps of compounds with known activities trained
together with a subset of 7418 compounds of the screening database. Maps
are coloured according to the following scheme: red: inactive compounds
only, orange: inactive neuron, light green: active neuron, green: active com-
pounds only, grey: screening database, white: empty.
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(a) 43x43,100,R (b) 43x43,500,R (c) 43x43,1000,R

(d) 60x60,100,R (e) 60x60,500,R (f) 60x60,1000,R

(g) 85x56,100,R (h) 85x56,500,R (i) 85x56,1000,R

Figure A.2: Self-organizing maps of compounds with known activities trained
together with a subset of 7227 compounds of the screening database. Maps
are coloured according to the following scheme: red: inactive compounds
only, orange: inactive neuron, light green: active neuron, green: active com-
pounds only, grey: screening database, white: empty.
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(a) 2d,392x392,100,R

(b) details of 392x392,100,R

Figure A.3: Self-organizing map of compounds with known activities trained
together with the screening database. Maps are coloured according to the
following scheme: red: inactive compounds only, orange: inactive neuron,
light green: active neuron, green: active compounds only, grey: screening
database, white: empty.
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(a) 2d,392x392,100,T

(b) details of 392x392,100,T

Figure A.4: Self-organizing map of compounds with known activities trained
together with the screening database. Maps are coloured according to the
following scheme: red: inactive compounds only, orange: inactive neuron,
light green: active neuron, green: active compounds only, grey: screening
database, white: empty.
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(a) vsa,392x392,100,R

(b) detail of 392x392,100,R

Figure A.5: Self-organizing map of compounds with known activities trained
together with the screening database. Maps are coloured according to the
following scheme: red: inactive compounds only, orange: inactive neuron,
light green: active neuron, green: active compounds only, grey: screening
database, white: empty.
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(a) vsa,557x557,50,R

(b) details of 557x557,50,R

Figure A.6: Self-organizing map of compounds with known activities trained
together with the screening database. Maps are coloured according to the
following scheme: red: inactive compounds only, orange: inactive neuron,
light green: active neuron, green: active compounds only, grey: screening
database, white: empty.
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(a) vsa,557x557,100,R

(b) details of 557x557,100,R

Figure A.7: Self-organizing map of compounds with known activities trained
together with the screening database. Maps are coloured according to the
following scheme: red: inactive compounds only, orange: inactive neuron,
light green: active neuron, green: active compounds only, grey: screening
database, white: empty.
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Abstract

The binding of insulin to the extracellular part of the insulin receptor is a
key step in the insulin signalling pathway. Upon binding, the receptor is au-
tophosphorylated and the intracellular tyrosine kinase is activated. In 1999,
Zhang et al. published a small molecule identified from a fungal extract,
which activates the human insulin receptor by binding directly to the intra-
cellular domain of its beta-subunit. This compound (demethylasterriquinone
B-1, DMAQ-B1) was shown to lower blood glucose levels in mouse models of
type 2 diabetes mellitus. During the last years, structures and activities of
approximately 100 derivatives of this compound have been published. Most
of these structures contained a quinone substructure, which might cause toxic
side effects. Since treatment of type 2 diabetes includes long-term adminis-
tration of anti-diabetic compounds, it would be beneficial to find compounds
with a different type of structure which activate the insulin receptor.

The aim of this dissertation was to build computational models which
can be used to screen for new insulin-mimetic compounds and subsequent
validation of the models by testing some of the obtained hits in relevant
biological (i.e. cell-based) experiments. Three different ligand based com-
putational methods, namely self-organizing maps, fingerprint similarity and
shape similarity, have been used to screen a large vendor database for po-
tential insulin receptor activating compounds. By testing 13 representative
compounds from the identified scaffolds we found three compounds which are
able to activate Akt kinase, an important downstream target of the activated
insulin receptor.

One of the compounds increased glucose uptake in muscle cells. Deriva-
tives of these compounds were further investigated to gain information on
structure activity relationships. Additionally, the toxicity of the compounds
in cells was assessed to show that the insulin-mimetic activity of our identified
molecules is not correlated with toxic effects.
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Zusammenfassung

Die Interaktion von Insulin mit dem extrazellulären Teil des Insulinrezep-
tors ist ein entscheidender Schritt des Insulin-Signalweges. Der Insulinrezep-
tor wird daraufhin auto-phosphoryliert und die intrazelluläre Tyrosinkinase-
domäne wird aktiviert. Im Jahr 1999 publizierten Zhang et al. einen Wirk-
stoff der in einem Pilzextrakt gefunden wurde und den humanen Insulin-
rezeptor aktivieren kann, indem er direkt mit der intrazellulären Domäne
der beta-Subeinheit interagiert. Diese Substanz (Demethylasterriquinone B-
1, DMAQ-B1) ist in der Lage den Blutzuckerspiegel in Mausmodellen für
Typ-2 Diabetes zu senken. In den letzten Jahren wurden Strukturen und
Aktivitätswerte zu ca. 100 Derivaten dieser Substanz publiziert. Die meis-
ten dieser Verbindungen enthalten eine Quinon-Substruktur, die zu toxischen
Nebenwirkungen führen könnte. Da die Behandlung von Typ-2 Diabetes die
Langzeittherapie mit Antidiabetes-Medikamenten beinhaltet, wäre es vorteil-
haft, Insulinrezeptor aktivierende Wirkstoffe aus einer anderen Struktur-
klasse zu finden.

Das Ziel dieser Dissertation war die Entwicklung von Computermodellen,
die zur Identifizierung von neuen, Insulin- imitierenden Wirkstoffen führen
können, sowie die anschließende Validierung der Modelle in biologischen (zell-
basierten) Experimenten. Drei unterschiedliche ligandenbasierte Methoden,
nämlich Self-organizing Maps, Fingerprint- sowie Shape-ähnlichkeit, wurden
verwendet um in einer großen kommerziellen Datenbank nach potenziellen
Insulinrezeptor aktivierenden Wirkstoffen zu suchen. Durch die Testung von
13 repräsentativen Verbindungen der identifizierten Substanzklassen konnten
wir drei Strukturen identifizieren, die Akt, eine downstream Kinase des ak-
tivierten Insulinrezeptors aktivierten.

Eine dieser Substanzen war in der Lage die Glukoseaufnahme in Muskel-
zellen zu verstärken. Derivate dieser Struktur wurden untersucht, um weit-
erführende Informationen über Struktur-Aktivitätsbeziehungen zu erhalten.
Zusätzlich wurde die Zytotoxizität der Substanzen getestet, um zu zeigen,
dass die Insulin imitierende Aktivität der identifizierten Moleküle nicht mit
toxischen Effekten korreliert.
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