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I. Introduction

In September 1683 Antony van Leeuwenhoek reported the first observation of living bacteria in plaque from 

his and several other persons teeth. With this description of oral cavity bacterial communities he witnessed a 

close relationship of very different organisms, humans and bacteria. Roughly 200 years later Heinrich Anton 

de Bary, a German mycologist who had worked with lichens as well as fungal crop pathogens, used the term 

symbiosis coined from the Ancient Greek σύν (sýn) “together” and βίος (bios) “life” (de Bary 1878) for this 

kind of intimate living-together of two or more unlike organisms. His definition of symbiosis encompasses 

mutualism (with benefits to all partners), commensalism (no partner is harmed) and parasitism (one partner 

is harmed) and is now widely accepted in the English speaking scientific community. It took 284 years from 

Leeuwenhoek’s observations to the discovery of the great role microbial symbioses played in the evolution 

of the eukaryote cell with its omnipresent bacterial symbionts, the mitochondria (Sagan 1967;  but see also 

Pallen 2011; Selosse 2011). It took another 25 years to develop the sequencing and phylogenetic tools as well 

as the labeling and imaging tools to access the diversity and distribution of microbes in their environment 

using the full cycle rRNA approach (Amann et al. 1995). These and other novel molecular tools developed in 

the 1990s catalyzed a broadening of the focus in symbiosis research and allowed completely new approaches 

in microbe-animal, microbe –plant or microbe-microbe associations. 

In mutualistic bacteria-animal symbioses as investigated in this thesis the microbial symbionts can have very 

different functions for its animal host. These functions range e.g. from providing bioluminescence such as in 

the bobtail squid – Vibrio symbiosis (Mandel et al. 2009) to defensive functions as in the leaf-cutting ants 

where symbiotic bacteria inhibit a fungal parasite of the gardened fungus (Currie et al. 2006) to nutritional 

functions as in sap feeding insects such as aphids where the bacterial symbionts supplement the insects 

carbohydrate rich diets by providing essential amino acids (McCutcheon and Moran 2010).
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Chemoautotrophic symbiosis

In contrast to the largely oxygenated terrestrial world several large or important marine habitats are oxygen 

poor or free, chemically reduced and enriched in inorganic chemical energy sources such as sulfide or 

methane. In the steep chemical gradients from these reducing conditions to the oxygenated water column, 

e.g. around decomposing organic matter or sulfide rich effluents at hot vents, chemoautotrophic bacteria can 

successfully access both electron donors and acceptors, fix inorganic carbon and form dominating biofilms 

or mats. In many habitats with reduced water bodies, the optimal electron acceptor oxygen is however 

either temporally and/or spatially separated from the reduced compounds such as hydrogen, methane or 

hydrogen sulfide. In a symbiotic association with an animal hosts that bridges these gaps for its symbiont by 

behavioral, morphological or metabolic adaptations, the symbiont gains access to both oxygen and reduced 

compounds and the host is in return provisioned by its symbionts. Seen from the animal host’s perspective, 

sulfide detoxification and nourishment through the chemoautotrophic production of its symbionts are the 

innovations that enable the hosts to access an otherwise inaccessible niche and apparently live on inorganic 

carbon and energy sources. This harnessing of chemosynthetic symbionts is a recurring evolutionary strategy 

(reviewed in Dubilier et al. 2008) and eukaryotes from six phyla as well as one archaeon (Muller et al. 2010) 

are known to harbor chemoautotrophic sulfur-oxidizing bacteria. In contrast to this broad host diversity, 

all bacterial partners apparently belong to two classes of bacteria – the Gamma- and Epsilonproteobacteria 

(Dubilier et al. 2008).

Chemosynthetic symbioses were first described from hydrothermal vents at the Galapagos Rift in the giant, 

mouth and gutless tubeworm Riftia pachyptila (Cavanaugh et al. 1981; Felbeck 1981). It only took this 

spectacular deep-sea discovery to have scientists realize that chemoautotrophic symbioses occur in a wide 

range of habitats including shallow water coastal sediments, which are much easier to access (Felbeck et al. 

1981; Ott et al. 1982; Felbeck et al. 1983). For an overview of the presently known shallow-water symbioses 

see Figure 1. 

In many of these sediments an oxygenated top layer is separated from a deeper, reduced and sulfidic layer 

by a layer free of both oxygen and sulfide. Meiofaunal hosts to sulfur oxidizing bacteria (SOB) such as 

desmodorid nematodes of the subfamily Stilbonematinae (see Fig. 2; reviewed in Ott et al. 2004a; Ott 

et al. 2004b) or gutless clitellate annelids of the subfamily Phallodrilinae (genera Olavius/Inanidrilus - 

commonly called ‘gutless oligochaetes’) (reviewed in Dubilier et al. 2006) have been shown to traverse this 
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Figure 1: Overview of the presently known shallow water thiotrophic symbioses (animals not drawn to scale). 
Adapted after Dubilier et al 2008.

Figure 2: Stilbonematinae nematodes with thiotrophic ectosymbionts. a) A ball of freshly collected worms 
displaying the typical whitish color. b) Scanning electron microscopic image of the monolayer coat of 
ectosymbionts on the Laxus oneistus cuticle. Images taken by J. A. Ott and M. Polz.
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chemical gradient to nourish their symbionts (Giere et al. 1991; Ott et al. 1991). Gutless oligochaetes host a 

consortium of symbionts with the most dominant symbiont being a gammaproteobacterial  sulfur oxidizing 

chemoautotroph called Gamma1 (Dubilier et al. 2001; Blazejak et al. 2006). These Gamma1 symbionts 

form a monophyletic clade together with the ectosymbionts of stilbonematinae and the endosymbionts of 

the nematode Astomonema (Musat et al. 2007; Dubilier et al. 2008; Bayer et al. 2009).

Many hosts including stilbonematinae and gutless oligochaetes have a whitish appearance due to light 

refractive inclusions in their bacterial symbionts. These refractive inclusions resemble sulfur storage globules 

in large free-living sulfur oxidizing bacteria such as Beggiatoa (Pasteris et al. 2001). Due to the provisioning 

by the symbionts several host species with chemosynthetic symbionts have a reduced digestive system (e.g. 

solemyid or lucinid bivalves) or completely lack a mouth and a gut at least in adult stages (e.g. annelid taxa 

such as the siboglinid tubeworms and gutless oligochaetes as well as nematodes of the genus Astomonema). 

Another meiofauna member co-occuring with Astomonema, Stilbonematinae and gutless oligochaetes are 

pinkish white catenulid flatworms of the genus Paracatenula which also have no mouth or gut (Figure 3). 

Instead, they harbor intracellular microbial endosymbionts in bacteriocytes (Ott et al. 1982) that form 

a tissue resembling the trophosome of the mouthless Siboglinidae (Annelida). The bacteriotcytes almost 

completely fill the posterior part of the body behind the brain (Ott et al. 1982). 

Paracatenula belongs to the catenulid family of the Retronectidae, the only catenulid family with marine 

members (Sterrer and Rieger 1974). While the second marine genus, Retronectes occurs from sub-polar 

to tropical regions, Paracatenula species have only been described from the interstitial space of warm 

temperate to tropical subtidal sands in the Atlantic and the Caribbean Sea (Sterrer and Rieger 1974). 

Asexual reproduction is very common across Catenulida and led to the order’s name1. In contrast to this, no 

indications of  asexual reproduction were found in Retronectidae and the absence of asexual reproduction 

was diagnosed as one of the group’s synapomorphies (Sterrer and Rieger 1974). As virtually no data is 

available on the biology of Paracatenula including their reproduction, their global distribution or their 

diversity, all these diagnoses have to be considered preliminary. The worms’ morphological adaptations, their 

habitat and their color however point to a chemosynthetic nature of the symbionts. In many SOB that store 

1  Catenula is Latin, means ‘little chain’ and refers to the string of zooids which are produced in a mode of asexual 

reproduction called paratomy. In paratomy the agametically produced asexual offspring organ development precedes 

the split from the mother zooid, and daughter zooids are arranged in the anterior-posterior body axis starting with 

the mother zooid.
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elemental sulfur in light refractive globules, the reversely operating sirohaem dissimilatory sulfite reductase 

(DsrAB) enzyme system is an important part of the sulfur oxidation machinery (Loy et al. 2009). The 

gene for DsrAB has been found in bacteria associated with two species of Paracatenula and their sequences 

clustered together with sequences of the alphaproteobacterial sulfur oxidizing genus Magnetospirillum, albeit 

with weak node support (Loy et al. 2009). Assuming that the sequences stem from the endosymbionts and 

not from a contamination, a phylogenetic position of the Paracatenula symbionts within Alphaproteobacteria 

seems possible. A molecular identification and an assessment of the chemoautotrophic capabilities of the 

symbionts is however lacking.

Transmission of bacterial symbionts

The transmission of symbionts to the offspring is a crucial step in the reproduction and early development of 

all hosts. There are two possible sources for the symbionts of the daughter generation – a pool of free-living 

bacteria in the environment (environmental or horizontal transmission) or the symbionts of the parental 

individuals that get directly passed on to the next generation during oogenesis or development (maternal 

or vertical transmission) (reviewed in Bright and Bulgheresi 2010). In general, cases of strict vertical 

Figure 3: Paracatenula catenulid flatworms with endosymbiotic bacteria a) Paracatenula sp. worm from the Belize Barrier 
Reef with a pinkish-white body region housing the symbionts clearly separated from the transparent rostrum. b) Extracted 
symbiotic bacterial cells from a Paracatenula sp. host from Belize. Note the numerous light refractive inclusions in the 
bacterial cells.
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transmission are rare and very often a mixed mode of transmission is found where vertical transmission 

is occasionally or regularly complemented by horizontal transmission. Complete congruence of host and 

symbiont phylogenies over a large number of host taxa is a good predictor for strict vertical transmission 

(Moran et al. 2008). The mode of transmission is inherently linked to the population size of the symbionts 

and therefore to the evolutionary forces acting upon them (Peek et al. 1998). Compared to a non-symbiotic 

free-living bacterial population, the population sizes of horizontally transmitted bacteria  - which have a 

non-symbiotic population and an additional symbiotic population - is increased, while the population sizes 

of strictly vertically transmitted symbionts are largely restricted.  The nearly neutral theory of molecular 

evolution predicts that rates of slightly deleterious nucleotide substitutions should be negatively correlated 

with population size due to the effects of genetic drift (Ohta 1992). Absolutely neutral mutations are only 

affected by the rate of mutation and deleterious mutations on the other hand are influenced more by purifying 

selection than by population size (Ohta 1992). Translated to symbiont evolutionary pace this should 

mean faster overall substitution rates in the very small populations of vertically transmitted symbionts and 

slower substitution rates in horizontally transmitted symbionts compared to free-living populations. Both 

scenarios have been demonstrated for thiotrophic symbionts with different modes of transmission (Peek et 

al. 1998) and accelerated evolution in vertically transmitted symbionts has been demonstrated for many 

insect symbiont lineages as well (Moran et al. 2008). Another typical genomic feature of vertically inherited 

symbionts is a tendency to have A+T enriched genomes (Moran et al. 2008). This has been documented in 

many insect symbiont lineages as well as in the vertically transmitted thiotrophic symbionts in vesicomyid 

clams which have a genomic G+C content of 31.6 - 34% compared to 43.1% in the closely related free-

living Thiomicrospira crunogena (Kuwahara et al. 2008).

Specifity in symbiotic association

A high degree of specificity has been demonstrated for a number of microbial symbioses. The degree of 

taxonomic specificity varies even between host species within one genus (Chaston and Goodrich-Blair 

2010). In the case of Stilbonematinae nematodes the bacteria associated to Laxus oneistus (Polz et al. 1994), 

Eubostrichus dianae (Polz et al. 1999), and three Robbea species (Bayer et al. 2009) have been molecularly 

characterized so far. Both Laxus oneistus and all three Robbea species are covered by a microbial coat 

composed of a single phylotype of Gammaproteobacteria. The molecular mechanisms mediating the selection 
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of cooperative microbes have been shown to be i) dependent on either minor variations in conserved 

molecules in closely related hosts or symbiont, or ii) on the presence / absence of host-range specificity 

determining genetic factors (Chaston and Goodrich-Blair 2010). Mermaid, a Ca2+-dependent sugar-binding 

lectin secreted by stilbonematine nematodes has been detected in such minor variants (isoforms) and has 

been shown to be involved in symbiont attachment (Bulgheresi et al. 2006). It is feasible that the detected 

isoforms play a role in the acquisition and selection of the stilbonematine ectosymbionts as the symbionts are 

likely environmentally transmitted. Two facts point to environmental transmission (1) host and symbiont 

phylogenies do not match (Bayer et al. 2009) and (2) the need of developing nematodes to replace their 

bacterial coat through several molts, but so far no free-living closely related phylotypes have been detected. 

Thesis outline

The main results of this thesis are presented in the Chapters II to VI:

This thesis studies the biology of two shallow water thiotrophic symbioses – the catenulid flatworms of 

the genus Paracatenula and stilbonematinae nematodes, both portrayed in the introduction. Host and 

symbiont distributions, host specificity, symbiont metabolism as well as possible modes of transmission 

are characterized by molecular and morphological methods in an integrative symbiosis research framework 

involving host and symbiont datasets. 

In chapter II - First detection of thiotrophic symbiont phylotypes in the pelagic marine environment, 

we detected closely related members of the stilbonematinae / gutless oligochaete symbiont clade in offshore 

surface seawater of both the Caribbean and Mediterranean Sea using specific PCR-assays and FISH.

The successful selection of such environmentally transmitted partners is crucial for hosts. The stilbonematin 

species Laxus oneistus is covered by a single bacterial phylotype. The symbionts are embedded in a layer of 

host mucus containing the lectin Mermaid which mediates symbiont attachment.  In a complementing 

line of work involving Stilbonematinae in Chapter III - Sequence variability of the pattern recognition 

receptor Mermaid mediates specificity of marine nematode symbioses we could show that Stilbonema 

majum—another symbiotic stilbonematine nematode co-occurring with  L. oneistus  —is covered by 

bacteria that are related but phylogenetically distinct to those covering L. oneistus using the full-cycle rRNA 

approach. Furthermore cDNA analysis of the host produced lectin Mermaid from both host taxa revealed 
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several isoforms that were differing in only one to three of the 105 aa positions in the active carbohydrate 

recognition domain. In agglutination experiments the isoforms showed higher affinities to the symbionts 

of the host they were found on. This indicates that particular isoforms of the same molecule play a role in 

the selection and attachment of specific symbionts, very similar to what had been documented for pathogen 

recognition in the innate immune system of different animals.

Paracatenula worms co-occur with Stilbonematinae and their association with endosymbiotic bacteria has 

been published almost 20 years earlier, but since this initial description nothing has been published on this 

enigmatic symbiosis.  

In a first stage for the Paracatenula flatworm research, represented in chapter  IV - A new species of symbiotic 

flatworms, Paracatenula galateia sp. nov. (Platyhelminthes: Catenulida: Retronectidae) from Belize 

(Central America), we described our main Paracatenula model organism. The species P. galateia proved to 

be the most suitable in terms of reliability of sampling, ease of handling, and survival in the lab from the 

great diversity of Paracatenula species found in the vicinity of the Carrie Bow Cay field station. 

In a second stage in chapter V - Paracatenula, an ancient symbiosis between thiotrophic Alphaproteo-

bacteria and catenulid flatworms I characterized the Paracatenula galateia symbionts molecularly and gave 

them a name, ‘Candidatus Riegeria galateiae’. The intracellular endosymbionts from all studied Paracatenula 

species are closely related and form a novel family level clade of chemoautotrophic sulfur-oxidizing Alphap-

roteobacteria. I could show that the Paracatenula – Candidatus Riegeria association is ancient, likely dating 

back to the early evolution of flatworms more than 500 million years ago. My results indicate that up to 

50% of the body volume of each worm is occupied by its mono-specific bacterial symbionts. The host and 

symbiont phylogenies for 16 species analyzed match perfectly and generate a first  line of evidence indicating 

vertical transmission of the symbionts.
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Abstract

Marine oligochaete and nematode thiotrophic symbionts (MONTS) form a

phylogenetic cluster within the Gammaproteobacteria. For the symbionts that live

on the nematode surface, environmental transmission is likely. However, until

now, no free-living relatives have been found. In this study, we detected MONTS

cluster members in offshore surface seawater of both the Caribbean and the

Mediterranean Sea by PCR amplification of their 16S rRNA genes. This is the first

evidence of members of this cluster in the pelagic environment. These may either

be free-living forms of the symbionts or closely related, nonsymbiotic strains. In

either case, their existence sheds light on the evolution of beneficial symbioses

between shallow water invertebrates and sulfur-oxidizing bacteria.

Stilbonematid nematodes inhabit marine sands. Their sur-

face is covered by sulfur-oxidizing bacteria. Frequently co-

occurring with the stilbonematids are gutless oligochaetes of

the genera Inanidrilus and Olavius. Both nematodes and

oligochaetes do not exhibit planktonic developmental

stages. Instead, they spend their entire life cycles in the

sediment, where they may migrate between superficial and

deep sand, thereby enabling their symbionts to access

oxidants and reductants. In turn, these hosts appear to be

trophically dependent on their symbionts (Ott et al.,

2004a, b; Dubilier et al., 2008). Gutless oligochaetes harbor

a consortium of symbiotic bacteria under their cuticle, the

most prominent member being the Gamma 1 symbiont

(Dubilier et al., 2001). Metagenomic analysis allowed the

identification of Gamma 1 symbiont genes encoding for

enzymes involved in CO2 fixation via the Calvin cycle, the

oxidation of reduced sulfur compounds (such as adenosine

50-phosphosulfate reductase, AprA), and sulfur-storage,

supporting its chemoautotrophic, sulfur-oxidizing nature

(Woyke et al., 2006). In 16S rRNA gene-based phylogenetic

trees, oligochaete Gamma 1 symbionts form a distinct

cluster within the Gammaproteobacteria together with mar-

ine nematode symbionts (Musat et al., 2007; Dubilier et al.,

2008; Bayer et al., 2009; Bulgheresi et al., 2011). We will refer

to this as the marine oligochaete and nematode thiotrophic

symbionts (MONTS) cluster. Two 16S rRNA genes from

bacteria associated with the coral Acropora palmata

(Sunagawa et al., 2010) also belong to this cluster, albeit

their association with the coral needs to be confirmed by

fluorescence in situ hybridization (FISH). So far, no free-

living members of the MONTS cluster have been detected.

This is surprising, given that several facts indicate that the

stilbonematid symbionts are recruited – at least partially –

from the environment: (1) incongruence of host and sym-

biont phylogenies (Bayer et al., 2009); (2) lack of symbionts

on the eggshell of unhatched nematode embryos (S. Bul-

gheresi unpublished data); and (3) the need of developing

nematodes to replace their bacterial coat through several

molts. As for the symbionts of gutless oligochaetes, they are

transmitted vertically (Giere & Langheld, 1987), but the

incongruent host and symbiont phylogenies point to addi-

tional horizontal transfer (Dubilier et al., 2008).

This study was performed to determine whether mem-

bers of the MONTS cluster can only be found associated to
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marine metazoans or also in the pelagic environment. We

therefore searched for their 16S rRNA genes in surface

seawater (see Supporting Information, Table S1) offshore

from where the stilbonematids Robbea sp. 1 (Rmed in the

following text), sp. 2 (Rcay), and sp. 3 (Rbel) occur: Calvi on

the island of Corsica (France), Little Cayman (Cayman

Islands), and Carrie Bow Cay (Belize), respectively. The cuticle

of these nematodes is covered by a spatially ordered

monolayer of bacteria. Only one bacterial morphotype and

one 16S rRNA gene phylotype were found to be associated to

each given Robbea species. The presence and phylogeny of

the aprA gene indicates that the bacterial symbionts may

use reduced sulfur compounds as an energy source (Bayer

et al., 2009).

Except for the Mediterranean seawater, processed after

overnight transport in a cooler, 500-mL aliquots were

immediately filtered on site (0.2-mm-pore size, 47mm +
GTTP filters, Millipore, Billerica, MA). The filters were

stored deep-frozen in UltraCleanTM Soil DNA Isolation Kit

solution number 1 and environmental DNA was later

extracted according to the manufacturer’s high-yield proto-

col. The extracted DNA and ultrapure water, as a negative

control, were randomly amplified with the GenomiPhi V2

Kit (GE Healthcare Europe). 16S rRNA gene-specific PCR

primers targeting the symbionts of the three Robbea species

mentioned above (see Table S2 for primer details) were

designed using the PROBE_DESIGN tool of the ARB software

package (Ludwig et al., 2004) and the ARB ssu_jan04_

corrected database (http://www.arb-home.de) updated with

sequences of the MONTS cluster. The output for Rmed and

Rbel symbiont-specific primers was modified by shifting

mismatches to the next similar target sequences to the 30

end. Primer specificity was verified by searching GenBank,

SILVA, and Greengenes databases with probeCheck (Loy

et al., 2008). From each randomly amplified environmental

DNA, a pool of 16S rRNA gene fragments was generated

with the eubacterial primers 616V (Juretschko et al., 1998)

and 1492R (Kane et al., 1993). Each 16S rRNA gene pool was

then used as a template for amplification with nested,

symbiont-specific primers. One microliter of template per

50mL reaction volume was used for PCR amplification

(Invitrogen Life Technologies, Darmstadt, Germany)

[4min at 94 1C; 35� (45 s at 94 1C, 30 s at TA, 1min 30 s at

72 1C); 10min at 72 1C]. All PCR products were cloned into

the pCR2.1-TOPO cloning vector (Invitrogen Life Technol-

ogies), Sanger-sequenced, and assembled using CodonCode

Aligner 3.5 (CodonCode Corporation, Dedham, MA). Most

of the sequences obtained from the seawater samples were

closely related to those of nematode symbionts (EU711427,

EU711426, and EU71142, 98.1–100% sequence identity; see

Table S1).

We compiled a 16S rRNA gene dataset with those

sequences obtained from our environmental samples that

had MONTS cluster members among their 20 BLASTN top

hits (BLASTN was used with standard parameters; Altschul

et al., 1990). GenBank sequences retrieved using BLASTN and

displaying Z95% similarity to the 16S rRNA genes of three

stilbonematid symbionts (EU711426, EU711427, and

EU711428) were also included. We also BLASTN searched the

CAMERA, IMG/G, and SAR databases for sequencesZ95%

identical to EU711426, EU711427, and EU711428, but

retrieved no hits. This absence of pelagic MONTS 16S rRNA

gene fragments from public databases could indicate that

they might represent low-abundance phylotypes (Sogin

et al., 2006; Reeder & Knight, 2009). After the removal of

chimeric sequences identified using MALLARD (Ashelford

et al., 2006) the dataset was aligned using RDPII (http://rdp.

cme.msu.edu; Cole et al., 2009) and manually corrected in

the GENEIOUS 5 software (Drummond et al., 2010). Several of

the environmentally derived clones displayed a maximum of

nine nucleotide differences over a fragment length of 403 nt

compared with all published symbiont sequences – for

example clone BelOW-5 (HQ141157), 98.6% identical to

the Rmed-, 98.6% to the Rcay-, and 97.8% to the Rbel-

symbiont, but only 97.3% identical to uncultured bacteria

outside the MONTS cluster (DQ256693 from the Great

Barrier Reef) and 95% identical to cultured Halochroma-

tium sp. bacteria (AJ401219). Alignment analysis shows that

– within the obtained environmental sequences – at least six

of all nucleotide changes can be identified as single nucleo-

tide polymorphisms (10 sequences minimum alignment

coverage, 0.25 minimum variant frequency). These results

clearly indicate a hitherto hidden diversity among members

of the MONTS cluster, for which PCR and sequencing errors

cannot solely account for. To analyze the phylogenetic

position of the environmental sequences, we used maximum

likelihood- (PHYML at the phylogeny.fr web service; Guindon

& Gascuel, 2003; Dereeper et al., 2008) and Bayesian

inference-based (MRBAYES; Ronquist & Huelsenbeck, 2003)

algorithms. The GTR1I1G model was used in both ana-

lyses and Ectothiorhodospira variabilis (AM943121) and

Alkalilimnicola ehrlichii (AF406554) served as outgroup

sequences. Node stability was evaluated using posterior

probabilities (pp – Bayesian inference) and aLRT (maxi-

mum likelihood; Anisimova & Gascuel, 2006; Guindon

et al., 2010) for two datasets – one consisting only of

sequences longer than 1000 nt and one including

400–1000 nt-long sequences. The addition of these short

sequences did not alter the topologies of the trees, and

therefore we only considered phylogenetic analyses includ-

ing the short sequences. Our tree reconstruction (Fig. 1, Fig.

S1 and Table S1) shows that: (1) 16S rRNA gene sequences

retrieved from the public databases displaying Z95% iden-

tity to those of MONTS members are from metazoan-

associated bacteria, sediment samples (of marine or fresh-

water origin) or bacterial mats; none of the sequences

FEMS Microbiol Ecol 77 (2011) 223–227c� 2011 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

224 N.R. Heindl et al.



First detection of thiotrophic symbiont phylotypes  
in the pelagic marine environment

17

retrieved from the databases are from marine pelagic

samples. (2) All selected 16S rRNA gene fragments PCR

amplified with symbiont-specific primers from offshore

seawater belong to the MONTS cluster (pp 0.95, aLRT 0.9).

(3) Three stable clades contain pelagic clones and sym-

bionts, and each clade is included in one of the three

MONTS major groups. The existence of three different

clades of pelagic phylotypes indicates that a free-living

lifestyle may be common among the MONTS members. (4)

Phylotypes most closely related to Rbel and Rmed symbionts

are found in both Caribbean and Mediterranean Sea,

whereas phylotypes related to the Rcay symbionts were only

found locally, in Cayman Islands seawater. We also per-

formed FISH on offshore seawater filtrates using Gamma-

proteobacteria-specific probes together with probes targeting

members of the three pelagic clades to ensure that the

amplified 16S rRNA genes originated from environmental

bacteria (Fig. S2 and Table S3).

The high sequence identity between symbiotic and

pelagic 16S rRNA gene fragments suggests that the latter

originated either from free-living forms of the symbionts or

nonsymbiotic members of the MONTS cluster. Environ-

mental transmission of thiotrophic symbionts from a pool

of free-living bacteria has already been proven for the gill

symbionts of the lucinid clam Codakia orbicularis (Gros

et al., 2003) and is suggested for the beard worm Oligobra-

chia mashikoi (Aida et al., 2008) and the giant tubeworm

Riftia pachyptila (Nussbaumer et al., 2006). Nevertheless,

putative free-living forms of these three thiotrophic sym-

bionts have only been found in the vicinity of their hosts

(Gros et al., 2003; Aida et al., 2008; Harmer et al., 2008). The

lack of evidence for coevolution between the stilbonematid

nematodes and their symbionts (Bayer et al., 2009) and the

intermingled phylogeny of oligochaete and nematode symb-

ionts within the MONTS cluster indicate that in the course

of evolution, multiple recruitment events between hosts and

associated bacteria occurred. The pelagic members of the

MONTS cluster might represent the pool of environmental

bacteria fromwhich symbionts may be – or may have been –

recruited by the hosts. Although their close phylogenetic

relationship with the symbiotic members of the MONTS

cluster does not imply their ability to engage in symbiotic

interactions, it suggests a predisposition to a life in associa-

tion with invertebrate hosts.

Atlantic
clade 1

Atlantic
clade 2

Caribbean
clade

Marine Oligochaete and Nematode Thiotrophic Symbiont cluster

Clade with pelagic members

Topology inconsistent

Metazoan associated/symbiotic sample
Marine sediment/mat sample
Freshwater sediment/mat sample
Freshwater water sample

Pelagic water sample

Outgroup

Alternative phylogenetic position
Node statistically supported by PHYML and MrBayes

Fig. 1. 16S rRNA gene-based phylogenetic reconstruction of the MONTS cluster showing the position of the clones obtained from offshore water

samples. The tree shown here is based on the most likely PHYML tree (GTR1I1G model of substitution). Two clades with pelagic members present in the

PHYML analysis are absent in the MRBAYES trees. Their alternative positions according to MRBAYES analysis are indicated by dotted arrows. Clades with pelagic

members supported by both algorithms are highlighted with dark blue bars. Filled circles indicate the nodes statistically supported in both PHYML and

MRBAYES analysis (aLRTZ0.87, ppZ0.9). For symbiotic bacteria, taxonomic affiliations of the metazoan hosts are indicated above the respective branches

(N, nematode; O, oligochaete; and C, coral). Scale bar represents 2% estimated sequence divergence. See Fig. S1 for GenBank accession numbers.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Appendix S1.Methods.

Fig. S1. Detailed 16S rRNA gene-based phylogenetic recon-

struction showing the position of the clones from offshore

seawater samples in the MONTS cluster and highlighting

the specificity ranges of the employed FISH probes.

Fig. S2. FISH photographs of pelagic bacteria triple

stained with DAPI (A, E, and I), a Gammaproteobacteria-

specific probe (B, F, and J, green), and a Rmed symbiont-

specific (C, red) or a Rcay/Inanidrilus leukodermatus

symbiont-specific (G, red) or a Rbel symbiont-specific probe

(K, red).

Table S1. Presence/absence (1/� ) of pelagic members of

the three MONTS clades in the environmental samples.

Table S2. Sequences, annealing temperatures and expected

product sizes of MONTS member-specific primer sets.

Table S3. FISH probes description.

Please note: Wiley-Blackwell is not responsible for the

content or functionality of any supporting materials sup-

plied by the authors. Any queries (other than missing

material) should be directed to the corresponding author

for the article.
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Supplementary Methods

FISH 

We performed FISH on surface seawater collected offshore from La Spezia, Mediterranean Sea (LaSOW), 

a seawater sample which yielded 16S rRNA-gene fragments belonging to both Atlantic clades (see 

Supplementary Table 1 for details). After overnight transport in a cooler, samples were fixed overnight 

in 1.6% formaldehyde at 4°C. 94 ml-aliquots were then vacuum filtered (p<130 mbar) through 0.22 µm 

pore size 47 mm GTTP filters (Millipore, USA). Filters were subsequently washed with PBS, air dried on a 

cellulose sheet and stored airtight at 4°C in 6 cm sterile Petri dishes. Fixed bacteria were transferred from the 

filters onto the wells of epoxy resin masked slides (Marienfeld, Germany) after these were moistened with 

0.1% agarose. 1 cm2 pieces were cut from the filters and placed face down onto the wells. Slides were then 

vacuum-dried for approximately 10 min in a desiccator before peeling off the pieces (Hicks, et al., 1992). 

Transferred bacteria were hybridized with the fluorescein-labeled probe Gam42a (Manz, et al., 1992) and 

with the Cy3-labelled probes Rca470, Rss456 and Rhs465, specifically targeting the 16S rRNA-genes of the 

symbionts of Rmed, Rcay and Rbel, respectively. Hybridization and washing were performed according to 

Manz et al. (Manz, et al., 1992) and under hybridization conditions described in (Bayer, et al., 2009). See 

Supplementary Table 3 for FISH probe details. Specimens were mounted in DAPI Vectashield (Vector Labs, 

USA) and examined under a Zeiss AX10 epifluorescence microscope.

Supplementary Materials
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Supplementary Figure 2: FISH 
photographs of pelagic bacteria 
triple stained with DAPI (A, E 
and I), a Gammaproteobacteria-
specific probe (B, F, and J, green), 
and a Rmed symbiont-specific 
(C, red) or a Rcay/Inanidrilus 
leukodermatus symbiont-specific 
(G, red) or a Rbel symbiont-
specific probe (K, red). D, H and L 
are overlays of A-C, E-G, and I-K, 
respectively. Inserts display high 
magnification photographs of the 
triple stained bacteria indicated 
by arrows. Scale bars correspond 
to 2 µm. 
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Supplementary Table 1: Presence/absence (+/–) of pelagic members of the three  MONTS clades in the 
environmental samples. Sequence identities between environmental 16S rRNA-gene fragments and those of 
the respective Robbea symbionts are given in parentheses. Atlantic clade 1 members are compared to the Rbel 
ectosymbiont (EU711428), Atlantic clade 2 members to the Rmed ectosymbiont (EU711427) and Caribbean 
clade members to the Rcay ectosymbiont (EU711426). n.d.: not determined.

Mediterranean Sea Caribbean Sea

water sample

Calvi (France) 
Offshore 

Water 
(CalOW)

La Spezia 
(Italy) 

Offshore Water 
(LaSOW)

Carrie Bow 
Cay (Belize) 

Offshore Water 
(BelOW)

Little Cayman 
(Cayman 
Islands) 
Offshore 

Water 
(CayOW)

geographical
coordinates

42°35’55N
08°43’30W

44°02’32N
09°49’14W

16°48’15N
88°04’73W

19°22’18N
80°04’11W

approx. water 
depth at 

collection site
80 m 30 m 25 m 300 m

collection date Aug. 2008 Aug. 2008 Nov. 2007 Oct. 2006

Atlantic 
clade 1

presence/ 
absence 

(sequence 
identity)

+
(99.1-100%)

+
(99.2-99.5%)

+
(99.2-100%) –

# of clones 
analyzed 12 4 19 –

Atlantic 
clade 2

presence/ 
absence 

(sequence 
identity)

+
(100%)

+
(99.1-99.7%)

+
(98.5-99.8%)

+
(100%)

# of clones 
analyzed 1 7 4 1

Caribbean 
clade 

presence/ 
absence 

(sequence 
identity)

n.d. – – +
(98.1-99.2%)

# of clones 
analyzed n.d. – – 2
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Sequence variability of the pattern recognition
receptor Mermaid mediates specificity of marine
nematode symbioses

Silvia Bulgheresi1,4, Harald R Gruber-Vodicka2,4, Niels R Heindl1, Ulrich Dirks2,
Maria Kostadinova3, Heimo Breiteneder3 and Joerg A Ott2
1Department of Genetics in Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria;
2Department of Marine Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria and 3Center for
Physiology, Pathophysiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090
Vienna, Austria

Selection of a specific microbial partner by the host is an all-important process. It guarantees the
persistence of highly specific symbioses throughout host generations. The cuticle of the marine
nematode Laxus oneistus is covered by a single phylotype of sulfur-oxidizing bacteria. They
are embedded in a layer of host-secreted mucus containing the mannose-binding protein Mermaid.
This Ca2þ -dependent lectin mediates symbiont aggregation and attachment to the nematode. Here,
we show that Stilbonema majum—a symbiotic nematode co-occurring with L. oneistus in shallow
water sediment—is covered by bacteria phylogenetically distinct to those covering L. oneistus.
Mermaid cDNA analysis revealed extensive protein sequence variability in both the nematode
species. We expressed three recombinant Mermaid isoforms, which based on the structural
predictions display the most different carbohydrate recognition domains (CRDs). We show that
the three CRDs (DNT, DDA and GDA types) possess different affinities for L. oneistus and S. majum
symbionts. In particular, the GDA type, exclusively expressed by S. majum, displays highest
agglutination activity towards its symbionts and lowest towards its L. oneistus symbionts.
Moreover, incubation of L. oneistus in the GDA type does not result in complete symbiont
detachment, whereas incubation in the other types does. This indicates that the presence of
particular Mermaid isoforms on the nematode surface has a role in the attachment of specific
symbionts. This is the first report of the functional role of sequence variability in a microbe-
associated molecular patterns receptor in a beneficial association.
The ISME Journal (2011) 5, 986–998; doi:10.1038/ismej.2010.198; published online 13 January 2011
Subject Category: microbe–microbe and microbe–host interactions
Keywords: symbiosis; C-type lectin; sulfur-oxidizing bacteria; nematode; microbe-associated
molecular pattern receptor; marine sediment

Introduction

A high degree of specificity has been experimentally
demonstrated for a number of microbial symbioses.
The degree of taxonomic specificity (that is, genus,
species and strain) varies among the associations,
and certain host species within one genus may
display stricter symbiont selectivity than others
(Chaston and Goodrich-Blair, 2010). In the case of
thiotrophic marine nematodes—Stilbonematinae,
Chromadoria (Ott et al., 2004a, b)—the bacteria

associated with Laxus oneistus (Polz et al., 1994),
Eubostrichus dianae (Polz et al., 1999) and three
Robbea species (Bayer et al., 2009) have been
molecularly characterized so far. Except for
E. dianae, all these stilbonematids are covered by a
microbial coat composed of a single phylotype of
Gammaproteobacteria. Symbionts not only appear to
be a major component of the diet of the stilbonema-
tids, but may also protect their hosts against sulfide
poisoning (Ott et al., 1991; Hentschel et al., 1999).
Although in this small sub-family of nematodes, a
high degree of specificity seems to be the rule, we
still know little about the molecular mechanisms
underlying the selection of cooperative microbes
and the exclusion of potential cheating or non-
performing ones. As pointed out by Chaston and
Goodrich-Blair (2010), specificity may be mediated
either by (1) minor variations in molecules con-
served among phylogenetically related symbiotic
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partners, or (2) by the presence or absence of genetic
determinants of host–range specificity in a given
symbiotic partner. A good molecular candidate for
mediating stilbonematid symbiosis specificity is
Mermaid (Bulgheresi et al., 2006), a secreted Ca2þ -
dependent sugar-binding protein (C-type lectin).
Lectins are proteins that have at least one non-
catalytic domain that reversibly and non-enzymati-
cally binds specific mono- or oligosaccharides
(carbohydrate recognition domain (CRD); (Peumans
and Van Damme, 1995; De Hoff et al., 2009). They
are found in cells, membranes and secretomes of
plants, animals and bacteria. The degree of sequence
variation the lectins tolerate in their ligand-binding
pocket is remarkable and comparable to that of
immunoglobulins (McMahon et al., 2005). This
sequence variation mirrors carbohydrate variability,
which itself arises by differences in (1) carbon
backbone length of the monomer, (2) anomericity,
(3) side-group orientation, (4) substitution and (5)
branching. As a result, cells exposing a character-
istic carbohydrate repertoire can be recognized by
specific lectins. Like most lectins, Mermaid appears
to be multivalent and may therefore clump cells
together. The mature protein is composed of one
CRD, structurally and functionally similar to the
human dendritic cell-specific immunoreceptor den-
dritic cell-specific ICAM-3 grabbing non-integrin;
(DC-SIGN) (Bulgheresi et al., 2006; Zhang et al.,
2006, 2008; Nabatov et al., 2008; Mittal et al., 2009).
Mermaid is expressed and secreted from sub-
cuticular glandular sense organs (Nebelsick et al.,
1992) onto the cuticle of L. oneistus. Only the
posterior glandular sense organs underlying the
bacterial coat secrete this lectin, whereas it is absent
from the anterior part of cuticle to which no
symbionts are attached. Moreover, a recombinant
form of Mermaid aggregated the symbionts and
competed with native Mermaid for symbiont attach-
ment (Bulgheresi et al., 2006). All these data point to
a pivotal role of Mermaid in L. oneistus–symbiont
attachment. As for the bacterial symbiont, it is
predicted to utilize surface-exposed mannose resi-
dues to bind to the host lectin (Nussbaumer et al.,
2004), consistently with the ability of recombi-
nant Mermaid to bind mannotriose in glycan
specificity assays (Nabatov et al., 2008). Moreover,
recombinant Mermaid may bind to the core lipo-
polysaccharide (LPS) of a rough Escherichia coli
strain (Zhang et al., 2006), and inhibits the inter-
action of Yersinia pestis core LPS with dendritic
cell-specific immunoreceptor (Zhang et al., 2008).

Mermaid genes are also expressed by Stilbonema
majum, another stilbonematid nematode, thriving in
the same microhabitat as L. oneistus. Whereas the
latter carries a monolayer of 2.1� 0.6 mm rods, the
former bears up to 10 layers of 1.3� 0.6 mm oval
bacteria. Because of the different symbiont morpho-
logy and coat architecture, the two co-occurring
nematodes were long hypothesized to carry distinct
symbiont phylotypes. Moreover, they were found to

express two and three Mermaid isoforms, respec-
tively. These differed at three amino acid positions
(105, 108 and 109). On the basis of a three-
dimensional model of Mermaid CRD, these substitu-
tions were speculated not to dramatically affect the
protein conformation (Bulgheresi et al., 2006).

The hypothesis behind the present work is that
minor variations in the protein sequence of their
CRD might mediate attachment of specific sym-
bionts to the nematode cuticle. We first assessed the
phylogenetic position of the S. majum symbiont to
confirm that it differs from that of the L. oneistus
symbiont. Subsequently, we assessed the degree of
both L. oneistus and S. majum Mermaid sequence
variability by screening Mermaid cDNA libraries
obtained from each species to saturation. We then
selected three Mermaid isoforms which, based on
structural predictions, were expected to bear the
most different CRDs. Finally, we expressed recom-
binant forms thereof and tested whether their
binding activity towards different symbionts would
significantly differ.

Materials and methods

Nematode collection
L. oneistus and S. majum were collected in March
2009 in B 1m depth from a shallow water back-reef
sandbar, off Carrie Bow Cay, Belize (16148011 N,
88104055 W). The worms were extracted from the
sand by shaking it in seawater and pouring the
supernatant through a 63-mm-pore-size mesh screen.
Single individuals were then picked by hand under
a dissecting microscope. For DNA extraction and
fluorescence in situ hybridization (FISH), worms
were fixed in methanol. For mRNA extraction,
batches of freshly collected nematodes were flash
frozen in liquid nitrogen. All samples were deep
frozen for transportation and storage, except for
the live L. oneistus nematodes used in the in vivo
dissociation experiments. In the case of S. majum,
their identity was confirmed by direct sequencing of
an 18S rRNA gene fragment (data not shown).

Symbionts collection
Batches of 500 and 150 freshly collected L. oneistus
and S. majum, respectively, were incubated for
3min in an MgSO4 solution, isotonic to seawater,
to induce symbiont dissociation. Dissociated sym-
bionts were collected by 2min centrifugation at
6K r.p.m. Symbiont pellets were washed three times
in filtered seawater and deep frozen for transport
and storage.

DNA extraction, PCR amplification and cloning of the
S. majum 18S rRNA gene and of the S. majum symbiont
16S rRNA gene
DNA was extracted from three separate S. majum
individuals as described (Schizas et al., 1997), and

Sequence variability of a symbiont-binding lectin
S Bulgheresi et al

987

The ISME Journal



Sequence variability of the pattern recognition receptor Mermaid 
mediates specificity of marine nematode symbioses 

31

2ml of each extraction were used as PCR template.
A 1720nt-long fragment of the 18S rRNA gene was
amplified for each S. majum worm by PCR with the
general eukaryotic primers 1f (50-CTGGTTGAT
YCTGCCAGT-30) and 2023r (50-GGTTCACCTACGG
AAACC-30) (Pradillon et al., 2007). Cycling condi-
tions were as follows: 94 1C for 4min followed by 35
cycles of 94 1C for 45 s, 49 1C for 30 s, 72 1C for 1min
and a final elongation step of 72 1C for 10min. The
PCR products obtained from the three S. majum
individuals were purified using the MinElute PCR
purification kit (Qiagen, Hilden, Germany) and
directly sequenced with the PCR primers.

A 1499-nt long fragment of the 16S rRNA gene
was amplified for each S. majum worm by PCR with
bacterial primers 616V (50-AGAGTTTGATYMTGGC
TC-30; Juretschko et al., 1998) and 1492R (50-GGYTA
CCTTGTTACGACTT-30; Kane et al., 1993). Cycling
conditions were as follows: 94 1C for 5min, followed
by 35 cycles of 94 1C for 45 s, 47 1C for 45 s, 72 1C for
1min 30 s and a final elongation step of 72 1C for
10min. PCR products were gel purified and cloned
into pCR2.1-TOPO using the TOPO TA Cloning
Kit (Invitrogen Life Technologies, Darmstadt,
Germany). We randomly picked and fully sequenced
eight, seven and six clones from each of the three
16S rRNA gene libraries obtained from the three
S. majum individuals. Sequences were aligned and
compared with CodonCode Aligner 1.6.3 software
(CodonCode Corporation, Dedham, MA, USA).

16S rRNA gene-based phylogenetic analysis
A bacterial 16S rRNA gene data set was compiled
adding closely related sequences from the GenBank
using BLASTN (Altschul et al., 1990). The data set
was aligned using MAFFT G-INS-I (Katoh et al., 2005).
We used Bayesian inference- (MrBayes; Ronquist and
Huelsenbeck, 2003), maximum likelihood- (RAxML;
Stamatakis, 2006), parsimony- and distance-based
algorithms to reconstruct the phylogenetic position
of the symbiont. Node stability was evaluated using
posterior probabilities (Bayesian inference) and
bootstrapping (all other algorithms). Sequences of
Alkalimnicola halodurans (AJ404972) and Nitro-
coccus mobilis (L35510) served as out-groups.

Fluorescence in situ hybridization
We designed a FISH probe (Sms444) specific to the
S. majum ectosymbiont 16SrRNA gene (GenBank
accession number HM776017) by using the ARB
PROBE_DESIGN tool (arb software package Ludwig
et al., 2004; Table 1), and confirmed its specificity
by comparing it with all available sequences in
GenBank, SILVA and Greengenes using probeCheck
(Loy et al., 2008). The sequence most similar to
Sms444, found in these databases, has a weighted
mismatch of 2.6 and corresponds to a fragment of
the 16S rRNA gene of the Robbea sp. 3 ectosymbiont
(EU711428). Accordingly, an unlabeled competitor T
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probe (Rhs444) was designed (Eurofins MWG
Operon, Ebersberg, Germany). All other probes used
were fluorescently labeled on their 50 end (Thermo
Fisher Scientific, Ulm, Germany). FISH was per-
formed according to Manz et al., 1992. To determine
stringent hybridization conditions, a formamide
series was conducted for all the probes (0%, 10%,
15%, 20%, 25%, 30%, 35%, 40%, 45%, 55% and
70%). Fixed S. majum nematodes were incubated
at 46 1C in hybridization buffer containing the
optimal formamide concentration and respective
probes (0.46M NaCl, 20mM TrisHCl (pH 8.0) and
0.001% sodium dodecyl sulfate; refer to Table 1 for
optimal incubation time, formamide percentage and
probe concentrations). Hybridization was stopped
by incubation in washing buffer (70mM NaCl, 20mM

Tris.HCl (pH 8.0) and 0.125M EDTA) for 15min at
48 1C and subsequently in ice-cold ddH2O for 3 sec.
Nematodes were dried quickly under compressed
air, mounted in DAPI Vectashield (Vector Labs,
Burlingame, CA, USA) and examined using a
Leica TCS-SP2 confocal laser-scanning microscope
combined to an inverted DM-IRE2 microscope
(Leica Microsystems, Heidelberg, Germany).

Mermaid cDNA libraries
L. oneistus and S. majum mRNA were extracted
with the QuickPrep Micro mRNA Purification Kit
(Amersham Biosciences, Freiburg, Germany) from
deep-frozen batches of 500 individuals each, and
cDNA was synthesized with the Ready-To-Go
T-primed first-strand kit (Amersham Biosciences).
Full-length Mermaid cDNA libraries of L. oneistus
and S. majum were obtained using primer SB34
binding the 50-untranslated region (50-TTTTTTATT
TCACAGCCATCGGTTTCC-30) and primer SB27
binding the 30-untranslated region (50-CTAACAGTC
ACTGACTCTCAACGAATCC-30). Cycling condi-
tions were as described (Bulgheresi et al., 2006).
Full-length Mermaid cDNA from both L. oneistus
and S. majum was gel purified and cloned into
pCR2.1-TOPO using the TOPO TA Cloning Kit
(Invitrogen Life Technologies). We randomly picked
and fully sequenced 89 L. oneistus and 113
S. majum cDNA clones.

Immunofluorescence
A custom-made rabbit polyclonal antibody was
raised against a synthetic peptide corresponding
to Mermaid amino acids 65–81 (Genosphere
Biotechnologies, Paris, France). Antibody specificity
was tested and immunostaining performed as
described (Bulgheresi et al., 2006). In brief, metha-
nol-fixed S. majum individuals were rehydrated and
washed in phosphate-buffered saline containing
0.1% Tween-20 (washing solution). Blocking was
carried out for 1 h in washing solution containing
2% (wt/vol) bovine serum albumin (blocking solu-
tion). Worms were incubated overnight under gentle
agitation at 4 1C in blocking solution containing

peptide antibody anti-Mermaid or rabbit preimmune
serum as the negative control (1:500 dilution each).
Unbound primary antibody was removed by three
washing steps in washing solution and Alexa488-
conjugated secondary anti-rabbit antibody (Molecular
Probes, Eugene, OR, USA) was then applied at a
1:500 dilution in blocking solution for 1h at room
temperature. After three washing steps, worms were
mounted in the Slow-Fade Antifade kit (Molecular
Probes). Images were recorded on a laser-scanning
confocal microscope (described above).

Mermaid isoforms sequence alignment and analysis
The sequences of each worm were translated,
aligned and compared using the software package
Geneious (Biomatters, Auckland, New Zealand;
Drummond et al., 2009). Only isoforms encoded by
at least two clones were aligned to eliminate random
sequencing errors as a source of variation. Second-
ary structure predictions were carried out by using
the NetSurfP tool available online at http://www.
cbs.dtu.dk/services (Petersen et al., 2009). The
tertiary structure was homology modeled by SWISS-
MODEL (http://swissmodel.expasy.org; Guex and
Peitsch, 1997) on the basis of the available crystal
structure of the C-type lectin DC-SIGNR (deposited
in the protein data bank (PDB) code 1sl6c) and then
visualized with PyMOL 1.2r1 (Schrödinger, LLC,
New York, NY, USA).

Mermaid isoforms expression and purification
Recombinant His-Mermaid-3 corresponds to the
previously published His-Mermaid, and was expres-
sed and purified exactly as described (Bulgheresi
et al., 2006). PCR fragments corresponding to amino
acids 20–161 of (Sm-) Mermaid-1 and -2 were NdeI/
BamHI cloned into pET15b (Novagen, Merck,
Darmstadt, Germany). The resulting His-Mermaid-1
and -2 fusion proteins contained an N-terminal
hexahistidine tag (His-tag) and were expressed in
the E. coli strain BL21-AI (Invitrogen) according to
the manufacturer’s instructions. Bacterial lysates
containing His-Mermaid-1, -2 and -3 were individu-
ally applied to nickel-chelated resins (1ml HisTrap
chelating HP, Amersham Biosciences, charged with
50mM NiSO4) in binding buffer (8M urea, 20mM

Na2HPO4/NaH2PO4, 0.5M NaCl, 10mM imidazole)
and were eluted with the same buffer (except for
the imidazole concentration, which was increased
to 0.5M). Eluted proteins were dialysed against
phosphate-buffered saline-containing decreasing urea
concentrations to allow renaturation.

Agglutination assays
Bacterial pellets obtained as described above
were re-suspended in filter-sterilized seawater
to a final density corresponding to OD600¼ 1.
His-Mermaid-1, -2 and -3 were each added to
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separate 50 ml aliquots of L. oneistus and S. majum
symbionts (starting with a concentration of
10 mgml�1, and using a dilution series to determine
the minimum concentration sufficient to induce
visible aggregation). Agglutination was carried out
in 1.5ml tubes for 3h at room temperature. For each
symbiont and each Mermaid isoform, agglutination
was performed in triplicate. Agglutinated and
control symbionts were mounted onto glass slides
for photographic documentation. For each treatment
and the control, the size of the particles appearing in
three randomly photographed microscopic fields
were measured using ImageJ (National Institutes
of Health, Bethesda, MD, USA), and compared the
particle size distribution by rank-based Kruskal–
Wallis analysis of variance followed by Dunn’s test
for differences among groups. Po0.01 was consi-
dered to be statistically significant.

Dissociation assays
Dissociation assays were conducted as described
(Bulgheresi et al., 2006). In brief, nine batches of 50
L. oneistus individuals were collected and each
batch was immediately added to a tube containing
300 ml filter-sterilized seawater. Each His-Mermaid
isoform was added to three worm batches (of 50
individuals each, for a total of 150 worms per
Mermaid isoform) to a make a final concentration of

10mgml�1. Dissociation assays were carried out for
24h at room temperature under gentle agitation.Worms
were transferred to petridishes for photographic doc-
umentation after o1h, 2h, 5h, 9h, 20h and 24h.

Results

S. majum symbionts are phylogenetically distinct from
L. oneistus symbionts
Direct sequencing of a 16S rRNA gene fragment of
the L. oneistus symbiont provided a single unambig-
uous sequence (Polz et al., 1994). Therefore, in this
study we only constructed 16S rRNA gene libraries
from S. majum individuals. Comparison of the
1,499 nt-long 16S rRNA gene sequences of randomly
picked clones obtained from three individuals
showed that they consistently differed at a single-
nucleotide position (sequence identity among them
499.9%). Therefore, we used only one S. majum-
derived 16S rRNA gene sequence (clone #3–5)
for phylogenetic analysis (HM776017). The tree
displayed in Figure 1 shows that: (1) the obtained
16S rRNA gene sequence is most closely related to
three sequences (FM955329–FM955331) that origi-
nated from bacteria associated to an unknown
Stilbonema species; (2) S. majum and L. oneistus
symbionts are phylogenetically distinct (97%
sequence identity) and (3) they form a highly

U14727  -Laxus oneistus ectosymbiont

AJ620507 - Olavius crassitunicatus endosymbiont

AF104472 -Olavius loisae Gamma1 endosymbiont 

AJ620498 - Olavius ilvae Gamma1 endosymbiont

EU711427 - Robbea sp. 1 ectosymbiont 

AJ890094 -  Inanidrilus makropetalos Gamma1 endosymbiont 

EU711426 - Robbea sp. 2 ectosymbiont 

AF328856 - Olavius algarvensis endosymbiont

EU711428 - Robbea sp. 3 ectosymbiont

AJ006214 - Thiorhodovibrio winogradskyi
AJ002796 - Thiocapsa halophila

AJ543328 - Marichromatium indicum 
X98597 - Halochromatium salexigens

AJ010125 - Thioflavicoccus mobilis
Y12373 - Thiocapsa pfennigii

DQ408757 - Astomonema sp. endosymbiont

AJ890100  - Inanidrilus leukodermatus Gamma1 endosymbiont  

HM776017 - Stilbonema majum ectosymbiont

FM955330 - Stilbonema sp. associated bacteria 

FM955331 - Stilbonema sp. associated bacteria 

FM955329 - Stilbonema sp. associated bacteria 

nem
atode and oligochaete sym

bionts

C
hrom

atiaceae

0.02

Figure 1 16S rRNA gene tree based on the most likely RAxML tree (GTRþ IþG model of substitution). Filled and open circles indicate
nodes supported by all four or at least two reconstruction methods, respectively (bootstrapping support X0.75, posterior probabilities
X0.9). The arrow points to the out-group. Scale bar represents 2% estimated sequence divergence. GenBank accession numbers precede
the names of the bacteria.
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supported phylogenetic group (all algorithms
bootstrap support and posterior probability X0.99)
together with the sulfur-oxidizing symbionts of
other thiotrophic nematodes (Robbea sp. and
Astomonema sp.) and of marine gutless oligochaetes
(Inanidrilus and Olavius spp.); and (4) this nema-
tode–oligochaete symbiont cluster is most closely
related to free-living sulfur-oxidizing Gammaproteo-
bacteria from the family Chromatiaceae (Dubilier
et al., 2008).

To confirm that the Gammaproteobacterial 16S
rRNA gene sequences derived from the S. majum
symbionts, we carried out FISH with the symbiont-
specific probe Sms444 (refer to Table 1 for detailed
description of all the FISH probes used in this
study). The bacteria attached to the worms were
triple stained by this specific probe, as well as by
the bacterial probe EUB338, and by the Gamma-
proteobacteria-specific probe GAM42a (Figure 2). In
contrast, no FISH signal was detectable with the
control probe NON338 or with a Betaproteobacteria-
specific probe, which differs from GAM42a at a
single-nucleotide position (Figure 2). Moreover, use
of the non-fluorescent competitor Rhs444 did not
decrease the hybridization signal of the S. majum
symbiont-specific probe (Supplementary Figure 1).
FISH indicates that the bacteria covering S. majum
belong to a single phylotype. This is consistent with
our highly homogeneous 16S rRNA gene library, and
with the scanning electron microscopy analysis
showing only one bacterial morphotype covering
this nematode species (Ott et al., 2004a, b).

L. oneistus and S. majum express different repertoires
of Mermaid isoforms
To assess the degree of variation in the primary
structure of the lectin CRD, we screened Mermaid
cDNA libraries obtained from L. oneistus and
S. majum to saturation. In the case of L. oneistus,
besides Lo-Mermaid-1 and -2, we discovered nine
isoforms bearing novel CRDs. As for S. majum, we
identified 10 isoforms bearing novel CRDs, besides
the three already known (Sm-Mermaid-1, -2 and -3).
Figure 3 displays an alignment of all unique CRDs.
For each species, new isoforms were numbered
according to the order in which they were disco-
vered. At least two cDNA clones encoded for each
of them, which allows us to exclude sequencing
mistakes as a source of variability. The amino acid
substitution sites were conserved and occurred
non-randomly in the 119 amino acid long CRD
(12 and 15 variable positions in L. oneistus and
S. majum, respectively). None of them directly
affected the conserved amino acids, including those
involved in calcium- or sugar-binding (black circles
and arrowheads in Figure 3). Substitutions of hydro-
philic with hydrophobic amino acids and vice versa
(defined as non-conservative and underlined in
Figure 3) never occurred in the helical structures
or b-sheets. This also holds true for substitutions
at positions 105, 108 and 109. These, however,
occurred in the long-loop region, close to a core
of amino acids always involved in sugar binding
(black arrowheads in Figure 3). The additional
amino acids participating in ligand-binding can

a b e f

c d g h

Figure 2 FISH LSCM of symbionts attached to the surface of a S. majum worm. Each symbiont is triple stained with specific probes
targeting eubacteria (a), Gammaproteobacteria (b) and the S. majum symbiont (c). All symbionts are stained with a Gammaproteobacteria-
specific probe (f) but not with a nonsense control probe (e) or a Betaproteobacteria-specific probe (g). Panels (d) and (h) are overlay
pictures of a–c and e–g, respectively. Scale bar is 6 mm in a–h and 3 mm in the inserts.
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only be determined for a given sugar and only with
a yet unavailable crystal structure. Nevertheless, in
the DC-SIGNR-based tertiary structure predictions
(Figure 4), positions 105, 108 and 109 are in a
protein fold that is easily accessible and close
to the conserved sugar-binding amino acids, and
may therefore participate in sugar-binding (Feinberg
et al., 2001).

By considering only these three amino acid posi-
tions, we classified all L. oneistus and S. majum CRDs

into three types. The isoforms bearing the DDA-type
CRD display amino acids Asp, Asp and Ala at these
positions, those belonging to the DNT-type display Asp,
Asn and Thr, and those belonging to the GDA-type
display Gly, Asp and Ala. In the case of L. oneistus,
63% of the cDNA clones encoded for DNT-type CRDs
and 37% for DDA-type CRDs. In the case of S. majum,
52% encoded for DNT-type CRDs, 34% for DDA type
and 14% for GDA type. Notably, no L. oneistus cDNA
encoded for a GDA-type CRD.

Figure 3 Protein sequence alignment of the CRDs of L. oneistus (Lo) and S. majum (Sm) Mermaid isoforms. Amino acid (aa) numbering,
NetSurfP-predicted secondary structures (helices and b-sheets), and conserved aas symbols overlie the alignments and were selected and
named according to Zelensky & Gready (2003): C1–C4 are the four Cysteines implicated in the formation of two disulfide bridges; black
arrowheads mark conserved aas for sugar- and calcium-binding; black circles mark other structurally important conserved aas. Dots
represent aas identical to isoform 1. Non-conservative aa substitutions (see text for a definition) are in italics and underlined. Non-
conserved aa substitutions occurring in the vicinity of the ligand-binding region (105, 108 and 109) are boxed. GenBank accession
numbers of Sm-Mermaid-4 to -13 are HM804996–HM805005; GenBank accession numbers of Lo-Mermaid-3 to -11 are HM805006–
HM805014.
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To prove that S. majum expresses not only the
mRNA but also the Mermaid protein, we immuno-
stained it with a specific anti-Mermaid antibody.
The pronounced staining of the bacterial coat
indicates that the lectin is secreted by S. majum
onto its cuticle (Figure 5). Immunostaining with
rabbit pre-immune serum did not result in any
significant staining (Supplementary Figure 2).

L. oneistus symbionts are most efficiently aggregated
by Mermaid-2 and S. majum symbionts by Mermaid-3
To assess whether the three CRD types described
above agglutinate L. oneistus and S. majum symbionts
with different efficiency, we expressed recombinant
forms of three isoforms, His-Mermaid-1, -2 and -3,
bearing CRD types DDA, DNT and GDA, respec-
tively; His-Mermaid-3 corresponds to the recombi-
nant form His-Mermaid produced and analyzed
in Bulgheresi et al. (2006). As shown in Figure 6,
His-Mermaid-2 induced the largest aggregates of
L. oneistus symbionts, whereas His-Mermaid-3
incubation resulted in the largest S. majum sym-
biont aggregates. His-Mermaid-1-induced aggregates
were comparable to those obtained with His-Mer-
maid-2 in both L. oneistus and S. majum symbionts.
Moreover, dilution series showed that the minimum
concentration sufficient to induce visible aggreg-
ation varied significantly among different Mermaid
isoforms. Only 1 mgml�1 of His-Mermaid-2 or -1, but
10 mgml�1 of His-Mermaid-3 that is, a 10-fold higher
concentration, is necessary to induce L. oneistus

symbiont aggregation. As for S. majum symbionts,
a 5mgml�1 concentration of His-Mermaid-3 was
sufficient to aggregate them (data not shown).

Taken together, our data show that the three tested
isoforms, bearing three distinct CRDs, agglutinate
L. oneistus and S. majum symbionts with different
efficiency. In particular, we expect the DNT type
(Mermaid-2) to have a central role in L. oneistus
symbiont aggregation, and the GDA type (Mermaid-3)
to predominantly mediate S. majum symbiont aggre-
gation. Therefore, expression of different isoform
repertoires, or of the same isoforms at different
concentrations, can underlie the attachment of differ-
ent symbionts to the two co-occurring nematodes.

Incubation of L. oneistus in His-Mermaid-2 leads to
complete symbiont detachment
In a previous report, we showed that incubation of live
L. oneistus in recombinant His-Mermaid-3 resulted in
significant symbiont detachment from all treated
nematodes (Bulgheresi et al., 2006). This effect was
attributed to competition of the recombinant lectin
with the native one. Nonetheless, symbiont patches
persisted on the surface of lectin-incubated nema-
todes, leading to the speculation that other lectins, or
other lectin isoforms, might be needed to achieve
complete symbiont detachment.

We tested whether His-Mermaid-1 or -2, both
displaying higher affinity for L. oneistus symbionts
than His-Mermaid-3 in agglutination experiments,
can cause complete host–symbiont dissociation.

Figure 4 Three-dimensional model of the CRDs of DC-SIGNR (a) and Mermaid isoforms 1, 2 and 3 (b, c and d, respectively). All PyMOL
renderings are based on the resolved structure of DC-SIGNR 1SL6. (a–d) conserved ligand-binding sites (as in Figure 3) are shown in blue,
variable positions are shown in red. (a) Calcium atoms are indicated as yellow spheres and carbohydrate ligand (Lewis X) by a ball
molecular model.

Figure 5 S. majum Mermaid localization pattern. LSCM picture of the bacterial coat of a S. majum nematode, immunostained with a
specific anti-Mermaid antibody and Alexa488-conjugated secondary anti-rabbit antibody (a), corresponding differential contrast image
(b) and overlay (c). Arrows point to the bacterial coat and arrowheads to the nematode cuticle. Scale bar is 20mm.
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Figure 7 shows that L. oneistus individuals incu-
bated in His-Mermaid-2 (b) started to lose the
bacteria earlier than those incubated in His-Mer-
maid-1 or -3 (a and c, respectively). Moreover, after
20 h incubation in His-Mermaid-1 or -2, the nema-
todes completely lost their bacterial coat (e, f, i and
j), whereas, as previously reported (Bulgheresi et al.,
2006), symbiont patches are still visible on
His-Mermaid-3-incubated nematodes (g and k).

The ability of the three isoforms to cause different
degrees of host–symbiont dissociation confirms
what we observed in the agglutination experiments:

the three isoforms are functionally different, for
example, they aggregate L. oneistus symbionts with
different efficiency. Moreover, we expect the DNT-
type CRD (Mermaid-2) to have a predominant role
in L. oneistus symbiont attachment.

Discussion
Several stilbonematid species have been reported to
establish monospecific ectosymbioses. The cuticles
of L. oneistus (Polz et al., 1994) and of three Robbea
species (Bayer et al., 2009) are each covered by one

Laxus oneistus symbiont Stilbonema majum symbiont
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Figure 6 Agglutination assays. (A). Light microscope images of L. oneistus and S. majum symbionts incubated in 10mgml�1

His-Mermaid-1 (a and b), His-Mermaid-2 (c and d), His-Mermaid-3 (e and f) and no lectin (g and h). Each panel was obtained by merging
the photographs of three randomly chosen microscopic fields. Scale bar is 200mm. (B) Box plot of particles size of L. oneistus (left plot)
and S. majum symbionts (right plot) incubated in 10mgml�1 His-Mermaid-1, His-Mermaid-2, His-Mermaid-3 and lectin-free filtered
seawater as control. The bars indicate maximum and minimum, the boxes indicate the 25–75% quartiles and the squares indicate the
median of the particle size distribution. Different letters above the graphs indicate statistically different (Dunn’s post-hoc Po0.01)
particle size distributions of the treatments for each of the symbionts. For details on the P-values see Supplementary Table 1.

Sequence variability of a symbiont-binding lectin
S Bulgheresi et al

994

The ISME Journal



Sequence variability of the pattern recognition receptor Mermaid 
mediates specificity of marine nematode symbioses 

38

phylotype of Gammaproteobacteria, each displaying
a certain morphotype and spatial arrangement on
the host. The present work adds S. majum to those
hosts able to engage in a binary association. This
high degree of specificity has so far been reported for
only two other bacterial ectosymbioses: the cave
amphipod Niphargus ictus (Dattagupta et al., 2009)
and the leaf-cutting ant Acromyrmex (Poulsen et al.,
2005). The identification of the S. majum symbiont
16S rRNA gene and its phylogenetic placement
within the Gammaproteobacteria reiterates earlier
findings: (1) stilbonematid symbionts tightly cluster
with the sulfide-oxidizing endosymbionts of a
marine nematode and of gutless marine oligochaetes
(Musat et al., 2007) (Dubilier et al., 2008); (2) all the
phylotypes contained in this cluster cannot be
grouped according to the geographical origin of
their hosts; and (3) their closest relatives are free

living and not symbiotic. Given that stilbonematid
and symbiont phylogenies do not match (Bayer
et al., 2009), the partners probably did not co-
speciate.

Protein–sugar interactions have a central role in
host–symbiont attachment in virtually all microbial
symbioses, including plant–rhizobia, ectomycorrhi-
za, cnidarian–zooxanthellae, lucinid mussels and
the ones established by thiotrophic marine nema-
todes (Wood-Charlson et al., 2006; Gourdine and
Smith-Ravin, 2007; Kvennefors et al., 2008; De Hoff
et al., 2009; Bright and Bulgheresi, 2010; Chaston
and Goodrich-Blair, 2010). Here, we showed that
one to three amino acid replacements in a host-
secreted sugar-binding protein are sufficient to radi-
cally affect its ability to agglutinate two different
symbiont phylotypes. More specifically, incubation of
L. oneistus symbionts in a DNT-type CRD results in

Figure 7 Dissociation assays. Light microscope images of L. oneistus individuals incubated in 10 mgml�1 His-Mermaid-1 (a, e and i),
His-Mermaid-2 (b, f and j), His-Mermaid-3 (c, g and k) and no lectin (d, h and l). Nematodes were photographed aftero 1h (a–d) and 20h
(e–l) incubation. White and black arrowheads point to the beginning of the bacterial coat. White arrows in (b) point to a nematode region
where symbiont are detaching (left) and already detached (right). Two eggs inside the nematode (star) are visible after symbiont
detachment. Scale bar is 200mm in a–h and 20mm in i–l.
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the largest bacterial aggregates, whereas a
GDA type induces the largest S. majum symbiont
aggregates. Therefore, acquisition of specific sym-
bionts by two co-occurring stilbonematids might be
mediated by minor differences in lectin protein
sequence. This is the first report of lectin isoforms
differing in their symbiont-binding capacity. cDNA
analysis of a family of Acropora millepora mannose-
binding proteins (Millectins; Kvennefors et al., 2008)
revealed extensive sequence variation. As observed
for the Mermaids, some substitutions occur in the
vicinity of the ligand-binding region. Kvennefors et al.
(2008) speculated that amino acidic variability would
enable the coral-secreted Millectins to recognize a
variety of symbionts and pathogens.

Agglutination and dissociation assays indicate that
the three CRD types differ in their symbiont-binding
activity. This might be because of their different
polymerization capacities or sugar specificities.
Detailed analysis of the latter, as well as of the lipo-
polysaccharide composition of the two symbiont
phylotypes, promise to disclose the effects of
the three analyzed amino acid substitutions on
Mermaid activity. It is possible that the specificity
of the DNT-type CRD (displayed by Mermaid-2)
matches the sugar composition of L. oneistus
symbiont lipopolysaccharide and the specificity
of the GDA-type CRD (displayed by Mermaid-3)
that of the S. majum symbiont. Although we did
not attempt to dissociate the latter from its host by
incubation in different recombinant Mermaid iso-
forms, as S. majum does not tolerate long incuba-
tions outside the marine environment, agglutination
tests suggest that GDA-type Mermaids are predomi-
nantly mediating symbiont attachment to this
stilbonematid species.

The Mermaids are not the first molecules to vary
between phylogenetically related hosts, thereby
affecting symbiosis specificity. Other very well-
known examples are the plant flavonoids and, on
the symbiont side, the rhizobial Nod factors (Cooper,
2007). This study does not exclude that other
host (C-type) lectins might participate in symbiont
discrimination. Additionally, the presence of
another given gene (symbiosis specificity mecha-
nism (b), see introduction) could be involved.
Examples of genes that can specify the host range
are the nematode intestine localization (nil) B and
C genes of insect-killing nematode symbionts
(Cowles and Goodrich-Blair, 2008) and the regulator
of symbiotic colonization sensor (rscS) gene of squid
symbionts (Mandel et al., 2009).

A high rate of amino acid substitutions is a
hallmark of positive selection. This is defined as
an excess in the non-synonymous nucleotide
substitution rate (dN) relative to the synonymous
rate (dS) when compared with neutral expectations
(Hughes and Nei, 1988). Positive selection acts on
a multigenes family and favours diversity at the
amino acid level. Evidence of positive selection
has been reported for many immunity genes

(Hughes, 1994; Tiffin and Moeller, 2006; Hayes
et al., 2010). Molecular population genetics studies
are needed to find out whether the Mermaids are
evolving adaptively under diversifying, selective
pressure exerted by the symbionts. Moreover,
quantitative PCR and/or isoform-specific antibodies
are required to define the relative abundance
of each isoform transcript/protein in each stilbone-
matid species.

The finding that different Mermaid isoforms
can discriminate different symbionts is a true
step forward in understanding the mechanisms
of symbiosis specificity. So far, only pathogen-
associated molecular pattern receptors were known
to be tailored in such a custom-made manner. New
research avenues will be to investigate whether the
different Mermaid CRDs display different affinity
for pathogens such as the human immunodeficiency
virus-1 (HIV-1) and their role in stilbonematid
innate immunity defense.
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Supplementary Materials

Supplementary Fig. 1 FISH LSCM of S. majum symbionts attached to the worm surface. Symbionts are 
stained with specific probes targeting eubacteria (A, E), Gammaproteobacteria (B, F), and the S. majum 
symbiont in the presence (C) or absence (G) of an unlabeled competitor. D and H are overlay pictures of A-C 
and E-G, respectively. Scale bar is 6 µm in A-H.

Supplementary Fig. 2 LSCM picture of the bacterial coat of a S. majum nematode immunostained with 
rabbit preimmune serum and Alexa488-conjugated secondary anti-rabbit antibody (A), corresponding 
differential contrast image (B) and overlay (C). The degree of signal is negligible in comparison to that obtained 
in Fig.5. Arrows point to the bacterial coat and arrowheads to the nematode cuticle. Scale bar is 20 µm.
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Supplementary Table 1. Symbiont agglutination assay. Dunn’s post-hoc multiple comparisons p-values after Kruskal-Wallis 
nonparametric ANOVA.

L. oneistus symbiont agglutination S. majum symbiont agglutination

FSW
His- 

Mermaid-1
His- 

Mermaid-2
His- 

Mermaid-3 FSW
His-

Mermaid-1
His-

Mermaid-2
His-

Mermaid-3

FSW - 0,000 0,000 0,001 - 0,000 0,000 0,000
His-

Mermaid-1 0,000 - 0,000 1,000 0,000 - 1,000 0,000
His-

Mermaid-1 0,000 0,000 - 0,000 0,000 1,000 - 0,000
His-

Mermaid-1 0,001 1,000 0,000 - 0,000 0,000 0,000 -
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A new species of symbiotic flatworms, Paracatenula galateia sp. nov.
(Platyhelminthes: Catenulida: Retronectidae) from Belize (Central
America)

ULRICH DIRKS1$, HARALD R. GRUBER-VODICKA1$, NIKOLAUS LEISCH1,

WOLFGANG STERRER2 & JÖRG A. OTT1*

1Department of Marine Biology, University of Vienna, Vienna, Austria, and 2Bermuda Aquarium, Natural History Museum

and Zoo (BAMZ), Bermuda

Abstract
Paracatenula galateia sp. nov. is a mouthless marine catenulid platyhelminth with bacterial intracellular endosymbionts. The
worms live in shallow back-reef sands in the Belize Barrier Reef system and are distinguished from the four previously
described members of the genus by their large size combined with a ribbon-shaped body and characteristic bipartite
inclusions in cells, which are interpreted as sperm. The bacteria are presumed to be sulphur-oxidizing chemoautotrophs.
They are found in bacteriocytes which fill the body region (‘trophosome region’) posterior to the brain, whereas the anterior
part of the worm (rostrum) is bacteria-free. Phalloidin staining reveals a delicate system of subepitheliar circular and
longitudinal muscles and dorsoventral fibres. The serotonergic nervous system consists of a brain at the base of the rostrum
and longitudinal fibres extending both anteriorly and posteriorly, the latter being concentrated in a structure called the
‘dorsal cord’.

Key words: Interstitial meiofauna, intracellular symbiosis, subtidal sand

Introduction

Catenulida are an order of small, free-living Platyhel-

minthes (‘Turbellaria’, Tyler et al. 2006�2010).
Originally thought to occur exclusively in freshwater

except for the questionableTyrrheniella sigillata (Riedl,

1959), they were first reported from marine sandy

bottoms by Sterrer (1966). Sterrer & Rieger (1974)

described nine marine species from NE and

W Atlantic coasts, belonging to two new genera

(Retronectes and Paracatenula) for which they erected

the family Retronectidae, named for their ability to

swim backward by reversing the ciliary beat. Usually

found only as isolated, fragile specimens, and difficult

to identify for their paucityof consistentmorphometric

features, retronectids are characterized by an often

polylithophorous statocyst (which may be lacking in

some species or specimens), and a simple, anterio-

dorsally openingmixedgonad.Reproductive biology is

as yet unresolved: oocytes were observed in only one,

and amature egg in another species ofRetronectes of at

least 50 specimens studied (Sterrer & Rieger 1974). A

small proportion of specimens contained cells with

distinctly shaped inclusions that have been inter-

preted as spermatozoa and their nuclei; spermatids

contain ciliary rudiments (Rieger 1978). In Paracate-

nula, distinct gonads are apparently lacking; in fact, no

oocytes or eggs have ever been found. Instead, cells

containing characteristic rod-, ribbon-, banana- or

even spicule-shaped inclusions were found along a

strand of tissue named ‘dorsal cord’ (Sterrer & Rieger

1974), which extends throughout the body in median

position. These inclusions often clustered behind the

brain (in a vesicula seminalis?), where a dorsal pore to

the outside may be located.

The peculiar retronectid gonad with its large,

oocyte-like sperm prompted Sterrer & Rieger
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(1974) to suggest ‘a completely new mode of

reproduction � such as parthenogenesis from sperm’

along the transformation of male cells into oocytes

described by Borkott (1970) for the freshwater

catenulid Stenostomum; see also Schuchert & Rieger

(1990) � and further ‘underlines the isolated posi-

tion of the Catenulida within the Turbellaria and the

Platyhelminthes’ (Rieger 1978). Recent multilocus

phylogenetic studies corroborate the placement of

the genus Paracatenula within the Catenulida and

also the status of the Catenulida as the basal taxon of

Platyhelminthes (Larsson & Jondelius 2008).

While members of Retronectes have a mouth,

ciliated pharynx and gut lumen, those of Paracatenula

were described to lack mouth, pharynx and gut

lumen; rather, the tissue filling most of the body

volume consists of large turgescent cells containing

‘granular bodies’. These have been identified as

intracellular bacteria in P. erato Sterrer and Rieger,

1974 (Ott et al. 1982). Subsequent investigations

have shown that this is the case for all members of the

genus Paracatenula (own unpublished observations).

The bacteria are presumably symbiotic sulphur-

oxidizers, since the bacteria from two Paracatenula

species have been shown to possess a reverse dissim-

ilatory sulphite reductase (DsrAB) gene, an impor-

tant gene in bacterial sulphur metabolism, which

clustered with the sequences of other sulphur-oxidiz-

ing bacteria (Loy et al. 2009). In addition, the

bacteria contain highly refractive granules, appearing

white in incident light, which resemble the elemental

sulphur storage granules known from many sulphur-

oxidizing bacteria (Pasteris et al. 2001). Members of

Paracatenula have a symbiont-free anterior body

region (rostrum) and a posterior body region filled

by symbiont-containing cells (bacteriocytes), which

together form a distinct organ, which we call

‘trophosome’ in analogy to the symbiont-containing

organ in the vestimentiferan annelids.

Only three more species of Retronectidae have

been described since Sterrer & Rieger’s (1974)

original nine: one new genus, Myoretronectes para-

nensis Noreña-Jansson & Faubel, 1996 from

Argentina, and two species of Retronectes: R. sterreri

Faubel, 1976 from the North Sea and R. atypicaDoe

& Rieger, 1977 from North Carolina. During

investigations of the meiofauna in back-reef sedi-

ments of the Mesoamerican barrier reef system at

Belize, a large, conspicuous new species was found

to be common in subtidal sands close to the field

station of the US National Museum of Natural

History (Washington, DC) on the island of Carrie

Bow Cay (Rützler & Macintyre 1982). This species

is currently subject to intensive studies of its biology

and ecology. Here we present the description of this

species new to science.

Materials and methods

Specimens were collected between 2007 and 2010 at

several locations in the vicinity of the field station of

the US National Museum of Natural History

(Washington, DC) on the island of Carrie Bow

Cay (Figure 1). The worms were extracted by

shaking sand samples in seawater and pouring the

supernatant through a 32-mm pore-size mesh. In-

dividual specimens were picked by hand and in-

spected using a dissecting microscope. Squeeze

preparations of live animals were analysed using

bright field and phase contrast microscopy at

16�1000� magnification. Digital photomicro-

graphs were collected and used for measurements

with the analysis tool of Adobe Photoshop CS5.

Fluorescent staining of whole mounts

Musculature in whole mounts of individual worms

was made visible by staining F-actin with fluores-

cently labelled phalloidin (Alexa Fluor 568; Invitro-

gen, Austria); the nervous system by staining of

serotonergic nerves with an anti-serotonin antiserum

Figure 1. A. Map of the southern part of the Belize Barrier Reef.

B and C. Sample locations in the vicinity of Carrie Bow Cay

where Paracatenula galateia sp. nov. was found. T, type location.
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produced in rabbit (Sigma Aldrich, Austria) fol-

lowed by a staining with an Alexa Fluor 568-

conjugated secondary antibody. Freshly collected

specimens were first relaxed in a magnesium chlo-

ride solution isotonic to seawater, fixed for 12 h in

4% (w/v) formaldehyde at 48C, rinsed in phosphate-

buffered saline (PBS) and stored in PBS at 48C (for

phalloidin staining) or in methanol at �208C (for

serotonin staining). For phalloidin staining the

specimens were washed and permeabilized in PBS

with 0.2% (v/v) Triton X-100 (PBS-T) and then

stained for 30 min with phalloidin-Alexa 568 diluted

1:200 in PBS-T. After three washes in PBS and a

DAPI staining for 5 min, the specimens were

mounted on slides in Vecta shield (Vector Labora-

tories). For antibody staining the fixed animals were

transferred into PBS-T and digested for 6 min at

room temperature in 0.1 mg/ml proteinase K in

PBS-T. Digestion was stopped by adding 2 N

hydrochloric acid. Animals were then washed in

PBS-T and blocked in BSA-T (bovine serum albu-

min (BSA) plus 0.2% Triton X-100) for 30 min.

Serotonin was stained with the anti-serotonin anti-

serum 1:2000 diluted in BSA-T overnight at 48C.

After three washing steps in PBS-T, an Alexa 547

conjugated secondary antibody was applied for 1 h at

room temperature at 1:300 dilution in BSA-T. DAPI

staining and mounting was done as described above.

Slides were either scanned with a confocal laser-

scanning microscope (Zeiss LSM 510) or examined

and photographed with an epifluorescence micro-

scope (Zeiss Axio Imager).

DNA extraction, PCR amplification and sequencing

DNA was extracted from ten worms using the Blood

and Tissue DNA extraction kit (Qiagen, Germany)

and 2 ml of each extraction was used as PCR

template. Fragments of the 18S and 28S rRNA

gene (1750 and 1350 nt long, respectively) were

amplified for each worm by PCR with the general

eukaryotic primers 1f (5?-CTGGTTGATYCTGC

CAGT-3?) and 2023r (5?-GGTTCACCTACG

GAAACC-3?) for 18S (Pradillon et al. 2007) and the

Primers D1a (5?-CCC(C/G)CGTAA(T/C)TTAAG

CATAT-3?) and D5b2 (5?-CGCCAGTTCTGCT

TACC-3?) initially developed for Arthropoda for

28S (von Reumont et al. 2009). Cycling conditions

for both genes were: 948C for 3 min followed by 40

cycles of 948C for 45 s, 498C for 30 s, 728C for 1

min, and a final elongation step of 728C for 10 min.

The PCR products obtained were purified using the

MinElute PCR purification kit (Qiagen) and directly

sequenced with the PCR primers. All sequences

were deposited in Genbank, accession numbers

HQ231330�HQ231344.

rRNA genes-based phylogenetic analysis

18S and 28S rRNA gene data sets were constructed

with our sequences and selected Catenulida se-

quences available in Genbank. The 18S and 28S

rRNA gene data sets were separately aligned using

MAFFT Q-INS-I, which considers the secondary

structure of RNA (Katoh et al. 2005). The 5? and 3?
ends of both alignments were trimmed, final length

of alignments were 1816 nt (18S) and 1676 nt (28S).

The nucleotide sequence identity between indivi-

duals was calculated based on these alignments using

Geneious 5 (Drummond et al. 2010). The align-

ments were concatenated and we reconstructed the

phylogenies using maximum likelihood- (PHYML at

the phylogeny.fr web service; Guindon & Gascuel

2003; Dereeper et al. 2008) and Bayesian inference-

based (MrBayes; Ronquist & Huelsenbeck 2003)

algorithms. Substitution models for both genes were

evaluated using MrModeltest 2.3 (Nylander 2008).

The GTR�I�G model was chosen using the

Akaike information criterion. MrBayes was run for

five Mio generations using four chains. Convergence

was evaluated by plotting the generations versus

logL and the burn-in was set to two Mio generations.

Node stability was evaluated using posterior prob-

abilities (pp, Bayesian inference) and aLRT (max-

imum likelihood; Anisimova & Gascuel 2006;

Guindon et al. 2010). Sequences of Macrostomida

served as out-group.

Taxonomy

Paracatenula galateia sp. nov.

Material

Of more than 100 individuals from back-reef sedi-

ments at a variety of sampling sites in the vicinity of

CarrieBowCay (Belize) (seeFigure 1), 19 adultswere

studied live in squeeze preparation, six by serial semi-

thin sections, and about 10 each as whole mounts

stained with phalloidin and serotonin antibody,

respectively.

Type specimens

Holotype: 1 specimen fixed in formaldehyde 4% and

mounted on amicroscope slide embedded in glycerol;

USNM 1154145.

Paratype: 2 specimens fixed in Bouin’s fluid in

separate vials; USNM 1154146 and 1154147.
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Type locality

Carrie Bow Cay, Belize Barrier Reef (16848?10.50??N,

88804?56.30??W). Subtidal sand in approximately

1 m water depth, 50 m west of the island in front

of the pier (Figure 1).

Etymology

Galateia refers to the silky, milky white appearance of

the worm under incident light. In Greek mythology

this is an attribute of the skin of the nymph Galateia

(Greek Galatoía, ‘the milky white’).

Diagnosis

Ribbon-shaped Paracatenula up to 6 mm long, with

or without a statocyst. Inclusions bipartite, with

conical to ladyfinger-shaped parts, 12�19 mm long

and 3 mm wide.

External appearance

Paracatenula galateia is a ribbon-shaped worm up to

6 mm long (Figures 2A, 3). The length of the

animals is extremely variable because the fragile

worms tend to break, probably due to the extraction

process. Only rarely are individuals found that are

apparently complete and show an undamaged pos-

terior end. Many worms show constrictions or an

irregular outline (Figure 3C). The width of the

trophosome region, which makes up the largest

part of the animal, is 225�315 mm (271930.6 mm,

n�19); its dorsoventral height, however, is much

smaller, and difficult to measure or even estimate in

living worms. Fixed specimens have a width/height

ratio of approximately 4.6�5.5. The trophosome is

pinkish-white in incident light and has a character-

istic silky appearance (Figure 3A). The transparent

dorsal cord appears to divide the trophosome into

two parts along the midline (Figures 3 and 9A).

The rostrum is 330�460 mm (398937.5 mm,

n�19) long and has a characteristic shape. The

anterior part is cylindrical or club-shaped, with a

rounded tip (Figures 2A,C and 3). Its diameter is

100�176 mm (129917.7 mm, n�19). The posterior

part is conical and widens to match the width of the

trophosome region. This widening begins at about

60% of the length of the rostrum, where it has its

Figure 2. Paracatenula galateia sp. nov. A. Habitus of live specimens. B. Drawings of bipartite inclusions showing the conical to ladyfinger-

shaped bodies (cb) connected by a short strand (ss) and surrounded by a dense matrix (dm). C. Morphology and organization of the

rostrum showing the ciliated epidermis (ci), the monolithophorous statocyst (st), the dorsal cord (dc), the trophosome (tr), the dorsal

opening (do) with surrounding gland cells with coarse granules (cg) adjacent to the muscular pouch (mp) which is filled with bipartite

inclusions (bi) and has gland cells with fine granules (fg). The positions where measurements of width (arrowheads) and length (bars) were

taken are indicated. Scale bars indicate 250 mm (A), 10 mm (B) and 50 mm (C).
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minimum diameter of 94�145 mm (119914.9 mm,

n�19). In 5 of 19 specimens studied in detail, the

rostrum contained a monolithophorous statocyst

(Figure 4) of 12.890.63 mm in diameter; the

diameter of the statolith was 6.590.43 mm. In small

(juvenile?) worms the statocyst lies close to the brain

(Figure 3D), which nestles between the anterior tips

of the two trophosome parts, whereas in large

(adult?) animals it is in a more forward position

(Figure 3B).

Anatomy

A cross-section in the trophosome region (Figure 5)

shows a thin (3.7�4.7 mm thick), ciliated epidermis.

The nuclei of the epidermis cells are sunk into the

underlying muscle layer that consists of fine long-

itudinal and even finer circular muscle fibres (Figure

6A,B). Numerous dorsoventral muscle fibres run

through the body. The ‘dorsal cord’ is a muscular

strand that also contains the major longitudinal

nerves. The remainder of the body is filled with the

bacteriocytes. Approximately 50 bacteriocytes can

be distinguished in a cross-section; each bacteriocyte

contains numerous bacteria. The symbionts show

different shapes in the section (Figure 7). When

squeezed out of the worm, they attain a coccoid

shape with a diameter of 8.2690.63 mm (n�10).

The refractive granules are contained in vacuoles

and are approximately 0.5 mm in diameter.

The serotonergic nervous system (Figure 8) is

centralized in a brain, which is located at the

boundary of trophosome and rostrum. Originating

in the brain, there are four nerve cords innervating the

rostrum in an anterior direction, two on the dorsal

and two on the ventral side. In the median of the DV-

axis we find two prominent nerves originating in the

brain that extend laterally and innervate the subepi-

dermal or submuscular nerve nets. The region poster-

ior to the brain has two kinds of nerves showing strong

serotonin signals. There is a very strong staining of

Figure 4. Paracatenula galateia sp. nov. Statocyst (st) anterior of

brain connected to the dorsal cord (dc), gland cells with coarse

granules (cg) adjacent to the muscular pouch (mp) filled with

bipartite inclusions (bi) and gland cells with fine granules (fg).

Scale bar 25 mm.

Figure 5. Paracatenula galateia sp. nov. Semi-thin cross-section through trophosome region showing the thin epidermis (ep), the dorsal cord

(dc), the bacteriocytes (bc) filling most of the body and the symbiotic bacteria (ba) within the bacteriocytes. Scale bar 50 mm.

Figure 3. Paracatenula galateia sp. nov. Micrographs of live specimens. A. Incident light showing smooth silky appearance of trophosome.

B. Transmitted light showing characteristic shape of extended rostrum and dorsal chord. C. Specimen with irregular outline and

constriction. D. Small (juvenile?) specimen. Note position of the statocysts in inserts to B and D. A�D at same scale, bar indicates 100 mm.
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two main nerve cords that are direct extensions of the

dorsal parts of the brain. These main nerves are

associated with the ‘dorsal cord’ and extend through

the entire posterior part of the worm. The other type

of serotonergic nerve in the posterior part of the

animal is the subepidermal or submuscular nerve net,

which is ubiquitous and evenly distributed.

Cells containing characteristic bipartite inclu-

sions (Figures 2B, 4, 6C, 9A,B), which could be

interpreted as spermatozoa, were encountered in

Figure 6. Paracatenula galateia sp. nov. Phalloidin staining of muscles. A. Anterior region showing rostrum muscles (rm) and dorsal cord

muscles (dm) B. Detail showing longitudinal fibres (lm), thin circular fibres (cm), nuclei of the epidermis (nu) sunken into the muscle

sheath and dorsoventral fibres (dv). C. Muscular layer (ml) surrounding the pouch that contains the bipartite inclusions (bi). Scale bars 50

mm (A) and 5 mm (B, C).

Figure 7. Paracatenula galateia sp. nov. symbiotic bacteria. TEM

section of the trophosome region with several bacteria (ba)

localized in a bacteriocyte (bc). Scale bar 2 mm.

Figure 8. Paracatenula galateia sp. nov. Serotonin staining of the

nervous system in the anterior region. A. Light micrograph of

anterior end. B. Projection of several immunofluorescent micro-

graphs of the same specimen showing the brain (br), rostrum

nerves (rn), lateral nerves (ln) and dorsal cord nerves (dn). Scale

bar 50 mm.
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five of 19 large specimens. They are distributed

throughout the trophosome region, especially along

the dorsal cord (Figure 9A), but are concentrated

behind the brain, between the anterior ends of the

trophosome lobes, in a round pouch enclosed by a

muscle layer (Figures 4, 6C, 9A), which we

interpret as a vesicula seminalis. The rostral wall

of the pouch is made up of fine-grained gland

cells. Anterior and connected to this pouch there is

a circular dorsal opening to the outside (genital

pore?), which is surrounded by gland cells contain-

ing coarse granules (Figure 9A).

The inclusion containing cells are oval, 20�24 mm
long and 7�15 mm wide. The inclusions are made up

of a pair of conical or ladyfinger-shaped bodies

(Figure 2B, 4, 6C, 9A,B) that are arranged in either

a straight line or at a 1608 angle, without touching

each other but joined together by a short bond; each

pair measures 11.2�13.5 mm (mean 12.2 mm) in

length and 2.6�3.6 mm (mean 3.0 mm) in width. The

Figure 9. Paracatenula galateia sp. nov. bipartite inclusions and rhabdoids. A, Anterior end of trophosome (tr) region. Focus on dorsal side

showing the bipartite inclusions (bi) along the dorsal chord and concentrated in the circular pouch with finely granulated glands (fg), the

dorsal opening (do) and the surrounding glands with coarse granules (cg). B, Bipartite inclusion in a semi-thin section showing two slightly

cone-shaped bodies (cb) connected by a short strand (ss) surrounded by a dense matrix (dm). C, Same region as A; focus on ventral side,

showing bundles of rhabdoids (rh). Scale bars 25 mm (A, C) and 10 mm (B).

Figure 10. 18S and 28S rRNA-gene based phylogenetic reconstruction showing the position of the sequenced individuals of P. galateia sp.

nov. in the Catenulida. The tree is based on the most likely PHYML tree (GTR� I�G model of substitution). Support in MrBayes and

PHYML analysis is indicated (pp j aRLT) for each node. Microstomidae were used as outgroup. GenBank accession numbers are given in

parentheses (first 18S and then 28S rRNA gene). Scale bar represents 5% estimated sequence divergence. st�statocyst.
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conical or ladyfinger-shaped bodies are 3�6.1 mm
long; the connecting bond is a 1.6�3.3 mm long

electron-dense strand.

Bundles of 2�6 rhabdoids, rounded rods 10�
12 mm long and 1�2 mm wide, may be found

throughout the animal (Figure 9C).

Molecular phylogenetic analysis

Sequences of the 18S and 28S rRNA gene were

obtained from 10 individuals of Paracatenula

galateia sp. nov. They are highly similar, with

99.9% and 99.7% pairwise identity. Phylogenetic

analysis based on a concatenated alignment of 18S

and 28S rRNA genes from Paracatenula galateia

and selected Catenulida as well as Macrostomida

(Figure 10) shows that (1) our reconstruction of

the Catenulida internal phylogeny supports the

phylogeny presented by Larsson et al. (2008); (2)

all sequences from the genus Paracatenula form

one clade within the Catenulida; (3) sequences

from P. galateia form a highly supported and well-

separated cluster within the genus meriting the

designation of a new species; and (4) there is no

separation of sequences from individuals with

statocyst to individuals without statocyst, showing

that all specimens studied belong to the same

species.

Discussion

The lack of mouth and pharynx together with the

molecular data define the new species as belonging

to the genus Paracatenula. P. galateia sp. nov. is the

most massive species described so far. The width of

the similarly long P. urania Sterrer and Rieger, 1974

is only a tenth of that of the new species. A

comparison of biometric data is given in Table I.

Furthermore, P. galateia sp. nov. is clearly distin-

guished from the four species described by Sterrer &

Rieger (1974) by the structure of its ‘sperm nucleus’,

which is spindle-shaped in P. urania and P. erato,

spicule-shaped in P. polyhymnia Sterrer & Rieger,

1974, and possibly ribbon-shaped in the lesser-

known P. kalliope Sterrer & Rieger, 1974. The fact

that in P. galateia sp. nov. the two ‘ladyfingers’ often

diverge at a 1608 angle might suggest an affinity with

P. polyhymnia where the two arms of the spicules as a

rule enclose a 1608 angle (Sterrer & Rieger 1974, fig.

13g). However, the nature of the peculiar cells

containing the variously shaped inclusions is still

unclear. In P. galateia sp. nov. the location of the

cells, and their concentration in a muscular pouch

with a dorsal opening, strongly suggests them to be

sperm. Attempts to stain the presumed nucleus

with DAPI, however, failed. Most puzzling are

the spicule shaped inclusions in P. polyhymnia

and several other not yet described species (own

unpublished observations) that seem to have a

mineral nature.
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Harnessing chemosynthetic symbionts is a recurring evolutionary
strategy. Eukaryotes from six phyla as well as one archaeon have
acquired chemoautotrophic sulfur-oxidizing bacteria. In contrast to
this broad host diversity, known bacterial partners apparently
belong to two classes of bacteria—the Gamma- and Epsilonproteo-
bacteria. Here, we characterize the intracellular endosymbionts of
the mouthless catenulid flatworm genus Paracatenula as chemoau-
totrophic sulfur-oxidizing Alphaproteobacteria. The symbionts of
Paracatenula galateia are provisionally classified as “CandidatusRie-
geria galateiae” based on 16S ribosomal RNA sequencing confirmed
by fluorescence in situ hybridization together with functional gene
and sulfur metabolite evidence. 16S rRNA gene phylogenetic anal-
ysis shows that all 16 Paracatenula species examined harbor host
species-specific intracellular Candidatus Riegeria bacteria that form
amonophyletic groupwithin the order Rhodospirillales. Comparing
host and symbiont phylogenies reveals strict cocladogenesis and
points to vertical transmission of the symbionts. Between 33%
and 50% of the body volume of the various worm species is com-
posed of bacterial symbionts, by far the highest proportion among
all known endosymbiotic associations between bacteria and meta-
zoans. This symbiosis, which likely originated more than 500 Mya
during the early evolutionofflatworms, is the oldest knownanimal–
chemoautotrophic bacteria association. The distant phylogenetic po-
sition of the symbionts compared with other mutualistic or parasitic
Alphaproteobacteria promises to illuminate the common genetic
predispositions that have allowed several members of this class to
successfully colonize eukaryote cells.

intracellular symbiosis | marine catenulid | meiofauna | subtidal sand

Marine catenulid flatworms of the genus Paracatenula have no
mouth or gut (1). Instead, they harbor intracellular microbial

endosymbionts in bacteriocytes (2) that form a tissue known as the
trophosome (Fig. 1A) in functional analogy to the trophosome of
themouthless Siboglinidae (Annelida) (3). The trophosome almost
completely fills the posterior part of the body behind the brain (2,
3). The worms inhabit the interstitial space of warm temperate to
tropical subtidal sands together with other animals such as nema-
todes, gutless oligochaetes, and lucinid or solemyid bivalves that
all harbor chemoautotrophic sulfur-oxidizing bacteria (SOB). By
migrating through the redox potential gradient in the uppermost
5- to 15-cm sediment layer, millimeter-sized worms can supply
chemoautotrophic symbiotic bacteria alternately with spatially
separated electron donors and acceptors such as sulfide and oxy-
gen, as has been described for Nematoda and Oligochaeta (4, 5).
Chemosynthetic carbon fixation by using reduced sulfur com-

pounds (i.e., thiotrophy) is widespread in free-living members of
the microbial domains Bacteria and Archaea. This metabolic ca-
pability has been found in members of the Actinobacteria, Aqui-
ficae, Bacilli, Chloroflexi, Chlorobi, and Spirochaeta, and all classes
of the Proteobacteria and the archaeal order Sulfolobales. One
archaeon, “Candidatus Giganthauma karukerense” (6), as well as

a wide range of protists and animals, including Ciliata (e.g.,
Zoothamnium), Nematoda (Stilbonematinae and Astomonema),
Arthropoda (Rimicaris and Kiwa), Annelida (e.g., Riftia or Ola-
vius), along with bivalve and gastropod Mollusca (e.g., Solemya or
Neomphalina; reviewed in ref. 7), have established themselves as
hosts in symbioses with SOB. They all derive some or all of their
energy demands from the primary production of the symbionts
(7). Interestingly, despite this great taxonomic variety of hosts—
from habitats as divergent as deep-sea hydrothermal hot vents,
cold seeps, whale or wood falls, and peat and shallow-water
sediments—the SOB symbiont diversity seemed to be limited to
Proteobacteria of the Gamma and Epsilon classes (7). Here, we
present evidence that the symbionts of Paracatenula form an
ancient clade of sulfur-oxidizing Alphaproteobacteria that are
strictly coevolved with their hosts and that equal host biomass in
the consortium.

Results and Discussion
The body plan of Paracatenula suggests that the symbionts make
up a substantial proportion of the worms. To specify symbiont-
to-host tissue ratios, cross-sections in the trophosome region of
three species of Paracatenula were analyzed by transmission EM
(TEM). The symbionts make up 36.7% of the cross section area
in Paracatenula galateia (3) (Carrie Bow Cay, Belize), 41.2% in
P. cf. galateia (Dahab, Egypt), and 51.9% in P. cf. polyhymnia
(Dahab, Egypt; Fig. S1). The symbiont-housing trophosome re-
gion accounts for 90% to 98% of the total worm length: multi-
plying these two factors, we roughly estimate symbiont-to-host
tissue ratios of 33% in P. galateia, 40% in P. cf. galateia, and 50%
in P. cf. polyhymnia. These are the highest proportions of all
known endosymbioses between bacteria andmetazoans, far higher
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than, e.g., in the deep-sea tubeworm Riftia pachyptila, in which
bacteria make up only 24.1% of the trophosome, which in turn
occupies less than one third of the body volume (8). The excep-
tional proportion of bacterial biomass in this intracellular symbi-
osis questions the common view that animals exploit themetabolic
skills of their microbial partners because the Paracatenula worms
in return appear to serve as a protective vehicle for their symbionts.
The bacteria of all Paracatenula species contain highly light re-

fractive spherical inclusions (0.5–2 μm in diameter), which render
the bacteria white in incident light (Fig. 1A). This white coloring,
typical for SOB that store elemental sulfur (9), was an initial clue
that the symbionts could be sulfur oxidizing (2). We selected the
symbionts of P. galateia for a detailed analysis because the worms
are abundant, comparatively large, and morphologically distinct
(3). Sulfur oxidizing capabilities were assessed by examining sulfur
storage and functional genes used in thiotrophy. All inclusions of
extracted symbiont cells from P. galateia analyzed by Raman
microspectroscopy consist of elemental sulfur in S8 ring configu-
ration (Fig. 1 B–D). Energy dispersive X-ray microanalysis shows
that in the trophosome this bacterial sulfur storage can make up
5% to 19% of the tissue mass (Fig. S2). In many SOB that store
elemental sulfur, the sirohaem dissimilatory sulfite reductase (i.e.,
DsrAB) enzyme system functioning in reverse is an important part
of the sulfur oxidation machinery (10). Our phylogenetic analysis
of a collection of dissimilatory sulfite reductase (i.e., DsrB)
sequences from SOB, including the sequence of the P. galateia
symbionts determined in the present study, demonstrates that the
sequences of Paracatenula symbionts form a well supported
monophyletic clade with sequences from other thiotrophic
Alphaproteobacteria [approximate likelihood-ratio test (aLRT),
0.90; posterior probability (pp), 1.00; Fig. S3]. This corroborates
the results from a previous study placing the DsrAB sequences
from bacteria associated with two species of Paracatenula together
with sequences of the alphaproteobacterial genus Magneto-
spirillum, albeit with weak node support (10). Additionally, the

gene coding for AprA, the α-subunit of dissimilatory adenosine-5′-
phosphosulfate (APS) reductase, another key enzyme in sulfur
energy metabolism, was partially sequenced for the P. galateia
symbionts. APS reductase is used by SOB to oxidize sulfite to APS
and by sulfate-reducing microorganisms to reduce APS to sulfite
(11). The symbionts’ AprA sequence clusters with the AprA lin-
eage II of SOB with good statistical support (aLRT, 0.89; pp, 1.00;
Fig. S4). The Calvin–Benson–Basham pathway with ribulose-1,5-
bisphosphate carboxylase/oxygenase (RubisCO) as the central en-
zyme is a key mechanism of carbon fixation in autotrophic organ-
isms (12). The partial sequence coding for RubisCO form II
(CbbM) sequenced for the P. galateia symbionts is related to
sequences from the alphaproteobacterial genus Magnetospirillum
and other chemoautotrophs (Fig. S5).
Taken together, three lines of evidence point to a chemoauto-

trophic sulfur-oxidizing lifestyle of the symbionts: (i) the habitat
that P. galateia shares with many other hosts of thiotrophic bac-
teria, (ii) intracellular storage of elemental sulfur by the sym-
bionts, and (iii) the presence of cbbM as well as dsrAB and aprBA,
both related to sequences from SOB, in the symbionts’ genome.
16S rRNA gene based approaches were used to assess the di-

versity within and between the symbiont populations of individual
worms of Paracatenula galateia. The PCR products obtained
separately from 10 specimens using general bacterial 16S rRNA
gene primers comprise the same phylotype based on (i) clone
libraries, (ii) direct sequencing, and (iii) denaturing gradient gel
electrophoresis (DGGE) analysis [pairwise identity of 99.7–100; a
species-level phylotype threshold of ≥99% 16S rRNA gene se-
quence identity was used (13)]. According to the ribosomal da-
tabase project classifier (14) and our comprehensive phylogenetic
analysis (as detailed later), this bacterial phylotype is a member of
the alphaproteobacterial order Rhodospirillales (Fig. 2). FISH
with a phylogenetically nested probe set specifically targeting
most Bacteria, most Alphaproteobacteria, and the symbiont con-
firms that P. galateia contains only one alphaproteobacterial
species-level phylotype (Fig. 3).
To infer host specificity of the symbionts from different Para-

catenula hosts and to elucidate the symbionts’ evolutionary rela-
tionships, we sequenced symbiont 16S rRNAgenes from additional
31 worms belonging to 15 species, all morphologically distinct from
P. galateia: five species from the Caribbean Sea (Carrie Bow Cay,
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Fig. 1. Sulfur storage in Candidatus Riegeria galateiae. (A) Living specimen
of P. galateia, with Cand. Riegeria galateiae endosymbionts in trophosome
(tr) appearing white in incident light in contrast to the bacteria-free rostrum
(ro). (Scale bar: 250 μm.) (B) Raman spectrum of individual cellular inclusion
(red) with reference spectrum (black) of elemental sulfur in S8 ring config-
uration. (C) Air-dried Cand. Riegeria galateiae cell (ba) with light refracticle
inclusions (ri). (Scale bar: 5 μm.) (D) Mapping of the Raman sulfur spectrum
peak indicated in B in gray onto C, with the mapped area indicated with
turquoise rectangle. (Scale bar: 5 μm.)
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Fig. 2. Phylogeny of the family level Candidatus Riegeria clade in the
Alphaproteobacteria. Based on comparative 16S rRNA gene analysis, the
Cand. Riegeria clade is the sister group of the family Acetobacteraceaewithin
the order Rhodospirillales. The tree shown was estimated by using MrBayes
(MB), and node support is additionally indicated for three alternative meth-
ods (NJ, neighbor joining; Pars, parsimony; ML, maximum likelihood). *Cand.
Riegeria clade; the detailed phylogeny of this clade is shown in Fig. S6. (Scale
bar: 5% estimated sequence divergence.)
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Belize), one from the Mediterranean Sea (Elba, Italy), five from
the Red Sea (Dahab, Egypt), and four from the Pacific Ocean
(Lizard Island, Australia). Our 16S rRNA gene-based tree of the
Alphaproteobacteria (Fig. 2) is largely congruent with the topologies
presented in recent phylogenomic studies of this class (15, 16). The
placement of the symbiont sequences shows that (i) the symbionts
form a distinct and well supported sister clade to the Acetobacter-
aceae within the order Rhodospirillales (Fig. 2), (ii) the symbionts
are present in all worms (Fig. S6), and (iii) each host species har-
bors only one phylotype, which is specific for the respective host
(Fig. S6). Based on these phylogenetic data and our detailed
metabolic analysis, we propose the provisional classification (17)
“Candidatus Riegeria galateiae” for the symbionts of P. galateia.
Short description is as follows: coccoid alphaproteobacterium of
the order Rhodospirillales, 5 to 8 μm in diameter with intracellular
storage of elemental sulfur, present in bacteriocytes of the cat-
enulid flatworm Paracatenula galateia. The basis of assignment is as
follows: 16S rRNA gene, cbbM, dsrAB, and aprA sequences
(HQ689043, HQ840958, HQ689138, and HQ689139, respectively)
and hybridization with the phylotype-specific oligonucleotide
probe PAR1151 (5′-CTT GTC ACC GGC AGT TCC CTC-3′).

Riegeria refers to the late zoologist Reinhard Rieger, who de-
scribed the host genus, together with W. Sterrer (1); and galateiae
to its specific flatworm host P. galateia.
Our phylogenetic analysis also revealed that only a single 16S

rRNA sequence in public databases (GQ402753) belongs to the
clade of Paracatenula symbionts (Fig. S6). This clone was retrieved
from a permanently waterlogged tropical peat swamp forest
sample in Thailand (18), but only scarce details are available for
the sample.
The maximum 16S rRNA gene sequence divergence within the

symbiont clade is 12.7%, and members of the clade show a min-
imum sequence divergence of 11.5% to the next described rela-
tive Elioraea tepidiphila TU-7 (EF519867). This high degree of
phylogenetic distinctness is in the range reported for other pro-
teobacterial families (19) and would thus merit, from a 16S
rRNA-based point of view, the proposal of a family within the
Rhodospirillales to classify the Paracatenula symbionts.
With the exception of the genus Paracatenula, all groups of

Catenulida have a cosmopolitan distribution ranging from tropical
to cold temperate; several species of the marine catenulid genus
Retronectes, which have no chemosynthetic symbionts, have been
found as far north as Kristineberg on the Swedish west coast (1,
20). As all cultured Rhodospirillales related to the symbionts are
mesophilic or slightly thermophilic (21), it is tempting to speculate
that the limitation of Paracatenula to warm temperate or tropical
waters reflects the temperature requirements of its symbionts.
To molecularly characterize the different hosts, we sequenced

their 18S and 28S rRNA genes. Our phylogenetic analysis cor-
roborates the placement of Paracatenula within the Catenulida as
the monophyletic sister clade to the limnic Catenula/Suomina
species complex (20) (Fig. S7). A strict consensus tree based on
several phylogenetic methods using all hosts with both 18S and
28S rRNA genes sequenced (15 species) is highly congruent to
the 16S rRNA gene tree obtained for their symbionts (Fig. 4).
Bayesian inference-based reconstructions for this dataset are fully
resolved on the host species level and completely congruent be-
tween host and symbiont (Fig. S6). The cocladogenesis of both
groups indicates that a common ancestor of the host worms had
acquired an alphaproteobacterial progenitor of the Cand. Rie-
geria clade and that this association has been stably maintained
up to the present day by vertical transmission of the symbionts
from one host generation to the next (22). In chemoautotrophic
associations, vertical symbiont transmission has been reported

Fig. 3. Candidatus Riegeria galateiae in the host trophosome. Laser scan-
ning confocal micrograph of FISH on LR-White cross-section; Overlay of three
images with a bacteria-specific probe (green), symbiont-specific probe (red),
and eukaryote-specific probe (blue). Because of the overlay of colors, the
symbionts appear in yellow. (Scale bar: 50 μm.)

symbiont P. 'rützleri' (Car)
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 P. cf. polyhymnia (Red)
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Fig. 4. Cocladogenesis between Paracatenula and Candidatus Riegeria. Tanglegram of strict consensus cladograms of four reconstruction methods for both
symbiont 16S rRNA and host concatenated 18S and 28S rRNA. Node support is indicated as in Fig. 3. Provisional working names for undescribed species are
given in parentheses. Sample origins: Car, Caribbean Sea; Med, Mediterranean Sea; Red, Red Sea; Pac, Pacific Ocean. No conflicting nodes are statistically
supported in the results of the four phylogenetic reconstruction algorithms, indicating close coevolution between the partners.
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only for the deep-sea clam family Vesicomyidae (23). Recent
studies, however, have shown that host–symbiont phylogenies are
decoupled for some vesicomyid clams, suggesting a mixedmode of
symbiont transmission with vertical transmission occasionally
interrupted with lateral symbiont acquisition (24, 25). Vertically
transmitted symbionts tend to have an accelerated nucleotide
substitution rate compared with free-living bacteria (26, 27). Se-
quence divergence of 16S rRNA for inheritable symbionts aver-
ages approximately 4% for every 100 million years (Ma), ranging
from 2.5% to 11%, whereas free-living bacteria have rates ranging
from 2% to 4% for 100 Ma (26, 28, 29). Based on this range
of rates, the symbiosis in the ancestor of Paracatenula was estab-
lished between 100 and 635 Mya. The maximum estimated di-
vergence time for flatworms is 620 Ma and must be used as the
maximum age of this symbiosis (30). As the Cand. Riegeria sym-
bionts have no detectable nucleotide substitution rate heteroge-
neity in their 16S rRNA gene sequences compared with free-living
Acetobacteraceae (Tajima rate test, P > 0.05 for all Cand. Riegeria
against theAcetobacteraceae used in the phylogenetic analysis), we
suppose a divergence rate of 2.5% in 100 Ma, as has been docu-
mented for symbionts with only slightly accelerated rates. This
delimits the estimated age to 500 to 620 Ma. In comparison, the
ancient solemyid and lucinid bivalve lineages in which all living
taxa harbor chemoautotrophic symbionts have a paleontological
record dating back to the late Ordovician/early Silurian 445 to
435 Mya (31). Even with the uncertainties involved when using
evolutionary rates established for other groups of symbionts
(29), the Cand. Riegeria–Paracatenula association can be consid-
ered the oldest known mutualistic bacteria–metazoan symbiosis,
likely dating back to the early evolution of bilaterian diversity in
the late Ediacaran/early Cambrian.
Coevolving inherited endosymbionts tend to have guanine and

cytosine (GC) depleted genomes (27, 32). The alphaproteo-
bacterial families closely related to the Cand. Riegeria clade, the
Acetobacteraceae and Rhodospirillaceae, have a very high genomic
guanine and cytosine content (gGC; 60–71% and 62–69%, re-
spectively). Although there are no gGC data for Cand. Riegeria
galateiae yet, the dsrAB, aprA, and cbbM genes combined have a
GC content of 51.4%. This significantly lower GC content com-
pared with closely related free-living groups has two possible non
mutually exclusive explanations: (i) the intracellular symbiosis has
relieved the symbionts from the selection pressure that leads to
the high gGC in Rhodospirillales and the symbiont gGC therefore
decreased to approximately 50%; or (ii) population bottlenecks
leading to high genetic drift (33) have been driving the nucleotide
bias in Cand. Riegeria galateiae, but at a much slower pace
compared with that documented in the less than 50 Ma old
symbiosis in vesicomyid clams (symbiont genome sizes of 1.02–
1.16 Mb, gGC of 31.6–34%; closely related free-living Thio-
microspira crunogena genome size, 2.43 Mb, gGC of 43.1%) (23,
34, 35). The close coevolution of Paracatenula and Cand. Rie-
geria, in which each host maintains a monoculture of its specific
symbiont, will allow comparative genomic studies to test these
hypotheses and other theoretical predictions of genome evolution
developed for intracellular symbionts (36). Moreover, this ancient
clade of endosymbionts, with their distant phylogenetic position
and their different function compared with other symbiotic
Alphaproteobacteria, could help illuminate the common genetic
predispositions that have allowed several members of this class to
become successfully incorporated into eukaryotic cells—be it as
intracellular parasites such as members of the order Rickettsiales
or mutualists such as members of the order Rhizobiales or of the
Cand. Riegeria clade.

Methods
TEM. TEM specimens were fixed in glutaraldehyde, postfixed with osmium
tetroxide, and, after dehydration, embedded in Low Viscosity Resin (Agar
Scientific). Complete ultrathin cross-sections mounted on formvar-coated slot

grids were poststained with uranyl acetate and lead citrate. To estimate tissue
ratios, digital images of the sectionsweremerged andhost andbacterial tissue
were digitally traced into vector-based black and white representations. Area
calculations were performed with ImageJ software based on these trace
images using the “analyze particles” function.

SEM and Energy-Dispersive X-Ray Microanalysis. Specimens were immediately
fixed as for TEM analysis. The samples were partly dehydrated in an acetone
series up to 75% to preserve a maximum amount of sulfur (37). The samples
were embedded in Spurr epoxy resin. Semithin cross sections (2.5 μm) of
embedded samples were cut, mounted on carbon-padded stubs, and carbon-
coated. The analysis was carried out on a Philips XL20 SEM with an EDAX
P-505 sensor using EDAX eDXi V2.11 software. Sulfur was mapped against
carbon and at least two other elements prominent in the given spectrum
(e.g., phosphorous and osmium) to rule out structural and edge effects.

Raman Microspectroscopy. Extracted symbiont cells of PFA-fixed specimens
weremounted on a calcium fluoride slide and analyzedwith a LabRAMHR800
confocal Raman microspectroscope (HORIBA Jobin-Yvon). A 532-nm Nd:YAG
laser provided the excitation for Raman scattering. Cells were selected hap-
hazardly using a 50× objective, and the signal was acquired over a period of
5 s using a D0.6 intensity filter. The pinhole of the Peltier-cooled CCD detector
was adjusted to 250 μm (optical slice, 4.6 μm). Spectra were measured be-
tween 0 and 2,000 cm−1. They were baseline-corrected and normalized with
LabSpec software 5.25.15 (HORIBA Jobin-Yvon). Reference spectra for ele-
mental sulfur in S8 ring configuration (Merck) were obtained by using the
same settings and methods.

DNA Extraction, PCR Amplification, and Sequencing. DNA was extracted from
individual worms by using the Blood and Tissue DNA extraction kit (Qiagen),
and 2 μL of each extraction were used as PCR templates. Symbiont 16S rRNA-
gene fragments (approximately 1,500 nt) were amplified with bacterial pri-
mers 616V (5′-AGAGTTTGATYMTGGCTC-3′) (38) and 1492R 5′-GGYTACCT-
TGTTACGACTT-3′ (39). PCR products were purified by using the MinElute PCR
purification kit (Qiagen) and either directly sequenced with the PCR primers
or cloned by using pCR2.1-TOPO and the TOPO TA Cloning Kit (Invitrogen Life
Technologies). Host 18S and 28S rRNA-gene fragments (approximately 1,750
and 1,350 nt long, respectively) were amplified for each worm with general
eukaryote primers 1f (5′-CTGGTTGATYCTGCCAGT-3′) and 2023r (5′-GGTTC-
ACCTACGGAAACC-3) for 18S (40) and the primers D1a (5′-CCCSCGTAAYTT-
AAGCATAT-3′) and D5b2 (5′-CGCCAGTTCTGCTTACC-3) for 28S (41). PCR
products were purified as described earlier and directly sequenced with the
PCR primers. From P. galateia samples, aprBA was amplified with primers
AprB-1-FW (5′-TGCGTGTAYATHTGYCC-3′) (11) and AprA-9-RV (5′-CKGWAG-
TAGTARCCSGGSYA-3′) (42), dsrAB was amplified with primers rDSR1Fa (5′-
AARGGNTAYTGGAARG-3′) and rDSR4Rb (5′-GGRWARCAIGCNCCRCA-3′) (10),
and cbbM was amplified with shortened primers after Blazejak et al. (43):
CbbMF_bl_s (5′-ATCATCAARCCSAARCTSGGYC-3′) and CbbM1R_bl_s (5′-SGC-
RCCRTGRCCRGCMC-3′). We used touchdown PCR cycling programs for cbbM,
aprBA and dsrAB as described for aprBA in Meyer and Kuever (42). The 395
nt-long cbbM fragment was directly sequenced by using the PCR primers,
whereas the aprBA (2,178 nt) and dsrAB (1,911 nt) PCR products were gel
purified using the MinElute gel extraction kit (Qiagen) and cloned as de-
scribed earlier. For all cloned products, at least four clones were randomly
picked and fully sequenced with the vector-specific primers M13F and M13R;
for aprBA and dsrAB, we additionally used internal sequencing primers AprA-
1-FW and AprB-5-RV (42) and DSR874F (10).

DGGE Analysis. DGGE analysis of 16S rRNA genes was performed as described
by Meyer et al. (44). In every lane, only one band was observed, which was
excised from the DGGE gel, and gel slices were stored in 50 mL MQ overnight
at 4 °C. One microliter of this elution was used as a template for PCR
reamplification using the forward primer (341f) without the GC clamp.
Reamplifed DNA was purified and directly sequenced as described above.

rRNA Gene Based Phylogenetic Analyses. A 16S rRNA gene dataset for
Alphaproteobacteriawas constructed including 41 Cand. Riegeria sequences,
three BLAST (45) hits from GenBank longer than 1,400 bp with sequence
identities more than 89% to Cand. Riegeria galateiae (FJ152947, EU440696,
and GQ402753), all Alphaproteobacteria with completely sequenced
genomes used in a previous phylogenomic study (16), and sequences for
landmark genera of cultivated Rhodospirillales. Table S1 provides details on
the Cand. Riegeria 16S rRNA sequences used, including accession numbers.
Table S2 provides accession numbers of sequences from reference Alpha-
proteobacteria and the deltaproteobacterial outgroup. The sequences were
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aligned by using MAFFT Q-INS-i, which considers the secondary structure of
RNA (46), and the alignments were trimmed at the 5′ and 3′ ends. We evalu-
ated the optimal substitution model of sequence evolution with MrModeltest
(47), and the general time-reversible (GTR) model with invariable sites (I) and
a γ-correction for site-to-site rate variation (G) model was selected using the
Akaike information criterion. No filters based on sequence conservation were
used. We reconstructed the phylogenies using neighbor joining-, parsimony-
(both MEGA 4 software) (48), maximum likelihood- (PHYML; phylogeny.fr
Web service) (49, 50), and Bayesian inference-based (MrBayes) (51) algorithms.
MrBayes was run for 5million generations and trees were sampled every 1,000
generations after a burn-in of 40%. Node stability was evaluated using
bootstrap (1,000× neighbor joining and parsimony), pps (Bayesian inference),
and aLRT [maximum likelihood (52, 53)]. Bootstrap support of at least 70%,
aLRT of at least 80%, and posterior probabilities of at least 0.80 were con-
sidered statistically significant. Strict consensus trees were constructed by
collapsing all nodes conflicting in different phylogenetic methods up to the
lowest node supported by all methods.

18S and 28S rRNA gene datasets were constructed from Paracatenula host
sequences and from selected Catenulida sequences available in GenBank,
with sequences of rhabditophoran flatworms (Macrostomida) as outgroup.
Accession numbers of all sequences are shown in Fig. S7 and Table S1. The 18S
and 28S rRNA gene datasets were separately aligned and trimmed as for the
16S gene analysis. Substitution models were evaluated for each gene, and the
GTR+I+G model was selected for both. We concatenated the alignments and
then reconstructed and evaluated the phylogenies as described earlier for 16S
rRNA genes.

Phylogenetic Analyses of DsrB, AprA, and CbbM. Analyses of all genes were
based on amino acid translations by using MAFFT alignments of full-length
reference sequences obtained from available genomes and partial, PCR-
amplified fragments. The optimal Wehlan and Goldman substitution model

(WAG) for the DsrB alignment (500 aa positions; WAG+G), the AprA align-
ment (376 aa positions; WAG+G+I), and the CbbM alignment (478 aa posi-
tions; WAG+G+I) was evaluated with MrModeltest. Phylogenies were
reconstructed for all genes using PHYML as well as MrBayes (3 million
generations, 1 million burn-in). Node support in all gene trees is indicated
for the ML analysis by using PHYML (aLRT) and Bayesian inference (pp). aLRT
of at least 80% and posterior probabilities of at least 0.80 were considered
statistically significant.

FISH. We designed oligonucleotide FISH probes by using the arb probe design
tool included in the arb software package (54) (Table S3) and evaluated their
specificity in silico by using the probe match tool probeCheck (55). Fluo-
rescently labeled probes were purchased from Thermo, and FISH was per-
formed according to Manz et al. (56) as adapted for LR-white resin (British
BioCell International) sections described in Nussbaumer et al. (57). As a neg-
ative control, a nonsense probe (NON-338) was used. To determine stringent
hybridization conditions for the PAR1151 probe, a formamide series was
conducted by using Cand. Riegeria galateiae cell extractions. All FISH
experiments were examined by using a Leica TCS-NT confocal laser-scan-
ning microscope.
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Fig. S1. Symbiont-to-host tissue ratio of three different Paracatenula species. (A–C) Vector trace images of TEM cross sections. Bacteria are indicated in gray;
host epidermal outline indicated in black line. (Scale bars: 20 μm.) (A) Cross-section of P. cf. galateia from Dahab, Egypt: symbionts make up 41.2% of cross-
section area. (B) Cross-section of P. galateia from Carrie Bow Cay, Belize: symbionts make up 36.7% of cross-section area. (C) Cross-section of P. cf. polyhymnia:
symbionts make up 51.9% of cross-section area. (D) Schematic habitus of P. cf. polyhymnia (Left) and P. galateia (Right). Trophosome tissue with bacteria is
indicated in gray, host outline indicated in black line, and dashed lines indicate positions of cross sections in A–C. (Scale bar: 200 μm.)
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Fig. S2. Sulfur measurements of the trophosome material of P. galateia. (A) Energy dispersive X-ray spectrum of trophosome region. Measurement location
marked with arrow in B; peaks of the nine most frequent elements are indicated above the peaks, and their weight (atomic mass) proportions are also shown
(Inset). (B) Scanning EM image of partially dehydrated semithin cross-section of P. galateia embedded in Spurr resin; arrow indicates locality of spectrum in
A. (C) Mapping of sulfur using the peak indicated with gray in spectrum (A) on the trophosome cross-section in B. *Regions of high sulfur content in resin
outside of the worm caused by partial loss of sulfur in the embedding process. B and C are shown at the same scale. (Scale bar: 50 μm.)
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Fig. S3. Phylogenetic reconstruction of DsrB sequences from symbiotic and free-living SOB. Alpha-, Beta-, and Gammaproteobacteria are indicated with gray
boxes, and the sequence from Candidatus Riegeria galateiae obtained in this study is marked in black. The analysis is based on a MAFFT amino acid alignment
with 500 positions. The tree shown was estimated under the WAG+G model using PHYML and the tree was rooted with Chlorobi. Node support is indicated for
ML analysis using PHYML (aRLT) as well as Bayesian inference (pp) with MrBayes (three Mio generations and one Mio burn-in). Accession numbers are given
after the name and strain indicator. (Scale bar: 10% estimated sequence divergence.)
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Fig. S4. Phylogenetic reconstruction of AprA lineage II sequences from SOB and sulfate-reducing bacteria. The different classes of Proteobacteria are in-
dicated with Greek letters, the sequence from Candidatus Riegeria galateiae obtained in this study is marked in black, and bars mark SOB. Desulfovibrio
sequences (aprA lineage I) were used as outgroup. The analysis is based on a MAFFT amino acid alignment with 376 positions, and the tree shown was
estimated under the WAG+Gamma model using MrBayes with three Mio generations and one Mio burn-in; node support is indicated for ML analysis (PHYML;
aRLT) and Bayesian inference (MrBayes; pp). Accession numbers are given after the name and strain indicator. (Scale bar: 10% estimated sequence divergence.)
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Fig. S5. Phylogenetic reconstruction of RubisCO (CbbM and CbbL) sequences. The different forms of RubisCO are indicated with gray boxes and the major
lineages with black brackets, and the sequence from Candidatus Riegeria galateiae obtained in this study is marked in black. The analysis is based on a MAFFT
amino acid alignment with 478 positions. The tree shown was estimated under the WAG+G+I model using MrBayes with one Mio generation and 0.2 Mio burn-
in, rooted with the CbbL clade, and node support is indicated for ML analysis (PHYML; aRLT) and Bayesian inference (MrBayes; pp). (Scale bar: 20% estimated
sequence divergence.)
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Fig. S6. Cocladogenesis between Paracatenula and Candidatus Riegeria. Tangle-gram of the trees of symbiont 16S rRNA (1,542 positions) and host concat-
enated 18S and 28S rRNA genes (3,492 positions) sequenced from worm sampled in the Caribbean Sea (Car), Mediterranean Sea (Med), Red Sea (Red), and
Pacific Ocean (Pac). Both trees are based on MAFFT nucleotide alignments incorporating predicted secondary structure information and were estimated under
the GTR+G+I model using MrBayes with five Mio generations and two Mio burn-in; node support in both trees is indicated (pp). The root part of the host
phylogeny including other catenulids and the outgroup is shown in Fig. S7. The trees were calculated by using all available Paracatenula sequences (Table S2).
Specimens where either host or symbiont data were lacking completely were pruned from the tree for clarity. Accession numbers for sequences from Para-
catenula hosts and symbionts are given in Table S1. The accession numbers for the sequences used in the root part of the host tree are given in Fig. S7; for the
symbiont tree, refer to Tables S1 and S2. [Scale bars: 7% (symbiont) and 5% (host) estimated sequence divergence.]
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Fig. S7. Catenulid phylogeny based on concatenated 18S and 28S rRNA gene analysis. Root part of the tree presented in Fig. S6, indicating the position of the
genus Paracatenula within Catenulida. Asterisks indicates the Paracatenula clade of this tree that is shown in Fig. S6 (host tree). The tree shown is based on
a MAFFT nucleotide alignment incorporating predicted secondary structure information with 3,492 positions and was estimated under the GTR+G+I model
using MrBayes with five Mio generations and two Mio burn-in; node support is indicated for maximum likelihood (PHYML; aRLT) as well as Bayesian inference
(MrBayes; pp). The tree was rooted by using sequences of two rhabditophoran flatworms (Macrostomida) as outgroup (indicated in gray). Accession numbers
are given after the organism name (18S and 28S rRNA gene, respectively) except for the Paracatenula spp. sequences, which are listed in Table S1. (Scale bar:
5% estimated sequence divergence.)
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Table S1. Accession numbers of Paracatenula and “Cand. Riegeria” rRNA sequences used

Host name Geographic origin Sampling location Specimen “Cand. Riegeria” 16S 18S 28S

Paracatenula “rützleri” Caribbean Sea Belize, CBC C06036 HQ68053* HQ689068* HQ689086*
Paracatenula “rützleri” Caribbean Sea Belize, CBC C06037 HQ68052* HQ689067* HQ689085*
Paracatenula “rützleri” Caribbean Sea Belize, CBC C07001 HQ68051* — HQ689084*
Paracatenula “rützleri” Caribbean Sea Belize, CBC C07001b HQ68050* — HQ689083*
Paracatenula urania Caribbean Sea Belize, CBC C07003 HQ68049* — —

Paracatenula urania Caribbean Sea Belize, CBC C07021 HQ68048* HQ689066* HQ689082*
Paracatenula “rützleri” Caribbean Sea Belize, CBC C07039 HQ68047* HQ689065* HQ689081*
Paracatenula galateia Caribbean Sea Belize, CBC C07041 HQ68046* HQ231340 HQ231330
Paracatenula “rützleri” Caribbean Sea Belize, CBC C08010 HQ68045* HQ689064* HQ689080*
Paracatenula “longnose” Caribbean Sea Belize, CBC C08016 — HQ689063* HQ689079*
Paracatenula urania Caribbean Sea Belize, CBC C08068 HQ68044* HQ689062* HQ689078*
Paracatenula galateia Caribbean Sea Belize, CBC C08085 HQ68043* HQ231341 HQ231331
Paracatenula “longnose” Caribbean Sea Belize, CBC C08086 HQ68042* HQ689061* —

Paracatenula “frankfurter” Caribbean Sea Belize, CBC C08090 HQ68041* HQ689060* HQ689077*
Paracatenula urania Caribbean Sea Belize, CBC C08105 HQ68040* — HQ689076*
Paracatenula galateia Caribbean Sea Belize, CBC C08186 HQ68039* HQ231342 HQ231332
Paracatenula “longnose” Caribbean Sea Belize, CBC C09013a — HQ689059* HQ689075*
Paracatenula “longnose” Caribbean Sea Belize, CBC C09013b HQ68038* HQ689058* HQ689074*
Paracatenula galateia Caribbean Sea Belize, CBC C09014a HQ68037* HQ231343 HQ231333
Paracatenula galateia Caribbean Sea Belize, CBC C09014b HQ68036* HQ231344 HQ231334
Paracatenula polyhymnia Caribbean Sea Belize, CBC C09024 HQ68035* HQ689057* HQ689073*
Paracatenula polyhymnia Caribbean Sea Belize, CBC C09028 — — HQ689072*
Paracatenula “frankfurter” Caribbean Sea Belize, CBC C09036 — HQ689056* —

Paracatenula “rützleri” Caribbean Sea Belize, CBC C09060a — HQ689055* HQ689071*
Paracatenula “rützleri” Caribbean Sea Belize, CBC C09060b HQ68034* HQ689054* HQ689070*
Paracatenula galateia Caribbean Sea Belize, CBC C10012 HQ68033* — —

Paracatenula galateia Caribbean Sea Belize, CBC C10013 HQ68032* — HQ231335
Paracatenula galateia Caribbean Sea Belize, CBC C10014 HQ68031* — HQ231336
Paracatenula galateia Caribbean Sea Belize, CBC C10016 HQ68030* — HQ231337
Paracatenula galateia Caribbean Sea Belize, CBC C10017 — — HQ231338
Paracatenula galateia Caribbean Sea Belize, CBC C10047 HQ68029* — HQ231339
Paracatenula “dahabsche” Red Sea Egypt, Dahab D08001 HQ69095* HQ689108* HQ689122*
Paracatenula cf polyhymnia Red Sea Egypt, Dahab D09000a HQ69094* HQ689107* HQ689121*
Paracatenula cf polyhymnia Red Sea Egypt, Dahab D09000b — – HQ689120*
Paracatenula cf polyhymnia Red Sea Egypt, Dahab D09000c — HQ689106* HQ689119*
Paracatenula cf polyhymnia Red Sea Egypt, Dahab D09000d — HQ689105* HQ689118*
Paracatenula cf polyhymnia Red Sea Egypt, Dahab D09000e — HQ689104* HQ689117*
Paracatenula cf polyhymnia Red Sea Egypt, Dahab D09000f HQ69093* HQ689103* —

Paracatenula “spaghetti” Red Sea Egypt, Dahab D09003 — — HQ689116*
Paracatenula cf galateia Red Sea Egypt, Dahab D09024 HQ69092* HQ689102* HQ689115*
Paracatenula cf galateia Red Sea Egypt, Dahab D09025 HQ69091* — HQ689114*
Paracatenula “schnitzerl” Red Sea Egypt, Dahab D09031 — — HQ689113*
Paracatenula “schnitzel” Red Sea Egypt, Dahab D09041 — HQ689101* HQ689112*
Paracatenula “schnitzel” Red Sea Egypt, Dahab D09044 HQ69090* HQ689100* —

Paracatenula cf galateia Red Sea Egypt, Dahab D09047 HQ69089* HQ689099* HQ689111*
Paracatenula “schnitzel” Red Sea Egypt, Dahab D09089 HQ69088* HQ689098* HQ689110*
Paracatenula “speedy” Red Sea Egypt, Dahab D09091 — HQ689097* —

Paracatenula “longnose” Red Sea Egypt, Dahab D09093 HQ69087* HQ689096* HQ689109*
Paracatenula “stanadrea” Mediterranean Sea Italy, Elba E08024 HQ69124* HQ689125* HQ689127*
Paracatenula “stanadrea” Mediterranean Sea Italy, Elba E10001 HQ69123* — HQ689126*
Paracatenula “rolli” Pacific Ocean Australia, LI Li08088 HQ69129* HQ689133* HQ689137*
Paracatenula “rolli” Pacific Ocean Australia, LI Li08093 HQ69128* HQ689132* HQ689136*
Paracatenula cf urania Pacific Ocean Australia, LI Li08098 HQ845108* — —

Paracatenula “schlauchi” Pacific Ocean Australia, LI Li08127 HQ845109* HQ689131* HQ689135*
Paracatenula cf galateia Pacific Ocean Australia, LI Li08131 HQ845110* HQ689130* HQ689134*

—, no PCR product obtained. CBC, Carrie Bow Cay; LI, Lizard Island.
*Sequence generated in the present study.
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Table S2. Accession numbers of alphaprotebacterial and deltaproteobacterial 16S rRNA
sequences used

Bacteria Sequence

Alphaproteobacteria
Rhizobiales

Bartonella bacilliformis KC583 NC_008783
Bartonella quintana Toulouse NC_005955
Beijerinckia indica subsp. indica 9039 NC_010581
Bradyrhizobium sp. ORS278 NC_009445
Brucella melitensis 16M NC_003317, NC_003318
Mesorhizobium loti MAFF303099 NC_002678
Mesorhizobium sp. BNC1 NC_008254
Methylobacterium radiotolerans JCM 2831 NC_010505
Methylobacterium sp. 4–46 NC_010511
Nitrobacter winogradskyi Nb-255 NC_007406
Rhizobium leguminosarum bv. viciae 3841 NC_008380
Rhodopseudomonas palustris BisB18 NC_007925
Xanthobacter autotrophicus Py2 NC_009720

Sphingomonadales
Erythrobacter litoralis HTCC2594 NC_007722
Novosphingobium aromaticivorans DSM 12444 NC_007794
Sphingomonas wittichii RW1 NC_009511
Sphingopyxis alaskensis RB2256 NC_008048
Zymomonas mobilis subsp. mobilis ZM4 NC_006526

Hyphomonadales
Hyphomonas neptunium ATCC 15444 NC_008358
Maricaulis maris MCS10 NC_008347

Rhodobacteraceae
Paracoccus denitrificans PD1222 NC_008686, NC_008687
Dinoroseobacter shibae DFL 12 NC_009952
Jannaschia sp. CCS1 NC_007802
Roseobacter denitrificans OCh 114 NC_008209
Silicibacter pomeroyi DSS-3 NC_003911
Rhodobacter sphaeroides 2.4.1 NC_007494, NC_007493

Rhodospirillaceae
Azospirillum lipoferum Z29619
Insolitispirillum peregrinum LMG 4340 EF612767
Magnetospirillum magneticum AMB-1 NC_007626
Novispirillum itersonii IAM 14945 AB074520
Rhodocista pekingensis 3-p AF523824
Rhodospirillum rubrum ATCC 11170 NC_007643
Roseospira marina CE2105 AJ298879

Acetobacteraceae
Acidiphilium cryptum JF-5 NC_009484
Elioraea tepidiphila TU-7 EF519867
Gluconacetobacter diazotrophicus PAl 5 NC_010125
Gluconobacter oxydans 621H NC_006677
Granulibacter bethesdensis CGDNIH1 NC_008343

Rickettsiales
Anaplasma marginale str. St. Maries NC_004842
Anaplasma phagocytophilum HZ NC_007797
Ehrlichia canis str. Jake NC_007354
Ehrlichia ruminantium str. Welgevonden NC_005295
Neorickettsia sennetsu Miyayama NC_007798
Orientia tsutsugamushi Boryong NC_009488
Rickettsia bellii RML369-C NC_007940
Rickettsia typhi Wilmington NC_006142
Wolbachia endosymbiont TRS of Brugia malayi NC_006833
Wolbachia pipientis symbiont of Dipetalonema gracile AJ548802

Incertae sedis
“Candidatus Pelagibacter ubique” HTCC1062 NC_007205
Caulobacter sp. K31 NC_010338
Geminicoccus roseus 18922 AM403172
Magnetococcus sp. MC-1 NC_008576
Parvibaculum lavamentivorans DS-1 NC_009719
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Table S2. Cont.

Bacteria Sequence

Deltaproteobacteria (outgroup)
Geobacter sulfurreducens PCA U13928
Geobacter uraniireducens Rf4 EF527427
Pelobacter propionicus DSM 2379 NC_008609

For 16S rRNA genes extracted from genomes, the genome accession numbers are given.

Table S3. Probes used for FISH

Probe
Standard

probe name† Specificity
Sequence 5′
modification

Target
RNA Position‡

Formamide,
%/hybridization time,
h/probe concentration,

ng/μL Reference

EUB338 S-*-BactV-
0338-a-A-18

Most bacteria 5′-GCT GCC TCC CGT
AGG AGT-3′ FLUOS

16S 338–355 40%/3/4.6 1

ALF968 L-C-gProt-
1027-a-A-17

Alphaproteobacteria, except
for Rickettsiales no mismatch
to “Cand. Riegeria galateiae”

5′-GCC TTC CCA CAT
CGT TT-3′ Cy5

16S 968–985 40%/3/2.7 2

Par1151 S-*-CRg-
1151-a-A-21

“Cand. Riegeria galateiae” § 5′-CTT GTC ACC GGC
AGT TCC CTC-3′ Cy3

16S 1,151–1,171 40%/3/2.7 Present study

NON338 Not named Antisense 5′-ACT CCT ACG GGA
GGC AGC-3′ Cy3

16S 338–355 40%/3/2.7 3

†According to Alm et al. (4).
‡16S rRNA position, E. coli numbering (5).
§The probe as 4/2231/9474 bacterial non target hits in the RDP database with 0/1/2 mismatches (6).

1. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:
762–770.

2. Neef A (1997) Anwendung der in situ-Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen [Application of in-situ single cell
Identification of bacteria in population analysis of complex microbial communities]. PhD thesis (Technische Universität München, Munich).

3. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms.
Cytometry 14:136–143.

4. Alm EW, Oerther DB, Larsen N, Stahl DA, Raskin L (1996) The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559.
5. Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805.
6. Cole JR, et al. (2009) The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(suppl 1):D141–D145.
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VII. Conclusions and Outlook

As the presented papers in Chapters II-VI discuss the used methods and the obtained results in their 

individual context, this part of the thesis does not recapitulate these chapters but rather gives a broader 

synthesis with discussions and outlooks to several selected topics. 

Transmission in the MONTS cluster

In Chapter II we characterized the Marine Oligochaete and Nematode Thiotrophic Symbiont (MONTS) 

cluster  (Heindl et al. 2011), a monophyletic clade of Gammaproteobacteria related to Chromatiaceae that has 

a unique diversity of lifestyles from free-living to ecto- and endosymbiotic. Three different host-symbiont 

systems are present in the MONTS: the ectosymbionts on stilbonematin nematodes (e.g. Laxus oneistus 

or Stilbonema majum) (Ott et al. 2004; Bulgheresi et al. 2011), the extracellular Gamma1-endosymbionts 

in gutless oligochaetes (e.g. Olavius spp.) (Dubilier et al. 2006), and the intracellular endosymbionts in 

mouthless nematodes of the genus Astomonema (Ott et al. 1982; Musat et al. 2007) see Figure 4. As the 

common ancestor to these diverse animal hosts was certainly non-symbiotic, the symbionts of this clade 

have been acquired by their hosts independently several times. The 16S rRNA gene based phylogenies show 

significant differences between the symbionts of different hosts (Figure 4) (Musat et al. 2007; Bayer et al. 

2009; Heindl et al. 2011). Sequence divergence of 16S rRNA for inheritable symbionts ranges from 2.5% 

to 11%, while free-living bacteria have rates ranging from 2% to 4% for 100 million years (Moran et al. 

2008; Kuo and Ochman 2009). Based on this range of rates and a sequence divergence of 3%-5% within 

the MONTS cluster, the first symbioses in this clade have been established between 25 and 250 million years 

ago. With this rough age estimate and species level differences on the 16S rRNA gene level it can be expected 

that the associations with different hosts have left distinct signatures in the genomes of the symbionts, 

making this group an ideal model to study the genomic differences in free-living vs. ecto- vs. endosymbiotic 

lifestyles.

The transmission of MONTS symbionts in the different host systems is relatively unexplored. There are 

indications that at least some of the gutless oligochaete symbionts are transmitted vertically from mother 

to offspring (Giere and Langheld 1987). With the existence of host – symbiont specific variations of the 

host-lectin Mermaid as we described in Chapter III, environmental transmission of the Laxus oneistus or 

Stilbonema majum symbionts seems feasible. Another possible scenario could be that Mermaid isoforms play 
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Figure 4: Left part – 16S rRNA gene based phylogeny of Chromatiaceae closely related to the MONTS cluster as 
provided by the arb-silva rRNA database (www.arb-silva.de). Right part – lifestyles of the different Chromatiaceae 
shown in the tree to the left. The symbionts are color coded as in the tree and their type of host association is illustrated.
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a role in the maintenance of a specific ectosymbiont coat, but transmission could be largely or completely 

vertical. Recent advances in the comprehension of the genome evolution in symbiotic bacteria provide 

a novel framework that allows inferences on the mode of transmission based on genomic features of the 

symbionts (Newton and Bordenstein 2011; Sachs et al. 2011) and could be combined with e.g. behavioral 

and developmental studies.

Cand. Riegeria genome evolution

In Chapters IV and V we characterized the Paracatenula – Cand. Riegeria symbiosis, a new thiotrophic 

symbiosis model that has several outstanding features. Besides the remote phylogenetic position of 

both the host and the symbiont compared to other thiotrophic symbioses, the reproductive biology 

of Paracatenula and its implications to symbiont transmission and symbiont genomics are fascinating. 

Genome evolution in bacteria can be mechanistically interpreted as a flux of DNA: the genomic content 

is largely governed by the opposing forces of acquisition and erosion (Mira et al. 2001). Bacteria have 

a deletional bias leading to constant loss of DNA through pseudogenization by mutation followed by 

subsequent deletion. Other factors that lead to erosion are the loss of larger fragments through mobile 

DNA. New DNA can be accumulated through lateral gene transfer or duplication. Several symbionts 

lineages such as the mitochondria, have been ‘captured’, as they are strictly vertically transmitted within 

their hosts lineages (Bright and Bulgheresi 2010). This major evolutionary transition, where the captured 

microbial partner loses the ability to replicate independently of its host, limits the population size and 

reduces the chance of lateral gene transfer. This leads to high rates of genetic drift, reflected by high 

substitution rates, the fixation of slightly deleterious traits, codon usage biases, lowered G+C content and 

genome reduction (Mira et al. 2001; Moran et al. 2008; Toft and Andersson 2010). The G+C content 

of 51 % in the functional genes sequenced from Cand. Riegeria galateiae is, however, significantly higher 

than in the two other available thiotrophic symbiont genomes (31.6 and 34%) from two vesicomyid clam 

symbionts, which is puzzling, considering that the Paracatenula-Riegeria symbiosis is substantially older 

than the vesicomyid clams symbiosis (Gruber-Vodicka et al. 2011). One possible explanataion for the slow 

pace of change of nucleotide substitutions and genomic G+C content could be the reduction of genetic 

drift through the transmission of ten-thousands of symbionts at any one reproductive event by paratomy 

(U.Dirks, pers. communication). This coudl be tested in a comparative genomics approach relating the 



Conclusions and outlook

73

Cand. Riegeria symbionts to its closest cultivated free-living relatives (e.g. Elioraea tepidiphila based on 

16S rRNA analysis) and other related free-living alphaproteobacterial genera such as Magnetospirillum or 

Rhodospirillum, focussing on the evolution of symbiosis related aspects such as gene order, mobile DNA 

content, lateral gene transfer, deletion patterns and compositional bias. 

SOBs in shallow water sediments

Besides symbiosis specific insights in the MONTS cluster and the Paracatenula symbiosis the papers that 

resulted from this thesis, together with several other recent publications, suggest a need to evaluate the role 

symbiotic bacteria play globally in sulfur oxidation in reduced shallow water sediments, the largest biota 

on earth largely dominated by chemosynthetic production. These coastal marine sediments harbor a broad 

diversity of uncultivated SOB (Lenk et al. 2011). While some might be free-living, it is highly feasible that 

at least in some habitats most of the key players are actually associated to eukaryotic meiofauna hosts that 

help them access both electron acceptors and electron donors that are spatially separated. Already in his 

groundbreaking work in the late 1950s Wolfgang Wieser described meiofauna communities dominated 

by taxa that are now known to harbor chemoautotrophic symbionts (Wieser 1960). Several meiofauna 

based studies have since found different nematode hosts of the MONTS cluster to be highly abundant 

or dominating in shallow water sediments (Ott and Novak 1989; Leonardis et al. 2008; Semprucci et 

al. 2010) and even in depths down to 1000m (Ingels et al. 2011). The fixation techniques used in these 

and many other meiofauna studies hardly allow for an assessment of the non-cuticulate meiofauna 

members that harbor SOBs such as Paracatenula flatworms or even more fragile karyorelictid ciliates like 

Kentrophoros, both taxa that reached very high abundances and dominated the meiofaunal communities 

in several samples analyzed during this PhD thesis (personal observation). In recent years the taxonomic 

coverage of publicly available eukaryotic marker genes such as the 18S rRNA has increased substantially 

and most known meiofauna hosts to SOBs are now represented in the databases. This will allow future 

studies to integrate host based SOBs in a microbial ecology perspective by analyzing the presence of hosts 

using 18S rRNA gene libraries in parallel to the prokaryote specific 16S rRNA gene based methods.

The genomic capacities of most of these uncultured SOBs have been inaccessible before the advent of 

single-cell techniques such as cell sorting and whole genome amplification based single-cell genomics 
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(Swan et al. 2011), but even with cell sorting it is hard to pinpoint the one organism one would like to 

study even if it is dominating the chosen bacterial community. Here one great advantage of symbiosis 

research that was ‘exploited’ throughout this thesis easily bridges this problem - the fact that the hosts do 

the selection and culturing job for the researchers and provide the bacteria in ample amounts. 

Literature cited

Bayer C, Heindl NR, Rinke C, Lücker S, Ott JA, Bulgheresi S (2009) Molecular characterization of the 

symbionts associated with marine nematodes of the genus Robbea. Environmental Microbiology 

Reports 1: 136-144

Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nature Reviews 

Microbiology 8: 218-230

Bulgheresi S, Gruber-Vodicka HR, Heindl NR, Dirks U, Kostadinova M, Breiteneder H, Ott JA (2011) 

Sequence variability of the pattern recognition receptor Mermaid mediates specificity of marine 

nematode symbioses. ISME J 5: 986-998

Dubilier N, Blazejak A, Rühland C (2006) Symbioses between Bacteria and Gutless Marine Oligochaetes. In: 

Overmann J (ed) Molecular Basis of Symbiosis. Springer Berlin, Heidelberg, pp 251-275

Giere O, Langheld C (1987) Structural organisation, transfer and biological fate of endosymbiotic bacteria in 

gutless oligochaetes. Marine Biology 93: 641-650 

Gruber-Vodicka HR, Dirks U, Leisch N, Baranyi C, Stoecker K, Bulgheresi S, Heindl NR, Horn M, 

Lott C, Loy A, Wagner M, Ott J (2011) Paracatenula, an ancient symbiosis between thiotrophic 

Alphaproteobacteria and catenulid flatworms. Proceedings of the National Academy of Sciences 108: 

12078-12083



Conclusions and outlook

75

Heindl NR, Gruber-Vodicka HR, Bayer C, Lücker S, Ott JA, Bulgheresi S (2011) First detection of 

thiotrophic symbiont phylotypes in the pelagic marine environment. FEMS Microbiology Ecology 

77: 223-227

Ingels J, Tchesunov AV, Vanreusel A (2011) Meiofauna in the Gollum Channels and the Whittard Canyon, 

Celtic Margin—How Local Environmental Conditions Shape Nematode Structure and Function. 

PLoS One 6: e20094

Kuo CH, Ochman H (2009) Inferring clocks when lacking rocks: the variable rates of molecular evolution in 

bacteria. Biology Direct 4: 35

Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mußmann M (2011) Novel groups of 

Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. 

Environmental Microbiology 13: 758-774

Leonardis C, Sandulli R, Vanaverbeke J, Vincx M, de Zio S (2008) Meiofauna and nematode diversity in 

some Mediterranean subtidal areas of the Adriatic and Ionian Sea. Scientia Marina 70: 5-13

Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends in 

genetics : TIG 17: 589-596

Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. 

Annual Review of Genetics 42: 165-190

Musat N, Giere O, Gieseke A, Thiermann F, Amann R, Dubilier N (2007) Molecular and morphological 

characterization of the association between bacterial endosymbionts and the marine nematode 

Astomonema sp. from the Bahamas. Environmental Microbiology 9: 1345-1353

Newton I, Bordenstein S (2011) Correlations Between Bacterial Ecology and Mobile DNA. Current 

Microbiology 62: 198-208

Ott JA, Bright M, Bulgheresi S (2004) Symbioses between Marine Nematodes and Sulfur-oxidizing 

Chemoautotrophic Bacteria. Symbiosis 36: 103-126



Conclusions and outlook

76

Ott JA, Novak R (1989) Living at an interface: Meiofauna at the oxygen/sulfide boundary of marine 

sediments. In: Ryland JS, Tyler PA (eds) 23rd European Marine Biology Symposium. Olsen & 

Olsen, pp 415–422

Ott JA, Rieger G, Rieger R, Enderes F (1982) New mouthless interstitial worms from the sulfide system: 

Symbiosis with Prokaryotes. Pubblicazioni Stazione Zoologica Napoli I: Marine Ecology 3: 313-333

Sachs JL, Essenberg CJ, Turcotte MM (2011) New paradigms for the evolution of beneficial infections. 

Trends in Ecology & Evolution 26: 202-209

Semprucci F, Colantoni P, Baldelli G, Rocchi M, Balsamo M (2010) The distribution of meiofauna on back-

reef sandy platforms in the Maldives (Indian Ocean). Marine Ecology 31: 592-607

Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, 

Masland EDP, Gomez ML, Sieracki ME, DeLong EF, Herndl GJ, Stepanauskas R (2011) Potential 

for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean. Science 333: 

1296-1300

Toft C, Andersson SGE (2010) Evolutionary microbial genomics: insights into bacterial host adaptation. Nat 

Rev Genet 11: 465-475

Wieser W (1960) Benthic studies in Buzzards Bay. II. The meiofauna. Limnology and Oceanography 5: 

121–137



77



Summary / Zusammenfassung

78

Summary

Harnessing chemosynthetic symbionts is a recurring evolutionary strategy in marine invertebrates, with the 

most prominent host groups being the giant polychaetes at deep-sea hydrothermal vents. Eukaryotes from 

six phyla are known to harbor chemoautotrophic sulfur-oxidizing (thiotrophic) bacteria. 

Three meiofaunal worm groups that are hosts to thiotrophic symbionts occur in shallow water subtidal 

sands: gutless oligochaetes and Stilbonematinae and Astomonema nematodes. Their thiotrophic 

gammaproteobacterial symbionts form a phylogenetic cluster (the Marine Oligochaete and Nematode 

Thiotrophic Symbionts – MONTS) within the Chromatiaceae. At least for the ectosymbionts that live on 

the nematode cuticle, environmental transmission is likely, but until now no free-living relatives have been 

found. The first publication of this thesis reports the detection of members of the MONTS clade closely 

related to several symbiont phylotypes in offshore surface seawater of both the Caribbean and Mediterranean 

Sea. 

The successful selection of such likely environmentally transmitted partners is crucial for hosts. As typical 

for several of the stilbonematine host species, Laxus oneistus is covered by a single bacterial phylotype. The 

symbionts are embedded in a layer of mucus containing the host secreted lectin Mermaid, which mediates 

symbiont attachment. In the second publication of this thesis, we show that Stilbonema majum—another 

symbiotic stilbonematine nematode co-occurring with L.  oneistus —is covered by bacteria that are also 

MONTS members but phylogenetically distinct from those covering L. oneistus. Mermaid analyses based 

on the transcriptomes of both host species revealed several isoforms that differ in only one to three of the 

105 aa positions in the active carbohydrate recognition domain. The isoforms show higher affinities to 

the symbionts of the host species they were found in. This indicates that particular isoforms of the same 

molecule play a role in the attachment and selection of specific symbionts, very similar to what has been 

documented for pathogen recognition in the innate immune system of several animals. 

Co-occurring with both gutless oligochaetes and the nematode hosts are mouth- and gutless catenulid 

flatworms of the genus Paracatenula. The third publication of this thesis for the first time describes the largest 

and most abundant Paracatenula species from subtidal sands in the Belize Barrier reef: P. galateia nov. spec..

All bacterial partners in thiotrophic symbioses apparently belong to two classes of bacteria – the Gamma- 

and Epsilonproteobacteria. In the fourth publication of this thesis, the intracellular endosymbionts of 

Paracatenula flatworms are shown to be a novel family-level clade of chemoautotrophic sulfur-oxidizing 



Summary / Zusammenfassung

79

Alphaproteobacteria. We describe the symbionts of P. galateia as ‘Candidatus Riegeria galateiae’ and show 

their elemental sulfur storage as well as their genetic capabilities to oxidize reduced sulfur and to fix inorganic 

carbon. All studied Paracatenula species collected from the Caribbean, the Mediterranean, the Red Sea and 

the Pacific harbor species-specific Candidatus Riegeria symbionts. The symbionts can occupy up to 50% of 

the body volume in some host species. Our phylogenetic reconstructions imply that the Cand. Riegeria - 

Paracatenula species association is 500 million years old. The host and symbiont phylogenies are congruent 

and the branching pattern is independent of the hosts’ geographic origin, indicating vertical transmission of 

the symbionts from each host generation to the next. 

The results of the first two publications document that the MONTS clade has a unique diversity of bacterial 

lifestyles, free-living and symbiotic.  The ectosymbionts associated with Stilbonematinae are shown to be 

amendable for experimental fieldwork as they can be efficiently separated from their hosts. The symbionts 

are highly specific, with host-lectins acting as one of the selective agents ensuring this host specificity. 

Despite the advances presented it remains intriguing what factors lead to this exceptional case of multiple 

convergent transitions of free-living bacteria to mutualistic symbionts in the different MONTS hosts. With 

Stilbonematinae and Astomonema specimens dominating several meiofaunal assemblages ranging from 

shallow waters to 1000m depth, and with Paracatenula worms completely overlooked in meiofaunal studies 

due to their fragile bauplan, the results of this thesis clearly warrant a reevaluation of the role thiotrophic 

symbionts play in the sulfur cycling in reduced sediments. This thesis provides an extended framework for 

future research into the evolution of chemoautotrophic symbiosis, a process that has occurred many times 

and has created some of the most alien animals encountered to date, animals that live on inorganic sources 

of carbon and energy.

Zusammenfassung

Die ‚Domestikation‘ von chemosynthetischen Bakterien ist eine wiederholt umgesetzte Strategie in 

der Evolution. Eukaryoten aus sechs Stämmen und sogar ein Archaeon beherbergen chemoautotrophe 

schwefeloxidierende  (thiotrophe) Symbionten, wobei die bekanntesten Vertreter die Riesenröhrenwürmer 

an hydrothermalen Quellen in der Tiefsee darstellen.

Drei wurmförmige Wirtsgruppen in der Meiofauna subtidaler Flachwassersande haben thiotrophe 

Symbionten - darmlose Oligochaeten sowie Nematoden der Subfamilie der Stilbonematinae und der 
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Gattung Astomonema - die eine eigene Clade von Chromatiaceaen innerhalb der Gammaproteobakterien, 

die MONTS, formen. Zumindest für die als Ektosymbionten auf der Cuticula lebenden Symbionten der 

Stilbonematinae ist eine Übertragung aus der Umwelt wahrscheinlich, allerdings wurden noch nie freilebende 

Verwandte gefunden. Die erste Publikation dieser Doktorarbeit berichtet vom Fund von Mitglieder der 

MONTS-Clade aus küstenfernen Oberflächenwassern sowohl aus der Karibik als auch aus dem Mittelmeer, 

die teilweise nahe Verwandte zu Symbionten darstellen.

Die erfolgreiche Selektion solcher sehr wahrscheinlich aus der Umwelt aufgenommenen Partner ist ein 

essentieller Vorgang für die Wirte. Wie es für mehrere Stilbonematinae Wirte üblich ist, hat Laxus oneistus 

einen von nur einer einzigen Art aufgebauten bakteriellen Überzug. Die Symbionten sind in eine 

Schleimschichte eingebettet.  Diese enthält das vom Wirt abgegebene Lektin Mermaid, das an der Anheftung 

der Symbionten maßgeblich beteiligt ist. In der zweiten Publikation der vorliegenden Arbeit zeigen wir, dass 

Stilbonema majum – ein weiterer Vertreter der Stilbonematinae, der mit L. oneistus gemeinsam vorkommt – 

ebenfalls von einem monospezifischen Symbiontenüberzug besiedelt ist. Diese Symbionten sind eine nahe 

verwandte, jedoch deutlich eigenständige Linie innerhalb der MONTS. Analysen von Mermaid-Transkripten 

beider Wirtsarten brachten mehrere Isoformen ans Licht, bei denen von den 105 Aminosäuren im aktiven 

Zuckerbindungszentrum des Moleküles nur eine bis drei unterschiedlich sind. Die verschiedenen Isoformen 

zeigen höhere Bindungsaktivitäten bei den Symbionten des Wirtes, in dessen Transkriptom sie gefunden 

wurden. Dies bedeutet, dass spezielle Isoformen desselben Moleküles eine Rolle in der Anheftung  und der 

Selektion spezifischer Symbionten einnehmen. Ein ähnlicher Mechanismus wurde für die Erkennung von 

Krankheitserregern im angeborenen Immunsystem bei mehreren Tiergruppen beschrieben. 

Gemeinsam mit den beschriebenen darmlosen Oligochaeten und Nematoden findet man oft mund- und 

darmlose catenulide Plattwürmer der Gattung Paracatenula. Die dritte Publikation dieser Doktorarbeit 

beschreibt die größte und häufigste Paracatenula Art aus subtidalen Sanden im Barriere Riff von Belize: P. 

galateia spec. nov..

Die bakteriellen Partner in allen thiotrophen Symbiosen schienen bisher nur aus zwei Klassen von Bakterien 

zu stammen – den Gamma- und Epsilonproteobakterien. In der vierten Publikation dieser Doktorarbeit 

zeigen wir, dass die intrazellulären Symbionten der Paracatenula Plattwürmer eine neue Familie von 

chemoautotrophen schwefel-oxidierenden Alphaproteobakterien darstellen. Wir beschreiben die Symbionten 

von P. galateia als ‚Candidatus Riegeria galateiae‘ und zeigen, dass sie elementaren Schwefel einlagern und 
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die genetische Ausstattung besitzen, reduzierte Schwefelverbindungen zu oxidieren und anorganischen 

Kohlenstoff zu fixieren. Alle untersuchten Paracatenula Spezies, die im Mittelmeer, dem Roten Meer, der 

Karibik und dem Pazifik stammten, beherbergen jeweils wirtsartspezifische Candidatus Riegeria Symbionten. 

Die Symbionten machen dabei bis zu 50% des Gewebes einiger Wirtspezies aus. Unsere phylogenetischen 

Rekonstruktionen weisen darauf hin, dass die Symbiose zwischen Paracatenula und Cand. Riegeria 500 

Millionen Jahre alt ist. Die kongruenten Stammbäume der Wirte und Symbionten und die Unabhängigkeit 

der Verwandtschaftsverhältnisse  von der geographischen Herkunft der Wirte weisen auf eine vertikale 

Weitergabe Symbionten von einer Wirtsgeneration zu nächsten hin.

Die Ergebnisse der ersten zwei Publikationen dokumentieren, dass die MONTS Clade eine einzigartige 

Diversität an bakteriellen Lebensformen, mit freilebenden als auch symbiotischen Formen besitzt. Die 

Ektosymbionten der stilbonematinen Nematoden haben sich dabei als flexibles Modell für Experimente 

bewährt, da sie effizient von ihren Wirten getrennt werden können. Die Symbionten sind hoch spezifisch 

und Lektine des Wirtes tragen wesentlich zu dieser Spezifität bei. Trotz aller Fortschritte im Verständnis dieser 

Symbiosen bleiben die Mechanismen, die zu den mehrfach konvergent entstandenen Symbiosen der MONTS 

in ihren verschiedenen Wirtsgruppen geführt haben, ungeklärt. Da einerseits die beiden Nematodengruppen 

mit MONTS Symbionten die Meiofauna in mehreren Studien, die in von Flachwassersedimenten bis 

in 1000m Tiefe reichten, dominierten und andererseits Paracatenula wie viele Plattwürmer durch ihren 

empfindlichen Bauplan in Meiofauna Studien übersehen werden, legen die Ergebnisse dieser Doktorarbeit 

eine Neubewertung der Rolle von thiotrophen Symbionten im Schwefelkreislauf reduzierter Sedimente nahe. 

Insgesamt schafft diese Doktorarbeit erweiterte Rahmenbedingungen für zukünftige Forschungsarbeiten 

zur Evolution der chemoautotrophen Symbiosen, ein Prozess der oftmals abgelaufen ist und der einige der 

fremdartigsten Tiere hervorgebracht hat, die man bisher gefunden hat – Tiere die sich von anorganischen 

Kohlenstoff- und Energiequellen ernähren können.
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