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Summary

The coherent manipulation of atomic states is both a fascinating playground for fundamental
atomic physics as well as a gate to a completely new key technology in quantum sciences
with good prospects. Photons are perfectly suited carriers for the long distance distribu-
tion of quantum information [1, 2, 3, 4]. However, photon-photon interactions are naturally
extremely weak [5], which renders information processing and storage practically infeasi-
ble without further ado. By coherent atomic manipulation effective interactions between
photons can be introduced. Specifically, the coherent effect of electromagnetically induced
transparency (EIT) provides a way toward nonlinear optics at the few-photon levels [6] and
thereby may possess manifold applications from the realization of photon processing quantum
gates to well-directed photonic quantum information storage and revival [7].
This thesis was performed around an experiment aiming at the investigation of the optical
properties of approximately 2·103 laser cooled Cesium atoms dipole trapped in the evanescent
field of an optical nanofiber [8, 9]. By driving a Λ scheme in Cesium (Cs) under the influence
of a control laser tuned to the 62S1/2 F = 3 to 62P3/2 F ′ = 4 transition, a coherently
applied few photon probe signal on the 62S1/2F = 4 to 62P3/2F

′ = 4 transition is expected
to be subject to a suppression of absorption, while experiencing a steep positive slope of the
refractive index. While EIT has already been successfully demonstrated in atomic vapor cells
up to room temperature and above, in dipole trapped Alkali atoms [10], in metamaterials
[11], in optomechanical systems [12] and even solid state systems [13, 14], the great advantage
of the setup in the Rauschenbeutel group lies in the fact, that the Cs atoms are intrinsically
fiber-coupled and mode-matched to the optical nanofiber. That way, this particular system
is perfectly compatible with modern optical fiber based communication technology.
This Master thesis covers two parts of the total experiment. The focus of the first part
is the beam preparation of the EIT control and probe lasers which ensures a phase stable
joint performance of both beams necessary for the implementation of EIT. This is achieved
by an optical phase-locked loop (OPLL) locking the probe to the control laser. The latter
is frequency stabilized to the respective Cs transition via a polarization spectroscopy. The
performance of this OPLL which was developed in [15] is examined with an out-of-loop phase
noise measurement. The performed experimental investigations prove that the residual phase
noise between control and probe laser is reasonably small so that the laser system is now ready
for the investigation of EIT-related phenomena in Cs atoms trapped around the nanofiber.
The second part of this thesis concerns the efficient detection of the prospective few-photon
EIT probe signal, which will be immersed in a broadband noise background. The noise
originates from the fluorescence induced by one of the Cs trapping laser field in the nanofiber
substrate. While the weak EIT probe signal (≤ pW power) is expected to be extremely
narrow-band (Hz to kHz) the disturbing fluorescence signal has a power of approximately
5 pW within a wavelength window of 10 nm around the probe wavelength. Conventional
optical filters fail in efficiently separating the signal from the fluorescence. Thus, in this
second part two strategies are elaborated both theoretically and experimentally aiming at
a reasonable solution for narrow-band few-photon filtering. One rather elementary attempt
is employing a diffraction grating and taking advantage of the frequency selectiveness of
diffraction. A slightly more elaborate technique involves the homodyne detection principle
exploiting its high phase and amplitude sensitivity, respectively. Both options are considered
and weighted up on the basis of their achievable contribution to the improvement of the signal-
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to-noise ratio of the probe signal. Experimental proposals for narrow-band filters based on
both options are made. These theoretical considerations are concluded by an experimental
realization and analysis of a compact test setup — a homodyne saturation spectroscopy —
for the purpose of testing the power of homodyne detection.
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1. Introduction and Motivation

Ever since the birth of quantum theory at the beginning of the 20th century the utter contrast
of quantum phenomena and the classical world has intrigued many of the great minds of those
days. The discovery of such genuine quantum features as the superposition principle [16],
entanglement [17, 18, 19], quantum randomness [20, 21] and the impact of a measurement [22,
23] etc. not only opened the door toward fundamental new physics, but furthermore spanned
a whole new world of unique possibilities for applications. While the gross formulation of
quantum theory took about 30 years, actual applications based on quantum theory only
slowly developed during the subsequent decades. Certainly, the invention of the laser in the
sixties [24, 25] was one product of quantum theory, which has had a tremendous impact in
scientific research, technology and even medicine ever after. Even more, one cannot imagine
today’s world without the latest advances in semiconductor and nanotechnology etc., all of
which are based on quantum theory to some extent. Nonetheless, these examples seem to be
just a slight hint of what is still to be realized in the near and far future.

Modern quantum optics and atomic physics experiments provide wonderful opportunities for
the investigation of the interactions between matter and light. They do so with such incredibly
high accuracy and precision, not even the founding fathers of quantum mechanics were keen
enough to envision. Nevertheless, still much theoretical and experimental effort has to be
spend until the fruits of dozens of promising proposals can be harvested, enabling massive
parallel and distributed quantum computing and intrinsically secure quantum communication
networks. These technologies will lead to a huge technological upheaval with big impacts on
many branches of science and industry just like the invention of the computer once did.

1.1. A call for quantum memories

Quantum networks open a path toward fascinating new technologies like intrinsically se-
cure communication via quantum cryptographic protocols [26, 27] or distributed quantum
computing [28, 29] by implementing entanglement swapping [30, 31] and teleportation of
quantum states [30, 32]. Photonic qubits appear most suited for the long-distance distribu-
tion of quantum states in such networks. Controlled manipulation and processing of quantum
information on the contrary requires additional effort, as photons couple to each other in-
significantly [5]. One solution allowing for the processing of photonic quantum information
in a purely optical fashion is based on one-way cluster-state quantum computation protocols
[33, 34]. Here, projective measurements lead to an effective nonlinearity. Against initial
allegations it was proven theoretically that linear optics quantum computation (LOQC) is
possible [35]. Experimental LOQC implementations [36, 37] still leak that feature, though,
and thus its integration into distributed networks remains doubtful. But most importantly
in LOQC, storage of those flying qubits is the major, still unresolved problem.

In order to achieve both strong photon-photon coupling and qubit storage devices one has
to rely on the assistance of ancillary atoms, performing local operations on the qubits. In
quantum networks, the generation, processing, storage of qubits is performed locally at the
nodes. These nodes are linked by quantum channels, which transport quantum states from
site to site distributing entanglement across the entire network. Hence, there is a strong need
for what one may call a ‘quantum interface’ moderating between these photonic qubits on
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1.2 Quantum memories as crucial elements for quantum repeaters

Figure 1.1.: Quantum memory based on the DLCZ-protocol (reprint from [42])

the one hand and those atomic processing and storage units on the other [38]. This interface
needs to possess perfectly coherent performance in that the fragile quantum state persists
over mapping it from one physical representation to the other and vice versa. Additionally,
this mapping process needs to exhibit an on demand performance.

The need for reliable long time storage arises especially in the context of distributed quantum
networks. Although entangled states represent an essential resource for operations in quan-
tum networks, their generation and distribution over long distances poses one of the biggest
challenges for an implementation of quantum communication protocols. This is mainly due
to exponential losses of the degree of entanglement scaling with the distribution length. In
practice, optical fibers allow for entanglement distribution on the scale of only l ≈ 100 km.
Furthermore, this entanglement loss cannot be fully compensated for based on genuine pu-
rification schemes [32, 39].

Notwithstanding, quantum memories would also contribute valuably to the search for a de-
terministic single-photon source [40, 41]. In fact, a quantum memory could transform a
heralded single-photon source into a single-photon source operating on-demand and hence
solve another big challenge in today’s quantum technology.

1.2. Quantum memories as crucial elements for quantum repeaters

In a seminal paper by Briegel et al. in 1998 [39], the concept of the quantum repeater was
introduced. This device is based on a cascaded entanglement-purification protocol in which
the required overhead in communication time increases with distance only polynomially, while
the number of ancillary qubits depends logarithmically on the distance. The distinguished
paper by Duan, Lukin, Cirac and Zoller in 2001 furthermore illuminated in-depth how the
single steps in a quantum repeater sequence can be performed on the physical basis of linear
optics and atomic ensembles (DLCZ-protocol) [2]. Here, entanglement is generated by probing
a Raman transition in a Λ-type level scheme in an atomic ensemble and collecting the forward-
scattered Stokes photon which is entangled with the collective excitation among the atomic
ensemble (see fig. 1.1a)). If two such Stokes photons from atomic ensembles of two neighboring
nodes are subject to a joint Bell measurement, an entanglement between the two nodes is
introduced. In a probabilistic fashion a pairwise entanglement generation between all nodes
lying in the intermediate range between A and B is performed. Finally, entanglement between
A and B can be realized by piecewise entanglement swapping among each segment of the
quantum channel.

Though the DLCZ-protocol solves the fundamental problem, this scheme relies on an array
of quantum memory devices as one essential requisite during the cascaded entanglement-
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purification procedures. For the generation of entanglement between distant qubits one has
to store qubits sufficiently long until — according to the DLCZ-protocol — all required joint
Bell measurements between the segments in the channel have been performed and the qubits’
entanglement has been proven, respectively. As all purification schemes are of probabilistic
nature one afterwards has to maintain only those qubits in the chain for usage for which the
qubits’ entanglement could be generated and repeat the protocol for those segments were it
failed. This way the necessity for a quantum memory with a preferably long storage time
arises, since clearly the entanglement distribution range critically depends on the memory’s
storage time.

Since the proposal of the quantum repeater in [39] there is the challenge to conceptualize a
system, that can store a photon state and release exactly the same state after a desirable
time. Spin states of atoms are known to be reliable, long-lived representatives of quantum
states. One interesting attempt to complete the job is therefore to map a photon state to
a long-lived spin state and vice versa in a coherent fashion. Mapping the photon state to a
collective excitation in an atomic ensemble instead of mapping it to a single atom turns out
to be more promising [2, 43].

The DLCZ-protocol suggests a realization of quantum memory in a way, closely related
to photon storage via electromagnetically induced transparency (EIT) [44, 43, 7]. EIT is
a nonlinear optical phenomenon generically seen in atomic systems with a three-level Λ-
scheme (lambda)1. Fundamentally, it is a phenomenon induced by an interference of different
optical transition paths. While one transition is strongly driven by a control laser beam of
high intensity, another weak (at the single to few photon level) probe beam — set on the
opposing transition — experiences a characteristic transparency of the medium traversed,
i.e. a suppression of absorption. At the same time, the probe undergoes an especially
steep variation of the refractive index giving rise to extraordinary small group velocities of
the probe pulse [48]. This is even possible down to a complete stop and retrieval using
metastable dark-state polaritons as memory resource [49, 38]. Interestingly, in the optimized
EIT-based quantum memory scheme the optical depth αL (i.e. the product of the absorbtion
coefficient α and the length of the EIT medium L) is the only parameter that defines the
storage efficiency [50].

Even though the DLCZ-protocol based quantum memory also uses the spin wave concept as
storage resource, the collective atomic excitation is not generated by an incident single probe
photon, but rather by the ensemble interacting with a classical write field, sent in on one
transition of the Λ-scheme. The generation of the atomic excitation is heralded by an idler
photon, emitted on the other transition of the Λ-scheme (see fig. 1.1 a). After the desired
storage time, the excitation can be retrieved by the application of a classical read field in the
reverse direction of the original write field so that a signal photon exits the medium on the
other side (see fig. 1.1b).

In contrast to the EIT-based photon storage the DLCZ-scheme quantum memory does not
directly support single-photon storage in a “plug and play” fashion. However, by exploiting
quantum teleportation an equivalent ‘black box quantum memory’ device can be obtained
[51].

1Principally, ‘transparency effects’ can also be observed in three-level V -schemes (vee) and Ξ-schemes (lad-
der). Contrary to the former common perception, recent theoretical investigations [45, 46] claim that
actual EIT only appears in Λ-schemes and upper-level driven Ξ-schemes. In contrast, the similar looking,
but distinct transparency effects observed in V -schemes and lower-level driven Ξ-schemes were determined
to be solely due to Autler-Townes splitting [47].
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1.4 Aim of the work performed in this thesis

1.3. Toward the realization of quantum memories

The first systematic experimental investigations of EIT were performed in cold atomic en-
sembles [52]. A big breakthrough was achieved in 1999 when this effect could experimentally
be demonstrated to slow down the group velocity of light pulses to the value of 17 m/s [48].
Actual storage and successive retrieval of photons was accomplished in 2001 both in cold Na
[53] and in hot Rb ensembles [54]. On the search for more convenient and scalable physical
systems over the following years, EIT phenomena were observed in diverse many-body sys-
tems, e.g. in metamaterials [11] and optomechanical systems [12]. While most EIT attempts
are based on the mapping of photon states onto collective excitations of an atomic ensemble,
only recently a single-atom based quantum memory could be demonstrated in a cavity sys-
tem [55]. Finally, quantum memory experiments were successfully carried out in solid-state
systems [13, 14]. While these last achievements represent important steps on the way toward
the actual realization of quantum networks, the efficient coupling between photon channels
and matter nodes still turn out to be problematic.

In this respect, the attempt perused in the Rauschenbeutel group could prove to be an ap-
propriate solution. The advantage of this system lies in its intrinsic compatibility to the state
of the art fiber based information technology. Here, the EIT is proposed to be conducted in
cold Cs atoms dipole trapped within the evanescent field of an optical nanofiber [8]. While
the special geometry of the optical fiber dipole trap confines the atoms in a 1d optical lat-
tice beaded along the nanofiber in a ∼ 200 nm distance to the fiber surface the nanofiber
light mode experiences a strong overlap with the Cs interaction cross section. From this
perspective, this system is a promising candidate for a plug-and-play fiber coupled quantum
memory.

1.4. Aim of the work performed in this thesis

On the route to the realization of an intrinsically fiber coupled quantum memory, many exper-
imental challenges are to be solved. This thesis focuses on two parts of the total experiment.
The first part of the thesis focuses on the laser beam preparation of both the EIT control
and probe lasers. Since EIT relies on the coherent application of two light fields to an atomic
system it is of crucial importance to ensure a phase stable performance of the control and
probe laser. Within the context of this thesis, an optical phase-locked loop (OPLL) stabiliz-
ing the probe laser to the control laser had to be partly rebuilt and completely readjusted
after the group’s move from Mainz to Vienna in November 2010. Before, this OPLL was
designed, built up and first characterized in the context of a Diplom thesis in 2010 [15]. After
its reconstruction the quality of the OPLL performance had to be inspected. The quality
check presented in this thesis was for the first time conducted by means of an out-of-loop
measurement, i.e. an analysis of the beat signal outside of the actual phase control loop.
This out-of-loop measurement is inherently more objective than an in-loop measurement,
which is received observing the error signal of the phase controller. An additional, paral-
lelly conducted in-loop measurement should enable a direct comparison between the in and
out-of-loop detected signal. In order not to affect the original OPLL performance by these
additional measurement setups, the latter have to access the OPLL in a minimally invasive
fashion.

The second part of this thesis deals with investigations on the detection of the prospective few-
photon probe field which is experiencing the transparency. In the Rauschenbeutel experiment,
the EIT probe signal detection is hampered due to broad-band fluorescence light which is
induced by one of the Cs trap laser field in the nanofiber substrate. A significant part of
this fluorescence co-propagates spatially mode-matched with the EIT probe signal. Within
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a wavelength window of ±5 nm around the EIT resonance on the Cs D2 line at ∼ 852.3 nm,
both fluorescence and EIT signal have a power in the same order of magnitude (some pW).
As a sufficient suppression of the fluorescence light is not realizable by means of optical filters
in this regime in this thesis two possible options toward the realization of a narrow-band
few to single photon filter were investigated theoretically. The first, experimentally rather
easy option relies on exploiting the wavelength-dependent diffraction by a diffraction grating
and subsequent spatial filtering. The second, experimentally more challenging option would
be a filter based on heterodyne/homodyne detection. Here, either the frequency conversion
through optical mixing and a successive narrow-band electronic filtering or the sensitive
detection of the coherence properties of the signal can be employed for the purpose of a
narrow-band signal detection. Both ways are theoretically investigated. For the experimental
investigation of the homodyne detection principle a, homodyne saturation spectroscopy test
setup is realized rounding off the theoretical investigations.
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Part I.

Theory
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2. Theory of Atom-Photon Interaction

2.1. Introduction to the physical basis of slow and fast light

This chapter gives an introduction to the theoretical background of the prospective EIT
experiment, which is planned to be performed in the Rauschenbeutel group. After an intro-
duction to the concepts of fast and slow light, the classical understanding of the dielectric
susceptibility is established as the underlying concept behind the refractive index and ab-
sorption in dielectric media. On this basic understanding, the microscopic foundation of the
dielectric susceptibility, i.e. the interaction of light with a two-level system is explored. In
a subsequent discussion, an extension to a three-level system is performed, giving rise to
coherent atomic features like EIT.

2.1.1. The velocity of light in media

The speed at which the wavefronts of a monochromatic beam of light with frequency ω move
through a material is given as the phase velocity

vph(ω) =
ω

k
=
c

n
, (2.1)

with the norm of the wave vector k = |~k| and the refractive index n. A realistic light wave,
however, has a finite pulse duration, i.e. it is a finite wave train and therefore necessarily has
a finite spectral width. Composed of an infinite number of monochromatic wave components
with varying weights A(k), the shape and location of the envelope of a wave packet

u(x, t) =
1√
2π

∫ +∞

−∞
A(k)ei(kx−ω(k)t)dk (2.2)

is determined by constructive and destructive interference among the wave’s components.
When the pulse propagates through a material system, each mode travels at a specific vph(ω)
in accordance with the wavelength dependance of the refractive index n(ω). This results in a
shift of the regions of constructive and destructive interference, if compared to propagation in
vacuum, and eventually leads to pulse distortion. In the case of sufficiently short propagation
distances however, the effect of pulse distortion can be considered to be small [56, 57]. Then
the propagation velocity of the pulse with the central frequency ωg0 is described by the group
velocity

vg(ωg0) =
dω

dk

∣∣∣∣
ω=ωg0

=
c

ng
=

c

n(ωg0) + ω dn(ω)
dω

∣∣∣
ω=ωg0

(2.3)

with the group refractive index

ng(ωg0) = n(ωg0) + ω
dn

dω

∣∣∣∣
ω=ωg0

. (2.4)

In the vast majority of situations, the group velocity is most closely related to the signal
velocity of information. Conventionally, the labeling ‘slow’ and ‘fast’ light refer to the group
velocity of a light wave. In these terms, slow light corresponds to the regime with vg � c,
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2.2 Classical approach to the dielectric susceptibility as the origin of the refractive index

whereas fast light denotes the regime with vg � c. Furthermore, in very special cases, a
negative index of refraction can be realized, which gives rise to so called backwards light with
vg < 0 [58, 59]. For these extreme cases, were vg approximates or exceeds the vacuum light
velocity and for negative vg, the equivalence between the group velocity and the velocity
of information brakes [60, 61, 62, 57, 63]. Extreme values of the group velocity, far off the
velocity of light in vacuum are mainly due to the contribution of the second term in eq. (2.4),
i.e. the dispersive response of the material, which results from the frequency dependence of
the refractive index. It is for this reason that extreme values of the group velocity are usually
associated with the resonant or near-resonant response of material systems.

2.2. Classical approach to the dielectric susceptibility as the origin
of the refractive index

In order to investigate the frequency dependence of the refractive index, the origin of the
refractive index in matter has to be explored. The physical basis for the refractive index of a
material lies in the dielectric polarizability αe of its constituents. The polarizability, normally
expressed by the dielectric susceptibility χ̃ = αe/ε0 can be seen as the mediating prefactor
between the incident electric field ~E and the polarization ~P , representing the response of the
material to the applied electric field. The first order susceptibility

~P = Nαe ~E = Nε0χ̃ ~E (2.5)

epitomizes the linear response of the medium. Here, N stands for the number of oscillators
per unite volume. The dielectric susceptibility likewise represents the dielectric polarizability
of any material and generally is a complex quantity

χ̃ = χ′ + iχ′′ . (2.6)

The characteristic form of the susceptibility of conductors differs dramatically from that one
of dielectric materials [64]. This distinct deviation is due to an additional term in Maxwell’s
equations for conductors, which accounts for the displacement current. In this treatment,
however, the susceptibility of dielectrics is to be considered only. Indeed, gaseous ensembles
of few metal atoms can be treated as genuine dielectrics as their conductive properties emerge
only in bulk.

Lorentz model of the classical dielectric susceptibility

By definition, a dielectric is an electrical insulator. While the term “insulator” refers to a low
degree of electrical conduction, the term “dielectric” is typically used to describe materials
with a high polarizability (expressed through the dielectric constant). By the application of an
external electric field to a dielectric, the negatively charged electrons and oppositely charged
nuclei are spatially displaced and a dipole moment is generated. (To simplify matters media
with polar molecules are neglected here.) Practically, the nuclei can be considered quasi-
static and much heavier than the electrons. The susceptibility is then determined by the
characteristic motion of electrons forced by and as a response to the external electric field
~E(t). The according equation of motion of the electrons — denoted as the Lorentz oscillator
model — reads [64]

me~̈x+meΓ~̇x+meω
2
0~x = −e ~E(t) , (2.7)

with a mass dependent acceleration term, a phenomenological damping constant Γ in the
velocity term and a restoring force term determined by the resonance frequency ω0. For an
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Figure 2.1.: a) Dielectric susceptibility χ′ (blue) and χ′′ (red) and b) Dielectric refractive index n (purple)
and absorption κ (orange)

oscillating electric field ~E(t) = ~E(ω)eiωt the stationary solution for the equation of motion
(2.7) is

~x(ω) =
−e
me

1

(ω2
0 − ω2) + iωΓ

~E(ω) . (2.8)

The polarization ~P (ω) results as the response of the material to an external electric field
~E(ω), which couples to the dipoles ~d = e~x in the material:

~P (ω) =
Ne2

me

1

(ω2
0 − ω2) + iωΓ

~E(ω) . (2.9)

The proportionality factor between the incident electric field and the material response con-
tains the dielectric susceptibility

χ̃(ω) =
Ne2

ε0me

1

(ω2
0 − ω2) + iωΓ

(2.10)

with the real and imaginary parts

χ′(ω) = +
Ne2

ε0me

(ω2
0 − ω2)

(ω2
0 − ω2)2 + ω2Γ2

(2.11)

χ′′(ω) = − Ne
2

ε0me

ωΓ

(ω2
0 − ω2)2 + ω2Γ2

. (2.12)

In fig. 2.1 both χ′ (blue) and |χ′′| (red) are displayed on a characteristically normalized fre-
quency axis ω/ω0. The obvious asymmetry of χ′ regarding ω0 is due to a distinct oscillatory
behavior in the different frequency regimes. While for ω � ω0 light cannot excite the os-
cillator, far red detuned beams ω � ω0 manage to couple to the oscillators to some extent,
giving evidence of the finite static polarizability P (ω = 0) = Ne2

me
.

From the dielectric susceptibility two very fundamental properties characterizing the propaga-
tion of electromagnetic waves in a medium can be extracted: these are the index of refraction
n and the extinction coefficient κ, which is closely related to the absorption coefficient α. It
is convenient to introduce the complex index of refraction [64]

ñ = n− iκ =
√

1 + χ̃ =
√
ε′ + iε′′ (2.13)

with the complex permittivity
ε̃ = 1 + χ̃ = ε′ + iε′′ . (2.14)

The real part of the complex refractive index n indicates the phase velocity (i.e. the propa-
gation velocity of a monochromatic wave) while κ represents the amount of absorption when
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2.3 Controlling light with atoms

the electromagnetic wave propagates through the material. Both n and κ are dependent on
frequency and follow as

n(ω) =

√
1

2

(√
ε′2 + ε′′2 + ε′

)
(2.15)

κ(ω) =

√
1

2

(√
ε′2 + ε′′2 − ε′

)
. (2.16)

In the practically frequent case where n and κ are both small, their relations to ε′ and ε′′

reduce to

n(ω)
κ�1−→

√
ε′ (2.17)

κ(ω)
n'1−→ − ε

′′

2n
. (2.18)

Taking this into account, in the literature oftentimes χ′ and χ′′ are denominated as refractive
index and extinction coefficient themselves, respectively.

By inserting the z-component of complex wave vector k̃ = ñω/c into the electromagnetic
wave, the meaning of its real and complex component are visualized

~E(z, t) = ~E0e
i(k̃z−ωt) = ~E0e

i(nzω/c−ωt)e−κzω/c . (2.19)

The refractive index acts as a wave retarder and the extinction coefficient as an exponential
damping to the wave amplitude. The absorption coefficient

α = 2κk0 =
2κω

c
(2.20)

then defines a penetration depth l after which the wave intensity [64]

I(x) = I(0)e−αx (2.21)

has been reduced to 1/e of its original value.

2.3. Controlling light with atoms

In the previous sections, the first-order susceptibility was introduced as the response of a
medium to the coupling of a continuous electromagnetic wave to the materials dipolar oscil-
lators. In this section, it is shown how the dispersive properties of an atomic system can be
modified by optical manipulation of the atomic system. The coherent optical preparation of
atomic ensembles brings about new interesting effects, e.g. the non-linear optical effects of
electromagnetically induced transparency.

2.3.1. Rabi oscillations in two-level systems

In the simple case of a two level system (e.g. represented by to atomic energy levels |g〉 and
|e〉 see fig. 2.2a)) driven on its resonance at ω0 by a monochromatic laser beam with frequency
ω the coherent evolution gives rise to an oscillatory population transfer between both levels.
Here, we want to give a short overview of the Rabi model [65, 66] which beautifully describes
this population oscillation. Starting with the time dependent Hamiltonian of the joint atom-
field system

H(t) = H0 +Hint(t) , (2.22)
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2.3.1 Rabi oscillations in two-level systems

Figure 2.2.: a) Scheme of a two-level system (ω0: resonance frequency, ω: laser frequency, ∆ = ω0 − ω:
detuning from resonance) and b) Rabi oscillations of the excited state population for different
ratios ∆/Ω0 = 0.0 (blue curve), ∆/Ω0 = 0.5 (green curve) ∆/Ω0 = 1.0 (red curve).

consisting of the time independent free atom Hamiltonian

H0 =
1

2
~ω0

(
|e〉〈e| − |g〉〈g|

)
(2.23)

and the time-dependent interaction Hamiltonian of the atom plus light field

Hint(t) = −~d · ~E0 cosωt , (2.24)

where ~d is the dipole moment operator of the atom and ~E0 the electric field amplitude.
Solving the time-dependent Schrödinger equation

i~
∂|ψ(t)〉
∂t

= H(t)|ψ(t)〉 (2.25)

with the ansatz

|ψ(t)〉 = cg(t)e
−iωgt|g〉+ ce(t)e

−iωet|e〉 (2.26)

where the coefficients cg(t) and ce(t) are time dependent and ω0 = ωe − ωg, results in a
coupled set of equations describing the population of both levels:

ċg =
i

~
〈g|~d · ~E0|e〉 cosωt e−iω0tce , (2.27)

ċe =
i

~
〈e|~d · ~E0|g〉 cosωt e+iω0tcg . (2.28)

According to the rotating wave approximation (RWA) the fast oscillating terms in the expo-
nential expansion of the cosine in eqns. (2.27) and (2.28) can be neglected so that

ċg =
i

2~
〈g|~d · ~E0|e〉e+i(ω−ω0)tce (2.29)

ċe =
i

2~
〈e|~d · ~E0|g〉e−i(ω−ω0)tcg . (2.30)

For the sake of simplicity and without loss of generality the ground state can be assumed
to be fully occupied cg(0) = 1 and ce(0) = 0 at time t = 0. By eliminating ce the following
differential equation is obtained:

c̈g − i(ω − ω0)ċg +
〈(~d · ~E0)2〉

4~2
cg = 0 . (2.31)
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2.3 Controlling light with atoms

Figure 2.3.: Scheme of a three-level system. The applied fields and their detunings from the resonances
are denominated.

The Rabi frequency Ω0 is defined via Ω2
0 = 〈(~d · ~E0)2〉/~2.

By solving eq. (2.31) one gets the solutions for the rates as follows:

ce(t) = e−i∆t/2
i

~ΩR
〈e|~d · ~E0|g〉 sin(ΩRt/2) (2.32)

cg(t) = e−i∆t/2
(

cos(ΩRt/2) + i
∆

ΩR
sin(ΩRt/2)

)
. (2.33)

with the generalized Rabi frequency

ΩR =
√

∆2 + Ω2
0 (2.34)

and ∆ = ω0 − ω. For an increase of the detuning ∆ from resonance the Rabi oscillations get
faster and become smaller in amplitude (i.e. for ∆ 6= 0 the oscillations do not go all the way
up to the purely excited state). The probability that the population is in state |e〉 at time t
is given by

Pe(t) = |ce(t)|2 =
Ω2

0

Ω2
R

sin2(ΩRt/2) (2.35)

as one may immediately verify by eq. (2.32). An illustration of the time dependence of Pe(t)
for different values of the detuning ∆ is shown in fig. 2.2b).
Note, that these expressions were derived in a semiclassical picture. In eq. (2.24) the elec-
tromagnetic field was assumed to be sufficiently strong to operate in the classical regime.
For the case of very low photon numbers, however, a full quantum mechanical calculation is
necessary [66]. Taking field quantization into account basically results in a photon number
dependent quantum Rabi frequency ΩR(n) [67].
Note, that spontaneous emission has not been taken into account so far. Each spontaneous
emission event will eventually lead to a disruption of the respective Rabi cycle and enforce
an instantaneous “reset” of the atom to the ground state, followed by the start of a new
Rabi cycle. Thus, spontaneous emission will introduce a dephasing of the collective Rabi
oscillations in an atomic ensemble (decoherence).

2.3.2. Coherent optical manipulation of three-level systems and EIT

Expanding the two-level Rabi model to a coherently driven three-level system introduces a
new stage of complexity with two additional degrees of freedom. Now — as depicted in fig. 2.3
— there are two driving fields independently tunable in intensity and frequency detuning from
resonance. The coherent manipulation of this three-level scheme gives rise to a wide range of
new phenomena such as Autler-Townes splitting [47], coherent population trapping (CPT)
[68, 69, 70], stimulated Raman adiabatic passage (STIRAP) [71, 72], lasing without inversion
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2.3.2 Coherent optical manipulation of three-level systems and EIT

(LWI) [73, 74, 75] and electromagnetically induced transparency (EIT) [44, 43, 7], all of which
are different manifestations of the same physical concept and closely related to each other.
The prominent Λ-type three-level system depicted in fig. 2.3 shows the two lower states |1〉
and |2〉 which are supposed to be long-lived and represent a dipole forbidden transition.
These states are coupled to the meta-stable upper state |3〉 via two electromagnetic fields,
the control field ωc and the probe field ωp with a detuning ∆1 and ∆2 to the resonances at
ω31 = ω3 − ω1 and ω32 = ω3 − ω2. For generic EIT, the fields ωp and ωc are applied resonant
to the respective transitions, while for Raman-type schemes (as desired in the DLCZ-protocol
[2]) the fields have large detunings from the atomic transition frequencies ω13 and ω23 [76].
The name electromagnetically induced transparency (EIT) originally introduced by Harris et
al. in 1990 [44] refers to a quantum interference effect in which the absorption of a weak probe
laser beam resonant with a two-level system is suppressed by the simultaneous application of
another laser beam of much higher intensity denoted as the control beam. While CPT refers
to a modification of the material states in an optically thin sample, EIT on the contrary is
specifically observed only in optically dense samples and comes along with a modification of
both the material states and the optical fields (EIT) [7].
In a rotating frame (after RWA), the light-matter interaction is described by the three state
Hamiltonian [7]

Hint = −~
2

 0 0 Ωp

0 −2(∆1 −∆2) Ωc

Ωp Ωc −2∆1

 (2.36)

with the probe laser Rabi frequency Ωp and control laser Rabi frequency Ωc. For ∆ = ∆1 =
∆2 the eigenstates of this system written by means of the bare atom states appear as

|ψ+〉 = sin θ sinφ|1〉+ cos θ sinφ|2〉+ cosφ|3〉 (2.37)

|ψ0〉 = cos θ|1〉+ sin θ|2〉 (2.38)

|ψ−〉 = sin θ cosφ|1〉+ cos θ cosφ|2〉 − sinφ|3〉 (2.39)

with the two mixing angles

θ = arctan
(
Ωp/Ωc

)
, (2.40)

φ =
1

2
arctan

(√
Ω2
p + Ω2

c/∆

)
. (2.41)

While the |ψ0〉 state remains at zero energy, the states |ψ+〉 and |ψ−〉 are shifted by

~ω± =
~
2

(
∆±

√
∆2 + Ω2

p + Ω2
c

)
(2.42)

due to the application of the control field [7]. These new states in eq. (2.37) to eq. (2.39) are
referred to as dressed states [77]. Most remarkably, |ψ0〉 does not possess any contribution
from level |3〉 and thus neither an excitation to nor emission from the upper level is possible:

〈3|Hint|ψ0〉 = 0 . (2.43)

For this reason, |ψ0〉 is called dark state. This dark state represents a stationary, non-
radiatively decaying quantum state. Hence, it is the aim of EIT-based quantum memories
to transfer a photonic qubit into such a dark state followed by an on-demand retrieval [53,
54]. The transition from a photonic excitation to a spin excitation in an atomic ensemble
bringing about a dramatically reduced propagation velocity is most accurately described by
the full quantum mechanical treatment via second quantization [38]. Here, the existence of
a quasiparticle representing a mixture of electromagnetic and collective atomic excitations
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2.4 Controlling atoms with light

Figure 2.4.: Characteristic theoretical frequency dependence of a) the absorptive and b) the refractive
properties on a normal atomic resonance (red line) and an atomic transition featuring EIT
(modified; original from [42])

called dark state polaritons is predicted. The mixing angle determines the effective group
velocity of that dark state polariton and can be seen as a representation of the dielectric
susceptibility, which is directly dependent on the applied control field. As an illustration of
the observed modification of the dispersive properties in an EIT medium, fig. 2.4 shows a)
the absorption and b) the refractive index on both a normal resonance (red line) and an EIT
resonance (blue lines). The narrow-band suppression of absorption on resonance shown in
fig. 2.4a) is characteristic for EIT due to the missing coupling of the dark state to the upper
level |3〉. This dramatic modification of the absorption is accompanied by a steep positive
slope of the refractive index as displayed in fig. 2.4b), giving rise to low group velocities of
the probe pulse.

Thus, at the heart of (virtually all) storage schemes lies the mapping of a photon state |ψ〉ph

to the collective excitation of an ensemble of N atoms with state |ψ〉ae. The joint state thus
undergoes the trapping procedure [43]

|Ψ〉 = |ψ〉ph|ψ〉ae = |1〉|g1, . . . gN 〉 −→ |0〉
N∑
i=1

|g1, . . . , si, . . . , gN 〉 (2.44)

with the single photon state |1〉, the vacuum state |0〉, the atomic ground state |gi〉 and flipped
spin state |si〉 of the i-th atom. The advantage of such collective spin excitations states lies
in their robustness against decoherence and particle loss compared to single-atom storage or
other kinds of collectively excited entangled states, as e.g. GHZ states [43].

2.4. Controlling atoms with light

One of the most important advances in the field of atomic physics was the discovery of
optical dipole forces and their utility for the optical manipulation, trapping, and even cooling
of atoms. Even beyond atomic physics this technique — called optical tweezers [78] —
became an indispensable tool for the optical manipulation and investigation of small objects
in biochemistry, biophysics and biomedicine [79, 80, 81, 82].

In 1978 Ashkin reported a technique for the trapping of atoms by means of the pressure
exerted by the application of resonance radiation [83]. About ten years later Chu et al.
observed the first successful trapping of a laser cooled Sodium atom [84]. In this section a
very short review of the principle underlying these techniques shall be given.

An electromagnetic field ~E of intensity I inducing a dipole moment ~d in an atomic system
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Figure 2.5.: Scheme of a Cs atom’s cross section in the evanescent field around an optical nanofiber.

gives rise to the interaction dipole potential [85]

Udipole = −1

2
〈~d ~E〉 = − 1

2c
Re{χ̃}I (2.45)

with the complex dielectric susceptibility χ̃ and the speed of light in vacuum c (the brackets
〈. . .〉 denote the vacuum expectation value). If the field intensity is spatially not homogeneous,
i.e. if I = I(~r) then the resulting gradient of the dipole potential Udipole(~r) brings about a
dipole force [85]

~Fdipole(~r) = −∇Udipole(~r) =
1

2c
Re{χ̃}∇I(~r) . (2.46)

This force results from the dispersive properties of the dipole moment mediated by the real
part of the dielectric susceptibility. For a normal refractive index profile around an atomic
resonance (i.e. n > 1 for ω < ω0 and n < 1 for ω > ω0), the dipole force is attractive for
ω < ω0 and repulsive for ω > ω0. As a result, atoms with a resonance at ω0 will be attracted
to intensity maxima of a red detuned light field (ω < ω0) and pushed toward intensity minima
of a blue detuned light field (ω > ω0).
In virtue of the dipoles’ absorptive properties represented by the imaginary part of the dielec-
tric susceptibility, another force — the so called scattering force — is introduced. It arises
due to the scattering rate [85]

Γscattering(~r) =
1

2~c
Im{χ̃}I(~r) (2.47)

and is attributed to an effective momentum transfer to the dipole due to the non-equilibrium
between directed absorption and the undirected nature of spontaneous emission in the pres-
ence of a field intensity I(~r).
If the spatial gradient of the light intensity and the light detuning are appropriately tuned,
it is possible to design atomic traps of diverse geometries. One very interesting dipole trap
design is based on optically detuned modes of an optical nanofiber [86, 87, 9]. For a suitably
chosen nanofiber diameter, the large evanescent field around an optical nanofiber is ideal for
both trapping atoms and investing the optical properties of those atoms due to the large
interaction cross section between the probing light and the atomic cross section as displayed
in fig. 2.5. The two-color fiber optical atom trap employed in the Rauschenbeutel nanofiber
experiment is explained more detailed in sec. 5.1.
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3. Phase and Frequency Stabilization of
Lasers

In this chapter, an overview on the phase and frequency stabilization of lasers is given. Fol-
lowing a short introduction to the basic elements of control theory, a technique for laser
stabilization to a given optical transition is presented. Two possible strategies–phase and fre-
quency stabilization–are outlined and their differences are explained. The chapter concludes
by giving an objective criterion for the evaluation of control loop performance.

3.1. Introduction to control theory

There are many effects that may lead to a time dependent variation of frequency in lasers.
Some are due to experimental insufficiencies, others due to fundamental physical processes.
However, regardless of their origin, these variations in frequency need to be accounted for
in order to perform high precision experiments in quantum optics. Here, control theory
[88, 89, 90, 91] offers a systematic approach, providing the means to stabilize certain quantities
in an experimental setup (e.g. the spatial distance between two cavity mirrors, or the injection
current running through a laser diode).
At the heart of any stabilizing control lies the control loop depicted in fig. 3.1. In this context,
the physical state of the system x(t) which is to be stabilized is generally referred to as the
control variable, and its desired value xset as the set point. Any external disturbance, denoted
by z(t), will cause a deviation of the control variable from the set point. The controller first
measures the control variable x(t) and translates it into an actual value x̃(t)1. Afterwards
the comparator generates the difference between the actual value and the externally provided
set value, i.e. the so called error signal

ẽ(t) = x̃set − x̃(t) . (3.1)

This error signal is then amplified by the controller’s gain factor ac and sent back to the
physical system to form the actuating variable

y(t) = acẽ(t) . (3.2)

The sum over actuating variable and disturbance value iteratively leads to a stabilization of
the control variable of the physical system

x(t) = as(y(t) + z(t)) (3.3)

toward the set point. Here, the factor as represents the characteristic transfer function of
the physical system. The more the command action ∂x/∂xset approaches 1, the better the
stabilization of the control value x(t) becomes. Therefore, the total control loop gain

g = acas =
∂x̃

∂(x̃set − x̃)
(3.4)

1For the sake of clarity we will in the following highlight all electronic quantities inside the controller with a
tilde “.̃..”.
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3.2 Frequency stabilization of lasers

Figure 3.1.: General scheme of a control loop

should ideally be made as big as possible by choosing ac appropriately. However, each control
element entails an inevitable, frequency dependent phase shift on the signal. The specific form
of the phase response is characteristic for each controller type (e.g. P, I or D controller or
their combinations [88]) and is most suitably displayed in a Bode plot. In general, the higher
the loop amplification gets, the bigger the phase shift between the actual value and actuating
value of the degenerative feedback at fixed frequency (see e.g. [88] sec. 5.2.7 and ch. 22). At
a certain threshold phase shift the negative feedback from the controller turns into a positive
feedback leading the control loop to resonant oscillation. A phase shift of 180◦ between the
physical system phase φs(f) (i.e. the control loop input phase) and the control loop output
phase φc(f) in combination with a loop gain g = 1 ends in an effective resonance disaster.
The frequency at which the loop gain approaches 1 is called the critical frequency fcr. At
this point, the characterizing parameter called phase margin

φmargin = 180◦ − |φg(fcr)| = 180◦ − |φc(fcr) + φs(fcr)| (3.5)

is defined. It is specific to each controller type and indicates the “phase buffer” remaining be-
tween the feedback phase shift φg(fcr) and the critical value of 180◦. For φmargin approaching
0◦ positive feedback is reached. Each controller type features a different characteristic phase
response and therefore an intricate combination of different controller types will eventually
lead to a reasonable compromise between loop gain, phase margin and a reasonable transient
response.

3.2. Frequency stabilization of lasers

A large number of experiments in atomic physics require a precise frequency stabilization
of a laser either directly onto an optical atomic transition or to a stable reference cavity.
There exists a manifold of effects which cause the frequency and phase of a laser to vary
over time. Some of which are of fundamental physical nature others are due to experimental
insufficiencies. One obvious source are mechanical vibrations on the optical table or sound
waves in the air, which have to be damped passively as well as possible. In some cases, it
is — in excess of a appropriately damped optical table — necessary to isolate the laser case
from sound waves, e.g. through a box lined with foamed plastic. Other noise sources can be
more specific to the nature of the chosen laser type.

In the following, the three main paths toward frequency tuning and stabilization of diode
lasers are explored. The necessary steps to ensure a reliable performance are described.

3.2.1. Frequency stabilization via injection current and temperature control

In terms of frequency stabilization, diode lasers have proven to be especially practical. Due to
the underlying physics regarding the generation of inversion at the semiconductor junction,
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3.2.1 Frequency stabilization via injection current and temperature control

Figure 3.2.: Occupancies of the a) semiconductor band structure (bright shading: low electron occupancy;
dark shading: high electron occupancy) b) diode band structure in equilibrium and c) with
an applied voltage eV

diode lasers provide both an option for frequency fine-tunability and deliver easy access to
frequency stabilization against short term fluctuation by controlling the injection current.

In order to obtain a stable frequency performance, this requires a meticulous control of
that variable. The carrier density is proportional to the diode’s injection current. Thus,
inevitable rapid fluctuations of the diode injection current change the carrier density on
small time scales. This in turn modifies the diode’s gain, which is directly dependent on
the occupancy of the valence and conduction bands [92]. Ultimately, this gives rise to an
unwanted modulation of the laser frequency, which has to be compensated for by means of a
dedicated current controller.

Furthermore, a direct temperature control of a laser diode is indispensable. Thermal short
term fluctuations and long term drifts in the semiconductor material lead to frequency devi-
ations in three ways. First, the thermally induced volume change of the diode material leads
to a variation of the laser cavity lengths, directly changing the lasing wavelength. Second,
due to the temperature dependance of the refractive index itself the effective optical length
of the cavity is changed by temperature variations of the material (see e.g. [93] for Si and
Ge). Third, the Fermi-Dirac distribution of the charge carriers in the semiconductor bands
varies with temperature giving rise to a modified occupancy of the valence and conduction
band

fv(E1) =
1

e(E1−EFv )/(kBT ) + 1
fc(E2) =

1

e(E2−EFc )/(kBT ) + 1
, (3.6)

respectively (E1 denotes an unoccupied valence band level, while E2 represent an occupied
level in the conduction band and EFv,c are the valance and conduction band’s Fermi energy).
In fig. 3.2a) an illustration of the bands occupancy and the corresponding denominations are
given. The photon emission frequency defined by [94]

~ω = Eg +
~2k2

2m∗e
+

~2k2

2m∗h
(3.7)

(with the the effective electron and hole masses m∗e and m∗e) lies according to the Bernard-
Duraffourg condition [95]

EFc − EFv > ~ω > Eg (3.8)

between the energy difference of the valence and conduction band’s Fermi levels and the gap
energy Eg (see fig. 3.2c)). The net transition rates between the two bands is given by

R = Rij(fc(1− fc)) , (3.9)
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Figure 3.3.: a) Characteristic mode hopping of a laser diode occurring by varying the laser diode temper-
ature (modified; original from [97])
b) Littrow and c) Littman-Metcalf configuration of external cavity diode lasers (both modified;
original from [98])

where Rij denotes the transition rates between the respective bands i and j [94]. An al-
teration in the band occupancies in eq. (3.6) thus leads to a modification of the emission
frequency distribution. Especially troublesome is the discontinuous frequency mode hopping
of semiconductor lasers occurring during a variation of the diode material’s temperature [96]
(see fig. 3.3b)).

These disturbances can only be handled by means of a dedicated temperature controller
compensating for potential temperature drifts by actuating a Peltier element attached to the
laser diode or its mount. Both the laser diode current and temperature controller need to
be specifically designed and fine-tuned for the respective laser diode, its mount and their
coupling to the thermal bath (normally the optical table).

3.2.2. Laser diode frequency tunability and stabilization via optical feedback

Diode lasers are usually passively and actively frequency stabilized by providing optical feed-
back. For that purpose the desired frequency is sent back into the laser resonator, thus
enhancing the stimulated emission into that frequency mode [99]. Typically, optical feed-
back is provided by the application of a suitable diffraction grating in front of the laser diode
aperture (an introduction to gratings will follow in sec. 4.1). Depending on the chosen config-
uration, one diffraction order is reflected into the laser resonator (either directly or by means
of an additional mirror), while the 0th diffraction order propagates forward as the actual
laser output beam. This technique is based upon the application of an external cavity to the
laser diode. That is why diode lasers supported by such an additional feedback grating are
called external cavity diodes laser (ECDL). Two possible grating geometries are the Littrow
and the Littman-Metcalf configuration. In Littrow configuration (see fig. 3.3b)) the incidence
angle on the grating is chosen such that the 1st order (less often the 2nd order) of the desired
wavelength is diffracted back into the laser diode. The frequency tunability is realized by
tilting the grating slightly, causing the feedback of another frequency component. This is
in principle a simple method, however, the tilting always comes along with a change in the
diffraction angle of the 0th order, necessitating a readjustment of all subsequent optics in the
worst case.2

From this perspective, the Littman-Metcalf configuration (see fig. 3.3c)) provides a more
convenient means of optical feedback [101]. Here, the laser diode beam comes at grazing

2One tricky option to overcome this problem is presented in [100].
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incidence to the grating causing the 1st order diffracted beam to be nearly normal to the
grating plane. A mirror then reflects the 1st order the same way back to the grating such
that it is diffracted back into the laser resonator. The laser output is formed by the 0th
order beam. The difference to Littrow configuration constitutes in that it is the tilt of the
mirror, not the grating that entails the frequency selection. Therefore, in Littman-Metcalf
configuration the diffraction angle of the laser output beam stays invariant under frequency
variation. In satisfying this condition, high demands apply to the mounting assembly and
geometric alignment of the mirror.

In order to smoothly scan over a specified wavelength range in both configuration cases, a
specific turning point (also called ‘pivot point’) geometry has to be met [102, 103].

ECDLs serve well as frequency adjustable coherent light sources on a range of several nm up to
some hundred nm in special cases [104], which makes them perfectly suitable for spectroscopic
scans over Alkali hyperfine lines [105]. The big advantage, however, is that by actuating the
grating/mirror tilt over an optical frequency-locked loop, both the laser linewidth [106] and
the frequency stability of ECDLs is significantly improved over those of simple laser diodes.

3.2.3. Optical frequency-locked loops (OFLL)

As outlined above, diode lasers enjoy great popularity due to their accessability for frequency
control over the following three paths: the diode’s temperature, the diode injection current
and the external cavity angle setting. Now, the issue shall be broached of how to realize
the actual control loop, which measures the system variable’s state, derives the error signal,
and prepares an adequate actuating signal to be fed back to the laser. Optical frequency-
locked loops (OFLL) can be realized in many different ways. Often it is desired to stabilize
two lasers with respect to each other. This can be accomplished via stabilizing a transfer
cavity to one of the lasers and subsequently locking the other laser to the transfer cavity.
Common techniques for locking lasers to cavities and vice versa are the Pound-Drever-Hall
method [107, 108, 109, 110] or the Hänsch-Couillaud technique [111]. The Pound-Drever-Hall
method relies on a lock-in based technique. For this method, the laser beam is modulated
by an EOM before it is sent into a cavity and either the transmission or absorption profile is
observed. Using the lock-in technique, locking onto the symmetric transmission/absorption
peaks of the resonator is enabled. The Hänsch-Couillaud technique in contrary gets along
without any modulation of the laser beam, but instead requires the presence of a birefringent
medium in between the cavity mirrors. In the easiest case this would be a λ/4 phase retarder.
Another option for relative frequency stabilization of two lasers is generating a beat signal of
the two lasers. This option assumes one of the two lasers (the master laser) to be a normal.
The frequency of the other laser (the slave laser) is then corrected such, that the difference
frequency of the beat signal equals the reference frequency of an electronic local oscillator of
high frequency stability [112].

For an absolute frequency stabilization locking a laser to an atomic or molecular transi-
tion is most suitable. This is usually done by the generation of a sub-Doppler absorption
spectroscopy signal, e.g. based on saturation spectroscopy [113], frequency modulation spec-
troscopy [114, 115] or polarization spectroscopy [116, 117, 118, 119].

Principle of Polarization spectroscopy

The principle of polarization spectroscopy relies — like normal saturation spectroscopy —
on a strong pump and a weak probe beam counter-propagating through the atomic sample.
However, the interesting feature in polarization spectroscopy is the birefringence induced in
the atomic medium by the circularly polarized pump beam. This birefringence is proportional
to the pump beam intensity and is gathered by the weak probe beam in the form of an angular
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3.3 Phase locking of lasers

Figure 3.4.: a) Experimental setup for polarization spectroscopy using a polarizer at 45◦ instead of two
crossed polarizers and the resulting curves for b) saturation and c) polarization spectroscopy
of 87Rb and 85Rb [118].

rotation ∆φ during propagation through the pumped medium. First experiments [116] used
crossed polarizers — one in front of the atomic sample the other behind — for the subsequent
detection of the penetrated probe intensity. A method yielding an approximately two times
higher signal is to send the probe beam on a polarizing beam splitter (in a basis rotated by
45◦ around the optical axis) and separately detecting the transmitted and reflected probe
intensities Ix and Iy, respectively. The difference signal Iy − Ix = I0∆φ conveys the desired
phase shift information [118]. In fig. 3.5 a compact version of this polarization spectroscopy
setup is depicted (as demonstrated in [120]). Here, the probe beam is basically a recycled
part of the pump beam. After propagation through the medium the pump is sent through
a polarization filter at 45◦ (or a polarizing beam splitter rotated by 45◦ around the optical
axis of the transmitted beam). Following the reflection at an imperfect mirror (representing
a built-in attenuator) it is reflected back into the medium, but now in the role of the probe
beam. The probe’s polarization components are detected behind a polarization beam splitter
as in [118]. The resulting difference signal is of a similar character as that obtained in the
conceptually similar Hänsch-Couillaud technique [111]. It encodes the dispersion experienced
by the probe near the hyperfine transitions shown in fig. 3.4c) [118]

Idiff = Iy − Ix = I0e
−αL−2αw sin

(
∆φ+

ω

c
∆nw

)
, (3.10)

where I0 is the probe intensity (without cell), α the absorption coefficient of the atomic/molecular
sample, L the length of the sample cell and αw and ∆nw denote the contribution of the ab-
sorption and refractive index of the cell’s windows.
This makes polarization spectroscopy a perfect way to generate the error signal needed
for laser frequency locking. Specifically, locking on widths smaller than the natural laser
linewidth is possible. One disadvantage of this method, however, is that the zero crossings of
the difference signal from both PBS outputs Idiff does not necessarily coincide with the exact
line position [118]. A way to circumvent this drawback is comparing the Idiff signal with
the sum signal Isum = Iy + Ix which is effectively a normal saturation spectroscopy signal
indicating the line positions.

3.3. Phase locking of lasers

Even a decently frequency-locked laser will suffer from a residual frequency distribution. This
is mainly due to phase fluctuations on short time scales. One inherent source of phase fluctu-
ations in a laser is the occurrence of spontaneous emission events leading to an interruption of
the coherent Rabi cycle and stimulated emission process. Additional phase noise is caused by
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3.3.1 Principle of phase-locked loops (PLL)

Figure 3.5.: An abstract scheme of an optical frequency-locked loop based on polarization spectroscopy
including offset locking option over AOM detuning.

thermal fluctuations and variations in the injection current in a similar fashion as discussed
for the sources of frequency variations in sec. 3.2.3, but on much shorter time scales. Before
the more specific principle of an optical phase lock will be examined the general concept
behind an electronic phase-locked loop is outlined in the following subsection.

3.3.1. Principle of phase-locked loops (PLL)

A phase-locked loop (PLL) [121, 122] basically consists of three instances:

1. A voltage controlled oscillator (VCO) which represents the oscillating unit in need of
phase stabilization

2. A phase sensitive detector (PSD)

3. A loop filter.

In fig. 3.6a) an abstract scheme of a phase-locked loop (PLL) is presented. The output
frequency of the voltage controlled oscillator is adjustable via an input voltage.3 Here, the
VCO is taken to generate the signal

v(t) = v0 cos(ω0t+ φ0) , (3.11)

where without loss of generality ω0 = const., and the phase φ0 = φ0(t) is time dependent.
Thus, the instantaneous phase of the VCO output can be written as

Φ(t) = ω0t+ φ0(t) . (3.12)

In order to stabilize Φ(t) the VCO signal is fed into a PSD which compares the instantaneous
phase Φ(t) with a reference phase ΦLO provided by a very stable local oscillator (LO). The
PSD basically multiplies both inputs and thus creates the output signal

vPSD(t) ∝ cos
(
(ω0 − ωLO)t+ (φ0(t)− φLO)

)
+ cos

(
(ω0 + ωLO)t+ (φ0(t) + φLO)

)
(3.13)

which consists of oscillations at the difference and sum frequencies. By a subsequent low pass
filtering of the vPSD(t) signal in the so called loop filter the unwanted sum frequency (called
the ripple) can be removed and the error signal which is dependent on the phase difference
Φ(t)− ΦLO can be obtained. The loop filter finally turns the error signal into the actuating
signal to be fed back to the VCO correcting for its phase deviations from the set phase defined
by the LO.

3Later, the VCO will be represented by a laser and the PLL will not work voltage based only, but take the
“detour” over the optical path starting with the VCO’s lasing process and ending in photodetection.
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3.3 Phase locking of lasers

Figure 3.6.: An abstract scheme of a) a general phase-locked loop and b) an optical phase-locked loop
between a master laser and a slave laser with frequency down mixing preceding the phase
sensitive detection.

3.3.2. Basic principle of an optical phase-locked loop (OPLL)

In order to perform a coherent manipulation of atoms a phase stable performance of the
applied laser fields is necessary. In EIT experiments for example this necessary condition
applies both to the strong control field and the weak probe field. Thus, an optical phase
locked-loop (OPLL) has to be implemented, such that the one laser, which is chosen to be
the slave laser is phase stabilized to the so called master laser. After the first demonstration
of an OPLL performed in 1965 [123] the technique has become a standard tool for coherent
preparation of atomic and molecular systems.
An optical phase locked-loop can be seen as an extended or refined version of an OFLL
presented above. Beyond frequency stabilization the OPLL determines the phase difference
between both lasers and electronically process this error value in order to provide an actuating
variable. The latter is fed back to the slave laser correcting for its phase deviation from the
set value which is defined by the master laser phase.
The complex electric field of the master and slave is written as

Em(t) = |Am|eiφm eiωmt and Es(t) = |As|eiφs eiωst , (3.14)

where the phase φs(t) is taken to be time dependent. The frequency ωm and phase φm(t) of
the master laser field needs to be reasonably constant. Note, that generally for the frequencies
ωm 6= ωs holds.
Applying the PLL principle of sec. 3.3.1 to the phase locking of one laser to another raises
two possible problems: First, the optical field oscillations have to be converted into electrical
signals, but optical signals in the visible or infrared cannot directly be detected phase sen-
sitively — not even by very fast photodetectors. Ultra-fast photodetectors can resolve the
oscillation of electromagnetic waves only up to the GHz regime. Beyond the GHz scale only
a determination of the average photon flux through the detector would be measurable.4

Second, the requirement for relative phase stability between to oscillators of different fre-
quencies might seem peculiar. A phase sensitive detector cannot compare the independently
oscillating phases of two signals at different frequencies directly and generate a useful error
signal for phase stable frequency offset locking.
Remarkably, a simultaneous solution to both of these problems can be found by making use
of heterodyne detection, i.e. a detection technique where instead of separately detecting
the master and slave laser beams the superposition signal of both is measured (in sec. 4.2
a more thorough introduction to heterodyne detection is given). In order to detect the
signal in a heterodyne fashion a precise alignment of both fields in a spatially mode-matched

4Typically, the rise and fall time of excitations on an ultra-fast photodetector are at least limited to the
picosecond scale.

26



3.3.2 Basic principle of an optical phase-locked loop (OPLL)

superposition is required (e.g. by superimposing them on a 50/50 beam splitter or an optical
fiber directional coupler). The intensity incident on the photodetector then follows as

I ∝ |Em(t) + Es(t)|2 (3.15)

= |Am|2 + |As|2 + |Am||As|
(
ei(ωm−ωs)t+i(φm−φs) + e−i(ωm−ωs)t−i(φm−φs)

)
(3.16)

= |Am|2 + |As|2 + 2|Am||As| cos ∆Φ(t) , (3.17)

where the oscillatory term is driven by the instantaneous phase difference

∆Φ(t) = Φm(t)− Φs(t) = ∆ωt+ ∆φ(t) (3.18)

which oscillates at the difference frequency ∆ω = ωm−ωs and carries the time dependance on
the slave phase ∆φ(t) = φm−φs(t). The time derivative of the instantaneous phase difference
defines the instantaneous frequency difference ∆Ω = d(∆Φ)/dt. A coherent performance of
master and slave laser can be achieved provided d(∆φ)/dt = 0 so that the instantaneous
frequency difference satisfies [124]:

∆Ω =
d

dt

(
∆ωt+ ∆φ(t)

)
= ∆ω = const. . (3.19)

Thus, the time dependance of the slave’s instantaneous phase Φs(t) can be continuously
readjusted by the OPLL by driving the difference frequency ∆ω(t) to the desired set difference
frequency ∆ωset supplied by a local oscillator.
Phase sensitive detectors are mainly available from the MHz to GHz domain. In many
experimental configurations, however, the set difference frequency ∆ωset between master and
slave laser is orders of magnitudes too high for being phase sensitively detected right away
(e.g. if ∆ωset is above the GHz range). In this case the difference frequency signal ∆Φ(t)
needs to be down-converted — as shown in fig. 3.6b) — via a mixing with a local oscillator
LO1 at a frequency ωLO1 = ∆ωset − ωLO2 which is slightly detuned from the set difference
frequency ∆ωset e.g. by a ωLO2 at around 100 MHz. That way the signal behind the mixer
and after passing a low-pass filtered reads

v(t) ∝ cos
(
(∆ω − ωLO1)t+ (∆φ− φLO1)

)
, (3.20)

such that only the difference frequency

δω = ∆ω − (∆ωset − ωLO2) , (3.21)

or more precisely, the signal phase

δΦ(t) = ∆Φ(t)− (∆Φset + ΦLO2) (3.22)

goes into the phase sensitive detector. The PSD compares the phase of δΦ(t) with a second,
extremely stable local oscillator LO2 of instantaneous phase ΦLO2 at ωLO2 and generates an
error signal

vPSD(t) ∝ cos
(
(∆ω − ωLO1 + ωLO2)t+ (∆φ− φLO1 + φLO2)

)
(3.23)

+ cos
(
(∆ω − ωLO1 − ωLO2)t+ (∆φ− φLO1 − φLO2)

)
. (3.24)

As for the standard PLL the error signal is now fed into the loop filter which prepares the
actuating value to be fed back to the actuating element of the diode laser rendering the
necessary phase correction. In fact, there can be different final control elements, each being
suited for specific time-scale regimes. Thus, the loop filter would in such a case split the
actuating value depending on the time scale of the occurring phase fluctuation and distribute
the correcting value among the available actuating elements in a suitable fashion, respectively.
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3.4 Characterization of the phase noise of an OPLL

3.4. Characterization of the phase noise of an OPLL

Determining the performance of a phase-locked loop is most suitably done by determining
the short term stability of the system, i.e. the phase noise of the oscillator. For that pur-
pose different conceptual as well as experimentally convenient measures for the phase noise
performance of a phase lock are presented in the following.

3.4.1. Phase noise measures

Ideally the beat signal between master and slave laser will result in a pure sinusoidal wave
with oscillation frequency ∆ωset. In the frequency representation this corresponds to a delta
function shaped peak. Residual phase noise φ(t), however, leads to random phase shifts on
the detected beat signal observed with a spectrum analyzer as voltage

v(t) ∝ cos(∆ωsett+ φ(t)) . (3.25)

Thereby, the power spectral density of the beat signal obtains a finite width. The phase noise
distribution is fundamentally defined over the power spectral density of the phase fluctuations
within a bandwidth B of 1 Hz at a frequency offset f from the carrier frequency at ∆νset

SDSB
φ (f) =

1

B

∫ f+B/2

f−B/2
|φ(f ′)|2df ′ . (3.26)

This is the double sideband (DSB) power spectral density given in units of rad2/Hz. The
power spectral density is in direct correspondence with the auto-correlation function of the
phase fluctuations

C(τ) = φ(t)φ(t+ τ) (3.27)

where the overbar denotes time-averaging [125]. In particular, the Wiener-Khintchine theo-
rem [126, 127] states that the Fourier transform of the auto-correlation function be equivalent
to the power spectral density, i.e.

SDSB
φ (f) =

∫ ∞
−∞

C(τ)ei2πfτdτ . (3.28)

For practical purposes the power spectral density is more conveniently represented in terms
of the frequency noise [128]

SDSB
ω (f) = f2SDSB

φ (f) . (3.29)

While the double sideband power spectral density is defined for both positive and negative
frequencies f from a physical point of view the definition of a single sideband power spectrum
appears more convenient:

SSSB
φ (f) = 2SDSB

φ (f) = 2|φ(f)|2 , f > 0 . (3.30)

For a better visualization of small noise peaks the power spectral density is often given on a
logarithmic scale and in a form normalized to its peak value Scarrier [129, 130]

LSSB(f) = 10 log

(
SSSB

Scarrier

)
. (3.31)

It is given in units of decibels below the carrier per Hz bandwidth (dBc/Hz).
The phase noise variance σ2

φ corresponding to a Gaussian shaped phase noise distribution can
easily be extracted from experimental data over the power fraction in the carrier compared
to the total power of the phase noise distribution [131, 132]

η =
Scarrier∫∞

0 SSSB(f)df
' e−σ

2
φ . (3.32)
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4. Narrow-band Filtering Suitable for Few
Photon Detection

Building fast and reliable single-photon counting detectors of high efficiency is extremely
challenging on its own. However, in many practical applications it is furthermore necessary
to reduce background radiation to a reasonable level. If a narrow-band few photon signal is
“hidden” in a broad-band noise background very fine-selective frequency filtering can help
improve the signal-to-noise ratio significantly. Conventional few photon detectors do not
provide intrinsic narrow-band detection, but possess rather wide detection bandwidths in the
order of several hundred nm. Thus, additional effort is required, i.e. the realization of a
narrow-band frequency filter specifically designed for the desired few photon wavelength.
In this chapter possible experimental techniques for such a narrow-band detection of optical
signals at low intensities down to the single photon level within broad-band backgrounds are
outlined. Two filtering methods are compared: the first one by means of spatially selecting
the signal diffracted by a grating, the second performed by heterodyne detection of the
signal. First, the theoretical principles underlying both diffraction gratings and heterodyne
detection are introduced. Subsequently, advantages and disadvantages as well as experimental
requirements and possible difficulties of both techniques are discussed.

4.1. Diffraction grating filter

In this section we examine the basic principles of diffraction gratings. Important parameters
and quantities are introduced, which are useful for the characterization of the performance
of a diffraction grating for filter applications. Finally, several criteria are shown for choosing
the most suitable grating for a desired filter application.

4.1.1. Basic Principle

Diffraction gratings act as devices impressing a periodical phase modulation on an incident
light beam. The grating equation

d(sinα+ sinβm) = mλ , m ∈ Z (4.1)

gives the condition for the formation of the mth diffraction order into a diffraction angle βm
of a light wave of wavelength λ, incident with an angle α on a grating with grating period
d (see fig. 4.1a)) [133, 134]. The grating period d is the spatial period of the blazed grating
structure, i.e. the groove-to-groove distance. Grating manufacturers conventionally specify
the grating period in terms of the groove density G = 1/d in units of the number of grooves
per mm, i.e. 1/mm. Diffraction into an angle βm will occur for all settings where the optical
path difference ∆s (see fig. 4.1b)) between two rays incident on the grating with a distance
of the grating parameter d equals an multiple integer of the wavelength, i.e.

∆s = d(sinα+ sinβm) = mλ . (4.2)

Here, the sign convention for the angles is the following: positive on the side of the incident
beam, negative on the other side of the grating normal. Note furthermore, that the sign of the
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4.1 Diffraction grating filter

Figure 4.1.: a) Scheme of a diffraction grating with its characterizing parameters d = 1/G and θblaze and
two diffraction orders m = 0 and m = 1 for a monochromatic beam of light.
b) Illustration of the optical path difference ∆s occurring for two beams incident on the
grating with a distance of the groove-to-groove distance d.
c) Illustration of the formation of the first three diffraction orders and the occurring overlap
for a beam with a spectral width from λ1 to λ2 (λ1 < λ2).

diffraction orders m is a matter of convention too, and is tied to the angular sign convention.
In fig. 4.1c) the version is displayed resulting from the sign convention mentioned above. The
signs of the diffraction orders are given with respect to the angular position of the 0th order
diffracted beam:

m

{
> 0 if βm < β0

< 0 if βm > β0
. (4.3)

The respective angles of diffraction βm for a given geometric configuration follow according
to eq. (4.1) as

βm = arcsin

(
mλ

d
− sinα

)
. (4.4)

A special geometric configuration often used for gratings employed as an external cavity for
diode lasers is known as Littrow configuration (see fig. 3.3b) in sec. 3.2.2), where the incident
and diffracted beam of a specific order coincide: β(λ)Litt

m = α(λ)Litt
m . In that case the grating

equation becomes

2 sinβLitt
m (λ) =

mλ

d
, (4.5)

and the Littrow angle for the mth order is given by

βLitt
m (λ) = arcsin

(
mλ

2d

)
. (4.6)

Accordingly, performance in Littrow configuration (at a given wavelength and order) requires
a grating period d specifically designed for that purpose. Furthermore, to be examined in
detail in sec. 4.1.5, the blaze angle θblaze of the grating has to be adapted to this specific
geometric situation as well (see fig. 4.1a)).

4.1.2. Fundamental and experimental constraints for grating parameters

Both fundamental as well as experimental restrictions apply to the domain of physical and
reasonable grating parameters, respectively. In the following these working values shall be
explained.

Fundamental restrictions:

At first, the only physical lower bound for the grating period is, that no d for which

λ

2
> d (4.7)
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4.1.2 Fundamental and experimental constraints for grating parameters

Figure 4.2.: Displayed is the angular dispersion experienced by a first order diffracted ray at a wavelength
of 852.347 nm (the Cs D2 transition) plotted in dependance on the number of grating lines per
nm G and the incidence angle α: a) shows the range and gradient of the angular dispersion
while the contour plot in b) illustrates the domain of incidence angles and grating periods.

applies, can diffract a wavelength λ; a wave simply “can’t see” a grating with a grating
period smaller than half its wavelength. Apart from this fundamental constraint, in principle,
diffraction gratings with any grating period d can be used at any incident angle α. However
the argument of the arcsine in eq. (4.4) will only reveal real (i.e. physical) diffraction angles,
if

− 1 <
mλ

d
− sinα < 1 . (4.8)

This constraint in return puts restrictions on the choice of suitable incident angles α for each
given grating period d.
Further restrictions apply for the domain of m, so that the formation of higher orders (see
fig. 4.1c)) can be suppressed either partly or fully. Going back to the grating eq. (4.1) one
concludes, that |mλ/d| < 2 needs to be satisfied, as | sinα+ sinβ| > 2 is not possible. Thus,
there exists a minimal d for each wavelength for the formation of diffraction up to a desired
order m. This of course leads to the convenient side effect that — the other way round —
by choosing suitable ratio of λ and d the formation and therefore the angular overlapping of
different diffraction orders (see fig. 4.1c)) can be suppressed.
A measure of the spectral resolution can be found in terms of the angular dispersion, which
describes how the differential angular splitting of different wavelengths scale. It is derived by
differentiating the diffraction angle in eq. (4.4) with respect to the wavelength:

dβm
dλ

=
m

d cosβm
=

sinα+ sinβm
λ cosβm

. (4.9)

Generally, the angular dispersion dβm/dλ of a grating increases with decreasing grating period
d for a fixed incident angle α and order m.
The plots in fig. 4.2 reveals that the angular dispersion increases with the groove density and
with the inverse incidence angle up to some value where the dispersion hits a singularity.
Beyond these particular values no diffraction orders can be formed. The boundary values are
determined at those points where the cosine in eq. (4.9) becomes zero. This is the case when

βm = arcsin
(
mλG− sinα

)
= ±π

2
. (4.10)

Subsequently, for a fixed grating density G the minimum incidence angle follows as

αmin

∣∣∣
fixed G

= arcsin
(
mλG± 1

)
(4.11)
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4.1 Diffraction grating filter

and for a fixed incidence angle α the maximum groove density is

Gmax

∣∣∣
fixed α

=
sinα± 1

mλ
. (4.12)

Here again, the upper limit for G for a fixed operation wavelength λ can be derived as

max
{
Gmax

∣∣∣
fixed λ

}
=

2

λ
(4.13)

in a more rigorous fashion than already suggested in the argumentation around eq. (4.7).
Fig. 4.2a) and especially the upper right edge in fig. 4.2b) demonstrate this to be a hard
criterion.

Experimental restrictions:

The grating equation furthermore specifies possible combinations of grating periods and cor-
responding angles α and β, which lead to desirably high values of angular dispersion. For the
sake of clarity in fig. 4.2 the angular resolution from eq. (4.9) has been plotted in dependance
on incidence angle and grating period. In order to reach high angular dispersion one wants to
find experimental settings which lead to values sitting as high as possible on the steep slope.
In that respect it becomes clear that for practical purposes one will have to preselect gratings
with a suitable grating period and adjust the working incident angle accordingly in order to
get maximal angular resolution. But even if for one experimental configuration the maximum
resolving power was sufficient (for a desired application) and furthermore a grating could be
found, which satisfied the conditions for the grating period and incidence angle leading to
high angular dispersion (formulated above), the resulting diffraction angle β could arise to be
experimentally inconvenient or even imaginary, i.e. the diffracted order does not exist (see
fig. 4.2). Specifically, possible difficulties could emerge due to very steep or very flat incidence
and diffraction angles necessary in order to achieve high angular dispersion. Quite generally,
incident and diffraction angles below (α, |β|) < 5◦ or above (α, |β|) > 85◦ will experimentally
be out of question, due to trivial geometric difficulties and a dramatic breakdown of virtually
every grating’s diffraction efficiency [135].

4.1.3. Measures for the filter characteristic of diffraction gratings

In this account a diffraction grating can be seen as a frequency fine-selective imaging tool. As
for all imaging devices it is important to adapt and optimize certain physical quantities for the
desired configuration. For narrow-band filtering applications the ratio between the absolute
angular splitting of different wavelengths and the actual angular width of a monochromatic
wavelength component is the figure of merit. Moreover, the criterion for the minimal angular
splitting of two neighboring diffraction peaks has to be considered.
The angular dispersion dβm/dλ introduced in eq. (4.9) gives the angular spread between
two rays of different wavelength. Generally, the angular dispersion of a grating increases
with decreasing grating period d for a fixed incident angle α and order m. But in order to
determine the actual resolving power of a grating the width of each monochromatic spectral
component has to be taken into account as well. For this purpose the intensity distribution
I(βm) diffracted into a certain angle βm(λ) has to be considered. It follows as [136]

I(βm) = I0

(
sin(N∆φ/2)

sin(∆φ/2)

)2

(4.14)

where the phase difference ∆φ is given by

∆φ =
2π

λ
∆s =

2π

λ
d(sinα+ sinβm) (4.15)

32



4.1.3 Measures for the filter characteristic of diffraction gratings

Figure 4.3.: Plot of the intensity distribution I(βm, λ) showing the formation of several diffraction orders
in both the wavelength and the diffraction angle dependance.

and the corresponding optical path difference ∆s defined by the condition for constructive
interference in eq. (4.2). A plot of the intensity distribution I(βm) is shown in fig. 4.4a).
The angular pulse width δβpw of a spectral line is defined as the angular splitting between
the nearest zeros on either side of the spectral peak whose center position is given by βm(λ)
(see fig. 4.4b)). The angular pulse width is determined by the diffraction process at multiple
grooves and is given by [134, 136]

δβpw =
2λ

Nd cosβm
, (4.16)

while the angular linewidth (i.e. the FWHM) can be approximated by half the pulse width1

δβ ' λ

Nd cosβm
(4.17)

(see fig. 4.4b)). Note, that the linewidth scales inversely proportional to the illuminated
grating width w = Nd.
The resolving power R of a grating is defined as the ratio between wavelength λ and minimal
resolvable wavelength difference ∆λmin as [134]

R =
λ

∆λmin
. (4.18)

The value for ∆λmin is defined at the limit of resolution. Neglecting distortions by beam
forming optics this limit arises under the terms of the Rayleigh criterion when the maximum
of one spectral line coincides with the first minimum of the neighboring one (see fig. 4.4b)).
Subsequently, the limit is reached, if the angular separation is half the angular pulse width
δβpw of the spectral component. Thus, the minimal angular spread of two resolvable diffracted
wavelengths follows as

(∆β)Rayleigh =
1

2
δβpw =

λ

Nd cosβm
. (4.19)

Together with eq. (4.9) this corresponds to the minimally resolvable wavelength difference

(∆λ)Rayleigh =

(
dβ

dλ

)−1

(∆β)Rayleigh =
λ

mN
(4.20)

1This is a reasonably good approximation in that the diffraction peak curves depicted in fig. 4.4b) and the
pulse width in eq. (4.16) represent the ideal case. For real reflection gratings, however, (especially for
holographic gratings with a sinusoidal groove profile) these linewidths are subject to distortions both in
height and shape.
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4.1 Diffraction grating filter

Figure 4.4.: a) Intensity distribution of a monochromatic beam diffracted at a grating with 20 grooves
and b) visualization of the Rayleigh criterion at the limit of resolution for two neighboring
wavelengths λ1 and λ2 with the angular pulse width δβpw and angular linewidth δβ, respec-
tively.

which gives the resolving power

R =
λ

∆λmin
=

λ

(∆λ)Rayleigh
=
Nd(sinα+ sinβm)

λ
= mN . (4.21)

It is an important result that the resolving power of each diffraction order is determined by
the number of illuminated grooves of the grating.
In the special case of Littrow configuration the resolving power takes the form

RLitt =
2Nd sinβLitt

m

λ
= mN , (4.22)

which is equivalent to the result in eq. (4.21) only at first sight. Mind, that more specific
restrictions apply to the set of possible values for the angles α and order m compared to the
general case of eq. (4.21).
The theoretical maximum resolving power is reached under the extremal condition of sinα+
sinβm = 2 (corresponding to the maximal mathematically feasible angles of α = β = π/2),
i.e.

Rmax = max

(
λ

(∆λ)Rayleigh

)
=

2Nd

λ
=

2w

λ
. (4.23)

For a homogenously illuminated grating the grating width w can be identified with the light
beam diameter or to a first approximation with the Gaussian beam waist. The grating width
illuminated by the beam therefore gives rise to an upper bound for the resolution of the
grating–beam configuration, which is independent of the specific parameters of the grating
and angle setup.
In the following sections it will become clear, that this maximum resolving power is to be
seen solely as a theoretical upper bound and not as an actual optimum value. Generally
speaking it is not even in the ideal case possible to reach the maximum resolving power. The
underlying angular requirement corresponds to the ideal special case of Littrow configuration
eq. (4.6), but at grazing incidence α(λ)Litt = 90◦. In that case special restrictions apply for
the grating period, namely

d =
mλ

2
. (4.24)

For the first diffraction order one would therefore need a groove-to-groove distance in the order
of half the wavelength, apart from the fundamental geometrical problems arising from the pre-
conditioned grazing incidence. For all practical purposes, satisfying both of these conditions
simultaneously is impossible. Even a near maximum power performance is unrealistic for
appropriate gratings as the necessary groove density and blaze angle literally do not exist.
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4.1.4 Transmission properties of diffraction gratings — an analogy to cavities

Figure 4.5.: Analogy between a) the cavity and b) the diffraction grating transfer functions.

4.1.4. Transmission properties of diffraction gratings — an analogy to cavities

Despite the very different physics underlying the frequency selectivity occurring at cavities
and diffraction gratings there is some remarkable correspondence concerning their transmis-
sion function characteristics. The intensity profile of monochromatic diffraction lines drawn
in fig. 4.4a) in the angular representation is reminiscent of the transmission function of a cav-
ity described by the Airy formulas for transmission and reflection (see e.g. [133, 134, 136]).
Cavities are devices frequently used for filtering applications. They basically consist of two
mirrors (preferably of high field reflectivity r) in a Fabry-Pérot configuration. The finesse of
a cavity

F =
λFSR

δλ
(4.25)

is a measure of its filter quality and is given by the ratio between free spectral range λFSR

and linewidth δλ of the transmitted field. The free spectral range of a cavity is determined by
its geometrical configuration, namely the distance of the cavity mirrors l and the refraction
index of the medium between them:

νFSR =
c

2nl
(4.26)

The linewidth δλ in contrary is set by the finesse of the cavity

F =
πr

1− r2
, (4.27)

whose only determining parameter is the mirror reflectivity r causing a linewidth of

δν =
c

2nlF
. (4.28)

The finesse is connected to the resolving power of the cavity

R =
λ

∆λmin
(4.29)

via the relation

R = mF . (4.30)

In some sense a comparable signature can be determined for a diffraction grating. The inten-
sity distribution in fig. 4.4a) showing two diffraction orders as a function of the diffraction
angle translates into a wavelength dependance as shown in fig. 4.3. This wavelength depen-
dence of the intensity distribution is replotted in fig. 4.5b) where it is directly compared to
the Airy transmission function of a cavity in fig. 4.4a). Analogously, the free spectral range
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4.1 Diffraction grating filter

of a grating is defined in the setting, where the diffraction angle of order m+ 1 at wavelength
λ coincides with the diffracted beam of order m at λ+ λFSR, i.e.

d(sinβ + sinα) = (m+ 1)λ = m(λ+ λFSR) . (4.31)

The free spectral range follows as

λFSR =
λ

m
. (4.32)

The spectral linewidth δλ is approximately given by half the angular pulse width in eq. (4.16)
multiplied by the angular dispersion of eq. (4.9):

δλ '
(

dβm
dλ

)−1

δβpw/2 =
λ

mN
. (4.33)

Thus, for the grating the number of illuminated grooves turns out to be the factor determining
the spectral linewidth compared to the cavity case where the mirror quality is crucial. In
analogy to the cavity case we can now derive the finesse of the grating to be

F = N . (4.34)

This shows that also in the case of a diffraction grating the relation eq. (4.30) between
resolving power and finesse holds in good approximation.

4.1.5. Diffraction grating efficiency characteristics

When analyzed more closely one may observe that the intensity distributions I(β, λ) depicted
in fig. 4.3 and fig. 4.4 are subject to modulations. This is mainly due to two effects. One is
the contribution of the blazing angle determining the angular characteristics of the grating
efficiency. The other is related to the specific grating type and its coating.

Grating types and coatings:

A grating’s diffraction efficiency characteristics are bound to the manufacturing process de-
termining its groove profile [135]. Holographic gratings inherently tend to sinusoidal groove
profiles, while mechanically ruled gratings have more triangular shaped grooves. This gives
rise to a dramatic difference in their diffraction efficiency as a function of the wavelength
and diffraction angle. Moreover, efficiency varies for plane reflection gratings, transmission
gratings, Echelle gratings and concave gratings as well [135, 137]. It shall be noted that usual
transmission gratings with higher grating densities G > 600/mm suffer strongly in terms of
their diffraction efficiencies. That is why they are not suitable for applications necessitating
high angular dispersion. Similarly, high grating densities are hardly fabricable on the curved
surfaces of concave gratings leading only to restricted angular dispersion values. Echelle
gratings again are literally defined as gratings with low periodicity.

Concerning the surface quality holographically fabricated gratings suffer much less from
irregularities and eventual surface lesions than mechanically ruled ones. Especially the peri-
odicity of holographic gratings is superior to mechanical gratings, where one groove is formed
after the other while the former interferometric gratings have all grooves formed simultane-
ously.

Another factor principally limiting the grating efficiency is its surface coating. Generally
speaking for the optical domain gold coatings are favorable in terms of their high efficiency
over standard aluminum coatings [137].
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4.1.5 Diffraction grating efficiency characteristics

Blazing angle:

When using a diffraction grating it is of crucial importance that it is implemented with respect
to its blaze angle

θblaze =
α+ β

2
, (4.35)

i.e. the angle under which the grooves are ruled (groove facet angles). This angle is identical
to the incidence angle for which optimal diffraction efficiency into the first diffraction order
is to be expected. For average commercial gratings, even diffraction angles β deviating from
the blaze angle by 5◦ − 10◦ lead to a fatal breakdown in diffraction efficiency. Likewise big
angle differences |α − βm| > 15◦ are not to be favorized for usual gratings as the respective
diffracted order will suffer from strong efficiency suppression.
Certainly, the optimal blaze angle varies for different incident wavelengths. Therefore, grating
manufacturers always indicate the blaze wavelength

λblaze =
2

Nm
sin θblaze cos(α− θblaze) (4.36)

corresponding to a certain blaze angle, respectively. Unless otherwise specified the blaze angle
and wavelengths indicated in grating catalogues will refer to the corresponding values in the
Littrow configuration.
After all, the choice for a specific diffraction grating will be due to the available blaze angle
of the grating grooves either supporting the theoretically determined optimal incidence angle
and wavelength or not. The vast majority of diffraction gratings is designed for Littrow con-
figuration and thus they are blazed for the respective Littrow angle of a specific wavelength:
θblaze = αLitt. Therefore, special effort is to be taken for finding a suitable grating supporting
all needs toward high angular dispersion for narrow-band filtering.
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4.2 Narrow-band filtering based on heterodyne/homodyne detection

4.2. Narrow-band filtering based on heterodyne/homodyne
detection

The concept of heterodyne detection provides different interesting aspects, which can fruit-
fully be adopted for advanced optical filter applications. First, heterodyne mixing of a signal
field with an optical local oscillator field leads to an effective conversion of the signal fre-
quency. This allows for a fine-selective spectral detection at visible and infrared frequencies,
which would otherwise be completely unresolvable by direct detection techniques using con-
ventional photodetectors. Due to the heterodyne frequency down-conversion the resulting
oscillations of the photodiode currents can be conveniently frequency analyzed by means of
standard electronic filtering. Second, in the case of few to single photon signals heterodyne
detection can be applied as a technique for single photon correlation spectroscopy. Here, the
temporal detection characteristics of photons described by the first order correlation function
can be converted into a frequency distribution of those photons via Fourier transformation.

In both cases a special configuration of heterodyne detection — called the balanced mixer
— provides a built-in low-noise signal amplification by significantly increasing the detected
signal via the local oscillator intensity, but using the classical noise cancelation of the balanced
detection scheme.

4.2.1. General concept of optical heterodyne/homodyne detection

Conventional photon detection — also called direct detection — determines only the photon
flux and is unsusceptible against the phase of light. The historical origin of heterodyne
(greek: έτ ερo = other, different; δύναµη = power) detection lies in the field of early radio
communication (known as the “superheterodyne receiver”) and goes back to the invention of
Reginald Fessenden in 1901 [138]. These days, heterodyne detection concept is experiencing
a revival in the field of modern coherent optical communication, where information cannot
only be encoded in the real field amplitude, but also in the phase of the light field [139, 140].
Thus, heterodyne/homodyne detection gives rise to a variety of optical information encoding
techniques, allowing for phase sensitive keying and frequency sensitive keying besides an
improved form of amplitude sensitive keying [140, 141, 142, 143].

Heterodyne detection enables the measurement of the phase information of a signal field of
frequency ωs by mixing it with a reference field of a local oscillator (LO) of frequency ωl.
In the special case where the frequencies are degenerate ωs = ωl the detection is referred to
as being homodyne. The superposition of the signal field with the coherent reference field
leads to a temporally varying interference pattern, i.e. a beat signal. A subsequent electronic
analysis where the contribution of the reference wave is taken into account allows for the
extraction of the complete complex amplitude of the signal wave.

Starting with a classical treatment a signal and local oscillator wave of the form

Es(t) = As e
iωst and El(t) = Al e

iωlt (4.37)

with the complex amplitudes Aj = |Aj |eiφj can be considered. While the frequency ωl and
phase φl of the local oscillator field are supposed to be stable, the signal wave has a time
dependent phase φs(t). The coherent superposition of both fields — accomplished by perfect
mode matching on a 50/50 beam splitter (see fig. 4.6a)) or an 2 × 2 fiber optic coupler —
leads to a resulting intensity

I ∝ |Es(t) + El(t)|2

= |As|2 + |Al|2 + |As||Al|
(
ei(ωs−ωl)t+i(φs−φl) + e−i(ωs−ωl)t−i(φs−φl)

)
= |As|2 + |Al|2 + 2|As||Al| cos

(
(ωs − ωl)t+ (φs − φl)

)
(4.38)
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4.2.1 General concept of optical heterodyne/homodyne detection

Figure 4.6.: a) Experimental configuration for heterodyne detection
b) Beat signal of the photocurrent in heterodyne detection (modified; original from [133])
c) Beat signal of the photocurrent in homodyne detection (modified; original from [133])

in direct analogy to the beat signal detection in the optical phase-locked loop in eq. (4.38) of
sec. 3.3.2. From the cosine term in eq. (4.38) the beat signal oscillates at the difference fre-
quency ∆ωsl = ωs−ωl which is called the heterodyne frequency. A photodetector measuring
the superposed signal receives the power

P = Ps + Pl + 2
√
PsPl cos

(
∆ωslt+ ∆φsl

)
(4.39)

with the difference phase ∆φsl = φs − φl and the powers of the signal and local osciallator
beam Ps and Pl. In a semiconductor photodetector the power corresponds to an electric
current [133] which is expressed via the relation

ī = ηeΦ =
ηe

~ω̄
P , (4.40)

where e is the electron charge, h is Planck’s constant and the mean photon flux Φ = P/hν̄
leads to the generation of photoelectrons with an efficiency η. For small ∆ωsl the photodetec-
tor sees an effective average photon frequency ω̄ = (ωs +ωl)/2. In clear analogy to eq. (4.39)
the detected photocurrent results as

īhe = īs + īl + 2
√
īsīl cos

(
∆ωslt+ ∆φsl

)
, (4.41)

whilst for all practical purposes the DC contribution of the signal photocurrent īs is negligibly
small.

In fig. 4.6b) a sketch of the resulting beat signal is shown. It oscillates with the heterodyne
frequency ∆ωsl. A variation of the beat signal envelope (plotted as dashed line) corresponds

to an amplitude modulation, i.e. the time dependance of 2
√
īsīl(t) in virtue of a time-

dependent īs(t). A variation of the phase difference ∆φsl(t) = φs(t) − φl — which is due to
the time dependance of the signal phase φs(t) — leads to a dilatation or squeezing of the fast
heterodyne oscillation.2

Many modern experiments in quantum optics use hetero/homodyne detection as a method
for reading out the phase shift an experiment imprints on a probe beam, e.g. the phase shift
which an intracavity field experiences as one of the mirrors moves [144]. In fig. 4.7a) a simple
scheme of such a heterodyne phase measurement is depicted. As shown in the graphics a
phase lock will generally be necessary providing a coherent performance of the local oscillator
and probe laser, such that the phase fluctuations measured by the heterodyne setup are true
features of the experiment to be explored. The same holds true for the special case of

2In the case of a simultaneous time dependance of the field’s real amplitude, that time dependance can
be separated from the instantaneous phase’s time dependance Φ(t) =

(
∆ωslt + ∆φsl(t)

)
by separately

measuring the signal intensity yielding the squared real amplitude only. This simultaneous measurement
can, of course, only be performed for classical signal fields.
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4.2 Narrow-band filtering based on heterodyne/homodyne detection

Figure 4.7.: a) Schematic configuration for the heterodyne detection of a phase shift φs(t) imprinted by
an experiment on a probe beam.
b) Experimental configuration for balanced heterodyne detection

homodyne detection where probe and local oscillator phases φp and φl have to be locked,
such that ∆φpl = φp − φl = const. Thus, after the probe field has undergone eventual phase
modulation by propagation through the experiment the residual oscillation gives directly
information about the signal phase φs(t). Thus the photocurrent in this special case reads

īho = īs + īl + 2
√
īsīl cos ∆φsl . (4.42)

The resulting characteristic homodyne detection signal is depicted in fig. 4.6c).

Accordingly, both heterodyne and homodyne detection lead to a frequency-shifted version
of the original phase signal. This shift typically goes from the optic domain at hundreds
of THz down to the MHz regime (for heterodyning) or even down to the DC regime (for
homodyning). This makes electronic processing of the optical phase information feasible in
the first place. For narrow-band filter applications on the other hand this is interesting, in
that the frequency conversion enables isolating a frequency component lying arbitrarily close
to others [145]. This point is to be investigated in detail later on.

Last but not least, heterodyne detection includes a built-in low-noise amplification. By
choosing an appropriately high local oscillator signal the amplitude of the beat signals in
eq. (4.41) and eq. (4.42) can be made desirably high.

4.2.2. Balanced configuration of heterodyne/homodyne detection

One drawback of the previous simple heterodyne detection scheme lies in the local oscillator
excess noise which directly affects the detected signal. Using a symmetric detection scheme
which considers both outputs of the 50/50 beam splitter (or 2 × 2 fiber optic coupler) is,
however, able to circumvent this drawback. This configuration schematically displayed in
fig. 4.7b) is called balanced heterodyne detection. It offers a significant advantage over the
non-balanced detection in that it is able to discriminate between classical noise (e.g. excess
noise of the local oscillator) and quantum noise of a light field and photodetector [146].
Classical excess noise of the local oscillator would reach both photodetectors with equal
strength and would be subtracted in the subsequent electronics [147].

The fact, that the signal offset īs rises with increasing local oscillator power can be bypassed by
the balanced configuration as well. Note, that the waves propagating toward the photodiodes
PD1 and PD2 are subject to a relative phase shift of π in the interference term caused by
reflection at the combining beam splitter [148]. This means the currents at photodetector 1
and 2 are

ī1,2 = īs + īl ± 2
√
īsīl cos

(
∆ωslt+ ∆φsl

)
. (4.43)

Following the photodetection one channel is subtracted from the other in a simple electronic
circuit in order to yield the balanced signal ī− = ī2 − ī1. For balanced heterodyne detection
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one finally obtains the signal

īhe− = 4
√
īsīl cos

(
∆ωslt+ ∆φsl

)
(4.44)

and for balanced homodyne detection we have

īho− = 4
√
īsīl cos ∆φsl (4.45)

in contrast to the unbalanced configuration of eq. (4.42). Note, however, that for this scheme
the beam splitter needs to have an exactly equal partition ratio for the reflected and trans-
mitted waves.

4.2.3. Advantage of heterodyne and homodyne detection in terms of noise

One of the biggest advantages of heterodyning/homodyning over direct detection for few
photons lies in its robustness against background noise, which does not mix with the local
oscillator. This is mainly due to the strongly exclusive spatial mode matching condition.
Moreover, the beat signal strength is mainly determined by the intensity of the local oscilla-
tor which can be made arbitrarily strong without suffering from concomitant classical local
oscillator noise, if the balanced detection scheme is applied.

Even for simple intensity measurement heterodyne detection offers an advantage in terms of
its intrinsic signal amplification providing a signal to noise advantage over direct detection
[147, 149]. While in electronic systems the performance at low signal levels is principally
limited by thermal noise, in quantum optics quantum noise sets the limit, as the energy
of photons in the optical regime (hc/λ ∼ 10−19 J) lies well above thermal energies at room
temperature (kBT ∼ 10−21 J). There are two main sources for quantum noise: First, there are
momentum fluctuations of electrons occurring in the optical frequency domain and second,
the quantum fluctuations of the electromagnetic field itself.

The noise appearing in the signal of an optical receiver has the following contributions [133,
150, 151, 152]:

1. Optical shot noise (photon noise): The beating of the signal field with quantum
vacuum fluctuations leads to so called shot noise fluctuations in the photon flux of
optically attenuated and amplified signals (e.g. in lasers). It represents a fundamental
lower noise limit3 and gives rise to the “natural” Poissonian photon statistics with
variance

σn = n̄ (4.46)

for a mean number of photons n̄.

2. Photoelectron shot noise: For a photodetector of non-unit quantum efficiency η < 1
the generation of electron-hole pairs proceeds as a stochastic process. Here the momen-
tum fluctuations of confined electrons at optical frequencies lead to spontaneous currents
in the detector. Furthermore thermally induced random electron-hole generation leads
to dark-currents even in the absence of photons. The beating of these spontaneous
currents with the signal field in turn results in fluctuations of the photon absorption
rate, which brings about the so called photocurrent shot noise with a variance

σm = m̄ = ηn̄ (4.47)

for the mean number of generated photoelectrons m̄.

3outperformed only by squeezed states (see e.g. [153])
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Figure 4.8.: Signal and noise strength in a) heterodyne and b) homodyne detection.

3. Excess noise (gain noise): Noise that is inherent with the stochastic nature of the
amplification process occurring e.g. in certain photodiodes (APDs), in lasers and in
tapered amplifiers in the form of spontaneous emission.

4. Circuit noise (electronic noise): The receiver electronics processing the photodetector
signal will contribute additional noise.

5. Other kinds of noise are a leakage current, 1/f noise, partition noise occurring at beam
splitters etc.

The last three forms are classical noise. The optical and photoelectron shot noise, however,
are of genuine quantum nature and therefore uncorrelated.
Taking this noise into account the mean photocurrent ī inside a semiconductor photon de-
tector has variance

σ2
ī = σ2

m︸︷︷︸
shot noise

+ σ2
e︸︷︷︸

electronic noise

. (4.48)

The shot noise [133, 154]
σ2
m = 2ēilB (4.49)

with B representing the photodetector bandwidth (determined by the detector’s sampling
time interval τ = 1/2B) is linearly dependent on the mean current īl. Thus, by increasing
the LO intensity an adequately enhanced īl can always be reached, so that the photon noise
term in eq. (4.49) dominates and the circuit noise can be neglected. The signal is then said
to be shot noise limited. In this case the signal to noise ratio of the heterodyne detector is
given by [133, 154]

S/N =
ī2

σ2
m

=
2̄isīl
2ēilB

=
īs
eB

= 2m̄ . (4.50)

Compared to direct detection with a non-amplifying pin photodetector of a signal to noise
ratio of S/N = m̄ or an avalanche photodiode detector with the excess noise factor F ≥ 1
and a signal to noise ratio of S/N = m̄

F heterodyne detection always provides at least a factor
of 2 improvement. This statement holds even for the ideal noise-free direct detection case,
where F = 1.
At first sight, homodyne detection — as a special case of heterodyne detection — has the same
sensitivity and fundamental noise characteristics as the latter. However, a subtle difference
arises when analyzed closely. In fig. 4.8 an illustration shows each step of the signal processing
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in the frequency representation for both heterodyne and homodyne detection, respectively.
Here, for the sake of simplicity ideal balancing is assumed and thus classical noise is omitted.
While in the homodyne case the final signal contains only the residual shot noise from both
the signal σs and the local oscillator beam σl integrated over the detection bandwidth B/2
(cf. fig. 4.8b)) in the heterodyne case the final signal actually contains the double amount of
noise (cf. fig. 4.8a)). This is due to the fact that during the measurement (e.g. by a spectrum
analyzer) the image signal at −∆ωsl will be swapped onto the positive frequency side and
both signal and noise will add up, such that the heterodyne signal contains the integrated
shot noise of a bandwidth of B. Accordingly, homodyne detection needs half as much LO
power as heterodyne detection in order do reach the shot noise limit and the intrinsic signal
to noise ratio of homodyning offers a factor of two improvement over heterodyning [140, 155]:

(S/N)ho = 1/2 (S/N)he . (4.51)

Note, however, practically it is possible that the quantum limit cannot be reached due to the
saturation limit of the photodetectors prohibiting sufficiently high local oscillator power.
The theoretical advantage of homodyne over heterodyne detection can be countervailed by
experimental conditions. One prominent effect would be 1/f noise in the detection and signal
processing electronics. Another drawback for measurements aiming at the detection of the
frequency distribution of a signal (especially if it is asymmetric) is the fact that the homodyne
signal is folded at its central frequency ω0 such that frequencies at some position ω0 + δω
and the corresponding mirror position ω0− δω appear at the same frequency position on the
spectrum analyzer. This could be intervened by setting up the probe laser in a frequency fine-
tunable fashion as long as either the probe linewidth is sufficiently narrow or a sufficiently
narrow-band electronic filter is available enabling a sequential sampling of the frequency
distribution.
In opposition to those complications heterodyne detection principally features the option for
positioning the signal in a frequency region were electronic noise (e.g. of the detection system
or of the surrounding electronics in the lab) is reduced. Furthermore, if — as in this case — a
narrow-band filtering of the signal is desired it is convenient to translate the signal to the MHz
regime, were a variety of highly optimized electronic components is available off-the-shelf.

4.2.4. Experimental requirements

The striking advantages of heterodyne and homodyne detection come along with an increase
of experimental complexity. There are four main requirements:

1. a particularly stable optical local oscillator (i.e. an additional laser)

2. an optical mixer (e.g. a 50/50 beam splitter or a 2× 2 fiber optic coupler)

3. two square-law detectors with identical characteristics

4. an optical phase-locked loop (as needed).

Furthermore, a perfect spatial mode matching of signal and LO beam and a perfect alignment
of their polarization planes is necessary. Both signal and LO beam need to run single-
mode and especially the local oscillator is required to have only minor phase and intensity
fluctuations.
As square-law detector one denotes a device which transforms the AC component of the
incoming electric field into a DC output being proportional to the square of the incoming
field. Normal semiconductor photodiodes possess adequate square-law detectors in the optical
domain. However, for high precision measurements their exact operation characteristic i(E)
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Figure 4.9.: Schematic configuration for a) a balanced homodyne and b) a balanced heterodyne detection
of a frequency distribution imprinted on a probe beam by an experiment (e.g. an atomic
transition profile).

— the photodiode current in dependance on the incident electric field for a given device
temperature has to be taken into account. Most importantly, for balanced detection two
photodetectors with exactly the same operation characteristics are necessary, in order to
achieve the desired classical noise cancelation in the subtraction current. This includes the
frequency response of both photodetectors to be as equivalent as possible.

At the heart of the heterodyne/homodyne detection setup lies the coherent superposition of
signal and LO wave. In the general case this coherence has to be provided by an optical
phase-locked loop, which accomplishes the constant phase relation between signal and LO
wave by subsequently readjusting the phase of the local oscillator with respect to the probe
beam phase.

Furthermore if heterodyning is performed it gives rise to the necessity of an additional de-
vice, a so called demodulator, i.e. an electronic filter removing the fast difference frequency
oscillation ∆ωsl from the beat signal revealing both the amplitude modulation on the signal’s
envelope and the phase modulation of the fast oscillating signal. This can be rendered e.g.
by means of an envelope detector. It basically transformes the shape of the heterodyne signal
of fig. 4.6b) into that of a homodyne receiver fig. 4.6c).

4.2.5. Filtering on the basis of frequency conversion and electronic filters

As mentioned above heterodyne detection epitomizes not only the proper tool for measuring
small phase variations, but furthermore offers the possibility to spectrally resolve extremely
narrow lying frequency components. This is due to the fact, that electronic filtering is enabled
by creating an electronic replica of the original optical signal. In virtue of the LO frequency
with respect to the signal frequency the heterodyne signal can be shifted to a frequency
region where frequency filtering is most conveniently performed. An electronic filter is able
to restrict the signal by a much narrower effective bandwidth than any wavelength filter acting
on the original optical signal. Thereby, it features a superior suppression of background light
enabling the detection of extremely low signal intensities.

A convenient means of building a homodyne filter setup of low complexity is the configuration
proposed in fig. 4.9a). Here, the probe and local oscillator beam originate from the same
source laser and are eventually separated from each other at an unequal beam splitter. Local
oscillator and probe beam are therefore inherently phase stabilized without any further ado.
It might be necessary or practical to guide the source beam into a frequency detuning unit
(e.g. a double-pass acousto-optic modulator (AOM) configuration) before directing it to the
homodyne interferometer. This is indispensable, if the probe beam has to be scanned over a
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certain frequency range in order to sample the experiment over bandwidths much wider than
the laser linewidth. The signal phase φs(t) (or frequency distribution δωs(t)) is imprinted on
the probe laser during interaction with the experiment. The subsequent 50/50 beam splitter
mixes signal and LO beam in order to perform the homodyne detection. The detection of the
balanced difference signal can be performed over a suitable low-pass filter and a subsequent
power detector.

The relative phase stability between probe and LO could be compromised by independent
perturbations on both arms of the interferometer though, and eventually the implementation
of a subsequent phase lock (i.e. a relative path length stabilization of the interferometer
arms) might be inevitable.

This scheme can be converted to a heterodyne detection setup by inserting another frequency
detuning unit into the LO beam path as shown in fig. 4.9b). If again a double-pass AOM
configuration is implemented for that purpose this typically leads to a frequency difference
∆ωsl between signal and LO in the hundred MHz range. The AOM might, however, induce
time-dependent phase distortions. In this respect it is of high importance to choose an AOM
setup providing as low phase noise as possible, but generally the implementation of a phase-
lock will be necessary. The balanced difference signal centered at ∆ωsl can then be processed
in two possible ways: Following the common working principle of analog spectrum analyzers
the balanced signal can be mixed with a (tunable) local oscillator wave, low-pass filtered
and finally be measured by a power detector. That way, in the detection electronics one
would only add a frequency down-conversion step and finally receive the same signal as in
homodyning. However, in this case the signal would — according to the noise analysis in
sec. 4.2.3 — have only half the power, but the same noise compared to the homodyne case.
A simpler and possibly better option for heterodyne detection would rely on directly filtering
the difference signal at ∆ωsl by means of a narrow-band electronic band-pass filter in the
MHz range, guiding it through a demodulator (e.g. an envelope detector) and detecting the
final signal power. In virtue of the LO tunability the signal can in this configuration be
precisely tuned over the band-pass filter in a controlled fashion.

In any case, both homodyne and heterodyne detection provide several decisive advantages
over any filtering system based on direct detection. While the signal to noise ratio is mas-
sively improved by balanced detection the signal strength does not suffer from any significant
attenuation processes, but is rather subject to a built-in low-noise amplification. Such an
optical amplification is utterly impossible for other optical filter device. Moreover hetero-
dyne detection is superior to other (spatial) frequency filters based on gratings or cavities,
as there is (at least no fundamental) linewidth limit in heterodyning. The limit is more a
matter of electronic filter design art with low-cost off-the-shelf components, than an actual
search for highly specialized and expensively manufactured components as it is the case for
extremely dispersive diffraction gratings or high quality cavity mirrors. For heterodyning at
difference frequencies ∆ωsl in the hundred MHz range there exists a variety of reasonably
priced narrow-band electronic bandpass filters (with passbands of 10 − 20 MHz width e.g.
from Mini-Circuits, Anatech Electronics Inc. etc.) which are perfectly suited for the sam-
pling of a narrow-band frequency distributed signal. The filter performance of such a 20 MHz
passband electronic filter is at an optical wavelength of 852 nm equivalent to a filter window
of 10 fm, a value completely out of reach of any optical filter device.

4.2.6. Proposal for the nanofiber EIT experiment with low intensity probe
signals

The decision for either homodyne or heterodyne detection is more subtle and tied to the
specific context and aim of the experiment to be performed. In the atomic physics experiment
of the Rauschenbeutel group aiming at the detection of a narrow-band EIT signal it might be
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4.2 Narrow-band filtering based on heterodyne/homodyne detection

most suitable to implement a homodyne detection. The reason for that lies in the necessity for
tuning the probe laser over a wide range around the EIT resonance of approximately 100 MHz
and the simultaneous need to perform the measurement within a time of maximally 5 to 10 ms,
as the lifetime of the atoms in the trap around the nanofiber decays exponentially with a
half-life of 50 ms [8]. The pair of balanced photodiodes will, however, be subject to a limited
bandwidth due to their finite rise and fall times. This corresponding maximum frequency
fpd sets the limit for the frequency resolution with which the signal can be detected. With a
pair of fast balanced photodiodes possessing a bandwidth from DC to f̃crit and a source laser
scanning over a frequency range ∆f during a measurement time of ∆t the maximal optical
frequency resolution results as

fres =
∆f

∆t

1

2f̃crit

(4.52)

The factor two in eq. (4.52) accounts for the Nyquist-Shannon sampling theorem. For e.g.
the fast Thorlabs PDB430A balanced amplified photodetector with f̃crit = 350 MHz and an
optical scan over ∆f = 100 MHz per ∆t = 5 ms the maximal optical frequency resolution
turns out to be fres = 28.5 Hz. Even though this is a reasonably good frequency resolution
for the detection of the narrow-band EIT signal it might be necessary to achieve a resolution
in or below the range of some Hz. But finding a balanced set of photodiodes gets increasingly
difficult for significantly higher bandwidths than some 100 MHz. Thus, in order to achieve
even higher frequency resolution it will be mandatory to lower the scan range.
Facing these resolution limitations which are a direct consequence of the critical frequency
of the balanced photodiode the additional frequency offset in heterodyning (featuring an
electronic bandwidth filtering at ∆ωsl and subsequent demodulation) is obviously contraindi-
cated. If heterodyning is realized via an AOM as depicted in fig. 4.9b) the difference frequency
∆ωsl is most likely to be found in the hundred MHz range. This would mean that the het-
erodyne signal’s amplitude modulation frequency would be in the same range as the optical
frequency itself. In this case, of course, an envelope detection is virtually impossible.
Apart from that, it is of great importance to implement an anti-aliasing filter perfectly
matched with the chosen pair of photodiodes. In digital signal processing such a filter com-
pensates for those frequency components lying behind half the detector’s limit frequency
[156, 157]. Otherwise these components would lead to ‘false’ contributions at frequencies
actually lying before half the limit frequency causing the so called aliasing effect. In signal
processing this anti-aliasing filter is placed before the sampling process. In the optical do-
main it is very improbable that an analog working suitable filter is available. Therefore, the
detected signal will have to be carefully post-processed with a suitable anti-aliasing filter in
order to compensate for sampling artefacts.

4.2.7. Phase and amplitude sensitive detection of few to single photons

The basic principle behind heterodyne and homodyne detection described above referred to
the classical concept of electromagnetic waves and assumed optical signals consisting of large
ensembles of photons. Here, heterodyne/homodyne detection shall be examined at low signal
light levels by means of a quantum mechanical description. In this context it needs to be
clarified in which way the beat signal is to be expected to change. It is initially not obvious
how the former concept of two single-frequency beams generating a temporal interference
pattern on the detector translates to an interference of one coherent reference beam with a
signal consisting of single photons, i.e. single wave packets representing a superposition of
an infinite spectrum of frequencies with varying weights, respectively. Other than coherent
states

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , (4.53)
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4.2.7 Phase and amplitude sensitive detection of few to single photons

Figure 4.10.: Phasor diagrams for a) an electric field vector ~E(~r, t) and b) a superposition of two electric
fields with amplitudes αi and φi.

which consist of an indefinite number of photons [158, 159], Fock states

|n〉 =
(a†)n√
n!
|0〉 (4.54)

are eigenstates of the photon number operator N = a†a and have an undefined phase due to
the Heisenberg uncertainty relation between photon number and phase [160]

∆n · tan ∆φ ≥ 1

2
. (4.55)

Heterodyne detection is about measuring phases by means of an interferometric method. But
at first sight it might be counterintuitive to perform an interferometric measurement with
a state of undefined phase. Therefore, it is necessary to introduce a quantum mechanical
description of heterodyne/homodyne detection in the following.

Measuring quadrature components of the light field

In a more general and abstract approach now an alternative description of the complex electric
field vector

~E(~r, t) = ~E0(~r, t)
(
α(~r, t)eiωt + c.c.

)
(4.56)

shall be developed. The field vector ~E(~r, t) is a solution of the wave equation

∇2 ~E(~r, t)− 1

c

∂2

∂t2
~E(~r, t) = 0 . (4.57)

The complex dimensionless amplitude

α(~r, t) = α0(~r, t)eiφ(~r,t) α0 ∈ R (4.58)

has an alternative form in terms of the quadrature components X1 and X2 [146]

~E(~r, t) = ~E0

(
X1(~r, t) cosωt+X2(~r, t) sinωt

)
(4.59)

with

X1(~r, t) = α(~r, t) + α∗(~r, t) = 2 Re{α(~r, t)} = 2α0 cosφ(~r, t) (4.60)

X2(~r, t) = i
(
α(~r, t)− α∗(~r, t)

)
= −2 Im{α(~r, t)} = −2α0 sinφ(~r, t) (4.61)

where X1 represents the real part and X2 the imaginary part of the complex amplitude of
the electric field (4.58) [152, 146]. Therefore the angle φ can be expressed as

φ = − arctan

(
X2

X1

)
. (4.62)
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Figure 4.11.: a) Relevant quantum fields in balanced heterodyne detection
b) Illustration, in how the quadrature components (measurable over heterodyne detection)
emerge as two dimensional projections of the three dimensional Wigner function, which is
not directly measurable (modified; original from [161]).

A suitable visualization of the quadratures is obtained using a phasor diagram displaying the
vector ~E in the (X1, X2) plane as depicted in fig. 4.10a). This phasor picture is especially
suited for the treatment of interference phenomena (see fig. 4.10b)), of which heterodyne
detection is a special case.

Quantum mechanical description of homodyne detection

For the sake of simplicity first the homodyne detection case is treated. The few photon
signal field is now described by the operator a and the local oscillator is represented by the
dimensionless complex amplitude α(t) = α0e

iφ(t) (cd. fig. 4.11). The photodetectors PD1
and PD2 are represented by the annihilation operators

b1 =
1√
2

(
a+ α

)
(4.63)

b2 =
1√
2

(
a− α

)
, (4.64)

respectively. Here again, the change in signs is due to the phase shift of π introduced at the
beam splitter [148]. The photocurrent at both detectors is then (in units of photons) given
by

i1 = b†1b1 =
1

2

(
a†a+ a†α+ aα∗ + |α|2

)
(4.65)

i2 = b†2b2 =
1

2

(
a†a− a†α− aα∗ + |α|2

)
. (4.66)

The sum and difference of these currents i1 and i2 thus yields

i+ = b†1b1 + b†2b2 = a†a+ |α|2 (4.67)

i− = b†1b1 − b
†
2b2 = a†α+ aα∗ . (4.68)

One may identify i+ as the amplitude quadrature and i− as the phase quadrature component.
While the sum current directly gives the number of signal photons plus the intensity of the
local oscillator

i+ = a†a+ |α0|2 (4.69)

the difference current shows a dependance on the local oscillator phase φ of the from

i− = a†α+ aα∗ = α0

(
a†eiφ + ae−iφ

)
(4.70)

= α0

(
(a† + a) cosφ+ i(a† − a) sinφ)

)
(4.71)
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Here, one can recognize the quadrature components [152] given by the opterators

X1 =
1√
2

(
a† + a

)
(4.72)

X2 = i
1√
2

(
a† − a

)
(4.73)

representing the real and imaginary field amplitudes, respectively. Thus we can write the
difference current as

i− =
√

2α0

(
X1 cosφ+X2 sinφ

)
(4.74)

and define the generalized quadrature component as

X(φ) = X1 cosφ+X2 sinφ . (4.75)

Therefore, by controlled variation of the local oscillator phase φ one is able to measure an
infinite set of quadrature components X(φ), each of which represents a projection of the
Wigner function Pφ(Xφ) onto the phase-space plane parallel to the plane spanned by the
normal vector of φ as visualized in fig. 4.11b)). The Wigner function — being a quasi-
propability distribution — fully characterizes the quantum state of the photon and can be
reconstructed by a set of heterodyne measurements for various local oscillator phase settings
[42, 162].

4.2.8. Heterodyne correlation spectroscopy

In this section correlation functions are introduced in order to investigate as to whether and
how frequency information of the photon field can be extracted from few photon signal via
its counting statistics. In a second step it is investigated how the experiment may benefit
from the incorporation of heterodyne detection into such correlation measurements.

Coherence and correlation functions

Correlation functions contain information about the interrelationship of random variables
at temporally or spatially separate points. In the special case of autocorrelation functions
the correlation between one signal at some point in time t and the same signal at another
point in time t+ τ is evaluated. In quantum optics the correlation functions of n-th order at
space-time points ξj = (~rj , tj) (j = 1, ..., 2n) is defined as [163, 164]

G(n)(ξ1 . . . ξn, ξn+1 . . . ξ2n) = 〈E−(ξ1) . . . E−(ξn)E+(ξn+1) . . . E+(ξ2n)〉 , (4.76)

where 〈. . . 〉 = tr{ρ . . . } with the field density operator ρ and the positive frequency part
(photon annihilator)

E+(ξ) =

∫ ∞
0

au(ω,~r)e−iωtdω (4.77)

and negative frequency part (photon creator)

E−(ξ) =

∫ 0

−∞
a†u∗(ω,~r)e−iωtdω (4.78)

(mind the inverted sign convention; these expression correspond to the photon creators a†, b†

and annihilators a, b of sec. 4.2.7). Their sum gives the total complex electric field

E(ξ) = E+(ξ) + E−(ξ) . (4.79)
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4.2 Narrow-band filtering based on heterodyne/homodyne detection

An alternative representation of the positive and negative frequency components is given by
[163, 164]

E+(ξ) = lim
η→+0

1

2πi

∫ ∞
−∞

E(~ξ, t− τ)

τ − iη
e−iωτdτ (4.80)

E−(ξ) = lim
η→+0

1

2πi

∫ ∞
−∞

E(~ξ, t− τ)

τ + iη
e−iωτdτ , (4.81)

respectively. This can intuitively be understood in that a phase variation of the photon field
is equivalent to a time-displacement at the detector [165]. In terms of Glauber’s correlation
function formalism the counting rate of a photon detector is best described by the first-order
correlation function at space-time point ξ = ~r, t and ξ′ = ~r′, t′ as

G(1)(ξ, ξ′) = 〈E−(ξ)E+(ξ′)〉 (4.82)

The first-order correlation function G(1)(ξ, ξ) can therefore be identified with the intensity of
the photon field I(ξ) = E−(ξ)E+(ξ). The second-order correlation function

G(2)(ξ, ξ′) = 〈E−(ξ)E−(ξ′)E+(ξ′)E+(ξ)〉 (4.83)

= 〈: I(ξ)I(ξ′) :〉 (4.84)

represents the correlation of two field intensities at different space-time points ξ and ξ′. Here,
: . . . : denotes normal ordering.
In classical optics the coherence of a light field is referred to as its ability to reveal a signature
of interference. For the purpose of a more general and accurate definition of this property it
is useful to consider the n-th order normalized correlation functions [163, 66, 166]. By means
of the first-order normalized correlation function

g(1)(t, t+ τ) =
G(1)(t, t+ τ)

(G(1)(t, t)G(1)(t+ τ, t+ τ))1/2
(4.85)

it is possible to distinguish between incoherent light (g(1)(ξ, ξ′) ≥ 1), partially coherent
light (g(1)(ξ, ξ′) ≤ 1) and fully coherent light (g(1)(ξ, ξ′) = 1). The second-order correlation
function

g(2)(t, t+ τ) =
〈: E−(t)E−(t+ τ)E+(t+ τ)E+(t) :〉

〈: E−(t)E+(t) :〉 〈: E−(t+ τ)E+(t+ τ) :〉
(4.86)

for a statistically stationary light field is only dependent on the time differences τ and can
therefore be written as

g(2)(τ) = lim
t→∞

g(2)(t, t+ τ) = lim
t→∞

〈: E−(t)E−(t+ τ)E+(t+ τ)E+(t) :〉
〈: E−(t)E+(t) :〉2

. (4.87)

As a measure of the intensity correlation over small time differences τ it characterizes the
photon statistics. Generally, for light to possess second-order coherence the necessary con-
dition is that g(2) = 1 for all space-time points. The photon statistics is then said to be
Poissonian. This is e.g. the case for ideal laser light. For statistically stationary light the
crucial point is the correlation at τ = 0 where for classical thermal light g(2)(0) ≥ 1, for
non-classical light (e.g. Fock states) g(2)(0) ≤ 1 and for coherent light (e.g. laser light)
g(2)(0) = 1. It shall be resumed and emphasized here, that odd-ordered correlation functions
G(n+m)(ξ1 . . . ξn, ξn+1 . . . ξn+m) (with n 6= m) contain information about phase fluctuations
of the electromagnetic field and its degree of monochromaticity, while even-ordered correla-
tion functions G(2n)(ξ1 . . . ξ2n, ξ2n+1 . . . ξ4n) in contrast contain no phase information, but are
measures of the fluctuations in the photon number, i.e. they allow for the determination to
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4.2.8 Heterodyne correlation spectroscopy

the photon statistics [66, 167]. An illustrative example is the case of Fock states and coher-
ent states, both of which possess first-order coherence (g(1) = 1), but exhibit very different
photon statistics and therefore differ in their second-order correlation characteristics, namely

g
(2)
Fock < 0 and g

(2)
coherent = 1.

Concept of correlation spectroscopy

According to the Wiener-Khintchine theorem [126, 127] the frequency distribution of the
optical field can be extracted from the counting characteristics described by the first-order
auto-correlation function G(1)(τ) via Fourier transform [167]

S(ω) =

∫ ∞
−∞

G(1)(τ)e−iωτ dτ . (4.88)

The Fourier transform of the first-order correlation function thus results as the normalized
intensity distribution of the signal field [168]

S(ω) = 〈E−(ω)E+(ω)〉 = I(ω) . (4.89)

Thus, in order to obtain the spectral power distribution S(ω) it is necessary to extract the
G(1)(τ) auto-correlation function from the photocurrents induced the detecting photodiode
(with finite detection efficiency η). It turns out that the auto-correlation function of the
photocurrent

C(τ) = i(t)i(t+ τ) (4.90)

(where the overbar indicates time-averaging) reveals the auto-correlation characteristics

i(t)i(t+ τ) = ηG(1)δ(τ) + η2G(2)(τ) = ηδ(τ)〈I〉+ η2〈: I(t)I(t+ τ) :〉 (4.91)

and a photocurrent squared mean of

i(t)
2

= η2G(2) = η2〈I〉2 (4.92)

such that the photocurrent variance follows as

i(t)i(t+ τ)− i(t)2
= ηG(1)δ(τ) + η2G(2)(τ)− η2G(2) (4.93)

= ηδ(τ)〈I〉+ η2〈: I(t)I(t+ τ) :〉 − η2〈I〉2 (4.94)

as derived in [169]. The power spectrum of the light beam thus follows directly as Fourier
transform of the photocurrent variance [166, 170]

S(ω) =
1

π

∫ ∞
0

cosωτ lim
t→∞

(
i(t)i(t+ τ)− i(t)2

)
dτ . (4.95)

Combination of correlation spectroscopy with heterodyne/homodyne detection

In combining the concept of correlation spectroscopy with the technique of heterodyne/homodyne
detection it is possible to reveal the frequency information of a narrow-band spectral feature
while providing a high signal to noise ratio including a built-in low-noise amplification. The
principle to extract the spectral density directly from the photocurrent’s statistics via a
fast fourier transformation (FFT) is an interesting alternative to the method mentioned in
sec. 4.2.5 and sec. 4.2.6, which basically projected the frequency distribution into an analogue
narrow-band electronic band-pass filter. The employment of a direct FFT, however, comes
along without any filter system.
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Figure 4.12.: Setup for combined balanced heterodyne correlation spectroscopy

This combined technique has recently been applied in experiments connected to the fine-
resolved frequency analysis of very weak optical signals in quantum optics and atomic physics.
A balanced heterodyne detection technique was successfully implemented for the frequency
analysis of motional sidebands of single trapped ions, which arise due to the oscillation of the
ion in the harmonic trap potential [171]. In that case an astonishing frequency resolution of
61 mHz could be achieved.
On the basis of this technique ultra-high frequency resolution is enabled for even few to
single-photon signals. It is thus worthwhile considering the implementation of a homo-
dyne/heterodyne correlation spectroscopy for the nanofiber experiment in the Rauschenbeutel
group, especially if EIT is to be investigated on the single-photon level.
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Experiment and Measurements
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5. Experimental Setup and Characterization
of the OPLL

The first section of this chapter is intended to give a short introduction to the nanofiber based
atom trap experiment performed in the Rauschenbeutel group. The parts of the experiment
which have been treated in this thesis follow below and in the two subsequent chapters. The
second part of this chapter represents a report documenting the reconstruction of the optical
phase-locked loop. It is completed by both an in-loop and an out-of-loop measurement and
characterization of the residual phase noise between control and probe laser.

5.1. The experimental setting of the nanofiber experiment

The future aim of the main experiment is to probe electromagnetically induced transparency
(EIT) in cold Cs atoms trapped in the evanescent field around an ultrathin optical fiber.
The trap is based on a theoretical proposal of Le Kien et al. of 2004 [172] on a two-color
evanescent fiber trap. Following this proposal radial confinement of the Cs atoms is provided
through a suitable superposition of a red and blue detuned dipole trap beam sent through the
fiber partly propagating as evanescent field around the nanofiber (see fig. 5.1a)). Azimuthal
confinement is induced by the usage of linear polarized red and blue detuned light modes
as visualized in fig. 5.1c), which brakes the rotational symmetry. The trap configuration
chosen for the Rauschenbeutel experiment is a refined version of that nanofiber trap, which
includes an additional spatial confinement in the longitudinal direction [9]. By coupling in
the red detuned light mode from both ends into the nanofiber a standing wave is generated
as plotted in fig. 5.1b). This leads to an effective 3d confinement of Cs atoms lined up above
and below the fiber as depicted in fig. 5.1d). Thus, this system possesses a novel twofold 1d
optical lattice of Cs atoms. With the current trap configuration the Cs atoms are trapped
in an approximate distance of 230 nm from the fiber surface, while the nanofiber diameter is
around 500 nm over the tapered region of approximately 5 mm length [8].
For the purpose of loading the Cs atoms into the nanofiber trap they first have to be trapped
and cooled in the vicinity of the nanofiber. This is accomplished with a magneto-optical trap
(MOT) whose center point is in the vicinity of the nanofiber. The MOT loading procedure

Figure 5.1.: Depiction of 3d confinement of Cs atoms in an evanescent nanofiber trap accomplished via
a) the suitable superposition of a red and blue detuned trap beam, b) the formation of a
standing wave of the red detuned beam and c) using linear polarized red and blue detuned
light modes. d) Visualization of the resulting twofold 1d optical lattice trapping potential
wells for Cs atoms (all modified; originals from [9])
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Figure 5.2.: a) Hyperfine level scheme of the Cs D2-line in cesium (line data adopted from [173]) b)
Scheme of the experimental setup probing EIT in Cs atoms trapped around a nanofiber

takes ∼ 2 s. Within the following 80 ms the atoms are cooled further and transferred into the
nanofiber trap. It has turned out that letting the two-color nanofiber trap run continuously
leads to best trapping efficiencies around the nanofiber [9]. In this experiment the blue and
red detuned fiber trap beams are realized by a 1064 nm and a 780 nm laser beam being both
far detuned with respect to the D1 (894 nm) and D2 (852 nm) lines in Cs. The cooling beams
are both on the D2 line of Cs, namely on the 62 S1/2 F = 4→ 62 P3/2 F

′ = 5 transition and
a repumper is implemented on the F = 3→ F ′ = 4 line.

The levels, which will be used for the realization of EIT lie on the D2 line of Cs as well and
are shown in fig. 5.2a). The weak probe laser couples between the F = 4 → F ′ = 4 levels
and the strong control laser dresses the F = 3 → F ′ = 4 transition. The 62 S1/2 F = 3 →
62 S1/2 F

′ = 4 transition is dipole forbidden. For the detection of the few photon EIT probe
signal an avalanche photodiode (APD) type C30902E from PerkinElmer will be used.

5.2. Aims and topics of this thesis

The main experiment can be divided into three parts: The first contains the laser beam
preparation including frequency and phase stabilization setups. The second is the central
part of the experiment consisting of the vacuum chamber containing the nanofiber, the Cs
reservoir and the atom trapping and cooling arrangement. The third is the detection unit,
where the separation of the weak EIT probe signal from all other co-propagating laser beams
is accomplished and its power is measured.

In the context of this thesis parts of the first and third category of the main experiments
were treated. Specifically, the first major part of the present work was devoted to the beam
preparation of the EIT probe and control laser as well as their optical phase-locked loop
(OPLL). The structural plan of the probe beam preparation setup was developed by the
group’s PhD students and the control beam preparation setup as well as the OPLL unit was
designed and constructed within the framework of a Diplom thesis [15] in 2010. After the
experiment moved from Mainz to Vienna in November/December 2010 these setups were
partly rebuilt, completely readjusted and inspected for their performance in the context of
this thesis. The other part of the present work deals with the investigation of two options for
narrow-band filtering of the EIT probe signal. Both filtering with a diffraction grating and
filtering based on heterodyne/homodyne detection techniques were theoretically elaborated.
Finally, a homodyne test setup was realized where a saturation spectroscopy took the role of
the nanofiber experiment.
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Figure 5.3.: Experimentally achieved polarization spectroscopy signals revealing the hyperfine transitions
on the Cs D2 line of a) the probe laser from F = 4 → F ′ and b) the control laser from
F = 3 → F ′. (The expression i× j denotes the crossover resonance between level i and j.)

5.3. Probe and control laser preparation

Both lasers are extended cavity diode lasers and are equipped with both an injection current
and temperature controller each. The probe laser is a Sacher LION-SYS-500 operating in
Littman-Metcalf configuration. The control laser is a home made diode laser of the Littrow
type presented in [99] with a Spectra Diode Labs SDL-5401 laser diode. For the experiment
these lasers need to be stabilized to optical transitions between distinct hyperfine levels of the
Cs D2 line as described above. The frequency stabilization of the control laser is implemented
via polarization spectroscopy on a room temperature Cs cell. For that purpose a compact
polarization spectroscopy configuration is implemented based on the setup presented in [120].
In fig. 5.4 a scheme of the optical pathways of the laser preparation setup is depicted. The
optical path of the probe laser is drawn in green, the one of the control laser in red, and paths
where probe and control beam propagate in a mode-matched superposition are marked in
blue. The probe laser is both phase and frequency stabilized with respect to the control laser
via an optical phase-locked loop designed in [15]. For phase-lock independent experiments
the probe laser, however, was provided with a separate polarization spectroscopy unit as well.
Typical experimentally achieved polarization spectra of both the probe and the control laser
lock transitions are displayed in fig. 5.3a) and b), respectively.

In fig. 5.4 the double-pass AOM configurations (see e.g. [174, 175]), which shift the optical
frequencies of certain branches of the probe and the control beam are displayed. They
provide an option for detuning the optical frequencies by ±(150− 250) MHz with respect to
the actual lasing wavelength. This range is determined by the AOM modulation efficiency

Table 5.1.: Settings of both the probe and control laser preparation setup (frequencies determined based
on transition values given in [173]) (see text for details).

parameter probe laser control laser beat signal freq.

lasing frequency F = 4→ F ′ = 3 F = 3→ F ′ = 4
(corresp. transition):
Cs lock resonance: F = 4→ F ′ = 3 F = 3→ F ′ = 2× 4
AOM frequency: 100.621 MHz 88.114 MHz
frequency shift of beam: +201.242 MHz −176, 228 MHz
light to nanofiber: F = 4→ F ′ = 4 F = 3→ F ′ = 4

beat signal on fPD1 & fPD2: F = 4→ F ′ = 3 F = 3→ F ′ = 4 9.393874 GHz
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5.3 Probe and control laser preparation

Figure 5.4.: Detailed scheme of the optical beam path for the preparation of probe and control beam
(modified; original from [15])

characteristics. In the case of the probe laser the AOM1 is set up in a branch parallel to the
Cs polarization spectroscopy lock unit and it is implemented in the +1st diffraction order.
This leads to a positive frequency shift of the post-AOM-beam with respect to the Cs lock
frequency (and thus the probe lasing frequency) of two times the AOM1 frequency. For the
control laser the AOM2 is passed in −1st order sequentially before the beam propagates
through the Cs lock, such that the control lasing frequency is effectively locked to plus
two times the AOM2 frequency with respect to the Cs lock transition. The different beam
branches coupled out or detected at the various ends of the beam preparation setup in fig. 5.4
will correspond to different optical transition frequencies depending on their path through
the setup experiencing eventual frequency shifts or optical beating with another laser beam.
In table 5.1 the AOM frequency settings used for the probe and control laser preparation and
corresponding optical transitions in the various output ports are listed. In order to yield the
desired F = 4→ F ′ = 4 transition frequency on the probe and the F = 3→ F ′ = 4 transition
frequency on the control output coupler to the nanofiber experiment the Cs polarization
spectroscopies of the probe has to be locked to the F = 4 → F ′ = 3 hyperfine transition
and the control laser spectroscopy has to be locked to the F = 3 → F ′ = 2 × 4 crossover
resonance. Of course, the probe frequency lock is finally taken over by the optical phase-
locked loop, but still it will be necessary to preparatorily tune the probe laser to the vicinity
of that F = 4→ F ′ = 3 hyperfine feature by means of adjusting the ECDL cavity piezo while
observing the probe polarization spectrum before actually starting the OPLL.
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Figure 5.5.: A scheme of the optical phase-locked loop developed in [15] slightly modified in this work.

5.4. The implementation of the optical phase-locked loop

The superposed beat signal of probe and control laser on the fast photodiode (fPD1) will —
in accordance with the previous discussion — consist of the probe on the F = 4 → F ′ = 3
and the control on the F = 3 → F ′ = 4. The set frequency of this beat note at ∆ωset =
9.393 874 GHz is very high and thus a very fast photodetector is needed. For this purpose
an GaAs PIN detector from EOT (type ET-4000) with a very high cut off frequency of
12.5 GHz is implemented. For the purpose of maximal interference of both beams on the
fast photodiode their powers were chosen to be 4.5 mW each (incidence power limit of the
ET-4000: 10 mW). As previously described in sec. 3.3.2 and displayed in fig. 3.6 the OPLL
converts this signal down by mixing it with a reference signal from a first local oscillator
LO1. The resulting difference frequency between ∆ωset and ∆ωLO1 is one input to the phase
sensitive detector (PSD) and is to be compared with the other input from a second local
oscillator signal LO2. In this OPLL, instead of a normal PSD a phase-frequency detector
(PFD) was chosen, which is able to detect both the phase and frequency difference between
its two inputs [15]. The operating bandwidth of the PFD determines the necessary detuning
of ∆ωLO1 from ∆ωset. In the context of the Diplom thesis [15] the digital phase-frequency
detector HMC439QS16G from Hittite Microwave Corporation with a frequency input range
of 10–1300 MHz was deemed appropriate. Thus the combination of a Kuhne local oscillator
MKU LO 95 PLL running at ∆ωLO1 = 9.486 GHz and a frequency tunable Agilent N9310A
signal generator representing the LO2 at ∆ωLO2 = 92.126 MHz was chosen. Here, the Agilent
signal generator provides a 10 MHz output, which is fed into the LO1 in order to stabilize it
with respect to the LO2.

For the present thesis the optical phase-locked loop was rebuilt in accordance with the plans
and descriptions found in [15]. After each step of the radio frequency electronics depicted
in fig. 5.5 the actual values obtained on the spectrum analyzer were compared with the
theoretically expected signal strengths and frequencies. In compliance with the limits for the
input and output values of the microwave components and their prescriptive voltage supply
given in the respective data sheets the beat signal strength in front of the phase sensitive
detector was found to deviate from the values found in [15]: here, it was measured to be
+15.6 dBm, which is around ten times higher than specified in [15]. The reason for this
deviation could not be identified. In order not to exceed the permitted input power of the
Hittite digital phase-frequency detector of +10 dBm the fourth amplifier (Mini-Circuits ZFL-
500HLN+) used in [15] directly before the PFD was thus omitted and additionally the power
supply of the preceding third amplifier (Mini-Circuits ZFL-500LN) was chosen to be 12 V
instead of 15 V. That way the signal input to the PFD could be reduced to a non-hazardous
value of +6 dBm. This corresponded to a signal strength of −19 dBm at the 10% output of
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5.5 OPLL performance inspection by both an in-loop and out-of-loop measurement

the directional coupler (Mini-Circuits ZFDC-10-1), where the power spectral density of the
beat note phase noise can be observed while the OPLL is running.

Within [15] a special loop filter combination was developed driving three feedback paths. Slow
phase fluctuations up to 160 Hz are selected by the loop filter to actuate the laser resonator
piezo element. Fluctuations within the range from some 100 Hz to 100 kHz are filtered out
and sent to the probe’s laser current controller as a modulation input. A very fast path for
phase fluctuations above 100 kHz up to 100 MHz uses the AC input of a Bias-T directly
attached to the laser diode, while the injection current controller output is connected to the
Bias-T DC input. The slow and medium path loop filters are basically PI controllers. The
fast path loop filter presented in [15] was designed empirically based on computer simulations.

5.5. OPLL performance inspection by both an in-loop and
out-of-loop measurement

It is common practice to accomplish the performance inspection of a stabilization system by
an analysis of the error signal given out by the controller. In [15] the performance inspection
of the designed OPLL was carried out by an observation of the beat note signal tapped
at the directional coupler after the mixer and low pass filter (see fig. 5.5). It has to be
taken into account that these measurements neither determine the absolute phase stability
of the slave (i.e. the probe laser) nor do they prove the relative phase stability between
master and slave laser in the strict sense. This is due to several circumstances: 1) The
beat note phase noise characterization does not characterize the performance of the VCO
(i.e. the probe laser) alone, but includes the contribution of the reference oscillator (i.e.
the control laser) as well. Thus, phase noise of the control laser propagates through the
phase-locked loop and is acquitted from the point of view of the PFD by actuating the probe
laser. However, this effectively leads to the control laser noise being conveyed to the probe
laser. Accordingly, even if the beat signal at the directional coupler indicates proper phase
stability the probe laser’s phase might actually fluctuate significantly. Consequently, at the
most a stable and narrow beat signal at the position addressed above lets one conclude for a
high relative phase stability between probe and control laser. 2) But not even relative phase
stability is boundlessly ensured, as one has to consider the PLL behind the optical detection
to work essentially toward a vanishing error signal. It is important to note that eventual
noise added to the beat signal during the detection process on the fast photodiode or during
the subsequent microwave signal processing will be spuriously antagonized by the PLL in the
form of feedback to the probe laser. This means that all OPLL artifact noise will directly be
conveyed to the probe laser’s phase performance; indeed the better the PLL, loop filter and
actuating units work, the worse that preceding noise will be conveyed to the probe laser.

A solution to the first circumstance is difficult, as for the inspection of phase noise at optical
frequencies one would always be restricted to a heterodyne detection technique involving
another laser. In many, experiments, however an absolute phase stability is not necessary
anyway, but only a relative phase coherence between the probe and control laser is desired.
Considering the second point, however, it should have become clear that an objective phase-
lock performance inspection has to be accomplished from ‘outside’ the optical phase-locked
loop, not by means of the error signal from ‘within’ the OPLL. For that reason in the present
thesis a second fast photodiode (fPD2) was set up for an ‘out-of-loop’ phase noise inspection
of the beat signal as depicted in fig. 5.4. Fig. 5.5 shows the in-loop and out-of-loop outputs,
at which the OPLL characterization measurements were recorded in this work.

The ‘out-of-loop’ measurement of the beat signal’s phase noise power spectral density should
be as independent from the actual OPLL as possible and contain as little additional noise
sources as needed in order to obtain a meaningful conclusion about the OPLL performance.
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Figure 5.6.: A scheme of the optical phase-locked loop developed in [15] showing the modification for the
performed in-loop and out-of-loop beat signal measurement.

This supposes the out-of-loop measurement to contain no more than a fast photodetector of
low noise at best. Here, an Hamamatsu ultrafast MSM photodetector type G4176-03 was
chosen as out-of-loop photodiode, followed by a Mini-Circuit Bias-Tee type ZX85-12G+. On
the other hand, it is desirable to obtain two directly comparable measurements of the beat
signal from inside and outside of the loop. This means, the in-loop signal has to be tapped
not until after amplification and mixing with the LO1, but directly after the signal detection,
because each additional electronic processing step may tamper with the original beat signal
to be compared. Also the spectrum analyzer characteristics may vary for different signal
strengths and frequency domains. For this purpose the OPLL setup in fig. 5.5 was slightly
modified by inserting a second directional coupler (Agilent 773D) directly behind the fPD1.
This directional coupler is specifically designed for high signal frequencies from 2 to 18 GHz
and offers a −20 dB attenuated coupling output, which can be used for signal inspection. The
basically unchanged photodiode signal is parallely forwarded from the main line output over
to the original OPLL electronics. That way only a minor intervention of the original OPLL
design is ensured. It is, however, necessary to amplify the very small signal from the −20 dB
attenuated coupling output in order to obtain a signal of strength comparable to that of the
out-of-loop measurement. For this purpose a Mini-Circuit ZX60-14012L+ amplifier suited for
up to 14 GHz and offering a 12 dB amplification was implemented at the directional coupler
output before directing the signal to the spectrum analyzer. The out-of-loop detection was
realized as depicted in fig. 5.4 on the fPD2.

5.6. Characterization of the phase lock performance

In the following the outcome of the measurements performed at the OPLL are presented. To
begin with, some information concerning the data evaluation from the spectrum analyzer is
given followed by the presentation of the in and out-of-loop measured noise power spectral
densities of the beat signal.

5.6.1. Data analysis of the in-loop and out-of-loop beat signal data

In order to normalize the noise power density measured with a specific resolution bandwidth
RBW to the conventional 1 Hz bandwidth it is necessary to subtract 10 log(RBW ) from the
measured data [132, 176] (here log denotes the logarithm to the base 10). Furthermore, if
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5.6 Characterization of the phase lock performance

a noise correction is performed, the noise data has to be subtracted taking into account the
logarithmic data representation. Assuming, the original measurement data points x are given
in dBm (decibel with respect to 1 mW) the noise and bandwidth corrected data follow as

xcorrected[dBm/Hz] = 10
(

log
(
10(x[dBm]/10) − 10(xnoise[dBm]/10)

)
− log

(
RBW

))
= 10 log

(
10(x[dBm]/10) − 10(xnoise[dBm]/10)

RWB

)
. (5.1)

In order to convert these data to the more demonstrative and convenient representation of
dBc (decibel with respect to the carrier peak power xcarrier) the xcorrected have to be processed
according to

xcorrected[dBc/Hz] = 10 log

(
10(xcorrected[dBm/Hz]/10)

10(xcarrier[dBm/Hz]/10)

)
. (5.2)

Moreover, the power spectral density is conventionally given as a function of the offset fre-
quency f from the carrier peak, rather than in dependance on the actual optical or electrical
signal frequency. For that reason all spectra were subject to a frequency offset correction.
The center frequency of the beat signal was observed to fluctuate by approximately ±20 Hz
per ∼ 30 s around a central position of 9393.872892 MHz. This drift required an appropriate
frequency correction for each curve measured individually.

For the detection of both the in-loop and out-of-loop signal an Anritsu MS2718B digital
spectrum analyzer with a fine resolution bandwidth of only 1 Hz was employed. This analyzer
type gives out 551 data points for each power spectrum measurement, whereas each data point
represents averaged values from several internal measurements. During the data analysis an
important fact about the data acquisition of the Anritsu MS2718B was found: Measurements
with a frequency span smaller than 551 Hz with the minimal resolution bandwidth of 1 Hz lead
to unusable data, as the analyzer gives out multiple power values per frequency component.
These power values can not be averaged by post-processing as the manufacturer confirmed.
Thus, the scan with the finest RBW of 1 Hz was conducted at a span of 1 kHz.

5.6.2. Double-sideband power spectral densities of the beat signal

Fig. 5.7a)-f) shows the double-sideband power spectral density LDSB(f) (cf. eq. (3.31)) of
the in-loop (green line) and out-of-loop (blue line) beat signal for a selection of different
frequency spans. All spectra were subject to a resolution bandwidth correction. For a better
classification of the measured data the curves are accompanied by the background noise
curves (red line). The spectra are normalized to dBc with respect to the carrier peak power
of xcarrier ' −68.5 dBm of the in and out-of-loop beat signal, which was determined at a
span of 1 kHz using the minimal resolution bandwidth of 1 Hz.

In fig. 5.7a) the power of the main carrier peak is distributed between f = −35 Hz to
f = 35 Hz. First spurious noise peaks can be identified to originate from the mains frequency
at 50 Hz and its harmonics with peak powers below −65 dBc. As already asserted in [15]
the noise peaks distributed around the 2 kHz region which can be seen in fig. 5.7b) can
be attributed to unidentified electronic noise sources in the lab similarly to the relatively
pronounced noise peak at ' 28.5 kHz observed in fig. 5.7c). In fig. 5.7d) a very weak crosstalk
contribution between the medium and the fast control paths can be seen in the region around
300 kHz. The large bumps at around 2.4 MHz mark the border of the overall loop bandwidth
of the OPLL. Fig. 5.7e) reveals that the beat signal phase noise distribution touches the noise
floor at approximately 8 GHz. It turned out, that this noise floor is dominantly determined
by the spectrum analyzer characteristics, i.e. it persists even for the ‘free’ spectrum analyzer
without cable connection to the experiment.
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5.6.2 Double-sideband power spectral densities of the beat signal

Figure 5.7.: Double-sideband noise power spectral densities LDSB(f) measured at varying spans and reso-
lution bandwidths (blue: out of loop measurements, green: in loop measurements, red: noise
background). On all spectra a bandwidth correction was performed.

For measurements with a very small frequency span it was noticed that the beat signal peak
moves around the central frequency value of 9393.872892 MHz with a variation amplitude
of approximately 20 − 30 Hz within half a minute. On the other hand, for measurements
of small span and fine resolution bandwidth the measurements took several seconds. These
circumstances made the determination of the 3 dB width (FWHM) of the carrier peak very
difficult. In [15] a measurement with a resolution bandwidth of 10 Hz gave rise to a beat
signal linewidth (FWHM) of below 10 Hz. Here, with a resolution bandwidth of 1 Hz the
carrier could be estimated to have a width of around 5 Hz. As a possible reason for this
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5.6 Characterization of the phase lock performance

Figure 5.8.: Single-sideband noise power spectrum for offset frequencies from the carrier ranging from
f = 35 Hz to 1 GHz (the individual DSB curves were subject to noise correction (see text))

residual oscillation of the beat signal the frequency error of the Agilent N9310A signal gener-
ator (used as LO2 and providing the 10 MHz reference onto which the LO1 is stabilized) can
be considered. After consultation with Agilent the reference frequency error is given approx-
imately by ±(2 · 10−6), i.e. ±20 Hz. The uncertainty of the RF frequency output is given
as ±20 MHz · fLO2/(10 MHz), i.e. 180 Hz in this case. With respect to the phase-frequency
detector these two errors are anti-correlated and can thus be expected to cancel partially.
The overall frequency error of the beat signal can hence be assumed to be approximately
160 Hz. As a consequence, this frequency error will lead to a washed out carrier peak in the
DSB power spectral density and can be considered as the reason for the observed residual
frequency oscillation of the carrier peak in time. It is questionable, if the resulting relative
frequency error between the control and the probe laser is acceptable for the performance of
EIT in Cs at the nanofiber.

5.6.3. Single-sideband power spectral density of the beat signal

In fig. 5.8 the corresponding single-side band phase noise spectrum LSSB(f) (cf. eq. (3.31))
of the in-loop and out-of-loop beat signals are displayed within the offset frequency range
from 10 Hz up to 1 GHz from the carrier. These spectra represent a composition of 14
individual measurements of the double-side band spectra received for different frequency spans
and correspondingly adapted resolution bandwidths around the carrier peak, respectively.
All single measurement curves were subject to noise and resolution bandwidth correction
according to eq. (5.1). Even though a noise correction was performed on the data the resulting
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5.6.3 Single-sideband power spectral density of the beat signal

phase noise spectrum between f = 5 MHz and f = 1 GHz has to be treated with caution:
in this frequency regime the logarithmic representation brings features to light which are
more a signature of the noise correction procedure (suffering from the stochastic nature of
the noise curve) than of the actual phase noise spectral density of the beat signal. Finally,
the data were rescaled to dBc/Hz and combined such that for each offset frequency sequence
the measurement with the finest resolution bandwidth available was adopted. This technique
comes along with a certain degree of information loss over the total spectral range: The further
away a considered phase noise component is from the carrier peak the lower was the resolution
bandwidth with which it was measured. Thus, narrow and high noise peaks will appear the
more washed out the further away they occur from the carrier. However, the total phase
noise power in the spectrum will be accurately reproduced in the representation presented in
fig. 5.8, as the spectrum analyzer performs a measurement of the integrated power per RBW
over the specified span rather than a discrete sampling of the power distribution.
For clarity it shall be noted that the small structure seen in the range from 107 Hz to 109 Hz
is negligible and that it is more due to the noise correction procedure than due to actual
phase noise contributions, as in this range the beat signal and background noise are of the
same order of magnitude (see fig. 5.7e)).
Based on the corresponding phase noise power spectral density SSSB(f) (in units of Hz) the
value for η, i.e. the fraction of the carrier peak power compared to the power of the total
spectrum power and the residual phase noise σ2 can be extracted (cf. eq. (3.32)). The carrier
power was determined as the integral power over the main peak in fig.5.7a) SDSB(f) between
f = −35 Hz and f = 35 Hz while the power of the total phase noise spectrum was integrated
over LSSB(f) from f = 0 Hz and f = 1 GHz yielding

ηin = 97.34% and ηout = 95.33% (5.3)

corresponding to a mean square phase noise of

σ2
in = 0.0270 rad2 and σ2

out = 0.0478 rad2 (5.4)

for the in-loop and out-of-loop spectra, respectively.
The results obtained in this work can be assumed to be more accurate than those yielded
earlier in [15], as the latter were conducted at coarser resolution bandwidths and the SSB
spectrum was composed of only four individual measurements of the DSB beat signal. Apart
from a consequently somewhat different measurement and evaluation procedure the results
obtained in this work are in good agreement with the values obtained in [15]. For comparison,
in [15] the residual phase error of the OPLL between 100 Hz and 7.5 MHz was found to be
σ2 = 0.038 rad2 and the power fraction in the carrier was determined to be η ≈ 96%.
The contribution of the 50 Hz noise peak was omitted in that evaluation [15] for an unclear
reason. The measurements conducted in the present work, however, indicate that these mains
frequency related noise peaks are not detection related, as for the out-of-loop measurement
the power supply of the photodetector and Bias-Tee combination was a battery, but still a
pronounced 50 Hz peak was visible just like for the in-loop measurement. The values of the
fractions ηin,out and the mean square phase noises σ2

in,out obtained from the present evaluation
procedure contain all observed noise peaks.
As suspected, the in-loop measurement reveals slightly better performance of the OPLL than
the more objective out-of-loop measurement, which is basically independent from the con-
trollers’ inherent noise. Notwithstanding, both measurements indicate a very decent phase-
lock performance of the OPLL and the residual phase noise reaches values, which are signifi-
cantly lower than those achieved in [177] and comparable to those in [131, 178, 179]. Thus,
the probe and control laser are now again suitably prepared for coherent interactions, e.g.
with atomic ensembles.
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6. Proposal for a Narrow-band Diffraction
Grating Filter

In the Rauschenbeutel nanofiber experiment the few photon probe signal is immersed in a
fluorescence background of the nanofiber, caused by one of the Cs trap laser beams. As the
fluorescence light is broadband compared to the EIT probe signal it can be assumed that
narrow-band filtering of the signal will increase the signal to noise ratio.

At the beginning of this chapter a short resume of the latest fiber fluorescence characterization
is given. Subsequently, a proposal for an experimental realization of a narrow-band filter
system using a highly dispersive diffraction grating is presented, which was developed based
on the theoretical investigations in the preceding theory chapter. The aim was to realize a
rather simple setup which would bring about a filter window of maximally ±0.1 nm around
the probe center wavelength at 852.347 nm while reducing the actual probe signal as little as
possible. Such a filter would lead to an improvement of the signal to noise ratio of at least
one order. Originally it was planned to realize the diffraction grating filter proposed here,
but due to massive delivery problems with the grating company this experiment could not
be conducted. Thus, this chapter presents the elaborated setup plans including a list of the
already ordered main components in order to enable a later realization of this setup.

6.1. Characterization of the fiber fluorescence

The spurious fluorescence light is induced in the fiber by the blue detuned trap beam at
780 nm with a power of 25 mW, which is co-propagating with the probe beam in the fiber.
Recently, the spectral distribution of the fluorescence light was determined by the PhD stu-
dents of the Rauschenbeutel nanofiber experiment. For that characterization two optical
interference bandpass filters were inserted in the fluorescence beam exiting the nanofiber
— as depicted in fig. 6.1 — before it was directed to an Avantes Avaspec ULS2048x16
(600− 1100 nm) spectrometer (equipped with an AVA OSF 600-3 filter and an AVA slit 50).
The first filter had a 40 nm transmission window around 850 nm to cut off the blue detuned
trap beam at 780 nm and the second bandpass filter possessed a 10 nm transmission window
around 850 nm. Both of these interference filters have a signal transmission of ' 70% and
therefore reduce the overall probe signal by a factor of 2. Apart from that associated signal
loss, the results of the spectrometric measurement in fig. 6.2 show that a significant fraction
of fluorescence light nevertheless co-propagates with the signal.

The envelope of the spectral power distribution of the fiber fluorescence signal shown in

Figure 6.1.: Simple scheme of the experimental setup for the analysis of the spectral power distribution
of the fiber fluorescence co-propagating with the few photon probe signal.
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6.1 Characterization of the fiber fluorescence

Figure 6.2.: Spectrum of the fluorescence light induced by the blue trap laser at 780 nm with a power
of 25 mW measured after passing two interference filters with a transmission window of
(850± 20) nm and (850± 5) nm (dashed blue line), respectively. The position of the probe
beam (not measured here) is marked as dashed red line. The inset shows a magnified view of
a narrow-band region around the probe laser line showing the desired filter window of 0.1 nm.

fig. 6.2 has a FWHM of approximately 10 nm centered around 852 nm due to the interference
filters used for the spectral measurement. The data reveal that in this setting the probe and
fluorescence signals are within a range of ±5 nm around the probe’s central frequency at
852.3 nm of the same order of magnitude, i.e. around 5 pW. However, the EIT probe signal
is assumed to have a linewidth in the order of Hz or kHz and is therefore several orders of
magnitude narrower than the broadband distributed fluorescence light. Thus, if the filter
window could be narrowed by a factor of 10 or 100 a significantly improved signal to noise
ratio would be achievable. But by means of interference filters this is not easily achievable.
Interference filters with bandpass width in the nm range are very hard to get for the desired
wavelengths or very expensive, if custom-made. Hence, other options for filtering the probe
signal have to be considered.

As the EIT probe signal is expected to be linearly polarized it suggests itself to consider a
polarization dependent separation of the signal from the fluorescence. Further analysis of the
fiber fluorescence showed, however, that the fluorescence light is only weakly polarized. The
data in fig. 6.3a) reveal this slight polarization dependence, which was probed by directing the
fluorescence through a rotatable polarizer and measuring the transmitted power. The data

Figure 6.3.: The fluorescence signal is a) only slightly polarized and b) depends linearly on the blue detuned
trap laser intensity.

68



can be fitted with a general superposition of two orthogonal linear polarization components
Px(θ) ∝ E2

ox cos2 θ and Py(θ) ∝ E2
oy sin2 θ with the component’s electric field amplitudes Eox

and Eoy. This gives the fluorescence power Pfl as a function of the polarization projection
angles θ as

Pfl(θ) = (Poy − Pox)
(

sin(θ − θ0)
)2

+ Pox . (6.1)

A fit of the data by means of this fit function yields the powers of the corresponding po-
larization components Pox = (2.31 ± 0.01) pW and Poy = (1.02 ± 0.04) pW with the
corresponding basis angle θ0 = 17.3◦ ± 0.8◦. The corresponding maximal and minimal
values of the fluorescence power Pfl(θ) found in the respective polarization planes θ are
max{Pfl} = Pfl(107.3◦) = (3.54 ± 0.06) pW and min{Pfl} = Pfl(17.3◦) = (2.31 ± 0.01) pW.
Thus, the best extinction ratio achievable with a polarization filter is

max{Pfl} −min{Pfl}
max{Pfl}+ min{Pfl}

' 0.21 . (6.2)

Therefore, the fluorescence cannot be sufficiently separated from the EIT probe signal using
simple polarization filters.

Moreover, further investigations showed that the fluorescence power Pfl has a linear depen-
dence on the power of the blue detuned trap laser at 780 nm P780nm as can be extracted from
fig. 6.3b). A linear regression reveals the relation

Pfl(P780nm) = (122.0± 5.1)P780 nm · 10−12 − (107± 67) fW . (6.3)

Hence, a slight alteration of the dipole trap laser powers will not lead to a significant improve-
ment of the signal to noise ratio as well. Therefore, the implementation of a more advanced
narrow-band filter system is indispensable.

6.2. Realizations of a simple narrow-band optical filter system

For the purpose of narrow-band filtering of optical signals there are several physical systems
that may come to mind. A frequently implemented option is based on the narrow transmis-
sion peaks of optical Fabry-Pérot resonators [133, 134]. But it lies in the nature of the Airy
transmission function of cavities that the more narrow-band the transmission peaks are the
smaller the free spectral range (i.e. the frequency distance of those transmission peaks from
each other) will become, if the cavity finesse cannot be increased by the same factor (e.g.
due to fabrication limits or unreasonable costs). A suitable sequential combination of several
optical resonators with different transmission linewidths and free spectral ranges can compen-
sate for that drawback. In this case however, several control loops (e.g. a Pound-Drever-Hall
lock) will be necessary for stabilizing the frequency positions of the cavities’ resonances to the
signal frequency [180]. Moreover, in order to achieve very narrow linewidths and to prevent
the loss of a significant fraction of the signal power the cavity mirrors will need to feature
very high reflectances. All together this will result in a rather pricey overall setup.

On the search for simpler, more cost-efficient and eventually less lossy filter options a diffrac-
tion grating could be considered. In that case, the wavelength dependence of the diffraction
angle is for example exploited in grating mono and polychromators. For filter windows of
sub-nm widths however the setup has to be highly specialized for the particular wavelength
in order to achieve the high angular dispersion needed. In the following a proposal for such
a highly dispersive diffraction grating setup is presented.
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6.2 Realizations of a simple narrow-band optical filter system

Figure 6.4.: Angular dispersion of the first diffraction order of a light ray of λ = 852.3 nm in dependance
on the incidence angle α for gratings with different groove densities: with G = 1200/mm
(red curve), G = 1480/mm (blue curve) and G = 1800/mm (green curve) (for details see
text).

6.2.1. Frequency filtering with a diffraction grating

For the application presented in sec. 5.1 a filter with a transmission window width in the
sub-nm range is necessary. Filtering as narrow-band as this by means of a grating is very
challenging. In sec. 4.1.2 of the theory chapter general expressions of the lower bounds for
the incidence angle in eq. (4.11) and the upper bounds of the groove density in eq. (4.13)
were derived. In order to obtain high angular dispersion it is of critical importance to choose
a suitable combination of groove density and incidence angle lying as close as possible to the
line of divergence defined as

βm(G,α) = arcsin
(
mλG− sinα

)
= ±π

2
(6.4)

(cf. sec. 4.1.2). In satisfying this condition the grating operating point will be situated on the
fast varying slope of the angular dispersion enabling maximal angular resolution. However,
the operating point still needs to be chosen in the regime, where a stable mode of operation
can be ensured.
In the experimental context a quantity of direct interest was found to be the variation of the
angular dispersion dβ/dλ with respect to the incidence angle α as it essentially determines
the stability of the setup. Inevitable mechanical perturbations (e.g. vibrations on the optical
table) will lead to small variations of the incidence angle. Large values of the local gradient

∂

∂α

(
dβm
dλ

)
(α,G) = −mG cosα (mλG− sinα)

(1− (mλG− sinα)2)3/2
, (6.5)

i.e. the steepness of the flanks near the boundary line of eq. (6.4), will correspond to large
deviations of the operation points. Gratings with higher values of G will possess higher
angular dispersion than gratings with smaller G for equally stable configurations, i.e. where
the values of ∂

∂α(dβm
dλ ) are the same.

As an illustration of this relationship in fig. 6.4 the angular dispersion around 852.3 nm is
displayed in dependance on the incidence angle α for three different grating constants. These
curves are basically cuts through the 3d angular dispersion plotted in the theory chapter in
fig. 4.2. If for example for a grating with G = 1480/mm (blue curve) an incidence angle of
α = 17◦ can be supposed to possess a stable operation, then for a G = 1200/mm grating (red
curve) the slope ∂

∂α(dβm
dλ ) is significantly steeper at the point of similar angular dispersion,

which comes along with a more instable performance. For a G = 1800/mm grating (green
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6.2.2 Setup proposal and expected performance of a diffraction grating

Figure 6.5.: a) Grating efficiency curves from a rigorous simulation by Horiba for the diffraction efficiency
into the first order of rays at λ = 800 nm, λ = 850 nm and λ = 900 nm for the Horiba
grating type 52428090 with 1480 grooves/mm (modified; original provided by Horiba)
b) Wavelengths of the positive and negative first three diffraction orders (grey: m = 0, red:
m = −1, orange: m = −2, yellow: m = −3, red: m = +1, blue: m = +2, purple:
m = +3), which occur at the possible diffraction angles β originating from a multichromatic
incident beam at α = 17◦ diffracted at a grating with G = 1480/mm. The dashed grey line
marks the wavelength of λ = 852.347 nm.

curve) on the other hand, the slope is less steep, and thus it would be possible to choose
an incidence angle which is even closer to the respective minimum incidence angle. In this
respect, combinations of groove density and incidence angle with higher G are to be preferred,
as long as the condition of eq. (4.13) is satisfied.

6.2.2. Setup proposal and expected performance of a diffraction grating

Now it shall be investigated which combinations of groove density and incidence angle will be
necessary and experimentally feasible in order to realize a narrow-band filter as needed for the
nanofiber experiment. In order to get a theoretical estimate over the expected performance
optimum of a real grating one has to account for the actual acceptance range of incidence an-
gles of those gratings satisfying the condition of optimal groove density and incidence angle
combinations mentioned above. As described in sec. 4.1.5 the blaze angle and the corres-
ponding diffraction efficiency of a grating are normally optimized for one specific incidence
angle and diffraction order. It turned out to be quite difficult to find gratings satisfying the
need for suitably high groove densities between 1400 and 2200 grooves/mm (cf. fig. 4.2b)),
while supporting the extreme incidence and diffraction angles needed for high angular dis-
persion. A thorough search through the product catalogues of various grating manufacturers
reveals that the vast majority of gratings is optimized for the respective Littrow angle and
the gratings suffer from quickly dropping efficiency even for slight deviations from the Littrow
configuration.

The gold coated pulse compression gratings from Horiba are exceptional in this respect.
These gratings support an extraordinarily wide incidence angle domain covering a range of
several 10◦. The grating type 52428090 with 1480 grooves/mm e.g. facilitates an incidence
angle covering the very large range from ' 15◦ to ' 75◦ featuring an efficiency between 80%
and 90% (see fig. 6.5a) for reference). However, the diffraction efficiency may drop for lower
α as can be seen in fig. 6.5a). As the curve in fig. 6.5a) only shows results of a theoretical
simulation by the grating manufacturer it still has to be verified experimentally as to how the
grating efficiencies behave for the interesting incidence angle domain between 15◦ and 20◦.
The large dimensions of this grating (40×60×10 mm3, ruled area: 36×56 mm2) furthermore
satisfy the precondition for a high number of illuminated grooves causing a desirably narrow
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6.2 Realizations of a simple narrow-band optical filter system

Figure 6.6.: Illustration of the spatial splitting of two different spectral components λ1 and λ2 subject
to spectral filtering. Their angular and spatial pulse width δβpw and δxpw as well as their
relative angular and spatial splitting ∆β and ∆x are displayed, respectively.

angular linewidth of the spectral lines (see eq. (4.16) and eq. (4.33)).

One important point for filtering application with a grating is the overlapping of diffraction
orders visualized in fig. 4.1c) of the theory chapter. The performed simulation in fig. 6.5b) to
the contrary shows that for the proposed grating with G = 1480/mm and the incidence angle
α = 17◦ in the expected diffraction angle region exclusively the desired first diffraction order
can exist. Only for λ < 450 nm other diffraction orders can form. In that wavelength domain,
however, no contribution is to be expected in the Rauschenbeutel nanofiber experiment.

For a grating with G = 1480/mm, the theoretical lower bound incidence angle introduced in
sec. 4.1.2 lies at αmin = 15.158◦. If, for the sake of stability, an incidence angle of α = 17◦ is
chosen one would yield an angular dispersion of approx. dβ/dλ ' 0.3438◦/nm. With respect
to a circular projection plane radially spanned around the diffraction grating with a radius
of one meter (for illustration see fig. 6.6) the angular splitting of each pair of wavelength
components at λ1,2 = (852.347± 0.05) nm and λ0 = 852.347 nm would be expected as

∆β = βm=1(λ1)− βm=1(λ0) ' βm=1(λ0)− βm=1(λ2) ' 0.017◦ (6.6)

corresponding to a spatial splitting of ∆x ' 0.30 mm in a 1 m distance behind the diffraction
grating. This value lies in the range, which seems to be experimentally feasible to access with
a suitable aperture.

The finesse (cf. eq. (4.34)) achievable with the proposed Horiba grating type 52428090 under
complete, homogeneous illumination is the number of grooves

F = N = G · w = 1480/mm · 56 mm = 82880 . (6.7)

In this case the angular pulse width of the monochromatic components λ1, λ0 and λ2 in the
first diffraction order are theoretically expected to be

δβpw =
2λ

Nd cosβ
' 0.0018◦ . (6.8)

At one meter distance from the diffraction grating this is equivalent to a spatial pulse width
of δxpw ' 32.1 µm. The minimally resolvable angular splitting between two diffracted wave-
lengths λ1 and λ2 was given by the Rayleigh criterion in eq. (4.20) as one half of the angular
pulse width δβpw. Thus, for two wavelengths at (852.347±0.05) nm the resolution limit would
be reached, when their relative angular splitting was ∆βRayleigh . 0.0009◦ corresponding to
a spatial splitting one meter behind the grating of ∆xRayleigh ' 16.0 µm. So, here the ratio
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6.2.3 Proposal for the optical setup around the diffraction grating

between the angular splitting ∆β of two wavelengths at λ1 and λ2 and the mean angular
pulse width δβpw of a monochromatic diffraction component at λ ' 852 nm is achieved to be

∆β

δβpw
' 9.3 . (6.9)

This ratio allows for a clean filtering of the desired frequency component. Indeed, the result
in eq. (6.9) exceeds the Rayleigh criterion by a factor of & 18. But furthermore, leaking from
neighboring spurious components into the filter window is prevented due to the high value
of ∆β/δβpw. Thus, the spatial filter aperture could even be narrowed further without loss of
signal intensity.

6.2.3. Proposal for the optical setup around the diffraction grating

In order to find the best possible implementation of the previous theoretical considerations,
it is important to focus on the critical parameters. These are first of all the effective number
of illuminated grating grooves as the critical parameter determining both the finesse and
resolving power of a diffraction grating. Thus, the beam forming optics before the grating
needs to allow for an optimal illumination of the full ruled grating width. Furthermore, it
is desirable to enhance the splitting of the freely propagating diffraction orders behind the
grating and to design a setup that enables filtering on a compact area both by means of
suitable optics. In the following a detailed proposal for a diffraction grating based narrow-
band optical filter is presented.
The optical setup in fig. 6.7 shows a beam preparation optimized for an incidence angle of
α = 17◦ and the resulting first order diffracted ray appearing at βm=1 ' 75.72◦ for a beam
of λ = 852.347 nm. In this case the difference angle is βm=1 − α ' 58.74◦. The first two
lenses at position (1) and (2) are supposed to prepare the signal beam exiting the nanofiber
with a beam waist of approx. 2 mm. They take care of the proper beam waist expansion
and recollimation on the incident beam path for an optimal illumination of the full grating
length. The optics proposed in tab. 6.1 represents a reasonable, cost-effective choice, as one
of the main criteria was providing a setup of low price. However, a lens at position (2) with
an even bigger diameter (e.g. of Ø = 70 mm) or even better a bigger, aspheric lens (providing
abberation correction) would improve the grating illumination and thus the resulting angular
resolution. For the latter the possible improvement is estimated to be approximately 10−20%
for a price increase of the lens by a factor of > 10.
After diffraction at the grating the desired first diffraction order has to be imaged onto the
spatially filtering aperture, while other wavelength components outside of the desired filter
window of (852.347±0.05) nm are to be omitted. This can e.g. be accomplished by inserting
a lens with a long focal length into the first order diffracted beam. This lens at position
(4) needs to have a large diameter in order to focus the diffracted beam without optical
distortions. The spatially filtering aperture can now be positioned at (5), which is the focal
point of the lens at position (4). Here, an approximative calculation was performed on the
basis of ray transfer matrix analysis [134, 133].1 Fig. 6.8 shows a visualization of the first
diffraction order marginal rays of three wavelength components λ1 = (852.347 − 0.05) nm
(blue line), λ0 = 852.347 nm (green line) and λ2 = (852.347+0.05) nm (red line) diffracted at
the proposed grating. Each closely spaced pair of rays of the same color symbolizes the pulse
width of that frequency components’ marginal ray. It should be noted that the deviating

1It should be noted that Gaußian beam optics is not applicable here, as the diffraction orders are non-Gaußian
modes due to a partial cut-off of the incident Gaußian beam mode at both the lens at position (2) and at
the grating. This truncation at the grating is necessary for achieving a more homogeneous illumination of
the full grating length in order to yield a higher effective number of illuminated grooves. A fully correct
calculation would only be obtained by means of Fourier optics.
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6.2 Realizations of a simple narrow-band optical filter system

Figure 6.7.: Proposal for the beam forming optics around the diffraction grating (drawing not to scale).
Details of the optical components are listed in tab. 6.1.

propagation lengths of the upper with respect to the lower marginal rays originating from
both opposite ends of the grating in fig. 6.8 introduce a certain, small degree of asymmetry.
The position of the grating (3), the lens (4), the spatially filtering slit (5) and the x-axis
collimating cylindrical lens (6) are indicated in fig. 6.8.
According to this calculation at the focal point of lens (4), two wavelength components
λ1 = (852.347 − 0.05) nm and λ2 = (852.347 + 0.05) nm will appear in a ' ±3.44 mm
transversal distance to the desired λ0 = 852.347 nm component. For all three wavelengths
components λ1, λ0 and λ2 the spatial pulse width at position (5) is δxpw ' 0.18 mm. Thus,
the proposed optical setup behind the grating possesses an enhanced ratio of

∆x

δxpw
' 19 . (6.10)

This is around a factor of 2 better than the result in eq. (6.9) without post-grating optics.
In addition with this setup the absolute splitting ∆β is increased by a factor of 10, while the

Table 6.1.: Beam forming optical setup around the grating. All optical elements are from Thorlabs Inc.
and were chosen to have an N-BK7 coating (pc=plano convex; pcc=plano convex cylindrical).

Position Object/Type/Properties Purpose

(1) lens LA1540-B pc: ø= 12.7 mm(= 1/2′′), f = 15 mm focussing
(2) lens LA1725-B pc: ø= 50.8 mm (= 2′′), f = 400 mm recollimation

(3) grating Horiba gold coated pulse compression grating, diffraction
type 52428090, G = 1480/mm

(4) lens LA1353-B pc: ø= 75 mm, f = 200 mm focussing
(5) slit Newport compact slit type M-SV-0.5, micrometer spatial filtering

precise adjustable width: 0− 5 mm

(6) lens LJ1878L1-B pcc: f = 10 mm, H = 10 mm, L = 12 mm recollimation y
(7) lens LJ1821L1-B pcc: f = 50 mm, H = 20 mm, L = 22 mm recollimation x
(8) lens LA1257-B pc: ø= 25 mm, f = 75 mm focussing
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6.2.3 Proposal for the optical setup around the diffraction grating

Figure 6.8.: Visualization of the enveloping rays of the first diffraction order of three wavelength com-
ponents λ1 = (852.347 − 0.05) nm (blue line), λ0 = 852.347 nm (green line) and
λ2 = (852.347 + 0.05) nm (red line) diffracted at the grating as proposed.

needed propagation distance behind the grating is reduced by more than a factor of 2. This
results in an experimentally more feasible and compact filter setup.

The spatially filtering aperture needs to fulfill certain requirements as fine-tunability on the
µm scale. For this purpose a Newport type M-SV-0.5 compact slit with an adjustable slit
width between 0−5 mm was deemed appropriate. This slit has a fixed length of 12.7 mm and
possesses two highly parallel blades, which can be driven symmetrically with a µm precise
opto-mechanic positioner (type BM11.5 from Newport). The slit is supposed to be mounted
on an equally µm precise translation stage from Thorlabs, type PT1/M for an accurate lateral
positioning of the slit on the x-axis. Fig. 6.7 visualizes how the slit blades have to be precisely
positioned at the focal point of the lens at (4) with a slit width of approximately 0.2 mm. The
optimal slit width has to be determined experimentally. Clearly, spherical abberation effects
of lens (4) are particularly unfavorable, while chromatic distortions are negligible for the
considered wavelength range. In this respect, an aspheric lens at position (4) would possess
cleaner filtering of the desired frequency component, though, at a significantly increased price.

Behind the aperture it is important to account for the elliptic transversal shape of the signal
beam. The subsequent lenses at positions (6) and (7) are cylindrical in order to systematically
reshape the elliptic diffracted beam for a selective recollimation of the signal beam on both
the x- and y-axis. Finally, the lens at position (8) is spheric again and is used for refocussing
the signal beam onto the avalanche photodiode (APD). For a fiber coupled APD the signal
beam will have to be shaped more thoroughly. The parameters for this incoupling optics
have to be chosen carefully with respect to the actual beam shape after the filtering process
and thus no meaningful theoretical prediction can be given at this point.

It will be the main experimental challenge to find a stable setting with the lowest possible
value of the incidence angle α. Clearly, in dependence on the actually implemented α setting
βm=1 will deviate and the positioning of the beam forming optics on the x-axis behind the
grating will need to be adapted or probably even specific optical elements will need to be
exchanged from the scenario calculated here. In this respect the dimensions given in fig. 6.7
must be regarded as guidelines. Ultimately, the setup — especially the part following after
the diffraction process — has to be adapted in a more empirical fashion.

According to the calculations presented here, it is possible to realize an advanced filter window
of (852.347 ± 0.050) nm with the proposed diffraction grating based setup and an incidence
angle of α = 17◦. In this case the spectral filtering is improved by a factor of ∼ 100 over
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6.2 Realizations of a simple narrow-band optical filter system

the spectral transmission widths δλ ' 10 nm achievable with interference filters. The signal
loss due to the limited diffraction efficiency of the grating is expected to be (75 ± 10)%
according to the theoretical simulation by Horiba (cf. fig. 6.5a)). The resulting transmission
window is therefore expected to significantly improve the signal to noise ratio of the EIT probe
signal. By means of the fluorescence data displayed in fig. 6.2 the fluorescence power within a
rectangular filter window of (852.347±0.05) nm can be estimated to be Pfl ' 0.16 pW (where
the power suppression by a factor of 2 from the interference filters used for the measurement
in fig. 6.2 is excluded). Thus, this diffraction grating filter is able to improve the signal to
noise ratio by a factor of more than 100.
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7. Experimental Investigation of a Homodyne
Saturation Spectroscopy

Interferometers are highly sensitive devices. They are susceptible to virtually any kind of
perturbation causing an alteration of the optical path length difference between the interfering
beams. Path length difference variations on the order of a tenth of the optical wavelength
leave conspicuous marks in the resulting interference pattern behind the interferometer. This
high precision and sensitivity make interferometers prime candidates for detecting tiny phase
retardation processes for such extreme cases as the measurement of quantum noise [162] or
even the elusive footprint of gravitational waves [181].

In the theory chapter in sec. 4.2 the numerous advantages and features of heterodyne de-
tection were examined. In the context of this thesis a first experimental attempt was made
in order to exploit this superior interferometric detection method for a narrow-band filter-
ing application as needed in the Rauschenbeutel nanofiber experiment. The realized test
setup aiming at the examination of genuine homodyne detection features is described in the
following.

7.1. Concept of the realized homodyne spectroscopy setup

For a first demonstration of the homodyne detection principle a straightforward experiment
was realized. The role of the “atomic sample” imprinting a frequency distribution on the
probing beam was taken over by a Cs cell saturation spectroscopy. The principle idea was
to synthesize a conventional saturation spectroscopy signal by periodically scanning the fre-
quency of an ECDL, in this case over the Cs D2 line transitions from F = 3 to F ′ = 2 up to
F = 3 to F ′ = 4 (cf. fig. 5.2b)). This spectral information encoded on the weak spectroscopy
probe beam as an amplitude modulation was to be measured via a homodyne detection setup.
The test experiment presented here shall demonstrate the power of homodyne detection of
such a time-resolved intensity profile.

The analogy with the setting in the Rauschenbeutel group’s prospective EIT experiment lies
in that in the latter the probe laser will be scanned over the EIT resonance as well by means
of a double-pass AOM. While the fiber fluorescence noise is assumed to be distributed over
a wide band, the EIT resonance is expected to have a width in the sub-kHz domain. In
this test setup for comparison, the hyperfine lines will appear as saturation spectroscopic
features of some MHz width. While this appears to be more than a factor of 103 wider than
the anticipated EIT feature the scalability of the optical frequency resolution of this setup
is defined by the ECDL/AOM scan amplitude only and not by the homodyne detection unit
itself. The homodyne signal amplification is of universal nature and independent from the
laser’s frequency scan range or velocity.

Here, the resulting signal contains the frequency dependent saturated absorption profile I(ν)
in a time-resolved fashion, i.e. I(ν(t)). Thus, in order to resolve the hyperfine structure on
the saturation spectrum the laser frequency scan rate fscan and the limit frequency of the
photodiode fcrit have to be well matched. If the frequency scan rate of the spectroscopy
laser is e.g. chosen to be ' 21 Hz the hyperfine features of the Cs spectroscopy can only be
resolved, if the limit frequency of the photodetector is in excess of a critical frequency fcrit
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7.1 Concept of the realized homodyne spectroscopy setup

Figure 7.1.: a) Schematic, simplified representation of the implemented homodyne spectroscopy setup.
b) Balancing for one of the BS outputs by means of c) a polarization projection measurement
at a PBS (see text for details).

(in analogy to the considerations around eq. (4.52)). Here, the spectroscopy laser scans over
the Cs spectrum with a scan intercal of ∆f ' 1.5 GHz within a scan time of ∆t ' 1/(2 ·21) s.
In order to resolve the hyperfine structure on the saturation spectrum a frequency resolution
of fres . 1 MHz is needed. Thus, the critical frequency (=bandwidth) of the photodiodes
needs to be

fcrit ≥
∆f

∆t

1

fres
' 63 kHz . (7.1)

For this experimental demonstration a Thorlabs balanced photodetector PDB 210A with a
bandwidth of fcrit ≤ 1 MHz was employed.

The conceptional setup of the conducted homodyne spectroscopy is displayed in fig. 7.1a).
The source laser (drawn in red) feeds both beams needed for the homodyne detection princi-
ple: the source beam splits up into the spectroscopy beam and the local oscillator beam (LO)
at the first polarizing beam splitter (PBS). Here, for the spectroscopy a branch of the ECDL
was used, which was denoted as the ‘control laser’ in the previous sections. The λ/2 plate
in front of this PBS enables a power adjustment between LO and spectroscopy beam. On a
successive beam splitter (BS) the spectroscopy beam is split up into the pump and the probe
beam of the saturation spectroscopy. The probe beam is attenuated by an appropriately
chosen neutral density filter. On a second beam splitter the signal beam is superposed with
the LO beam. At this stage behind this BS, however, interference between signal and LO
beam does not occur, as the spectroscopy and LO beam are of orthogonal polarization by
virtue of the first PBS.

Interference of spectroscopy and LO beam could be induced by inserting a λ/2 plate (at an
angle of 45◦ to the horizontal) e.g. into the LO beam before this BS. But first, balanced
homodyne detection needs a perfectly equalized power ratio between the two outputs of the
combining BS to be detected by each of the two photodiodes of the balanced detector. Second,
conventional 50/50 BS possess a mismatch of some percent (' 10%) between transmitted and
reflected power (even laser line beam splitters have at least a mismatch of some percent ' 3%)
[182, 183]. Hence introducing the interference at this stage would be no suitable choice, if
the canceling effect on classical noise of the balanced configuration shall be exploited.
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7.2. Realization of the balanced detection

Instead an “equivalent circuit diagram” for the theoretically ideal 50/50 BS was elaborated
in this thesis. The principle behind the optical balancing developed here shall be displayed
in fig. 7.1b) and c). For the sake of simplicity first only one of the two BS outputs shall be
considered as depicted in fig. 7.1b). Assuming all PBS’s to transmit |H〉 and to reflect |V 〉
polarization components in this case the signal beam will be of |V 〉 and the LO beam of |H〉
polarization before and after their combination on the first BS in fig. 7.1b). These orthogonal
polarization planes will be flipped according to the angle of the λ/2 plate axis. If the λ/2
plate is set to an angle of ' 22.5◦ with respect to either the horizontal or vertical base both
the signal and the LO polarization planes are turned by ' 45◦. The subsequent PBS will
then project these diagonal polarizations onto the two bases of the PBS: |H〉 and |V 〉 (see
visualization in fig. 7.1c)). Only by this projection the interference of signal and LO beam
is first introduced in the setup. By detuning the λ/2 plate slightly from the angle of 22.5◦

the two outputs of the PBS feeding the two photodiodes of the balanced detector can be
equalized in power, respectively. For the other output of the combining BS (which is blocked
in fig. 7.1b)) the same principle applies: an equilibration of both photodiodes is possible over
adjusting the λ/2 plate of this other arm. That way an optimal equalization of the powers
incident on both photodiodes can be achieved. Even though the optical paths behind the
combining BS might remind of a second Mach-Zehnder type interferometer, they are not:
the polarization planes of the two beam fractions collected by either of the photodiodes are
orthogonal again, i.e. the two beams at each of the two PBS outputs do not interfere, but
only their powers are combined.

To the author’s best knowledge, this optical balancing method has not been documented
before. There exist other related methods exploiting two PBS (see e.g. [171]). That method,
which uses only one PBS output suffers from signal losses due to imperfect transmission
and reflection at the PBS of the respective polarization component and for practical reasons
requires additional wave retarders in the individual arms of the interferometer. The latter
is principally undesirable in terms of the additional phase noise introduced by such elements
acting on just one of the interferometer branches. The method employed here on the contrary
comes along without additional wave plates in the individual interferometer arms and detects
the total signal power limited only by negligible absorption by the BS/PBS. Furthermore, here
the one PBS is employed symmetrically such that an eventual transmittance and reflectance
mismatch is automatically balanced.

The homodyne experiment is most importantly dependent on the fulfillment of two require-
ments: First, the spatial mode match, as well as the phase front curvatures and polarization
planes of signal and local oscillator beam shall be as identical as possible in order to obtain
a decent homodyne signal. For that reason signal and local oscillator beam were chosen to
originate from the same source laser. The source beam is collimated with a telescope before
entering the interferometer (not displayed in fig. 7.1a)). In addition on their way through
the experiment, any beam shape deforming elements acting only on one of the beams need
to be avoided. In this respect, the experiment revealed that it is e.g. of crucial importance
to insert a Cs cell with high quality optical windows. The second important requirement for
homodyning is the conformance of a constant phase relationship between signal and local
oscillator beam at their mixing point. Here again, the fact that one source laser feeds both
the signal and LO beam serves as a first important step toward relative phase stability. In-
evitable mechanical and aerodynamical distortions of the interferometer, however, lead to a
persistent fluctuation of the relative phase between signal and LO beam. These have to be
compensated for by means of a control loop in order to realize a homodyne detection.
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7.3 Interferometer stabilization for an amplitude quadrature measurement

Figure 7.2.: The interferometer path length difference is stabilized such that the stabilization beam inten-
sity is fixed at the intersection point between the stabilization beam fringes (green line) with
its average intensity level (grey dotted curve). The spectroscopy beam receives an additional
phase difference contribution of φ = π/2 on the LO beam. Thus, the interference pattern of
the spectroscopy and LO beam (red line) is stabilized to an extremal point.

7.3. Interferometer stabilization for an amplitude quadrature
measurement

For the active stabilization of the optical path length difference between the two arms of the
interferometer an error signal has to be generated and fed into lock electronics in order to
produce an actuating value. This value needs to reset the relative phase difference between the
two interferometer arms by actuating a phase shifting mirror mounted on a piezo actuator. In
a Mach-Zehnder type interferometer the error signal is most suitably represented by the final
interference fringe pattern in dependance on the relative phase between both optical branches.
This fringe pattern is schematically displayed as the red curve in fig. 7.2. The steep slopes
of the interference pattern at the relative phase difference points with odd multiples of π/2
are ideal for locking.

For the detection of the absorption spectrum an amplitude quadrature sensitive measurement
has to be performed.1 Thus a difficulty arises due to the fact that for the determination of the
amplitude quadrature component of the signal the relative phase difference between signal
and LO beam has to be even multiples of π/2. These points on the contrary are unsuitable
lock point as they provide symmetric error signals with respect to the deviation direction. For
that reason a more elaborate locking technique is necessary. A possible solution could be a
Pound-Drever-Hall like locking procedure introducing a small modulation on the interference
signal so that the derivative of the error function can be obtained. The derivative contains
information about the sign of the slope on both sides of the error signals extremum and thus
breaks its ambiguity. The need for an additional signal modulation and subsequent additional
mixing electronics makes this technique rather demanding.

A way simpler option would exploit the perfect periodicity of the interference pattern. This
stabilization option is depicted in fig. 7.1. For this technique an additional beam — the
stabilization beam — is to be coupled into the interferometer at the second input port of the
first PBS. Here, as stabilization beam a branch of the ECDL is employed, which was called the
‘probe laser’ in the previous chapters. This beam is employed for locking the interferometer
on a steep fringe slope, while the signal fringe experiences a phase shift of odd multiples of π/2
relative to the stabilization beam. Thus, one of the beams has to pass through a wave retarder

1Principally, a phase quadrature sensitive measurement could be performed as well. However, this would
measure the dispersive features of the respective hyperfine transitions. Those could be approximatively
transformed into the absorption spectrum by means of the Kramers-Kronig relations [184].
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Figure 7.3.: Photodiode characteristics showing a) the - and + monitor signal outputs of the Thorlabs
PDB 210A in dependance on the their respective incident powers and b) balanced difference
signal output in dependance on the input power difference between the - and + photodiode.

on its propagation through the interferometer while the other does not. In this experiment
the stabilization beam was chosen to propagate approximately 5 mm above the spectroscopy
beam hitting all elements just like the latter, but bypassing the Cs cell on the signal arm
and moving past a Berek compensator, which is placed in the LO arm of the spectroscopy
beam. A Berek compensator consists of an uniaxial crystal cut with the extraordinary axis
perpendicular to the plate. It can be seen as a continually tunable wave retarder plate. By
means of appropriately tilting this birefringent optical device the LO beam can be retarded
by π/2 with respect to the stabilization beam. Thus, when the stabilization beam is locked
on the steep slope of the interference pattern the spectroscopy beam is automatically locked
at its extremal points as needed for homodyne amplitude quadrature measurements.

For the detection of the stabilization beam’s interference pattern the stabilization and the
spectroscopy/LO beams have to be separated after the combining BS. Interference of the two
orthogonal stabilization beams is introduced by letting them propagate through a polarization
filter at 45◦ to the horizontal. The error signal is then fed into a standard laser lock box
(home-made PI controller, following the “Lock Box No. 5” design from the University of
Bonn) and the actuating output is taken as input of the piezo driver (Pickelmann SVR
500/1) operating the phase shifting piezo actuator (Pickelmann PSt 1000/16/15). For this
system to lock it is of crucial importance that the combination of piezo actuator and piezo
driver is able to actuate the piezo over a path length long enough to stay in lock over a
reasonable time on the one hand and for large relative path length deviations on the order
of several wavelengths on the other hand (e.g. due to acoustically excited oscillations of a
mirror mount). This presumes basically a good match between the lock box actuating value
voltage domain and the necessary piezo driver input voltage domain. On the other hand, the
quality of the lock is determined by the frequency range of the lock system. A first limitation
here is the resonance frequency of the piezo itself, which lies at 40 kHz. The mounted mirror
reduces this limit to approximately 20 kHz due to the increased oscillating weight. The final
limit is, however, set by the capacitively induced cutoff frequency of the combination of piezo
actuator and piezo driver. In this case the piezo with a 150 nF capacity can be driven by the
SVR 500/1 driver with some hundred Hz at best according to the piezo driver data sheet.
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7.5 Characterization of the interferometer alignment

7.4. Characterization of the used balanced photodetector

For the noise canceling effect in balanced homodyning it is of crucial importance to have a
detection system as symmetric as possible. Thus, this experiment aims at the characterization
of the pair of balanced photodiodes used in all of the following experiments. It is a Thorlabs
balanced amplified photodetector type PDB 210A. This detector provides three channels.
The first two — called the ‘–monitor’ and ‘+monitor’ — deliver the preamplified single
photodiode signals. The difference signal of the two (unamplified) photodiode outputs is
passed through an ultra-low noise, high-speed transimpedance amplifier and can be tapped
at the third output.
For the characterization of the photodiode’s equalization the signal arm of the interferometer
was blocked over the whole time and the LO beam was stepwise attenuated with various
neutral density filters. The signal strength at the – and +monitor channels was measured
in dependance on the actual optical power falling on each of the photodiodes. The results
displayed in fig. 7.3a) show a very decent correspondence of the two photodiode’s character-
istics. Linear fits to the measured data give an input power to output voltage relation for
the –monitor photodiode of

U− = (10.11± 0.03) mV/µW · P− − (2.2± 2.6) mV (7.2)

and for the +monitor photodiode of

U+ = (10.01± 0.03) mV/µW · P+ − (2.3± 2.7) mV . (7.3)

The negative offsets originate from both the photodiodes’ and the oscilloscope’s bias voltage.
In a second attempt the balanced output of the Thorlabs PDB 210A was characterized.
For this experiment one photodiode was completely blocked and the other photodiode was
exposed to varying LO powers as before. The measured difference signals are displayed in
fig. 7.3b). A linear fit reveals the relation

Udiff = (289.3± 1.2) mV/µW · Pdiff + (24± 24) mV (7.4)

between the difference channel voltage Udiff and the difference between the optical powers
incident on both photodiodes Pdiff = P+−P−. Finally, a fixed amplification factor of g ' 28.6
between the single photodiode channels and the difference channel can be stated according
to eq. (7.2), eq. (7.3) and eq. (7.4).

7.5. Characterization of the interferometer alignment

In the following the alignment of the interferometer and stabilization system is characterized.
Generally, the fringe visibility

V =
max{P (∆φ)} −min{P (∆φ)}
max{P (∆φ)}+ min{P (∆φ)}

(7.5)

of the interference pattern P (∆φ) of two coherently interfering waves with the maximum value
max{P (∆φ)} and the minimum value min{P (∆φ)} is a measure for their mode overlap. For
two interfering coherent beams of power P1 and P2 the visibility follows as

V =
2
√
P1P2

P1 + P2
. (7.6)

Subsequently, for two beams of unequal power or reduced coherence the theoretically overall
achievable visibility is suppressed.
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Figure 7.4.: Experimentally observed interference fringes for a controlled phase shift scan of a piezo
mounted mirror. The y-axis was individually rescaled for each curve. The streching in-
terference fringes over time is due to the nonlinear stressstrain curve of the piezo material,
which occur around the maxima and minima of the piezo voltage. Displayed is the setting for
the relative phase noise sensitive measurement described in sec. 7.6: the relative phase differ-
ence between –monitor and stabilization beam fringes is 0 and the fringes on the +monitor
are phase shifted by π relative to the former.

In order to attain optimal overlap between the signal and LO beam the interferometer was
adjusted toward optimal interference fringe contrast of signal and LO beam. This is most
suitably performed while the LO phase-shifting piezo mirror was in the scan mode (see e.g.
fig. 7.4). With a signal power of Ps = 0.54 µW and a LO power of Pl = 32.04 µW the the-
oretically achievable visibility is 0.26. In the experiment a visibility of 0.2 could be reached
between signal and LO. This lower value can be assigned to a residual imperfection of the
mode overlap and a reduction of coherence due to fluctuations in the relative phase relation
between signal and LO beam. For the stabilization beam interference (with P1 ' P2) a visi-
bility of 0.6 was obtained, which was mainly limited by restricted adjusting possibilities: for
the alignment of the stabilization beam only two incoupling mirrors directly before entering
the interferometer were available. After iterative optimization of the source laser beam and
the stabilization beam to the interferometer, finally the interferometer had to be optimized
for the signal and the LO beam in order to obtain high signal detection efficiency.

7.6. Inspection of the interferometer relative phase stabilization

Now the performance of the implemented stabilization system is to be investigated. Here,
all measurements aiming at the acquisition of phase noise were recorded as time-dependent
DC signals on an Agilent InfiniiVision type MSO6104A digital oscilloscope as for this, but
especially for the subsequent interferometer stabilization measurements low frequencies from
DC up to the kHz range were of particular interest. Moreover all subsequent measurements
should be performed at all four photodiode outputs simultaneously. For both reasons, a
storage oscilloscope was more appropriate for data acquisition than the spectrum analyzers,
which were readily available. The time-dependent photodiode signals were postprocessed
to obtain the desired phase noise power spectral densities via an FFT routine, which was
implemented in MATLAB. Generally, due to the finite measuring time a periodic signal may
be sampled over a noninteger number of cycles giving rise to a discontinuity in the time-
resolved signal. These discontinuities lead to the appearance of spurious contributions to the
FFT spectrum at frequencies higher than the respective Nyquist frequency. The resulting
partial spectral redistribution of the signal power is called spectral leakage and causes the
FFT spectrum to appear smeared out [185]. In order to compensate for such artifacts a
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7.6 Inspection of the interferometer relative phase stabilization

Figure 7.5.: Phase noise spectra of all photodiode channels for each the unlocked (blue) and the locked
(green) interferometer. For comparison the red curve shows the electronic noise on each
output while all photodiodes were blocked. The spectra display a) the –monitor noise, b) the
+monitor noise, c) the balanced monitor noise and the d) stabilization photodiode noise. (For
this phase noise measurement the –monitor fringe pattern and stabilization beam interference
pattern are locked in phase, the +monitor fringes are π out of phase with respect to the
former.)

Hanning type windowed FFT routine [186, 187] was implemented.

In order to determine the phase noise of the interferometer for this measurement the Berek
compensator was readjusted such that the induced phase shift of the fringe pattern with
respect to the stabilization beam fringes on the –monitor was 0 and on the +monitor π (see
fig. 7.4). That way, all photodiodes measure the noise of the phase quadrature component.
The signals of the unlocked interferometer were measured while the phase shifting mirror
piezo voltage was set and fixed at a value were the relative phase φsl(t = 0) ' 0 at the start
time of the measurement. Over the measurement interval of 10 s the phase φsl was observed
to slightly drift around φsl(t = 0) ' 0 as expected.

Fig. 7.5 shows the resulting phase noise power spectral densities of all four photodiode chan-
nels, both for the relative phase stabilized (green curves) and the unlocked (blue curves)
interferometer. The power spectral densities are displayed in dBV (i.e. decibel with respect
to 1 V). The data were obtained over the FFT routine performed on the corresponding time-
dependent photodiode signals for a record time of 10 s with an oscilloscope sampling rate of
f = 50 · 103 Hz. To better assess the measured data shown in fig. 7.5 the electronic noise on
all channels for the optically blocked photodiodes (red curves) are displayed for reference.
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The phase noise data in fig. 7.5 reveal that a significant phase noise suppression effect of
the active interferometer stabilization is restricted to the low frequency region from DC up
to some 102 Hz as expected. This suppression is on the order of ' 5 dB to ' 10 dB on
all monitor channels of the balanced photodiode. The impact of the stabilization is most
prominently observed on the balanced photodiode output in fig. 7.5c). It is observed that
the 50 Hz mains frequency noise peak found on the noise curve has the same strength and
frequency position in the locked and unlocked phase noise curves in both fig. 7.5a) and b). On
the locked and unlocked phase noise curves on all photodiode channels, however, an additional
significantly wider and stronger noise peak is found at ' 47.59 Hz. This is probably due to
leaking of the mains frequency over the lock box power supply into the control circuit and
some unknown mechanism leading to a slight frequency shift and broadening of that feature.
Another possibility is that this near mains frequency noise originates from the piezo driver.
This noise peak is suppressed by ' 13 dB in the locked interferometer case with respect to the
unlocked case, but still lies about 40 dB above the electronic noise floor of ' 130 dBV. In the
frequency range between 150 and 600 Hz undifferentiated noise peaks occur most probably
due to mechanical vibrations on the table. As can be seen in fig. 7.5a), b) and c) in this
frequency region only a slight noise improvement of some dB is achieved in the stabilized
interferometer case.

The rather restrained noise suppression of the implemented stabilization system is certainly
due to the stabilization photodiode (Osram SFH2400 standard photodiode), which has a
low saturation intensity, while possessing a relatively high electronic noise floor. Its noise
characteristic is displayed in fig. 7.5d). It can be seen, that the phase noise of the stabilized
interferometer is already suppressed by the control loop to the level of the electronic noise on
the stabilization photodiode. However, on all channels of the balanced pair of photodiodes in
fig. 7.5a), b) and c) the electronic noise floor is distinct from the phase noise distributions and
about 5−10 dB lower on the – and +monitor and 10−30 dB lower on the balanced output than
the respective phase noise distributions in the displayed spectral region. As the optical power
of the stabilization beam could not be increased further due to the photodiodes saturation
limit. In an enhanced setup this photodiode needs to be exchanged with a photodiode of
either a significantly higher saturation level or significantly lower noise.

7.7. Investigations on the spectral fidelity and optical signal
amplification

In this experiment the optical amplification of the saturation spectroscopy signal for homo-
dyning at varying LO beam powers was investigated. Furthermore, the applicability of this
method for spectroscopic investigations was examined. Here, a saturation spectroscopy of
the Cs 62 S1/2 F = 3→ 62 P3/2 F

′ = 2, 3, 4 transitions was observed. For the demonstration
of the potential of optical homodyne amplification the saturation spectroscopy signal beam
was chosen of such low power (Ps = 0.54 µW) that the directly detected signal (i.e. without
homodyning with the LO beam) was in the order of the electronic noise in the difference
signal output of the balanced photodiodes, when observed on the oscilloscope. As fig. 7.6
shows by subsequently increasing the power of the LO beam the saturation spectroscopy sig-
nal could be amplified to a meaningful level without any significant noise contributions. The
power of the LO beam was varied by means of neutral density filters. This made it necessary
to relock the interferometer stabilization and readjust the Berek compensator for every LO
power setting. It is mainly for this reason that the individual curves in fig. 7.6 were subject
to an arbitrary time offset, which had to be corrected in order to obtain comparability. Thus,
only the relative distances between the hyperfine lines should be considered to be meaningful.
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7.7 Investigations on the spectral fidelity and optical signal amplification

Figure 7.6.: Saturation spectra of the Cs 62 S1/2 F = 3 → 62 P3/2 F
′ = 2, 3, 4 transitions measured

at the balanced photodiode output as a function of the spectroscopy beam frequency scan
time t(ω) for varying LO powers Pl between 0 and 32.04 µW. A linear dependence between
the scan time t = t(ν) and the laser frequency ν can be assumed for the displayed range in
approximation.

7.7.1. Spectral fidelity

If homodyne detection is to be employed as a spectroscopic measurement tool it is important
to investigate its fidelity. Distortions of the spectrum could degrade the explanatory power of
homodyning for spectroscopic applications. At a closer look in fig. 7.6 a certain variation of
the relative distance between the hyperfine peaks can be observed. In fig. 7.7a) the relative
distances between the hyperfine peaks ∆t are plotted as a function of the LO power Pl. Fits
to a constant value of the relative scan time distances ∆t(∆ν) of each neighboring pair of
resonances show that the relative peak position variations lie within the determined error
range. The resulting values for the average relative hyperfine peak distances ∆t are displayed
in tab. 7.1 together with their total error, whose main contribution arises from the noise on
the saturation signal. For comparison tab. 7.1 also lists the theoretically expected optical
frequency differences, which were calculated based on the transition values given in [173]. By

Table 7.1.: Fitted values for the average relative hyperfine peak distances ∆t and the theoretical optical
frequency differences ∆ν between the corresponding hyperfine features.

corresponding resonances fitted values ∆t(∆ν) frequency difference ∆ν
62 S1/2 F = 3→ 62 P3/2 F

′ = ... [ms] [MHz]

2↔ 2× 3 1.26± 0.12 75.606
2× 3↔ 3 1.25± 0.12 75.606
3↔ 2× 4 0.36± 0.11 25.015

2× 4↔ 3× 4 1.25± 0.11 75.606
3× 4↔ 4 1.72± 0.12 100.621
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7.7.2 Low-noise optical signal amplification

Figure 7.7.: a) Relative spectroscopy beam scan time distances of the hyperfine peaks ∆t on the observed
saturation spectra as a function of the LO power Pl. The drawn lines refer to linear fits with
a vanishing slope, respectively.
b) Plot for the determination of the functional dependence of the optical difference frequency
∆ν on the hyperfine peak scan time distances ∆t. The fit shows a linear regression.

means of a linear fit (see fig. 7.7b)) the correspondence between the spectroscopy laser scan
time difference ∆t and its corresponding optical frequency difference ∆ν is determined to be

∆ν(t) = (55.83± 0.63) MHz/ms ·∆t+ (5.28± 6.5) MHz . (7.7)

The standard deviation of the relative peak distances extracted from the linear fits in fig. 7.7a)
are around σt = 0.02 ms each (mainly due to the reading accuracy) and thus give rise to a
relative frequency precision of σν ' 6.5 MHz of the spectroscopic method conducted here.

7.7.2. Low-noise optical signal amplification

In fig. 7.8 the height ∆Udiff of the full Doppler-broadened spectroscopy dip (see fig. 7.6)
was measured for varying LO powers between 0 and 32.04 µW. The latter value marks the
saturation limit of the balanced photodiode. On the oscilloscope a significant time-dependent
y-axis distortion of the spectra was observed, which can be described as time-dependent
compression of the spectrum height fluctuating on a scale of a few seconds. These fluctuations
were identified to be due to deviations of the relative phase between the two interferometer
branches (i.e. between signal and LO beam) from the desired value of multiples of π (odd
multiples on one photodiode and even multiples on the other, respectively). The reasonably
dimensioned reading accuracy errors σ∆Udiff displayed as error bars of the determined heights
∆Udiff in fig. 7.8 account for these relatively large fluctuations.
Theoretically it is expected that the balanced photodiode current idiff scales proportional
to the square root of the local oscillator power Pl (cf. eq. (4.45)). Here, a realistic model
accounting for imperfect balancing was employed for fitting the data. It includes a possible
small mismatch between the signal and LO contributions on the –monitor P−s and P−l and
the +monitor P+

s and P+
l represented by the small power differences δPs = P+

s − P−s and
δPl = P+

l −P
−
l on the – and +monitor photodiodes (with P−s +P−s = Ps and P−l +P−l = Pl,

respectively). The general balanced photodiode current then follows as

∆idiff ∝ P+
s + P+

l + 2
√
P+
s P

+
l cos(φsl)−

(
P−s + P−l + 2

√
P−s P

−
l cos(φsl + π)

)
. (7.8)
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7.7 Investigations on the spectral fidelity and optical signal amplification

Figure 7.8.: Full height of the Doppler-broadened spectroscopy dip as a function of the LO beam power.

In the case of the amplitude quadrature sensitive measurement conducted here the relative
phase between signal and LO beam is φsl = nπ with n ∈ Z. Without loss of generality here
the relative phase can be set to φsl = 0, such that the balanced photodiode current is

∆idiff ∝ δPs + δPl + 2

(√
P+
s P

+
l +

√
(P+

s − δPs)(P+
l − δPl)

)
. (7.9)

In a reasonable first order approximation the term δPsδPl is negligible, as the power differ-
ences δPs and δPl are both very small. Subsequently, eq. (7.9) can be rewritten as

∆idiff ∝ δPs + δPl + 2
√
P+
s P

+
l

(
1 +

√
1− δPs

P+
s
− δPl

P+
l

)
. (7.10)

Both δPs and δPl can be assumed to scale linearly with the total power of the corresponding
beam, thus

δPs ' csP+
s and δPl ' clP+

l (7.11)

with the constant scaling factors cs and cl. With the photodiode conversion factor ξ =
(289.3±1.2) mV/µW and the photodiode offset ζ = (24±24) mV from eq. (7.4) the balanced
photodiode voltage results as

Udiff(Ps, Pl) =

(
csP

+
s + clP

+
l + 2

√
P+
s P

+
l

(
1 +
√

1− cs − cl
))
· ξ + ζ . (7.12)

But here, instead of the absolute value of P+
s the saturation spectrum power heights ∆P+

s =
P+
s −Ps min corresponding to the balanced photodiode voltage difference ∆Udiff = Umax−Umin

(see fig. 7.6) are to be fitted, where the P+
s and Umax refer to the highest point of the saturation

spectrum and Ps min and Umin to the lowest point of the Doppler broadened saturation dip.
Now the fit function for the saturation spectrum heights ∆Udiff as a function of the LO power
reads

∆Udiff(Pl) = ξ ·
(
cs∆P

+
s + 2

(√
P+
s P

+
l −

√
(P+

s −∆P+
s )P+

l

)(
1 +
√

1− cs − cl
))

. (7.13)
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7.7.2 Low-noise optical signal amplification

Based on this customized function the obtained fit displayed in fig. 7.8 (red curve) shows a
perfect agreement of the measured data with the theoretically assumed behavior within the
error bars. By means of fitting the data the determination of δPs and δPl was found not
to be decisive, as for various parameters start values between 10−3 and 1 for both cs and
cl the fit was found to be equally good in terms of the method of least squares [156]. As
fitted parameters with estimated errors follow the small imbalance factors cs = 0.4± 0.5 and
cl = 0.5± 0.5 and the saturation spectrum power height ∆P+

s = (15± 5) nW.
In summary, this experiment demonstrated the power of optical homodyne amplification
for the detection of atomic transition features at sub-µW signal light levels and proves the
theoretically expected scaling behavior with the LO beam power. As this optical amplification
is of low noise it enables very high power resolution of low light signals. In this rather simple
setup, the hyperfine structure features of less than 8 nW height could be clearly resolved.
The saturation limit of the balanced photodiode is the only bound in this respect. Hence,
homodyne detection can be regarded as a promising technique for low-noise optical signal
amplification enabling narrow-band, post-detection electronic filtering, which can fruitfully
be exploited for the nanofiber experiment.
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8. Outlook

In order to trigger further development of the presented setups some opportunities for sub-
sequent improvements of the work presented here shall be discussed in this chapter.

8.1. Possible improvements of the probe/control laser preparation
and OPLL setup

A recommendable improvement of the optical setup of the in-loop beat signal detection
concerns the fast ET-4000 GaAs PIN detector from EOT. This model has a focussing plastic
lens built into the entrance aperture in the chassis. Due to the fact that this lens has no
suitable anti-reflection coating, a small but significant part of the probe beam manages to
propagate backwards through the setup and into the polarization spectroscopy of the control
laser. Here, it leads to additional hyperfine features associated with the probe saturation
spectroscopy features F = 4 → F ′ = 3, 3 × 4, 4, 3 × 5, 4 × 5, 5, which may disturb the
frequency lock of the control laser. The need for a perfect overlap of the probe and control
laser on the fast photodiode does not allow for a slight misalignment and thus this backwards
propagating probe beam cannot be masked out by means of apertures. The stability of the
control laser’s frequency lock could thus be improved by carefully quarrying out the plastic
lens or providing the fast photodiode with a new, self-made housing and an additional anti-
reflection coated focussing lens. This would incidentally facilitate the not so easy adjustment
of the fast photodiode and may hence improve the detected beat signal strength.

8.2. Other possible improvements

Recently it has been considered to modify the experimental setup of the nanofiber experiment
and change the EIT resonance to transitions on the Cs D1 line at around λ = 894.593 nm. At
the moment it is unknown as to how the fiber fluorescence characteristics are modified around
that region. Nonetheless, in the following theoretically determined values for the necessary
angles and estimations of the possible performance of the proposed diffraction grating with
G = 1480/mm working on the D1 line are given.

Filter grating setting for the D1 line at λ0 = 894.593 nm:

• theoretical lower bound incidence angle: αmin = 18.905◦

• proposed incidence angle: α = 21◦

• first order diffraction angle for λ0: βm=1 ' 74.93◦

• difference angle: βm=1 − α ' 53.95◦

• angular dispersion at βm=1(λ0): dβ/dλ ' 0.3262◦/nm

• angular splitting between λ1,2 = (852.347± 0.05) nm and λ0 = 852.347 nm:
∆β = βm=1(λ1)− βm=1(λ0) ' βm=1(λ0)− βm=1(λ2) ' 0.016◦
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8.2 Other possible improvements

• angular pulse width of component λ0: δβpw ' 0.0020◦

• ratio between the angular splitting ∆β and the mean angular pulse width δβpw of
diffraction component at λ0:
∆β/δβpw ' 8.0

These values are very similar to those obtained for λ0 = 852.347 nm. Therefore, it is reason-
able to expect that the proposed grating filter setup can be adapted to a setting probing the
D1 line with reasonable effort as well.
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[7] M. Fleischhauer, A. Imamoǧlu, and J.P. Marangos: Electromagnetically induced trans-
parency: Optics in coherent media. Rev. Mod. Phys., 77(633):633–673, 2005.
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[113] T. W. Hänsch, M. D. Levenson, and A. L. Schawlow: Complete hyperfine structure of
a molecular iodine line. Phys. Rev. Lett., 26(16):946–949, 1971.

[114] Gary C. Bjorklund: Frequency-modulation spectroscopy: a new method for measuring
weak absorptions and dispersions. Opt. Lett., 5(1):15–17, 1980.

[115] G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz: Frequency modulation (fm)
spectroscopy. Appl. Phys. B, 32:145–152, 1983.

[116] C. Wieman and T. W. Hänsch: Doppler-free laser polarization spectroscopy. Phys. Rev.
Lett., 36(20):1170–1173, 1976.

99



Bibliography

[117] Yaakov Shevy and Hua Deng: Frequency-stable and ultranarrow-linewidth semiconduc-
tor laser locked directly to an atomic-cesium transition. Opt. Lett., 23(6):472–474,
1998.

[118] C.P. Pearman, C.S. Adams, S.G. Cox, P.F. Griffin, D.A. Smith, and I.G. Hughes:
Polarization spectroscopy of a closed atomic transition: applications to laser frequency
locking. J. Phys. B: At. Mol. Opt. Phys., 35:5141–5151, 2002.

[119] A. Ratnapala, C. J. Vale, A. G. White, M. D. Harvey, N. R. Heckenberg, and H.
Rubinsztein-Dunlop: Laser frequency locking by direct measurement of detuning. Opt.
Lett., 29(23):2704–2706, 2004.

[120] Wolfgang Alt: Optical control of single neutral atoms. Phd thesis, Rheinische Friedrich-
Wilhelms-Universität Bonn, 2004.

[121] F.M. Gardner: Phaselock Techniques. Wiley, 3rd edition, 2005.

[122] Andrew Leven: Telecommunication circuits and technology. Butterworth-Heinemann,
1st edition, 2000.

[123] L.H. Enloe and J.L. Rodda: Laser phase-locked loop. Proceedings of the IEEE,
53(2):165–166, 1965, ISSN 0018-9219.

[124] R. Wynands and A. Nagel: Precision spectroscopy with coherent dark states. Appl.
Phys. B, 68:1–25, 1999.

[125] Miao Zhu and John L. Hall: Stabilization of optical phase/frequency of a laser system:
application to a commercial dye laser with an external stabilizer. J. Opt. Soc. Am. B,
10(5):802–816, 1993.

[126] Norbert Wiener: Generalized harmonic analysis. Acta Mathematica, 55, 1930.

[127] A. Khintchine: Korrelationstheorie der stationären stochastischen Prozesse. Mathema-
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