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Zusammenfassung

Thermoelektrische Materialien sind für Stromerzeugung aus Abfallwärme, was physika-

lisch durch den Seebeck Effekt bewirkt wird, interessant. Dadurch kann die Abhängigkeit

von fossilen Brennstoffen verringert werden. Die technologische Aufgabe ist es, geeigne-

te Materialien mit einem hohen thermoelektrischen Wirkungsgrad (Figure of Merit”) zu

erzeugen. Die Wissenschaft versucht nun die grundlegenden Materialeigenschaften -das

heißt konkret die Transporteigenschaften, wie sie durch Elektronen und Gitterschwingun-

gen vermittelt werden- zu verstehen und zu modellieren. Das Ziel der vorliegenden Arbeit

ist es, ein Verständnis der thermoelektrische Eigenschaften ausgewählter Materialien von

den tiefsten Grundlagen her zu entwickeln.

Die Grundzustandseigenschaften eines festen Materials wie strukturelle und thermodyna-

mische Stabilität, elektronische Struktur und Gitterdynamik werden mit Hilfe der Dich-

tefunktionaltheorie, wie sie im Vienna ab initio Simulation Package (VASP) implemen-

tiert ist, untersucht. Thermoeelktrische Eigenschaften wie Seebeck Tensor, elektrische

Leitfähigkeit und elektronische thermische Leitfähigkeit werden unter Anwendung der

Boltzmannschen Transport Theorie im Rahmen der Näherung konstanter Relaxationszei-

ten abgeleitet. Für die aktuellen Berechnungen der elektronischen Transporteigenschaf-

ten wird das Programmpaket BoltzTrap verwendet, das entsprechend adapiert wurde um

den VASP output zu übernehmen. Zwei Prototypen von thermoelektrischen Materialien,

nämlich sogenannte Skutterudite und Clathrate, werden in enger Zusammenarbeit mit

experimentellen Gruppen untersucht. In einem ersten Schritt werden Ge-basierte Skut-

terudite studiert. Das Auftreten von sogenannten Rasselmoden im Phononenspektrum,

die für die thermische Gitterleitfähigkeit wichitg sein können, wird untersucht, indem die

Phononenspektren berechnet werden. Zur Analyse der Resultate wird ein vereinfachtes

Kraftkonstantenmodell entwickelt und angewendet. Der Hauptteil der Arbeit besteht in

der Berechnung der elektronischen Struktur von strukturell voll relaxierten Verbindun-

gen. Diese Information wird dann für die Berechnung des Seebeck Tensors des jeweiligen

Materials verwendet. Die erste Materialklasse, die betrachtet wird, sind Skutterudite. Die

gerechneten Resultate für die Ge-basierten Skutterudite MPt4Ge12 (M = Ba, La and Th)

zeigen ziemlich niedrige Seebeckkoeffizienten, was recht ungewöhnlich für die üblichen

Pniktid-Skutterudite ist. Tight binding Analysen weisen darauf hin, daß eine offene d-

Schale ausschlaggebend für das Auftreten von elektronischen Bandlücken ist, die für das

Optimieren thermoelektrischer Eigenschaften wichtig sind. Sogenanntes ”band enginee-

ring”wird gemacht, indem die Ergebnisse der tight binding Analyse mit der Mottschen

Beziehung für den Seebeckkoeffizienten bei niedrigen Temperaturen vereinigt werden. Da-

mit kann man die Ladungsträgerkonzentration, die durch die elektronische Struktur nahe

der Fermi energy bestimmmt wird, einstellen. Es stellt sich heraus, daß der Seebeckkoef-

fizient der MPt4Ge12 Skutterudite um 2 Größenordnungen verbessert werden kann, wenn

man das Ge-Untergitter mit Sb Atomen dotiert.
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Die zweite Klasse von thermoelektrischen Materialien, die untersucht werden, sind Cla-

thrate. Die hier vorgestellte First-Principles Methode wird erfolgreich angewendet, umd

die experimentellen Ergebnisse für Ba8MxGe(Si)46−x (M = Ni, Cu, Ag, Au) Clathrate zu

verstehen. Von besonderer Wichtigkeit für die Transporteigenschaften is die Änderung

der Stöchiometrie der Proben, für die sorgfältige und ausführliche Untersuchungen insbe-

sondere mit der sogenannten rigid-band Näherung gemacht werden. Diese Methode wird

kritisch getestet und es stellt sich heraus, daß die atomare Größe eine wichtige Rolle

spielt. Im Falle der elektronischen thermischen Leitfähigkeit wird die Lorenzzahl berech-

net, um die Gültigkeit des Wiedemann-Franzschen Gesetzes für Metalle auszutesten. Die

Lorenzzahl wird üblicherweise dazu verwendet um die thermische Leitfähigkeit von Elek-

tronen und Phononen zu trennen. Es stellt sich heraus, daß die Lorenzzahl sehr stark von

Temperatur und Ladungsdichtekonzentration abhängen kann.

Die Ergebnisse dieser Dissertation, was sowohl berechnete Eigenschaften als auch die

Analyse der Ergebnisse anbelangt, zeigen die Wichtigkeit und Leistungsfähigkeit einer

First-Principles Computermethode für das computeruntersttzte Entwerfen von Materia-

leigenschaften.
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Abstract

Thermoelectric materials have potential applications in power generation devices that

convert waste heat into electric current by the so-called Seebeck effect thus providing

an alternative energy technology to reduce the dependence on traditional fossil fuels.

Technologically, the task is to fabricate suitable materials with high efficiency (the so-

called figure-of-merit). From a scientific point of view one aims to model the underlying

materials properties and in particular the transport phenomena as mediated by electrons

and lattice vibrations. The goal of the present work is to develop an understanding of

the thermoelectric properties of selected materials at a fundamental level.

The ground state properties of a solid material such as structural and thermodynamic

stability, electronic structure and lattice dynamics are investigated by means of first-

principles concepts within the framework of density functional theory as implemented

in the Vienna ab initio Simulation Package (VASP). Thermoelectric properties such as

Seebeck tensor, electrical conductivity and electronic thermal conductivity are derived

by making use of Boltzmann’s transport theory incorporating the constant relaxation

time approximation. For the actual calculations of the electronic transport properties,

the program package BoltzTrap is adapted to incorporate the necessary output from the

VASP calculations. Two prototypical classes of thermoelectric materials, namely so-called

skutterudites and clathrates are studied in close collaboration with experimental groups.

In a first step vibrational properties of some Ge-based skutterudites are studied. The

appearance of so-called phonon rattling modes, which are of importance for the lattice

thermal conductivity, is investigated by calculating phonon spectra for these materials.

For analyzing the results, a simplified force constant model is developed and applied.

The main part of the work consists in calculating electronic structures of geometrically

fully relaxed compounds which then is used for deriving the Seebeck tensor. The first

materials’ class studied are skutterudites. The calculated results for the Ge-based skut-

terudites MPt4Ge12 (M = Ba, La and Th) reveal rather low Seebeck coefficients, which

are anomalous for traditional pnictide skutterudites. Tight binding analysis indicate that

an open d shell is crucial for the appearance of gaps, which are important for optimizing

thermoelectric properties. Combining this analysis with Mott’s relation for the Seebeck

coefficient at low temperatures ”band engineering” is employed for tuning the charge

carrier concentration which is reflected by the electronic structure close to Fermi energy.

It is found that that the Seebeck coefficients of MPt4Ge12 skutterudites can be improved

by two orders of magnitude by appropriate doping the Ge-sublattice by Sb. The second

large class of thermoelectric materials under investigation are clathrates. The present

first-principles approach is successfully applied to understand the experimental findings

for Ba8MxGe(Si)46−x (M = Ni, Cu, Ag, Au) clathrates. Of particular importance for the

transport properties is the variation of stoichiometry of the samples, for which careful
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and elaborate studies are made in particular in terms in of the rigid band approximation.

This approach is critically tested and it is found furthermore that the atomic sizes play

an important role. Considering the electronic thermal conductivity, the Lorenz number

is also determined to examine the validity of the Wiedemann-Franz law in the metal-

lic limit, which is used traditionally to separate thermal conductivities of electrons and

phonons based on the measured electrical conductivity. It is found that the Lorenz num-

ber may depend strongly on the charge carrier density and temperatures. The results of

the thesis in terms of numbers and analysis manifest the importance and capabilities of

first-principles computational materials design.
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Chapter 1

Introduction

1.1 Motivation

While enjoying the conveniences offered by modern technologies relying on electricity,

mankind has to face growing awareness regarding energy production, energy consumption

and environment because of diminishing natural resources and global warming. Solutions

to the energy problem should ensure sustainable development, including renewable energy

to reduce the dependence on fossil fuels. Thermoelectric materials and their applications

provide an option of improving the sustainability of electricity which are generated from

the waste heat by means of thermoelectric generators. Likewise, a thermoelectric re-

frigerator uses power to drive a current of charge carriers which results in cooling. The

thermoelectric refrigerator is environmentally friendly and has a long life, and therefore

has the potential to replace traditional air conditioning.

The efficiency of thermoelectric devices is determined by the dimensionless figure-of-merit

ZT, which depends on transport properties of the material such as the Seebeck coefficient,

the electrical and thermal conductivities [1],

ZT = S2σT/κ. (1.1)

Thus, a high ZT requires a large Seebeck coefficient, S and electrical conductivity, σ and

a low thermal conductivity, κ. Over the past decades, most of efforts pursuing a high ZT

concentrate on synthesizing and designing materials with a significantly reduced thermal

conductivity accomplished by making use of their structural and electronic properties.

Among them, superlattices and filled cage structures exhibit promising thermoelectric

performances [2–6, 6, 7, 7–20]. The low thermal conductivity of superlattice structures

is attributed to phonon scatterings between the interface, whereas the low thermal con-

ductivity of caged structures, which can accommodate fillers in voids of the structure,
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originates from incoherent phonon scatterings between the fillers and the framework. The

basic idea is Slack’s conjecture that the fillers are loosely bound to the surrounding cage

atoms and therefore they ”rattle”. The rattling modes should strongly scatter the host

phonons, leading to a dramatic reduction in the mean free path of phonons, resulting in a

glass-like thermal conductivity while the electrical transport properties are less affected[1].

For this reason, skutterudites and clathrates become ideal candidates for promising ther-

moelectric materials since they contain large voids. Up to now, values of ZT larger

than 1.6 for both filled-skutterudites and -clathrates have been reported[6, 7]. However,

comparing with traditional thermoelectric materials, the relatively low efficiencies of the

thermoelectric modules put them in a unfavorable competing position.

Further improvement of thermoelectric performance relies on the understanding of the

transport properties. On one hand, mechanisms for the thermal conductivity are con-

flicting. Recent study reveal that phonons of skutterudites are in a crystal state rather

than glass behavior as conjectured by Slack[21]. Moreover, it was also demonstrated that

rather than the incoherent scatterings, the filler modes and host phonons are in a coher-

ent scattering state, leading to longer phonon lifetimes[21]. Furthermore, the the Seebeck

effect yet remains understood rather incompletely. For instance, FeSb2 was found to dis-

play a giant Seebeck coefficient up to 45 mV/K at 12 K, over one hundred times those of

conventional TE materials [22]. Although various mechanism have been proposed, none

of them successfully could explain the remarkably high Seebeck coefficient [23–29].

Therefore, well-defined approaches and a deep analysis of their results are highly desir-

able. On the other hand, methods which can provide a microscopic understanding on

a quantum mechanical level, so-called first-principles methods, become more and more

feasible and popular. During the past decades, transport properties of electrons and

phonons have been discussed extensively within the semi-classic Boltzmann transport

theory, which allows us to describe macroscopic quantities in a microscopic concept. Ba-

sically, the Boltzmann theory treats electrons and phonons as particles whose motions are

limited by various scattering mechanism described by relaxation times. Thus the accurate

determination of the electronic structure and lattice dynamics of materials on a quan-

tum mechanical level are prerequisites for a fundamental understanding of subsequent

transport properties.

First-principles methods based on the density functional theory (DFT) in the local (spin-

) density approximation (LDA) or in the generalized gradient approximation (GGA)

emerged as very powerful approaches for such demanding tasks. They have made con-

siderable successes in describing ground state properties of materials including crystal

structure, electronic structure, lattice dynamics, elasticity, magnetism and other mate-

rials properties related to the total energy. Contrary to its extensive applications in

descriptions of the ground properties, there are, however, only a small -but increasing-
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number of attempts pioneered by Singh et al [30–36] to model thermoelectric properties.

The present thesis deals with this subject.

1.2 Objective and Scope of Thesis

Equation 1.1 indicates that one can evaluate the thermoelectric performance of a mate-

rial with the knowledge of the Seebeck coefficient S, the electric conductivity σ and the

thermal conductivity κ. Both S and σ are transport properties of electrons, whereas κ is

usually decoupled as κel and κph relating to electron and phonon transports, respectively.

Transport properties of electrons and phonons have been extensively discussed within the

scopes of the Green-Kubo theory [37, 38] and Boltzmann transport theory [39, 40]. The

latter is utilized for investigating electronic transport properties of thermoelectric mate-

rials throughout this thesis. For this purpose, electronic structures and lattice dynamics

are prerequisites, for which first-principles methods are employed.

The main objective of this thesis is to develop an understanding of the thermoelectric

properties of materials at the quantum mechanic level. This task is achieved by employing

a comprehensive approach that merges the Boltzmann transport theory with a first-

principles DFT method. This framework is used to explain a variety of experiments and

to predict (or optimize) thermoelectric properties by means of band engineering.

This dissertation focuses on the electronic structure, lattice dynamics and electronic trans-

port properties including electrical conductivity, Seebeck coefficient and electronic ther-

mal conductivity. It is organized as follows. The rest of Chapter 1 attempts an overview

of the thermoelectric phenomena and figure of merit that determines the efficiency of

a thermoelectric material. Chapter 2 briefly reviews concepts for deriving ground state

properties within density functional theory. Chapter 3 presents a powerful method com-

bining the Boltzmann transport equations and first-principles electronic structures for

calculating thermoelectric properties of materials. Technical details of code implementa-

tion are described and discussed. Applications of the methods are presented in Chapter

4 and 5 for two prototypical systems, namely skutterudites and clathrates. Both the the-

oretical results and experimental observations are included in this two chapters. Chapter

6 summarizes the work and provides a brief outlook for further efforts.

1.3 Thermoelectric Effects

Thermoelectric devices are based on two fundamental thermoelectric effects namely the

Seebeck effect and the Peltier effect. The Seebeck effect was observed by Seebeck in

3



Chapter 1 Introduction

(a) Power generation (b) Refrigeration

Figure 1.1: Illustration of thermoelectric modules. Power generation (a) and refrig-
eration (b) modules.

the early 1800s.As shown in Fig.1.1(a), if two dissimilar conductors, for instance n- and

p-type semiconductors, are joined together and a temperature differences is applied to

the two junctions, then a voltage difference (∆V) between A and B proportional to the

temperature difference (∆T) is built up. The ratio of the voltage to the temperature dif-

ference (∆V/∆T) is related to an intrinsic property of the materials historically termed as

the thermopower which is now referred to as the Seebeck coefficient (S). The differential

Seebeck coefficient, Sab being the difference in the Seebeck coefficients between a and b,

is defined by

Sab =
∆V

∆T
(1.2)

The Peltier effect (Fig.1.1(b)) is the inverse of the Seebeck effect: when a current I

is passed through a thermocouple between two different conductors, depending on the

direction of the current absorption or generation Q of heat occurs at the two junctions.

The Peltier coefficient is defined as

πab =
Q

I
(1.3)

The Seebeck and Peltier coefficients are related by the Kelvin relationship:

Sab =
πab
T

(1.4)

which can be derived by applying irreversible thermodynamics. Their validity has been

demonstrated for many thermoelectric materials and it is assumed that they hold for all

materials used in thermoelectric applications.
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1.4 Figure of Merit

For any technological application, efficiency is always the issue of highest concern. It

should be noted that the basis physics behind thermoelectric phenomena is the diffusion

of energy and charge transported by by carriers -electrons or holes- under a temperature

gradient and an electric field. At this point some assumptions are made. First, the

electrical and thermal conductivities and Seebeck coefficients of the two conductors, the

arms of the thermoelectric generator, are constant for the whole material. Second, the

contacts are ideal so that their resistances at the hot and cold junctions are negligible

compared to those of the arms. The electrical power P , the power output, delivered to

the load (R shown in Fig.1.1(a))is given as,

P = I2R0, (1.5)

where I is the electric current and R0 is the serial resistivity of the load. The current I is

induced by the Seebeck effect

I =
(Sp − Sn)(Th − Tc)

R0 +Rp +Rn

(1.6)

where, Si and Ri (i stands for p or n conductors ) represent the Seebeck coefficients and

resistivity of the two legs of the thermoelectric module, respectively. iThe temperatures

Th and Tc stand for the temperatures at the hot and cold sites, respectively. The quantity

P is a function of the ratio of the load resistivity to the sum of the resistivities of the two

legs. For maximizing P , it is required that R0 = Rp +Rn.

The heat flow into the hot side consists of three components. First, the heat flow through

the thermoelectric material due to the thermal conductance of the material,

Qt = K(Th − Tc) (1.7)

where κ is the thermal conductivity of the two conductors in parallel,

κ =
KpKn

Kp +Kn

(1.8)

The absorbed heat at the hot junction due to the Peltier effect, is

Qp = (Sp − Sn)ITh. (1.9)

where, the Kelvin relation Eq.(1.4) has been used. The heat that arrives at the hot side

due to Joule heating of the thermoelectric materials under the assumption that half of
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this heat goes to the hot side and half to the cold side of the module, is now

Qj =
1

2
I2(Rp +Rn). (1.10)

The efficiency η of a thermoelectric generation device is measured as the ratio of electrical

power delivered to the load (R in Fig.1.1(a)) over the heat flow into the hot side of the

module[41].

η =
P

Qt +Qp +Qj

. (1.11)

In the case of maximum of power output and substituting Eq.(1.7) to (1.10) η can be

expressed as

η =
Th − Tc

3Th+Tc

2
+ 4

Z

(1.12)

where Z is given by

Z =
(Sp − Sn)

2

(Rp +Rn)K
. (1.13)

The quantity Z is intrinsically determined by the physical properties of the materials.

However, RL = Rp + Rn is not the condition for maximizing efficiency. If one denotes

m = RL

Rp+Rn
, then η is generally expressed as

η =
Th − Tc
Th

m
1+m

1 + K(Rh+Rn)
(Sp−Sn)2

1+m
Th

− 1
2
.Th−Tc

Th

1
1+m

(1.14)

Now, η is a function of the temperatures at the hot and cold junctions, of Z, and of m.

Maximizing η with respect to m requires

∂η

∂m
= 0 (1.15)

which results in

m0 = (1 + ZTM)
1

2 (1.16)

where TM is the average temperature of the hot and cold side:

TM =
Th + Tc

2
(1.17)

The unit of Z is (1/K), the commonly used combined quantity ZT is the dimensionless.

It is named the figure-of-merit, which can be rewritten as

ZT =
S2σ

K
(1.18)
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where σ is the electrical conductivity of a thermoelectric material.

Substituting m0 back to Eq.(1.14) yields the maximum efficiency as

η =
Th − Tc
Th

m0 − 1

m0 +
Tc

Th

(1.19)

One realizes that the larger m0 is, the higher is then efficiency.

Now the two limiting cases, ZTM ≪ 1 and ZTM ≫ 1, are considered. When ZTM ≪ 1,

lim
ZTM≪1

η =
Th − Tc
Th

ZTM

2(1 + ZTM

2
+ Th

Tc
)
. (1.20)

Therefore, an efficiency of much less than unity is obtained even when the temperatures

fit the condition of (Th − Tc)/Th → 1, which is not interesting for thermoelectrical appli-

cations. On the other hand, when ZTM ≫ 1, then η → (Th − Tc)/Th becomes the ideal

thermodynamic efficiency. In general, ZTM is in the order of unity at most temperatures

of interest. If ZTM = 1, then η can never exceed the limit m−1
m

≈ 0.29. The value η = 0.5

is the upper boundary when ZTM = 3.
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Chapter 2

Electronic Ground State and Lattice

Dynamics

For the calculation of a physical quantity of a material at the quantum level, the many-

body Schrödinger equation that involves both nuclei and electrons has to be solved for

the many-body eigenfunctions Ψ(R1,R2, . . . ,RN ; r1, r2, . . . , rn) withR and r labeling the

positions of nuclei and electrons, respectively. The many-body Hamiltonian has the form

of

Ĥ = T̂e + T̂n + V̂ee + V̂en + V̂nn (2.1)

where T̂e and T̂n are the operators of the kinetic energy of the electrons and nuclei, respec-

tively, V̂ee, V̂en and V̂nn are electron-electron, electron-nuclei and nuclei-nuclei Coulomb

interactions, respectively. Writing them explicitly,

T̂e = − ~
2

2me

N
∑

i=1

∇2
i (2.2)

T̂n = − ~
2

2Mn

M
∑

n=1

∇2
n (2.3)

V̂ee =
1

4πε0

1

2

N
∑

i,j=1;i 6=j

e2

|ri − rj|
(2.4)

V̂en = − 1

4πε0

M
∑

n=1

N
∑

i=1

Zne
2

|ri −Rn|
(2.5)

V̂nn =
1

4πε0

1

2

M
∑

n,m=1;n 6=m

ZnZme
2

|Rn −Rm|
(2.6)

9
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where me and Mn are the electron and nucleus mass respectively, Zn is the nuclear number

of the n-th atim, e is the electronic charge, and ~ is the reduced Planck constant.

Because nuclei are much heavier than electrons i.e., Mn ≫ me, one can often treat the

nuclei as if they are static (Born-Oppenheimer approximation)[42]. Therefore one sep-

arates the electronic degrees of freedom from those of the nuclei by separating the ion

kinetic energy from Eq.(2.1) and treat the atomic positions Rn as external parameters

in the electronic Hamiltonian. Therefore, the decoupling of the electronic and nuclei

degrees leads to Ψ = ψΦ with ψ and Φ denoting wavefunctions of electrons and nuclei,

respectively. The electronic Hamiltonian is given by

Ĥe = T̂e + V̂ee + V̂en (2.7)

By solving Eq.(2.7), one obtains the total energy of the ground state of the system

E0 =< ψ0|He|ψ0 > +Vnn (2.8)

where ψ0 is the eigenfunction of the electronic ground state and E0 is the ground total

energy of the system. However, for realistic systems the resultant electronic Hamiltonian

Eq.(2.7) is far too complicated for a direct solution of Schröodinger’s equation because

of the large number of electrons. Instead of solving for the many-body wavefunctions,

density functional theory (DFT) deals with this problem in terms of the electronic density

distribution ρ(r) and moves all complications such as the electron exchange-correlation

functional as a universal function of the density Exc[ρ(r)] into an effective potential energy

term. The total energy functional E[ρ] is minimized for the ground state density, which

yields the ground state energy.

During the past decades, ab initio or first-principles methods based on the DFT developed

by Kohn and Sham, [43, 44] became the ”standard model” in computational material

science. The term ”ab initio” or ”first-principles” means to calculate material properties

directly from fundamental quantum mechanics without any empirical parameters. On the

other hand, the tight binding method is a method that parametrizes the Hamiltonian in

terms of matrix elements built up by atom-like orbitals. In the sense of bonding described

by atomic orbitals, the tight binding concept provides an illustrative physical insight. In

this chapter, the framework of an ab initio and the tight binding method are briefly

sketched, which are used in this thesis.

10
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2.1 Density Functional Theory

The basic formulation of the DFT are the Hohenberg-Kohn theorems. According to the

Hohenberg-Kohn theorems the total energy of the electronic Hamiltonian is a functional

of the electron density E = E[ρ(r)], which is minimized for the ground state density

ρ0(r)[43]. In the spirit of this theory, the total energy functional of a many-electron

system under an external potential vext (the potential energy generated by the nuclei) is

given by

E[n] =

∫

vext[ρ(r)]dr+ F [ρ(r)] (2.9)

where F [ρ(r)] is a universal functionak of the electronic density, which consists of the

kinetic energy of electrons T [ρ(r)], the classic Coulomb interaction (Hartree interaction)

between the electrons, EH [ρ(r)] and the remaining term Exc[ρ(r)] containing all the com-

plications of the non-classical electron exchange-correlation interactions. The ground

state energy is derived by applying the variational principle

δE[ρ(r)]

δρ(r)
|ρ=ρ0 = 0 (2.10)

with the constraint that the number of electrons N remains constant during the varia-

tional process:
∫

ρ0(r)dr = N (2.11)

The Hohenberg-Kohn theory arrives at an equation which only involves functional or

derivatives of functionals of the density alone. However, this equation could not be

solved (at least up to now) with the required accuracy.

Therefore, another scheme was suggested partially going back to a wavefunction-like

description. Kohn and Sham remedied the Hohenberg-Kohn problem by mapping the

fully interacting electronic system onto a fictitious system of noninteracting quasi particles

moving in an effective potential[44]. The kinetic energy functional T is split into a single

particle term Ts and the remainder (T − Ts) is merged into the many-body exchange-

correlation functional. The problem of finding the many-body Schrödinger equation is

now replaced by solving single particle equations

[−1

2
∇2 + Veff (r)]ψi = εiψi (2.12)

where ψ(r) are so-called Kohn-Sham (KS) orbitals, which have no direct physical mean-

ing but only server for building up the true ground state density by summing over an

11
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appropriate number of states (one usually takes occupied states),

ρ0(r) =
occ.
∑

i=1

|ψi(r)|2 (2.13)

The density ρ0(r) is subject to the constraint condition Eq.(2.11). The resulting effec-

tive potential consists of the external potential Vext, the Hartree potential VH , and the

exchange-correlation potential Vxc:

Veff = Vext + VH + Vxc

Vext = − 1

4πε0

M
∑

n=1

Zne
2

|ri −Rn|

VH =
1

4πε0

∫

e2ρ[rj ]

|ri − rj|
drj

Vxc =
δExc[ρ]

δ[ρ]

(2.14)

Consequently, the ground state total energy for a given configuration {R1, . . . ,RN} of

atoms is given by

E0(R1, . . . ,RN) =
∑

εi −
1

2
EH [ρ0] + Exc[ρ0]−

∫

Vxcρ0dr+ Vnn(R1, . . . ,RN) (2.15)

with the the ground state energy E0. Correspondingly, the force FI acting on atom I is

defined as

FI(RI) =
∂E0(R1, . . . ,RN)

∂RI

(2.16)

exploiting the total energy being dependent on the atomic positions.

2.2 Approximations to the exchange-correlation Func-

tional

The quality of the results of actual calculations for real systems depends on the approxi-

mation one has to make for Exc. There are two well-known and widely used approxima-

tions: the local density approximation (LDA) and the generalized gradient approximation

(GGA). Within LDA, the exchange-correlation energy is given by[44]

ELDA
xc [ρ(r)] =

∫

drρ(r)ǫLDA
xc [ρ(r)] (2.17)

12
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where ǫLDA
xc is the exchange-correlation energy per electron for a homogeneous gas of

interacting electrons. The GGA treats ǫxc as a function of n(r) and its gradient ∇n(r)
[45, 46],

ǫGGA
xc [ρ(r)] = f [ρ(r),∇ρ(r)] (2.18)

by that taking into account also the local change of the functional. LDA and in partiuclar

GGA are often successful in calculating various ground states properties. It is, however,

well known that LDA overestimates the binding energy, while GGA works well for smaller

atoms (e.g. 3d and 4d transition elements) but underestimates the bonding for large atoms

(such as 5d transition elements).

2.3 Methods

2.3.1 The Pseudo-potential Approach: VASP

The KS orbitals used to construct the electron density as defined in Eq.(2.13) are ex-

panded in convenient basis sets. For crystals with periodic boundary conditions, the KS

orbitals must obey the Bloch theorem and are therefore labeled in terms of the wave

vector k and band index n, ψn,k(r). For the boundary condition, plane waves are natural

choices,

ψn,k(r) =
∑

G

cGn,ke
i(k+G)·r (2.19)

where G is a reciprocal lattice vector.

The main disadvantage of a plane wave basis set is that the number of basis functions re-

quired to accurately describe atomic wavefunctions close to a nucleus would be enormous

because of the rapid change of the potential and wavefunction near the nuclei. To make

calculations feasible and trustable, one replaces the bare nuclei by ions for the construc-

tion of so-called pseudo-potentials. The argument for that is that only the outer-shell

electronic states of atoms are involved in the bonding.

The practical implementation of DFT, used throughout this thesis, is the Vienna ab initio

Simulation Package (VASP)[47, 48], which adopts the plane wave basis set and Blöchl’s

projector-augmented wave (PAW) method for constructing the pseudo-potentials [49, 50].

For the actual calculations in this thesis, either the LDA parametrization of Ceperley

and Alder[51] or the GGA parametrization of Perdew, Burke and Ernzerhof[52] GGA are

chosen for the exchange-correlation functional, depending on the specific material under

study.

13
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2.3.2 Tight-binding Method

2.3.2.1 Slater-Koster Scheme

Besides plane waves, one may use localized orbitals such as atomic orbitals as basis sets,

for which the Bloch sum is constructed by

φn,k(r) =
1√
N

∑

Ri

eiRi·kϕn(r−Ri) (2.20)

where the sum extends over atomic coordinates in all the unit cells of the solid. The

function ϕn(r − Ri) denotes an atomic orbital centered at Ri with n labeling atomic

quantum numbers of the orbital. The orbital φn,k(r) must satisfy the Bloch theorem.

Generally, several types of atomic orbitals are involved, therefore one uses the Bloch sum

of each orbital as basis to construct the wavefunction which is the eigenfunction of the

Schrödinger equation as given by Eq.(2.12).

ψi,k(r) =
∑

n

C i
n(k)φn,k(r) (2.21)

Substituting Eq.(2.21) and multiplying Eq.(2.7) on the left by the complex conjugate of

φm(k), one arrives at

∑

n

Hm,n(k)C
i
n(k) = εi(k)

∑

n

Sm,n(k)C
i
n(k) (2.22)

where

Hm,n(k) =
1

N

∑

Ri,Rj

eik·(Rj−Ri)

∫

ϕ∗
m(r−Ri)Hϕn(r−Rj) =

∑

R

eik·Rhm,n(R) (2.23)

Sm,n(k) =
1

N

∑

Ri,Rj

eik·(Rj−Ri)

∫

ϕ∗
m(r−Ri)ϕn(r−Rj) =

∑

R

eik·Rsm,n(R) (2.24)

The Slater-Koster concept uses orthogonal orbitals There are four types of integrals in-

volved in Eq.(2.23): on-site, two-center, three-center and four-center integrals depending

on the center of atomic orbitals ϕ and H. In the Slater-Koster scheme[53], it is assumed

that three-center and four-center integrals are negligible compared to two-center integrals.

The two-center h and s are generally referred to as hopping and overlap parameters, re-

spectively. By the Slater-Koster method, an energy integral between two orbitals located

at two different atoms is a function of bond integrals and direction cosines between the

two atoms,

hm,n = f(Vi, α, β, γ) (i = σ, π, δ) (2.25)
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where α, β, γ are the direction cosines and Vi are bond integrals. The Slater-Koster table

lists complete energy integrals for s, p, and d orbitals [53]

2.3.2.2 Calculating TB parameters

The fitting procedure in principle is quite simple. One performs the TB calculations

starting from a set of guess TB parameters and then compares the TB bands with those

derived from ab initio calculations. One then needs to adjust the TB parameters in order

to minimize the deviation of TB bands from the ab initio bands. By applying a loop

of such operations, one obtains a set of reasonable parameters. There exists standard

nonlinear optimization algorithms for the fitting procedure. The procedure is straightfor-

ward and works for systems with a few atoms per unit cell. However, the number of the

TB parameters grows significantly as the size of the system grows. Correspondingly, the

number of parameters used during the minimizing procedure grows significantly, conse-

quently resulting in an extremely expensive fitting. Moreover, the quality of the returned

TB parameters depends on the number of bands used in the fitting, which further adds

difficulties to derive physically meaningful TB parameters.

Instead, one may extract TB parameters directly from an ab initio-like method using lo-

calized orbitals which could be Gaussian-type orbitals[54], maximally localized Wannier

orbitals [55] and so on. Andersen et al pioneered the attempts using a linear combination

of muffin-tin orbital (LMTO) method[56, 57]. Although the resulting hopping parame-

ters usually vanish rapidly as a function of distance between the atoms, they strongly

depend on the atomic spheres approximation which causes uncertainties for the fitting.

In the thesis, a linear combination of pseudo-atomic orbital (LCPAO) as implemented

in the OpenMX package is used to obtain the two-center hopping parameters[58, 59].

Non-orthogonal basis are used. The pseudo-atomic orbitals (PAO) are derived from

wavefunction of the atomic Kohn-Sham equations with a confinement pseudo-potential

V (r) =















−Z
r

r ≤ r1
∑3

n=0 bnr
n r1 ≤ r ≤ rc

h rc < r

(2.26)

where bn are determined to ensure the radial wave function and its first derivative are

continuous at both r1 and rc. This controls the slope and tail of the radial function.

Then the atomic orbitals are constructed by combining the radial wave function with

spherical harmonics. The generated radial function has the same number of nodes as the

full potential atomic orbital. However, in contrast to the long range full potential atomic

orbital, it can have a much shorter tail which facilitates tight binding fitting. In this

thesis a cutoff radii of 7.0 a.u. for Pt, Au and Ge is used.
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One then constructs wavefunctions for the KS equation using Eqs.(2.20) and (2.21), and

then builds the charge density utilizing Eq.(2.13). The resulting Hamiltonian and overlap

matrices of the KS equation are given by Eqs.(2.23) and (2.24). Thus, the parameters

hm,n and sm,n can be extracted directly from such a calculation and and tight binding

parameters are derived using the Slater-Koster table in Ref.[53].

2.4 Theory of Lattice Dynamics

The basic theory of the harmonic lattice dynamics of solids is formulated in the textbook

of Born and Huang[60], in which motions of atoms follow Newton’s second law. In the

Born-von Kármán model[60, 61], the chemical bond between atoms is simulated by forces

of a spring without considering the electronic structure that actually determine them.

For this concept, the spring constants are needed which might be extracted from exper-

imental informations. In contrast to this empirical approach, ab initio or first-principles

approaches have to take the electronic structure fully into account for calculating forces

and the phonon spectrum is derived without any empirical information. The ab initio ap-

proaches to harmonic vibration properties are generally divided into two categories based

on the different ways of constructing the dynamical matrix, namely the linear response

theory and the direct method. In the linear response approach, the dynamical matrix is

expressed in terms of the dielectric matrix which describes the response of the electronic

system to the perturbations of lattice distortion. On the other hand, in the direct method

often referred as the supercell method, the dynamical matrix is constructed by force fields

generated by small displacements of atoms in a supercell [62, 63]. In this section, the

Born-von Kármán model and the direct method are introduced, which are used to inves-

tigate the lattice dynamics of the proposed materials in the harmonic approximation.

2.4.1 Harmonic approximation

In solids, atoms vibrate about their equilibrium positions and their motions follow New-

ton’s second law.

Miüliα = Fliα = − ∂V

∂uliα
(2.27)

The potential energy V can be written in increasing power of the displacement sliα about

the equilibrium positions

V = V0 +
∑

liα
l′i′β

∂2V

∂uliα∂ul′i′β
+

1

3!

∑

liα
l′i′β
l′′i′′γ

∂3V

∂uliα∂ul′i′β∂ul′′i′′γ
+ . . . (2.28)
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By the harmonic approximation, the expansion is terminated at the second order. Sub-

stituting Eq.(2.28) into Eq.(2.27), one arrives at

Miüliα = −
∑

l′i′β

φ

(

l′j′β

ljα

)

ul′i′β (2.29)

where φ
(

l′j′β

ljα

)

= ∂2V
∂uliα∂ul′i′β

.

Because of the periodicity of the solid the solutions to Eq.(2.29) must be periodic in

space, and the ansatz for the time dependency comes from differential equation according

to Newton’s second law,

sliα =
1√
Mi

ciαe
(iq·Rli−ωt) (2.30)

Inserting Eq.(2.30) into Eq.(2.29), one finally obtains

Di′β
iα (q) =

∑

l′

1√
mimi′

φ

(

l′i′β

liα

)

eiq·(Rl′i′−Rli) (2.31)

The frequencies are derived by solving the eigenequations

ω2ciα =
∑

i′β

Di′β
iα (q)ci′β (2.32)

In principle, phonon dispersion ω(q) can be obtained by solving Eq.(2.32) once given

φ
(

l′j′β

ljα

)

.

Finally, the equations have to be quantized properly in order to fulfill the Bose-Einstein

statistics of the quantized levels of the harmonic oscillators. After that, one speaks about

phonons, the quantized energies of the spectrum, and also the zero point vibration energy

arises.

2.4.2 Born-von Kármán model

Within the Born-von Kármán model, chemical bond between atoms is simulated by spring

constants[60, 61]. The α component of the acting force on atom j in cell l is induced by

atom j′ in cell l′, which is is expressed in general as

φ

(

l′j′β

ljα

)

= −keαeβ (l′j′ 6=lj) (2.33)

where k is the spring constant and eα and eβ are direction cosines of the vector from i to i′.

The so-called self force constants (SFCs) (sometimes referred to on-site force constants)

17



Chapter 2 Electronic Structure: Theory and Practices

are constructed by

φ

(

liβ

liα

)

= −
∑

l′,i′

l′i′ 6=li

φ

(

l′i′β

liα

)

(2.34)

With the knowledge of the force constants, the dynamical matrix is constructed by

Eq.(2.32) and diagonalized.

2.4.3 Direct method

From Eq.(2.27) and (2.29), one writes

Fliα = −
∑

l′i′β

φ

(

l′j′β

ljα

)

ul′i′β (2.35)

If only one of the atoms is displaced while all others are frozen, forces on the atoms

are only induced by the displaced one. In other words, us are zero except for ul′i′β.

Consequently, the force constant φ
(

l′j′β

ljα

)

can be simply formulated as

φ

(

l′j′β

ljα

)

=
Fliα

ul′i′β
(2.36)

Now, the force constants (or force constant matrix, rather) can be set up based on forces

on atoms induced by displaced atoms.

Accurate force calculations can be done using a first-principles method. The force on ion

i along α direction is given by

Fiα = − ∂

uiα
< Ψ|He|Ψ > −∂Eion

∂uiα
(2.37)

where He is the electronic Hamiltonian as given by Eq.2.7, and Eion is the energy of

interaction between the ions.

The Hellmann-Feynman theorem states that if Ψ is an eigenstate of the Hamiltonian,

then
∂

uiα
< Ψ|He|Ψ >=< Ψ| ∂He

∂uiα
|Ψ > (2.38)

Substituting this to Eq.(2.37) gives

Fiα = − < Ψ| ∂He

∂uiα
|Ψ > −∂Eion

∂uiα
(2.39)
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The direct method has been implemented in the f PHON program package 1.

1f PHON, written by David Reith, which is a strongly modified and generalized version of the package
PHON[64, 65]

19





Chapter 3

Modeling Thermoelectric Materials

Transport theory deals with flow of charges or heat flow through a solid material under

external fields, such as an electric field and/or a temperature gradient. The motions of

carriers (electrons or phonons) are driven by the external fields but resisted by inter-

nal scattering processes between them and other (quasi)particles. There are energy and

momentum exchanges within the interactions resulting in finite electric or thermal con-

ductivity. On the other hand, the interactions have the consequence that the conducted

carriers are not in their equilibrium states. There are two approaches to such a non-

equilibrium transport, namely the Green-Kubo theory theory[38] and the semi-classical

Boltzmann transport theory[39]. The former relates transport coefficients to the corre-

lation function of the current or heat flux. The latter treats effects of various scattering

mechanisms on transport properties in terms of relaxation times. The Boltzmann trans-

port theory has proven its validity in numerous applications where calculated transport

coefficients can be readily be compared with experimental results. In this section it is

shown how to merge the electronic structure -as derived from a first-principles approach-

into the Boltzmann transport theory for deriving the electronic transport coefficients .

3.1 Preliminaries

The Boltzmann theory describes the electron system by introducing a distribution func-

tion, which is given by the Fermi function when electrons are in equilibrium states. It

is explicitly dependent on the band index n and wavevector k, which are the quantum

numbers of the electronic states. When deviating from equilibrium, the distribution func-

tion may depend on spatial coordinates r and time t, characterized by fn(r,k, t). The

distribution fn(r,k, t) in the neighborhood of r may change as a result of the following

mechanisms:
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1. Diffusion: electrons with velocities v(k) flow into the vicinity of r from adjacent

regions meanwhile others leave, because of diffusion.

2. external fields: electrons are driven by forces generated by external fields, which in

the present case is the electric field and the temperature gradient.

3. Collisions: electrons are scattered from state to state by various interactions includ-

ing electron-phonon, electron-electron, electron-impurity interactions and so on.

The total rate of change of the distribution function is then

ḟ = ḟdiff + ḟfield + ḟcoll. (3.1)

In the steady state ḟ vanish. Thus one arrives at

ḟdiff + ḟfield = −df
dt coll

. (3.2)

If one introduces a relaxation time τ(k) to describe scattering effects and assumes that

fn(r,k, t) approaches the equilibrium distribution f 0(k), then

∂f

∂t coll
= −f(k)− f 0(k)

τ(k)
. (3.3)

As f is a function of (r,k, t), the rate of change of the distribution due to diffusion and

external field can be written as

− ḟdiff+field =
∂f

∂r

r

dt
+
∂f

∂k

eε

~
, (3.4)

where
r

dt
= v(k)

1

~

∂E

∂k
(3.5)

Since f deviates only slightly from f 0, f is replaced by f 0 for the above equation. One

obtains easily the relation ∂f

∂r
from the definition of f 0

∂f

∂r
= −∂f

0

∂E
(∇µ+

E − µ

T
)∇T. (3.6)

Substituting Eq.(3.6) back into Eq.(3.4) and then substituting Eqs.(3.3) and (3.4) into

Eq.(3.2), the distribution function is then written as

f(k) = f 0(k) + (−∂f
0

∂E
)v(k)τ(k){eε− (

∂µ

∂T
+
E − µ

T
)∇T}. (3.7)
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3.2 Transport Coefficients

The flowing of charges under electric field leads to an electric current, of which the density

is

Je =
2e

8π3

∫

v(k)f(k)dk (3.8)

where f(k) is given by Eq.(3.7). Similarly for the heat current density produved by the

electrons, one gets

JQ =
2

8π3

∫

v(k)[E − µ]f(k)dk (3.9)

in which µ is the chemical potential. Substituting Eq.(3.7) into Eqs.(3.8) and (3.9) and

neglecting the term f 0 in Eq.(3.7) one arrives at

Je =
2e

8π3

∫

v(k)v(k)τ(k)(−∂f
0

∂E
)[eε−∇µ+

E − µ

T
(−∇T )]dk

=
e2

4π3

∫

v(k)v(k)τ(k)(−∂f
0

∂E
)[ε− 1

e
∇µ]dk

+
e

4π3~

∫

v(k)v(k)τ(k)[
E − µ

T
](∇T )dk

(3.10)

JQ =
2

8π3

∫

v(k)v(k)τ(k)(−∂f
0

∂E
)[eε−∇µ+

E − µ

T
(−∇T )](E − µ)dk

=
e

4π3

∫

v(k)v(k)τ(k)[ε− 1

e
∇µ](E − µ)(−∂f

0

∂E
)dk

+
1

4π3

∫

v(k)v(k)τ(k)
E − µ

T
(−∇T )(−∂f

0

∂E
)dk

(3.11)

By defining now the integral

Kn =
1

4π3~

∫

v(k)v(k)τ(k)(E − µ)n(−∂f
0

∂E
)dk (3.12)

Eqs.(3.10) and (3.11) can be expressed in terms of Kn,

Je = e2K0ε+
eK1

T
(−∇T ), (3.13)

JQ = eK1ε+
K2

T
(−∇T ). (3.14)

When there is no temperature gradient, i.e.,∇T = 0 in Eq.(3.13), one obtains

Je = σε (3.15)
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where σ is the electrical conductivity, which is of the form

σ = e2K0 (3.16)

When the electric field is absent and only a temperature gradient exists, one might be

tempted to think that the thermal conductivity is obtained simply by taking it as a

coefficient of the thermal gradient in Eq.(3.14), i.e., under the conditions that an external

electric field is zero. It is a straightforward matter to ensure that no electric current passes

through the sample. In this case the relation je = 0 in Eq.(3.13) is valid. Substituting

Eq.(3.13) into Eq.(3.14) for eliminating the electric field yields

JQ = κ(−∇T ) (3.17)

where κ is the electronic thermal conductivity

κ =
1

T
[K2 −

K2
1

K0

]. (3.18)

If it is assumed that there is a temperature gradient across a sample which is in an

open-circuit condition, then there is no electric current but an electric field

ε =
K1

eTK0

∇T (3.19)

is produced. From the definition of the Seebeck coefficient, one obtains then

S =
K1

eTK0

(3.20)

3.3 Implementation Techniques

3.3.1 Band Interpolation

Integration of Eqs.(3.16), (3.18) and (3.20) involves a a delta-like function, namely the

energy derivative of the Fermi function, which requires eigenvalues on a dense k-mesh for

an accurate evaluation. For example, Yao et al used 2 × 106 k-points in order to get a

converged value of the intrinsic anomalous Hall conductivity[66]. Direct calculations via

the a first-principles method are too cumbersome for such an an enormous k-point mesh.

Thus, an efficient and accurate interpolation method is therefore required for this type of

calculations.

Shankland introduced a Fourier-based interpolation method involve least squares fitting[67].

In this method a periodic function known at discrete set of points is represented by a
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Fourier series which passes exactly through the given points and yet remains smooth.

Suppose one has a set of N data points to be fitted with a Fourier series

f(k) =
N
∑

i=1

aie
ikRi (3.21)

where Ri denotes a real-space lattice translation. The interpolation requires that the

resulting function passes exactly the N points. If the expansion is truncated at M > N ,

then interpolation is underdetermined. A good interpolation requires a smooth interpo-

lation and avoiding oscillations in between the N data points. To fit the requirements,

Shankland introduced an auxiliary roughness function, which is the integrated square of

the deviation of the expanded function from its mean value, plus the integrated square

of the derivative of the function, the second derivative, and so on,

ℜ =
1

2

∫ 2π

0

[C0f
2(k) + C1f

′2(k) + . . . ]dx

=
M
∑

m=1

|ai|2(C0 + C1|Rm|2 + C2|Rm|4 + . . . )

(3.22)

Since energy bands have the symmetry of the crystal, a natural choice of the expansion

are symmetrized plane waves or star functions,

Sm(k) =
1

nr

nr
∑

α=1

eiαRm·k (3.23)

where the sum runs over all operations of the point group of the crystal. The interpolation

function is written as

ε̃(k) =
M
∑

m=1

εmSm(k) (3.24)

with the idea to use more expansion coefficients εm, namelyM , than the given number of

data points N , i.e. M > N . Substituting Eq.(3.23) into Eq.(3.43) and then substituting

the latter in Eq.(3.22), the roughness function ℜ can be expressed as

ℜ =
M
∑

m=1

|εm|2℘(Rm) (3.25)

in which ℘ is given by

℘(Rm) = C0 + C1|Rm|2 + C2|Rm|4 + . . . . (3.26)

There, the coefficients Cm have to be chosen suitably. The problem of the interpolation
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consists now in minimizing the roughness function, subject to the constraint that the

interpolating function passes through the given N data points. In other words,

ε̃(ki) = E(ki) (i = 1, 2, . . . , N), (3.27)

where E(ki) represent the N data points.

Introducing the Lagrange multipliers

℘∗ = ℘(Rm) +
N
∑

i=1

λi(E(ki)− ε̃(ki)), (3.28)

minimizing ℘∗ with respect to the coefficient ε∗i and the λi, one obtains

δ℘∗

δε∗i
= εi℘(Rm)−

N
∑

i=1

λiS
∗
m(ki) = 0 (3.29)

for which ε̃(ki) = ε̃∗(ki) has been used.

δ℘∗

δλi
= E(ki)−

M
∑

m=1

εmSm(ki) (3.30)

Substituting Eq.(3.29) into Eq.(3.30) one gets

E(kj) =
N
∑

i=1

Hijλi (3.31)

with

Hij =
M
∑

m=1

S∗
m(ki)Sm(kj)/℘(Rm) (3.32)

One realizes that once the formulation of the roughness is given, the λi’s can be calculated

from the linear equations Eq.(3.31). With the knowledge of λi, the expansion coefficients

εm are derived from Eq.(3.29) and then the interpolation can be proceeded via Eq.(3.43).

The problem left to be solved is how to choose a proper set of Cm in Eq.(3.26). It seems

there are many uncertainties of the choice of Cm. However one should bear in mind that

the fit should be insensitive to the choice. Actually the situation becomes clear, if one

realizes that the interpolation is constrained to pass through all the given N data points.

In other words, different sets ℘(Rm) may result in different avlues of H, but no matter

what they are, the resulting λi must guarantee Eqs.(3.29) and (3.31). Therefore, the

quality of the fit is insensitive to the choice of Cm. Indeed, tests of Koelling and Wood

support this argument as long as all the coefficients Cm are nonzero[68].
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Pickett noticed that the expression in Eq.(3.25) has the undesired effect of minimizing

deviations of ε̃(k) from zero and emphasize that the more physical restriction is to min-

imize the deviations of ε̃(k) from its mean value[69]. As suggested by Pickett, a more

reasonable way is to omit the m = 1 term

ℜ =
M
∑

m=2

|εm|2℘(Rm). (3.33)

Applying the minimizing procedure that as described above, one gets

ε∗i℘(Rm) =
N
∑

i=1

λiSm(ki) (m > 1) (3.34)

In addition, the quantities λi are subject to the condition

N
∑

i=1

λi = 0. (3.35)

Substituting Eq.(3.35) into Eq.(3.34), one obtains

ε∗i℘(Rm) =
N−1
∑

i=1

λi[Sm(ki)− Sm(kN)] (3.36)

Multiplying the complex conjugate of Eq.(3.36) by [Sm(kj)− Sm(kN)]/℘(Rm) and then

summing m from 2 to M , one arrives at

E(kj)− E(kN) =
N−1
∑

i=1

Hijλ
∗
i , (3.37)

where

Hij =
M
∑

m=2

[S∗
m(ki)− S∗

m(kN)][Sm(kj)− Sm(kN)]

℘(Rm)
(3.38)

Solving Eq.(3.37) for λi and substituting them into the complex conjugate of Eq.(3.36),

ends up with the expansion coefficients

εm =
N−1
∑

i=1

λ∗i [S
∗
m(ki)− S∗

m(kN)]

℘(Rm)
(m > 1) (3.39)
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The coefficients ε1 can be obtained from Eq.(3.27),

ε1 = E(kN)−
M
∑

m=2

εmSm(kN) (3.40)

Also, Pickett proposed a form for ℘(Rm),

℘(Rm) = (1− C1(R
′
m)

2)2 + C2(R
′
m)

6 (3.41)

where R′
m = Rm/Rmin and Rmin is the smallest nonzero lattice vector. As regards to the

initial coefficients, C1 and C2, they were fixed to be 0.75.

Although already having electron eigenvalues En(k) on a dense mk mesh by employing

the interpolating scheme to En(k) over a relative coarse k-mesh from ab initio methods,

one is still far from practical computations of transport coefficients given by Eqs.(3.16),

(3.18) and (3.20). One has to calculate the integrals Kn as given by Eq.(3.12), which are

present in all the transport coefficients. The calculation of Kn involves computations of

the electron velocity v(k) and relaxation time τ(k). In the rest of this section, techniques

of computing Kn and related transport coefficients are presented. Moreover, the rigid

band approximation and symmetry properties of transport tensors are discussed, which

are used in the thesis to simulate experiments.

3.3.2 Electron Velocities

The velocity of electronic bands is given as

vn(k) =
1

~

∂En(k)

∂k
(3.42)

with the quantum numbers n, the band index, and the k vector. It should be noted, that

Eq.(3.42) is exactly the same as Eq.(3.5). In principle, one can use a finite difference

method to calculate the derivative, but such methods are cumbersome. Rather than

following this brute force concept, a Fourier transformation algorithm is used for the

present purpose, because it can be made stable and fast. Remembering that En(k) is

given by Eq.(3.43) the derivative can be easily calculated, rewriting it

ε̃n(k) =
M
∑

m=1

1

nr

nr
∑

α

εnme
iαRm·k. (3.43)
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The derivative of ε̃n(k) with respect to k is

∂ε̃n(k)

∂k
=

M
∑

m=1

1

nr

nr
∑

α

εnm(iαRm)eiαRm·k. (3.44)

Calculation of Eq.(3.44) can be easily accomplished by employing well-established Fast-

Fourier-Transform (FFT) techniques, such as used in the subroutine C3FFT from Math

Kernel Library of Intel.

3.3.3 Constant Relaxation Time Approximation

With the velocities at hand, one can now proceed by evaluating the integrals Kn, but

the relaxation times τ(k) are not directly accessible. As stated in Sec.3.1, the relaxation

times of electrons τ describe various scattering effects in Boltzmanns’ theory. There

are numerous scatterings events for the electrons including electron-electron, electron-

phonon, electron-magnon, boundary scatterings and so on. These scattering effects are

complicated to formulate and may interplay with each other. In Matthiessen’s rule, the

scattering effects are independent of each other and then an effective relaxation time

τ(M) is given by
1

τM
=

∑

i

1

τi
(3.45)

where the sum runs over all independent scattering events for a given state with energy

En(k). Although the rule simplifies our problem, relaxation times remain difficult to

calculate for technical reasons. For instance, up to now the electron-phonon coupling can

in principle be computed on a DFT level by using linear response theory. However, the

calculations are extremely demanding time-consuming. Thus a first-principles calculation

of τel−ph is not feasible at the moment for systems with a larger numbers of atoms per

unit cell. Instead of the full calculation of τ , it is treated here as a an empirical constant.

Then, the electrical conductivity and Seebeck coefficient are given as

σ

τ
=

e2

4π3~

∫

v(k)v(k)(−∂f
0

∂E
)dk, (3.46)

S =

∫

v(k)v(k)(E − µ)(−∂f0

∂E
)dk

eT
∫

v(k)v(k)(−∂f0

∂E
)dk

. (3.47)

In fact, relaxation time τ appears in both the numerator and denominator of Eq.(3.20)

and it cancels. Thus the Seebeck coefficient is much less sensitive to scattering events

included in τ than the conductivity. In practical calculations of σ, one firstly calculates
σ
τ
by Eq.(3.46) and then treat τ as an empirical parameter by fitting σ to experiments.
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This was done also in this work by deriving τ by fitting to one value of the experimental

conductivity. This worked surprisingly well, as will be shown later on.

3.3.4 Symmetry Properties

(a) (b) (c) (d)

Figure 3.1: Illustration of doping two atoms (in blue) onto six equivalent sites. (a)
Because of the sample preparation at higher temperatures, experimentally the dopants
are more or less statistically distributed. (b) - (d) Three possible configurations for
modeling with a unit cell in which each site is either completely substituted by a dopant

or not.

Difference in crystal symmetry between theoretical modeling and experimental samples

may occur when one has to deal with doping. Experimentally, the crystal symmetry of

the undoped compound may be maintained upon doping because the dopants are -more

or less- statistically distributed on the sites. While the dopants are at specific crystallo-

graphic site according to the ordered arrangements of atoms needed for the DFT mod-

eling, the symmetry inherent to the undoped case may be broken upon doping. Fig.3.1

illustrates the differences in understanding doping between the experimental situation

and theoretical modeling.

Conductivity σ and Seebeck coefficient S are second-rank tensors with σ being symmetric

according to σij = σji. However, S is not necessarily symmetric when the symmetry of

the solid does not enforce this property. A high crystal symmetry reduces the number of

independent tensor elements. In particular, σ and S become isotropic in solids with cubic

symmetries, which means that the only non-zero elements are in the diagonal, and these

elements have the same value. Using a different symmetry in the theoretical modeling

as compared to the experimental sample leads to differences in the transport coefficients.

To mimic the experimental situation of maintaining the high symmetry of the undoped

case, this full symmetry can be enforced to the Seebeck and conductivity tensors by

symmetrization,

T̄ =
∑

α

Λ−1
α T̄Λα (3.48)

where Λα represent point group operations of the crystal, and T̄ denotes a transport

tensor.
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3.3.5 Rigid Band Approximation

Many of theoretical efforts are try to explain experimental results. Difficulties include

various temperature and doping effects inherent in the experimental, which arise due

to complex circumstances forced by nature. Therefore, reasonable modelings have to

be made. As a prototypical problem, experimental fractional compositions cannot be

directly simulated because this would require enormously large super cells.

A simple way out of this problem is the rigig band approximation. In the present case

it was employed to model experimental compositions by taking a reference composition,

for which full first-principles calculations can be made. The composition of this reference

system should be chosen as close as possible to the experimental conditions. Suppose ∆n

is the changed number of valence electrons with respect to the reference compound with

N0 valence electrons, the chemical potential of the doped system is calculated from

Ne =

∫ ∞

−∞
N(E)f(T ;µ)dE (3.49)

where µ is the chemical potential (i.e. temperature dependent Fermi energy) for the

doped system with Ne = N0 + ∆n electrons. By that ansatz it is assumed, that the

small change in valence electron numbers does not alter the electronic structure (i.e. the

density of states) at all, the bands are kept rigid.
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Figure 3.2: Calculated Fermi levels of Ba8Au6Si40 (black solid line) and
Ba8Au5.9Si40.1(red dashed line) at 0 K. The Fermi level of Ba8Au5.9Si40.1 was derived

by Eq. 3.49 taking Ba8Au6Si40 as the reference.

As an example, the clathrates Ba8AuxSi46−x are taken. Then, Ba8Au6Si40 is chosen as

the reference compound to simulate the experimental compound Bath a small doping

8Au5.9Si40.1. The change in valence electron numbers ∆n is now counted assuming that
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Au and Si contribute 1 and 4 valence electrons to the system, respectively. The Fermi

level of Ba8Au5.9Si40.1 is shown in Fig.3.2.

3.3.6 Calculation of the transport properties by program V2Boltz

The above techniques were implemented in the program V2Boltz 2, which has following

features.

• Originally BoltzTraP has only an interface to WIEN2K. Based on the consideration

of popularity of VASP, program V2Boltz is made available for using VASP output

and symmetry.

• V2Boltz is able to calculate temperature-dependent transport coefficients for any

electron doping within the rigid band approximation. This was done by implement-

ing Eq.3.49, with which one derives the chemical potential for a given doping at

any temperature.

• V2Boltz is able to symmetrize transport tensors by implementation of Eq.3.48.

• As a byproduct of solving Eq.3.42 the Fermi velocity is accessible by V2Boltz:

vn(EF ) =
∑

k

vn(k)δ(ε̃n(k)− EF ) (3.50)

The Fermi velocities are important for spin polarization transport, for which the

spin polarization P is defined by[71]

P =
N↑(EF )v↑(EF )−N↓(EF )v↓(EF )

N↑(EF )v↑(EF ) +N↓(EF )v↓(EF )
(3.51)

where Nσ(EF ) and vσ(EF ) (σ =↑, ↓) represent the majority and minority spin

DOS and Fermi velocities, respectively. The application was recently demonstrated

in investigation of half-metallic ferromagnetic systems by the author and his co-

workers[72].

• V2Boltz is able also to calculates Lorenz numbers for evaluating thermal conduc-

tivity of phonons (see Sec. 5.7).

• V2Boltz was modified for a convenient usage. It uses namelist to read in the desired

information and restarts calculations using existing DOS and velocity files.

A manual of V2Boltz is added in Appendix.A. A schematic flow chart of calculating

2V2Boltz, written by Mingxing Chen, is a substantial developments and extensions of BoltzTrap
developed by G. K. H. Madsen and D. J. Singh[70]
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Figure 3.3: Flow-chart depicting a generic calculation of components of the Seebeck
tensor.

Seebeck coefficients is depicted in Fig.3.3.

3.4 Benchmark Calculations

3.4.1 k-convergence

There are numerical issues, which needs to be addressed and checkd out: how dense

should the interpolated k-mesh be to produce a convergent Seebeck coefficients: and how

dense should the k-mesh of the DFT input be for the interpolation?

The k-mesh convergence was first tested for Seebeck coefficient of Ba8Au6Si40. Inter-

polations were performed on various Monkhorst-Pack grids using VASP eigenvalues on

meshes of 5×5×5 (black line) and 25×25×25 (red line), respectively (see Fig.3.4). It

is shown that if one starts with a rather coarse grid, say 5×5×5, a grid at least as
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Figure 3.4: k-mesh convergence of calculations of the Seebeck coefficient of
Ba8Au6Si40 at T = 600 K for two different input k-meshes: 5×5×5 (black line) and
25×25×25 (red line). Interpolations were done over several Monkhorst-Pack grids using
VASP eigenvalues. Seebeck coefficients were calculated using the interpolated eigenval-

ues.

dense as 25×25×25 for the interpolation is required to obtain converged values. Fig.3.4

also shows that differences occur between two converged calculations derived from VASP

eigenvalues on different k-meshes for interpolations. For instance, interpolations on a

grid of 40×40×40 using both sets of VASP eigenvalues resulted in converged Seebeck

coefficients, but there is a difference of 4 µV/K in the resulting Seebeck coefficients at

300 K, which is an error of about 5%.
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Figure 3.5: Calculated S(T) of Ba8Au6Si40 using interpolated eigenvalues on a k-grid
of 40×40×40 (K’) with VASP eigenvalues on grids of 5×5×5 (black line) and 25×25×25

(red line), respectively.
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Figure 3.5 shows S(T) of Ba8Au6Si40 derived from interpolated eigenvalues on a 40×40×40

grid with VASP eigenvalues on the two different grids, namely 5×5×5 (black line) and

25×25×25. Although the trends are very similar, some differences are produced. The

most noticeable difference is the position of the maximum appearing in the Seebeck

coefficient. When using VASP eigenvalues on the grid of 5×5×5 for the interpolation,

the maximum appears around 800 K. However, it occurs about 1000 K if the VASP

eigenvalues for a grid of 25×25×25 is used.
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Figure 3.6: Comparisons in DOS of Ba8Au6Si40 between the one from eigenvalues
on a 25×25×25 grid (red) directly derived by VASP and those from eigenvalues on a
40×40×40 grid (K’) interpolated from VASP eigenvalues on a 5×5×5 grid (green line)

and on a 25×25×25(blue line) grid, respectively.

The differences originate from the interpolation procedure which strongly relies on the

density of the input grids, on which VASP eigenvalues are generated. Fig.3.6 displays

effects of input (i.e., VASP) k grids on the density of states as calculated from the

interpolated eigenvalues. The density of states derived from eigenvalues on a grid of

25×25×25 almost remains unchanged as compared that from interpolated eigenvalues on

a grid of 40×40×40. The resulting densities of states agree well between with each other

between them. However, if the interpolation is performed starting with eigenvalues on

a coarse grid of 5×5×5, the discrepancy in the DOS is significant. The reason is that

if the grid for the interpolation is too far from the one of the input eigenvalues, there

are too many points between two input data points needed to fit. The growing of the

number of the fitting points leads to a growing of the deviation from their exact values.

Therefore, input eigenvalues should be calculated on a mesh as dense as possible for a

high accuracy. It should be noted that the accuracy behavior can be different for different

systems, depending on the specific properties of the electronic bands.
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3.4.2 Effects of exchange-correlation approximations
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Figure 3.7: S(µ) of Ba8Au6Si40 at 300 K derived from LDA (black line) and GGA
(red line) eigenvalues. Interpolations were performed over a 40×40×40 grid based on
VASP eigenvalues on a grid of 25×25×25 points. The DOS from both LDA (green)
and GGA (red line) calculations are shown in the inset. The LDA calculation produces

a narrower gap than the GGA calculations.
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Figure 3.8: S(T) of Ba8Au6Si40 derived from LDA (black line) and GGA (red line)
eigenvalues. Interpolations were done over a grid of 40×40×40 based on VASP eigen-

values on a grid of 25×25×25.

It is well known that the bonding and consequently the ground state properties such as

volume depend on the actual approximation to the exchange-correlation functional, such

as the difference in gap size of the diamond structure of Si between LDA and GGA. Since

Seebeck coefficients are derived from energy eigenvalues, different choices of the electron

exchange-correlation function certainly lead to differences in the Seebeck coefficients for

the same systems at their respective equilibrium volumes. Figs.3.7 and 3.8 depict S(µ) and
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S(T) at 300 K of Ba8Au6Si40 as derived from LDA and GGA eigenvalues at their respective

equilibrium volumes.The Differences between the two approximations are clearly visible.

LDA produces a smaller gap and a much smaller magnitude of the Seebeck coefficient

especially when µ is close to the gap. The S(T) as derived from GGA calculations is over

two times larger than that from LDA calculations at 1000 K.
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Chapter 4

Ge-based Skutterudites

4.1 Overview

During the past two decades, filled pnictide skutterudites have experienced substantial

attention due to their promising thermoelectric performance as controlled by their unique

structures [6, 8–15, 73–78]. As first proposed by Slack [79]filling the voids in the skut-

terudite structure would reduce the lattice thermal conductivity significantly and thus

meets the requirements for a high thermoelectric performance. Slack’s conjecture is that

phonons of the framework are strongly scattered by the filler and thus produces a glass-like

lattice thermal conductivity is produced while the electrical conductivity of a crystalline

material is preserved: the concept of phonon-glass and electron crystal (PGEC)[1]. This

paradigm has been challenged in recent investigations. Koza et al showed by neutron-

scattering experiments on (La,Ce)Fe4Sb12 [21] that filler vibrations are coherently coupled

with the host’s lattice dynamics. Moreover, Christensen et al argued that the effect of the

rattler is to flatten the phonon bands rather than providing a strong phonon scattering

mechanism [80].

The debate on the effect of the filling on the thermal conductivity is associated with the

occurence and properties of rattling modes. There were numerous attempts to understand

rattling modes in skutterudites and clathrates. [81–86] Both theoretical calculations and

experimental measurements of vibrational properties demonstrated that a well-defined

localized peak in the low frequency regime of the phonon density of states (PHDOS),

which is dominated by the vibrating filler atoms, appears when the material is doped by

heavy elements are doped. This localization feature is accompanied by an anti-crossing

or avoided anti-crossing behavior of optical and acoustic modes due to a weak bonding

between the filler atoms and the framework [83, 84] However, such a localized peak is

missing in some skutterudites. For instance, the localized peak was not detected for
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CeOs4Sb12 by inelastic neutron scattering experiments [87]. localized phonon peak is also

missing for MFe4Sb12 (M=Ca, Sr and Ba) [88]. The filler-framework interaction and the

atomic mass of the filler certainly play a role for the properties of the rattling modes, but

the effect is not yet fully understood. This particular point is one of the subjects which

is studied from first principles in the present thesis.

Recently a new family of purely Ge-based skutterudites without any pnictogen element

has been synthesized [89–95], which is unique in several respects: (i) different to their

mostly investigated pnictogen-based relatives the caged-framework is entirely built by

Ge atoms. (ii) the bonding in the cages is different from other Ge-caged compounds

because Ge atoms are are four-fold coordinated concerning its nearest neighbors; (iii)

the transition temperatures of superconductivity are unexpectedly high but the Seebeck

coefficients are unexpectedly low as compared to pnictogen-based skutterduites [91, 96,

97]. For the Seebeck effect is a result of the mobility of electrons, the significant difference

in thermoelectric properties between pnictogen- and Ge-skutterudites originates from

differences of the electronic structures.

Efforts have been devoted to combine the thermoelectric properties and electronic struc-

tures for the purpose of optimizing the thermoelectric performance. For instance, Mahan

et al proposed that a delta-function shaped electronic density of states (DOS) at the

Fermi level is required to maximize the ZT, [98], which was recently demonstrated ex-

perimentally in terms of band engineering [99]. However, the required singularity of the

DOS around the Fermi level is not fulfilled in many cases. For instance, many thermo-

electric materials miss the localized d (f) and pinning states but still exhibit promising

thermoelectric properties [100–103]. These observations certainly motivate a search for a

general rule for band engineering towards optimized thermoelectric properties.

In the chapter the lattice dynamics of the newly discovered family of skutterudites

MPt4Ge12 (M = Ba, La and Th) is investigated by using a direct method based for

the first-principles calculations of the phonon spectrum and DOS, aiming at the under-

standing of the nature of filler or guest atom vibrational modes in caged materials. As for

the TE properties, a strategy for optimizing the TE performance is developed, which may

guide band engineering, which is based on the characteristics of electronic structures. A

rule for doping of MPt4Ge12 to improve thermoelectric properties is proposed. As a result

of this investigation, Enhanced Seebeck coefficients are predicted for LaPt4(Ge7+δSb5−δ)

and ThPt4(Ge8+δSb4−δ).
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(a) perovskite (b) skutterudite

Figure 4.1: Crystal structures of (a) perovskite ABC3 with empty A site and (b)
an unfilled skutterudite. Large cyan and small red balls denote transition metals and

nonmetal ligands, respectively.

4.2 Structural Properties

The skutterudites of composition MP3 (M transition metal, P pnictogen element) re-

ceived their name because of the place where they were found first, namely in Skutterud,

Norway. Skutterudites crystallize in a body-centered cubic (bcc) structure with space

group Im3̄ (No.204). The conventional unit cell contains eight MP3 units, with the M

atoms occupying the 8c sites (1
4
,1
4
,1
4
) and the P atoms located on the 24g sites (0,y,z) as

shown in Fig.4.1, where the exact values of y and z depend on the particular compound.

M is octahedrally coordinated by P, forming a distorted MP6 octahedra. There is a great

similarity between the skutterudites and the ReO3 structure as well as the perovskite

structure �MP3 (� denotes an empty A site). In the ideal perovskite �MP3 the eight

octahedra are not tilted which results in eight voids. The skutterudite structure can be

deduced from the perovskite structure by tilting the octahedra [104, 105]. During the

tilting the octahedra keep connected and the volume of six of the eight voids are reduced

and become the centers of rectangularly ordered pnictogen atoms. The remaining two

voids are significantly enlarged, which can accommodate various fillers. A filled skutteru-

dite has the chemical formula AM4P12 with a primitive cell of a body-centered cubic type

(Fig.4.2(a)). The main differences between both structures are that the MP6 octahedra

are distorted in the skutterudite.
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As noted by Smith et al [106], the skutterudite structure is related to the perovskite

structure by the transformation

y′ =
1

2
+ s(y − 1

2
) z′ =

1

2
+ s(z − 1

2
) (4.1)

The perovskite structure (s = 0) is transformed into the skutterudite structure when s =

1.

4.3 Lattice Dynamics of Ge-skutterudites

4.3.1 Born-von Kármán Model Calculations

The essential structural characteristics of skutterudites is that it contains cages formed

by framework atoms which are filled by heavy guest atoms. To model the structural

properties, a B2 structure is constructed, which is shown in Fig.4.2(b). To investigate the

effect of the filler atom’s mass and bonding to the framework on the vibrational properties,

a simplified model is constructed as shown in Fig.4.2(b). For the filler the first nearest

(a) (b)

Figure 4.2: (a)Structure of the filled skutterudite, (b)sketch of a 3 dimensional spring
model for body-centered cubic structure, corresponding to the unit cell of a B2 struc-
ture. The symbols m and M are the masses for the framework atoms and the filler,
respectively’ k1 represents spring constants between framework atoms, while k2 is the

spring konstant between framework and filler.

neighbor approximation is imposed and for the framework atoms interactions up to the

second nearest neighbors are taken into account. Relative spring constant and atomic
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mass are introduced by defining k′=k1/k2 and m′=m/M . In the present calculations m′

is chosen for masses of framework atoms (red balls in Fig.4.2) and 1 is defined for the

filler (green ball Fig.4.2). Spring constants between framework k1 are set to 1 and k2 is

represented by k′.

Within the Born-von Kármán theory, a force constant matrix is assigned to each of the

neighbors of a particular atom, whose properties are related to the direction cosines for the

two neighboring atoms. In the B2 lattice the force constant matrix, i.e. the α component

of force acting on atom j in cell l induced by atom j′ in cell l′, expressed for on atoms

sitting at (0,0,0) and the neighbor sitting at a(0.5, 0.5, 0.5)) is

φ

(

l′j′β

ljα

)

=







ζ1 η1 η1
η1 ζ1 η1
η1 η1 ζ1






(4.2)

For the neighbor atom at a(1, 0, 0) it is

φ

(

l′j′β

ljα

)

=







ζ2 0 0

0 η2 0

0 0 η2






(4.3)

In Madelung’s method, the chemical bond between atoms is simulated by forces of a

spring. For the central case, the force constant matrix elements can be related to the

spring constant by

φ

(

l′j′β

ljα

)

= −keαeβ (l′j′ 6=lj) (4.4)

where k is the spring constant and eα and eβ are direction cosines of the vector from i to

i′. It turns out that for real systems with B2 structure, (e.g. NiAl) η1 is different from

but very close to ζ1 and η2 is relatively small but can not be neglected when compared

to ζ2. In the present calculations, η1 is set to 95% of ζ1 and η2 is set to 20% ζ2, which

are close to those for NiAl as from ab initio calculations[107]. Relative spring constant

and atomic mass are introduced by defining k′=k1/k2 and m′=m/M . Here m′ is set for

masses of framework atoms (red balls in Fig.4.2) and 1 is for the mass of the filler (green

ball Fig.4.2), and k1 is set to 1 and k2 equals k′. Phonon spectra derived from Born-

von Kármán model calculations with respect to different m′ and k′ are shown in Fig.4.3.

Two important features can be observed that are relevant for the appearance of rattling

modes. One is the involvement of acoustic modes around the boundary of the Brillouin

Zone (BZ). Acoustic modes tend to be flattened as q comes close to the boundary of BZ

for small k′, for which one can see exactly flat bands along X-P and Γ-P directions with

k′ = 0.3. This means that peaks appear in the phonon DOS in the low frequency energy

regime.
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Figure 4.3: Phonon spectrum derived from the Born-von Kármán model with respect
to relative masses m′ and spring constants k′.

4.3.2 First-principles Lattice dynamics of MPt4Ge12

For phonon calculations with ab initio method, force constant matrix are constructed

based on forces on atoms with respect to a small displacement of a particular atom.

[65] Density functional theory (DFT) calculations for the MPt4Ge12 (M = Ba, La and

Th) compounds were carried out by applying the Vienna Ab initio Simulation Package

(VASP). [47, 48] The generalized gradient approximation is used for the exchange cor-

relation functional using the parametrization of Perdew, Burke, and Ernzerhof, [52] and

the pseudopotential is treated within the framework of Blchls projector augmented wave

method. [49, 50] The valence states configuration for the construction of the pseudopo-

tentials included 5s25p66s2 for Ba, 5s25p66s25d1 for La, 5s25p66s25d2 for Th, 6s15d9 for

Pt, and 3d104s24p2 for Ge. A 5× 5× 5 Monkhorst grid was used to sample the Brillouin

zone for force calculations in skutterudites with a 2×2×2 supercell.

Table 4.1 lists lattice constants, distances, bonding energies between fillers and Ge on

cage framework and formation energies for MPt4Ge12. A structural contraction can be

seen from the decreasing lattice constants and bond length between the fillers and Ge

atoms, which means there probably is a enhanced bonding as the filler from Ba to Th.

The bonding energy between the filler and Pt4Ge12 framework for ThPt4Ge12 is in a

moderate strength among all the compounds. From the point of view of energetics, a

44



Chapter 4 Ge-based Skutterudites

system a (Å) RM,Ge (Å) RPt,Ge (Å) RGe,Ge (Å) Eb(M) (eV) ∆H (kJ/mol)

BaPt4Ge12 8.81 3.42 2.54 3.31 -3.63 -35.90

LaPt4Ge12 8.75 3.37 2.53 3.31 -4.41 -40.33

ThPt4Ge12 8.70 3.35 2.51 3.30 -3.97 -37.84

Table 4.1: Lattice constants (a), bond lengthes (RM,Ge), bonding energies (Eb(M))
between the filler and Ge atoms on the cage framework, and formation energy per
atom ∆H for MPt4Ge12 (M = Ba, La, and Th). RGe,Ge represent the distance between
the first nearest neighbors on a PtGe6 octahedron. Eb(M) is defined by Eb(M) =
E(MPt4Ge12) - E(Pt4Ge12) - Ebulk(M), E being total energies of the corresponding

systems.

weak bonding is characterized by a mall bonding energy. It is shown here, however, that

this point of view is invalidated for the studied compounds.

4.3.2.1 Phonons of Pt4Ge12

As acoustic modes carry most of heat during phonon transport, modes in the low energy

regime are of interest in thermal transport. To investigate effect of the filling on lat-

tice dynamics of skutterudites, phonons of empty Pt4Ge12 are first investigated. Figure

4.4.a shows phonon dispersion curves along high symmetry directions and atom-projected

phonon density of states (PHDOS) for empty Pt4Ge12 skutterudite . Modes in low en-

ergy regime are denominated by Ge atoms and no flatten bands are observed that yield

a localized peak in the low energy regime of PHDOS.

4.3.2.2 Phonons of MPt4Ge12

Phonon dispersions and density of states for the three proposed compounds are shown in

Fig.4.4(b)-(d), which demonstrate different effects on the lattice dynamics from different

fillers. For BaPt4Ge12, no distinctive filler peak can be found at low frequencies. A rather

broad peak of the total PHDOS as composed by all three local PHDOS arises above 2.2

THz. This implies significant hybridization between Ba and the unfilled framework. The

situation changes drastically, when Ba is substituted by La: then the mentioned broad

peak is split into two peaks: the upper peak remaining at 2.2 THz is dominated by Pt

and Ge modes, while the lower one at 1.5 THz is dominated by La modes, which can

be considered as localized modes. However, at 1.5 THz there still exists a substantial

hybridization between the filler La and the framework. In the case of ThPt4Ge12, the
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Figure 4.4: DFT derived Phonon spectrum and atom-projected PHDOS of MPt4Ge12.
Phonon bands are colored to show contributions of the filler.

filler peak is lowered to 1 THz and the hybridization between the filler and framework is

weakened and the localization feature is enhanced.

The differences in modes from different fillers can be seen more clearly by taking a closer

view on the phonon dispersions, which are colored red for the local filler contribution. For

BaPt4Ge12, the contributions of Ba reach through a wide range of frequencies indicating

delocalized characteristics of the filler modes. In the case of LaPt4Ge12, La dominated

bands are mostly optical modes which are confined in a narrow frequency window be-

tween 1.5 and 1.8 THz, consequently producing a localized peak in the PHDOS. In par-

ticular, La-dominated modes at Γ and H are lowered when compared to BaPt4Ge12. For
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ThPt4Ge12, the filler modes are significantly different from the former two compounds.

Th-dominated modes are localized acoustic bands close to the BZ boundary and optical

modes at Γ. Most notably, acoustic modes along the direction P-H are almost flatten.

The behavior of the Th-filler modes can be understood in terms of of the heavy mass

of Th compared to Ba and La: in a rough estimate (assuming constant spring constants

in all cases), the frequency is inverse proportional to the square root of the mass. How-

ever. comparing the results for Ba and La, the masses are rather equal, but the La filler

produces localized modes in contrast to Ba. This difference can be attributed to the

difference in bonding, because La provides three valence electrons but Ba only two.

The behavior of the low-lying optical filler modes can be compared to filled-pnicotide-

skutterudites, such as CeRu4Sb12[83], SmRu4P12[84], and LaRu4P12[86], in which an

avoided anti-crossing behavior of the lowest optical mode and the acoustic modes occurs.

Such an anti-crossing behavior is usually accompanied by a tendency of localization of op-

tical modes around Γ and acoustic branches at the BZ boundary. As shown in Fig.4.4(a)

there is an anti-crossing between the lowest optical and highest acoustic branches along

the directions P-Γ and Γ-H. However, flat bands arise neither at Γ for optical modes

nor around the BZ boundary for acoustic modes. For LaPt4Ge12 flat optical modes ap-

pear around Γ but lost the avoided anti-crossing behavior which becomes pronounced in

LaPt4Ge12 along P-Γ. The reasons for that will be discussed below.

The differences in phonons from different fillers for the lowest optical mode at Γ is shown

in Fig.4.5 sketching the vibrations of the corresponding eigenvectors of the dynamical

matrix. For Pt4Ge12, the mode is dominated by vibrating Ge atoms. In the case of

BaPt4Ge12 the mode is contributed by both vibrating Ge and Pt atoms, but dominated

by Pt vibrations. For La(Th)Pt4Ge12, the mode is dominated by filler vibrations but has

little contributions from Ge atoms, according to the PHDOS and dispersion as shown in

Fig.4.4.

To understand the differences in filler modes, an analysis of force constants has been

carried out. Rewriting the dynamical matrix, Eq.(2.32).

Di′β
iα (q) =

∑

l

φ′
(

li′β

iα

)

e−iq·Rl (4.5)

where one re-defines

φ′
(

li′β

iα

)

=
1√
mimi′

φ

(

li′β

iα

)

(4.6)

with φ
(

li′

i

)

being the force constant matrix between atom i in the primitive cell at the

origin and atom i′ in the lth cell. From Eq. (4.5), for two systems with the same structure,

the difference in phonon spectra originate from φ′. There are basically two types of φ′:

one is for a pair of atoms which are different and referred as off-site φ′. Another one is
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(a) Pt4Ge12 (b) BaPt4Ge12

(c) LaPt4Ge12 (d) ThPt4Ge12

Figure 4.5: Sketch of vibrating atoms of the lowest optical mode at Γ for (a) Pt4Ge12,
(b) BaPt4Ge12, (c) LaPt4Ge12 and (d) ThPt4Ge12. Filler atoms: large balls, Pt: small

gray balls, Ge: small magenta balls.
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for an atom and itself in the same cell, i.e., φ′(iβ
iα

)

(α, β = x, y, z), which is referred to as

on-site φ′. The elements of φ′ can be interpreted as hopping parameters in TB method.

The difference is that they are intrinsically related to each other through the relation for

force constants:
∑

l,i

φ

(

li′β

iα

)

= 0 (4.7)

Correspondingly, there are two types of force constants: off-site φ and on-site φ. Atomic

masses play their role via Eq.(4.6).

Among the three fillers, Ba has a almost the same atomic mass as La. Th is much heavier,

because its mass is about 1.7 times larger than Ba. The remarkable differences between

the phonon spectrum of BaPt4Ge12 and LaPt4Ge12 suggest different filler-framework force

constants between two compounds, or in other words the bonding is significantly different.
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Neigh. system φ
(

x

x

)

φ
(

y

y

)

φ
(

z

z

)

φ
(

x

y

)

φ
(

x

z

)

φ
(

y

z

)

φ′(x
x

)

φ′(y
y

)

φ′(z
z

)

φ′(x
y

)

φ′(x
z

)

φ′(y
z

)

(

Ge1
Ge2

)

BaPt4Ge12 0.026 -0.317 0.041 -0.165 -0.055 -0.044 0.0 -0.004 0.001 -0.002 -0.001 -0.001

LaPt4Ge12 0.023 -0.331 0.042 -0.189 -0.069 -0.038 0.0 -0.005 0.001 -0.003 -0.001 -0.001

ThPt4Ge12 0.022 -0.387 0.073 -0.247 -0.055 -0.044 0.0 -0.005 0.001 -0.003 -0.001 -0.001

(

Ge1
Pt

)

BaPt4Ge12 -2.746 -0.450 -0.740 1.042 -1.036 0.480 -0.023 -0.004 -0.006 0.009 -0.009 0.004

LaPt4Ge12 -3.160 -0.582 -0.740 1.235 -1.198 0.568 -0.027 -0.005 -0.006 0.010 -0.010 0.005

ThPt4Ge12 -3.559 -0.695 -0.814 1.384 -1.387 0.648 -0.029 -0.006 -0.007 0.012 -0.012 0.005

(

M

Ge1

)

BaPt4Ge12 0.068 -0.103 -1.019 0.0 0.0 -0.413 0.001 -0.001 -0.010 0.0 0.0 -0.004

LaPt4Ge12 0.023 -0.062 -0.665 0.0 0.0 -0.335 0.0 -0.001 -0.007 0.0 0.0 -0.003

ThPt4Ge12 0.066 -0.028 -0.617 0.0 0.0 -0.371 0.0 0.0 -0.005 0.0 0.0 -0.003

(

Ge1
Ge1

)

BaPt4Ge12 7.750 3.377 7.534 0.0 0.0 -0.766 0.107 0.046 0.104 0.0 0.0 -0.010

LaPt4Ge12 8.721 4.544 7.250 0.0 0.0 -0.012 0.120 0.063 0.100 0.0 0.0 -0.012

ThPt4Ge12 9.746 5.696 7.649 0.0 0.0 -1.050 0.134 0.078 0.105 0.0 0.0 -0.014

(

Pt

P t

)

BaPt4Ge12 9.769 φ
(

x

x

)

φ
(

x

x

)

1.011 φ
(

x

y

)

-φ
(

x

y

)

0.050 φ′(x
x

)

φ′(x
x

)

0.005 φ′(x
y

)

-φ′(x
y

)

LaPt4Ge12 10.933 φ
(

x

x

)

φ
(

x

x

)

1.375 φ
(

x

y

)

-φ
(

x

y

)

0.056 φ′(x
x

)

φ′(x
x

)

0.007 φ′(x
y

)

-φ′(x
y

)

ThPt4Ge12 12.077 φ
(

x

x

)

φ
(

x

x

)

1.731 φ
(

x

y

)

-φ
(

x

y

)

0.062 φ′(x
x

)

φ′(x
x

)

0.009 φ′(x
y

)

-φ′(x
y

)

(

M

M

)

BaPt4Ge12 4.600 φ
(

x

x

)

φ
(

x

x

)

0.0 0.0 0.0 0.033 φ′(x
x

)

φ′(x
x

)

0.0 0.0 0.0

LaPt4Ge12 2.320 φ
(

x

x

)

φ
(

x

x

)

0.0 0.000 0.0 0.017 φ′(x
x

)

φ′(x
x

)

0.0 0.0 0.0

ThPt4Ge12 2.058 φ
(

x

x

)

φ
(

x

x

)

0.0 0.0 0.0 0.009 φ′(x
x

)

φ′(x
x

)

0.0 0.0 0.0

Table 4.2: Force constants φ
(

i′α
iβ

)

and φ′(i′α
iβ

)

(α,β = x,y,z, i′ and i represent atoms in primitive cell) in unit of (eV/̊aA2u), which
are obtained from first-principles phonon calculations using the program fPHON. Ge1 and Ge2 (see Table 4.1) are first nearest

neighbors in the PtGe6 octahedron, located at (0,y,z) and (-z,0,-y), respectively.
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As the force constants fall off rapidly with the distance between the atoms, the interactions

between first-nearest neighbors are the most important. In particular, the fillers reside in

very large voids, and therefore the second-nearest-neighbor interactions can be neglected,

which means φ
(

M

Ge

)

(M is the filler) between the filler and its first-nearest neighbors

dominating the on-site terms of M, i.e., φ
(

M

M

)

. Here indices for unit cell and components

of φ are omitted. For Pt, its first-nearest neighbors are six Ge atoms on the PtGe6
octahedron. Therefore φ

(

Ge

Pt

)

between Pt and the first-nearest neighboring Ge, dominate

the on-site terms φ
(

Pt

P t

)

. While for Ge the main contributions to on-site φ
(

Ge

Ge

)

come from

φ
(

Ge′

Ge

)

(Ge’ represents neighbors of Ge) and φ
(

Pt

Ge

)

. Contributions of φ
(

M

Pt

)

and φ
(

M

Ge

)

are

relatively less important for on-site φ
(

Pt

P t

)

and on-site φ
(

Ge

Ge

)

.

Table 4.2 lists φ
(

M

Ge1

)

, φ
(

Pt

Ge1

)

and φ
(

Ge1
Ge2

)

and corresponding elements of φ′ with M being

the fillers at (0.0, 0.0, 0.0), Pt at (0.25,0.25,0.25) and Ge at (0,y,z) and (-z,0,-y) referred

to as Ge1 and Ge2, respectively. Ge1 and Ge2 are the nearest neighbors on a PtGe6
octahedron.

First φ and φ′ between two different atoms are examined. Matrix elements of φ
(

Ge1
Ge2

)

and φ′(Ge1
Pt

)

undergo slight increases as the filler changes from Ba, La to Th. This is

due to nearly constant RGe1,Ge2 and RPt,Ge (see Table 4.1) which yield almost unchanged

inter-atomic interactions. Consequently, corresponding matrix elements of φ′ are almost

constant with only a slight growth. In contrast, significant changes occur in φ and φ′

between the filler M and Ge1 atom. From Table 4.2, one sees that φ
(

M,z

Ge1,z

)

has the largest

value , thus playing the most important role among all matrix elements of φ
(

M

Ge1

)

. Note,

that the off-diagonal elements of φ
(

M

Ge1

)

almost remain unchanged. However, the diagonal

elements, i.e., φ
(

M,α

Ge1,α

)

(α = x, y, z) decrease dramatically as the filler changes from Ba,

La to Th. For instance, φ
(

La,z

Ge1,z

)

is only about 70% of φ
(

Ba,z

Ge1,z

)

, which implies much weaker

interaction between La and Ge1 than that between Ba and Ge1. Substituting La by Th

results in a little change in φ
(

M,z

Ge1,z

)

. As for corresponding φ′, because Ba has nearly

the same atomic mass as La, resultant φ′( La,z

Ge1,z

)

is about 70% of φ′(Ba,z

Ge1,z

)

. Thus, phonon

modes of La are less affected by the framework atoms than those of Ba. Although φ
(

La,z

Ge1,z

)

is appropriately the same as φ
(

Th,z

Ge1,z

)

, the heavy Th leads to considerably smaller φ′( Th,z

Ge1,z

)

,

which is only half of φ′(Ba,z

Ge1,z

)

. This implies that modes of Th are more independent than

those of La.

Now turns to the discussions on-site φ and φ′. Because of small increases in matrix

elements φ
(

Ge1
Ge2

)

and φ
(

Pt

Ge1

)

as the filler changes from Ba, La to Th, a slight strengthening

of on-site φ
(

Ge

Ge

)

and φ
(

Pt

P t

)

as well as the corresponding on-site φ′ can be expected. Indeed,

Table 4.2 supports this expectation. The most interesting case is on-site φ
(

M

M

)

and φ′(M
M

)

,

which decrease significantly as M changes from Ba to La. For instance, φ
(

La,x

La,x

)

is only

about 50% of φ
(

Ba,x

Ba,x

)

and φ
(

Th,x

Th,x

)

is less than half of φ
(

Ba,x

Ba,x

)

. The trend in φ
(

M

M

)

coincides

with that in φ
(

M

Ge1

)

, because the later determines the former. When φ
(

M

M

)

is multiplied
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by the inverse of atomic mass of M, the φ′(La,x
La,x

)

is about half of φ′(Ba,x

Ba,x

)

. The heavy

atomic mass of Th significantly lowers φ′(Th

Th

)

, of which φ′(Th,x

Th,x

)

is only half of φ′(La,x
La,x

)

.

It is worth noting that differences between on-site φ′(M
M

)

and φ′(Pt

P t

)

are more close to

those of φ′(M
M

)

than φ′(Ge1
Ge1

)

. For BaPt4Ge12, φ
′(Ba

Ba

)

is comparable to φ′(Pt

P t

)

. However,

for LaPt4Ge12 diagonal elements of φ′(La
La

)

are much smaller than those of φ′(Pt

P t

)

. The

differences are further enhanced when replacing La by Th. Together with the much weaker

filler-framework interaction, i.e., φ′(Th

Ge

)

, the much larger differences between φ′(M
M

)

and

φ′(Pt

P t

)

for Th than those for Ba and La suggests that modes of Th are more localized and

separated from those of Pt and Ge.

scaled FCs scaled mass

x 0.75 0.50 0.35 1.3 1.6 2.0

φ′(Ba

Ba

)

0.026 0.018 0.014 0.026 0.021 0.017

Table 4.3: On-site φ′(Ba
Ba

)

with respect to scalings in filler-framework interaction φ
(

Ge
Ba

)

and atomic mass of the filler.
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Figure 4.6: Atom-projected PHDOS of Ba with respect to scaling in FCs between Ba
and Ge, and atomic mass of Ba.

To investigate effect of the interplay between FCs and atomic mass on rattling modes, The

PHDOS are calculated with respect to changes in φ
(

Ba

Ge

)

between Ba and its twelve nearest

neighbor Ge atoms and atomic mass of Ba, respectively. Fig.4.6 depicts the evolution of

phonon modes of Ba with respect to scaling in FCs and atomic mass of Ba. As φ
(

Ba

Ge

)

decreases, the Ba-mode shifts toward lower energy regime and gradually become localized.

Likewise, the Ba-mode lost delocalization as its mass is enhanced. The results suggest that

the rattling modes can be manipulated by altering filler-framework interaction and atomic

mass of the filler, for instance, substituting Ba with much more heavy elements. Both

decreasing filler-framework FCs and increasing the atomic mass lower on-site φ′(Ba

Ba

)

and

thus produces a large difference between φ′(Ba

Ba

)

and φ′(Pt

P t

)

. Table 4.3 shows how φ′(Ba

Ba

)
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reduces with respect to scalings in φ
(

Ba

Ge

)

and mBa. In particular, φ′(Ba

Ba

)

is comparable to

φ′(La
La

)

when φ
(

Ba

Ge

)

is reduced to 35% and mBa is doubled. Correspondingly, the position

of the peak of filler mode agrees with that of La (see Fig.4.4).
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Figure 4.7: Potential energy of the filler atoms ( Ba, La and Th) in the skutterudite.
Calculations were performed by moving the fillers away from the center of the cage

(static equilibrium position) along the x axis

The significant difference in filler-framework FCs between Ba and La implies different

potentials of the fillers. The potential energies of the fillers was calculated by displacing

the filler in the primitive cell while keeping all other atoms fixed. Fig.4.7 shows Ba has the

strongest potential energy and Th has the weakest potential energy, which is consistent

with the trend in filler-framework FCs. Fitting the potential energy with the harmonic

expression E = kx2 (k is the spring constant), one obtains a decreasing k that is 2.42,

1.42 and 1.12 (in unit of eV/(̊aA2)) for Ba-, La- and Th-filled Pt4Ge12, respectively. The

difference between kBa and kLa is significant whereas kLa and kTh are more or less at the

same level. With fitted k, one further qualitatively estimates trend of the filler vibration

frequency within the harmonic oscillator model ω =
√

k
m
. One obtains a lowering of filler

mode for decreasing k as the filler varies from Ba to Th. Considering the large difference

in potential and small difference in atomic mass between Ba and La, one may argue

that bonding between the filler and framework plays an important role in determining

the potential energy of the filler. That is attributed to the effect of the atomic size of

the filler as shown in in previous studies for Group-IIA-element-doped skutterudites and

Group-IA-element-doped clathrates. [88, 108]

4.3.2.3 Atomic Displacement Parameters

Atomic displacement parameters (ADPs) measure the mean-square displacement ampli-

tude of an atom about its equilibrium position in a crystal, of which the value can be due
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to the vibration of the atom. Thus, the differences in vibrations of constituted elements

can be detected by ADPs. In the isotropic case, ADPs Uiso is given by

Uiso(T ) =
1

3
< u2

l (T ) >=
1

3

3
∑

α=1

< u2
lα(T ) > (4.8)

where < u2
l (T ) > is the mean-square displacement of lth atom, which is given by

< u2
l >=

3~

2Ml

∫

gl(ω)

ω
coth(

~ω

2kBT
) (4.9)

gl(ω) is the atom-projected PHDOS of lth atom. Details about the derivation are given

in Appendix C.
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Figure 4.8: Calculated averaged ADPs Uiso vs temperature for (a) BaPt4Ge12, (b)
LaPd4Ge12 (c) ThPt4Ge12 using Eq.(4.8).

Figure 4.8 show calculated Uiso of each type of atoms vs temperature for MPd4Ge12, which

reflect essential features of guest modes as observed in corresponding phonon spectrum.

In BaPd4Ge12, Ba shows a little smaller Uiso than those of framework atoms resulting

from its delocalized phonon DOS. That implies Ba may not be in a rattling motions. La

shows a different behavior from Ba because its Uiso is little large than those framework

atoms, which can be understood from the difference in phonon DOS (Fig.4.4). Th exhibits

a distinguish rattling behavior for its Uiso is larger than those of Pt and Ge by about

40%. Our calculations are in good agreement with experimental measurements.

4.3.2.4 Specific Heat

The rattling modes play an important role in thermal properties. Recent experiment

shows that ThPt4Ge12 has a complicated specific heat that can not be explained by the

Debye model [90]. A model was applied to explain the measured specific heat. It assumes

that besides a Debye DOS, there exists two energetically separated Einstein-type modes
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Figure 4.9: Comparison of calculated temperature-dependence of specific heat Cv

(red solid line) of ThPt4Ge12 plotted as Cv/T
3 vs lnT with experiment (red diamonds)

Ref. [90]. Black dotted line labels the spectral function of Einstein-like separated modes
from the experimental model, black solid line labels calculated function F (ω)ThPt4Ge12 ,
blue dashed line represents the calculated function F (ω)BaPt4Ge12 . F (ω) = g(ω)/ω2

with g(ω) the PHDOS from first-principles lattice dynamics calculations.

ω1 and ω2 in the system. However, these modes are assumed to have a width ∆ω, which

are somehow different from the standard Einstein ones.

CV (T ) = 3R

∫

a

g(ω)
( ω
2T
)2

sinh2( ω
2T
)
dω (4.10)

with ω the phonon frequency, g(ω) phonon density of states and R the gas constant.

The most common assumptions on g(ω) are g(ω) = δ(ω) and g(ω) ∼ ω2 up to a cut-off

frequency ωD, corresponding to the well-known Einstein and Debye model, respectively.

Junod et al [109]. demonstrated that certain functionals of the phonon specific heat take

the form of convolutions of the phonon spectrum. In particular, (5/4)R4CphT
3 is an image

of the spectrum g(ω)/ω2for ω=4.93 T, where ω is expressed in degrees Kelvin. One may

suspect that one of the Einstein may corresponds to the rattling modes for both Einstein-

like mode and low-lying optical mode have the localized feature. According to this model,

the phonon features of the model can be derived from DFT phonon DOS, defining F (ω) =

g(ω)/ω2 where g(ω) is the phonon DOS from lattice dynamics calculations. Fig.4.9 show

comparison of our calculations with experiments and fitting of the model. For the specific

heat our calculation is in a good agreement with the experiment. For ThPt4Ge12 the

calculated function, F (ω), has a structure of two separated peaks, of which the positions
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are comparable to that of Einstein-like modes from the model. The lowest energy peak is

contributed by the low lying peak in the phonon DOS dominated by Th modes. On the

contrary, the two-peak structure is missing in F (ω) for BaPt4Ge12 in which guest phonon

modes are delocalized. Our calculations support the validity of the model. Furthermore,

our analysis indicates that localized guest mode can be dictated indirectly by specific

heat experiments.

4.3.3 Summary

We have used an first-principles lattice dynamics method to investigate the lattice dy-

namics of a new family of filed-skutterudites, MPt4Ge12 (M = Ba, La and Th). The most

significant result is the rattling modes undergo a delocalization-localization transition as

the filler goes from Ba to Th, which is driven by filler-framework coupling and filler mass.

The rattling modes can be manipulated either by suppression of filler-framework or en-

hancement of atomic mass of the filler toward improving thermoelectric performance of

materials. Our calculations of specific heat reveal validity of the empirical model which

introduces two Einstein-like modes besides the Debye phonon DOS. The implications

of these results suggest that the localized rattling modes can be indirectly observed by

specific heat experiments and the rattling modes can be controlled for thermoelectric

applications.

4.4 Thermoelectric Properties of Ge-skutterduites

4.4.1 Electronic Structures of MPt4Ge12

Figure 4.10 depicts electronic structures of MPt4Ge12 (M = Ba, La, and Th). For the sys-

tems contain heavy elements, both non-relativistic and relativistic calculations were per-

formed. It shows that for all compounds both calculations predict almost the same bands

which means the relativistic effect only has little effects on the bands. For BaPt4Ge12
(Fig.4.10(b)) there is smll shift for the bands at about -3 eV. For LaPt4Ge12 (Fig.4.10(c))

and ThPt4Ge12 (Fig.4.10(d)) flat bands are observed at about 2 eV which are due to

the localized f states of La and Th. Parabolic bands are observed around H for all

the considered systems. As the filler goes from Ba, La to Th, the parabolic bands are

down-shiftted and finally a gap is formed of about 1 eV for ThPt4Ge12.

The relativistic effect has little influence on the DOS around the Fermi level and slight

modification on those in the range of -5 to -3. A sharp peak in both LaPt4Ge12 and

ThPt4Ge12 centered at 2 eV is observed, which is due to localized f electrons in La and
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Figure 4.10: Electronic structures of (a) Pt4Ge12, (b) BaPt4Ge12, (c) LaPt4Ge12, (d)
ThPt4Ge12. Energy scale relative to the Fermi level. Solid lines label scalar-relativistic

results and the dashed red ones denote results including spin-orbit coupling.

Th. There is a gap away from the Fermi energy by about 1 to 1.5 eV and get more and

more close to the Fermi level as nuclear charge increases. This shifting is due to band

filling which is related to the valence electron configurations of the filler with Ba, La, Th

having 2,3,4 valence electrons, respectively.
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4.4.2 Seebeck Coefficients of MPt4Ge12

4.4.2.1 Model Calculations

We first investigate the applicability of the Mott’s relation Eq.(B.9) and its simplified

version Eq.(B.18) by comparing the results with that derived from full calculations, i.e.,

Eq.(3.20). For the sake of clarity, they are rewritten for the Mott’s relation

S =
π2k2BT

3e
[
∂lnσ(E)

∂E
]E=µ (4.11)

for the simplified Mott’s relation

S = −π
2

3

k2BT

|e| { 1

N(E)

dN(E)

dE
}E=µ (4.12)

and for the full calculation

S =

∫

v(k)v(k)τ(k)(E − µ)(−∂f0

∂E
)dk

eT
∫

v(k)v(k)τ(k)(−∂f0

∂E
)dk

(4.13)

Eq.(4.11) was implemented within the constant relaxation time approximation. The

quantity σ(E)
τ

, the product of v2(ε) and N(ε), were derived from full calculations using

V2Boltz. The scheme for such a calculation is illustrated by the flow-chart as shown in

Fig.3.3. Input eigenvalues were derived from DFT calculations on a k-mesh of 25×25×25.

Then they were used to generate eigenvalues on a much denser k-mesh 70 × 70 × 70 in

terms of Fourier interpolation. The electronic chemical potential µ(T ) was calculated

using Eq.(3.49). Results are shown in Fig.4.11 for BaPt4Ge12 without any doping. Mott’s

relation, Eq.(4.11), agrees well with the full calculation (Eq.(4.13)) at low temperatures

region and tends to deviate at elevated temperatures. This is attributed to temperature-

dependent property of the energy derivative of the Fermi function, ∂f0

∂E
, appeared in

Eq.(4.13). ∂f0

∂E
has delta-like properties at low temperatures. Thus v(k)v(k)τ(k) only

contributes to the calculation of S within a few kBT of E = µ. [v(k)v(k)τ((k))]|En(k)=µ

has the largest weight, because [∂f
0

∂E
] has the largest value at En(k) = µ. As T close to

the zero limit, vvτ at µ dominates the contributions to S. The peak lowers and broadens

with respect to an increasing temperature, which lowers the weight of vvτ at µ to S.

However, this feature is not contained in Mott’s relations which, in stead, simply uses

either conductivity or DOS at the Fermi level. The simplified Mott’s relation Eq.(4.12)

produces a relatively larger discrepancy with Eq.(4.13). This means the second term at

the right hand side of Eq.(4.11) is becoming important at higher temperatures because

of the shift in chemical potential. Nevertheless, the three equations give the same sign of
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the Seebeck coefficient. This implies the usefulness of Eq.(4.12) in estimating the sign of

the Seebeck coefficient in terms of the derivative of the DOS.
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Figure 4.11: Comparison of the Seebeck coefficients from Eq.(4.13) (black solid line),
Eq.(4.11) (red dashed line), and Eq.(4.12) (blue dotted line)

4.4.2.2 Full Calculations

Calculated Seebeck coefficients of MPt4Ge12 as a function of chemical potential, corre-

sponding to shifting of the Fermi energy, at T=300K shown in Fig.4.12. Each compound
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Figure 4.12: DFT derived Seebeck coefficients as a function of chemical potential,
i.e., temperature dependent Fermi level, at T = 300 K for BaPt4Ge12 (a), LaPt4Ge12
(b) and ThPt4Ge12 (c), respectively. The energy shifting for placing the Fermi level
in the middle of the pseudogap (gap) is translated into ∆n, the change of the valence

electron number.
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exhibits a rather low Seebeck coefficient at ∆n = 0 (undoped case) consistent with ex-

periments. For example, both experiment and calculation yield a Seebeck coefficient of

about 7.0 µV/K at T = 300 K for BaPt4Ge12 [96]. This is anomalous to pnictide skut-

terudites which have Seebeck coefficients with magnitudes over 100 µV/K [11, 12, 14, 31].

The magnitude of the Seebeck coefficient increases significantly when the Fermi level of

the undoped compounds is increased to about 1.25, 1.10, and 0.80 eV to fall in the gap.

Crossing the gap the sign of S changes. In particular, in the case of ThPt4Ge12 the nega-

tive peak has a surprisingly larger magnitude than the positive peak around the critical

point. This feature can be understood with the help of simplified Mott’s relation and

the characteristics of the bands close to the gap. States above the gap are made of flat

bands and thus result in a localized DOS which yields a significant slop of DOS, leading

to a larger Seebeck coefficient. This fits the pattern shown in Fig.B.1 for optimizing TE

properties. The results suggest that good thermoelectric properties are favorable when

the Fermi level is shifted close to a gap or pseudogap.

4.4.3 Band Engineering for Optimization of Thermoelectric Prop-

erties

The concepts presented under the name band engineering of optimized thermoelectric

MPt4Ge12 shutterudites are based on the electronic properties of CoSb3, which is a well

known thermoelectrc material [12] The pioneering DFT study of D. Singh [30] revealed

that there is a small gap around Fermi energy, which is the consequence of the hybridiza-

tion of Sb-p and Co-d states. This hybridization gap is fundamentally different from the

gap occuring in clathrates, which will be discussed in the next section. In clathrates the

gap is formed by the pnictide framework, e.g. Ge46 for a clathrate of type I, whereas

for skutterudites the mentioned p-d hybridization is mandatory. Returning to CoSb3 the

magic number of valence electrons for placing the Fermi energy into the gap is 24, because

Co provides 9 and Sb3 15 valence electrons. Assuming now, that substitution of Co and

Sb by similar elements such as Pt and Ge, respectively, does not change significantly the

gap formation properties, a simple electron counting role is proposed for placing EF into

the gap. The Pt4Ge12 backbone will be taken as a reference, and counting its number

of valence electrons, N1 = 4 + 12 × 4 = 88) one finds that 8 electrons are missing for

reaching the number of valence electrons of Co4Sb12, N0 = 96. Therefore, if one wants to

move EF close to the gap a sufficient number of electrons have to be provided by a) filler

atoms and/or b) suitable substitutions of the framework atoms Pt and Ge. This is the

meaning of the term band engineering.
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4.4.3.1 Band Engineering by Chemical Doping

If the shifting of the Fermi level is transferred into electron doping within the rigid band

approximation, 6, 5, and 4 e/u.c more are needed to place the Fermi level in the middle of

the gap for Ba-, La-, and Th-Pt4Ge12 compounds, respectively, which requires a proper

doping. When the filler is chosen for doping, an element is needed which provides 8

valence electrons That means the dopant must be a lanthanide or actinide with f-states

as valence states. However, the f-states strongly disturb the electronic structure at the

Fermi level, and their localisation properties (correlation and magnetism) can be quite

complex. For example, a metal rather than a semiconducting behavior is predicted for

SmPt4Ge12 by previous calculations[94]. Therefore f states induce uncertainties of band

engineering, which requires extensive search rather than simple electron counting.
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Hopping parameters

Ge-Ge Ge-M

NN V4s4s,σ V4s4p,σ V4p4p,σ V4p4p,π V4s6s,σ V4s5d,σ V4p6s,σ V4p5d,σ V4p5d,π

1stNN
Pt4Ge12 -3.19 4.88 3.78 -2.01 -4.33 -2.49 -4.36 -1.86 1.72

Au4Ge12 -3.11 4.74 3.60 -1.97 -4.31 -2.35 -4.36 -1.89 1.66

2ndNN
Pt4Ge12 -1.15 2.35 3.07 -0.99 -0.52 -0.30 -1.09 -0.60 0.19

Au4Ge12 -1.15 2.34 2.97 -0.98 -0.51 -0.27 -1.08 -0.56 0.18

3rdNN
Pt4Ge12 -0.74 1.67 2.48 -0.51 -0.05 -0.03 -0.18 -0.09 0.01

Au4Ge12 -0.72 1.63 2.53 -0.64 -0.05 -0.02 -0.17 -0.09 0.01

4thNN
Pt4Ge12 -0.57 1.32 2.16 -0.42

Au4Ge12 -0.57 1.34 2.24 -0.39

5thNN
Pt4Ge12 -0.25 0.65 1.36 -0.25

Au4Ge12 -0.25 0.66 1.33 -0.26

6thNN
Pt4Ge12 -0.02 0.06 0.24 -0.02

Au4Ge12 -0.02 0.06 0.23 -0.01

On-site terms

Ge M

ǫ4s ǫ4px ǫ4py ǫ4pz ǫ6s ǫ5d
z2

ǫ5d
x2−y2

ǫ5dxy ǫ5dxz ǫ5dyz

Pt4Ge12 0.00 5.94 6.41 6.86 2.95 5.09 5.09 5.11 5.11 5.11

Au4Ge12 0.00 5.65 6.40 6.86 2.07 2.64 2.64 2.66 2.66 2.66

Table 4.4: Tight-binding hopping V and on-site ǫ parameters (in eV) generated using the LCAPO method with interaction up
to the fifth-nearest neighbors
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Tight-binding overlap parameters

Ge-Ge Ge-M

NN S4s4s,σ S4s4p,σ S4p4p,σ S4p4p,π S4s6sσ S4s5d,σ S4p6s,σ S4p5d,σ S4p5d,π

1stNN
Pt4Ge12 0.17 -0.31 -0.40 0.17 0.27 0.13 0.40 0.13 -0.13

Au4Ge12 0.17 -0.31 -0.40 0.17 0.27 0.12 0.04 0.12 -0.12

2ndNN
Pt4Ge12 0.06 -0.14 -0.27 0.06 0.02 0.01 0.07 0.04 -0.01

Au4Ge12 0.06 -0.14 -0.27 0.06 0.02 0.01 0.07 0.04 -0.01

3rdNN
Pt4Ge12 0.03 -0.09 -0.20 0.04

Au4Ge12 0.03 -0.09 -0.20 0.03

4thNN
Pt4Ge12 0.03 -0.09 -0.18 0.03

Au4Ge12 0.03 -0.08 -0.18 0.03

5thNN
Pt4Ge12 0.01 -0.03 -0.09 0.01

Au4Ge12 0.01 -0.03 -0.09 0.01

Table 4.5: Tight-binding overlap parameters generated using the LCAPOmethod with interaction up to the fifth-nearest neighbors
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The second recipe of doping refers to the doping of framework atoms corresponding to

Pt4Ge12, which is more often applied. Most of doping of thermoelectric pnictogen-based

skutterudites begin with the corresponding framework [11, 74]. As for Pt-site doping,

noble metal elements are possible dopants providing one more electron than the latest

transition elements Ni, Pd, Pt. The question is, how the lecetronic structure is affected

and if the gap feature is preserved. Testing the replacement of Pt by Au, Fig.4.13 shows

the electronic structures of Pt4Ge12 and Au4Ge12 (taking Pt4Ge12 without any structural

relaxation). The most significant difference is that a pseudo-gap is formed around 1.6 eV

for Pt4Ge12, which is missing (or rather small) for Au4Ge12. A closer look at the bands

of Pt4Ge12 reveals that only around Γ do bands with strong dispersion cross the 1.6 eV

energy line, which have a very small weight in the BZ sampling overall resulting in the

pseudo-gap with a width of 0.6 eV. For Au4Ge12, however, the gap width is narrowed

substantially because of the downshift of the 5d band according to Fig.4.13, as revealed

directly from a tight-binding (TB) fit. The gap opens up if all hopping parameters are

fixed, but only the 5d level is raised (bottom-right panel). The tight binding parame-

ters are generated by using the OpenMX package[59] based on a linear combination of

pseudoatomic orbital (LCPAO) method[110] (see Sec. 2.3.2.2). The interactions reach

up to the fifth nearest neighbors for Ge-Ge and the third nearest neighbors for Ge-Au/Pt

interactions. The LCPAO calculations are in reasonable agreement with the VASP cal-

culations as shown in Fig.4.13, and the TB parameters are listed in Tables 4.4 and 4.5,

showing that the overlap integrals are close to zero. As expected, the hopping (overlap)

integrals are parctically the same for the Pt- and Au-compound. A significant differ-

ence occurs, however, with respect to the positions of the 5d and 6s level of the metal,

which are much closer together for Au than for Pt, as sketched in Fig.4.13 (bottom-left

panel). To investigate the effect of the 5d-6s difference of the metal levels on the gap

the corresponding on-site 5d parameter was shifted upwards by εshift(d) to increase the

s-d difference. The bottom-left panel of Fig.4.13 depicts the DOS of Au4Ge12 depending

on εshift(d). A gap clearly emerges around 1.0 eV as εshift(d) increases up to 2.0 eV, at

which the 5d-6s difference of Au is comparable to that of Pt.

Of course, also substitution and related electron doping can also be done on the Ge-

sublattice, for which pnictogen-elements such as Sb are suitable, provided the electronic

structure around the gap region remains basically undisturbed. As elaborated at the very

beginning of this subsection, the magic valence electron number is 96 for placing the Fermi

energy into the gap. Filled skutterudites such as LaPt4(Sb5Ge7) and ThPt4(Sb4Ge8) have

exactly this required number and confirming the counting rule a gap opens up at the Fermi

energy as shown by Fig.4.14.
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Figure 4.13: VASP derived electronic structures (black lines) of Pt4Ge12 (left-top
panel) and Au4Ge12 (right-top panel), and TB bands (red dashed lines). Illustration
of on-site parameters as Ge 4p and Pt/Au 5d,6s levels (left-bottom panel) and DOS of
Au4Ge12 derived from TB calculations (right-bottom panel) with several shifts of the

ε5d level of Au.

4.4.3.2 Seebeck Coefficients of MPt4(SbxGe12−x)

Looking into the effects on TE properties by doping Ge-based skutterudites with Sb, as

shown in Fig.4.15 at 300 K, it is indicated that Seebeck coefficients over 100 µV/K can

be obtained when the doping of Sb is very close to 5 for LaPt4Ge12 and 4 for ThPt4Ge12,

respectively. Varying the number of valence electrons in terms of shifting the Fermi

energy within a rigid band model reveals that S(µ) becomes significantly pronounced

when the Fermi level falls close to the top of the gap, where bands are much flatter

than those at the bottom of the gap. Fig.4.16 depicts temperature dependent Seebeck

coefficients of LaPt4(Sb5−δGe7+δ) and ThPt4(Sb4−δGe8+δ) with δ = ± 0.1. Basically,
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Figure 4.16: DFT derived Seebeck coefficients of LaPt4(Sb5−δGe7+δ) and
ThPt4(Sb4−δGe8+δ) (δ = ± 0.1).

each compound shows a Seebeck coefficient with values over 100 µV/K at its maximum.

Compared to corresponding pure Ge-based skutterudites whose values are less than 10

µV/K for BaPt4Ge12 (see Fig.4.11 and Ref.[96]) and ThPt4Ge12[97] one can conclude

that an improvement of two orders of magnitude for the Seebeck coefficient is achieved

for LaPt4(Sb5−δGe7+δ) and ThPt4(Sb4−δGe8+δ). Based on this finding One may speculate

that high Seebeck coefficients can be obtained with a proper doping of Sb in other Ge-

based skutterudites.
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Chapter 5

Group-IV-based Clathrates

5.1 Introduction

Clathrates have attracted considerable interest as thermoelectric materials. Most of the

work done so far focused on group-IV based compounds with the type-I structure, [7, 16–

20, 111, 112] making use of their structural properties to obtain a low lattice thermal

conductivity. For thermoelectric applications, electronic transport properties such as the

Seebeck coefficient and electrical conductivity were optimized by tuning the charge carrier

concentration. The optimization can be achieved by void-filling elements, substitution,

and/or doping of the occupied lattice sites. The search for high-performance TE material

has yield exciting results for the group-IV-based clathrates: for instance, a figure of merit,

ZT, over 1.6 at 1100 K was obtained with Ba8Ga16Ge30[7].

Despite the developments, the highly desirable further improvement of ZT is still a de-

manding ptoblem. Various chemical dopings have been tried, including noble metals,

nickel- and zinc-group elements on the 6d sites of type-I clathrates. However, none of

them shows a larger ZT than Ba8Ga16Ge30. Thus, a fundamental understanding of cor-

relations between TE properties and the electronic structure is necessary to possibly

constitute a general rule of chemical doping for good TE properties.

Their parent compounds –the filler-free clathrates– have interesting electronic properties.

For the Si and Ge backbone in the clathrate structures the gap is significantly larger

than for the diamond ground state structure. DFT and post DFT calculations predict an

increase of at least 0.7 eV of the band gap of Si34 and Si46 as compared to the diamond

phase [113, 114].

In the case of Ge34 and Ge46 calculated gaps of type-I and -II clathrates are again sig-

nificantlylarger than for the diamond structure, for which the gap is zero by standard

DFT calculations[114–116]. I should be noted, that standard DFT calculations grossly
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underestimate gaps, but nevertheless reproduce the correct trend. By application of very

expensive post DFT methods gaps can be fairly well reproduced and these calculations

serve as benchmarks.

Little effort has been devoted to the understanding of the gap differences between these

phases. Zhao et al suggested that the existence of pentagonal rings in Ge46 accounts for

the differences[116]. However, the strcutures also exhibit a great deal of resemblances

such as a nearest-neighbor fourfold coordination for all the isormers.

Moreover, experimentally electronic thermal conductivity is derived from measured elec-

trical conductivity using the Wiedemann-Franz law in which a constant is used for the

Lorenz number from the metallic limit. The Lorenz number is the ratio of the electronic

thermal conductivity to the product of temperature and electrical conductivity. However,

Eqs.(3.16) and (3.18) show that they have different temperature-dependences. Therefore,

the ratio must be temperature-dependent rather than temperature-independent. Conse-

quently, the assumption of the constant Lorenz number must lead to discrepancies from

the true value. This law can only be trusted for simple metals, but is generally used

anyway. Examining the validity of the Wiedemann-Franz law and proposing a effective

evaluating the lattice thermal conductivity would no doubt benefit the filed of thermo-

electrics.

5.2 Unfilled Type-I and -II Clathrates: X46 and X34

The purpose of this chapter is to explain, by means of a first-principles approach combin-

ing with the tight binding approximation, the origin of gap differences between different

isormers. The first subsection presents the structural and electronic structures of all the

isomers, diamond structure, type-I and -II clathrates for each group IV member. The

second subsection discusses the origin of the gap differences between the isomers based

on TB analysis.

5.2.1 Structural and Electronic properties

The type-I clathrate referred to as X46, has a simple cubic lattice with 46 atoms per unit

cell and its space group is Pm3̄n (No 223). The type-II clathrate, refered to as X34 or

X136, is based on a face-centered cubic lattice with 34 atoms in the primitive cell (or

136 atoms in the conventional cell) and its space group is Fd3̄m (No 227). Coordinates

for the type-I and -II clathrates are listed in Table 5.1. The main structural feature

is that atoms in these phases are fourfold-coordinated forming sp3-type covalent bonds

and they form cages. There are two types of cages in type I clathrate, two pentagonal
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(a) type-I clathrate X46

(b) structural units

Figure 5.1: (a) Structure of filler-free type I clathrate X46. There are three types
of Wyckoff positions, 6d, 16i, and 24k, which are shown in different colors. There
are two types of polyhedras (20-atom dodecahedras and 24-atom tetrakaidecahedrasas)
as structural units (b), which are also shown by including some of the atoms from

neighboring cells (a).

dodecahedra (20-atom cage with 12 pentagons) and six tetrakaidecahedra (24-atom cage

with 12 pentagons and 2 hexagons), of which the centers are on 2a and 6d Wyckoff sites,

respectively. The pentagonal dodecahedra are not directly connected to each other but

linked by tetrakaidecahedra. In the type-II clathrate structure, there are also two types

of cages, eight pentagonal dodecahedra and sixteen hexakaidecahedra (12 pentagons and

4 hexagons) in the conventional unit cell, of which the centers are on 8b and 16c Wyckoff
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(a) type-II clathrate X34

(b) structural units

Figure 5.2: (a) Structure of filler-free type II clathrate. There are three types of
Wyckoff positions, 8a, 32e, and 96g, which are shown in different colors. There are
two types of polyhedras (20-atom dodecahedras and 28-atom tetrakaidecahedrasas) as
structural units (b), which are also shown by including some of atoms from neighboring

cells (a).

sites, respectively.

For calculations of the electronic structure of the pure, filler-free clathrates, the gen-

eralised gradient approximation (GGA) is used for the exchange-correlation functional

using the parametrization of Perdew, Burke, and Ernzerhof (PBE). The electron-ion in-

teraction is treated within the framework of Blöchls projector augmented wave method

(PAW). The valence state configurations for the construction of the pseudopotentials in-

cluded 2s22p2 for C, 3s23p2 for Si, and 4s24p2 for Ge. A 5 × 5 × 5 Monkhorst and Pack

[119] was used to sample the Brillouin zone. Table 5.2 summarizes the band gaps of C, Si,
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type I (Pm3̄n: No 223) type II (Fd3̄m: No 227)

Wyckoff positions

6d (1
4
, 1

2
, 0) 8a (1

8
, 1

8
, 1

8
)

16i (x, x, x) 32e (x1, x1, x1)

24k (0, y, z) 96g (x2, x2, z)

Table 5.1: Structural parameters of type I and II clathrates. Wyckoff positions x, y,
z dependend on the particular material.

diamond type I type II

C 4.11 3.87 4.05

5.48a 5.15b 5.25b

Si 0.62 1.34 1.39

1.17a 1.85b 1.85b

Ge 0.00 1.09 0.68

0.74a 1.21c 0.75c

aExperiment (Ref. [117])
bGW calculations (Ref. [118])
cLDA calculations (Ref. [115])

Table 5.2: Band gaps (eV) of diamond structure, type-I and -II clathrates structure.
First line of each item: present VASP calculation, second line: other data

and Ge as calculated the ground state diamond structure as well as with the type-I and

-II clathrate structures. The result of the present GGA-DFT calculation are comppared

to experiment as well as post DFT (GW) calculations and on LDA result. Before dis-

cussing the results it should be noted that -as is well known- standard DFT calculations

give far too small gaps for C, Si, and Ge (and many other systems as well) but usually

trends and pressure dependencies are described reasonably well. Post DFT applications

such as GW may cure the problem but are very expensive, and not usable for larger and

less symmetric systems.

Table 5.2 shows a significant decrease of the gap when going from C to Si and Ge, for all

the structures. For C, the diamond phase has a slightly larger gap than for the clathrate,

strurures, which is in contrast to Si and Ge. The Gaps of Si- and Ge-based unfilled

clathrates are much larger than those of corresponding ground state diamond structure.
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(a) (b) (c) (d)

Figure 5.3: Illustration of counting the second-nearest neighbors in clathrate struc-
tures. (a) Neighbors of an atoms in a tetrakaidecahedra which consists of pentagons and
hexagons. For each atom, ways of choosing its second-nearest neighbors are illustrated

in (b) and (c). The way of choosing the third-nearest neighbors are shown in (d).

Most remarkable is the gaps of the Ge series, because standard DFT predicts a zero gap

for the diamond structure, but produces a gap of 1.1 eV for the type-I clathrates and 0.7

eV for type II. The filler-free type-I and -II clathrates have so far not been successfully

synthesized. Nevertheless, the features of their gaps make them promising materials for

thermoelectric and optoelectronic applications.

The deviations between the standard DFT calculations and experiments and GW results

are rather constant for the C and Si systems (see Table 5.2). For Ge the gap sizes obtained

for the clathrate structures agree reasonably well with another DFT calculations applying

the LDA approximation.

5.2.2 Coordination and Bonding

Although the three phases are differently structured, they do bear resemblances. In all

the structures each atom is fourfold coordinated, because it has four first-nearest neigh-

bors (1NNs). In both clathrates each atom has twelve second-nearest neighbors (2NNs)

because each atom is shared by six polyhedrons. However, the number of third-nearest

neighbors (3NNs) of an atom is different from type to type. The ways of identifying the

2NNs and 3NNs are illustrated in Fig.5.3. Table lists the number of neighbors and the

range of atom-atom distances between the neighbors.

Bond lengths are rather similar for 1NNs and 2NNs, which are about 2.50 and 4.0 Åfor

1NNs and 2NNs , respectively. It should be noted that in the diamond structure atoms

of each nearest neighbor type are equivalent and therefore there is only one 1NN and

one 2NN distance. In clathrates the symmetry is reduced: in the type-I clathrate the

four 1NNs of an atom on the 6d site are 24k atoms (Fig.5.1), while those of an atom

on the 16i site consists of one 16i atom and three 24k atoms, resulting in two different

types of distances between 1NNs. Nevertheless, they are very close to each other. For

both clarhates, the averaged distances between third-nearest neighbors (3NNs) are about
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system site 1NN 2NN 3NN 4NN

Ge2 4 (2.50) 12 (4.08) 12 (4.78) 6 (5.77)

Ge46

6d 4 (2.51) 12 (3.99 ∼ 4.45) 18 (5.39 ∼ 5.91)

16i 4 (2.47 ∼ 2.48) 12 (3.99 ∼ 4.01) 21 (5.58 ∼ 5.85)

24k 4 (2.48 ∼ 2.52) 12 (4.01 ∼ 4.45) 16 (5.49 ∼ 5.85)

Ge34

8a 4 (2.46) 12 (4.00) 24 (5.61)

32e 4 (2.46 ∼ 2.49) 12 (3.97 ∼ 4.02) 18 (5.56 ∼ 5.73)

96g 4 (2.49 ∼ 2.52) 12 (3.97 ∼ 4.31) 10 (5.61 ∼ 5.79)

Table 5.3: The number of nearest neighbors for each type of atoms in the three phases.
Distances (in Å) between neighbors are given in brackets. The ways of choosing 2NNs

and 3NNs are illustrated in Fig.5.3.
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Figure 5.4: Band structures of (a) Ge46 and (b) Ge34 as derived by VASP and LCPAO
calculations. A basis set including one s orbital, three p orbitals and one zeta function

s* was used in the LCPAO calculation.

5.60 Å, which is close to the atom-atom distances of 5.77 Åbetween the fourth-nearest

neighbors for the diamond structure. For the diamond structure, the atom-atom distances

between 3NNs are 4.78 Å.

TB parameters were generated using LCPAO method, which has been discussed in Sec.

2.3.2. A basis set consisting of one s, three p orbitals and one zeta function s* are

used in the LCPAO calculations. Fig.5.4 compares the results of the VASP and LCPAO

calculations showing that the LCPAO method is in reasonable agreement with the high-

quality calculation. In principle, better agreement can be made by including more zeta
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Hopping

Vss,σ Vsp,σ Vpp,σ Vpp,π Vss∗,σ Vs∗s∗,σ Vs∗p,σ

1stNN

Diamond (2.50) -3.80 5.44 3.65 -2.09 3.83 -0.33 -0.12

Ge46 (2.48) -3.76 5.37 3.71 -2.03 3.82 -0.26 -0.10

Ge34 (2.49) -3.84 5.48 3.61 -2.09 3.82 -0.29 -0.10

2ndNN

Diamond (4.08) -0.37 0.92 1.76 -0.30 1.17 -1.01 -1.59

Ge46 (4.01) -0.38 0.95 1.85 -0.33 1.22 -1.18 -1.70

Ge34 (4.04) -0.41 1.01 1.88 -0.33 1.28 -1.19 -1.74

3rdNN

Diamond (4.78) -0.08 0.25 0.65 -0.09 0.37 -0.80 -0.75

Ge46 (5.55) -0.02 0.06 0.21 -0.01 0.10 -0.49 -0.32

Ge34 (5.61) -0.01 0.05 0.19 -0.01 0.09 -0.50 -0.32

4thNN Diamond (5.77) -0.01 0.03 0.11 -0.01 0.05 -0.32 -0.19

On-site terms

ǫ4s ǫ4px ǫ4py ǫ4pz ǫs∗

Diamond 0.00 6.61 6.61 6.61 10.64

Ge46

6d 0.00 6.86 6.58 6.58 10.89

16i -0.06 6.61 6.61 6.61 10.47

24k 0.00 6.71 6.77 6.42 10.79

Ge34

8a 0.00 6.52 6.52 6.52 10.48

32e 0.01 6.56 6.56 6.56 10.50

96g -0.02 6.50 6.50 6.83 10.77

Table 5.4: Hopping parameters V and ǫ (in eV) are generated using the LCAPO
method with interaction up to fourth-nearest neighbors. The hopping parameters for
each neighbor are generated at the atom-atoms distance for the neighbors very close to

the averaged distance which are given in brackets (in Å).

functions. However, to avoid a huge mount of TB parameters the basis set is made as

small as possible.

The tight-binding parameters are summarized in Table 5.4 and 5.5. Except for those

involving the zeta function, the absolute values of the hopping parameters significantly

decrease with increasing atom-atom distances. For the 1NNs the hoppings are two to

ten times larger than those of the 2NNs in magnitude. The 3NN interaction are rather
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Overlap

Sss,σ Ssp,σ Spp,σ Spp,π Sss∗,σ Ss∗s∗,σ Ss∗p,σ

1stNN

Diamond (2.50) 0.20 -0.36 -0.40 0.21 -0.31 0.17 0.15

Ge46 (2.48) 0.20 -0.36 -0.40 0.20 -0.31 0.17 0.15

Ge34 (2.49) 0.20 -0.36 -0.40 0.21 -0.31 0.17 0.15

2ndNN

Diamond (4.08) 0.02 -0.05 -0.12 0.02 -0.07 0.16 0.15

Ge46 (4.01) 0.02 -0.05 -0.12 0.02 -0.07 0.16 0.15

Ge34 (4.04) 0.02 -0.05 -0.13 0.02 -0.07 0.16 0.16

3rdNN

Diamond (4.78) 0.00 -0.01 -0.04 0.00 -0.02 0.09 0.06

Ge46 (5.55) 0.00 0.00 -0.01 0.02 0.00 0.03 0.02

Ge34 (5.61) 0.00 0.00 -0.01 0.00 0.00 0.02 0.01

Table 5.5: Overlap parameters as generated by the LCAPO method with interaction
up to the third-nearest neighbors. Overlap parameters for each neighbor are generated
at the atom-atoms distance for the neighbors very close to the averaged distance, which

are given in brackets (in Å).

negligible because they are less than 10% of the 2NN interactions. Comparing the three

structures, resemblances can be observed. For 1NNs and 2NNs the TB parameters are

almost the same over all three different structures. Differences are observed for 3NNs

between the diamond structure and the clathrates because the atom-atom distances for

them are different. However, the TB parameters for the 3NNs of clathrates are very

similar to those for the fourth-nearest neighbors of the diamond structure, since the

atom-atom distances are similar.

From Eqs.(2.23) and (2.24), the band structure is determined by bond integrals and

its structure. For the TB parameters are quantitatively similar to each other among

the three structures, the differences concerning the gap comes from the differences in

structure. Indeed besides structural similarities, there are significant differences between

the three structures, which may account for the gap differences. In the diamond structure,

there are two atoms in unit cell, labeled as A and B for clarity. If A is located at (0,0,0),

the four 1NNs of A are B occupying
a
4
,a
4
,a
4

a
4
,-a

4
,-a

4
-a
4
,a
4
,-a

4
-a
4
,-a

4
,a
4

When constructing the Hamiltonian matrix elements between orbitals on atoms A and B

using Eqs.(2.23) with interaction only up to 2NNs, these four neighbors are involved for
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each pair of orbitals, namely,

Hm,n(k) =
4

∑

i=1

eik·Rihm,n(Ri) (5.1)

where m and n denote orbitals of A and B respectively. However, the situations in

clathates are totally different. Taking 6d sites in Ge46 as an example. The atoms on 6d

sites with coordination of (1
4
, 1

2
, 0) have the same distances from all the four 1NNs, but

the four 1NNs neighbors are involved in four different constructions of Hm,n. Moreover,

there are significant differences in direction cosines, which are used to construct hm,n. In

the diamond structure, the direction cosines between neighbors have special properties

because of the high symmetry of the diamond structure. In Ge46 the 1NNs of atoms

on 6d sites are 24k sites, of which coordinations are related to (0, y, z) by the space

group of Ge46. The direction cosines from 6d to 24k have no special properties as the

diamond structure has, because y and z have to be determined for each specific material.

In the case of Ge34, atoms on 8a sites have the same distances (see Table 5.3) from

their 1NNs neighbors like in diamond structure. For this type of atoms, their four 1NNs

are atoms on 32e site, of which coordinations are related to (x1,x1,x1) (See Table 5.3).

Thus the direction cosines from an 8a atom to its four 1NNs are like ( 1√
3
, 1√

3
, 1√

3
) and

( 1√
3
,- 1√

3
,- 1√

3
) . . . However, the four 1NNs of are not the same atom but different, which

are entirely distinct from the diamond case. The four 1NNs of the 8a sites are some

atoms on 32e sites but not translated by one atoms as in the diamond structure. For the

other types of atoms, the distances from an atom to its four 1NNs are different. Thus

these distinct structural properties lead to significant differences in Hamiltonian matrix

elements between the three structures and therefore results in different band structures

between them.

To show the resultant differences in Hamiltonian, Table 5.6 lists Hamiltonian matrix

elements Hm,n(K) between one pair of neighbors at Γ for the three structures. For the

diamond structure, m represents orbitals of the atom at (0,0,0) and n denotes orbitals

of the atom at (1
4
,1
4
,1
4
). For Ge46, m and n label orbitals of the atoms at (1

4
,1
2
,0) and

(-y, z, 0), respectively. For Ge34, m and n represent orbitals of the atoms at (1
8
,1
8
,1
8
) and

(x1,x1,x1). Since the basis set includes one s orbital, three p orbitals and one orbital zeta

function. the Hamiltonian matrix between a pair neighbors is in the dimension of 5 ×
5. Significant differences in the magnitude of Hamiltonian matrix elements between the

diamond structure and each clathrate can be observed. However, those for both clathrates

are more or less on the same size, which is consistent with the trend in the band gaps.
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s(2) s*(2) px(2) py(2) pz(2)

s(1)

Diamond -16.34 20.01 0 0 0

Ge46 -3.76 3.84 -3.11 0 4.43

Ge34 -3.99 3.90 3.24 3.24 3.24

s*(1)

Diamond -13.14 0 0 0

Ge46 -0.26 0.31 0 0.05

Ge34 -0.56 -0.05 -0.05 -0.05

px(1)

Diamond 1.27 0 0

Ge46 -0.14 0 -2.59

Ge34 -0.26 1.96 1.96

py(1)

Diamond 1.27 0

Ge46 -2.09 0

Ge34 -0.26 1.96

pz(1)

Diamond 1.27

Ge46 1.79

Ge34 -0.26

Table 5.6: Hamiltonian matrix elements Hm,n(K) between one pair neighbors at Γ
for the three structures. A basis set consists of one s orbital, three p orbitals and one
zeta function is used. For the diamond structure, m represents orbitals of the atom at
(0,0,0) and n denotes orbitals of the atom at (14 ,

1
4 ,

1
4) For Ge46, m and n label orbitals

of the atoms at (14 ,
1
2 ,0) and (-y, z, 0), respectively. For Ge34, m and n represent orbitals

of the atoms at (18 ,
1
8 ,

1
8) and (x1,x1,x1). Numbers 1 and 2 in brackets represent atoms

involved in the Hamiltonian matrix, e.g., the atoms at (18 ,
1
8 ,

1
8 and (x1,x1,x1)).

5.3 Structural Properties and Energetics of Doped

and Filled Clathates

As mentioned in Sec.5.2, for type-I clathrates there are two types of voids. By filling them,

one obtains filled clathrates. The most common fillers are alkali- and alkali-earth metals

and lanthanum group elements. The fully filling results in two fillers at 2a (0, 0, 0) and

six filler at 6c (0.25, 0.5, 0) sites, respectively. For optimizing thermoelectric properties,

dopants are introduced to change charge carrier density, which can be transition metals,

noble metals, zinc group and group-III elements. When M are transition metals and
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Figure 5.5: (a) Structure of doped Ba-filled type-I clathrate Ba8MxSi(Ge)46−x (x ≤
6). M can be transition metals, noble metals, zinc group and group-III elements. When
M are transition metals and noble metals, x is not larger than 6 and M substitutes
Si(Ge) atoms on 6d sites. When M are zinc group and group-III elements, x can be
larger than 6 and thus besides 6d sites, M substitute Si(Ge) atoms at other sites such as
16i and 24k sites. The two cages show schematically the environments of two different

types of Ba, i.e., 2a (0,0,0) and 6c (0.25,0.5,0) sites.

noble metals, x is no more than 6 and M most likely substitute Si(Ge) atoms on 6d sites.

When M are zinc group and group-III elements, x can be larger 6 and thus besides 6d

sites, M substitute Si(Ge) atoms at other sites such as 16i and 24k sites. Fig.5.5 show

schematically the structure of Ba8MxSi(Ge)46−x (x ≤ 6).

As discussed in Sec.3.3, because of the experimental preparation at higher temperatures

dopants are more or less statistically distributed at the target doping sites, whereas they

have to be placed on specific lattice sites in the theoretical modeling. The ordering

may break crystal symmetry and lead to several possible structural configurations. For

instance, there is only one configuration for Ba8Ag5Ge41 and Ba8Ag6Ge40 if all Ag atoms

are located at 6d sites. However, there are two inequivalent structural configurations for

Ba8Ag4Ge42. In a case such as Ba8Ag4Ge42, structural relaxations were performed for

all the possible structural configurations. Formation energies were derived by using the

lowest energy among them. Electronic structure calculations for the system were carried
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out by taking the structural configuration with the lowest total energy. In general, in

addition to the point-group symmetry, even the shape of the cubic unit cell including

the length of the axes may change whereby the deviations from the ideal structure are,

however, rather small. In all the present calculations, a cubic structure was assumed in

accordance with experiment.

DFT calculations were perfomed by applying VASP. The pseudopotentials were con-

structed according to the projector augmented wave (PAW) method. Unless stated other-

wise, for Ge-based clathrates, e.g., Ba8MxGe46−x, the exchange-correlation functional was

parametrized in terms of LDA according to Ceperley and Alder (CA), whereas for Si-based

clathrates, e.g., Ba8MxSi46−x, it is approximated within GGA using the parametrization

of Perdew, Burke, and Ernzerhof (PBE). The valence state configuration for the con-

struction of the pseudopotentials included the 5s, 5p and 6s states for Ba, the 4s and 3d

states for Ni, Cu and Zn, the 5s and 4d states for Pd and Ag, the 6s and 5d states for Au,

3s and 3p states for Si, and the 3d, 4s and 4p states for Ge. For structural relaxations

and total energy calculations, a 5× 5× 5 k point grid according to Monkhorst and Pack

grid was used to sample the Brillouin zone. For subsequent DOS calculations, a k-mesh

of 11× 11× 11 was used. For the purpose of TE calculations, a k-mesh of 25× 25× 25

was used.

Property a Ge2 in 16i (x,x,x) Ge3 in 24k (x,y,z)
Ge46 10.51 0.184 0.117, 0.308

Ba8Ge46 10.90 0.185 0.118, 0.307
Ba8Ag1Ge45 10.81 0.184 0.117, 0.306
Ba8Ag2Ge44 10.78 0.185 0.121, 0.312
Ba8Ag3Ge43 10.75 0.182 0.126, 0.302
Ba8Ag4Ge42 10.72 0.183 0.123, 0.305
Ba8Ag5Ge41 10.71 (10.84a) 0.183 (0.182a) 0.116, 0.312 (0.116, 0.307a)
Ba8Ag6Ge40 10.72 0.183 0.116, 0.308

aExperiment (Ref. [121])

Table 5.7: Lattice constant a (in Å) and structural parameters for Ba8AgxGe46−x (x
= 0 - 6).

Tables 5.7 and 5.8 show lattice parameters for Ba8AgxGe46−x, Ba8AuxSi46−x and Ba8CuxSi46−x,

of which their TE properties will be discussed below. For each system, one finds that the

DFT derived lattice constants are larger by about 1% or smaller by the same amount than

available experimental data depending on the approximation for the exchange correlation

functional. When comparing structural parameters to corresponding experiment results,

usually rather good agreement can be found.
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Property a Si2 in 16i (x,x,x) Si3 in 24k (x,y,z)
Si46 10.25 0.181 0.116, 0.304

Ba8Si46 10.38 0.182 0.118, 0.303
Ba8Au1Si45 10.42 0.183 0.119, 0.306
Ba8Au2Si44 10.44 0.185 0.119, 0.307
Ba8Au3Si43 10.47 0.183 0.119, 0.303
Ba8Au4Si42 10.48 (10.40a) 0.183 (0.183a) 0.118, 0.304 (0.120, 0.308a)
Ba8Au5Si41 10.49 (10.41a) 0.183 (0.183a) 0.119, 0.302 (0.116, 0.305a)
Ba8Au6Si40 10.52 (10.42a) 0.184 (0.185a) 0.117, 0.304 (0.117, 0.306a)

Ba8Cu1Si45 10.41 0.185 0.122, 0.309
Ba8Cu2Si44 10.41 0.185 0.117, 0.308
Ba8Cu3Si43 10.42 0.184 0.123, 0.309
Ba8Cu4Si42 10.43 0.184 0.120, 0.309
Ba8Cu5Si41 10.44 (10.33b) 0.184 (0.185b) 0.122, 0.308 (0.120, 0.309b)
Ba8Cu6Si40 10.45 0.184 0.119, 0.311

aExperiment (Ref. [128]), bExperiment (Ref. [123])

Table 5.8: Lattice constant a (in Å) and structural parameters for Ba8AuxSi46−x and
Ba8CuxSi46−x (x = 0 - 6).

The formation enthalpy ∆H for Ba8MxSi(Ge)46−x as depicted in Figs. 5.6 and 5.7), are

defined as:

∆H(Ba8MxSi(Ge)46−x) =

[E(Ba8MxSi(Ge)46−x)− 8Ebulk(Ba)− xEbulk(M)− (46− x)Ebulk(Ge)]/54
(5.2)

where E(Ba8MxSi(Ge)46−x) represents the total energy of Ba8MxSi(Ge)46−x, and Ebulk

denote total energies of the elemental bulks.

The enthalpy costs of forming the cage structure of Si46 and Ge46 are positive, indicating

they are less stable than the diamond ground state structure. Filling Ba atoms into

the voids of Si46 or Ge46 results in a significant gain in binding energy, which is about

-17 kJ/mol for Si46 or -20 kJ/mol for Ge46. The incorporation of M into the Ge(Si)-

framework stabilizes the clathrate-I compound as evidenced by a decrease of the enthalpy

of formation (∆H). The stabilization as induced by incorporation of M into Ba8Si(Ge)46
is interesting. For Ba8MxGe46−x the enthalpies always decrease as x varies from 0 to 6

when Au and Pd serve as dopants. However, the decrease in the enthalpy end at x = 5 for

Ag and 8 for Zn, respectively. These first-principles findings are in line with the solubility

limits estimated by the experiment (see Table 5.9), except for Pd.

Similar phenomena can be observed for Ba8MxSi46−x, for which calculations have been
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Figure 5.6: Calculated formation energies ∆H Ba8MxGe46−x (M = Au, Ag, Pd and
Zn) as a function of doping x. Also shown is the result for the unfilled and undoped

cage solid Ge46. Calculations were done using VASP within LDA.

done using both LDA and GGA. Like in Ba8MxGe46−x, Au has a much stronger stabi-

lization effect than Cu and Ag. For instance, increasing the Cu content from x = 1 to

5 (i.e. the minimum of ∆H) gives a rather small stabilization of- 1.6 kJ/mol, whereas

for the Au-based clathrate the gain in bonding (taking now Ba8Au6Si40 as the minimum)

is significantly larger, namely -13.6 kJ/mol. For the Au-doped compounds the enthalpy

of formation decreases (i.e. bonding is enhanced) with increasing Au content, which is

very similar to the results for Ba8AgxGe46−x. The trend for the Cu-doped compounds is

quite different, because ∆H remains rather constant with increasing x. A more careful

examination reveals that ∆H slightly increases for x > 5 implying that a doping level

exceeding 5 is unfavorable. The enthalpy of formation for Ba8NixSi46−x also decreases

from x = 0 to 4 Ni. Further substitution of Ni up to Ba8Ni6Si40 does not further decrease

∆H. This is consistent with the experimental fact that no samples with x larger 4 and 5

for Ni and Cu, respectively, can be synthesized, whereas the limiting doping of Au is 6

(see Table 5.9).

5.4 Gap and Doping

As elaborated previously, placing Fermi energy close to a gap in the electronic structure

is an important concept for obtained large Seebeck coefficients. How to achieve this

goal with a suitable chemical doping is the subject of this Section. For this purpose,

a systematic DFT study of the electronic structure of Ba8MxGe46−x and Ba8MxSi46−x
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Figure 5.7: DFT derived formation energies ∆H Ba8MxSi46−x (M = Au, Ag, Cu, and
Ni) as a function of x. The figure also shows the result for the unfilled cage solid Si46.
Both GGA and LDA results are given. As expected, LDA predicts stronger stabilization

than GGA.

systems

dopants Ba8MxSi46−x Ba8MxGe46−x

Au 5.9 6.0

Ag 5.4 5.3

Cu 4.9 6.0

Pd 3.8

Ni 3.8

Zn 8.0 8.0

Table 5.9: Solubility limits of doping of Ba8MxSi(Ge)46−x.

clathrates is presented. M stands for late transition and noble metal elements such as Ni,

Pd, Pt, Cu, Ag, Au, Zn.

For all the compounds, the calculated DOS of Ba8MxGe46−x (M = Pd, Ag, Zn) in Figs.5.8

- 5.11 show a gap or gap-like features (i.e. very small value of DOS) in a certain energy

region depending on the composition and number if valence electrons. Starting with the

unfilled clathrates Si46 and Ge46 filling Ba into them conserves the gap (with a reduced

size of 0.8 eV for Ba8Si46 and 0.7 eV for Ba8Ge46), but now Fermi energy EF falls in the

conduction band region, making the material metallic. In all cases, the gap size shrinks
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Figure 5.8: VASP derived total DOS of Ge46 and Ba8Ge46.

significantly even more upon doping of M and continues to shrink as the doping increases,

with the exception of Ba8M6Ge40 which is distinct from the others with smaller dopings

x because of its high symmetry. As a general trend the gap sizes of Ba8MxGe46−x for a

fixed doping x increase when M changes from Pd through Ag to Zn which can be rougly

correlated to the atomic size.

For Ba8PdxGe46−x, in combination with the reduced size of the gap new electronic states

appear in the gap, which gradually merge into the valence bands as the doping of Pd

grows. These in-gap states are missing for Ba8AgxGe46−x and Ba8ZnxGe46−x. This is a

consequence of the positions of the d-levels which is highest for Pd when compared to

Ag and Zn. From Figs.5.9 and 5.10 it can be seen, that the d-states of Ag are lower in

energy as compared to Pd in Ba8PdxGe46−x for x ≧ 4. There, part of the contributions

of Pd-5d states to the DOS are visible. The differences in the gap sizes and in-gap states

between different M elements can therefore be attributed to the relative positions of the

d level, which is correlated to the number of valence electrons of the M element.

An important feature of the electronic structure is the position of the Fermi level relative

to the gap. In general, the Fermi level moves from the conduction bands across the gap

down to the valence bands as M increases, because replacement of Ge or Si by M reduces

the total number of valence electrons. For Ba8PdxGe46−x, the Fermi level falls into the

gap for x = 4. While for Ba8AgxGe46−x x is in between 5 and 6 since the Fermi levels of

Ba8Ag5Ge41 and Ba8Ag6Ge40 lie below above and below the gap, respectively. In the case

of Ba8ZnxGe46−x, 8 Zn atoms are required to shift the Fermi level into the middle of the

gap. For this observation, a simple but general electron counting rule will be presented

later on.

Electronic DOS for Ba8MxSi46x (M = Au, Cu, Ni) are shown in Figs. 5.12 and 5.13,

which exhibit similar doping effects as observed for the Ge-based clathrates doped by the
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Figure 5.9: VASP derived total and partial DOS of Ba8PdxGe46−x (x = 1 - 6). Fermi
energy is at E = 0. Black lines denote the total DOS. Red, green and blue lines represent

Ba-, Pd- and Ge-projected DOS.

same group elements. The exception is Ba8NixSi46x, because the gap clearly present in

Ba8Si46 shrinks more and more by substituting Si by Ni. For Ba8Ni1Si45 two separated

peaks, mainly of Ni-character, appear in the gap. The one with lower energy is localized

and dominated by Ni d-states, whereas the second one with higher energy is broader. On

one hand, as the doping of Ni increases, the sharper peak grows and gradually mixes with

framework states. On the other hand, the peak at higher energy broadens and finally

for Ba8Ni4Si42 it merges with the other one, which leads to the vanishing of the gap

and left a narrow valley at the Fermi level. For further substitution by Ni up to x =

6 second gap, very small gap appears at 0.45 eV In this case the second gap is located

above the Fermi-level. Current electronic structures are in good agreement with previous

calculations [120]. It should be noted that a satellite peak located at -0.5 eV in the DOS

of Ba8Si46 is preserved upon doping by Ni. The Fermi level moves through the satellite

peak with increased doping, which suggests that the rigid band approximation -needed

for small changes in stoichiometry- may be applicable, when the Fermi level is in the

vicinity of the satellite peak. However, the Ni-doping causes considerable changes of the
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Figure 5.10: VASP derived total and partial DOS of Ba8AgxGe46−x (x = 1 - 6).
Fermi energy is at E = 0. Black lines denote the total DOS. Red, green and blue lines

represent Ba-, Ag- and Ge-projected DOS.

DOS in contrast to doping by elements with larger sizes, such as Pd, Pt, Ag, Au, which

has to be considered carefully, when the rigid band approximation is applied.

All the DOS indicate that Ba8MxGe(Si)46−x experiences a transition from a n-type semi-

conductor to a p-type semiconductor as x increases. Therefore, there must be a critical

composition where the Fermi level falls into the gap. For estimating this critical com-

position x of a simple electron counting procedure is proposed and was tested to work

properly: assuming that hybridized and delocalized states are present above the filled

d-band of the metal and the Fermi energy is not pinned by localized states, a rigid band

concept is applied. That means, that the basic features of the DOS are not too much

changed upon doping and Fermi energy is shifted upwards or downwards according to

the change of the number of valence electrons. It is further -safely- assumed that the

transition metal elements want to have their d-band filled. On this basis the valency n

of the M element is determined: n is the number of free electronic states provided by M.

According to this idea, for e.g. Ni,Pd,Pt ts is n=0, for Cu,Ag,Au it is n=1 and for Zn it

is n=2. For Co -not studied here- but of interest for doping it would be n=-1.
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Figure 5.11: Total DOS of Ba8ZnxGe46−x (x = 1 - 8). Fermi energy is at E = 0.

When M replaces Ge(Si) in Ba8MxGe(Si)46−x, 4x electrons are lost but nx electrons (n is

the valency of the dopant, as described) are gained, whereas Ba8 contributes 16 electrons.

If these 16 electrons would be lost, then Fermi energy falls in the gap as generated by

the unfilled Ge(Si)46. Therefore the losses upon doping must equal 16, which defines the

condition for the critical doping xgap (the doping, for which the Fermi energy falls into

the gap), as

xgap =
16

4− n
(5.3)

For M = Cu/Ag/Au (i.e. the valency n = 1) the value of xgap = 5.33 is derived, which

is perfectly full-filled by the above VASP calculations. For compounds with M = Ni/Pd,

xgap = 4 because n = 0. Although a real gap is absent at the Fermi level of Ba8Ni4Si42,

a rather narrow valley of the DOS occurs. According to the above assumption on the

valency of Ni, the compound Ba8Ni6Si40 has 8 electrons less than Ba8Ni4Si42 and the

Fermi level falls into energies lower than the gap. Indeed, integrating the DOS from the

Fermi energy up to the gap yields exactly eight electrons. Likewise, for M = Zn one

obtains xgap = 8 (n = 2) and xgap = 16 for Ga/Al-doped compounds. Comparing with

all the discussed DOS of Ba8MxGe(Si)46−x the counting rule of Eq.(5.3) works perfectly.
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Figure 5.12: VASP derived total and partial DOS of Si46, Ba8Si46 and
Ba8Au(Cu)xSi46−x (x = 5 and 6). Fermi energy is at E = 0.Black lines denote the

total DOS. Red, green and blue lines represent Ba-, Ag- and Ge-projected DOS.

5.5 Transport Properties of Ba8AgxGe46−x Clathrates

This section is devoted to explore,calculate and analyse the TE properties Ba8AgxGe46−x

in combination with recent experimental investigations. This work was published in

Acta Materialia, 59, 2368 (2011) and demonstrates the usefulness of a combined exper-

imental and theoretical DFT approach to understand materials properties. The mea-

sured temperature-dependent Seebeck coefficients S(T) for various concentrations x of

Ba8AgxGe46−x−y�y is displayed in Fig. 5.14[121]. It should be noticed, that also vacan-

cies might play a role, as indicated by �y in the chemical formula. Basically, the experi-

ments show that the Seebeck coefficient changes sign around the magical composition x

= 5.3, as discussed in the previous Section. For each compound with x < 5.3, the See-

beck coefficients are negative, for which the position of the minimum shifts toward lower

temperatures as x increases. At low temperatures with the exception of Ba8Ag6Ge40 and

Ba8Ag5.3Ge40.7 the resistivity ρ(T) exhibits metallic behavior, which gradually changes
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Figure 5.13: VASP derived total and partial DOS of Ba8NixSi46−x (x = 1 - 6). Fermi
energy is at E = 0. Black lines denote the total DOS. Red, green and blue lines represent

Ba-, Ag- and Ge-projected DOS.

at higher temperatures and at increased Ag content towards a more insulating charac-

ter with the occurrence of a maximum. Focusing on Ba8Ag2.1Ge41.9�2.0, the metallic

behavior becomes evident. With increasing content of Ag the resistivity ρ(T) becomes

qualitatively and quantitatively modified: (i) the overall absolute resistivity increases, (ii)

is almost linear at low temperatures. and (iii) a maximum occurs at a high temperature,

which becomes more pronounced and shifts towards lower temperature for increasing Ag

content.

5.5.1 Computational Details

Electronic transport properties such as electrical resistivity and Seebeck coefficients of

Ba8Ag5Ge41 and Ba8Ag6Ge40 are studied within the Boltzmann transport theory Eqs.(3.16)

and (3.20) as implemented in V2Boltz. According to experiment the type-I clathrates

-even when substitutions were made- have cubic symmetry with space group Pm3̄n. This

is -in principal- not the case for DFT calculations, when all structural degrees of freedom
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(a) (b)

Figure 5.14: Measured temperature-dependent (a) Seebeck coefficients and (b) re-
sistivities of Ba8AgxGe46−x−y�y. � represents a vacancy (Ref. [121]). Resistivity of
Ba8Ag5Ge42 has almost the same curve as Ba8Ag4.8Ge41.2 (not shown by experimen-

talists). Data for Ba8Ag5.3Ge40.7 and Ba8Ag6Ge40 refer to the right axis.

are relaxed. Because the experimental samples are synthesized at higher temperature

it seems plausible that some kind of random distribution of defects takes place and the

samples maintain the full symmetry of the perfect, undoped composition. Thus, to be

consistent with experiment the symmetry of Pm3̄n is enforced on the coefficients of the

transport tensors using Eq.(3.48) for symmetrization. Because of cubic symmetry, the

symmetrized tensors are diagonal and all elements are equal,

T̄x,x = T̄y,y = T̄z,z. (5.4)

, T̄ is then described as isotropic.

For compounds such as Ba8AgxGe46−x−y�y (� represents vacancy) the rigid band ap-

proximation is applied to adjust EF for the correct number of valence electrons by taking

Ba8Ag5Ge41 as reference when x should be very close to 5. The chemical potential µ (i.e.

temperature dependent Fermi energy) is derived by Eq.(3.49). The change in valence

electrons as compared to the reference compound is derived within the rigid band model

counting two valence electrons per Ba atom, one per Ag and four for each Ge. When

taking Ba8Ag5Ge41 as the reference compound, ∆n = -0.60, -0.63, -0.66, -0.72 and -0.76

corresponds to Ba8Ag5.20Ge40.80, Ba8Ag5.21Ge40.79, Ba8Ag5.22Ge40.78, Ba8Ag5.24Ge40.76 and

Ba8Ag5.26Ge40.74, respectively. However, one should be aware, that there is some experi-

mental uncertainties for determining the correct composition, which is reflected in some

uncertainty of the number of valence electrons, and hence the determination of the Fermi

energy. For example, if the Ge composition has an uncertainty of ±0.1 atoms (which
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is within the experimental error bar), this would amount to ±0.4 for the uncertainty in

the number of valence electrons. Therefore, theory should always scan a certain range of

number of electrons for a conclusive comparison with experiment.

5.5.2 Seebeck Coefficient

-4 -2 0 2
∆n

-200

0

200

400

S
 (µ

V
/K

)

Ba
8
Ag

6
Ge

40

Ba
8
Ag

5
Ge

41

↑

↓

0 2 4

-200

0

200

400

Figure 5.15: DFT derived Seebeck coefficient at 300 K for Ba8Ag5Ge41 and
Ba8Ag6Ge40 as a function of electron doping ∆n. A negative value corresponds to

hole doping.

Figure 5.15 depicts the calculated Seebeck coefficients at 300 K vs. chemical doping for

Ba8Ag5Ge41 and Ba8Ag6Ge40. As the figure demonstrates, the rigid band approximation

works rather well because the shapes of the curves agree very well with each other except

for the absolute values nearby the gap where the Seebeck coefficient changes sign and

fluctuates strongly. It should be noted, however, that the shift in EF to accommodate

two extra electrons for Ba8Ag6Ge40 is larger than for Ba8Ag5Ge41, which has one more

electron when compared to Ge46. For Ba8Ag5Ge41 the crystal symmetry is reduced to

such an extent that the Seebeck tensor has different components, if no symmetrization

is done. Consequently, Fig.5.15 shows the result after symmetrization, when the Seebeck

tensor became diagonal.

Figure 5.16 depicts the DFT derived temperature dependent Seebeck coefficients for

Ba8AgxGe46−x, which are very sensitive to doping. Apparently, S(T) changes sign when

the Ag concentration crosses the critical as expressed by the composition Ba8Ag5.33Ge40.67.

The DFT results for S(T) resemble the experimental trend rather well and for Ba8Ag5Ge41
even its magnitude compares favorably to the experiment (see Fig. 5.14) and the position

of the minimum shifts toward lower temperature as x increases.
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Figure 5.16: DFT derived temperature dependent Seebeck coefficient for
Ba8AgxGe46−x (a) with x = 5.0 - 5.4. (b) A finer scan in a narrower range of x =
5.20 - 5.26. Calculations were carried out within the rigid band approximation by

taking Ba8Ag5Ge41 as reference.

The Seebeck coefficient for Ba8AgxGe46−x at sufficiently low temperatures can be under-

stood by the simplified Motts relation according to Eq. (B.15) in which the sign and

magnitude of the Seebeck coefficient is determined by the energy derivative of the DOS

at the Fermi energy, which results in an opposite sign of Seebeck coefficient and slope

of the DOS at EF . One can also learn that a small value of the DOS together with a

large slope may give rise to a large Seebeck coefficient, and for that purpose Fermi energy

should be as close as possible to the gap. As temperature increases, the Fermi energy

moves closer to or far away from the gap, with which a growing or decreasing S(T) is

accompanied. According to the electron counting rule in Eq.(5.3) 5.33 Ag atoms per unit

cell are required to place the Fermi energy in the gap.

For Ba8AgxGe46−x (x = 5.20 - 5.26), the Fermi level are somewhere between the bottom

of the gap and the one for Ba8Ag5Ge41. From Fig.5.10 one derives a positive derivative

and consequently, a negative Seebeck coefficient, in accordance with experiment. The

Fermi energy of Ba8Ag5.26Ge40.74 is closest to the gap, and as a consequence the Seebeck

coefficient reaches its largest absolute value (of about 120 µV/K at about 500 K) of all the

compounds studied (Fig. 5.16). Increasing the number of valence electrons, or in other

words moving EF farther away from the gap, significantly reduces the absolute value of

S(T) although the change in the number of valence electrons is rather small.

As elaborated above, one should be aware that rather small uncertainties in the stoi-

chiometrywhich are inherent to the experiment result in significant fluctuations of the

number of valence electrons, which concomitantly leads to substantial variations of the

Seebeck coefficients-according to Eq.(B.1), as demonstrated by Fig.5.16.

93



Chapter 5 Group-IV-based Clathrates

5.5.3 Electrical Resistivity

 1200

 1600

 2000

 2400

 2800

 0  200  400  600  800  1000

ρ(
µΩ

cm
)

T (K)

Ba8Ag5.26Ge40.74
Ba8Ag5.24Ge40.76
Ba8Ag5.22Ge40.78
Ba8Ag5.21Ge40.79
Ba8Ag5.20Ge40.80

Figure 5.17: DFT derived temperature dependent resistivity for Ba8AgxGe46−x (x
= 5.20 - 5.26). The reference compound is Ba8Ag5Ge41 from which the values for the
selected compositions were derived within the rigid band approximation by adjusting
the Fermi energy according to the change in ∆n (from -0.22 to -0.40, i.e. hole doping).

For deriving the resistivity of Ba8Ag5Ge41 within the constant-relaxation-time approx-

imation, τ = 1.5 × 10−14 s was chosen in order to fit the calculated resistivity of

Ba8Ag5.22Ge40.78 to one experimental value, namely the value of the high temperature

maximum. The resistivity tensor ρ is the inverse of the electrical conductivity according

to

ρ = σ−1 (5.5)

The temperature dependent resistivity ρ(T) for the above mentioned Ag doping is shown

in Fig.5.17. Obviously, the trend of the calculations matches rather well with the ex-

perimental data except for a small discrepancy in the low temperature regime. This

discrepancy is due to the choice of the constant relaxation time, which is in fact energy

and temperature dependent. As discussed for the experimental results, the resistivity

ρ(T) increases with increasing temperature up to a maximum and then decreases at

higher temperatures, which is the sure indication of a gap in the DOS. The reason, why

resistivity increases with an increasing doping of Ag (i.e. decreasing Ge concentration), is,

that the number of valence electrons, i.e., charge carrier density, is reduced and therefore

EF moves closer to the gap. This means that fewer states contribute to the conductivity,

i.e. the resistivity is enhanced, as observed in Fig.5.17. Similar to experiment a peak is

observed for all Ba8AgxGe46−x compounds with x smaller than the critical value of 5.33.

For Ba8Ag5.22Ge40.78 the peak occurs at about 700 K, which is close to the experimental

peak for Ba8Ag5Ge41.
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Figure 5.18: Temperature dependent resistivities for Ba8Ag5.24Ge40.76 as calculated
directly from Eq.(3.16) and from the approximation in Eq.(5.6).

The resistivity peak is closely related to the location of the chemical potential µ(T ), i.e.

the temperature dependent Fermi energy. For instance, the calculations indicate that

EF of Ba8Ag5.22Ge40.78 slightly shifts towards lower energies as temperature increases,

resulting in a small decrease in the DOS at the Fermi level. This leads to a reduction in

the charge carrier density, which therefore leads to a decrease in the electrical conductivity,

or enhancement of the resistivity. However, thermally excited states from below the gap

contribute more and more to the charge carrier density with increasing temperature and

cause a decrease in the resistivity. Thus there must be a critical temperature where a

maximum of the resistivity occurs. In order to analyze the physical origin of the resistivity

maximum, Eq.3.16 is approximated by assuming that the electron velocity v is constant,

and thus can be moved out of the integral,

σ(T ;µ) =
e

4π3
v2τ

∫

N(E)(− ∂f

∂E
)dE. (5.6)

If this equation works reasonably well, the features of ρ(T) and related quantities can

be discussed in terms of the DOS and the universal function ∂f

∂E
, the energy derivative

of the ferm-Dirac distribution, only. For Ba8Ag5.24Ge40.76 Fig.5.18 shows the calculated

results according to Eqs.(3.16) and (5.6). For this purpose, Eq.(5.6) is fitted to the result

of Eq.(3.16) at a selected temperature. It is obvious that the approximated expression of

the resistivity in Eq.(5.6) closely resembles the full calculation.

To further illustrate how the gap affects the transport properties, the resistivity for differ-

ent sizes of the gap was computed for Ba8Ag5.24Ge40.76. The size of the gap was artificially

modified by shifting the bands below the gap down in energy by a fixed amount. The
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Figure 5.19: DFT derived temperature dependent resistivities for Ba8Ag5.24Ge40.76
for different artificial gap sizes. The gap for the reference compound Ba8Ag5Ge41 (see

Fig.5.10) was enlarged by shifting the valence band edge down by ∆Gap.

results as given in Fig.5.19, show a distinct gap-size dependent behavior of the resistivity.

The maximum of ρ(T) is shifted towards higher temperature as the gap size is enlarged,

and it finally disappears for a sufficiently large gap. This gap-size dependent behavior

of the peak confirms the importance of thermal excitations of states below the gap in

transport properties for the compounds studied.

5.6 Transport Properties of Ba8MxSi46−x (M = Ni,

Cu, Au) Clathrates

Thermoelectric properties of Si-based clathrates have been extensively studied recently

aiming at exploring their potential as TE materials. Up to now a maximum ZT of

∼ 0.8 at elevated temperatures was reported for the Ba8GaxSi46x [18, 122], and very

recently, Ni, Cu, Au were used to substitute Ga for further optimization [120, 123–

127]. However, compared to the Ge related materials their relatively low ZTs make Si-

based clathrates less attractive for TE applications. Nevertheless, Si-bases materials of

technological interest, because Si is much cheaper than Ge, which becomes important for

industrial fabrication on a large scale. Therefore, effort remain to find good TE materials

based on Si-frameworks.

In this section the same approach will be used as for Ba8AgxGe46−x to Si-based clathrates

to analyze experimental findings and to possibly their TE properties.
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Figure 5.20: Measured Seebeck coefficient and resistivity of Ba8AuxSi46−x Ref. [128].
Ba8Au5.4Si41.6 and Ba8Au5.9Si41.1 are from Ref. [127].
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Figure 5.21: Measured Seebeck coefficient and resistivity of Ba8CuxSi46−x (Ref.
[123]).

The experimental information indicates that Seebeck coefficients of Ba8AuxSi46−x are

negative and positive when x is smaller or larger than 5.4 [127, 128] which is just around

the critical limit of x = 5.33 for the Fermi energy to ly in the gap. For Ba8Au5.1Si40.9 the

Seebeck coefficient decreases as T increases until about 600 K and then turns to increase.

Correspondingly, a maximum occurs in the electrical resistivity at 600 K according to

Fig.5.20. Ba8CuxSi46−x shows a similar phenomenon except the minimum (maximum) in

the Seebeck coefficient (resistivity) are shifted to higher temperatures for concentration

of Cu lower 5[123].
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Figure 5.22: DFT derived Seebeck coefficients of of Ba8AuxSi46−x.

5.6.1 Ba8AuxSi46−x Clathrates

To compare the calculations with the most interesting experimental sample of composi-

tion Ba8Au5.1Si40.9, the composition Ba8Au5Si41 was chosen as the reference as staring

point for the rigid band application. The procedure of calculations is the same as for

Ba8Ag5Ge41, as given in Sec. 5.5.1. In the BaAuSi clathrates Ba, Au and Si contribute 2,

1 and 4 valence electrons to the system, respectively. Consequently, ∆n = -0.3, -1.2 and -

2.7, namely hole doping, corresponds to Ba8Au5.1Si40.9, Ba8Au5.4Si40.6 and Ba8Au5.9Si40.1,

respectively. Fig.5.22 depicts the calculated temperature dependent Seebeck coefficient

for the three compounds, which demonstrates that S(T) is very sensitive upon doping. For

Ba8Au5.1Si40.9 a negative S(T) with a minimum around 600 K is obtained. S(T) changes

sign when the Au concentration is increased from 5.1 to 5.4 at low temperature and be-

comes negative as the temperature is increased. The sign of S(T) for Ba8Au5.4Si40.6 at

low temperature is different from the experimental measurement, as shown in Fig.5.20. It

should be noted that Ba8Au5.4Si40.6 is very close the critical composition Ba8Au5.33Si40.67
around which the Seebeck coefficient changes sign. Rather small uncertainties in the

stoichiometry -which are inherent to the experimental preparation- result in significant

fluctuations of the number of valence electrons and therefore leads to a substantial varia-

tion of the Seebeck coefficient. Ba8Au5.9Si40.1 has a positive S(T) with a maximum around

700 K. Fig.5.22 shows ZT and Seebeck coefficient S(T) for Ba8AuxSi46−x with variations

in x close to the chemical composition of the experimental sample Ba8Au5.1Si40.9. One

realizes that the calculated S(T) for Ba8Au5.1Si40.9 is comparable with the experiment in

terms of both the sign and position of the minimum.

The maximum in the electrical resistivity is also closely related to the position of the

Fermi energy. As demonstrated for the Ba8AgxGe46x clathrates, the peak of the electrical
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Figure 5.23: DFT derived electrical resistivities of Ba8AuxSi46−x with x = 5.07, 5.10
and 5.13.

resistivity arises due to the placement of the Fermi energy close to a gap and the temper-

ature dependence of the energy derivative of the Fermi function, f(E). More specifically,

if the Fermi energy is very close to the gap but at a higher energy, the states below the

gap will involve electronic transport above a certain temperature due to the temperature

broadening of f(E). As the Fermi energy shifts closer to or further away from the gap,

lower or higher temperatures are required for exiting states below the gap. Fig.5.23 shows

the calculated electrical resistivity for three compounds with x equals 5.07, 5.10 and 5.13,

respectively. A τ = 7.96 × 10−14 s was chosen for the relaxation time in order to fit the

calculated resistivity of Ba8Ag5.10Ge40.90 to the corresponding experimental value at the

high temperature maximum. From the discussion above, one concludes that the Fermi

energies for all the three compounds are above the gap and are moving closer to it as x

increases gradually from 5.07 to 5.13. The present calculations indicate that the thermo-

electric properties and the resistivities of Ba8AuxSi46−x alloys can be well described by

the first-principles approach of this work.

5.6.2 Ba8CuxSi46−x Clathrates

As for transport properties of Ba8Cu5Si41 two sets of calculations are made, namely for

a geometrically fully relaxed structure and for a structure denoted as frozen-Ba8Cu5Si41,

for which the high-symmetry structure corresponding Ba8Cu6Si40 was chosen and no

relaxation was allowed. This procedure was chosen for testing the dependency of the

results on structural and to critically analyze the comparison with experiment.
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Figure 5.24: DFT derived Seebeck coefficient at 300 K for Ba8Cu5Si41 and Ba8Cu6Si40
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Figure 5.24 depicts the calculated Seebeck coefficients at 300 K vs. doping for relaxed-

and frozen-Ba8Cu5Si41, and Ba8Cu6Si40. It changes sign as the Fermi level crosses the gap,

which is a clear indication of crossing the critical value for xgap. There is a significant

difference in the amplitudes of the Seebeck coefficient between the relaxed and frozen

structures of Ba8Cu5Si41 revealing the influence of structural relaxation. The Seebeck

coefficient of frozen-Ba8Cu5Si41 resembles quite well that of Ba8Cu6Si40, indicating that

the rigid band approximation should be useful when varying x between 5 and 6, and

when the structure should not be relaxed according to the experimental comnditions.

Both curves agree very well with each other except for the absolute values nearby the

gap. However, the Seebeck coefficients are significantly different when comparing them

with those of the fully relaxed structures. This is different to the comparison of Seebeck

coefficients of Ba8Au5Si41 and Ba8Au6Si40 (or Ba8Ag5Ge41 and Ba8Ag6Ge40) with their

fully relaxed structures, because the practically coincide. The difference may be due to

atomic sizes of both dopant and framework atoms that atomic size effect on electronic

structures is more significant in Ba-Cu-Si clathrates.

The difference in Seebeck coefficient between relaxed and frozen-Ba8Cu5Si41 indicates the

importance of ordering of Cu. As demonstrated in the previous work on Ba-Ag-Ge and

Ba-Au-Si clathrates, starting with electronic structures of the fully relaxed structure of

the reference compound, one can produce good agreement with experiments. This way

less valid when applied to Ba-Cu-Si clathrates by taking Ba8Cu5Si41 as the reference:

Instead, freezing the five Cu atoms in Ba8Cu5Si41 to be in the same positions as those
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in Ba8Cu6Si40 (the high symmetry structure) can produce reasonable agreement with

experiments.
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Figure 5.25: DFT derived S(T) for Ba8CuxSi46−x with (a) x = 5.0 - 5.9 and (b)
x = 4.8 - 5.1 for fine scan as calculated within the rigid band approximation taking
frozen-Ba8Cu5Si41 as the reference. For Ba8Cu5Si41 the Seebeck coefficient derived by

taking Ba8Cu6Si40 as the reference is also shown for comparison(dotted line).

Figure 5.25 depicts the calculated temperature dependent Seebeck coefficients S(T) for

Ba8CuxSi46−x, which are obviously very sensitive to doping. Apparently, S(T) at low

temperatures changes sign when the Cu concentration crosses the critical value of xgap =

5.33. The change of sign can be understood in terms of the simplified Mott’s formula, as

already elaborated above. For comparison, S for Ba8Cu5.4Si40.6 was also calculated by

taking Ba8Cu6Si40 as the reference. Although the S(T) as derived from the different refer-

ences are qualitatively similar, there are significant differences concerning the magnitude

and the position of the maximum. This suggests that care has to be taken when selecting

the reference compound. Obviously, the rigid band approximation becomes less reliable

the smaller the atomic sizes are, because then the overlap of the atomic wave functions is

increased and changes in the local environment influence the resulting electronic structure

stronger.

5.6.3 Ba8NixSi46−x clathrates

Figure 5.26 depicts the calculated temperature dependent Seebeck coefficients S(T) for

Ba8NixSi46−x with x varying from 3.3 to 3.8. The signs of the Seebeck coefficients are

negative over the whole temperature range for because the compositions are away from

the the critical value of xgap = 4 with n = 0 for Ni. with the exception of S(T) for
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Figure 5.26: Experimental (a) and DFT derived (b) Seebeck coefficients of
Ba8NixSi46−x. Inset shows locations of the Fermi level of Ba8Ni3.3Si42.7 at 200 K and
1000 K, respectively. The arrow denoting the shifting direction of the Fermi level as

temperature increases from 200 K and 1000 K.

Ba8Ni3.3Si42.7. Its positive sign at low temperatures can again be understood with help

of the simplified Mott’s relation in Eq.(B.15) together with location of the Fermi level.

The inset shows the locations of the Fermi level at 200 K and 1000 K, respectively. At

200 K, one obtains a negative dN(E)/dE at EF which consequently results in a positive

Seebeck coefficient. The Fermi level moves towards lower energy to the top of a peak in

the DOS as T increases from 200 K to 1000 K (inset of Fig.5.26(b)). During the tem-

perature increase the delta-like Fermi function derivative, i.e., df(E)/dE, broadens and

therefore states at both sides of the peak are involved for the Seebeck coefficient according

to Eq.(3.20). The left side has a steeper slope and therefore the corresponding integral

in Eq.(3.20) yields a negative Seebeck coefficient. The global trend of the DFT results is

similar to the experimental findings: in both cases the minimum of the Seebeck coefficient

shifts towards lower temperature as x increases. Unlike the cases of Ba8AgxGe46−x and

Ba8Au(Cu)xSi46−x, where DFT calculations produce quantitative agreement with experi-

ment, there are considerable discrepancies for Ba8NixSi46−x. The measured data reveal no

minimum of the Seebeck-coefficient up to 800 K for Ba8Ni3.8Si42.2, whereas DFT predicts

a minimum around 400 K.

Fig.5.27 shows the resistivity ρ(T) or Ba8NixSi46−x with x = 3.3− 3.8, using Ba8Ni4Si42
as a reference for the rigid band concept. The relaxation time τ= 1.08 × 10−14 was

chosen to fit the calculated ρ(T) of Ba8Ni3.3Si42.7 to the experimental value at 600 K.

Clearly, the calculations reproduce the experiment except for Ba8Ni3.8Si42.2. The resistiv-

ities of Ba8Ni3.3Si42.7 and Ba8Ni3.5Si42.5 grow monotonically as the temperature increase.

Ba8Ni3.8Si42.2 shows an anomalous behavior but still can be understood taking the loca-

tion of the Fermi level into account, is elaborated above. Although for Ba8NixSi46−x for
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Figure 5.27: Experimental (a) and DFT derived (b) electrical resistivities of of
Ba8NixSi46−x.

x = 4 there is no gap in the DOS, the Fermi level is located inside a minimum of the

DOS and thus a temperature dependence similar to one with an existing gap is observed.

As the Fermi level moves further away from the valley with decreasing Ni-content, the

maximum in the electrical resistivity shifts to higher temperatures.

There are several possible reasons for the discrepancies between theory and experiment.

The experimental uncertainties concerning the exact compositions are rather sizeable

(namely about ∆x ∼ 0.2), and the transport properties caused by small compositional

differences within ∆x=0.5 change significantly, as evidenced by Fig.5.26 for the Seebeck

coefficient. An important difference to the case of Ba8AgxGe46−x, for which DFT simula-

tions worked very well (also quantitatively!), consist in the atomic sizes: Both, Ag and Ge

are larger than their counterparts Ni and Si. As the total volume and the atomic distances

in Ba8NixSi46−x are smaller and the overlap between the orbitals is larger, hybridization

effects become stronger. Changes of the local environment therefore have a larger influ-

ence on the electronic structure. This also means that a rigid band approximation is less

reliable in the present case than for Ba8AgxGe46−x.

5.7 Lorenz Number and Electronic Thermal Conduc-

tivity

The electronic thermal conductivity κel is an important quantity, which affects the eval-

uation of ZT in two aspects. On one hand it determines ZT directly because it appears

in the denominator of Eq.(1.1). On the other hand, experimentally it is used to extract

thermal conductivity of phonons, κph, which enters the numerator of ZT. None of both
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thermal conductivities κel and κph is directly measured. Usually, κph is extracted by sub-

tracting κel out from the total thermal conductivity, whereas κel is estimated by using

the electrical conductivity according to the Wiedemann-Franz law [102, 121, 128], which

is actually only valid for metals.

Rewriting Eq.(3.18), one obtains

κel =
1

T
[K2 −

K2
1

K0

]. (5.7)

The second term on the right hand side is negligible for metals (see Appendix D). If this

is done, κel is just expressed by

κel =
K2

T
. (5.8)

From Eq.(B.3)- (B.7), one arrives at

K2 =
π2(kBT )

2

3
σ(µ) (5.9)

where σ(µ) is given by Eq.(B.2). By substituting Eq.(5.9) into Eq.(5.8), one obtains

κel =
K2

T
=
π2

3
(
kB
e
)2Tσ (5.10)

The is the Wiedemann-Franz law in the metallic limit that relates the electronic thermal

conductivity to the electrical conductivity via the so called Lorenz number being the ratio

κel/Tσ[40]

L =
π2

3
(
kB
e
)2 = 2.45× 10−8 WΩ/K2 (5.11)

Equation (5.11) indicates that the Lorenz number is a constant independent of charge

carrier density and temperature. More generally, the Lorenz number is defined as

κel = LTσ. (5.12)

Eq.5.12 indicates that L depends on the specific material because κel and σ are material

dependent. Indeed, calculations reveal that L can deviate from the metallic limit sig-

nificantly, in particular for lightly-doped semiconductors[129]. Since generally good TE

materials are lightly doped semiconductors, thus the constant Lorenz number may cause

severe discrepancies in the κph

It should be noted that the relaxation times of electron scatterings are required for cal-

culating σ as well as κel, to which the constant relaxation time approximation has been

applied in practical implementations. With this approximation, the relaxation time τ

disappears from the integrals Kn (Eq.(B.1)) by multiplication with 1
τ
. Thus, the Lorenz
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number can be obtained by

L =
K2

T

Tσ
=

K2

Tτ
Tσ
τ

(5.13)

where K2/(Tτ) and Tσ/τ are derived from transport calculations.
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Figure 5.28: Lorenz number vs. charge doping for Ba8Au6Ge40 at 300 K. Nega-
tive(positive) values correspond to hole(electron) dopings. N = 2 corresponds to a
doping of 2 electrons that places the Fermi level into the middle of the gap according

to the counting rule in Eq.(5.3).
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Figure 5.29: Lorenz number as a function of temperature for Ba8Au6Ge40 with doping
of 0.0 (black solid line) and 0.8 electrons (blue dashed line), respectively. 0.8 electrons
corresponds to N = 0.8 in Fig.5.28. The reason for choosing the doping of 0.8 electrons
is that the calculated Seebeck coefficient (inset) agrees well with the experiment for

Ba8Au6Ge40 within the limits of the experimental error.

Turning now to realistic calculations, Figs.5.28 and 5.29 depict the Lorenz number as a

function of charge doping (for 300K) and temperature for Ba8Au6Ge40 with a doping of

0.8 electrons, respectively. The doping by the rigid band approximation corresponds to

105



Chapter 5 Group-IV-based Clathrates

a chemical composition of Ba8Au6Ge40 within the limits of the experimental error[102].

The results indicate that the Lorenz number is charge-carrier-density- and temperature

dependent, rather than a constant. In particular, a singularity arises when the Fermi level

is in the gap, because the electrical conductivity becomes very small at low temperatures.

This implies that lightly doped semiconductors violate the Wiedemann-Franz law. When

the Fermi level is away from the gap, i.e. the system is metallic, the Lorenz number varies

around 2.45 × 10−8 WΩ/K2.
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Figure 5.30: Temperature dependencies of K2

T
and π2

3 (kB
e
)2Tσ for Ba8Au6Ge40 for

zero doping.

Fig.5.29 shows that the Lorenz number approaches the metallic limit in the low tem-

perature limit. However, it deviates from that and increases as temperature increases,

which means that the Wiedemann-Franz law is only valid in the low temperature limit.

The deviation originates from different temperature dependencies of K2

T
and Tσ as shown

in Fig.5.30. Moreover, Fig.5.29 demonstrates that the Lorenz number depends on the

materials, i.e. the specific electronic structure of each material.

Fig.5.31 shows calculated electronic thermal conductivities κel of Ba8Au6Ge40 with a

doping of 0.8 electrons, using Eq.(5.12) based on a measure electrical conductivity. The

solid black line denotes the result derived by using a constant Lorenz number L0 and

the dashed blue line a temperature-dependent Lorenz number derived from Eq.5.13. The

results indicate that at higher temperatures, the Wiedemann-Franz law with a constant

Lorenz number either underestimates or overestimates the electronic thermal conductivity

significantly. These deviations become very significant at higher temperatures, depending

on the doping.

In summary, in this section DFT calculations on the Lorenz number are performed which

in general is a material and temperature dependent quantity rather then a constant value

as it is usually derived from the metallic limit. Using the constant Lorenz number causes
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Figure 5.31: Electronic thermal conductivities κel for Ba8Au6Ge40 with a doping of
0.8 electrons. from the Wiedemann-Franz law using a constant Lorenz number L0 and

a temperature-dependent Lorenz number derived from Eq.(5.13).

severe discrepancies which become significant at higher temperatures. The results of

this Section suggest that one has to rethink the way of extracting both κel and κph from

experiment in the usual way. rather than simply using the constant Lorenz number for all

materials over all temperatures. It is prosed proposed to combine -again- experiment and

DFT theory now for the more precise evaluation of the thermal conductivity, which is very

important for a reliable estimation of the figure of merit of a thermoelectric material.
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Chapter 6

Summary and Outlook

The main goal of this work was the development and application of a first-principles

approach for modeling thermoelectric properties of materials, which are promising for

possible applications. Most of the results are directly compared to latest experimental

measurements. In fact, a number of investigations were stimulated by experimental col-

leagues, with whom papers are already published or in preparation. The way to achieve

this is to merge DFT electronic structures with the semi-classic Boltzmann transport

theory. The calculations of the electronic structure was done with VASP, by which also

the structural parameters were relaxed. For calculating the transport properties the pro-

gram package BoltzTrap was taken. This package, which is available on the net, was

substantially modified to significantly increase its feature such as varying the number of

valence electrons, calculating Fermi velocities and deriving the Lorenz number, which is

very important for thermal conductivity. This combination of the two packages provides

a consistent description of thermoelectric properties from first principles provided the

relaxation times, which may enter the expressions, are suitable chosen.

After the Introduction in chapter 2, which briefly discussed the basic mechanisms and

quantities of thermoeletrics, the theoretical and methodological foundations of the DFT

theory and calculations are presented. The electronic structure is given by the eigen-

values of the Kohn-Sham equations, which is calculated from first-principles by VASP.

Furthermore, the first-principles LCPAO tight binding scheme is introduced, which is

used for analyzing the VASP results within a simplified picture of structure and bonding.

The corresponding program package needed to be adapted for the present purpose and

is now available for all the users of the group. In chapter 3 an extensive discussion of the

formalism and numerical implementation of Boltzmann’s transport theory is made. It

is important to understand the numerical intricacies because high accuracy, i.e. a dense
~k-mesh and a sound interpolation method is needed for getting reliable numerical results.
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The next two chapter deal with the two classes of materials, which are the focus of

this thesis, namely skutterudites and clathrates. Chapter 4 is devoted to understand

nature of rattling modes and bonding in Ge-based skutterudites and the role of band

engineering in optimizing thermoelectric properties. Rattling modes are an often used

concept for estimating the possible low thermal conductivity, which is important for

increasing the figure of merit, the measure for the thermoelectric quality of a material.

Phonon dispersion and densities of states are derived by a direct method employing force

fields as calculated by highly accurate VASP calculations for filled skutterudites such

as MPt4Ge12 where M=Ba, La, and Th play the role of filler atoms, filling the large

voids of the skutterudite structure. The three types of filler atoms, namely, Ba, La and

Th, are chosen for studying the trend of information of rattling modes, because Ba and

La have very similar atomic masses but with the different valence electron numbers 2

and 3, respectively, whereas the mass of Th is much heavier, and it provides 4 valence

electrons. For the sake of analysis a simplified force constant model is then developed and

applied to investigate the roles of the interaction between filler-atoms and the skutterudite

framework, and the role of the atomic mass of the filler for the occurrence of rattling

modes. In the phonon dispersion, in some cases rattling modes are observed: Ba modes

are delocalized and therefore not rattle, whereas La modes are localized but hybridized

with framework modes. Th modes are further localized and lowered in frequency and

become separated from the framework modes. On the basis of the localized phonon modes

the specific heat of ThPt4Ge12 can be modeled empirically which adding two Einstein-like

modes to the the Debye-like phonon DOS. Investigations of thermoelectric properties of

MPt4Ge12 were started with a test of the validity of Mott’s relation and its simplified

version that relates Seebeck coefficients to the electronic density of states. Although the

Mott-based estimates are deviating from full calculations with increasing temperature,

they show reasonable consistence with the full calculations in both magnitude and sign of

the Seebeck coefficient in the low-temperature limit. Therefore, simplified Mott’s relation

is very useful for understanding the sign and magnitude of the Seebeck coefficient and

may assist in guiding the design of thermoelectric materials with enhanced thermoelectric

performance by means of a so-called band engineering. Calculations for the Ge-based

skutterudites MPt4Ge12 (M=Ba, La and Th) reveal rather low Seebeck coefficients, which

is anomalous for traditional pnictide skutterudites. Tight binding analysis indicate that

a late transition element with a still open open d-shell (such as Co,Ni,Pd,Pt) is crucial

for the appearance of gaps in the electronic density of states, which are important for

optimizing thermoelectric properties. The gap is a consequence of the p-d hybridization

between the metal and pnictide atoms. The magic number of valence electrons for placing

the Fermi energy in this hybridization gap is 24 per TPn4 unit (T: transition metal, Pn:

pnictide) as it is the case for the prototypical compound CoSb3, Combining this analysis

with simplified Mott’s relation for the Seebeck coefficient at low temperatures ”band

engineering” is employed for tuning the charge carrier concentration which is reflected by
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the electronic structure close to Fermi energy. It is found that the Seebeck coefficients

of MPt4Ge12 skutterudites can be improved by two orders of magnitude by appropriate

doping the Ge-sublattice by Sb.

In chapter 5, the comprehensive approach is applied extensively to understand and de-

scribe the experimental findings for Ba8MxPn46−x (M=Ni, Cu, Ag, Au; Pn=Ge, Si)

clathrates. For these materials, the (large) gap is already formed at Fermi energy by the

filler-free and metal-free pnictide framework, such as Ge46 (type-I clathrate) and Ge32
(type II clathrate). The same holds for the Si framework. Doping by metal atoms and

adding Ba as a filler, still maintains the gap (in most cases), but may shifts Fermi energy

according to the number of valence electrons away from the gap. Structural effects on the

band gaps of the Ge isomers are explored by a tight binding analysis. Then, based on the

occurrence of the gap at Fermi energy for the filler-free undoped clathrates and the derived

DFT electronic structures, an electron counting rule for doping the clathrate and placing

Fermi energy into the gap of the clathrates is presented. By this counting rule suitable

chemical substitutions can be invented for placing the Fermi as close as possible to the

gap. This of course, serves the purpose for,optimizing the Seebeck coefficients. Making

use of this rule and the simplified Mott’s relation, the observed sign and composition- and

temperature-dependent magnitude of Seebeck coefficient of Ba8MxGe46−x is found to be

closely related to locations of the Fermi level. The Fermi level of Ba8MxGe(Si)46−x (x <

5.33) is very close to the gap but at a higher energy. It slightly shifts toward lower energies

as temperature increases, resulting in a small decrease in the electronic density of states

at the Fermi level. This leads to a reduction in the charge carrier density, consequently

resistivity is enhanced. States below the gap will involve electronic transport above a

certain temperature due to the temperature broadening of the derivative of the Fermi

function, and consequently a decrease in the resistivity occurs. Generally it is found that

the Si-based clathrates - as investigated in this work- are less promising thermoelectric

materials concerning the Seebeck coefficients. Nevertheless there is an extensive search

for such Si-based materials because Si is much cheaper than Ge. Therefore, a variety of

Si-based clathrates are also studied in the present work.

In a final smaller section being a part of the study on clathrates, the focus is put onto

evaluation of lattice thermal conductivity, which enters the figure of merit in the denomi-

nator. Therefore, a reliable scheme for deriving these quantities is highly desirable, which

is the aim of the last part. The Lorenz number is investigated to examine the validity of

the Wiedemann-Franz law, which is used traditionally to separate thermal conductivities

of electrons (κel) and phonons (κph) based on the measured electrical conductivity. In con-

trast to the usual assumption which enter all these derivations as a constant, the Lorenz

number may depend strongly on the charge carrier density and temperature. In partic-

ular a singularity occurs when the Fermi level is in the gap. The Wiedemann-Franz law

may produce discrepancies of 25% and more at high temperatures for κph, depending also
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on the material. Therefore a better way of evaluating κph is to combining experimental

measurements and first-principles calculations, as exemplified in this work.

Despite the achievements of the approach merging first-principles methods and Boltzmann

transport theory in modeling thermoelectric materials, it still faces a number of challenges.

The major challenge, among others, is discrepancy in resistivity arising from the constant

relaxation time approximation, which was used to avoid either expensive calculations or

technique difficulties. Extending the DFT framework in order to produce parameter-free

relaxation times of electrons may be the most important in the field.

Another -rather materials based-problem consists in the proper modelling of the exper-

imental samples, which are fabricated at higher temperatures and rather rapidly colled

down. By that, metastable states are easily frozen in, which means, that it is not straight-

forward to compare the results of fully relaxed DFT calculations (strictly valid for T=0)

to the experiment. For example, substituted atoms may have several structural possi-

bilities to get accommodated and at higher temperatures the real samples might be a

(more or less) random mixture of occupations. The actual positions of the atoms have of

course some influence on the electronic structure, in particular on the electronic structure

around the gap. When doing DFT calculations one often takes the atomic configuration

with the lowest total energy, although some kind of -yet not available- thermodynamic

average might be more appropriate. Also of importance is the way how to treat small

changes in stoichiometry. DFT calculations for solids require a unit cell, which for small

variations in the stoichiometry, must be very large for a full modeling. Such an approach

is not feasible in general and usually the so-called rigid band model is applied. This model

assumes, that small variations of stoichiometry with respect to a reference system, do not

change (significantly) the electronic structure but only shifts the Fermi energy according

to the changed number of electrons. It is only required that this can be done in a certain

range around Fermi energy (in which sizeable contributions to the transport integrals

are made). Nevertheless, the rigid band model might be questionable depending on the

material involved. In the present work on clathrates it was found, that if the atomic sizes

are somewhat small (e.g. Ba8NixSi46−x) than the rigid band model is much worse than

for systems such as Ba8AgxGe46−x.

What is missing on a fundamental level all phonon-phonon and electron-phonon inter-

actions, which are important for the thermal conductivity. The phonon-only is recently

attracting quite some attention and the author of this thesis hopes, that he will get some

opportunity to work on this hot topic in the near future, provided that a project -as

submitted to the Asutrian Science foundation FWF- is granted.
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V2Boltz Manual

A.1 Files Used by V2Boltz

V2Boltz uses several input and output files:
INPUT in input parameters

STRUCT in the lattice geometry and point group elements

SYMOP in point group elements used for symmetrization

EIGENVAL in energy eigenvalues on a k-mesh

OUTPUT out general output, e.g., input data, vF , . . .

trandos in/out DOS

sigxx in/out matrix elements of σ(E)/τ (second rank tensor)

sigxxx in/out matrix elements of ν(E)/τ (third rank tensor)

engre out interpolated eigenvalues

tmp out symmetrized thermopower, i.e., Seebeck coefficient (µV/K)

elecond out symmetrized electrical resistivity (µΩcm )

condtens out electrical conductivity tensor

halltens out Hall conductivity tensor

chemipot out EF (T )

A.2 INPUT

INPUT is organized as several namelists which are :
&general input: general variables controlling the run

&band control: controlling shifting of bands

&dos control: restarting transport calculations from existing files
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A sample of INPUT:

&general input

neigen = 1,

ispin = 2,

lsorbit = .F.

eferm = 8.0628,

deltae = 0.0001,

ecut = 0.25,

nval = 96,

lpfac = 5,

tmax = 1000,

deltat = 5,

givenT = 600,

dosmethod = ”TETRA”,

seebtemp = .T.,

doping = 0.0

lsymref = .TRUE.

/

&band control

band shift = 0.0,

band ref = 0.0

/

&dos control

dos old = .F.

/

neigen (integer): Number of eigenvalue files. In the case of more than one EIGENVAL

files, they should be named as EIGENVAL i.

Default: neigen = 1

ispin (integer): ISPIN used in VASP calculations.

Default: ispin = 1

lsorbit (logical): LSORBIT used in VASP calculations.

Default: lsorbit = .F.

eferm (real): The Fermi energy (in eV) obtained from VASP eigenvalue calculations.

No Default
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deltae (real): Energy step (in Ry) for integrations of transport coefficients.

Default: deltae = 0.0005

ecut (real): Energy window (in Ry) around the Fermi level for integrations of transport

coefficients. The energy window is [eferm-ecut, eferm+ecut]

Default: ecut = 0.25

nval (integer): The total number of valence electrons of the system. It must be the same

as NELECT in OUTCAR/EIGENVAL of VASP.

No Default

lpfac (integer): A factor used for expansion of k-mesh.

Default: lpfac = 5

tmax (real): Maximum temperature (in K) used for S(T) calculations. The temperature

window for such calculations is [5, tmax].

Default: tmax = 600

deltat (real): Maximum temperature (in K) used for S(T) calculations.

Default: deltat = 1

givenT (real): The temperature for S(µ) calculations.

Default: givenT = 300

dosmethod (character): Methods for DOS calculation used by V2Boltz but not by

VASP. It is not necessary the same as that used in VASP calculations. It can be

”TETRA” and ”HISTO”.

Default: dosmethod = ”TETRA”

seebtemp (logical): Calculating S(µ) or S(T).

Default: seebtemp = .F.

doping (real): The number of charges (n/u.c.) doped to the system. Negative(positive)

means electron(hole) doping.

Default: doping = 0.0

lsymref (logical): Symmetrizing transport tensor or not.

Default: lsymref = .F.

band shift (logical): Shifting valence bands or not.

Default: band shift = .F.
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band ref (real): Magnitude of shifting. Negative(positive) means shrink(enlarge) the

gap.

Default: band ref = 0.0

dos old (logical): Restarting transport calculations using existing trandos, sigxx, sigxxx.

Default: dos old = .F.

analy dos (logical): Using parabolic bands.

Default: analy dos = .F.

A.3 SYMOP

The file SYMOP contains symmetry operations of the space group of the system, which

can be generated by adding following specifications into the main file of VASP, main.F

and main.f90.

Firstly, find

OPEN(UNIT=70,FILE=DIR APP(1:DIR LEN)//’CHG’,STATUS=’UNKNOWN’)

and add

OPEN(UNIT=175,FILE=DIR APP(1:DIR LEN)//’SYMOP’,STATUS=’UNKNOWN’)

Secondly, find

! ... so take nosymm!

CALL NOSYMM

( ... )

END IF

add

do I=1,SYMM%NROT

write(175,’(3I2,f10.5)’)ISYMOP(1,1:3,I),GTRANS(1,I)

write(175,’(3I2,f10.5)’)ISYMOP(2,1:3,I),GTRANS(2,I)

write(175,’(3I2,f10.5)’)ISYMOP(3,1:3,I),GTRANS(3,I)

write(175,’(I8)’)I

enddo

For the use of symmetrization, one need to generate SYMOP for the desired highly

symmetrical structure.
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A.4 STRUCT

To construct file STRUCT, one needs to copy the header of POSCAR (the first five

lines) into file STRUCT followed by the number of symmetry operations and symmetry

operations contained in SYMOP.

A.5 EIGENVAL

V2Boltz needs some EIGENVAL files from VASP calculations. In the case that one

just has one EIGENVAL file, i.e. neigen = 1, nothing needs to do on the EIGENVAL

file. However, very often we need a very dense k-mesh for transport coefficient calcula-

tions, which requires EIGENVAL on a very dense k-mesh. Generally one may use a

k-mesh of 25× 25× 25. However, such a dense k-mesh would make the calculations hard

to be proceeded with reasonable computer nodes and time expenses when the system is

not small. In this case, one alternatively splits the task into many small tasks so that

each involves a much less number k-points. In this way one can run eigenvalue calcu-

lations separately and each job just requires a few processes. Finally collecting all the

EIGENVAL files and naming them as EIGENVAL 1, EIGENVAL 2 ...
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Mott’s Relation and Its Simplified

Version

This appendix is to illustrate derivation of Mott’s relation, which relates the Seebeck

coefficient to the electrical conductivity tensor. Further efforts were done by the author

to relate the Seebeck coefficient to DOS and edges of band gap for guiding optimizing

TE properties of materials based on electronic structure calculations.

B.1 Mott’s Relation

The integrals Kn involves the energy derivative of the Fermi function which becomes a

delta-like peak as temperature decreases vanishing except within a few kBT of E = µ.

Kn can be written as

Kn =

∫ ∞

−∞
σ(E)(E − µ)n(−∂f

0

∂E
)dE (B.1)

where

σ(E) =
1

4π3~

∫∫

v(k)v(k)τ(k)
dS

∇kE
(B.2)

σ(E) is related to σ through Eqs.(3.16) and (B.1). A smooth function F (E) = σ(E)(E−
µ)n can be expanded by Taylor’s theorem[130],

F (E) = F (µ) + (E − µ)F ′(E) +
1

2
(E − µ)2F ′′(E) + . . . , (B.3)

and obtain from Eq.(B.1)

I = C0F (µ) + C1F
′(µ) + C2F

′′(µ) + . . . , (B.4)
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C0 = −
∫ ∞

−∞

∂f 0

∂E
dE = 1 (B.5)

C1 = −
∫ ∞

−∞
(E − µ)

∂f 0

∂E
dE = 0 (B.6)

C2 = −1

2

∫ ∞

−∞
(E − µ)2

∂f 0

∂E
dE ≃ π2

6
(kBT )

2 (B.7)

If terminating the expansion up to the second-order term, then one obtains

K1 =
π2

3
(kBT )

2[
∂σ(E)

∂E
]E=µ (B.8)

Substituting Eqs.(3.16) and (B.8) into Eq.(3.20), one obtains

S =
π2k2BT

3e
[
∂lnσ(E)

∂E
]E=µ (B.9)

Equation (B.9) is known as Mott’s relation[130].

B.2 Simplified Mott’s Relation

Nowadays accurate electronic structures (electron density of states and band structures)

of many materials can be easily derived from the state-of-art ab intio methods. On the

basis of these results one finds relations between the Seebeck coefficient and electronic

structures at qualitative and quantitative useful level comparable to the experimental

results. Of course, one has to keep in mind that only the electronic contributions to

the TE as described by a quasiparticle picture (namely the Kohn-Sham equations) are

considered. Nevertheless, such an approach via the electronic structure can be quite

useful also for the experimentalists searching for large Seebeck coefficients. Searching for

easier and simplified formulations one rewrites Eq.(B.2)

σ(E) =
1

4π3~

∫∫

v(k)v(k)τ(k)
dS

∇kE
(B.10)

DOS N(E) is given by Eq.(8.63) in Ashcroft and Mermin [131]

N(E) =
1

4π3~

∫∫

dS

∇kE
(B.11)

Similar to DOS, σ(E) can be expressed as

σ(E) = v(E)v(E)N(E)τ(E) (B.12)
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Assuming one is dealing with an isotropic system

σij(E) = σxx(E)δij (B.13a)

Sij = Sxxδij (B.13b)

i, j = x, y, z (B.13c)

thus there is only one independent element in S. Substituting Eq.(B.12) back to Eq.(B.9),

one obtains

S =
π2

3

k2BT

e
{ 1

N(E)

dN(E)

dE
+

1

v2(E)

dv2(E)

dE
+

1

τ(E)

dτ(E)

dE
}E=µ (B.14)

Assuming that v2(E)τ(E) remains constant or varies slowly close to the Fermi level and

focusing on the contribution of the DOS,

S = −π
2

3

k2BT

|e| { 1

N(E)

dN(E)

dE
}E=µ (B.15)

where the sign of charge is given by −|e|. Equation (B.15) directly links the Seebeck

coefficient to the electronic DOS. By that it is obvious that maximizing the Seebeck

coefficient requires a large slope of the DOS and a small DOS at the Fermi level. From

Eq.(B.15) one learns that weakly doped semiconductors are inherently ideal candidates

of thermoelectric materials. To optimize the thermoelectric performance of materials by

improving the Seebeck coefficient, the Fermi level of systems should be close to the gap.

In particular, a significant enhancement of Seebeck coefficient can be achieved if highly

localized states such as f states constitute the states of gap-edge where the Fermi level is

located as shown in Fig.B.1. This leads to a delta-like transport distribution, i.e., σ(E)

in Eq.(B.12), favoring a high ZT according to Mahan’s statement[98].

Equation (B.15) also shows that the sign of the Seebeck coefficient is determined by the

energy derivative of the DOS at the Fermi energy, which results in an opposite sign of

Seebeck coefficient and slope of the DOS at EF .

For most TE materials are doped semiconductors, one can relates the Seebeck coefficient

to edges of band gap. Assuming one is dealing with a n-type semiconductor

E =
k2

2m∗ + Ec (B.16a)

v2(E) = 2m∗(E − Ec) (B.16b)

Relaxation time in general is a function energy and is sometimes approximated as

τ(E) = τ0(E − Ec)
γ (B.17)
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Figure B.1: Illustration of the density of states and location of the Fermi level which
favor a high Seebeck coefficient.

where γ is an empirical parameter accounting for scattering mechanisms. [132] Equation

(B.14) then can be written as

S =
π2

3

k2BT

e
{ 1

2
√
E − Ec

+
1 + γ

E − Ec

}E=EF
(B.18)

In the approximation of constant relaxation time, Eq.(B.18) becomes

S =
π2

3

k2BT

e
{ 1

2
√
E − Ec

}E=EF
(B.19)

Both Eqs.(B.18) and (B.19) indicate that a giant Seebeck coefficient can be produced

when the Fermi level close to Ec. Therefore to maximize S the Fermi level should be close

to the edges of band gap.
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Appendix C

Atomic Displacement Parameters

In this appendix the relation between atomic displacement parameters (ADPs) and PH-

DOS is derived. In the isotropic case, ADPs is given by

Uiso(T ) =
1

3
< u2

l (T ) >=
1

3

3
∑

α=1

< u2
lα(T ) > (C.1)

where < u2
l (T ) > is the mean square displacement amplitude. Our goal is to derive a

formula for < u2
l (T ) >. The displacement ul is expressed in terms of normal coordinates,

which in one-dimensional case is

ul =
1√
NMl

∑

q,σ

Qq,σeq,σe
iq·Rl (C.2)

where Qq,σ is the normal coordinate at wave vector q with polarization σ. Since the ul

must be real, we have

e∗q,σQ
∗
q,σ = e−q,σQ−q,σ (C.3)

We satisfy this by the requirements

e∗q,σ = e−q,σ (C.4a)

Q∗
q,σ = Q−q,σ (C.4b)
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Using Eq.(C.2)

∑

l

Mlu
2
l =

∑

l

Mlul · ul

=
1

N

∑

l

∑

q,σ

∑

q′,σ′

(Qq,σQq′,σ′)(eq,σ · eq′,σ′)ei(q+q′)·Rl

=
∑

q,σ

∑

σ′

(Qq,σQ−q,σ′)(eq,σ · e−q,σ′)

=
∑

q,σ

Q∗
q,σQ−q,σ

(C.5)

where we have used
1

N

∑

l

ei(q+q′)·Rl = δq,−q (C.6)

Eq.(C.4) and
∑

σ,σ′

e∗q,σeq,σ′ = δσ,σ′ (C.7)

The Qq,σ has the form

Qq,σ =

√

~

2ωq,σ

(aq,σ + a+−q,σ) (C.8)

Substituting Eq.(C.8) into Eq.(C.5), we have

∑

l

Mlu
2
l =

∑

q,σ

~

2ωq,σ

(aq,σ + a+−q,σ)(a
+
q,σ + a−q,σ) (C.9)

The mean value of
∑

lMlu
2
l is given by

<
∑

l

Mlu
2
l > =

∑

q,σ

~

2ωq,σ

(< a+q,σaq,σ > + < a−q,σa
+
−q,σ >)

=
∑

q,σ

~

2ωq,σ

(2 < a+q,σaq,σ > +1)

=
∑

q,σ

~

2ωq,σ

(2n(ωq,σ) + 1)

(C.10)

where n is the Bose-Einstein function,

n(ω) =
1

e
~ω

kBT − 1
(C.11)
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Projecting Eq.(C.10) into ω representation and using the definition of phonon DOS

g(ω) =
∑

q,σ

δ(ω − ωq,σ) =
∑

l

gl(ω) (C.12)

where gl is the partial phonon DOS of lth atom, we have

<
∑

l

Mlu
2
l >=

∑

l

~

2

∫

gl(ω)

ω
coth(

~ω

2kBT
) (C.13)

And finally for < u2
l > we obtain

< u2
l >=

~

2Ml

∫

gl(ω)

ω
coth(

~ω

2kBT
) (C.14)

For three-dimensional case, we have

< u2
l >=

3~

2Ml

∫

gl(ω)

ω
coth(

~ω

2kBT
) (C.15)

Substituting Eq.(C.15) into Eq.(C.1), we have

Uiso(T ) =
~

2Ml

∫

gl(ω)

ω
coth(

~ω

2kBT
) (C.16)
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Appendix D

An Approximation to The Electronic

Thermal Conductivity

This appendix provide the proof that the second term in the electronic thermal conduc-

tivity (Eq.(3.18) or (5.7)) is negligible in the metallic limit. Rewriting Eq.(3.18) gives

κel =
1

T
[K2 −

K2
1

K0

] (D.1)

In the low temperature limit K1 and K2 are approximated as Eqs.(B.8) and (5.9) by the

expansions Eqs.(B.3) and (B.7), respectively. Rewriting them, one has

K1 =
π2(kBT )

2

3
[
∂σ(E)

∂E
]E=µ (D.2)

and

K2 =
π2(kBT )

2

3
σ(µ) (D.3)

where σ(E) is given by Eq.(B.2), which in energy representation is given by Eq.(B.12).

µ is the chemical potential. Rewriting it

σ(E) =
1

4π3~
v2(E)N(E)τ(E) (D.4)

According to Eqs.(D.3) and (D.4) K2 is nonzero at finite temperature unless the system

is an insulator.

Now taking a look at the contribution of the second term relative to that of the first one

in Eq.(D.1). Thus the ration of K2
1/K0 to K2 is

K2
1

K0K2

=
π2(kBT )

2

3
[
∂σ(E)

σ(E)
]2|E=µ (D.5)
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Appendix D An Approximation to Electronic Thermal Conductivity

In the low temperature limit τ(E) = τ0E
− 1

2 , together with assumption that we are dealing

with parabolic bands,

σ(E) ∼ E (D.6)

Consequently, Eq.(D.5) can be written as

K2
1

K0K2

=
π2(kBT )

2

3
[
1

µ
]2 (D.7)

kB is 8.62 × 10−5 eV/K. For general metals µ has a value of a few eV, thus the ratio is in

the order of about 10−10 in the low temperature limit, which means K2
1/K0 is negligible

as compared to K2.
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