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Abstract

In this thesis we investigate compressive channel estimation (CCE), i.e. the application

of the theory and methodology of Compressed Sensing (CS) to the problem of estimating

doubly selective channels in multicarrier systems. After a brief introduction to wireless

communications and a short survey of CS and some of its variations, we review the basic

compressive channel estimator that was introduced in [1]. We analyze its performance as

well as its computational complexity, and we explore the basic assumption underlying

the compressive estimator, namely the delay-Doppler sparsity of typical channels, in

more detail.

Based on this analysis, we propose several variations and extensions of the conventional

compressive channel estimator. First, we make use of the fact that typical channels can

be considered group sparse as well. This is due to the so-called leakage effect, which

actually impairs the performance of any channel estimator utilizing CS techniques and

therefore is one of the main challenges in CCE. Then, we investigate the extension of the

compressive estimators to the multi-antenna (MIMO) case. We show that the various

cross-channels of a MIMO system can (approximately) be considered jointly sparse,

even jointly group sparse, and that therefore the methodology of multichannel CS can

be utilized. Last, by using the recently introduced concept of modified CS, we exploit

the approximate sequential sparsity of the channel in order to track it over a period of

several consecutive symbol blocks. This approach can yield an additional performance

gain, but more importantly it can substantially reduce the computational complexity of

the method.

Additionally, we adapt the basis optimization techniques introduced in [2, 3] to the

various settings, and we present simulation results that demonstrate the performance

gains that can be achieved by using each of the compressive estimators presented in this

thesis.
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Zusammenfassung

In dieser Arbeit untersuchen wir die kompressive Kanalschätzung (KKS), also die Anwen-

dung der Theorie und Methodologie des Compressed Sensing (CS) auf das Problem der

Kanalschätzung doppelt selektiver Kanle in Multicarrier-Systemen. Nach einer kurzen

Einführung in die kabellose Kommunikation und einem kleinen Überblick über CS und

einigen seiner Varianten betrachten wir die in [1] präsentierte elementare kompressive

Kanalschätzmethode. Wir analysieren ihre Leistungsfähigkeit sowie ihre Komplexität,

und wir untersuchen die ihr zugrundeliegende Annahme, nämlich die ”delay-Doppler

sparsity” typischer Kanäle, genauer.

Aufbauend auf dieser Analyse stellen wir einige Varianten und Erweiterungen der

kompressiven Kanalschätzmethode vor. Zuerst nutzen wir die Tatsache dass typische

Kanäle auch als ”group sparse” angesehen werden können. Dies ist eine Folge des

sogenannten Leck Effekts, welcher die Leistung einer jeden kompressiven Kanalschätz-

methode beeinträchtigt und daher eine enorme Herausforderungen für die KKS darstellt.

Weiters betrachten wir die Erweiterung der kompressiven Schätzmethode auf Mehr-

antennensysteme (MIMO). Wir zeigen, dass die einzelnen Querkanäle eines solchen

MIMO Systems (in etwa) als ”jointly sparse”, sogar als ”jointly group sparse” ange-

sehen, und daher Methoden des Multichannel CS (MCS) verwendet werden können.

Letztens nutzen wir - unter Verwendung der Konzepte des Modified CS (MOD-CS)-

die approximative ”sequential sparsity” des Kanals zum Kanal-Tracking über mehrere

aufeinanderfolgende Symbolblöcke hinweg. Diese Vorgehensweise kann die Leistung zu-

sätzlich steigern, viel wichtiger jedoch, sie kann die Komplexität der Methode reduzieren.

Darüber hinaus adaptieren wir die Technik der Basis-Optimierung, welche in [2, 3]

vorgestellt wurde, für die verschiedenen Szenarien, und wir präsentieren Simulations-

ergebnisse, welche die verbesserte Leistung all jener Kanalschätzmethoden demonstrie-

ren, die in dieser Arbeit erklärt werden.

vii





Contents

Acknowledgments iii

Abstract v

Zusammenfassung vii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Mathematical Preliminaries 5

2.1 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Some Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Landau Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Wireless Communications 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Transceiver Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 The Wireless Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Multipath Propagation . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2 Time-Invariant Channels . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3 Time-Varying Channels . . . . . . . . . . . . . . . . . . . . . . . 20

ix



Contents

3.4 Equivalent Multicarrier System Model . . . . . . . . . . . . . . . . . . . 21

3.5 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Multiple-Input Multiple-Output Systems . . . . . . . . . . . . . . . . . . 26

3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.2 MC MIMO System Model . . . . . . . . . . . . . . . . . . . . . . 28

3.6.3 MIMO Channel Estimation . . . . . . . . . . . . . . . . . . . . . 29

4 Compressed Sensing 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Conventional Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Group Sparse Compressed Sensing . . . . . . . . . . . . . . . . . . . . . 39

4.4 Multichannel Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Multichannel Group Sparse Compressed Sensing . . . . . . . . . . . . . . 47

4.6 Modified Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Compressive Channel Estimation in SISO Systems 51

5.1 Conventional Compressive Channel Estimation . . . . . . . . . . . . . . . 51

5.1.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 57

5.1.3 Delay-Doppler Sparsity . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.4 Basis Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Compressive Channel Estimation using Group Sparsity Methods . . . . . 71

5.2.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 75

5.2.3 Delay-Doppler Group Sparsity . . . . . . . . . . . . . . . . . . . . 75

5.2.4 Basis Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Compressive Channel Estimation in MIMO Systems 85

6.1 Multichannel Compressive Channel Estimation . . . . . . . . . . . . . . . 85

6.1.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 92

6.1.3 Joint Delay-Doppler Sparsity . . . . . . . . . . . . . . . . . . . . 93

6.1.4 Basis Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x



Contents

6.1.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Multichannel Compressive Channel Estimation using Group Sparsity Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 107

6.2.3 Joint Delay-Doppler Group Sparsity . . . . . . . . . . . . . . . . . 108

6.2.4 Basis Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Compressive Channel Tracking 115

7.1 Compressive Channel Tracking in SISO Systems . . . . . . . . . . . . . . 115

7.1.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 118

7.1.3 Sequential Delay-Doppler Sparsity . . . . . . . . . . . . . . . . . . 119

7.2 Extension to the MIMO Case . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Conclusion 129

Bibliography 134

xi





Abbreviations

ASK Amplitude-Shift Keying

BEM Basis Expansion Model

BP Basis Pursuit

BPDN Basis Pursuit Denoising

CCE Compressive Channel Estimation

CoSaMP Compressive Sampling Matching Pursuit

CP-OFDM Cyclic Prefix - OFDM

CS Compressed Sensing

DCS-SOMP Distributed Compressive Sensing SOMP

DFT Discrete Fourier Transform

DSP Digital Signal Processing

FDKD Frequency Domain Kronecker Delta

FFT Fast Fourier Transform

FSK Frequency-Shift Keying

G-BPDN Group BPDN

G-CoSaMP Group CoSaMP

G-DCS-SOMP Group DCS-SOMP

G-OMP Group OMP

G-RIC Group RIC

G-RIP Group RIP

GSCS Group Sparse Compressed Sensing

ICI Intercarrier Interference

IDFT Inverse Discrete Fourier Transform

xiii



Abbreviations

IFFT Inverse Fast Fourier Transform

ISI Intersymbol Interference

LASSO Least Absolute Shrinkage and Selection Operator

LOS Line of Sight

LS Least Squares

LTI Linear Time Invariant System

LTV Linear Time-Varying System

M-BPDN Multichannel BPDN

M-CoSaMP Multichannel CoSaMP

MC Multicarrier

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

MMSE Minimum Mean Square Error

MOD-CoSaMP Modified CoSaMP

MOD-CS Modified CS

MOD-G-CoSaMP Modified G-CoSaMP

MOD-G-DCS-SOMP Modified G-DCS-SOMP

MOD-OMP Modified OMP

MPC Multipath Component

MSE Mean Square Error

OFDM Orthogonal Frequency-Division Multiplexing

OMP Orthogonal Matching Pursuit

pdf probability density function

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

RIC Restricted Isometry Constant

RIP Restricted Isometry Property

SIMO Single-Input Multiple-Output

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

SOMP Simultaneous OMP

WLAN Wireless Local Area Network

xiv



Chapter 1
Introduction

1.1 Overview

Over the last few decades wireless communications has become one of the fastest grow-

ing research fields in the engineering community. In many applications the estimation

of the wireless channel connecting a transmitter with a receiver is indispensable. In

order to do so, most modern systems employ training data to obtain estimates at some

predefined time-frequency positions, and then use an interpolation technique, such as

linear, quadratic or cubic spline interpolation, to gain information about the channel

as a whole. In this thesis we study the application of the methodology of Compressed

Sensing (CS) to that interpolation problem. CS is a rather young mathematical theory

in which the concept of randomness is utilized to recover so-called sparse or compressible

signals, i.e. signals that are only constituted of few essential contributions, from a very

limited number of measurements.

The application of CS techniques to the problem of channel estimation was first pro-

posed in 2008, and since then several similar channel estimators have been introduced,

which we all subsume under the name of compressive channel estimation. They are

based on the fact that in typical wireless transmission scenarios the signal takes many

different paths from the transmitter to the receiver (for example due to reflections from

large objects such as houses, trees, cars, mountains, etc.), but that often the number

of such multipath components yielding significant contributions at the receiver is very

limited. This fact yields that the description of the channel in the delay-Doppler re-

1



1 Introduction

gion exhibits some sparsity, which is mostly impaired by the so-called leakage effect due

to the finite transmit bandwidth and blocklength of multicarrier transmission systems.

In this thesis we investigate how this leakage affects the performance of compressive

channel estimators. Moreover, we show how it can actually be utilized to improve the

performance by using group-sparsity methods.

Furthermore, we study the adaption of compressive channel estimation methods to

the setting where the transmitter and the receiver use more than one antenna. We show

that the wireless channels connecting the various transmit and receive antennas in such

a multiple-input multiple-output (MIMO) system exhibit certain similarities. In order

to utilize this so-called joint sparsity the methodology of multichannel CS can be used,

which leads to the multichannel compressive estimator that is demonstrated to outper-

form the conventional compressive channel estimator experimentally. In addition, we

introduce a more general form of the multichannel compressive estimator by combining

the ideas of exploiting group sparsity and joint sparsity for channel estimation. This

estimator can take all the available sparsity-structure of the channel into account, and

it can easily be adapted to fit most practical settings.

All the compressive estimators mentioned above are analyzed in terms of their perfor-

mance and computational complexity, accompanied by extensive numerical simulations

demonstrating their superior performance compared to standard estimation techniques.

Furthermore, a basis optimization technique that considerably improves the performance

of the conventional compressive channel estimator and that was also introduced in 2008,

is adapted to incorporate the respective sparsity structure for the various methods.

Finally, we demonstrate that by utilizing the ideas and methodology of modified CS a

simple adaption of the compressive channel estimators presented before can be used to

track wireless channels, i.e. to keep some information about the channel at a given point

in time in order to support its estimation at the next one. We show that the sparsity

structure of the channel does not change very quickly in typical scenarios, even in fast

varying environments, and that it therefore yields information appropriate for channel

tracking.

2



1.2 Previous Work

1.2 Previous Work

The problem of channel estimation in wireless multicarrier systems has been studied

comprehensively. As explained in Section 3.5 in more detail, many different techniques

have been proposed, all of which can be classified as either pilot-aided schemes (where

some training data is used to gain information about the channel [4, 5, 6, 7, 8]), blind

schemes (where mostly statistical information about the channel is utilized [9, 10, 11,

12, 13]), or hybrid schemes, that are also denoted as semiblind schemes ([14, 15, 16]).

In this thesis we only consider pilot-aided estimation schemes, and we restrict ourselves

to the case of doubly selective channels (see Section 3.3.3 for details).

The use of CS methods for the estimation of channels using pilot symbols was first

introduced in 2008 in [1] and [17, 18] independently, and since then has been investigated

by several other authors. For example, [19, 20] studied the case of single-carrier signaling,

and the results were mainly based on numerical simulations, without any CS theoretical

background. The techniques presented in [19, 17, 21] are limited to sparsity in the delay

domain only, i.e. they do not exploit Doppler sparsity. In contrast, the work in [18]

considered a similar setting as we do in this thesis, merely using different CS techniques.

Additionally, the authors of [18] were the first to consider the MIMO case [22, 23], where

conventional CS methods are used in order to exploit the sparsity in the angular domain.

Also, they only considered frequency selective channels.

Time-sequential estimation, i.e. tracking, of doubly selective channels has also been

studied for some time now. In [24, 25], for example, subspace tracking methods are

utilized, whereas the authors in [26, 27] make use of the so-called Kalman filter to track

the channel. The application of CS, or more precisely modified CS, to the tracking

problem, on the contrary, seems to be new.

1.3 Contributions

In this work we study the basic compressive channel estimator introduced in [1] in more

detail, and we propose several variations and extensions. Most of this work has already

been published in [28, 29, 30].

3



1 Introduction

The main contributions of this thesis can be summarized as follows.

• We analyze the performance of the conventional compressive channel estimator of

[1] in terms of an upper bound on the mean square error of channel estimation in

Theorem 5.1.1. In order to do so we use some basic linear algebra and results from

the theory of CS.

• We give an estimate of the computational complexity of the compressive estimator

in Section 5.1.2.

• We investigate the sparsity of the channel coefficients, or more precisely of the

so-called leakage kernels, in Section 5.1.3 in more detail than it was done in [1, 3].

• We propose and analyze a variation of the compressive estimator that can take the

group sparsity of the channel into account in Section 5.2.1. We also investigate

its computational complexity (Section 5.2.2), as well as the group sparsity of the

channel (Section 5.2.3), and we adapt the basis optimization technique from [2, 3]

to this setting (Section 5.2.4). Most of this work has been published in [28].

• We propose and analyze an extension of the compressive estimator to the MIMO

case in Section 6.1.1. In addition, its computational complexity (Section 6.1.2), as

well as the joint sparsity of the various cross-channels (Section 6.1.3) is studied,

and the adaption of the basis optimization technique is presented (Section 6.1.4).

Most of this work has been published in [29].

• We propose and analyze the adaption of the multichannel compressive estimator

that can also take group sparsity into account in Section 6.2.1. The analysis of its

computational complexity, the joint group sparsity of the cross-channels as well as

the adaption of the basis optimization technique is again presented (Section 6.2.2,

Section 6.2.3 and Section 6.2.4, respectively).

• Moreover we propose a compressive channel tracker in Section 7.1.1. We analyze its

computational complexity (Section 7.1.2), investigate the approximate sequential

sparsity of the channel (Section 7.1.3), and finally discuss its extension to the

MIMO case (Section 7.2). Most of this work has been published in [30].

• We present simulation results demonstrating the performance gain that can be

achieved by the proposed compressive channel estimators (Section 5.1.5, Sec-

tion 5.2.5, Section 6.1.5, Section 6.2.5 and Section 7.3).

4



Chapter 2
Mathematical Preliminaries

In this chapter we introduce the notation and the basic mathematical tools that we use

throughout this thesis. Although most of the definitions and results are well-known we

still present them for the sake of completeness.

2.1 Vectors and Matrices

First of all note that throughout this thesis the imaginary unit is denoted by  :=
√
−1,

following the convention in the engineering literature, whereas the variable i is used as

counting index. Furthermore, we denote the complex conjugate of a complex number x

by x∗. We understand all the vectors as column vectors, and we denote them by bold

lower case letters. Moreover, we start counting their indices at zero, and denote the

(n + 1)-th entry of a vector x by [x]n, i.e. x =
[
[x]0, . . . , [x]N−1

]T
for a vector x ∈ CN ,

where []T denotes the transposed vector. Similarly, we denote matrices by bold upper

case letters, and the entry in the (m+ 1)-th row and the (n+ 1)-th column of a matrix

A by [A]m,n. We also denote the Hermitian, i.e. the complex conjugated transpose of a

vector x or a matrix A by xH or AH , respectively. The vector of length N containing

only zeros is denoted by 0N , and the M × N matrix containing only zeros by OM×N .

Moreover, the N ×N identity matrix is denoted by IN . Note that we omit the indices

whenever the size of the vectors or matrices is clear from the context.

5



2 Mathematical Preliminaries

Definition 2.1.1. For a vector x ∈ CN and some p ≥ 1 we define the `p-norm of x as

‖x‖p :=
(N−1∑
n=0

∣∣[x]n
∣∣p)1/p

.

Here,
∣∣[x]n

∣∣ denotes the absolute value of [x]n. Note that throughout this thesis we

also denote the number of elements contained in a set S, i.e. its magnitude, by |S|.
Furthermore, we denote the inner product on CN by

〈x,y〉 := yHx =
N−1∑
n=0

[x]n[y]∗n .

Definition 2.1.2. A matrix U ∈ CN×N is called unitary, if for all x,y ∈ CN

〈Ux,Uy〉 = 〈x,y〉 . (2.1)

Note that condition (2.1) immediately yields ‖Ux‖2 = ‖x‖2 for all x ∈ CN . Also,

unitary matrices are invertible and satisfy UU−1 = I, and therefore their columns can

be interpreted as an orthonormal basis for CN .

Proposition 2.1.3. Each unitary matrix U ∈ CN×N can be represented in terms of a

Hermitian matrix V (i.e., VH = V) as U = eV.

Here, eV denotes the matrix exponential, i.e.

eV =
∞∑
k=0

k

k!
Vk ,

which always converges. Therefore, it can be approximated by the partial sum

eV ≈ IN + V . (2.2)

Obviously, this approximation can only be useful if V does not contain quite large

entries, i.e. if ‖V‖∞ is small, where

‖V‖∞ := max
n,k

∣∣[V]n,k
∣∣ .

These facts and further details can be found in [31].

Definition 2.1.4. For a matrix A ∈ CM×N and some p, q ≥ 1 we define the `p/`q-norm

of A as

‖A‖p,q :=

(
M−1∑
m=0

(N−1∑
n=0

∣∣[A]m,n
∣∣p)q/p)1/q

.

6



2.1 Vectors and Matrices

Taking a closer look at this `p/`q-norm it can be interpreted as first taking the `p-

norms of all the rows of A, followed by taking the `q-norm of the vector of the `p-norms

of the rows, i.e.

‖A‖p,q =

(
M−1∑
m=0

(
‖A‖(m)

p

)q)1/q

, (2.3)

where ‖A‖(m)
p denotes the `p-norm of the m-th row of A. In the special case where

p = q = 2, this norm is often called Frobenius norm, which is denoted by

‖A‖F =
(M−1∑
m=0

N−1∑
n=0

∣∣[A]m,n
∣∣2)1/2

.

In the case of square matrices it is sub-multiplicative, i.e.

‖AB‖F ≤ ‖A‖F‖B‖F . (2.4)

Furthermore, it is compatible with the `2-norm, i.e.

‖Ax‖F ≤ ‖A‖F‖x‖2 .

Definition 2.1.5. The support of a vector x ∈ CN is defined as the set of indices

corresponding to the non-zero entries of x, i.e.

supp
{
x
}

:= {n
∣∣ [x]n 6= 0}.

We denote the number of non-zero entries of a vector by

‖x‖0 :=
∣∣ supp

{
x
}∣∣ ,

although ‖·‖0 actually is not a norm. Analogously, we define the row support of a matrix

A by

supp
{
A
}

:= {m
∣∣ ‖A‖(m)

2 > 0} ,

i.e. the indices corresponding to the rows that are not identically zero, and we denote

its magnitude by

‖A‖0 :=
∣∣ supp

{
A
}∣∣ .

At several points in this thesis it is necessary to stack an M×N matrix A into a vector

a of length MN . This stacking is typically performed columnwise, i.e. [a]mM+n = [A]m,n,

and we write a = vec{A}m,n.
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2.2 The Fourier Transform

We state the definition and very basic properties of the (continuous and discrete) Fourier

transform here merely for the sake of clarity, since various, though equivalent, definitions

can be found in the literature. All the results presented here can be found in [32].

Let L1(Rd) := {f : Rd → C
∣∣ ∫

Rd |f(t)|dt < ∞} be the set of all Lebesgue-integrable

functions for some integer d.

Definition 2.2.1. The Fourier transform of a function f ∈ L1(Rd) is defined as

Ff(ξ) =

∫
Rd
f(t)e−2πξ·tdt , ξ ∈ Rd .

The inverse Fourier transform of f is defined as

F−1f(t) =

∫
Rd
f(ξ)e2πt·ξdξ , t ∈ Rd .

Obviously, if both f and Ff are in L1, then F(F−1f) = f . In this context t and

ξ are often interpreted as representing time and frequency, respectively, and therefore

the Fourier transform allows the transition from the description of a function in the

time-domain to the description in the frequency domain, and vice versa.

Theorem 2.2.2. (Convolution Theorem). For f, g ∈ L1(Rd) we have

F(f ∗ g) = Ff · Fg ,

where (f ∗ g)(t) :=
∫
Rd f(τ)g(t− τ)dτ denotes the convolution of f and g.

For functions that depend on two variables the Fourier transform can be performed

componentwise.

Definition 2.2.3. The partial Fourier transform of a function F ∈ L1(R2d) with respect

to the second variable is defined as

F2F (x, ξ) =

∫
Rd
F (x, t)e−2πξ·tdt , (x, ξ) ∈ R2d .

Similarly, F1 is defined as the partial Fourier transform with respect to the first variable.

In the discrete setting, the analog to the Fourier transform is the discrete Fourier

transform (see [33] for more details).
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Definition 2.2.4. For a vector x ∈ CN its discrete Fourier transform (DFT) F(x) is

defined via [
F(x)

]
k

:=
1√
N

N−1∑
n=0

[x]ne
−2π nk

N , k = 0, . . . , N−1 .

Proposition 2.2.5. The DFT is unitary, i.e. ‖F(x)‖2 = ‖x‖2 for all x ∈ CN .

Therefore, the DFT is invertible, and the inverse DFT (IDFT) F−1(x) of x can be

calculated via [
F−1(x)

]
k

:=
1√
N

N−1∑
n=0

[x]ne
2π nk

N , k = 0, . . . , N−1 . (2.5)

The main reason for the frequent use of the DFT in various applications probably is

the fact that it can be implemented extremely fast by using the fast Fourier transform

(FFT) [34].

2.3 Some Special Functions

Here we introduce some special functions that appear several times throughout this

thesis. Note that we always use brackets in the discrete case and parentheses in the

continuous setting.

The Kronecker-delta is defined as

δ[n] :=

{
1 n = 0

0 else
. (2.6)

The continuous analog is the so-called Dirac-delta, which is defined as

δ(t) :=

{
1 t = 0

0 else
, (2.7)

where the integral over the real line is 1. Thus, the Dirac-delta is not strictly a function,

but is defined as a distribution (see [32] for more details). In this distributional sense

we than have ∫
R
f(t)δ(t− t0)dt = f(t0) . (2.8)

Furthermore, it follows that

F(e2πξ1t)(ξ2) = δ(ξ1 − ξ2) . (2.9)
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Another function that arises naturally in the description of wireless communication

systems is the so-called sinc-function, which is defined as

sinc(x) =

{
sin(πx)
πx

x 6= 0

1 x = 0
. (2.10)

Note that we use the normalized definition of the sinc-function. In the literature it is

often referred to as the ideal filter. This is due to the fact that its Fourier transform is the

rect-function, i.e. the function that is 1 between −1/2 and 1/2 and zero everywhere else

(to be precise, it takes the value 1/2 at −1/2 and 1/2). Thus, keeping the Convolution

Theorem 2.2.2 in mind, by convolving a signal with an appropriately normalized sinc-

function corresponds to cutting off all frequencies outside a symmetric region about the

origin. Furthermore, the following property can be very useful (see [35] for details).

Proposition 2.3.1. For any smooth function f with compact support we have

lim
a→0

∫
R

1

a
sinc(x/a)f(x)dx = f(0) . (2.11)

2.4 Probability Theory

In this section we present some useful facts from the theory of probability, which are

described in more detail in [36], for example. First, we only mention the following two

probability distributions for the discrete case, where P denotes the probability.

• A random variable X that only takes values in a discrete set Ω of size |Ω|=N is

uniformly distributed, if each value has the same probability of being observed, i.e.

P(X = ω) =
1

N
for all ω ∈ Ω .

• A discrete random variable X that can only take the value A or B is Bernoulli

distributed for some parameter 0 < p < 1, if

P(X = A) = p and P(X = B) = 1− p .

For the continuous case we first give some basic definitions.

Definition 2.4.1. A random variable X has probability density function (pdf) ℘(x), if

the probability that X takes values between some constants a < b is given as

P(a ≤ X ≤ b) =

∫ b

a

℘(x)dx .

10



2.4 Probability Theory

Definition 2.4.2. The expectation of a random variable X is defined as

E
{
X
}

:=

∫
R
x℘(x)dx ,

whereas its variance is given by

σ2
X := E

{(
X − E

{
X
})2}

.

Note that the expectation is linear, i.e.

E
{N−1∑
n=0

cnXn

}
=

N−1∑
n=0

cnE
{
Xn

}
(2.12)

for some random variables Xn and constants cn ∈ R.

Definition 2.4.3. An ensemble of random variables {Xn}N−1
n=0 has joint probability den-

sity function ℘(x0, . . . , xN−1), if the probability that each Xn takes a value between some

constants an < bn is given as

P(an ≤ Xn ≤ bn , n = 0, . . . , N−1) =

∫ b0

a0

· · ·
∫ bN−1

aN−1

℘(x0, . . . , xN−1)dx0 . . . dxN−1 .

Furthermore, the conditional pdf for {Xn}N−1
n=0 , given the values {ym}M−1

m=0 of {Ym}M−1
m=0 ,

is defined as

℘X(x
∣∣Y = y) :=

℘X,Y(x,y)

℘Y(y)
,

where X := [X0, . . . , XN−1], Y := [Y0, . . . , YM−1], x := [x0, . . . , xN−1], y := [y0, . . . , yM−1].

Note that here (and only here) we used bold upper case letters for the vectors X and Y.

Next, we mention the following two continuous probability distributions.

• A continuous random variable X is uniformly distributed in some interval [a; b], if

each subinterval of equal length has equal probability, i.e.

℘X(x) =

{
1
b−a for a ≤ x ≤ b

0 otherwise
.

• A random variable X is Gaussian (normal) distributed with mean µ and variance

σ2, if

℘X(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .
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Sometimes it is difficult to compute the exact expectation of a random variable X,

or - more generally - of a transformed variable Y = f(X) for some transformation f . In

this case it can be approximated by

E
{
f(X)

}
≈ 1

K

K−1∑
k=0

f(xk) , (2.13)

where the xk are K samples of the random variable X. Obviously, the approximation

improves the larger K becomes. This approach is called Monte Carlo approximation,

and further details about it can be found in [37].

2.5 Landau Notation

Throughout this thesis we measure the computational complexity of an algorithm by

the number of (multiplicative) operations that have to be performed. In order to do so

we use the so-called big-O notation (also known as Landau notation).

Definition 2.5.1. Let f, g : R→ R. Then one refers to f as being big-O of g, written

f ∈ O
(
g
)
,

if there is a positive constant C > 0 and some x0 ∈ R, such that∣∣f(x)
∣∣ ≤ C

∣∣g(x)
∣∣ for all x > x0 .

For example, if an algorithm with input of size n can solve a problem using an2 +bn+c

operations we refer to it as having complexity O
(
n2
)
, since with increasing n the term

n2 will dominate the terms of smaller order as well as the coefficient a by far.

12



Chapter 3
Wireless Communications

3.1 Introduction

From the very first concepts, such as jungle drums or smoke signs, to the groundbreaking

work of Maxwell and Hertz firstly fully describing the transmission of electromagnetic

waves in the late 19th century, from the first wireless transmissions actually utilizing these

waves by Tesla and Marconi at the turn of that century, over the first two-way communi-

cation systems developed for the military in the first half of the 20th century, to satellite

television broadcasting, cell phones and wireless local area networks (WLANs), wireless

communications has been one of the fastest growing areas in engineering, especially over

the last decades, where its importance in every day life made it an important research

field that seems never to be exhausted. In this chapter we first introduce the basic ideas

and important concepts of wireless communications in Section 3.2. In Section 3.3 we

describe the physical phenomena occurring during a wireless transmission, and introduce

mathematical models describing them. Furthermore, we review an equivalent discrete

system model in Section 3.4, and introduce the idea of channel estimation in Section 3.5.

Finally, we describe the basic concepts of multi-antenna systems in Section 3.6 For all

the details, see [38].

3.2 Transceiver Setup

The basic task in wireless communications is to transmit a message from a transmitter

to a receiver. In modern communication systems the message is encoded into a transmit
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3 Wireless Communications

signal, which then is transmitted from one or several antennas via electromagnetic waves.

At the receiver, one or several antennas receive a distorted version of the transmit signal,

from which the receiver tries to decode the original message.

Nowadays, the information typically is digitized (if it is analog) and compressed first

to be able to apply mathematical tools such as error-correcting codes to make the data

link more reliable, which is referred to as source coding. Then, the information bits are

encoded using either convolutional codes or block codes [39], which is called channel

coding. The modulator then maps the encoded bits to the transmit symbols, which are

taken from a finite, typically complex alphabet A. Commonly used schemes are phase-

shift keying (PSK), amplitude-shift keying (ASK), and frequency-shift keying (FSK),

where phase, amplitude or frequency of a base signal (often a sinusoid) are altered to

represent the data symbol, respectively, or quadrature amplitude modulation (QAM),

which can be viewed as a combination of PSK and ASK.

In the following we describe a multicarrier (MC) modulation scheme, which is typi-

cally used in broadband wireless communication systems because of its advantages over

singlecarrier modulation schemes [40, 41]. In this setting, the frequency band of width

B0 available for transmission is divided into K subbands (subcarriers) of width B0

K
each.

The discrete-time transmit signal can then be written as

s[n] =
L−1∑
l=0

K−1∑
k=0

al,kgl,k[n] , (3.1)

where al,k ∈ A denotes the lth symbol transmitted at subcarrier k, gl,k[n] = e2πk(n−lN)/K

g[n − lN ] is the time-frequency shift of a discrete transmit pulse g[n], with N ≥ K

denoting the (discrete) symbol duration. Recall that in this thesis we use brackets in

the discrete case and parentheses in the continuous case. Afterwards, s[n] is converted

to the continuous-time transmit signal

s(t) =
∑
n∈Z

s[n]f1(t− nTs) (3.2)

using an interpolation filter with impulse response f1(t) and sampling period Ts := 1/B0.

This baseband signal, i.e. the bandlimited signal with frequencies starting close to zero,

is then upconverted to the passband signal in the desired frequency band, i.e. sp(t) =

e2πfcts(t), where fc denotes the center frequency, which then is finally transmitted.

At the receiver, the received signal rp(t) is downconverted to the baseband signal r(t)
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again, i.e. r(t) = e−2πfctrp(t), and transformed into the discrete-time signal

r[n] =

∫
R
r(t)f2(nTs − t)dt (3.3)

using an anti-aliasing filter with impulse response f2(t). Subsequently, the MC demod-

ulator calculates the demodulated symbols

rl,k =
∑
n∈Z

r[n]γ∗l,k[n] (3.4)

for every l = 0, . . . , L− 1 and k = 0, . . . , K − 1, where γl,k[n] = e2πk(n−lN)/Kγ[n− lN ] is

the time-frequency shift of a receive pulse γ[n]. The design of the transmit and receive

pulses is very important because they need to prevent subsequently transmitted symbols

from interfering (i.e. intersymbol interference (ISI), which is discussed in Section 3.3.1).

The demodulated symbols are then equalized, i.e. the effect of the channel is reverted,

and quantized according to the symbol alphabet A. Finally, the symbols are mapped

back to the corresponding bits, which are then decoded and decompressed.

In practical systems it is of great importance that modulator and demodulator allow

computationally extremely efficient implementations. A very popular and widely used

MC modulation scheme is orthogonal frequency-division multiplexing (OFDM), or more

precisely cyclic prefix (CP) OFDM [42, 43]. Here, transmit and receive pulses are both

chosen rectangular as

gcp[n] :=

{
1√
K

n ∈ {−Lcp, . . . , K−1}
0 else,

and γcp[n] :=

{
1√
K

n ∈ {0, . . . , K−1}
0 else,

(3.5)

where Lcp := N−K denotes the length of the guard interval that is used to avoid ISI.

Then, the discrete-time transmit signal (3.1) can be written as s[n] =
∑L−1

l=0 sl[n− lN ],

with

sl[n] =

{
1√
K

∑K−1
k=0 al,ke

2π kn
K n ∈ {−Lcp, . . . , K−1}

0 else.

Defining al :=
[
al,0, . . . , al,K−1

]T
for l = 0, . . . , L−1, we thus have sl[n] =

[
F−1(al)

]
(n)K

for

n ∈ {−Lcp, . . . , K−1}, where F−1 denotes the IDFT (see (2.5)), and (n)K := n (modK)

denotes the modulo K operation. Here, the guard interval at the beginning of sl is filled

with the last Lcp symbols of F−1(al) as cyclic prefix, an explanation for which can be

found for example in [43]. Therefore, the modulator can be implemented using the FFT,
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or more precisely the inverse FFT (IFFT), which has very low computational complexity

(see Section 2.2 and [34]). At the receiver, the cyclic prefix is removed since γ[n] = 0 in

the guard interval n ∈ {−Lcp, . . . ,−1}, and the demodulated symbols (3.4) can then be

written as

rl,k =
1√
K

K−1∑
m=0

r[m+ lN ]e−2π
mk
K = F(rl) ,

where rl =
[
r[lN ], . . . , r[K−1 + lN ]

]T
and F denotes the DFT (see Definition 2.2.4),

which can be implemented using the FFT. Since the IDFT and DFT in modulator and

demodulator, respectively, are of length K, the number of subcarriers is typically chosen

as a power of 2 to allow the fastest possible implementation.

As an alternative to the cyclic prefix, zero padding at the end of sl can also be used.

For more details see for example [44, 45].

3.3 The Wireless Channel

Ideally, the wireless channel leaves the transmitted signal identical so that the received

signal equals the transmit signal, i.e. r(t) = s(t′), where t′ = t−τ0 describes the time

shift corresponding to the time τ0 it takes for the signal to reach the receiver from the

transmitter. Assuming perfect alignment of transmitter and receiver (i.e. assuming τ0

to be known) the demodulated symbols rl,k equal the transmitted symbols al,k if and

only if the receive devices do not introduce noise and if the transmit pulse g and the

receive pulse γ satisfy the biorthogonality condition

〈gl,k, γl′,k′〉 =
∑
n∈Z

gl,k[n]γ∗l′,k′ [n] = δ[l − l′]δ[k − k′] ,

where δ[l] is the Kronecker-delta (see (2.6)). Of course, an ideal channel never occurs

in practice and in the following we describe the most important effects influencing the

transmission.

3.3.1 Multipath Propagation

There are many different phenomena affecting the transmit signal on its way through

the radio channel. First of all, since electromagnetic waves weaken as they propagate,
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Figure 3.1: Illustration of multipath propagation [46]

the received signal strength decreases as the distance between transmitter and receiver

grows, which is known as free space path loss. Furthermore, in addition to the direct Line

of Sight (LOS) connection between transmitter and receiver, which might be blocked

by walls, buildings, etc., the spherical propagation of electromagnetic waves yields that

the signal also takes several other paths. This multipath propagation is due to the fact

that copies of the signal typically are reflected by large, smooth surfaces (e.g. walls of a

building), scattered by smaller, rougher surfaces (e.g. leaves of a tree), diffracted on the

edges of some objects (e.g. houses, cars, mountains) or refracted (e.g. by the ionosphere).

An example is depicted in Fig. 3.1. Therefore, the receiver sees a superposition of

several multipath components (MPCs) with distinct amplitude, phase shift and time

delay, leading to constructive or destructive interference at the receiver. This, in turn,

causes the signal power seen at the receiver to fluctuate over time, frequency and/or

space, which is known as fading. More specifically, fading caused by the interference

of different MPCs is called small-scale fading, since the power fluctuations occur on a

scale comparable to one wavelength, i.e. even changes as small as one wavelength in
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the spatial geometry can cause huge changes in the receive signal power. This effect

is known to all users of cell phones, probably, since sometimes taking one step in any

direction can yield a dramatic change of the signal quality. Large-scale fading, on the

other hand, is caused by shadowing, i.e. huge objects like buildings, mountains, etc.,

blocking whole MPCs. These effects, although completely different by nature, overlap

and can yield a received signal power looking like the one depicted in Fig. 3.2, where the

fast power fluctuations indicated by the blue, solid line can be explained by small-scale

fading effects, whereas the trend shown by the averaged power level, visualized by the

red, dashed line, is caused by large-scale fading.

Figure 3.2: Typical fading characteristics. The blue, solid line shows the received signal

power at each sampling point, whereas as the red, dashed line shows the

average over 15 sampling points.

Another consequence of multipath propagation is signal dispersion, i.e. the fact that

due to the different path lengths of the different MPCs several copies of the signal

arrive at the receiver at different times. This can lead to intersymbol interference (ISI):

Consecutive symbols interfere at the receiver because MPCs with long runtime carrying

information from one symbol arrive at the receiver at the same time MPCs with shorter

runtime carrying information from the next symbol do. ISI can therefore be described

by the ratio of the symbol duration and the maximal time delay of an MPC occurring.

Note that in principle infinitely many MPCs arrive at the receiver with arbitrarily large
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time delay, but that all but a few will have lost most of their energy due to very long

distances and/or absorption along the way. Therefore, it is reasonable to speak of a

maximal time delay among those MPCs giving a significant contribution to the receive

signal. By significant we mean that it can still be distinguished from the noise. The

amount of noise present in a transmission system can be measured by means of the

signal-to-noise ratio (SNR), which is defined as

SNR = 10 log10

(Psignal

Pnoise

)
,

where Psignal and Pnoise denote the average power of the noise-free signal at the receive

side and of the noise, respectively. Obviously a large SNR is desirable, since in that case

the signal can be distinguished from the noise much better, and thus the reliability of

the transmission link is increased.

3.3.2 Time-Invariant Channels

If transmitter, receiver and all the objects reflecting, diffracting, scattering or refracting

the signal (from here on subsumed as scatterers) are static, the channel can be modeled

as a linear time-invariant system (LTI), i.e.

r(t) =

∫
R
h(τ)s(t− τ)dτ + z(t) , (3.6)

where s is the time-domain transmit signal, r is the time-domain received signal, and h

is the response of the channel to a unit pulse in terms of the delay-variable τ , and thus

is called the impulse response of the channel. Here, z subsumes all the unaccountable

noise such as spurious emissions from other transmitting devices, thermal noise, or noise

introduced by amplifiers or mixers at the receiver.

In a typical multipath scenario, the impulse response can be modeled as

h(τ) =
P∑
p=1

ηpδ(τ − τp) ,

where P is the number of MPCs giving a ”significant” contribution to the received signal,

ηp are the attenuation coefficients, τp are the time delays of the MPCs proportional to

their path lengths, and δ denotes the Dirac-delta (2.7). Taking the Fourier transform

of the impulse response yields an equivalent representation of the channel in terms of
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the frequency-varying transfer function H(f) =
(
Fh
)
(f), and the input-output relation

(3.6) can then be written as

r(t) =

∫
R
H(f)

(
Fs
)
(f)e2πtfdf

for a baseband signal s. Here, another effect of multipath propagation can be seen,

namely that different frequency components of the transmit signal are attenuated dif-

ferently, which is also known as frequency selective fading. Accordingly, a channel expe-

riencing multipath propagation is called frequency selective.

Time-invariant channels occur, for example, in WLANs, where typically there is (al-

most) no mobility between transmitter and receiver.

3.3.3 Time-Varying Channels

In many other scenarios, transmitter, receiver and/or scatterers are moving, and there-

fore the wireless channel typically varies over time and has to be modeled as a linear

time-varying system (LTV). The impulse response therefore additionally depends on the

time, and we have

r(t) =

∫
R
h(t, τ)s(t− τ)dτ + z(t) . (3.7)

If the impulse response does not change too quickly, we call the channel slowly time-

varying or quasi-static, and we can interpret h(t, τ) as the impulse response of an LTI

system that is ”valid” at time t. To model such an impulse response, we also have to

take into account the fact that since transmitter, receiver and/or scatterers are moving,

the electromagnetic waves will experience a frequency shift due to the Doppler effect.

Therefore, we have

h(t, τ) =

P (t)∑
p=1

ηp(t)δ
(
τ − τp(t)

)
e2πνp(t)t , (3.8)

where νp(t) denotes the Doppler-frequency shift, and all the parameters P (t), ηp(t), τp(t),

and νp(t) will change over time. A frequency selective, time-varying channel is called

doubly selective. Multicarrier systems applied to doubly selective channels not only suffer

from ISI due to multipath propagation, but also from intercarrier interference (ICI): if

the Doppler frequency shift of an MPC becomes as large as the frequency separation

between two adjacent subcarriers, symbols of those two subcarriers arriving at the same

time will interfere.
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Taking the partial Fourier transform of the impulse response with respect to τ again

yields the time- and frequency-varying transfer function H(t, f) =
(
F2h

)
(t, f). The

input-output relation (3.7) then reads

r(t) =

∫
R
H(t, f)

(
Fs
)
(f)e2πftdf + z(t) ,

and H(t, f) can be interpreted as the transfer function ”valid” at time t. Alternatively,

we can take the partial Fourier transform with respect to t, which gives the spreading

function S(ν, τ) =
(
F1h

)
(ν, τ) (throughout the rest of this thesis we will interchange

the order of ν and τ , i.e. write S(τ, ν), to be conform with the literature). By rewriting

(3.7) as

r(t) =

∫
R

∫
R
S(τ, ν)s(t− τ)e2πνtdνdτ + z(t) , (3.9)

it is easily interpreted as the factor by which an instance of the transmit signal s at

delay τ and Doppler shift ν contributes to the received signal r.

As explained in Section 3.3.1, wireless channels do not experience infinite time delays

and Doppler shifts in practice, so the integrals in (3.9) only have to be taken from 0

to τmax and from −νmax to νmax, respectively, where τmax and νmax denote the maximal

time delay and Doppler frequency shift occurring, respectively. Their product τmaxνmax

obviously is an upper bound for the size of the (effective) support of the spreading

function, and thus measures how much the channel spreads the signal in the delay-

Doppler region. Both τmax and νmax are inversely proportional to the propagation speed

c (see Section 6.1.3 for the exact formulas), and therefore τmaxνmax behaves like 1/c2.

Since in typical over-the-air transmissions the speed of light is c ≈ 3 ·108, we will always

have τmaxνmax � 1. Such channels are called underspread [47, 48]. Throughout the rest

of this thesis we only consider underspread doubly selective channels.

3.4 Equivalent Multicarrier System Model

By combining (3.2), (3.3) and the input-output relation (3.7) of a doubly selective chan-

nel, we obtain a discrete-time channel relating the discrete-time transmit signal s[n] to

the discrete-time receive signal r[n] as

r[n] =
∑
m∈Z

h[n,m]s[n−m] + z[n] , n ∈ Z , (3.10)
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where

h[n,m] =

∫
R

∫
R
h(t+ nTs, τ)f1(t− τ +mTs)f2(−t)dtdτ (3.11)

is a discrete-time equivalent of the impulse response of the channel, and z[n] =
∫
R z(t)

f2(nTs − t)dt is some discrete-time noise. Inserting this relation into (3.4) and using

(3.1) yields

rl,k =
L−1∑
l′=0

K−1∑
k′=0

Hl,k;l′,k′al′,k′ + zl,k (3.12)

for all l = 0, . . . , L− 1 and k = 0, . . . , K − 1, with equivalent noise terms zl,k =∑
n∈Z z[n]γ∗l,k[n] and system channel coefficients Hl,k;l′,k′ =

∑
n∈Z
∑

m∈Z h[n,m]gl′,k′ [n−
m]γ∗l,k[n], which subsume the effects of modulator, interpolation filter, physical channel,

anti-aliasing filter and demodulator. The coefficient Hl,k;l′,k′ can easily be interpreted as

describing ISI for l 6= l′ and ICI for k 6= k′. The input-output relation (3.12) can then

be rewritten as

rl,k = Hl,kal,k + z̃l,k , (3.13)

where z̃l,k := zl,k +
∑

l′ 6=l
∑

k′ 6=kHl,k;l′,k′al′,k′ now subsumes the noise and the interference

terms. If the amount of ISI and ICI introduced by the channel is not too large, i.e. if the

channel dispersion is not too strong, the interference coefficients Hl,k;l′,k′ for l 6= l′ and

k 6= k′ will be very small, and therefore the z̃l,k will not differ too much from the zl,k.

Note that ISI and ICI can also be combated by the design of the transmission setup.

To be precise, ISI can be reduced by choosing the discrete-time transmit pulse g[n] such

that a larger guard interval is given in between two consecutive OFDM symbols, whereas

ICI can be reduced by choosing the subcarrier spacing large enough. Obviously, these

parameters cannot be chosen arbitrarily large due to the need for high data rates on the

one hand, and the limited bandwidth on the other hand.

In the following we assume γ[n] to be zero outside {0, . . . , Lγ−1}, since typically

the receive pulse γ is compactly supported. Thus, to compute rl,k in (3.4) for all l =

0, . . . , L−1, the discrete-time received signal r[n] has to be known for n = 0, . . . , N0−1,

where N0 := (L−1)N + Lγ + 1. Taking the (non-unitary) discrete Fourier transform of

appropriate length of the impulse response h[n,m] with respect to the first variable n,

we obtain the discrete-delay-Doppler spreading function

Sh[m, i] =
1

N0

N0−1∑
n=0

h[n,m]e
−2π in

N0 , m, i ∈ Z , (3.14)
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which now describes the channel by means of a discrete delay (or time shift) m and a

discrete Doppler frequency shift i (here, again, we interchange the order of m and i to

be conform with the literature). Therefore, we can rewrite (3.10) as

r[n] =
∑
m∈Z

N0−1∑
i=0

Sh[m, i]s[n−m]e
2π ni

N0 + z[n] . (3.15)

Combining (3.4), (3.15) and (3.1), we reobtain (3.12), where the system channel coeffi-

cients Hl,k;l′,k′ can be written as

Hl,k;l′,k′ =
∑
m∈Z

N0−1∑
i=0

Sh[m, i]
∑
n∈Z

γ∗l,k[n]gl′,k′ [n−m]e
2π in

N0 .

Next, we assume that the channel is causal with maximum delay τmax ≤ (K − 1)Ts, i.e.

h[n,m] = 0 for all m /∈ {0, . . . , K−1}. Then, specializing the equation above to the case

l′ = l and k′ = k, we can write the diagonal channel coefficients Hl,k := Hl,k;l,k as

Hl,k =
K−1∑
m=0

N0−1∑
i=0

Sh[m, i]A
∗
γ,g

(
m,

i

N0

)
e−2π( km

K
− li
L

)

with the cross-ambiguity function Aγ,g(m, ξ) :=
∑

n∈Z γ[n]g∗[n −m]e−2πξn of γ[n] and

g[n] [49]. Using the approximation N0 ≈ NL, which actually is exact for CP-OFDM, we

finally obtain the 2D-DFT expression

Hl,k =
K−1∑
m=0

L/2−1∑
i=−L/2

Fm,ie
−2π( km

K
− li
L

) (3.16)

for all l = 0, . . . , L− 1 (L is assumed even for mathematical convenience) and k =

0, . . . , K−1, where the Fourier coefficients Fm,i can be written as

Fm,i =
N−1∑
q=0

Sh[m, i+ qL]A∗γ,g

(
m,

i+ qL

N0

)
. (3.17)

3.5 Channel Estimation

The problem of reobtaining the transmit symbols from the demodulated symbols at

the receiver, which are disturbed by the wireless channel as explained in the previous

sections, is called equalization. The most natural approach to channel equalization, which
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is widely used in practice, is to estimate its effects and revert them. This gives rise to the

formulation of the important subproblem of channel estimation, for which many different

techniques have been proposed. The goal is to estimate any of the representations of the

channel (impulse response, transfer function, spreading function), or equivalently the

system channel coefficients Hl,k;l′,k′ in (3.12). One approach to do so is to use training

data, i.e. symbols that are not used to transmit actual data but that are fixed before

data transmission and known to both transmitter and receiver [4, 5, 6, 7, 8]. If no

such training data is used, we speak about blind channel estimation [9, 10, 11, 12, 13].

Here, typically some statistical information about the channel or the transmit signal is

used. There are also hybrid estimation schemes, which are subsumed under the name

of semiblind channel estimation [14, 15, 16]. After an estimate of the channel has been

calculated, its effect is reverted in order to obtain estimates of the transmit symbols.

In this thesis, we only consider pilot-aided estimation schemes, where pilot symbols

pl,k = al,k, which are also known to the receiver, are transmitted at the time-frequency

positions (l, k) ∈ P in the pilot set P . The choice of this set is crucial. For slowly

varying channels, i.e. a channel that hardly changes during a block of several OFDM

symbols, typically a block-type pilot arrangement like the one depicted in Fig. 3.3(a) is

used. Here, pilots are transmitted at all subcarriers at some equispaced OFDM symbols,

i.e. P = {(l0 + mlB, k)
∣∣m = 0, . . . , L/lB − 1; k = 0, . . . , K−1} for some l0 ≥ 0 and

some block number lB dividing the total number L of OFDM blocks. From the pilots,

the channel for the considered block of OFDM symbols can then be estimated using for

example the least squares (LS) approach. Since the pilot symbols al,k = pl,k transmitted

at the pilot positions (l, k) ∈ P are known to the receiver, estimates of the channel

coefficients Hl,k can easily be calculated by simply dividing the received symbol by the

pilot symbol, i.e.

Ĥl,k =
rl,k
pl,k

= Hl,k +
z̃l,k
pl,k

, (l, k) ∈ P , (3.18)

using the input-output relation (3.13). If the receiver has some knowledge about the

second order statistics of the channel and the noise variance, a minimum mean square

error (MMSE) approach can be utilized. The MMSE estimator typically outperforms

the LS estimator, but has considerably higher computational complexity which makes it

impractical for many applications. A block-type pilot arrangement is used, for example,

in the WLAN standard IEEE 802.11a [50], and is often combined with a decision feedback

equalizer to enhance the performance [51].
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Figure 3.3: Pilot arrangements in SISO systems

If the channel changes within such a block of several OFDM symbols, pilots have to

be inserted into each OFDM symbol as shown in Fig. 3.3(b). Such a pilot arrange-

ment is called comb-type. The pilot set can then be written as P = {(l, k0 + mkB)
∣∣l =

0, . . . , L−1; m = 0, . . . , K/kB − 1} with some k0 ≥ 0 and some number kB dividing

the number K of subcarriers. Here, channel estimates can only be calculated at the

subcarriers bearing pilots, again using an LS or an MMSE approach, but then efficient

interpolation algorithms have to be utilized to obtain estimates at all the other subcar-

riers. Commonly used interpolation techniques are piecewise-constant functions, linear

functions, quadratic functions or cubic splines [51]. WLAN standard IEEE 802.11g, for

example, uses such a comb-type pilot arrangement [52]. In other standards, like for

example multiuser WiMAX standard IEEE 802.16a [53], a hybrid pilot arrangement like

the one depicted in Fig. 3.3(c) is used, which combines the benefits of both arrangements.

The arguments given above yield that block-type pilot arrangements are not appro-

priate for the estimation of doubly selective wireless channels. If the Doppler spread of
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the channel is large, i.e. if the channel introduces severe ICI, often a so-called frequency

domain Kronecker delta (FDKD) arrangement is used (Fig. 3.3(d)). Here, the pilot sub-

carriers at each OFDM symbol are arranged in blocks, where only the center pilot has

non-zero power, and the neighboring pilots are set to zero to guard this center pilot from

interference with the data symbols [54, 55]. FDKD is used in applications like DVB-T

for channel estimation [8].

A very useful tool for estimating doubly selective channels is to use a basis expansion

model (BEM) [56, 57, 58, 59, 8]. Here, the discrete-time channel impulse response h[n,m]

in (3.10) is modeled as a linear combination of the orthonormal basis functions ψi for

i = 0, . . . , N0−1, i.e.

h[n,m] =

N0−1∑
i=0

Th[m, i]ψi[n] , n = 0, . . . , N0−1 , (3.19)

with m-dependent expansion coefficients

Th[m, i] =

N0−1∑
n=0

h[n,m]ψ∗i [n] .

This coefficient function Th[m, i] clearly is a generalization of the discrete-delay-Doppler

spreading function Sh[m, i] in (3.14) which is obtained in the special case where ψi[n] =
1√
N0
e
−2π in

N0 . The task then is to approximately calculate this coefficient function, from

which an estimate of the channel then can be obtained via (3.19).

Many different ideas for choosing the basis functions have been proposed. Among

them are for example the complex exponential BEM [56], which uses a truncated Fourier

series for modeling the channel, and the Generalized CE-BEM [58], where the complex

exponentials are oversampled in the frequency domain. Also, the use of discrete prolate

spheroidal basis functions [59] as well as polynomial BEMs [57] have been studied.

3.6 Multiple-Input Multiple-Output Systems

3.6.1 Introduction

In 1993/94, Paulraj and Kailath first proposed to use multiple antennas in wireless com-

munication systems [60]. Soon it turned out that such multiple-input multiple-output
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(MIMO) systems have many useful properties that outweigh the drawbacks that arise.

Therefore, MIMO systems have been studied extensively in recent years and are already

part of several wireless standards such as WIFI standard IEEE 802.11n [61], WiMAX

standard IEEE 802.16e [53], 3GPP HSPA+ [62], 3GPP LTE [63] as well as future cellular

communication systems (3GPP LTE Advanced, 4G) [64, 65]. Note, that we can differ-

entiate between single-input multiple-output (SIMO) systems, where only one transmit

antenna but several receive antennas are used, multiple-input single-output (MISO) sys-

tems, where several transmit antennas but only one receive antenna is used, and MIMO

systems utilizing several antennas at transmit and receive side, which we consider ex-

clusively throughout the rest of this thesis.

As explained in the previous sections, doubly selective channels in single-input single-

output (SISO) systems introduce time and frequency diversity, which means that several,

(more or less) independently fading copies of the signal arrive at the receiver. If, on the

other hand, the same signal is transmitted from several antennas in a MIMO system,

an additional spatial diversity can be achieved, if the antennas are not too close to

each other and therefore each copy of the signal fades independently. This increases the

reliability of the data transmission without sacrificing spectral efficiency. Alternatively,

different signals can be transmitted from different transmit antennas increasing the data

throughput. This is known as multiplexing, and is probably the main reason why MIMO

systems are as attractive. Here, the receiver has a far more difficult task to fulfill,

namely to separate the received signal, which is a superposition of all the transmitted

signals. Obviously, there is a fundamental tradeoff between the gain achieved by spatial

diversity and by multiplexing, between increased reliability and higher data rate. It

therefore depends on the actual setting which approach is to be followed.

Additionally, it is possible to increase the effective SNR by coherently combining sig-

nals on multiple transmit or receive antennas. Maximum ratio combining, for example,

is one possibility to do so if the receiver has some knowledge about the channel [66].

If, on the other hand, the transmitter knows the channel approximately (for example

by feedback from the receiver), beamforming can be applied to increase the SNR sig-

nificantly [67]. As mentioned in Section 3.2, the reliability of a wireless communication

link is not only affected by the SNR, but also by the use of error-correcting codes. In

MIMO systems, the concept of space-time-coding is an additional way of increasing this

reliability [68].
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On the downside, MIMO systems need a quite complex hardware since each antenna

needs a radio-frequency unit and the digital signal processing (DSP) units have to be

very powerful. Also, the DSP algorithms involved have much higher computational

complexity as the ones in SISO systems. Therefore, MIMO systems have a much higher

power consumption which is a severe challenge for many applications such as handheld

devices with limited battery power. Also, as mentioned above, the antennas have to

be well separated to achieve maximal diversity, which might also be difficult if the

transmit/receive devices are rather small. For more information on the basic concepts

of MIMO systems, their advantages and disadvantages, and a detailed description of

such systems, see for example [69, 70].

3.6.2 MC MIMO System Model

For later use we briefly review the MIMO system model, although it mostly parallels

the one for SISO systems presented in Section 3.4. To do so, we denote the number

of transmit and receive antennas by NT and NR, respectively. Again, we focus on

MC transmission schemes with K subcarriers and symbol duration N ≥ K. Here and

throughout the rest of this thesis, we index transmit antennas by s, receive antennas

by r, pairs of transmit and receive antennas by θ = (r, s), and the set of all possible

pairs of antennas by Θ = {θ = (r, s)
∣∣ r = 1, . . . , NR; s = 1, . . . , NT}. Each pair θ ∈ Θ of

transmit and receive antennas is connected by a doubly selective channel with impulse

response h(θ)(t, τ). The MC MIMO system model can then be easily described in the

same way as in the SISO case (see Section 3.4), using a simple vector-matrix notation

as follows. Let s[n] =
[
s(1)[n], . . . , s(NT)[n]

]T
denote the vector-valued discrete-time

transmit signal, where s(s) denotes the discrete-time signal corresponding to transmit

antenna s for s = 1, . . . , NT. Equivalently, let r[n] =
[
r(1)[n], . . . , r(NR)[n]

]T
denote the

vector-valued discrete-time receive signal, and let z[n] =
[
z(1)[n], . . . , z(NR)[n]

]T
be the

noise vector. Then, (3.10) becomes

r[n] =
∑
m∈Z

H[n,m]s[n−m] + z[n] , n ∈ Z ,

with the NR × NT matrix H[n,m] =
∫
R

∫
R H(t + nTs, τ)f1(t − τ + mTs)f2(−t)dtdτ ,

where H(t, τ) is the matrix-valued channel impulse response with entries
[
H(t, τ)

]
r,s

=

h(r,s)(t, τ), and f1(t) and f2(t) are the impulse responses of the interpolation and anti-
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aliasing filters, respectively. Denoting the symbol transmitted at time-frequency po-

sition (l, k) from transmit antenna s by a
(s)
l,k , we define the transmit symbol vector

as al,k :=
[
a

(1)
l,k , . . . , a

(NT)
l,k

]T
. Equivalently, we define the received symbol vector as

rl,k :=
[
r

(1)
l,k , . . . , r

(NR)
l,k

]T
, a noise vector as zl,k :=

[
z

(1)
l,k , . . . , z

(NR)
l,k

]T
, and the channel

coefficient matrices Hl,k;l′k′ with entries
[
Hl,k;l′k′ ]r,s = H

(r,s)
l,k;l′,k′ , where H

(r,s)
l,k;l′,k′ denotes the

system channel coefficient for the cross-channel between transmit antenna s and receive

antenna r. Then, (3.12) becomes

rl,k =
∑
l′ 6=l

∑
k′ 6=k

Hl,k;l′k′al′,k′ + zl,k ,

which, subsuming the ISI/ICI terms Hl,k;l′k′ for l′ 6= l and k′ 6= k and the noise terms

zl,k, can be written as

rl,k = Hl,kal,k + z̃l,k , (3.20)

where Hl,k := Hl,k;l,k and z̃l,k := zl,k +
∑

l′ 6=l
∑

k′ 6=k Hl,k;l′k′al′,k′ . If we use the ap-

proximation N0 ≈ LK and assume the channel to be causal with maximum delay

τmax ≤ (K − 1)Ts, these ”diagonal” coefficient matrices can be expressed as

Hl,k =
K−1∑
m=0

L/2−1∑
i=−L/2

Fm,ie
−2π( km

K
− li
L

) , (3.21)

where the Fourier coefficient matrices Fm,i can be written as

Fm,i =
N−1∑
q=0

Sh[m, i+ qL]A∗γ,g

(
m,

i+ qL

N0

)
. (3.22)

Here, Sh[m, i] denotes the discrete-delay-Doppler spreading function matrix with entries[
Sh[m, i]

]
r,s

= S
(r,s)
h [m, i], where S

(r,s)
h [m, i] denotes the discrete-delay-Doppler spreading

function of the cross-channel θ = (r, s).

3.6.3 MIMO Channel Estimation

Channel estimation in MC MIMO systems is even more difficult than in the SISO case,

since there are NTNR cross channels that have to be estimated simultaneously. There-

fore, the amount of training data has to be increased. Also, the arrangement and design

of the pilot symbols is crucial since each receive antenna sees a superposition of all

the signals transmitted over several cross channels. Typically, all antennas transmit
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Figure 3.4: Comb-type pilot arrangement in a 2× 2 MIMO system

pilot symbols at the same time-frequency positions (l, k) ∈ P , and these pilot vectors

al,k = pl,k are again arranged in a block-type, comb-type or hybrid arrangement. In

many practical applications a zero pilot pattern is used where only one transmit antenna

actually transmits a pilot symbol at a given pilot position, whereas the other anten-

nas remain silent, i.e. each pilot vector pl,k has only one non-zero entry. Then, the

input-output relation (3.20) at a pilot position (l, k) ∈ P becomes

rl,k = Hl,kpl,k + z̃l,k = p
(s)
l,kh

(s)
l,k + z̃l,k , (3.23)

where the pilot vector pl,k=
[
0, . . . , p

(s)
l,k , . . . , 0

]T
has its only non-zero entry p

(s)
l,k at posi-

tion s, and h
(s)
l,k is the s-th column of Hl,k. Rewriting (3.23) coordinate wise, we have

r
(r)
l,k = H

(θ)
l,k p

(s)
l,k + z̃

(r)
l,k ,

and we can calculate an estimate of the channel coefficient of the cross channel connecting

each receive antenna r = 1, . . . , NR with the active transmit antenna s like in the SISO

case (see Section 3.5). If no additional information is available at the receiver, the overall

amount of training data obviously has to be increased by a factor of NT to obtain the

same quality of channel estimation as in the SISO case. A comb-type pilot arrangement

for a 2× 2 MIMO OFDM system using this approach is depicted in Fig. 3.4.

Alternatively, using a non-zero pilot pattern, non-zero pilots are transmitted from all

antennas simultaneously, but then they have to be designed orthogonally such that the

cross-channels can be separated at the receiver. Examples for estimation schemes using

this type of pilot pattern can be found in [71, 72]. Also, estimation methods using zero

and non-zero pilot patterns are compared in [73]. The MC MIMO channel estimators

presented in this thesis can be used with both of these pilot constellations.
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Chapter 4
Compressed Sensing

4.1 Introduction

In our digital age it has become a very important task to transform natural signals into

digital ones that can then be further processed by computational devices. This is done

by sampling the analog (continuous) signal at as many sampling points as it takes to

capture the essence of the signal. The theoretical foundation was built in the first half

of the 20th century by Kotelnikov [74], Nyquist [75], Shannon [76], and Whittaker [77],

who demonstrated that continuous-time, band-limited signals can be exactly recovered

from twice as many samples per second as the highest frequency present in the signal,

which is known as the Nyquist rate. Since then, an enormous amount of work has been

invested into the development of sampling theory on the one hand, and digital sensing

and processing systems on the other hand, that are typically faster, cheaper and more

robust than conventional analog systems.

Although with the ever-growing computational capabilities of modern systems the

amount of data that can be acquired has grown enormously, too, the sampling rate

in many practical applications including highly complex signals might be so high that

it still is too costly or not even possible to build an appropriate sampling device. In

other cases it might not be possible to store all the data because of limited storage, or

the data amount might be too large to be processed in real-time, so that it becomes

necessary to compress the data. Here, often correlations or redundancies in the signal

are exploited to reduce the amount of data that has to be stored to capture the essence
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of the signal up to a reasonably good approximation level. The widely used technique

called transform coding, in contrast, exploits some knowledge about the nature of the

signal to extract the most important information (from an application point of view)

and simply ignore the rest of the data. Well known examples are the JPEG and MPEG

standards [78, 79]. JPEG, for example, utilizes the fact that the human eye is much

more sensitive to small fluctuations in brightness than in color in order to reduce the

number of colors and thereby reduce the amount of data that is to be stored. The image

that is reconstructed from its JPEG encoding clearly differs from the original image, but

this difference is barely noticeable.

A very closely related process is called sparse approximation, where a basis or frame

that allows sparse or compressible representations of signals in a certain class of interest

is desired [80, 81, 82, 83]. By sparse we mean that only very few of the representation

coefficients are non-zero, whereas compressible signals are the ones that are well ap-

proximated by sparse signals. Sparse signals can be well compressed by just storing the

non-zero coefficients and their locations.

The fundamental weakness of this approach is that most of the data that is acquired at

a very high rate in the beginning is discarded later for compression. But since typically

the location of the important coefficients is not known before sampling, there seemed to

be no way out of this dilemma until the theory of compressed sensing came along.

In the following, we give a short overview over the basic notions, methods and results

of conventional compressed sensing in Section 4.2. In Sections 4.3, 4.4, 4.5 and 4.6 we

review the adaption of this methodology to the case of group sparsity, joint sparsity,

joint group sparsity and sequential sparsity, respectively, which are all defined within

the corresponding sections.

4.2 Conventional Compressed Sensing

The theory and methodology of compressed sensing (CS), also known as compressive

sampling, emerged from the groundbreaking work of Candès, Romberg and Tao [84, 85]

and Donoho [86, 87] in 2006, who showed that a finite dimensional, sparse signal can be

recovered from far fewer measurements than predicted by the Nyquist rate. Since then,

a variety of new theoretical results as well as computationally tractable algorithms have
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been developed, some of which are reviewed in this section. As already mentioned, we

only consider finite dimensional signals here, and therefore we use the terms vector and

signal interchangeably. Let us start with some basic definitions.

Definition 4.2.1. A vector x ∈ CN is said to be S-sparse for some S ∈ N, if at most S

of its entries are non-zero, i.e. if

‖x‖0 ≤ S .

We denote the set of all s-sparse vectors in CN by ΣN
S .

Actually, we drop the index indicating the dimension and write ΣS whenever the

dimension of the signals is clear from the context.

Definition 4.2.2. For a vector x ∈ CN , some S ∈ N and some p ≥ 1, we define the

S-term approximation error of x with respect to the p-norm as

σS(x)p := min
x̃∈ΣS

‖x− x̃‖p .

Proposition 4.2.3. Let x ∈ CN , and let x
(p)
S be such that σS(x)p = ‖x− x

(p)
S ‖p. Then,

for p ≥ 1, x
(p)
S ≡ xS, where xS is the vector that coincides with x at those S coefficients

with largest absolute values, and is zero everywhere else.

Proof. Let π be the permutation of the indices {0, . . . , N−1} that sorts the entries of

x in descending order according to their magnitudes, i.e.
∣∣[x]π(0)

∣∣ ≥ ∣∣[x]π(1)

∣∣ ≥ · · · ≥∣∣[x]π(N−1)

∣∣, and let x̃ ∈ ΣS be arbitrary. Then we have

‖x− x̃‖pp =
N−1∑
i=0

∣∣[x]i − [x̃]i
∣∣p =

∑
i∈supp x̃

∣∣[x]i − [x̃]i
∣∣p +

∑
i/∈supp x̃

∣∣[x]i
∣∣p ≥ ∑

i/∈supp x̃

∣∣[x]i
∣∣p .

On the other hand, we can write

‖x− xS‖pp =
N−1∑
i=0

∣∣[x]i − [xS]i
∣∣p =

N−1∑
i=S

∣∣[x]π(i)

∣∣p .
Since by the definition of π this last sum is taken over the N − S smallest entries of x,

and since | supp x̃| = S, we certainly have

∑
i/∈supp x̃

∣∣[x]i
∣∣p ≥ N−1∑

i=S

∣∣[x]π(i)

∣∣p ,
which concludes the proof since x̃ was chosen arbitrarily in ΣS. �
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Obviously, for all S-sparse signals x ∈ ΣS we have σS(x)p = 0 for all p ≥ 1. Unfor-

tunately, many signals that arise in practical scenarios are not exactly sparse, though.

If a signal x can be reasonably well approximated by a sparse signal, i.e. if its S-term

approximation error σS(x)p decays fast in S for some p ≥ 1, we call it compressible. This

rather general notion can be quantified by using the permutation π defined in the proof

of Proposition 4.2.3 again. If these coefficients follow a power law decay, i.e.

|[x]π(i)| ≤ c0i
−q

for some q > 0 and some constant c0 > 0, there exists some r > 0 and some constant

c1 > 0 such that [88]

σS(x)2 ≤ c1S
−r .

Obviously the compressibility of the signal is better the larger r (or equivalently q) is.

Moreover, we use the rather general term essential support to refer to the part of the

support of a signal corresponding to the ”large” entries.

Now let us return to the basic problem of data acquisition. Typically, noisy linear

measurements y ∈ CM of an unknown signal x ∈ CN are taken according to the mea-

surement equation

y = Φx + z , (4.1)

where Φ ∈ CM×N is the measurement matrix, and z ∈ CM is a noise vector. Let us

consider the noise-free case first, i.e. let us assume z = 0M . In this case N linearly

independent measurements need to be taken to reconstruct an arbitrary signal x ∈ CN

exactly, i.e. Φ needs to be quadratic and invertible, and we cannot expect to succeed with

less measurements in the general case. For sparse signals, on the other hand, we can at

least hope to do better. If the positions of the non-zero coefficients of an S-sparse signal

x were known in advance, we could reconstruct it from exactly S linear measurements

if each row of Φ was to be zero everywhere but at the position of a non-zero entry of

x. Unfortunately, this information is not available in typical scenarios, and therefore

we can only hope to succeed with some intermediate number M of measurements, i.e.

S ≤M ≤ N .

This is exactly where the theory of CS comes into play. It introduces measurement and

reconstruction strategies so that M � N linear measurements are sufficient for exact

reconstruction of S-sparse signals (where of course still S ≤ M). The measurement

matrix Φ then is a ”fat” matrix, i.e. it has much fewer rows than columns, and the
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4.2 Conventional Compressed Sensing

system (4.1) of linear equations is massively underdetermined. Therefore, there are

infinitely many solutions in general. Restricting ourselves to the case of sparse signals,

an intuitive strategy would be to simply choose the sparsest vector that is consistent

with the measurements, i.e. to solve

arg min
x′∈CN

‖x′‖0 subject to Φx′ = y .

Unfortunately, ‖‖0 is not convex. Actually, this problem is NP hard [89] and therefore

cannot be solved in a reasonable amount of time. The way out is to study the convex

relaxation of this problem, namely to solve

arg min
x′∈CN

‖x′‖1 subject to Φx′ = y ,

which is widely known as the basis pursuit (BP) [90]. An explanation for the use of the

`1-norm for promoting sparsity can be found in [91].

In the noisy case, on the other hand, this strategy can easily be adapted as

arg min
x′∈CN

‖x′‖1 subject to ‖Φx′ − y‖2 ≤ ε , (4.2)

where ε is an upper bound on the noise level. This problem is known as basis pursuit

denoising (BPDN) [92], and can equivalently be formulated as [90]

arg min
x′∈CN

1

2
‖Φx′ − y‖2

2 + τ‖x′‖1

with some parameter τ > 0, or, as is typically the case if referred to as least absolute

shrinkage and selection operator (LASSO) [93],

arg min
x′∈CN

‖Φx′ − y‖2 subject to ‖x′‖1 ≤ ε .

Intuitively it is clear that the prementioned strategies will not succeed for arbitrary

measurement matrices Φ. Therefore, we define the following.

Definition 4.2.4. A matrix Φ ∈ CM×N is said to satisfy the restricted isometry property

(RIP) of order S for some S ∈ N, if there is a constant 0 ≤ δ < 1 such that

(1− δS)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δS)‖x‖2
2

holds for every S-sparse x ∈ ΣS. The smallest such constant is denoted by δS, and it is

called the restricted isometry constant (RIC) of Φ.
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4 Compressed Sensing

If the RIC of a matrix Φ is small, the restriction of Φ to any subset of S columns

behaves more or less like an isometry. Note that sometimes in the literature the RIP

is called restricted isometry condition and therefore is abbreviated as RIC. We choose

to follow the more frequently used nomenclature as defined in Definition 4.2.4 in this

thesis.

With this definition at hand it is possible to show that solving BPDN indeed is a

robust and stable reconstruction strategy for sparse or compressible signals [92].

Theorem 4.2.5. Let x ∈ CN be arbitrary, and let y = Φx + z be noisy measurements

with y ∈ CM and ‖z‖2 ≤ ε. If Φ ∈ CM×N satisfies the RIP with RIC

δ2S <
√

2− 1 (4.3)

for some S ∈ N, then the solution x̂ of BPDN satisfies

‖x− x̂‖2 ≤ c0
σS(x)1√

S
+ c1ε ,

where c0 = 21−(1−
√

2)δ2S
1−(1+

√
2)δ2S

and c1 = 4
√

1+δ2S
1−(1+

√
2)δ2S

.

Here, the first term is due to the fact that x might not be exactly sparse, whereas the

second term is due to the measurement noise. Therefore, this theorem ensures that any

S-sparse signal can be reconstructed exactly in the noiseless case, i.e. ε = 0, by solving

BPDN under condition (4.3). The next question therefore is, which matrices satisfy

the RIP under this condition. Unfortunately it turns out that it is computationally

intractable to calculate the RIC of large matrices, which makes it hard to design an

appropriate measurement matrix in practice. In 2006 though, the groundbreaking work

of Candès, Romberg and Tao [84, 85] and Donoho [86, 87] came to the rescue. By using

the concept of randomness they were able to define a class of matrices that, with very

high probability, will satisfy the RIP. Since then, many such classes of matrices have

been identified, but we only mention some of them here.

For example, consider Gaussian random matrices, i.e. matrices where the entries are

identically and independently distributed Gaussian random variables with mean 0 and

variance 1/M , or Bernoulli random matrices, where the entries take the value +1/
√
M

or −1/
√
M with equal probability (see Section 2.4). It can be shown that such matrices

satisfy the RIP of some order S with small RIC δS with very high probability if the

number of rows is chosen large enough [94]. In many of the theory-building work in
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CS Gaussian or Bernoulli random matrices are used because of their nice theoretical

properties. In practice, though, they are of limited use for several reasons. In some

applications the design of the measurement matrix is constrained by physical or other

conditions. Sometimes, as in the compressive channel estimation methods presented in

this thesis, we cannot design it at all because it is fixed from the application. Most

importantly, though, these matrices do not allow a fast matrix multiplication, which

typically has to be performed quite often in practical applications.

Therefore, structured random matrices are often preferred [95]. Such matrices can,

among others, be constructed from general bounded orthonormal systems, from circulant

matrices or from Toeplitz matrices. For example, let U ∈ CN×N be a unitary matrix.

Then define the M × N matrix Φ by choosing M rows of U uniformly at random, i.e.

each row of U has equal probability of being chosen. Then, the following holds [95].

Theorem 4.2.6. Let Φ ∈ CM×N be constructed from a unitary matrix U ∈ CN×N as

described above. If

M

ln(5M)
≥ cδ−2K2s log2(100S) log(4N) ln(8ε−1)

for some ε, δ > 0, K :=
√
N maxk,l |Uk,l|, and some constant c < 84800, then, with

probability at least 1− ε,
√

N
M

Φ satisfies the RIP with RIC δS ≤ δ.

The so-called partial random Fourier matrices certainly form the most prominent

example, where U = FN is chosen to be the N ×N DFT matrix. This setup has been

the first to be studied in [84, 85].

By now there are many different algorithms solving BPDN quite fast [96, 97, 91], each

of which has different computational complexity. For example, BPDN can usually be

solved with O
(
MN2

)
operations using interior point methods [98].

As an alternative reconstruction strategy, greedy algorithms have obtained a lot of

attention because of their ease of implementation and low computational complexity.

Here, the support of the unknown signal is recovered iteratively. The most prominent

example is the so-called orthogonal matching pursuit (OMP) [99, 100]. Given the noisy

measurements y = Φx + z of the signal x, it starts by initializing a residual r(0) = y,

the support set as S(0) = ∅, and the iteration count as i = 0. Then, at iteration i ≥ 1,

a signal proxy u(i) = |ΦHr(i−1)| is calculated, the entries of which correspond to the

correlations of the columns of Φ with the previous residual. Then, the support set is
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updated as S(i) = S(i−1) ∪ {n(i)}, where n(i) is the index corresponding to the entry of

u(i) with maximal absolute value, i.e. the column of Φ maximally correlated with the

residual. Finally, the LS problem x(i) = arg minsupp{x′}∈S(i)
‖y−Φx′‖2 is solved to obtain

a new signal estimate x(i), and, in turn, a new residual r(i) = y −Φx(i). The process is

stopped if either the maximal number of iterations has been reached or if the `2-norm

of the residual falls below a prescribed threshold. Note that by definition each signal

estimate x(i) is i-sparse.

For this algorithm, it is possible to obtain the following result [101].

Theorem 4.2.7. Let x ∈ CN be arbitrary, and let y = Φx + z be noisy measurements

with y ∈ CN and ‖z‖2 ≤ ε. If Φ ∈ CM×N satisfies the RIP with RIC

δS + (1 + δ)δαS < δ (4.4)

with α = d16 + 15δe for some 0 < δ ≤ 1, then the result x̂ of OMP after 2(α− 1)S steps

satisfies

‖x− x̂‖2 ≤ c0
σS(x)1√

S
+ c1ε ,

where c0 = 2 + c1 and c1 = 2(1 + δ)(
√

11 + 20δ + 1) + 1.

Note that this result is of limited use in practice since the sparsity level S has to be

quite small for (4.4) to hold.

Let nOMP denote the number of OMP steps that are taken (note that by construction

of the algorithm nOMP ≤M). Following the implementation of OMP described in [102]

based on the QR-factorization, its computational complexity is O
(
nOMP(MnOMP +Φ)

)
,

where O
(
Φ
)

denotes the computational complexity of applying Φ or ΦH to a vector of

appropriate length. Here, the term MnOMP is due to the update of the QR-factorization

that is performed in each step, whereas the termO
(
Φ
)

is a consequence of the calculation

of the signal proxy. Note that for a completely unstructured matrix Φ we will have

O
(
Φ
)

= MN , but it can also be as small as O
(
Φ
)

= M log(N), if for example Φ is

constructed from the DFT matrix as described above and therefore FFT techniques can

be used.

Next to OMP, the greedy algorithm compressive sampling matching pursuit (CoSaMP)

[103] has also gained a lot of attention. Similarly to OMP, it starts by initializing a

residual as r(0) = y, the support set as S(0) = ∅, and the iteration count as i = 0, and
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4.3 Group Sparse Compressed Sensing

additionally sets x(0) = 0. Then, at iteration i ≥ 1, the signal proxy u(i) = |ΦHr(i−1)|
is calculated just as in OMP, but here a set S̃(i) is defined as the augmentation of the

support of the previous estimate x(i−1) with the 2S indices corresponding to the entries

of u(i) with largest absolute values. Here S is an estimate of the sparsity of x that

has to be given before the start of the algorithm. Then, a temporary signal estimate

is calculated as x̃(i) = arg minsupp{x′}∈S̃(i)
‖y − Φx′‖2, and the support estimate S(i) is

defined as the S indices corresponding to the entries of x̃(i) with largest absolute values.

Finally, a new signal estimate x(i) =
(
x̃(i)

)
S

and a new residual r(i) = y − Φx(i) are

calculated (by
(
x̃(i)

)
S

we again mean the vector coinciding with x̃(i) at the S ”largest”

coefficients and vanishing everywhere else). The algorithm stops when the maximal

number of iterations has been reached. In [103] the following result about the quality of

the solution has been proven.

Theorem 4.2.8. Let x ∈ CN be arbitrary, and let y = Φx + z be noisy measurements

with y ∈ CN and ‖z‖2 ≤ ε. If Φ ∈ CM×N satisfies the RIP with RIC δ4S < 0.1, then

the result x̂ of CoSaMP after nCoSaMP steps satisfies

‖x− x̂‖2 ≤ 20σS(x)2 +
20σS(x)1√

S
+ 20ε+ 2−nCoSaMP‖x‖2 .

Also in [103] the computational complexity of CoSaMP is given as O
(
nCoSaMPΦ

)
,

where nCoSaMP is the maximal number of iterations.

Finally note that there are many other algorithms for sparse reconstruction, such as

Iterative Hard Thresholding (IHT) [104], Stagewise OMP (StOMP) [105], Regularized

OMP (ROMP) [106, 107] and many more, which we do not describe in detail here.

4.3 Group Sparse Compressed Sensing

In many practical scenarios the non-zero components of sparse signals tend to appear in

clusters. This and more general forms of structured sparsity arise naturally for example

when dealing with multi-band signals [108, 109], in measurements of gene expression

levels [110], or in magnetoencephalography [111, 112]. To exploit this structure for

improved reconstruction quality, the methodology of group sparse CS (GSCS) has been

introduced [113]. GSCS is closely related to block sparse CS [114, 115], model-based CS

[116], and recovery of signals from a structured union of subspaces [117]. To be exact,
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let J = {Ib}B−1
b=0 be a partition of the set {0, . . . , N−1}, i.e.

⋃B−1
b=0 Ib = {0, . . . , N−1}

and
∑B−1

b=0 |Ib| = N . Furthermore, we define x[b] ∈ C|Ib| to be the subvector of a signal

x ∈ CN comprising the elements [x]i corresponding to the indices i ∈ Ib.

Definition 4.3.1. A signal x ∈ CN is called group S-sparse with respect to a partition

J , if at most S of the subvectors x[b] are not identically zero. The set of all such signals

is denoted by ΣS|J .

First of all, note that a group S-sparse signal x is also S ′-sparse, where S ′ is the sum

of the cardinalities of the groups associated with the non-zero entries of x, or, more

generally, S ′′-sparse, where S ′′ is the sum of the cardinalities of the S largest groups.

Therefore, if we are given some noisy linear measurements y of a group sparse signal x

according to (4.1), we can reconstruct it by using any of the methods described in the

previous section like BPDN, OMP or CoSaMP. Obviously, this approach does not take

the structure inherent to the signal into account. To do so, the notions and techniques

have been adapted to this setting.

Definition 4.3.2. A matrix Φ ∈ CM×N satisfies the group restricted isometry property

(G-RIP) of order S, if there is a constant 0 < δ < 1 such that

(1− δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2

holds for every group S-sparse x ∈ ΣS|J . The smallest such constant, denoted by δS|J ,

is called the group restricted isometry constant (G-RIC) of Φ.

In [117] it is shown that Gaussian and Bernoulli random matrices also satisfy the

G-RIP with very high probability if the number of rows is chosen large enough. For

measurement matrices constructed from unitary matrices as described in Section 4.2

there are no such results, to the best of our knowledge, yet. Nevertheless, since obviously

δS|J ≤ δS′′ (where S ′′ is defined as above), Theorem 4.2.6 can be used here also to

guarantee a small G-RIC under the assumptions made therein.

Next, let us define the mixed norm

‖x‖p|J :=
B−1∑
b=0

‖x[b]‖p .

Here, the content of each group subvector x[b] is measured by the `p-norm, whereas

the sum of these norms can be interpreted as an `1-norm, which serves as a measure of

sparsity as mentioned in the previous section.
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Definition 4.3.3. For a vector x ∈ CN , a partition J , some S ∈ N and some norm ‖.‖
on CN , we define the S-group approximation error of x with respect to J and the norm

‖.‖ as

σS|J (x)‖.‖ := min
x̃∈Σ

S|J

‖x− x̃‖ . (4.5)

The adaption of the BPDN problem, which is called the group BPDN (G-BPDN), is

defined as

arg min
x′∈CN

‖x′‖2|J subject to ‖Φx′ − y‖2 ≤ ε .

In [117], the following result has been obtained, which shows that G-BPDN is also stable

with respect to compressibility and robust to noise.

Theorem 4.3.4. Let x ∈ CN be arbitrary, and let y = Φx + z be noisy measurements

with y, z ∈ CM and ‖z‖2 ≤ ε. If Φ ∈ CM×N satisfies the G-RIP with respect to J with

G-RIC

δ2S|J <
√

2− 1 ,

then the solution x̂ of G-BPDN satisfies

‖x− x̂‖2 ≤ c0

σS|J (x)2|J√
S

+ c1ε ,

where c0 =
2(1−δ2S|J )

1−(1+
√

2)δ2S|J
and c1 =

4
√

1+δ2S|J

1−(1+
√

2)δ2S|J
.

Note that this theorem was originally formulated for the special case of block sparsity,

but can be transferred to this general setting without any change. To the best of our

knowledge there are no results analyzing the computational complexity of algorithms

solving G-BPDN in the literature.

Similarly, OMP can easily be adapted to the group sparse setting [118, 114]. Instead

of adding only one single index to the support set S(i) in each iteration, an entire group

is added, i.e. S(i) = S(i−1) ∪ Ib, where b = arg maxb′ ‖u(i)[b
′]‖2 for u(i) = |ΦHr(i−1)|.

Apart from that, group OMP (G-OMP) proceeds exactly like conventional OMP. G-

OMP will be faster in practice, since the signal proxy has to be calculated less often

and the search space for the next group is smaller if the groups contain more than

one index. The computational complexity of G-OMP is O
(
M(n′G-OMP)2 + nG-OMPΦ

)
following again the implementation in [102], where nG-OMP denotes the number of steps

that are taken, and n′G-OMP is the sum of the magnitudes of the chosen groups. If
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M(n′G-OMP)2 ≥ nOMPΦ, this formally is the same complexity as for conventional OMP.

Unfortunately, the performance of G-OMP has not been studied very well, yet (see

[118, 114] for some partial results).

Moreover, by specializing the modelbased CoSaMP algorithm described in [116] to

the group sparse model we get the group CoSaMP (G-CoSaMP) algorithm. Its compu-

tational complexity is given by O
(
nG-CoSaMPΦ

)
, where nG-CoSaMP denotes the number

of iterations. Adapting the result in [116] regarding block sparse signals we get the

following theorem, which holds for partitions J with groups of equal size.

Theorem 4.3.5. Let x ∈ CN be arbitrary, and let y = Φx + z be noisy measurements

with y, z ∈ CM and ‖z‖2 ≤ ε. If Φ ∈ CM×N satisfies the G-RIP with G-RIC δ4S|J < 0.1

for some S ∈ N, then the result x̂ of CoSaMP after nG-CoSaMP steps satisfies

‖x− x̂‖2 ≤ 2−nG-CoSaMP‖x‖2 + 20
(

1 +
1√
S

)
σS(x)2|J + 20ε .

To obtain this result we used that ‖x‖2 ≤ ‖x‖2|J , since

‖x‖2 =

√√√√N−1∑
i=0

|[x]i|2 =

√√√√B−1∑
b=0

∑
i∈Ib

|[x]i|2 ≤
B−1∑
b=0

√∑
i∈Ib

|[x]i|2 =
B−1∑
b=0

‖x[b]‖2 = ‖x‖2|J .

Furthermore, note that the matrix XS
K from the result in [116] is defined such that its

(group sparse) vectorized form vec{XS
K} minimizes ‖x − x̃‖2 for x̃ ∈ ΣS|J . It can be

shown by the exact same arguments as in the proof of Proposition 4.2.3 that this is the

vector coinciding with x at the positions corresponding to the S groups with largest

`2-norm. Obviously this is exactly the vector minimizing ‖x − x̃‖2|J appearing in the

definition of σS(x)2|J .

Finally, note that in the special case where each group contains only one index G-

BPDN, G-OMP and G-CoSaMP obviously coincide with their conventional counter-

parts.

4.4 Multichannel Compressed Sensing

Next, we consider the setting where not only one, but a whole ensemble of signals is

measured. This naturally arises in many practical applications, for example in sensor
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networks where multiple sensors acquire information about a physical or environmental

condition such as temperature, pressure or sound [119]. If a centralized architecture

is used, all the measurements of the sensors are transmitted to a central node which

then processes all the signals. Since all the sensors observe the same phenomenon the

different signals are likely to share certain structures, like sparsity.

To be more precise, let us begin with a few definitions.

Definition 4.4.1. An ensemble of vectors {x(θ)}θ∈Θ with x(θ) ∈ CN , is said to be jointly

S-sparse for some S ∈ N, if they share a common S-sparse support, i.e. if each of the

vectors is S-sparse and the non-zero entries occur at the same positions. Stacking the

vectors into a matrix columnwise, i.e. writing X :=
[
x(1) · · ·x(|Θ|)] ∈ CN×|Θ|, this means

‖X‖0 ≤ S ,

where ‖X‖0 counts the number of rows of X that are not identically zero.

Note that we use the ensemble notation {x(θ)}θ∈Θ and the matrix notation X inter-

changeably whenever it is clear from the context. Furthermore, recall the definition of

the `p/`q-norm ‖X‖p,q of a matrix X ∈ CN×|Θ|, i.e.

‖X‖p,q =

(
N−1∑
i=0

(
‖X‖(i)

p

)q)1/q

,

where ‖X‖(i)
p denotes the `p-norm of the i-th row of X (see (2.3)).

Definition 4.4.2. For an ensemble X ∈ CN×|Θ|, some S ∈ N and some p, q ≥ 1, we

define the joint S-term approximation error of X with respect to the `p/`q-norm as

σS(x)p,q := min
‖X̃‖0≤S

‖X− X̃‖p,q . (4.6)

As a measure of the joint sparsity of a signal ensemble we use the `2/`1-norm, i.e.

‖X‖2,1 :=
N−1∑
i=0

‖X‖(i)
2 .

Here, the `2-norms measure if the corresponding index is part of the joint support or

not, whereas the sum of the prementioned `2-norms can be viewed as an `1-norm, which

is a measure of sparsity as mentioned in Section 4.2. Therefore, this norm is a valid

measure of joint sparsity (see also [120, 121] and the references therein).
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In the most general setting, noisy linear measurements of an ensemble of jointly sparse

signals {x(θ)}θ∈Θ are taken according to

y(θ) = Φ(θ)x(θ) + z(θ) , θ ∈ Θ . (4.7)

Since each of the signals is sparse itself, any conventional CS reconstruction strategy like

for example BPDN, OMP or CoSaMP could be used to recover each signal individually.

With this approach, though, the joint structure of the signals is ignored completely.

Most of the algorithms have been adapted to this multiple signal problem, but they

typically consider the special case where the measurement procedure is the same for all

the different signals, i.e. that Φ ≡ Φ(θ) for all θ ∈ Θ. In this case we can rewrite the

measurement process as Y = ΦX + Z, where Y ∈ CM×|Θ| and Z ∈ CM×|Θ| are the

columnwise stackings of the y(θ) and z(θ), respectively. The adaption of BPDN to this

setting is called multichannel BPDN (M-BPDN) and is formulated as [122, 123, 124]

arg min
X′∈CN×|Θ|

‖X′‖2,1 subject to ‖ΦX′ −Y‖2 ≤ ε .

The multichannel version of OMP is called simultaneous OMP (SOMP) [125, 126],

and here the signal proxy is calculated as U(i) = |ΦHR(i−1)|, where R(i−1) is the residual

of the previous step, with R(0) = Y. Then, the index n(i) corresponding to the row

of U(i) with maximal `2-norm is added to the support S(i−1) in order to obtain S(i).

Finally, a new signal estimate X(i) = arg minsuppr{X′}∈S(i)
‖Y−ΦX′‖2 and a new residual

R(i) = Y − ΦX(i) are calculated, where suppr{X′} denotes the rowwise support of X′

(i.e. the indices of the rows of X′ that are not identically zero). The process is stopped

if either the maximal number of iterations has been reached or if the Frobenius norm of

the residual falls below a prescribed threshold.

For the general case where the measurement matrices Φ(θ) are not equal, the algorithm

distributed compressive sensing SOMP (DCS-SOMP) has been proposed in [127]. Here

a vector u(i) =
∑

θ∈Θ

∣∣Φ(θ)Hr
(θ)
(i−1)

∣∣ is calculated in step i, where the r
(θ)
(i−1) are the |Θ|

residuals of the previous step, with r
(θ)
(0) = y(θ). Then the index n(i) corresponding to the

largest entry of u(i) is added to the support estimate. Afterwards, new signal estimates

x
(θ)
(i) and residuals r

(θ)
(i) are calculated exactly like in conventional OMP. The algorithm

stops after a fixed number of iterations or if the `2-norm of one of the residuals falls

below a prescribed threshold.

The CoSaMP algorithm has been adapted to this case as well, where it is called

CoSOMP [128]. We prefer to call it Multichannel CoSaMP (M-CoSaMP) for the reason
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4.4 Multichannel Compressed Sensing

of uniformity within this thesis. The adaption is straight forward, where the signal proxy

now is calculated exactly like in SOMP, the support is again understood rowwise, and

throughout the algorithm the individual signals from conventional CoSaMP are replaced

by the stacked signal matrices.

The theoretical analysis of these algorithms is quite hard. Although it seems reason-

able that as the number of jointly sparse signals grows the estimation of the support

should become easier, it is impossible to show any performance gain in this case for all

possible signals. This is due to the fact that in the worst case scenario all the signals

x(θ) are equal and therefore no additional information is available as compared to the

single signal case. In practice, though, this case hardly ever occurs, and the average

case analysis performed for M-BPDN and S-OMP in [126, 129] yields a considerable

performance gain for these algorithms with a growing number of jointly sparse signals

with very high probability.

As for the computational complexity, it is again hard to give an exact statement

for M-BPDN, whereas SOMP can be implemented using O
(
nSOMP(MnSOMP + |Θ|Φ)

)
operations and M-CoSaMP has complexity O

(
|Θ|nM-CoSaMPΦ

)
. Furthermore, follow-

ing again the implementation of OMP in [102], DCS-SOMP can be implemented using

O
(
nDCS-SOMP(|Θ|MnDCS-SOMP +

∑
θ∈Θ Φ(θ))

)
operations. Here nSOMP, nM-CoSaMP and

nDCS-SOMP denote the number of SOMP, M-CoSaMP and DCS-SOMP iterations, re-

spectively, and O
(
Φ
)

denotes the complexity of applying Φ or ΦH to a vector.

Another way of tackling the multichannel reconstruction problem is by using the

well-known fact that it can actually be reinterpreted as a group sparse problem as

described in Section 4.3 [117]. To be precise, we first chose an arbitrary but fixed

ordering {θ1, . . . , θ|Θ|} of Θ. Then, we define the block-diagonal matrix

Φ :=


Φ(θ1) 0 · · · 0

0 Φ(θ2) · · · 0
...

...
. . .

...

0 0 · · · Φ(θ|Θ|)

 (4.8)

of size |Θ|M ×|Θ|N . Furthermore, we stack the signals x(θ) ∈ CN , y(θ) ∈ CM and z(θ) ∈
CM into the vectors x :=

[
x(θ1)T · · ·x(θ|Θ|)T

]T
of length |Θ|N , y :=

[
y(θ1)T · · ·y(θ|Θ|)T

]T
of length |Θ|M and z :=

[
z(θ1)T · · · z(θ|Θ|)T

]T
again of length |Θ|M . Then, we can gather

the equations y(θ) = Φ(θ)x(θ) + z(θ), θ ∈ Θ, into one measurement equation y = Φx + z.
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4 Compressed Sensing

Now consider the partition J := {Ib}N−1
b=0 of the set {0, . . . , |Θ|N−1} with groups

Ib := {b+ iN |i = 0, . . . , |Θ|−1} , b = 0, . . . , N−1 . (4.9)

If the vectors x(θ) are jointly sparse, the stacked signal vector x is group S-sparse with

respect to J . Therefore, the methodology of GSCS can be utilized for the stacked

system. For theoretical analysis it is therefore important to get an idea about the G-

RIC of Φ.

Proposition 4.4.3. Assume that the matrices Φ(θ) ∈ CM×N , θ ∈ Θ, satisfy the RIP

of order S with RIC δ
(θ)
S . Then the block-diagonal matrix Φ defined in (4.8) satisfies

the G-RIP of order S with respect to the partition J defined as above with G-RIC

δS|J = maxθ∈Θ δ
(θ)
S .

Proof. First note that any x ∈ C|Θ|N can be viewed as a stacking of |Θ| vectors x(θ) ∈
CN . Then we have ‖x‖2

2 =
∑

θ∈Θ ‖x(θ)‖2
2 and ‖Φx‖2

2 =
∑

θ∈Θ ‖Φ(θ)x(θ)‖2
2. Next, define

δ̃ := maxθ∈Θ δ
(θ)
S for easier notation. If x is group S-sparse with respect to J , then each

x(θ) is S-sparse itself, and therefore

‖Φx‖2
2 =

∑
θ∈Θ

‖Φ(θ)x(θ)‖2
2 ≤

∑
θ∈Θ

(
1 + δ

(θ)
S

)
‖x(θ)‖2

2

≤
(
1 + max

θ∈Θ
δ

(θ)
S

)∑
θ∈Θ

‖x(θ)‖2
2 =

(
1 + δ̃

)
‖x‖2

2 . (4.10)

Exactly the same reasoning can be used for the lower inequality, i.e. ‖Φx‖2
2 ≥

(
1 −

δ̃
)
‖x‖2

2. Therefore we have δS|J ≤ δ̃, since x ∈ ΣS|J was arbitrary and δS|J by definition

is the minimal value satisfying those two inequalities for arbitrary x ∈ ΣS|J simultane-

ously. Now consider the case where only the block x(θ0) of x with θ0 = arg maxθ∈Θ δ
(θ)
S

actually has non-zero entries (note that then technically x is still group sparse with re-

spect to J , although even the non-zero group-subvectors have many zero-entries). Then

we obviously have ‖x‖2 = ‖x(θ0)‖2 and ‖Φx‖2 = ‖Φ(θ0)x(θ0)‖2, and therefore

‖Φ(θ0)x(θ0)‖2
2 = ‖Φx‖2

2 ≤
(
1 + δS|J

)
‖x‖2

2 =
(
1 + δS|J

)
‖x(θ0)‖2

2 .

In the same way we obtain ‖Φ(θ0)x(θ0)‖2
2 ≥

(
1 − δS|J

)
‖x(θ0)‖2

2. Since x(θ0) is S-sparse,

and since these inequalities hold for arbitrary x(θ0) ∈ ΣS, we have δS|J ≥ δ
(θ0)
S = δ̃,

which finally yields δS|J = δ̃.

With this fact at hand, the theoretical results presented in Section 4.3 can easily

be applied to analyze the performance of G-BPDN and G-CoSaMP in this setting.
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4.5 Multichannel Group Sparse Compressed Sensing

Finally, for practical implementations it is noteworthy that the application of Φ or ΦH

can be performed block-wise, which reduces its computational complexity to O
(
Φ
)

=

O
(∑

θ∈Θ Φ(θ)
)
.

4.5 Multichannel Group Sparse Compressed Sensing

Combining the notions of group sparsity and joint sparsity we get the following definition.

Definition 4.5.1. A collection of vectors x(θ), θ ∈ Θ, is called jointly group S-sparse

with respect to the partition J = {Ib}B−1
b=0 , if the vectors

[
‖x(θ)[0]‖2, . . . , ‖x(θ)[B−1]‖2

]T
,

θ ∈ Θ, are jointly S-sparse.

Given noisy measurements y(θ) = Φ(θ)x(θ) + z(θ) of such jointly group sparse (or

compressible) signals, one could use any conventional CS method like BPDN, CoSaMP

or OMP for reconstruction of each signal individually. Also, GSCS methods could be

used since each signal is group sparse, or even MCS methods, since the signals are

jointly sparse. But to take the full structure into account, we can proceed as described

in the previous section, where we identified the multichannel reconstruction problem

as a special case of the group sparse problem. We again chose an arbitrary but fixed

ordering {θ1, . . . , θ|Θ|} of Θ and consider the stacked vectors x :=
[
x(θ1)T · · ·x(θ|Θ|)T

]T
of length |Θ|N , y :=

[
y(θ1)T · · ·y(θ|Θ|)T

]T
of length |Θ|M and z :=

[
z(θ1)T · · · z(θ|Θ|)T

]T
again of length |Θ|M . Then, recalling (4.8), we can again gather the equations y(θ) =

Φ(θ)x(θ) +z(θ), θ ∈ Θ, into the one measurement equation y = Φx+z. If the signals x(θ)

are jointly group S-sparse with respect to J we can consider the partition J̃ := {Ĩb}B−1
b=0

of the set {0, . . . , |Θ|N−1} with groups

Ĩb := {k + iN |k ∈ Ib, i = 0, . . . , |Θ|−1} , b = 0, . . . , B−1 . (4.11)

Then, the stacked signal vector x is group S-sparse with respect to J̃ . Therefore, the

whole available structure can be taken into account by again utilizing the methodology

of GSCS for the stacked system. Note that Proposition 4.4.3 can easily be adapted to

this setting.

Corollary 4.5.2. Assume that the matrices Φ(θ) ∈ CM×N , θ ∈ Θ, satisfy the G-RIP of

order S with respect to the same partition J with G-RIC δ
(θ)
S|J . Then the block-diagonal
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4 Compressed Sensing

matrix Φ defined in (4.8) satisfies the G-RIP of order S with respect to the partition J̃
as defined above with G-RIC δS|J̃ = maxθ∈Θ δ

(θ)
S|J .

Proof. For the proof we set δ̃ := maxθ∈Θ δ
(θ)
S|J and note that if x is group S-sparse with

respect to J̃ , then each x(θ) is group S-sparse with respect to J , and therefore (4.10)

again holds. Then we have δS|J̃ ≤ δ̃. Equality again follows from choosing a vector x

for which only one subvector x(θ0) with θ0 = arg maxθ∈Θ δ
(θ)
S|J is non-zero, and following

the exact same reasoning as in the proof of Proposition 4.4.3.

4.6 Modified Compressed Sensing

In a general sparse reconstruction setting the support of the unknown signal x is com-

pletely unknown. However, there are practical applications where some prior information

about this support is available. It might, for example, be known that the signals of in-

terest must have significant entries in some region due to physical constraints, whereas

other regions are completely undetermined. In image analysis it might be known that

the image that is to be reconstructed belongs to a certain class of images which can

yield some information about the support. In this thesis we consider the setting where

a time-varying signal is to be reconstructed at several different points in time. If the

support of the signal changes only slowly between two consecutive points in time, we

can use the estimated support from one point in time, or at least a part of it, as support

information for the next one. To take the prior support information into account, all

the methods introduced in the previous sections can easily be adapted. Because of the

nomenclature in the first papers describing this setting we subsume these methods under

the name of modified CS (MOD-CS) [130, 131]. In the following we merely explain the

changes that have to be made in the conventional CS methods. In the same way the

GSCS and MCS methods can then be adapted straight forwardly.

To do so we consider the following setting. Let y = Φx + z be noisy measurements

of an unknown S-sparse signal x ∈ CN , let S ⊆ supp
{
x
}

be the known part of the

support of x, and let Sc be its complement within {0, . . . , N−1}. With this notation,

the modified BPDN problem that was introduced in [131], is given as

arg min
x′∈CN

∥∥x′∣∣Sc∥∥1
subject to ‖y −Φx′‖2 ≤ ε .
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4.6 Modified Compressed Sensing

Here we look for a signal that is as sparse as possible outside of S. As for the recon-

struction quality the following result has been obtained in [132].

Theorem 4.6.1. Let noisy linear measurements y = Φx + z of a signal x ∈ CN with

Φ ∈ CM×N , and a set S ⊆ {0, . . . , N−1} of size |S| = S0 be given. If Φ satisfies the

RIP of order S0 + 2S with RIC δ2
2S + δS0+2S < 1, then the solution x̂ of MOD-BPDN

satisfies

‖x− x̂‖2 ≤ c0
σS(x− x|S)1√

S
+ c1ε ,

where c0 := 2
1+µ−δS0+2S

1−δS0+2S−µ
and c1 := 4

√
1+δS0+2S

1−δS0+2S−µ
, with µ :=

√
δ2
S0+2S + δ2

2S.

Here, x|S denotes the vector coinciding with x on S and vanishing everywhere else.

Note that in this result the term σS(x−x|S)1 can be much smaller than the corresponding

term σS(x)1 in Theorem 4.2.5 analyzing conventional BPDN, but that at the same time

the assumptions on Φ get more restrictive. Therefore this theoretical result is of limited

use in practice.

The adaption of OMP is straight forward. In the modified OMP (MOD-OMP) we

start with an initialization step, where an initial signal estimate x(0) is calculated on

the partially known support, i.e. x(0) := arg minsupp{x′}⊆S ‖y −Φx′‖2, and the residual

r(0) = y−Φx(0) as well as the support set S(0) = S are initialized. After that, we proceed

just like in conventional OMP, where only the maximal number of iterations is reduced

by |S|. MOD-OMP has, to the best of our knowledge, firstly been analyzed in [133] in a

different context, where it is called Orthogonal Greedy Algorithm. In this work an exact

recovery result for the noiseless case has been obtained. Also, the arguments used in the

proof of the exact recovery result for conventional OMP in [134] can easily be adapted

to yield an analogous result for MOD-OMP. Unfortunately, there are no results for the

case of noisy measurements yet. The computational complexity of MOD-OMP clearly

reduces to O
(
M(nMOD-OMP + |S|)2 +nMOD-OMPΦ

)
, where nMOD-OMP denotes the number

of MOD-OMP iterations.

The adaption of CoSaMP to the MOD-CS setting is again very simple. In the first

iteration we simply augment the temporary support estimate S̃(1) with the partially

known support set S. Then, at each iteration i ≥ 1, we calculate a temporary signal

estimate x̃(i) as usual, and define the support estimate S(i) as the augmentation of S with

the S−|S| indices of Sc corresponding to the entries of x̃(i) with largest absolute values.
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4 Compressed Sensing

Finally, the new signal estimate x(i) and the residual r(i) are calculated as usual. With

this simple adaption we make sure that S is part of the support of each signal estimate

x(i). For obvious reasons we dub this algorithm the modified CoSaMP (MOD-CoSaMP).

To the best of our knowledge MOD-CoSaMP has not appeared in the literature yet. Its

computational complexity is the same as the one for conventional CoSaMP, namely

O
(
nMOD-CoSaMPΦ

)
, where nMOD-CoSaMP denotes the maximal number of iterations.

Note that in the special case where S = ∅, i.e. where no prior support information is

available, MOD-BPDN, MOD-OMP and MOD-CoSaMP obviously coincide with their

conventional counterparts. Finally, note that for a signal x that is only compressible

almost any set S is part of the support of x. Thus, we cannot expect to gain anything

if S is allowed to be an arbitrary part of the support in this setting. It might make

things even worse if, for example, x only has small entries on S. Nevertheless, we can

still expect improved performance if the set S is part of the essential support of x, i.e.

the part that corresponds to its ”large” entries.
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Chapter 5
Compressive Channel Estimation in

SISO Systems

5.1 Conventional Compressive Channel Estimation

In this section we explain how the methodology of CS can be utilized to estimate the

mobile radio channel in wireless communication systems. The idea is not new, it was

first introduced by different authors independently in [1, 17, 18] in 2008. CS techniques

have also been applied to various other settings, such as ultra-wideband (UWB) systems

([135, 136]) or radar systems ([137, 138, 139]). For the general case of doubly selective

channels in wireless systems a good survey have been given, for example, in [140]. Note

that in the literature there does not appear to be an expression subsuming all the channel

estimation techniques using CS methods. We choose to use the expression ”Compressive

Channel Estimation” (CCE) to express that compressive sampling methods are used for

channel estimation, although there is no compression whatsoever performed in those

estimation techniques.

This section is organized as follows. We start by presenting the general method

introduced in [1] and analyzed in more detail in [3] in Section 5.1.1, and extend this

analysis by giving a new error estimate for two of the CS methods in Theorem 5.1.1. In

Section 5.1.2 we analyze the computational complexity of the presented method, which

has, to the best of our knowledge, not been done before. Then, in Section 5.1.3, we

explain in what sense typical wireless channels can be considered compressible following
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our analysis given in [1, 3]. Section 5.1.4 is devoted to explaining how the use of a

different basis than the complex exponentials can greatly improve the performance of

the compressive estimator, and how such a basis can be found (again following [2, 3]).

Finally, extensive simulation results presented in Section 5.1.5 demonstrate the superior

performance of the presented compressive channel estimator as compared to conventional

LS methods.

5.1.1 The Method

As explained in Section 3.5 the basic task of channel estimation is to identify any of

the different channel representations. Our method allows the calculation of the channel

coefficients Hl,k in (3.13) via the 2D DFT relation (3.16), i.e. the coefficients Fm,i in

(3.17). As mentioned in Section 3.3.3 we only consider underspread channels. For such

channels and practical transmit and receive pulses, these coefficients Fm,i are effectively

supported in some small rectangular region about the origin. We therefore assume the

support of Fm,i to be contained in {0, . . . , D−1}×{−J/2, . . . , J/2−1} for some constants

D and J chosen such that ∆K := K/D and ∆L := L/J are integers, and J (and therefore

also L) is even for mathematical convenience. Then, because of the 2D DFT relation

(3.16), it is sufficient to know the values of the channel coefficients Hl,k (or equivalently

the 2D DFT coefficients Fm,i) at JD positions to find the values of Hl,k at all time-

frequency positions (l, k) for l = 0, . . . , L−1 and k = 0, . . . , K−1. Therefore we define a

subsampled time-frequency grid G := {(λ∆L, κ∆K) |λ = 0, . . . , J−1; κ = 0, . . . , D−1},
on which (3.16) becomes

Hλ∆L,κ∆K =
K−1∑
m=0

L/2−1∑
i=−L/2

Fm,ie
−2π(κ∆Km

K
−λ∆Li

L
) =

D−1∑
m=0

J/2−1∑
i=−J/2

Fm,ie
−2π(κm

D
−λi
J

) . (5.1)

Note that of course the limiting cases D = K and/or J = L, i.e. no subsampling in time

and/or frequency direction, are included. The key observation for the use of CS methods

for channel estimation is that the 2D DFT coefficients Fm,i are compressible. This fact

is explained in detail in Section 5.1.3, where it is also shown that their compressibil-

ity is strongly affected by the leakage effect. Analogously to the BEMs mentioned in

Section 3.5, we therefore generalize (5.1) to

Hλ∆L,κ∆K =
D−1∑
m=0

J/2−1∑
i=−J/2

Gm,ium,i[λ, κ] , (5.2)
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where {um,i[λ, κ]} is an orthonormal 2D basis appropriately chosen such that the expan-

sion coefficients Gm,i are even ”more compressible” than the 2D DFT coefficients Fm,i.

In Section 5.1.4 we explain one way of constructing such a basis. Obviously the 2D DFT

expansion (5.1) is a special case of (5.2) with basis um,i[λ, κ] = (1/
√
JD)e−2π(κm

D
−λi
J

) and

coefficients Gm,i =
√
JDFm,i. Now let us define the JD-dimensional vectors h∆, g and

um,i as
[
h∆

]
κJ+λ

:= Hλ∆L,κ∆K ,
[
g
]

(i+J/2)D+m
:= Gm,i, and

[
um,i

]
κJ+λ

:= um,i[λ, κ], re-

spectively (with λ = 0, . . . , J−1; κ = 0, . . . , D−1; m = 0, . . . , D−1; i = −J/2, . . . , J/2−1).

This corresponds to a columnwise stacking of Hλ∆L,κ∆K , Gm,i, and um,i[λ, κ], respec-

tively, each viewed as a J×D matrix. Furthermore, we define the JD×JD matrix U as[
U
]
κJ+λ,(i+J/2)D+m

:= um,i[λ, κ]. Here the
(
(i+ J/2)D +m+ 1

)
-th column corresponds

to the stacked basis vector um,i, and thus U is a unitary matrix. With these definitions

at hand we can rewrite (5.2) as

h∆ =
D−1∑
m=0

J/2−1∑
i=−J/2

Gm,ium,i = Ug . (5.3)

For pilot-aided channel estimation, as explained in Section 3.5, first a pilot set P of

size Q := |P| is chosen. Following the LS-approach described in that section, estimates

Ĥl,k of the channel coefficients at all the pilot positions (l, k) ∈ P can be calculated by

Ĥl,k = rl,k/pl,k (see (3.18)), where rl,k are the received symbols and pl,k are the pilot

symbols. If we now choose the pilot set P as a subset of the subsampled time-frequency

grid G, we get an estimate ĥ(p) of the subvector h(p) :=
(
h∆

)∣∣∣
P

of h∆ constituted of

the entries of h∆ corresponding to P , with ĥ(p) = h(p) + z(p) (again see (3.18)), where

z(p) has entries z̃l,k/pl,k with (l, k) ∈ P . Constraining the matrix U to the same rows

corresponding to P and denoting the resulting matrix by U(p) (which then is a Q× JD
matrix), we obtain h(p) = U(p)g, which in turn yields ĥ(p) = U(p)g + z(p). Since the

expansion coefficients Gm,i, and thus the vector g, were assumed compressible, this can

be identified as an instance of the basic CS measurement equation (4.1). As explained

in Section 4.2 we therefore have to examine the ”measurement matrix” U(p) closer.

This matrix is constructed from a unitary matrix by choosing the rows corresponding

to the pilot positions. Thus, following Theorem 4.2.6, if we choose the pilot positions

uniformly at random (from the grid G), and if we choose the number of pilots Q large

enough, the renormalized matrix
√
JD/QU(p) will have a small RIC with very high

probability, which typically yields good reconstruction properties. Therefore, we rewrite
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the measurement equation above as

ĥ(p) = Φx + z(p) , (5.4)

where Φ :=
√
JD/QU(p) and x =

√
Q/JDg.

Now we can formulate the compressive channel estimator. Let P be a pilot set that

is chosen uniformly at random from the grid G and communicated to the receiver once

and for all before the start of data transmission (it stays fixed therein).

Step 1. Calculate channel estimates at the pilot positions and stack them in order to

obtain the measurement equation (5.4).

Step 2. Run any CS algorithm to obtain an estimate x̂ of x, and rescale x̂ with
√
JD/Q

for an estimate ĝ of g, the entries of which are exactly the expansion coefficients

Gm,i.

Step 3. Calculate estimates of the subsampled channel coefficients Hλ∆L,κ∆K from (5.2).

Step 4. Invert (5.1) to obtain estimates of the 2D DFT coefficients Fm,i for m =

0, . . . , D−1 and i = −J/2, . . . , J/2−1. Note that by assumption Fm,i vanishes

for all other indices.

Step 5. Calculate estimates of all the channel coefficients Hl,k by using the 2D DFT

expansion (3.16).

Note that in the special case where the 2D DFT basis is used we have Gm,i =
√
JDFm,i,

and therefore Steps 3 and 4 can be omitted.

Concerning the quality of channel estimation we can say the following. Assume that

the expansion coefficients Gm,i, and therefore also the vector x =
√
Q/JDg, are com-

pressible in the sense explained in Section 4.2. Then we obtain the following result

regarding the estimation error of the compressive channel estimator, which obviously

depends on the CS recovery method that is used. We only present results for BPDN

and CoSaMP here. To the best of our knowledge this is a new result that has not yet

appeared in the literature.

Theorem 5.1.1. Let S ⊆ {0, . . . , D−1}×{−J/2, . . . , J/2−1} be any set of size |S| = S.

Furthermore, let

CG,S :=
∑

(m,i)/∈S

|Gm,i| ,

as well as εn := ‖z(p)‖2 and ε > 0.
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1. Take BPDN to be the CS reconstruction method used in Step 2 of the compressive

channel estimator. If Φ satisfies the RIP with RIC δ2S <
√

2−1, and if εn < ε, we

can bound the estimation error as√√√√L−1∑
l=0

K−1∑
k=0

∣∣∣Hl,k − Ĥl,k

∣∣∣2 ≤ C ′0S
−1/2CG,S + C ′1ε , (5.5)

with the constants C ′0 := c0

√
LK
JD

and C ′1 := c1

√
LK
Q

, where c0 and c1 are the

constants from Theorem 4.2.5.

2. Use CoSaMP with i steps for CS reconstruction in Step 2. If the RIC δ4S of Φ

satisfies δ4S < 0.1 and if εn < ε, then√√√√L−1∑
l=0

K−1∑
k=0

∣∣∣Hl,k − Ĥl,k

∣∣∣2 ≤ C̃0

(
1 + S−1/2

)
CG,S + C̃1ε+ C̃2 ,

with C̃0 := 20
√

LK
JD

, C̃1 := 20
√

LK
Q

and C̃2 := 2−i
√

LK
JD

(∑
(m,i) |Gm,i|2

)1/2

. Note

that since the number of CoSaMP iterations can be chosen arbitrarily, C̃2 can be

made arbitrarily small.

Proof. We begin by defining h := vec{Hl,k}l,k, where vec{} denotes columnwise stacking

of the L×K ”matrix” given by the coefficients Hl,k, i.e.
[
h
]
kL+l

= Hl,k, f := vec{Fm,i}m,i,
i.e.

[
f
]

(i+L/2)K+m
= Fm,i, and the unitary matrix UF with entries

[
UF

]
kL+l,(i+L/2)K+m

=

(1/
√
LK)e−2π( km

K
− li
L

) (here l = 0, . . . , L−1; k = 0, . . . , K−1; m = 0, . . . , K−1; i =

−L/2, . . . , L/2− 1). Then, (3.16) can be rewritten as h =
√
LKUFf , which yields

‖h‖2 =
√
LK‖f‖2 since UF is a unitary matrix.

Next, we define f̃ as the restriction of f to [0, . . . , D−1] × [−J/2, . . . , J/2−1], i.e.[
f̃
]

(i+J/2)D+m
= Fm,i, and the ”small” version ŨF of UF via

[
ŨF

]
κJ+λ,(i+J/2)D+m

=

(1/
√
JD)e−2π(κm

D
−λi
J

) (here λ = 0, . . . , J−1; κ = 0, . . . , D−1; m = 0, . . . , D−1; i =

−J/2, . . . , J/2−1). Then we can rewrite (5.1) as h∆ =
√
JDŨFf̃ , which now yields

‖h∆‖2 =
√
JD‖f̃‖2 =

√
JD‖f‖2, since again ŨF is unitary and by assumption the

restriction of f to f̃ only deletes zero-entries. On the other hand, following (5.3), we

have h∆ = Ug, which yields ‖h∆‖2 = ‖g‖2 by the unitarity of U. Putting all this

together, we thus obtain

‖h‖2 =
√
LK‖f‖2 =

√
LK

JD
‖h∆‖2 =

√
LK

JD
‖g‖2 .
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Because of the way the channel estimates Ĥl,k are calculated from the estimated expan-

sion coefficients Ĝm,i, the exact same arguments as before yield ‖h−ĥ‖2 =
√
LK/JD‖g−

ĝ‖2, where f̂ and ĝ denote the estimates of f and g, respectively. We thus have√√√√L−1∑
l=0

K−1∑
k=0

∣∣∣Hl,k − Ĥl,k

∣∣∣2 = ‖h− ĥ‖2 =

√
LK

JD
‖g − ĝ‖2 . (5.6)

Furthermore, since g =
√
JD/Qx and ĝ =

√
JD/Qx̂, we have ‖g− ĝ‖2 =

√
JD/Q‖x−

x̂‖2, which yields √√√√L−1∑
l=0

K−1∑
k=0

∣∣∣Hl,k − Ĥl,k

∣∣∣2 ≤√LK

Q
‖x− x̂‖2 . (5.7)

Next, let us consider part 1 of the theorem. Under the assumptions on Φ and εn

Theorem 4.2.5 yields

‖x− x̂‖2 ≤ c0
σS(x)1√

S
+ c1ε

with the constants given therein. Now, we define the one-to-one mapping

S : {0, . . . , D−1} × {−J/2, . . . , J/2−1} → {0, . . . , JD−1},

S(m, i) := (i+ J/2)D +m, (5.8)

which actually corresponds to the columnwise stacking operation g := vec{Gm,i}m,i, i.e.[
g
]

(i+J/2)D+m
=
[
g
]
S(m,i)

= Gm,i. Then, we can obviously write

σS(x)1 ≤
∑

(m,i)/∈S

∣∣∣[x]
S(m,i)

∣∣∣ =

√
Q

JD

∑
(m,i)/∈S

∣∣∣Gm,i

∣∣∣ , (5.9)

where the inequality is due to the definition of σS(x)1. Finally, we thus get√√√√L−1∑
l=0

K−1∑
k=0

∣∣∣Hl,k − Ĥl,k

∣∣∣2 ≤ c0

√
LK

JD

CG,S√
S

+ c1

√
LK

Q
ε .

Setting C ′0 := c0

√
LK/JD and C ′1 := c1

√
LK/Q gives the desired result.

For part 2 the assumptions on Φ and εn together with Theorem 4.2.8 yield

‖x− x̂‖2 ≤ 20σS(x)2 +
20σS(x)1√

S
+ 20ε+ 2−i‖x‖2 ,
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which then gives√√√√L−1∑
l=0

K−1∑
k=0

∣∣∣Hl,k − Ĥl,k

∣∣∣2 ≤ 20

√
LK

Q

(
1 + S−1/2

)
σS(x)1 + 20

√
LK

Q
ε+

√
LK

Q
2−i‖x‖2 ,

where we have used that ‖x‖2 ≤ ‖x‖1, and therefore σS(x)2 ≤ σS(x)1. Finally, us-

ing (5.9) and setting the constants C̃0 := 20
√
LK/JD, C̃1 := 20

√
LK/Q and C̃2 :=

2−i
√
LK/JD

(∑
(m,i) |Gm,i|2

)1/2

finishes the proof.

Note that the theorem holds for any set S ⊆ {0, . . . , D−1}×{−J/2, . . . , J/2−1}, but

that CG,S will only be small if S covers the essential support of the coefficients Gm,i.

In the case where the 2D DFT basis is used, CG,S somehow characterizes the leakage

occurring if S is chosen according to the analysis given in Section 5.1.3. Furthermore,

note that the second term in the estimates above is due to the noise, whereas the third

term in the error estimate of part 2 of the theorem can be made arbitrarily small since

the number of CoSaMP iterations can be chosen arbitrarily (although the computational

cost increases with an increasing number of iterations, see Section 4.2).

As mentioned above, this result gives a strict estimate for the estimation error of the

compressive channel estimator. Nevertheless, it is well known that in most practical

scenarios the CS methods actually give much better results than suggested by the prov-

able error estimates. Also, many measurement matrices work well for CS reconstruction

although they do not suffice the conditions needed for the provable results.

5.1.2 Computational Complexity

For the analysis of the computational complexity of the compressive estimator we use

the O-notation explained in Section 2.5. We proceed step by step and only count mul-

tiplicative operations.

Step 1. To calculate channel estimates following (3.18) we need Q divisions.

Step 2. Here the computational complexity strongly depends on the CS algorithm that

is used, which we denote by O
(
CS
)
. The rescaling takes O

(
JD
)

operations.

Step 3. For the calculation of the estimates of the subsampled channel coefficients

Hλ∆L,κ∆K from (5.2), or equivalently (5.3), one vector-matrix product with the

unitary JD×JD matrix U has to be performed, which typically comes at the cost
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of (JD)2 multiplications. Note that some matrices U allow a faster implementation

of the vector-matrix product.

Step 4. Following the proof of Theorem 5.1.1 and utilizing the same notation as therein,

(5.1) can be rewritten as h∆ =
√
JDŨFf̃ . Inverting this equation can be done very

efficiently by using the IFFT in O
(
JD log(JD)

)
operations.

Step 5. Using the same reasoning as before the 2D DFT expansion (3.16), which can

be rewritten as h =
√
LKUFf , can be implemented with just O

(
LK log(LK)

)
operations by using the FFT.

All in all, the compressive channel estimator can be implemented using

O
(
CS
)

+O
(
(JD)2

)
+O

(
LK log(LK)

)
(5.10)

multiplicative operations. In a typical setting the third term will be dominated by the

second one by far. As explained in Section 4.2 it is hard to give explicit bounds for

the computational complexity of the CS algorithms because there are so many different

implementations available. Nevertheless, using the bounds for the implementations men-

tioned therein, and keeping in mind that the measurement matrix Φ in (5.4) is a Q×JD
matrix, we have O

(
CS
)

= O
(
Q(JD)2

)
for BPDN, O

(
CS
)

= O
(
nOMP(QnOMP + Φ)

)
for

OMP, and O
(
CS
)

= O
(
nCoSaMP(JD)2

)
for CoSaMP, where nOMP and nCoSaMP denote

the numbers of OMP and CoSaMP iterations, respectively. All in all, in a typical setting

O
(
CS
)

will dominate the other terms, no matter which of these CS algorithms is used.

Finally, note that if the 2D DFT basis is used throughout, Steps 3 and 4 can be

omitted, which eliminates the term O
(
(JD)2

)
. More importantly, the complexity of

the CS algorithms typically is reduced too, because then FFT-methods can be used to

calculate the vector-matrix products.

5.1.3 Delay-Doppler Sparsity

In this section we analyze the compressibility of the 2D DFT expansion coefficients

Fm,i in (3.16), which is the fundamental assumption underlying the compressive channel

estimator presented in the previous section. To do so, recall the representation (3.17) of

these coefficients, namely

Fm,i =
N−1∑
q=0

Sh[m, i+ qL]A∗γ,g

(
m,

i+ qL

N0

)
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for the discrete-delay variables m = 0, . . . , K−1 and the discrete Doppler shift variable

i = −L/2, . . . , L/2−1. For typical transmit and receive pulses g and γ the absolute

value of the cross-ambiguity function Aγ,g looks somewhat like a plateau function. For

classical CP-OFDM, for example, with transmit and receive pulses given in (3.5), we get

Aγ,g(m, ξ) =
1

K

Nm∑
n=nm

e−2πξn (5.11)

for nm := max(0,m−Lcp) and Nm := min(K−1, K−1+m), where we define the sum to

be 0 if Nm < nm. For each ξ its absolute value looks like a trapezoid with maximum 1.

Therefore, the support of Fm,i is governed by the support of the discrete-delay-Doppler

spreading function Sh[m, i], which we analyze in the following.

To do so, recall the model (3.8) of the impulse response of a time-varying channel.

As an even simpler model we approximate the number of propagation paths P (t) cor-

responding to P (t) specular scatterers, as well as the attenuation parameter ηp(t), the

time delay τp(t) and the Doppler shift νp(t) by their initial values P , ηp, τp and νp, i.e.

h(t, τ) =
P∑
p=1

ηpδ
(
τ − τp

)
e2πνpt , (5.12)

which often is a good approximation to real mobile radio channels [141, 142]. Note that

this model is only used to analyze the sparsity of the channel in the delay-Doppler region

as well as to motivate the basis optimization techniques described in Section 5.1.4, but

it is not necessary for the compressive channel estimator. Combining equations (3.14),

(3.11) and (5.12), we can calculate the discrete-delay-Doppler spreading function as

Sh[m, i] =
1

N0

N0−1∑
n=0

e
−2π in

N0

∫
R

∫
R

P∑
p=1

ηpδ
(
τ−τp

)
e2πνp(t+nTs)f1

(
t+nTs−τ

)
f2

(
− t
)
dtdτ

=
1

N0

N0−1∑
n=0

e
−2π n

N0
(i−νpTsN0)

P∑
p=1

ηp

∫
R

e2πνptf2(−t)
∫
R

f1(t+nTs−τ)δ(τ−τp)dτdt

=
P∑
p=1

ηp

∫
R

e−2πνptf1

(
Ts

(
m− τp

Ts

)
−t
)
f2

(
t
)

dt
1

N0

N0−1∑
n=0

e
−2π n

N0
(i−νpTsN0)

,

where first the linearity of the integral has been used and the order of the (finite) sums

was exchanged, and then the integral with regard to τ was evaluated (by using (2.8)),

as well as the variable t of integration was replaced by −t in the other integral. Next,
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we define the functions

φp(x) :=

∫
R

e−2πνptf1

(
Tsx−t

)
f2

(
t
)
dt and (5.13)

ψ(y) :=
1

N0

e
π y
N0

(
N0−1

) N0−1∑
n=0

e
−2π y

N0
n

=
sin(πy)

N0 sin(πy/N0)
. (5.14)

Then we can rewrite the discrete-delay-Doppler spreading function as

Sh[m, i] =
P∑
p=1

ηpe
π
(
νpTs− i

N0

)(
N0−1

)
Λp[m, i] , (5.15)

with the shifted leakage kernels

Λp[m, i] := φp

(
m− τp

Ts

)
ψ
(
i− νpTsN0

)
. (5.16)

Therefore, analyzing the sparsity of Sh[m, i] reduces to analyzing these shifted leakage

kernels Λp[m, i], which will occupy most of the rest of this section.

Before we begin to do so let us take a short detour to understand these leakage kernels

better. Using the simplified model (5.12), the continuous equivalent of the discrete-delay-

Doppler spreading function, given in (3.9), can be calculated as

S(ν, τ) =
(
F1h

)
(ν, τ) =

(
Ft
( P∑
p=1

ηpδ
(
τ − τp

)
e2πνpt

))
(ν, τ)

=
P∑
p=1

ηpδ
(
τ − τp

)
Ft
(
e2πνpt

)
(ν) =

P∑
p=1

ηpδ
(
τ − τp

)
δ
(
ν − νp

)
,

where we used the linearity of the Fourier transform and (2.9). So in this setting the

spreading function is constituted of Dirac-deltas at the delay-Doppler points (τp, νp)

for the time delay τp and Doppler frequency shift νp corresponding to scatterer p. In

the discrete case, however, the Dirac-deltas are replaced by the functions φp in the m-

direction (the discrete delay) and ψ in the i-direction (the discrete Doppler frequency

shift). If we assume ideal filters, i.e. f1(t) = f2(t) =
√

1/Ts sinc(t/Ts), with the sinc-

function defined in (2.10), the discrete-time impulse response (3.11) becomes h[n,m] ≈∫
R h(nTs, τ) sinc(m− τ/Ts)dτ (using (2.11) and the fact that Ts typically is very small),
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which is seen to be h[n,m] ≈
∑P

p=1 ηpe
πνpnTs sinc

(
m − τp/Ts

)
using the channel model

(5.12). Then, the shifted leakage kernels (5.16) become

Λp[m, i] ≈ sinc
(
m− τp

Ts

)
ψ
(
i− νpTsN0

)
.

These leakage kernels would reduce to simple (discrete) Dirac-deltas if the time delays τp

and Doppler shifts νp were such that τp/Ts and νpTsN0 are integers, since both the sinc-

and the ψ-function vanish at all integers except at zero, where they are one. In every

other case, though, this is not true anymore, and Λp[m, i] will have non-zero entries for

all m and i because the sinc and the ψ-functions both have infinite support (but at least

with decreasing intensity due to the decay of sinc and ψ). In other words, the main

peak in the discrete delay-Doppler domain will ”leak” into the surrounding (discrete)

delay-Doppler bins.

This so-called leakage effect is a fundamental phenomenon in signal processing, and

it actually also occurs in the continuous setting. It is due to the fact that in practical

scenarios a signal is only observed during a finite amount of time, which obviously can be

viewed as a pointwise product with a rectangular function that cuts off all contributions

outside a given time span. Therefore, the spectrum of the observed signal is the convo-

lution of the original spectrum with the spectrum of the rectangular function, which is a

sinc-function (see Section 2.2 and Section 2.3 for details). So each individual frequency

component present in the original signal is spread out over the entire spectrum due to

the infinite support of the sinc-function.

Note that the leakage in m-direction, described by the function φp, can be reduced

by using filters f1 and f2 different from the ideal low-pass filter.For example, using for

f1(t) = f2(t) a root-raised cosine filter with roll-off factor α, the function φp decays

polynomially of order 3 [3] (at least approximately), whereas using the ideal low-pass

filter only leads to a polynomial decay of order 1. Here, by polynomial decay of order s

we mean that |f(t)| ≤ C
(
1+|t/t0|

)−s
for some positive constants C and t0. Nevertheless,

due to the finite transmit bandwidth (B0 = 1/Ts) and the finite blocklength (N0 ≈ NL),

the discrete-delay-Doppler spreading function (5.15) always suffers from the leakage

effect (characterized by the shifted leakage kernels (5.16)), which obviously affects its

sparsity. Note that a larger blocklength reduces the leakage effect, but at the same time

the accuracy of the simple channel model (5.12) with constant parameters decreases, and

thus the continuous-time delay-Doppler spreading function becomes less compressible.
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Now let us return to analyzing the general leakage kernels Λp[m, i] given in (5.16).

As already mentioned above, the function φp is mostly governed by the interpolation

and anti-aliasing filters f1 and f2, and can thus be assumed to decay polynomially of

some order s ≥ 1 away from zero, i.e. |φp(x)| ≤ C
(
1 + |x/x0|

)−s
. The function ψ is

also centered about zero and decays away from zero. Therefore, each leakage kernel

Λp[m, i] is centered about the delay-Doppler point ξp =
(
τp/Ts, νpTsN0

)
and decays

away from it, which means that it can be considered compressible. To be more precise,

we now bound the `2-norm of all the samples Λp[m, i] which are outside a box of size

at most (2∆m + 1) × (2∆i + 1) around ξp for some ∆m ∈ {2, . . . , K/2−1} and ∆i ∈
{2, . . . , N0/2−1}. To do so, we defineMp :=

{
m ∈ {0, . . . , K−1}

∣∣ |m−τp/Ts| ≤ ∆m} and

Ip :=
{
i ∈ {0, . . . , N0−1}

∣∣ ∣∣(i−νpTsN0)N0

∣∣ ≤ ∆i
}

, where we define (i−x)N0 := i+dxN0−x
with dx ∈ Z such that −N0/2 ≤ (i+ dxN0 − x) ≤ N0/2. Then we have∑

m/∈Mp

∣∣∣φp(m− τp
Ts

)∣∣∣2 ≤ C2
∑
m/∈Mp

(
1 +

∣∣∣m− τp/Ts

x0

∣∣∣)−2s

≤ 2C2

∫ ∞
∆m−1

(
1 +

x

|x0|

)−2s

dx

=
2C2|x0|
2s− 1

(
1 +

∆m− 1

|x0|

)−2s+1

,

where we have interpreted the sum as a Riemann sum and therefore bound it by the

improper Riemann integral from above. As for the function ψ, first note that ψ is N0-

periodic by definition (see (5.14)), and therefore ψ
(
i − νpTsN0

)
= ψ

(
(i − νpTsN0)N0

)
.

Then we can easily derive∑
i/∈Ip

∣∣ψ(i− νpTsN0)
∣∣2 ≤ ∑

i/∈Ip

1

N2
0 sin2

(
π(i− νpTsN0)N0/N0

)
≤ 1

N2
0

∑
i/∈Ip

∣∣2(i− νpTsN0)N0/N0

∣∣−2

≤ 1

2

∫ ∞
∆i−1

x−2dx

=
1

2(∆i− 1)
.

Here we have used | sin(x)| ≤ 1 for the first inequality. The second one follows from the

facts that
∣∣(i− νpTsN0)N0

∣∣ ≤ N0/2 and that | sin(πx)| ≥ 2|x| for all |x| ≤ 1/2, whereas

for the third inequality we again interpreted the sum as a Riemann sum and bound it by

the improper Riemann integral. Moreover, we can bound
∑K−1

m=0 |φp
(
m− τp/Ts

)
|2 ≤ D0
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and
∑N0−1

i=0 |ψ(i−νpTsN0)|2 ≤ D1 for all p = 1, . . . , P , where D0 and D1 are some (small)

positive constants. Putting all this together, we get

∑
(m,i)/∈Mp×Ip

∣∣∣Λp[m, i]
∣∣∣2 =

∑
m/∈Mp

∑
i∈Ip

∣∣∣Λp[m, i]
∣∣∣2+

∑
m∈Mp

∑
i/∈Ip

∣∣∣Λp[m, i]
∣∣∣2+

∑
m/∈Mp

∑
i/∈Ip

∣∣∣Λp[m, i]
∣∣∣2

≤ D̃0

(
1 +

∆m− 1

|x0|

)−2s+1

+ D̃1(∆i− 1)−1

+D̃2(∆i− 1)−1
(

1 +
∆m− 1

|x0|

)−2s+1

, (5.17)

with D̃0 := (2D1C
2|x0|)/(2s − 1), D̃1 := D0/2 and D̃2 := (C2|x0|)/(2s − 1). The last

expression bounds the error for approximating Λp only by its values inside the box

Mp × Ip, and it obviously decreases with increasing ∆m and ∆i. In other words, each

leakage kernel is mainly supported inside a box of size most at (2∆m + 1) × (2∆i + 1)

around ξp.

Now let Λp := vec{Λp[m, i]}m,i. Since
∣∣Mp

∣∣ ≤ 2∆m+1 and
∣∣Ip∣∣ ≤ 2∆i+1, setting

S = (2∆m + 1)(2∆i + 1) and combining Definition 4.2.2 of the S-term approximation

error with (5.17) yields

(
σS(Λp)2

)2 ≤
∑

(m,i)/∈Mp×Ip

∣∣∣Λp[m, i]
∣∣∣2

≤ D̃0

(
1 +

∆m− 1

|x0|

)−2s+1

+ D̃1(∆i− 1)−1

+D̃2(∆i− 1)−1
(

1 +
∆m− 1

|x0|

)−2s+1

. (5.18)

Since the expression on the right-hand-side decreases quite fast with increasing ∆m and

∆i, and therefore for increasing S, we can consider each leakage kernel Λp[m, i] com-

pressible as defined in Section 4.2. Following (5.15) the discrete-delay-Doppler spreading

function Sh[m, i] is basically the sum of the shifted leakage kernels and therefore can be

considered compressible, too. Because of (3.17), in turn, the same is true for the 2D

DFT coefficients Fm,i, which is what we wanted to indicate in this section. Finally, note

that in typical practical scenarios the supports of the shifted leakage kernels Λp[m, i] will

overlap to some degree, so that the overall sparsity typically will not grow linearly with

the number P of scatterers.
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5.1.4 Basis Optimization

In this section, following [2, 3], we adapt the general basis expansion model (5.2) to

the channel model (5.12) (but not to the specific channel parameters P , ηp, τp and νp),

and we describe a method for finding such a basis. Obviously, the performance of the

compressive channel estimator described in Section 5.1.1 depends on the sparsity (or,

more precisely, the compressibility) of the expansion coefficients Gm,i. For the ”natural”

2D DFT basis these coefficients are given by Gm,i =
√
JDFm,i, the compressibility

of which has been shown to be impaired mostly by the only slowly decaying factor

ψ(i−νpTsN0) in the previous section (in general the factor φp(m−τp/Ts) can be designed

to decay faster).

Let us start by taking a closer look at these coefficients Fm,i. Following (3.17) and

the channel model (5.12) we get

Fm,i =
N−1∑
q=0

Sh[m, i+ qL]A∗γ,g

(
m,

i+ qL

N0

)
=

P∑
p=1

φ(p)
(
m− τp

Ts

)
α

(p)
m,i ,

where we have set

α
(p)
m,i :=

N−1∑
q=0

ηpe
π
(
νpTs− i+qLN0

)(
N0−1
)
ψ
(
i+ qL− νpTsN0

)
A∗γ,g

(
m,

i+ qL

N0

)
. (5.19)

Note that α
(p)
m,i does not depend on the time delay τp. With this at hand (5.1) becomes

Hλ∆L,κ∆K =
D−1∑
m=0

J/2−1∑
i=−J/2

Fm,ie
−2π

(
κm
D
−λi
J

)

=
D−1∑
m=0

J/2−1∑
i=−J/2

P∑
p=1

φp

(
m− τp

Ts

)
α

(p)
m,ie

−2π
(
κm
D
−λi
J

)

=
D−1∑
m=0

P∑
p=1

√
Dφp

(
m− τp

Ts

)
C(p)[m,λ]

1√
D
e−2π

κm
D

with

C(p)[m,λ] :=

J/2−1∑
i=−J/2

α
(p)
m,ie

2π λi
J . (5.20)
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As explained above, the coefficient function φp(m−τp/Ts) decays quite fast, whereas the

sparsity of the coefficient function α
(p)
m,i is impaired by the slow decay of ψ. Therefore,

we only replace the DFT representation (5.20) by a general basis expansion, i.e.

C(p)[m,λ] =

J/2−1∑
i=−J/2

β
(p)
m,ivm,i[λ] . (5.21)

With this at hand, we finally get

Hλ∆L,κ∆K =
D−1∑
m=0

J/2−1∑
i=−J/2

P∑
p=1

φp

(
m− τp

Ts

)
β

(p)
m,ivm,i[λ]e−2π

κm
D ,

which is of the form (5.2) as desired, with

um,i[λ, κ] = vm,i[λ]
1√
D
e−2π

κm
D and Gm,i =

P∑
p=1

√
Dφp

(
m− τp

Ts

)
β

(p)
m,i . (5.22)

Thus, our goal is to find a family of orthonormal bases {vm,i[λ]}J/2−1
i=−J/2, m = 0, . . . , D−1,

i.e.
∑

λ vm,i[λ]v∗m,i′ [λ] = δ[i− i′], such that the coefficients Gm,i are as sparse as possible.

To make sure that these bases do not depend on the actual channel parameters τp, νp

and ηp, we assume these parameters to be random, with (τp, νp) distributed according

to the probability density function (pdf) ℘(τp, νp) (see Section 2.4). Note that here we

set ηp = 1, but that the distribution of ηp can also be taken into account [3]. The

coefficients Gm,i then become random variables, and our goal is for these coefficients to

be maximally sparse on average. For algorithmic simplicity we measure the sparsity of

the coefficient vector g = vec{Gm,i}m,i by its `1-norm, i.e. we want E
{
‖g‖1

}
to be as

small as possible. Note that in practice ℘ might be known (approximately) from some

prior information about the channel. However, for the case where it is not known a

non-statistical design is easily obtained by formally using a uniform distribution (see

Section 2.4).

To formulate the optimization problem in a more convenient way we define the vectors

c
(p)
m :=

[
C(p)[m, 0], . . . , C(p)[m, J−1]

]T
, as well as the unitary J × J matrices Vm with

entries [Vm]λ,i+J/2 = vm,i[λ] for m = 0, . . . , D− 1, i = −J/2, . . . , J/2− 1 and λ =

0, . . . , J−1, which corresponds to a columnwise stacking of the basis vectors for each

m. Then, (5.21) can obviously be rewritten as c
(p)
m = Vmββ

(p)
m with the vector ββpm :=[

β
(p)
m,−J/2, . . . , β

(p)
m,J/2−1

]T
. Since each Vm is unitary, we can thus calculate the coefficient
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vector as ββ
(p)
m = VH

mc
(p)
m . Therefore, following (5.22), we can write the vectors gm :=[

Gm,−J/2, . . . , Gm,J/2−1

]T
as

gm = VH
m

( P∑
p=1

c̃(p)
m

)
(5.23)

for each m = 0, . . . , D−1, where c̃
(p)
m :=

√
Dφp(m− τp/Ts)c

(p)
m . To simplify the problem

we set P = 1, i.e. we consider a single-scatterer channel, which yields gm = VH
mc̃

(1)
m .

Note that if the coefficients are compressible on average for a single-scatterer channel

they will also be compressible on average for the general channel model with P > 1

scatterers.

As explained above our task is to find basis matrices Vm for m = 0, . . . , D−1 such that

E
{
‖g‖1

}
becomes minimal. Since E

{
‖g‖1

}
= E

{∑D−1
m=0 ‖gm‖1

}
=
∑D−1

m=0 E
{
‖gm‖1

}
by

the linearity of the expectation (see (2.12)), we can minimize E
{
‖g‖1

}
by minimizing

each of the summands E
{
‖gm‖1

}
separately, and thus solve the problem

V̂m = arg min
Vm∈U

E
{
‖VH

mc̃(1)
m ‖1

}
for each m = 0, . . . , D−1 individually, where U denotes the set of all unitary J × J

matrices. Using a Monte-Carlo approximation (see Section 2.4) we finally state the

optimization problem

V̂m = arg min
Vm∈U

∑
ρ

‖VH
m

(
c̃(1)
m

)
ρ
‖1 , m = 0, . . . , D−1 , (5.24)

where
(
c̃

(1)
m

)
ρ

denotes the value of c̃
(1)
m for a sample of the random vector (τ1, ν1) drawn

from its pdf ℘(τ1, ν1).

Unfortunately, the set U is not convex, and therefore the optimization problem (5.24)

cannot be solved using standard optimization tools. In [2, 3] the following algorithm for

approximating a solution was proposed. It is based on Proposition 2.1.3, namely that

each unitary matrix V ∈ U can be represented as V = eA, where A is a Hermitian

matrix (see Section 2.1). This yields that in the optimization problem (5.24) the non-

convex set U of unitary matrices can actually be replaced by the convex set H of all

Hermitian matrices of the same dimension. Since again the matrix exponential is not

convex, it is approximated by V ≈ IJ + A following (2.2) (note that the approximation

error will be small if ‖A‖∞ is small). This finally yields a convex optimization prob-

lem that can be solved efficiently by using standard optimization tools. Therefore, the

algorithm proceeds as follows.
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• Input. Initialization matrix V
(0)
m , pdf ℘(τ1, ν1), initial threshold γ(0).

• Initialization. n = 0

• while stopping criterion not met do

1. Solve the convex problem Â
(n)
m = arg min

A∈Hn

∑
ρ ‖(IJ + A)V

(n)
m

(
c̃

(1)
m

)
ρ
‖1, where

Hn denotes the set of all Hermitian matrices A with ‖A‖∞ < γ(n)

2. Set V̂
(n)
m = eÂ

(n)
m V

(n)
m

3. if
∑

ρ ‖V̂
(n)
m

(
c̃

(1)
m

)
ρ
‖1 <

∑
ρ ‖V

(n)
m

(
c̃

(1)
m

)
ρ
‖1

update V
(n+1)
m = V̂

(n)
m and γ(n+1) = γ(n)

else

update V
(n+1)
m = V

(n)
m and γ(n+1) = γ(n)/2

4. Iterate n 7→ n+ 1

• Output. Vm = V
(n)
m

As mentioned above, the algorithm proceeds by performing just a ”small” step in each

iteration (”small” meaning that the matrix Â
(n)
m has small entries). Since the product of

two unitary matrices is again unitary, the iterate V̂
(n)
m in step 2 of the loop is guaranteed

to be unitary for each n. In step 3 of the loop it is checked if an improvement over

the previous iterate has been made. If so, the iterate is accepted as the new update.

Otherwise, it is rejected, the previous iterate is kept and the ”acceptable size” for the

following step is reduced. The algorithm is stopped if either the threshold γ(n) falls

below a prescribed value or if the maximal number of iterations is reached.

Since the analysis in the previous section has shown that the use of the 2D DFT basis

already yields compressible coefficients Gm,i =
√
JDFm,i, we choose the J × J DFT

matrix as initialization matrix V
(0)
m for each m = 0, . . . , D−1. Because of the way the

algorithm is constructed, its output Vm is ensured to outperform the DFT matrix (as

measured by (5.24)). Note that the use of this basis will, on the other hand, increase

the computational complexity of the method, since in general no fast FFT-methods can

be used (also see Section 5.1.2 for more details). Nevertheless, if J is not too large, this

will not matter too much. Furthermore note that this basis optimization only has to be

performed once before the start of data transmission.
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5.1.5 Simulation Results

In order to compare the performance of the proposed compressive channel estimator to

standard LS estimation methods we have conducted extensive numerical experiments,

the results of which are presented in this section.

MC system parameters. We simulated a CP-OFDM system with K = 512 subcarriers,

CP-length Lcp = N−K = 128, center frequency f0 = 5 GHz, and bandwidth 1/Ts = 5

MHz. We used 4-QAM symbols, and the interpolation and anti-aliasing filters f1(t) =

f2(t) were chosen as root-raised cosine filters with roll-off factor α = 1/4.

Channel. During blocks of L = 32 OFDM symbols we generated doubly selective

channels using the geometry based channel simulation tool IlmProp [143]. The trans-

mitter and the receiver were separated by about 1500 m. In an area not too tightly

surrounding them, 7 clusters of 10 specular scatterers each were distributed randomly.

Furthermore, 3 clusters of 10 specular scatterers each were distributed within a circle

of radius 100 m surrounding the receiver. In Fig. 5.1 an example of such a scenario

is depicted. The clusters had diameters between 5 m and 30 m, and each of them,

as well as the receiver, had random velocity and acceleration vectors with uniformly

distributed directions, and velocities and accelerations that were distributed uniformly

up to 50 m/s and 7 m/s2, respectively. The noise z[n] (see (3.10)) was zero-mean

complex white Gaussian with component variance σ2
z (i.e. z[n] were Gaussian random

variables with mean 0 and variance σ2 that were uncorrelated for different n, see Sec-

tion 2.4) such that a prescribed SNR was achieved. Here we define the SNR as the

mean received signal power averaged over one block of length LN , divided by σ2
z , i.e.∑N0−1

n=0 E
{
|r[n]− z[n]|2

}
/
∑N0−1

n=0 E
{
|z[n]|2

}
.

Subsampling and pilot setup. For compressive channel estimation the pilot set was

chosen uniformly at random from a subsampled time-frequency grid G with spacing

∆L = 1 and ∆K = 4 as explained above. The number of pilots was Q1 = 1024 and

Q2 = 2048, corresponding to 6.25% and 12.5% of all the symbols, respectively. For

classic LS channel estimation we used again Q2 = 2048, and now Q3 = 4096 pilots,

corresponding to 12.5% and 25% of all the symbols, respectively, using a comb-type

pilot arrangement as described in Section 3.5.

Performance measure. For all the simulations the performance is measured by the

mean square error (MSE) normalized by the mean energy of the channel coefficients,

i.e.
∑L−1

l=0

∑K−1
k=0 |Hl,k − Ĥl,k|2/

∑L−1
l=0

∑K−1
k=0 |Hl,k|2.
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5.1 Conventional Compressive Channel Estimation

Figure 5.1: Typical simulation scenario

Channel Estimation. We compared the classic LS channel estimator to the compres-

sive channel estimator described above. For the LS approach we used cubic splines

to interpolate between the channel estimates at the pilot positions, whereas for sparse

reconstruction in Step 2 of the compressive estimation method BPDN, CoSaMP and

OMP were used. For BPDN, the noise parameter ε (see (4.2)) was chosen as ε = 10−2.6.

The number of CoSaMP iterations was nCoSaMP = 16, whereas the sparsity estimate was

S = 100. For OMP we chose the number of iterations nOMP = 120. All these parameters

were found experimentally. Finally, note that we used the toolbox SPGL1 [144] to solve

BPDN. For CoSaMP we applied the routine cosamp.m written by David Mary [145],

whereas we implemented OMP ourselves.

Basis Optimization. We constructed an optimized basis according to Section 5.1.4

using a non-statistical approach. Here, ℘(τ, ν) = 1/(2τmaxνmax) for (τ, ν) ∈ [0; τmax] ×
[−νmax; νmax], and ℘(τ, ν) = 0 everywhere else, where τmax = LcpTs = 25.6 µs and

νmax = 0.03NL/K ≈ 293 Hz (corresponding to 3 % of the subcarrier spacing). Since in

our case Lcp ≥ D−1 (actually Lcp = D−1 = 128), (5.11) yields Aγ,g(m, ξ) = Aγ,g(0, ξ) for
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(a) Compressive channel estimation using

6.25% and 12.5% pilots compared to LS chan-

nel estimation using 12.5% and 25% pilots
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(b) Comparison of the use of the 2D DFT basis

to that of an optimized basis in CCE (using

6.25% pilots)

Figure 5.2: Performance of the compressive channel estimator: MSE versus SNR

all m = 0, . . . , D−1. Therefore, following (5.20) and (5.19), also C(p)[m,λ] = C(p)[0, λ],

and in turn c
(p)
m = c

(p)
0 for each m = 0, . . . , D−1, which yields that only one basis V

has to be calculated (instead of the D different bases Vm for m = 0, . . . , D−1). As

mentioned in Section 5.1.4 we used the J × J DFT matrix as initialization matrix V(0).

Using this optimized basis, the sparsity of the coefficients Gm,i is ”better” than that

of the 2D DFT coefficients Fm,i, and therefore the parameters of the CS reconstruction

methods have to be adapted. For BPDN we again used ε = 10−2.6, and the number of

CoSaMP iterations was still nopt
CoSaMP = 16. On the contrary, the sparsity estimate was

then chosen as Sopt = 80, whereas the number of OMP iterations was nopt
OMP = 100.

Results. In Fig. 5.2(a) we plot the MSE of channel estimation versus the SNR for 500

different channel realizations, each of them generated independently as described above.

It is obvious that in the case where 12.5% of the symbols are pilots the compressive

channel estimator outperforms the LS estimator by far, no matter which CS technique

is used. Actually, even if only half as many pilots are used the compressive channel

estimator still performs much better. The extremely bad performance of the LS esti-

mator in this setting is due to the fact that the Shannon sampling criterion is not met.

In contrast, the compressive channel estimator can be seen to produce reliable channel

estimates even far below the Shannon sampling rate. Furthermore, the proposed method
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5.2 Compressive Channel Estimation using Group Sparsity Methods

does not perform much worse than the LS estimator using 25% of the symbols as pilots,

especially in the low-to-medium SNR regime. Therefore, it is an attractive alternative

achieving reasonable reconstruction quality despite using very few pilots.

From Fig. 5.2(b) it can be concluded that utilizing the optimized basis as described

above instead of the 2D DFT basis also yields a considerable performance gain for the

compressive estimator. This is due to the ”better” sparsity of the expansion coefficients

Gm,i for this basis compared to the 2D DFT coefficients Fm,i. On the contrary, recall

that its use increases the computational complexity of the compressive estimator.

Moreover, note that using OMP gives the best results in practice, followed by CoSaMP

and BPDN. Nevertheless, BPDN is quite stable with regard to the choice of the noise

parameter ε, whereas the performance of CoSaMP and OMP quite heavily depends on

the sparsity estimate S and the number nOMP of OMP iterations, respectively. In our

experiments the running time of BPDN was also shorter compared to CoSaMP and

OMP, but this could be due to the fact that we used a well-optimized routine to solve

BPDN, whereas our own implementation of OMP has not been optimized yet.

Conclusion. The compressive channel estimator is seen to be a very good alternative

to classical LS channel estimation, yielding good estimation quality despite using only a

very little amount of pilots. Furthermore, the use of an optimized basis can substantially

improve the performance, coming at the cost of an increased computational complexity.

5.2 Compressive Channel Estimation using Group

Sparsity Methods

In the following we explain in what way the methodology of GSCS, as explained in

Section 4.3, can be used to improve the performance of the basic compressive channel

estimator presented in the previous section. In Section 5.1.3 we have shown that the

2D DFT coefficients Fm,i from (3.16) are compressible in a typical scenario, but that

the sparsity is impaired by the so-called leakage effect. Due to the finite bandwidth and

the finite number of transmit symbols, the optimal Dirac-deltas, that actually constitute

the ideal continuous spreading function, are transformed into broader ”bumps” in the

discrete spreading function. The decay of these is governed by the functions φp and ψ

(see (5.13) and (5.14)), which in turn impairs the performance of any compressive chan-
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nel estimator. Nevertheless, we show that by using GSCS techniques this leakage can

actually be utilized to improve the performance of the compressive estimator presented

in Section 5.1.1 and at the same time reduce its running time.

The remainder of this section is organized as follows. In Section 5.2.1 we introduce

the extension of the method reviewed in Section 5.1.1 that is based on the fact that

the 2D DFT coefficients Fm,i typically are group compressible. This fact is reviewed in

Section 5.2.3, after a brief discussion of the computational complexity in Section 5.2.2.

Then, in Section 5.2.4, the basis optimization technique explained in Section 5.1.4 is

adapted to this setting. Finally, we present simulation results demonstrating the perfor-

mance gain of the proposed method compared to the conventional compressive channel

estimator in Section 5.2.5.

5.2.1 The Method

Here we consider the same setting as in Section 5.1.1. The proposed method merely

differs from the basic method presented there in the Step 2, where GSCS methods are

used instead of conventional CS methods. This is feasible since the 2D DFT coefficients

Fm,i (see (3.16)) can be seen to be group compressible (see Section 5.2.3).

To be more precise, recall that we assume the coefficients Fm,i to be supported inside

the box {0, . . . , D−1} × {−J/2, . . . , J/2−1} for J and D as before. Now, we partition

this set into small blocks of size ∆m̃ × ∆ĩ for some ∆m̃ ∈ Z and ∆ĩ ∈ Z, for which

BD := D/∆m̃ and BJ := (J/2)/∆ĩ are integers, and such that the blocks are of the form

Bb = {kb∆m̃, . . . , (kb + 1)∆m̃−1} × {lb∆ĩ, . . . , (lb + 1)∆ĩ−1} for kb ∈ {0, . . . , BD−1}
and lb ∈ {−BJ , . . . , BJ − 1}. Furthermore, we define the partition J = {Ib}B−1

b=0 of

{0, . . . , JD−1} with B := 2BDBJ and the groups Ib = S(Bb), where S is the one-to-

one mapping S of (5.8) corresponding to columnwise stacking. In Section 5.2.3 and

Section 5.2.4 we explore the fact that the 2D DFT coefficients Fm,i, or the more general

coefficients Gm,i in (5.2), are group compressible with regard to the blocks Bb, which

yields that the vectors f = vec{Fm,i}m,i and g = vec{Gm,i}m,i obviously are group

compressible over this partition J . Fixing the pilot set P of size Q := |P|, which is again

chosen uniformly at random from the grid G and communicated to the receiver once and

for all before the start of data transmission and stays fixed therein, the compressive

channel estimator using GSCS techniques can be stated as follows.
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Step 1. Calculate channel estimates at the pilot positions and stack them to obtain the

measurement equation (5.4).

Step 2. Run any GSCS algorithm to obtain an estimate x̂ of x, and rescale x̂ with√
JD/Q for an estimate ĝ of g, the entries of which are exactly the expansion

coefficients Gm,i.

Step 3. Calculate estimates of the subsampled channel coefficients Hλ∆L,κ∆K from (5.2).

Step 4. Invert (5.1) to obtain estimates of the 2D DFT coefficients Fm,i for m =

0, . . . , D−1 and i = −J/2, . . . , J/2−1. Note that by assumption Fm,i vanishes

for all other indices.

Step 5. Calculate estimates of all the channel coefficients Hl,k by using the 2D DFT

expansion (3.16).

Note that in the special case where the 2D DFT basis is used we have Gm,i =
√
JDFm,i,

and therefore Steps 3 and 4 can be omitted.

As mentioned before, the only difference to the basic method is that GSCS techniques

are used in Step 2. Therefore, the performance guarantee given below is very similar

to the one given in Theorem 5.1.1. Assuming that the expansion coefficients Gm,i are

group compressible in the sense explained in Section 4.3, the estimation error of the

compressive estimator utilizing GSCS techniques can be bound in dependence on the

GSCS method that is used. Here we only present results for G-BPDN and G-CoSaMP.

Theorem 5.2.1. Let S ⊆ {0, . . . , B−1} be any set of size |S| = S. Furthermore, let

CG,S,J :=
∑
b/∈S

( ∑
(m,i)∈Bb

|Gm,i|2
)1/2

,

as well as εn := ‖z(p)‖2 and ε > 0.

1. Let G-BPDN be the GSCS reconstruction method used in Step 2 of the presented

compressive channel estimator. If Φ satisfies the G-RIP with G-RIC δ2S|J <
√

2− 1, and if εn < ε, we can bound the estimation error as√√√√L−1∑
l=0

K−1∑
k=0

∣∣∣Hl,k − Ĥl,k

∣∣∣2 ≤ C ′0S
−1/2CG,S,J + C ′1ε ,

with the constants C ′0 := c0

√
LK
JD

and C ′1 := c1

√
LK
Q

, where c0 and c1 are the

constants from Theorem 4.3.4.
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2. For the case where G-CoSaMP with i steps is used for GSCS reconstruction in

Step 2, assume that Φ satisfies the G-RIP over J with δ4S|J < 0.1, and assume

that εn < ε, then√√√√L−1∑
l=0

K−1∑
k=0

∣∣∣Hl,k − Ĥl,k

∣∣∣2 ≤ C̃0(1 + S−1/2)CG,S,J + C̃1ε+ C̃2 ,

with C̃0 := 20
√

LK
JD

, C̃1 := 20
√

LK
Q

and C̃2 := 2−i
√

LK
JD

(∑
(m,i) |Gm,i|2

)1/2

. Note

that since the number of G-CoSaMP iterations can be chosen arbitrarily, C̃2 can

be made arbitrarily small.

Proof. The proof follows the exact same lines as the proof of Theorem 5.1.1. Recall

(5.7), namely √√√√L−1∑
l=0

K−1∑
k=0

∣∣∣Hl,k − Ĥl,k

∣∣∣2 ≤√LK

Q
‖x− x̂‖2 .

Using Theorem 4.3.4 and Theorem 4.3.5, the assumptions of which are satisfied in our

setting, and noting that by the definition of σS(x)2|J we have

σS(x)2|J ≤
∑
b/∈S

( ∑
(m,i)∈Bb

∣∣∣[x]
S(m,i)

∣∣∣2)1/2

=

√
Q

JD

∑
b/∈S

( ∑
(m,i)∈Bb

∣∣∣Gm,i

∣∣∣2)1/2

gives the results.

The set S can again be chosen arbitrarily, but for a small error it should contain the

group indices covering the essential support of the coefficients Gm,i. In the case where

the 2D DFT basis is used CG,S,J again somehow characterizes the leakage occurring,

merely measured in a different norm than in the result for the conventional compressive

channel estimator. The second term in the estimate above, however, is again due to the

noise, whereas the third term in the error estimate of Part 2 of the theorem can be made

arbitrarily small by choosing the number of G-CoSaMP iterations large enough (again,

note that the computational cost of G-CoSaMP increases with an increasing number of

iterations, see Section 4.3).

The major difference to the basic compressive channel estimator is that by using GSCS

techniques we can actually utilize the leakage effect to a certain degree, which decreases

the sparsity of the coefficients and therefore actually impairs the performance of all

compressive channel estimators. To be more precise, the leakage effect still degrades
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the performance of the proposed estimator, even if group sparsity methods are used.

Nevertheless, the ”broadness” of the peaks in the coefficients (as compared to the Dirac-

spikes in the continuous case) is utilized to locate the ”important” contributions, which

is the most difficult task for sparse reconstruction methods. Since this localization is

performed group-wise, it is less likely to mistake noise contributions for contributions

originating from actual scatterers. Therefore, using GSCS techniques typically improves

the performance of conventional CCE, which we also demonstrate in Section 5.2.5.

5.2.2 Computational Complexity

The computational complexity of the proposed channel estimator only differs from that of

the basic estimator in Step 2, where GSCS techniques are used instead of CS techniques.

Therefore, it is given by

O
(
GSCS

)
+O

(
(JD)2

)
+O

(
LK log(LK)

)
. (5.25)

As mentioned in Section 4.3, the computational complexity O
(
GSCS

)
is hard to deter-

mine because it strongly depends on the implementation. In that section we explained

that G-OMP, for example, will typically have a shorter running time than OMP, but

that the overall complexity O
(
M(n′G-OMP)2+nG-OMPΦ

)
remains the same, where nG-OMP

denotes the number of G-OMP iterations, and n′G-OMP is the sum of the magnitudes of

the chosen groups. For G-CoSaMP, we have O
(
nG-CoSaMPΦ

)
, where nG-CoSaMP is the

number of iterations. Since in typical scenarios O
(
GSCS

)
will be the dominant term

in (5.25), we conclude that the (theoretical) computational complexity of the proposed

compressive channel estimator using GSCS techniques does not change compared to the

conventional estimator, but that the running time of the GSCS algorithms will typically

be shorter than that of their CS counterparts.

5.2.3 Delay-Doppler Group Sparsity

To analyze the group sparsity of the 2D DFT coefficients Fm,i for m = 0, . . . , D−1

and i = −J/2, . . . , J/2−1, recall that their sparsity is mainly governed by the leakage

kernels Λp[m, i] with p = 1, . . . , P (see (5.16)). It was shown in Section 5.1.3 that

each of them is mainly supported inside a box of size at most (2∆m + 1) × (2∆i + 1)

around a center point ξp =
(
τp/Ts, νpTsN0

)
, where τp and νp again denote the time
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∆m̃

∆ĩ

∆m

∆i

m

i
N0−1

L/2−1

J/2−1

0

−J/2

D−1 K−1

2D block Bb

effective support of
Λp[m, i] around ξp
NΛ blocks containing
support of Λp[m, i]

≈
≈

≈

Figure 5.3: Illustration of the 2D block tiling {Bb}, the effective support of a shifted

leakage kernel Λp[m, i], and the NΛ blocks containing this effective support.

Here, ∆m = 1, ∆i = 2, ∆m̃ = 1, ∆ĩ = 2, and NΛ = 9.

delay and Doppler frequency shift corresponding to scatterer p, respectively, and ∆m

and ∆i can be chosen to achieve a prescribed approximation quality. Since these center

points (and therefore the locations of the support boxes) differ for each scatterer and

each propagation scenario, it is impossible to choose a partition of the delay-Doppler

plane such that these support boxes occur as groups for each scenario. Also, they

may overlap for different scatterers, which is not allowed for the groups of a partition.

Therefore, we fix the partition and analyze the group sparsity of a leakage kernel Λp[m, i]

for this partition. To do so, we extend the blocks Bb = {kb∆m̃, . . . , (kb + 1)∆m̃−1} ×
{lb∆ĩ, . . . , (lb + 1)∆ĩ−1} introduced in Section 5.2.1 to kb ∈ {0, . . . , (K/∆m̃)−1} and

lb ∈ {−L/(2∆ĩ), . . . ,
(
(N0−L/2)/∆ĩ

)
−1}, such that now these blocks form a partition

of {0, . . . , K−1} × {−L/2, . . . , N0−(L/2)−1}. Then, the support box of the leakage

kernel Λp[m, i] is contained in at most NΛ blocks, where

NΛ :=
(⌈2∆m

∆m̃

⌉
+ 1
)(⌈2∆i

∆ĩ

⌉
+ 1
)
.

Fig. 5.3 shows an example of this situation. To be more precise we define the partition

J̄ = {Īb}B̄−1
b=0 of {0, . . . , KN0−1} with B̄ := (KN0)/(∆m̃∆ĩ) and Īb = S̄(Bb), where

S̄ : {0, . . . , K−1} × {−L/2, . . . , N0−(L/2)−1} → {0, . . . , KN0−1}

S̄(m, i) := (i+ L/2)K +m

corresponds to the stacking Λp = vec{Λp[m, i]}m,i. We choose to bound the S-group

approximation error
(
σS|J̄ (Λp)2

)2
as defined in (4.5) for the `2-norm. Now we can
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proceed as in Section 5.1.3. Since by construction the set Mp × Ip defined therein is

contained in the NΛ blocks mentioned above, approximating Λp with S = NΛ groups

cannot be worse than using the (2∆m+ 1)(2∆i+ 1) indices used for the bound (5.18),

which therefore also holds for
(
σNΛ|J̄ (Λp)2

)2
. In fact, the bound can be improved some-

what. To do so, we denote the indices contained in the NΛ blocks containing the sup-

port box of Λp[m, i] by Sp = Smp × S ip for some sets Smp and S ip in the discrete m-

and i-direction, respectively. Then, let ∆m̄p := min
{⌊
|m − τp/Ts|

⌋ ∣∣m /∈ Smp
}

and

∆īp := min
{⌊
|(i − νpTsN0)N0|

⌋ ∣∣ i /∈ S ip}, where (i − x)N0 is defined as in Section 5.1.3.

Since, as mentioned above, Mp × Ip ⊆ Smp × S ip, we have ∆m̄p ≥ ∆m and ∆īp ≥ ∆i.

Therefore, defining the sets M̄p :=
{
m ∈ {0, . . . , K−1}

∣∣|m− τp/Ts| ≤ ∆m̄p} and Īp :={
i ∈ {0, . . . , N0−1}

∣∣ ∣∣(i− νpTsN0)N0

∣∣ ≤ ∆īp}, we haveMp ×Ip ⊆ M̄p × Īp ⊆ Smp ×S ip,
and the same reasoning as in Section 5.1.3 yields(

σNΛ|J̄ (Λp)2

)2 ≤
∑

(m,i)/∈M̄p×Īp

∣∣∣Λp[m, i]
∣∣∣2

≤ D̃0

(
1 +

∆m̄p − 1

|x0|

)−2s+1

+ D̃1(∆īp − 1)−1

+D̃2(∆īp − 1)−1
(

1 +
∆m̄p − 1

|x0|

)−2s+1

, (5.26)

where D̃0, D̃1 and D̃2 are the constants from (5.18). Since ∆m̄p ≥ ∆m and ∆īp ≥ ∆i

(as mentioned above) the bound (5.18) is improved. All in all, we have shown that since

the bound in (5.26) obviously decreases quite fast with increasing ∆m̄p and ∆īp, each

leakage kernel Λp can be considered group compressible with respect to J̄ as defined in

Section 4.3. Therefore, following (5.15), the discrete-delay-Doppler spreading function

Sh[m, i] can be considered group compressible too. Since the blocks Bb were chosen

such that D/∆m̃ and J/(2∆ĩ) are integers, they are compatible with the summation

in (3.17) and, in turn, with the restriction of the support of the 2D DFT coefficients

Fm,i to {0, . . . , D−1} × {−J/2, . . . , J/2−i}. Thus, these coefficients can be considered

group compressible too (now with respect to J ), which is exactly what we wanted to

show in this section. Finally note that in typical practical scenarios the scatterers tend

to appear in clusters, so that the groups containing the supports of the shifted leakage

kernels Λp[m, i] will overlap to some degree (even more than the supports themselves)

and the overall group sparsity will not typically grow linearly with the number P of

scatterers. This is another (physical) reason for the inherent group compressibility of

typical channels.
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5.2.4 Basis Optimization

We can easily adapt the basis optimization technique presented in Section 5.1.4 to the

group sparse case. The performance of the estimator described in Section 5.2.1 obviously

depends on the group sparsity of the expansion coefficients Gm,i. For this setting we

again use the channel model (5.12), and therefore proceed exactly as in Section 5.1.4

also using the same notation. Following Section 4.3, we measure the group sparsity of

the coefficient vector g by ‖g‖2|J , so the goal of this section is to find basis function

vm,i[λ] that minimize E
{
‖g‖2|J

}
.

In order to do so, recall (5.23), namely gm = VH
m

(∑P
p=1 c̃

(p)
m

)
for each m = 0, . . . , D−1,

where gm are the vectors with entries Gm,i, c̃
(p)
m :=

√
Dφp(m− τp/Ts)c

(p)
m , and Vm is the

columnwise stacking of the basis functions vm,i. Next, we define the block-diagonal

JD × JD matrix V with the J × J blocks Vm on its diagonal, and the JD-dimensional

vector g̃ =
[
gT0 · · ·gTD−1

]T
. Again restricting ourselves to the single scatterer channel, i.e.

P = 1, and defining c̃(1) =
[
c̃

(1)
0 · · · c̃

(1)
D−1

]T
, we can summarize the equations (5.23) as

g̃ = VH c̃(1) .

Next, we define the one-to-one mapping

S′ : {0, . . . , D−1} × {−J/2, . . . , J/2−1} → {0, . . . , JD−1},

S′(m, i) := mJ + i+ J/2 , (5.27)

which corresponds to rowwise stacking (as opposed to the columnwise stacking operation

S defined in (5.8)). Furthermore, we define the partition J ′ = {I ′b}B−1
b=0 of {0, . . . , JD−

1} with the groups I ′b = S′(Bb). Recalling the partition J = {Ib}B−1
b=0 with groups

Ib = S(Bb), we clearly have ‖g‖2|J = ‖g̃‖2|J ′ , since g corresponds to the columnwise

stacking and g̃ corresponds to the rowwise stacking of the coefficients Gm,i. Therefore,

the optimization problem can be formulated as

V̂ = arg min
V∈Ũ

E
{
‖VH c̃(1)‖2|J ′

}
,

where Ũ denotes the set of all blockdiagonal JD × JD matrices with unitary blocks of

size J × J on the diagonal. Again using a Monte-Carlo approximation (see Section 2.4)

we can redefine this problem as

V̂ = arg min
V∈Ũ

∑
ρ

∥∥VH
(
c̃(1)
)
ρ

∥∥
2|J ′ , (5.28)
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where
(
c̃(1)
)
ρ

denotes the value of c̃(1) for a sample of the random vector (τ1, ν1) drawn

from its pdf ℘(τ1, ν1). Here we again set η1 = 1, but the distribution of η1 can also be

taken into account (extending [3] to this setting).

To solve (5.28) first note that the set Ũ is not convex either. Therefore, we extend

the algorithm presented in Section 5.1.4 to this setting in order to get an approximate

solution. To do so, let H̃ be the set of all blockdiagonal JD×JD matrices with Hermitian

blocks of size J×J on the diagonal, which again is convex. Following the same reasoning

as in Section 5.1.4, which can immediately be extended to the block-diagonal case, the

algorithm can be stated as follows.

• Input. Initialization matrix V(0), pdf ℘(τ1, ν1), initial threshold γ(0).

• Initialization. n = 0

• while stopping criterion not met do

1. Solve the convex problem Â(n) = arg min
A∈H̃n

∑
ρ ‖(IJD + A)V(n)

(
c̃(1)
)
ρ
‖2|J ′ ,

where H̃n denotes the set of all A ∈ H̃ with ‖A‖∞ < γ(n)

2. Set V̂(n) = eÂ
(n)

V(n)

3. if
∑

ρ ‖V̂(n)
(
c̃(1)
)
ρ
‖2|J ′ <

∑
ρ ‖V(n)

(
c̃(1)
)
ρ
‖2|J ′

update V(n+1) = V̂(n) and γ(n+1) = γ(n)

else

update V(n+1) = V(n) and γ(n+1) = γ(n)/2

4. Iterate n 7→ n+ 1

• Output. V = V(n)

In Section 5.2.3 we have shown that by using the 2D DFT basis the coefficients Gm,i =
√
JDFm,i are already group compressible. Therefore, we choose the initialization matrix

V(0) to be the blockdiagonal JD × JD matrix with the J × J DFT matrix repeated D

times on the diagonal. The problem does not depend on the actual channel or the receive

signal and therefore only has to be solved once before the start of data transmission.

Finally, note that the computational complexity of solving (5.28) can be substantially

reduced by decomposing it into BD = D/∆m̃ separate problems of dimension J∆m̃ ×
J∆m̃ each (as opposed to JD × JD), where typically ∆m̃ is quite small. In order to

see that this is possible, recall that VH c̃(1) is constituted of the subvectors VH
mc̃

(1)
m and
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that ‖VH c̃(1)‖2|J ′ =
∑2BDBJ−1

b=0

∥∥(VH c̃(1)
)
[b]
∥∥

2
. Due to the way the groups I ′b = S′

(
Bb
)

were defined, each of the group subvectors
(
VH c̃(1)

)
[b] only involves the ∆m̃ subvectors

VH
m c̃m

(1) of VH c̃(1) for those m for which (m, i) ∈ Bb. Therefore, sub-dividing the sum

into the corresponding parts yields the statement given above.

5.2.5 Simulation Results

In this section we experimentally demonstrate the advantage of the proposed compressive

channel estimator utilizing group sparsity in comparison to the conventional compressive

estimator of Section 5.1.1.

Simulation setup. We used the same simulation setup as described in Section 5.1.5,

and even the same channel realizations generated by the channel simulator IlmProp [143].

The number of pilots was chosen as Q = 1024, corresponding to 6.25% of all the symbols.

For the group sparse reconstruction in Step 2 of the proposed method G-BPDN, G-

CoSaMP and G-OMP were used. The groups were defined as described in Section 5.2.1,

i.e. J = {Ib}B−1
b=0 with Ib = S(Bb), where the blocks Bb were of size ∆m̃ ×∆ĩ. For our

simulations we used ∆m̃,∆ĩ ∈ {1, 2, 4, 8}. Note that for ∆m̃ = ∆ĩ = 1 the algorithms

G-BPDN, G-CoSaMP and G-OMP correspond to their conventional counterparts and

the method coincides with the conventional compressive estimator of Section 5.1.1.

We also generated an optimized basis according to Section 5.2.4 using a non-statistical

design. The basic parameters were also chosen as in Section 5.1.5. Note that the

same reasoning as in that section yields that only one basis has to be computed for

each ∆ĩ ∈ {1, 2, 4, 8} since c
(p)
m = c

(p)
0 for each m = 0, . . . , D−1 in this setting. The

initialization matrix was chosen blockdiagonal with the J × J DFT matrix as blocks.

For each group size and both the 2D DFT and the optimized basis the noise parameter

for G-BPDN was chosen as ε = 10−2.6, and the number of G-CoSaMP iterations was

nG-CoSaMP = 16. The group sparsity estimates S and Sopt for G-CoSaMP as well as the

numbers of group iterations nG-OMP and nopt
G-OMP for G-OMP obviously had to be chosen

differently for the various group sizes and bases. They are subsumed in Table 5.1. All

these parameters were found experimentally. In order to solve G-BPDN we again used

the toolbox SPGL1 [144], whereas we adapted the routine cosamp.m by David Mary

[145] and our own OMP routine to solve G-CoSaMP and G-OMP, respectively.

Finally, the performance of all the channel estimation methods was measured using

the normalized MSE.
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∆ĩ
∆m̃

(a) Sparsity estimate S for G-CoSaMP

using the 2D DFT basis

∆ĩ
∆m̃

(b) Number nG-OMP of G-OMP itera-

tions using the 2D DFT basis

∆ĩ
∆m̃

(c) Sparsity estimate Sopt for G-

CoSaMP using an optimized basis

∆ĩ
∆m̃

(d) Number noptG-OMP of G-OMP itera-

tions using an optimized basis

Table 5.1: Simulation parameters for G-CoSaMP and G-OMP

Results. In Fig. 5.4(a) we plot the MSE of channel estimation versus the SNR for the

proposed method using G-BPDN, G-CoSaMP and G-OMP with block size ∆m̃×∆ĩ =

2 × 2, comparing it to the conventional compressive estimator using BPDN, CoSaMP

and OMP, i.e. ∆m̃×∆ĩ = 1× 1. In both cases only the 2D DFT basis was used. It can

clearly be seen that utilizing the group compressibility can improve the performance of

the compressive estimator substantially. Note that if G-OMP is used the running time

decreases at the same time. Furthermore, from Fig. 5.4(b) it becomes obvious that the

use of a basis optimized as described above yields an additional performance gain (again

keeping in mind that the computational complexity is increased at the same time).

In Fig. 5.5(a) we again plot the MSE of channel estimation versus the SNR, but here

we plot the result for G-OMP using the 2D DFT basis for some of the block sizes. It

can be seen that by choosing the block sizes appropriately the performance is improved

compared to the case ∆m̃ × ∆ĩ = 1 × 1. However, a bad choice can also degrade the

81



5 Compressive Channel Estimation in SISO Systems

SNR [dB]

M
S

E
[d

B
]

(a) Compressive channel estimation utilizing
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pressive channel estimation
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(b) Comparison of the use of the 2D DFT basis

to that of an optimized basis

Figure 5.4: Performance of the compressive channel estimator utilizing group sparsity

for block size ∆m̃×∆ĩ = 2× 2: MSE versus SNR

results. This is due to the fact that if the blocks are chosen too large in any direction

many entries that do not belong to the essential support of x (for example entries that

are mostly due to noise) will still be part of the support of the estimate x̂, because they

belong to a block also containing large entries. If the blocks are small enough only few

of these ”non-essential” entries will be chosen together with the large ones.

Furthermore, we show the performance of G-OMP using the 2D DFT basis for the

different ∆ĩ ∈ {1, 2, 4, 8} for fixed ∆m̃ in Fig. 5.5(b), and the one for different ∆m̃ ∈
{1, 2, 4, 8} for fixed ∆ĩ in Fig. 5.5(c), both at a fixed SNR of 21 dB. Note that varying

∆ĩ does not affect the performance as much as varying ∆m̃, especially as ∆m̃ becomes

larger. This is due to the fact that the sparsity of the coefficients in the discrete m-

direction is quite good (as explained in Section 5.1.3) and therefore ∆m̃ should be

chosen relatively small. On the contrary, the sparsity in the discrete i-direction is not

as good, and therefore ∆ĩ can be chosen larger.

Finally note that G-OMP gives the best results in practice again, whereas in our

experiments G-BPDN had the shortest running time. This could be due to the imple-

mentations we used. Also, G-BPDN turned out to be more stable with regard to the

choice of parameters than G-CoSaMP and G-OMP.
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Figure 5.5: Performance of the compressive channel estimator utilizing group sparsity

for various block sizes ∆m̃×∆ĩ using G-OMP

Conclusion. Obviously, utilizing the inherent group sparsity of the channel can con-

siderably improve the performance of the compressive channel estimator. Nevertheless,

an appropriate choice of the block size is also important, since otherwise the performance

deteriorates again. Using a basis optimized as described above yields an additional per-

formance gain due to the ”better” sparsity of the expansion coefficients. Moreover, using

G-OMP as reconstruction technique, the running time decreases the larger the groups

are chosen.
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Chapter 6
Compressive Channel Estimation in

MIMO Systems

6.1 Multichannel Compressive Channel Estimation

In this section we explain how the compressive channel estimator presented in Sec-

tion 5.1.1 can be adapted to the MIMO case. In typical MIMO channel estimators

each of the cross-channels connecting a transmit and a receive antenna is estimated

individually, as explained in Section 3.6.3. The only publications referring to the use

of CS methods in MIMO channel estimation seem to be [22, 23], where conventional

CS methods are used in order to utilize the sparsity in the angular domain, and only

frequency selective channels were considered. In this section, on the contrary, we present

an estimation scheme for doubly selective channels utilizing the fact that the individ-

ual cross-channels can be considered jointly sparse. It is applicable with both zero and

non-zero pilot patterns.

The rest of this section is organized as follows. In Section 6.1.1 we formulate the

compressive channel estimator utilizing MCS methods, the computational complexity

of which is analyzed in Section 6.1.2. The joint sparsity of the cross-channels in the

delay-Doppler region is explored in Section 6.1.3. Furthermore, the basis optimization

technique explained in Section 5.1.4 is adapted to the MIMO case in Section 6.1.4. Fi-

nally, the simulation results presented in Section 6.1.5 demonstrate the performance gain

of the proposed MIMO channel estimator compared to the application of the conven-

tional compressive estimator of Section 5.1.1 for each cross-channel individually.
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6.1.1 The Method

The following exposition largely parallels the one in Section 5.1.1, since we make the

same assumptions about each cross-channel of the MIMO channel, keeping in mind

that each of them is in fact a SISO channel. Recall that the number of transmit and

receive antennas is denoted by NT and NR, respectively, and that transmit and receive

antennas are indexed by s and r, respectively. Moreover, each pair of transmit/receive

antennas is denoted by θ = (r, s), where Θ = {θ = (r, s)
∣∣r = 1, . . . , NR; s = 1, . . . , NT}

denotes the set of all such pairs. As before we only consider underspread channels,

for which the Fourier coefficients Fm,i in (3.21), which are NR × NT matrices with

entries F
(θ)
m,i here, are effectively supported in {0, . . . , D−1} × {−J/2, . . . , J/2−1}, by

which we mean that outside of this box the matrices Fm,i are all-zero, i.e. Fm,i ≡ O.

The constants D and J are again chosen such that ∆K := K/D and ∆L := L/J are

integers, and J (and therefore also L) is even for mathematical convenience. Once

more, the limiting cases of D = K and/or J = L are included. Therefore, following

(3.21), we can again subsample the values of the channel coefficients Hl,k using the grid

G := {(λ∆L, κ∆K) |λ = 0, . . . , J−1; κ = 0, . . . , D−1} to gather enough information

to calculate the values of the matrices Hl,k at all time-frequency positions (l, k) for

l = 0, . . . , L−1 and k = 0, . . . , K−1. Then we get

Hλ∆L,κ∆K =
D−1∑
m=0

J/2−1∑
i=−J/2

Fm,ie
−2π(κm

D
−λi
J

) , (6.1)

which is equivalent to (5.1) entrywise. In Section 6.1.3 we explain in detail that the co-

efficients F
(θ)
m,i can be considered jointly compressible, but that their joint compressibility

is again impaired by the leakage effect. Therefore, we generalize (6.1) to

Hλ∆L,κ∆K =
D−1∑
m=0

J/2−1∑
i=−J/2

Gm,ium,i[λ, κ] , (6.2)

where {um,i[λ, κ]} is an orthonormal 2D basis chosen such that the expansion coefficients

G
(r,s)
m,i :=

[
Gm,i]r−1,s−1 are even ”more jointly compressible” than the Fourier coefficients

F
(θ)
m,i. One way of constructing such a basis is explained in Section 6.1.4. Evidently, the

2D DFT expansion (6.1) is a special case with um,i[λ, κ] = (1/
√
JD)e−2π(κm

D
−λi
J

) and

coefficients Gm,i =
√
JDFm,i.

From here on we have to proceed differently. Let µ := (l, k) index the time-frequency

positions. For pilot-aided channel estimation we now choose NT linearly independent
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pilot vectors p(s) =
[
p(1,s), . . . , p(NT,s)

]T
for s = 1, . . . , NT, as well as NT pairwise disjoint

subsets P(s) ⊆ G of the subsampled time-frequency grid G, each of the same size
∣∣P(s)

∣∣ =

Q. This corresponds to the non-zero pilot pattern and obviously includes the zero

pattern as a special case (see Section 3.6.3). Then, each pilot vector p(s) is transmitted

at all pilot positions µ
(s)
q ∈ P (s), q = 0, . . . , Q−1, so that in total NTQ pilot vectors are

transmitted. Now let G̃
(θ)
m,i := g

(r)T
m,i p(s), where g

(r)T
m,i denotes the r-th row of the matrix

Gm,i. Then, by writing µ
(s)
q = (λ

(s)
q ∆L, κ

(s)
q ∆K), restricting (6.2) to the pilot positions,

and inserting it into the approximate input-output relation (3.20), we obtain

r
(r)

µ
(s)
q

=
D−1∑
m=0

J/2−1∑
i=−J/2

G̃
(θ)
m,ium,i[λ

(s)
q , κ

(s)
q ] + z̃

(r)

µ
(s)
q

(6.3)

for all µ
(s)
q ∈ P(s), q = 0, . . . , Q−1, and all s = 1, . . . , NT, r = 1, . . . , NR.

In order to rewrite this in matrix notation recall the definition of U of Section 5.1.1

as the JD × JD matrix with columns um,i = vec{um,i[λ, κ]}λ,κ. Furthermore, we define

Φ(s) :=
√
JD/QU(s), where U(s) denotes the Q×JD submatrix of U constituted of the Q

rows corresponding to the pilot positions P(s). Finally, let x(θ) :=
√
Q/JD vec{G̃(θ)

m,i}m,i,
y(θ) :=

[
r

(θ)
0 , . . . , r

(θ)
Q−1

]T
and z(θ) :=

[
z

(θ)
0 , . . . , z

(θ)
Q−1

]T
, with r

(θ)
q := r

(r)

µ
(s)
q

and z
(θ)
q := z

(r)

µ
(s)
q

(where θ = (r, s)). Then we can rewrite (6.3) as

y(θ) = Φ(s)x(θ) + z(θ), θ = (r, s) ∈ Θ . (6.4)

Since by assumption the coefficients G
(θ)
m,i are jointly compressible, the rows g

(r)T
m,i of Gm,i

are either all ”small” for (m, i) outside of the essential joint support, or all ”large”.

Therefore, the coefficients G̃
(θ)
m,i = g

(r)T
m,i p(s), and in turn the vectors x(θ) are also jointly

compressible, which yields that (6.4) can be identified as an instance of the MCS problem

(4.7) and can therefore be solved by using MCS techniques (see Section 4.4). Each

measurement matrix Φ(s) is again constructed from the renormalized matrix
√
JD/QU

by taking the rows corresponding to the pilot positions P(s). Therefore, motivated by

Theorem 4.2.6, we choose these pilot positions uniformly at random from the subsampled

grid G, so that we can expect Φ(s) to have a small RIC with high probability, which

typically induces good reconstruction quality. Note that in fact Theorem 4.2.6 cannot

be applied to this case, because the fact that the pilot sets P(s) have to be chosen pairwise

disjoint contradicts the basic assumption of the theorem, namely that each row of U has

equal probability of being chosen. Nevertheless, we use Theorem 4.2.6 as a motivation for

our construction of the measurement matrices Φ(s). An example of such a pilot scheme
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Figure 6.1: Pilot arrangement in a 2 × 2 MIMO system, where the grid G has spacings

∆K = 2 and ∆L = 1.

is depicted in Fig. 6.1. Here, the pilot vector p(1) =
[
p(1,1), p(2,1)

]T
is transmitted at all

pilot positions in P(1), i.e. p(1,1) (black disc) is transmitted from transmit antenna 1 and

p(2,1) (gray disc) from transmit antenna 2 at all time-frequency positions (l, k) ∈ P(1). In

analogy, for p(2) =
[
p(1,2), p(2,2)

]T
, p(1,2) (red disc) is transmitted from transmit antenna

1 and p(2,2) (maroon disc) from transmit antenna 2 at all the pilot positions in P(2).

Now we can formulate the multichannel compressive channel estimator as follows. For

all s = 1, . . . , NT choose pilot sets P(s) ⊂ G uniformly at random from the subsampled

grid G, pairwise disjoint, and choose linearly independent pilot vectors p(s), which are

communicated to the receiver before the start of data transmission and stay fixed therein.

Step 1. For each θ = (r, s) ∈ Θ stack the received symbols at the pilot positions corre-

sponding to transmit antenna s into the vector y(θ) and run any MCS algorithm

to obtain estimates x̂(θ) of the vectors x(θ).

Step 2. Rescale these estimates x̂(θ) with
√
JD/Q to get estimates ˆ̃G

(θ)
m,i of G̃

(θ)
m,i.

Step 3. Calculate ĝ
(r)
m,i = P−T

[
G̃

(r,1)
m,i , . . . , G̃

(r,NT)
m,i

]T
, where P :=

[
p(1) · · ·p(NT)

]
, which

is non-singular since the pilot vectors p(s) were chosen linearly independent.

Step 4. Calculate estimates of the subsampled matrices Hλ∆L,κ∆K from (6.2).

Step 5. Invert (6.1) to obtain estimates of the 2D DFT coefficient matrices Fm,i for

m = 0, . . . , D− 1 and i = −J/2, . . . , J/2− 1. Note that by assumption Fm,i

vanishes for all other indices.

Step 6. Calculate estimates of all the channel coefficient matrices Hl,k by using the 2D

DFT expansion (3.21).
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Note that in the special case where the 2D DFT basis is used Steps 4 and 5 can be

omitted, since in that case we have Gm,i =
√
JDFm,i.

For the multichannel sparse reconstruction in Step 1 any of the MCS methods de-

scribed in Section 4.4 can be used, such as DCS-SOMP, M-CoSaMP as well as G-BPDN,

G-OMP or G-CoSaMP (after reformulation as a group sparse problem). Alternatively,

also M-BPDN or S-OMP can be used. In order to see this note that all the equations

in (6.4) corresponding to cross-channels θ originating from the same transmit antenna

share the same matrix Φ(s), since this matrix only depends on the transmit antenna s.

Therefore, Step 1 can be divided into NT subproblems, each of which can be solved by

using M-BPDN or S-OMP.

Regarding the quality of channel estimation we present results for G-BPDN and G-

CoSaMP as reconstruction techniques in Step 1 (again for the reformulation as a group

sparse problem). To do so, recall the definitions of x =
[
x(θ1)T . . .x(θNRNT

)T
]T

and

z =
[
z(θ1)T . . . z(θNRNT

)T
]T

as the stackings of the vectors x(θ) and z(θ) for some ordering

{θ1, . . . , θNRNT
} of Θ, respectively, as well as the partition J = {Ib}B−1

b=0 from (4.9), which

gathers the entries of the subvectors x(θ) with the same index into one group. Then we

can obtain the following result.

Theorem 6.1.1. Let S ⊆ {0, . . . , D−1}×{−J/2, . . . , J/2−1} be any set of size |S| = S.

Furthermore, let

CG,S :=
∑

(m,i)/∈S

‖Gm,i‖F ,

as well as εn := ‖z‖2 and ε > 0.

1. Use G-BPDN to solve the reformulated problem in Step 1 of the multichannel

compressive channel estimator. If all the matrices Φ(s) satisfy the RIP with RIC

δ
(s)
2S <

√
2−1, respectively, and if εn < ε, we can bound the estimation error as√√√√∑

θ∈Θ

L−1∑
l=0

K−1∑
k=0

∣∣∣H(θ)
l,k − Ĥ

(θ)
l,k

∣∣∣2 ≤ C ′0S
−1/2CG,S + C ′1ε ,

with the constants C ′0 := c0

√
LK
JD
CP and C ′1 := c1

√
LK
Q
‖P−1‖F , where CP :=

‖P‖F‖P−1‖F , and c0 and c1 are the constants from Theorem 4.3.4.
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2. Using G-CoSaMP with i steps in Step 1, assume that each matrix Φ(s) satisfies the

RIP with RIC δ
(s)
4S < 0.1, and assume that εn < ε. Then√√√√∑

θ∈Θ

L−1∑
l=0

K−1∑
k=0

∣∣∣H(θ)
l,k − Ĥ

(θ)
l,k

∣∣∣2 ≤ C̃0

(
1 + S−1/2

)
CG,S + C̃1ε+ C̃2 ,

with the constants C̃0 := 20
√

LK
JD
CP, C̃1 := 20

√
LK
Q
‖P−1‖F and C̃2 := 2−i

√
LK
Q
CP(∑

(m,i),θ

∣∣G(θ)
m,i

∣∣2)1/2

. Note that again since the number of G-CoSaMP iterations

can be chosen arbitrarily, C̃2 can be made arbitrarily small.

Proof. The proof is an easy adaption of the proof of Theorem 5.1.1. To be more precise,

the first part of that proof can be adopted without any change for each cross-channel

θ individually. Defining h(θ) = vec{H(θ)
l,k }l,k and g(θ) = vec{G(θ)

m,i}m,i and the associated

vectors of estimates ĥ(θ) = vec{Ĥ(θ)
l,k }l,k and ĝ(θ) = vec{Ĝ(θ)

m,i}m,i, (5.6) yields√√√√L−1∑
l=0

K−1∑
k=0

∣∣∣H(θ)
l,k − Ĥ

(θ)
l,k

∣∣∣2 = ‖h(θ) − ĥ(θ)‖2 =

√
LK

JD
‖g(θ) − ĝ(θ)‖2

for each θ ∈ Θ. Next, let G̃m,i be the NR × NT matrix with entries
[
G̃m,i

]
r−1,s−1

=

G
(r,s)
m,i (r = 1, . . . , NR; s = 1, . . . , NT). Then, by definition of G̃

(θ)
m,i we have G̃m,i = Gm,iP,

which yields Gm,i = G̃m,iP
−1. Furthermore, denoting its estimate by ˆ̃Gm,i, using g̃(θ) =√

JD/Qx(θ) and the submultiplicativity of the Frobenius norm (see (2.4)), we have

∑
θ∈Θ

‖g(θ) − ĝ(θ)‖2
2 =

D−1∑
m=0

J/2−1∑
i=−J/2

‖Gm,i − Ĝm,i‖2
F =

D−1∑
m=0

J/2−1∑
i=−J/2

‖
(
G̃m,i − ˆ̃Gm,i

)
P−1‖2

F

≤
D−1∑
m=0

J/2−1∑
i=−J/2

‖G̃m,i − ˆ̃Gm,i‖2
F‖P−1‖2

F = ‖P−1‖2
F

∑
θ∈Θ

‖g̃(θ) − ˆ̃g(θ)‖2
2

≤ ‖P−1‖2
F

JD

Q

∑
θ∈Θ

‖x(θ) − x̂(θ)‖2
2 ,

where the first and the second-to-last equalities are easily obtained by reordering the

sums. Noting that
∑

θ∈Θ ‖x(θ) − x̂(θ)‖2
2 = ‖x − x̂‖2

2, where x̂ is the estimate of x, we

therefore get√√√√∑
θ∈Θ

L−1∑
l=0

K−1∑
k=0

∣∣∣H(θ)
l,k − Ĥ

(θ)
l,k

∣∣∣2 =

√∑
θ∈Θ

LK

JD
‖g(θ) − ĝ(θ)‖2

2 ≤

√
LK

Q
‖P−1‖F‖x− x̂‖2 .

(6.5)
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For part 1 of the theorem note that if all the matrices Φ(s) satisfy the RIP with RIC

δ
(s)
2S <

√
2−1, respectively, then, following Proposition 4.4.3, the stacked matrix Φ of

(4.8) satisfies the G-RIP with G-RIC δ2S|J <
√

2−1. Therefore, Theorem 4.3.4 yields

‖x− x̂‖≤c0

σS(x)2|J√
S

+ c1ε .

By definition of σS(x)2|J and x we can easily proceed as

σS(x)2|J ≤
∑

(m,i)/∈S

√
Q

JD

(∑
θ∈Θ

∣∣∣[g̃(θ)
]
S(m,i)

∣∣∣2)1/2

=

√
Q

JD

∑
(m,i)/∈S

‖G̃m,i‖F . (6.6)

Since by definition G̃m,i = Gm,iP we have ‖G̃m,i‖F ≤ ‖Gm,i‖F‖P‖F again by (2.4),

which finally yields√√√√∑
θ∈Θ

L−1∑
l=0

K−1∑
k=0

∣∣∣H(θ)
l,k − Ĥ

(θ)
l,k

∣∣∣2 ≤ c0

√
LK

JD
‖P−1‖F‖P‖F

CG,S√
S

+ c1

√
LK

Q
‖P−1‖F ε .

The assumptions of part 2 yield that the stacked matrix Φ satisfies the G-RIP with

G-RIC δ4S|J < 0.1 (again using Proposition 4.4.3), which together with Theorem 4.3.5

and (6.6) gives√√√√∑
θ∈Θ

L−1∑
l=0

K−1∑
k=0

∣∣∣H(θ)
l,k − Ĥ

(θ)
l,k

∣∣∣2 ≤ 20

√
LK

JD
CP

(
1 + S−1/2

)
CG,S + 20

√
LK

Q
‖P−1‖F ε

+2−i

√
LK

Q
CP

( ∑
(m,i),θ

∣∣G(θ)
m,i

∣∣2)1/2

,

which is exactly what we wanted to show.

Note again that the set S can be chosen arbitrarily, but that the error will be small if S
covers the essential joint support of the coefficient matrices Gm,i. If the 2D DFT basis is

used, CG,S again somehow characterizes the leakage occurring, whereas the second term

is due to the noise and the third term in the result of part 2 of the theorem can be made

arbitrarily small by choosing the number of G-CoSaMP iterations large enough (which

at the same time increases the computational complexity).

Finally note that the SISO case is included as the special case where NT = NR = 1,

where the proposed estimator coincides with the conventional compressive estimator of

Section 5.1.1.
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6.1.2 Computational Complexity

In order to analyze the computational complexity we again proceed step by step.

Step 1. We denote the complexity of solving the MCS problem by O
(
MCS

)
.

Step 2. This rescaling takes O
(
NRNTJD

)
operations.

Step 3. The matrix P has sizeNT×NT, and therefore the complexity of the computation

of the products is O
(
NRN

2
TJD

)
. Note that P only has to be inverted once before

starting data transmission.

Step 4. Calculating the subsampled channel coefficient matrices Hλ∆L,κ∆K according

to (6.2) can be done entrywise, i.e. channel-by-channel, and therefore typically

comes at the cost of O
(
NRNT(JD)2

)
operations, unless the matrix U allows a

faster implementation of the vector-matrix product.

Step 5. Proceeding entrywise, inverting (6.1) can be done very efficiently by using the

FFT in O
(
NRNTJD log(JD)

)
operations.

Step 6. By the same arguments (3.21) can be implemented with O
(
NRNTLK log(LK)

)
operations using the FFT.

Thus, the multichannel compressive estimator can be implemented using

O
(
MCS

)
+O

(
NRNT(JD)2

)
+O

(
NRNTLK log(LK)

)
operations, since typically NT � JD in practice. Recall from Section 4.4 that explicit

values for the computational complexity of the MCS algorithms heavily depend on the

implementation. For the implementations mentioned in Section 4.3 and Section 4.4,

recall that the measurement matrices Φ(s) are Q × JD matrices and that only NT dif-

ferent matrices are involved, and thus O
(
MCS

)
= O

(
nDCS-SOMP(NTJDnDCS-SOMP +

NR

∑
s Φ(s))

)
for DCS-SOMP (following the implementation of OMP in [102]). For the

reformulation as a group sparse problem, note that the application of Φ or ΦH can

be implemented blockwise because of its block-diagonal structure. Therefore, we have

O
(
Φ
)
≤ NR

∑
sO
(
Φ(s)

)
, and thusO

(
MCS

)
= O

(
nG-CoSaMPNR

∑
s Φ(s)

)
for G-CoSaMP.

Here nDCS-SOMP and nG-CoSaMP denote the number of DCS-SOMP and G-CoSaMP iter-

ations, respectively. Altogether, in a typical setting O
(
MCS

)
will dominate the overall

complexity. Also, the computational complexity of the multichannel compressive chan-

nel estimator basically equals that of the conventional compressive channel estimator

used channel-per-channel.
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Finally, note that if the 2D DFT basis is used throughout, Steps 4 and 5 can be

omitted. which reduces the term in the middle to O
(
NRN

2
TJD

)
. More importantly, the

complexity of the MCS algorithms is also typically reduced, because then FFT-methods

can be used to calculate the vector-matrix products.

6.1.3 Joint Delay-Doppler Sparsity

In order to analyze the joint compressibility of the MIMO channel, we use the same

channel model (5.12) as in the SISO case for each cross-channel individually, i.e.

h(θ)(t, τ) =
P∑
p=1

η(θ)
p δ(τ − τ (θ)

p )e2πν
(θ)
p t , θ ∈ Θ , (6.7)

where η
(θ)
p , τ

(θ)
p and ν

(θ)
p denote the path gain, time delay and Doppler frequency shift

for the cross channel indexed by θ corresponding to scatterer p, respectively. Following

(5.15), this yields the discrete-delay-Doppler spreading functions

S
(θ)
h [m, i] =

P∑
p=1

η(θ)
p e

π
(
ν

(θ)
p Ts− i

N0

)(
N0−1
)
Λ(θ)
p [m, i] , (6.8)

with the shifted leakage kernels

Λ(θ)
p [m, i] := φ(θ)

p

(
m− τ

(θ)
p

Ts

)
ψ
(
i− ν(θ)

p TsN0

)
(6.9)

for each θ ∈ Θ, where φ
(θ)
p (x) =

∫
R e
−2πν(θ)

p tf1(Tsx− t)f2(t)dt. The analysis carried out

in Section 5.1.3 yields that each of these leakage kernels Λ
(θ)
p is essentially concentrated

around a center point ξ
(θ)
p =

(
τ

(θ)
p /Ts, ν

(θ)
p TsN0

)
. In the following we show that in

typical scenarios these points differ minimally for the various cross-channels θ (but fixed

scatterer p), from which we conclude that the supports of the different leakage kernels

mostly overlap.

To do so, we describe the propagation scenario geometrically (see Fig. 6.2). Following

the very basic identity t = d/v, where t, d and v denote time, distance and velocity,

respectively, we can calculate the time delay τ
(θ)
p for a specific scatterer p and the pair

of antennas θ = (r, s) as follows. Let w
(s)
T,p and w

(r)
R,p be the vectors connecting and let

w
(s)
T,p := ‖w(s)

T,p‖2 and w
(r)
R,p := ‖w(r)

R,p‖2 denote their respective lengths. By denoting the

speed of light by c, we get

τ (θ)
p =

w
(s)
T,p + w

(r)
R,p

c
. (6.10)
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Transmit antenna (s)
Receive antenna (r)
Scatterer (p)

Figure 6.2: Geometric illustration of a propagation path from a transmit antenna s to a

receive antenna r via a scatterer p in a 3× 3 MIMO system

To describe the Doppler effect, on the other hand, assume that the source of an electro-

magnetic wave with frequency f0 moves towards an observer with relative velocity v at

an angle α relative to the direction from the observer to the source. Then the Doppler

frequency shift ν that occurs is approximately given by ν = f0
v
c

cosα, where we do

not take relativistic effects into account since the velocities that are involved typically

are very small compared to the speed of light. Now, we define vT,p and vR,p as the

velocity vectors of scatterer p relative to transmitter and receiver, respectively, as well

as vT,p := ‖vT,p‖2 and vR,p := ‖vR,p‖2. Note that in this geometric model we do not take

rotations of the transmitter and/or the receiver into account, which would yield different

velocity vectors for different transmit/receive antennas. Since such rotations, which are

due to the rotation of the transmitting and/or receiving device, typically do not occur

very quickly in practice, the velocity vectors will only differ very little. Although these

rotations could easily be accounted for in the analysis we choose to ignore them for the

sake of simplicity of notation. Furthermore note that since transmitter, receiver and

scatterers are moving, the Doppler effect actually occurs twice. At the scatterer, the

observed frequency will be f1 = f0 + ν
(θ)
T,p with the Doppler frequency shift

ν
(θ)
T,p = f0

vT,p

c

vTT,pw
(s)
T,p

vT,pw
(s)
T,p

=
f0

c

vTT,pw
(s)
T,p

w
(s)
T,p

, (6.11)

where f0 denotes the carrier frequency, and we have used the fact that cosα = vTT,pw
(s)
T,p/

(vT,pw
(s)
T,p), with α denoting the angle between vT,p and w

(s)
T,p. The observed frequency
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at the receiver is then given by f2 = f1 + ν
(θ)
R,p with

ν
(θ)
R,p =

f1

c

vTR,pw
(r)
R,p

w
(r)
R,p

.

Thus, by inserting f1 we get f2 = f0 + ν
(θ)
T,p + ν

(θ)
R,p, which yields the overall Doppler

frequency shift

ν(θ)
p = ν

(θ)
T,p + ν

(θ)
R,p . (6.12)

Now we can bound the differences ∆τ
(θ1,θ2)
p :=

∣∣τ (θ1)
p − τ (θ2)

p

∣∣ and ∆ν
(θ1,θ2)
p :=

∣∣ν(θ1)
p −

ν
(θ2)
p

∣∣ of the time delays and the Doppler frequency shifts, respectively, between two

different cross-channels θ1 and θ2. For the time delays we have

∆τ (θ1,θ2)
p =

∣∣∣τ (θ1)
p − τ (θ2)

p

∣∣∣
=

1

c

∣∣∣w(s1)
T,p + w

(r1)
R,p − w

(s2)
T,p − w

(r2)
R,p

∣∣∣
≤ 1

c

(∣∣∣w(s1)
T,p − w

(s2)
T,p

∣∣∣+
∣∣∣w(r1)

R,p − w
(r2)
R,p

∣∣∣) ,
following (6.10). Obviously, the difference of the path lengths

∣∣w(s1)
T,p − w

(s2)
T,p

∣∣ can not be

larger than the distance between the two transmit antennas s1 and s2. This distance is

bounded by dT, which denotes the maximal distance between any two transmit antennas.

By using the same argument for the receiver side and denoting the maximal distance

between any two receive antennas by dR, we obtain ∆τ
(θ1,θ2)
p ≤ τB, where

τB =
dT + dR

c
.

For the Doppler frequency shifts we can use (6.12) to get

∆ν(θ1,θ2)
p =

∣∣∣ν(θ1)
p − ν(θ2)

p

∣∣∣
=

∣∣∣ν(θ1)
T,p + ν

(θ1)
R,p − ν

(θ2)
T,p − ν

(θ2)
R,p

∣∣∣
≤

∣∣∣ν(θ1)
T,p − ν

(θ2)
T,p

∣∣∣+
∣∣∣ν(θ1)

R,p + ν
(θ2)
R,p

∣∣∣ .
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Again considering the transmitter side first and using (6.11) we get

∣∣∣ν(θ1)
T,p − ν

(θ2)
T,p

∣∣∣ =
f0

c

∣∣∣∣∣vTT,pw
(s1)
T,p

w
(s1)
T,p

−
vTT,pw

(s2)
T,p

w
(s2)
T,p

∣∣∣∣∣
≤ f0

c

∣∣∣∣∣∣
vTT,p

(
w

(s1)
T,p −w

(s2)
T,p

)
w

(s1,s2)
T,p,min

∣∣∣∣∣∣
≤ f0

c

vT,pdT

w
(s1,s2)
T,p,min

,

where we have set w
(s1,s2)
T,p,min := mins1,s2

{
w

(s1)
T,p , w

(s2)
T,p

}
, and we have used the Cauchy-

Schwarz inequality, as well as the fact that
∥∥∥w(s1)

T,p − w
(s1)
T,p

∥∥∥
2
≤ dT, to obtain the last

inequality. Defining w
(r1,r2)
R,p,min := minr1,r2

{
w

(r1)
R,p , w

(r2)
R,p

}
, and using the same arguments for

the receiver side we get ∆ν
(θ1,θ2)
p ≤ ν

(θ1,θ2)
B,p with

ν
(θ1,θ2)
B,p :=

1

c

(
f0vT,pdT

w
(s1,s2)
T,p,min

+
f1vR,pdR

w
(r1,r2)
R,p,min

)
.

Defining νB := maxp,θ1 6=θ2
{
ν

(θ1,θ2)
B,p

}
, the center points ξ

(θ1)
p and ξ

(θ2)
p of the supports of

the shifted leakage kernels Λ
(θ1)
p and Λ

(θ2)
p for any two cross-channels θ1 and θ2 differ by

at most τB/Ts in m-direction, and νBTsN0 in i-direction. In a typical setting the antenna

spacings dT and dR will be relatively small, and therefore τB will also be small. Further-

more, the velocities of transmitter, receiver and scatterers are very small compared to

the speed of light, and typically the path lengths w
(s)
T,p and w

(r)
R,p are quite large compared

to the antenna spacings dT and dR, which is why νB will be small, too. Thus, the center

points ξ
(θ1)
p and ξ

(θ2)
p will be extremely close for each pair of cross-channels θ1 and θ2.

Next, we bound the joint S-term approximation error σS(Λp)F defined in (4.6), where

Λp (p = 1, . . . , P ) are now the KN0×NRNT matrices Λp :=
[
Λ

(θ1)
p , . . . ,Λ

(θNRNT
)

p

]
for any

ordering {θ1, . . . , θNRNT
} of the cross-channels, with Λ

(θ)
p = vec{Λ(θ)

p [m, i]}m,i. We choose

the Frobenius norm as measure for the approximation error because it is the analog to the

`2-norm in the SISO case. Now let M(θ)
p :=

{
m ∈ {0, . . . , K−1}

∣∣ |m− τ (θ)
p /Ts| ≤ ∆m

}
and I(θ)

p :=
{
i ∈ {0, . . . , N0−1}

∣∣ |(i − ν
(θ)
p TsN0)N0| ≤ ∆i

}
, where again (i − x)N0 :=

i+ dxN0 − x such that −N0/2 ≤ (i+ dxN0 − x) ≤ N0/2, and ∆m,∆i ≥ 2 are chosen as
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in Section 5.1.3. Then, the analysis carried out in that section yields that∑
(m,i)/∈M(θ)

p ×I
(θ)
p

∣∣∣Λ(θ)
p [m, i]

∣∣∣2 ≤ D̃0

(
1 +

∆m− 1

|x0|

)−2s+1

+ D̃1(∆i− 1)−1

+D̃2(∆i− 1)−1
(

1 +
∆m− 1

|x0|

)−2s+1

(6.13)

for each cross-channel θ ∈ Θ individually, where D̃0, D̃1 and D̃2 are the constants

from (5.18). Next, let M′
p :=

⋃
θ∈ΘM

(θ)
p and I ′p :=

⋃
θ∈Θ I

(θ)
p . Then, defining ∆m′ :=

(2∆m+1)+
⌈
τB/Ts

⌉
and ∆i′ := (2∆i+1)+

⌈
νBTsN0

⌉
, the analysis given above yields that∣∣M′

p

∣∣ ≤ ∆m′ and
∣∣I ′p∣∣ ≤ ∆i′. Moreover, we obviously have M(θ)

p ⊆ M′
p and I(θ)

p ⊆ I ′p
for all θ ∈ Θ. Therefore, setting S = ∆m′∆i′ and using (6.13) for each cross-channel

yields (
σS(Λp)F

)2 ≤
∑

(m,i)/∈M′p×I′p

∑
θ∈Θ

∣∣∣Λ(θ)
p [m, i]

∣∣∣2
≤ NRNT

(
D̃1

(
1 +

∆m′ − 1

|x0|

)−2s+1

+ D̃2(∆i′ − 1)−1

+D̃3(∆i′ − 1)−1
(

1 +
∆m′ − 1

|x0|

)−2s+1
)
.

Since this bound decreases quite fast with increasing ∆m′ and ∆i′ (and therefore also

S=∆m′∆i′), the shifted leakage kernels Λ
(θ)
p can be considered jointly compressible. As

before, the same is then true for the spreading functions S
(θ)
h [m, i] (see (6.8)), and, in

turn, for the 2D DFT coefficients F
(θ)
m,i (see (3.22)).

Finally note that since τB and νB are very small in typical scenarios, the joint sparsity

parameter ∆m′∆i′ of the leakage kernels Λ
(θ)
p will not be much larger than the individual

sparsity parameters (2∆m+1)(2∆i+1).

6.1.4 Basis Optimization

The basis optimization technique described in Section 5.1.4 can also be adapted to

the multichannel setting to improve the performance of the multichannel compressive

channel estimator. To do so, recall the channel model (6.7) specialized to the case P = 1,

i.e. the single-scatterer channel h(θ)(t, τ) = η
(θ)
1 δ
(
τ − τ (θ)

1

)
e2πν

(θ)
1 t for θ ∈ Θ, where ττ1 :=

(τ
(1,1)
1 , . . . , τ

(NR,NT)
1 ) and νν1 :=(ν

(1,1)
1 , . . . , ν

(NR,NT)
1 ) are random and distributed according

to the pdf ℘
(
ττ1, νν1

)
. A non-statistical design is easily obtained by constructing ℘

(
ττ1, νν1

)
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from uniform distributions. From here on, we omit the index 1. Following Section 4.4, we

measure the joint sparsity of the coefficient vectors g(θ) by ‖G‖2,1, where G is the JD×
NRNT matrix G =

[
g(θ1) . . .g(θNRNT

)
]

for an arbitrary but fixed ordering
{
θ1, . . . , θNRNT

}
of Θ. Recalling (6.2), the goal of this section therefore is to find orthonormal basis

functions um,i[λ, κ] for each m = 0, . . . , D−1 such that E
{
‖G‖2,1

}
is minimized. In order

to do so, we again consider the special case (5.22), i.e. um,i[λ, κ] = (1/
√
D)vm,i[λ]e−2π

κm
D .

Recall the definition of Vm for m = 0, . . . , D−1 as the J × J matrices corresponding to

the columnwise stacking of the basis functions vm,i. Following Section 5.1.4, we define

the vectors c
(θ)
m :=

[
C(θ)[m, 0], . . . , C(θ)[m, J−1]

]T
for

C(θ)[m,λ] :=

J/2−1∑
i=−J/2

α
(θ)
m,ie

2π λi
D =

J/2−1∑
i=−J/2

β
(θ)
m,ivm,i[λ]

according to (5.20) and (5.21), where

α
(θ)
m,i := η(θ)

N−1∑
q=0

e
π
(
ν(θ)Ts− i+qLN0

)(
N0−1
)
ψ
(
i+ qL− ν(θ)TsN0

)
A∗γ,g

(
m,

i+ qL

N0

)

according to (5.19). Moreover, we define c̃
(θ)
m :=

√
Dφ

(θ)
p

(
m − τ (θ)/Ts

)
c

(θ)
m . Then, by

following (5.23), the vectors g
(θ)
m :=

[
G

(θ)
m,−J/2, . . . , G

(θ)
m,J/2−1

]T
become g

(θ)
m = VH

mc̃
(θ)
m for

each m = 0, . . . , D−1 and θ ∈ Θ. Gathering these vectors into the J ×NRNT matrices

Gm :=
[
g

(θ1)
m . . .g

(θNRNT
)

m

]
and C̃m :=

[
c̃

(θ1)
m . . . c̃

(θNRNT
)

m

]
, we thus have

Gm = VH
mC̃m , m = 0, . . . , D−1 . (6.14)

Recalling (2.3) note that obviously

‖G‖2,1 =
D−1∑
m=0

J/2−1∑
i=−J/2

‖G‖(S(m,i))
2 =

D−1∑
m=0

J/2−1∑
i=−J/2

‖Gm‖(i+J/2)
2 =

D−1∑
m=0

‖Gm‖2,1 ,

where S is the one-to-one mapping of (5.8), and ‖Gm‖(i+J/2)
2 denotes the `2-norm of the

(i+J/2)-th row of Gm. Since the expectation is linear, we again can decompose the prob-

lem of minimizing E
{
‖G‖2,1

}
into the D smaller problems of minimizing E

{
‖Gm‖2,1

}
,

which can be written as

V̂m = arg min
Vm∈U

E
{
‖VH

mC̃m‖2,1

}
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for each m = 0, . . . , D−1, where U denotes the set of all unitary J × J matrices. Once

more, by using a Monte-Carlo approximation (see (2.13)), (6.14) and the linearity of the

expectation we can redefine these problems as

V̂m = arg min
Vm∈U

∑
ρ

J−1∑
i=0

∥∥VH
m

(
C̃m

)
ρ

∥∥(i)

2
, m = 0, . . . , D−1 ,

where
(
C̃m

)
ρ

denotes the value of C̃m for a sample of the random vector (ττ, νν) drawn

from its pdf ℘(ττ, νν). As before we set η(θ) =1 for all θ ∈ Θ in this simple setting, although

their distribution could also be taken into account (see [3] for the SISO case).

To solve these problems the algorithm presented in Section 5.1.4 only has to be adapted

somewhat, but nevertheless we state the entire algorithm for the sake of completeness.

• Input. Initialization matrix V
(0)
m , pdf ℘(ττ, νν), initial threshold γ(0).

• Initialization. n = 0

• while stopping criterion not met do

1. Solve the convex problem Â
(n)
m = arg min

A∈Hn

∑
ρ

∑J−1
i=0 ‖(IJ+A)V

(n)
m

(
C̃m

)
ρ
‖(i)

2 ,

where Hn denotes the set of all Hermitian matrices A with ‖A‖∞ < γ(n)

2. Set V̂
(n)
m = eÂ

(n)
m V

(n)
m

3. if
∑

ρ

∑J−1
i=0 ‖V̂

(n)
m

(
C̃m

)
ρ
‖(i)

2 <
∑

ρ

∑J−1
i=0 ‖V

(n)
m

(
C̃m

)
ρ
‖(i)

2

update V
(n+1)
m = V̂

(n)
m and γ(n+1) = γ(n)

else

update V
(n+1)
m = V

(n)
m and γ(n+1) = γ(n)/2

4. Iterate n 7→ n+ 1

• Output. Vm = V
(n)
m

As before, the algorithm is stopped if either the maximal number of iterations is reached

or if the threshold γ(n) falls below a prescribed value. Also, we choose the J × J DFT

matrix as initialization matrix V(0) because the analysis carried out in Section 6.1.3

yields that in this case the expansion coefficients G
(θ)
m,i =

√
JDF

(θ)
m,i are already jointly

compressible to a certain degree. Finally note again that the optimization problem does

not depend on the actual channel parameters or the receive signal, and it therefore only

has to be solved once before the start of data transmission.
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6.1.5 Simulation Results

In the following we present simulation results demonstrating the performance gain ob-

tained by the proposed multichannel compressive channel estimator in comparison to

the conventional compressive channel estimator of Section 5.1.1. The simulation setup

was similar to the one described in Section 5.1.5.

MC MIMO system parameters. We simulated a CP-MIMO-OFDM system with again

K = 512 subcarriers, CP-length Lcp = 128, center frequency f0 = 5 GHz and bandwidth

1/Ts = 5 MHz. We also used 4-QAM symbols and root-raised cosine filters f1(t) = f2(t)

with roll-off factor α = 1/4. The number of transmit and receive antennas was NT =

NR ∈ {1, 2, 3, 4}.

Channel. Doubly selective channels during blocks of L = 32 OFDM symbols were

again generated using IlmProp [143]. Actually, we used the same channel realizations

for the SISO case as we did here, by simply reducing the channel to one of the pairs of

transmit/receive antennas. For details see Section 5.1.5.

Subsampling and pilot setup. We again used a subsampled time-frequency grid G with

spacing ∆L = 1 and ∆K = 4. We fixed the number of pilots as Q = |P(s)| = 1024

(s = 1, . . . , NT), meaning that 6.25 ·NT% of all the symbols were pilots. Then, we chose

a set of size NTQ uniformly at random from G and divided it into NT sets of equal size

Q in order to obtain the pilot sets P(s) for s = 1, . . . , NT. This way of choosing the pilot

sets not only assures that the they are pairwise disjoint, but also that the measurement

matrices Φ(s) are ”close to” being constructed according to Theorem 4.2.6 (i.e. the pilot

positions are ”close to” being chosen uniformly at random). Therefore, we expected

these matrices to have good reconstruction properties.

Performance measure. Again the performance is measured by the MSE normal-

ized by the mean energy of all the channel coefficients, i.e.
∑

θ∈Θ

∑L−1
l=0

∑K−1
k=0

∣∣H(θ)
l,k −

Ĥ
(θ)
l,k

∣∣2/∑θ∈Θ

∑L−1
l=0

∑K−1
k=0

∣∣H(θ)
l,k

∣∣2.

Channel estimation. In [23] it was proposed to use the conventional compressive

channel estimator for each cross-channel of a MIMO system individually. Therefore, we

compared this method to the proposed multichannel compressive estimator. We used

BPDN, CoSaMP and OMP for the channel-per-channel application of the conventional

compressive channel estimator, and DCS-SOMP as well as G-BPDN and G-CoSaMP for

the (reformulated) multichannel estimator. Furthermore, we constructed an optimized

100



6.1 Multichannel Compressive Channel Estimation

basis according to Section 6.1.4 again using a non-statistical design. The basic parame-

ters were the same as in Section 5.1.5. The pdf was chosen as ℘(ττ, νν) = ℘
(
τ (1,1), ν(1,1)

)
℘
(
τ (1,2), ν(1,2)

∣∣τ (1,1), ν(1,1)
)
· · ·℘

(
τ (NR,NT), ν(NR,NT)

∣∣τ (1,1), ν(1,1)
)
, where each factor is uni-

form in a rectangular region. The region for the first factor was determined as in Sec-

tion 5.1.5, whereas the regions for the remaining factors were determined by τB and νB

(see Section 6.1.3). A difference of up to 3 bins for the discrete Doppler shift ν
(θ)
p for the

various cross-channels θ ∈ Θ was accounted for, corresponding to approximately 1.4 Hz.

For BPDN and G-BPDN the noise parameter ε was again chosen as ε = 10−2.6. The

number of CoSaMP and G-CoSaMP iterations was 16 for both the 2D DFT and the

optimized basis. The sparsity estimates S and Sopt as well as the numbers of DCS-SOMP

iterations nDCS-SOMP and nopt
DCS-SOMP were chosen according to Table 6.1 (note that the

parameters for CoSaMP and OMP correspond to the first column, i.e. NT = 1). All the

parameters were found experimentally.

NT
Par.

S

Sopt

nDCS-SOMP

nopt
DCS-SOMP

Table 6.1: Simulation parameters S and Sopt for G-CoSaMP as well as nDCS-SOMP

and nopt
DCS-SOMP for DCS-SOMP for the various numbers NT = NR of trans-

mit/receive antennas

Results. In Fig. 6.3(a) we plot the MSE of channel estimation versus the SNR for a

MIMO system with NT = NR = 2 transmit/receive antennas. It can be readily seen that

utilizing the joint compressibility of the expansion coefficients substantially improves the

performance of the compressive channel estimator. Also, the use of an optimized basis

yields an additional performance gain, as seen in Fig. 6.3(b). This is due to the ”better”

joint sparsity of the coefficient matrices Gm,i with respect to this basis in comparison to

the 2D DFT coefficient matrices Fm,i. But note again that the improved performance

comes at the cost of an increased computational complexity.
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(a) Multichannel compressive channel estima-

tion compared to channel-per-channel conven-

tional compressive channel estimation

SNR [dB]

M
S

E
[d

B
]

(b) Comparison of the use of the 2D DFT basis

to that of an optimized basis

Figure 6.3: Performance of the multichannel compressive channel estimator in a system

with NT = NR = 2 transmit/receive antennas: MSE versus SNR

In Fig. 6.4 the MSE of channel estimation is plotted versus the number of trans-

mit/receive antennas NT = NR ∈ {1, 2, 3, 4} at a fixed SNR of 21 dB, and we only show

the results for the 2D DFT basis. Note that for this figure we only used 150 different

simulation runs. Clearly the performance of the proposed multichannel compressive es-

timator improves with an increasing number of antennas, since with a larger number

of jointly compressible signals the estimation of the essential joint support should be-

come more accurate. This behavior has been studied in [129] (although the authors

only considered the algorithms M-BPDN and SOMP). The flattening of the curves, on

the contrary, cannot easily be explained. We think it is due to the fact that the cross-

channels are not only jointly compressible, but also similar to some degree. In other

words, not only their essential supports mostly overlap, but their entries are also quite

similar. In [129] it is explained that the worst case scenario for MCS is if all the jointly

sparse (or compressible) signals are equal, because in this case no additional support

information can be gained despite the larger number of signals. Accordingly, we are ac-

tually close to the worst case scenario, which could lead to the flattening of the curves.

However, this effect is alleviated since in our case NT different measurement matrices

are involved, and therefore ”different” information can be gained about the quite similar

jointly compressible signals. In contrast, the conventional compressive channel estima-
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Figure 6.4: MSE of multichannel compressive channel estimation versus the number of

transmit/receive antennas NT = NR

tor used channel-per-channel is not affected by the number of antennas, therefore its

performance stays quite constant.

In analogy to the SISO case, DCS-SOMP outperforms G-BPDN and G-CoSaMP,

whereas G-BPDN is the fastest and most stable method regarding the choice of param-

eters. Finally note that the computational complexity of the proposed multichannel

compressive estimator basically equals that of the conventional compressive estimator

used channel-per-channel (taking into account that only NT different measurement ma-

trices are involved).

Conclusion. The multichannel compressive estimator has been seen to outperform the

channel-per-channel use of the conventional compressive estimator at an equal computa-

tional cost. Furthermore, the use of an optimized basis yields an additional performance

gain, though the computational complexity increases. All in all, the proposed estimator

should clearly be favored in the MIMO case.

6.2 Multichannel Compressive Channel Estimation

using Group Sparsity Methods

In Section 6.1.3 we have shown that the shifted leakage kernels of the different cross-

channels in a MIMO system can be considered jointly compressible. Moreover, the
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analysis given in Section 5.2.3 indicates that each of these cross-channels can addition-

ally be considered group compressible. Therefore, we adapt the method presented in

Section 6.1.1 by using MGSCS techniques to also take the group compressibility into

account. We first present the general method in Section 6.2.1, followed by a short note

on its computational complexity in Section 6.2.2. Then, the joint delay-Doppler group

compressibility of the individual cross-channels is investigated in Section 6.2.3. After

adapting of the basis optimization method described in Section 6.1.4 to this setting

in Section 6.2.4, we finally present experimental results indicating that the proposed

method outperforms the previously described methods in Section 6.2.5.

6.2.1 The Method

We consider the same setting as in Section 6.1.1. The only difference actually occurs in

Step 2, where now MGSCS techniques are used.

In order to describe the method very briefly, first recall that we assume the 2D DFT co-

efficient matrices Fm,i to be supported inside the box {0, . . . , D−1}×{−J/2, . . . , J/2−1}
for J and D as in Section 6.1.1. To incorporate the group sparsity of these ma-

trices (see Section 6.2.3), recall the partition of this set into the small blocks Bb =

{kb∆m̃, . . . , (kb + 1)∆m̃} × {lb∆ĩ, . . . , (lb + 1)∆ĩ} for kb ∈ {0, . . . , BD−1} as well as

lb ∈ {−BJ , . . . , BJ−1} as described in Section 5.2.1, which are again of size ∆m̃ ×∆ĩ

for some integers ∆m̃ and ∆ĩ such that BD = D/∆m̃ and BJ = (J/2)/∆ĩ are inte-

gers. Then, following Section 6.2.3, we can consider the 2D DFT coefficients F
(θ)
m,i, or

more generally the coefficients G
(θ)
m,i of (6.2), jointly group compressible with respect to

these blocks. Recalling the partition J = {Ib}B−1
b=0 of {0, . . . , JD−1} with the groups

Ib = S(Bb), where S is the one-to-one mapping from (5.8), this can again be translated

into the joint group compressibility of the vectors x(θ) in (6.4).

Now we can state the multichannel estimator utilizing group sparsity methods. Before

starting data transmission pairwise disjoint pilot sets P(s) ⊂ G of equal size |P(s)| ≡ Q

are chosen uniformly at random from the subsampled grid G (see Section 5.1.1) for

all s = 1, . . . , NT. Furthermore linearly independent pilot vectors p(s) are chosen and

communicated to the receiver. They stay fixed during data transmission. The receiver

then proceeds as follows.
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Step 1. For each θ = (r, s) ∈ Θ stack the received symbols at the pilot positions cor-

responding to the transmit antenna s into the vector y(θ) and run any MGSCS

algorithm to obtain estimates x̂(θ) of the vectors x(θ).

Step 2. Rescale these estimates x̂(θ) with
√
JD/Q to get estimates Ĝ

(θ)
m,i of G

(θ)
m,i.

Step 3. Calculate ĝ
(r)
m,i = P−T

[
G̃

(r,1)
m,i , . . . , G̃

(r,NT)
m,i

]T
, where P :=

[
p(1) · · ·p(NT)

]
, which

is non-singular since the pilot vectors p(s) were chosen linearly independent.

Step 4. Calculate estimates of the subsampled channel coefficient matrices Hλ∆L,κ∆K

from (6.2).

Step 5. Invert (6.1) to obtain estimates of the 2D DFT coefficient matrices Fm,i for

m = 0, . . . , D− 1 and i = −J/2, . . . , J/2− 1. Note that by assumption Fm,i

vanishes for all other indices.

Step 6. Calculate estimates of all the channel coefficient matrices Hl,k by using the 2D

DFT expansion (3.21).

Note that in the special case where the 2D DFT basis is used Steps 4 and 5 can be

omitted, since in that case we have Gm,i =
√
JDFm,i.

As already mentioned before, the only difference to the method presented in Sec-

tion 6.1.1 is the reconstruction technique used in Step 1, where now MGSCS methods

can be used. To do so, the MCS algorithm DCS-SOMP can easily be adapted to also

take group sparsity into account. Alternatively, as explained in Section 4.5, we can

transform the problem into a quite large GSCS problem by defining a new partition

J̃ according to (4.11). Then, recalling the vectors x and z from Section 6.1.1 as the

stackings of the vectors x(θ) and z(θ) (θ ∈ Θ), respectively, we can obtain a bound for

the estimation error of the proposed method for G-BPDN and G-CoSaMP.

Theorem 6.2.1. Let S ⊆ {0, . . . , 2BDBJ−1} be any set of size |S| = S. Furthermore,

let

CG,S,J :=
∑
b/∈S

( ∑
(m,i)∈Bb

‖Gm,i‖2
F

)1/2

,

as well as εn := ‖z‖2 and ε > 0.

1. Use G-BPDN to solve the reformulated problem in Step 1 of the multichannel

compressive channel estimator. If all the matrices Φ(s) satisfy the G-RIP with G-

RIC δ
(s)
2S|J <

√
2− 1, respectively, and if εn < ε, we can bound the estimation error
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as √√√√∑
θ∈Θ

L−1∑
l=0

K−1∑
k=0

∣∣∣H(θ)
l,k − Ĥ

(θ)
l,k

∣∣∣2 ≤ C ′0S
−1/2CG,S,J + C ′1ε ,

with the constants C ′0 := c0

√
LK
JD
CP and C ′1 := c1

√
LK
Q
‖P−1‖F , where CP :=

‖P‖F‖P−1‖F , while c0 and c1 are the constants from Theorem 4.3.4.

2. Using G-CoSaMP with i steps in Step 2, assume that each matrix Φ(s) satisfies the

G-RIP over J with G-RIC δ
(s)
4S|J < 0.1, and assume that εn < ε. Then√√√√∑

θ∈Θ

L−1∑
l=0

K−1∑
k=0

∣∣∣H(θ)
l,k − Ĥ

(θ)
l,k

∣∣∣2 ≤ C̃0S
−1/2CG,S,J + C̃1ε+ C̃2 ,

with the constants C̃0 := 20
√

LK
JD
CP, C̃1 := 20

√
LK
Q
‖P−1‖F and C̃2 := 2−i

√
LK
Q
CP(∑

(m,i),θ

∣∣G(θ)
m,i

∣∣2)1/2

. Note that again since the number of G-CoSaMP iterations

can be chosen arbitrarily, C̃2 can be made arbitrarily small.

Proof. The proof follows the proof of Theorem 6.1.1. First recall (6.5), namely√√√√∑
θ∈Θ

L−1∑
l=0

K−1∑
k=0

∣∣∣H(θ)
l,k − Ĥ

(θ)
l,k

∣∣∣2 ≤ √LK

Q
‖P−1‖F‖x− x̂‖2 .

For part 1 of this theorem, note that the assumptions on Φ(s) together with Corol-

lary 4.5.2 yield that the G-RIC δ2S|J̃ with respect to the modified partition J̃ (see

(4.11)) of the stacked measurement matrix Φ, which is constructed from NR copies of

each matrix Φ(s) on its diagonal, satisfies δ2S|J̃ <
√

2− 1. This and the assumption on

εn allow us to use Theorem 4.3.4, which yields

‖x− x̂‖2 ≤ c0

σS(x)2|J̃√
S

+ c1ε

with the constants given therein. By definition of σS(x)2|J̃ we can again derive

σS(x)2|J̃ ≤
∑
b/∈S

( ∑
(m,i)∈Bb

√
Q

JD

∑
θ∈Θ

∣∣∣[g̃(θ)
]
S(m,i)

∣∣∣2)1/2

≤
√

Q

JD
‖P‖F

∑
b/∈S

( ∑
(m,i)∈Bb

‖Gm,i‖2
F

)1/2

.
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which finally gives√√√√∑
θ∈Θ

L−1∑
l=0

K−1∑
k=0

∣∣∣H(θ)
l,k − Ĥ

(θ)
l,k

∣∣∣2 ≤ c0

√
LK

JD
‖P−1‖F‖P‖F

CG,S,J√
S

+ c1

√
LK

Q
‖P−1‖F ε .

For part 2 the assumptions on Φ(s) (and thus on the stacked matrix Φ) and εn together

with Theorem 4.3.5 yield

‖x− x̂‖2 ≤ 20
(
1 + S−1/2

)
σS(x)2|J̃ + 20ε+ 2−i‖x‖2 .

Finally setting the constants C̃0 := 20
√

LK
JD
CP, C̃1 := 20

√
LK
Q
‖P−1‖F and C̃3 :=

√
LK
Q

CP

(∑
(m,i),θ

∣∣G(θ)
m,i

∣∣2)1/2

finishes the proof.

As in all the previous results S can be chosen arbitrarily, but in order to achieve a small

error it should contain the groups covering the essential joint support of the coefficient

matrices Gm,i. In the case where the 2D DFT basis is used, CG,S,J again characterizes

the leakage occurring, the second term is due to the noise, and the third term in the

error estimate of part 2 of the theorem can be made arbitrarily small by choosing the

number of G-CoSaMP iterations large enough. Again, note that the computational cost

of G-CoSaMP increases with a larger number of iterations (see Section 4.3).

6.2.2 Computational Complexity

Obviously, the computational complexity of the proposed method equals that of the

multichannel estimator presented in Section 6.1.1 in each step but the first. Thus, it is

given by

O
(
MGSCS

)
+O

(
NRNT(JD)2

)
+O

(
LK log(LK)

)
.

As already mentioned several times throughout this thesis, it is hard to give explicit val-

ues for O
(
MGSCS

)
, since it depends on the implementation. Nevertheless, it will dom-

inate the overall complexity of the estimator in typical scenarios. Applying for example

G-CoSaMP to the reformulated system yields O
(
MGSCS

)
= O

(
nG-CoSaMPNR

∑
s Φ(s)

)
,

where nG-CoSaMP denotes the maximal number of iterations. Note that the vector-matrix

product by the stacked matrix Φ can again be implemented taking the block-diagonal

structure into account, and thus reducing its complexity. In a straight forward way
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the algorithm DCS-SOMP can be adapted to also incorporate group sparsity. In-

stead of adding only single indices to the joint support in each iteration, Group DCS-

SOMP (G-DCS-SOMP) adds entire groups corresponding to the maximal `2-norm of

the group-subvectors u(i)[b] of u(i). Following the implementation of OMP in [102]

the computational complexity of G-DCS-SOMP in this special setting (where only

NT different matrices are involved) is O
(
G-DCS-SOMP

)
= O

(
NTJD(n′G-DCS-SOMP)2 +

nG-DCS-SOMPNR

∑
s Φ(s)

)
, where again nG-DCS-SOMP and n′G-DCS-SOMP denote the num-

ber of G-DCS-SOMP iterations and the sum of the magnitudes of the chosen groups,

respectively.

Furthermore, note that although the actual bounds do not change, taking the joint

group compressibility into account will reduce the running time compared to the con-

ventional multichannel estimator which only accounts for the joint compressibility (at

least for some of the algorithms).

Finally, the proposed method obviously coincides with the compressive estimator uti-

lizing group sparsity of Section 5.2.1 in the SISO case, i.e. NT = NR = 1, and with the

multichannel compressive estimator of Section 6.1.1 in the case where each group only

contains one index, i.e. ∆m̃ = ∆ĩ = 1.

6.2.3 Joint Delay-Doppler Group Sparsity

In Section 6.1.3 we have shown that the shifted leakage kernels Λ
(θ)
p defined in (6.9)

can be considered jointly compressible. Furthermore, in Section 5.2.3 we have seen that

each such leakage kernel can also be considered group compressible. Therefore, they are

jointly group compressible as described in Section 4.5.

To be more precise, we again consider the same tiling of Z × Z into the blocks Bb of

size ∆m̃ × ∆ĩ as defined in Section 5.2.3. Then, the exact same arguments yield that

the joint support of the leakage kernels Λ
(θ)
p for θ ∈ Θ is contained in at most N ′Λ blocks

with

N ′Λ :=
(⌈2∆m′

∆m̃

⌉
+ 1
)(⌈2∆i′

∆ĩ

⌉
+ 1
)
,

where ∆m′ and ∆i′ are as defined in Section 6.1.3. Then, following the reasoning given

in Section 5.2.3 and Section 6.1.3, the spreading functions S
(θ)
h [m, i] and, in turn, the 2D

DFT coefficients F
(θ)
m,i are jointly group compressible, too.
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Finally note that in this case also the coefficients G̃
(θ)
m,i are jointly group sparse over

the partition J , which is again defined as in Section 5.2.1 (see Section 6.1.1 for an

explanation).

6.2.4 Basis Optimization

It is straight forward to combine the basis optimization methods from Section 6.1.4

and Section 5.2.4. To do so, recall the modified partition J̃ := {Ĩb}B−1
b=0 from (4.11)

with groups Ĩb = {k + iJD|k ∈ Ib, i = 0, . . . , NRNT−1}, where J = {Ib}B−1
b=0 with

Ib = S(Bb) is the partition defined in Section 5.2.1. Then, following Section 4.3, the

joint group sparsity of the coefficient vectors g(θ) can be measured by ‖g‖2|J̃ , where

g =
[
g(θ1)T . . .g(θNRNT

)T
]T

is the stacked coefficient vector, i.e.

‖g‖2|J̃ =
B−1∑
b=0

( ∑
(m,i)∈Ib

∑
θ∈Θ

∣∣G(θ)
m,i

∣∣2)1/2

. (6.15)

To better fit the notation we have used in Section 6.1.4, recall the JD × NRNT matrix

G =
[
g(θ1) . . .g(θNRNT

)
]
. Then we define G[b] as the |Ib| ×NRNT submatrix constituted

of the rows of G corresponding to the indices in Ib for each b = 0, . . . , B−1. With this

at hand, we can define ‖G‖F |J :=
∑B−1

b=0 ‖G[b]‖F , which is easily seen to coincide with

the right side of (6.15). This, in turn, yields that ‖g‖2|J̃ = ‖G‖F |J . Therefore, we can

state the goal of this section as follows. For each m = 0, . . . , D−1 find orthonormal

basis functions um,i[λ, κ] such that E
{
‖G‖F |J

}
is minimized, where the expectation is

taken with respect to the random variables (ττ, νν), which are distributed according to a

pdf ℘(ττ, νν).

Next, recall (6.14), namely Gm = VH
mC̃m for m = 0, . . . , D−1, with Gm, Vm and

C̃m defined as in Section 6.1.4, and the block-diagonal JD × JD matrix V with the

J×J blocks Vm on its diagonal. Furthermore, in analogy to Section 5.2.4, we define the

JD × NRNT matrices G̃ and C̃ as the ”matrix-wise” stacking of the matrices Gm and

C̃m, respectively, ”above” each other. Then, we can obviously write G̃ = VHC̃. Now

recall the one-to-one mapping S′ from (5.27), which corresponds to rowwise stacking of

a matrix into a vector, and the partition J ′ = {I ′b}B−1
b=0 of {0, . . . , JD−1} with the groups

I ′b = S′(Bb). The columns of G̃ correspond to the rowwise stacking of the coefficients

G
(θ)
m,i, i.e.

[
G̃
]
S′(m,i),θn

= G
(θn)
m,i , whereas the columns of G correspond to columnwise
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stacking, i.e.
[
G
]
S(m,i),θn

= G
(θn)
m,i . Thus we have

‖G̃‖F |J ′ =
B−1∑
b=0

(NRNT∑
n=1

∑
(m,i)∈Bb

∣∣[G̃]
S′(m,i),θn

∣∣2)1/2

=
B−1∑
b=0

(∑
θ∈Θ

∑
(m,i)∈Bb

∣∣G(θ)
m,i

∣∣2)1/2

=
B−1∑
b=0

( |Θ|∑
n=1

∑
(m,i)∈Bb

[
G
]
S(m,i),θn

)1/2

= ‖G‖F |J .

Therefore, the optimization problem can be formulated as

V̂ = arg min
V∈Ũ

E
{
‖VHC̃‖F |J ′

}
,

where Ũ again denotes the set of all blockdiagonal JD×JD matrices with unitary blocks

of size J×J on the diagonal. As before, by using a Monte-Carlo approximation we finally

state the problem as

V̂ = arg min
V∈Ũ

∑
ρ

∥∥VH
(
C̃
)
ρ

∥∥
F |J ′} ,

with
(
C̃
)
ρ

denoting the value of C̃ for a sample of the random vector (ττ, νν) drawn from

its pdf ℘(ττ, νν). Once again, we have ignored the path gain, the distribution of which

could also be taken into account (extending [3]).

Finally, we merely state the adaption of the optimization algorithm.

• Input. Initialization matrix V(0), pdf ℘(ττ, νν), initial threshold γ(0).

• Initialization. n = 0

• while stopping criterion not met do

1. Solve the convex problem Â(n) =arg min
A∈H̃n

∑
ρ ‖(IJ+A)V(n)

(
C̃
)
ρ
‖F |J ′ , where

H̃n denotes the set of all block-diagonal matrices A with Hermitian blocks

of size J × J on its diagonal, where ‖A‖∞ < γ(n)

2. Set V̂(n) = eÂ
(n)

V
(n)
m

3.

if
∑

ρ ‖V̂(n)
(
C̃
)
ρ
‖F |J ′ <

∑
ρ ‖V(n)

(
C̃
)
ρ
‖F |J ′

update V(n+1) = V̂(n) and γ(n+1) = γ(n)

else

update V(n+1) = V(n) and γ(n+1) = γ(n)/2

4. Iterate n 7→ n+ 1

• Output. V = V(n)
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As always, the algorithm is stopped if γ(n) falls below a prescribed threshold or after

the maximal number of iterations, and V(0) is chosen with J × J DFT blocks on the

diagonal. Finally, note that as explained in Section 5.2.4, this optimization problem can

be decomposed into BJ = D/∆m̃ separate problems of dimension J∆m̃× J∆m̃, each.

6.2.5 Simulation Results

We compared the proposed channel estimator to the compressive estimators of Sec-

tion 5.1.1, Section 5.2.1 and Section 6.1.1.

Simulation setup. We used the same MC MIMO system parameters and pilot setup as

described in Section 6.1.5, and we even used the same channel realizations generated by

the simulation tool IlmProp. We chose the number of transmit/receive antennas to be

NT = NR = 2, and we defined the groups as described in Section 6.2.1, i.e. J = {Ib}B−1
b=0

with Ib = S(Bb), where the blocks Bb were of size ∆m̃ × ∆ĩ. For our simulations we

used ∆m̃,∆ĩ ∈ {1, 2, 4, 8}. Note that for ∆m̃ = ∆ĩ = 1 the method coincides with the

multichannel compressive estimator of Section 6.1.1, and for NT = NR = 1 it coincides

with the estimator of Section 5.2.1 only utilizing group sparsity.

In addition, we generated an optimized basis according to Section 6.2.4, where once

more a non-statistical design was used. The basic parameters were chosen as in Sec-

tion 6.1.5. By the same reasoning as in that section and in Section 5.2.5 only one basis

had to be computed for each ∆ĩ ∈ {1, 2, 4, 8}. As before, the optimization algorithm

was initialized with a blockdiagonal matrix with J × J DFT matrices on its diagonal.

For the sparse reconstruction in Step 1 we used G-DCS-SOMP as well as G-BPDN and

G-CoSaMP (for the reformulated problem). We chose the noise parameter for G-BPDN

as ε = 10−2.6, and the number of G-CoSaMP iterations as nG-CoSaMP = nopt
G-CoSaMP = 16

for all group sizes and both the 2D DFT and the optimized basis. The sparsity estimates

S and Sopt as well as the numbers nG-DCS-SOMP and nopt
G-DCS-SOMP were chosen according

to Table 6.2. These parameters were again found experimentally.

Note that for the channel-per-channel use of the compressive estimator of Section 5.2.1

we used the parameters given in Table 5.1. Finally note that the performance is measured

by the normalized MSE.
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∆ĩ
∆m̃

(a) Sparsity estimate S for G-CoSaMP

using the 2D DFT basis

∆ĩ
∆m̃

(b) Number nG-DCS-SOMP of G-DCS-

SOMP iterations using the 2D DFT ba-

sis

∆ĩ
∆m̃

(c) Sparsity estimate Sopt for G-

CoSaMP using an optimized basis

∆ĩ
∆m̃

(d) Number noptG-DCS-SOMP of G-DCS-

SOMP iterations using an optimized

basis

Table 6.2: Simulation parameters for the multichannel compressive estimator utilizing

group sparsity using G-CoSaMP and G-DCS-SOMP

Results. In Fig. 6.5(a) we compare the performance of the proposed estimator to

the compressive estimator of Section 5.2.1, used for each cross-channel individually,

by plotting the MSE of channel estimation versus the SNR. Here the blocks defining

the partition J were of size ∆m̃ × ∆ĩ = 2 × 2. It is obvious that taking the joint

group compressibility of the expansion coefficients into account considerably improves

the performance of the compressive channel estimator. Moreover, the use of an optimized

basis can be seen to yield another substantial improvement from Fig. 6.5(b), although

the computational complexity is increased.

In Fig. 6.6 we compare the performance of the proposed method for different sizes

of the blocks Bb defining the partition J . Here we only show the results for the use of

G-DCS-SOMP and the 2D DFT basis. It can be seen that in this setting the block size
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(a) Compressive channel estimation utilizing

group sparsity for the 2D DFT basis: the mul-

tichannel version compared to the channel-per-

channel version

SNR [dB]

M
S

E
[d

B
]

(b) Comparison of the use of the 2D DFT basis

to that of an optimized basis

Figure 6.5: Performance of the multichannel compressive estimator utilizing group spar-

sity for block size ∆m̃×∆ĩ = 2× 2: MSE versus SNR

SNR [dB]

M
S

E
[d

B
]

Figure 6.6: Performance of the multichannel compressive estimator utilizing group spar-

sity for various block sizes ∆m̃×∆ĩ using G-DCS-SOMP and the 2D DFT

basis: MSE versus SNR
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∆m̃ × ∆ĩ = 2 × 2 renders the best performance, but that choosing ∆m̃ × ∆ĩ = 1 × 1

yields results quite similar to those obtained by most of the other block sizes. Thus, we

conclude that utilizing the joint compressibility of the expansion coefficients is already

close to optimal in this setting. Nevertheless, choosing the blocks somewhat larger yields

a similar (or even better) performance, but reduces the running time of the MGSCS

algorithm G-DCS-SOMP.

Conclusion. The multichannel compressive estimator utilizing group sparsity has been

shown to outperform the conventional compressive estimator used channel-per-channel,

and to perform comparable to the multichannel compressive estimator of Section 6.1.1,

while having a shorter running time (if G-DCS-SOMP is used). On the one hand, using

an optimized basis yields another performance gain, while on the other hand it leads to

an increased computational complexity.
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Chapter 7
Compressive Channel Tracking

The basic idea of channel tracking is to utilize information about the channel from

previous estimates to improve the quality of the present estimate. Several different

tracking methods have been proposed for SISO and MIMO MC systems. Most of them

make use of Kalman filter techniques, such as [26, 27]. In this chapter we adapt the

compressive channel estimators presented before so that the channel can actually be

tracked by utilizing MOD-CS methods. First, we consider the SISO case in Section 7.1

for notational convenience. Then, we briefly explain the extension to the MIMO case in

Section 7.2, also taking the (joint) group compressibility into account. Finally, we present

simulation results which indicate that the compressive channel tracker outperforms the

previously introduced compressive channel estimators in Section 7.3.

7.1 Compressive Channel Tracking in SISO Systems

Here, we first present the general method in Section 7.1.1, followed by a short note on its

computational complexity in Section 7.1.2. In Section 7.1.3 we finally show that typical

channels can be considered approximately sequentially sparse, which motivates the use

of MOD-CS techniques.

7.1.1 The Method

For the tracking scenario we assume that Ω blocks of L OFDM symbols each are trans-

mitted. For each of these blocks we can use the system description given in Section 3.4,

115



7 Compressive Channel Tracking

adding an index ω = 0, . . . ,Ω−1. If we again assume the 2D DFT coefficients F
(ω)
m,i from

(3.17) for each ω to be supported inside the box {0, . . . , D−1}×{−J/2, . . . , J/2−1} with

D and J such that ∆K = K/D and ∆L = L/J are integers, the channel coefficients

H
(ω)
l,k are determined by their values on the subsampled grid G = {(λ∆L, κ∆K) |λ =

0, . . . , J−1; κ = 0, . . . , D−1}. Then (5.1) yields

H
(ω)
λ∆L,κ∆K =

D−1∑
m=0

J/2−1∑
i=−J/2

F
(ω)
m,ie

−2π(κm
D
−λi
J

) , (7.1)

or once more using a basis yielding enhanced sparsity of the coefficients,

H
(ω)
λ∆L,κ∆K =

D−1∑
m=0

J/2−1∑
i=−J/2

G
(ω)
m,ium,i[λ, κ] . (7.2)

For pilot-aided channel estimation we first choose pilot sets P(ω) ⊂ G of size Q(ω) :=

|P(ω)|. Then, proceeding exactly as in Section 5.1.1 and using the same notation, we

define ĥ
(ω)
(p) to be the vector of the estimated channel coefficients at the pilot positions

P(ω), g(ω) = vec{G(ω)
m,i}m,i, z

(ω)
(p) with entries z̃

(ω)
l,k /p

(ω)
l,k , where z̃l,k are the noise terms from

(3.13) and p
(ω)
l,k are the pilot symbols, and U

(ω)
(p) the Q(ω) × JD matrix constituted of the

rows of U corresponding to the indices in P(ω), where U is the columnwise stacking of

the vectorized basis functions vec{um,i[λ, κ]}λ,κ. Then, (5.4) yields

ĥ
(ω)
(p) = Φ(ω)x(ω) + z

(ω)
(p) (7.3)

for each ω = 0, . . . ,Ω−1, where Φ(ω) :=
√
JD/Q(ω)U

(ω)
(p) and x(ω) =

√
Q(ω)/JDg(ω).

As explained in Section 5.1.1 and Section 5.1.3, each vector x(ω) can be considered

compressible. In Section 7.1.3 we show that in typical scenarios these coefficients, at

least in the case where the 2D DFT basis is used, can also be considered approximately

sequentially sparse, by which we mean that they are approximately sparse for all the

symbol blocks considered, and that their essential support does not change very quickly.

Although this notion of sequential sparsity is quite vague it seems to be the most fitting

description in our setting. Note that it is not a standard terminology in the CS literature.

Nevertheless it has been studied in the context of MOD-CS (see Section 4.6). Here a

part of the support of the signal at one point in time is used as the ”known part” of the

support of the signal at the next one. This is feasible if the support does not change too

much between two consecutive symbol blocks, i.e. if the signals are sequentially sparse

as defined above.
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Next, we adapt this strategy to our method. For the first symbol block, i.e. ω = 0,

we use the conventional compressive channel estimator as described in Section 5.1.1 to

obtain estimates Ĥ
(0)
l,k of H

(0)
l,k . For the remaining blocks we proceed as follows. Given the

estimate x̂(ω) of x(ω) for some symbol block ω ∈ {0, . . . ,Ω−2}, we want to find a subset of

the support of x̂(ω) that is expected to best match the support of x(ω+1). Unfortunately

there is no way of knowing x(ω+1) or its support in advance. Recall that in the case

where the 2D DFT basis is used the entries of the vectors x(ω) are simple scalings of the

coefficients F
(ω)
m,i . Since these coefficients are related to physical quantities (such as the

complex path gains ηp of the individual propagation paths, see Section 7.1.3), also their

magnitudes will only change minimally between two consecutive symbol blocks, which

is why we can expect the entries of x(ω) with large absolute values not to become very

small and thus still be part of the essential support of x(ω+1). Therefore, we define S(ω)

as the
∣∣S(ω)

∣∣ indices corresponding to the entries of x̂(ω) with largest absolute values.

Alternatively, we could define S(ω) as the indices corresponding to all entries of x̂(ω)

whose magnitude exceeds a prescribed threshold γ > 0. Either way, we can now use any

MOD-CS algorithm to obtain an estimate of x(ω+1) using the set S(ω) as the known part

of the support.

Let us now formulate the method. For ω = 0, . . . ,Ω− 1, fix the pilot sets P(ω),

which are chosen uniformly at random from the subsampled grid G before starting data

transmission and stay fixed therein. For ω = 0, perform conventional compressive

channel estimation as described in Section 5.1.1 to obtain channel estimates Ĥ
(0)
l,k of

H
(0)
l,k . Furthermore, determine the set S(0) as described above via the estimate x̂(0) from

Step 2 of the estimator. Then, for ω = 1, . . . ,Ω−1, proceed as follows.

Step 1. Calculate channel estimates at the pilot positions P(ω) and stack them to obtain

the measurement equation (7.3).

Step 2. Run any MOD-CS algorithm using S(ω−1) as the ”known part” of the support

to obtain an estimate x̂(ω) of x(ω).

Step 3. Determine the set S(ω) as described above via x̂(ω), and rescale x̂(ω) with√
JD/Q(ω) for an estimate ĝ(ω) of g(ω).

Step 4. Calculate estimates of the subsampled channel coefficients H
(ω)
λ∆L,κ∆K from (7.2).

Step 5. Invert (7.1) to obtain estimates of F
(ω)
m,i .

Step 6. Finally calculate estimates of all the channel coefficients H
(ω)
l,k by using (3.16).

117



7 Compressive Channel Tracking

Note that in the special case where the 2D DFT basis is used we have G
(ω)
m,i =

√
JDF

(ω)
m,i ,

and therefore Steps 4 and 5 can again be omitted.

As already mentioned in Section 4.6 Theorem 4.6.1 regarding the estimation error of

MOD-BPDN is of very limited use in practice, and results for MOD-OMP and MOD-

CoSaMP have not been reported, yet. Therefore, we do not give a bound for the esti-

mation error for the proposed compressive channel tracker. Nevertheless, the simulation

results presented in Section 7.3 indicate that tracking the channel in the way described

above can significantly improve the performance compared to the conventional compres-

sive estimator . More importantly, as indicated in the next section, the running time of

the MOD-CS algorithms can be reduced significantly.

7.1.2 Computational Complexity

For the first symbol block (ω = 0) the conventional channel estimator is used, the com-

putational complexity of which has been studied in Section 5.1.2. In order to determine

the set S(0) we then simply have to order the entries of x̂(0) by their magnitude, which

can be done by using mergesort, for example, with O
(
JD log(JD)

)
operations [146].

For the remaining symbol blocks we only have to take a closer look at Steps 2 and

3. We denote the complexity of Step 2 by O
(
MOD-CS

)
, since it again depends on the

algorithm that is used to solve the MOD-CS problem. Finding the set S(ω) in Step 3

has complexity O
(
JD log(JD)

)
as explained above, whereas the rescaling can be done

by using O
(
(JD)2

)
operations as before.

Therefore, the computational complexity for the first symbol block is given by

O
(
CS
)

+O
(
(JD)2

)
+O

(
LK log(LK)

)
following (5.10), whereas for the remaining symbol blocks it is

O
(
MOD-CS

)
+O

(
(JD)2

)
+O

(
LK log(LK)

)
.

Note that the overall complexity will typically be governed by the term O
(
CS
)

and

O
(
MOD-CS

)
, respectively. As explained in Section 4.6, we have O

(
MOD-CS

)
=

O
(
JD(nMOD-OMP)2 + (nMOD-OMP−minω |S(ω)|)Φ

)
using MOD-OMP, or O

(
MOD-CS

)
=

O
(
nMOD-CoSaMPΦ

)
using MOD-CoSaMP, where nMOD-OMP and nMOD-CoSaMP denote the

maximal numbers of MOD-OMP or MOD-CoSaMP iterations, respectively. Therefore,

if MOD-OMP is used and if minω |S(ω)| is large, the complexity is reduced considerably.
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7.1.3 Sequential Delay-Doppler Sparsity

For the analysis of the sequential compressibility of the 2D DFT coefficients F
(ω)
m,i , we as-

sume that for each symbol block ω ∈ {0, . . . ,Ω−1} the channel comprises P propagation

paths corresponding to the same P specular scatterers with path gains η
(ω)
p , time delays

τ
(ω)
p and Doppler frequency shifts ν

(ω)
p for p = 1, . . . , P . In other words, we assume these

time delays and Doppler shifts to be constant over the duration Tb of one symbol block

and to only change from one symbol block to the next (where Tb ≈ TsN0, see also [3]).

As already mentioned in Section 5.1.3, assuming the parameters to be constant during

one symbol block is merely an approximation that obviously gets worse the larger the

symbol blocks are. Moreover, of course scatterers appear and/or disappear during trans-

missions in practice. In order to take this into account the number Ω of transmitted

symbol blocks can be reduced and the proposed channel tracker can be started again to

estimate the channel coefficients for the next Ω symbol blocks. However, this model is

only used for analyzing the sequential sparsity and it is not necessary for the proposed

channel tracker.

Now recall that following (5.15) each of the discrete-delay-Doppler spreading functions

S
(ω)
h [m, i] is basically constituted of the shifted leakage kernels Λ

(ω)
p [m, i], which have been

shown to be mainly supported inside a box of size 2∆m× 2∆i around the center points

ξ
(ω)
p =

(
τ

(ω)
p /Ts, ν

(ω)
p TsN0

)
(see Section 5.1.3 for the details). Consider symbol block ω.

Then, in analogy to Section 6.1.3, we denote by w
(ω)
T,p and w

(ω)
R,p the vectors connecting a

given scatterer p with the transmitter and the receiver, respectively, by v
(ω)
T,p and v

(ω)
R,p the

velocity vectors of the scatterer relative to the transmitter and the receiver, respectively,

and we define w
(ω)
T,p :=

∥∥w(ω)
T,p

∥∥
2
, w

(ω)
R,p :=

∥∥w(ω)
R,p

∥∥
2
, v

(ω)
T,p :=

∥∥v(ω)
T,p

∥∥
2

and v
(ω)
R,p :=

∥∥v(ω)
R,p

∥∥
2
.

By denoting the speed of light by c and the carrier frequency by f0, the same reasoning

as in Section 6.1.3 yields that

τ (ω)
p =

w
(ω)
T,p + w

(ω)
R,p

c
. (7.4)

For the Doppler frequency shifts (6.12) yields

ν(ω)
p = ν

(ω)
T,p + ν

(ω)
R,p , (7.5)
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w
(ω)
R,p

w
(ω+1)
R,p

w
(ω)
T,p

w
(ω+1)
T,pv

(ω)
T,p

v
(ω+1)
T,p

v
(ω)
R,p

v
(ω+1)
R,p

p

r(ω)r(ω+1)

s(ω+1)

s(ω)

Transmit antenna (s(ω) and s(ω+1))
Receive antenna (r(ω) and r(ω+1))

Scatterer (p)

Figure 7.1: Geometric illustration of a propagation path for two consecutive symbol

blocks ω and ω + 1 from the scatterer’s point of view: Solid lines depict the

situation for symbol block ω, dashed lines that for symbol block ω + 1.

where

ν
(ω)
T,p =

f0

c

v
(ω)T
T,p w

(ω)
T,p

w
(ω)
T,p

and (7.6)

ν
(ω)
R,p =

f1

c

v
(ω)T
R,p w

(ω)
R,p

w
(ω)
R,p

(7.7)

are the partial Doppler shifts, such that f1 = f0 + ν
(ω)
p .

Now let us consider two consecutive symbol blocks ω and ω+1 (see Fig. 7.1). To

bound the difference ∆τ
(ω)
p :=

∣∣τ (ω+1)
p − τ

(ω)
p

∣∣ of time delays we can use (7.4) and the

triangle inequality to obtain

∆τ (ω)
p =

1

c

∣∣∣w(ω+1)
T,p + w

(ω+1)
R,p − w(ω)

T,p − w
(ω)
R,p

∣∣∣
≤ 1

c

(∣∣∣w(ω+1)
T,p − w(ω)

T,p

∣∣∣+
∣∣∣w(ω+1)

R,p − w(ω)
R,p

∣∣∣) .
Now let ∆w

(ω)
T,p :=

∥∥w(ω+1)
T,p − w

(ω)
T,p

∥∥
2

and ∆w
(ω)
R,p :=

∥∥w(ω+1)
R,p − w

(ω)
R,p

∥∥
2
. Then, since

obviously
∣∣∣w(ω+1)

T,p − w(ω)
T,p

∣∣∣ ≤ ∆w
(ω)
T,p and

∣∣∣w(ω+1)
R,p − w(ω)

R,p

∣∣∣ ≤ ∆w
(ω)
R,p, we have ∆τ

(ω)
p ≤ τ

(ω)
B,p ,

with

τ
(ω)
B,p :=

1

c

(
∆w

(ω)
T,p + ∆w

(ω)
R,p

)
.

As for the difference ∆ν
(ω)
p :=

∣∣ν(ω+1)
p − ν

(ω)
p

∣∣ of Doppler frequency shifts, we can use
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(7.5) and (7.6) to get

∆ν(ω)
p =

1

c

∣∣∣∣∣f0

v
(ω+1)T
T,p w

(ω+1)
T,p

w
(ω+1)
T,p

+ f1

v
(ω+1)T
R,p w

(ω+1)
R,p

w
(ω+1)
R,p

− f0

v
(ω)T
T,p w

(ω)
T,p

w
(ω)
T,p

− f1

v
(ω)T
R,p w

(ω)
R,p

w
(ω)
R,p

∣∣∣∣∣
≤ 1

c

(
f0

∣∣∣∣∣v
(ω+1)T
T,p w

(ω+1)
T,p

w
(ω+1)
T,p

−
v

(ω)T
T,p w

(ω)
T,p

w
(ω)
T,p

∣∣∣∣∣+ f1

∣∣∣∣∣v
(ω+1)T
R,p w

(ω+1)
R,p

w
(ω+1)
R,p

−
v

(ω)T
R,p w

(ω)
R,p

w
(ω)
R,p

∣∣∣∣∣
)
.

At first we consider the transmitter side. Inserting some help terms (by first adding them

and afterwards subtracting them again) and using the triangle and the Cauchy-Schwarz

inequalities yields∣∣∣∣∣v
(ω+1)T
T,p w

(ω+1)
T,p

w
(ω+1)
T,p

−
v

(ω)T
T,p w

(ω)
T,p

w
(ω)
T,p

∣∣∣∣∣ ≤
∣∣∣∣∣(v

(ω+1)
T,p − v

(ω)
T,p

)T w
(ω+1)
T,p

w
(ω+1)
T,p

∣∣∣∣∣
+

∣∣∣∣∣v(ω)T
T,p w

(ω+1)
T,p

(
1

w
(ω+1)
T,p

− 1

w
(ω)
T,p

)∣∣∣∣∣
+

∣∣∣∣∣ 1

w
(ω)
T,p

v
(ω)T
T,p

(
w

(ω+1)
T,p −w

(ω)
T,p

)∣∣∣∣∣
≤ ∆v

(ω)
T,p + v

(ω)
T,pw

(ω+1)
T,p

∣∣w(ω)
T,p − w

(ω+1)
T,p

∣∣
w

(ω)
T,pw

(ω+1)
T,p

+ v
(ω)
T,p

∆w
(ω)
T,p

w
(ω)
T,p

≤ ∆v
(ω)
T,p + 2v

(ω)
T,p

∆w
(ω)
T,p

w
(ω)
T,p

,

where we have set ∆v
(ω)
T,p :=

∥∥v(ω+1)
T,p − v

(ω)
T,p

∥∥
2

and we again used that
∣∣∣w(ω)

T,p − w
(ω+1)
T,p

∣∣∣ ≤
∆w

(ω)
T,p. Defining ∆v

(ω)
R,p :=

∥∥v(ω+1)
R,p − v

(ω)
R,p

∥∥
2

and using the exact same arguments for the

receiver side yields∣∣∣∣∣v
(ω+1)T
R,p w

(ω+1)
R,p

w
(ω+1)
R,p

−
v

(ω)T
R,p w

(ω)
R,p

w
(ω)
R,p

∣∣∣∣∣ ≤ ∆v
(ω)
R,p + 2v

(ω)
R,p

∆w
(ω)
R,p

w
(ω)
R,p

.

All in all, we thus have ∆ν
(ω)
p ≤ ν

(ω)
B,p with

ν
(ω)
B,p :=

f0

c

(
∆v

(ω)
T,p + 2v

(ω)
T,p

∆w
(ω)
T,p

w
(ω)
T,p

)
+
f1

c

(
∆v

(ω)
R,p + 2v

(ω)
R,p

∆w
(ω)
R,p

w
(ω)
R,p

)
.

In order to better understand the bounds τ
(ω)
B,p and ν

(ω)
B,p we approximate w

(ω+1)
T,p ≈

w
(ω)
T,p + Tbv

(ω)
T,p and w

(ω+1)
R,p ≈ w

(ω)
R,p + Tbv

(ω)
R,p. This would be exact if the velocity vectors
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v
(ω)
T,p and v

(ω)
R,p did not change during the duration Tb of one symbol block, but since Tb

is typically very small the approximation is very good. Thus, we have ∆w
(ω)
T,p ≈ Tbv

(ω)
T,p

and ∆w
(ω)
R,p ≈ Tbv

(ω)
R,p, which gives

τ
(ω)
B,p ≈

Tb

(
v

(ω)
T,p + v

(ω)
R,p

)
c

,

ν
(ω)
B,p ≈

f0

c

(
∆v

(ω)
T,p + 2Tb

(
v

(ω)
T,p

)2

w
(ω)
T,p

)
+
f1

c

(
∆v

(ω)
R,p + 2Tb

(
v

(ω)
R,p

)2

w
(ω)
R,p

)
.

Now since Tb is very small in practice, τ
(ω)
B,p is also be very small. Furthermore, since

in this small period of time the velocities of the objects involved do not change much,

∆v
(ω)
T,p and ∆v

(ω)
R,p are also very small, which yields a very small bound ν

(ω)
B,p as well.

To sum up, we have shown that in practical scenarios the time delays τ
(ω)
p and

the Doppler frequency shifts ν
(ω)
p will change very little from one symbol block to

the next. Therefore, the centerpoints ξ
(ω)
p and ξ

(ω+1)
p of the leakage kernels Λ

(ω)
p and

Λ
(ω+1)
p , respectively, will differ by at most ∆m

(ω)
B,p :=

⌈
τ

(ω)
B,p/Ts

⌉
in the m-direction and

by ∆i
(ω)
B,p :=

⌈
ν

(ω)
B,pTsN0

⌉
in the i-direction. Therefore, the supports of Λ

(ω)
p and Λ

(ω+1)
p ,

and consequently of the spreading functions S
(ω)
h and S

(ω+1)
h (see (5.15)), and in turn of

the 2D DFT coefficients F
(ω)
m,i and F

(ω+1)
m,i (see (3.16)), have a very large overlap, which

is exactly what we wanted to show in this section.

Finally note that although there is no guarantee that the expansion coefficients G
(ω)
m,i

emerging from the use of a basis that is constructed according to the optimization

technique presented in Section 5.1.4 are also approximately sequentially sparse, the

simulation results presented in Section 7.3 indicate that they in fact are. Therefore,

using that basis optimization technique also yields a substantial performance gain for

the compressive tracking method presented here.

7.2 Extension to the MIMO Case

The analysis carried out in Section 6.2.3 yields that in the MIMO case the 2D DFT

coefficients F
(θ)
m,i are jointly group compressible. Since the analysis given in the previous

section can be adopted for each of the cross-channels of the MIMO channel without

any change, the compressive channel tracker presented in Section 7.1.1 can easily be
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extended to the MIMO case, also incorporating the (joint) group compressibility of the

coefficients. To do so, fix the pilot sets P(s,ω) for each transmit antenna s = 1, . . . , NT

and each symbol block ω = 0, . . . ,Ω−1, as well as the partition J = {Ib}B−1
b=0 with the

groups Ib = S(Bb) of size ∆m̃×∆ĩ as defined in Section 6.2.1. For the first symbol block

(ω = 0) the receiver then uses the general multichannel compressive channel estimator

utilizing group sparsity from Section 6.2.1. Denote the estimates obtained in Step 1 of

the method by x̂(θ,0), and their stacking into a matrix by X̂(0) =
[
x̂(θ1,0), . . . , x̂(θNRNT

,0)
]

for an arbitrary but fixed ordering {θ1, . . . , θNRNT
} of Θ. Then, S(0) is defined as the set

of indices corresponding to the groups b yielding the largest Frobenius norms ‖X̂(0)[b]‖F ,

where X̂(0)[b] denotes the
∣∣Ib∣∣ × NRNT submatrix of X̂(0) constructed from the rows

corresponding to the indices in Ib. Again, either the number of groups to be chosen,

i.e.
∣∣S(0)

∣∣, is fixed, or all groups for which ‖X̂(0)[b]‖F > γ for some threshold γ > 0 are

chosen.

For the remaining blocks ω = 1, . . . ,Ω−1, we simply have to use a MOD-CS technique,

extended to take joint group sparsity into account, instead of the MGSCS-technique in

Step 1 of that estimator, and insert an additional step in between Step 1 and Step 2,

where the set S(ω) is determined as explained above. The remaining steps can then be

adopted without any changes.

As before, the computational complexity will be dominated by the complexity of the

sparse recovery technique. The adaption of G-DCS-SOMP to this setting is straight for-

ward. Just as in MOD-OMP an initialization step is inserted utilizing the known part of

the support, first. The computational complexity of this Modified G-DCS-SOMP (MOD-

G-DCS-SOMP) algorithm in this setting is clearly O
(
NTJD(n′MOD-GDS)2 +

(
nMOD-GDS−

minω |S(ω)|
)
NR maxω

{∑
s Φ(s,ω)

})
, where nMOD-GDS denotes the maximal number of it-

erations, n′MOD-GDS is the sum of the magnitudes of the chosen groups, and Φ(s,ω) denotes

the measurement matrix corresponding to antenna s at symbol block ω. Adapting G-

CoSaMP can be done exactly as adapting CoSaMP to MOD-CoSaMP as described in

Section 4.6. The computational complexity of Modified G-CoSaMP (MOD-G-CoSaMP)

with nMOD-GC iterations then is O
(
nMOD-GCNR maxω

{∑
s Φ(s,ω)

})
.

As for the quality of channel estimation once more note that it is hard to give an error

bound since the coefficients are only sequentially compressible and not exactly sparse,

but that the simulation results presented in Section 7.3 suggest an improved performance

compared to the multichannel group sparse estimator from Section 6.2.1.
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7.3 Simulation Results

We compared the proposed channel tracker to the conventional compressive channel

estimator of Section 5.1.1 in the SISO case, as well as to the multichannel compressive

estimator utilizing group sparsity of Section 6.2.1 for the MIMO case.

MC MIMO system parameters. As described in Section 6.1.5, we simulated a CP-

MIMO-OFDM system with again K = 512 subcarriers, CP-length Lcp = 128, center

frequency f0 = 5 GHz and bandwidth 1/Ts = 5 MHz. As before, we used 4-QAM

symbols and root-raised cosine filters f1(t) = f2(t) with roll-off factor α = 1/4. The

number of transmit and receive antennas was NT = NR ∈ {1, 2} (note that NT = NR = 1

corresponds to the SISO case).

Channel. For 50 different randomly generated scenarios we generated doubly selective

channels during Ω = 10 blocks of L = 32 OFDM symbols each, again using IlmProp

[143]. The geometric setting was exactly like the one described in Section 5.1.5.

Subsampling and pilot setup. As always we used a subsampled time-frequency grid G
with spacing ∆L = 1 and ∆K = 4. We fixed the number of pilots as Q = |P(s,ω)| = 1024

(s = 1, . . . , NT; ω = 0, . . . ,Ω−1), which means that 6.25 ·NT% of all the symbols were

pilots. For the pilot sets P(s,ω) we chose two different settings. In the first setting we used

the same pilot set for all the symbol blocks, i.e. P(s,ω) ≡ P(s,0) for all ω = 1, . . . ,Ω−1.

As explained in Section 6.1.5, we therefore chose a set of size NTQ uniformly at random

from G and divided it into NT sets of equal size Q to obtain the pilot sets P(s,0) for

s = 1, . . . , NT. In the second setting we chose different pilot sets for each symbol block,

so we repeated the construction of the pilot set P(s,0) described above Ω−1 times in

order to obtain the pilot sets P(s,ω) for the remaining symbol blocks ω = 1, . . . ,Ω−1.

Performance measure. The performance is measured by the MSE normalized by the

mean energy of all the channel coefficients, i.e.
∑

ω,θ,l,k |H
(θ,ω)
l,k −Ĥ

(θ,ω)
l,k |2/

∑
ω,θ,l,k |H

(θ,ω)
l,k |2.

Channel estimation. For the SISO case we chose to only use OMP and MOD-OMP for

sparse reconstruction, since OMP was seen to give the best results for the conventional

compressive estimator. In the MIMO case we used G-DCS-SOMP and MOD-G-DCS-

SOMP, where the groups were defined as described in Section 6.2.1 with blocks Bb of size

∆m̃×∆ĩ = 2×2, only. For the modified algorithms we defined the sets S(ω) as described

in Sections 7.1.1 and 7.2 with fixed magnitudes. In order to describe how these sets were
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7.3 Simulation Results

defined exactly we first consider the SISO case. For the first symbol block we used con-

ventional OMP with nOMP iterations. Therefore, the first estimate x̂(0) is nOMP-sparse.

Then, we defined S(0) as the
∣∣S(0)

∣∣ =
⌊
µnOMP

⌋
indices corresponding to the entries of

x̂(0) with largest absolute value for some µ ∈ [0, 1]. In other words, 100µ% of these

indices were chosen as approximate support for the next symbol block. From then on,

S(ω) was always chosen as described above, where
∣∣S(ω)

∣∣ = µ
⌊
n

(ω)
MOD-OMP +

∣∣S(ω−1)
∣∣⌋,

ω = 1, . . . ,Ω−1. In the MIMO case we proceeded analogously (see Section 7.2 for

details). For all the simulations we used µ ∈ {0, 0.1, . . . , 1}, Note that µ = 0 corre-

sponds to S(ω) = ∅ and therefore the tracking method coincides with the corresponding

conventional estimation method.

Furthermore, we also used the optimized bases that were constructed for the simula-

tions in Section 5.1.5 for the SISO case and in Section 6.2.5 for the MIMO case. The

numbers of iterations for MOD-OMP were chosen according to Table 7.1.

In the MIMO case, the number of MOD-G-DCS-SOMP iterations was chosen as

nMOD-G-DCS-SOMP = 54 for the 2D DFT basis, and nopt
MOD-G-DCS-SOMP = 30 for the op-

timized basis. Again, all these parameters were found experimentally.

Results. First we consider the SISO case. In Fig. 7.2(a) we plot the MSE of channel

estimation versus the SNR to compare the performance of the proposed channel tracker

using MOD-OMP to the conventional compressive estimator of Section 5.1.1 using OMP,

both for the use of the 2D DFT and an optimized basis. Regarding the definition of S(ω)

we chose µ = 0.9 in this setting, i.e. 90% of the support of each estimate x̂(ω) were kept

as estimated partial support of x(ω+1), and we used the first (fixed) pilot setup. It is

obvious that the compressive channel tracker actually gives much better results than the

conventional compressive estimator. Furthermore, since the sets S(ω) were chosen quite

large, the computational complexity is reduced substantially. In addition, although it

µ
Par.

nMOD-OMP

nopt
MOD-OMP

Table 7.1: Simulation parameters nMOD-OMP and nopt
MOD-OMP for MOD-OMP for the var-

ious values of µ
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(a) Compressive channel tracking compared to

conventional compressive channel estimation

for both the 2D DFT and an optimized basis.
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(b) Comparison of the use of a fixed to that of

a variable pilot set.

Figure 7.2: Performance of the compressive channel tracker: MSE versus SNR

is impossible to show that the expansion coefficients G
(ω)
m,i with regard to the optimized

basis are again approximately sequentially sparse, these simulation results suggest that

they in fact are, and a considerable performance gain can be achieved. This is probably

due to the fact that the optimization algorithm was initialized with the DFT matrix,

which already yields sequentially compressible coefficients.

In Fig. 7.2(b) we present the results for OMP and MOD-OMP for both the 2D DFT

and the optimized basis where again µ = 0.9, but now for the fixed pilot setup, i.e.

P(ω) ≡ P(0) for all ω = 1, . . . ,Ω−1, compared to the variable pilot setup where each pilot

set P(ω) was different. We would have expected the variable setup to give better results,

because here at each symbol block ”different” information is gained about the signal

x(ω), so that it is less likely to ”miss” important entries. Nevertheless, the simulation

results show no significant difference between the two setups. We think that this is

due the fact that the most important entries are captured anyway because they are so

dominant.

Furthermore, in Fig. 7.3 we present the MSE of channel tracking (using the fixed pilot

setup) versus µ ∈ {0, 0.1, . . . , 1}, which characterizes how much of the support is kept

from one symbol block to the next. Here we only show the results for the 2D DFT

basis. Obviously, µ = 0 corresponds to the conventional compressive estimator, since
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Figure 7.3: Performance of the compressive channel tracker using the 2D DFT basis:

MSE versus µ.

in this case no support information is kept from one symbol block to the next. Setting

µ = 1 corresponds to keeping the entire support from the first signal estimate for all the

following symbol blocks.

It can be seen that in the case of a low SNR tracking the channel improves the

estimation quality even for rather small µ. This is due to the fact that in this case

the noise contributions can easily be confused with relevant contributions of the signal.

Nevertheless, the largest entries of x(ω) are most likely to correspond to true information

about the channel, and therefore keeping their indices for the next symbol block ω + 1,

where they might already be smaller, is advantageous.

However, in the case of a high SNR the relevant contributions can be identified easier.

Thus, even if the largest entries of x(ω) are smaller at the next symbol block ω+ 1, they

will still be distinguishable from the noise contributions. Therefore the corresponding

indices are chosen as part of the essential support for the estimation of x(ω+1) anyway,

which is why the performance of the compressive channel tracker hardly changes for

µ < 0.6 in this case. Nevertheless, by choosing µ larger we make sure that entries

corresponding to essential contributions whose magnitudes are close to the noise level

will not be confused with noise at the next symbol block, and therefore the performance

improves again. For µ = 1 we obviously obtain worse results, since then the support of

the x(ω) is kept equal although the channel changes from one symbol block to the next.

Note that in the case of a very low SNR even µ = 1 yields some improvement.
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Figure 7.4: Performance of the multichannel compressive tracker for both the 2D DFT

and an optimized basis with block size ∆m̃×∆ĩ = 2× 2: MSE versus SNR

In Fig. 7.4 the results for a MIMO system with NT = NR = 2 transmit/receive an-

tennas are shown, using blocks of size ∆m̃ × ∆ĩ = 2 × 2 as described above. Again,

we chose µ = 0.9 for the definition of S(ω), and we used the fixed pilot setup. In this

setting, the performance gain obtained by the compressive tracker is only minimal. But

note again that due to the large size of the sets S(ω) the computational complexity is re-

duced substantially. Furthermore, also the use of an optimized basis yields an additional

performance gain, although, as mentioned above, there is no way of showing that the

coefficient matrices G
(ω)
m,i with regard to this basis are also approximately sequentially

sparse.

Conclusion. It has been shown that the compressive channel tracker outperforms

the conventional compressive channel estimator both in the SISO and MIMO case, as

well as if the group compressibility is utilized or not. Actually, it never performs worse

than the compressive channel estimation methods described in the previous sections for

any µ < 1. In fact, µ (and thus
∣∣S(ω)

∣∣) can be chosen very large, which reduces the

computational complexity of the method drastically. Furthermore, using an optimized

basis once more gives better results, whereas the computational complexity is increased.

All in all, the proposed compressive channel tracker is to be preferred in the SISO as

well as in the MIMO case.
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Chapter 8
Conclusion

In this thesis we have investigated the field of compressive channel estimation that sub-

sumes all channel estimation techniques utilizing the theory and methodology of CS and

its variants. In Section 5.1 we reviewed the basic compressive channel estimator intro-

duced in [1], and studied its performance and computational complexity. Furthermore,

we analyzed the sparsity of typical doubly selective channels in the delay-Doppler region

in more detail, and recalled the basis optimization technique presented in [2, 3]. Our

simulation results demonstrated the superior performance of the compressive channel

estimator compared to standard LS channel estimation, as well as the performance gain

achieved by using an optimized basis.

Thereafter, we proposed several variations of the compressive channel estimator for

various settings and situations. In Section 5.2 we adapted the compressive channel esti-

mator so that it can also take group sparsity into account, and analyzed its performance

and computational complexity. Furthermore, we showed that the leakage effect, which

impairs the performance of compressive channel estimators in general, actually yields

that typical channels can be considered group compressible, and thus the proposed esti-

mator can be used. Moreover, we adapted the basis optimization technique mentioned

above to this setting. As before, simulation results demonstrated the performance gain

the proposed estimator can achieve compared to the conventional compressive chan-

nel estimator, as well as the improvement that can be achieved through the use of an

optimized basis instead of the 2D DFT basis.
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8 Conclusion

Furthermore, in Section 6.1 and Section 6.2 we extended the estimators described

before to the MIMO case. We showed that the individual cross-channels in such a MIMO

system approximately share a common (group) sparsity pattern, and therefore MCS

(MGSCS) techniques can be utilized. As before, their performance and computational

complexity were analyzed, and the basis optimization technique was adapted. Simulation

results documented the superior performance of these multichannel estimators compared

to the channel-per-channel use of their SISO-counterparts for the use of both the 2D

DFT and an optimized basis.

In Chapter 7 we demonstrated that in a typical scenario the delay-Doppler (group)

sparsity pattern of the channel does not change very much from one symbol block to the

next, and that it can therefore be used to track the channel by utilizing the methodology

of MOD-CS (and some variants). Here, the simulation results showed that not only

the performance can be improved, but also that the computational complexity can be

substantially reduced.
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