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1. Introduction

1. Introduction

The aim of physics is to answer deep questions about how the universe behaves and how it started.
By addressing these questions research in physics made great technological advances possible and
transformed the way we perceive the world around us. Everyday phenomena such as the stability
of matter, the distinctive qualities of working materials, the anomaly of water, electricity, etc. that
have important implications on our life are connected to physical laws at scales and energies that are
beyond our everyday experience. The idea of particle physics is that by understanding the behaviour
of elementary particles which constitute the basic building blocks of nature, we can understand all
these phenomena.

A major challenge in this field is to produce elementary particles and to acquire their properties
in experiments. To achieve this large particle accelerators were constructed throughout the last cen-
tury. Einstein’s famous equation £ = mc? makes it possible to produce new particles by accelerating
well-known ones like electrons or protons and colliding them at high energies. In the framework of
Quantum Field Theories (QFTs) one can describe which particles will be produced in these experi-
ments and how they will behave. By comparing the predictions of these theories to the experimental
results remarkable progress has been achieved. In the 20th century the Standard model (SM) of
particle physics was developed and triumphantly confirmed in many experiments.

Despite the successes of the SM and although there is no experiment in direct violation with its
predictions, physicists are already sure that it cannot be the end of the story. One of the reasons
is connected to the Higgs Boson, which is the only particle of the SM which has not yet been
discovered. The search for the Higgs is a major aim of the LHC experiment at CERN. At the end
of 2011 the ATLAS and CMS experiment announced new results that indicate a Higgs boson with a
mass of around 125GeV [I], 2]. But the experimental data was not yet strong enough for the physical
community to announce the discovery of the Higgs. The importance of the Higgs Boson is on the
one hand founded on its central position in the Standard Model but also due to the fact that it
constitutes a window to new physics.

There is for instance the so-called hierarchy problem: Large quantum corrections to the Higgs mass
in the SM make an unnatural fine-tuning, such that independent contributions cancel, necessary. If
it was not for this fine-tuning, these contributions would render the Higgs mass so large that the SM
would be internally inconsistent. One of the possible solutions to the hierarchy problem is to introduce
Supersymmetry (SUSY) as it assures that the large Quantum corrections to the Higgs mass cancel
without the necessity of extreme fine-tuning [36]. This is one of the reasons why supersymmetric
theories became very popular.

The Minimal Supersymmetric Standard Model (MSSM) was originally proposed in 1981 by Howard
Georgi and Savas Dimopoulos [16] to solve the hierarchy problem. In the MSSM every particle of the
SM has a superpartner that is connected to the original SM particle via SUSY. Therefore the spectrum
of a supersymmetric theory that includes the SM contains at least two times as many particles as
the SM. This means that if Supersymmetry is realized in nature there is a lot of discovery potential.
There is also a very interesting connection to the dark matter problem in astronomy, as the spectrum
of the MSSM contains neutralinos which are weakly interacting massive particles (WIMPs) that are
considered as possible dark matter candidates [18].

In this work we concentrate on the superpartners of the top quark ¢ which are called stop squarks
t1,t2. Unlike the top, which has spin %, they are scalars. One needs to introduce two stops as a
spin % particle carries two times the degrees of freedom of a scalar particle. The top quark has an
exceptional position in the SM because of its large mass of 172.9 + 1.5GeV [3§], which is more than
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40 times the mass of the b-quark. Due to this fact also the stop squarks are special. On the one
hand, the mass gap that separates the two stop squarks can be very large because of the high mass
of the top [19, 23, B9]. Therefore the mass of the lighter stop #; is expected to be the squark with
the lowest mass that will first be accessible to experiments. In addition there are arguments that
in order to avoid the hierarchy problem through the introduction of SUSY while reproducing recent
results at CERN both stops in the MSSM have to be light [30]. This is due to the fact that because
of the large top mass (wich implies a stronger coupling between the Higgs and the top) the largest
contribution to the radiative correction to the Higgs mass comes from the top quark loop and the
stop squarks have to be light enough to cancel most of the top loop contribution [I5]. Searching
for the stops is therefore an important test of whether SUSY can provide a natural solution to the
hierarchy problem.

There is an extensive search for stops and one hopes to find the first signals of SUSY at the LHC.
At the future International Linear Collider (ILC) [3] it might then be possible to perform a scan of
the total cross section o(ete™ — t~1t~1) in the threshold region. This means that one studies e*e™
collisions for y/s &~ 2m, where m is the ¢; mass and /s the energy of the e*e™ pair in the center of
mass system (CMS). By fitting the theoretical predictions on the experimental results one can thus
determine parameters of the MSSM like the stop mass m and its decay width I';,.

With respect to o(ete™ — tt) the cross section to stops is suppressed by a factor v?, where v is
the velocity of the produced stops. This is due to the fact that stops are scalars and therefore the
squarks production vertex involves an additional factor of p;, where ps is the momentum of the
produced stops. For the theoretical prediction of o(ete™ — tt) a relative precision of around 3% is
desired in view of the expected experimental precision at the ILC [37, 25]. For o(ete™ — #11) the
experimental precision depends on unknown parameters like m, but as the statistics will decrease by
at least a factor of v2 ~ Wlo we expect that a theoretical precision of about 20 —30% will be sufficient.
A result at leading-logarithmic order (LL) might achieve this theoretical precision, however a next-
to-leading-logarithmic order (NLL) calculation is desirable if only to check the convergence of the
perturbation series.

For calculating the cross section close to threshold an expansion in powers of the strong coupling
ag alone will not be sufficient, as there are contributions at arbitrarily high orders in ag that are
of leading order (LO). A suitable framework to carry out the calculation is non relativistic QCD
(NRQCD), which is an effective description of QCD in the non-relativistic regime. In this theory
we carry out a double expansion in ag and v. In our problem we encounter three different scales,
namely the hard scale ~ m, the soft scale ~ p;; and the ultrasoft scale ~ E, where F is the combined
kinetic energy of the produced stops. To sum up the logarithms between these scales we will apply
vNRQCD [34] which is an extension of NRQCD.

Singularities related to the instability of the stop are of particular importance in the calculation
of o(ete™ — t1t;). To handle these effects we will introduce cuts on the decay products of the stops
and apply the phase space (PS) matching formalism that was also used in [28] to handle analogous
effects for the calculation of o(ete™ — £1£;). However, unlike in top production for stop production
these effects appear already at LO. This is related to the fact that for efe™ — £,¢; the £,{; angular
momentum state is a P-wave, while for eTe~ — tf one has a S-wave state. This work is the first,
where the PS matching formalism is applied for calculating the cross section to a P-wave angular
momentum state, which is an additional motivation for carrying out this analysis.

The outline is as follows: In the first part of this work we will do the calculation in the full theory at
one-loop order. The result that we obtain in this part is valid off threshold and we will see explicitly
that the perturbation series in orders of ag does not converge close to threshold. In the second part
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we start by giving a motivation for applying vNRQCD to our problem. In chapter [ we then give
a short introduction to the principles of effective field theories (EFTs). In chapter [§ we introduce
the optical theorem and the Cutkosky rules which are essential in our calculation. In chapter [ we
present the operators and fields of vNRQCD. Chapter [I{] treats the resummation of ladder diagrams
via the Coulomb Greenfunction. In chapter [[1] we introduce the idea of the PS matching formalism
to treat the singularities related to finite lifetime effects. In chapter we present the operators
that we need in addition to the operators of vYNRQCD in our EFT with PS matching. In chapter
we calculate the Wilson coefficients of these operators. In chapter [[4] we solve the renormalization
group equation (RGE) related to the anomalous dimension due to the PS divergences. To estimate
the effect of background diagrams that are neglected in our treatment we carried out a Monte Carlo
simulation in Madgraph [6] which we present in chapter Finally we present the preliminary result
of our calculation in chapter [[6 and conclude.






Part |.

Full theory calculation at 1-loop order






2. Tree order

In this part we calculate the cross section for the production process
ete” — t~1t:1

to 1-loop order. t; is the lighter of the two supersymmetric partners of the standard-model’s top
quark. ¢; and £, are mixtures of the left and right handed squarks, where the L/R mixing angle
is given by 6,[44]. The Feynman diagrams contributing to the process at 1-loop order are given in
figure [[l Electroweak corrections are neglected.

Figure 1.: This figure shows the various diagrams that contribute to the total cross section at 1-loop order, if one
neglects electroweak corrections. (a) tree level; (b) virtual radiation and counter term; (c) real radiation.
(symmetric diagrams not shown)[8]

2. Tree order

The vertices of a t; t:l pair with a photon and Z boson are both of the form:

t 7
7
s

# WVM ] - _ie(]Q'y/Z(pti - pt:l)“’ (21)

where ey = v4ma is the electromagnetic coupling and py, pz the momenta of the stop and antistop

particles. Q«//Z are given as:

@’y = Qt7
Qz = (cos? 0, — 2Q, sin® Oyy)/ sin 20y, (2.2)



where Oy is the electroweak mixing angle and Q,eq = 2/3eq the charge of the stop quark.
The vertex of an ete™ pair with the Z boson is:

Y (Ve + acy’), (2.3)

where v, = —1/4 + sin?fy and a, = 1/4.
The propagator of the Z boson close to threshold and in the on-shell scheme is given by:

R P _'L.g;w
p?— MZ+ilz My’

(2.4)

where My is the mass and I'; the total decay width of the Z boson [§]. Using this, the matrix
element of the tree level diagrams is given as:

M =M 4+ M@, (2.5)
with:
i iy ,
M) =v(pe) (—iQeeo) v u(pe) +’; (—iQ+e0) (P, — p7)"
2e —1ig ~
M® —5(p. O\ (o, + anulp, b L )
olpe) (=i ) 70 6Nl s P iz~ (20)

Q.0 = —eg is the charge of the electron, p., ps the momenta of e~, et respectively, ¢ = p. + pe the
total momentum and s = ¢? the squared energy in the center of mass system (CMS). M) and M%)
correspond to the diagram with the photon and Z boson respectively. One can write the matrix
element as follows:

M =L,(ps —pg)" (2.7)
with

LV :LI(I,Y) + Lz(/Z)v

L9 =0(pe) (~iQueo ) u(pe) 2~ o),
2e —ig ~
L(Z) 3 i K e e o e = - . 2.
v(pe) < s1n20w Y (ve + aey”)u(p )S — M§+2T2MZ< iQzeo) (2.8)

We will call L, the lepton tensor. To compute oy, we have to square the matrix element, integrate
over the phase space and sum over colours and spins. L, does not depend on the outgoing momenta
and can thus be factored out of the phase space integration.

o) = / M|?dLIPS,(
4|pe|CMSf > 3 IMPALIPS:(g

colours spins

(Z L L*> / pi — )" (P — pg ) dLIPS,(q) (2.9)

spins _

~~

=7t pv



2. Tree order

o® is the total cross section at tree order, N = 3 the number of colours and |Pe|cns the momentum
of the ingoing electron in the CMS. In the following, we neglect the electron mass and thus set
|Pe|cus = % dLIPS,,(q) is the invariant, n-particle phase space measure (20.2). For doing the phase
space integration we make an Ansatz:

[Om = 10 (ghq” — g™ q?). (2.10)

I can only be a linear combination of ¢#¢” and ¢g"”, because of Lorentz invariance. In addition,
one can use that I"7q, =0, as (p; —pz )"'q. = (pg —pg)(Ps + 05 )u = (m? —m?) = 0. Here m is the

mass of ¢; and ;. This restricts I** to the Ansatz above. One can now compute the scalar ) ag
J®nw
7O — B 2.11

where g#, = d is the dimension of space-time.

1o, Z/(pta — )" (pe — g ) dLIPSs(q)
= /(2m2 — 2py;, - pg )ALIPS,(q)
=(4m?* — q2)/dLIPSQ(q) (2.12)

It was used that —2p; - ps = 2m? — ¢* due to energy-momentum conservation. The two-particle
phase space integral in d = 4 — 2¢ dimensions is calculated in the appendix (20.0)

B

/dLIPSQ(q) = PSy(¢?,€) = 3 + O(e), (2.13)

]
where § = /1 — 422,

one of the two outgoing particles in the CMS. One thus gets:

In the non-relativistic approximatiorﬂ [ is approximately the velocity v of

3
JACT 2.14
" 8 (2.14)
Finally we need to calculate
o LLy =) LYLY 4+ LAY + (LY LY + L L) (2.15)

spins spins

(L,(])ng)* +L,(LZ)L1(7)*> I"™ = 2Re (L,(Z)ng)’j I"™ as I"™ is symmetric. Therefore we can use
2Re (L,(])ng)’j instead of <L,(7)L£Z)* + L,(LZ)LI(;’)*). In the following we will neglect the electron
mass ..

1592

e
S LOLY" = ATy [y, (2.16)

52

spins

rLl,e=1



Z L&) () _ 2636?22 1
K v sin 20W (S — Mz)2 + (FzMz)Q

Tr [eryp(ve + aey) gy (ve + acn”)] (2.17)

spins

We know that

Ir [7#7@7/)7075] ~ €uvpo- (218)

The contraction of this structure with 7®#_ which is symmetric, vanishes. Therefore the traces with
only one 7° matrix give no contribution and we can thus neglect them:

4€4©2 1
L) [(Z)* oo 0wz , —— -
2 e T T g e T )T k] (2.19)
* 2e4Q,Qz 1
Z L;(ﬂ)L(VZ) e i %0 Tr [Z/éfyﬂp/e”y,/(q}e T ae’YE))] (2.20)

Sin29w 8(8 — MZ — ZrzMz)

spins

Neglecting again the trace with one +° matrix, which vanishes when we do the contraction with
IO e get:

4¢§Q,Qz 2(s — M2)
2 LPLY" | = = z T [Pyl - 2.21
e(Z e sin 20y, S(S—MZ)2+(FZMZ)QU T [pevuper] (2.21)

spins

There is only a single trace of v matrices left to calculate. One easily obtains the result by using the
anti-commutation relations for the v matrices:

Tr (et = 4(PeyPe, + Pepley — (Pe - Pe)Gun)- (2.22)

By using (Z14), 2.16), (Z19), @21) and ([2.22)) to compute (29) one obtains

8N07T2042
o =(0yy + 022 + 5vz)mj(t)uu
577 :Qi
4Q% (v? + a?)s?
dzz

“sin? 20y [(s — M2)2 + (D7 Mz)Y

_ 1.Q,Qzs(s — M3)
"7 = Guady [(51 M2)2 + (T,My)? (2.23)

62
where v = .
7y

10



3. Virtual Corrections

3. Virtual Corrections

For taking into account QCD corrections of O(ag) we will have to compute 1-loop corrections to
the vertices coupling the squarks to the photon and the Z boson. We will not have to compute
loop corrections to the squark propagator, as there are no squark propagators in the tree diagrams.
However, we will have to compute the squarks wave-function renormalization as it appears in the
counter-term of the vertex:

ot = —ieon/Z(ptl _pt:l)u(5z¢ +1/267Z4 + 5ZQ)> (3.1)
——

N \ﬂ
N

0
where 07,4 and 0Z4 are the wave-function renormalizations of the photon, Z and squark field respec-
tively. Due to gauge invariance we know that 1/20Z4 + 675 = 0.
The vertex up to O(ay) corresponds to the following sum of diagrams and can be expressed as the
original vertex times a form factor F(¢?) = 1+ 6F(¢*), where 6F(¢*) = O(ag):

i,
A

" = —iegQq/z(pr, — pz )" F(q%) = A

~
N

ho
< s

AN

. .
~ ~ ~

N N
. ~ ~
N N

N
\\
The reason why I'* will always be proportional to (p, Dy, )#is that it can only be a linear combination
of p;fl and pii and has to fulfil the Ward identity[51] T*q, = 0, where ¢ = p;; + pz is the momentum
1

of the incoming photon or Z boson.

3.1. Wave-function and mass renormalization

It can be proven that the exact propagator for scalar particles can always be written in the Lehmann-

Kéllén form [46] p. 93]:

IAGR?) = / dz exp(ikz) (0] T(x)6(0)0)

Zi 0 1
= d —_. 3.3
k? —m? + ie +/4m2 8p<8)k2—s+ie (33)

7 is the residuum of the isolated poleH and its position is the definition of the pole mass m. We will
use the pole-mass scheme for our calculation. One can further show that Z = [(0|¢(0)|p)|°, where
|p) is the one-particle state of the ¢ field with 4-momentum p.

The LSZ formalism [32] states that one has to divide the amputated n-point function in momentum
space by V/Z for every external scalar particle to get the corresponding transition amplitude. We
will use the on-shell scheme where the wave-function renormalization is chosen such that Z =1 and

*The pole is only isolated in the massive case.

11



the LSZ formalism becomes particularly simple. The on-shell scheme roughly means that we require

[46] -
S + o S + & B = ) (3.4)

We define TI(p?) as the following correction to the squarks self-energy:

il(p?) = ﬁm (3.5)

With this we can write a more precise version of (3.4)):

[i6Z4(p* — m*) — 6 Zym® + i11(p”)]

— + - 5
p?—m?+ie p>—m?+ie p? —m? + ie

1

_ O ((0? —m2)°) | 3.6

p2_m2+i€+ ((»* —m*)") (3.6)

If this equation is fulfilled the isolated pole lies at p* = m? and its residuum Z is equal to one. (3.6)
is equivalent to two equations for 074 and 7,

(m?) — 6 Z,m*> =0,
%)

p2=m2

For determining 07, we therefore need to calculate II(m?) and for 6Z,, II'(m?). In scalar QCD the
vertex between a squarks pair and a gluon is:
t 7
= (—igs) T (b + )", (3.8)
where gg is the strong-coupling, 7% the Gellman Matrices and Pe s p;l the incoming and outgoing
momenta of the squarks.

T = / Ik (~igsfic) (2p — k)T

1 —i0AR
(p—k)>—m? +iek? +ie

(—igsii)(2p — k), T", (3.9)

where d?k stands for g%’;d. We will find [.LR. and U.V. divergences and therefore work in dimensional

regularization in d = 4 — 2¢ dimensions [48]. i is the renormalization scale in the MS-scheme. Using

S A TAT# = Cpls, with Cp = 3 one obtains:

2p — k)?
~ _

where x, is an abbreviation for x + ie. I can be reduced to two scalar integralsﬁ:

- /:’LQE [226
I =2(p% + m?) /ddk M /ddkri[ka .

=2(p* + m?) By (p?) — Aq. (3.11)

*Write (2p — k)? as 2[(p + k)? — m?] — k? 4+ 2(m? + p?) and write a separate integral for each of these 3 terms. This
reduction method is explained in section

12



3. Virtual Corrections

Ay, By (p?) and %—% are calculated in the appendixﬁ. We thus get an expression for II(m?) and

p2=m?2

B%QH ,» Which we can use in (B.7) to determine 67, and 6Z:

p2=m
2 2
57, = — Crds [§+3ln(“ )+7} ,

1672 | e m2
57, =95 [1 (12 _ Ly, (i (3.12)
T8r2 e m?2 €IR m2 )| '

€, p refer to the U.V. and ¢rg, prr to the LR. divergences. Without making this distinction, 07

would be 0. Inserting 07, into ([B.1]) gives w .

3.2. 1-loop correction to the vertex

In order to calculate WN. via ([B2) we still have to compute -« < and -4 . In the first two

diagrams, there appears a vertex coupling a photon or Z boson with a gluon and two squarks [8]:

o
i A
v

i, = 2igsQy 2 TAg™ . (3.13)

Using this we obtain:

—1
12
ki

. / Ak (~igsii) T (2p;; + k) 2igafi‘ Qny 2 T
A

[(k + pt})z - mz] +

90020 i 2 /ddk; i +/ddk ik
FYsn/zI q <Py, [(k; +pi )2 —mZLLk‘i [(k+pt])2 —m2}+ki

= 2Crg3 Qi {2 Bo(m®) + B ()} (3.14)

In the appendix, Blﬂ(pgl) is expressed as a sum of scalar integrals times pifl (I93). The diagram
W is completely equivalent, except that p; — —p;z. Thus we get:

oA

//
2 ~ re
51’*“ E“W —+ W =
I N
~ ~

- A
— CrQuait (4Bao®) = 25 ) (o~ ;) (3.15)

“see ([ED), (B and (EJ)

13



There is one more diagram to compute for the virtual corrections to the vertex:

O

N

; /ddk<_igsﬂe)<2pt1 + k)VTA [(pt} + k)2 — m2}+ (_iQW/Zﬂe)

(—iggﬁe)(—th:l + k), T4

i —

(ptil - k)2 - m2}+ kﬁ‘

2k +pi —pz)" (2 — pi)k + K — 4paps)
(s, + 52 =m?] | [(pg — k)P —m?] kT

(P — pg +2k)" [

= — Q297 / e (3.16)

Next we expand the numerator and rewrite 2p,, =k as [(k +p;, 7 )* —m®] — k*. We write a separate
integral for each distinct term in the numerator and can then reduce terms like [(k + p;, )* —m?] with
the denominator. We want to rewrite all the tensor integrals in terms of those, which we reduce in
section To achieve this, we have to make a shift of the integration variable & — &k + pz in some
integrals. We arrive at the following expression:

ST == Q297 [2B0 () (0, = p5)" = B (&) (v + )" +
2 [Blu (ps) + B" (—ptj)} —2B,"(q)
~4(ps - p5) Co (¢*) (o — p3)" = 8 (o - p5) O (b)) (3.17)

where ¢ = p;, + p; is the total momentum. In the appendix in section 9 the tensor integrals are
rewritten in terms of scalar integrals. Using these results, we obtain a simplified expression:

0" = — Qyy29% [—4 (pi, - p7) Co (0°)
8 (v "pe) (4 : A
- 4mt2 — ;2 (BO (mQ) — By (q2)> - EOQ + 2B, (mQ) (pgl — pgl)u. (3.18)

The various scalar integrals are computed in the appendix. There are U.V. and L.R. divergences in
this expression. The L.R. divergence is in C (¢%). We can now compute the form factor F' =1+ §F
using ([B2). Observable quantities like the total cross section only depend on |F|%. As §F = O(ag),
one gets:

|F|? =14+ 6F* =1+ 2Re(0F) + O(a3). (3.19)

This means that up to O(ag) only the real part of the form factor F' contributes to observable
quantities like the total cross section. We get:

2Re 6F = 2Re <(5Z¢ + P+ 5FM3~> . (3.20)
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3. Virtual Corrections

0Z4 is the contribution of the counter-term, while 5FM§ and 5ng” come from the corresponding
diagrams. 024 = Re 6Z, is given in (3.12). | |

- ag [3 i
as [(1+8%) [ log(w) 1 iR ~
2Re 5Fv~:i§: :CF7 |: 6 - 2613 — 5 log(w) log W + LZQ(’LU)
1., 2
-1 log”(w) + log(1 — w) log(w) — log(w) + 3
1 1 2 3

Using these results we get:

2Re O F :CF% {(1+B2) (_log(w) 1

12
5 — —log(w) log (ﬁ) + Liy(w)

2€IR 2
1., 2
2 log®(w) + log(1 — w) log(w) — log(w) + 3

N <l;ni§) _ 2] _ (3.23)

€IR
There are still I.R. divergences left. However, in the sum of the cross sections o <e+e’ — t~1t:1> +

o <e+e* — t~1t:1 gsgﬁ>, where g, corresponds to a gluon with an infinitesimally small energy, the I.R.

divergences will cancel in agreement with the Kinoshita-Lee-Nauenberg theorem [31]. eTe™ — f1t g
corresponds to the so-called real radiation and we will compute the total cross section to the real
radiation in the next section.

3.3. Virtual corrections to the cross section

To determine the contribution of the virtual corrections to o (e*e* — t}t:l) we investigate how the

formula for the cross section at tree level (2.9) changes due to dF. In this formula we simply get an
additional factor 14 2Re(§F'), which can be factored out of the phase space integration. However, as
0 F still includes a divergence, we have to be careful about the phase space integration, which we did
in 4 dimensions, when doing the tree computation. Doing the phase space integration in d = 4 — 2¢
dimensions gives an additional contribution of O(e) and multiplying this with the % term, which
corresponds to the divergence, gives a contribution of O(1).

The only thing that changes with respect to the tree level computation is given by the following
replacement prescription:

[(t)“ﬂ _>[(t)uu + [(v)uw
[V, =2Re(0F) /(pﬂ — )" (pi — pg)udLIPS2(q)
— _ 2Re(5F)sFPSs (%, €), (3.24)

where PS,(¢?, €) is the two particle phase space volume in d-dimensions. It has to be computed up
to O(e) because of the + divergence in §F. The result for PSy(¢?, €) is given in ([20.6).
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4. Real radiation

In the last section we found I.R. divergences in the virtual corrections to the cross section o (e*e‘ — t}tj) i
Strictly speaking this cross section is not an observable, as one cannot differ between a ¢, t:1 pair and a
t1,t; pair of practically the same energy with an infinitesimally soft gluon. In the sum of the two cross
sections o <e+e_ —tit;) +olete — t}t}gsoft the I.R. divergences cancel due to the Kinoshita-

Lee-Nauenberg theorem [31]. In this section we will compute the cross section o <e+e’ — t~1t~1g),
where we integrate over the entire phase space, including those parts where the gluon has a high
energy. The [.R. divergences that we will encounter, when doing the phase space integration, will
again be handled using dimensional regularization.

The amplitude of the real radiation is therefore given by the following diagram:

| (4.1)
with
i )
} e - // //
) 7, g ot = i% -+ Wi@ —+ m/vv\/\/\m%mxm? (42)
\f, N N
\\ ~ ~
Analogously to ([2.7) we can write M* as:
M" = L,T ", (4.3)

where L* is the lepton tensor, defined in (ZJ) and I ,* corresponds to ww.m without —i(Qy/Z).

A

I, gives:

LA = (pa —ps +p0) [ (=igs) (2pi +ps)" T+

(pe — Py, —1y)” [ (—igs) (—2pz —pg)" T

Py is the momentum of the gluon. We define the following phase space integral:
(g =-3%" / [ (f A;) dLIPS;(q) (4.5)
A

1M g related to o <e+e_ — t~1t:1 g) in exactly the same way as 0¥ was related to the phase space
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4. Real radiation

integral I [Z1):

= 1 1
o(ete™ — iyt ):7 SN L L Om
( M elows /5 2 g2 b

colours  spins
Ne o\
== <Z LﬂLy> 10w (4.6)
spins

As in the case of 1M [ depends only on the total momentum ¢ = p. + pe and fulfils the
Ward-identity "#q,. Therefore we can make the same Ansatz as we had for 1 [2I0):

IO — O (ghg” — g™ ¢?). (4.7)

o <e+e_ — {1t g) can therefore be computed with the same formula as ¢ in ([Z23)), with the only
difference that:

JACL Ll (4.8)

For computing [ (”)“ﬂ we introduce the following variables for parametrizing the phase space depen-
dency of the integrand:

_ 2(pg - q) 20z 9)  _ 2(py-q)
xr = 9 9 y 2 9 - 2 .
q q

(4.9)

x, y and 2z are twice the energy of the #;, t:1 or gluon, divided by total energy in the CMS. The
identity

THy+z=2 (4.10)
is often very useful. The propagators appearing in r 4 can be expressed with x and y:

1 q*
L=y [(pg +py)?—m?],
1 1 q°

L—o —l4+y+z [y —p)?—m?

(4.11)

One can express the dependency of the integrand of the phase space integration using only y and z:

"

[0 = Gl / 511+ G1a +010 -+ doo ALIPSs(g),
I.R. divergences

1

(1—y)*
1

1=y (=l+y+2z)
1
501 = _862—7
-y

61 = 2(8* = %)

512 = 2(8* + %)

So0 = 2d. (4.12)
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In the original integrand, there appear terms proportional to ﬁ and lflx, but in the phase space
1

integral these are equivalent to (=me and le respectively. In (20.12) the three body phase space
integral of a function depending on y and z is rewritten to an ordinary integral over y and z. Only
the integrals containing divergences have to be carried out in d dimensions. Therefore, the integrals

over 019 and &gy become simple. The four phase space integrals are carried out in the appendix and

the results are given in (20.18)), (20.22), (20.23) and 20.24). With this we obtain:
45° +26%(1 + §?) log(w)

€IR

100 = — CpgiFy { + 68+ 148° + (3 — 547 + 12%) log(w)

2

245 l0g(1 — w) + (1 + %) [—% ~ log(w) + log(w)’

+8log(w)log(1 + w) + 12Lis(w) + 8Lig(—w)]} . (4.13)
Fy is defined in (20.12). The leading order term in 3 is of O (3°log(/3)):

16 176

[0 = —CrgeFs {—— — — +32log(2) + 32 log(ﬁ)} 8%+ 0 (B"log(B)) . (4.14)
3€IR 5

Therefore o (e*e* — tltzlg) is also of O (3°log(3)).

5. Result for the cross section at 1-loop order

For the total cross section at 1-loop order we obtain the same result as [§], where the I.R. divergences
are not regulated by dimensional regularization but by introducing an infinitesimal gluon mass. Using

the results in (3.:24), (£.6) and ({I3) we obtain:

oM =¢W 456 1 ¢ <e+e_ — t}tig)

=0 (1+Cr 22 (). (5.1)
with
1+03%2[3 . .
f(p) = 5 ﬁ + log(w) log(1 + w) + 2log(w) log(1 — w) + 4Lis(w) + 2Lis(—w)
—4log(1 —w) —2log(1 4+ w) + [3 + % (2 — %(1 + 52)2)] log(w), (5.2)

2
where ag = Z—i. 50 are the virtual corrections to the cross section.
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6. Motivation

6. Motivation

In the last part, we carried out a one-loop calculation for the total cross section of ete™ — t167. If,
however, the CMS energy /s of the e*e™ pair is close to the threshold energy for the production
of a tit; pair, which means that /s ~ 2m, the perturbation series in orders of ag breaks down.
The reason for this is that the corrections to the production vertex, which involve the exchange of n
gluons, are enhanced by (1/4)". Thus if 8 ~ ag the size of those multi-loop contributions is actually
of leading order and a one-loop calculation is thus not sufficiently close to threshold. The same
problem arises for top-pair production close to threshold [2§].
At one loop order we can see this explicitly by expanding (B.1]) for f ~ ag < 1:

2

£(8) ==

=35
o —5® (1 + %% + O(asﬁo)) (6.1)

For g ~ ag the one-loop correction is therefore not suppressed with respect to the tree-order result.

The single source of the O(ag/f5) term is 5Fw3~, which is the virtual correction coming from the

triangle diagram. Expanding [322) for 3 < 1 we obtain:

+0(B)

C
2Re 6F_, = %ﬁ% +O(asB) (6.2)
We now define E as the energy above threshold, which means that /s = 2m + E. FE can be
calculated with the parameter v, via £ = mwv?. This is understood as a definition for v. Up to

corrections of O(v®) B and v are equivalent:

[ 4Am?2 4m?2 33 5

Therefore one could replace 5 by v within the expansions above.

The (1/v)" enhancement of the loop integrals comes from the integration domain, where the gluons
are potential. A gluon is potential if its momentum k = (k°, k) is parametrically (mv? mv).

As the contribution of these vertex corrections is even singular for v — 0, one calls them ” Coulomb
singularities”. But if mov? was of O(Aqep) the behaviour of the system would not be Coulombic
because of non-perturbative effects. However, v is bounded from below because of finite lifetime
effects, which can be taken into account at leading order by the formal substitution [24]

v:\/g:\/‘/g;m%\/\/g_ﬁ“rﬁ. (6.4)

E = mv? is the energy above threshold (/s = 2m + F) and thus the kinetic energy of the squarks.
For low values of I, I';; therefore serves as an IR cut-off and one can ignore non-perturbative effects
lf Ft~1 > AQCD-

We will replace the power counting in powers of ag with a power counting in ag and v, where
v ~ ag. This leads us to the application of ”velocity non-relativistic QCD” (vNRQCD) for coloured
scalars, which is an effective theory for non-relativistic squark [29]. Originally vNRQCD was
developed for non-relativistic bottom and top quark systems [34] 26].

*To shorten notation we will often refer to ”vINRQCD for coloured scalars” plainly as ”vNRQCD”.
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Figure 2.: This figure shows the order of the vertex corrections, which involve the exchange of a gluon. Close to
threshold, when ag ~ v < 1, every gluon exchange gives a factor of ag/v at leading order. The diagrams
are all of the same order and therefore the perturbative series in number of loops breaks down. The 1/v
enhancement comes from the integration domain, where the gluon is potential. We will later sum up all
the diagrams with potential gluons, by using the Green’s function of the Schrodinger equation.

There is an additional reason why it is important to switch to vNRQCD in order to describe the
squarks in the non-relativistic regime. Without switching to an effective theory, the loop corrections
will contain logarithms of ratios between the various scales appearing in the problem:

m (stop mass) hard scale
p~mv  (momenta of the stops) soft scale
E ~mv*  (kinetic energy) ultrasoft scale

These logarithms can be large if v < 1 and thus spoil the convergence of the perturbation series.
By matching to an effective theory at the hard scale m we can avoid logarithms of the form log(m/F)
and log(m/p). However, the soft and the ultrasoft scale both have to be described in vNRQCD.
If one does not do an additional matching to another EFT, one cannot avoid the large logarithms
between the soft and ultrasoft scale by using only one renormalization scale.

Matching once more to another EFT and integrating out the soft scale is a possible approach to
this problem. This additional matching has to be done at the soft scale and the theory, which only
contains the ultrasoft modes, is known as potential NRQCD (pNRQCD). pNRQCD was proposed
by Soto and Pineda in 1997 [41]. However, introducing two independent renormalization scales can
lead to ill-defined RGEs.

The approach in vINRQCD is to introduce two renormalization scales. These scales however cannot
be chosen independently but they have to be correlated in accordance with the quark equations of
motion. The theory fixes the scale correlation [26] and one can parametrize the two renormalization
scales in terms of the so-called subtraction velocity v:

fis =mv,

py =mv?, (6.5)
Therefore, the matching for vNRQCD is done with ¥ = 1 and the calculation of matrix elements
with v = v. The RGEs for v are called "velocity RGEs” (vVRGEs) [34]. In this way one can sum

up all the large logarithms. In a fixed order perturbation theory, where one sums up the Coulomb

singularities, but not the large logarithms, the R ratio with respect to the production of a u™ ™~ pair
looks like [27]:

g

_ Yan 3 ag\k
e 2 (2
{1 (LO); ag, v (NLO); a%, as, v, v* (NNLO); }, (6.6)

for g ~ v < 1. Here LO stands for leading order, NLO for next-to-leading order and NNLO for
next-to-next-to-leading order. When the large logarithms are summed up through renormalization
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6. Motivation

group equations, one speaks of leading-logarithmic (LL), next-to-leading-logarithmic (NLL) and next-
to-next-to-leading-logarithmic (NNLL) order [27]:

o

R hh 3 Z (%)k Z (avg log(v)) x

Ot - -

{1 (LL); as, v (NLL); a2,v? (NNLL); } (6.7)
Before we introduce vNRQCD and apply it to our problem at hand we will briefly speak about
the concept of effective field theories. We also need to introduce the optical theorem which gives

a connection between o,y and the imaginary part of the forward scattering amplitude that can be
calculated in vNRQCD.
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7. Effective Field Theories

7.1. A short introduction to Effective Field Theories

The main idea of an effective field theory (EFT), such as vNRQCD, is that if one restricts the full
theory to a certain kinematic domain, one should replace the full Lagrangian with one that is more
appropriate for the description of the dynamics in this region. This new theory should describe the
same physics more efficiently as long as one does not try to apply it for regions outside of its domain
of validity.

This idea is not only applied in QFT, but also in other fields of physics like electrodynamics. There
one for instance uses the multi-pole expansion of the electromagnetic field, to effectively describe the
fields at large distances away from the source. If one probed the field at small distances to the source,
the description of the multi-pole expansion would be no more valid and will even give an infinite
value for fields, which in the full theory are well-behaved and finite.

In fact, a modern interpretation of Quantum field theories (QFTs), such as the standard model
(SM), is to consider them as effective theories, that are only valid up to a certain energy scale. The
interpretation of the infinities, that arise in loop integrals in perturbative calculations, is then that
they are a consequence of the application of the SM Lagrangian for high energy modes that it can
no more describe. However, if the momenta where the SM fails are much higher than the scales that
appear in the loop integrals, it is justified to treat these integrals over high momenta, which showed
up as infinities during the calculation, as constants. The infinities can thus be considered as constant
terms, which are in fact finite but cannot be calculated with the SM. A regularization scheme makes
it possible to calculate with the infinities as constant terms. One tries to absorb these terms in the
coefficients of the operators that appear in the theory. A theory, where it is possible to absorb the
infinities at all orders of perturbation theory without introducing an infinite number of additional
operators, is called renormalizable in the classical sense. This is indeed the case for the S,

However, a theory that is formally not renormalizable can still be sensible, if one can absorb the
infinities at each order of a power counting scheme. The power counting is supposed to quantify the
parametric size of contributions. If one is interested in the result up to a specific order in the power
counting, all the contributions at higher orders, by which we mean finite terms as well as infinities,
are suppressed and can thus be ignored. To understand that this is sensible one has to remember
that the infinities should not be considered as large terms, but rather as finite terms, which cannot
be calculated with the effective theory. Thus, it makes sense to say that infinities at a higher order
in the power counting are suppressed and can thus be ignored.

One can take this interpretation one step further. By considering the integrals over high momenta,
where the SM is no more valid, as constants, we are of course making an approximation. These
integrals will depend on the scales that appear in our problem, although the dependency is weak, if
the scale Apey, where new physics beyond the SM becomes relevant, is much bigger than the scales
in our system. To get more accuracy one can however make an expansion in terms of the SM scales
divided by Ayew. A common strategy to search for physics beyond the SM is to match the effect
of new models for processes at lower energies to local operators that are added to the SM. These
operators are suppressed by 1/A,y, therefore they are giving only small corrections at energies at
the scale of the SM. These additional operators, however, spoil the renormalizability of the SM as
they are generally of higher mass dimension (> 4). It would of course be an advantage, if the SM

*The proof of this is highly non-trivial. Veltman and 't Hooft solved a part of the problem, by proving that Yang-Mills
theory is renormalizable [49]. This earned them the Nobel Prize in 1999.
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7. Effective Field Theories

already included such higher dimensional operators that gave us a hint about the new physics and
in particular about the scale the SM breaks down.

The "Fermi Theory” [22], p. 314] is a famous example for an EFT. This was once the best available
description for the weak force. The theory, however, is non-renormalizable. It includes an operator
of the form:

O, = —ﬁVubVJd(ﬂv“PLb)(dvuPLu). (7.1)
V2
Vup and V4 are elements of the Cabibbo-Kobayashi-Maskawa (CKM) Matrix, which has to be deter-
mined experimentally. O; is a four fermion operator of mass dimension 6. Nowadays we have a high
energy description for the weak force as part of the SM, Whgre it is gnediated by the W and Z bosons,
E_ _g

which are much heavier than the u, b and d quarks. As 5T B where My, is the mass of the
w

W boson, O; is suppressed by 1/M3,. In this case, the scale of the new physics A,y is represented
by My,. The Fermi Theory can be obtained from the SM and remains the appropriate description
of the weak force for energies much smaller than My,. Since O; is part of a non-renormalizable
theory, it already gives a hint about the scale, where the Fermi Theory breaks down. This once
helped to discover the electroweak theory and in this sense it would be good if also the SM was
non-renormalizable.

We want to emphasize that using the Fermi Theory instead of directly applying the full SM for

processes at CMS energies Ecy < My is more appropriate. The reason is that by using the Fermi

Mw
Ecnm

of the perturbation series. In order to obtain the Fermi Theory from the SM one integrates out the
high energy dynamics at the renormalization scale © = My, by putting these contributions into local
operators of the EFT. Then one scales the obtained theory down to pu ~ Egjys via renormalization
group (RG) evolution before carrying out loop integrals in the EFT. The loop integrals within the
Fermi Theory contain only smaller scales and large logarithms are avoided if y is at the same order
as these scales. This procedure eventually avoids large logarithms in the corrections, which means
that they were summed up into the coefficients of local operators by the RG evolution!

Summing up the large logarithms is one of our reasons to use vVNRQCD for the description of
squarks production close to threshold in ete™ collisions. In addition the power counting of the
effective theory in general quantifies the size of contributions much better than a simple expansion
in the couplings. For instance we saw explicitly that the perturbation series in terms of ag did not
converge in ([6.1]), as the one loop correction was of the same parametric size as the tree order result.

Another important EFT is called ”Heavy Quark Effective Theory” (HQET), which is for instance
used to describe the decay of the B mesons. HQET was constructed in 1990 by Georgi [20]. One can
also obtain this theory from the SM and in this sense it contains only SM physics. But using HQET
for the description of B meson systems yields much better results than a direct application of the
SM. Other important EFTs include ” Soft-collinear effective theory” (SCET) [7], ” Chiral Perturbation
Theory” (ChPT) [33] and of course " Non-relativistic QCD” (NRQCD) [12] [I1]. We will use a variant
of NRQCD for coloured scalars [29].

Theory one avoids large logarithms like In in the corrections, which could spoil the convergence

7.2. Matching and the threshold expansion

The Lagrangian of the EFT is a linear combination of operators where the coefficients are called
Wilson Coefficients. These coefficients contain the dynamics of the off-shell degrees of freedom. One
determines them by doing a measurement or a matching computation. As the off-shell modes are
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Figure 3.: The full theory diagram describing the exchange of the W boson can be expanded if p*> < M3,. In the
original Fermi Theory the leading order contribution is taken into account via the four fermion operator
O1. O; was constructed such that at the matching scale Cy(Apew = M) = 1. However, Cq(p) will
depend on the renormalization scale p because of renormalization group (RG) running. The reason for
doing the matching at p ~ Apew is to avoid large logarithms like log (fimaten/Mw ) for the matching of
loop diagrams.

no more present in the EFT one often speaks about ”integrating out”l degrees of freedom in this
context.

In order to match the EFT to the full theory it is crucial to define a power-counting scheme and
to expand the full theory diagrams according to it. In vNRQCD we for instance expand in terms
of ag and v. The brute force way for doing an expansion of a full theory Feynman diagram is to
analytically calculate the diagram and to expand the result after doing the integrations. However,
this is not very practical as it is usually very difficult to calculate loop diagrams analytically.

The threshold expansion is a tool to expand Feynman diagrams before doing the integration and
was developed by Beneke and Smirnov [I0] for the expansion of massive Feynman integrals near
threshold. It is based on the method of regions with dimensional regularization and works as follows:

1. The scales in the integral have to be identified.

2. The integration domain for the loop momenta has to be split into regions in which each loop
momentum is of the order of one of the scales in the problem.

3. In every region, the integrand has to be expanded in the parameters, which are small. The
terms in the expansion will be integrals that are only giving contributions for the momenta in
the given region (if one uses dimensional regularization, where scaleless integrals are zero).

4. After the expansion, the integrals have to be carried out over the entire integration domain in
every region.

It is not easy to justify this procedure rigorously but loosely speaking it works because one uses
dimensional regularization, where all integrals without scale vanish. There exist more rigorous argu-
ments for special cases [14] [13].

A way to get a better understanding of how this method can possibly work is to do the same
procedure without dimensional regularization in the cut-off scheme. One follows the same steps but
introduces explicit intermediate cut-offs between the different regimes. In this case it should be clear
that we obtain the correct result because with an explicit cut-off one can expand the integrand before
doing the integration. If one adds the results of all the regimes, the intermediate cut-off terms will

*Speaking of "integration” makes sense if one thinks in terms of the path-integral formalism.

26



7. Effective Field Theories

have to disappear order by order and the final result will only depend on the cut-off of the entire
integral.

The procedure using dimensional regularization works analogously. After doing the expansion in
dimensional regularization, the integral will only contain scales for the given region and therefore
the finite parts should be identical to the procedure where a cut-off is used. The cut-off terms
will show up as divergences and dimensional regularization automatically throws away all of them,
except for the logarithmic ones, which remain as 1/¢ terms. When adding up all the regimes, the
1/e terms corresponding to intermediate cut-offs will cancel, while the 1/e terms corresponding to
the divergences of the entire integral will remain.

Even if this analogy between the method of regions with an explicit cut-off and dimensional
regularization is not at all proving that the procedure is always correct, it shows how the method
is supposed to work. An explicit example for a simple one dimensional integral, which is expanded
with both approaches, is given in [26].

One should always bear in mind that one has to strictly expand the integrand for the given region,
if one uses the method with dimensional regularization. Otherwise one leaves scales in the integral
that lead to a finite contribution from a different region. In this case one would have double counting.
On the other hand, if one uses the method with explicit cut-offs, one is of course not obligated to
expand the integrand.

An important feature of the method is that each term in the expansion only contributes at a
specific order in the power counting.

For the dynamics of a non-relativistic t~1t:1 pair, there are four relevant regions for the loop momenta

[10]:

hard: (K%, k) ~ (m,m)
soft: (k% k) ~ (mwv, mv)
potential: (k°, k) ~ (mv?, mv)
ultrasoft: (k°, k) ~ (mv? mv?) (7.2)

These are the relevant regions if the routing of the external momentum q is canonical. This means
it is chosen such that it is equally split among the squarks at the production vertex and is then
only routed through the squark lines. Other routings are of course possible but less practical. The
relevant regimes for the loop momenta are a consequence of the pole structure of the propagators.

Up to this point we considered the threshold expansion as a purely mathematical tool for expanding
Feynman diagrams. In practice, it is often helpful to do the threshold expansion before defining the
fields and operators of the effective theory. By expanding the full theory diagrams one can get an
idea about which are the relevant fields and interactions in the EFT. Let us for instance expand the
following full theory diagram:

% = Z (_igsTfa) (q+7 +P)0m (—igsTgﬁ,‘/) (—q+p +p)s (7.3)
7777777 ¥ A
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for the regime where p, p’ and p — p’ are potential and ¢ = (1/s,0). We then have:

i i i
(p—p)+ic (=P’ —(p—p)+ic (p—p)?—ic
~———
<(p-p')?

(q+p +p)°(—q+p +p)o = —¢* ~ —4m?>.

The leading order contribution in the potential regime therefore gives:

4rag
4m Z Tbb’ 713/)2 .

(7.4)

(7.5)

In a propagator of a gluon with a potential momentum the e is irrelevant as the momentum of a
massless particle cannot get on-shell in this regime. As we can see the propagator of a gluon for the
potential regime corresponds to the Fourier transform of the Coulomb potential. In vNRQCD the

contributions of potential gluons at LO is also accounted for by the Coulomb potential.

The expanded diagrams of the full theory often correspond to EFT diagrams which are as well only
contributing at a specific order in v. This motivates the identification of the propagators of particles
in the EFT with the expanded propagators for the different regimes in the threshold expansion. In
vINRQCD one for instance defines soft and ultrasoft gluons and potential squarks. We will also speak
about potential gluons but in the EFT they will be represented as potentials and not as particle
However, one cannot strictly derive the Lagrangian of the EFT from the threshold expansion of the

full theory diagrams.

*They are represented as potentials because potential gluons cannot become on-shell.
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8. Optical Theorem and Cutkosky rules

8. Optical Theorem and Cutkosky rules

To calculate the total cross section oy, we will use the optical theorem, which states that the
imaginary part of the forward scattering amplitude gives o,; up to some kinematic factors. The
exact statement for a collision of two particles (e.g. an eTe™ pair) is that

Im(M)

_— 8.1
2EemPem’ (8.1)

Ttot (K1, ko — anything) =

where M denotes the respective forward scattering amplitude. Here E.,, = /s and pe, are the energy
and momentum in the center of mass system (CMS). The optical theorem is a direct consequence of
the unitarity of the S-matrix [40, p. 231]. pem in our 2-particle system can be expressed with the
function

Ma, b, c) = a® + b* + ¢* — 2ab — 2ac — 2bc (8.2)
as
P = i)\(m2 m?,s) ~ s (8.3)
cm 43 e’ e’ 4 :

The approximation is possible as the colliding eTe™ particles are highly relativistic. Therefore (8.1
simplifies to:

Im(M)

S

owt(eTe” — anything) = (8.4)

In perturbative calculations unitarity manifests itself through cutting rules of Feynman diagrams
[50]. With these cutting rules one can calculate 2Im(M) (where M is the matrix element of the
diagram) as follows:

1. Identify the incoming and the outgoing side of the diagram.

2. Cut the diagram in all possible ways and replace each cut propagator by I'm(2ixPropagator)f(po).
Here py is the total energy that flows from the incoming to the outgoing side of the propagator.
Due to 0(pg) the energy is only allowed to flow from the incoming to outgoing side through the
cut. For a scalar propagator we therefore get the following replacement rule:

i —2
R R Im [m} 0(p°) = 2w (p* — m*)6(p"). (8.5)

These replacements render the loop integral into a phase space integral. For our work we will
need to cut through unstable (anti)stop EFT propagators:

i 1
- > — — —2Im - - —| =
St -t
7 EP0— g i 7 TP g Hig
i —i
Iy . (8.6)
2 I- "t 2 Iy
PR TR R N

Note that in this case the 6 function is always 1, as m+ % +pp is the total energy going through
the propagators and E + py < m. Therefore we have that 6(m + % +po) =1.

29



3. Conjugate the propagators at the outgoing side of the diagram.
4. Multiply the vertices at the outgoing side of the diagram by (—1).
5. Sum over all cuts.

We want to point out that the cutting rules illustrate that there is a close connection between phase
space and loop integrals.
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9. Operators and fields in vNRQCD

9. Operators and fields in vNRQCD

In this section the fields and operators of vNRQCD are presented.

0.1. The label formalism of vVNRQCD

The hard modes are integrated out in vNRQCD and are put into the Wilson coefficients of local
operators. For the other contributions one needs a systematic way to separate the scales. To achieve
this one splits the momenta of the squarks into three different parts:

(»°,p) = (m,0) + (0,p) + (K, k). (9.1)

Here we have p ~ mv and k° ~ k ~ mv?. The (m,0) part of the momentum is of no relevance for
the dynamics. The idea is to divide the soft momentum space into quadratic boxes of length mv?
and to describe the modes of each box with a different field v,. These fields are labelled with the
soft momentum, which is why the procedure is called the ”label formalism”. They are treated as
different particles with different propagators and interactions. 1, and v interact via the exchange
of soft gluons and potentials but not via ultrasoft gluons. An illustration of the label-formalism is
given in figure @l The original non-relativistic squark field can be written as:

P(a) = e MY Py (x). (9.2)

p runs over soft momenta. This means that only the ultrasoft momentum in (@) remains a contin-
uous variable. The ultrasoft momentum operator applied on ¢, (z) is therefore —iVi, ().

m‘/’\’“ '
070 . .
A

ﬁL

[

Figure 4.: The soft momentum space is split into quadratic boxes of length mv?. In vNRQCD there is a seperate
squark field for each box, which describes the modes therein. The figure is taken from [47].

In vNRQCD one performs an analogous redefinition for the antisquark xp(z) and the soft gluon
fields A%(z). Technically the label formalism enables us to obtain a separation of the soft and
ultrasoft scale, which is necessary for a consistent power-counting in v [47]. It was originally proposed
to construct HQET [20].
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0.2. e"e fields in the EFT

Because the effective theory needs to describe the #;¢; production only in the threshold region and
in the c.m. frame, the initial states a°f(k')al (k) |O>H can be assumed to fulfil s = (k + k')? ~ 4m?
and k = —k’. Furthermore we can assume for simplicity that the e*e™ pair collides along the z-axis
and therefore the four momenta are determined for a given s:

o= (), 03

where €, is the unit vector in z-direction. We can now define the fields e_(z), e, (x) that contain all
the relevant modes of the ete™ particles:

e(2) =Y ar(ku,(k)e
/5 A

er(r) =Y ad(k)v,(K)e™™, (9.4)
VA

where u, and v, are the electron, positron Dirac spinors. The sum over the c.m. energies denoted
by +/s is restricted to the threshold region. As we specified that the incoming ete™ pair is colliding
along the z-axis, we can restrict ourselves to the momenta in (@.3)) and do not need an integration
over angles. In the phase factors one uses the 4-momenta relative to (m,0):

b (L)

m,-—e
2 2

9.3. Operators in vNRQCD

A part of the operators and their Wilson coefficients presented here will not be calculated explicitly
but will be important at higher order. Whenever this is the case the corresponding terms are coloured
red.

The bilinear part of the Lagrangian contains the kinetic terms for the squarks (including an effective
description of the decay of the squarks) and the coupling to the ultrasoft gluons:

4

—iD)?2
Lbilinear :Z {Ib; [ZDO - (p ' ) + P

2m 8m3
p

- 2
+%F{1 (1%)+'”]¢p+(w—>X7T_>T)}- (9.6)

The form of Lyjinear i constrained by reparametrization and gauge invariance. Due to reparametriza-
tion invariance soft momenta always have to appear together with —iV [34]. And one obtains manifest

% _ct

all, al (k) are the e*, e~ creation operators.
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9. Operators and fields in vNRQCD

gauge invariance of Lyjjinear by substituting 0° and V with covariant derivatives:

D° = 9% +igA°(z),
D =V —igA(z). (9.7)

Due to the partial Fourier transformation in (0.2]) ¢, (x) and xp () only contain ultrasoft fluctuations.
Therefore i and —iV refer to the ultrasoft energies and momenta relative to the soft momentum
p. For this reason the covariant derivative does also only contain the ultrasoft gluon field. The
kinematic corrections which are coloured red are of NNLO.

The potential part contains the interactions due to the exchange of potential gluons:

‘Cpot - - Z Ia%e‘;'(p’ pl)w;;/prip/Xfp +oee (98)
p.p/
with
~ V(T) V(T)W2 V(T)(p2 + p/2) V(T)
V A TA TA c k r 2 Ce
(pa |Y ) ( ® ) k2 m|k\ + 2m2k2 m2 +
V(l) V(1)7T2 V(l)
11 ¢ k 2 o 9.9
+(1®1) 12 + /K] + = + , (9.9)

where k = p’ — p and

VC(T)(l) = 4rag(m), V(T)(l) = 4rag(m), VéT)(l) = —mag(m),
0

Vi) =o. ZROR
7C C C
WO =t (- WO = adm (9.10)
1
Cy = 8Cp — 30, Ci = 5CCy = C2, (9.11)
4

As discussed before the contribution of V'™ in scattering diagrams in figure Blis of O(ag/v). It is
therefore important to sum up all these loop diagrams, which we do by using the respective Coulomb
Green’s function. Vél’T) and V,(T') contribute at O(agv). They are the analog of the Breit-Fermi
potentials known from QED. V,gl’T) are generated by one-loop diagrams and are therefore of O(aZv?).
For squark-antisquark scattering in a color singlet state only the linear combination of coefficients
Vi(s) = —CFVi(T) + Vi(l) is relevant [29].

We need currents that describe the production and annihilation of a #;£; pair from/to an e
pair. In the full theory the production/annihilation happens via the exchange of a photon or Z boson.

+o—
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With the fields in the EFT we define the squarks production and annihilation currents as follows:

OL =520 x* (9.13)
o) = |exri(B/mye_| 0, (9.14)
0541, = |ess(Efm)e-] O, (9.15)
Z i [CVOVP +CaOap +CPOY +CPOY 4. ] + He, (9.16)
where we use the notation Oy 4 p = OS)/)A,p'
At the matching scale the Wilson coefficients are:
Born Q’Y 2 QZ
- — 1

v m [4m2 sin(29w)ve4m2 — mQZ] ’ (9.17)

2T 2 @Z
CBorn — . 18
m sin(29w)a 4m? —m?%’ (9.18)
Cvja(v) = CPre(v) + C%. (9.19)

¢(v) contains the hard matching conditions, which are in our case the contribution of the hard gluon
loops at one loop level. In (B23]) we obtained RedF which are the radiative corrections to the real
part of the form factor of the full theory current at 1-loop level. One can show that in § F' the O(as3°)
terms without the I.R. divergences correspond to the NLO contribution from the hard gluon loops.
Furthermore, the hard gluon loops do not contribute to the imaginary part of ' and therefore up
to NLO c(v) is simply the O(ag(?) part of RedF without the 1/¢;g terms:

Chp. (9.20)

¢(v) has a NLL running which is calculated in [29]. @CF is a correction of the order of 5%
for m between 100 and 500 GeV. C’%f/oj is a NNLO correction that accounts for hard electroweak

contributions. C‘(,l /)A contains NNLO effects from the expansion of the full theory current.

9.4. Factorization formula

We want to calculate oy, which is given by Im(M)/s due to the optical theorem. With spin
averaging we obtain:

1 Z M =[Oy (V) LYy + Ca(v)*Lii, + Cy (v)Ca(v) (Liy + L) ] A*(v), (9.21)

spms
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9. Operators and fields in vNRQCD

with

A =iy / dze'™ (0|TOL (x)0%(0)]0) (9.22)
p.p

Ly =1 2[5 ()3, (00)] [1 (00 ()]

7,7’

L =1 3 [0 (K7 ()] ()70 ()

T, T

L =1 3 [ K s (0] [ ()70 ()]

T, T

!

!

Ly =1 3 [0 (K- (00)] [ 007 o ()], (923

where ¢ = (E,0). Due to spin averaging we have L, = L'¥, and L', = L%, = 0. We define
L" = leﬁv (: L%A)
1
= SO+ K20 — et
" =s. (9.24)

As A does only depend on E, we get

] '5lk
AF = AT —, (9.25)
where the sum over j is implied. Finally we obtain:
1
Oun (V) == D Im(M)
spins
1 g
:glm [(CV(U)2 + CA(V)2) .A”(u)] : (9.26)
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10. Greenfunction

In (€7 we saw that the perturbation series in ag breaks down for v ~ ag. The diagrams in figure
() are all of the same order and we need to sum up the leading order contribution of every diagram.
The leading order contribution stems from the exchange of potential gluons. In the effective theory
the contribution of potential gluons is taken into account by Ly given in (O.8]). As we will see,
we can make use of the Greenfunction of the Schrodinger equation to sum up the contribution of
potential gluons in all the diagrams given in figure (2I).

10.1. Definition of the Greenfunction and its Fourier transform

The Green operator G¢(FE) of non-relativistic Quantum mechanics for an unstable squark antisquark
pair that interact via a Coulomb potential is defined by the following operator equation:

(zf[ B+ z’rﬂ)) Go(E) = <%2 Ve(lx]) — (B + z’F{l)) Ge(E) =1, (10.1)
where
Velr) = —% (10.2)
The Greenfunction G(x',x, E) is defined as:
Ge(x',x, B) = (x| Ge(E) [x) (10.3)

where |x) represents a two particle state of a squark and anti-squark that are separated by x. The
normalisation of these states is given by:

x'|x) = *(x — x). (10.4)

Go (X', x, F) therefore fulfils the following differential equation:

(_ Z% + Ve(2') — (B + ZT,;I)) Go(x,x,E) = §(x' —x). (10.5)

The Fourier transform of G¢(x', %, E):

Ge(p',p, E) = /d3x’d3xeip/'x/GC(X’,X, E)e®x (10.6)

satisfies the equation:

(% —(E+ z’rﬁ)) Go(p,p, E) + / gﬁ’; Vo(p K)Go(k p. E) = (20)°8*(p' — ), (10.7)

where Vo (p/, p) is the Fourier transform of Vg (x):

—A71a
(p—p')?

Ve(p',p) = /d3x’d3xeip,'x,VC(|x’ —x|)eP* = (10.8)

36



10. Greenfunction

Solving this equation iteratively we obtain:

GO =X (10.9)
B (F+il)
p,2 . ~(i4+1) o &Pk - / ~
__(E+Zl—‘t~1) GC (papaE) - 3VC(p7k)GC(kap7E)7 (1010)
m (2m)
where ég) is the O(a) contribution in G. For the O(ag) part we get:
Ge' (' p. E) = - : Ve(p',p) : (10.11)
) ) 12 ) 2 . * *
= (E+ily) o = (E+ily)

10.2. Connection between the Greenfunction and ladder diagrams

Via (I0I0) it will be possible to establish a connection between G (p’, p, F) and the following sum
of diagrams in Fourier space:

e

TR BT |

One calls these diagrams ladder diagrams for obvious reasons. Gp(p',p, E) includes the external
propagators. To establish this connection we are following the ideas in [50, p. 62]. As we are only
summing up the contribution of potential gluons, each gluon propagator corresponds to one insertion
of the potential given in (9.9):

777777 g = —iV(p,p') = —iV (D', p). 10.15)

In the following we will set a = % such that Vo(p,p’) is the leading order of V(p/,p). We

denote the O(a%) contribution of Gp with (N}’g). Let us first look at the O(ag) contribution of
GD<p/7p7 E)

GWpE)= | =)V

(10.14)

h(p) T

E 2 F"E 2 .

2m 2 2 2m

*For the definition of Gp the diagrams are understood to include the external propagators.
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For i > 1 we define GO (p/, p, E) as

~(3)
PP ) = Gf(f)flz}f)’
f(p) = i i

F_
E 0_ P>, .1 E _
7 TP~ g, i

2

=(=)h(p)(E +iT; — ).

2 -
0 _ P~ y_t
2 om T 173

(10.15)

Here GO (p/, p, E) is already written as a function depending only on (p/, p, E) and not on (p°, p).

This is obviously true for G
the following iteration formula we will prove by induction that G
1> 1:

, which apart from Vo — V is 1dentlcal to GC given in ([I0.IT]). Usmg
is independent of (p°,p) for

=4+ —4+p —4+p R gy
g % _ g gﬁ“ | (10.16)
IR 4y Sier gk i
Algebraically this means:
» d'k - - (i if (')
GO p, E :/— —N\WV(p, k) Gk p B . 10.17
50 ) = [ GV @R GGk ) T (10.17)

(=) f()GD f(k)

If we now assume that G is independent of (p°, p"®) we can rewrite this equation as follows:

12
(% —(E+ z'rﬂ)) G p, E) =

) [ GRG0, B) [ 50 1),
M_/

=1

where f%f(k) =
iteration formula for G(®:
A3k -~

m ™

This proves that G is independent of (p°, p°) if this is the case for GO,

12

(10.18)

1 can easily be shown by an explicit computation. We obtain the following

(10.19)

The key pomt is that

except, for Vo — V this iteration formula is identical to (DID]]I) We still did not define G but this
shows that for i > 1 we have that G — G(é) for V. — V. Tt is now tempting to define:

GOp',p, E) =G2 (p',p, E).

With this definition we have:

Pp7

=> GY(p pE

1=0
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)= Geo(p',p, E) for V. — V.

(10.20)
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10. Greenfunction

This means that G¢ gives the leading order contribution to G. If we wanted to calculate G beyond
leading order we would need to solve ([II77) for Vo — V.

However, if we also defined G via (I0I3) we would get a slightly different result and therefore
the equation:

is not entirely correct for this definition of G(). For all the contributions from O(ag) onwards the
equation is of course correct, there is only a subtle disagreement in the O(a2) term. Let us have a

look at the 4-point function in position space corresponding to é’g) (p',p, E):

4 4 _ ; )
_ d*p1 d'po —ip1(ah —x1) ,—ip2(zh—x2) ¢ ! (10.23)
(2m)* (2 )46 ¢ 0 p Ty s | I .
T & P — ok +ishph— e m i

If equation (I0.22)) was true for O(a%) we would have to get the same expression for Gg) by inter-
preting
(0 =
Gy p B) = F)(=)GO (', p, E) (1) (10.24)

as a 4-point Feynman diagram in the CMS and transforming it to the respective 4-point function in
position space. To do this we first need to give an expression for G;:()O) outside of the CMS:

j ><x )it (maghe - PigRt)
—

2 .
5 BB ()T

( i - i ) (10.25)
PP - B it g By

Doing the transformation of é/l()o) into position space we obtain:

1
G( )(p17p27p17p2) ( 0 p2 T, +

d4p1 d4p2 d4p, d4p/ ; ; -1l Sl
G/(O) r E/ 1 2 ipix1 jip1wy ,—ipi ) —ipha)
p (21,72 71, 73) 2m) 2m)t 2m)t 2mt ¢ ¢ €

é/z()o) (p/17p/27p17p2)<2ﬂ')454 (p1 + p2 — Py — 1)
4 4
:/ M d p2 efipl(xllfxl)efiPQ(m’Q,xQ)
(2m)* (2m)*
0 () o (a - a8). (10.26)
Pl = g i 1h — 5k +ist

G;:()O) is identical to Gg) except for the two 6 functions. Because of the pole structure of the propa-

gators we could multiply Gg) and Gllgo) with the two 6 functions

0 (:L’/lo - x?) 0 (:L’;O — x%) (10.27)
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without changing these expressions. Therefore the difference in Gllgo) and Gg) is that Gllgo) # 0 only
if 29 29 < 270, 2, while for Gg) 40 2Y < 2 and 29 < 27 suffices. This, for instance, means that
the 4-point function corresponding to the following diagram:

x| ] o4

- — — —

is contained in é’g) but not in é/l()o). However, as we need to close the ladder diagrams at one side
the points for which Gg) and G/l()o) differ are anyway of no importance for our calculation. This
means that we can use equation (I0.22]) without making a mistake.

With (I0.22)) we therefore found a connection between the sum of ladder diagrams involving po-
tential gluons (I0LI2) and the Greenfunction of the Schrodinger equation (I0.3). For the O(a%)
contribution (I0.22)) is not entirely correct but the difference vanishes if we close the diagrams at one
side. For summing up the leading order contribution we will use the Greenfunction of the Schrodinger
equation for the Coulomb potential (I0.H). For taking into account higher order corrections we would
have to solve (IILI0) for Ve — V.

10.3. Solution for the Coulomb Greenfunction

In [35] the solution of (I0.H) is given:

Ge(x,y, E) =Y 2+ 1)(y)' P (x - y/(xy)) Gi(w,y, k), (10.28)

=0

where k = —i/m(E + iI';)). Pj(x) are the Legendre polynomials and

mk N L2 (2ka) L2 (2ky)r!
G k) = — (2k)* e klty) - : : 10.29
@y, k) 27r( )he ;(T+l+1—p)(r+2l+1)! ( )
The parameter p is defined as
am

= —. 10.30
P=or (10.30)

LE(x) are the associated Laguerre polynomials, which are defined as:

z,.—k T
k — €z i —x . r+k

L (x) = . (dx) e . (10.31)

*As shown in figure
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10. Greenfunction

10.4. Calculating A"* at leading order

We will close the sum of ladder diagrams with the P-wave squarks production vertex given by the
operator O} defined in (@.I3) that generates the Feynman rule:

7
7

+p/

i & =i2p, (10.32)
A
it SN

where j is a spatial index. The S-wave quark production vertex, which one would use in the calculation
of o(ete™ — tt), is constant in the momentum p and therefore diagrams with the S-wave production
vertex will be less divergent for p — oo. We can therefore expect more UV divergences than in the
case of top production [28]. Closing G p on both sides with this vertex we obtain:

PRGN . d4p/ d4 L~ .
. : _ o, / ;
E ® ®k +l® g; @k +1®§§®k +--=N /(27r) 2y 2120 " Gp(p', p, E)i2p

>

N
colours -

(10.33)

We call the leading order contribution of this expression i A% and calculate it via G¢ by making use

of (I0.22):

k — N d4p’ d4 1 Nk
il = No [ Gt f) (=0 Ge (ol p. B) )iz

(27)° (27)°

~~

d3n' d3 _
=¢4N0/ b p'Ge(p'.p, E)p", (10.34)

=Go™(B)

where we used [ % f(p) = 1. i A% is the leading order contribution of i A defined in ([@.22)). As the

function églk(E) only depends on a scalar we can make the Ansatz:

B 5lk
Ge"(B) =GE~
a3p' dp .
P _ L /
G (E)_/(zw)s (2ﬂ)3(p p)Geo(p,p, E). (10.35)

In [24] the result for GE is given:

g m! —w 1a
Go(E) = . {Zv3—av [ (7)—1+1n2+’m+\1’(1—%)}
va® a? e 7 ia
— — — |In{— | — = +1In2 T I
B 4[11(”) g < 2v)]}

m* (1 2 9 a?
— |-+ — 10.
+167r<e+3 <Ua+8>, (10.36)
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E+ily
where the subtraction velocity v is defined in (6.5), v = 4/ t; = T'g is the so-called Euler Gamma and

U(z) = FF/((j)) is the Digamma function. The UV divergences in ég were regularized by dimensional

regularization with the renormalization scale pug = muv.

In all the terms up to O(a?) there appear UV divergences. Although there are no % terms of O(a?)
and O(a%) these contributions are nevertheless divergent, but dimensional regularization does not
see them as it throws away power divergences and only keeps logarithmic ones as % terms. There is
for instance a linear divergence in Im(GE) at O(a$) which is invisible in dimensional regularization.
Therefore we find divergences in the imaginary part of G&(E) in the contributions up to O(ag). For
I';; — 0 the divergences in the imaginary part disappear.

This can be understood by calculating the imaginary part of A% via the Cutkosky rules. For a
finite value of I';; the cut squark propagators are not replaced by a ¢-function but the replacement
rule given in (B.6) has to be used. This means that for a finite I';; one has to integrate over outgoing
squark momenta that are far away from its mass-shell. The UV divergences in Im (.AZC"“) appear
because vNRQCD is not a good description if the outgoing squark states are not close to on-shell.
For I';; — 0 the outgoing squark momenta are set on-shell by the J-function and therefore vNRQCD
is not used to predict the amplitudes to off-shell squark states. The divergences in I'm (Aléf) are
called phase space (PS) divergences as they are related to an unrestricted PS integration. The PS
divergences do not appear if we use vVNRQCD to calculate a cross section with kinematic cuts on the
final states. In the next section we will define such an observable which we can calculate in vNRQCD
itself. For calculating o additional high energy information is needed, even at leading order.

If we would not encounter divergences in I'm (.A”“) at leading order the prediction of vNRQCD
for amplitudes to off-shell squark states would still be insensible and divergences related to this can
appear at higher orders. This for instance happens for ete™ — #t, where Gp is closed by the S-wave
production vertex. In this case ég(E) is replaced by

GS(B) 5/%<ng;3éc(p’,p, E) = Ge(0,0, B), (10.37)

which has a finite imaginary part. Nevertheless one encounters PS divergences if one goes to higher

orders [28].

10.5. Calculating the P-wave Coulomb vertex function

In the next section we will solve the problem of the phase space divergences encountered in (I0.30])
by introducing kinematic cuts on the final states. To do this we will make use of the following vertex
function, which we obtain by closing the diagrams in Gp with the vertex given in (I0.32]) at one side:

%ﬂ”// g e

// /’ // d4p .~
& &g +& 88+ / GG B) (1039
AN \ 2

N A
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10. Greenfunction

We call the leading order contribution of this expression y¢. The imaginary part of GL(E) can be
obtained by using the optical theorem:

2Im ((;g(E)> -

/ d*k oL (k, E) i - —i
2 Lt 5 N
(2m)t h(k) Egpo_te o ey e Jegla
2 -t 2 - o
R N A
d*k 2 1 ! *
Wrtg’yc(kaE) (’Vc(k’E)) ) (10.39)

where the sum over [ is implied. The advantage of this expression for Im ég(E) is that we

can restrict the loop momentum £ to avoid the PS divergences. As we will see the restriction of
integration domain for & corresponds to a kinematic cut on the final states. y¢ can be calculated via
Gci

4 3

V(P E) = / (;lT’;ﬁpf‘f(p)(—z’)éc(p',p,E)f(p'):2 / TD G 0. B) 1), (10.40)

(2m)3
=g’ (p'.5)
where we used [ dQ—’ff(p) =1
~P "B = d3p é / E) = d3 /d3 d3p ip-x G / E —ip’-x’ 4
gC(p7 ) - (27T)3p C(p » P, ) - x ‘TW pe C(X y X, )6 (10 1)
—iVxePx
— /dgx'd?’x —dBp ePX(+i)ViGo (X, x, E)e ¥
(27T)3 xTC ) Ay
—_——
53 (x)
=i | &2 [VxGe(x,x,E)|._ e P, 10.42
x=0

In (I028) the partial wave decomposition of G¢ is given. For [ViGeo (X', x, E)|,_, only the [ =1
term, which corresponds to the P-wave contribution, remains. The contributions for [ > 2 vanish
because of the (za’)! term that is multiplied with G;: If one does not apply at least [ derivatives in x
on (xz')! the resulting term vanishes for x = 0. The [ = 0 contribution of G¢(x', x, E) is independent
of the direction of x, x’ and can therefore be written as a function g(2/, z, E'). Using (I0.41]) we obtain
that the [ = 0 contribution is of the form:

d3p ipx —ip’-x’
/dgzp’d?’x(Qﬂ)gpep g2’ x, E)e” ™ = (. (10.43)

=0

The key point is that [ d*z (giz)’g peP*g(2', z, E) is a vector but only depends on scalars which means

that the expression has to vanish. Applying the derivative on the [ = 1 term we get:

gh(p, F) = 32’/dgx'e_ip/'x,X'Gl(x',O,k), (10.44)
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where G is defined in (I029) and k = iy/m(E + iT). The function g5 (p’, E) is a vector that only
depends on p’ and we can therefore make the Ansatz:
gg(plv E) = gg(|p/|7 E)plv
_~ 32 —Z ,'Xl
D1 E) = o [ a0 p) G 0.0, (10.45)

Using spherical coordinates and doing the angular integration we get:

_ 12r [ sin(p/a’
o, E) = 2 /0 dx’ " (% - cos(p'x')) Gy(2',0, k). (10.46)

For one argument set to zero G simplifies to [35]:

Pl+1- 1= p,21+2,2
Gl(‘”’ovk):m—k(%)me_m (+1=pU(l+1-p2+2 k:c).

27 20+ 1)! (1047)

Where U(a, b, z) is the usual definition of the confluent hypergeometric function [4]. The last integral
can be carried out using the relation 7.621.3 in [21], p. 822]. After several reformations one can express
the result as a sum of derivatives of the hypergeometric function o F(a, b, c, 2):

. 1 . k+p
P B (1,0,0,0)
gC(va) _2—pgm{2p+2k(1_p) |:2F1 (07271_p7 2%k )
00, k—ip . 0.0, k—ip
—2F1(1000) (0,2,1 — P W)] + ik [2F1(1000) <0’3’2 _'0’7)
o
—F (03,2 p =) (10.48)
2k
where
_ - (@)n(b)n 2"
2Fi(a,b,¢,2) =) (c)n nl
n=0
2F1(1,o,0,0)(a’ b, c, 2) = 2Fi(a,b,c, 2). (10.49)
a
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11. Concept of Phase Space Matching

11. Concept of Phase Space Matching

11.1. Restricting the PS integrals to the domain of vNRQCD

In the last section we encountered divergences in the phase space (PS) integrals which appeared due
to finite lifetime effects. In our power counting, where I'zx = O(v?), these divergences are even of
leading order. This problem arises because we have to restrict the PS integration to a domain where
the expansions in NRQCD are still sensible. In the following this will be achieved by introducing
kinematic cuts on the final states.

As the stop and antistop are not stable, we calculate the cross section to final states to which they
can decay. Depending on the point in the parameter space of the ”minimal supersymmetric standard
model” (MSSM) the decay to different final states will be dominant. The following processes can
have a significant contribution to the total cross section:

efe” — bfdrl—)X;,

efem = tx X,

ete” = by f}Z?,

efem = txIbX; . (11.1)

Here )Zzi i = 1,2 are charginos and x! i = 1,2,3,4 are neutralinos. We define what we call the
invariant mass of the stop and antistop squarks M = through the reconstructed masses of the
systems coming from their decays, e.g.:

ME = p? = (py + i)™ (11.2)
The selection prescriptions are cuts on the (anti)stop invariant masses of the form:
(m—AM) < Mg < (m+AM). (11.3)

This is a constraint on the off-shellness in the (anti)stop propagators. In vNRQCD the (anti)squark
propagator is given as:

l

- (11.4)
o= iy

Ignoring relativistic NNLL corrections (II3]) means that the off-shellness in the propagators must
fulfill:

2
“AM <po—m— 2 < AM. (11.5)
2m

This means that phase space integrations are limited by the scales AM for p and A = vV2mAM
for p. In the power counting we will take A ~ m/v, which implies AM ~ mv. Numerically the
scales AM and v2mAM have to be sufficiently below m, such that for all the £;¢; phase space
configurations that pass the constraint (IT.3]) the NRQCD expansions are valid.

In vVNRQCD the final states to which the (anti)stop particles can decay are integrated out. But
cuts on the invariant mass of the system of decay products of the (anti)stop can be implemented in
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vNRQCD itself although it is an unstable-particle EFT [9], p. 11]. For reproducing the phase space
integrals over these final states one needs to cut the (anti)stop propagators via (86]) and in order to
restrict these phase space integrals to a domain, where vVNRQCD is still a valid approximation, we
have to apply invariant mass cuts according to (IT3]) on the (anti)stop propagators. We will refer
to these as "phase space cuts” (PS cuts) and call (anti)stop propagators, which pass the PS cuts,
"resonant”. In figure [f] we illustrate the meaning of the cut of a simple vNRQCD diagram as a phase
space integration.

A(A)

Figure 5.: Here the meaning of a cut through the unstable (anti)stop propagators is illustrated. i sums over all
the possible final states to which stop and antistop can decay to.

11.2. Power Counting

As we count % as O(y/v) we will get terms that are of some half integer power of v in the power
counting. We will encounter terms that are parametrically enhanced by v='/? with respect to LO
or NLO terms and call them LO, or NLO, respectively. In ([I036) we encountered divergences in
Imég. After introducing an invariant mass cut-off these divergences disappear but, as we will see
explicitly in section [[3.1] they are replaced by PS corrections that are partly of LL, order.

Dimensional regularization for instance throws away the linear divergence in Imég. After intro-
ducing an invariant mass cut-off we get a term which is of LO, instead of this linear divergence, as
we will see in (I3.8). The % divergence corresponds to a LL, term.

It should be noted that the corrections due to the introduction of cut-off can be parametrically
bigger than the result in dimensional regularization.

11.3. Analysis of the cut propagator

The Cutkosky cut of the NRQCD propagator E+Ft corresponds to a PS integral in the full
3 tpo— P i

theory. By understanding this correspondence in more detail one can restrict the PS integral to a

specific final state and include relativistic corrections. The full relativistic version of this propagator

that is also including loop corrections is:

2mi

(%:I:p)2—m2+l_[<(gj:p)2)’

(11.6)
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11. Concept of Phase Space Matching

where ¢ = (2m + E,0). 4l is the sum of all self-energy diagrams. When cutting this propagator via
the Cutkosky rules we obtain:

2msi 2m
GEpr—nE+ll ‘21m<<gip>2—m2+n) -

2mi <21mH) < 2mi >* (11.7)
(FE£p)2-m2+1I\ 2m (IL£p)2-—m2+10

For simplicity we did not write the (% + p)2 dependence of II. Instead of calculating the total cross
section, we can choose to restrict ourselves to the imaginary part coming from a single final state.
This is also what we will do eventually. If we for instance want to calculate ee™ — b x;° E}Zj_ we will
replace ImlI at the cuts by the imaginary part stemming only from the self-energy diagram with a
X; and a b-quark in the loop:

2HMHW)*2“ﬂRWW‘ﬂmF—@k31:<1+}+1:tla,- (11.8)

b

The II in the denominator of the propagators corresponds to virtual corrections and there one has
to sum up all the self-energy contributions, even if one calculates the cross section to some specific
final state. The partial decay width I'y. is closely related to ImlII(m?):

ImIl(m?) = mly, (11.9)
Replacing %(kz) at the cut by ft& is therefore a leading order approximation:
ImII(k?) - k?* —m?
Il g 140 (727”) . (11.10)
m m
O(v2)

We define f{l(kQ) as a function that depends on the invariant mass of the ingoing ¢, propagator:
ImII(k?)

vk
Iml:I(

At higher orders the k? dependence in the TkQ) term at the cut has to be taken into account. If
we include the next term in the expansion, we obtain:

ImIl(k?) P Im(62)(k* —m?)
m ~on m

Ty (k) = (11.11)

+ Tz 0(%). (11.12)

Where 07 is the wave-function renormalization in the on-shell scheme, which is related to II as given
in (B1). 67 is the contribution of the wave function renormalization due to II. The imaginary part
of 67 will be called §Z2* in the following:

Im(6 Zabs) =Im(8Z),

. 1 (= , dl;
5Zabs = — Ilﬁ (F{l —|— 2m W;

) . (11.13)

47



If we are interested in the cross section to some specific final state at leading order (IT.7]) becomes
i i ~ —i
— r

T- 2 -t 2 T- °
E _p* ,n E _p* ;0 "E _p*_a
3 £po— o, tig 5 £po— o, tig 5 £Po— o — i

(11.14)

Except for I'y, — ft} this is identical to the substitution (8.6]), which is used for calculating the
total cross section. If we want to go to higher orders there are two different corrections that we
need to consider: The first comes from the expansion of the propagators left and right of the cut in
(IT1). Corrections to the propagator are dealt with by introducing 2-point insertions into the EFT.
This means that the non-relativistic propagator in the EFT remains unchanged but one adds 2-point
vertices, which include kinematic effects and self-energy corrections. Unlike in (IT.12) also the real
part of the self energy contributes to these corrections.

These 2-point vertices are suppressed by O(v?) if k ~ mv. However, as A, which represents the cut-
off on the three momenta, is counted as O(m+/v), k can be of O(m+/v). Therefore the corrections
due to the expansion of the propagator left and right of the cut are of NLO,. If we would not
implement an invariant mass cut-off the corrections due to these 2-point vertices would be of NNLO
in dimensional regularization.

The second effect is due to the k2 dependence of ImII(k?) at the cut and can be taken into account
via the expansion we did in (IT.I2). From this expression it is clear that the effect is proportional
to 5Zabs. It can be shown that doing this expansion at one cut is equivalent to using (IT.14]) and
multiplying the connected vertices with (1 + 8 Zabs /2). In this way the connected vertices obtain an
imaginary part. For instance the creation and annihilation currents in the process ete™ — by; b X;

are both multiplied by (1 + 5Zabs) as they are both connected to two squark propagatorsﬂ The PS
corrections to this effect is also of NLO,.

11.4. Phase Space Matching formalism

One possibility to calculate oy,q(A) is to use only the vNRQCD operators and to evaluate the PS
integrals with cuts. We already calculated the Coulomb corrections to the vertex function in section
[[0.4l The remaining phase space integral with cut could now be carried out numerically. We are
however going to follow a different approach where we will match the selection prescription on the
final states to local operators. This is possible if A is considered to be a hard scale, which corresponds
to high energy dynamics and can be integrated out at the matching scale vyaen = % In 28] 43] a
similar approach was followed for the description of ete™ — tt, where the angular momentum state
is a S-wave. In our case the angular momentum state is a P-wave state and this is also the first time
the PS matching formalism is applied for a P-wave angular momentum state.

The advantage of matching the selection prescriptions into local operators is that by the RG
evolution we will sum up large logarithms of the form log (%)

In our effective theory Im(M)/s will then not correspond to oy but to oina(A), which is the cross
section to final states that fulfil the selection prescriptions we described above. This will later give
the matching condition for the EFT.

The invariant mass cut-off AM should be below m such that the PS integrals are restricted to a
domain where vNRQCD is still sensible. We choose A ~ m+/v as it is then hard with respect to the
soft scale but at the same time the expansions in vNRQCD are still valid for p ~ A. We will match

A

to the effective theory with PS matching at the matching scale viapen = -

*There is no complex conjugation of 8Zaps at the annihilation current, as this is a non-hermitian effect.
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11. Concept of Phase Space Matching

In addition to the contribution of these cut diagrams, which we can reproduce in vNRQCD by
introducing invariant mass cuts, there exist also numerous background diagrams that contribute to
the same cross section (see figure [ for an example of such a diagram). However, in the regime
where the 1, {; propagators are resonant, we expect the vYNRQCD diagrams to be the dominant
ones. For large AM we therefore not only have the problem that the diagrams including the #;,
t, propagators are no more adequately described in vNRQCD, but also that their contribution in
the kinematic regime, where t;, {; propagators are less resonant, will become subleading to the
background contributions. Our approach is therefore limited to some maximal value for AM for these
two reasons. By using the program Madgraph [6] to numerically calculate the cross section for some
parameter point in the full MSSM, we will check in section [I5] that the background contributions at
tree order are small for the AM values we use in our analysis. It is possible to match the background
contributions into the Wilson coefficients of our EFT.

A different approach would be to match only to phase space integrals calculated in the full theory
which is carried out for top production in [9]. If the matching is done in the full theory, we do not
rely on NRQCD expansions and can therefore choose bigger values for A. However, if we want to
investigate t1,¢; production the regime where Py, > mo is also less interesting, as the diagrams

where the final states are produced over the decay of ¢;,#; are only resonant for pg, ~ mv. The
effect of raising A beyond m+/v, which corresponds to our power-counting, is to introduce more of
the regime, where the ¢;,{; propagators are less resonant and the background contributions therefore
become more important. Raising A will in any case render the background contributions more
important, which means that one also needs to invest more work for calculating them at higher
precision. For us the assumption that we can ignore most of the background contributions is crucial
and we will test it in section [[3 via a Monte Carlo simulation in Madgraph. We will see that if
we choose A smaller, the background is also getting less important. In order to match the effect of
the cut-off A into local operators, we only need that it is large compared to the soft-scale, this is
therefore also possible if the matching calculations are only carried out in the full theory. However,
in [9] the effect of the cut-off A was not integrated out.
Therefore i, (A) = Im(M)/s consists of two contributions:

Oincl(A) = onrQeD (A) + Orem (A), (11.15)

where onrqep(A) is the cross section computed in vNRQCD with the invariant mass cuts on the in-
termediate (anti)stop propagators applied. oyen(A) contains for instance diagrams with no (anti)stop
propagators as intermediate states. We call diagrams with only one (anti)stop propagator single-
resonant and diagrams with a stop and an antistop as intermediate states double-resonant. The
interference between single and double-resonant diagrams has to be taken into account in oxrqep(A)
at NLO, ordenfd. Figure [ shows examples for double- and single-resonant diagrams. It also shows a
pure background diagram, which contains no (anti)stop as an intermediate state.

*The interference contributions lead to a divergence which corresponds to a NLO, PS correction. The finite part in
dimensional regularization contributes only at NNLL.

49



Figure 6.: (a) Double-resonant full theory diagram (ete™ — f1t, — bx{ bx7). (b) Single-resonant full theory
diagram (ete™ — t1b¥] — bX] bXi)- (c) Pure background diagram that contains no (anti)stop as an
intermediate state.

12. Additional Operators for the Phase Space Matching

Besides the operators of vNRQCD we will have to include additional ones in order to account for
0rem(A) to do the renormalization and to carry out the ”phase space matching”, where we will
absorb the selection prescriptions on the final states into the Wilson coefficients of our theory. Again
contributions that are not calculated explicitly in our work will be coloured red. Eventually, a
factorization formula for calculating oj,q(A) in the effective theory will be presented.

12.1. Additional Operators

The ete™ forward scattering operators are needed for phase space matching contributions (which
encode selection prescriptions on the final states, that are part of the definition of the inclusive cross
section), to renormalize the phase space divergences (which arise due to finite lifetime effects) and
to account for the background diagrams, which contribute to the same process [28]. We define the
following e™e™ forward scattering operators:

O = — [e-v'ey] [e-v(B/m)es |, (12.1)
0 = = [e-v7es] [e- v (B/m)e. |, (12.2)
1
Lie=Y CPOW + PO+ Coy + cioy. (12.3)
n=0 n=2

We will use the notation OV/ A= O‘(?/) 4~ 1f we wanted to include polarization effects, we had to include
two additional forward scattering operators in order to absorb the contributions of diagrams, where
there is one axial vector and one vector current [43, p. 24]. For the spin averaged cross section these
diagrams are averaged to 0.
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12. Additional Operators for the Phase Space Matching

One includes interference contributions between single and double resonant diagrams (via C%}l/t n
and PS Cut contributions that cannot be absorbed into the forward scattering e™e™ operators (via
§¢(A) and §¢™(A)) into the Wilson coefficients of the current operators given in (I5.8) (in [28] this
has been carried out for top production). C%f/(f accounts for hard electroweak contributions. Cy4 is
now A dependent and looks as follows:

Cyya(A,v) = CPRRe(v)(1+i0E(A)) +iCPfL (1 + 66™ (A)) + Cyp%. (12.4)

C’%f/oj gives a NNLO, , 5™ a N*LO, and C’%}l/tA a NLO, effect. Hermitian conjugation in (I5.8)

does not act on the imaginary part of Cy/4(A,v) as they correspond to finite lifetime effects which
are non-hermitian.

12.2. Factorization formula

We want to calculate oj,q(A), where A refers to the appropriate selection prescription on the final
states. In the effective theory we have oiya(A) = Im(M)/s, where M is the eTe™ forward scattering
amplitude. In the full theory I'm(M)/s gives the total eTe™ cross section. In the effective theory
Im(M) is matched to the respective phase space integrals with cuts, which implement the selection
prescription on the final states. The only difference to the expression given in (@.21]) is that we now
also include the contribution of the e™e™ forward scattering operators:

I Z M =[Oy (V) Ly + Ca(v)’Liis + Cv (v)Ca(v) (Liy + L) | A*(v)

spms

+Z< ) [C(" A, v) Ly + O (A, v) LY ] (12.5)

Finally we obtain:

+Z() [ DA v) + CR(A, )]- (12.6)
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13. Phase space matching

As mentioned earlier, we construct an effective theory, where oj,q(A) = Im(SM). M is the eTe™

forward scattering amplitude in the effective theory. The selection prescriptions on the final states
are absorbed into the Wilson coefficients of the ete™ forward scattering operators and the currents.
As we will see, at the order we are working the forward scattering operators will be sufficient to
absorb the phase space (PS) matching contributions. We will first calculate the cut diagrams at
O(al) and O(ag) in VNRQCD. Then we will match them to Im(M) in the EFT to obtain the
Wilson coefficients and anomalous dimensions. We will do the matching at the renormalization scale
Vinatch = % to avoid large logarithms of the form In (%)

13.1. Calculation of cut diagrams in vNRQCD
Prerequisites

We replace the loop momentum at the cut & with the variables:

E k> E k2
t1:2m<§+k:0——), t2:2m<§—k0——). (13.1)

2m 2m

The kinematic cuts in (IL5) for the (anti)squark propagators imply simple integration limits for
tl, tQZ

—A? <yt < A% (13.2)

where A = v2mAM. In addition t;,%, can only have values such that k? > 0. To express the
integrand with t;, %5 we can use:

t1 — to
4m

KO =

1
. k=Kl = \/Em — 5 (t2+12). (13.3)

The integrand is independent of the direction of k, and we obtain:

1
Ak = 4rk2d|k|dk° = i\/Em — 5t + to)dtadts. (13.4)

2m

We will rewrite all the integrals as a linear combination of the following basis integrals :

1
111;16111?2(]271 = /1;2 dtldtQQ (A2 — |t1|) (9 (A2 — |t2|) 19 <mE - §<t1 + t2))

J/

:fA(A) dt1dts

X bFE G, 1) (13.5)
(tl + Zml—‘t} )pl (tl - ZmT,;l )ql (tQ + ZmF{l )pg (tg — iml—‘{l)% ’
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13. Phase space matching

where

Pg(tl,tg) El,
. L. Vit+k
P (t, 12) =ytin A
1

tl + f}g + Qiml}l '

Ve =/mE + ziml'y,

z €{0,1}, p1,p2,q1,q2 € No. (13.6)

Py (t,ts)

T~
For Ié’/l;“p 22 we omit the 2. We took the results for these integrals as an expansion in -, £ from

the appendix of [43].

With I'm (.A(Cm) lk) (A) we denote the O(a') contribution to Im (A%) calculated with a kinematic
cut specified by A.

Im (,49 ”“) (A)

For the O(a%) contribution we obtain:

9F <A29)lk> (A) 1 | @ —
colours i
A(N)
d*k _
Nc/ o i2k' — ;- S
A 15T SHR - tigs AR - i
i i
Iy (—i)2k" =
k2 Tyt K2 I'r
3k tigt 5ok -5 2
(0) 4 o%
2Im (Ag (A)?, (13.7)
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where the sum over j = 1,2, 3 is implied. Using ¢, as integration variables we get:

21m (ALY (8) =
N, / atrdt, L k[Em =5t +1)] _
¢ A(A) s (t1 +imDg ) (¢t — imDy ) (t2 +imDy ) (t2 —imI'y) a

2NemBI2
C t1 (_101101 + m(E + Z':[\{l)jollll) _

T3

2 . 2
2Im (A(O)jj> 4 ANm? 1 IyA 3 BTy 11§ N 3arsinh(1) I'y
¢ V22 m?2 \/2x2 mA w3 mA V23 mA

LO+ NLO+
2 3 . 2
1 E*Ty iEFtE N 11 & arsinh(1) £T7 L0 (v11/2) (13.8)
22712 A3 w3 A3 24+/272 A3 V2ord A3 7 .
NNLO4

where A(g) 77 is the O(a2) contribution of A% calculated in (IIL34) in dimensional regularization:

. Nm4
ADI C;Tm v, (13.9)

ANem2T s A

where v = 4/ chaa — 1. Note that the leading order term of 2/'m (A(O ”) (A) is not A(g) 7 but N

which is of O(v 5/ ) and therefore of LO,. This is one example that the corrections due to the
kinematic cut A can be formally bigger than the vNRQCD result for the cross section without a
kinematic cut on the final states.

(Al)lk>( )

For the O(as) contribution of Im (A%) (A) we obtain:

2Im (A(Cl’lk> W= l@g_@k '® §: -y 2Rel®€_ ®* (13.10)

colours colours
A(N) A(N) A(A)

Using the Coulomb vertex function o (I0.40) and h(k) (I0I4) we get:

//f N d4k (l)l ]{; E .
DRLY | A s 5. (% N N
colours - A(A) (27T) h’(k> % + kY — 2k_m + Z%

A(A)
—1 7 i
I (—i2kF) (13.11)

E K2 'e & K, g hp K2 Lg ’
p TR —sm —ig s R g gt 5K —an —it
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13. Phase space matching

where V(Cm) is the O(a®') contribution of v¢. In section [0.4] we calculated ¢ to all orders in ag.

The O(ay) contribution of Vé‘h(&)E ) is:

'k E) / d'p (129 i . 4ma i
hik - )4 2 'Fti o 2 2 ,1‘{1
(k) (27) Bipo— 2 i (k=PPE_p_ 24
ma k* + V7 Vi — K|
=— |2V T n [ L 13.12
2k2{ R “(v++|k\ﬂ’“ (13.12)

Inserting this expression in (I3.11]) and using t¢1,t; as integration variables we get:

=) . 412
. \ —iam*I'2
> ow %@‘" — NC/ dtdty————"
colours - AN 2m

A(A)

k*4V? Vy—|K|
E2ve+ S ()| L

Neam?T2 . JLOILLN sk
Tt —ZV+_[01111 + mEIllllLl — 1 2 ) ?’ (1313)
and finally:
y ’ 4NcamTy |1 1 A 1 In(2)
2T ( (UJJ) A) =27 < (1)]J> _ t1 | _— _ 7
m(Ac ) (A) =2Im (Ac T 3 2"\ )37
L}; LO
Em TI'ym
F - 2;’A2 +O(U2) ) (1314)

where (A(Cl)jj ) is the O(ag) contribution of A% calculated in (I034) in dimensional regularization:

 Neam®(E +iT'; i
AW _Neam 1(2 +ils) F+14— 121n(2) — 121n (ﬂ)} (13.15)
T

€ v

Note that because the divergences in Im (A(Cl)jj ) (A) are regularized by the cut-off A the 1/¢ as well
as the v dependent terms cancel in I'm (A(Cl)jj ) (A).

25



Calculating Im (A%) (A) numerically using ..

With the expression for 7, calculated in section 0.4 we can write 2/'m (A%) (A) as follows:

2I'm (A%) ( Z 2Im (Agfw ”f) (A) =
Nc/ ik fyc(k, E) i . i
awy (2m)* h(k) % + kO — % + z% + k;o o ZF%
E_po_x o e _po_ge 0 h(/f)
d'k .
NC/ Soilatclk B) (velk ) (13.16)
A(A) (27)

where the function h(k) is defined in (I0.I4]). Carrying out the remaining integral numerically we
can obtain Im (A%) (A) at all orders in ag with arbitrary precision.

Convergence of the expansion

We check the convergence of the expansion of I'm (A]C] ) (A)in E’};{l by comparing it to the numerically
evaluated integral (I310) at various orders in ag. Instead of Im (AZ) (A) we plot oia(A,v = 1)
which we can easily obtain from I'm (A) (A) via:

oA, ) = %[m [(Cy(v)? + Calv)?) A (A, )] (13.17)

which is an immediate generalization of (Q.26]). Divergences appear only in the O(a%) and the
O(ag) part of AZ. For the contributions of I'm (.AJCJ ) (A) which are of O (o' 2) we did not calculate
an analytic expression. However, beyond O(«g) there are no infinities in I'm (A]Cj ), and therefore
the O (« ">2) part of Im (A¥) (A) converges to the O (ag>2) part in Im (AY) for A — oco. At
cach additional order in ag the PS corrections parametrically decrease by O (25™) = O(/v) and
therefore the PS corrections become small at high orders in «g. Nevertheless the O(a%) and O(a?)
PS corrections to Im (.AJCJ ) are formally still of NLO, and NLO respectively. We can take these
corrections into account numerically by using (I3.16]).

We show plots for fixed values of £ and AM. We use I'y; = 1.4GeV, m = 400GeV and ag = 0.094.
Figures [ and [§ show plots for £ = 5GeV and E = —5GeV. Figures [0 and [I0 show plots for
AM = 21GeV and AM = 11GeV. For plotting the O(ag) term of Im (A“) we set v = 1 and ignore
the % divergences, which means that we plot the MS renormalized result without PS matching
corrections.

In figure [7 and B it can be seen clearly that the convergence improves for larger AM. In figure
[[ we see that for F = 5GeV there is already very good convergence for AM ~ 10GeV. The NLO
effect of the O(a%) PS correction (which we did not compute analytically) is already only a 20%
effect to the cross section for AM ~ 10GeV and E = 5GeV. For AM ~ 20GeV and A ~ 35GeV
the relative corrections due to this NLO, effect decrease to 10% and 5%.

In figure [§ we see that for £ = —5GeV the cross section is much smaller. For £ = —5GeV and
AM ~ 35GeV the NLO, PS correction at O(a?%) is a 50% effect.
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13. Phase space matching

In figure [@ and [I0] we see that the cross section is enhanced significantly if we increase the energy
in the threshold region. However as the t;¢; state is produced as a P-Wave angular momentum state
the enhancement is suppressed with respect to ¢t production, where the ¢t pair is produced as a
S-Wave angular momentum state.

It can be said that the convergence of the PS corrections is very good for AM > 15GeV.

13.2. Matching to the EFT

Graphically the matching condition at O(a%) reads:

O (A, Vinatan) + 6y (umatch)) . (13.18)

et et

Note that we could also have put a phase space matching coefficient for the production and annihi-
lation currents, which is however not necessary here. Here we are computing the O(aQ) part of the
phase space matching coefficients. Generally we will denote the O(ag') part of the Wilson coefficient

C’V/ )\ as CV7A" With this we obtain:

é‘(/O/g) (Aa Vmatch) =—1

3 omem WA Vo A

2Cv/A(Vmaten)*Nem®T [ 3 m
(0,1) . V/A\Pmatch C th
CV/A (A Vmatch) —1 3 \/57‘(‘2 X

0CT) (v) =0C ) (v) = 0. (13.19)

20V/A<”match>2NCm3F{1 |: 1 A 1 Ft} 3arsinh(1) Ft~1
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Figure 7.: These plots show oginci(A) for E = 5GeV for different orders of ag. The red curve corresponds to the M .S
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renormalized result without PS matching corrections. The black curve is obtained by doing the integral
in (I3106) numerically. The blue, turquoise, green, brown and orange curves show different orders of the
expansions (I3.8) and (I314). For the blue curve all the PS corrections calculated are taken into account,
while for the other colours PS corrections are gradually omitted. In our power-counting the corrections in
plot (a) and (b) should decrease by O (£2) = O(v), while in plot (d) they decrease by O(,/v). In plot (a)
the blue, turquoise and green curves contain PS corrections of the expansion (I3.8) up to NNLO,, NLO
and LO4. In plot (b) the blue and turquoise curves contain PS corrections of the expansion (I3:14) up to
NLO and LO. In plot (d) the blue, turquoise, green, brown and orange curves contain PS corrections of
the expansions (I3.8) and (I314) up to NNLO4, NLO, NLO,4, LO and LO4. The O (oﬂs) PS correction
is parametrically of NLO,. As we did not calculate PS corrections of O (a%) analytically the difference
between the blue and the black curve in plot (d) is approximately the O (oﬂs) PS correction.



13. Phase space matching
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Figure 8.: These plots show oi,a(A) for E = —5GeV for different orders of ag. For the meaning of the curves see
figure [7
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Figure 9.: These plots show gi,e1(A) for AM = 21GeV for different orders of ag. For the meaning of the curves see
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Here we ignored the NNLO, PS corrections in (I3:8). The matching condition at O(«g) reads:

2Im | —i

B

<é\(}/z) (Aa Vmatch) + 56\(/1/72) (Vmatch)) . (1320)

Il
o

n

Again we do not put a phase space matching coefficient for the production and annihilation currents,
although for the O(«g) phase space matching this would become necessary if we worked at a higher
order. For this matching condition we obtain:

.2CV/A(Vmatch)QNCGJ(Vmatch)mgl—‘{l |:1 4 111(2) 1 ( A ) Tﬁm}

é"(,l/’g) (A, Vmaten) = — @ ——=1In

3r 3 4 2 MVaten ) 2mA\2
~ 2Cya(v, )2Nea(v, )m3Tz m?
(1,1) . . V/A\Pmatch C match t1
CV/A <A7 Vmatch) =—1 3 F,
~ 2Cy/4(V)*Nea(v)mTy 1
woy, v 2Cv/a c nl
OCyja V) = =1 3 8¢’
0Cy) (v) =0, (13.21)

where 5(3‘(,1 /?(V) has to be chosen such that it absorbs the corresponding PS divergence for all values
of v in the effective theory.
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14. RG evolution due to PS divergences

14. RG evolution due to PS divergences

n (I3:21) we absorbed the % PS Divergence into a local four fermion operator. This leads to a
non-trivial renormalization group equation (RGE) for Cy,4(v) which we will solve in this section.
The RGE that we obtain from (I321)) sums up logarithms at LI, order as the divergence absorbed
is of LO. The RGE is obtained by requiring:

déV/A,bare
where
éV/A,bare = éV/A(V) + 5CV/A(V)- (142)

Therefore we get:

déV/A(l/) _ daév/A(l/)
dIn(v) dIn(v)

(14.3)

n (I3:21) we obtained:

ZC’V/A( v)?Nea(v)m?Ty 1
3m 8e

5CV/A = — [1 + O(Oés, U)] . (14.4)

As we can see the running of Cyya(v) depends on the running of a(v) and Cy,4(v) through mixing.

We have that a(v) = <& Z“ ) Where v ( ) is the Wilson coefﬁcient of the leading order potential

in (@.8). We need the RGE for VI (1) which we obtain via V1

c, bare

P

c,bare

= ax (VO ) + VD (v)) . (14.5)

(1)
For obtalnlng 7 ‘(// ;‘ at LO we only need to consider the LO expression of zln(il)/):

i (v)
¢ — ) _
() Vi (v) [—2e + O(ag)] . (14.6)
Analogously we get:
dCV/A(l/)
N . 14.
dIn(v) Cryalv) (14.7)
Therefore the RGE for éV/A at LL, reads:
dCya(v) B ~ _ Cyja(v)’ Nea(v)m®Ty,
“dn() 4e0Cy a(v) = —i - _ (14.8)

Although we derived this RGE at LL, and ignored terms of higher order it remains valid at LL
order, as there are no additional divergences at LO.

At NLL, we encounter diagrams with an additional gluon loop like the one shown in figure [Tl
which render }2 divergences which are absorbed by 5C'V/A. But these divergences only have the effect
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Figure 11.: This diagram renders a ﬁiz divergence that is absorbed by 56\// 4. The effect of this kind of ﬁiz divergences
is that the RGE for C'V/ 4 remains finite at NLL, .

that the RGE for C’V/A(l/) remains finite at NLL; order. However, at NLL, the Wilson coefficient
Cy/a(A,v) obtains an imaginary part, as shown in (I2.4]). In this way one gets sensible to the real
part of ég (I036) which has different divergences than its imaginary part. At NLL, the running of
év/ 4 is therefore changed.

For solving the RGE at LL, we need to use a(v) at LL order. Cy,4(v) does not have a LL running
and can thus be considered as constant. We have that:

Vi (v
a(v) = FT() = Crags(mv). (14.9)
Using the LL RGE for ag(muv):
das(mv) By 9 B 2
() QWaS(mu) . Bo=11 S (14.10)

to substitute d1In(v) by dag(mv) we obtain [42]:

déV/A(V) B Z.QC'V/A(Vmatch)ZNCC'Fm?’F,;1

= 14.11
dag(mv) 3Boas(my) ’ ( )
where ny = 3 is the number of quark flavours. Finally we get:
- . 2Cy/a(Vmaten)*NeCpm?T; ag(mv)
C — Cv/a(Vanate L] . 14.12
V/A(V) V/A(V ' h) " 3ﬁ0 ! &S(mymatch) ( )

Vmateh 18 the scale where we do the PS matching. It should be chosen such that mvyacn &~ A.

*Cy/a(v) has a NLL running [29].
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15. Numerical comparison to a Madgraph simulation

15. Numerical comparison to a Madgraph simulation

Madgraph is a Monte Carlo simulator which is able to numerically evaluate the amplitudes and cross
sections in several models at tree level [6]. We compared our analytical results to the results of Mad-
graph for the process ete™ — by, by, for the Minimal Supersymmetric Standard Model (MSSM)
where we used the kinematic cut (II3]) on the final states. Unlike in our treatment Madgraph also
takes into account non resonant diagrams like the one shown in figure [6c) and we can therefore
give an estimate of how sizeable these contributions are. We could also account for these effects by
matching the non resonant contributions to the local 4 fermion operators and the single resonant
diagrams to the t;#; production/annihilation operators in our treatment. However, the matching
computations would require the evaluation of many diagrams in the MSSM and the relevant contri-
butions are strongly dependent on the chosen values for the MSSM parameters. Another strategy
would be to match the Wilson coefficients of local operators in our effective treatment to the the tree
level results from Madgraph.

As Madgraph only computes tree-level contributions it does not involve any O(«g) corrections.
As we have seen in (G.1) and (I0.30) the O(a%) corrections are of the same parametric size as the
tree level results if the CMS energy of the colliding e*e™ pair is close to threshold. This is why the
Madgraph result is not appropriate for this regime but we can nevertheless use it to check the quality
of our result at O(a%). In contrast to the double and single-resonant contributions we also expect
the non resonant diagrams to be more suppressed at higher orders in ag as the resonance of the ¢,
propagators was the reason for the proliferation of scales. -

We did two separate Madgraph simulations: In ete™ — tit; — bx; bx; Madgraph only takes
into account the double resonant diagrams where a ¢,¢; pair is produced and decays into a bx; bx;
final state. An example for such a diagram is given in figure Bl(a). For the process ete™ — by; bx|
Madgraph also evaluates single and non resonant diagrams. Examples for such diagrams are shown
in figure [6l(b) and (c).

For doing the comparison with Madgraph we have to specify a point in the MSSM parameter
space. The Snowmass Points and Slopes (SPS) are a set of benchmark points and parameter lines
in the MSSM parameter space [5]. We use the so-called SPS1a point. In our treatment we are not
sensible to all but only to the following parameters specified for the SPS1la point:

m = 399.7GeV, mg, = 181.8GeV, my = 91.19GeV,
Ty =202GeV, T =137GeV, I, =2.41GeV,
cost; = 0.554, ag(myz) = 0.118, a(my) =1/127.93, (15.1)

where cosf), determines the mixing of the mass eigenstates ¢;, t; and the flavour eigenstates. This for
instance affects the interaction vertex between a Z-Boson and t,,¢; particles (Z.1)). ft} is the decay
width from #; to X{b calculated at tree level. We are sensible on my, because, as we will see later,
872 depends on it.

For our treatment the power counting of the parameters is important. We need to have that
Iy ~ E ~ mv? with v < 1. If we choose E between —5 and 5GeV this is the case for the SPSla
parameter point.

15.1. Madgraph simulation for e*e™ — £, — bxi{ bX,

For the simulation where Madgraph only takes into account double resonant diagrams it should in
principle be possible to reach a perfect agreement with our results as the Madgraph result involves no
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single and non resonant diagrams that we have to account for via matching to the full MSSM. To show
that we have good convergence we also computed the kinematic corrections from the propagators,
the kinematic cut and the matching to the squarks production/annihilation vertices as well as the
corrections due to imaginary part of the wave function renormalization §Z2" discussed in section
at NN Ldﬂ. We discuss how we take these effects into account and show plots for the comparison
for AM = 21GeV, AM = 11GeV and AM = 31GeV in figures 12| and [[4l Without these
corrections the difference between the cross section computed in Madgraph and our analytic result
is around 5 % for AM = 11GeV, 10% for AM = 21GeV and 15% for AM = 31GeV. Including the
corrections our result lies within the statistical error bars of the Madgraph result. This means that
the O(a%) result for the description of double-resonant diagrams shows good convergence.

Effects due to §.72bs

In (ILI3) we expressed 67" with the decay width for £, — by{ which we call Tz, Ty (k?) is
understood as the expression for the decay width depending on the invariant mass of the ingoing

t; propagator. In [17] in equation (3) the tree order result for 'z is given. If we ignore m} in
(m? —mj +m?2 ) and X2(m? mi, m2 ) we obtain:

dr'y, m? + 3m?
h ~ ( XIQ) Iy (15.2)
dk? 2m?2(m? —mz )
k2—=m2 X1
Using (ITI3) we get:
m2+m2 .
67 = — 5~ L (15.3)
m (m o mf{l)
As discussed in section 1.3 we can take into account the k% dependence of % at the cut
propagator at NNLO by using the replacement rule
l ? ~ Im(622%)(k* —m?
E p2 Ty _)E p2 Ty <Ft~1 - ( 715 ))
3 TP~ gy T T ED T g T
. S (15.4)
Sip- £ i

instead of (ITI4]) for the cut propagator. The PS corrections of this effect are of NLO,. For
AM = 21GeV and AM = 31GeV this is the NNLO effect with the biggest PS corrections, as can be
observed in figure [[2] and [I4l

Kinematic effects from expanding the t},tzl propagators

The expansion of the squark propagator in the potential regime at NNLO gives:

2ma ) 7
q 2 2 q 2\ 0 _ p? Ty + E 0 _ p? Ty
(3 +p)2—m +H((§+P)> 7 TP — g tigh g - i
NE2+ 4" (E+9p° E 2 ) i
m m) O e B B2 i

*The phase space matching corrections of these NNLO corrections are partly of NLO, .
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15. Numerical comparison to a Madgraph simulation

where ¢ = (2m + E,0). 4l is the sum of all self-energy diagrams. The corrections can be dealt with
by introducing 2-point vertices in the the EFT. Madgraph uses the propagator

2mi
T+ p) —m? +iml,

(15.6)

with a constant decay width I';. Therefore it does not take into account the corrections due to

8%21_[ L which we therefore omit for this numerical comparison. The NNLO corrections to the
_ lp?=m

t1,t; propagators give PS corrections which are of NLO,.

Relativistic effects when matching to the Oy, operators

When matching the diagrams

(15.7)

on the squarks production/annihilation operators we made a non-relativistic approximation. If we
use
/ o1 | Q 2 )
CBom — 2 @ b2 , (15.8)

m | ¢ sin(20w) “q2 —m?

2T 2 QZ
ae
m sin(20y) ¢? —m?

O Porm — (15.9)

instead of CH°™ CR™ when evaluating the factorization formula (I317), we take into account the
relativistic correctiond]. For matching these effects at NNLO we would have to use the operators

OS/) Ap defined in ([0.14)) to absorb them.

Relativistic effects from the invariant mass cut-off

By using the variable 1,5 defined in (I3.1)) and the integration measure:

/ dt dty = / dtydtz0 (A* — [t1]) 0 (A — |t2]) 6 (mE — l(tl + t2)> : (15.10)
A(N) R2 2

we implemented a cut on the non-relativistic approximation of the invariant mass of the ;b and
¥, b systems in the final state. The non-relativistic approximations given by ¢; and t, ignore effects
that are suppressed by ;—22 with respect to t; and t,.

In order to get better agreement with the Madgraph simulation there are two possible ways to
proceed. One possibility is to cut on the non-relativistic approximation of the invariant mass in
the Madgraph simulation. The reason for implementing invariant mass cuts is that vNRQCD can

*To consider the effect of the decay width I'; we would have to change the imaginary part of C{P/i‘m at NNLO which
would only give a N*LO effect for Oinc1(A). Therefore we can ignore I'y at NNLO.
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only predict the transition amplitude to final states where the invariant mass of the ¥ b or the ;b
systems is close to m. This is also achieved by cutting on the non-relativistic approximation of the
invariant mass.

However, we will go a different way and implement a relativistic invariant mass cut in our calcu-
lation by using the variables

E ? E ?
"= <m+§+/{:0) —k2, = (m+§—k0) — k% (15.11)

where k is the momentum through the ¢, t:1 propagators at the cut. r1,ry correspond directly to the
square of the invariant masses of the Y{b and x; b systems. Therefore the relativistic invariant mass
cut is equivalent to

(m—AM)* <ry,ry < (m+AM)> (15.12)
To express the integrand with 71, 7o we need to invert (I5.I1]) which gives:

kozﬁ 15.1
2(E +2m) (15.13)

and a rather cumbersome expression for |p|. We can rewrite the loop integration over k via:

k|

a'k = amiedkldr® = g ar, 15.14
mk*d k| £+ om riars ( )
We did the integration over ri,ry numerically. As we can see for instance in the plots for AM =
31GeV shown in figure [I4] the effect of this correction is numerically of similar size as the correction
discussed in section 5.1

15.2. Madgraph simulation for ete™ — by by|

Finally we compare our results to a Madgraph simulation for ete™ — b¥{ bY; where the single
and non-resonant diagrams contributing to the same process are taken into account at O(a%). The
agreement with our results is of course worse than before, when Madgraph only considered the
double-resonant diagrams. If we now include the NNLO effects discussed in the last subsection the
agreement is getting worse. This can happen because there are now effects of similar order that we
did not include. We expect that the main difference is due to the interference effects between single
and double-resonant diagrams. They can be taken into account via an imaginary part of Cy 4 as
shown in ([24). This correction is very similar to the one due to §Z2" which is also absorbed via
the imaginary part of Cy/4. We also expect the size of these effects to be similar.

The comparison shows that the dominant contribution to the process is taken into account by our
treatment if we restrict ourselves to AM values that are below 30GeV. For an invariant mass cut
of AM = 11GeV the difference between our results and the Madgraph simulation is around 5% and
for AM = 21GeV it is still around 10%. Figures [[3], 6 and [[7 show plots for the comparison for
AM =21GeV, AM = 11GeV and AM = 31GeV.

*To be exact the difference between the results for E = —5GeV is more than 10%. This is because the cross section
reduces significantly for energies below threshold, while the absolute value of the difference between our result and
the one of the Madgraph simulation only depends mildly on E. With a difference of ~ 10% we therefore mean
that the difference is ~ 10% for E ~ 5GeV
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15. Numerical comparison to a Madgraph simulation

Ting (8Barn)

Acing(@Barn)

Figure 12.:

E(GeV) E(GeV)

These plots show the Madgraph result for the cross section of the process ete™ — f1t; — bX] bx;
and our results at O(a2) for AM = 21GeV. We do not take into account the hard gluon correction in
(@20) as they are also not contained in the Madgraph simulation. The red curve corresponds to the M S
renormalized result without PS matching corrections. The blue, turquoise and green curves show the
NNLO,4, NLO; and LO result of the expansion in (I3.8). The dotted, dashed and solid black curves
include all the PS corrections contained in the blue line and in addition the effects discussed in section
5.1 are added. The dotted black curve includes the NLO, corrections due to 622", in the dashed one
the NLO relativistic effects discussed in section [[5.]] and [[5.1] are added. Finally the solid black line
adds the effects due to a relativistic invariant mass cut-off. The result of the Madgraph simulation is
shown as a purple line, but it is difficult to see because it is covered by the black curves. The left plot
shows the absolute values for oi,c1(A) while the right one shows the Madgraph result minus the results of
our computations. Madgraph evaluates a statistical error for its results which is indicated by error bars
in the plots. The black curve lies within these error bars.
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Figure 13.:
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These plots show the Madgraph result for the cross section of the process ete™ — flt:l —b )Zf b X; and
our results at O(a%) for AM = 11GeV. For the meaning of the curves see figure
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Figure 14.: These plots show the Madgraph result for the cross section of the process ete™ — fltzl —bx{ bx; and
our results at O(a) for AM = 31GeV. For the meaning of the curves see figure
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Figure 15.: These plots show the Madgraph result for the cross section of the process ete™ — bf(f 1_7)2; and our
results at O(a%) for AM = 21GeV. We do not take into account the hard gluon correction in (@.20)
as they are also not contained in the Madgraph simulation. The red curve corresponds to the MS
renormalized result without PS matching corrections. The blue, turquoise and green curves show the
NNLO,4, NLO; and LO result of the expansion in (I3:8). The dotted, dashed and solid black curves
include all the PS corrections contained in the blue line and in addition the effects discussed in section
5.1 are added. The dotted black curve includes the NLO corrections due to 622", in the dashed one
the NLO relativistic effects discussed in section [[5.]] and [[5.1] are added. Finally the solid black line
adds the effects due to a relativistic invariant mass cut-off. The purple line corresponds to the result of
the Madgraph simulation. The left plot shows the absolute values for oinci(A) while the right one shows
the Madgraph result minus the results of our computations. Madgraph evaluates a statistical error for
its results which is indicated by error bars in the plots.
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15. Numerical comparison to a Madgraph simulation

Ting(8Barn)
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Figure 16.: These plots show the Madgraph result for the cross section of the process eTe™ — by; bx; and our
results at O(a%) for AM = 11GeV. For the meaning of the curves see figure [[5
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Figure 17.: These plots show the Madgraph result for the cross section of the process eTe™ — by] bx; and our
results at O(a%) for AM = 31GeV. For the meaning of the curves see figure [[5
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16. Preliminary result

In the last section we observed that when calculating the cross section of the process ete™ —
by by, for an invariant mass cut-off of 15 < AM < 25GeV we can expect a precision of around
10% if we neglect the background contributions and the relativistic corrections. In this section we
show a preliminary result for the cross section, where we take into account the running due to the
PS-divergences discussed in section [I4] but neglect the relativistic corrections and the background
contributions. We also neglect the corrections to the Coulomb potential which have to be taken into
account at NLO.

To avoid large logarithms we do a 2-stage matching. The matching to vNRQCD is carried out
for 4 = m. Although vNRQCD is an unstable-particle EF'T we can implement kinematic cuts on
the invariant mass of the system of decay products of the (anti)stop [0, p.11]. At Vpaten = A/m we
match the effect of the invariant mass cut-off on the local operators of our EFT with PS matching
which is introduced in section In section [[3.0] we analytically calculated the O(a%) and O(ag)
PS corrections to I'm (AJC] ) (A) up to NNLO,. However, the O(a?%) PS-correction is formally still of
NLO,. We determine the PS corrections numerically using (I3.16). Although we do this calculation
numerically the analytical expansion was important as a proof of concept, to see that it is possible to
absorb the effect of the invariant mass cut-off in the local operators of the EFT with PS matchingﬁ.
Finally we obtain our result by applying the EFT with PS matching for v = v. In figure [I8 we show
the result of this calculation. In this plot we also show results for different choices of matching and
renormalization scales.

In figure[I§ we can see that the logarithms between A and the soft scale are sizeable as the difference
between the result with (solid black curve) and without PS matching (blue curve) is about 10% for
E > —1GeV and even larger for smaller energies. We can also see that doing the PS matching for
Vmateh = 1 (dashed black curve) instead of vyaten = % leads to a difference of at least 5%. It is
important to apply the EFT for v ~ v, as applying the theory for v ~ % (green curve) renders a
difference of 50%. This means that the logarithms between the hard, soft and ultrasoft scale are very
important. It is surprising that the result without an invariant mass cut-off (orange curve) also lies
within an interval of 10% around the solid black curve. However, the orange curve is independent of
the invariant mass cut-off and simply ignores the PS divergences. Therefore we interpret the small
difference between the orange and the black curve as a coincidence.

*It is wrong to assume that the PS corrections can always be absorbed into four-fermion operators. As illustrated in
(24 it is for instance necessary to absorb them partly in the squarks production/annihilation currents.
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16. Preliminary result
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Figure 18.: This plot shows our preliminary result for the cross section of the process ete™ — bx{ by, with a
kinematic cut of AM = 21GeV. The red and orange curves correspond to the MS renormalized result
for v = v without PS matching corrections. The orange curve represents the result for G5 in (IL36)
which includes the Coulomb-resummation, while the red curve is the O(a2) part of it. For the blue and
green curve we introduced an invariant-mass cut-off but did not match its effect into local operators. For
the green curve we take v = % and for the blue v = v. Finally for the black curves we matched the
effect of the invariant-mass cut-off A onto the Wilson coeflicients of our EFT with PS matching. For the
dashed curve we did the PS matching for vyaten = 1 and for the solid curve for vyaten = % In both

cases the EFT with PS matching is applied for v = v.
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17. Conclusion

When calculating the cross section o(ete™ — £1¢;) at 1-loop order in the first part of this work
we have seen explicitly that the expansion in orders of ag breaks down close to threshold and it
was therefore necessary to do a double expansion in ag and v. For doing this expansion we used
vNRQCD which has also allowed us to sum up large logarithms between the hard, soft and ultrasoft
scale. Applying the optical theorem we could calculate the total cross section o(ete™ — t,t;) by
taking the imaginary part of the vacuum polarization function A%*. In chapter [0 we established that
there is a close connection between the Greenfunction of the Schrodinger equation with the Coulomb
potential and A% at LO. However, when calculating A'* in this way, we encountered divergences
in the imaginary part of A% even at LO. These divergences are related to the finite lifetime of the
produced t1, t; particles and can be avoided by restricting the invariant mass of the decay products
of the (anti)stop, as explained in chapter [Tl

Eventually we calculated the cross section from ete™ to some particles the stops can decay to
(e.g. bXibxy), with a PS cut applied on the final states. By adjusting the invariant mass cut-
off we were able to restrict ourselves to a PS domain, where on the one hand the expansions of
vINRQCD work well, and on the other the contribution of background diagrams are small compared
to the contribution of the double-resonant diagrams described in vVNRQCD. We chose the scale of
the invariant mass cut-off A in between the soft and the hard scale. To sum up large logarithms
between the soft scale and A we applied the PS matching formalism, where we matched the effect of
the invariant mass cut-off into the operators of our effective theory. The concept of PS matching is
described in chapter [[1] and

It has been important to check that it is possible to choose and invariant mass cut-off that is large
enough such that its effect can be absorbed into local operators of our EFT and small enough such
that the contribution of background diagrams to the inclusive cross section o(ete™ — by bx;) is
small with respect to the double-resonant ones. We checked this in chapter [I3] by carrying out a tree
level Monte Carlo simulation that takes the background diagrams into account. When comparing
the results of this simulation to the O(a%) part of our analytic expression, we obtained that an
invariant mass cut-off AM of less than 30GeV is appropriate to achieve a precision of around 20%.
For AM ~ 20GeV the difference between the Monte Carlo simulation and our tree level result is
about 10%. In chapter [[3]we have seen that an invariant mass cut-off of about 10GeV is already large
enough such that we have good convergence when putting the effect of the invariant mass cut-off
into local operatorsﬂ.

We expect that the most important background contribution comes from the interference of single
and double-resonant diagrams. This contribution could be taken into account in our analysis by
matching it to the imaginary part of the stop production vertex. A result at NLL should take this
and the effect of a NLO correction to the Coulomb potential into account.

In the LL result, which we presented in chapter [[6, we have seen that the summation of logarithms
between A and the soft scale, which is achieved due to the PS matching formalism, is a sizeable effect
of about 10%.

*In our analysis we concentrated on a specific point in the MSSM parameter space (namely the SPS1la point). At a
different parameter point the outcome of this analysis might be different.
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18. Scalar n-point Integrals
18. Scalar n-point Integrals

18.1. Prerequisites

The n-point integrals are carried out in d = 4 — 2¢ dimensions using dimensional regularisation [4§].
In the results we will ignore factors of O(e). We will often need the integration measure in polar
coordinates:

dk =|k| d|k|dQq,
dQq =d cos(0) sin(0)3dQ,_1,

Q, E/de - ”(Z) (18.1)

where ['(z) refers to the gamma function. When carrying out the scalar-integrals we will often use
the following formula [46, p. 102]:

()Y DB —F-9) e,
/ddk<]€2—a—|—i€)a o ( 1)04(471_)%1—‘( )F(g) ( ) . (18.2)

For rewriting the scalar integral to a form, where we can apply the formula above, we will introduce
Feynman parameters [45].

By using a factor 1% in the definition of the scalar integrals and rewriting the results in terms of
1= [l exp (M)) one gets rid of terms containing In(47) and nyH.

Sometimes it might be important to remember that the € in the propagators and the e referring
to the d of dimensional regularisation are not equivalent. One first calculates the result for a general
d with the € of the propagator going to 0 and only then analytically continues the result to d — 4.

The scalar integrals are all depending on some mass parameter. Usually it is clear which mass is
meant and therefore we will omit the mass dependency of the scalar integrals when using them in
the other sections.

18.2. 1-point integral

For this integral we do not need to introduce Feynman paramaters, but immediately get the result

applying ([I8.2):
~ 26
/ ak—"

—_Zﬂ m2 — je)l—¢
n (4m)2—e ( )

I% (% +In (;;—22) + 1) +0(). (18.3)

*~g is the so-called Euler gamma
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18.3. 2-point integral

The general scalar 2-point integral is defined as:

Bl i) (o) = [ ki

2—mi], [(k+p2)? —m3],
=By ((p1 — p2.m3), (0,m3)).

(18.4)
We need this integral in two different special cases, to which we refer to as By and By:
5 (02 2 q4 >
By(p™,m~) = k
o) = [ O
1 ﬂQe
0 [(k 4 2p)? + (p* — m?)z — 22p?]

We have introduced Feynman parameters. We can now substitute k + zp — k and use (I82):

—<4W)276F(e) /0 dz((m? — p*)z + px? —ie) ™" (18.6)

For the remaining integrand we can make an expansion in € because the integral is finite. We have
to do the expansion up to O(e) as I'(¢)O(e) = O(1).

Bo(p.m?) = 1) [ do [L— eln (m* = pP)a + pia — )] + O(9
(4m) 0

- 1 2 2 .2 2 .9
:@{E+ln<%)+2+mp2pln<m b —ie)}jLO(e).

m2

(18.7)
For computing %—fg one has to be careful: Deriving by p? introduces an I.R. divergence and one thus
cannot use (IRT). We derive (I8.6]), where we have not yet expanded in €, by p? and get:

OBy i

1
R Ol /0 do((m? — )z + p2a? — i€)" (22 — z). (18.8)
This integral is only convergent if ¢ < 0. Therefore the % terms will correspond to [.R. divergences,

which we will indicate by writing €z and p;g instead of € and p in the result]. We will only need
%—fg for p? = m?, which simplifies the calculation:

8B0 Zﬂze 1 ' 2\—1—¢(,.2
| e O || w6 -
o R
! Y 7 B +0(e) (18.9)
- | = — — €). :
(4m)2m?2 | 2 m? 2¢rr

*For U.V. divergences we will always write € and
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18. Scalar n-point Integrals

We need one other special case of By:

~2e

5 (2 2\ H
Bo(q®,m?) _/ddk[kQ—m2]+ (TR (18.10)

where ¢? > 0. We introduce Feynman parameters:

S 2 2\ ! T ﬂ26
By(¢%,m?) _/0 d /ddk[(k+qx)2+q2(x—x2)—mQ]i' (18.11)

We substitute k + gz — k and use (I82):

- ~2¢

Bo(q*,m*) :(4Z:)Q€T(€) /0 dx (m* + ¢*(2* — x) —ie) (18.12)

As in (I8€) we can expand the remaining integrand in e before doing the integration and we have
to expand up to O(e) as T'(¢) involves a L divergence:

By(q?,m?) = " E1“(6)/0 dz [1—eln (m* + ¢*(2* — z) —i€) | + O(e)

(4m)?
i |1 uro .
2(4702 g+ln ?Jrze +2(1+1In(2)) — (1 = B)In(1 — 5 + i¢)
—(1+ ) In(1 + 3) + inBsgn(q*)] + O(e), (18.13)
where f = /1 — 4%2. This result is valid for ¢> < 0 and ¢? > 0. The limit of this expression for

¢*> — 0 gives the correct result for By(0,m?). However, we only need By(¢?, m?) for ¢> > 4m?.

18.4. 3-point integral

7

When computing wwwé we also need a special case of the scalar 3-point integral, which we will

call Cy. We will assume that p? = p2 = m?:

N2 2 2\ — ﬂ2€
Co(g” = (p1 +p2) ’m)_/ddkki TR T T (18.14)

Introducing Feynman parameters and using (I82) we obtain:

,l'~2e 1 11—z e
Co(q®, m?) 2(47:2_61"(1 + e)/ dx/ dy [(zp1 — yp2)® — ie] e (18.15)
0 0

Next we do a variable transformation

1 1- 1 1
/ dx/ dy:/ du/ dv u, (18.16)
0 0 0 0
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such that we can factor out one of the integration variables:

- _im2e 1 1 L
Co(q*, m?) :#F(l + e)/ duu_l_ZE/ dv [(vp1 — (1 —v)p2)? — ie] !
0 0
7 2€ (1 + 1 .
:(425)2_6 : 5 2 /0 dv [m?* = v(1 = v)g* —ie] . (18.17)

The remaining integral can be expressed with the dilogarithm function Lis:

éo((f m?) = i1 I'(1+e) [ln(yQ) —In(y,) +im N In(y12)*
’ (4m)2 (¢ (g1 — ya) € 2
) 272
21" + nys) — s — )+ 200 (L) - 22
Y2 — 1 3
—2imIn(y; — y2)] , (18.18)
where
14 . 1— ) 4m?
= 25+ze, o — 25—26, f=\1- " (18.19)

This result is valid for ¢> < 0 and ¢* > 0. The limit of this expression for q*> — 0 gives the correct
result for Cy(0, m?). However, we only need Cy(q*, m?) for ¢* > 4m?.
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19. Tensor-Reduction

19. Tensor-Reduction

19.1. Introduction

We will apply the method of tensor reduction to express integrals of the form
~2 v
kMY - - -
I = / ak
[(k + p1)? = mi], [(k+p2)* —m3], -

as a sum of scalar integrals times some tensor structures. For doing this, we will always start with
an Ansatz, where we use that I*¥" can only be a linear combination of those tensor structures that

(19.1)

can be built built with ¢g"” and the vectors p1, ps - - - appearing inside the integral. A simple example
would be:
~25ku
/ @k k2 [(k 2
+p)2-—m ]+
=Bph. (19.2)

In this case the Ansatz is very simple. One can now obtain B by contracting B," with D

5 5 i*(k - p)
Bip?=B/"p, = [dk—"

v =B~ | K2 [(k + p)? = m?],
An essential idea of the tensor reduction method is that one can always get rid of terms in the
numerator by expressing those terms as a sum of factors in the denominator plus some terms that
do not depend on the integration variable and can thus be factored out of the integral. In this case

we write k- p as $[(k + p)? —m?] — k—Q + 7 _p and thus get

~25 ,&/26 m2_p2 /]25
/ddk /7 T, T2 /dd’%m(mp)?—mm (19-4)

(19.3)

and finally

Bap, )" =5 [~ Aam?) + (0 = ) Bl )| . (19,5

19.2. 2-point integral

~25ku
—mily [(k+ p2)* = m3],

The tensor-integral B," that we dealt with before is a special case of this more general form. We
encounter another special case:

By ((pr,m3), (p2,m3)) /ddk: [CEE (19.6)

N ~26]€u
B ak 19.
1 (p17p27 / kf+p1) —m2] [(kﬁ—pg)Q—mQ]_’_’ ( 97)
which can be reduced to:
- 1 .
B1M(p1,p2,m) = —530 (qzjmz) (p1 — p2)t, (19.8)

where ¢ = p; + po.
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19.3. 3-point integral

Ct((p1,m3), (p2,m3), (p3,m3)) =
& Ak
/ ’ [(F+p1)? —=m3], [(k 4 p2)? —m3], [(k+ ps)? —m3],

Again we do not have to evaluate this integral in its general form but only need the following special
case:

(19.9)

i ~26k,u
1 ( 1, D2 ) k?i [(k +p1)2 _ mQ]+ [(k‘ —p2)2 _ m2]+ ( )
For p% — p% = m? we can reduce C~'1M(p17p2a m) to:
. 1 > 2
Clu(pbp%m) = m [Bo(mQ,mQ) — By (QQ,mQ)} (pl —p2)“, (19.11)

where ¢ = p; + po.
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20. Phase space integrals

20. Phase space integrals

In this section we will calculate several integrals of the form

/f (ki kn)dLIPS,(q), (20.1)

where the invariant, n-particle phase space measure in d = 4 — 2¢ dimensions is defined as:

dLIPS,(q) = (2m)i>6%(q — > ki) [ [ dk,
j=1 j=1
. Ak Ak
= ~2¢ 0 9 2 2 — ~2¢ )
dk = fu (2w)d9<k )(2m)0 (k™ —m?) = [u 21280

(20.2)

In the last expression £k = v/k2? + m? is a function of k. Sometimes one only needs the size of the
phase space. We define PS, (¢?, ¢) as the size of the n-particle phase space:

PS,(¢% ¢) = / dLIPS,(q). (20.3)

20.1. 2 particle phase space integrals
f dLIPS;(q)

PSy(¢%, €) :/dLIPSQ(C])

~ 9¢cd dpl 0 2 2\ ~2¢ ddPZ 0 2 2
= [0 = = i R — )i )3 — )
_ ~2¢ —d+2 p 5(90—17 —pz)
= (2m) / o0 o0 ) (20.4)

In the CMS frame we have ¢° = /¢2? and p{ = pJ = \/p2 — m2. We get:
_ /72 _ 9.0
(2m) 2 Jd-1 0 ( a 2p2>
P2

1—2 ( )
j 2
‘pZ‘ ‘pz‘dgld—l

~ o' —d+2 2 d—3
:lu2e( ) le/dp35<\/;_pg> |p2|0

P82 (q27 6) :ﬂ26

4 2 2ps
d+2 2 a5
22T T iy Qd L 2 (20.5)
Expanding this result up to O(¢e) we obtain:
PSa(t ) — 2 (14 26 + clog [ - O(é 2
2(q 76) - g + 2¢ + elog q2ﬁ2 + (6 )7 ( 06)
where g = /1 — 4%2.
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20.2. 3 particle phase space integrals

In section M the 3 particle phase space integral (412 has to be computed in d dimensiong]. Two of
the particles have the same mass and the third particle is massless. We will call the momenta of the
massive particles pq, ps, the one of the massless particle k£ and the total momentum q.

We introduced the following three invariants:

_2pa) | 2p2-q) 2(k - q) (20.7)

x, y and z are two times the energy of the respective particles divided by total energy in the CMS.
One has the identity:

r+y+z=2. (20.8)

The function that is integrated over this phase space in ({12) can be expressed by the two invariants
y and z. The phase space integral has the following form:

I, = / £(y. 2)ALIPS;(g)

/fy7 2€5dq pl_p2_k)
dk
(Qﬁ)d—l

. d? 9
0(p2)5 (p? — m2) i 2 (pD) S (p3 — m?) i O(k)5(k?).

(2m)dT

We will first rewrite this d-dimensional phase space integration to an integration over y and z:

Iy = / dydz f(y, z)(2m) 22 e
dp, d¥py d Mk 2(ps - 2(k -
/ o > 8%(q—p1 —p2— k)6 <?/— (e Q))5(2— ( Q)) :

2p)  2p§  2k° ¢ q>

4

~\~

=h(y,z)

We will compute the invariant h(y, z) in the CMS. Then §%1(q — p; — p» — k) fixes p; to —p2 — k.
After integrating d~!p, there are three § functions left, that we can rewrite as follows:

ok (=~ 24,0 <o) Vs <\k| - @) ,

P
0(|p2|)o (y - 2@;; q>) =0(y—r) p22|\p/2qf5 <|pz\ \F\/ )

B(1 — | cos(0)])6 (¢° — p — p) — k) =8(1 — | cos(B)]) ‘kﬁ;ﬂ 5 (cos<e) - cos<é)) ,

2—22—-2y+y=z

/ m2
z y _4q

*doing the phase space with € # 0 integrals regularizes the I.R. divergences

cos(f) = (20.9)
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20. Phase space integrals

Where r = 2m2 0 is the angle between ps and k. Using (I8J]) we rewrite the integration measure

as follows:

d 'k =k 2d|k|dQqg

A4 py =|pal®? [1 — cos(8)2] 7 d|pald cos(6)d.. (20.10)
Now the integration can be carried out easily and results in:

d—4
211 — cos(0)?] 7 |k|44|pgy|d—?
h(y, z) :Qdan,lq [ (0) ]32 k|| p2|

0(2)0(y — r)0(1 — | cos(0)]). (20.11)

k|, |p2| and cos(f) are understood as the values fixed by the ¢ functions. The 6 functions restrict
the domain of integration for y and z. After working out these boundaries and inserting h(y, z) in

(20.9]), we obtain:

g;);?ég; ) / i [ axs) | G000 -pi-0 -2

2(1 - y)i 3

Z4 = .
2—yF VY —r?

Using this result we will do several phase space integrals that we encounter in section [l

Iy = fi*

(20.12)

o 1
[= / T dLIPSi(a)

—Fg/ dy/ dz [—(1 —z2)(1—y)(1 —2) — 22 (20.13)
First, we do the z integration and obtain:

B [(2 — €)/mrt ! 1 VyE—r?
[=F (1—r)€/r Iy +0(e). (20.14)

BRRSY (% - e) (1 —e)21+2e

The remaining integral is of the form
1
I :/ dyuﬂﬂ. (20.15)

_ y)1+2e
f(y,€) is finite for the whole integration domain, but due to W the integrand is divergent for
y— lif e > —%. The integral is finite for € < 0. One only needs regularization for y — 1 and can
simplify the calculation by setting ¢ = 0 for the rest of the integration domain. For doing this one

can split the integral as follows:

[:/1dyf<y’€>_f<1’6> +/1 7(1“1’6) . (20.16)

(1 _ y>1+2e _ y>1+2e
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The second integral can be done easily for a general € and the first is now finite for ¢ = 0. Therefore,
we only need to compute:

I:/T dyf(y,Ol):g(l,O) +/r $+0(6)_ (2017)

This is significantly simpler than the full computation for a general €. Finally we obtain:

/ (1_71?})2 dLIPSs(q) =

1 28 —46 + 1281log(1 — w) + (4 — 653 + 26?) log(w)

’ [_51 e 1 ’ (2018)

where [ = 1—%andw:%.
1
I= dLIP
[ T s
1 Zy 1 4 —€
:F3/ dy/ dz(_l e R— [ﬁ(l —2)(1—y)(1 —2) — 2* (20.19)

The expression that one obtains after doing the z integration looks more complicated than (20.14),
but it is again of the form (20.I5H). Rewriting the expression as in (20.17) simplifies the calculation
significantly:

/Tl dyﬂy’ofifl’o) :Fs/rldyﬁ 2log(1 — 8) — 2log(1 + )
e (2 gV TTETE) g (y - VI )
+log <2—y+\/m) +log (@HWH

72 log(w)?
:Fg{ g(Q)

2
+4Lig(w) + 2Lis(—w)] (20.20)

+ 4log(1 — Vw) + 2log(w) log(1 + w)

and

/ % =F3 [@ — % + log(w)? — 4log(1 — v/w) log(w)
+2log(w) log(1 4+ w) 4+ 2Liz(w) + 2Lis(—w)] + O(€) (20.21)

In the final result the log(1 — \/w) log(w) terms cancel:

1 . [log(w)  2x* )
/ T dLIPS3(q) =F3 [? — log(w)? + 4log(w) log(1 + w)
6 Lis(w) + ALis(—w)]. (20.22)
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20. Phase space integrals

J 7L dLIPS;(g)

The remaining two integrals that we encounter in section [ are much easier as they contain no
divergences and can thus be carried out in d = 4 dimensions.

1 ! =+ 1
1—dLIPSg(q) :Fg/ dy/ dz

—Y L—y
1 2
—F, [—5 - @ - % log(w)| . (20.23)
[ dLIPS;(q)
The last integral is simply the phase space volume:
1 Z4
/dLIPSg(C]) :Fg/ dy/ dz
— 3_ 1 2 2 4
=F; [36 1 b + ’ og(w) _2 ;B log(w)] . (20.24)
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Abstract

We study the cross section for stop-antistop pair production in the electron-positron collision close
to threshold for unstable squarks. Scales appearing in this process are the mass of the stop m, their
3-momentum ~ muv and their kinetic energy ~ muv?, where v is the relative velocity of the squarks in
the center of mass frame. Close to production threshold (v < 1) we need to resum terms ~ (as/v)"
as well as large logarithms of ratios of the physical scales in quantum corrections to the cross section.
To achieve this we employ the scalar version of the effective field theory framework vNRQCD. The
finite width 'y, which we count as O(mv?), is an additional scale in the problem. Stop instability
effects generate divergences in the phase space integrals and to deal with these in the effective theory
kinematic cuts on the final states are introduced. Phase space divergences already enter at leading
order and also background diagrams are substantially more important than for top-antitop pair

production.

Zusammenfassung

Wir studieren die Stop-Antistop Paarproduktion in Elektron-Positron Kollissionen, wenn die invari-
ante Masse des Eingangszustandes in der Nahe der Schwellenenergie liegt. Mit v bezeichnen wir
die Relativgeschwindigkeit der Squarks im Schwerpunktsystem. Die Masse der Stop Teilchen m,
ihr raumlicher Impuls p ~ mv und ihre kinetische Energie ~ muv? sind Skalen welche in diesem
Problem auftreten. Bei der Berechnung des Wirkungsquerschnittes in der Néhe der Produktionss-
chwelle (v < 1) miissen Terme der Form ~ (a;/v)" sowie grofie Logarithmen von Quotienten der drei
oben erwahnten Skalen resummiert werden. Um das zu erreichen wenden wir die Effektive Quan-
tenfeldtheorie vNRQCD an. Die Zerfallsbreite der Stops 'y, stellt eine zusatzliche Skala dar, welche
wir als O(mw?) zihlen. Aufgrund der Instabilitit des Stops kommt es in der effektiven Theorie zu
Phasenraumdivergenzen, welche durch das Einfithren von Phasenraumcuts auf die Zerfallsprodukte
der Stops vermieden werden konnen. Ahnliche Effekte treten auch bei der Top-Antitop Paarpro-
duktion auf. Bei der Stop-Antistop Paarproduktion treten Phasenraumdivergenzen allerding bereits
auf fithrender Ordnung auf. Auch der Beitrag von Hintergrunddiagrammen ist relativ zur fithrenden
Ordnung gesehen grofler als im Falle der Top-Antitop Paarproduktion.
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