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1. Summary/Zusammenfassung

1. Summary/Zusammenfassung

1.1 Summary

Hepatocellular  carcinoma (HCC) is one of  the five most  common and most  deadliest 

cancers worldwide. A common reason for HCC is the chronic infection with the Hepatitis 

B virus (HBV).  while other risk factors are the infection with Hepatitis C virus (HCV), 

intoxication by food contaminants (e.g. aflatoxin), alcoholism, obesity or metastases from 

other organs. These risk factors are able to inflict continuous damage to the liver, which 

are accompanied by a microenvironment that promotes fibrosis, cirrhosis and finally the 

formation of HCC.

In  the  present  study,  we  were  able  to  establish  a  mouse  model  for  HCC  using 

immortalised p19ARF deficient, Ha-Ras transformed hepatocytes, that conducted epithelial 

to mesenchymal transition (EMT) upon  TGF-β administration. These cells performed a 

morphological switch, in which they transformed from a polarized, epithelial phenotype to 

a  spindle  shaped,  fibroblastoid  phenotype.  The fibroblastoid  phenotype  exhibited a 

changed extracellular matrix (ECM) interaction, that advocated motility and invasiveness.

A microarray analyses of gene expression during EMT revealed that PDGF ligand as well 

as receptor are upregulated, indicating a possible involvement in the transition process. 

Therefore we constructed a dominant-negative PDGF-α receptor (dnPDGFR-α), to study 

the effects of upregulated PDGF signalling. We were able to determine the involvement of 

autocrine  PDGF  signalling  in  motility. In  addition we  could specifically  block PDGF 

signalling using the receptor tyrosine kinase inhibitor STI571.

With the discovery of micro RNAs (miRs) acting as a regulatory network and the insight 

that  PDGF  has  a  miR-140  binding  motif  in  its  3'  UTR,  we  are  looking  forward  to  

understand and integrate this mechanism of regulation into current cancer models as well 

as it poses a novel strategy for anti-cancer therapy.
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1. Summary/Zusammenfassung

1.2 Zusammenfassung

Das hepatozelluläre Leberkarzinom (HCC) ist eine der fünf verbreitesten und eine der  

tödlichsten Krebsarten weltweit. Die  häufigste Ursache für die Entstehung von HCC ist 

eine chronische Infektion mit dem Hepatitis B Virus (HBV). Andere, weniger verbreitete 

Risikofaktoren  sind  die  Infektion  mit  dem  Hepatis  C  Virus  (HBC),  Vergiftung  durch 

Nahrungsverunreinigung  (z.B.  Aflatoxin),  Alkoholismus,  Fettsucht  oder Metastasierung 

aus anderen Organen. Diese Risikofaktoren können anhaltend die Leber schädigen und 

so eine Umgebung schaffen, die Fibrose, Zirrhose und letztlich die Entstehung von HCC 

fördert.

Wir etablierten ein Mausmodell für HCC, bei dem wir immortalisierte p19ARF defiziente, 

Ha-Ras transformierte Hepatozyten verwendeten, die bei TGF-β Zugabe einen Übergang 

vom epithelförmigem zum mesenchymalen Zustand (EMT) durchmachen.  Diese Zellen 

erfahren einen morphologischen Wandel, bei welchem sie sich von einem polarisiertem, 

epitheloiden  Phänotyp  zu  einem  fibroblastoiden  Phänotyp  transformieren.  Dieser 

fibroblastoide Phänotyp besitzt eine veränderte Interaktion mit der extrazellulären Matrix 

(ECM), welche die Motilität und die Invasivität fördert.

Eine Microarrayanalyse der Genexpression während der EMT ergab, dass PDGF Ligand 

und  Rezeptor  hochreguliert  sind,  was  auf  eine  mögliche  Beteiligung  an  der 

Transformation  schliessen  lässt.  Wir  konstruierten  einen  dominant-negativen  PDGF-α 

Rezeptor (dnPDGFR-α), um die Auswirkungen von gesteigerter PDGF Signaltransduktion 

zu untersuchen.  Dadurch stellten wir eine Beteiligung von PDGF bei  der  Motilität fest. 

Weiters  konnten  wir  durch  den  Rezeptortyrosinkinaseinhibitor  STI571  den  PDGF 

Signaltransduktionsweg blockieren. 

Die Entdeckung von micro RNAs (miRs) als regulatives Netzwerk, und die Erkenntnis, 

dass PDGF ein miR-140 bindendes Motif  im 3' UTR besitzt,  sind ein aussichtsreicher 

Ansatz,  um  diesen  Regulationsmechanismus  zu  verstehen  und  in  bestehende 

Krebsmodelle, als auch in neue Strategien für die Krebstherapie zu integrieren.
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2. Overview of the Liver

2. Overview of the Liver

2.1 Liver Anatomy

The human  liver is the largest internal organ and also represents the largest gland. It  

consists of 4 different sized and unequally physiological active lobes and it is connected 

to two large blood vessels:  the hepatic artery and the portal  vein.  The hepatic artery 

provides oxygen rich blood from the aorta, whereas the hepatic portal vein delivers blood 

and digested nutrients from the gastrointestinal tract, the spleen and the pancreas into 

the liver  (Benjamin  et al., 2008). These  two  main blood vessels divide into capillaries, 

which lead to functional  units  called lobules.  The liver  consists  of  50.000 to  100.000 

lobules, which are cylindrical structures several millimetres in length and less than one to 

two mm in diameter and consist of millions of hepatic cells.  Each lobule is supplied by 

capillaries at the periphery, permitting the blood  to flow through  the sinusoids (Maher, 

1997) as shown in Fig. 1.

The sinusoids are channels of  engulfing hepatocytes, separated by the space of Disse. 

They  contain  immune-system cells called Kupffer cells, that attack bacteria and foreign 

matter in the blood (Diehl, 1993). While the blood flows through the sinusoids, dissolved 

substances are released from the blood and exchanged by the surrounding hepatocytes. 

The exchange rate diminishes along the sinusiod and finally the blood exits through the 

central vein, a vain located at the centre of the lobule. The veins of several lobules join to 

form the hepatic veins which exit the liver.

An important duct system originating from within the liver is the "tree branch" like bile duct 

system. The bile is produced by the hepatocytes and collected in bile canaliculi, which 

merge in order to form bile ducts. The intrahepatic ducts join to form the right and left  

hepatic duct, which merge to form the common hepatic duct. The common hepatic duct 

leaves the liver and thus is the first part of the extrahepatic ducts. It is joined by the cystic 

duct from the gallbladder to form the common bile duct, which leads to the duodenum. 

The bile can be stored within the gallbladder or transported to the duodenum directly, 

where it aids in the digestion of lipids (Netter, 2006)
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2. Overview of the Liver

2.2 Metabolic Functions

The liver performs a wide range of functions and is essentially involved in the synthesis 

and  breakdown  of  many  compounds.  It  plays  central  roles  in  amino  acid  synthesis, 

carbohydrate  metabolism,  protein  metabolism,  lipid  metabolism, the  production  of 

coagulation factors and insulin-like growth factor one  as well  as the excretion of  bile. 

Additionally it is responsible for the breakdown of insulin and bilirubin and the conversion 

of ammonia to urea as well as the breakdown and modification of toxic substances in 

general,  which  is  also  called  drug  metabolism (Maher,  1997).  The  liver  also  stores 

glycogen, the vitamins A, -D, -B12, iron and copper and thanks to the Kuppfer cells it is 

part of the mononuclear phagocyte system. This system is a part of the immune system, 

that consists of phagocytic cells (Tortora and Derrickson, 2008).

Figure 1

A shows one hexagonal formed liver lobule, while B magnifies part of the lobule and shows the 
bloodflow from the hepatic portal vein and the hepatic artery to the central vein as well as the 
bile flow from the bile canaliculis to the bile duct (1, 2). 

3. Pathology of the Liver

Due  to  the  multiplicity  of  functions,  the  liver  is  susceptible  for  many  disorders  and 

diseases e.g.: hepatitis,  cirrhosis  or  liver  cancer, to  name  the  most  prominent ones 
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3. Pathology of the Liver

(Motola-Kuba et al, 2006).

3.1 Liver Diseases

Hepatitis is an inflammation of the liver, that can be caused either by viruses, toxins and 

drugs or auto-immunological reactions (Mormone et al., 2011). The five unrelated viruses 

named Hepatitis A, -B, -C, -D, -E virus,  are accountable for  causing the most cases of 

hepatitis worldwide (Zanetti  et al., 2008), followed by alcohol, being the most prominent 

and most abundant toxin (Bailey and Brunt, 2002). Other viruses and infections like the 

yellow  fever  virus,  Epstein-Barr  virus,  Herpes  simplex virus, the  Cytomegalovirus, 

leptospira and toxoplasma have the ability to cause hepatitis as well, but are known to be 

less effective. 

In clinical terms, the duration of the inflammation can be distinguished to be either acute 

(Ryder et al., 2001) or chronic (Lok et al., 2007). An acute inflammation is lasting shorter 

than six months and can be caused by the Hepatitis A virus, while a chronic hepatitis lasts 

for more than six months and can be caused by the Hepatitis C virus.

Another  disease  of  the  liver  is  the  non-alcoholic  fatty  liver  disease (NAFLD),  which 

manifests itself with the accumulation of fat within the liver as a consequence to insulin 

resistance. This can lead to a form af hepatitis, called steatohepatitis (Vuppalanchi et al., 

2009), which is believed to possibly cause cirrhosis of unknown origin (Clark et al., 2003).

Some  diseases  of  the  liver  originate  because  of  genetic  disorder,  that  lead  to 

malfunctions  in  metabolism  e.g.:  Haematochromatosis,  Wilsons  disease  and  Gilberts 

syndrome. While Haemochromatosis leads to iron accumulation within the body (Feder et 

al., 1996), Wilsons disease causes tissues to retain copper (Thomas, 1995), which both 

can lead to liver damage. Gilberts syndrome is a malfunction of the bilirubin metabolism, 

causing unconjugated bilirubin being excreted from the liver and thus elevating its level 

within the blood (Bosma, 1995).

Two diseases affecting the bile ducts are primary sclerosing colingitis (Duerr, 1991) and 

primary  biliary  cirrhosis (Kaplan,  2005).  It  is  believed,  that  they originate  because of 

autoimmune reactions.
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3. Pathology of the Liver

3.2 Cirrhosis

Chronic diseases or continuous exposition to toxins lead to persistent damage of the liver. 

This ongoing damage leads to the persistent  build-up of  fibrous connective tissue, scar 

tissue and regenerative nodules in order to rebuild the damaged tissue. If the build-up is 

too excessive, then this phenomenon is called fibrosis. Fibrosis can further disrupt the 

bile ducts and blood  vessels, leading to  the accumulation of  bile within and the stall of 

blood flow through the organ. This results in a loss of function, which is referred to as 

cirrhosis.

The most common causes for cirrhosis are chronic viral hepatitis (Monto et al., 2001) and 

alcoholic liver disease (ALD) (Maher, 1997).  Cirrhosis is also known to be a major risk 

factor for the development of hepatocellular  carcinoma (HCC), as about five percent  of 

cirrhotic patients develop HCC (Bailey and Brunt, 2002).

3.3 Liver Cancer

Diseases of the liver are not only able to cause cirrhosis, but are also capable of inducing 

liver  cancer. This  can happen directly e.g.  hemochromatosis, or  via  the  formation  of 

cirrhosis, which is a major risk factor for liver cancer.

The tumours of the liver can be distinguished by their nature as either benign or malign. 

While benign liver tumours are mostly harmless and do not affect the surrounding tissue, 

such as hemangioma, malign tumours have the tendency to increase their adverse effect 

and  become  worse. They show  uncontrolled  growth,  invasion  of  nearby  tissue  and 

sometimes  have  the  ability  to  metastasise  and  can  additionally  be  described  as 

cancerous. Cancers within the liver develop either from liver cells types, called primary 

liver cancers, or by metastasising cells from other organs. The majority of primary liver 

cancers are  hepatocellular  carcinomas (HCC) (Motola-Kuba et al.,  2006),  originating 

from  hepatocytes,  followed  by  cholongiocarcinoma (Landis  et  al.,  1998),  which  is  a 

cancer  of  the  bile  ducts.  Some  of  the cancers  found  within  the  liver  have  been 

metastasising  from  cancers  of  other  organs.  They  originate  frequently  from  colon 

cancers,  but  also  metastases  from breast  cancer  or  prostate  cancer  are  found 

(Chambers, 2002; Bubendorf, 2000).
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4. The Epidemiology and Etiology of HCC

Hepatocellular Carcinoma (HCC) is the most prevalent kind of liver cancer. It is one of the 

five most common and it is among the three deadliest cancers worldwide (El-Serag, 2001

).  The epidemiology  of HCC  shows two main patterns: one for  the  so called western 

countries, like Europe or Northern America, and one for non-western countries, like Africa 

or Asia (Motola-Cuba et al., 2006).

While  in  western  countries  the  majority  of  cancers  found  within  the  liver  are  due  to 

metastases from other organs, the  remaining cases  of primary liver cancer  are caused 

mostly by alcoholism or metabolic diseases (Kumar, 2003).

Otherwise, in non-western countries, HCC is one of the most frequent cancers, especially 

in areas where hepatitis is endemic. The most common reason for HCC in Africa and Asia 

is the Hepatitis B Virus (HBV) infection, followed by much lower cases triggered by the 

Hepatitis C Virus (HCV) (Tanaka, 2011). HBV and HCV can cause chronic infections, that 

may  generate  cirrhosis  and  thus  possibly  evolving  towards  HCC.  HBV  additionally 

possesses the feature to cause HCC out of a chronically infected liver without cirrhosis 

(Bailey and Brunt, 2002) by directly integrating into the host genome. 

Another important trigger for HCC are food contaminants, e.g. aflatoxin from Aspergillus 

flavus, which result because of improper storage conditions. These toxins are transported 

to the liver, where they are processed to carcinogenous substances e.g. epoxide. If those 

modified  toxins  enter  the  cell  nucleus,  they  can  cause  DNA adducts  which  facilitate 

tumour development. (Lee, 2000; Bressac, 1991)

Other risk factors for HCC are cirrhosis, heamatochromatosis, wilsons disease (Bailey, 

2002) and type two diabetes (El-Serag, 2006). In the case of type two diabetes only those 

people seem to be affected, who have a high circulating insulin concentration.

5. Molecular Events in HCC

The development of cancer is a multistep process, that progressively derails the natural 

cell cycle progression and routes the cells towards uncontrolled growth. 

13



5. Molecular Events in HCC

5.1 The Origin of Malfunction

The first step is a mutation, that is either not noticed by the cellular repair machinery or  

repairing  fails  and  the  mutation  gets  permanent.  In  HCC  this  first  step  is  triggered 

indirectly  by continuous liver damage, either by viral  infection or toxic compounds, or 

directly by the presence of genotoxic substances. Continuous liver damage leads to a 

constant  cycle  of  damage  and  repair,  which  boosts  the  probability  of  the  repair 

mechanisms to introduce mistakes. Additionally this poses persisting stress to the cells, 

which can lead to the overproduction of reactive oxygen species (ROS) (Devasagayam, 

2004). ROS has the same ability as  genotoxic substances e.g. aflatoxins, they favour 

directly the formation of DNA adducts (Brooker, 2011; Dragan et al., 1994). This can lead 

to the overexpression, underexpression and destruction of genes, altering the cellular 

expression pattern.  A factor often found elevated in conjunction with cirrhosis and early 

HCC development is  Transforming Growth Factor-α (TGF-α) (Yeh  et al.,  2007),  which 

normally induces epithelial development. In addition, viruses can integrate within the host 

genome  and  thus  activate  the  expression  of  oncogenes  or  the  shutdown  of  tumour 

suppressor genes.

5.2 The Establishment of Growth and Survival

The  second  step  of  tumour  development  is  the  promotion  of  mutated  cells  towards 

uncontrolled  growth  and  proliferation.  This  can  be  achieved  by  the  activation  of  cell 

survival pathways, cell cycle deregulation and stable genomic alterations, which result in 

constantly dividing cells, that lost their ability to go into apoptosis. Regarding HCC, MAPK 

related genes like c-Ha-Ras, c-Raf, c-Fos, and c-Jun,  Protein Kinase C (PKC) isoforms 

as  well  as  the Signal  Transducer  and  Activator  of  Transcription-3  (STAT-3)  were 

frequently found to be overexpressed (Feo et al., 2007; Calo et al., 2003). The elevated 

level of  MAPK triggering factors leads to its over-reactivity and stimulation of  survival 

pathways, like Phosphoinositide 3-Kinase/Protein Kinase B (PI3K/AKT) pathway and p38 

MAPK pathway (Feo et al., 2007). STAT-3  normally  acts as an transcription factor and 
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5. Molecular Events in HCC

mediates the expression of genes involved in cell growth and apoptosis. 

Furthermore it was noticed, that also cell cyle related genes e.g. C-Myc were found at a  

higher level (Romach  et al., 1997). C-Myc and its targets Igf-2 and  Cyclin D1 alter the 

activation of  Cyclin-dependent kinases (Cdk) and thus have a direct effect on cell cycle 

progression. Other  important  factors  promoting  carcinogenesis  are  the  inactivation  of 

tumour suppressor genes (p53, DLC-1) or the downregulation of signalling controlling cell  

growth and apoptosis (TGF-β) (Feo et al., 2007).

All the steps described help a mutated cell to keep dividing whilst avoiding apoptosis.

5.3 Motility and Invasion

In the third step of oncogenic development the mutated, dividing cell gains the ability to 

invade nearby tissue and to metastasise, not only within the organ but also to distant  

sites. The cancer cells have to detach from the extracellular matrix (ECM) surrounding 

the primary tumour and move to a new location. They use the blood or the lymph system 

for their movement to their new destination. In order for the cells to reattach and continue 

growth and division, they have to be in a microenvironment, that matches the cell types 

requirements. 

In  the  case  of  hepatocytes,  which  are  epithelial  cells,  they  have  to  change  their 

phenotype and extracellular matrix composition towards a fibroblastoid-like one to get 

invasive. This process is often described as Epithelial to Mesenchymal Transition (EMT), 

a process normally taking place during development or wound healing.

Furthermore it has been shown, that angiogenesis is a hallmark of  cancer and further 

invasion (Hanahan et al., 2000), as it is crucial for the invading tumour to grow a network 

of blood vessels for support. It seems to be particularly important, that a subpopulation of 

cells, called  endothelial  progenitor  cells, are  present  in  order  for  angiogenesis  to  be 

successful.

Thus it  was examined, that especially angiogenesis inhibitors,  such as platelet  factor, 

angiostatin, endostatin, and vasostatin (Das et al., 2007), can prevent or slow down the 

growth of  tumours and  metastasis. Additionally  it  was found,  that  analysing the gene 

expression pattern of a primary tumour leads to an insight on the tumours invasive and 

metastatic potential (van’t Veer et al., 2002).
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6. Epithelial to Mesenchymal Transition (EMT)

6. Epithelial to Mesenchymal Transition (EMT)

Epithelial to Mesenchymal Transition (EMT) represents the dedifferentiation of a polarized 

epithelial cell and its conversion to a fibroblastoid-like phenotype as described in Fig. 2. 

An epithelial  cell  connected to the basement membrane decomposes its  extracellular 

matrix (ECM) and converts to a mesenchymal phenotype which  gains the function to 

disperse from the epithelial layer. 

Hallmarks of EMT are the downregulation of E-cadherin, the disappearance of b-catenin 

from the cell  surface and its accumulation within the nucleus and the upregulation of 

many  ECM components, which are known to be mesenchymal markers (Kalluri  et al., 

2003). 

E-cadherin is  a  cell  adhesion  molecule  located  at  the  adherens  junctions  within  the 

membrane of  epithelial  cells.  It  is  able  to  stabilise intercellular  contacts  as  well  as  it 

conserves  cell  polarity. Markers  for  an  epithelial  phenotype,  like  b-catenin  or  ZO-1, 

disappear  from the  cell  boundaries,  while markers  for  fibroblastiod  cells  e.g.  α-sma, 

fibronectin are found being upregulated. The loss of its intercellular adhesion ability and 

the acquisition of a mesenchymal phenotype leads to an increased migratory potential. 

Figure 2

The left image shows the epithelial phenotype with the associated markers written below in 
orange. At the onset of EMT, the cell acquires mesenchymal attributes and loses the epithelial 
ones, leading to an intermediate state as seen in the picture in the middle. Finally,  the cell 
acquires a mesenchymal phenotype as seen in the right picture, which is associated with the 
markers written below in green (3).

At the moment three different subtypes of EMT are distinguishable (Kalluri et al., 2009), 
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6. Epithelial to Mesenchymal Transition (EMT)

which are defined by their biological context (see Fig. 3). The first subtype (Type I EMT) 

is  seen in embryo formation and development, where  repeated processes of EMT and 

Mesenchymal to Epithelial  Transition (MET)  take place in order to generate  novel cell 

types and tissues. The second subtype (Type II EMT) is connected to wound healing, 

tissue regeneration and organ fibrosis. Sustained trauma or injury and the accompanying 

inflammation initiate the generation of  fibroblasts, which are needed to reconstruct and 

repair  damaged  tissue. The third subtype (Type III EMT) is observed within neoplastic 

cells  with  genetic  or  epigenetic  changes,  often  affecting  oncogenes  and/or  tumour 

suppressor  genes.  The  EMT  process  can  boost  the  invasion  capacity  of  benign 

neoplasms which may result in a progression towards malignancy.

7. Mechanisms of EMT

7.1 Type I EMT

Type I EMT is being monitored in gastrulation and embryonic development, where it does 

not cause fibrosis or induction of an invasive phenotype, that would lead to metastatic 

spreading. Instead this kind of EMT has the ability to create mesenchymal cells, which in 

turn are able to perform MET to create secondary epithelia.

The first sign of gastrulation is the formation of a primitive streak in the epiblast layer. It 

facilitates the  generation  of  ecto-, endo- and mesoderm, which will  generate all  tissue 

types of the body. The invagination of the primitive streak leads to the generation of the 

mesendoderm, which separates into mesoderm and endoderm via EMT. The mesoderm 

consists of spindle shaped cells called fibroblasts, that have the ability to invade ECM, 

while ecto- and endodermal cells show an epithelial phenotype.

Gastrulation is dependent on canonical Wnt signalling (Skromne et al., 2001), which is 

mediated by TGF-β superfamily proteins e.g. Nodal, Vg1 (Chea et al., 2005; Skromne et 

al., 2005). Wnt and fibroblast growth factor (FGF) are inducers of EMT during gastrulation 

and activate transcription factors like Snail, Eomes and Mesps, which control further EMT 

progression (Kalluri et al., 2009).

For example, the process of mesoderm differentiation  is induced by  fibroblast-growth-
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7. Mechanisms of EMT

factor (FGF), which activates the signal transducer Snail. This leads to the transcriptional 

repression of E-cadherin, an integral component of  the epithelial adherence junctions, 

and thus to EMT.

In embryonic development, epithelial cells of the neuroectoderm start to express genes 

like Sox, Snail  and Slug (Sauka-Spengler et al.,  2008), which leads to EMT. Thereby 

these cells become motile and disperse within the embryo, where they undergo further 

differentiation  into  different  cell  types  e.g.  melanocytes (Kalluri  et  al.,  2009).  The 

signalling leading to EMT is transduced via Wnt, FGF, BMP, c-Myb and msh homeobox 1 

(Msx-1)(Kalluri  et  al.,  2009) and  thereby  shows some  similarities  to  that of  EMT 

progression during gastrulation.

In  neural  crest  cells  it  is  essential  for  the  occurrence of  EMT to have working BMP 

signalling, because it induces the development towards migration (Burstyn-Cohen et al., 

2004).  Furthermore  it  is  necessary  to  repress E-cadherin  and N-cadherin in  order  to 

disrupt their function as cell adhesion molecules (Thiery, 2003).

7.2 Type II EMT

Type II EMT is connected with wound healing, tissue regeneration and organ fibrosis. An 

inflammatory response aids damaged tissue in order to generate fibroblasts as part of a 

reconstruction process. Normally,  when the tissue is repaired the inflammation abates 

and the EMT process is terminated. However, if inflammation signals persist and cells 

continue  to respond  to the signals in performing EMT, then this leads to organ fibrosis 

and onward to the destruction of the organ.

Fibroblasts  and inflammatory  cells  release diverse  inflammatory  signals  as  well  as  a 

complex ECM, containing collagens, laminins, elastins and tenacins (Kalluri et al., 2009). 

This can mediate organ fibrosis in epithelial tissues of lung, kidney, liver and intestine 

(Potenta et al., 2008; Zeisberg et al., 2007; Kim et al., 2006). Under chronic inflammation, 

cells  of these tissues show epithelial-specific morphology and markers e.g. cytokeratin, 

E-cadherin, but additionally exhibit mesenchymal specific markers like Fibroblast-specific-

protein 1 (FSP1) and α-SMA (Kalluri et al., 2009). This represents an intermediate stage 

of EMT, termed "partial EMT", caused by inflammatory stress. Finally those cells leave 

the epithelial layer, migrate through the basement layer and congregate in the interstitium 
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7. Mechanisms of EMT

(Okada et al., 1996), where they develop their fibroblastoid phenotype.

It has also been shown, that endothelial cells can transform to mesenchymal cells and 

thus support fibrosis. They use an analogous process called Endothelial to mesenchymal 

transition (EndMT), a process normally occurring during development and used in heart 

valve  formation (Potenta  et  al.,  2008).  TGF-β1  is  able  to  induce  EndMT in  capillary 

endothelial cells, which manifests with the loss of endothelial markers e.g. CD31 and the 

acquisition of fibroblast and myofibroblast specific factors, like FSP1,  α-SMA, collagen1 

and vimentin (Kalluri et al., 2009). 

The inflammatory response, caused by injury, mobilizes a variety of cells, that are able to 

trigger EMT, among them macrophages and resident fibroblasts.  To evoke EMT, they 

release growth factors, like TGF-β, PDGF, EGF and FGF2 (Strutz et al., 2002) as well as 

chemokines  and  MMPs  e.g.  MMP2,  MMP3  and  MMP9 (Kalluri  et  al.,  2009).  This 

signalling molecules cooperate with inflammatory cells  and cause damage to basement 

membrane of  epithelial  cells and induce focal  degradation of  collagen IV and laminin 

(Strutz et al.,  2002).  As a consequence the epithelial  cells are able to migrate to the 

interstitial area, where they transform to fibroblasts.

In order to avoid fibrosis and to maintain organ functionality, several ways have been 

shown, that either avoid or revoke EMT. The blocking of MMP-9 expression exhibits the 

inhibition of epithelial cell recruitment for EMT (Yang et al., 2002). Moreover HGF and 

BMP-7 are known to weaken or disrupt TGF-β signalling, leading to the reversal of TGF-β 

mediated E-cadherin loss (Yang et al., 2002; Zeisberg et al., 2003). In the case of BMP-7 

it  was shown,  that  systemic administration lead to the reversal  of  EMT, the repair  of 

damaged epithelial structures and the restoration of organ function. 

7.3 Type III EMT

Type III  EMT is linked with  the development of  invasion and metastasis of  malignant 

epithelial  cancers.  Primary  epithelial  tumours are  characterized  by  excessive  cell 

proliferation and angiogenesis (Hanahan et al., 2000), caused by genetic and epigenetic 

alterations e.g. oncogenes. 

At this stage EMT can assist in the acquisition of an invasive phenotype with increasing 

motile potential. As a first step it enables the migration through the basement membrane 
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and  with  further  progression  of  invasiveness, it  is  finally  leading  to  the  ability  to 

metastasise,  which  implies the  spreading  to  distant  sites.  Several  experiments  have 

revealed, that cancerous cells transforming to a mesenchymal phenotype also  begin to 

express mesenchymal markers,  like  α-SMA, FSP1, vimentin and desmin (Yang  et al., 

2008). 

However,  the  secondary  tumour  colonies  found  at  this  sites  no  longer  show  this 

mesenchymal phenotype, but at a histopathological level, they show the same phenotype 

again as  the primary tumour from which they  originally  emerged.  This  indicates,  that 

metastatic cancer cells, not only rely on EMT to develop spreading, but also require MET 

in order to colonise these distant sites (Zeisberg et al., 2005). The MET can be triggered 

by the different microenvironment at  the distant sites,  which no longer resembles the 

primary tumour environment, that  has  lead to the development of  EMT (Bissell et al., 

2002). 

The heterotypic signalling in the stroma associated with the primary tumour is heavily 

suspected to initiate EMT in cancer cells by the presence of factors like HGF, EGF, PDGF 

and TGF-β (Kalluri et al., 2009). They further activate EMT inducing transcription factors, 

most prominently Snail, Slug, zinc finger E-box binding homeobox 1 (ZEB1), Twist and 

FOXC2,  which  are  able  to  regulate  the  complex  EMT  program  separately  or  in 

conjunction (Kalluri  et  al.,  2009).  The  EMT  program  contains  the  modulation  of 

intracellular signalling networks, e.g. ERK, MAPK, PI3K, Akt, Smads, RhoB,  β-catenin, 

lyphoid enhancer binding factor (LEF), Ras and c-Fos, and cell surface proteins e.g. β4 

integrins, αVβ6 integrins (Tse et al., 2007), as wells as it manages the disruption of cell-

cell adherence junctions and cell-ECM adhesions (Yang et al., 2008).

TGF-β is one of the most prominent and studied inducers of EMT in cancerous epithelial 

cells.  In epithelial cells it acts as  a repressor of proliferation and thus as an important 

tumour suppressor. However,  TGF-β is able to onset EMT in certain transformed cells 

and hereby contributes to tumour progression. There are two signalling pathways known 

to be used, involving Smads (Roberts et al., 2006) and p38 MAPK (Bhowmick et al., 2001

). 

The first signalling pathway relies on the involvement of Smads, which induces EMT via 

the  ALK-5  receptor (Piek  et  al.,  1999).  Smads  control  transcription  factors  and 

cytoplasmic kinases and are able to induce an autocrinous loop of TGF-β. In advance, 
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they are also involved in controlling the action of LEF and β-catenin (Kim et al., 2002), 

which are responsible for the metastatic potential.

The second pathway is connected with MAPK signalling. It was shown, that p38 MAPK 

and  RhoA with the help of integrinβ1 signalling on the one hand, and ERK/MAPK in 

conjunction with PI3K/Akt and Raf on the other have been identified to be capable of  

establishing TGF-β induced EMT (Bhowmick et al., 2001; Janda et al., 2002; Lehmann et 

al., 2000).

The onset of EMT in cancer cells is also connected with the loss of E-cadherin expression 

(Eger et  al.,  2000).This  promotes  Wnt  signalling  and  the  expression  of  transcription 

factors, that advocate a mesenchymal phenotype, such as Snail, Slug and SIP1 (Medici 

et al., 2008; Comijn et al., 2001). 

In the absence of Wnt induced signalling, E-cadherin  is  a binding partner for β-catenin, 

which is a component of the adherens junctions. β-catenin from the cytoplasma is used to 

charge the extracellular matrix, where it is stably bound, whereas dispensable β-catenin 

from the cytoplasmic pool is continuously degraded.  Therefore it builds a complex with 

the tumour suppressor Axin, the tumour suppressor protein Adenomatous Polyposis Coli 

(APC) and with  two kinase families, CK1 and GSK3-alpha/beta (Clevers, 2006). These 

kinases phosphorylate β-catenin,  which is then recognized by β-TrCP, a part  of  a E3 

ubiquitin  ligase  complex,  leading  to  ubiquitinilation  and  as  a  consequence to  its 

degradation by the proteasome.

Upon Wnt  activated signalling,  Axin is  inactivated by  the  Wnt co-receptor  LRP. As a 

consequence, the cytoplasmatic pool of unphosphorylated β-catenin is rising, allowing the 

transcription factor to enter the nucleus. There it binds to the protein complex TCF/LEF, 

which leads to the expression of target genes like CyclinD1 and c-myc (Clevers, 2006). 

Several studies have confirmed, that the control over E-cadherin and β-catenin/LEF is a 

key component for the invasive potential of a cell (Bowen et al., 2008).
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Figure 3

A Type  I  EMT  gives  rise  to  the  mesoderm and  endoderm during  development.  The 
epiblast  uses  EMT to  form  the  primary  mesenchym,  which  in  turn  can  form  secondary 
epithelia via MET. B Type II EMT are present during inflammation anf fibrosis. In contrast to 
Type I they persist much longer and eventually destroy the organ. C Type II EMT is present in 
the transformation of  polarized primary cancer  cells  towards an invasive and fibroblastoid 
phenotype (3).
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8.1 Models for HCC

In order to study the development and progression of HCC, several models for in vivo 

and in vitro analysis have been established.

8.1.1 In Vivo Models

The in vivo studies are conducted within animal models, which are largely mouse models 

because of the advantages of  its small  size,  the entirely sequenced genome and the 

similarities to humans. Mouse models for HCC are either generated by the administration 

of genotoxic or non-genotoxic carcinogens, the implantation of tissue or are genetically 

engineered (Leenders et al., 2008). 

Genotoxic carcinogens cause mutations by forming DNA adducts, which leads to genetic 

changes within the cell resulting in a preneoplastic state. Non-genotoxic carcinogens do 

not alter DNA structure, but stimulate the preneoplastic cells to evolve into a malignant 

neoplasm by manipulating cell  proliferation,  apoptosis  and cell  differentiation (Wogan, 

2000). 

Implantation models are widely used to promote HCC formation in mice for the preclinical 

evaluation of anticancer agents. This can be obtained by either implanting a HCC cell line 

or  tissue fragment into mice strains from the same origin (Killion et al.,  1998),  or  by 

implanting primary human HCC cell lines or tissue fragments into immune-compromised 

mice (xenograft models) (Troiani et al., 2008).

Genetically  engineered  mouse  models (GEM) for  HCCs offer  the  study of  molecular 

mechanisms involved in hepatocarcinogenesis (Frese et al., 2007; Leenders et al., 2008). 

They are used to explore the role(s) or interaction of different genes (e.g. oncogenes and 

tumour-suppressor  genes)  as  genetic  alterations  in  various  cellular  pathways  (e.g. 

pathways  involved  in  growth,  apoptosis,  proliferation  and  angiogenesis),  which  are 

fundamental for the development of HCC.
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8.1.2 In Vitro Models

The  in  vitro studies are performed with cell  lines,  which consist  of  immortalised cells 

derived  mainly  from mouse,  rat  and  human HCCs.  They  offer  an  increased  level  of 

control and examination possibilities compared to animal models (Feo et al., 2007). Their 

advantages are, that their growth can be synchronised, they can be used in high numbers 

and parameters  concerning  growth, metabolism and  cell  death  by  apoptosis  can  be 

evaluated. Additionally, in order to study the role of single genes or the effect of signalling 

pathways, they pose the option of being engineered. This can be archived by transfection 

of  genes,  antisense  oligonucleotides,  siRNAs  or  the  administration  of  inhibitory 

compounds. 

One major  limitation of  cell  lines  is the tendency,  that  increasing numbers of  in  vitro 

passages  accelerate  the  progression  of  Morris  hepatoma,  which  represents a  highly 

undifferentiated phenotype.

Considering  the  facts,  cell  lines  are  an  extremely  useful  tool  for  the  investigation  of 

molecular mechanisms  in vitro,  however the results of  the studies always  need to be 

verified in vivo.

8.2 The MIM Hepatocellular Mouse Model

In order to investigate the steps leading to hepatocellular carcinoma, we engineered a 

inducible hepatocellular EMT model (Gotzmann et al., 2002).

We  isolated immortalized hepatocytes  of  p19/alternate reading frame (ARF) knockout 

mice, and let them grow as monolayers. The ARF protein acts as tumour suppressor by 

inhibiting ribosome biogenesis and the induction of p53 dependent cell cycle arrest and 

apoptosis. This is a first step in tumour development, as the cells do not go into cell cycle 

arrest but keep dividing. However, the cells conduct apoptosis when treated with TGF-ß 

(1ng/µl). TGF-ß acts as an antiproliferative factor within the cell cycle, induces apoptosis 

through  the  SMAD  and  the  DAX  pathways  and  is  suspected  to  be  involved  in  the 

regulation of the immune system (e.g. regulatory T cells) and blocks the activation of  

phagocytes. This cell line was named MIM1-4.

The  next  step  was  the  stable  insertion  and  expression  of  Ha-ras  into  MIM1-4  cells, 
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representing  a further step in  tumour progression. Ras is  a  monomeric  GTP binding 

protein, which has GTPase activity and acts as a switch: It is active when GTP is bound 

and inactive without. Through mutations Ras can lose its GTPase activity which results in 

permanently  bound  and  thus  activated  Ras-GTP.  Ras  phosphorylates  and  activates 

microtubole-associated  protein  kinase  (MAPK)/ extracellular  signal-regulated  kinase 

(ERK) through RAF and MEK signalling, which activates transcription factors (e.g C-myc), 

that are important for cell proliferation and the control of the cell cycle. Additionally Ras is 

able  to  activate  Akt  via  PI3K  signalling (Downward,  1998),  leading  to  increased  cell 

survival  and  resistance  to  apoptosis.  As  a  consequence,  permanent  Ras  activation 

results in an ongoing stimulus of cell growth. 

We could observe, that these cells were growing faster but they still showed a polarized 

phenotype and formed an epithelial layer on collagen. MIM1-4 cells  expressing Ha-ras 

were called MIM-ras cells. 

If  we  treated MIM-ras  with  TGF-ß,  they did not  go  into  apoptosis but  performed a 

morphogenic switch from epithelial  cells to a fibroblastoid phenotype, which we called 

MIM-rt cells. These cells showed a spindle shaped, dedifferentiated phenotype, they did 

not need an extracellular matrix to adhere and formed a diffuse polylayer if supplied with 

TGF-ß.  The  transformed  cells  established a  weak  autocrinous  loop  of  TGF-ß,  that 

promoted the  fibroblastoid  phenotype  for  several  days,  but  slowly  reverted back  to 

epithelial cells if not treated with TGF-ß.

This resulted in three cell lines in order to explore oncogenous EMT progression. Two of 

the cells lines acted as a morphogenic switch, depending on the presence of TGF-ß. This 

gave us  the  opportunity to  compare  gene  abundance  before  and  after  transition, 

displaying the regulation of the participating pathways.

25



9. PDGF: A potentative novel therapeutic target for Liver Cancer

9. PDGF: A potentative novel therapeutic target for Liver Cancer

In order to determine the involvement and regulation of genes during EMT, we performed 

a gene  expression  study  of  mouse  hepatocytes using  an  Affymetrix  Genechip  11k 

microarray. We used immortalized hepatocytes of the MMH cell line and compared the 

epithelial  phenotype to  the  mesenchymal  state  after  EMT  caused  by  TGF-β 

administration. The data of the two different states was clustered and thus revealed the 

up- and downregulations of genes during the mesenchymal transition. Among the genes 

connected  with  EMT,  the  upregulation  of  PDGF-α  and  PDGF-α  receptor  (PDGFR-α) 

indicates, that a whole pathway system could be activated to support the mesenchymal 

phenotype.

9.1 The Involvements of PDGF

Platelet derived  growth factor  (PDGF) plays an important role in the regulation of cell 

growth and transformation (Beckmann et al., 1988), blood vessel formation (Lindahl et al., 

1997), wound healing (Pierce et al., 1989) and embryonic development (Betsholtz et al., 

2001).  Therefore it  is able to regulate the cell cycle (Styles et al., 1979),  has mitogenic 

and  chemoattractive  properties  (Ross  et  al.,  1986;  Heldin,  1992)  and, depending  on 

tissue-type, causes apoptosis (Kim et al., 1995) or boosts proliferation (Paulsson et al., 

1987). Additionally it is supposed to take place in ECM tissue remodelling (Yu et al., 2003

), as it controls the production of collagen (Canalis, 1981), fibronectin (Blatti et al., 1988) 

and collagenase (Chua et al., 1985).

9.2 The Form and Function of PDGF

PDGF is a polypeptide with  four known ligands (A, B, C, D), that form the homodimers 

AA, BB, CC, DD and the heterodimer AB by forming disulphide bonds (Heldin et al., 2002

). These dimers bind to the extracellular domain of the PDGF receptors (PDGFR), which 

consist of five immunoglobin-like domains and use three of them for ligand recognition 

(see Fig. 4). 
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Figure 4

This figure shows the PDGF dimer interactions with PDGF receptors. PDGFR-αα is activated 
by PDGF-AA, PDGF-AB, PDGF-BB and PDGF-CC, PDGFR-αβ is activated by  PDGF-AB, 
PDGF-BB and PDGF-CC and PDGFR-ββ is activated by PDGF-BB and PDGF-DD (4).

The PDGF receptors are present as dimers, consisting  of the  isoforms PDGFR-α and 

PDGFR-β, which form the homodimers PDGFR-αα and  PDGFR-ββ as well as the less 

frequent heterodimer PDGFR-αβ. PDGFR-αα binds PDGF-AA, -AB, -BB,-CC, PDGFR-ββ 

binds  PDGF-BB,  -DD and  PDGFR-αβ binds  PDGF-AB,  -BB,  -CC,  (-DD  low  affinity) 

(Claesson-Welsh, 1994; Yu et al., 2003). The ligands have different binding affinity for the 

receptors, which are able to specifically control the downstream signalling. 

The  dimerization upon  ligand  binding  leads to  autophosphorylation,  a conformational 

change and the activation of the intracellular receptor tyrosine kinase domain (Yu et al., 

2003).  The activation of the kinase is done by the phosphorylation of a certain tyrosine 

residue. This enables the kinase to phosphorylate receptor tyrosines of Src homology 2 

domains  (SH2) of  signalling  molecules binding  to the  receptor  site,  such  as 

phospholipase  γ (PLC  γ),  Ras  GTPase-activating  protein  (Ras-GAP),  p85  subunit  of 

phosphatidylinositol 3-kinase (PI-3K), growth factor receptor bound protein 2 (Grb2) and 

the non-receptor tyrosine kinase family Src (Claesson-Welsh, 1994; Yu et al., 2003).
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Figure 5

PDGF receptor  signalling is  able to activate  the  mitogen activated protein  kinase (MAPK) 
pathway  and  the  phosphatidylinositol  3’  kinase  (PI3K)  pathway,  leading  to  cell  survival, 
proliferation and differentiation (4).

9.3 PDGF induced Signalling

The activation of signalling molecules leads to signal transduction and  the induction of 

core downstream signalling components,  such as Ras and MAPK signalling as well as 

the PI3K pathway as outlined in Fig. 5 (Schmahl et al., 2007). The MAPK pathway signals 

through  ERK  and  JNK (Yu  et  al.,  2003) and  thus  regulates  gene  expression,  cell 

proliferation, differentiation, apoptosis and immunoresponses.  The PI3K signals through 

Akt  (Zhang et al.,  2007) and therefore controls gene expression, cell  cycle regulation, 

survival and motility.

PDGFR-α and  PDGFR-β signalling  offers  some  redundancy  by activating the  same 

overlapping pathways, however some pathways are exclusively triggered by only one of 

the receptors (Wu et al., 2008). So for instance, only PDGFR-α/β heterodimers activate 

components  of  the  NFκB and IL-6 pathway,  PDGFR-α homodimers  activate  the  C21 
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steroid  hormone  biosynthesis  and  PDGFR-β homodimers  activate  angiogenesis  and 

epidermal growth factor receptor pathways (Wu et al., 2008).

Concerning  MAPK  signalling,  PDGFR-α is  able  to  induce  ERK  and  JNK,  whereas 

PDGFR-β is only able to induce ERK. This gives the  PDGFR-α growth stimulation and 

inhibition properties, leading to positive and negative signalling for cell  transformation, 

while the  PDGFR-β mainly has positive signalling for cell transformation.  On PDGF-BB 

administration, which is able to bind both receptors, the signalling balance shifts towards 

transformation, whereas PDGF-AA administration leads to no transformation, as it only 

binds to PDGFR-α (Yu et al., 2003). However, if the negative signalling for transformation 

(JNK) of the PDGFR-α is blocked by Bcl-2, then this leads to positive signalling for cell 

transformation (Kim et al., 1994). 

The PI3K/Akt activation can be disrupted by mTOR, which negatively regulates the PDGF 

receptors (Zhang et al., 2007).

9.4 PDGF Signalling induced Diseases

Increased  PDGF  signalling  has  been  observed  in  pathogenesis  of  atherosclerosis, 

restenosis, pulmonary fibrosis, angiogenesis and tumourigenesis (Levitzki, 2004;  Wu et 

al., 2008).  Tumours are known to be caused by the amplification of the PDGFR-α gene 

as seen in gliomas (Fleming et al., 1992) or activating point mutations and small deletions 

in  PDGFR-α as found in GISTs (Heinrich et al., 2003). Fusion of the PDGF receptor with 

a protein can lead to its constitutive activation, so constitutive active PDGFR-α is known 

to  cause  the  idiopathic  hypereosinophilic  syndrome  (Cools et  al.,  2003)  whereas 

constitutive  active  PDGFR-β leads  to  chronic  myelomonocytic  leukaemia  (CMML) 

(Magnusson et al., 2001). Translocations lead to the fusion protein of collagen 1A1 gene 

with  PDGF-B  which  is  constitutively  produced  and further  processed  to  PDGF-BB, 

leading to dermatofibrosarcoma protuberans (DFSP) (Shimizu et al., 1999). Furthermore 

upregulation of the PDGF ligands and receptors is observed in soft tissue sarcomas and 

gliomas (Östman et al., 2001).
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With the upregulation of PDGFR-α expression during EMT, the question arose, in which 

way it supported the mesenchymal phenotype. Since it was shown, that blocking of  the 

PDGF pathway by inhibitors  leads to the reversal of the mesenchymal phenotype and 

apoptosis in human mammary carcinoma cell lines (Jechlinger et al., 2006), we assumed, 

that an inhibition using functional genetics would lead to a more studiable system. Thus 

our aim  was to stably introduce and express a dominant-negative  PDGFR-α (Yu et al., 

2000) in MIM-ras and MIM-rt cells, to compete with native PDGF ligand binding and thus 

block PDGF signalling. With regard to expression level, we used two different promoters: 

the moderate expression level was driven by an LTR, while the high expression level was 

archived by the use of glucose  regulated protein 78 (grp78) as promoter element.  This 

two differing expression levels would allow us to monitor the impact of  PDGF signalling 

during TGF-ß induced hepatocellular EMT in more detail.

As a next step we studied the changes within the extracellular microenvironment during 

EMT in conventional and 3D cell culture as well as  in vivo.  As cell surface composition 

and ECM configuration are important parts in the motile repertoire of cells, we assessed 

the invasion potential of the cells with disrupted PDGF signalling e.g. by wound healing 

assays.  This  gave us  an  idea,  whether  PDGF signalling directly  influences cell-cell 

adhesion or ECM composition and thus affects the motility of a transformed cell. By the 

use of 3D collagen cultures, we addressed the question, if MIM-ras and MIM-dnPDGF-α-

ras cells are able to organize in organotypic structures and how those structures are 

affected by TGF-β administration. With the help of in vivo experiments, we observed the 

tumour  forming  abilities  of  MIM-dnPDGF-α-ras and  MIM-dnPDGF-α-rt  cells  and 

compared them to cell lines with functional PDGF signalling.

Moreover we also monitored the impacts of impaired PDGF signalling on the MAPK and 

PI3K/Akt signalling pathways. As Ras already activates MAPK signalling in MIM-ras cells, 

the  additional  activation  of  PI3K/Akt  pathway  through  PGDF  signalling  may  play  an 

important  role  for cell  survival  during  the  transition and  the  subsequent  invasion 

processes. This should give us a picture, whether  PGDF signalling is a key player of 

invasion and if it additionally enhances the survivability of transformed cells.
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In addition we  employed the receptor tyrosine kinase inhibitor  STI571 to block PDGF 

receptor signalling and evaluate the implications on tumour cell growth and motility. This 

inhibitor  compound  is  currently  used  to  treat  chronic  myelogenous  leukaemia  and 

gastrointestinal stromal tumours and could be a potential candidate to specifically target 

the invasiveness of HCC 

The mandatory involvement of  PDGF ligand and PDGFR-α in EMT would pose a novel 

and distinct therapeutic target for the treatment of hepatic cancer. This would allow for the 

specific blocking of the PDGF pathway, resulting in more efficiency and lower side effects.  

The jamming of invasion and metastasis would be a huge improvement for anticancer 

therapy, as it would allow for the focused treatment of primary tumours without the threat 

of spreading tumour cells.

31



11. The publication "A crucial function of PDGF in TGF-β-mediated cancer progression of hepatocytes"

11. The publication "A crucial function of PDGF in TGF-β-mediated 
cancer progression of hepatocytes"

My personal contribution to the the publication

My contribution to the paper was the in vitro analysis of the impaired PDGFR-α signalling 

during EMT. I was able to establish a MIM-ras cell line expressing the dominant-negative 

PDGF-α receptor  (dnPDGFR-α)  together  with  a  red  fluorescent  protein  (RFP),  called 

MIM-dnPDGFR-α-ras. Additionally to the cell line with moderate (LTR driven) expression 

we constructed and high expression (grp78 driven) vector of dnPDGFR-α, however only 

the cell line with moderate expression managed to survive and thus was used for further 

experiments. The cells were sorted for RFP several times, so that I ended up with an 

approximate percentage of 90% RFP positive cells after sorting.  The overexpression of 

dnPDGFR-α  was verified  by western blotting analysis.  In a next step, I compared the 

growth  and  survival  rates  of  MIM-dnPDGFR-α-ras  cells  to  those  of  MIM-ras  cells. 

Furthermore,  I  analysed the  migration  potential  of  MIM-dnPDGFR-α-ras  and  MIM-ras 

cells upon EMT induction through TGF-β stimulation by the use of wound healing assays. 

Thereby, I measured the ability of the cell lines to close a scratch within a confluent tissue 

layer over defined time intervals. Similarly, together with Mario Mikula, we analysed and 

compared  the  differing  tumourigenic  properties  of  MIM-ras  and  MIM-dnPDGFR-α-ras 

cells as well as MIM-rt and MIM-dnPDGFR-α-rt cells in vivo. 

Additionally, I  investigated a  putative relationship of the PDGFR-α signalling  and  the 

activation of PI3K signalling upon EMT by a comprehensive western blotting analysis, but 

was unable find a direct relationship. 
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12. Discussion

Cancer  progression  is  a  multistep  process,  that  eventually  leads  to  invasive  and 

metastatic cells at a later stage. In order to pass this step, the tumour cells perform an 

EMT process and thus gain access to their  normally disabled motile potential. In our 

studies we established a multi-level cell system in order to reproduce how carcinogenesis 

leads to invasion of far and nearby tissue. 

12.0.1 The Prerequisites for EMT

For  the  first  pre-neoplastic  step  in  carcinogenesis  we  used  MIM1-4  p19ARF deleted 

hepatocytes, which lack the induction of p53 dependent cell cycle arrest and thus lead to 

abnormal cell  survival.  These cells needed pre-coated collagen plastic culture dishes, 

where  they  grew as  a  polarized  monolayer.  On  TGF-β  administration  these  cells 

performed apoptosis, indicating that they were still susceptible to signalling that controls 

cell proliferation. 

As  a  next  step  we  overexpressed  Ha-Ras  within  these  cells,  as  Ras  levels  were 

monitored to be elevated in tumour tissue. Ras  activates transcription factors, that are 

important  for cell  proliferation and  the  control  of  the  cell  cycle.  Mutations  lead  to 

permanently active Ras signalling, which continuously invokes cell growth. We found, that 

cells with the  Ras-transformation showed an accelerated cell cycle and seemed to be 

less sensitive to environmental parameters e.g. they were able to grow at lower growth 

factor  levels  than  MIM1-4  cells. The  cells  still  formed a  monolayer  and  exhibited a 

polarized phenotype in vitro and formed malign, neoplastic primary tumours in vivo.

12.0.2 The Onset of EMT

On TGF-β administration, we got an adverse effect: Instead of going into apoptosis, MIM-

ras cells performed a morphological switch  in  conducting EMT.  These cells exhibited a 

fibroblastoid phenotype and  they  grew in polylayers  in vitro. The culture dishes  did not 

have to  be  collagen  coated,  as  the  transformed  cells  formed their  own extracellular 

matrix. In vivo, these cells showed an aggressive tumour growth that was able to invade 
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nearby tissue. Other known factors known to cause this development are PDGF, Wnt/β-

catenin and Notch. We choose TGF-β as EMT promoting factor, as it was found in HCC 

tissues  as well as it was shown to be correlated with carcinogenesis and prognosis of 

HCC (Okumoto et al., 2004; Yim et al., 2010).

The treatment with an EMT inducing agent, like TGF-β, triggered the development of a 

fibroblastoid  phenotype.  The  question  arose,  why  TGF-β  promoted the  invasive 

phenotype in transformed cells while it suppressed normal cell growth. 

One possible answer might be, that the effects of TGF-β depend on cell cycle status and 

progression. It has been shown, that cells arrested in the G1/Syntheses phase performed 

EMT on TGF-β  administration, while cells in the G2/Mitoses phase went into apoptosis 

(Yang et al., 2006). 

12.0.3 Implications on EMT

Thus, in our case, the activation of Ras seems to influence and alter the cell  cycle  in 

order  to  allow TGF-β  to  have  an  growth  and  de/differentiation  promoting  effect. Ras 

invokes ERK,  which activates  cyclin  D1 and thus promotes G1/S phase entry,  which 

could  result  in  an  elevated  level  of  cells,  that  are  able  to  perform  EMT on  TGF-β 

induction. 

Interestingly  ERK can  be  activated  in  two different  ways:  While  e.g. FGF treatment 

triggers  sustained  activation,  PDGF or  EGF cause  only  transient  activation  of  ERK 

(Yamamoto et al., 2006). ERK activation leads to c-fos transcription but only sustained 

ERK activation induces c-fos hyperphosphorylation and thus its stabilisation, that finally 

promotes cyclin D1 activation and S phase entry (Murphy et al., 2006). Therefore  c-fos 

seems  to  act  as  a  molecular  sensor  for  ERK  levels.  Upon  sustained  activation, it 

promotes not only  cyclin D1 activation, but also downregulates transcription factors for 

antiproliferative signalling like JunD, Sox6 and MEF2C (Sharrocks, 2006). This triggered 

response seems to  be very cell  type specific:  While  the described proliferative effect 

happens in fibroblasts, neuronally derived PC-12 cells sustained ERK activation results in 

differentiation (Marshall, 1995; Murphy et al., 2006; Sharrocks, 2006). 

As Ras is a major inducer of ERK signalling, these previous findings could lead to the 
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assumption,  that  altered  levels  of  ERK  signalling  also  influence  the  cell  cycle  entry 

signalling  in  our  Ras  transformed  hepatocytes.  This  alteration  seems  to  be  a  major 

prerequisite for the following EMT transformation caused by TGF-β induction. It would be 

useful to perform a microarray analysis of  MIM1-4 cells compared to MIM-ras cells in 

order to get a picture of the changed transcriptome with regard to pathways concerning 

the cell cycle.

12.1 The Impacts of PDGF signalling

If we take a look at the different pathways involved in EMT, it shows that TGF-β is a key 

player, that is connected to most of them. It is able to activate signalling pathways, that 

assist  the changes in differentiation  and the following  mesenchymal phenotype in  an 

orchestrated way. As we performed gene expression analysis (microarray) and functional 

analysis (western blot) of transformed vs untransformed cells, we could clearly confirm 

the  downregulation  of  epithelial  markers  like  E-cadherin,  ZO-1,  β-catenin  and  the 

upregulation of  mesenchymal effectors like smooth-musle-actin,  fibronectin,  N-catherin 

and vimentin.  Moreover  we were  able  to  detect  an upregulation  of  factors  known to 

participate in EMT  (e.g. Snail) and coexpression of  potentially novel  factors:  PDGF-A 

ligand in conjunction with both PDGF receptors. 

We clearly saw an strong upregulation of PDGF-A expression with an autocrinous loop of 

bioactive  PDGF-A in  conjunction  with  elevated  levels  of  PDGFR-α and  PDGFR-β 

receptor  expression.  In  order  to  determine  the  function  of  PDGF  during  EMT, we 

transfected cells with a stable expressed dominant-negative PDGF-α receptor.

We used two vectors to express dominant-negative PDGFR-α at  different levels,  one 

contained an LTR as promoter, while the other one additionally contained grp78, which is 

a strong promoter element. Interestingly, we could not find cells with the additional grp78 

promoter, while there were few positive ones containing the dnPDGFR-α transcribed from 

the  weaker  LTR  promoter.  In  addition, the  ratio  of  these  few  positive  cells  slowly 

diminished after several cell division cycles indicating a decelerated cell division cycle. 

We concluded, that cells are affected by the downregulation of PDGF signalling and that 

a  strong  overexpression  of  non-functional  PDGFR-α could  even  send  the  cells  into 

apoptosis.
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12.1.1 PDGF is involved in Cell-Matrix Interactions

We investigated the migratory and invasive potential  of MIM-ras and MIM-dnPDGFR-α-

ras  respectively by  a  wound  healing  assay,  which  clearly  indicated  the  inferior 

performance of  MIM-dnPDGFR-α-ras for closing a gap between cells representing an 

artificial wound. 

A similar finding was obtained from in vivo experiments. MIM-dnPDGFR-α-ras cells again 

showed a diminished tumour growth rate in comparison to MIM-ras cells.  Furthermore 

MIM-dnPDGFR-α-ras  cells  were  able  to  build  spheres when cultivated in  3D culture, 

however the diameter and size was smaller than that observed from MIM-ras cells. This 

spheres may represent organotypic structures, as the hepatocytes within the sinusoids 

form ducts  with  a  villi  shaped  surface  in  order  to  offer a  large  surface  area  for  the 

exchange of metabolites from blood to the liver. This indicates that PDGF is needed for 

the  colonisation  of a  novel  area  and  indicates a  role  in  the  migratory  and  invasive 

potential of a cell. 

When analysing the influence of PDGF during the EMT process, we found that 

although MIM-dnPDGFR-α-ras cells were able to perform EMT upon TGF-β induction, the 

switch  from  the  epithelial  layer  pattern  to  a  fibroblastoid  multilayer  growth  was  less 

intense than that from MIM-ras cells treated with TGF-β. Accordingly, the 3D culture and 

in vivo tumour formation analysis showed slower progression, leading to smaller sized 

tumours. 

We concluded, that PDGF is a key component of cell matrix interactions and thus is an 

important element regarding the invasive and migratory potential of a cell. 

12.1.2 PDGF is linked to β-catenin Accumulation in the Nucleus

A proceeded study showed that PDGF signalling induces PI3 kinase signalling and β-

catenin accumulation in the nucleus during EMT (Fischer et al., 2007).

It  was  shown,  that  the  TGF-β  induced  PDGF  signalling  during  EMT  results  in  an 

activation of Akt. Since PKB/Akt phosphorylates and thus inactivates GSK3, it provides 

another possibility to block the cytoplasmatic degradation of β-catenin. However, a direct 
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connection between Akt signalling and nuclear β-catenin accumulation was not detected, 

as  only  MIM-rt  cells with the dnPDGFR-α showed an induction of  PKB/Akt  signalling 

compared to MIM-ras cells, but both cell types stained for cytoplasmatic β-catenin. Since 

the authors observed an increase of nuclear β-catenin in MIM-rt cells compared to MIM-

ras  cells,  they concluded that  the  nuclear  β-catenin  accumulation  is  linked to  PDGF 

signalling. However, no direct relation to PKB/Akt activation could be found. 

Interestingly, they found, that nuclear β-catenin accumulation prevents cells from anoikis 

and thus could protect spreading and metastasising cells from cell death. Those MIM-rt 

cells  showed  elevated  levels  of  β-catenin,  CyclinD1,  c-myc  and  p16 INK4A  within  the 

nucleus. While CyclinD1 and c-myc have cell cycle promoting capabilities, p16INK4A  blocks 

the cell cycle by inhibiting CDK4 and thus G1 phase cell cycle progression. 

This leads to the assumption, that PDGF signalling enables β-catenin accumulation within 

the nucleus, which results in the expression of cell cycle promoting (CyclinD1 and c-myc) 

and inhibiting (p16INK4A  )  factors.  This could be beneficial  for  spreading,  metastasising 

cells, as they show protection from anoikis during their detached state, while maintaining 

a non proliferative attitude. These cells then could have the ability to move along blood 

vessels, until re-attachment within an adequate microenvironment in order to switch again 

to a proliferative status. 

12.1.3 PDGF maintains EMT at the Tumour Border

In  order  to  get  more  information  about  the  tumour  stroma  crosstalk,  malignant 

hepatocytes and myofibroblasts were co-injected into mice and used for 3D collagen gel 

invasion studies (Zijl et al., 2009). 

Non-tumourigenic  myofibroblasts  were  derived  by  long  term  treatment  of  activated 

hepatic  stellate  cells  (HSC)  with  TGF-β.  In  vivo the  authors could  detect,  that 

myofibroblasts were able to support the growth of MIM-ras and to a lesser extend MIM-

dnPDGFR-α-ras tumours. Immunohistochemical stains of the MIM-ras tumours indicated 

EMT at the tumour borders by showing the loss of membrane-bound E-cadherin and the 

nuclear  translocation  of  β-catenin.  The  tumour  centres  however,  showed  a  mix  of 

epithelial and mesenchymal phenotypes. The expression of PDGFR-α revealed a similar 

picture as elevated levels of PDGFR-α at the tumour edges was found, but only little to no 
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expression at the tumour centres. Interestingly the MIM-dnPDGF-α-ras tumours showed 

no sign of  EMT at  the tumour-host  border.  This indicates,  that  the overexpression of 

dnPDGFR-α successfully inhibited PDGF signalling and thus EMT.

The in  vitro 3D  collagen  co-culture  revealed a  similar effect:  Here  the  presence  of 

myofibroblasts  enabled  malignant  hepatocytes  to  detach  from  a  polarized  sphere 

structure and to invade the nearby gel matrix as a single cell. Thereby, the cell acquired a 

mesenchymal phenotype, while losing their epithelial markers such as membrane-bound 

E-cadherin,  β-catenin  and  ZO-1.  TGF-β signalling could  be blocked by  LY02199761, 

which restored the  spheric  morphology, however the  inhibition  of  PDGF receptor by 

STI571 succeeded only  in  a  partial  blockage.  The cells  were still  able  to  invade the 

nearby gel,  but  never  detached from each other  and  they maintained their  epithelial  

morphology. Taken together, this results show that TGF-β is important in the initiation of 

EMT, whilst PDGF signalling is important for maintaining EMT at the tumour border.

The  authors  could  additionally detect  elevated  CCL-2/MCP-1  secretion  from 

myofibroblasts,  which were isolated after  a  first  peak of  inflammation.  In  the case of 

wound healing, elevated CCL-2/MCP-1 levels could attract macrophages, as an early 

immune  response to  tissue  damage.  Those  macrophages  respond  by  secreting 

metalloproteases and cytokines, like TGF-β, FGF-2 and PDGF. This induces the onset of 

EMT  in  neoplastic  hepatocytes  and  the  establishment  of  an  autocrinous  PDGF 

production,  in  order  to  maintain  the  EMT.  This  leads  to malignant  hepatocytes,  that 

produce TGF-β and PDGF and therefore are able to manipulate the microenvironment in 

order  to generate  hepatic  myofibroblasts.  The  hepatic  myofibroblasts aid  malignant 

hepatocytes to undergo EMT at the tumour border leading to invasive and metastatic 

properties. 

This finding connects PDGF tumour-stroma crosstalk with immune cell interaction, which 

states another important feature of the TGF-β/PDGF axis for the development of HCC. 

12.2 PDGF Antagonists

As upregulated PDGF signalling is coming along with more invasive tumours, not only in 

HCCs,  one possibility  to  counteract  the spreading would  be  either  by blocking  or  by 

downregulation of the pathway.  Under physiological conditions, upon ligand binding the 

PDGF receptors dimerise which  induces autophosphorylation  Thereupon SH2 domain 
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containing signalling molecules (e.g. c-src, phospholipase C-gamma, PI3K or GRB2/SOS

)  are able to bind to phosphorylated tyrosine residues. The cascade can be blocked by 

three different strategies: Either the use of an antagonist against the extracellular receptor 

domain, the interference  of receptor dimerisation or the block of the receptor tyrosine 

kinase interaction sites (see Fig. 6).

The  extracellular  PDGF  receptor  domain  can  be  blocked  by  antibodies against  the 

receptor  and against  the different  PDGF isoforms.  In  animal models,  these blockings 

were successfully used to avoid glomerulonephritis and the growth of tumour xenografts. 

(Hill et al., 2001; Loizos et al., 2005)

The function of  Systematic  Evolution of  Ligands by  EXponential  Enrichment (SELEX) 

aptamers is similar to antibodies, except that their three dimensional structures are made 

of single stranded DNA or RNA. They bind  to  PDGF ligands and thereby interfere with 

receptor-ligand binding. In animal models, it was successfully demonstrated, that its use 

prevented from glomerulonephritis and  reduced the interstitial fluid pressure of tumours 

(Floege et al., 1999; Pietras et al., 2001).

Figure 6

Possible  blocking  sites  of  PDGF ligand  and  receptor.  Antibodies and  dominant-negative 
ligands are able to block the PDGF receptor, antibodies and aptamers are able to block the 
soluble receptor and tyrosine kinase inhibitors are able to block PDGF receptor function (5).
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Antagonists, that interfere with receptor-dimerisation monoclonal antibodies which block 

receptor  tyrosine  phosphorylation  and  as  a  consequence  PDGF  induced  signalling 

(Shulman et al., 1997).

Low molecule weight tyrosine kinase inhibitors such as Imatinib (STI571), Sorafenib (BAY 

43-9006),  Sunitinib  (SU11248),  Dasatinib  (BMS354825)  and AG1296 can bind  to  the 

region of functional cytoplasmatic tyrosine residues of the PDGF receptor and thus avoid 

the binding of receptor tyrosine kinases (Lewis, 2007;  Levitzki,  2004). The difficulty in 

constructing  those  inhibitors  are  the  rather  unpredictable  cross  reactions  and  the 

accompanied cytotoxicity. For example, STI571 binds PDGF receptors very efficiently, 

but additionally links to the structurally less related c-Abl and the development of SU6668 

was discontinued, because its unacceptable toxicity revealed during clinical trials (Manley 

et al., 2002; Homsi and Daud, 2007). 

Another  possibility  is  to  use  genetic  approaches  to  interfere  with  PDGF  receptor 

signalling,  like  the  above  demonstrated  dominant-negative  PDGF  receptor  or  RNAi 

interference.

12.2.1 STI571, a Tyrosine Kinase Inhibitor

The compound STI571, also known as Gleevec or Imanitib Mesylate, inhibits the tyrosine 

kinase properties of PDGF, c-kit, c-Abl and Ang. It is used against chronic myelogenous 

leukaemia (targeting Bcr-Abl), gastrointestinal stromal tumours (GIST) (targeting c-Kit), c-

Abl  and  myelodysplastic/  myeloproliferative  diseases  (MDS/MPD)  (targeting  PDGFR 

gene arrangements) (Capdeville et al., 2002). We  could  show that STI571 was able to 

trigger  apoptosis  in  MIM-rt  cells,  which  showed  highly  elevated  PDGF-A ligand and 

PDGFR-α levels upon EMT. This  finding suggests,  that  hepatocellular  carcinoma with 

upregulated PDGFR could possibly be treated to  restrain spreading and metastasising 

cells. 

Besides, Gleevec is able to lower the interstitial pressure of tissue, a major hindrance of 

drug delivery and uptake of invasive tumours. With its co-application, STI571 boosts the 

uptake of other tumour targeting substances and thus promotes their potency. 

However, certain tumours develop resistance to imanitib mesylate (c-Kit) (Capdeville et 

al., 2002). In order to overcome this issue an alternate compound called SU11248 (sunitib 
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malate) was developed to target receptor tyrosine kinases, that are resistant to STI571. 

Furthermore its specificity was changed to include VEGF as target. SU11248 inhibits all 

PDGF receptors, VEGF, Kit, Ret, CSF-1R and Flt-3. It shows a tolerable toxicity profile 

and  is currently  approved  for  the  treatment  of  clear  cell  renal  carcinoma. Newer 

compounds in development are Vatalinib, which targets VEGFR-1 and 2 and PDGFR-β, 

c-kit, and c-FMS at higher doses, and Axitinib, which is designed to block VEGFR-1, -2, 

and -3, PDGFR-β and c-kit (Lewis, 2007).

The main problems of drugs against cancer cells is their side effects on normal dividing 

cells and their way of delivery to affected organs or tissue. As for example normal oral  

intake will deliver the drug to most parts of the body, exposing most cells to the effect of  

the  medication.  Therefore, those  generally  administered  substances  have  to  target 

pathways specifically active in tumour cells to avoid severe side effects in regular tissue. 

This makes it necessary to treat each kind of tumour with a pool of antagonists, each one 

blocking a defined or defined set of pathway(s), which are only active in this form within 

the tumour.

12.3 A Novel Network of Control: Micro RNAs

With the discovery of a novel network of cellular control, which consists of short, non-

protein  coding RNA fragments,  the  complexity  of  cellular  interactions  reached a  new 

level. 

Small RNAs are currently divided in snoRNAs (chemical modification of rRNA and tRNA), 

miRNA (post-transcriptional  mRNA regulation) (Lagos-Quintana  et  al.,  2001),  siRNA 

(post-transcriptional gene silencing) (Reinhart and Bartel, 2002) and piRNAs (forms RNA-

protein  complexes  for  transcriptional  gene  silencing) (Aravin et  al.,  2007).  Especially 

miRNAs (for microRNA) or short  miR have gained attention recently,  as they show a 

strong  sequence  conservation  among  species,  which  makes  them  easier  to  predict. 

Moreover their location close to the 3'-end of the mRNA allows the scanning of target 

binding areas.  So far several  hundreds of  miRNAs have been predicted  in mammals 

(Ambros,  2004) of  which dozens have been validated experimentally  to participate in 

post-transcriptional gene regulation.

The presence of miRNA has been shown to vary in different tissues as well as in cancer 
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cells (Liu  et  al.,  2004;  Lu  et  al.,  2005). They  are involved  in  EMT and  metastasis 

formation as well as participating in the TGF-β pathway and PDGFR-α regulation (Kong 

et al., 2008;  Cano et al., 2008;  Korpal et al., 2008;  Eberhart et al., 2008). This findings 

expect miRNAs to participate in our  HCC  EMT model  as well  and thus it  is  of  great 

necessity  for  the  understanding of  the  transition  process to  identify  putative involved 

members. 

12.3.1 Occurrence within the Liver

The first liver specific miRNA discovered was miR-122, but many others like miR-1, miR-

16, miR-27b, miR-30d, miR-126, miR-133, miR-146 and the let-7 family were found to be 

expressed in adult liver (Chen, 2009), others like miR-92a or miR-483 were only present 

in fetal liver (Chen, 2009), indicating a different expression profile during development. It 

was also shown that the manipulation of transcription actors affected the expression of 

miRNAs (e.g. HNF-1alpha influences miR-107 expression, myc can upregulate miR-17-

92  cluster  while  downregulating  others) (Ladeiro et  al.,  2008;  Aguda et  al.,  2008). 

Moreover, it  was  shown  that  transcription  factors  (NF-kB) can  regulate  mi-RNA 

expression (let-7),  while  on  the other  hand also transcription  factors  (STAT3) can be 

regulated via micro RNAs (Meng et al., 2007; Chen et al., 2007).

Regarding hepatocellular carcinoma it was examined, that miR-21, miR-224, miR-34a, 

miR-221/222,  miR-106a,  miR-203  were  upregulated  in  malignant  hepatocellular 

carcinomas compared to benign hepatocellular tumours (Chen, 2009). Furthermore miR-

122a, miR-422b, miR-145, miR-199a showed downregulation in HCCs compared to non-

tumour tissue (Chen, 2009). Several miRNAs also showed a correlation with the degree 

of  transformation,  indicating  that  they  also  play  a  role  during  certain  parts  of  the 

progression of tumour development (Murakami et al., 2006). 

It was shown for miR-122, which  exhibits downregulation upon HCC, that its potential 

target  genes  were  N-myc  and  cyclin  G1.  Interestingly, N-myc  is  often  rearranged  in 

woodchuck liver tumours whereas cyclin G1 shows an inverse correlation with miR-122 

expression. (Gramantieri et al., 2007; Jacob et al., 2004)

In murine mammary epithelial cells it was even shown, that microRNA actively participate 

in the regulation of EMT and MET (Korpal et al., 2008). In epithelial cells miR-200 family 
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blocks ZEB1/ZEB2 expression, so ZEB1/ZEB2 cannot block E-cadherin transcription and 

thus is available for assembling adherens junctions. If cells are stimulated with TGF-β, 

miR-200  family  members  are repressed  (miR-200b,  miR-200c,  miR-200a,  miR-429), 

leading to  EMT.  Within  the  miR-200  family,  there  are  two gene  clusters  for  target 

recognition of ZEB1/ZEB2; miR-200b, -200c, -429 and miR-200a, -141. Although all five 

members  can  bind  to  ZEB1 and  ZEB2,  they  exhibit  different  binding  efficiency.  The 

circumstances leading to the varying expression of the 2 clusters remains unknown.

It was shown, that overexpressed miR-200 family members could slow down or even 

revert the development of a mesenchymal phenotype (Korpal et al., 2008). The elevated 

miR-200  levels  lead  to  MET,  reduced  in  vitro  migration  and  enhanced  macroscopic 

metastases, depending on cell type and miR-200 family members present. 

While tumour progression normally causes a downregulation of MiRs, MiR-155, miR-9 

and miR-10b on the other hand are examples that are upregulated in tumour metastasis. 

TGF-β induces the expression of  miR-155 and thus promotes its  upregulation during 

EMT. In addition, miR-155 negatively regulates Rho A, resulting in disrupted tight junction 

formation and enhanced cell invasion and migration (Kong et al., 2008).

MiR-10b  has been shown to target HOXD10a, thus inducing the pro metastatic gene 

RHOC and thereby consequently support metastasis (Ma et al., 2007; Ma et al., 2010).

Expression  of  MiR-9  has been shown to  suppress E-cadherin  in  breast  cancer  cells. 

Thereby E-cadherin loses its capacity to sequester beta-catenin and potentates the Wnt 

signalling pathway. Silencing of MiR-9 led to decreased metastasis formation (Almeida et 

al., 2010).

12.3.2 Micro RNA and PDGF

Interestingly PDGFR-α mRNA  hosts  a  binding  site  for  miR-140  within  its  3'-UTR.  In 

zebrafish it was shown that miR-140 negatively regulates PDGF signalling during platal 

development (Eberhart et al., 2008). We performed a crosscheck with gallus gallus, rattus 

norvegicus,  mus  musculus  and  homo  sapiens  PDGFR-α 3'-UTR mRNA and could 

confirm the presence of conserved miR-140 binding sites.

For the binding of the miRNA to its target it is of great importance, that the first  7 or  8 

nucleotides of the miRNA, also called seed sequence, have an exact matching pattern 
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with the target (Korpal et al., 2008; Lewis et al., 2005). This perfect match patterns were 

used by us for the identification of possible targets within the 3'-UTR.

Additionally to the miR-140, we also found, that the same conserved site would  allow 

miR-329  a/b  and  miR-1988  to  bind  to  this  mRNA. However,  the significance  of  this 

additional binding abilities will have to be evaluated.

12.3.3 MicroRNAs as Therapeutic Targets

Having a widespread impact on the cellular state, miRNAs also pose a novel chance for 

the development  of  therapeutic  targets and tumour  markers.  It  was shown,  that  myc 

induced  hepatocellular  carcinoma  perturbs  miR-26a  expression.  In  turn, miR-26a, 

regulates  the  expression  of  cyclins  D2 and E2 and induce G1 arrest  of  human liver 

cancer cells (Kota et al., 2009). A miR-26a construct was transduced into hepatocytes in 

vivo  and  in  vitro  by  an  adeno-associated  virus  (AAV)  vector,  that's  envelope  is  not 

associated  with  AAV  infections  to  avoid  immunologic  cross  reactions.  Animals  with 

ectopic expression of the miR-26a construct show apoptosis in cancer cells,  whereas 

non-malignant hepatocytes show no effect, because they already have a consistent high 

level of miRNA. This application indicates, that a single miRNA can have an impact on 

disease. Thus, the  treatment  can be refined to only hit a very specific target. This is a 

remarkable step in maximizing effect and minimizing cross reactions and toxicity effects 

to other cells. 

These new  insights  will  hopefully  augment  the  further  understanding  of  cellular 

management and the generation of novel strategies for cancer treatment, that can be 

tuned on a finer scale.

The multiplicity and the distinct functions of miRNA pose a powerful level of control over 

gene expression in mammalian cells. The above mentioned examples exhibit the close 

connection of miRNAs with the field of  EMT and  their possible  involvement in tumour 

invasion and metastasis. The revealing of the crosstalk of cellular signalling poses the 

unique opportunity to step further in understanding the complexity and significance of  

gene  expression  under  different  conditions  or  of  different  tissues.  This  new  network 

integrates into an existing pattern of regulators and gives us the opportunity to develop 

new effectors in manipulating cell signalling. 
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12.4 Summary and Conclusions

We studied the impact  of  altered PDGF signalling on hepatic  cancer cells and could 

show, that PDGF is involved in the regulation of pro-survival pathways, the protection 

from anoikis  for  metastasising  cells  and the  involvement  of extracellular  components 

enhancing the potential for migration and invasion. We could examine, that PDGF has a 

direct or indirect influence on factors like β-catenin, cyclinD1, c-myc, p16INK4A and PKB/Akt 

and hence with its signalling could actively support the EMT process.  Furthermore we 

could determine, that TGF-β is important for the onset of EMT, while PDGF signalling is 

mandatory for the maintenance of EMT at the tumour border. It  also appears, that upon 

liver tissue damage, myofibroblasts cooperate with macrophages to release cytokines as 

TGF-β and PDGF. This changes the microenvironment around the injured site and leads 

to the onset of  EMT in hepatocytes. The transformed  hepatocytes in conjunction with 

myofibroblasts then foster the establishment of autocrinous TGF-β and PDGF expression 

and extend and maintain their mesenchymal state.

We and others (Pietras et al., 2003) showed, that blocking the PDGF pathway by drugs 

like  STI571  is  an  effective  measure,  that  can  slow,  arrest  or  even  revert  cancer 

development. 

With the discovery of novel regulatory network consisting of miRNAs, that is involved in 

cellular regulation and transition processes, we could be a step further to understand the 

basic crosstalk of cells, that leads to cancer and further to invasive cells. 

A promising principle  in  cancer  treatment  is  the  analysis  of  the  diversity  of  activated 

pathways in tumour cells.  This is a  necessary step  for an individual treatment of each 

tumour profile  with  combined  inhibitory  compounds,  that  maximize the  impact  on  the 

tumour but minimize the toxicity  to non-involved tissue.  For instance, the possibility of 

miRNA as therapeutic agent introduces a very specific targeting of deranged pathways, 

that could lead to more effective and less toxic medication. 

The analysis of tumour cell expression patterns can be done by microarrays, as we did, 

or by next generation sequencing (NGS) technologies, whereas the focus of development 

is centred on NGS. The sequencing methods offer multiple advantages over microarrays, 

such as increased sensitivity for rare sequences, interrogation of novel genomes without 
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prior knowledge, single-nucleotide resolution, lower cost and the ability of genome-wide 

mapping  of  DNA binding  proteins  and  epigenetic  marks  (Hurd and  Nelson,  2009). 

However, microarrays may still have their nice as a low cost screening tool or when there 

are huge amounts of samples, such as in medical tumour tissues analysis.

The development of new screening tools is essential for the detection of novel regulatory 

mechanisms, that allow us to understand cell signalling and its alterations during cancer 

progression.  So  we  used  microarrays  to  reveal  PDGF  and  its  receptor  as  a  novel 

potentative  player involved in EMT and thus the enhancement  of  cancer invasiveness. 

We studied its role during EMT and revealed its impact and significance within the tumour 

stroma crosstalk. This will hopefully be helpful to develop novel strategies in targeting and 

inhibiting tumour invasiveness.
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