

DIPLOMARBEIT

Titel der Diplomarbeit

Shifts of fecal microbiota in immunosuppressed patients following chemotherapeutic treatment analyzed by TaqMan-PCR and PCR-DGGE with special focus on 454 sequencing

Verfasserin

Angelika Maria Pointner

angestrebter akademischer Grad

Magistra der Naturwissenschaften (Mag.rer.nat.)

Wien, März 2012

Studienkennzahl It. Studienblatt:A474Studienrichtung It. Studienblatt:Diplomstudium ErnährungswissenschaftenBetreuer:Univ. Doz. Dr. Alexander Haslberger

Danksagungen

.

Ich möchte mich bei allen bedanken, die mich in meinem Studium und bei dieser Diplomarbeit unterstützt haben.

Hr. Univ. Doz. Dr. Alexander Haslberger möchte ich für die Bereitstellung des Diplomarbeitsthemas und seine stetige Hilfe und Betreuung danken.

Vielen Dank an alle meine KollegInnen in der Arbeitsgruppe, vor allem an Mag^a. Berit Hippe, Mag^a. Eva Aumüller, Drⁱⁿ. Jutta Zwielehner und Mag^a. Cornelia Lassl, die mir bei Fragen immer weitergeholfen haben.

Mein besonderer Dank gilt meinen Eltern, die mich während meiner Studienzeit immer unterstützt haben.

Abschließend möchte ich mich auch noch bei Florian Herzele und Drⁱⁿ. Jutta Zwielehner für das Korrekturlesen dieser Arbeit bedanken.

Table of Contents

1. LIST OF FIGURES	V
2. LIST OF TABLES	VI
3. ABBREVIATIONS	VII
4. SUMMARY	1
5. ZUSAMMENFASSUNG	3
6. OBJECTIVES	5
7. INTRODUCTION	7
7.1. The human gut	7
7.2. Structural changes from infants to the elderly	8
7.3. Core microbiome vs. enterotypes	11
7.4. Intestinal microbiota and its functions	
7.5. Bacterial communities	14
7.5.1. Bacteroides	14
7.5.2. Bifidobacteria	15
7.5.3. Clostridium cluster IV, Clostridium cluster XIVa, Clostridium difficile	15
7.6. Microbiota in health and disease and modulation	16
7.7. Microbiota in chemotherapy and antibiotic treatment	
8. MATERIAL AND METHODS	19
8.1. Study design	
8.2. Study participants	
8.3. Sampling and DNA extraction	21
8.4. Type strains	21
8.5. Clone library	22
8.6. Polymerase chain reaction (PCR)	
8.7. PCR-DGGE fingerprinting	25
8.8. Quantitative measurement – TaqMan-qPCR	27
8.9. High throughput sequencing	
8.10. Statistical analysis	
9. RESULTS	
9.1. Dietary aspects and life-style	

9.2. TaqMan-quantification	13
9.2.1. Absolute quantification of total bacteria and bacterial subgroups	33
9.2.2. Relative quantification of bacterial subgroups3	39
9.3. DGGE bandpattern analysis	13
9.4. High throughput sequencing	4
10. DISCUSSION	6
10.1. Material and Methods	16
10.2. Results	19
11. PROTOCOLS	4
11.1. DNA extraction from stool using QIAamp DNA Stool Mini Kit & Beadbeating	54
11.2. Cloning protocol	6
12. REFERENCES	9
13. CURRICULUM VITAE	0
14. PUBLISHED RESEARCH DATA72	1

The results of this diploma thesis have been published in the following article, which can be found in the appendix of this thesis.

Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting

Jutta Zwielehner1, Cornelia Lassl1, Berit Hippe1, Angelika Pointner1, Olivier J. Switzeny1, Marlene Remely1, Elvira Kitzweger2, Reinhard Ruckser2, Alexander G. Haslberger1*

PLoS ONE 6(12): e28654. doi:10.1371/journal.pone.0028654

IV

1. LIST OF FIGURES

Figure 1: Population composition and numbers in cell/g content in the
intestine7
Figure 2: Prevalence of microbial groups at day 4 and day 120
Figure 3: Functions of the intestinal microbiome
Figure 4: Study design and used methods 19
Figure 5: Procedure of molecular cloning 22
Figure 6: Polymerase chain reaction
Figure 7: Comparison of absolute numbers of bacteria analyzed by TaqMan-qPCR in oncology patients and healthy controls and different time points of cycles of chemotherapy in copies/10ng DNA
Figure 8: Absolute numbers of bacteria of the study population analyzed by TaqMan-qPCR related to 10ng DNA; T ₁ , 1-2d after chemotherapy
Figure 9: Percentages of bacterial subgroups in relation to analyzed bacteria
Figure 10: Differences of relative abundances of Clostridium Cluster XIVa in oncology patients compared to healthy controls and before and after chemotherapeutic cycles as percentage of total bacterial DNA.
Figure 11: Changes of PCR-DGGE fingerprinting of 16S rRNA coding regions of dominant bacteria after chemotherapeutic treatment 44
Figure 12: Heatmap showing abundances within the 454 sequencing dataset on the genus level

2. LIST OF TABLES

Table 1:	Oncology patients, malignancies, additional diseases and treatments	20
Table 2:	Primer pairs for PCR-DGGE fingerprinting of 16S rRNA coding regions2	26
Table 3:	DGGE and gel settings of analyzed groups2	27
Table 4:	16S rRNA gene-targeted group-specific primers used in this study	28
Table 5:	Concentration of primers, PCR programs and standards2	29
Table 6:	Absolute numbers of total bacteria and bacterial subgroups in healthy controls analyzed by TaqMan-qPCR related to 10ng DNA	34
Table 7	A: Absolute numbers of total bacteria and bacterial subgroups in the oncology patients analyzed by TaqMan-qPCR related to 10ng DNA, P01-P10	35
Table 7	3: Absolute numbers of total bacteria and bacterial subgroups in the oncology patients analyzed by TaqMan-qPCR related to 10ng DNA, P11-P17	36
Table 8:	Relative numbers of bacterial subgroups	40
Table 9:	Mean number of bands in study population analyzed with PCR- DGGE and GelCompareII	43

3. ABBREVIATIONS

Α	adenine		
AAD	antibiotic associated diarrhea		
bp	base pairs		
°C	degree Celsius		
С	cytosine		
CDI	Clostridium difficile infections		
CFU	colony forming units		
d	day		
DGGE	denaturing gradient gel electrophoresis		
DNA	deoxyribonucleic acid		
NIDDM	DM non insuline dependent diabetes mellitus		
dNTPs	desoxyribonukleosidtriphosphate		
dsDNA	double-stranded DNA		
GALT	gut associated lymphoid tissue		
G	guanine		
GI	gastrointestinal		
GIT	gastrointestinal tract		
min	minute		
mМ	millimolar		
MW	mean value		
NFW	nuclease free water		
PCA	principal component analysis		
PCR	polymerase chain reaction		
qPCR	quantitative real time PCR		
RNA	ribonucleic acid		
rRNA	ribosomal RNA		
SCFA	short chain fatty acids		
ssDNA	single-stranded DNA		
STAB	standard deviation		
Т	thymine		
V	Volt		
μΜ	micromolar		
μΙ	microliter		

4. SUMMARY

The human intestinal microbiota represents a complex, densely populated ecosystem, which is composed of about 10¹³-10¹⁴ microorganisms of more than 1000 different bacterial species. The composition of the gastrointestinal microbiota comes as a result of natural selection at both the host and microbial levels. Despite high inter-individual variation a recent study identified three robust bacterial clusters - referred to as enterotypes - that are not nation or continent specific.

Gut microorganisms carry out a variety of beneficial functions for the host such as immune modulation, fermenting unused energy substrates and producing short-chain fatty acids, regulating the development of the gut and producing vitamins. Furthermore they act as a natural barrier against harmful, pathogenic bacteria. Although the intestinal microbiota is relatively stable throughout adult life, it can be altered by host, diet, environment, bacterial factors and during various disease processes or exposure to medical treatment. These changes in composition and metabolic function of gut microbiota can influence a host's physiology and pathology and influence the development of obesity, inflammatory bowel diseases, atopic diseases, diarrhea and constipation.

The aim of this thesis was to investigate shifts in the composition of fecal microbiota of oncology patients in response to chemotherapy and antibiotics. Abundance and diversity of fecal bacteria were assessed with culture independent molecular methods.

Feces of 17 ambulant patients under immune-suppressive chemotherapy with or without concomitant antibiotics were analyzed before and after a chemotherapy cycle at four points in time in comparison to 16 gender- and agematched healthy controls. Abundance and diversity of all bacteria, *Bacteroides*, bifidobacteria, *Clostridium* cluster *IV* and *XIVa* as well as *Clostridium difficile* were assessed by targeting 16S rRNA genes with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and highthroughput sequencing. Patients receiving chemotherapy (± antibiotics) harbored significantly less bacteria (p< 0.05) than healthy controls. Furthermore absolute numbers of bacteria (p = 0.037) were significantly lower following a single treatment of chemotherapy, but the microbiota recovered within a few days, sometimes even showing a "rebound-effect". The mean percentage of *Clostridium* cluster *XIVa* decreased significantly after administration of chemotherapy. DGGE fingerprinting showed decreased diversity of *Clostridium* cluster *IV* and *XIVa* in response to chemotherapy. *Clostridium* cluster *IV* diversity was particularly affected by antibiotics. In three out of seventeen oncology patients *Clostridium difficile* occurred following chemotherapy. Additionally, a decrease in the genera Bifidobacterium, *Lactobacillus, Veillonella* and *Faecalibacterium* was observed.

In conclusion, chemotherapy treatment alters the composition of fecal microbiota and thus may favor colonization with potential pathogens such as *C. difficile*. These changes affect and alter the functions of the GI microbiota and may contribute to severe side effects in oncology patients.

5. ZUSAMMENFASSUNG

Die Mikrobiota im menschlichen Darm stellt ein komplexes dicht besiedeltes Ökosystem dar, welches aus etwa 10¹³-10¹⁴ Mikroorganismen mit mehr als 1000 verschiedenen Bakterienarten besteht. Die Zusammensetzung dieser ist ein Ergebnis natürlicher Selektion sowohl auf mikrobieller als auch auf Wirtsebene. Trotz großer Unterschiede der Mikrobiota zwischen einzelnen Individuen, konnte eine aktuelle Studie drei robuste Bakteriencluster identifizieren. Diese "Enterotypen" zeigten sich unabhängig der Herkunft der Versuchspersonen.

Die Mikroorganismen im Darm erfüllen eine Vielzahl nützlicher Aufgaben für den Wirtsorganismus, wie zum Beispiel die Fermentierung von unverdauten Nahrungsbestandteilen und die Produktion von kurzkettigen Fettsäuren. Weiters regulieren sie die Entwicklung des Darmepithels und sind an der Synthese von Vitaminen beteiligt. Die Mikrobiota dient zudem als natürliche Barriere gegen pathogene Bakterien und moduliert das Immunsystem des Wirts. Während des Erwachsenenalters ist die Zusammensetzung der Darmbakterien relativ stabil, kann jedoch durch verschiedene Faktoren beeinflusst werden. Dazu gehören Ernährung und Lifestyle sowie auch verschiedene Erkrankungen oder medizinische Behandlungen.

Veränderungen in der Zusammensetzung und somit auch der metabolischen Funktion der Mikrobiota können sich auf die Entwicklung und Pathogenese von Übergewicht, atopischen Erkrankungen, Durchfall, Verstopfung und entzündlichen Darmerkrankungen auswirken.

Die vorliegende Diplomarbeit beschäftigt sich mit der Analyse der Veränderungen der fäkalen Mikrobiota von Onkologie-Patienten während einer Chemo- und Antibiotikatherapie. Ziel war, mittels 16S rRNA basierten kulturunabhängigen Methoden den Einfluss von verschiedenen Chemotherapeutika auf die Diversität und Menge der Darmbakterien zu erfassen. Dazu wurden Stuhlproben von 17 Chemotherapie-Patienten mit oder ohne gleichzeitiger Antibiotika-Einnahme mit 16 gesunden Kontrollpersonen ähnlichen Alters und Geschlechts verglichen. Untersucht wurden vier verschiedene Zeitpunkte vor, während und nach eines Chemotherapiezyklus. Absolute und relative Zahlen von Bakterien, *Bacteroides*, Bifidobakterien, *Clostridium* cluster *IV, XIVa* und *Clostridium* difficile im Stuhl wurden mit real time PCR (TaqMan-Detektion) erfasst. Diversitätsanalysen erfolgten mit DGGE (Denaturierungs-Gradientengel-Elektrophorese) und high-throughput Seqenzierung.

Chemotherapiepatienten (\pm Antibiotika) zeigten im Vergleich zur gesunden Kontrollgruppe signifikant weniger Gesamtbakterien (p <0,05). Auch direkt nach einem Chemotherapiezyklus waren die absoluten Bakterienzahlen deutlich verringert (p = 0.037) und zudem der relative Anteil von *Clostridium* cluster *XIVa* signifikant erniedrigt. Dennoch konnte sich die Mikrobiota nach Beendigung der Chemotherapie meist wieder auf das Ausgangsniveau und bei manchen Patienten auch darüber hinaus erholen.

DGGE fingerprinting zeigte nach einer chemotherapeutischen Intervention eine verringerte Diversität von *Clostridium* Cluster *IV* und *XIVa*, cluster *IV* wurde zusätzlich durch gleichzeitige Antibiotika-Einnahme beeinflusst. Bei drei der 17 Onkologie-Patienten konnte nach der Chemotherapie ein Vorkommen von *Clostridium difficile* beobachtet werden. Gleichzeitig zeigten die Genera *Bifidobacterium, Lactobacillus, Veillonella* und *Faecalibacterium prausnitzii* einen Abfall.

Diese Ergebnisse zeigen, dass Chemotherapeutika einen erheblichen Einfluss auf die Zusammensetzung der fäkalen Mikrobiota haben können. Durch diese Veränderungen kann die Besiedlung mit potentiell pathogenen Bakterien wie *Clostridium difficile* begünstigt und die nützlichen Funktionen der Darmbakterien beeinträchtigt werden, was im Verlauf einer Chemotherapie zu schweren Nebenwirkungen beitragen kann.

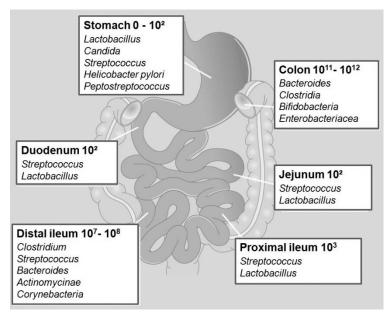
4

6. OBJECTIVES

The human intestinal microbiota is composed of about 10¹³-10¹⁴ microorganisms with an estimated mass of 1-2 kg [LEY et al., 2006] belonging to more than 1000 different bacterial species. A substantial part of these species are still to be described. The microbiota represents a complex, densely populated ecosystem, where strict principles regarding growth control and community life must exist to maintain a healthy milieu [STEINHOFF, 2005].

For health it is very important to have a balanced ratio of the different bacterial populations. Adapted to the environment gut bacteria perform a variety of tasks in the different intestinal segments from immune modulation to the supply of vitamin K1. Furthermore, they produce short-chain fatty acids which nourish the intestinal mucosa, act antiphlogistic on the one hand and protect against colon cancer on the other [HAMER et al., 2008]. Also undisputed is scientific evidence regarding the influence of metabolites on the psyche and the frame of mind [BRAVO et al., 2011].

The healthy gastrointestinal microbiota is more or less constant, but infectious diseases, severe psychological stress or poor nutrition can disturb the orderly interactions of the bacteria in the gut and allow overgrowth of potential pathogens like *Clostridium difficile* [VAN DER WAAIJ, 1989]. Chemotherapy and the use of antibiotics may also disrupt the ecological balance [NYHLEN et al., 2002]. As a matter of fact antimicrobial therapy can result in antibiotic-associated diarrhea (AAD) [KONING et al., 2008] and increases the risk of a *Clostridium difficile* infection [HENSGENS et al. 2011].


Well known side-effects of cancer treatments are immunosuppression and gastrointestinal disturbances like constipation, diarrhea and mucositis. Yet, little research has been conducted on the underlying mechanism and the shifts in microbiota.

The purpose of this thesis was to investigate changes in the composition of fecal microbiota of patients under chemotherapeutical administration with or without antibiotics at four different points in time in comparison to a healthy control group. Sample times were before and after a single chemotherapeutic cycle, so qualitative and quantitative changes were studied over the course of time. The aim was to clarify how chemotherapeutic agents influence fecal bacteria by assessing abundance and diversity with culture independent methods. Dominant bacteria, *Bacteroides*, bifidobacteria, *Clostridium* cluster *IV*, *Clostridium* cluster *XIVa* and *Clostridium* difficile were analysed.

7. INTRODUCTION

7.1. The human gut

In the human organism the intestinal mucosa represents the largest boundary to the environment. At the same time it is estimated that the human intestine accommodates 10 times more bacterial cells than body cells [SAVAGE, 1997] and 100 times more genes than the human genome [BÄCKHED et al., 2005]. The density of microorganisms increases from the mouth to the anus. In total, 10^{14} prokaryotic organisms live in the intestine. As shown in figure 1 the bacterial numbers range from 10^{11} cell/g content in the ascending colon to 10^{7-8} in the distal ileum and 10^{2-3} in the proximal ileum und jejunum [NEISH, 2009].

Figure 1: Population composition and numbers in cell/g content in the intestine [DEIBERT et al., 2010]

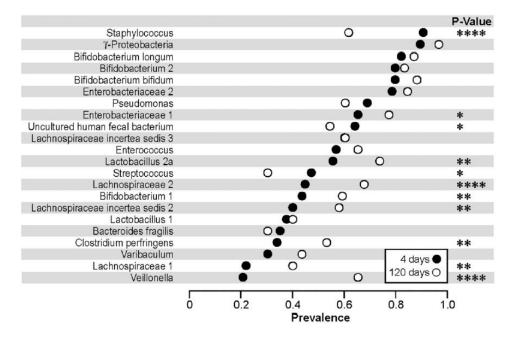
The intestinal microbiota can be pictured as a "forgotten organ", since its metabolic activity is equal to a virtual organ [O'HARA & SHANAHAN, 2006]. The microorganisms carry out a variety of beneficial functions for the host, such as immune modulation, fermenting unused energy substrates and producing short-chain fatty acids, regulating the development of the gut, producing vitamins and furthermore, they act as a natural barrier against harmful, pathogenic bacteria. When considering the importance of microbial functions to

the host, the relationship between the human host and its intestinal microbes must in many cases be termed symbiotic rather than commensal.

The community within the human gut is extraordinarily diverse. Although bacteria predominate, it also contains archaea, yeasts and filamentous fungi [RAJILIC'-STOJANOVIC' et al., 2007]. Various recent studies [REYES et al., 2010; MINOT et al., 2011] investigated viruses as another important component. ZHANG et al. found more than 1200 viral genotypes with a density of up to 109 virions per g of dry material in human faeces [ZHANG et al., 2006]. The majority of the bacterial species in the human gut cannot be cultured, but with modern molecular methods such as sequencing of 16S ribosomal RNA from amplified nucleic acid it is possible to identify and classify bacteria. The composition of the gastrointestinal microbiota comes as a result of natural selection at both the host and microbial levels [O'HARA & SHANAHAN, 2006]. *Bacteroidetes* and *Firmicutes* represent with 60-90% of the total population the two dominant species [NEISH, 2009]. Frank et al. assigned with two other studies 98% of 16S rRNA sequences to only four bacterial phyla: *Firmicutes*

(64%), *Bacteroidetes* (23%), *Proteobacteria* (8%) and *Actinobacteria* (3%). The remaining 2% were comprised of *Fusobacteria* and the TM7 phylum [FRANK et al., 2007].

7.2. Structural changes from infants to the elderly


The gastrointestinal tract is assumed to be sterile until birth. When the foetus passes the birth canal the bacterial colonization starts. Many factors like age of the infant, mode of delivery, dietary regime and antimicrobial treatment have an influence on the highly dynamic infant microbiota composition [PENDERS et al., 2006].

The micro-organisms that colonize the infant during birth descend from the maternal fecal, the vaginal flora and also from the surrounding environment [WALLACE et al., 2011]. The initial exposure of infants born by caesarian is mainly from the surrounding environment. However a recent study showed that the mode of delivery (vaginal-delivery or caesarian-delivery) and the feeding

habit (breast-fed or total-formula-fed) has not the big impact on the composition of gastrointestinal microbiota as always presumed. All kind of infants had similar microbial compositions by 1 month of age. This observation suggested that the colonization process may start during gestation [HONG et al., 2010].

The first colonizers of the large intestine are facultative anaerobic strains such as *Escherichia coli* and *Streptococcus spp*.. The second generation of colonizing bacteria depend mainly on the feeding profile of the infant [WALLACE et. al, 2011]. Generally anaerobe genera such as *Bifidobacterium*, *Bacteroides, Clostridium* and *Eubacterium* follow.

Figure 2 shows the prevalence of microbial groups at day 4 and day 120 in infants not exposed to medical interventions [EGGESBØ et al., 2011]. Almost all

Figure 2: Prevalence of microbial groups at day 4 and day 120. Bacterial groups are ordered by mean prevalence at day 4. The p-values are calculated based on 81 infants with data for both days. **** P-value <0.0001, *** p-value <0.001, ** p-value<0.01 and * p-value<0.05 [EGGESBØ et al., 2011].

infants harbored *gamma-Proteobacteria* and *Bifidobacterium*. Associations between bacterial composition of day 4 and day 120 were observed, suggesting that early gut microbiota may influence later microbiota [EGGESBØ et al., 2011].

Breast milk is the first dietary exposure for the infant. Besides a unique combination of proteins, lipids, minerals and vitamins human milk also contains communities of bacteria and provides significant quantities of prebiotic carbohydrates other than lactose. Whereas previous works has identified lactobacilli and bifidobacteria as major phylotypes [MARTIN et. al, 2009, COLLADO et al., 2009], Hunt et al. observed *Streptococcus* and *Staphylococcus* as common genera in breast milk [HUNT et al., 2011]. The oligosaccharides in milk, which are not digestible by human infants, serve as prebiotics and are selectively fermented by the gut microbiota [GERMAN et al., 2008], providing bioactive compounds responsible for a wide range of beneficial effects for the infant gut [LARA-VILLOSLADA et al., 2007]. The final acquisition of the infant gastrointestinal microbiota takes places at weaning and a complex gut microbiota emerges [WALLACE et al., 2011].

Under normal circumstances the intestinal microbiota is relatively stable throughout adult life, but infectious diseases, medical administration, stress or poor nutrition can have adverse effects on the balanced interactions of the bacteria in the gut. In addition, age-related changes in the gastrointestinal tract, host immune system reactivity and altered nutrition interfere with the GI microbiota. Increased thresholds for smell and taste and the consequent reduced appetite, masticatory dysfunction and swallowing difficulties often result in a unbalanced, narrow diet in elderly people. With aging the amylolytic activity decreases as well as the intestinal motility, the latter implicating an increased retention time, constipation and fecal impaction [WOODMANSEY, 2006]. Furthermore, the composition of the gastrointestinal microbiota changes in elderly hosts. A general reduction in species diversity within most bacterial groups as well as a decrease in total numbers of beneficial organisms such as lactobacilli, bifidobacteria and *Bacteroides* was observed, whereas an increase

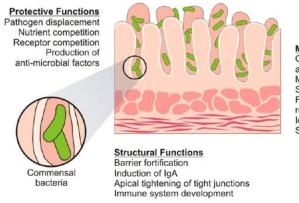
in the number of facultative anaerobes occurred [GUIGOZ et al., 2008; WOODMANSEY, 2006; ZWIELEHNER et al., 2009].

The decrease of relative abundances of important sub-dominant populations such as bifidobacteria and *Clostridium* cluster *IV* could have considerable consequences for the elderly host because of modified metabolic activities, e.g. a reduced formation of SCFAs, altered barrier function of the GI epithelium and a modified epithelial cell maturation and maintenance (ZWIELEHNER et al., 2009].

In summary, these changes in number and diversity of gastrointestinal bacteria, diet, digestive physiology such as intestinal transit time, may implicate impaired immune functions, increased putrefaction in the colon and a greater susceptibility to disease [WOODMANSEY, 2006].

7.3. Core microbiome vs. enterotypes

Microbes in the human gastrointestinal tract undergo selective pressure from the host as well as from microbial competitors, which results in a homeostasis of the ecosystem in which some species occur in high and many in low abundance [ARUMUGAM et al., 2011]. However, some low abundance species perform specialized and important functions for the host.


Various studies based on 16S ribosomal-RNA show a high microbial diversity within and between individuals. However, the knowledge about the phylum level composition in the human gastrointestinal tract is emerging. At the same time, the variation in species composition and gene pools within the human population is less clear [ARUMUGAM et al., 2011].

It was thought that there could be a 'core microbiota' of shared microorganisms in the gastrointestinal tracts of different individuals [TURNBAUGH et al., 2007], but Tap et al. showed in a later work that there is rather a identifiable 'core microbiome' of commonly shared functional gut genes than a core of commonly shared microorganisms [TAP et al., 2009]. Previous work shows that only one-third of the bacterial gene clusters that were conserved across 124 different individuals from Nordic and Mediterranean European origins could be associated with a broad functional assignment [QIN et al., 2010].

Finally, Arumugam et al., by combining 22 sequenced, fecal metagenomes of individuals from four countries, demonstrated the existence of three enterotype clusters that were not nation- or continent-specific, but vary in species and functional composition [ARUMUGAM et al., 2011]. Each of these three enterotypes are identifiable by the variation in the levels of one of three genera: *Bacteroides* (enterotype 1), *Prevotella* (enterotype 2) and *Ruminococcus* (enterotype 3). Enterotype 1 was enriched in *Bacteroides* and seemed to derive energy primarily from carbohydrates and proteins through fermentation. Enterotype 2 was enriched in *Prevotella* and the co-occuring *Desulfovibrio*, which can act in synergy to degrade mucin glycoproteins that are present in the mucosal layer of the gut. Enterotype 3 was the most frequent and is enriched in *Ruminococcus* as well as co-occurring *Akkermansia*, both known to comprise species able to degrade mucins. It still needs further research on environmental or even genetic factors that are causing the clustering.

7.4. Intestinal microbiota and its functions

Of the varied strategies and methods applied to study the function of the microbiota, perhaps the use of germ-free animals has offered the most revealing insights [GRENHAM et al., 2011]. Gut bacteria can be categorized as either beneficial or potentially pathogenic depending on their metabolic activities and fermentation end products. Health promoting effects of the microbiota may include the following: immunostimulation, growth inhibition of potential pathogens, improved digestion and absorption, vitamin synthesis, removal of cholesterol from the enterohepatic cycle, and decreased gas distension. Harmful effects include carcinogen production, intestinal putrefaction, toxin

Metabolic Functions Control of epithelial cell differentiation and proliferation Metabolism of dietary carcinogens Synthesis of vitamins Fermentation of non-digestible dietary residue and epithelial-derived mucus Ion absorption Salvage of energy

Figure 3: Functions of the intestinal microbiome [GRENHAM et al., 2011]

production, diarrhea/constipation, liver damage, and intestinal infections. [WALLACE et al., 2011].

If the gut microbiota is in good balance then it has mainly beneficial effects for the host and regulates major epithelial and immune functions of importance for gut health and health (see figure 3) [SHARMA et al., 2010; CHUNG & CASPER, 2010]. It prevents colonization of potentially pathogenic microorganisms by competing for nutrients and epithelial sites and regulates the mucosal immune system, not only educating the naive infant immune system but also serving as a relevant source of immune stimulators throughout life [ROUND & MAZMANIAN, 2009]. The GI microbiota is important for the maintenance of an intact GI barrier, which seems to be closely related to infectious, inflammatory and allergic diseases [GROSCHWITZ & HOGAN, 2009].

The microbiota also contributes to energy homeostasis and has an important role in supporting digestion and host metabolism. There are two main mechanisms by which it can maximize nutrient availability, either by fermenting indigestible food substances and so providing energy or by modulating absorption [SEKIROV et al., 2010]. A significant energy source for humans is the bacterial metabolism of dietary fiber to short-chain fatty acids such as butyrate, propionate and acetate. SCFAs in general and butyrate in particular increase growth of intestinal epithelial cells, control their proliferation and differentiation and enhance the growth of beneficial bacteria such as lactobacilli and bifidobacteria.

Furthermore, the gut microbiome is involved in synthesizing micronutrients, in breaking down dietary toxins and carcinogens and is crucial for normal GIT motility. Finally, it is responsible for producing antimicrobial compounds [SEKIROV et al., 2010], regulating fat storage and influencing angiogenesis in the intestine and epithelial turnover.

It has been shown that the gut microbiome reports to the brain via hormones and Nervus vagus and, in this way, may affect mood, behaviour and corresponding neurochemical changes in the brain [TSURUGIZAWA et al., 2009; NEUFELD et al., 2011].

The GI microbiota and the permanent challenge with bacterial antigens are crucial for the normal development and function of the gut associated lymphoid tissue (GALT) [BOUSKRA et al., 2008; ROUND & MAZMANIAN; 2009].

7.5. Bacterial communities

The microbial community within the human gut is extraordinarily diverse. Although bacteria predominate, it also contains archaea, yeasts and filemantous fungi. *Bacteroidetes* and *Firmicutes* represent with 60-90% of the total population the two dominant phyla [NEISH, 2009]. In this work the focus was on *Bacteroides*, bifidobacteria, *Clostridium* cluster *IV*, *XIVa* and *Clostridium difficile*, which are described in more detail in the following section:

7.5.1. Bacteroides

Bacteroides are Gram-negative, non-spore-forming, obligate anaerobic and rodshaped bacteria and are commonly found in oral, respiratory, intestinal, and urogenital cavities of humans and animals. Some strains such as *B. fragilis* can cause potentially fatal abscesses and other infections [LI et al., 2002; PAPANILAKOU et al., 2011]. *Bacteroides spp.* are fibrolytic and involved in numerous important metabolic activities including carbohydrate fermentation and butyrate production. They possess broad glycan-degrading abilities and use a series of membrane protein complexes for catabolism of many complex carbohydrates [MARTENS et al. 2011]. Previous studies have suggested that *Bacteroides* are characteristic for the 'ageing microbiota' [MARIAT et al., 2009; ZWIELEHNER et al., 2009]. There are contradictory results regarding the link between higher *Bacteroides* levels and obesity.

7.5.2. Bifidobacteria

Bifidobacteria are Gram-positive, anaerobic, branched rod-shaped bacteria. They belong to the phylum *Actinobacteria* and are commonly found in the gastrointestinal tract, vagina and mouth of mammals. Bifidobacteria ferment sugars in the intestine to produce acetic and lactic acid. Some bifidobacteria exhibit a variety of immune modulatory effects, such as being anti-inflammatory, increasing IgA secretion, and moderating allergy [HIRAMATSU et al., 2007; OUWEHAND, 2007] and have been suggested to inhibit colon cancer [SINGH et al., 1997]. Furthermore, D'Aimmo et al. suggested that certain bifidobacteria may contribute to folate uptake [D'AIMMO et al., 2012].

7.5.3. Clostridium cluster IV, Clostridium cluster XIVa, Clostridium difficile

Clostridia are group of Gram-positive spore-forming anaerobe to microaerophilic species and belong to the phylum *Firmicutes*. They are phylogenetically and metabolically highly diverse bacteria [MAUKONEN et al., 2006] divided into 19 clusters [COLLINS et al., 1994]. The predominant intestinal *Clostridia* belong mainly to clusters *XIVa* [*Clostridium coccoides–Eubacterium rectale* (Erec) group] and *IV* (*Clostridium leptum* group) [ECKBURG et al., 2005]. They contain saccharolytic and/or proteolytic species and are involved in metabolizing various substrates, resulting in a variety of metabolites such as fatty acids and gases. Especially short chain fatty acids formed by microbial fermentation such as butyrate have an important effect on colonic health [MAUKONEN et al., 2006].

Within *Clostridium* cluster *IV*, the cluster *F. prausnitzii* is the most frequent and abundant [LAY et al., 2007], which has been shown to exhibit antiinflammatory effects on cellular and TNBS colitis models [SOKOL et al., 2007]. *Clostridium* cluster *XIVa* contains butyrate-producing organisms such as *Roseburia* and also mucine-degrading strains such as some *Ruminococcus* species.

Anaerobic *Clostridium difficile* is the most common cause of antibioticassociated diarrhea in hospitals and other healthcare facilities [ARVAND et al., 2012]. The bacterium can also be carried asymptomatically. In the past decade a dramatically increased occurrence and severity of *Clostridium difficile* infections (CDI) has been noted. Individuals who fail to mount an immune response to *C. difficile* toxin are succeptible to infection. Thus, immunosuppressed patients having a blunted ability to mount immune responses, are at a greater risk for infection [BINION, 2011]. Schalk et al. found *Clostridium difficile*-associated diarrhea as a frequent complication in patients with acute myeloid leukaemia [SCHALK et al., 2009]. Also, antibiotic exposure, that disturbs the normal intestinal flora, allows *C. difficile* to flourish and potentially result in antibiotic-associated diarrhea (AAD) [COHEN et al. 2010].

7.6. Microbiota in health and disease and modulation

The composition of the gastrointestinal microbiota can be altered by host, diet, environment, and bacterial factors and during various disease processes or exposure to medical treatment. On the other hand, changes in composition and metabolic function of gut microbiota can influence a host's physiology and pathology. Previous studies indicate that microbiota influence the development of obesity, inflammatory bowel diseases, atopic diseases, diarrhea and constipation [MAY et al., 2009; SOKOL et al.; 2008 & 2009, QIN et al., 2008]. A large body of evidence supports also a relationship between bacteria, bacterial activities and human colorectal cancer [BOLEIJ &TJALSMA, 2012].

It is now increasingly accepted that obesity is associated with substantial changes in composition and metabolic function of gut microbiota. In contrast to earlier studies the ratio of *Firmicutes: Bacteroidetes* as main link to obesity is likely to be outdated. A recent study suggested that not the ratio of *Firmicutes:*

Bacteroidetes is important, but rather the amount of SFCA produced [SCHWIERTZ et al., 2010]. Kalliomäki et al. hypothesized that early differences in fecal microbiota composition in children may predict overweight. However, further research has to be conducted in the underlying mechanisms of microbiota and weight gain [KALLIOMÄKI et al., 2008].

Therapeutic bacteria could presumably provide the same beneficial functions and activities that have evolved for the healthy microbiota. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Prebiotics are defined as non-digestible dietary carbohydrates, which are able to survive stomach acid and bile, stimulate the growth and metabolism of endogenous gut bacteria and are safe for human consumption. It has been reported that probiotics and prebiotics can aid systemic and mucosal immune function, improve intestinal barrier function, modulate gut micro-ecology, and exert metabolic effects on the host and thus, ameliorate chronic intestinal inflammation, diarrhea, constipation, irritable bowel syndrome, atopic dermatitis, sepsis, food allergies, vaginitis and liver disease [WALLACE et al., 2011].

However, studies regarding the proposed effect of probiotics and prebiotics are still contradictory and further research is needed. The key to the effective use of probiotics in treating human disease is to match the correct probiotic strain with the desired clinical outcome [WALLACE et al., 2011].

7.7. Microbiota in chemotherapy and antibiotic treatment

Pathological conditions such as infections, antibiotic therapy, proton-pump inhibitory medication and immune suppression also result in shifts in microbiota, which cause severe side effects in patients. Cytotoxic chemotherapy is a common treatment for malignancies that has been in use for many years. It can cause functional and structural changes to the GIT and damages the mucosal cells [CUNNINGHAM, 1985]. Diarrhea and constipation are common harmful secondary effects, furthermore mucositis is a major problem induced by the cytotoxic effects of cancer therapy and radiotherapy [GIBSON et al., 2006; STRINGER et al., 2007].

Previous work have been conducted on the effect of chemotherapy and antibiotics on intestinal microbiota, but there is still further research to be done on the direct effects, how these therapies interfere with the composition of the native gut microbiota. All studies found decreased numbers of total bacteria after cycles of chemotherapy. Van Vliet et al. additionally observed an increased risk of infection and overgrowth with potential pathogenic species such as *C. difficile* following chemotherapeutic and antibiotic treatment [VAN VLIET et al. 2009]. Buffie et al. showed profound alterations of intestinal microbiota following a single dose of clindamycin - a lincosamide antibiotic - and a resulting sustained susceptibility to *Clostridium difficile*-induced colitis [BUFFIE et al., 2011]. Huang et al. monitored alteration in microbiota in children with acute lymphoblastic leukemia receiving a high-dose methotrexate (HDMTX) chemotherapy. Total bacteria load and the amount of bifidobacteria, *Lactobacillus* and *E. coli* decreased significantly compared with the control group [HUANG et al., 2012].

In conclusion, chemotherapy directly affects the microbiota composition, damages the rapidly generated mucosal cells of the GI and antibiotic treatment disrupts the ecological balance, which might influence colonization resistance. Thereby the risk of infection increases and allows potential pathogens such as *Clostridium difficile* to grow [NYHLEN et al., 2002; VAN VLIET et al., 2009].

8. MATERIAL AND METHODS

8.1. Study design

Figure 4 illustrates used methods and study design of this thesis. The statistical methods of analysis are discussed in more detail in chapter 08.10.

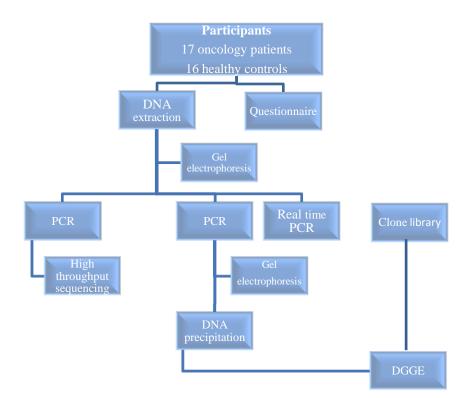


Figure 4: Study design and used methods

8.2. Study participants

This study included study population of 33 participants. The а Sozialmedizinisches Zentrum Ost (SMZO) in Vienna provided faecal samples from 17 patients under immune-suppressive, anti-malignant chemotherapy with or without antimicrobial therapy (aged 59 \pm 13 y, 92 BMI 27 \pm 6). The gender ratio was 47% female and 53% male. Four samples of each patient were taken within two weeks before and after a single chemotherapeutic dose. 14 out of 17 patients already had one or more chemotherapies before this treatment cycle, for three patients it was the first bout of chemotherapy. As seen in table 1 five individuals additionally suffered from diverse other diseases like hypertension,

obesity, diabetes mellitus type II (NIDDM), rheumatism and osteoporosis. Types of malignancies as well as chemotherapeutic and additional treatments like antibiotics were reported by anonymous medical records. Six patients were diagnosed with a form of leukemia, three persons suffered from a Non-Hodgkin lymphoma. Other malignancies were bowel cancers, bladder cancer, mamma carcinoma, multiple myeloma and ovarian arrhenoblastoma. The

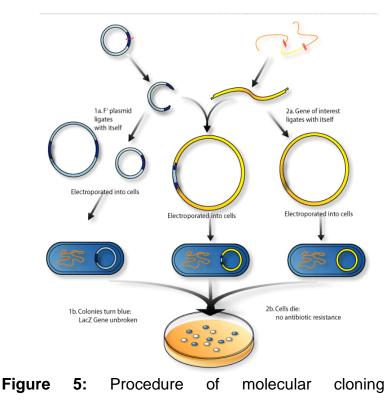
Name	Diagnosis	Chemotherapeutic treatment	Antimicrobial treatment	Additional diseases
P01	urothel carcinoma	gemcitabine, cisplatinum		
P02	plasmocytoma, multiple myeloma	bortezomib, dexamethasone		rheumatism
P03	Non-Hodgkin lymphoma	bendamustine		diabetes II, adipositas, hypertension
P04	ovarian fibroma	taxol, carboplatin	levofloxacin	
P05	multiple myeloma	bortezomib, doxorubicin, dexamethasone	cotrimoxazole	osteoporosis
P06	mamma carcinoma	pegylated liposomal doxorubicin hydrochloride, gemcitabine		
P07	Non-Hodgkin lymphoma	high dose radiation therapy and peripheral blood stem cell transplant, cytarabine, etoposid, carmustine	cotrimoxazole, piperacillin, tazobactam	
P08	monozytic leukemia	cytarabine, idarubicin	cotrimoxazole, piperacillin, tazobactam	
P09	acute leukemia	high dose Ara-C, radiated erythrocyte concentrate, cytarabine	piperacillin , tazobactam	
P10	Non-Hodgkin lymphoma	ifosamid, etoposid, methotrexat	levofloxacin	
P11	Acute lymophoblastic leukemia	cytarabine, methotrexat		adipositas, hypertension
P12	small intestinal tumor	cetuximab		
P13	rectal tumor	capecitabine, oxaliplatin		
P14	thymus tumor	taxol, carboplatin, bevacizumab, radiation		
P15 P16	Acute lymophoblastic leukemia Acute lymophoblastic leukemia	cyclophosphamide, methotrexate, doxorubicin, cytarabine, vincristine cytarabine, mitoxantrone		NIDDM
P17	colon tumor	oxaliplatin, capecitabine, bevacizumab, irinotecan, monoclonal antibodies		

Table 1: Oncology patients, malignancies, additional diseases and treatments chemotherapeutical administration included bendamustin, bortezomib, cetuximab, cytarabin, dexamethosane, doxorubicin, etoposid, gemcitabine, irinotecan and melphalan. Six Patients (P04, P05, P07, P08, P09, P10) furthermore received antibiotics (Table 1).

The control group consisted of 16 healthy individuals (aged 65 ± 18 y, BMI 24 \pm 5), 56% female, 44% male. To consider the natural fluctuations of a healthy microbiota in the research, a part of the control group had to provide several samples. Stool samples of C01-C07 were collected at three or four points in time within two weeks, while samples of C08-C16 were collected just once. Exclusion criteria for healthy controls were antimicrobial treatment, chemotherapeutic administration and the intake of pre- and probiotics at least three months before sample collection.

All subjects had to answer a questionnaire assessing their dietary habits, body constitution (age, gender, body length, weight), health status (chronic and acute diseases) and life-style aspects (e.g. alcohol consumption and physical activity). All study participants gave written informed consent. Approval was obtained from the Viennese Human Ethics committee.

8.3. Sampling and DNA extraction


Stool samples were immediately brought to the laboratory and stored at -70°C after sampling. 180-220 mg of each frozen sample were measured out and homogenized with ASL buffer in a bead beater (Mini-Beadbeater-8) twice for 45s with one intervening minute on ice. Further extraction steps were performed using the QIAamp® DNA Stool Mini Kit (QIA-GEN) following the manufacturer's protocol (see chapter 11.1.). Quality of DNA extraction was verified by gel elektrophoresis in 1% agarose gel. Thereafter DNA was stored at -20°C until the analysis was conducted.

8.4. Type strains

Cloned sequences and type strains, which are known to be a part of the human gastrointestinal microbiota were set as standards in the real-time PCRs and were used to create a standard lane marker for DGGE analysis. For latter following type strains were used: *Bacteroides thetaiotaomicron* DSM 2079^T, *Enterococcus faecium* DSM 20477^T, *Lactobacillus reuteri* ATCC 55730^T, *Bifidobacterium longum ssp. longum* DSM 20097^T, *Escherichia coli* IMBH 252/07 and clones CL16 and CC34.

8.5. Clone library

The process of cloning in molecular biology refers to the creation of copies of a DNA fragment of interest. Figure 5 shows a schematic overview of the process.

[BIOMINEWIKI, 2011]

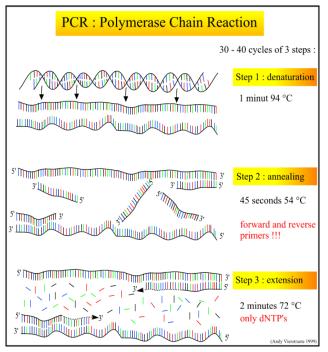
The amplified DNA fragment is inserted into a vector (p-GEM easy, Promega, Austria) containing an ampicillin resistance gene. Next, the vector with insert is inserted into competent *E.coli*, this is termed transformation. If a bacterial cell has incorporated the plasmid, it will grow on a LB plate containing ampicillin. With the help of blue-white screening bacteria with inserts can be detected. These bacteria can now be grown in large amounts and the target DNA is isolated again by PCR.

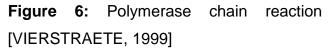
The object of the clone library in this study was to design a standard lane marker for the DGGE analysis and to identify dominant members of the *Clostridium* Cluster *XIVa*. For these purposes a PCR was performed with primers 195-F [MEIER et al., 1999] and Ccocc-R [MATSUKI et al., 2004] and the amplified products were inserted into a p-GEM Easy Vector (Promega)

following the instructions of the manufacturer (see also chapter 11.2.). Four LB/ampicillin/IPTG/X-Gal plates were prepared for each ligation reaction and one plate for determining transformation efficiency. 2x100 µl of each diluted transformation culture were plated and incubated at 37° over night. On the third day of the cloning procedure plates were screened for blue and white colonies. White colonies contained vectors and inserts, whereas blue colonies had no inserts. Then fifty clones were picked, transferred to clean Eppendorf tubes and amplified with Promega primers T7 and Sp6. The fragment length was checked on a 2% agarose gel. Finally, the clone inserts were sequenced (DNA confidence, Vienna) and corrected for primer and vector sequences (CodonCodeAligner). The taxonomical identification was performed with the online tools of the ribosomal database project (http://rdp.cme.msu.edu/). The clone library with the purpose of creating a standard lane marker for DGGE analysis of *Clostridium* cluster *IV* has previously been described [ZWIELEHNER et al., 2009].

8.6. Polymerase chain reaction (PCR)

The polymerase chain reaction (PCR) is a molecular technique with the purpose of amplifying a specific region of a DNA strand (the DNA target). PCR makes it possible to produce thousands to millions of copies out of a single piece or a few copies of the target DNA. In contrast to cloning no bacteria are needed to amplify DNA in PCR. The PCR reaction requires following components:


• A DNA template containing the target sequence


• DNA polymerase: A heat resistant enzyme that can generate new strands of DNA complementary to the target region. The most commonly used DNA polymerase is *Taq* DNA polymerase, which was originates from the thermophilic bacterium *Thermus aquaticus*. Since DNA polymerases can only add new nucleotides to an existing strand of DNA, two primers are needed as starting points.

 Primers are short single-stranded oligonucleotides which are the reverse complement of a region of template or target DNA. Before using PCR it is necessary to know the exact sequences that lie on either side of both ends of the target region, to design two fitting primers for the PCR reaction.

• Nucleotids (dNTPs) are single units of the bases adenine, thymine, guanine, and cytosine. They are essential to synthesize new DNA strands.

 Buffer and MgCl₂ are needed as polymerase cofactors as well as bovine serum albumin (BSA) in some cases. Distilled water is used to fill up to the required reaction volume.

PCR A reaction is actually composed of more than 40 cycles, with each cycle consisting of three recurring temperature steps (figure 6). During initial denaturation, the reaction mix is а temperature heated to of approximately 94-96° C and held for several minutes to denature the original DNA strands and activate the heat-stable polymerase. Then 20-40 cycles follow. During denaturation the reaction reaction mixture is heated to approximately 95°C for 20-30 seconds, which results in melting

of the DNA template yielding single-stranded DNA molecules. The denaturation is followed by the annealing step, where the temperature is lowered to let the primers anneal to the complementary regions on the single stranded DNA template. The polymerase binds to the primers and synthesizes new DNA strands using dNTPs in elongation step at a temperature optimal for the polymerase. After the last cycle a final elongation step may be used to assure that any remaining single-stranded DNA is fully elongated. PCR reactions are exponential, therefore the amount of DNA target should be doubled in each PCR cycle under optimum conditions.

Agarose gel electrophoresis is performed to check whether the amplified DNA fragment has the right fragment length. The determination of the size of PCR products is made with a special DNA ladder, which is comprised of DNA fragments of known size and is applied on the gel next to the PCR products.

PCR experiments in this study were carried out in a Robocycler (Stratagene) amplifying 16S rRNA gene sequences from bacteria in stool samples, type strains and cloned sequences for DGGE analysis and to create a clone library using group and kingdom-specific primers (see Table 2). The 16S rRNA is a component of the 30S subunit of ribosomes in prokaryotes. The 16S ribosomal RNA gene is highly conserved between different species of archaea and bacteria, that is why it is commonly used for phylogenetic studies among prokaryotes.

The PCR reaction mixture consisted of following components:

- ready-to-use mastermix (Promega) containing 1,5mM MgCl2
- 500nmol/L of both primers
- 2µl template
- For faecal samples, bovine serum albumin (Fermentas) was added with a final concentration of 400µg/ml

8.7. PCR-DGGE fingerprinting

Denaturating gradient gel electrophoresis is a form of electrophoresis that uses a chemical gradient to denature 16S rRNA gene fragments as they move across an polyacrylamide gel. The chemical denaturants used are formamide and urea. During DGGE PCR products are separated sequence-specifically on the basis of their melting behavior, which depends on the GC content of the fragments and length. PCR products of same length are separated according to their base sequence, by this means a separation with a difference of a single nucleotide is possible. For the preceding PCR special primers are used containing a GC-clamp, which is an approximately 40 base pairs region consisting mainly of guanine and cytosine and prevents DNA fragments from melting completely. To identify the PCR products the resulting bands on the DGGE gel are compared with references lanes consisting of amplified DNA fragments of known bacteria. Some microorganism like lactobacill*i*, some fungi and *Bacteroides thetaitaomicron* produce several bands due to their multiple 16S rRNA operons [HIPPE et al., 2011]. This results in a pattern of bands on the gel. An analysis of the bands can be carried out with a special software (Gel Compare II, Applied Maths NV, Belgium). DNA fragments can also be cut out and sequenced.

PCR–DGGE was performed as previously described by Muyzer et al. [MUYZER et al., 1993]. Table 2 shows used primer pairs and annealing temperature for bacteria, *Clostridium* cluster *IV* and *Clostridium* cluster *XIVa*.

Target organism	Primers	Sequence (5' - 3')	Annealing temperature (°C)	Reference
Bacteria	341-F-GC	CCT ACG GGA GGC AGC AG	55	MUYZER et al, 1993
	518-R	ATT ACC GCG GCT GCT GG	55	NEEFS et al., 1991
Clostridium cluster IV	sg-Clept-F-GC	GCA CAA GCA GTG GAG T	55	MATSUKI et al., 2004
	sg-Clept-R	CTT CCT CCG TTT TGT CAA	55	
Clostridium cluster XIVa	Ccocc-F-GC	AAA TGA CGG TAC CTG ACT AA	50	MATSUKI et al., 2004
	Ccocc-R	CTT TGA GTT TCA TTC TTG CGA A	50	

Table 2: Primer pairs for PCR-DGGE fingerprinting of 16S rRNA coding regions

PCR products had to be precipitated for the DGGE due to the fact that 100 µl is too large a reaction volume for the slots of the gradient gel. For the precipitation -20°C cold ethanol was added to the PCR product using ten times more ethanol than product. Then the ethanol-PCR product mix was incubated at -20°C overnight and after that centrifuged for 20 minutes. The supernatant was discarded and the precipitate was dried at 37°C for 24 hours. Finally it was resuspended with 15µl NFW + 5µl loading dye. For preparation of the gradient

gels a gradient mixer (Hoefer SG 30) and a peristaltic pump were used. After resuspension the precipitated DNA was injected into the slots of the gel using a Hamilton syringe. Run time and gradient varied according to species (table 3). Standard lane markers as described above were used on each gel to ensure reliable gel-to-gel comparison. Gels were stained with GelRed and photographed under ultraviolet light. The bandpattern was analysed using GelCompareII (see also chapter statistical analysis).

Target	Gradient	Runtime (hours)	Volt (V)	Temperature (°C)
Bacteria	30-60%	9	130	60
Clostridium cluster IV	30-50%	5	200	60
Clostridium cluster XIVa	35-50%	7	200	60

Table 3: DGGE and gel settings of analyzed groups

8.8. Quantitative measurement – TaqMan-qPCR

The quantitative real-time polymerase chain reaction (qPCR) is used for absolute or relative quantification of microbial DNA [HIPPE et al., 2011] or to be precise to amplify and simultaneously quantify the DNA target. In contrast to endpoint PCR, qPCR allows monitoring the amplification in real time. Sequence-specific DNA probes with fluorescent reporters (eg. TaqMan Probes) or non-specific fluorescent dyes intercalating with dsDNA (SybrGreen) are used. During qPCR the fluorescence emission is directly proportional to the quantity of PCR product. The C_T -Value (cycle threshold value) indicates the cycle number at which the fluorescence signal exceeds the fluorescence threshold.

TaqMan probes are oligonucleotides consisting of approximately 20-30 bases and anneal to an internal region of the PCR product. They are labeled with a fluorophore (reporter) on the 5'end and a quencher on the 3' end. The quencher prevents emission of any fluorescence as long as quencher and reporter are in close proximity. When the DNA polymerase extends the primer and replicates the PCR product, the bound TaqMan Probe degrades due to the polymerase's exo-polymerase activity and the fluorophore is released. This ends the activity of the quencher and the reporter starts to emit fluorescence.

In this study quantification of bacteria and bacterial subgroups was performed with qPCR using TaqMan probes. Analyses were performed in a Rotorgene 3000 (Corbett Life Science). The primers and probes for detection were based on 16S rRNA gene sequences acquired from different references (see Table 4). Optimal annealing temperatures of primer pairs were ascertained as previously described by Lassl 2009 [LASSL, 2009].

Target	Primer/probe	Sequence	Size
all Bacteria	BAC-338-F	ACT CCT ACG GGA GGC AG	468
	BAC-805-R	GAC TAC CAG GGT ATC TAA TCC	
	BAC-516-P	(6-FAM)-TGC CAG CAG CCG	
Bacteroides	AllBac296f	GAG AGG AAG GTC CCC CAC	106
	AllBac412r	CGC TAC TTG GCT GGT TCA G	
	AllBac375Bhqr	(6-FAM)-CCA TTG ACC AAT ATT CC CAC TGC TGC CT-(BHQ-1)	
Bifidobacteria	Bif-F	GCG TGC TTA ACA CAT GCA AGT C	125
	Bif-R	CAC CCG TTT CCA GGA GCT ATT	
	Bif-P	(FAM)- TCA CGC ATT ACT CAC CCG TTC GCC -(BHQ-1)	
Clostridium cluster IV	sg-Clept-F	GCA CAA GCA GTG GAG T	239
	sg-Clept-R	СТТ ССТ ССБ ТТТ ТБТ САА	
	Clept-P	(FAM)-AGG GTT GCG CTC GTT-(BHQ-1)	
Clostridium cluster XIVa	195-F	GCA GTG GGG AAT ATT GCA	538
	Ccocc-R	CTT TGA GTT TCA TTC TTG CGA A	
	Ccocc-P	(6-FAM)-AAA TGA CGG TAC CTG ACT AA-(BHQ-1)	
Clostridium difficile	Cdiff-F	TTG AGC GAT TTA CTT CGG TAA AGA	151
	Cdiff-R	ТӨТ АСТ ӨӨС ТСА ССТ ТТӨ АТА ТТСА	
	Cdiff-P	(6-FAM)-CCA CGC GTT ACT CAC CCG TCC G-(BHQ-1)	
*modified forward primer			

Table 4: 16S rRNA gene-targeted group-specific primers used in this study

The reaction mixture of 10µl was composed of 5µl Taq-Man SensiMix DNAKit (Quantance), 2 µl of sample DNA, 1µl of each primer and 1µl Taq-Man-probe. Primers and probes were diluted to a specific concentration with nuclease free

water (see table 5). Samples were analyzed in duplicates and the mean value was used for calculations. As seen in table 5 amplification programs differed depending on primers and probes. To determine the sensitivity of the real-time TaqMan assay and to construct standard curves, serial 10-fold dilutions of standards were subjected to PCR. Standards used included *Bacteroides thetaiotaomicron*^T, *Bifidobacterium longum ssp. longum*^T and *Clostridium difficile*^T, clones CL 16 (*Clostridium leptum* 16) and B 34 plasmid DNA (*Clostridium coccoides 34*). For universal bacterial primers a known faecal sample was set as standard.

Target	Standard	Primer/probe	Concentration	Hold	Number of cycles
all Bacteria	standard mix	BAC-338-F	10pmol/µl	95° 10min	40
		BAC-805-R	10pmol/µl		
		BAC-516-P	2pmol/µl		
Bacteroides	RK Bacteroides thetaiotaomicron	AllBac296f	3pmol/µl	95° 10min	40
	(DSM 2079)	AllBac412r	3pmol/µl		
		AllBac375Bhqr	1pmol/µl		
Bifidobacteria	RK Bifidobact. longum sp. longum	Bif-F	3pmol/µl	95° 10min	40
	DSM 20219	Bif-R	3pmol/µl		
		Bif-P	3pmol/µl		
Clostridium cluster IV	Clone 16 (C.lept.)	sg-Clept-F	4pmol/µl	95° 10min	40
		sg-Clept-R	4pmol/µl		
		Clept-P	4pmol/µl		
Clostridium cluster XIVa	B 34 plasmid DNA (C.cocc.)	195-F	5pmol/µl	95° 15min	40
		Ccocc-R	5pmol/µl		
		Ccocc-P	1,5pmol/µl		
Clostridium difficile	30 19 68 DNA (<i>C.diff</i>)	Cdiff-F	10pmol/µl	95° 10min	40
		Cdiff-R	10pmol/µl		
		Cdiff-P	2pmol/µl		

Table 5: Concentration of primers, PCR programs and standards

DNA concentrations of *Bacteroides thetaiotaomicron*^T, *Bifidobacterium longum ssp. longum*^T and *Clostridium difficile*^T were determined using a nanodrop spectrophotometer. The number of DNA copies per microliter was then calculated by use of the mean G and C content of each strain. Clones CL16 and plasmid DNA B34 were quantified by determination of colony forming units

(CFU) per μ l. Absolute quantification was calculated by comparing C_t-values of test samples to standard curves. For comparison of different runs, a control sample was used in each run. Relative quantification of bacterial subgroups was determined by comparison of total rRNA gene copies amplified with universal bacterial primers BAC-338-F and BAC-805-R.

8.9. High throughput sequencing

Pyrosequencing is an enzyme-catalysed cascade with a light-reaction at its end indicating which nucleotide has currently been incorporated. The method relies on detecting the activity of DNA polymerase while synthesizing the complementary strand of the target DNA. Solutions of A, C, G and T nucleotides are successively added and removed to the immobile template DNA in the reaction. When the complementary nucleotide solution anneals to the first unpaired base, a chemiluminescent signal is emitted. The sequence of the target DNA can be determined by detecting these light signals.

454 life sciences has developed a whole genome high-throughput-sequencing technology by integrating pyrosequencing with their PicoTiterPlate (PTP) platform. Simultanous amplification of approximately 300,000 PCR templates is possible [LEAMON et al, 2003]. In the beginning of the 454 sequencing process the DNA template is nebulized into double stranded fragments sized between 300 and 800 basepairs. Then, DNA fragments are ligated to two different oligonucleotide adapters (A and B), which serve as binding sites for primers. DNA fragments are now denaturated and fixed to microscopic beads. Since there is a surplus of beads, statistically just one DNA fragment binds to one bead. After adding into a water-in-oil emulsion, little reaction volumina called microcontainer emerge, each containing one bead and one ssDNA template. The DNA within the microcontainers is then amplified using emulsion PCR. Each DNA-bound bead is placed into a well on a PicoTiterPlate. A DNA bead incubation mix (with DNA polymerase) and an enzyme mix (with sulfurylase and luciferase) is added and the PicoTiterPlate is then placed in to the GS FLX system for sequencing. Pyrosequencing starts and light signals are detected with a CCD camera. A 10-hour run of sequencing results in about 400,000 reads of 250–450 bp in length. An average quality score of greater than 99.5% accuracy rate is reached [DROEGE AND HILL, 2008].

High throughput sequencing was performed with four samples of P09 and P11, before and after chemotherapy. Samples were amplified with primer pair 525F 926R (5'-TCAGCAGCCGCGGTAATAC -3') and (5'-TCCGTCAATTCCTTTGAGTTT -3') using a high-fidelity DNA polymerase (Phusion®, Finnzymes, Thermo Fisher Scientific). After 454 barcode sequencing (submission to AGOWA, Berlin, Germany) a total of 113000 reads resulted. Sequences were trimmed and aligned using the online tools of the pyro pipeline of the ribosomal database project (http://rdp.cme.msu.edu/). Sequences shorter than 151 bp were discarded, thus we had 3886 to 6811 sequences per sample of 366 to 368 bp. The Peptostreptococcaceae were analyzed in more detail. A phylogenetic tree was constructed by grouping of identical sequences. All analyses were performed with the ribosomal database project pyro pipeline (http://rdp.cme.msu.edu/).

8.10. Statistical analysis

Statistical evaluation of relative and absolute abundances of total bacteria and bacterial subgroups were performed using the OriginPro Version 8 (OriginLab, Northampton, MA). Here, differences between the two test groups (chemotherapy patients and healthy controls) and changes between all sample points within the groups were compared. The nonparametric Mann-Whitney U test and the two sample t-test were applied for comparisons between two groups of independent ordinal and interval values. By this means absolute numbers of all bacteria and absolute and relative numbers of subgroups in oncology patients and healthy individuals were compared. Related data within the groups were analysed using the paired sampled t-test and nonparametric Wilcoxon signed rank test. P values <0.05 were considered statistically significant.

QPCR results were plotted in heatmaps to show the decline of bacteria in T1, the time point immediately after chemotherapy. Heatmaps are graphical two dimensional tables were the values are represented as boxes of different colorshades. In this study values for heatmaps have been z-scored for presentation clarity. Z scores indicate how many standard deviations a value differs from the mean. Z-scores are calculated by subtracting the mean value from the single values and dividing that result by the standard deviation of all of the measured values, according to the formula [CHEADLE et al, 2003]

Z score = (absolute number of $bacteria_G - mean$ number_{G1...Gn})/SD_{G1...Gn}

PCR-DGGE fingerprint analysis and applied principal components analysis (PCA) were performed using GelComparII (www.applied-maths.com). PCA extracts underlying components of samples according to their variance. Shannon diversity index was calculated as previously described by Zwielehner [ZWIELEHNER et al., 2009]. Shannon index is defined as $H = -\Sigma p_i \ln p_i$, where p_i is the proportional abundance of species *i*. The higher the Shannon index, the higher the diversity.

9. RESULTS

9.1. Dietary aspects and life-style

All study participants had to answer a food frequency questionnaire to assess their dietary habits. There were no significant differences in patients and healthy controls regarding their consumption of vegetables, grains and milk products. Patients undergoing chemotherapeutical treatment showed a lower intake of fruits, alcohol and whole grain products. Exercise levels in both groups were comparable.

9.2. TaqMan-quantification

Absolute numbers of bacteria and relative percentages of bacterial subgroups were analysed with TaqMan qPCR to investigate the influence of chemotherapeutical treatment with or without antibiotics on the human GI microbiota.

9.2.1. Absolute quantification of total bacteria and bacterial subgroups

Table 6 and 7 show absolute numbers of total bacteria and bacterial subgroups related to 2µl faeces extract of all study participants at the respective sampling times.

Controls	All bacteria	Bacteroides	Bifidobacteria	C. cluster IV	C. cluster XIVa	C. difficile
C01/1	437293.31	61137.23	244.85	133999.13	77472.39	0.00
C01/2	840409.88	53903.97	465.70	326262.04	231671.36	0.00
C01/3	1291348.28	124235.17	640.82	552740.21	396257.81	0.00
C02/1	856579.44	207233.10	0.24	135967.80	223387.78	0.00
C02/2	1280565.30	321264.60	1.19	171567.81	293190.19	0.00
C02/3	249524.26	63623.44	0.74	32472.41	75892.72	0.00
C03/1	751607.10	557747.57	991.00	111468.88	57415.28	0.00
C03/2	2668163.18	514696.31	2408.65	379907.50	367217.63	0.00
C03/3	3375548.55	186482.71	12636.00	548049.57	678856.47	0.00
C04/1	722947.60	195171.86	330.61	232319.29	125153.21	0.00
C04/2	1011436.68	255228.10	221.90	341438.29	171981.86	0.00
C04/3	2672234.13	339007.54	180.30	832030.13	692249.05	0.00
C04/4	2922631.37	352989.37	156.28	677275.84	505613.90	0.00
C05/1	1891206.07	727639.13	645.83	192574.41	262543.67	0.00
C05/2	2065267.30	671772.98	1507.87	210675.60	262463.98	0.00
C05/3	1733796.13	407584.71	443.34	214689.01	315715.33	0.00
C06/1	1570219.06	340733.04	445.59	390508.84	267016.08	0.00
C06/2	1072172.78	197189.12	120.55	251854.25	195722.06	0.00
C06/3	620482.19	152876.33	11.53	127675.45	117185.34	0.00
C07/1	357716.16	52897.34	84.70	112096.96	49725.20	0.00
C07/2	658745.28	71243.97	339.56	244238.66	95599.67	0.00
C07/3	767529.41	77325.31	314.44	283491.62	106300.82	0.00
C08	67127580.45	21630083.97	1104596.65	3016391.93	22372916.47	0.00
C09	126948085.08	19212984.02	2462247.54	9444500.94	68718443.26	0.00
C10	65278056.00	25196457.64	472238.95	1610808.79	14988708.20	0.00
C11	22910236.96	3611549.33	121147.51	750523.91	6857928.70	0.00
C12	47074467.77	18138079.80	353519.38	1308964.14	12538810.79	0.00
C13	286856946.54	16354683.44	372591.26	43891468.17	192415995.00	0.00
C14	58912801.05	10278138.84	527253.76	8869928.30	37824150.42	0.00
C15	137945616.44	15770084.32	510575.47	34278520.13	5002288.46	0.00
C16	30738626.46	10320149.60	576296.72	2839348.81	3367532.31	1807.64
MW	28180962.59	4724006.25	210408.35	3629476.09	11924367.92	
STAB	60220057.59	7858906.72	492707.95	9807799.56	36394525.65	376.92

Table 6: Absolute numbers of total bacteria and bacterial subgroups in healthycontrols analyzed by TaqMan-qPCR related to 10ng DNA

Patients	All bacteria	Bacteroides	Bifidobacteria	C. cluster IV	C. cluster XIVa	C. difficile
P01/1	1798805.94	686436.18	22965.45	431283.01	179653.46	0.00
P01/2	372479.33	214081.92	4558.69	66859.19	17518.96	0.00
P01/3	1183463.77	453079.56	30777.49	349670.05	81729.38	0.00
P01/4	4900917.36	1757221.14	69416.26	894221.86	492005.88	0.00
P02/1	20212193.78	5354904.16	25.84	1727067.70	8456716.97	0.00
P02/2	23903696.36	4005111.16	366.48	1926246.84	6273075.75	0.00
P02/3	3129907.77	1537813.68	65.15	899451.34	202334.40	0.00
P02/4	42134076.47	8601362.67	266.24	6391142.51	11186629.09	0.00
P03/1	5252430.48	330458.04	303812.95	1584639.87	703331.31	0.00
P03/2	32539656.72	7049121.86	1322331.64	11554656.05	10912078.21	0.00
P03/3	8776038.82	1914216.02	68520.97	1613986.64	3585565.52	0.00
P03/4	34133421.73	5633416.81	368271.38	6935425.53	17973732.55	0.00
P04/1	10176085.75	3675199.65	123237.25	2790373.95	1828490.92	0.00
P04/2	2041417.98	124427.95	6748.31	1044114.49	456546.61	0.00
P04/3	9397403.84	2436596.74	150717.25	2484676.03	1113862.60	0.00
P04/4	17611326.10	3143896.40	388478.41	5200829.47	1762498.85	0.00
P05/1	58606024.90	7574676.76	1485218.67	8089718.24	10498104.44	0.00
P05/2	77914671.15	9930958.08	4295028.01	24053291.85	25121947.29	0.00
P05/3	47867203.61	10669686.99	2232338.50	8288562.23	21327802.26	0.00
P05/4	45546066.19	8990544.45	1150309.59	11197726.83	23100668.54	0.00
P06/1	4254777.75	1117961.90	150748.62	648065.08	1921015.97	0.00
P06/2	19663552.55	4064824.71	143528.56	1769516.54	4984825.07	0.00
P06/3	5817626.36	1692997.14	126902.02	1911000.59	1832499.43	0.00
P06/4	11491330.22	2619686.08	354166.89	1450849.53	3690397.55	0.00
P07/1	32882071.40	13715080.97	897.46	3410583.24	7731920.78	0.00
P07/2	14010666.45	2027428.84	1032.00	2671080.63	1991983.19	0.00
P07/3	31475072.44	16519292.63	823.50	1586561.05	13562.81	0.00
P07/4	210972.37	82379.99	34.45	55314.07	9572.75	0.00
P08/1	20526835.88	5611144.84	718.75	1247117.30	7680688.02	0.00
P08/2	44425634.50	16318239.73	895.78	3476321.68	15493685.21	0.00
P08/3	25709141.44	11964895.51	718.60	2268109.88	5119868.83	0.00
P08/4	4789406.38	1833583.83	50.22	255512.39	404272.01	0.00
P09/1	60928403.72	19783140.36	349975.84	6483641.99	5835644.77	6882.51
P09/2	79557247.54	24331906.09	426303.13	7125594.64	6230655.43	3410.13
P09/3	18692507.80	7732250.88	2051.63	1534255.90	6614636.98	228486.37
P09/4	22422312.29	7987608.92	13249.55	1508579.53	2774425.14	90328.31
P10/1	13477917.70	2837015.05	73.34	1122511.68	1498517.07	0.00
P10/2	18520677.78	2213914.71	15.13	830143.08	993439.98	0.00
P10/3	52591368.06	5899979.48	3869.15	2670649.71	4623410.70	0.00
P10/4	21962667.14	5147834.94	1465.47	1149697.73	2797644.59	0.00

Table 7A: Absolute numbers of total bacteria and bacterial subgroups in the
oncology patients analyzed by TaqMan-qPCR related to 10ng DNA, P01-P10

Patients	All bacteria	Bacteroides	Bifidobacteria	C. cluster IV	C. cluster XIVa	C. difficile
P11/1	44187524.40	6037882.96	441875.24	2509998.68	2374357.37	0.00
P11/2	9505774.72	865600.46	95057.75	1175348.89	2030535.80	0.00
P11/3	4652268.06	1640708.80	0.05	180029.67	397823.15	181438.45
P11/4	30489412.48	5277219.74	0.29	32637.34	292051.98	243915.30
P12/1	1101929.58	353588.40	1.37	111339.84	126430.54	0.00
P12/2	6715972.20	1220407.85	4.04	681879.34	730713.08	0.00
P12/3	2775027.99	721257.99	173.18	286183.85	509768.55	0.00
P13/1	1417002.07	236089.42	605.15	238326.79	210343.70	0.00
P13/2	1743935.23	229234.11	192.82	380815.57	219777.32	0.00
P13/3	9419678.45	1437380.19	1674.77	1821573.55	1187587.57	0.00
P13/4	2220094.29	214693.75	1193.98	383891.97	290244.10	3.95
P14/1	2812806.45	339245.97	51.39	619589.76	388784.99	82.69
P14/2	1898857.79	318576.67	226.39	440094.63	234728.66	0.00
P14/3	216491.56	100645.68	332.65	61728.96	31497.30	0.00
P15/1	819799.59	290536.62	344.12	148236.56	142420.79	0.00
P15/2	515193.86	148824.80	902.84	116214.55	84706.60	1.00
P15/3	809754.51	384999.39	5732.25	130018.93	130299.63	0.00
P15/4	1534925.19	486963.46	1752.75	175493.57	195136.85	0.00
P16/1	1378646.12	519302.17	19.94	209558.66	182349.69	6.97
P16/2	1343463.89	445758.10	7.04	200913.16	147572.01	0.00
P16/3	1152274.79	309769.22	99.83	170553.86	150962.71	0.00
P16/4	1229934.96	302951.10	48.50	243413.25	165421.24	0.00
P17/1	1221647.49	231511.65	2.50	151162.87	178143.59	0.00
P17/2	661624.52	71960.51	5.85	92751.67	128249.19	0.00
P17/3	2197256.20	267220.69	80.13	254390.04	369677.36	0.00
P17/4	1698079.84	315570.29	64.88	196263.35	248026.25	0.00
MW P01-17	16433740.21	3944731.47	214415.52	2298658.47	3616129.84	26948.42
STAB P01-17	19782724.05	5196061.66	642056.52	3798481.66	5779273.42	70054.14

Table 8B: Absolute numbers of total bacteria and bacterial subgroups in the

 oncology patients analyzed by TaqMan-qPCR related to 10ng DNA, P11-P17

Figure 7: Comparison of absolute numbers of bacteria analyzed by TaqMan-qPCR in oncology patients and healthy controls and different time points of cycles of chemotherapy in copies/10ng DNA

P, oncology patients; C, healthy controls; T_o , before chemotherapy; T_1 , 1-2d after chemotherapy, T_2 >2d after chemotherapy

As shown in figure 7, patients receiving chemotherapy (\pm antibiotics) harbored significantly less bacteria (p< 0.05) than healthy controls. Considerable differences were also shown among absolute numbers of microbiota of several sampling times: Absolute numbers of bacteria in different points in time of healthy controls are following a lognormal distribution in contrast to the shifts in oncology patients. Faecal microbiota of patients with cycles of chemotherapy decreased significantly more between two time points (p=0,027) than healthy controls.

As seen in figure 7 absolute numbers of bacteria (p = 0.037) were significantly lower directly after cycles of chemotherapy (T_1). There was also a significant decrease in the bacterial subgroups of *Bacteroides* (p=0.044), bifidobacteria (p=0.034) and *Clostridium* cluster *IV* (p=0.049). *Clostridium* cluster *XIVa* was effected too, but not significantly. Figure 8 illustrates that all patients with fever (P01/4, P08/2, P09/2) showed an increase of total fecal microbiota. Sample P07 showed at time point 4 a sharp decline affecting all bacteria and bacterial subgroups after a blood stem cell transplantation. After the end of

Figure 8: Absolute numbers of bacteria of the study population analyzed by TaqMan-qPCR related to 10ng DNA; T₁, 1-2d after chemotherapy

chemotherapeutic treatment the abundance of fecal microbiota went back to normal levels within a few days. Six patients even showed a "rebound effect" within the recovery phase with a short lived increase of total bacteria to higher amounts than in the beginning.

9.2.2. Relative quantification of bacterial subgroups

Table 8 and figure 9 show the quantification of bacterial subgroups as percentage of total bacterial DNA at the different points in time. Chemotherapy patients had a mean percentage of $26 \pm 12\%$ *Bacteroides*, while healthy controls harbored $22 \pm 14\%$. Patients harbored in average $0.8 \pm 1.4\%$ bifidobacteria and controls $0.3 \pm 0.6\%$. In patients the mean proportion of *Clostridium* cluster *IV* and *Clostridium* cluster *XIVa* was $16 \pm 9\%$ and $19 \pm 12\%$, while controls harbored on average $20 \pm 12\%$ and $24 \pm 15\%$.

PM10 38.8.1 1271 22.976 9.977 0.000 26.997 PM12 7.472 7.487 0.000 2.648 0.000 2.648 0.000 2.648 0.000 2.648 0.000 2.648 0.000 2.648 0.000 2.648 0.000 5.772 2.607 0.000 1.012 4.313 0.000 5.772 2.607 0.000 1.012 1.012 4.238 0.000 1.014 3.022 7.538 0.000 1.014 3.022 2.738 0.000 1.014 3.022 2.738 0.000 1.014 3.012 3.015 0.000 1.014 3.012 4.313 7.648 0.000 1.014 1.0277 0.113 0.000 1.014 1.	Patients	Bac.%	Bif.%	C CLIV%	C.CI.XIVa%	C.diff.%	unidentified%	Controls	Bac.%	Bif.%	C.CI.IV%	C.CI.XIVa%	C diff %	unidentified%
PM10 37.475 1.224 1.750 0.000 1.6 Att 0.005 2.2 7.56 0.000 1.6 Att PM11 35.835 1.416 18.246 0.000 0.6 Att 0.005 2.4 Att 0.000 2.4 Att 0.000 2.4 Att 0.000 2.5 Att														37,604
PM14 55.55 1.416 10.246 10.200 3.444 2.6071 2.6073 2.0001 1.5171 2.6072 0.0001 3.548 0.0001 3.548 0.0001 3.548 0.0001 3.548 0.0001 3.748 2.6075 0.0001 3.748 0.2017 1.220 0.0001 3.748 0.2017 1.220 0.0001 3.748 0.2017 1.220 0.0001 3.748 0.2017 1.2201 0.0001 1.0201 0.0001 1.02017 0.2017 1.2201 0.0001 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>27,142</td></th<>											-			27,142
Pieze 56.93 0.000 5.45 41.84 0.000 23.122 C027 25.868 0.000 13.398 22.895 0.000 13.398 22.895 0.000 13.398 22.895 0.000 13.398 22.895 0.000 13.398 0.000 13.39	P01/3	38,284	2,601	29,546	6,906	0,000	22,663	C01/3	9,621	0,050	42,803	30,686	0,000	16,841
P1920 16.755 0.002 9.868 28.248 0.000 10.014 30.014 30.014 30.014 30.014 30.012 17.870 0.000 17.863 0.000 10.284 30.014	P01/4	35,855	1,416	18,246	10,039	0,000	34,444	C02/1	24,193	0,000	15,873	26,079	0,000	33,854
PI202 84 133 0.002 282 77 6.465 0.000 15.683 CO211 74.207 0.122 14.831 7.683 0.000 P024 0.401 0.591 5.784 0.000 17.866 0.000 17.866 0.000 17.866 0.000 17.866 0.000 17.866 0.000 17.866 0.000 17.866 0.000 17.866 0.000 17.866 0.000 17.866 0.000 17.866 0.000 17.867 0.000 17.331 0.000 0.000 17.331 0.000 0.000 17.331 0.000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>23,122</td> <td></td> <td>25,088</td> <td>0,000</td> <td></td> <td>22,895</td> <td></td> <td>38,619</td>							23,122		25,088	0,000		22,895		38,619
Pi24 20.44 0.001 15.66 0.000 37.866 C020 15.26 0.201 15.26 0.000 12 P032 21.66 4.064 35.56 0.000 31.35 0.000 31.36 0.000 31.36 0.000 31.36 0.000 31.36 0.000 31.35 0.000 31.35 0.000 31.35 0.000 31.35 0.000 31.35 0.000 31.35 0.000 31.35 0.000 31.35 0.000 31.35 0.000 31.35 0.000 0.000 31.35 0.000 0.000 31.35 0.000 0.000 31.35 0.000 0.000 0.000 1.018 33.826 0.000 0.000 1.018 33.826 0.000 0.000 1.018 33.826 0.000 1.018 33.826 0.000 1.018 33.826 0.000 1.018 33.826 0.000 1.018 33.826 0.000 1.018 33.826 0.000 1.018 33.826 0.000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>31,073</td></td<>									-			-		31,073
P032 2.6.22 5.78 0.900 4.384 C001 5.53 0.78 16.28 20.11 0.000 1 P032 2.16.6 0.464 35.55 0.978 15.255 0.978 15.255 0.000 1				-					-			-		3,191
P932 21.66 4.64 95.69 33.53 0.000 15.290 P033 21.63 1.031 40.26 0.000 14.100 CM2 25.291 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.156 25.000 0.000 31.356 0.000 23.015 10.153 13.828 0.000 24.030 0.000 24.030 0.000 24.030 0.000 24.030 0.000 24.030 0.000 24.030 0.000 24.030 0.000 24.030 0.000 24.030 0.000 24.030 0.000 24.030 0.000 24.030 0.000 24.040 0.000 24.040 0.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>52,618</td>						-			-	-				52,618
P303 21.812 0.781 19.34 15.80 COU2 22.24 0.022 33.78 17.00 0.000 P044 56.116 1.211 27.241 17.960 0.000 21.173 17.300 0.000 23.175 17.300 0.000 23.175 17.300 0.000 23.175 17.300 0.000 23.175 10.200 0.000 23.175 10.300 0.000 23.175 10.330 0.000 23.175 0.031 51.417 23.528 0.021 12.276 0.022 12.337 10.200 0.000 11.741 0.000 11.741 0.000 11.741 0.000 11.741 0.022 12.348 10.201 11.780 0.000 11.741 0.000 11.741 0.000 11.741 0.000 11.741 0.000 11.741 0.000 11.741 0.001 11.743 0.000 11.741 0.001 11.743 0.000 11.743 0.001 11.743 0.000 12.343 0.000 12.343 0.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>57,754 23,511</td>									-		-			57,754 23,511
PD34 15.50 1.0.79 20.31 20.627 0.000 7.41 PD47 56.10 1.211 27.247 7.690 0.000 1.728 PM40 25.30 1.514 7.244 1.155 0.000 2.728 0.000 2.728 0.000 2.728 0.000 0.000 2.728 0.000 0.000 1.748 0.001 0.028 1.238 0.000 0.000 1.018 1.828 0.000 <td></td> <td>23,982</td>														23,982
Point 96.11 27.421 17.989 0.000 17.284 Cod4 12.078 0.005 33.77 37.30 0.000 0.000 Point 25.928 1.644 12.078 0.005 33.77 13.700 0.000 0.000 Point 25.928 1.644 12.078 0.005 33.77 13.720 0.000 0.000 Point 25.928 1.644 12.078 0.005 33.77 13.720 0.000 0.000 Point 12.252 2.581 13.814 17.913 0.000 52.874 0.001 13.771 13.838 0.000 14.013 Point 13.772 2.262 2.456 0.000 1.1746 C66/7 13.989 0.011 3.538 0.000 1.000 1.000 1.000 1.000 1.001 1.001 1.000 1.001 1.001 1.001 1.000 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 <													-	30,266
PH44 25.928 1.640 26.440 118.53 0.000 34.175 CE0/2 32.227 0.0273 0.021 2.208 0.206 0.000 0.000 P951 12.252 2.532 13.804 17.913 0.000 52.824 CE0/2 33.980 0.000 12.046 6.13.233 18.200 0.000 P953 12.246 5.612 0.3.92 0.011 2.3.461 0.000 0.000 12.046 6.13.23 0.000 12.046 0.000 0.000 12.046 0.001 0.000 12.045 0.000 12.045 0.000 12.045 0.000 13.031 0.000 12.045 0.000 12.045 0.000 12.005 0.000 12.005 0.000 12.005 0.001 13.015 0.002 12.016 0.001 13.015 0.000 13.015 0.001 13.015 0.000 13.015 0.001 13.015 0.001 13.015 0.001 13.015 0.001 13.015 0.001 13.015													-	47,443
P044 17.852 2.202 25.31 10.008 0.000 40.404 C057 33.888 0.026 2.33 83.00 0.000 P052 12.746 5.512 30.871 32.243 0.000 18.827 C057 13.388 0.028 0.233 83.00 0.000 1 P052 12.746 5.512 30.871 32.243 0.000 14.827 C057 13.388 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.880 0.000 13.830 0.000 13.830 0.000 13.830 0.000 13.830 0.000 13.830 0.000 13.830 0.000 13.830 0.000 13.830 0.000 13.830 0.000 13.830 0.000 13.830 0.000 13.	P04/2	6,095	0,331	51,147	22,364	0,000	20,064	C05/1	38,475	0,034	10,183	13,882	0,000	37,426
Pipsri 12.922 2.534 13.84 17.913 0.000 52.824 Coff 2.1,700 0.028 2.4 870 17.000 0.000 Pipsri 12.225 4.564 17.316 4.4 556 0.000 1.1174 Pipsri 13.735 2.225 4.564 17.316 4.4 556 0.000 2.430 Pipsri 13.735 2.225 4.564 17.316 4.4 556 0.000 2.430 Pipsri 2.277 3.541 15.251 4.510 0.002 2.077 13.838 0.000 1 Pipsri 2.277 3.541 15.251 0.000 2.400 1.0171 1.4,788 0.022 1.641 0.000 1.0171 Pipsri 2.277 3.082 1.010 1.521 0.000 1.0171 0.0171 0.013 5.351 0.000 1.011 0.001 1.011 0.000 1.011 0.001 1.012 0.000 1.011 0.000 1.011 0.000 1.011	P04/3	25,928	1,604	26,440	11,853	0,000	34,175	C05/2	32,527	0,073	10,201	12,708	0,000	44,490
PB932 12,746 5,572 0,071 32,243 0,000 11,674 PB93 22,230 4564 7,136 4,556 0,000 11,174 PB94 13,739 2,525 24,585 50,719 0,000 2,430 PB64 22,727 3,843 15,231 45,150 0,000 4,300 PB64 22,777 18,843 15,231 45,150 0,000 4,370 PB64 22,777 10,821 0,000 4,370 10,013 0,041 45,332 0,000 1 P071 14,710 0,003 10,72 22,514 0,000 24,401 10,015 0,414 5,414 0,000 24,401 P071 3,424 0,001 5,71 0,000 11,174 0,002 11,175 10,515 1,514 1,546 4,444 0,000 22,915 0,000 1,515 1,546 4,440 0,000 22,915 0,001 1,576 0,523 2,563 0,000	P04/4	17,852	2,206	29,531	10,008	0,000	40,404	C05/3	23,508	0,026	12,383	18,209	0,000	45,874
P933 22.20 4.664 17.316 44.565 0.000 11.174 P944 13.739 2.556 24.685 50.719 0.000 2.486 P967 2.277 3.645 5.231 45.150 0.000 4.249 P963 2.117 1.848 0.000 1.3901 0.000 1.3901 P964 2.277 3.689 2.2331 0.000 4.249 1.0071 1.0.013 0.022 31.337 1.3.801 0.000 1.0001 P964 2.277 3.649 1.248 3.439 0.000 4.249 1.0071 1.0.013 0.022 31.337 0.000 1.0001 1.0001 1.0013 0.022 31.337 0.000 1.0001 1.0013 0.022 31.337 0.000 1.0013 0.022 31.337 0.000 1.0013 0.000 1.0013 0.501 0.000 1.0013 0.501 0.000 1.0013 0.501 0.000 1.0130 1.5301 0.000 1.1113							52,824							36,397
P054/ 19.799 25.86 24.686 50.719 0.000 24.400 P064/ 26.275 3.543 15.231 45.150 0.000 44.249 P063/ 26.720 0.730 8.999 25.351 0.000 44.249 P064/ 22.771 30.22 14.11 32.448 31.499 0.000 44.249 P077/ 14.4710 0.003 10.72 22.514 0.000 24.401 P077/ 14.4710 0.003 5.041 0.000 42.4401 P077/ 3.421 0.001 5.2440 0.001 5.2661 P077/ 3.421 0.001 2.6263 0.000 2.2661 0.000 P077/ 3.421 0.001 2.6636 0.000 2.762 3.771 13.501 0.701 0.000 P071////4 3.900 0.011 4.740 0.831 0.702 0.866 6.124 0.000 1.74 19.856 0.000 0.000 1.741 19										-				39,852
P6941 22,275 3,583 15,231 45,150 0,000 9,800 P6962 20,672 0,730 8,999 25,351 0,000 44,249 P6963 22,101 2,181 32,244 31,491 0,000 23,381 P0714 42,710 0.003 17,372 25,414 0,000 23,381 P0714 14,711 0.007 19,065 14,218 0,000 52,240 P0714 14,711 0.007 19,065 14,218 0,000 52,240 P0714 32,444 0.003 50,000 30,380 0716 67,617 0,000 23,081 P0714 32,458 0.004 52,000 23,083 0,714 26,630 0,000 24,940 P0812 36,722 0.002 7,825 34,876 0,000 24,721 P0812 32,648 0.036 8,22 19,116 0,000 74,722 14,871 10,905 0,000 56 11,452 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>35,897</td></td<>										-				35,897
Peerz 20,572 0.730 6.999 25.351 0,000 44,243 Peerz 29,101 21.81 32,284 31,499 0,000 42,430 Peerz 24,277 3.062 12.686 32,115 0.000 23,381 Perrz 14,471 0.001 505 14.18 0,000 24,401 Perrz 14,471 0.001 505 14.18 0,000 22,923 Perrz 35,441 0.003 5.041 0.043 0,000 22,923 Perrz 35,244 0.003 5.041 0.000 24,401 15,761 1.013 5.701 0.000 Perrz 36,722 0.027 7.62 34,676 0.000 29,163 1.714 36,08 1.50,761 0.015 35,761 1.013 1.53,16 6,000 1.574 1.03,15 0.000 1.574 1.044 3,262 0.000 1.574 0.001 5.06 64,204 0.000 1.574 1.044 3										-			-	39,951
Pe63 29,101 2,181 32,848 31,499 0,000 4,370 Pe64 22,737 3,082 12,666 32,115 0,000 23,881 P071 41,712 0,007 19,065 14,218 0,000 52,840 P071 14,471 0,007 19,065 14,218 0,000 52,240 P071 32,744 0,007 15,355 1,540 52,824 0,000 52,264 P074 32,048 0.001 6,766 37,418 0,000 23,8531 0,711 17,712 28,8531 0,000 52,866 0,000 51 1,442 0,8551 5,656 64,204 0,000 52,866 0,000 52,878 14,852 0,234 6,233 52,717 1,030 55,051 67,077 0,000 52,878 14,854 0,000 52,937 10,955 0,000 52,937 10,955 0,000 52,937 10,955 0,000 74,923 14,475 0,2372 14,482 3,62										-		-	-	37,545
Pe64 22.797 3.082 12.826 32.115 0.000 23.811 P071 14.1710 0.003 10.372 23.514 0.000 24.461 P071 14.1710 0.003 10.372 23.514 0.000 24.461 P073 52.484 0.003 5.041 0.000 24.240 P074 39.048 0.016 52.821 4.537 0.000 30.530 P084 4.538 0.016 52.821 4.537 0.000 24.721 P082 56.731 0.021 7.825 34.76 0.000 24.721 P084 32.844 0.016 5.35 8.441 0.000 24.721 P084 32.844 0.016 4.8726 0.014 5.767 0.025 P093 3.546 0.536 8.957 7.332 0.000 24.721 P094 32.449 0.001 6.288 3.2807 1.733 0.566 11.437 0.777 0.000 <													-	39,099 28,310
PP7/1 41,710 0.003 0.032 22,554 0.000 24,401 P07/2 14,471 0.007 19,066 14,218 0.000 52,240 P07/3 52,444 0.003 5,041 0.043 0.000 42,430 P07/4 32,044 0.016 62,219 4,537 0.000 64,243 P08/7 32,383 0.016 67,677 74,18 0.000 64,204 P08/7 35,336 0.011 6,076 37,418 0.000 24,521 P08/7 32,354 0.001 5,335 6,414 0.000 47,721 P08/4 32,684 0.001 5,2087 7032 0.004 52,087 P09/2 30,523 0.055 6,772 12,374 0.403 46,813 13,692 11,692 14,637 0.001 P10/2 11,545 0.001 8,229 11,718 0.000 74,282 13,783 0,556 11,692 14,637 0.000												-	-	28,310
PP772 14.471 0.007 19.065 14.218 0.000 52.240 P0773 32.444 0.003 5.041 0.043 0.000 42.430 P0774 39.048 0.016 5.021 4.537 0.000 42.430 P087 35.732 0.002 7.782 54.87 0.000 23.160 P087 45.533 0.004 6.076 37.418 0.000 24.721 P084 36.534 0.001 5.358 6.41 0.000 24.721 P084 35.624 0.016 14.278 0.000 74.935 P0947 30.548 0.536 8.957 7.832 0.004 52.061 P0947 31.456 0.001 8.533 1.178 0.000 78.200 P1042 11.352 0.001 5.276 12.736 0.000 78.200 P1042 12.366 0.000 5.078 3.791 0.000 78.202 P1141 31.664 <												-		35,249
PP73 52,484 0,003 5.041 0.043 0,000 42,480 P074 30,044 0,016 26,219 4,537 0,000 50,16 P0847 27,383 0.004 6,076 37,418 0,000 29,168 P0847 36,738 0,002 7,825 34,876 0,000 20,566 P0843 36,284 0,001 5,335 8,441 0,000 24,721 P0844 36,284 0,001 5,335 8,441 0,000 47,923 P0947 30,548 0,536 8,577 7.832 0,004 52,087 P0947 30,548 0,536 8,577 7.832 0,000 74,926 P1047 1,364 0,001 5,503 1,739 0,656 11,692 14,637 0,001 P1047 1,3245 0,000 5,513 1,2738 0,000 74,925 17,783 0,656 11,692 14,637 0,000 P1047 1,3,740											-	-		50,497
P07/4 39,048 0.016 62.219 4.537 0.000 30,180 15,301 67,077 0.000 15 P08/2 6,732 0.002 7,425 34,876 0.000 29,168 17,446 0.895 15,066 64,204 0.000 25,168 P08/3 46,533 0.003 8.822 19,915 0.000 24,721 13,574 1,320 52,27 10,955 0.000 24,849 3,526 0,000 23,489 3,626 0,000 24,849 3,526 0,000 23,499 0,000 23,499 0,000 14 17,446 0,895 11,632 1,432 23,499 0,000 23,499 0,000 14 13,636 1,132 0,000 3,133 1,000 52,817 13,877 0,000 54,813 14,637 0,001 14,637 0,001 14,637 0,001 14,637 0,001 14,637 0,001 14,637 0,001 14,637 0,001 14,637 0,001 14,637 0											-	-		31,302
P08/2 36,732 0.002 7,825 34,876 0,000 20,566 P08/3 46,539 0.003 8.822 19,915 0,000 24,721 11,432 0,370 24,849 3,626 0,000 3 P08/4 38,824 0.011 5335 8.441 0,000 47,939 P09/1 32,469 0.574 10,641 9,678 0,004 52,087 P09/2 30,586 0.556 8,987 7,832 0,004 52,087 P09/3 41,354 0,001 8,208 5336 0,000 78,200 P10/2 11,354 0,007 5,235 12,736 0,000 74,282 P11/2 9,106 1,000 12,356 2,364 0,000 74,282 P11/2 13,64 1,000 12,356 2,364 8,872 0,000 6,733 P11/1 35,661 10,001 12,356 2,366 0,8827 0,001 6,1636 P13/2		39,048	0,016	26,219	4,537	0,000	30,180	C13	5,701	0,130	15,301	67,077	0,000	11,791
P08/3 46,539 0.003 8.822 19.915 0.000 24,721 P08/4 32,849 0.01 5.35 8.441 0.000 47,939 P09/1 32,469 0.574 10.641 5.76 0.014 47,721 P09/2 30,584 0.538 8.957 7.832 0.004 52,087 P09/3 41,366 0.011 8.208 36,387 1,222 13,807 P09/4 35,631 0.050 5,728 12,737 0,403 44,813 P10/1 21,049 0.007 5,078 8,737 0,000 78,920 P10/2 11,219 0.007 5,578 0,000 78,920 P11/1 13,664 1.000 12,365 21,361 0,000 56,168 P11/2 9,106 1.000 12,365 21,361 0,000 65,320 P11/2 13,208 0,000 10,733 13,800 0,000 52,405 P12/2 13,793	P08/1	27,336	0,004	6,076	37,418	0,000	29,168	C14	17,446	0,895	15,056	64,204	0,000	2,399
P0844 38,284 0,001 6,335 8,441 0,000 47,933 P097 32,489 0,574 10,641 9,578 0,011 46,726 P0972 30,584 0,538 9,578 0,011 46,726 P0973 41,366 0,011 8,208 3,657 7,032 0,000 55,031 P1047 21,049 0,001 4,326 0,327 11,692 14,637 0,001 P1047 21,049 0,001 4,329 0,007 5,733 0,000 78,200 P1047 21,049 0,001 5,235 12,738 0,000 78,200 P1047 13,564 0,007 5,733 0,000 74,905 P1141 17,368 0,000 12,378 0,000 65,138 P1141 17,368 0,000 64,334 P127 35,257 0,000 13,318 3,070 0,004 3,277 P1343 15,613 0,484 0,000	P08/2	36,732	0,002	7,825	34,876	0,000	20,566	C15	11,432	0,370	24,849	3,626	0,000	59,722
P09/1 32,469 0,574 10,641 9,578 0,011 46,726 P09/2 30,584 0,536 8,957 7,832 0,004 52,087 P09/3 41,366 0.011 8,208 35,887 1,222 13,807 P09/4 35,622 0.059 6,728 12,374 0,403 44,813 P10/2 11,394 0.000 4,822 5,364 0,000 78,200 P10/2 11,394 0.000 4,822 5,364 0,000 78,200 P10/2 11,394 0.000 12,335 0,733 0,000 78,200 P10/2 13,00 0.568 5,373 0,000 58,181 P11/1 13,080 0,000 10,473 9,400 46,334 P11/2 13,080 0,000 10,474 0,000 53,203 P12/3 25,291 0,006 10,313 8,370 0,000 52,405 P13/3 15,661 0,433 12,626		46,539	0,003			0,000	24,721	C16		1,875	9,237	10,955	0,006	44,353
P09/2 30.584 0.636 8.957 7.832 0.004 52.087 P09/3 41,366 0.011 8.208 35.387 1,222 13.807 P09/4 43,665 0.001 8.232 11.118 0.000 59,503 P10/1 21,049 0,001 8.323 11.118 0.000 78,200 P10/3 12,129 0.007 5.038 7.832 0.000 74,282 P11/2 9.106 1.000 12,365 2.1361 0.000 56,588 P11/3 35,267 0.000 10.104 1.1474 0.000 56,588 P11/3 30,000 0.1014 1.1474 0.000 51,308 P12/1 20,000 10.168 10.4844 0.000 52,033 P13/1 16,61 0.416 16.819 14.844 0.000 52,033 P13/2 13,145 0.011 21.837 0.200 52,045 P13/3 15,626 0.000 52,777 13.45 0.001 23.27 P13/4 16,777 0.012<						0,000	47,939					-		34,368
P09/3 41,366 0,011 8,208 35,367 1,222 13,807 P09/4 35,623 0,059 6,728 12,374 0,403 44,813 P10/1 11,054 0,000 4,482 5,364 0,000 78,200 P10/2 11,354 0,007 5,078 8,791 0,000 74,905 P10/4 23,439 0,007 5,235 12,738 0,000 74,905 P11/1 13,664 1,000 12,365 21,381 0,000 74,282 P11/3 35,267 0,000 10,000 10,958 0,800 80,827 P11/3 13,664 1,000 10,41 11,474 0,000 46,334 P12/2 12,737 0,000 10,133 18,837 0,000 51,633 P13/2 13,145 0,011 11,837 12,608 0,000 52,405 P13/3 15,259 0,118 13,827 0,000 52,405 P13/3 15,268 0,001 12,255 16,422 0,000 12,255 P13/3								STAB	13,793	0,556	11,692	14,637	0,001	13,856
P09/4 35,623 0,059 6.728 12,374 0,403 44,813 P10/2 11,954 0,001 8,329 11,118 0,000 75,020 P10/2 11,219 0,007 5,073 8,791 0,000 74,905 P10/4 23,439 0,007 5,235 12,738 0,000 74,905 P11/2 3,006 12,365 21,361 0,000 56,168 P11/2 3,000 10,101 12,365 0,000 60,075 P12/1 32,088 0,000 10,104 11,474 0,000 46,334 P12/2 13,72 0,000 10,114 11,474 0,000 45,320 P13/1 16,661 0,043 16,819 14,844 0,000 52,405 P13/2 13,345 0,011 21,837 13,622 0,003 52,405 P13/3 15,259 0,012 23,177 13,622 0,003 52,048 P14/2 16,777 0,012<														
P10/1 21,049 0,001 8.329 11,118 0,000 59,503 P10/2 11,219 0,007 5.078 8.791 0,000 78,200 P10/3 11,219 0,007 5.235 12,738 0,000 74,905 P11/1 13,664 1,000 12,365 21,361 0,000 56,168 P11/2 9,106 1,000 12,365 21,361 0,000 56,168 P11/3 35,267 0,000 0,107 0,958 0,800 80,827 P12/2 13,172 0,000 10,163 10,880 0,000 60,795 P12/3 25,991 0,000 10,133 18,370 0,000 45,320 P13/1 15,661 0,001 13,112,600 0,000 52,405 P13/3 15,259 0,018 19,338 12,608 0,000 52,910 P14/1 12,061 0,002 22,071 13,822 0,003 52,085 P13/3 15,259 0,118 19,338 12,362 0,000 10,295														
P10/2 11,954 0,000 4,482 6,364 0,000 78,200 P10/4 12,3439 0,007 5,078 8,791 0,000 58,581 P11/4 13,664 1,000 5,686 5,373 0,000 56,168 P11/2 9,106 1,000 12,365 21,361 0,000 56,168 P11/2 9,106 1,000 12,365 21,361 0,000 48,412 P11/4 17,308 0,000 0,107 0.956 0,800 80,827 P12/1 32,687 0,000 10,175 10,880 0,000 60,735 P13/2 18,172 0,000 10,131 18,370 0,000 45,324 P13/2 13,145 0,011 21,837 12,602 0,000 52,065 P13/3 15,259 0,018 19,338 12,063 0,000 52,085 P14/2 16,777 0,012 23,177 12,362 0,000 12,325 P13/3 15,259 0,104 13,425 0,000 13,938 P15/2<														
P10/3 11,219 0,007 5,078 8,791 0,000 74,905 P10/4 23,439 0,007 5,235 12,738 0,000 58,581 P11/1 3,664 1,000 12,365 21,361 0,000 74,282 P11/2 9,106 1,000 12,365 21,361 0,000 48,412 P11/1 35,267 0,000 0,107 0.958 0.800 80,827 P12/1 32,088 0,000 10,104 11,474 0,000 46,334 P12/2 18,172 0,000 10,153 10,880 0,000 60,795 P13/3 15,661 0,043 16,819 14,844 0,000 51,633 P13/2 13,145 0,012 21,837 0,000 52,005 P13/3 15,259 0,018 13,312,608 0,000 52,015 P14/2 16,777 0,012 23,177 12,362 0,000 10,225 P14/3 16,489 0,154 28,571 16,442 0,000 10,225 P14/3 1														
P10/4 23,433 0,007 5,235 12,738 0,000 58,581 P11/1 13,664 1,000 12,366 21,361 0,000 56,168 P11/2 5,267 0,000 3,870 8,551 3,900 48,412 P11/4 17,308 0,000 0,107 0,958 0,800 80,827 P12/1 32,088 0,000 10,104 11,474 0,000 46,334 P12/2 18,172 0,006 10,133 10,880 0,000 60,795 P13/1 16,661 0,043 16,819 14,844 0,000 52,405 P13/2 13,145 0,011 21,837 12,602 0,000 52,777 P13/3 15,259 0,0154 17,272 13,074 0,000 10,295 P14/1 12,061 0,002 22,027 13,822 0,003 52,085 P14/2 16,777 0,112 23,177 12,362 0,000 10,295 P14/														
P11/2 9,106 1,000 12,365 21,361 0,000 56,168 P11/3 35,267 0,000 0,107 0,958 0,800 80,827 P12/1 32,088 0,000 0,107 0,958 0,800 80,827 P12/1 32,088 0,000 10,104 11,474 0,000 46,334 P12/2 13,172 0,000 10,131 18,370 0,000 45,320 P13/1 16,661 0,043 16,819 14,844 0,000 52,405 P13/2 13,145 0,011 21,837 12,602 0,000 52,405 P13/2 13,145 0,011 21,837 12,602 0,000 52,405 P13/2 13,145 0,011 21,837 12,602 0,000 52,405 P14/1 12,061 0,002 22,027 13,822 0,000 10,235 P14/2 16,777 0,012 23,177 12,362 0,000 13,938 P15/2 28,887 0,175 22,557 16,442 0,000 19,539														
P11/3 35,267 0,000 3,870 8,551 3,900 48,412 P11/4 17,308 0,000 0,107 0.958 0,800 80,827 P12/1 32,088 0,000 10,104 11,474 0,000 46,334 P12/2 18,172 0,000 10,153 10,880 0,000 60,795 P13/1 16,661 0,043 16,819 14,844 0,000 51,633 P13/2 13,145 0,011 21,837 12,602 0,000 52,405 P13/3 15,259 0,018 19,338 12,608 0,000 52,910 P14/1 12,061 0,002 22,027 13,822 0,003 52,085 P14/2 16,777 0,012 23,177 12,362 0,000 10,295 P15/1 35,440 0,002 18,022 17,373 0,000 19,599 P15/3 47,545 0,708 16,057 16,091 0,000 19,599 P16/3 37,680 0,001 14,955 10,984 0,000 40,880 <td>P11/1</td> <td>13,664</td> <td>1,000</td> <td>5,680</td> <td>5,373</td> <td>0,000</td> <td>74,282</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	P11/1	13,664	1,000	5,680	5,373	0,000	74,282							
P11/4 17,308 0,000 0,107 0.958 0,800 80,827 P12/1 32,088 0,000 10,104 11,474 0,000 46,334 P12/2 18,172 0,000 10,153 10,880 0,000 60,795 P12/3 25,991 0,006 10,313 18,370 0,000 45,320 P13/1 16,661 0,043 16,819 14,844 0,000 51,633 P13/2 13,145 0,011 21,837 12,602 0,000 52,405 P13/3 15,259 0,018 19,338 12,608 0,000 52,777 P13/4 9,670 0,054 17,292 13,074 0,000 52,085 P14/1 12,061 0,002 22,027 13,822 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,175 22,557 16,442 0,000 19,599 P15/4 31,726 0,001 14,955 10,984 0,000 40,880 <td>P11/2</td> <td>9,106</td> <td>1,000</td> <td>12,365</td> <td>21,361</td> <td>0,000</td> <td>56,168</td> <td></td> <td>Bac.%</td> <td></td> <td>Bacteroid</td> <td>es %</td> <td></td> <td></td>	P11/2	9,106	1,000	12,365	21,361	0,000	56,168		Bac.%		Bacteroid	es %		
P12/1 32,088 0,000 10,104 11,474 0,000 46,334 P12/2 18,172 0,000 10,153 10,880 0,000 60,795 P12/3 25,991 0,006 10,313 18,370 0,000 45,320 P13/1 16,661 0,043 16,819 14,844 0,000 52,405 P13/2 13,145 0,011 21,837 12,608 0,000 52,405 P13/3 15,259 0,018 19,338 12,608 0,000 52,777 P13/4 9,670 0,054 17,292 13,074 0,000 59,910 P14/1 12,061 0,002 22,027 13,822 0,003 52,085 P14/2 16,777 0,112 23,177 12,362 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,175 22,567 16,442 0,000 19,599 P15/4 37,768 0,001 15,200 13,227 0,001 33,903 <	P11/3	35,267	0,000	3,870	8,551	3,900	48,412		Bif.%		Bifidobac	teria %		
P12/2 18,172 0,000 10,153 10,880 0,000 60,795 P12/3 25,991 0,006 10,313 18,370 0,000 45,320 P13/1 16,661 0,043 16,819 14,844 0,000 51,633 P13/2 13,145 0,011 21,837 12,602 0,000 52,405 P13/3 15,259 0,018 19,338 12,602 0,000 52,405 P14/1 12,061 0,002 22,027 13,822 0,003 52,085 P14/2 16,777 0,012 23,177 12,362 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,715 22,557 16,442 0,000 19,399 P15/3 47,545 0,708 16,077 10,984 0,000 43,903 P15/2 28,883 0,001 14,801 13,101 0,000 45,205 P16/3 26,883 0,000 14,801 13,101 0,000 45,205		17,308	0,000	0,107	0,958	0,800	80,827		c.cl.iv%	6	Clostridiu	m Cluster IV	%	
P12/3 25,991 0,006 10,313 18,370 0,000 45,320 P13/1 16,661 0,043 16,819 14,844 0,000 51,633 P13/2 13,145 0,011 21,837 12,602 0,000 52,405 P13/3 15,259 0,018 19,338 12,608 0,000 52,777 P13/4 9,670 0,054 17,292 13,074 0,000 59,910 P14/1 12,061 0,002 22,027 13,822 0,003 52,085 P14/2 16,777 0,012 23,177 12,262 0,000 47,672 P14/3 46,489 0,154 28,513 14,549 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 31,938 P15/2 28,887 0,778 16,057 16,910 0,000 19,599 P15/4 31,726 0,114 11,433 12,713 0,000 44,014 P16/1 37,668 0,001 14,955 10,984 0,000 44,034 <													Va %	
P13/1 16,661 0,043 16,819 14,844 0,000 51,633 P13/2 13,145 0,011 21,837 12,602 0,000 52,405 P13/3 15,259 0,018 19,338 12,608 0,000 52,777 P13/4 9,670 0,054 17,292 13,074 0,000 59,910 P14/1 12,061 0,002 22,027 13,822 0,003 52,085 P14/2 16,777 0,012 23,177 12,362 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,175 22,657 16,442 0,000 19,599 P15/3 47,545 0,708 16,057 16,091 0,000 40,880 P16/2 33,180 0,001 14,955 10,984 0,000 42,124 P17/1 18,951 0,000 12,374 14,582 0,000 54,093 P16/2 28,883 0,001 14,019 19,384 0,000 55,720 <						-								
P13/2 13,145 0,011 21,837 12,602 0,000 52,405 P13/3 15,259 0,018 19,338 12,608 0,000 52,777 P13/4 9,670 0,054 17,292 13,074 0,000 59,910 P14/1 12,061 0,002 22,027 13,822 0,003 52,085 P14/2 16,777 0,012 23,177 12,362 0,000 47,672 P14/3 46,489 0,154 28,513 14,549 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,175 22,557 16,442 0,000 31,938 P15/3 47,545 0,708 16,057 16,091 0,000 19,599 P15/4 31,726 0,114 11,433 12,713 0,000 40,880 P16/2 33,180 0,001 15,200 13,227 0,001 33,903 P16/2 33,180 0,001 14,955 10,984 0,000 40,880 <									unident	ified%	unidentif	ied species 8	Ś.	
P13/3 15,259 0,018 19,338 12,608 0,000 52,777 P13/4 9,670 0,054 17,292 13,074 0,000 59,910 P14/1 12,061 0,002 22,027 13,822 0,003 52,085 P14/2 16,777 0,012 23,177 12,362 0,000 47,672 P14/3 46,489 0,154 28,513 14,549 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,175 22,557 16,442 0,000 31,938 P15/3 47,545 0,708 16,057 16,091 0,000 19,599 P15/4 31,726 0,114 11,433 12,713 0,000 44,014 P16/1 37,668 0,001 15,200 13,227 0,001 33,903 P16/2 33,180 0,001 14,955 10,984 0,000 40,880 P16/3 26,883 0,009 14,801 13,101 0,000 45,205 <														
P13/4 9,670 0,054 17,292 13,074 0,000 59,910 P14/1 12,061 0,002 22,027 13,822 0,003 52,085 P14/2 16,777 0,012 23,177 12,362 0,000 47,672 P14/3 46,489 0,154 28,513 14,549 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,175 22,557 16,442 0,000 31,938 P15/3 47,545 0,708 16,057 16,091 0,000 19,599 P15/4 31,726 0,114 11,433 12,713 0,000 40,880 P16/1 37,668 0,001 15,200 13,227 0,001 33,903 P16/2 33,180 0,001 14,955 10,984 0,000 40,880 P16/3 26,883 0,009 14,801 13,101 0,000 45,205 P16/4 24,631 0,000 12,374 13,450 0,000 55,720 <														
P14/1 12,061 0,002 22,027 13,822 0,003 52,085 P14/2 16,777 0,012 23,177 12,362 0,000 47,672 P14/3 46,489 0,154 28,513 14,549 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,175 22,557 16,442 0,000 31,938 P15/3 47,545 0,708 16,057 16,091 0,000 19,599 P15/4 31,726 0,114 11,433 12,713 0,000 44,014 P16/1 37,668 0,001 15,200 13,227 0,001 33,903 P16/2 33,180 0,001 14,955 10,984 0,000 40,880 P16/3 26,883 0,009 14,801 13,101 0,000 45,205 P16/4 24,631 0,004 19,791 13,450 0,000 55,720 P17/1 18,951 0,004 11,578 16,824 0,000 55,720						-								
P14/2 16,777 0,012 23,177 12,362 0,000 47,672 P14/3 46,489 0,154 28,513 14,549 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,175 22,557 16,442 0,000 31,938 P15/3 47,545 0,708 16,057 16,091 0,000 19,599 P15/4 31,726 0,114 11,433 12,713 0,000 44,014 P16/1 37,668 0,001 15,200 13,227 0,001 33,903 P16/2 33,180 0,001 14,955 10,984 0,000 40,880 P16/3 26,883 0,009 14,801 13,101 0,000 45,205 P16/4 24,631 0,004 19,791 13,450 0,000 42,124 P17/1 18,951 0,004 19,791 13,450 0,000 55,720 P17/2 10,876 0,001 14,019 19,384 0,000 55,720			-			-								
P14/3 46,489 0,154 28,513 14,549 0,000 10,295 P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,175 22,557 16,442 0,000 31,938 P15/3 47,545 0,708 16,057 16,091 0,000 19,599 P15/4 31,726 0,114 11,433 12,713 0,000 44,014 P16/1 37,668 0,001 15,200 13,227 0,001 33,903 P16/2 33,180 0,001 14,955 10,984 0,000 40,880 P16/3 26,883 0,009 14,801 13,101 0,000 45,205 P16/4 24,631 0,004 19,791 13,450 0,000 42,124 P17/1 18,851 0,000 12,374 14,582 0,000 55,720 P17/2 10,876 0,001 14,019 19,384 0,000 55,720 P17/4 18,584 0,004 11,578 16,824 0,000 55,248						-								
P15/1 35,440 0,042 18,082 17,373 0,000 29,063 P15/2 28,887 0,175 22,557 16,442 0,000 31,938 P15/3 47,545 0,708 16,057 16,091 0,000 19,599 P15/4 31,726 0,114 11,433 12,713 0,000 44,014 P16/1 37,668 0,001 15,200 13,227 0,001 33,903 P16/2 33,180 0,001 14,955 10,984 0,000 40,880 P16/3 26,883 0,009 14,801 13,101 0,000 45,205 P16/4 24,631 0,004 19,791 13,450 0,000 42,124 P17/1 18,951 0,004 19,791 13,450 0,000 42,124 P17/1 18,951 0,000 12,374 14,582 0,000 55,720 P17/2 10,876 0,001 14,019 19,384 0,000 55,720 P17/4 18,584 0,004 11,578 16,824 0,000 55,248														
P15/3 47,545 0,708 16,057 16,091 0,000 19,599 P15/4 31,726 0,114 11,433 12,713 0,000 44,014 P16/1 37,668 0,001 15,200 13,227 0,001 33,903 P16/2 33,180 0,001 14,955 10,984 0,000 40,880 P16/3 26,883 0,009 14,801 13,101 0,000 45,205 P16/4 24,631 0,004 19,791 13,450 0,000 42,124 P17/1 18,951 0,000 12,374 14,582 0,000 55,720 P17/2 10,876 0,001 11,578 16,824 0,000 59,433 P17/4 18,584 0,004 11,558 14,606 0,000 55,248 MW 25,97 0,80 16,30 18,34 0,10 38,49	P15/1	35,440	0,042	18,082		0,000	29,063							
P15/4 31,726 0,114 11,433 12,713 0,000 44,014 P16/1 37,668 0,001 15,200 13,227 0,001 33,903 P16/2 33,180 0,001 14,955 10,984 0,000 40,880 P16/3 26,883 0,009 14,801 13,101 0,000 45,205 P16/4 24,631 0,004 19,791 13,450 0,000 42,124 P17/1 18,951 0,000 12,374 14,582 0,000 55,720 P17/2 10,876 0,004 11,578 16,824 0,000 59,433 P17/4 18,584 0,004 11,558 14,606 0,000 55,248 MW 25,97 0,80 16,30 18,34 0,10 38,49			0,175			0,000	31,938							
P16/1 37,668 0,001 15,200 13,227 0,001 33,903 P16/2 33,180 0,001 14,955 10,984 0,000 40,880 P16/3 26,883 0,009 14,801 13,101 0,000 45,205 P16/4 24,631 0,004 19,791 13,450 0,000 42,124 P17/1 18,951 0,000 12,374 14,582 0,000 54,093 P17/2 10,876 0,001 14,019 19,384 0,000 55,720 P17/3 12,162 0,004 11,578 16,824 0,000 59,433 P17/4 18,584 0,004 11,558 14,606 0,000 55,248 MW 25,97 0,80 16,30 18,34 0,10 38,49														
P16/2 33,180 0,001 14,955 10,984 0,000 40,880 P16/3 26,883 0,009 14,801 13,101 0,000 45,205 P16/4 24,631 0,004 19,791 13,450 0,000 42,124 P17/1 18,951 0,000 12,374 14,582 0,000 54,093 P17/2 10,876 0,001 14,019 19,384 0,000 55,720 P17/3 12,162 0,004 11,578 16,824 0,000 59,433 P17/4 18,584 0,004 11,558 14,606 0,000 55,248 MW 25,97 0,80 16,30 18,34 0,10 38,49														
P16/3 26,883 0,009 14,801 13,101 0,000 45,205 P16/4 24,631 0,004 19,791 13,450 0,000 42,124 P17/1 18,951 0,000 12,374 14,582 0,000 54,093 P17/2 10,876 0,001 14,019 19,384 0,000 55,720 P17/3 12,162 0,004 11,578 16,824 0,000 59,433 P17/4 18,584 0,004 11,558 14,606 0,000 55,248 MW 25,97 0,80 16,30 18,34 0,10 38,49														
P16/4 24,631 0,004 19,791 13,450 0,000 42,124 P17/1 18,951 0,000 12,374 14,582 0,000 54,093 P17/2 10,876 0,001 14,019 19,384 0,000 55,720 P17/3 12,162 0,004 11,578 16,824 0,000 59,433 P17/4 18,584 0,004 11,558 14,606 0,000 55,248 MW 25,97 0,80 16,30 18,34 0,10 38,49														
P17/1 18,951 0,000 12,374 14,582 0,000 54,093 P17/2 10,876 0,001 14,019 19,384 0,000 55,720 P17/3 12,162 0,004 11,578 16,824 0,000 59,433 P17/4 18,584 0,004 11,558 14,606 0,000 55,248 MW 25,97 0,80 16,30 18,34 0,10 38,49			-											
P17/2 10,876 0,001 14,019 19,384 0,000 55,720 P17/3 12,162 0,004 11,578 16,824 0,000 59,433 P17/4 18,584 0,004 11,558 14,606 0,000 55,248 MW 25,97 0,80 16,30 18,34 0,10 38,49			-											
P17/3 12,162 0,004 11,578 16,824 0,000 59,433 P17/4 18,584 0,004 11,558 14,606 0,000 55,248 MW 25,97 0,80 16,30 18,34 0,10 38,49														
P17/4 18,584 0,004 11,558 14,606 0,000 55,248 MW 25,97 0,80 16,30 18,34 0,10 38,49														
MW 25,97 0,80 16,30 18,34 0,10 38,49														
	MVV		0,80											
STAB 12,21 1,39 9,40 12,17 0,51 19,01	STAB	12,21	1,39	9,40	12,17	0,51	19,01							

 Table 9:
 Relative numbers of bacterial subgroups

As illustrated in figure 10 patients under chemotherapeutical administration showed significantly less *Clostridium* cluster *XIVa* (p = 0,021) than healthy individuals. The other observed subgroups showed no statistically significant difference between oncology patients and healthy subjects.

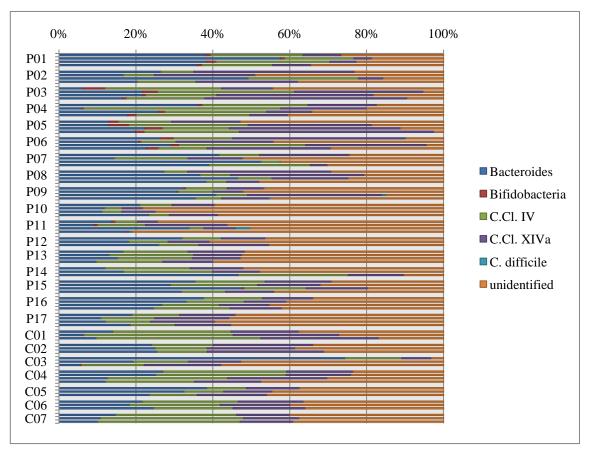
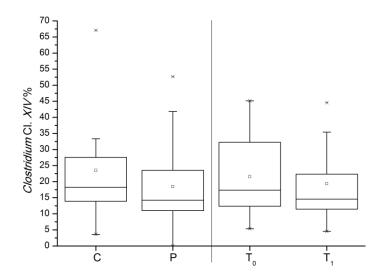



Figure 9: Percentages of bacterial subgroups in relation to analyzed bacteria

Figure 10 shows that the mean percentage of *Clostridium* cluster *XIVa* decreased after bouts of chemotherapy. Before chemotherapy the mean proportion of *Clostridium* cluster *XIVa* was 22 \pm 13% compared to 19 \pm 12% after chemotherapeutical treatments.

Figure 10: Relative abundances of *Clostridium* Cluster *XIVa* in oncology patients compared to healthy controls and before and after chemotherapeutic cycles as percentage of total bacterial DNA. P, oncology patients; C, healthy controls; T_o , before chemotherapy; T_1 , 1-2d after chemotherapy

Oncology patients harbored $26 \pm 11\%$, $1.4 \pm 2\%$ and $16 \pm 9\%$ of *Bacteroides*, bifidobacteria and *Clostridium* cluster *IV* before chemotherapy and $28 \pm 14\%$, $0.5 \pm 1.2\%$ and $18 \pm 12\%$ after cycles of chemotherapy. The differences were not significant.

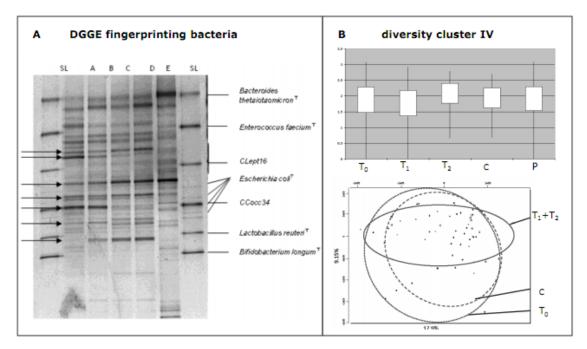
We tried to find out whether a chemotherapeutic and/or antibiotic disruption of the microbiota favors the growth of pathogens by investigating all samples for pathogenic *Clostridium difficile*. In three out of seventeen patients (18%) receiving chemotherapeutic \pm antibiotic treatment *Clostridium difficile* was found (P09, P11, P14), especially subject P09 and P11 harbored considerable numbers. Patient P09 harbored *C. difficile* in all four samples investigated. The mean percentage of *C. difficile* in this subject over all four points in time was 0.4 \pm 0.7%, the highest number was recorded at time point T1 (P09/3), which was taken immediately after a bout of chemotherapy and a treatment with antibiotics. Also in patient 11 and patient 14 a colonization with *C. difficile* was

found after chemotherapeutic intervention. (P11: 3,90%, P14: 0,003% of all analzyed bacteria). Sample P09/1, P09/3, P11/1 and P11/3 at time points T0 and T1 of patients P9 and P11 were further analyzed by 454 sequencing. Small amounts of *C. difficile* were also found in three other patients, but they were below the detection limit. Except for C16 with a proportion of 0,006% of all bacteria, healthy controls didn't harbor *C. difficile*.

9.3. DGGE bandpattern analysis

DGGE fingerprinting analyses of total bacteria, *Clostridium* cluster *IV* and *Clostridium* cluster *XIVa* point out a high diversity of fecal microbiota between individuals. Table 9 shows the mean number of bands per oncology patient and healthy control.

Oncology patients		Healthy controls			
Mean number			Mean number		
Bacterial group	of bands	Bacterial group	of bands		
All bacteria	19 ± 4	All bacteria	19 ± 3.5		
Clostridium cluster IV	14 ± 6	Clostridium cluster IV	12 ± 5		
Clostridium cluster XIVa	14.9 ± 7	Clostridium cluster XIVa	18.9 ± 7		


 Table 10: Mean number of bands in study population analyzed with PCR

 DGGE and GelCompareII

The number of *Clostridium* cluster *IV* bands before chemotherapy (T0) was 14 \pm 7, whilst immediately after chemotherapy (T1) the number declined to 10 \pm 6. At time point T2 meaning a few days after chemotherapy the number of bands increased to 15 \pm 6. The dataset was subjected to principal component analysis (PCA), which extracts underlying components of samples according to their variance.

Figure 11 A displays the bacterial fingerprints of sample P01 over the course of time. Figure 11 B illustrates the Shannon diversity index of *Clostridium* cluster *IV* fingerprints, indicating characteristics before and after chemotherapy in oncology patients compared with the healthy control group. DGGE fingerprints

of individuals show smaller variability in PCA analysis after chemotherapy (T1 and T2) compared to healthy controls (C) and patients before onset of treatment (T0). PCA resulted in distinctive clustering of band patterns before and after chemotherapy [ZWIELEHNER, 2010].

Figure 11A: Changes of PCR-DGGE fingerprinting of 16S rRNA coding regions of dominant bacteria after chemotherapeutic treatment. Arrows indicate nearly disappearing or stronger bands. A, B, C and D, samples of ON001 after chemotherapy; E, healthy control; SL, standard lane

11B: Shannon diversity index of *Clostridium* cluster *IV* fingerprinting and PCA [ZWIELEHNER, 2010]

9.4. High throughput sequencing

As shown in figure 12 454 sequencing showed a severe decrease of *Faecalibacterium spp.* as well as lactobacilli, *Veillonella spp.,* bifidobacteria (in P09) and *E.coli / Shigella* immediately after chemotherapy in oncology patients P09 and P11.

P09 additionally received concomitant antibiotics. Especially *Faecalibacterium spp.* was strongly reduced from 9.5% and 8.3% to 0.07% and 0.00%,

Actinobacteria	genus	PO	P09	P11-	P11-
	Bifidobacterium			СС	
	Eggerthella				
Firmicutes	unclassified Firmicutes				
	Enterococcus				
	Lactobacillus				
	Erysipelotrichaceae				
	unclassified Clostridiales				
	Blautia				
	Parvimonas				
	unclassified Ruminococcaceae		10 33 10 33		
	Faecalibacterium				
	Butyricicoccus				
	Subdoligranulum				
	unclassified Lachnospiraceae				
	Coprococcus				
	Dorea				
u	nclassified Peptostreptococaceae				
	Veillonella				
	Megasphaera				
	Eubacterium			1	
	Clostridium				
Bacteroidetes	Unclassified Bacteroidales				T
	Alistipes				
	Bacteroides				
	Butyricimonas				
	Parabacteroides				
Proteobacteria	Sutterella			с» 	
	Sphingomonas				
	unclassified Enterobacteriaceae				
	Escherichia/ Shigella				
Verrucomicrobia	Akkermansia	0 ,0			

Figure 12: Heatmap showing abundances within the 454 sequencing dataset on the genus level. Species with abundance <0.01% of all sequences are not shown. [ZWIELEHNER et al., 2011]

respectively. In contrast Enterococcus faecium increased after chemotherapy in both individuals. Furthermore, a strong increase in sequences within the Peptostreptococcaceae towards sequences 98.9-100% similar to $C.difficile^{T}$ occurred: Clostridium bartletti related sequences (98.1-100% similarity) were only detected in fecal samples taken before chemotherapy (T0). Immediately chemotherapy after (T1), 63 sequences 98.9-100% similar to C.difficile appeared in samples P11 and P09, they are shown as 'unclassified Peptostreptococcaceae' in figure 12.

Further less abundant sequences appeared that were not detected before treatment: Eggerthella, Megasphaera, Parvimonas. Anaerostipes, Eubacterium, Anaerococcus. Methylobacterium, Holdemania, Turicibacter, Akkermansia, Sutterella (in P09), Sphingomonas, Anaerotruncus. Coprococcus, Streptococcus and Dorea. The number of Blautia

species in *C.* cluster *XIVa* remained constant before and after chemotherapeutic treatment.

10. DISCUSSION

Chemotherapeutic regimen and administration of antibiotics cause severe side effects in oncology patients, which often result in life threatening complications and increase the cost of health services. Diarrhea and constipation are common harmful secondary effects, furthermore mucositis is a major problem induced by the cytotoxic effects of cancer therapy and radiotherapy [GIBSON et al., 2006; STRINGER et al., 2007]. Chemotherapeutic and antibiotic use increases the risk of infection and overgrowth with potential pathogenic species such as *C. difficile* by interfering with the composition of the native gut microbiota [VAN VLIET et al. 2009].

In this study we investigated how the gastrointestinal microbiota of oncology patients was affected during cycles of chemotherapy (\pm antibiotic administration). We evaluated the shifts of the microbial ecosystem following chemotherapy and antiobiotic treatment and tried to assess if the microbiota was able to recover fully after therapy. Special focus was on the abundance on potential pathogenic *C. difficile*.

10.1. Material and Methods

The majority of the **study population** had a longer history of different chemotherapy treatment regimes over the course of several years. Only two study participants (P01 and P08) had never received any cancer therapy before. The results in this study illustrate changes due to a single bout of chemotherapy, but the observed shifts in microbiota are likely to be affected by previous cycles. For this reason, the results cannot rule out, that observed changes are influenced by previous therapies. For example, cancer patients showed a significantly lower abundance of total bacteria numbers, which could be the result of previous treatments.

Furthermore the treatments were different and they suffered from a variety of malignancies. Six oncology patients also received antibiotics, which poses the risk to falsely interpret the effects of antibiotic treatment as effects of

chemotherapy. However, they showed a similar response to chemotherapy like the rest of the study group, so it can be hypothesized that the disbalance of the gut microbiota was caused by the chemotherapeutic intervention itself. Three patients (P12, P13 and P17) suffered from different kinds of cancer of the intestine. A recent work observed a composition change in the microbiota of colon cancer patients [SOBHANI et al., 2011]. This fact should be considered in future investigations.

The human gastrointestinal tract is colonized by autochthonous microbiota [WANG et al., 2003]. The bacterial communities found at different sites of the intestine vary significantly, especially when comparing samples of upper GI-tract with samples from the lower intestine [PASTER et al., 2001; PEI et al., 2004). It was postulated in previous works that the fecal microbiota consists of shed mucosal bacteria and a separate nonadherent luminal population [ECKBURG et al., 2005]. While further studies suggested that fecal samples do not necessarily represent the microbial populations in other parts of the gastrointestinal tract [WANG et al., 2003; ZOETENDAL et al., 2002], a recent work of Van der Waaij et al. showed that the composition of the bacterial microbiota present in the feces was similar to that at the mucus layer of the terminal ileum and colon regions. Furthermore they did not observe direct contact between epithelial cells and bacteria, which suggested that there is no specific mucus-adherent microbiota [VAN DER WAAIJ et al., 2005].

Due to the inaccessibility of human intestinal tract we chose fecal samples for our investigations, even though the fecal microbiota might differ from the adherent microbiota, which can only be assessed by colonic biopsies. Compared to biopsies, fecal samples are easy to collect, less invasive and do reflect changes in microbial population composition of the gut [TURRONI et al., 2008].

Stool samples were frozen prior to DNA extraction, which is widely used in metagenomic studies. However, a recent work observed that freezing may affect the community composition. In this study the *Firmicutes* to *Bacteroidetes*

16S rRNA gene ratio was significantly higher in stool samples that had been frozen compared to identical samples that had not been [BAHL et al., 2012].

Previous works have done research on the effects of chemotherapeutic treatment ± antibiotic use on the intestinal microbiota [VAN DER WAAIJ, 1984; STRINGER et al., 2008]. The majority of these earlier studies applied culture dependent methods, which were common practice before the development of molecular detection methods. Fecal microbiota was monitored and identified mainly by cultivation on selective growth medium and other culture dependent methods, which are limited in assessing entire microbial populations because a large fraction of gastrointestinal bacteria has never been cultured and escapes detection. The implementation of culture-independent approaches to study the microbial gut composition has made it possible to assess the host's intestinal microbiota independent of culturing techniques and thus, broadened our knowledge of the diversity of species present in the gastrointestinal microbiota [MUYZER et al. 1993, MUYZER, 1999]. The investigation of rRNA as a molecular clock has become established for phylogeny and classification of microbes and the 16SrRNA gene harbours sufficient variable region of identification and differentiation of specific species [ZOETENDAL et al., 2006].

In this study a combination of **16S rRNA based molecular methods** was applied. Real time quantitative PCR was used for relative and absolute quantification of all bacteria, *Bacteroides*, bifidobacteria, *Clostridium* cluster *IV*, *Clostridium* cluster *XIVa* and *Clostridium difficile*. Although PCR is a highly sensitive and specific technique, all PCR-based methods are affected by bias, induced among others by rehybridisation of PCR products or different primer binding energy. To ensure an accurate and successful qPCR assay, in this work specificity of all PCR reactions was confirmed using target and non-target DNA and sensitivity of all PCR reactions was determined with 10 fold dilutions of standard curve DNA. Furthermore, clone libraries were constructed and the obtained sequences allowed an estimate of the primer specificity.

Species richness and diversity was assessed using **PCR-DGGE fingerprinting**. Each lane of the PCR-DGGE gel displays a microbial fingerprint of a stool sample; within a lane each band usually represent one bacterial species, although it also happens that different species are represented by the same band [VAN VLIET et al., 2009] or one bacterial strain form several bands. Latter is associated with species including multiple 16S rRNA operons, e.g. *E.coli*. Limitations of DGGE technique in analysis microbial communities have been previously described [MUYZER et. al, 1998].

DNA sequencing is used for determining the DNA sequence meaning the order of the nucleotides bases (A, G, C, T) in a DNA molecule. Demand for DNA sequence information has never been greater, since earlier commonly used Sanger technology is too costly, time consuming, and labor intensive to meet this ongoing demand [METZKER, 2005]. There is a coming of several new high-throughput technologies, all having in common the demand for low cost sequencing with parallelization of the sequencing process in order to produce thousands or millions of sequences at once. Pyrosequencing itself is no high throughput sequencing technology but provides the basis for 454 sequencing. In contrast to Sanger sequencing which relies on chain termination with dideoxynucleotides pyrosequencing is based on the detection of pyrophosphate release during DNA synthesis. High-throughput molecular technologies can profile microbial populations at high resolution even in complex environments like the gastrointestinal tract. To gain a decent accuracy it is important to minimize the amplification bias and to select sequencing primers and variable 16S rRNA gene regions with great care [CLAESSON et al., 2010].

10.2. Results

The results show significant effects of chemotherapy and antibiotic treatment on the intestinal microbiota. The absolute abundance of bacteria was significantly lower in patients under chemotherapeutic administration than in healthy controls, which is in agreement with previous studies [VAN VLIET et al., 2009]. The numbers of bacterial subgroups changed together with total bacteria both in patients with and without antibiotics. To consider the high individual variations both test and healthy control group were observed over a course of time, thus significant differences were also shown among absolute numbers of microbiota of several sampling times: the total bacteria load in different points of time in healthy controls followed a lognormal distribution in contrast to the shifts in oncology patients. Fecal microbiota of patients with cycles of chemotherapy decreased significantly more between two time points than healthy controls. Furthermore, numbers of total bacteria, bifidobacteria, *Bacteroides*, and *Clostridium* cluster *IV* were significantly lower directly after cycles of chemotherapy (T₁). In contrast, increased relative counts of *Bacteroides spp*. could be observed in patients undergoing chemotherapeutical treatment, which is in agreement with previous results [NYHLEN et al., 2002]. Nyhlen et al. also reported increased counts of yeasts in patients, but yeasts were not subject of this study.

After the end of chemotherapeutic treatment the abundance of fecal microbiota went back to normal levels within a few days. Six patients even showed a "rebound effect" within the recovery phase with a short lived increase of total bacteria to higher amounts than in the beginning. All patients with fever (P01/4, P08/2, P09/2) showed an increase of total fecal microbiota. Fever in immunocompromised patients is the principal and sometimes the only manifestation of serious infection [PIZZO, 1999], which might be due to increased numbers of pathogenic species in the gut or an overall bacteria overgrowth.

Species richness decreased immediately after a chemotherapeutic cycle. Especially *Clostridium* cluster *IV* was affected with a number of 14 ± 6.7 different bands before chemotherapy (T0) decreasing to 10 ± 6.6 bands shortly after (T1). Even after recovering to 15 ± 6.6 bands later, PCA observed a persisting different composition of *Clostridium* cluster *IV* species.

PCR DGGE analysis revealed that no significant differences existed in fingerprints of all bacteria in patients with or without antibiotic treatment. *Clostridium* cluster *XIVa* showed a decreased number of bands, but differences were not significant. Results indicate that the observed changes might be either due to chemotherapy itself or additional effects. This finding is in line with data from literature showing additional effects of chemotherapy in cases under antibiotic treatment [VAN VLIET et al., 2009]. Abundance of *Clostridium* cluster *IV* did not differ significantly under antibiotic use, while the diversity did decrease. Principal component analysis of PCR DGGE fingerprints showed grouping of patients under antibiotic treatment.

High-throughput sequencing

Our qPCR results showed that the emergence of C. difficile in oncology patients P09 and P11 in point in time T01 immediately after chemotherapy went along with a decline of the genera Bifidobacterium, Lactobacillus and Clostridium cluster IV. These samples were of special interest for us and therefore submitted to 454 barcode sequencing. Results indicated a dramatically decrease of sequences attributable to F. prausnitzii from 9% to zero. F. prausnitzii is a commensal antiinflammatory bacterium of the human gut flora. Low levels of *F. prausnitzii* may be associated with Crohn's disease [SOKOL et al., 2008]. After chemotherapy facultativ pathogenic Enterococcus faecium increased and further less abundant sequences appeared that were not detected before treatment: Eggerthella, Megasphaera, Parvimonas. Anaerostipes, Eubacterium, Anaerococcus, Methylobacterium, Holdemania, Turicibacter. Akkermansia. Sutterella. Sphingomonas, Anaerotruncus. Coprococcus, Streptococcus and Dorea. Propionate producing Megasphaera spp. and butyrate-producers Anaerostipes caccae and Eubacterium hallii utilize lactat [FLYTHE et al., 2010; MARQUET et al., 2009]. Marguet et al. suggested that A. caccae and E. hallii compete for lactate with sulfate-reducing bacteria and high concentrations of sulfate in the gut epithelium may contribute to bowel disease. Microorganisms of the genus Methylobacterium are gram negative, facultative methylotrophic, and ubiquitous in nature. They rarely cause human

disease, mainly only in subjects with preexisting causes of immune depression [FANCI et al., 2010]. Fanci et al. decribed an unusual Methylobacterium fujisawaense infection in a patient with acute leukaemia undergoing hematopoietic stem cell transplantation. Poorly known Turicibacter spp. was previously found in weaned piglets and is known to be susceptible to the growth-promoting antibiotic chlortetracycline [RETTEDAL et al., 2009]. In humans the genus Turicibacter has been found in the ileal pelvic pouch of a former ulcerative colitis patient [FALK et al., 2007]. Akkermansia muciniphila, a anaerobic bacterium belonging to the Verrucomicrobia, is specialized in the degradation of mucin, the glycoprotein present in mucus, and is found in high numbers in the intestinal tract of human and other mammalian species. A. muciniphila is suggested to modulate pathways involved in establishing homeostasis for basal metabolism and immune tolerance toward commensal microbiota [DERRIEN et al., 2011]. Dorea spp. are members of the Clostridium coccoides rRNA group of organisms and are mucosa-associated bacteria of the human gastrointestinal tract [TARAS et al. 2002; NOMURAS et al., 2005].

Further research will have to show if the growth of *Clostridium difficile* is associated with the decline of *Lactobacillus spp., Bifidobacterium spp.* and *Clostridium cluster IV*, especially if there is a causal relationship to the decrease of *Faecalibacterium prausnitzii*. Also, the emergence of *C. difficile* might result in a increase of mucus degrading bacteria such as *Akkermansia muciniphila*. Mucus hypersecretion is a common symptom of bacterial infections of the gut epithelium, irritable bowel syndrome and ulcerative colitis. [GOODMAN et al., 1977; GUIMEAU et al., 2008].

In previous studies it has been shown that chemotherapeutic treatment is associated with a decrease in the microbial diversity and a decline of total bacterial counts. Moreover, research has shown that decreasing species richness coincides in time with the development of severe chemotherapy-induced mucositis [VAN VLIET et al., unpublished data]. We observed shifts in species composition especially in *Clostridium* cluster *IV*, additionally affected by

antibiotics. We conclude that antimicrobial treatment significantly reduces the diversity of *Clostridium* cluster *IV*. Further research is needed to observe possible effects of shifts in the gastrointestinal microbiota regarding infection, inflammation and the development and maintenance of mucosal barrier function. Further investigations will also have to show the clinical relevance of restoring dysbalances of the gut microbiota and thereby prevent mucosal barrier injury and its complications. Therefore prebiotic, probiotics or synbiotics could be used with the consideration for the risk of whole live bacteria used as probiotics causing invasive infections in immunocompromised patients.

In conclusion, chemotherapy treatment results in shifts in fecal microbiota, which come together with the emergence of *Clostridium difficile* in some patients. These changes affect and alter the functions of the GI microbiota and may contribute to severe side effects in oncology patients.

11. PROTOCOLS

11.1. DNA extraction from stool using QIAamp DNA Stool Mini Kit & Beadbeating

All centrifugation steps at max. speed. Prepare: ice. Keep samples always frozen. Work with fire and ethanol, spatula and scalpel should be sterilized between different samples. Prepare two heat-blocks at 95°C and 70°C. If a precipitate has formed in ASL buffer or AL buffer, solve in waterbath. Anyways vortex well before use.

- 1. Weight 180-220 mg frozen sample in a lysing matrix E (soil kit) tube.
- 2. Add 1.4 ml ASL buffer. Vortex well.
- 3. Secure lysing matrix tubes in beadbeater. Two cycles of 45 sec beadbeating with one intervening minute on ice.
- 4. Lysis for 5 min at 95°C
- 5. Vortex for 15 sec, centrifuge 1 min.
- 6. Pipet supernatant in a new 2 ml eppendorf tube. Discard pellet.
- 7. Add inhibitEX tablet. Vortex immediately until completely dissolved. Incubate 1 min at r/t
- 8. Centrifuge 6 min
- 9. Pipet supernatant into a clean 1.5 ml eppendorf tube. Discard pellet.
- 10. Centrifuge 3 min
- 11. Pipet 25µl proteinase K into a clean 2ml tube.
- 12. Add supernatant (approx 600µl)
- 13. Add 600 µl buffer AL. mind that proteinase K and buffer AL may never come directly into contact. Never change the order of steps 11-13.
- 14. Incubate 10 min at 70°C
- 15. Add 600 µl ethanol (96-100%) to the lysate and mix by vortex.
- 16. Label the lid of a new QIAamp spin column provided in a 2 ml collection tube.
- 17. Carefully apply 600 µl lysate from step 12 to the QIAamp spin column without moistening the rim. Centrifuge for 1 min, discard filtrate and place the spin column again in the 2 ml collection tube.
- 18. Repeat step 17 until all lysate has been used.
- 19. Carefully open the spin column and add 500 µl buffer AW1. Centrifuge 1 min.
- 20. Discard flow-through.
- 21. Carefully open the spin column and add 500 µl buffer AW2. Centrifuge 3 min.

- 22. To remove residual buffer AW2, place the spin column into a new collection tube and centrifuge for another 1 min
- 23. Transfer spin column into a new labelled 1.5 eppendorf tube. Elute with 200µl RNase, DNase free water, preheated to 80C. Centrifuge 1 min.
- 24. Elute a 2^{nd} time with 200 µl H2O (80C).

11.2. Cloning protocol

First two steps:

- Perform PCR/DGGE with several samples, thereafter choose the sample with the most diverse bandpattern
- Purify PCR products with QIAGEN PCR Purification Kit

First Day

 Prepare a ligation-reaction mixture according to the following scheme with the control (included in Kit) and the purified sample: promega pGEM-T Easy Vector System I

7,5µl Buffer
+1µl Vector
+1µl Ligase
+5,5µl PCR pur. Or +3µl of control
15µl total volume → incubate at 4°C
over night

2. Prepare for the next day:

- Prepare 4 LB/Ampicillin/IPTG/X-Gal plates for each ligation reaction
 - + 1 plate for determining transformation efficiency
- LB solid media: Mix for 500ml LB-plating-media:

5g Tryptophan
2,5g Yeast Extract
2,5g NaCl
7,5g Agar
→ autoklav (1h)
At 50°C: +1ml Ampicilin
(50mg/0,5ml)

• Pour plates: 20ml per plate

- Work under a Bunsen burner without gloves with disinfected hands
- Avoid air bubbles in the agar by swiveling
- Let the plates dry over night, thereafter pile upside down in a plastic bag

• LB liquid media 100ml

1g Trypton
0,5g Yeast extract
0,5g NaCl
Fill up with H20 dest. to 100ml and stir
➔ Autoklav 1h

Second Day

- 1. Transformation: promega JM109 competent cells (200ml aliquots):
 - Transfer 10µl of the ligation to 100µl competent cells on ice for 1h
 - Heat-Shock: 42°C for 90sec, and immediately 5min on ice. Do not shake!
 - Add 500µI LB media on the competent cells and incubate at 37°C 1h with shaking 150rpm
 - Mix the tubes with your snapping finger

Always work on ice and with cut off pipette tips with competent cells!

2. Plates:

- Plate 20µl -IPTG/ X-Gal
- Plate 100µl of each transformation culture; (2 plates with each100µl), plate control just once
- Dilute and mix the rest with 100µl LB-Media
- Plate 2 x100µl of each deluted transformation culture
- Incubate at 37° over night (Incubator)

Third Day

- 1. Screening for blue and white colonies
 - Transfer 50 white colonies (have vector and insert) to 50 clean eppendorf tubes containing 40µl TE Buffer

- Transfer each picked colony to a new plate with 50 marked arrays
- 3 cycles of freeze- thawing [-20°C for 20sec → 95°C 2 sec]

Forth Day

- Perform PCRs and gel electrophoresis to check fragment length
- DGGE
- Glycerin cultures

12. REFERENCES

Angelakis E, Armougom F, Million M, Raoult D. The relationship between gut microbiota and weight gain in humans. *Future Microbiol* 2012; 7: 91-109.

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T et al. Enterotypes of the human gut microbiome. *Nature* 2011; 12; 473(7346): 174-80.

Arvand M, Moser V, Schwehn C, Bettge-Weller G, Hensgens MP, Kuijper EJ. High prevalence of Clostridium difficile colonization among nursing home residents in Hesse, Germany. *PLoS One* 2012; 7(1): e30183.

Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. *Science* 2005; 307: 1915–1920.

Bahl MI, Bergström A, Licht TR. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. *FEMS Microbiol Lett* 2012 Feb 10 [Epub ahead of print].

Binion DG. Strategies for Management of Clostridium difficile Infection in Immunosuppressed Patients. *Gastroenterol Hepatol* 2011; 7(11): 750–752.

Boleij A, Tjalsma H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. *Biol Rev Camb Philos Soc.* 2012 Feb 2. doi: 10.1111/j.1469-185X.2012.00218.x.

Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. *PNAS* 2011; 108, 38: 16050-16055

Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. *Infect Immun* 2012; 80(1): 62-73.

Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. *Diabetologia* 2007; 50: 2374-2383.

Cheadle C, Vawter MP, Freed WJ, Becker KG. Analysis of Microarray Data Using Z Score Transformation. *J Mol Diagn*. 2003; 5(2): 73–81

Chung H, Kasper DL. Microbiota-stimulated immune mechanisms to maintain gut homeostasis. *Curr Opin Immunol* 2010; 22: 455-460.

Claesson MJ, Wang Q, O'Sullivan O, Greene-Diniz R, Cole JR, Ross PR, O'Toole PW. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. *Nucleic Acids Research* 2010. 38: 22

Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH; Society for Healthcare Epidemiology of America; Infectious Diseases Society of America. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). *Infect Control Hosp Epidemiol* 2010; 31(5): 431-55.

Collado MC, Delgado S, Maldonado A, Rodríguez JM. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. *Lett Appl Microbiol* 2009; 48: 523–528.

Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Gaecia P, Cai J, Hippe H, Farrow JAE. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. *Int J Syst Bacteriol* 1994; 144: 812–826.

Cunningham D, Morgan RJ, Mills PR, Nelson LM, Toner PG, Soukop M, McArdle CS, Russell RI. Functional and structural changes of the human proximal small intestine after cytotoxic therapy. *J. Clin. Pathol* 1985; 38(3): 265-270.

D'Aimmo MR, Mattarelli P, Biavati B, Carlsson NG, Andlid T. The potential of bifidobacteria as a source of natural folate. *J Appl Microbiol.* 2012 Feb 15. doi: 10.1111/j.1365-2672.2012.05261.x. [Epub ahead of print]

Deibert P, König D, Becker G, Berg A. Probiotika – aktueller Stand, Figure 1. *BDI Aktuell* 2010; 4: 10-12.

Derrien M, Van Baarlen P, Hooiveld G, Norin E, Müller M, de Vos WM. Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila. *Front Microbiol* 2011; 2: 166.

Droege M, Hill B. The Genome Sequencer FLX[™] System—longer reads, more applications, straight forward bioinformatics and more complete data sets. J. *Biotechnol* 2008; 136: 3–10.

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. *Science* 2005; 308: 1635–1638

Eggesbø M, Moen B, Peddada S, Baird D, Rugtveit J, Midtvedt T, Bushel PR, Sekelja M, Rudi K. Development of gut microbiota in infants not exposed to medical interventions. *APMIS 2011*; 119(1): 17-35.

Falk A, Olsson C, Ahrne S, Molin G, Adawi D, et al. Ileal pelvic pouch microbiota from two former ulcerative colitis patients, analysed by DNA-based methods, were unstable over time and showed the presence of Clostridium perfringens. *Scand J Gastroenterol* 2007. 42: 973–985.

Fanci R, Corti G, Bartoloni A, Tortoli E, Mariottini A, et al. Unusual Methylobacterium fujisawaense Infection in a Patient with Acute Leukaemia Undergoing Hematopoietic Stem Cell Transplantation: First Case Report. *Case Report Med* 2010: 313514.

Flythe MD, Aiken GE. Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria. *J Appl Microbiol* 2010; 109(4): 1169–76.

Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. *Proc Natl Acad Sci* U S A 2007; 104(34): 13780-5.

German JB, Freeman SL, Lebrilla CB, Mills DA. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. *Nestle Nutr Workshop Ser Pediatr Program* 2008; 62: 205-18; discussion 218-22.

Gibson RJ, Keefe DM. Cancer chemotherapy-induced diarrhoea and constipation: mechanism of damage and prevention strategies. *Support Care Cancer* 2006; 14(9): 890-900.

Gill SR, Pop M,Deboy RT,Eckburg PB,Turnbaugh PJ, Samuel BS, Gordon JI,Relman DA, Fraser-Liggett CM Nelson KE. Metagenomic analysis of the human distal gut microbiome. *Science* 2006; 312: 1355–1359.

Goodman MJ, Kent PW, Truelove SC. Glucosamine synthetase activity of the colonic mucosa in membranous colitis. *Gut* 1977; 18: 229–231.

Grenham S, Clarke G, Cryan JF, Dinan TG. Brain–Gut–Microbe Communication in Health and Disease. *Front Physiol* 2011; 2: 94.

Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. *J Allergy Clin Immunol* 2009; 124: 3-20. Guarner F, Malagelada JR. Gut flora in health and disease. *Lancet* 2003; 361,

512-519.

Guilmeau S, Flandez M, Bancroft L, Sellers RS, Tear B, et al. Intestinal deletion of Pofut1 in the mouse inactivates notch signaling and causes enterocolitis. *Gastroenterology* 2008; 135: 849 860, 860 e841–846.

Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. *Aliment Pharmacol Ther* 2008; 27(2): 104-19.

Hensgens MP, Goorhuis A, Dekkers OM, Kuijper EJ. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. *J Antimicrob Chemother* 2011

Hiramatsu Y, Hosono A, Takahashi K, Kaminogawa S. Bifidobacterium components have immunomodulatory characteristics dependent on the method of preparation. *Cytotechnology* 2007; 55(2-3): 79-87.

Hong PY, Lee BW, Aw M, Shek LP, Yap GC, Chua KY, Liu WT. Comparative analysis of fecal microbiota in infants with and without eczema. *PLoS One* 2010; 5(4): e9964.

http://users.ugent.be/~avierstr/principles/pcr.html, retrieved 2011-11-30.

http://wiki.biomine.skelleftea.se, retrieved 2011-11-30.

http://www.nature.com/nrg/journal/v6/n11/glossary/nrg1709_glossary.html "Definition of pyrosequencing from the Nature Reviews Genetics Glossary". retrieved 2011-12-04.

Huang Y, Yang W, Liu H, Duan J, Zhang Y, Liu M, Li H, Hou Z, Wu KK. Effect of high-dose methotrexate chemotherapy on intestinal Bifidobacteria, Lactobacillus and Escherichia coli in children with acute lymphoblastic leukemia. *Exp Biol Med (Maywood)* 2012 Feb 23. [Epub ahead of print]

Hunt KM, Foster JA, Forney LJ, Schütte UM, Beck DL, Abdo Z, Fox LK, Williams JE, McGuire MK, McGuire MA. Characterization of the diversity and temporal stability of bacterial communities in human milk. *PLoS One* 2011; 6(6): e21313.

Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. *Am J Clin Nutr* 2008; 87(3): 534-8.

Koning CJ, Jonkers DM, Stobberingh EE, Mulder L, Rombouts FM, Stockbrügger RW. The effect of a multispecies probiotic on the intestinal microbiota and bowel movements in healthy volunteers taking the antibiotic amoxycillin. *Am J Gastroenterol* 2008; 103(1): 178-89.

Lara-Villoslada F, Olivares M, Sierra S, Rodríguez JM, Boza J, Xaus J. Beneficial effects of probiotic bacteria isolated from breast milk. *Br J Nutr* 2007; 98 Suppl 1: 96-100.

Lassl C. Changes in human faecal microbiota due to chemotherapy analyzed by TaqMan-PCR and PCR-DGGE. Diploma thesis 2009; Universität Wien. Fakultät für Lebenswissenschaften

Lay C, Doré J, Rigottier-Gois L. Separation of bacteria of the Clostridium leptum subgroup from the human colonic microbiota by fluorescence-activated cell sorting or group-specific PCR using 16S rRNA gene oligonucleotides. *FEMS Microbiology Ecology* 2007; 60 (3): 513-520

Lay C, Sutren M, Rochet V, Saunier K, Doré J, Rigottier-Gois L. Design and validation of 16S rDNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. *Environ Microbiol* 2005; 7: 933-946.

Layton A, Mckay L, Williams D, Garrett V, Gentry R, Sayler G. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. *Appl Environ Microbiol* 2006. 72: 4214-4224.

Leamon JH, Lee WL, Tartaro KR, Lanza JR, Sarkis GJ, Dewinter AD, Berka J, Weiner M, Rothberg JM, Lohman KL. A massively parallel PicoTiterPlate[™] based platform for discrete picoliter-scale polymerase chain reactions. *Electrophoresis* 2004; 25(7-8):1176.

Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. *Cell* 2006; 124(4): 837-48.

Li M, Zhou H, Hua W, Wang B, Wang S, Zhao G, Li L, Zhao L, Pang X. Molecular diversity of bacteroides spp. In human fecal microbiota as determined by group-specific 16s rrna gene clone library analysis. *Syst Appl Microbiol* 2009; 32: 193-200.

Mai V, Draganov PV. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. *World J Gastroenterol* 2009; 15: 81-5.

Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J. Reduced diversity of faecal microbiota in crohn's disease revealed by a metagenomic approach. *Gut* 2006; 55: 205-11.

Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, Corthier G, Furet JP. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. *BMC Microbiol* 2009; 9: 123.

Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ. Lactate has the potential to promote hydrogen sulphide formation in the human colon. *FEMS Microbiol Lett* 2009; 299: 128–134.

Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. *PLoS Biol.* 2011; 9(12): e1001221.

Martín R, Jiménez E, Heilig H, Fernández L, Marín ML, Zoetendal EG, Rodríguez JM. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. *Appl Env Microbiol* 2009; 75: 965–969.

Martin R, Nauta AJ, Ben Amor K, Knippels LM, Knol J, Garssen J. Early life: gut microbiota and immune development in infancy. *Benef Microbes* 2010; 1(4): 367-82.

Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R. Use of 16s rrna gene-targeted group-specific primers for real-time pcr analysis of predominant bacteria in human feces. *Appl Environ Microbiol* 2004; 70: 7220-7228.

Maukonen J, Matto J, Satokari R, Soderlund H, Mattilasandholm T, Saarela M. Pcr dgge and rt-pcr dgge show diversity and short-term temporal stability in the clostridium coccoideseubacterium rectale group in the human intestinal microbiota. *FEMS Microbiol Ecol* 2006; 58: 517-528.

Meier H, Amann R, Ludwig W, Schleifer KH. Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA g + c content. *Syst Appl Microbiol* 1999; 22: 186-196.

Metzker ML. Emerging technologies in DNA sequencing. *Genome Res* 2005; 15: 1767-1776

Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, Bushman FD. The human gut virome: inter-individual variation and dynamic response to diet. *Genome Res* 2011;21(10): 1616-25.

Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s rrna. *Appl Environ Microbiol* 1993; 59: 695 700.

Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. *Antonie Van Leeuwenhoek* 1998. 73: 127-141.

Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. *Curr Opin Microbiol* 1999; 2: 317–22

Neefs JM, Van De Peer Y, De Rijk P, Goris A, De Wachter R. Compilation of small ribosomal subunit rna sequences. *Nucleic Acids Res* 1991; 19 Suppl: 1987-2015.

Neish AS. Microbes in gastrointestinal health and disease. *Gastroenterology* 2009; 136: 65-80.

Neufeld KM, Kang N, Bienenstock J, Foster JA: Reduced anxiety-like behavior and central neurochemical change in germ-free mice. *Neurogastroenterol Motil* 2011; 23(3): 255-64

Nomura T, Ohkusa T, Okayasu I, Yoshida T, Sakamoto M, et al. Mucosaassociated bacteria in ulcerative colitis before and after antibiotic combination therapy. *Aliment Pharmacol Ther* 2005. 21: 1017–1027.

Nyhlen A, Ljungberg B, Nilsson-Ehle I, Nord CE. Impact of combinations of antineoplastic drugs on intestinal microflora in 9 patients with leukaemia. *Scand J Infect Dis* 2002; 34: 17-21

Nyhlén A, Ljungberg B, Nilsson-Ehle I, Odenholt I. Bactericidal effect of combinations of antibiotic and antineoplastic agents against Staphylococcus aureus and Escherichia coli. *Chemotherapy* 2002; 48(2): 71-7.

O'Hara AM, Shanahan F. The gut flora as a forgotten organ. *EMBO Rep* 2006; 7(7): 688–693.

Ouwehand AC. Antiallergic effects of probiotics. J Nutr 2007; 137: 794S-797S. Papanikolaou A, Tzavara V, Chini M, Papatheodorou A. Pyomyositis and septic hip arthritis due to bacteroides fragilis. A case report. *Hip Int 2011*; 21(4): 498-501.

Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, et al. Bacterial diversity in human subgingival plaque. *J Bacteriol* 2001; 183: 3770–3783.

Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. *Proc Natl Acad Sci* USA 2004; 101: 4250–4255.

Penders J, Thijs C, Vink C, Stelma FF, Snijders B, et al. Factors influencing the composition of the intestinal microbiota in early infancy. *Pediatrics* 2006; 118: 511–521.

Penders J, Vink C, Driessen C, London N, Thijs C, Stobberingh EE. Quantification of bifidobacterium spp., escherichia coli and clostridium difficile in

faecal samples of breast-fed and formula-fed infants by realtime pcr. *FEMS Microbiol Lett* 2005; 243: 141-147.

Pizzo PA. Fever in Immunocompromised Patients. *N Engl J Med* 1999; 341: 893-900

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, et al. A human gut microbial gene catalogue established by metagenomic sequencing. *Nature* 2010; 464(7285): 59-65

Rajilic-Stojanovic M, Smidt H, De Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. *Environ Microbiol* 2007; 9: 2125-2136.

Rettedal E, Vilain S, Lindblom S, Lehnert K, Scofield C, et al. Alteration of the ileal microbiota of weanling piglets by the growth-promoting antibiotic chlortetracycline. Appl Environ Microbiol 2009; 75: 5489–5495.

Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI. Viruses in the faecal microbiota of monozygotic twins and their mothers. *Nature* 2010; 466(7304): 334-8.

Round JL, Mazmanian SK: The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9: 313-323. Savage DC. Microbial ecology of the gastrointestinal tract. *Annu Rev Microbiol* 1977; 31: 107–133.

Schalk E, Bohr U R, Konig B, Scheinpflug K, Mohren M. Clostridium difficileassociated diarrhoea, a frequent complication in patients with acute myeloid leukaemia. *Ann Hematol* 2009;

Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD. Microbiota and SCFA in lean and overweight healthy subjects. *Obesity (Silver Spring)* 2010; 18(1): 190-5.

Sekirov I, Finlay BB. The role of the intestinal microbiota in enteric infection. The Journal of Physiology 2009; 587, 4159-4167.

Sharma R, Young C, Neu J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. *J Biomed Biotechnol* 2010; 305879.

Singh J, Rivenson A, Tomita M, Shimamura S, Ishibashi N, Reddy BS. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. *Carcinogenesis* 1997; 18 (4): 833-841.

Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J, Furet JP. Microbial dysbiosis in colorectal cancer (CRC) patients. *PLoS One 2011*; 6(1): e16393

Sokol H, Lay C, Seksik P, Tannock GW. Analysis of bacterial bowel communities of ibd patients: What has it revealed? *Inflamm Bowel Dis* 2008; 14: 858-67.

Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. *Proc Natl Acad Sci* USA 2008; 105: 16731–16736.

Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Doré J. Low counts of faecalibacterium prausnitzii in colitis microbiota. *Inflamm Bowel Dis* 2009; 15: 1183-9.

Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, et al. Chemotherapyinduced diarrhea is associated with changes in the luminal environment in the DA rat. *Exp Biol Med (Maywood)* 2007; 232: 96–106.

Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Keefe DM. Faecal microflora and b-glucuronidase expression are altered in an irinotecan-induced diarrhoea model in rats. *Cancer Biol Ther* 2008; 7: 1919–25.

Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Muñoz-Tamayo R, Paslier DL, Nalin R, Dore J, Leclerc M. Towards the human intestinal microbiota phylogenetic core. *Environ Microbiol* 2009; 11(10): 2574-84.

Taras D, Simmering R, Collins MD, Lawson PA, Blaut M. Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. *Int J Syst Evol Microbiol* 2009; 52: 423–428.

Tsurugizawa T, Uematsu A, Nakamura E, Hasumura M, Hirota M, Kondoh T, Uneyama H, Torii K. Mechanisms of neural response to gastrointestinal nutritive stimuli: the gut-brain axis. *Gastroenterology* 2009, 137: 262-273.

Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance, and obesity. *J Physiol* 2009;

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. *Nature* 2007; 449: 804-810.

Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M. Human gut microbiota and bifidobacteria: from composition to functionality. *Antonie Van Leeuwenhoek* 2008. 94: 35–50.

Van der Waaij D. The digestive tract in immunocompromised patients: importance of maintaining its resistance to colonization, especially in hospital inpatients and those taking antibiotics. *Antonie Van Leeuwenhoek* 1984; 50: 745–61.

Van der Waaij D. The ecology of the human intestine and its consequences for overgrowth by pathogens such as Clostridium difficile. *Annu Rev Microbiol* 1989; 43: 69–87

Van der Waaij LA, Harmsen HJ, Madjipour M, Kroese FG, Zwiers M, van Dullemen HM, et al. Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells. *Inflamm Bowel Dis* 2005; 11: 865–871.

Van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, De Bont ES, Harmsen HJ. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis 2009; 49: 262-270.

Wallace TC, Guarner F, Madsen K, Cabana MD, Gibson G, Hentges E, Sanders ME. Human gut microbiota and its relationship to health and disease. *Nutr Rev* 2011; 69(7): 392-403.

Wang X, Heazlewood SP, Krause DO, Florin TH. Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. *J Appl Microbiol* 2003; 95(3):508-20.

Woodmansey EJ. Intestinal bacteria and ageing. *J Appl Microbiol* 2007; 102(5): 1178-86.

Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. *Biotechnol Bioeng* 2005; 89: 670-679.

Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, Hibberd ML, Liu ET, Rohwer F, Ruan Y. RNA viral community in human feces: prevalence of plant pathogenic viruses. *PLoS Biol* 2006; 4:108–118.

Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. *Protein Cell* 2010; 1(8): 718-25.

Zoetendal EG, Vaughan EE, de Vos WM. A microbial world within us. Molecular Microbiology 2006; 59(6): 1639–1650

Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Applied and Environmental Microbiology 68, 3401–3407.

Zwielehner J, Liszt K, Handschur M, Lassl C, Lapin A, Haslberger AG. Combined pcr-dgge fingerprinting and quantitative pcr indicates shifts in fecal population sizes and diversity of bacteroides, bifidobacteria and clostridium cluster iv in institutionalized elderly. *Exp Gerontol* 2009; 44: 440-446.

Zwielehner J. Molecular analysis of intestinal microbiota composition and function in individuals with different diets, age and disease status. PCR-DGGE fingerprinting, qPCR and stable isotope probing applied to microbiota samples. Dissertation/doctoral thesis 2010, University of Vienna.

Ich habe mich bemüht, sämtliche Inhaber der Bildrechte ausfindig zu machen und ihre Zustimmung zur Verwendung der Bilder in dieser Arbeit eingeholt. Sollte dennoch eine Urheberrechtsverletzung bekannt werden, ersuche ich um Meldung bei mir.

13. CURRICULUM VITAE

Name Date of birth Place of birth	Angelika Maria Pointner 18/11/1982 Linz, Austria
Education	
Since 10/2004	Student of Nutritional Sciences at the Department of Life Sciences at University of Vienna
2001-2003	Student of Medicine at the Medical University of Vienna
06/2001	Matura with Summa cum laude – university entrance diploma
Practical experiences	
Diploma thesis 2010/12	Shifts of faecal microbiota in immunosuppressed patients following chemotherapeutic treatment analyzed by TaqMan-PCR and PCR-DGGE with special focus on 454 sequencing with Univ.Doz.Dr. Alexander Haslberger
01/07-31/12/2012	Freelance co-worker at Health Bio Care GmbH
01/03/2010-31/07/2012	Tutorium University of Vienna AG Haslberger
01/06/2008-31/06/2008	Internship e3 Ernährung
Since 01/01/08	Eventmanagement Planetarium, Kuffner and Urania Sternwarte Vienna
Summer 2006	Internship Healthy Kids Camp, North Carolina, USA
01/06/05-31/12/05	Service and Kassa Planetarium Wien, Kuffner and Urania Sternwarte Vienna
Jan 04-Mai 05	Freelance co-worker SAZ-Marketing

PUBLICATIONS

PLoS One. 2011;6(12):e28654. Epub 2011 Dec 14.

Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting.

Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, Remely M, Kitzweger E, Ruckser R, Haslberger AG.

14. PUBLISHED RESEARCH DATA

PLoS One. 2011;6(12):e28654. Epub 2011 Dec 14.

Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting

Jutta Zwielehner,1 Cornelia Lassl,1 Berit Hippe,1 Angelika Pointner,1 Olivier J. Switzeny,1 Marlene Remely,1 Elvira Kitzweger,2 Reinhard Ruckser,2 and Alexander G. Haslberger1*

1Department of Nutritional Sciences, Vienna, Austria

2Sozialmedizinisches Zentrum Ost, Vienna, Austria

Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting

Jutta Zwielehner¹, Cornelia Lassl¹, Berit Hippe¹, Angelika Pointner¹, Olivier J. Switzeny¹, Marlene Remely¹, Elvira Kitzweger², Reinhard Ruckser², Alexander G. Haslberger¹*

1 Department of Nutritional Sciences, Vienna, Austria, 2 Sozialmedizinisches Zentrum Ost, Vienna, Austria

Abstract

Background: We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota.

Methodology/Principal Findings: Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, ageand lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, *Bacteroides*, bifidobacteria, *Clostridium* cluster *IV* and *XIVa* as well as *C. difficile* with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the *Bacteroides* while the *Clostridium* cluster *IV* and *XIVa* were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of *Clostridium* cluster *IV* and *XIVa* in response to chemotherapy with cluster *IV* diversity being particularly affected by antibiotics. The occurrence of *C. difficile* in three out of seventeen subjects was accompanied by a decrease in the genera *Bifidobacterium*, *Lactobacillus*, *Veillonella* and *Faecalibacterium prausnitzii*. *Enterococcus faecium* increased following chemotherapy.

Conclusions/Significance: Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with *C.difficile* and *Enterococcus faecium*. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.

Citation: Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, et al. (2011) Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting. PLoS ONE 6(12): e28654. doi:10.1371/journal.pone.0028654

Editor: Markus M. Heimesaat, Charité, Campus Benjamin Franklin, Germany

Received September 20, 2011; Accepted November 11, 2011; Published December 14, 2011

Copyright: © 2011 Zwielehner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by the Austrian Science Fund (FWF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: alexander.haslberger@univie.ac.at

Introduction

The human intestinal ecosystem can be pictured as a microbial organ within a host organism involving a dynamic interplay between food, host cells and microbes [1]. The microbiota plays several significant roles in the digestion of food, energy regulation, generation of short-chain fatty acids, vitamin synthesis, prevention of colonization by pathogens and protection against cell injury [2,3,4]. Moreover, the gut microbiota influences the host by directing intestinal epithelial cell proliferation and differentiation, pH, and the development of the immune system [1]. Recent culture-independent molecular studies on healthy individuals have shown that the intestinal microbiota is specific to the host [5] and resilient to modifications over time, as it is able to form an alternative stable state after disruption [6,7]. A healthy microbiota contains a balanced composition of many classes of bacteria [8]. The fecal microbiota is dominated by three groups of anaerobic bacteria: the Clostridium coccoides group -clostridial cluster XIVa (reclassified as Blautia coccoides [9]), the Clostridium leptum group -

Clostridium cluster *IV*, and the *Bacteroides* [10,11]. All three groups are known to positively affect the gut health through nutrient absorption, production of short chain fatty acids (SCFAs) and epithelial cell maturation [12,13]. Moreover, the subgroup bifidobacteria seems to be an important part of the gastrointestinal tract (GI) microbiota, being involved in the prevention of atopic disease, obesity and insulin resistance via enhanced barrier function of the gut epithelium [14].

To prevent the invasion of endogenous bacteria from oral cavity and the GI tract into the blood stream, three defense mechanisms are considered to be relevant: innate immunity, mechanical mucosal barrier, and colonization resistance [15]. However, chemotherapy damages the rapidly generated mucosal cells of the GI and the use of antibiotics disrupts the ecological balance, allowing pathogens such as *Clostridium difficile* to grow [16,17]. This bacterium is thought to be the causative agent in up to 20% of antibiotic-associated diarrhea (AAD) cases [18]. It is evident that the intestinal microbial ecosystem has an important but incompletely defined role in mucosal protection [19]. Mucositis is a major oncological problem, caused by the cytotoxic effects of cancer chemotherapy and radiotherapy [20]. Approximately 40% of patients receiving standard dose chemotherapy and up to 100% of patients receiving high dose chemotherapy and stem cell or bone marrow transplantation suffer from abdominal pain, ulceration, bloating and vomiting [21,22]. Although gastrointestinal disturbances (mucositis, diarrhea and constipation) and immuno-suppression are well recognized side-effects of cancer treatment, very little research has been conducted into the underlying mechanisms and the changes in the composition of the microbiota. Because of these changes, nutrient absorption and other intestinal functions involving the microbiota may also be altered [23].

For this reason, we investigated shifts in fecal microbiota of patients receiving cancer chemotherapy with or without antibiotics in comparison to healthy control individuals. Prescription of antibiotics may become necessary in some individuals due to bacterial infection [24]. Samples were taken at four time points before and after chemotherapy to study changes in fecal microbiota over the course of time. In this study, we aimed to clarify how chemotherapy agents influence total fecal bacteria, *Bactenoides*, bifdobacteria, *Clostridium* cluster *IV*, *Clostridium* cluster *XIVa* and *C. difficile* using culture-independent methods assessing abundance and diversity. Four samples were also analyzed with 454 high-throughput sequencing.

Results

PCR-DGGE fingerprinting analysis shows decreased diversity of *Clostridium* clusters *IV* and *XIVa* in response to medical treatment compared to healthy individuals

DGGE fingerprinting analyses of all bacteria, Clostridium cluster IV and Clostridium cluster XIVa indicate a highly diverse dataset between individuals and uniqueness of fecal microbiota. Table 1 shows the average number of bands in cancer patients at the three time points and for controls over all time points. It becomes apparent that the average number of bands within Clostridium cluster IV declined immediately after chemotherapy (T1), followed by a recovery at T2. The average number of Clostridium cluster XIVa bands decreased after onset of chemotherapy and remained low also at T2. The datasets were subjected to principal component analysis (PCA). PCA extracts underlying components of samples according to their variance. Figure 1A illustrates the bacterial fingerprints of sample P01 over time. Figure 1B displays the PCA analysis of all bacteria. Most samples taken after chemotherapy are grouped together with all other samples. Patients who receive antibiotics are indicated as black symbols. They cluster together with the samples taken after chemotherapy and also with the majority of samples before chemotherapy and healthy controls. There are two exceptions though: Two samples from P07 after chemotherapy under antibiotic treatment are outliers in the lower right part of the PCA plot. P07 received blood stem cell transplantation resulting in a sharp decline in bacterial abundances as measured with quantitative PCR. The first two principal components explain 17.4% of variance.

Figure 1C shows the principal components analysis of *Clostridium* cluster *IV*. DGGE fingerprints of individuals after chemotherapy are found to be less variable than healthy controls and patients before onset of treatment. Although overlapping, PCA resulted in grouping of band patterns before and after chemotherapy. Additional effects by antibiotic treatment became evident: Antibiotic treatment significantly reduced the diversity within the *Clostridium* cluster *IV* (p = 0.00003) with Shannon diversity index being 1.4 ± 0.7 compared to patients under chemotherapy alone 2.1 ± 0.6 . In the PCA plot, samples affected by antibiotics are found in the lower right corner of the plot. This means that they are grouped according to

their variance along principal component (PC) 1 and 2. These two PCs explain 17.9% and 9.15% of the variance in the dataset, underlining the validity of this interpretation. Principal components analysis of *Clostridium* cluster *XIVa* is not shown.

Chemotherapeutic treatment with or without antibiotics decreases absolute bacterial numbers in comparison to healthy controls

To study whether chemotherapy with or without antibiotics changes the human GI microbiota composition in contrast to healthy individuals and over time, we investigated absolute numbers and relative percentages of bacterial subgroups. Absolute numbers give an indication about the direct antimicrobial effects of the treatments. Relative quantification is able to identify which bacterial subgroups are particularly affected and helps to describe the community disruption induced by chemotherapy with or without antibiotics. In absolute numbers, oncology patients harbored significantly less bacteria (p<0.05) than healthy control (figure 2). From already low bacterial counts before chemotherapy, bacterial abundance significantly declined further (p = 0.037) immediately after chemotherapy (T1) and recovered 5 9 days later (T2) in comparison to time points before treatment (T0). Absolute numbers of bacteria in different time points of healthy controls are following a lognormal distribution in contrast to microbiota abundances in oncology patients. The decrease in total bacteria following chemotherapy (p = 0.037) was significantly greater than any variation in copy numbers observed in healthy controls (p = 0.027). The observed decrease after chemotherapy affected the Bacteroides (p = 0.044), the bifidobacteria (p = 0.034) and Clostridium cluster IV (p=0.049) as shown in figure 3. There were also fewer absolute numbers of Clostridium cluster XIVa, but this difference was not significant. All patients with fever showed an increase in total fecal microbiota (see figure 3). In sample P07 a sharp decline affecting all bacteria and bacterial subgroups was observed at T1 (figure 3), following blood stem cell transplantation and medical intervention.

Patients who received antibiotics had highest abundances of all bacteria (p = 0.000003) amongst all patients (data not shown). This bacterial overgrowth affected the *Bacteroides*, the bifidobacteria and *Clostridium* clusters *IV* and *XIVa*, since relative abundances of those subgroups did not stand out significantly. Thus, patients were grouped according to their chemotherapeutic cycle regardless whether or not they received antibiotics. The influence of antibiotics on the species composition as assessed with PCR-DGGE fingerprinting is discussed in the previous section.

Clostridium cluster *XIVa* shows great alterations due to chemotherapeutical interventions, while the *Bacteroides* and bifidobacteria seem to be marginally affected

Relative quantification of *Clostridium* cluster *XIVa* as percentage of total bacterial DNA showed that oncology patients harbored significantly less *Clostridium* cluster *XIVa* (p = 0.047) than healthy controls. The mean proportion of *Bacteroides* in stool samples was $26\pm12\%$ in chemotherapy patients and $22\pm14\%$ in healthy individuals. The mean percentage of bifidobacteria in patients was $0.8\pm1.4\%$ and 0.3 ± 0.6 in controls. Patients harbored on average $16\pm9\%$ of *Clostridium* cluster *IV* and $18\pm12\%$ of *Clostridium* cluster *XIVa*, while controls harbored $20\pm12\%$ and $24\pm15\%$ of clostridial clusters *IV* and *XIVa*.

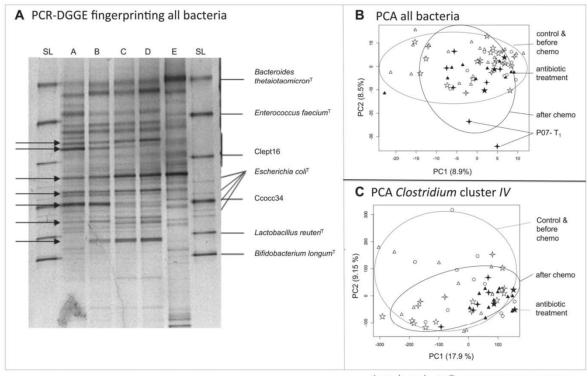
Clostridium cluster *XIVa* higher before chemotherapy than after

The mean percentage of *Clostridium* cluster XIVa before chemotherapy was $22\pm13\%$ compared to after chemotherapeutic

Table 1. Number of bands observed in PCR-DGGE
fingerprinting in oncology patients before chemotherapy (T ₀),
immediately after chemotherapy (T_1) and 5–9 days after
chemotherapy (T ₂) and healthy controls averaged over all
time points.

Time point	All bacteria	<i>Clostridium</i> cluster <i>IV</i>	Clostridium cluster XIVa
To	18.9±4.6	14±7.0	8±3.2
T ₁	19.7±4.9	10±6.0	4.9±3.6
T ₂	19.6±3.6	15±6.0	5.2±2.6
control	19.2±3.5	12.0±5.0	8.9±3.0

doi:10.1371/journal.pone.0028654.t001


cycles with $19\pm12\%$. The average amount of *Bacteroides*, bilidobacteria and *Clostridium* cluster *IV* were $26\pm11\%$, $1.4\pm2\%$ and $16\pm9\%$ at time points before chemotherapy and $28\pm14\%$, $0.5\pm1.2\%$ and $18\pm12\%$ after chemotherapy. Figure 3 illustrates the development of the microbiota in the course of antibiotic treatment. Data were normalized for clarity, so that changes in abundances from time point T0 (before onset of treatment) to T1 (1 4 days after chemotherapy) and T2 (5 9 days after chemo

Chemotherapy Changes Fecal Microbiota

therapy) rather than relative abundances are shown. It can be seen that chemotherapy causes a dramatic reduction of microbiota abundance immediately after chemotherapy, affecting all subgroups. As mentioned above, the significant decrease in all bacteria following chemotherapy was significantly greater than any variation in copy numbers observed in healthy controls (p = 0.027).

C. *difficile* colonization found in individuals receiving chemotherapeutic and antibiotic treatment

To find out whether the chemotherapeutic and antibiotic disruption favors the growth of pathogens, we investigated the abundance of *C. difficile*. Three out of seventeen patients receiving chemotherapy harbored *C. difficile* (data not shown). Patient P09 harbored C. difficile at all time points investigated. Mean proportion over all four samples of P09 was recorded as $0.4\pm0.7\%$, yet the highest level (1.22% of total bacteria) occurred at sampling point T1 immediately after chemotherapeutic and antibiotic treatment. *C. difficile* was detected in P11 (3.90% of all analyzed bacteria) after chemotherapeutic intervention at time point T1. P14 carried *C. difficile* in low abundance directly after onset of chemotherapy (0.003% of all analyzed bacteria). Samples of patients P09 and P11 at T0 and T1 were further analyzed in 454 sequencing.

△...T0; ∻ ...T1; ☆ ...T2; ○...control; black symbols... antibiotics

Figure 1. A PCR-DGGE fingerprinting of 16S rRNA coding regions of dominant bacteria over time. Bands that become stronger or nearly disappear following a single chemotherapeutic treatment are indicated with arrows. B Principal components analysis (PCA) based on dominant bacteria PCR-DGGE fingerprinting. The two outliers in the lower right corner of the plot are two samples of P07 following blood stem cell transplantation. C PCA illustrating the development of *Clostridium* cluster *IV* diversity in the course of chemotherapy and antibiotic treatment. Cluster *IV* diversity drops right after chemotherapy, causing a grouping of samples. Samples under antibiotic treatment (indicated as grey dots) group even closer, indicating a strong influence of antibiotics on *Clostridium* cluster *IV* diversity. A, sample of P01 before chemotherapy B, C and D, samples of P01 after chemotherapy is placed standard lane; black symbols... patients under chemotherapy and antibiotic treatment. doi:10.1371/journal.pone.0028654.g001

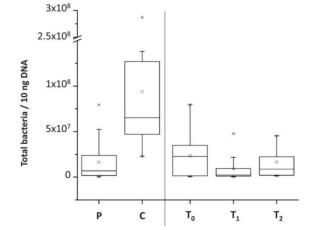
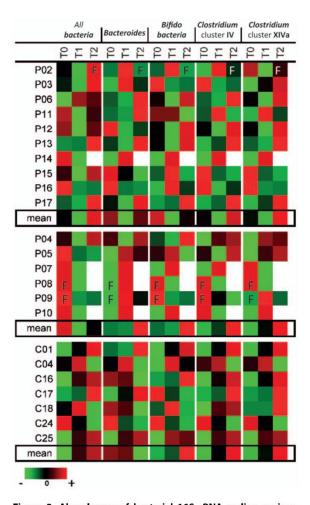


Figure 2. TaqMan qPCR quantification of bacterial 16S rRNA coding regions showing lower abundance in patients undergoing chemotherapy and antibiotic treatment (P) than healthy controls (C). T₀, samples taken before a single shot of chemotherapy; T₁, 1-2 days after chemotherapy; T₂, 5-9 days after chemotherapy; Asterisk indicates a significant difference at p < 0.05. doi:10.1371/journal.pone.0028654.g002


High throughput sequencing

High throughput sequencing showed a dramatic increase in sequences within the *Peptostreptococcaceae* towards sequences 98.9 100% similar to *C.difficile*^T (figure 4): *Clostridium bartletti* related sequences (98.1 100% similarity) were only detected before chemotherapy (T0). After chemotherapy (T1), 63 sequences 98.9 100% similar to *C.difficile* appeared in samples P11 and P09. In accordance with the phylogenetic classification by the ribosomal database project, they are shown as 'unclassified *Peptostreptococcaceae*' in figure 5.

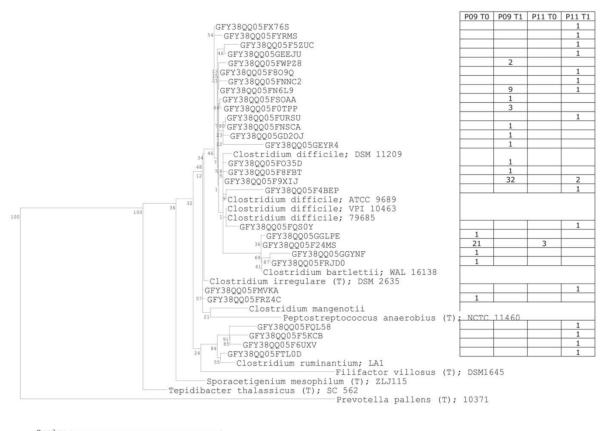
Furthermore pronounced reductions of Faecalibacterium spp. as well as lactobacilli, Veillonella spp., bifidobacteria (in P09) and E.coli/Shigella became apparent in response to chemotherapy (figure 5). The abundance of lactobacilli decreased in both patients after chemotherapy, in P09 from already low levels. Individual P11 did not receive concomitant antibiotics, whereas P09 did. In P09 and P11 Faecalibacterium spp. decreased dramatically from 9.5% and 8.3% to 0.07% and 0.00%, respectively. In both individuals Enterococcus faecium increased following chemotherapy. Furthermore, less abundant sequences appeared that were attributable to bacterial genera not detected before chemotherapy. These genera are: Eggerthella, Megasphaera, Parvimonas (only in P11), Anaerostipes, Eubacterium, Anaerococcus, Methylobacterium, Holdemania, Turicibacter, Akkermansia, Sutterella (only in P09), Sphingomonas, Anaerotruncus, Cobrococcus, Streptococcus and Dorea, Species with abundance <0.01% of all sequences are not shown in figure 5. The number of Blautia species from Clastridium cluster XIVa remained constant in the 454 sequencing datasets before and after chemotherapy.

Discussion

Chemotherapeutic and antibiotic use is associated with severe side effects such as mucositis, diarrhea and constipation. These side effects increase the cost of health services and are often life threatening [22]. Chemotherapeutic and antibiotic treatment has a detrimental impact on the host microbial ecosystem, which is

Chemotherapy Changes Fecal Microbiota

Figure 3. Abundances of bacterial 16S rRNA coding regions over time in oncology patients (P) and healthy controls (C). The declined abundances of bacteria, *Bacteroides*, *Clostridium* cluster *IVa*, *Clostridium* cluster *IV* and bifidobacteria immediately after chemotherapy (T₁) were observed to recover several days after treatment (T₂). Patients P04, P08 and P13 had never received chemotherapy before; P04, P05, P07, P08, P09 and P10 took antibiotics. Values were z-scored for presentation in this heatmap showing changes over time rather than absolute abundances. T₀, before chemotherapy; T₁, 1–2 days after chemotherapy; T₂, 5–9 days after chemotherapy; F, fever; S, blood stem cell transplantation. doi:10.1371/journal.pone.0028654.g003


101.10.1371/journal.pone.0028034.9003

important for host mucosal protection [19] and thereby increases the risk of infection [17]. Overgrowth of species with potential pathogenicity such as toxigenic *C. difficile* and inflammatory complications are among the most common serious complications of chemotherapy and antibiotic treatment among patients with cancer [15,17].

We investigated how the use of cancer chemotherapy (in some individuals together with antibiotic treatment) perturbs the fecal microbial ecosystem during the course of therapy. We assessed if the microbiota is able to return to its original profile after chemotherapeutic and antibiotic intervention with special interest in the abundance of *C. difficile*. We used a combination of molecular methods including high-throughput sequencing to compare diversity (PCR-DGGE) and abundance (qPCR) of all

PLoS ONE | www.plosone.org

Chemotherapy Changes Fecal Microbiota

Scale:

Figure 4. Phylogenetic tree showing the *Peptostreptococcaceae* found in samples from two oncology patients before and after chemotherapy. Identical sequences were grouped; the table on the right hand side shows their abundances in the 454 sequencing dataset. Sequences with >98.9% similarity to *Clostridium difficile* appeared only in samples taken immediately after chemotherapeutic cycles. Numbers indicate bootstrap values after 100 resamplings. doi:10.1371/journal.pone.0028654.g004

bacteria, *Bacteroides*, bifidobacteria, *Clostridium* cluster *IV*, *Clostridium* cluster *XIVa* and *C. difficile* between groups and different time points of chemotherapy. The majority of previous studies on the effect of chemotherapy on human fecal microbiota used standard microbiological culture techniques [16,22]. Other studies have focused on the colonization of pathogenic bacteria [17,25] in patients with cancer and chemotherapy-induced diarrhea [22,26]. As mentioned above, we used feces as source of information. Fecal microbial communities are composed of autochthonous gut members and transient bacteria. Even though the fecal microbiota samples to investigate the microbial composition of the intestinal microbiota because they are easy to collect, are less invasive and reflect shifts in microbial population composition [11].

In this study, we assessed species richness using PCR-DGGE fingerprinting. Each lane of a PCR-DGGE gel represented a microbial fingerprint of a fecal sample; each band within a lane corresponded to one bacterial species, although different species may sometimes be represented by the same band [17]. It has also been observed that one bacterial strain may form several bands due to multiple 16S rRNA operons, e.g. *E.coli* (figure 4A). The limitations of DGGE in microbial analysis have been previously

described [27]. Nevertheless, substantial information about species composition can be obtained from very complex microbial communities such as the gut microbiota [27]. We found decreased species richness immediately after the chemotherapeutic shot, especially within *Clostridium* cluster *IV* where the number of different bands decreased from 14 ± 7 before chemotherapy (T₀) to 10 ± 6 bands shortly after (T₁). The microbiota recovered to a richness of 15 ± 6 *Clostridium* cluster *IV* bands per individual, but at a different composition, as evidenced by the grouping of samples in principal components analysis.

For quantification of fecal microbiota we used the strains *Bacteroides thetaiotaomicron^T*, *Bifidobacterium longum* ssp. longum^T and *C*. *difficile* as well as the clones CL16 and CC34 as standards. However, a mixture of different strains for qPCR standards might result in a more accurate image of the human microbiota. Therefore absolute amounts should be considered as semi-quantitative.

Grouping oncology patients with and without antibiotic treatment poses a risk to falsely interpret the effects of antibiotic treatment as effects of chemotherapy. Patients who received antibiotics had significantly higher bacterial abundances than patients without antibiotics. This observation might be the reason

phylum	genus	P09-T0	P09-T1	P11-T0	P11-T1
Actinobacteria	Bifidobacterium				
	Eggerthella				
Firmicutes	unclassified Firmicutes				
	Enterococcus				
	Lactobacillus				
	Erysipelotrichaceae				
	unclassified Clostridiales				
	Blautia				
	Parvimonas				
	unclassified Ruminococcaceae				
	Faecalibacterium				
	Butyricicoccus				
	Subdoligranulum				
	unclassified Lachnospiraceae				
	Coprococcus				
	Dorea				
u	nclassified Peptostreptococaceae				
	Veillonella				
	Megasphaera				
	Eubacterium				
	Clostridium				
Bacteroidetes	Unclassified Bacteroidales				
	Alistipes				
	Bacteroides				
	Butyricimonas				
	Parabacteroides				
Proteobacteria	Sutterella				
	Sphingomonas				
	unclassified Enterobacteriaceae				
	Escherichia/ Shigella				
Verrucomicrobia	Akkermansia				
		6 ,0	0	0	,58

Figure 5. Heatmap showing abundances within the 454 sequencing dataset on the genus level. High throughput sequencing of samples P09 and P11 before (T_0) and after therapy (T_1) further helped to characterize the influence of a single chemotherapeutic cycle on the GI-microbiota. P11 was treated with chemotherapy alone and P09 also received antibiotic treatment. doi:10.1371/journal.pone.0028654.g005

for antibiotic treatment rather than its effect [24]. The abundance of bacterial subgroups, also *Clostridium* cluster *IV*, changed together with total bacteria both in patients with and without antibiotics. The sharp reduction of bacteria immediately after chemotherapy equally affected patients with and without antibiotics. In PCR-DGGE analysis we found that the all bacteria and *Clostridium* cluster *XIVa* fingerprints did not differ significantly in patients with

Chemotherapy Changes Fecal Microbiota

or *without* antibiotics. This indicates that the use of antibiotics does not fully explain the observed changes. Previous work [17] has also found additional effects of chemotherapy in cases under prophylactic antibiotic treatment. Although the *Clostridium* cluster *IV* abundance did not differ significantly due to antibiotics, PCR-DGGE fingerprints showed grouping of patients under antibiotic treatment in principal components analysis.

Despite high individual variations, we show a significantly lower absolute bacterial load in feces of patients receiving chemotherapy in comparison to healthy controls. These findings are in line with data from van Vliet *et al.* (2009) who reported 100-fold lower total bacterial numbers during chemotherapy than in healthy controls.

The abundance of fecal microbiota decreased after a single cycle of chemotherapy. After the end of chemotherapeutic administration the bacterial abundance recovered within a few days, sometimes even showing a "rebound-effect" with numbers elevating above initial levels. Relative numbers of Clostridium cluster H and XIVa showed great alterations due to chemotherapeutical interventions, while the bifidobacteria seemed to be less affected. In agreement with previous results [16] increased counts of Bacteroides spp. were found in patients undergoing chemotherapy. Nyhlèn et al. (2007) also reported significant increases in yeast in patients, making it a focus for further research in immunocompromised patients. Samples taken immediately after chemotherapy had a lower diversity within Clostridium cluster IV. Antibiotics strongly contributed to the reduced diversity of cluster IV but were not alone responsible for this effect. A few days later we observed a quantitative recovery, but not a recovery of the composition as evidenced by clustering of DGGE fingerprints.

The incidence of C. difficile in subjects P09 and P11 immediately after chemotherapy is accompanied by a decrease of the genera Bifidobacterium, Lactobacillus and Clostridium cluster IV. Sequences attributable to Faecalibacterium prausnitzii decreased dramatically from 9% to zero. The anti-inflammatory F. prausnitzii was associated with dietary fiber in colonic fermentation of healthy subjects [28] and found at low abundance in individuals suffering from inflammatory bowel diseases [29] [30,31]. Enterococcus faecium increased following chemotherapy, possibly filling the ecological niches vacated by the lactobacilli and bifidobacteria. Enterococcus faecium is a facultative pathogenic bacterium causing life-threatening infections especially in nosocomial settings [32]. Enterococcus faecium has previously been found to increase in wastewater upon treatment [33]. The acquisition of multi-resistant E. faecium strains has been described in hospital environments under high selective antibiotic pressure. Under such conditions probiotic strains were demonstrated as unable to prevent nosocomial infection [34].

After chemotherapy less abundant sequences appeared that were not detected before treatment. These genera are: Eggerthella, Megasphaera, Parvimonas, Anaeroslipes, Eubacterium, Anaerococcus, Methylobacterium, Holdemania, Turicibacter, Akkermansia, Sutterella, Sphingomonas, Anaerotruncus, Coprococcus, Streptococcus and Dorea. Eggerthella lenta was described to convert dietary lignans to the bioactive enterolactone [35]. Megasphaera spp. have been described as propionate-producers that utilize lactate [36] comparable to Veillonella spp. that were no longer detected by 454 sequencing after chemotherapy. The butyrate-producing Anaerostipes caccae and Eubacterium hallii utilize lactate as well. They were suggested to compete for lactate with sulfate-reducing bacteria such as Desulfobacter piger whose preferred co-substrate is lactate. High concentrations of sulfate are toxic for the gut epithelium and may contribute to bowel disease [37]. Microorganisms of the genus Methylobacterium are facultative methylotrophic, gram-negative rods that are ubiquitous in nature and rarely cause human disease, except in subjects with pre-existing immunosuppression. For

PLoS ONE | www.plosone.org

instance, in 2010, a case of *M. fujisawaense* infection was described in a patient with relapsed acute leukemia undergoing unrelated allogeneic hematopoietic stem cell transplantation [38]. *Turicibacter* is a poorly known genus previously found in weaned piglets, known to be susceptible to chlortetracycline [39]. In humans, *Turicibacter* spp. have been found in the ileal pelvic pouch of a former ulcerative colitis patient [40]. *Akkermansia muciniphila* is a common mucin-degrading bacterium of the human GI. Its prevalence has been described to be 10⁸ cells/g feces in adults, decreasing with age [41]. *Dorea* spp. are mucosa-associated bacteria of the human GI that are members of the *Clostridium coccoides* rRNA group of organisms [42,43].

Further research is needed to elucidate if there is a causal relationship between growth of *C. difficile* and decreased abundance of lactobacilli, bifidobacteria and *Clostridium* cluster *IV*, especially the anti-inflammatory *Faecalibacterium prausnitzii*. The increase of mucus-degrading bacteria might be a result of *C. difficile* and probably also *E. faecium* associated inflammation of the gut epithelium. Mucus hypersecretion is a common symptom of irritable bowel syndrome, ulcerative colitis and bacterial infections of the gut epithelium [44,45]. The lactate-utilizing microbiota shifted from *Veillonella* spp. to *Anaerostipes, Eubacterium* and *Megasphaera* spp. This change may be interpreted as a beneficial adaptation, because lactate could otherwise be used as a co-substrate for sulfate-reduction. Sulfate-reducting bacteria, however, were not detected here.

The oncology patients assessed here suffered from a variety of malignancies and received different chemotherapy treatment regimes. Only two participants (P01 and P08) had never received any cancer therapy before, while all others had a history of chemotherapeutic treatment. Therefore, the observed changes are likely to be influenced by previous cycles of chemotherapy. For example, the significantly lower bacterial abundance in cancer patients before chemotherapy in comparison to control could be a consequence of previous treatments. The results presented here illustrate changes due to a single chemotherapeutic cycle, but cannot rule out, that these changes occurred as a consequence of several chemotherapeutic cycles over the course of several years. Six cancer patients also received antibiotics. These patients were characterized by significantly elevated abundances of bacteria. This finding confirms the diagnosis 'bacterial infection' for which antibiotic treatment was prescribed. Clostridium cluster IV PCR-DGGE profiles revealed a shift in species composition by chemotherapy, and even more so by antibiotics. Thus we conclude that antimicrobial treatment significantly reduces the species richness of the Clostridium cluster IV, with the anti-inflammatory Faecalibacterium prausnitzii being the most abundant representative. Van Vliet et al. (2009) tested the effect of chemotherapy in vitro and showed a direct bacteriostatic effect of chemotherapeutics on bacterial growth.

Further research is needed to show whether changes in bacterial colonization play a role in the development and maintenance of mucosal barrier function, infection and inflammation [17].

The use of prebiotics, probiotics and bacterial products, such as butyrate to prevent mucosal barrier injury and its complications could be a promising concept in restoring impaired functions or enhancing specific desirable functions of the microbiota. The use of pre- and probiotics to affect the composition and metabolic activity of the fecal microbiota in times of cancer chemotherapy and immunosuppression might be part of future research.

In conclusion, chemotherapy treatment causes changes in fecal microbiota, which coincide with the development of *C. difficile* infection in some patients. These changes in microbiota may have systemic effects and may contribute to the development of chemotherapy-induced mucositis, influencing important beneficial functions of the microbial ecosystem.

Materials and Methods

Ethics statement

The Viennese Human Ethics committee (3., Thomas-Klestil-Platz 8/2) under the chair of Dr. Karin Spacek, approved the proposal of the project "Analysis of microbiota in feces of patients with immunosuppression". Votum: EK 07-153-VK, 2008. From all participants involved in the study written consent was obtained.

Study participants and study design

Seventeen subjects receiving ambulant chemotherapy with or without antimicrobial therapy (aged 59±13 y, BMI 27±6) from the Sozialmedizinisches Zentrum Ost (SMZ Ost) in Vienna and seventeen healthy individuals (aged 65±18 y, BMI 24±5) joined this study. Four fecal samples within two weeks were collected of each ambulant oncology patient in order to collect samples before and after a single immune-suppressive chemotherapy cycle. The four samples obtained from every patient were grouped into three groups: samples taken before the day of chemotherapy (T0), samples taken 1 4 days after chemotherapy (T1) and samples taken 5 9 days after chemotherapy (T2). Healthy individuals also donated four samples during two weeks. Gender ratio among healthy controls was 56% female, 44% male. Oncology patients were 47% female and 53% male. Three out of seventeen patients (P04, P08, P13) had never received any chemotherapy before, while the others had a history of chemotherapy. Anonymous medical records reported types of malignancies as well as chemotherapeutic and antimicrobial treatment as shown in table 2.

We interviewed all study participants assessing age, gender, body length, weight, health status (chronic and acute diseases), and life-style aspects such as alcohol consumption and physical activity. Dietary habits were assessed using a food frequency questionnaire. Exclusion criteria for healthy controls were (a) antimicrobial medication (b) chemotherapeutic treatment and (c) pre- and probiotics at least three months before sample collection. Approval for this study was obtained from the Viennese Human Ethics committee (3, Thomas-Klestil-Platz 8/2).

Stool sample processing

After collection, study participants immediately stored their samples at -18°C in their homes. Stool samples were still frozen when brought to the laboratory and then immediately stored at -70° C. A 200 mg aliquot of each sample was treated twice for 45 s in a bead-beater (Mini-Beadbeater-8). Thereafter DNA was extracted using the QIAamp[®] DNA Stool Mini Kit (QIAGEN) following the manufacturer's protocol. The DNA was stored at -20° C until analysis.

Type strains

We used type strains, known to be part of the human gastrointestinal microbiota and cloned sequences to design a DGGE standard lane marker. Type strains *Bacteroides thetaiotaomicron* DSM 2009T, *Enterococcus faecium* DSM 2047TT, *Laclobacillus reuteri* ATCC 55730T, *Bifdobacterium longum* ssp. *longum* DSM 2009TT, *Escherichia coli* IMBH 252/07 and clones CL16 and CC34 (see below) were used for creating a comparable standard lane marker for DGGE gels analyzing all bacteria. *E.coli* IMBH 242/07 gave 4 bands due to its multiple operons for the 16S rRNA gene.

Clone library

To create a standard lane marker for DGGE analysis and to identify members of the *Clostridium* cluster *XIVa* we constructed clone libraries from two stool samples of healthy volunteers. For this purpose PCR products amplified with primers 195-F [46] and

name	diagnosis	chemotherapeutic treatment	antimicrobial treatment	other condition
P01	urothel carcinoma	gemcitabine, cisplatinum		
P02	plasmocytoma, multiple myeloma	bortezomib, dexamethasone		rheumatism fever at 4 th sampling
P03	Non-Hodgkin lymphoma	bendamustine		diabetes II, adipositas, hypertension
P04	ovarian fibroma	taxol, carboplatin	levofloxacin	
P05	multiple myeloma	bortezomib, doxorubicin, dexamethasone	cotrimoxazole	osteoporosis
P06	mamma carcinoma	pegylated liposomal doxorubicin hydrochloride, gemcitabine		
P07	Non-Hodgkin lymphoma	high dose radiation therapy and PBSCT	cotrimoxazole, piperacillin, tazobactam	fever at 2 nd and 3 rd sampling
P08	monozytic leukemia	cytarabine, idarubicin	cotrimoxazole, piperacillin, tazobactam	fever at 2 nd sampling
P09	acute leukemia	high dose Ara-C, radiated erythrocyte concentrate	piperacillin, tazobactam	fever at 2 nd sampling
P10	Non-Hodgkin lymphoma	ifosamid, etoposid, methotrexat	levofloxacin	
P11	Acute lymophoblastic leukemia	cytarabine, methotrexat		adipositas, hypertension
P12	small intestinal tumor	cetuximab		
P13	rectal tumor	capecitabine, oxaliplatin		
P14	thymus tumor	taxol, carboplatin, bevacizumab, radiation		
P15	Acute lymophoblastic leukemia	cyclophosphamide, methotrexate, doxorubicin, cytarabine, vincristine		diabetes II
P16	Acute lymophoblastic leukemia	cytarabine, mitoxantrone		
P17	colon tumor	oxaliplatin, capecitabine, bevacizumab, irinotecan, monoclonal antibodies		

Table 2. Relevant clinical data of study participants undergoing immunesuppressive chemotherapy.

PBSCT... peripheral blood stem cell transplant.

doi:10.1371/journal.pone.0028654.t002

Ccocc-R [47] were inserted into a p-GEM Easy Vector (Promega) following the instructions of the manufacturer. Nucleotide sequences were corrected for primer and vector sequences in CodonCodeAligner (www.codoncode.com) and taxonomically identified using the online tools of the ribosomal database project (http://rdp.cme.msu.edu/). The clone library used for creating a standard lane marker for DGGE analysis of *Clostridium cluster IV* has previously been described [48]. Clones CL16 (*Clostridium leptum* 16) and CC34 (*Clostridium coccoides* 34) were also used as positive controls in Taqman qPCR.

Polymerase chain reaction (PCR)

PCR was carried out amplifying 16S rRNA gene sequences from bacteria in fecal samples, type strains and cloned sequences for DGGE analysis as well as for creation of the clone library using group- and kingdom- specific primers (table 3). The PCR reaction mixture consisted of ready-to-use mastermix (Promega) with 1.5 mM MgCl2, 500 nM of primers and 2 μ l of template DNA. When amplifying fecal samples, bovine serum albumin (Fermentas) was added to a final concentration of 400 μ g/ml. We used a Robocycler (Stratagene) for all amplifications.

PCR-DGGE-fingerprinting

DGGE was performed as previously described [49]. Primer pairs and annealing temperatures to analyze the diversity of (a) all bacteria, (b) *Clostridium* cluster *IV* and (c) *Clostridium* cluster *XIVa* are described in table 3. PCR products were separated by polyacrylamide gels with a denaturing gradient of 30 60% for predominant bacteria, 30 50% for *Clostridium* cluster *IV* and 35 50% for *Clostridium* cluster *XIVa*. Electrophoresis was performed for 9 h at 129 V at 60°C (predominant bacteria), 5 h at 200 V at 60°C (Clostridium cluster IV) and 7 h at 200 V at 60°C (Clostridium cluster XIVa). Standard lane markers were created for each DGGE analysis assay to ensure reliable gel-to-gel comparison. These standard lane markers (described above) were loaded in triplicate on each gel to adjust for gradient-variations between gels. We analyzed PCR-DGGE fingerprints using GelComparII (www. applied-maths.com). When generating the band comparison, a $1\,\%$ tolerance was selected. Principal components analysis (PCA) was applied on quantitative band comparison datasets in 'R' (www.rproject.org) using the default settings. Shannon diversity index was calculated on quantitative band information as well with the default settings implemented in the 'vegan' package in 'R' (www.rproject.org). Shannon index is defined as $\hat{H} = -\sum_{i=1}^{n} p_{i} \ln p_{i}$, where pi is the proportional abundance of species i. In short, the higher the Shannon index is, the higher is the diversity. For interpretation of results, samples were grouped into three groups: samples taken before the day of chemotherapy (T0), samples taken 1 4 days after chemotherapy (T1) and samples taken 5-9 days after chemotherару (Т2).

Quantitative TaqMan qPCR

The abundance of bacteria and bacterial subgroups was measured by 16S rRNA gene-targeting TaqMan qPCR in a Rotorgene 3000 (Corbett Life Science). Primers, annealing temperatures and expected product sizes are shown in table 4. Each sample was analyzed in duplicate. Amplifications were carried out in a total volume of 10 μ l consisting of 5 μ l Taq-Man SensiMix DNA Kit (Quantance), 1 μ l of each primer and Taq-Man probe (concentrations see table 4) and 10 ng of bacterial

PLoS ONE | www.plosone.org

Target organism	Primer	Sequence (5'-3')	Ann. temp (°C)	Reference
All bacteria	27f	GTGCTGCAGAGAGTTTGATCCTGGCTCAG	57	[52 T., Blocker 1989]
	985r	GTAAGGTTCTTCGCGTT	57	[53]
	341f-GC	CCT ACG GGA GGC AGC AG	55	[49]
	518r	ATT ACC GCG GCT GCT GG	55	[54]
Clostridium cluster IV	sg-Clept-F-GC	GCA CAA GCA GTG GAG T	55	
	sg-Clept-R3	CTT CCT CCG TTT TGT CAA		[55]
Clostridium cluster XIVa	Ccocc-F-GC	AAATGACGGTACCTGACTAA	55	
	Ccocc-R	CTTTGAGTTTCATTCTTGCGAA		[55]
GC-clamp		CGCCCGGGGCGCGCCCGGGGGGCGCCCGGGGGCACCGGGGG		[49]

 Table 3. 16S rRNA gene primers used for PCR-DGGE fingerprinting.

doi:10.1371/journal.pone.0028654.t003

DNA. Amplification programs included an initial denaturation at 95° C for 10 min followed by 40 cycles consisting of denaturation at 95° C for 30 s, annealing at 55° C (all bacteria, *Clostridium* cluster *IV*), 56° C (*Clostridium* cluster *XIVa*), 58° C (*C. difficile*) or 60° C (*Bacteroides*, bifidobacteria) for 30 s and extension at 72° C for 50 s.

We used tenfold serial DNA dilutions of type strains *Bacteroides thetaiotaomicronT*, *Bifidobacterium longum* ssp. *longum*^T and *C. difficile* as well as cloned sequences and one fecal sample to construct standard curves for comparison of PCR reaction efficiencies among different experiments.

We quantified DNA of *Bacteroides thetaiotaomicron*^T, *Bifidobacterium longum* ssp. *longum*^T and C. difficile, using the nanodrop method and calculated DNA copies/ μ l through mean G+C content of each strain. Clones CL16 and CC34 were amplified with the SP6 Promoter Primer (Promega, Cat.# Q5011) and the T7 Promoter Primer (Promega, Cat.# Q5021) and the PCR product quantified using a nanodrop machine. Knowing the sequences of these two

PCR products and their flanking vector sequences we could quantify the copy numbers and use it as standards. Relative percentages of bacterial subgroups were calculated in relation to total rRNA gene copies amplified with primer pair BAC-338-F and BAC-805-R [50].

We reviewed sensitivity of PCR reactions with stepwise dilutions of standard curve DNA until we achieved sensitive detection levels of PCR. The specificity was confirmed using non-target DNA.

High throughput sequencing

In total, four samples (P09-T0, P09-T1, P11-T0, P11-T1) were amplified with primer 525F (5'- TCAGCAGCCGCGGTAATAC -3') and 926R (5'-TCCGTCAATTCCTTTGAGTTT -3') using a high-fidelity DNA polymerase (Phusion[®], Finnzymes, Thermo Fisher Scientific) and submitted to 454 barcode sequencing (AGOWA, Berlin, Germany), resulting in a total of 113 000 reads. The sequences were trimmed and aligned using the pyro

Table 4. Primers and probes used for TaqMan qPCR quantification of 16S rRNA genes.

Target organism	Primer and probe	Sequence (5′ - 3′)	Size (bp)	Conc. (nM)	Reference
Bifidobacterium spp.	Forward primer	GCG TGC TTA ACA CAT GCA AGT C	125	300	
	Reverse primer	CAC CCG TTT CCA GGA GCT ATT		300	
	Probe	(FAM)- TCA CGC ATT ACT CAC CCG TTC GCC -(BHQ-1)		150	[56]
Bacteroides	AllBac296f	GAG AGG AAG GTC CCC CAC	106	300	
	AllBac412r	CGC TAC TTG GCT GGT TCA G		300	
	AllBac375Bhqr	(FAM)-CCA TTG ACC AAT ATT CCT CAC TGC TGC CT-(BHQ-1)		100	[53]
All bacteria	BAC-338-F	ACT CCT ACG GGA GGC AG	468	1000	
	BAC-805-R	GAC TAC CAG GGT ATC TAA TCC		1000	
	BAC-516-P	(FAM)-TGC CAG CAG CCG CGG TAA TAC-(BHQ-1)		200	[50]
Clostridium cluster IV	sg-Clept-F	GCA CAA GCA GTG GAG T	239	400	
	sg-Clept-R3	CTT CCT CCG TTT TGT CAA		400	[47]
	Clept-P ⁺⁺	(FAM)-AGG GTT GCG CTC GTT-(BHQ-1)		200	This study
Clostridium cluster XIVa	195F	GCA GTG GGG AAT ATT GCA		500	[46]
	CcoccR	CTT TGA GTT TCA TTC TTG CGA A		500	
	CcoccP	(6-FAM)-AAATGACGGTACCTGACTAA-(BHQ-1)		150	[47]
Clostridium diffficile	CdiffF	TTG AGC GAT TTA CTT CGG TAA AGA		1000	[56]
	CdiffR	TGT ACT GGC TCA CCT TTG ATA TTC A	151	1000	
	CdiffP	(6-FAM)-CCA CGC GTT ACT CAC CCG TCC G-(BHQ-1)		200	

doi:10.1371/journal.pone.0028654.t004

pipeline of the ribosomal database project (http://rdp.cme.msu. edu/). Only sequences longer than 150 bp were retained, resulting in 3886 to 6811 sequences per sample with the average lengths of 366 to 368 bp. All analyses were performed using the online tools of the ribosomal database project pyro pipeline (http://rdp.cme. msu.edu/). Results of the phylogenetic classification are shown as a heatmap [51]. The Peptostreptococcaceae, harbouring also C.difficile, from all four datasets were analyzed in more detail using the online tools of the ribosomal database project. 100% similar sequences were grouped and their abundances shown together with a phylogenetic tree.

Data analysis

Statistical evaluation of differences between groups (chemotherapy and control) and changes within the chemotherapy group (all time points before and after chemotherapy) was carried out using the OriginPro version 8 (OriginLab, Northampton, MA). For two group comparisons of independent ordinal and interval values we used the two-sample t-test and the nonparametric Mann-Whitney U-test. For the analysis of related data we used the paired sample t-test or the non-parametric Wilcoxon signed-rank test. P values <0.05 were considered statistically significant. To show the decline in abundance immediately after chemotherapy qPCR results were plotted in heatmaps [51]. Values were z-scored for presentation in this heatmap showing changes over time rather than absolute abundances.

References

- 1. Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M (2008) Human gut microbiota and bifdobacteria: from composition to functionality. Antonie Van Leeuwenhoek 94: 35-50.
- Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JB, et al. (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53: 606–613.
- Chung H, Kasper DL (2010) Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol 22: 455–460.
- Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307: 1915–1920.
- Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647–1651.
- 6. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A Mar 15;108 Suppl 1: 4554–61.
- De La Cochetiere MF, Durand T, Lepage P, Bourreille A, Galmiche JP, et al. (2005) Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43: 5588-5592.
- Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59.65.
- 9. Liu C, Finegold SM, Song Y, Lawson PA (2008) Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenourophicus, Rumi-nococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenourophica comb. nov., Blautia luti comb. nov., Blautia producta comb. Blautia schinkti comb. nov., and description of Blautia weiterea ep. nov., isolated from human faeces. Int J Syst Evol Microbiol 58: 1896–1902.
 Maukonen J, Matto J, Suihko ML, Saarela M (2008) Intra-individual diversity
- and similarity of salivary and faecal microbiota. J Med Microbiol 57 1560 1568.
- 11. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, et al. (2005) Diversity of the human intestinal microbial flora. Science 308: 1635–1638.
- Louis P, Scott KP, Duncan SH, Flint HJ (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102: 1197–1208.
- 13. Schiffrin EJ, Blum S (2002) Interactions between the microbiota and the intestinal mucosa. Eur J Clin Nutr 56 Suppl 3: S60–64. 14. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, et al. (2007) Selective
- increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50: 2374 2383.
- Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361: 15. 512 519
- 16. Nyhlen A, Ljungberg B, Nilsson-Ehle I, Nord CE (2002) Impact of combinations of antineoplastic drugs on intestinal microflora in 9 patients with leukaemia. Scand I Infect Dis 34: 17 21.

Dietary aspects

We assessed the participants' dietary habits using a food frequency questionnaire. All study participants (patients and controls) were omnivores and showed similar consumption patterns of liquids, alcohol, fruits, vegetables, grains and milk products. Healthy controls stated more frequent consumption of fruits, whole grain products and alcohol several times a week compared to patients receiving chemotherapy.

Acknowledgments

We thank all the study participants at the SMZO for their cooperation. We thank Dr. Viviana Klose and Mag. Varity-Ann Sattler of IfA Tulln for their guidance on using the GelCompareII program for the analysis of DGGE fingerprinting. Furthermore we would like to thank Dr. Guadalupe Pinar and Dr. Katja Sterflinger for their input and Dr. Konrad Domig for cultivation of type strains.

Author Contributions

Conceived and designed the experiments: JZ RR AGH. Performed the experiments: JZ AP CL BH OJS. Analyzed the data: JZ CL BH AP OJS RR AGH. Contributed reagents/materials/analysis tools: EK MR RR. Wrote the paper: JZ AGH.

- 17. van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, et al. (2009) Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infecta is 49: 262–270. Koning CJ, Jonkers DM, Stobberingh EE, Mulder L, Rombouts FM, et al.
- 18 (2008) The effect of a multispecies problem the intestinal microbiota and bowel movements in healthy volunteers taking the antibiotic amoxycillin. Am J Gastroenterol 103: 178 189.
- Croswell A, Amir E, Teggatz P, Barman M, Salzman NH (2009) Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect Immun 77: 2741–2753. Sonis ST (1998) Mucositis as a biological process: a new hypothesis for the
- 20.
- development of chemotherapy-induced stomatoxicity. Oral Oncol 34: 39–43. Suringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, et al. (2009) Irinotecan-induced mucositis is associated with changes in intestinal mucins. 21. Cancer Chemother Pharmacol 64: 123–132.
- Suringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, et al. (2007 Chemotherapy-induced diarrhea is associated with changes in the luminal environment in the DA rat. Exp Biol Med (Maywood) 232: 96–106.
- 23. Gibson RJ, Keefe DM (2006) Cancer chemotherapy-induced diarrhoea and constipation: mechanisms of damage and prevention strategies. Support Care Cancer 14: 890–900.
- Bergmans DC, Bouten MJ, Gaillard CA, van Tiel FH, van der Geest S, et al. (1997) Indications for antibiotic use in ICU patients: a one-year prospective surveillance. J Antimicrob Chemother 39: 527–535. 94
- 25. Schalk E, Bohr UR, Konig B, Scheinpflug K, Mohren M (2001) Clostridium difficile-associated diarrhoea, a frequent complication in patients with acute myeloid leukaemia. Ann Hematol 89: 9-14.
- Abd El-Atti S, Wasicek K, Mark S, Hegazi R (2009) Use of Probiotics in the Management of Chemotherapy-Induced Diarrheat A Case Study. JPEN J Parenter Emeral Nur Sep Oct 33(5): 569–70. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE)
- in microbial ecology. Antonie Van Leeuwenhoek 73: 127–141.
 Benus RF, van der Werf TS, Welling GW, Judd PA, Taylor MA, et al. (2010)
- Association between Faecalibacterium prausnitzii and dietary fibre in colonic
- fermentation in healthy human subjects. Br J Nutr. pp 1 8. Cucchiara S, Iebba V, Conte MP, Schippa S (2009) The microbiota in inflammatory bowel disease in different age groups. Dig Dis 27: 252–258. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, et al. 29.
- 30. (2008) Faccalibacterium pravats i hinti o, beindez naman be, ce an bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105: 16731–16736.
- Willing B, Halfvarson J, Dicksved J, Rosenquist M, Jarnerot G, et al. (2009) Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis 15: 653-660.

PLoS ONE | www.plosone.org

Chemotherapy Changes Fecal Microbiota

- 32. Grobner S, Fritz E, Schoch F, Schaller M, Berger AC, et al. (2010) Lysozyme activates Enterococcus faecium to induce necrotic cell death in macrophages. Cell Mol Life Sci Oct 67(19): 3331-44.
- Ferreira da Silva M, Tiago I, Verissimo A, Boaventura RA, Nunes OC, et al.
- Ferreira da Shiva M, Tiago I, Verissimo A, Boaventura KA, Nunes OC, et al. (2006) Antibiotic resistance of enterorococi and related bacteria in an urban wastewater treatment plant. FEMS Microbiol Ecol 55: 322–329. de Regt MJ, Willems RJ, Hene RJ, Siersema PD, Verhaar HJ, et al. (2010) Effects of Probiotics on Acquisition and Spread of Multi-resistant Enterococci. Antimicrob Agents Chemother Jul 54(7): 2801–5. Woting A, Clavel T, Loh G, Blaut M (2010) Bacterial transformation of dietary linearasis metaphistics are EFMS Microbiol Ecol Lun 27(9): 507–14. 34.
- lignans in gnotobiotic rats. FEMS Microbiol Ecol Jun 72(3): 507–14. 36. Flythe MD, Aiken GE (2010) Effects of hops (Humulus lupulus L.) extract on
- volatile fatty acid production by rumen bacteria. J Appl Microbiol Oct 109(4): 1169-76.
- Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ (2009) 37 Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Leu 299: 128 134. Fanci R, Coru G, Bartoloni Λ, Tortoli E, Mariouini Λ, et al. (2010) Unusual
- 38. Mathylobacterium fujisawaense Infection in a Patient with Acute Leukaemia Undergoing Hematopoietic Stem Cell Transplantation: First Case Report. Case Report Med 2010: 313514.
- Reuedal E. Vilain S. Lindblom S. Lehnert K. Scofield C. et al. (2009) Alteration 39. Ketterin I.; Vinin S, Enkolon G, Erner R, Ovther C, et al. (2003) Indiation of the lieal microbiola of wearling piglets by the growth-promoting antibiotic chlorueuracycline. Appl Environ Microbiol 75: 5489–5495.
 Falk A, Okson C, Ahme S, Molin G, Adawi D, et al. (2007) Ileal pelvic pouch
- microbiota from two former ulcerative collis patients, analysed by DNA-based methods, were unstable over time and showed the presence of *Clostridium* perfringens. Scand J Gastroenterol 42: 973–985.
 Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S (2007) Intestinal
- integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73: 7767 7770. Taras D, Simmering R, Collins MD, Lawson PA, Blaut M (2002)
- 42. Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 52: 423 428.
- 43. Nomura T, Ohkusa T, Okayasu I, Yoshida T, Sakamoto M, et al. (2005) Mucosa-associated bacteria in ulcerative colitis before and after antibiotic combination therapy. Aliment Phannacol Ther 21: 1017–1027. Goodman MJ, Kent PW, Truelove SC (1977) Glucosamine synthetase activity of
- 44. the colonic mucosa in membranous colitis. Gut 18: 229-231.

- 45. Guilmeau S, Flandez M, Bancroft L, Sellers RS, Tear B, et al. (2008) Intestinal deletion of Pofut1 in the mouse inactivates notch signaling and causes enterocolitis. Gastroenterology 135: 849-860, 860 e841-846.
- 46. Meier H, Amann R, Ludwig W, Schleifer KH (1999) Specific oligonucleouide DNA G+C content. Syst Appl Microbiol 22: 186–196.
- Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R (2004) Use of 16S 47. rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70: 7220–7228. Zwielehner J, Liszt K, Handschur M, Lassl C, Lapin A, et al. (2009) Combined
- 48. PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and *Clostridium* cluster IV in institutionalized elderly. Exp Gerontol 44: 440–446. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial
- 49. populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695-700.
- Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to 50. detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89: 670–679
- Symons S, Zipplies C, Bauke F, Nieselt K (2010) Integrative systems biology visualization with MAYDAY. J Integr Bioinform Mar 25 7(3. 51.
- 52. Edwards U, Rogall T, Blocker H, Emde M, Bouger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17: 7843–7853.
- 53. Heuer H, Hartung K, Wieland G, Kramer I, Smalla K (1999) Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints. Appl Environ Microbiol 65: 1045–1049.
- 54. Neels JM, Van de Peer Y, De Rijk P, Goris A, De Wachter R (1991) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 19 Suppl: 1987 2015.
- Shen J, Zhang B, Wei G, Pang X, Wei H, et al. (2006) Molecular profiling of the Clostridium leptum subgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 72: 5232 5238.
- 56. Penders J. Vink C. Driessen C. London N. Thijs C. et al. (2005) Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 243: 141 147.