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1. Introduction 

Successful treatment of cancer and infections caused by pathogenic microorganisms 

is very often compromised by the development of resistance to multiple 

chemotherapeutic agents, widely known as multidrug resistance (MDR).1 Molecular 

biologists, biochemists and oncologists in the last 30 years realized that this 

phenomenon is due to the expression of plasma membrane “pumps,” which actively 

extrude various cytotoxic agents from the cells due to an increased active efflux.2-5 This 

accelerated efflux is an ATP dependent process resulting from overexpression of 

membrane bound ATP binding cassette (ABC) transporters.6-9 In humans, the three 

major types of multidrug resistance (MDR) transporters include members of the ABCB 

(ABCB1/MDR1/P-glycoprotein), ABCC (ABCC1/MRP1, ABCC2/MRP2) and the 

ABCG (ABCG2/MXR/BCRP) subfamily.10 

 P-glycoprotein (P-gp/ABCB1) is a classical ABC (ATP Binding Cassette) 

transporter which is most intensively studied and has remarkably broad substrate 

specificity. Being highly promiscuous, it transports numerous structurally and 

functionally unrelated compounds including substrates/inhibitors of CYP3A4 and of the 

hERG (potassium ion channel).8,11,12 It is expressed in epithelial cells of the kidney, 

liver, intestine, pancreas, colon, as well as at the, blood–tissue barriers (blood–brain 

barrier, blood–testis barrier,13 blood cerebrospinal fluid (B-CSF), and blood-placenta 

barrier), thus underscoring its role in maintaining concentration gradients of toxic 

compounds at physiological barriers.14 P-gp and its ligands (substrates and inhibitors) 

are therefore extensively studied both with respect to reversing multidrug resistance in 

tumors and for modifying ADME-Tox properties of drug candidates, such as blood-

brain barrier penetration.15 

Models describing the structure and function of P-gp rely on biochemical 

experiments, mutagenesis data, low resolution X-ray structures, and the atomic level 

structures of various other ABC transporters. Analysis of primary amino acid sequence 

of P-gp delineates tandem repeats of transmembrane domains, an ATP binding cassette 

and a linker region connecting the two homologous parts of the protein. Each repeat 

consists of a transmembrane domain (TMD), containing six helices, followed by a 

nucleotide binding domain (NBD).16,17 The two halves form a single transporter with a 

pseudo-two fold symmetry, in which the transmembrane helices define a “pore” which 
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is open to both the cytoplasm and the inner leaflet for substrate translocation, and the 

nucleotide binding sites harvest the energy of ATP binding and hydrolysis (Figure 1). 

Recently the first X-ray structure of mammalian P-gp has been published which 

supports this topology.18 

 
Figure 1. Schematic representation of the structural topology of P-glycoprotein (A) Two 
cylindrical transmemrane domains (TMD) containing a large substrate binding pocket. Two 
nucleotide binding domains (NBD) holding ATP binding sites, NBDs are responsible for ATP 
hydrolysis and drug efflux. (B) Representing full architecture of the transmembrane domains, 
each consisting of six transmembrane helices, followed by cytoplasmic nucleotide binding 
domains (NBD). A linker region connects NBD1 with TMD2. (C) Binding pocket of P-gp in 
nucleotide free inward-facing conformation as described by Aller et al,18 all tramsmembranes 
helices are numbered and connected by the linker region. (D) Binding pocket in ATP bound 
state of protein when it is more exposed to the extracellular fluid and results in translocation of 
substrates out of the cell. 
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2. P-gp Drug Binding Sites 

The role of the TMDs for substrate recognition in P-gp has been subject of many 

investigations. About a decade ago, two major photo-binding regions were identified 

using several techniques such as photoaffinity labeling studies, electron microscopic 

images and epitope mapping.19-23 The main regions captured comprise TM segments 5/6 

in N-terminal and 11/12 in C-terminal part of P-gp. It was further demonstrated that 

even mutants lacking the NBDs were still able to interact with certain substrates.24 

Cystein scanning mutagenesis in combination with employment of thiol reactive 

substrates further identified TM segments 4 and 10 to directly interact with certain 

substrate molecules.24,25 Later on in our group, photoaffinity labeled benzophenones 

were used to characterize the drug-binding domain of P-gp. TM 3, 5, 8 and 11 were 

identified as highly labeled transmembrane regions.26,27 The question of one or two 

binding sites remains elusive, but the data suggest that there indeed are more than one 

drug- interaction sites. The overall assumption in this case is that P-gp possesses a huge 

binding pocket with at least more than two distinct binding sites, with TM 6 as main 

interaction helix. Well characterized are the binding sites of Rhodamine and Hoechst 

33342, the so called R- and the H-site.28,29 

The recently published structure of human P-gp using cystine scanning mutagenesis 

identified two bundles of six transmembrane helices (TMs 1 to 3, 6, 10, 11 and TMs 4, 

5, 7 to 9, 12) as shown in figure 1C. This results in a large internal cavity in the lipid 

bilayer which opens to both the cytoplasm and the inner leaflet. Two portals 4/6 and 

10/12 allow access for entry of hydrophobic molecules directly from the membrane and 

accommodate them at two different positions.18 This is consistent with a recent 

observation of two pseudosymmetric drug translocation pathways in the binding 

cavity.30 Furthermore, the substrate binding sites appear to exist in two states, a high- 

and a low- affinity state, which in case of P-gp are in equilibrium. Affinities can be 

switched from either binding at an alternate site31 or even during the catalytic cycle.11,32 

Both affinity states have been shown in figure 2, with a proposed mechanism of 

transport. Although over the past decade many new insights on details of the substrate 

binding site have been gained,33,34 ATP-driven dimerization of the NBDs has been 

recognized as playing a key role in the catalytic cycle of ABC proteins. However, how 

ATP hydrolysis during the catalytic cycle is coordinated between the two NBDs at the 

molecular level and how this is coupled to drug transport is still not understood. Also 
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the exact mechanism of communication between TMs and NBDs remains elusive, but it 

is strongly suggested that the intracellular loops (ICL) couple drug binding to ATP 

hydrolysis.35,36 

 

Figure 2. Proposed model for the mechanism of substrate transport across cell membranes 
(A) Representing the high affinity state where the ligand enters the binding cavity from the 
inner leaflet of the membrane. (B) Low affinity state where ATP (magenta colour) binds to the 
NBD following a large conformational change and release of the ligand into the extracellular 
space. 

Several models attempt to show how this transport process might work. In the 

“power stroke model” the substrate enters the binding pocket from the inner leaflet of 

the membrane and induces nucleotide binding. This promotes the formation of an NBD 

dimer which results in the power stroke for reorientation of the drug-binding sites from 

high-affinity inward-facing orientations to outward facing low-affinity sites.33,37-40 

Several studies using ATP analogs have shown that there are alterations in packing of 

the TM α-helices in a way that the binding site reorientates towards the extracellular 

fluid resulting in the release of the substrate.41-43  

Senior et al, proposed that drug transport is coupled to relaxation of a high chemical 

potential conformation of the catalytic site containing bound Mg+2, ADP and Pi, which 

is generated by the process of ATP hydrolysis itself rather than being coupled to 

nucleotide binding.44 According to the “alternate site mechanism” one out of two NBD 
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active sites is able to hydrolyze ATP at any point in time during the catalytic cycle.45 

This mechanism requires that all reaction intermediates are asymmetric, which is in 

agreement with the recently proposed “site switching model” of substrate transport.46 

This model proposes that substrate translocation across the membrane is driven by ATP 

hydrolysis. According to this model one of the two NBD dimer interfaces is always in 

the tightly bound occluded state at all times (Figure 3). The NBD dimer thus never 

dissociates during catalytic turnover. As only one-half of the interface opens after 

hydrolysis of an ATP molecule, asymmetry of the structure is maintained continuously 

throughout the transport cycle. 

 

Figure 3 Proposed substrate transport mechanism of P-gp, taken and modified from 
Siarheyeva et al.46 It has been proposed that catalytically active P-gp maintains its asymmetry 
and one out of two NBDs active sites is able to hydrolyze ATP at any point in time during the 
catalytic cycle. One ATP molecule is tightly bound (ATPT) in one of the two NBDs which 
results in closure of the dimer interface in NBD1. The tightly bound ATP molecule undergoes 
hydrolysis, which provides the energy for movement of the drug into the extracellular fluid. 
ATP hydrolysis converts the tightly bound ATP to ADP and Pi, which are now loosely bound 
(ADPL), resulting in opening of the dimer interface in NBD1. The other catalytic site 
simultaneously switches to the high affinity state where a second ATP molecule tightly binds, 
resulting in closure of the interface at NBD2. Pi dissociates from the catalytic site of NBD1 
first, followed by ADP, which is replaced by another molecule of loosely bound ATP to achieve 
the asymmetric occluded state once again. A second round of ATP hydrolysis and drug 
transport then takes place at NBD2.  
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Recently cross-linking analysis by Loo et al, suggests that P-gp cross-linked between 

residues 175 and 820 in the cytoplasmic portion of transmembrane helices 3 and 9 is 

able to hydrolyze ATP in the absence of substrates. In addition, basal ATPase activity is 

stimulated by drug substrates, indicating that under conditions in which the NBDs 

cannot disassociate completely, the transporter is still able to bind drugs.47 The crystal 

structure of a bacterial ABC transporter (Sav1866) in the outward-facing conformation 

agrees well with the recent cross-linking analysis and most likely reflects a 

physiologically relevant state.48 However, the crystal structure of the open conformation 

of mouse P-gp18 could only be obtained in the absence of ATP, ATP analogs or 

magnesium, which is unlikely in the physiological conditions. Nevertheless, this study 

gives hope to seek crystal structures of other mammalian P-gps that diffract X-rays to 

higher resolution and that represent more physiologically relevant conformations.49 

Within the past two decades numerous modulators of P-gp mediated drug efflux have 

been identified and several entered clinical studies up to phase III.50,51 However, up to 

now no compound achieved approval, which is mainly due to severe side effects and 

lack of efficacy. This further emphasizes the physiological role of efflux transporters in 

general and P-gp in particular52 and stresses the need for a more detailed knowledge on 

the structure and function of these proteins and the molecular basis of their interaction 

with small molecules. Discovery of new drug entities is costly and time demanding, for 

this reason reliable in silico tools for recognition of P-gp substrates and inhibitors can 

be valuable during the early phases of drug discovery. 

3. Current State of the Art of P-gp Computational Models 

Both ligand- and structure-based approaches have been undertaken to explore the 

molecular basis of ligand-protein interactions. In order to probe structural features 

important for P-gp inhibitor activity, extensive SAR and QSAR studies have been 

performed. These include Hansch analyses, GRIND, CoMFA and CoMSIA, HQSAR 

studies, pharmacophore modeling as well as neural network based classification 

approaches. Key amino acid residues involved in ligand interaction have been identified 

by homology modeling, site directed mutagenesis and docking protocols. 

In the present work propafenone analogs and related compounds were used to study 

3D pharmacophoric features of inhibitors of P-gp and their ligand-protein interaction 

profiles. We also analyzed a set of dihydrobenzopyranes, which, in contrast to our main 
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lead compound propafenone, offer the advantage of remarkably reduced conformational 

flexibility and thus might be versatile molecular tools for probing stereoselective 

differences of drug/P-gp interaction. Finally, compounds were prioritized by ligand 

efficiency and lipophilic efficiency profile studies. These parameters normalise 

biological activity towards size and logP, thus helping to identify the derivatives with 

the best activity/logP (or size) ratio. In this part of the discussion, the current status of in 

silico models for prediction of P-gp inhibitors will be addressed. 

3.1. Ligand Based Approaches 

P-glycoprotein and its congeners are membrane-spanning proteins and thus until very 

recently only little structural information is available. Therefore, in lead optimization 

programs, mainly ligand-based approaches have been pursued. These include both 2D- 

and 3D-QSAR studies on structurally homologous series of compounds, such as 

verapamil analogs, triazines, acridonecarboxamides, phenothiazines, thioxanthenes, 

flavones, dihydropyridines, propafenones and cyclosporine derivatives.53-56 Extensive 

QSAR studies have been mainly performed on phenothiazines and propafenones. They 

include Hansch- and Free-Wilson analyses,57 hologram QSAR, CoMFA, and CoMSIA 

studies,58 as well as nonlinear methods of classification,59 similarity-based approaches60 

and most recently ligand efficiency and lipophilic efficiency profiling of ABC 

transporters. Most of these studies point towards an importance of H-bond acceptors 

and their strength, a certain distance between aromatic moieties and H-bond acceptors, 

as well as the influence of global physicochemical parameters, such as lipophilicity and 

molar refractivity.57,61,62 

However, several studies showed that lipophilicity might influence pharmacological 

activity in a space-directed manner rather than as a general physicochemical 

determinant.63,64 This space-directedness might be indicative of different orientations of 

molecules within the binding pocket of P-gp. Pleban et al,65 further reported that 

distribution of hydrophobicity within the molecules influences their mode of interaction 

with P-gp. Moreover, she hypothesized that the substructure with the higher partial 

lipophilicity acts as an anchor for the compounds in the lipid membrane and thus 

influences the orientation of the molecule in the binding pocket, which is further 

confirmed by König et al., by using hydrophobic moments as QSAR descriptors.66 

Hydrophobic distribution within the molecules along with molecular weight, number of 
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rotatable bonds and energy of highest occupied orbital Ehomo, was further identified as 

determinant for P-gp inhibitory potency by Wang and colleagues.67 

Seelig68,69 more explicitly defined the number of H-bond acceptors and their fixed 

spatial distance while working on a database of 100 P-gp ligands. She defined two 

patterns of H-bond acceptor groups. Type I units have two H-bond acceptors separated 

by a distance of 2.5±0.3 Å  and type II units have two or three H-bond acceptors where 

two groups are spaced 4.6 ±0.6 Å apart. She proposed that P-gp ligands contain at least 

one type I or type II unit, or may contain both. Ecker et al,70 followed up on Seelig’s 

findings and found an excellent correlation between the summed electron donating 

strength of the substituent at the nitrogen atom and its potency as an inhibitor.  Pajeva 

and Wiese further considered the strengths of the H-bond groups, rather than just their 

numbers, by calculating H-bond acceptor capacities.71  

Tariquidar, which is among the third generation representatives and one of the most 

active MDR modulators, has been identified to bind at the same site as the P-gp 

substrate Hoechst 33342.31,72 Globisch et al,73 identified the structural features of 

tariquidar analogues74 contributing to MDR activity by Free-Wilson analysis and 3D-

QSAR, such as CoMFA and CoMSIA. H-bond acceptor, steric, and hydrophobic fields 

were identified as most important 3D properties, which is in line with previous studies 

about the role of the steric, hydrophobic and H-bond interactions of MDR 

modulators.63,64,75 Later on, similar features were identified by Müller et al, for a set of 

compounds comprising a tetrahydroisoquinoline-ethyl-phenyl-amide substructure.76 

Overall no correlation has been identified between logP and pIC50 values of tariquidar 

analogs. In contrast to logP, the hydrophobic indices, generated by CoMSIA models, 

showed a relatively high correlation with pIC50 values. The hydrophobic field alone 

produced models with acceptable statistics.77 

Recently, Gadhe et al, reported topomer CoMFA78 and HQSAR models for newly 

synthesized third generation MDR modulators,79 containing a tetrahydroisoquinoline–

ethyl-phenylamine nucleus as shown in figure 4.  

N

N
H

X

O
R2

R1

R1

 
Figure 4. Common scaffold of newly synthesized third generation MDR modulators79 
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Contour map analysis of the topomer CoMFA model showed that bulky and more 

electropositive substituents on the amide linker (X) are responsible for higher potency, 

which was further supported by the HQSAR atomic contribution map. However, 

HQSAR additionally revealed that a dimethoxy group at R1 position is important for an 

inhibitory effect. Both HQSAR and topomer CoMFA underscore the importance of the 

aromatic dimethoxy and nitro groups for the inhibitory effect. This information was 

utilized to design some compounds which were predicted more potent than existing 

ones.80 

Ekins et al,81,82 used chiral compounds for model development, but stereochemical 

aspects of ligand-protein interactions were not addressed and/or racemic mixtures were 

used instead of the single enantiomers. Both studies described similarity of 

pharmacophoric features of MDR modulators of digoxin and vinblastine transport and 

verapamil binding. Important features of these substrates include multiple hydrophobic 

and hydrogen bond acceptor features, which, after alignment suggest commonality in 

their binding sites. However, despite some similarities between the two models 

presented, a direct comparison of the distance matrices of the pharmacophoric features 

revealed some differences. This reflects that the large binding site in P-gp might have 

several points able to participate in hydrophobic and H-bond interactions and might 

undergo conformational changes so that both ligand and receptor adopt a best fit for 

each other. Langer and co-workers,83 additionally highlighted the importance of a 

positive ionizable feature, corresponding to the tertiary nitrogen atom in the molecules. 

However, Ecker et al,70 demonstrated that the basic nitrogen atom in propafenone-type 

modulators of P-gp represents an important pharmacophoric group and that it interacts 

on basis of H-bond acceptor features rather than charged ones. Later on, pharmacophore 

models in combination with in vitro approaches were used to filter out P-gp substrates 

or inhibitors and identify potential therapeutic P-gp inhibitors.84  

Although the majority of pharmacophoric models are reasonably accurate in 

predicting inhibitors and substrates of P-gp71,81-83,85-87 and in identifying the minimal 

structural requirements of MDR modulators, they rarely reached high accuracy when 

applied to large data sets with nonlocal series. 3D-QSAR methods on the other hand 

need a proper alignment of the molecules. Moreover, pharmacophoric as well as 

CoMFA and CoMSIA models do not consider ADME (e.g membrane permeability) 

properties of the compounds. This can be overcome by using descriptors derived from 
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molecular interaction fields (MIF), such as Volsurf or GRID,88 which are alignment-

independent and thus allow the analysis of structurally diverse data series. In addition, 

GRID MIFs have been applied to many areas of drug discovery, including 3D-QSAR,89 

ADME profiling, pharmacokinetic modeling 90 and metabolism prediction.91  

Boccard et al,92 used VolSurf descriptors based on molecular interaction fields 

(MIFs) related to hydrophobic interaction forces, polarizability and hydrogen-bonding 

capacity, to predict affinity variation of flavonoid derivatives93,94 towards P-gp. Optimal 

shape of the ligands and hydrophobicity was identified as major physicochemical 

parameters responsible for the affinity of flavonoid derivatives for P-gp. Interestingly, 

hydrogen-bonding capacities showed minor contribution towards activity. Moreover, 

authors also suggested the use of a 3D linear solvation energy approach95 to predict 

pharmacokinetic properties such as permeability of the molecules in the membrane or 

blood- brain barrier penetration.  

Cianchetta et al,88 used GRIND and simple physicochemical-based descriptors to 

identify pharmacophoric as well as physicochemical properties of substrates/inhibitors 

of P-gp. The GRIND model consists of two hydrophobic groups 16.5 Å apart from each 

other, two hydrogen-bond-acceptors at a distance of 11.5 Å, as well as the dimension of 

the molecule. The GRIND model has been shown to be more robust than the one 

obtained from physicochemical-based descriptors. Later on a similar approach was used 

to discriminate the structural features of P-gp substrates from non-substrates.96 The 

model interpretation was in good agreement with molecular features proposed by 

Cianchetta and co-workers. However, the two models can’t be compared directly as 

Almond descriptors are highly conformational dependent and both studies used 

different data sets of compounds. Nevertheless, a key recognition element, two 

hydrogen-bond acceptors groups around 11.5-15 Å apart from each other, is present in 

P-gp substrates in both studies. The model was able to discriminate substrates from non 

substrates with 82% accuracy and can be used as a virtual screening tool in early 

discovery programs.96 

Recently, Broccatelli et al,15 studied P-gp with respect to its target as well as 

antitarget properties. VolSurf molecular descriptors were optimized to model 

pharmacokinetic properties along with a pharmacophoric method (FLAP), by using a 

structurally diverse data set of 1275 compounds. With VolSurf descriptors, a number of 

important pharmacokinetic parameters such as membrane permeability (size, 
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hydrophobic surface area, flexibility and logP) of substrates and inhibitors of P-gp was 

elucidated, while the pharmacophore-based method of fingerprints for ligands and 

proteins (FLAP) identified the most important pharmacophoric features around the 

optimal molecular shape (one H-bond acceptor and two large hydrophobic regions). 

Finally, the molecules in a confirmation that sufficiently fits the optimal shape were 

classified as P-gp inhibitors. The model was used to predict P-gp inhibition with 88% 

accuracy and can be use to evaluate ADME-Tox properties and as a guide to design new 

drug candidates.  

Apart from Volsurf and GRIND methods, Similarity-Based descriptors (SIBAR) as 

well as electrotopological state descriptors can be used to predict (ADME) properties. 

The SIBAR approach is based on selection of a highly diverse reference compound set 

and calculation of similarity values to these reference compounds. This approach was 

used to predict P-gp inhibitory activity of a series of propafenone analogs.60 Zdrazil et 

al,97 focused on improvements regarding the reference set and concluded that a 

combination of high diversity and an interaction of the reference compounds with the 

biological target are beneficial for good models. Eelectrotopological state (ES) 

descriptors revealed that the ability to penetrate into membranes, molecular size, atom 

counts and electrotopological values of certain isolated and bonded hydrides are 

important structural attributes of substrates of P-gp. The “Gombar-Polli Molecular E-

state (MolES) Rule” states that molecules with MolES value greater than 110 were 

identified as substrates and those with MolES less than 48 as nonsubstrates.98 

Didziapetris and co-workers postulated the “rule of four”, which states that compounds 

with the number of hydrogen bond acceptors less than 8, a molecular weight less than 

400 and having an acidic pKa > 4 are likely to be P-gp substrates, whereas compounds 

having less than 4 H-bond acceptors, a molecular weight less than 400 and a basic pKa 

< 8 are more likely to be non substrates.99 This is in line with the findings of Gleeson et 

al,100 that neutral or basic molecules showing a molecular weight greater than 400 and 

logP value greater than 4 are more likely to be transported by P-gp rather than acidic or 

zwitterionic compounds. The topological substructural molecular design approach 

(TOPS-MODE), which is based on the calculation of spectral moments of molecular 

bond matrices, has also been shown to give accurate prediction of P-gp activity and 

helps in identification and quantification of fragment contributions that are responsible 

for P-gp activity for any molecular structure.101   
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In recent years, nonlinear methods such as artificial neural networks and support 

vector machines have been successfully applied for prediction of polyspecific drug-

protein interactions. Kaiser et al,102 used self-organizing maps to separate high- and 

low-active propafenone-type inhibitors of P-gp. Compounds in the near neighborhood 

of highly active compounds in the training set were considered as potential hits. They 

showed structural scaffolds differing from those used in the training set, which indicates 

that this method is suitable for identification of structurally unrelated, diverse hits and 

thus represents a versatile tool for scaffold hopping. Huang et al,103 used Support Vector 

Machine (SVM) classification with a particle swarm-optimization algorithm as feature 

selection pre-processing step, which gave a model with an accuracy of greater than 90 

%. This model was based on seven non-correlated and simple descriptors including 

three constitutional descriptors (molecular weight, number of H atoms and number of O 

atoms), two functional group counts (number of ring/tertiary C, number of substituted 

benzene) and two molecular properties (TPSA and logP). This further strengthens the 

important role of molecular weight, H-bonds, and the polar surface area for substrate 

recognition of P-gp.67,99 Some other features such as number of ring tertiary C-atoms 

and the numbers of substituted benzene C atoms were also identified as characteristics 

of P-gp substrates.  

Finally, Demel et al,104 classified P-gp substrates and nonsubstrates by using 

Friedman’s RuleFit algorithm.105 Models derived were based on simple, 

physicochemical descriptors. It has been suggested that substrates are associated with 

large hydrophobic surfaces, expressed as PEOE_VSA_HYD, are quite flexible and 

show less than four H-bond donors. Nonsubstrates are mainly characterized by small 

vsa_acc and logP(o/w) values and are enriched in H-bond donors. The method allowed 

accurate and fast classification of P-gp substrates for a highly diverse set of compounds.  

To summarize this part, ligand based studies on P-gp ligands, including QSAR, 

pharmacophore modeling and classification methods, shared some descriptors such as 

hydrophobicity, steric and electrostatic interactions, size or shape and H-bond 

properties. Although this information is still not giving a global picture, it may help 

medicinal chemists in the design and synthesis of novel compounds with more 

inhibitory potencies and better ADME properties. 
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3.2 Structure Based Approaches 

Structure-based design mainly relies on the availability of crystal structures of the 

target protein at atomic level. P-glycoprotein and its homologues being membrane 

embedded proteins are mostly resistant to forming diffracting crystals which 

complicates the crystallization process of such proteins. Therefore, protein homology 

modeling based on templates of bacterial homologues or mouse P-gp, representing 

different catalytic states, is the method of choice for structure-based studies. Many 

structure based studies have been reviewed in detail by several authors in the past.55,106-

109 Table1 gives an overview of currently available templates and homology models of 

P-glycoprotein. 

Table 1. Currently available homology models of P-glycoprotein, taken and modified 

from Klepsch et al.107 

Templates  
(PDB Codes) 

Organism Ligand Resolution 
[Å] 

Similarity 
(%)a 
 

Ref. Homology 
Models 

MsbA  (1JSQ) E. coli Apo-openb 4.50 36 / 57  110 (R) 111-113 

MsbA  (1PF4) V. cholerae Apo-closedc 3.80 33 / 55  114 (R) 27 

MsbA  (1Z2R) S. typhimurium ADP·Vi 4.20 37 / 57  115 (R)  

Sav1866 (2HYD) S. aureus ADP 3.00 34 / 52  48 116-122 

MsbA (3B5W) E. coli Apo-open 5.30 36 / 57  123 118,124 

MsbA  (3B5X) V. cholerae Apo-closed 5.50 33 / 55  123 118,124 

MsbA  (3B5Y) S. typhimurium AMP-PNP 4.50 37 / 57  123  

MsbA  (3B5Z) S. typhimurium ADP·Vi 4.20 37 / 57  123 117 

MsbA  (3B60) S.typhimurium AMP-PNP 3.70 37 / 57  123 118 

MalK  (1Q1B) E. coli Apo-semi open 2.80 31 / 50  117 117 

MalK  (1Q1E) E. coli Apo-open 2.90 31 / 50  117 117 

ABCB1 (3G5U) M. musculus Apo-closed 3.80 87 / 93 18 30,122 

ABCB1 (3G60) M. musculus QZ59-RRR 4.40 87 / 93 18  

ABCB1(3G61) M. musculus QZ59-SSS 4.35 87 / 93 18 125 

a Sequence identity/ homology with human P-gp, bApo-open represents the nucleotide-free 
protein with the NBDs far apart, bApo-closed describes the nucleotide-free protein with NBDs 
that lie close together, (R) Retracted models. 

The first complete ABC crystal structure was published by Chang and co-workers in 

2001, namely the MsbA lipid A half-transporter from Escherichia coli in the nucleotide 

free state. This was followed by two further MsbA structures reported by the same 

group in 2003 and 2005, in nucleotide free (NBDs lie close to each other) and ADP 
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bound state, respectively. Later on these structures were retracted because of some 

discrepancies between the MsbA structures and other structural and biochemical data on 

complete ABC transporters and isolated dimeric NBDs,37,126 which, according to Chang 

and co-workers, was due to errors in crystallographic data-processing. In this context it 

has to be noted that several authors111-113, 27 used wrong structures for generation of 

protein homology models that also fulfill a significant amount of biochemical data.111,113 

This is because in case of highly promiscuous membrane transporters cysteine cross 

linking studies and ligand photoaffinity labeling could be interpreted in several ways 

and thus might lead to quite convincing hypotheses even when based on partially wrong 

assumptions on the structure of a protein. Therefore, the results of these studies have to 

be carefully reconsidered, as some of them simply might be wrong.  

In 2006, a high resolution (3 Å) X-ray structure of the Staphylococcus aureus 

transporter (PDB ID: SAV1866) in the ADP bound “outward-facing” state was 

published by Dewson et al, 48 which served as a template for most of the homology 

models.116-122 These models were found to be more consistent with the structural 

restraints obtained by cross-linking127,128 and electron microscopic studies.129 Later on 

in 2007, Chang and co-workers 123 revised their previously published crystal structures 

of the bacterial transporter MsbA and reported X-ray structures of MsbA in nucleotide 

free (PDB code: 3B5W, E. coli, resolution: 5.30 Å ; PDB code: 3B5X, V. cholerae, 

resolution: 5.50 Å) as well as “outward facing” ADP or AMP- PNP bound (PDB code: 

3B5Z, S. typhimurium, resolution: 4.20 Å; PDB code: 3B60, S. typhimurium, resolution: 

3.70 Å) structures. All four X-ray structures of MsbA represent different catalytic states 

of the transport cycle and are in agreement with the SAV1866 architecture. Becker et 

al,115 reported four homology models of different catalytic states of P-gp by using 

2HYD and 3B60 as templates for the nucleotide bound state, and 3B5W and 3B5X as 

templates for the nucleotide free state. The measured interresidue distances in all four 

models correlate well with distances derived from cross-linking data.130 Although the 

resolution of these MsbA X-ray structures are rather low and are thus insufficient for a 

detailed investigation of drug-transporter interactions, they provided important insights 

in our understanding of the complete structural picture of P-gp at different stages of the 

catalytic cycle. These conformational changes in the MsbA structures are further 

supported by structural studies of the ABC transporter MalK131 and by the domain 

swapping topology suggested by the Sav1866 structures.48 Further, O'Mara et al,117 
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created homology models of different catalytic states of P-gp representing, semi-open, 

open and ADP bound states by using MalK (PDB ID: 1Q1B) , (PDB ID: 1Q1E) and 

Sav1866 (PDB ID: 2HYD), respectively, as templates. As P-gp must go through the 

ADP-bound state to reset the NBDs for the next catalytic cycle, the flexibility of the 

ADP-bound states in MalK131 suggests that the models may represent three stages of the 

catalytic cycle, an ATP bound closed state, an ADP-bound (nucleotide free) semi-open 

state and an open state (nucleotide free) conformation.  

In the absence of  a high-resolution crystal structure of human P-gp, since 2009 most 

of the homology models are based on Sav1866 and MsbA116-121 and are consistent with 

cross linking and electron microscopic data, showing close association of TM segments 

5 with 8127, 2 with 11128and 1 with 11.132 Amino acid residues predicted to line the drug-

translocation pathway were also consistent with cystein scanning and mutagenesis 

data.25,28,133,134 However, most of these homology models represent P-gp in the closed 

conformation as the NBDs are close to each other and the predicted drug binding cavity 

is open to the outside of the cell. 

In 2009 the first X-ray structure of a eukaryotic ABC efflux pump, P-glycoprotein 

(PDB code: 3G5U, M. musculus, resolution: 3. 8 Å), was published by Aller et al.18 

Additionally the structure was published together with two co-crystallised enantiomeric 

cyclic peptide inhibitors (CPPIs; QZ59-RRR/QZ59-SSS, resolution: 4.40 Å /4.35 Å). 

This new information sheds light on possible ligand binding areas as well as on 

stereoselectivity of P-gp. Stereoselectivity has been also observed recently for a series 

of benzopyrano[3,4-b][1,4]oxazines, as well as for flupenthixol.135 The first crystal 

structure of mouse P-gp represents a huge step forward for structure-based studies on 

this transporter, but it is still difficult to determine the exact orientation of many side 

chain residues at this (3.8 Å) resolution. However, having 87 % sequence identity to 

human P-gp it may serve as a good template for homology modeling.  

Pajeva and co-workers built a homology model of human P-gp by using the X-ray 

structure of mouse P-gp as template (PDB ID: 3G61, resolution 4.35 Å) and docked 

quinazolinones into the binding region, which was defined by extending 14 Å around 

the position of the co-crystallized ligands. The ligand-protein interaction profile of 

quinazolinones suggested interaction with TM5 (Tyr307), TM6 (Phe336) and TM11 

(Tyr953, Phe957), which was further validated and confirmed by models based on 

pharmacophoric features.136 Pajeva et al,125 in another study compared the residues 
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exposed to the binding cavity of the “inward-facing” homology model of human P-gp 

(3G61) with that of  the “outward-facing” homology model based on the Sav1866 

structure.121 It has been elucidated that the ligands remain bound to the same residues 

during the transition from the inward- to the outward-facing conformation of the 

protein. Further analysis of docking poses of cyclic peptides QZ59-RRR and QZ59-

SSS125 confirms the X-ray data about the functional role of TM4, TM6, TM10 and 

TM12 for the entrance gates (portals) to the cavity.18 This is in agreement with recent 

findings of Klepsch and co-workers about ligand-protein interaction profiles of 

propafenones in two different catalytic states of P-gp.122 She extensively docked some 

selected propafenones into a homology model, based on 3G5U (mouse P-gp without 

QZ59 isomer) as well as in the nucleotide-bound conformation 2HYD based on the 

Sav1866 structure. Transmembrane helices 5, 6, 7 and 8 showed interaction with 

propafenones in most of the clustered poses in both models. Moreover, amino acid 

residue Tyr307 has been identified to play a crucial role in H-bond interaction: Most of 

the homology models and docking studies published so far are in agreement with 

experimental studies therefore, information from both structure based as well as ligand 

based approaches could pave the way for a deeper understanding of the molecular basis 

of ligand/transporter interaction. 

4. Aim of the Work 

The general objective of this thesis is to get detailed knowledge about the molecular 

basis of ligand/P-gp interaction by using both ligand and structure based in silico model: 

The specific aims are: 

 To establish predictive models for P-gp inhibitors, such as 2D- and 3D- QSAR 

models, using simple physicochemical as well as GRIND molecular descriptors.   

 To explore the stereoselectivity of P-gp by docking of enantiomerically pure 

benzopyrano[3,4-b][1,4]oxazines into the apo state homology model of human P-gp. 

 To identify the most promising P-gp inhibitors out of our compound library  by using 

hit to lead tools such as ligand efficiency (LE)137,138 and lipophilic efficiency 

(LipE).138  

 To explore the ligand-protein interaction pattern of P-gp inhibitors by docking of 

those ligands showing the best activity/logP and size ratio into an open state 

(nucleotide free) homology model of P-gp. 
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 To explore the lipophilic efficiency (LipE) distribution profiles for three targets 

showing fundamental differences in the way how the ligand enters the binding site: 

P-gp (via the membrane bilayer), serotonine transporter (SERT; from outsied the 

cell) and the hERG (human Ether-à-go-go Related Gene) potassium channel (from 

inside the cell). 

 

5. 2D-QSAR Models 

Within this thesis we established 2D-QSAR models for two different data series of 

inhibitors of P-gp, including a series of chalcones and conformationally rigid 

diastereoisomers of benzopyrano-[3,4-b][1,4]-oxazines. Complete details on the 2D-

QSAR models of these two series are provided in chapter 2 and 3 of this thesis 

(submitted manuscripts). The following section contains a brief summary of the results 

obtained.  

In order to determine the influence of physicochemical properties of the compounds 

on their biological activity, a pool of molecular descriptors consisting of those supplied 

by the program MOE139 version 2009-10 (atom and bond counts, connectivity indices, 

partial charge descriptors, pharmacophore feature descriptors, calculated physical 

property descriptors) were computed for Hansch analyses.140 QSAR-Contingency,141 a 

statistical application in MOE, was used for selection of those descriptors which best 

describe the molecules in the training set. PLS analysis was performed to determine the 

relationship between 2D molecular descriptors and biological activity of the 

compounds. The predictive ability of the models were determined by leave one out 

cross validation (LOO), as well as by an external test set. Our QSAR models for two 

data series end up with the following equations,  

Log1/IC50 = 0.02 (vsa_hyd) –0.36 (b_rotN) + 0.93  Chalcone derivatives 

R² = 0.79; q2 (LOO) = 0.71; RMSE = 0.51; n = 22  (Equ.1) 

Log1/IC50 = 0.01 (vsa_hyd) – 4.74       Benzopyrans 

R² = 0.67; q²=0.63; RMSE = 0.48; n = 35   (Equ.2) 

Vsa_hyd, which describes the sum of VDW surface areas of hydrophobic atoms 

(Å2), is identified as the most contributing descriptor towards biological activity within 

both series of P-gp inhibitors. This is perfectly in line with previous studies which 

showed that distribution of hydrophobicity within the molecules influences their mode 

of interaction with P-gp,65 and that lipophilicity needs to be considered as a space 
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directed property.63,64 This is also in line with a recent analysis of the binding area, 

which shows a large internal cavity in the lipid bilayer that allows the access for entry of 

hydrophobic compounds via the protein/membrane interface.18 In addition, overall 

lipophilicity (logP) of the compounds (i.e. to enrich in biological membranes) plays an 

important role, as stressed out in numerous publications.57,61,62 A separate logP (o/w) 

analysis of the two diasteroisomeric series reveals a positive correlation towards 

biological activity. However, diastereoisomers of benzopyrano[3,4-b][1,4]oxazines 

having 4aS,10bR-configuration showed a better correlation (R² = 0.60) as compared to 

the ones having 4aR,10bS-configuration (R² = 0.40). This might be due to steric 

constrains caused by a benzyl moiety in a compound having 2S,4aR,10bS-configuration 

and thus strengthens different binding modes for these two types of diastereoisomers.142 

Interestingly, in contrast to several other compound classes, a poor correlation has been 

observed between overall lipophilicity of the chalcone derivatives and their P-gp 

inhibitory activity (r² = 0.18).This indicates that the variance in the biological activity of 

chalcone derivatives is mainly driven by the concrete pattern of hydrophobicity 

distribution within the molecules  

The QSAR studies for a set of chalcone derivatives demonstrate that hydrophobic 

distribution along with number of rotatable bonds in the molecule influence the potency 

of the compounds. This confirms the finding of Wang et al, on the contribution of the 

hydrophobic distribution within the molecules along with molecular weight and number 

of rotatable bonds for P-gp inhibitory potency.67 2D-QSAR models showed good 

predictive power, however in order to get an insight about 3D structural requirements of 

P-gp inhibitors, we computed several 3D-QSAR models using MIF based descriptors.  

6. 3D-QSAR Models 

The computational tool Pentacle version 1.06143 was used for computing alignment-

free molecular descriptors or GRID-independent molecular descriptors (GRIND)144 

using different compound series active as inhibitors of P-gp. Within this thesis we 

explore the capability of the GRIND approach to derive predictive 3D-QSAR models 

for different data sets of inhibitors separately and then also to combine the sets and to 

create one general model (Chapter 2-4). Our 3D-QSAR models using GRIND 

descriptors identified two hydrogen bond acceptors, one hydrogen bond donor, 
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hydrophobicity and shape of the ligand as most important common features for high 

biological activity of P-gp inhibitors.  

Favorable interacting regions of two H-bond acceptor groups 8.80-9.20 Å apart from 

each other have been identified as being highly beneficial for high P-gp inhibitory 

activity in local models (Chapter 2,3). Interestingly, the same distance between two 

hydrogen bond acceptors has been identified in a GRIND model containing an extended 

training set of 292 compounds of different chemical scaffolds (q² = 0.61) (Chapter 4). 

However, this distance range is not fully consistent in the combined model and could 

not separate completely the highly active (IC50 < 1µM) compounds from low active 

(IC50 > 1µM) ones. This might reflect the highly promiscuous binding site of P-gp, 

which possesses multiple spots able to participate in hydrophobic and H-bond 

interactions. Thus, different chemical series most probably utilize different H-bond 

interaction patterns. 

We identified three important boundaries (A, B and C, Figure 5) of inhibitors of P-

gp. Distances of favorable interacting regions including one hydrogen bond acceptor, 

one hydrogen bond donor and one large hydrophobic group from different edges of the 

molecules have been measured and compared in all series of P-gp inhibitors separately 

as well as in a combine model containing structurally diverse compounds (Chapter 4). 

Highly active benzopyrano[3,4-b][1,4]oxazines and chalcone derivatives showed a 

hydrophobic moiety at a distance of 15.20-15.60 Å or 17.60-18.00 Å,  respectively, 

apart from one edge of the molecule. Interestingly, the same pharmacophores have been 

identified separated by a distance of 16.00-16.80 Å in our GRIND model containing 

diverse data series. Thus, most important pharmacophoric features, their mutual 

distances and distances from different edges of the molecules are comparable in 

individual models as well as in one combined model. This indicates the demand of a 

specific shape as well as a particular pharmacophoric pattern for this chemotype for P-

gp inhibitors. Additionally it points out the usefulness of the GRIND approach for 

deriving predictive models across diverse chemical scaffolds. 
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               P-glycoprotein: 

 
Figure 5.  Important pharmacophoric features and their mutual distances for high biological 
activity of P-gp inhibitors (as proposed by our 3D-QSAR models). A, B and C represent three 
important shape probes and their mutual distances, yellow and blue probes indicate favorable 
hydrophobic and hydrogen bond acceptor areas and their distance from different edges of the 
molecules. 

7. P-gp and Stereoselectivity  

Lack of significant stereoselectivity in drug/P-gp interaction was observed for P-gp 

substrates/inhibitors, such as verapamil, niguldipine, nitrendipine, felodipine, carvedilol, 

propranolol, zosuquidar and propafenone.145,146 However, there are a few reports of 

remarkable stereospecificity.135,147 Furthermore, the recently published crystal structure 

of mouse P-gp co-crystallised with the two enantiomeric cyclopeptides QZ59-RRR and 

QZ59-SSS revealed distinct binding sites for the two enantiomers.18 In contrast to our 

main lead compound propafenone, the dihydrobenzopyranes offer the advantage of 

remarkably reduced conformational flexibility and thus might be versatile molecular 

tools for probing stereoselective differences of drug/P-gp interaction (Table. 2). 

Especially annelation of a third ring leading to benzopyrano[3,4-b][1,4]oxazines and 

introduction of large substituents at position 2 of the tricyclic system should lead to 

compounds with pronounced configurational differences. Complete details about 

stereoselective interactions of benzopyrano[3,4-b][1,4]oxazines are described in chapter 

5.142 
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Table 2. Chemical structure and biological activity of enantiomerically pure 

benzopyrano[3,4-b][1,4]oxazines. 

Complete details about structure activity relationship (SAR) as well as correlation to 

logP (o/w) are provided in chapter 3 of this thesis. A remarkable difference in biological 

activity of two types of diastereoisomers is might be due to their different binding 

modes at P-gp. This is further supported by results of docking studies performed on a 

homology model of human P-gp based on the X-ray structure of mouse P-gp (PDB ID: 

3G5U). Agglomerative Hierarchical Cluster analysis of the docking poses based on 

consensus RMSD of their common scaffold identifies mainly interactions of 5a,b–7a,b 

with amino acid residues of TM5 and TM6, including Y307, Y310, F343, F336 and 

Q347. For tricyclic diastereoisomers 11a,b–13a,b two types of clusters haves been 

identified (Figure 6 A, B). Clusters of type one containing only compounds with 

(4aS,10bR)-configuration (11a–13a) are located close to the potential entry pathway 

consisting of TM 4, 5, and 6, interacting in particular with amino acid residues Y307, 

F343, A342, and F303. The second type of clusters contain all compounds with 

(4aR,10bS)-configuration (11b–13b). These (second type) clusters are located at two 

different positions. One position is identical with those of 11a–13a, the second position 

is located close to TM 7, 8, 9 and 12 (Figure 6 B), surrounded by amino acid residues 

A985, I765 and L724. Comparing the main positioning of the benzopyrano[3,4-

b][1,4]oxazines with those of QZ59 some overlap could be observed. Especially 

interaction with Y307, F343, F336, A985, A342, M69 and F728 was observed for all 
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ligands. A closer look of ligand–protein interaction profiles of compounds 13a,b and 

7a,b identified some docking poses of 13b showing a steric constraint of the benzyl 

moiety of 13b, which is about 2 Å apart from Y307 and about 2.5 Å apart from F343. 

All these poses are located at the entry gate (Figure 6 C). No such steric constraint has 

been observed for 13a or for 7a,b. In the case of 7b this is most probably due to its 

conformational flexibility, which allows adopting a conformation to minimize the steric 

interactions. This indicates that the differences observed for the biological activities of 

phenylalanine derivatives 13a and 13b might be due to steric constraints at the entry 

path rather than differences in drug/transporter binding. Of course, at the current stage 

this has to be taken very cautiously, as P-gp undergoes major conformational changes 

during the transport cycle and docking experiments represent only a single snapshot of 

this complex movement. However, our ligand docking studies into a homology model 

of P-gp could provide first evidence for different binding areas of the two 

diastereomeric compound series. 

  

Figure 6. (A) Docking poses of 13a (blue) and 13b (green) viewed from outside into the TM 
region. (B) Steric constrains of 13b (green) with amino acids residues Y307 and F343 near the 
entry gate which is supposed to be the preferable interaction position of 13a (blue). 

8. Ligand Efficiency/Lipophilic Efficiency Models 

Concept of “Binding energy of the ligand per atom” or ligand efficiency (LE)137 and 

lipophilic efficiency (LipE),148 which combines both “potency and lipophilicity”, 

represent useful hit to lead  tools to identify the derivatives with the best activity/logP 

(or size) ratio and provide insights for the design of new ligands.149,150 Complete details 

about LE and LipE calculations are described in chapter 6 of this thesis. 
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Ligand Efficiency (LE) is a simple metric for assessing whether a ligand derives its 

potency from optimal fit with the target protein or simply by virtue of making many 

contacts.151 Hopkins et al,152 in 2004 proposed a ligand efficiency of 0.29 kcal mol-1 per 

non-hydrogen atom for a promising drug candidate possessing a potency of about 10 

nM, which was widely accepted by several other authors later on.149,153,154 We 

calculated ligand efficiency values for a dataset of inhibitors of P-gp, including 

benzophenones, some selected propafenones and 8 compounds in different stages of 

clinical investigation. A basic trend has been observed where ligand efficiencies drop 

dramatically as the size increases above 50, which has also  frequently been observed in 

literature.155 However, this dependency has a disadvantage when using the LE measure 

to guide the design of new compounds, as the size of the ligands is likely to increase 

during this process. Various schemes have been designed in the literature to solve this 

problem.156, 157 LE values of the P-gp inhibitors and substrates have been used for 

subsequent scaling to get a size-independent ligand efficiency scale as described by 

Reynolds et al.155 Finally, the ratio of ligand efficiency over normalized ligand 

efficiency scale gives a scoring function called “Fit Quality” (FQ), where more efficient 

binders in the data set were scaled to have a score of 1.0 across a wide range of 

molecular size. Implementing this to our data set, we could observe that most of the 

compounds in clinical investigation showed FQ score above 1 including zosuquidar, 

ONT093, elacridar, and tariquidar, along with some benzophenones and propafenone 

analogues. Although they showed low values for the size dependent LE, in the 

normalized LE fit quality scale they are considered to be more efficient ligands covering 

a wide range of molecular size. Subsequently, the same data set was normalized for 

their lipophilicity, which may provide some guidance towards promising drug 

candidates in the future. 

Liphophilic Efficiency (LipE), is a parameter that combines both potency and 

lipophilicity, and has been introduced for the first time in 2007 by Leeson et al.138 LipE 

is defined as a measure of how efficiently a ligand exploits its lipophilicity to bind to 

the target. clogP values of benzophenones, selected propafenones and 

inhibitors/substrates of P-gp in clinical investigation varies from 15.09 to 2.66 with 

lipophilic efficiency covering a range between –8.79 to + 3.08. Ligand lipophilic 

efficiency values greater than 5, liphophilicity of about 2.5 and activity of less than 10 

nM have been reported as standard thresholds for an oral drug.138,148 Interestingly, only 
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R= ; (19)NN

4-hydroxy-4phenyl-piperidine analogous propafenone GPV0062 as well as the dimer 23 

exhibit values slightly higher than 3, while the rest of the compounds exhibit LipE 

values below 3. Although P-gp inhibitors are highly lipophilic, they showed LipE 

values below the standard threshold.138,148 This might be due to the fact that the access 

path of substrates/inhibitors of P-gp is most likely via the membrane bilayer. This is 

additionally supported by the recent X-ray structure of mouse P-gp, which shows a 

large inner cavity accessible from the membrane via putative entry ports composed of 

transmembrane helices 4/6 and 10/11.18  Thus, for P-gp and other ABC transporter the 

thresholds should be reconsidered and adjusted to this target class. Nevertheless, from 

the benzophenone data set of P-gp inhibitors, compounds 15, 16, 19, 20, and 23, might 

be the most promising ones (Chapter 6) as their LipE values are between 2 and 3, a 

range where most of the compounds which entered clinical trials, are located. To get 

insights into the potential binding mode of the most promising compounds, we selected 

compounds 19, 20, and 23, which are ranked high both in LipE and FQ scores and 6 

(Figure 7), as it is top ranked with respect to FQ for further structure based studies.  
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Figure 7. Benzophenone analogs which showed best activity/logP (or size) ratio in their 
LE, LipE profiles. 

9. Interaction Pattern of P-gp Inhibitors in the Binding Pocket 

Compound 6, 19, 20 and 23 were docked in their neutral form into an open state 

homology model of human P-gp122 based on the X-ray structure of mouse P-gp (PDB 

ID: 3G5U)18 by using software package GOLD. Complete details about docking 

protocol are provided in methods section of chapter 6. Ligand protein interaction pattern 

of selected poses of compounds 6, 19, 20 and 23 further strengthen our structure-

activity relationship studies as well as previous docking studies.122,142 The 

benzophenone scaffold interacts with F343 and F303 near the entry gate, whereas the 

lipophilic substituents in the vicinity of the basic nitrogen atom are surrounded by 

hydrophobic amino acid residues L724, I720, V981, I840, I836 and I765 located at TM 

7, 9, and 12 (Figure 8). This further supports the importance of high lipophilicity and 
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also is in line with previous studies performed by Pajeva and Wiese.63 The top ranked 

cluster also support our previously purposed binding positions for benzopyrano[3,4-

b][1,4]oxazines, where compounds having 4aS,10bR configuration interact mainly with 

amino acid residues of TM4, 5 and 6 near the entry gate, while compounds having 

4aR,10bS configuration go deeper inside the binding cavity and are mainly surrounded 

by hydrophobic amino acid residues of TM7, 8, 9 and 12.142 Interestingly, the top 

scored cluster for dimer 23 is positioned in a way to bridge these two positions (Figure 

8). Selected benzophenone analogs have been previously used as photo-affinity ligands 

to characterize the drug-binding domain of propafenone-type analogs. In these studies, 

TM 3, 5, 6, 8, 10, 11, and 12 were identified as potential interacting helices.26,27,158,159 

This is well in line with our docking studies, which show main interactions with TM 5, 

6 near the entry gate and TM 7, 8 and 12 deeper inside the cavity thus, making 5/8 

interface. No significant cluster of poses has been identified on the second wing (2/11 

interface), which might be due to the asymmetry in the homology model of P-gp, thus 

narrowing the available space at this side. 

 

Figure 8. Ligand-protein interaction profile of best scored pose of benzophenone dimer 23 
making a bridge between interaction positions of  benzopyrano[3,4-b][1,4]oxazine having 
4aS,10bR-configuration, represented by a blue circle, while green circle indicates the preferable 
interaction position of diastereoisomers with 4aR,10bS-configuration.  
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10. Ligand Efficiency (LE) and Lipophilic Efficiency (LipE) Distribution Profiles 

Along Different Entrance Pathways. 

LipE values by definition quantify the extent to which ligands ‘prefer’ to bind to the 

protein or to be solvated in octanol. Inhibitors/substrates of P-gp are highly lipophilic, 

and are supposed to easily get access to the binding cavity which is directly exposed to 

the membrane bilayer. Therefore, substrates/inhibitors of P-gp are more likely solvated 

in octanol. This may provide one of the bases why LipE values of ligands of P-gp are 

below the standard threshold of 5 as described in detail in chapter 6 of this thesis. 

Therefore, we also study the distribution of LipE and LE profiles for compounds taking 

three different access pathways. (1) The ligand gets access to the binding pocket via the 

membrane bilayer (P-gp), (2) the ligand directly accesses to the binding chamber from 

the extracellular environment (SERT), (3) the ligand reaches the binding cavity via the 

cytoplasm (hERG) (Figure 9). LipE values of inhibitors of serotonin transporter 

(SERT), (ChEMBL data base),160 hERG blockers161 and propafenone derivatives of 

inhibitors of P-gp (in-house data) were calculated as described in chapter 6 of this 

thesis. 

 
Figure 9. Schematic representation of access of ligands into the binding chambers of P-gp, 
SERT and hERG along three different translocation path ways, P-gp ligands approach the 
binding cavity via the membrane bilayer, however in SERT the ligands get direct access in to 
the binding chamber from the extracellular environment while in hERG the access route is via 
the cytoplasm. 

The LipE distribution profile of SERT inhibitors identified about 13% compounds 

that cross the LipE threshold of 5 (Figure 10). These compounds cover a wide range of 

activity (0.01 nM- 10 mM) and clogP (-3.42 to 4.66) distribution. Moreover, 15 lead 

compounds for SERT inhibition have been identified with clogP ~2.5, LipE > 5 and 
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IC50 < 10 nM. However, none of them was listed as a marketed drug. These include 

ChEMBL compounds (IDs: 196468,162 190937, 1140708, 253184,163 1138354, 241646, 

1138354, 138354,164 1147706, 1144290,165 1153074,166 394158,167 511500, 1152751168 

and 1152805.169 In case of hERG only 2.5 % of the compounds could cross the LipE 

threshold > 5. They showed a potency distribution between 5-18000 nM and clogP 

values from -0.77 to 2.21. Moreover, only two compounds (Almokalant and Dofetilide) 

showed clogP~2.5, LipE > 5 and potency values < 10nM. Dofetilide is a registered class 

III antiarrhythmic agent, while almokalant is in phase II clinical investigations.170,171 

LipE profiles of P-gp inhibitors could not identify any compound that reaches the 

standard threshold value of 5. Most of these ligands fall in the LipE range of 1-2 (39%) 

or 2-3 (28%) with a wide range in distribution of their clogP values (1.32 to 15.09) as 

well as IC50 (5.6 nM to 1.8 mM) values. 
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Figure 10. LipE distribution profiles of ligands of the hERG potassium channel, SERT and P-
gp, representing targets with three different access pathways. 

These observations are in line with our hypothesis about LipE distribution along 

different ligand access pathways. As the binding cavity of P-gp is directly exposed to 

the membrane bilayer, the inhibitors/substrates of P-gp are highly lipophilic and their 

LipE values although below threshold are considerable to get an access to the binding 

site. In case of hERG the ligands have to pass first through the membrane bilayer and 
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then get an access to the target from the cytoplasmatic side, therefore they need some 

specific range of lipophilicity (clogP ~ 2-3) to cross the membrane bilayer as well as 

potency to preferably interact with the target. In this case the most efficient ligand will 

be the one which exploits its lipophilicity to get an access into the binding cavity. For 

this reason only a few hERG blockers could maintain this balance between inhibitory 

potency and lipophilicity and reach the standard LipE value. Finally, for monoamine 

transporters such as SERT, the binding cavity is directly exposed to the extracellular 

fluid, which alows ligands to enter in the binding chamber without being highly 

lipophilic. Therefore, the percentage of compounds that reached the standard threshold 

of LipE is greater in SERT (13%) as compared to hERG (2.5) and P-gp (0%). 

The same data sets were subjected to ligand efficiency profiling. Maximum ligand 

efficiency values for most promising candidates have been observed for inhibitors of 

SERT (0.3- 0.8 kcal mol–1) followed by hERG blockers, which possess LE in the range 

of (0.3-0.65 kcal mol–1). The most efficient inhibitors of P-gp exhibit an LE range of 

(0.3- 0.4 kcal mol–1) as shown in figure 11. This difference in the range of LE values 

might be due to a difference in number of non hydrogen atoms or due to a difference in 

potency of inhibitors in all three cases. The first one can be ruled out, as it has been 

observed that most of the ligands of all three targets exhibit similar average range of 

number of non hydrogen atoms (10-50). 
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Figure 11. Ligand efficiency (LE) distribution profile of ligands of P-gp, SERT and hERG 
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Figure 12. pIC50 distribution of ligands of  P-gp, SERT and hERG. 

Therefore the difference in LE values might be due to a difference in their pIC50 

values. The activity distribution profile of inhibitors of all three targets (Figure 12) 

showed a clear difference of compound frequencies in the high activity range (pIC50: 7-

8) (SERT: 23%; hERG: 18%; P-gp: 10%). About 23% of the ligands of SERT were 

identified as highly potent (pIC50 > 8), however 3% hERG blockers and only GPV576, 

which is a propafenone derivative of P-gp could reached the highest category of pIC50 

values (> 8). Remarkably, 41% of P-gp inhibitors were identified to belong to the low 

activity range (pIC50: 6-7). This further facilitates our understanding of the drug-protein 

interaction for these three targets and elucidates the promiscuity of P-gp as compared to 

SERT and also even to hERG. Due to the highly promiscuous nature of the binding 

pocket of P-gp, which possesses multiple spots able to participate in hydrophobic and 

H-bond interactions, its substrates and inhibitors do not get one particular optimal fit 

within the binding cavity as compared e.g. to SERT. Therefore, LE values of P-gp 

inhibitors, although in the range of the widely accepted threshold (LE > 0.3), are lower 

than LE values of SERT inhibitors and hERG blockers. There is definitely a need for 

more detailed studies on the ligand-protein interaction profile of inhibitors of P-gp 

which exhibit high LE and LipE values, as this might facilitate future efforts to design 

more potent inhibitors of P-gp. 
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11. Summary and Outlook 

The primary aim of this thesis was to explore the molecular basis of the interaction of 

P-gp with small molecules by using both ligand and structure based in silico modelling 

techniques. Starting from ligand based approaches several 2D- and 3D-QSAR models 

were established to elucidate the interaction forces responsible for high affinity of small 

molecules. GRIND analysis revealed the importance of a particular shape of inhibitors 

of P-gp and provided preferred distances of important pharmacophoric features (such as 

hydrophobic and H-bond acceptors) from different edges of the molecules. Furthermore, 

in order to gain high activity, two H-bond acceptors at a distance of at least 8.80-9.20 Å 

should be present in the scaffold. This global GRIND model for P-gp inhibitors can be 

used for the generation of a web-based application for prediction of inhibition of the P-

gp efflux pump. 

Benzopyrano-[3,4-b][1,4]oxazines are versatile molecular tools to probe the 

stereoselectivity of P-glycoprotein. Ligand docking studies into a homology model of P-

gp provide first evidence for different binding areas of the two types of diastereomeric 

pairs and thus help to explain a large difference in their potency to inhibit P-gp 

mediated drug efflux. Docking studies of a set of selected benzophenones provide 

evidence that the benzophenones seem to bridge the two distinct binding sites proposed 

for diastereoisomers of benzopyrano[3,4-b][1,4]oxazines. This further supports the 

general hypothesis of a huge binding zone with distinct, but overlapping binding sites 

for individual scaffolds as basis for the promiscuity of P-gp.  

Although ligand efficiency (LE) and lipophilic efficiency (LipE) are routinely used 

in lead optimisation programs, up to now no reports on LE and LipE profiles of 

inhibitors and substrates of ABC transporters have been published. We thus analyzed 

the LE and LipE profiles of a series of benzophenone-type inhibitors of P-gp and 

compare them with P-gp inhibitors in clinical trials. Some of the benzophenones 

showed ligand efficiency and lipophilic efficiency behavior comparable with the 

compounds in different stages of clinical investigations. Interestingly, although P-gp 

inhibitors are highly lipophilic, they showed LipE values below the threshold 

considered to be necessary for promising drug candidates. This might be due to the 

unique entrance pathway directly from the membrane bilayer rather than from the intra- 

or extracellular compartment. All information from both structure based as well as 

ligand based approaches used in this study aid in the understanding of the molecular 
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basis of ligand/P-gp interaction and thus could pave the way for design of new lead 

compounds.  
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Abstract  

ABCB1/P-glycoprotein (P-gp) is an ATP dependent efflux transporter often linked to 

multidrug resistance in tumors and to modulation of ADME-tox properties of drugs 

candidates. After withdrawal of several modulators of P-gp from phase II and phase III 

clinical trials, development of new MDR modulators with better potencies and reduced 

toxicity is still of an open challenge. Extensive SAR- and QSAR-studies revealed the 

importance of distinct pharmacophoric features, such as H-bond acceptors, aromatic 

rings and a basic nitrogen atom. In an attempt to further enhance the chemical space of 

P-gp inhibitors and to challenge the necessity of a basic nitrogen atom, a set of 

chalcone- and indanone-type compounds has been synthesised and biologically tested in 

a daunomycin efflux assay. Several compounds showed promising activity in the low 

nM range, with the indanone derivative (10) being the most active analog (42.5 nM). In 

order to elucidate the main pharmacophoric features influencing P-gp inhibitory 

activity, GRID-independent molecular descriptor (GRIND) and general 

physicochemical descriptors were computed. The obtained 3D-QSAR model identifies 

specific distance ranges of significant pharmacophoric features, such as hydrogen bond 

acceptors, hydrophobic groups, as well as steric hot spots. 2D-QSAR studies identified 

the hydrophobic Van der Waals surface area as well as the number of rotatable bonds as 

main properties influencing activity.  

Keywords: ABCB1, P-glycoprotein, Chalcone, GRIND  

Introduction 

Human P-glycoprotein (ABCB1, P-gp) is a multispecific drug efflux transporter 

which mediates resistance of cancer cells to cytotoxic drugs.1 It belongs to the family of 

ATP-binding cassette transport proteins that protect cells from the toxic effect of 

compounds through active outward transfer.2 In fact it has been demonstrated in animal 

models, that even low levels of expression can cause resistance of tumors to cytotoxic 

drugs. Early on, the concept of simultaneous administration of anticancer drugs with 

inhibitors of ABCB1 has been advocated as a concept for evading resistance. However, 

clinical studies have not lived up to the high expectations, and several phase II and 

phase III clinical studies have been terminated prematurely because of severe P-gp 

inhibition related side effects. Nevertheless, a proof-of-concept study illustrated that co-
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administration of the anticancer agent topotecan and elacridar, an inhibitor of both 

ABCB1 and ABCG2 (breast cancer resistance protein, BCRP), significantly increased 

the bioavailability of the anticancer drug and reduced inter-patient variability.3 In order 

to find more potent ABC transporter inhibitors, natural products often provide 

interesting scaffolds and serve as lead structures, as recently reviewed by Klepsch et al.4 

Flavonoids are polyphenolic compounds found to be ubiquitous in the plant kingdom. 

Naturally occurring flavonoids possess inhibitory activity towards ABCG2.5 But also 

ABCB1 is influenced by flavonoids as was shown by Zhang and colleagues. They 

reported that quercetin, genistein and morin had inhibitory activity towards ABCB1-

mediated daunomycin transport.6 Recently, a QSAR model based on naturally occurring 

flavonoids was published describing their modulating effect on ABCB1.7 

For chalcones, which are biosynthetic precursors of flavonoids, detailed structure 

activity relationship information is still missing. Similar to the structurally related 

flavonoids, chalcones are described to possess both ABCB1 and ABCG2 inhibitory 

properties. Recent studies showed that basic as well as non-basic chalcone derivatives 

modulate ABC transporters.8-10 These data together with those presented herein suggest 

that chalcones offer a new compound class which can be used to restore sensitivity of 

cells to chemotherapeutic agents (chemo-sensitizers). 

Results and discussion 

Chemistry. Compounds 3-24 were synthesized as outlined in schemes 1 and 2. All 

compounds are based on the chalcone scaffold, 1,3-diphenyl-2-propen-1-one, which 

was used as core structure. Substituents on both aromatic rings are mostly methoxy 

groups, which represent a pharmacophoric substructure for ABCB1 interaction.11 But 

also derivatives bearing a combination of methoxy together with thiomethyl and tertiary 

amino groups showed high ABCB1 inhibitory activity. Further chemical variations 

concerned the length and type of the spacer linking the two phenyl rings (vinylogous 

and “bridged” chalcones). The substances were obtained by base-catalyzed reaction of a 

corresponding acetophenone derivative with an appropriate cinnam- or benzaldehyde 

(Claisen-Schmidt condensation). Dimerising the core structure resulted in compounds 

20-23, which were received by the same procedure. Compound 19 is an example of a 

bioisosteric replacement of the phenyl part of compound 18 against a ferrocene feature 
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which is a strategy often used in medicinal chemistry.12,13 In compound 24, one 

aromatic ring was exchanged by a cyclohexenol moiety. This compound was obtained 

by a DBU-methanol-promoted reaction of ethyl 2-cyclohexanone carboxylate and 2-

methoxy cinnamaldehyde.14  

Scheme 1. Synthesis of (a) compounds 1-2, (b) compounds 3-17 and (c) compounds 18 

and 19a. 

H

O

R4

O

H
R41-2

(i) 1: R4=2-SCH3
2: R4=3,4,5-(OCH3)3

(a)
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+

H n R4 R3
R1 R4
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(b)

3-17

(ii)

Ar

O OO

CH3 + OMe
H

O

Ar

(c)

18-19

(iii)

OH

O  

3: R1=2-OCH3, R2=R3=H, R4=2,4,6-(CH3)3, n=0 
4: R1=3,4-(OCH3)2, R2=R3=H, R4=2,3-(-CH=CH-CH=CH-), 4-OCH3, n=0 
5: R1=3,4,5-(OCH3)3, R2=R3=H, R4=2-OCH3, n=1 
6: R1=3,5-(OCH3)2, 4-OH, R2=R3=H, R4=2-OCH3, n=1 
7: R1=3,4,5-(OCH3)3, R2=R3=H, R4=2-SCH3, n=0 
8: R1=3,4,5-(OCH3)3, R2=R3=H, R4=2-SCH3, n=1 
9: R1=3,4-(OCH3)2, R2-R3=-CH2-, R4=4-N(CH3)2, n=0 
10: R1=3,4-(OCH3)2, R2-R3=CH2, R4=4-N(CH3)2, n=1 
11: R1=4-OCH3, R2-R3=-CH2-CH2-, R4=3,4-(-CH=CH-CH=CH-), n=0 
12: R1=3,4-(OCH3)2, R2-R3=-CH2-CH2-, R4=3,4,5-(OCH3)3, n=1 
13: R1=4-OCH3, R2-R3=-CH2-CH2-, R4=3,4,5-(OCH3)3, n=1 
14: R1=3-OCH3, R2-R3=-CH2-, R4=3,4,5-(OCH3)3, n=1 
15: R1=3,4-(OCH3)2, R2-R3=-CH2-, R4=3,4,5-(OCH3)3, n=1 
16: R1=3,4-(OCH3)2, R2-R3=-CH2-, R4=3-OCH3, 4-OH, n=1 
17: R1=4-OCH3, R2-R3=-CH2-, R4=2-OCH3, n=1 
18: Ar=3,4,5-(OCH3)3C6H2 
19: Ar=ferrocenyl 

aReagents and conditions: (i) (1) (1,3-dioxolan-2-yl-methyl)triphenylphosphonium 
bromide, NaH, 18-crown-6, THF, room temperature (2) 10% HCl, room temperature; 
(ii) 50% NaOH, EtOH, room temperature; (iii) (1) 50% NaOH, EtOH, room 
temperature, (2) 10% HCl, room temperature. 

Scheme 2. Synthesis of (a) compounds 20-21, (b) compound 22-23 and (c) compound 

24a 
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O

24

(iii) CH3

 

a Reagents and conditions: (i), (ii) 50% NaOH, EtOH, room temperature; (iii) DBU, 
MeOH, argon, room temperature. 

Structure Activity Relationships. The whole data set covers a range of more than 

four order of magnitude difference in biological activity, with indanone derivative 10 

possessing highest biological activity (IC50: 0.04 µM). Compound 9 and 10, both 

containing an aniline nitrogen atom, only differ in one rotatable bond showed a 

difference of 2-fold in their biological activity. A similar trend has been observed for 

compounds 20-23 that are among the most active chalcone derivatives containing 

similar substitution pattern on both sides of central benzene ring of each compound, two 

carbonyl groups and a different number of rotatable bonds. Almost no difference in 

biological activity exists between compounds 20-22. However, 23 (IC50: 0.06µM), 

which possess two additional number of rotatable bonds, is about one order of 

magnitude more active than 20-22 (IC50; 0.14: 0.12: 0.14 µM). We also synthesised 

indanone 14-17 and chalcone derivatives 3-8 and 11-13, containing different numbers 

and pattern of methoxy groups. Almost no difference in biological activity of 15 and 16 

has been identified. Overall, a minor difference (~ factor of 1-2) exists in the indanones 

14-17. A similar trend has been observed for chalcone derivatives, which indicates that 
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a different number and pattern of methoxy groups on the indanone and chalcone 

scaffold and at the benzene ring on the opposite side of the molecules is not making any 

significant difference for biological activity. 18 and 19 are acidic analogs and comprise 

the least active compounds (IC50: 141.30: 107.20),  

Table 1. Biological activity (µM), pIC50 values, hydrophobic surface area (Vsa_hyd) 

and the number of rotatable bonds (b_rotN) for compounds 3-24. 

Codes IC50 (µM) ± SDa pIC50 Vsa_hyd b_rotN 

3 8.51 ± 1.50 5.07 269.85 4.00 
4 2.75 ± 0.10 5.56 315.08 6.00 
5 1.38 ± 0.59 5.86 338.97 8.00 
6 12.0 ± 0.70 4.92 303.31 7.00 
7 0.65 ± 0.15 6.19 318.56 7.00 
8 0.87 ± 0.03 6.06 350.18 8.00 
9 0.13 ± 0.07 6.87 298.03 4.00 

10 0.04 ± 0.01 7.37 329.65 5.00 
11 3.55 ± 0.33 5.45 262.88 2.00 
12 0.14 ± 0.04 6.84 371.69 7.00 
13 1.74 ± 0.38 5.76 343.39 6.00 
14 1.15 ± 0.03 5.94 327.58 6.00 
15 2.63 ± 2.25 5.58 355.89 7.00 
16 2.33 ± 0.34 5.63 291.92 5.00 
17 3.89 ± 0.40 5.41 270.96 4.00 
18 141.30 ± 5.60 3.85 265.44 7.00 
19 107.20 ± 8.40 3.97 192.15 4.00 
20 0.14 ± 0.06 6.86 406.62 10.00 
21 0.12 ± 0.07 6.92 463.23 12.00 
22 0.14 ± 0.02 6.86 463.24 12.00 
23 0.06 ± 0.01 7.24 526.47 14.00 
24 20.4 ± 0.20 4.69 252.94 5.00 

a Each IC50 determination was performed with eight concentrations, and each assay point was 
determined in triplicate  

2D-QSAR. In order to identify the most relevant physicochemical features important 

for high ABCB1 inhibitory activity of chalcone analogs multiple linear regression 

analysis was performed. Use of MOE’s contingency15 analysis tool for identification of 

the most important descriptors revealed the following equation (Equ. 1). 

Log (1/IC50) = 0.02 (vsa_hyd) – 0.36 (b_rotN) + 0.93   (Equ.1) 

n = 22, R² = 0.79, q2 (LOO) = 0.71, RMSE = 0.51 
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Figure 1. Plot of observed vs. predicted MDR-modulating activity of compounds 3-24, 
predicted values were obtained by leave-one-out cross validation.  

Figure 5 shows a plot of observed verses biological activity predicted by QSAR 

equation 1. An excellent QSAR model was obtained with all predicted values within 

one order of magnitude from the measured ones, no outlier was identified (residual 

value < one log unit). Descriptors contributing most to the variance in the biological 

activity comprised vsa_hyd and b_rotN (Equ. 1). This indicates that within this data set 

the number of rotatable bonds and the hydrophobic surface area are the most important 

structural attributes for high biological activity. This is in line with previous findings by 

Wang and colleagues, who showed that hydrophobic distribution within the molecules 

along with molecular weight, number of rotatable bonds and energy of highest occupied 

orbital Ehomo are important descriptors for P-gp inhibitory potency.16 However, in our 

case the QSAR equation reveals a negative contribution of the number of rotatable 

bonds, which points towards an unfavorable entropic contribution.  

Extensive QSAR studies on a large set of propafenone analogs revealed the 

importance of hydrogen bond acceptors and their strength, the distance between 

aromatic moieties and H-bond acceptors as well as the influence of global 

physicochemical parameters, such as lipophilicity and molar refractivity.17-19 However, 

for the present data set of chalcone derivatives we identified only a poor correlation (r² 

= 0.18) between clogP and biological activity (Suppl Figure 1). This indicates that the 
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variance in the biological activity of chalcone derivatives is mainly driven by the 

concrete pattern of hydrophobicity distribution within the molecules, as represented by 

vsa_hyd, rather than by their ability to penetrate in the membrane bilayer. This is also in 

line with the findings of Pleban et al,20 on the importance of the distribution of 

hydrophobicity within ABCB1 inhibitors. Later on this was further confirmed by König 

et al, by using hydrophobic moments as QSAR descriptors.21 Finally, this is additionally 

supported by the recent X-ray structure of mouse P-gp, which shows a large inner cavity 

exhibiting several hydrophobic patches for space directed hydrophobic interactions.22 

3D QSAR. Due to its rigid scaffold, chalcones represent versatile tools for 3D-QSAR 

studies. In recent years especially GRID-independent descriptors (GRIND) gained a lot 

of attraction in the field. GRIND descriptors are based on molecular interaction field 

(MIF) calculations and are alignment-independent, thus allowing the analysis of 

structurally diverse data series.23,23 3D conformations of the molecules in the data set 

were obtained from their 2D co-ordinates by using program CORINA.24 GRIND 

descriptors were derived by computing molecular interaction fields (MIF) and by 

identifying  the regions with maximum field intensity at relative distances by using the 

AMANDA algorithm implemented in software Pentacle version 1.06.25 The 

Consistently Large Auto and Cross Correlation (CLACC) algorithm was used for 

encoding the prefiltered nodes into GRIND. The values obtained from the analysis were 

represented directly in correlograms plots, where the product of node- node energies 

versus distance separating the nodes is reported.  

First, the data set was examined using principal component analysis (PCA). The first 

two components explained 43% of the variance in the GRIND descriptors and separate 

the data mainly on basis of their pharmacophoric pattern (Figure 2). Thus, compounds 

6, 16, 24 in the upper left cluster share a similar pharmacophore having one hydrogen 

band donor (OH). Compounds 20, 21, 22, 23 which contain two carbonyl groups and 

show higher flexibility, are located in the upper right hand side of the plot. Interestingly, 

acid 18, which exhibits pharmacophoric features from both clusters (two C=O, one 

OH), is located almost in the middle of these two clusters. Compounds with negative 

PC values are relatively small (mostly indanones and tetralones) and contain one 

carbonyl group, 1-5 methoxy groups, but no hydrogen bond donor.  
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Figure 2. PCA score plot showing that the whole data set is divided into three groups; 
the upper right part contains flexible and large compounds, the lower portion contains 
less flexible and small compounds (mostly indanones and tetralones); the left part of the 
diagram contains all compounds having a hydrogen bond donor group. 
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In order to analyze the underlying important pharmacophoric patterns, PLS 

multivariate data analysis correlating the biological activity with the complete set of 

GRIND variables (790) was carried out using the AMANDA algorithm.31The PLS 

analysis resulted in a two-latent variable model with an r² =0.85. However, the cross-

validation of the model yielded q² LOO values of 0.26, which is quite unsatisfying. Thus, 

to reduce the high number of variables, a variable selection was applied by using FFD 

factorial selection implemented in Pentacle.25 The resulting number of active variables 

decreased from 523 to 422 which relatively improved the quality of the model (r² = 

0.98, q²LOO = 0.66). Figure 3 shows the plot of the experimental versus predicted 

biological activities.  
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Figure 3. Plot of observed vs. predicted MDR activity (expressed as log (1/IC50) values) 
using the GRIND model 

Analysis of the PLS coefficients profile of the 3rd Latent Variable (LV) of the PLS 

model illustrates the identification of key descriptors for high biological activity (Figure 

4). Activity increases strongly with high value of the descriptors DRY-DRY, TIP-TIP, 

Dry-TIP, and N1-TIP (Table 2).  

 

Figure 4. PLS Coefficient correlograms showing the descriptors which are directly 
(positive values) or inversely (negative values) correlated to the biological activity. The 
activity particularly increases with the increase in (DRY-DRY), (DRY-TIP) and (TIP-
TIP) descriptor values. 
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Table 2. GRID- independent descriptors that are highly correlated to biological activity 

of chalcone derivatives 3-24  

Variable   Distance Correlogram Comment 

40 16.00-16.40 Å DRY-DRY Represents two large hydrophobic groups, remains 
highly consistent throughout the length of the 
correlogram 

292 22.00-22.40 Å TIP-TIP Distance between two steric hot spots of the molecule 

518 17.60-18.00 Å DRY-TIP Distance of a hydrophobic group to one particular 
steric hot spot 

715 1.60-2.00 Å N1-TIP Distance between a hydrogen bond acceptor and a 
steric hot spot , showing negative contribution to 
biological activity 

763 20.80-21.20 Å N1-TIP Distance between a hydrogen bond acceptor and a 
steric hot spot, showing  beneficial contribution to 
potency 

442 18.80-19.20 Å DRY-N1 Distance between one of the two hydrophobic 
moieties to a hydrogen bond acceptor 

The GRIND model indicates the presence of two hydrophobic moieties, which are 

localized at two of the three steric hot spots identified, molecular boundaries (Figure 5 

a, b) in the most active (IC50>1µM) ABCB1 inhibitors. Most of the QSAR studies in the 

past two decades pointed towards the importance of hydrophobic substructures for high 

ABCB1 inhibitory potency.17-19 Furthermore, by using a MIF-based pharmacophore 

model Broccatelli et al, recently provided also evidence for the importance of a distinct 

three dimensional shape of inhibitors of ABCB1.26  

Also our model elucidates the importance of an optimal shape of the ligands and 

identifies three important steric hot spots (“edges”) A, B and C. In the molecules where 

hot spot (A) is 10.00-10.40 Å apart from (B), this represents two edges related to two 

methoxy substitutions at positions 6 and 7 of indanone and tetralone derivatives (Figure 

5 b). However, in compounds 20-23, which contain 3,4,5-tri methoxy groups, it 

represent the distance between the 3- and 4-annelated methoxy groups. The 3rd steric hot 

spot (C) represents the substituted benzene ring on the opposite side of the indanone and 

tetralone scaffold, which is at a distance of 22.00-22.40 Å from edge (A) in most of the 
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active (IC50<1µM) compounds. This further confirms the importance of distinct 3D 

shape requirements for inhibitors of ABCB1.  

 It seems that out of three identified steric hot spots, (A) represent the most favorable 

one as it serve as an anchor to measure the distances to a hydrophobic feature (Figure 

5c). Analyzing the most active compounds (IC50< 1µM) reveals the presence of a 

hydrophobic region around substituted benzene ring at the opposite side at a distance of 

17.60-18.00 Å from edge (A). Optimal shape and hydrophobicity was also identified in 

other studies as major physicochemical parameters responsible for high affinity of 

flavonoid derivatives.27,28,29 Furthermore, Cianchetta and co-workers identified the same 

features at a distance of 20.5 Å apart from each other in selected substrates of ABCB1.30  

In order to further explore the hydrogen bonding related properties, a distance matrix 

of hydrogen bond acceptors from all three steric hot spots as well as their mutual 

distances were computed by GRIND descriptors. In some of the compounds edge (A) 

again represents an anchor point for corresponding distance calculations. Interestingly, 

two different distances ranges having opposite behavior have been identified. First, 

compounds with low activity values show a hydrogen bond acceptor at a distance of 

1.60-2.00 Å from a steric hot spot. (Figure 5d). In contrast, both features far apart 

(20.80-21.20 Å) from each other is seen in the most active compounds (IC50 < 1µM) 

(Figure 5e). This indicates that potent ABCB1 inhibitors show an elongated structure 

and have a hydrogen bond acceptor far from the edges of the molecules.  

The number and pattern of H-bond acceptor groups is a subject of various 

publications. Seelig defined two patterns of H-bond acceptors and proposed that P-gp 

ligands may contain two or more H-bond acceptors which are separated either 2.5±0.3 

Å and/or 4.6 ±0.6 Å apart from each other.31,32 Interestingly, no consistency has been 

observed in the distance profile between different pairs of H-bond acceptors in chalcone 

derivatives. A distance of 9.20-9.60 Å has been identified between two carbonyl groups 

of 20-23 and between one carbonyl group and a region between the 6- and 7-methoxy 

group of the highly active indanone derivative 10 (IC50: 0.04µM) (Figure 4f). However, 

this distance is not consistently present in all compounds having IC50 values < 1 µM. 

Interestingly, a similar distance (8.80-9.20Å) has been found to be important for activity 

of conformationally rigid benzopyrano[3,4b][1,4]oxazine-type inhibitors of ABCB1.33 

In another study, performed on flavonoid derivatives, a distance of  8.00 Å between two 
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H-bond acceptors has been linked to high P-gp inhibitory activity.34 A slightly larger 

distance (11.5-15 Å) has been identified by Cianchetta and co-workers,30 for substrates 

of ABCB1. Finally, a similar distance range between two H-bond acceptors has been 

proposed by Pajeva et al, for a diverse data set of P-gp substrates/inhibitors, which are 

supposed to interact with the verapamil binding site.35  

Although some similarities in mutual distances between two H-bond acceptors seem 

to exist, there is still an inconsistent picture and no clear threshold for efficient 

separation of more potent ABCB1 inhibitors from least active ones. This most probably 

reflects the notion that the large binding site in P-gp offers numerous possibilities to 

contribute to hydrogen bond driven interactions and thus allows a series of distinct, but 

different binding modes. 

   
         (5a)               (5b)  

   
         (5c)                (5d) 

   
         (5e)               (5f) 

Figure 5. (a) DRY-DRY hot spots (yellow color) which represents two hydrophobic 
regions 16.00-16.40 Å apart, present in most active compounds. (b) Shows steric hot 
spots (green color) which makes three important boundaries (A, B and C) for most 
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potent inhibitors of ABCB1 where A-B: 10.00-10.40 Å and A-C: 22.00-22.40 Å. (c) 
Represent the distance range of a hydrophobic substructure (yellow hot spot) from 
molecular extreme (A) (17.60-18.00 Å) (green hot spot). (d) Shows a carboxylic acid 
group (N1: blue hot spot) present very close (1.60-2.00 Å) to one of the molecular 
boundary (encircle), having negative effect to biological activity, while (e) represent the 
same pharmacophoric features at longer distance (20.80-21.20 Å) showing positive 
contribution towards biological activity. (f) N1-N1 hot spots (blue color) representing 
two H-bond acceptors at a distance of 9.20-9.60 Å which is favorable for biological 
activity of most of the compounds. 

Conclusion 

With the current study we present a series of novel chalcone derivatives which in part 

show ABCB1 inhibitory activity in the nanomolar range. Based on a set of 22 

compounds covering different modifications of the chalcone scaffold, two predictive 

QSAR models were established in order to elucidate the molecular features responsible 

for high biological activity. 2D-QSAR analysis revealed the importance of the 

hydrophobic surface area and the number of rotatable bonds. Interestingly, in contrast to 

several other compound classes, there was only a poor correlation between overall 

lipophilicity of the compounds and their ABCB1 inhibitory activity. This indicates that 

for chalcones hydrophobic areas directly contribute to ligand binding. This is further 

exemplified by the GRIND analysis, which identified three hydrophobic hot spots in the 

molecules. Furthermore, distinct distances between these hydrophobic features and H-

bond acceptors have been exemplified. Remarkably, these compounds do not contain a 

basic nitrogen atom. Furthermore, they exhibit a quite rigid and planar structure, which 

renders them quite unique in the chemical space of ABCB1 inhibitors. Thus, chalcones 

represent an interesting new class of ABCB1 ligands which will deserve further 

investigation.  

Experimental Section 

Chemistry. Unless otherwise stated, all chemicals were obtained from Sigma-

Aldrich or TCI Europe and were of analytical grade. Melting points were determined on 

a Kofler hot stage apparatus and are uncorrected. The 1H and 13C NMR spectra were 

recorded on a Bruker Avance DPx200 (200 and 50 MHz). Chemical shifts are reported 

in δ units (ppm) relative to Me4Si line as internal standard and J values are reported in 

Hertz. Mass spectra were obtained by a Hewlett Packard (GC: 5890; MS: 5970) 
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spectrometer. The purity of the synthesized compounds was established by combustion 

analysis with a Perkin-Elmer 2400 CHN elemental analyzer and was within ± 0.4 %. 

Solutions in organic solvents were dried over anhydrous sodium sulphate. 

General Synthesis Procedure for Compounds 1 and 2. To a suspension of 5 mmol 

of the corresponding benzaldehyde, 7.5 mmol (3.220 g) (1,3-dioxolan-2-yl-

methyl)triphenylphosphonium bromide and 0.005 g 18-crown-6 in anhydrous THF and 

under argon atmosphere 20.8 mmol (0,499 g) NaH were added carefully. The reaction 

mixture was stirred till the reaction was completed (monitoring by TLC). Then, the 

mixture was cooled to 0°C and first water and then 10% HCl were carefully added. 

After 60 minutes stirring at room temperature, the mixture was extracted with ethyl 

acetate, 10% HCl and water. The combined organic phase was dried over Na2SO4 and 

the solvent was removed in vacuo. The so-obtained crude product was purified by flash 

chromatography.  

(E)-2-Methylthiocinnamaldehyde (1) and 3,4,5-Trimethoxycinnamaldehyde 

(2).36 Detailed description of the compounds is available in the supplementary data.  

General Synthesis Procedure for Compounds 3-23. A solution of the 2.5 mmol of 

the appropriate acetophenone, indanone, tetralone derivative or 1,3-diacteylbenzene and 

2 mL 50% NaOH in 10 mL ethanol was stirred at room temperature for 30 minutes. 

Then, 2.5 mmol (or 5 mmol with 1,3-diacetylbenzene) of the corresponding 

benzaldehyde or cinnamaldehyde derivative, dissolved in 1 mL ethanol, were added and 

stirred at room temperature After conversion of the starting compounds was completed 

as monitored by TLC, the reaction mixture was poured into ice water and acidified with 

10% HCl to pH 6. The so-formed solid was filtered off and the crude product was 

further purified by recrystallization in ethanol. 

(E)-3-(2,4,6-Trimethylphenyl)-1-(2’-methoxyphenyl)-2-propen-1-one (3).37 

Detailed description of the compounds is available in the supplementary data. 

(E)-1-(3,4-Dimethoxyphenyl)-3-(4-methoxy-1-naphthyl)-2-propen-1-one (4). 

Yield: 0.174 g (20%) yellow solid; mp: 112-116 °C. 1H NMR (CDCl3): δ 8.62 (AB-

system, J=15.3, 1H), 8.38-8.21 (m, 2H), 7.89 (d, J=8.2Hz, 1H), 7.77-7.49 (m, 5H), 

7.00-6.84 (m, 2H), 4.05 (s, 3H), 3.99 (s, 3H), 3.97 (s, 3H). 13C NMR (CDCl3): δ 188.6, 

157.6, 153.1, 149.2, 141.0, 132.8, 131.6, 127.5, 126.0, 125.6, 124.8, 123.2, 122.9, 

122.6, 121.9, 110.8, 110.0, 103.7, 56.1, 56.0, 55.7. MS m/z: 348 (72%, M+), 165 
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(100%), 158 (40%), 139 (91%), 79 (55%). Anal. Calcd for C22H20O4xH2O: C 75.45; H 

5.81. Found: C 75.42; H 5.90. 

(2E,4E)-5-(2-Methoxypehnyl)-1-(3’,4’,5’-trimethoxyphenyl)-2,4-pentadien-1-one 

(5). Yield: 1.240 g (70%) of yellow crystals; mp: 111°C. 1H NMR (CDCl3): δ 7.72-7.53 

(m, 2H), 7.52-7.23 (m, 4H), 7.17-6.89 (m, 4H), 3.95 (s, 6H), 3.93 (s, 3H), 3.90 (s, 3H). 
13C NMR (CDCl3): δ 189.2, 157.6, 153.0, 145.9, 142.1, 137.3, 133.7, 130.4, 127.4, 

125.0, 124.3, 120.7, 111.1, 105.8, 60.9, 56.3, 55.5. MS m/z: 354 (100%, M+), 339 

(73%), 195 (28%), 140 (25%), 91 (54%). Anal. Calcd for C21H22O5x0.3H2O: C 71.16; 

H 6.26. Found: C 70.91; H 6.47. 

5-(2-Methoxyphenyl)-1-(4’-hydroxy-3’,5’-dimethoxyphenyl)-2,4-pentadien-1-

one (6). Yield: 0.240 g (28%) yellow solid; mp: 44-51 °C. 1H NMR (CDCl3): δ 7.78-

6.87 (m, 10H), 5.99 (s, broad, 1H), 3.98 (s, 6H), 3.90 (s, 3H). 13C NMR (CDCl3): δ 

188.6, 157.5, 146.8 (2C), 145.4, 139.3, 137.0, 130.3, 129.9, 127.5, 127.4, 125.1, 124.2, 

120.7, 111.1, 105.7(2C), 56.5 (2C), 55.5. MS m/z: 340 (100%, M+), 309 (8%), 246 

(6%), 181 (35%), 115 (63%). Anal. Calcd for C20H20O5x0.1H2O: C 70.20; H 5.95. 

Found: C 70.13; H 5.71. 

(E)-3-(2-Methylthiophenyl)-1-(3’,4’,5’-trimethoxyphenyl)-2-propen-1-one (7). 

Yield: 0.496 g (64%) yellow crystals; mp: 83-86 °C. 1H NMR (CDCl3): δ 8.22 (AB-

system, J=15.6 Hz, 1H), 7.71-7.59 (m, 1H), 7.48-7.27 (m, 6H), 3.95 (s, 6H), 3.94 (s, 

3H), 2.50 (s, 3H). 13C NMR (CDCl3): δ 189.8, 153.1 (2C), 142.3, 141.7, 139.9, 134.1, 

133.3, 130.4, 127.3, 127.0, 125.5, 124.3, 106.2 (2C), 60.9, 56.3, 16.5. MS m/z: 344 (1%, 

M+), 297 (100%), 236 (5%), 195 (13%), 149 (88%). Anal. Calcd for C19H20O4S: C 

66.26; H 5.85. Found: C 66.22; H 5.91. 

5-(2-Methylthiophenyl)-1-(3’,4’,5’-trimethoxyphenyl)-2,4-pentadiene-1-one (8).. 

Yield: 0.509 g (55%) yellow crystals. mp: 114.5-115.5°C. 1H NMR (CDCl3): δ 7.76-

7.42 (m, 3 H), 7.40-6.86 (m, 7 H), 3.95 (s, 6H), 3.94 (s, 3H), 2.48 (s, 3H). 13C NMR 

(CDCl3): δ 189.0, 153.1 (2C), 144.8, 142.3, 138.6, 138.3, 135.1, 133.4, 129.4, 128.4, 

127.3, 126.2, 125.6, 125.2, 105.8 (2C), 60.9, 56.3 (2C), 16.5. MS: m/z 370 (M+, 65%), 

355 (46%), 297 (60%), 187 (100%), 149 (90%). Anal. Calcd for C21H22O4S: C 68.08; H 

5.99. Found: C 67.74; H 6.01. 

2-[1-(4-Dimethylaminophenyl)-methylidene]-5,6-dimethoxyindan-1-one (9). 

Yield: 0.457 g (57%) yellow crystals. mp: 196-203°C. 1H NMR (CDCl3): δ 7.68-7.49 
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(m, 3H), 7.34 (s, 1H), 6.97 (s, 1H), 6.73 (d, J=9.0 Hz, 2H), 3.99 (s, 3H), 3.95 (s, 3H), 

3.90 (s, 2H), 3.04 (s, 6H). 13C NMR (CDCl3): δ 193.3, 154.7, 150.9, 149.4, 144.3, 

133.3, 132.4 (2C), 131.7, 130.6, 123.4, 111.9 (2C), 107.2, 104.9, 56.2, 56.1, 40.7 (2C), 

32.4. MS: m/z 323 (M+, 100%), 280 (13%), 237 (14%), 161 (15%), 121 (20%). Anal. 

Calcd for C20H21NO3: C 74.28; H 6.55; N 4.33. Found: C 74.07; H 6.50; N 4.25. 

2-[3-(4-Dimethylaminophenyl)-prop-2-en-yliden]-5,6-dimethoxyindan-1-one 

(10). Yield: 0.422 g (48%) orange crystals. mp: 210-213°C. 1H NMR (CDCl3): δ 7.50-

7.29 (m, 4H), 7.02-6.61 (m, 5H), 3.99 (s, 3H), 3.93 (s, 3H), 3.72 (s, 2H), 3.01 (s, 6H). 
13C NMR (CDCl3): δ 192.5, 154.8, 150.9, 149.4, 143.8, 142.2, 134.1, 133.3, 132.7, 

128.7 (2C), 124.6, 119.9, 112.0 (2C), 107.2, 104.8, 56.2, 56.1, 40.2 (2C), 30.2. MS: m/z 

349 (M+, 100%), 334 (17%), 175 (19%), 144 (25%), 117 (27%). Anal. Calcd for 

C22H23NO3: C 75.62; H 6.64; N 4.01. Found: C 75.35; H 6.60; N 3.96. 

6-Methoxy-2-[1-naphthalen-2-yl-methylidene]-3,4-dihydro-2H-naphthalen-1-

one (11).38 Detailed description of the compounds is available in the supplementary 

data. 

6,7-Dimethoxy-2-(3-(3,4,5-trimethoxyphenyl)-2-propenylidene)-1-tetralone (12). 

Yield: 0.282 g (27%) yellow solid. mp: 89-94°C. 1H NMR (CDCl3): δ 7.62 (s, 1H), 7.51 

(AB-system, J=10.4Hz, 1H) 7.17-6.87 (m, 2H), 6.82-6.64 (m, 3H), 3.96 (s, 3H), 3.95 (s, 

3H), 3.88 (s, 6H), 3.16-2.88 (m, 4H). 13C NMR (CDCl3): δ 186.1, 153.4, 153.3, 148.2, 

140.4, 138.3, 135.1, 134.1, 132.4, 126.9, 122.9, 109.9, 109.5, 104.2 (2C), 61.0, 56.2 

(2C), 56.0 (2C), 28.5, 26.3. MS: m/z 410 (M+, 100%), 395 (37%), 379 (40%), 231 

(35%), 175 (41%). Anal. Calcd for C24H26O6: C 70.23; H 6.38. Found: C 70.01; H 6.39. 

6-Methoxy-2-(3-(3,4,5-trimethoxyphenyl)-2-propenylidene)-1-tetralone (13).. 

Yield: 0.399 g (42%) yellow crystals. mp: 152-156°C. 1H NMR (CDCl3): δ 8.10 (d, 

J=8.7Hz, 1H), 7.51 (AB-system, J=10.2 Hz, 1H), 7.15-6.84 (m, 3H), 6.78-6.68 (m, 3H), 

3.92 (s, 6H), 3.88 (s, 3H), 3.87 (s, 3H), 3.00 (s, 4H). 13C NMR (CDCl3): δ 186.2, 163.4, 

153.4, 145.8, 140.5, 135.2, 134.3, 132.4, 130.6, 127.3, 122.9, 113.2, 112.4, 104.2 (2C), 

61.0, 56.2 (2C), 55.4, 29.2, 26.1. MS: m/z 380 (M+, 100%), 365 (46%), 349 (47%), 161 

(69%), 115 (33%). Anal. Calcd for C23H24O5: C 72.61; H 6.36. Found: C 72.36; H 6.31. 

6-Methoxy-2-(3-(3,4,5-trimethoxyphenyl)-2-propenylidene)-1-indanone (14). 

Yield: 0.445 g (49%) yellow crystals. mp: 182-186°C. 1H NMR (CDCl3): δ 7.51-7.29 

(m, 3H), 7.19 (dd, J=8.3Hz, J=2.5Hz, 1H), 7.02-6.82 (m, 2H), 6.74 (s, 2H), 3.93 (s, 
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6H), 3.89 (s, 3H), 3.86 (s, 3H), 3.84-3.78 (m, 2H). 13C NMR (CDCl3): δ 193.5, 159.5, 

153.4, 141.9, 141.6, 140.5, 136.7, 133.2, 131.9, 126.9, 123.7, 123.7, 105.6, 104.4 (2C), 

61.0, 56.2 (2C), 55.6, 29.8. MS: m/z 366 (M+, 100%), 351 (44%), 335 (46%), 165 

(24%), 82 (24%). Anal. Calcd for C22H22O5: C 72.12; H 6.05. Found: C 71.85; H 6.04. 

6,7-Dimethoxy-2-(3-(3,4,5-trimethoxyphenyl)-2-propenylidene)-1-indanone (15). 

Yield: 0.709g (72%) yellow crystals. mp: 193-195°C. 1H NMR (CDCl3): δ 7.39-7.29 

(m, 2H), 6.99-6.87 (m, 3H), 6.73 (s, 2H), 3.99 (s, 3H), 3.93 (s, 9H), 3.89 (s, 3H), 3.78 

(s, 2H). 13C NMR (CDCl3): δ 182.4, 155.2, 153.4, 149.5, 144.0, 141.1, 136.5, 132.4, 

132.1, 131.7, 123.8, 107.2, 104.9, 104.3 (2C), 61.0, 56.2, 56.2 (2C), 56.1, 30.1. MS: m/z 

396 (M+, 100%), 381 (36%), 365 (52%), 175 (22%), 165 (25%). Anal. Calcd for 

C23H24O6: C 69.68; H 6.10. Found: C 69.44; H 6.05. 

6,7-Dimethoxy-2-(3-(4-hydroxy-3-methoxyphenyl)-2-propenylidene)-1-indanone 

(16). Yield: 0.559g (64%) yellow crystals. mp: 114-120°C. 1H NMR (CDCl3): δ 7.41-

7.28 (m, 2H), 7.19-7.05 (m, 1H), 7.03-6.69 (m, 5H), 5.87 (s, 1H), 3.99 (s, 3H), 3.96 (s, 

3H), 3.94 (s, 3H), 3.76 (s, 2H). 13C NMR (CDCl3): δ 192.5, 155.1, 149.5, 146.9, 146.7, 

144.0, 141.4, 135.6, 132.4, 132.4, 129.1, 122.2, 121.3, 114.8, 109.1, 107.2, 104.9, 56.2, 

56.1, 55.9, 30.1. MS: m/z 352 (M+, 100%), 337 (34%), 335 (25%), 176 (16%), 101 

(21%). Anal. Calcd for C21H20O5x0.2H2O: C 70.85; H 5.78. Found: C 70.67; H 5.71. 

5-Methoxy-2-(3-(2-methoxyphenyl)-2-propenylidene)-1-indanone (17). Yield: 

0.490 g (64%) orange crystals. mp: 151-154°C. 1H NMR (CDCl3): δ 7.80 (d, J=8.5Hz, 

1H), 7.56 (dd, J=7.8Hz, J=1.5Hz, 1H), 7.44-7.25 (m, 3H), 7.15-6.85 (m, 5H), 3.89 (s, 

6H), 3.78 (s, 2H). 13C NMR (CDCl3): δ 192.2, 164.9, 157.4, 151.8, 136.5, 135.9, 133.1, 

131.8, 130.2, 127.3, 125.8, 125.4, 124.9, 120.7, 115.0, 111.1, 109.7, 55.6, 55.5, 30.5. 

MS: m/z 306 (M+, 100%), 199 (37%), 145 (30%), 115 (26%), 101 (22%). Anal. Calcd 

for C20H18O3: C 78.41; H 5.29. Found: C 78.14; H 5.98. 

4-[(E)-3-Oxo-3-(3’,4’,5’-trimethoxyphenyl)-1-propenyl]benzoic acid (18). Yield: 

0.445 g (52 %) yellow crystals. mp: 223°C. 1H NMR (d6-DMSO): δ 13.1 (s, 1H), 8.08 

(AB-system J=15.7 Hz, 1H), 8.01 (s, 4H), 7.78 (AB-system J=15.7 Hz, 1H), 7.45 (s, 

2H), 3.90 (s, 6H), 3.77 (s, 3H). 13C NMR (d6-DMSO): δ 187.3, 166.4, 152.5, 142.0, 

141.7, 138.3, 132.2, 131 6, 129.2, 128.5, 123.5, 105.8, 59.7, 55.7. MS: m/z 342 (M+, 

100%), 327 (29%), 299 (24%), 195 (47%), 103 (26%). Anal. Calcd for C19H18O6: C 

66.66; H 5.30. Found: C 66.52; H 5.28. 
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4-[(E)-3-Oxo-3-ferrocenyl-1-propenyl]benzoic acid (19). Yield: 0.405 g (45 %) 

red crystals. mp: >350°C. 1H NMR (d6-DMSO): δ 13.12 (s, broad, 1H), 8.30-7.82 (m, 

4H), 7.67 (AB-system, J=15.6Hz, 1H), 7.53 (AB-system, J=15.6Hz, 1H), 5.07 (s, 2H), 

4.68 (s, 2H), 4.22 (s, 5H). 13C NMR (d6-DMSO): δ 192.1, 158.4, 139.3, 138.6 (2C), 

131.9, 128.9, 126.0 (2C), 80.7, 73.2 (2C), 70.0 (5C), 69.9 (2C). MS: m/z 360 (M+, 

100%), 165 (76%), 121 (33%), 102 (15%), 56 (28%). Anal. Calcd for C20H16O3Fe: C 

66.69; H 4.48. Found: C 66.43; H 4.23. 

1-(3,4-Dimethoxyphenyl)-3-[3-(3,4-dimethoxyphenyl)-3-oxo-1-propenyl]phenyl)-

2-propen-1-one (20). Yield: 0.161 g (14%) pale yellow solid. mp: 121-125°C. 1H NMR 

(CDCl3): δ 7.95-7.79 (m, 3H), 7.76-7.57 (m, 8H), 7.56-7.44 (m, 1H), 6.95 (d, J=8.3Hz, 

2H), 3.99 (s, 12H). 13C NMR (CDCl3): δ 188.2 (2C), 153.4 (2C), 149.3 (2C), 143.0 

(2C), 135.8 (2C), 131.1 (2C), 129.8 (2C), 129.5, 128.3, 123.1 (2C), 122.5 (2C), 110.7 

(2C), 110.0 (2C), 56.1 (2C), 56.1 (2C). MS: m/z 458 (M+, 54%), 293 (51%), 165 

(100%), 137 (17%), 77 (26%). Anal. Calcd for C28H26O6x0.5H2O: C 71.93; H 5.82. 

Found: C 71.82; H 6.05. 

3-{3-[3-Oxo-3-(3,4,5-trimethoxyphenyl)-1-propenyl]phenyl}-1-(3,4,5-

trimethoxyphenyl)-2-propen-1-one (21). Yield: 0.519 g (40%) white solid. mp: 152-

154°C. 1H NMR (CDCl3): δ 77.94-7.80 (m, 3H), 7.72 (dd, J=7.6Hz, J=1.3Hz, 2H), 

7.61-7.47 (m, 3H), 7.30 (s, 3H), 3.97 (s, 12H), 3.95 (s, 6H). 13C NMR (CDCl3): δ 188.9 

(2C), 153.2 (4C), 143.6 (2C), 135.7 (4C), 133.2 (2C), 129.8 (2C), 129.6, 128.7, 122.6 

(2C), 106.1 (4C), 61.0 (2C), 56.4 (4C). MS: m/z 518 (M+, 100%), 323 (36%), 195 

(95%), 152 (24%), 136 (23%). Anal. Calcd for C30H30O8: C 69.49; H 5.83. Found: C 

69.19; H 5.85. 

(E)-3-(3,4,5-Trimethoxyphenyl)-1-{3-[(E)-3-(3,4,5-trimethoxyphenyl)-2-

propenoyl]phenyl}-2-propen-1-one (22). Yield: 0.052 g (4%) pale yellow solid. mp: 

145-148°C. 1H NMR (CDCl3): δ 8.63 (s, 1H), 8.23 (dd, J=7.7Hz, J=1.6Hz, 2H), 7.78 

(AB-system, J=15.5Hz, 2H), 7.67 (t, J=7.7Hz, 2H), 7.46 (AB-system, J=15.5Hz, 2H), 

6.90 (s, 4H), 3.94 (s, 12H), 3.92 (s, 6H). 13C NMR (CDCl3): δ 189.8 (2C), 153.5 (4C), 

146.0 (2C), 138.7 (2C), 132.3 (2C), 130.0 (2C), 129.0, 128.2, 120.8 (2C), 105.8 (4C), 

61.0 (2C), 56.1 (4C). MS: m/z 518 (M+, 100%), 487 (38%), 221 (33%), 206 (20%), 193 

(15%). Anal. Calcd for C30H30O8x0.1H2O: C 69.25; H 5.85. Found: C 69.06; H 5.92. 
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5-(3,4,5-Trimethoxyphenyl)-1-{3-[5-(3,4,5-trimethoxyphenyl)-2,4-

pentadienoyl]phenyl}-2,4-pentadien-1-one (23). Yield: 0.271 g (19%) yellow solid. 

mp: 142-145°C. 1H NMR (CDCl3): δ 8.57 (s, 1H), 8.18 (dd, J=7.8Hz, J=1.5Hz, 2H), 

7.78-7.54 (m, 3H), 7.17 (AB-system, J=14.8Hz, 2H), 7.06-6.91 (m, 4H), 6.75 (s, 4H), 

3.92 (s, 12H), 3.89 (s, 6H). 13C NMR (CDCl3): δ 189.5 (2C), 153.4 (4C), 145.4 (2C), 

142.5 (2C), 139.5 (2C), 138.5 (2C), 132.2 (2C), 131.6 (2C), 129.0, 128.1, 126.3 (2C), 

124.6 (2C), 104.5 (4C), 61.0 (2C), 56.1 (4C). MS: m/z 570 (M+, 4%), 218 (100%), 204 

(19%), 188 (55%), 117 (27%). Anal. Calcd for C34H34O8x0.3H2O: C 70.89; H 6.08. 

Found: C 70.80; H 6.00. 

Methyl 2-hydroxy-3-[3-(2-methoxyphenyl)-prop-2-enyliden]cyclohexene-1-

carboxylate (24). The compound was synthesized according to the procedure described 

previously:14 to a solution of 10 mmol (1.702 g, 1.6 mL) ethyl 2-cyclohexanone 

carboxylate and 10 mmol (1.522 g, 1.5 ml) diazabicycloundecene (DBU) in 20 mL dry 

methanol 10 mmol (1.622 g) 2-methoxycinnamicaldehyde, dissolved in 10 mL dry 

methanol, added. The reaction mixture stirred under argon atmosphere at room 

temperature for 40 hours. Then, it was cooled to 0°C, the obtained precipitate was 

filtered off and recrystallized in ethanol. Yield: 0.599g (20%) yellow crystals. mp: 125-

128°C. 1H NMR (CDCl3): δ 12.22 (s, 1H), 7.52 (dd, J=7.7Hz, J=1.5Hz, 1H), 7.36-7.09 

(m, 4H), 7.05-6.81 (m, 2H), 3.87 (s, 3H), 3.79 (s, 3H), 2.70-2.52 (m, 2H), 2.50-2.35 (m, 

2H), 1.88-1.67 (m, 2H). 13C NMR (CDCl3): δ 173.2, 165.1, 157.1, 132.1, 130.4, 130.0, 

129.2, 126.9, 126.2, 124.7, 120.7, 111.0, 99.6, 55.5, 51.6, 25.7, 23.2, 22.1. MS: m/z 300 

(M+, 57%), 268 (100%), 209 (13%), 134 (60%), 91 (47%). Anal. Calcd for C18H20O4: C 

71.98; H 6.71. Found: C 71.96; H 6.72. 

Biology  

Cell lines. The resistant CCRF vcr1000 cell line was maintained in RPMI 1640 

medium containing 10% fetal calf serum (FCS) and 1000ng/mL vincristine. The 

selecting agent was washed out 1 week before the experiments. This cell line was 

selected due to its distinct P-gp expression. 

Inhibition of daunorubicin efflux. IC50 values for daunorubicin efflux inhibition 

were determined as reported (Chiba et al, 1996). Briefly, cells were sedimented, the 

supernatant was removed by aspiration, and the cells were resuspended at a density of 1 
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x 106/mL in RPMI 1640 medium containing daunorubicin (Sigma Chemical Co., St. 

Louis, MO) at a final concentration of 3 µmol/l. Cell suspensions were incubated at 

37°C for 30 min. Tubes were chilled on ice and centrifuged at 500 g in an Eppendorf 

5403 centrifuge (Eppendorf, Hamburg, Germany). Supernatants were removed, and the 

cell pellet was resuspended in medium pre-warmed to 37°C containing either no 

inhibitor or compounds at various concentrations ranging from 20 µM to 200 µM, 

depending on the solubility and expected potency of the inhibitor. Eight concentrations 

(serial 1:3 dilution) were tested for each inhibitor. After 60, 120, 180 and 240 seconds, 

aliquots of the incubation mixture were transferred to tubes containing an equal volume 

of ice-cold stop solution (RPMI medium containing GPV31 at a final concentration of 

5µmol/l). Zero time points were determined by immediately pipetting daunorubicin-

preloaded cells into ice cold stop solution. Samples drawn at the respective time points 

were kept in an ice water bath and measured within 1h on a Becton Dickinson 

FACSCalibur flow cytometer (Becton Dickinson, Vienna, Austria). Viable cells were 

selected by setting appropriate gates for forward and side scatter. The excitation and 

emission wavelengths were 482 nm and 558 nm, respectively. Five thousand gated 

events were accumulated for the determination of mean fluorescence values.  

Mathematical model for determination of inhibitor IC50 values. Initial efflux 

rates were calculated from the time dependent linear decrease in mean flourescence 

through the use of linear regression analysis. IC50 values were determined from dose 

response curves of inhibitor concentration versus initial efflux rates. Data points were 

fitted according to the equation V = V0 - (V0 – Vinf) × [I]n ÷ (IC50
n + [I]n) where V is the 

velocity of transport, V0 is the transport velocity in the absence of inhibitor, Vinf is the 

efflux velocity at infinite concentration of inhibitor (which is equal to simple diffusion), 

[I] is the inhibitor concentration, IC50 is the 50% inhibitory concentration (50% 

occupancy value) and n is the Hill coefficient.  

Computational Models 

GRID-Independent Molecular Descriptor Analysis. Molecular discovery software 

Pentacle version 1.06 was used for computing alignment-independent 3D-descriptors.39 

This so called GRIND approach aims to extract the information enclosed in the 

molecular interaction fields (MIFs) and compress it into new types of variables whose 

values are independent of the spatial position of the molecule studied. Most relevant 
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regions are extracted from the MIF by an optimization algorithm that uses the intensity 

of the field at a node and the mutual node-node distances between the chosen nodes as a 

scoring function. At each point, the interaction energy (Exyz) is calculated as a sum of 

Lennard-Jones energy (Elj), Hydrogen bond (Ehb) and Electrostatic (Eal) interactions. 

Exyz = ∑Elj + ∑Eel + ∑Ehb 

Default values for Grid Step (0.5 Å) and probes (DRY representing Hydrophobic 

interaction, O (Carbonyl Oxygen) representing hydrogen bond acceptor groups, N1 

(Amide Nitrogen) representing H-bond donor groups and TIP representing a shape 

descriptor) were used for computation of the MIF. MIF discretization was performed by 

the AMANDA algorithm using default values for probe cutoff (DRY= -0.5, O= -2.6, 

N1= -4.2, TIP= -0.74).40 Nodes with an energy value below this cutoff were discarded. 

Large Auto and Cross Correlation (CLACC) algorithm was used for encoding the 

prefiltered nodes into GRIND thus producing most consistent variables as compared to 

MACC.41  

QSAR. Molecular structures were built with the builder function of MOE42 version 

2010 and energy minimised, partial charges were assigned by MMFF94 force field. 2D 

molecular descriptors, including atom and bond counts, connectivity indices, partial 

charge descriptors, pharmacophore feature descriptors and general physicochemical 

descriptors were calculated by using software MOE version 2010. PLS analysis was 

performed with the MOE QSAR model tool and the predictive ability of the models was 

determined by leave one out cross validation (LOO).  
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In this part a data set of enantiomerically pure benzopyrano[3,4-b][1,4]oxazines were used to  
establish predictive models for P-glycoprotein inhibitors. This includes 2D- and 3D-QSAR 
models, using simple physicochemical as well as GRIND molecular descriptors. 
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Abstract 

 The ATP-binding cassette efflux transporter P-glycoprotein (P-gp) is notorious for 

contributing to multidrug resistance (MDR) in antitumor therapy. Due to its expression 

in many blood-organ barriers, it also influences the pharmacokinetics of drugs and drug 

candidates and is involved in drug/drug- and drug/nutrient interactions. However, due to 

lack of structural information the molecular basis of ligand/transporter interaction still 

needs to be elucidated Towards this goal a data set of enantiomerically pure 

benzopyrano[3,4-b][1,4]oxazine analogs have been synthesized and pharmacologically 

tested. Both QSAR models using simple physicochemical and novel GRID-independent 

molecular descriptors (GRIND) were computed. The results from 2D-QSAR showed a 

linear correlation of vdw surface areas (Å2) of hydrophobic atoms with pharmacological 

activity. GRIND studies allowed to identify important mutual distances between 

pharmacophoric features, which include one H-bond donor, two H-bond acceptors and 

two hydrophobic groups as well as their distances from different steric hot spots of the 

molecules. Activity of the compounds particularly increases with increase of the 

distance of an H-bond donor or a hydrophobic feature from a particular steric hot spot 

of the benzopyran analogs. 

1. Introduction 

Development of multidrug resistance (MDR) is one of the major challenges in cancer 

chemotherapy, as it limits the effectiveness of many clinically important agents [1]. One 

of the basic underlying mechanisms is over expression of the mdr1 gene product, P-

glycoprotein (P-gp) [2], which belongs to the ATP-binding cassette (ABC) family of 

transporters [3]. It is highly promiscuous in its ligand recognition profile and thus 

transports a large variety of structurally and functionally diverse compounds out of 

tumor cells [4]. Despite its role in tumor cells it is expressed at the epithelial cells of 

liver, kidney, intestine, and colon, as well as at the blood brain barrier. Thus, apart from 

playing an important role in maintaining a concentration gradient of toxic compounds at 

these physiological barriers, P-gp also modulates the pharmacokinetics of drugs that are 

recognized as P-gp substrates.  

Within the past decade numerous inhibitors of P-gp mediated drug efflux have been 

identified [3]. Several compounds entered even phase III clinical studies, such as MS-
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209 (dofequidar fumarate), tariquidar, valspodar and elacridar [5, 6]. However, none 

made it to the market so far, mainly because of lack of efficacy or severe side effects.  

In light of our extensive SAR and QSAR studies of propafenones, benzophenones 

and dihydrobenzopyranes, [7-9] a new class of conformationally restricted 

benzopyrano[3,4-b][1,4]oxazines have been synthesized and biologically tested with 

respect to their ability to block P-gp mediated daunomycin efflux. These new P-gp 

inhibitors offer the advantage of remarkably reduced conformational flexibility and thus 

might be versatile molecular tools for probing stereoselective differences of drug/P-gp 

interaction [10], as well as for 3D-QSAR studies. These might be performed by utilising 

alignment-dependent approaches, such as CoMFA and CoMSIA, or by alignment 

independent methods using descriptors derived from Molecular Interaction Fields 

(MIFs), as exemplified with GRIND [11]. The latter thus also allow the analysis of 

structurally diverse data series. GRID MIFs have been applied to many areas of 

computational drug discovery, including 3D-QSAR [12], high-throughput virtual 

screening [13], ADME profiling, kinetic [14, 15] and metabolism [16] prediction of 

early drug candidates. Within this manuscript we explore the capability of the GRIND 

approach to derive predictive 3D-QSAR models for a set of diastereomeric 

benzopyrano[3,4-b][1,4]oxazines.  

2. Chemistry 

Synthesis of the benzopyran common scaffold was achieved in analogy to the 

procedure reported by Godfrey et al [17] and following our strategy outlined 

recently [10]. Briefly, O-alkylation of 4-hydroxybenzonitril (1) with 3-

trifluoroacetyl-3-methyl-but-1-yne followed by thermal cyclization gave 6-cyano-

2,2-dimethyl-2H-1-benzopyran 3. Enantioselective epoxidation was performed in 

analogy to the method published by Lee et al [18]. The enantioselective epoxidation 

of benzopyranes with Jacobsons Mn(III) Salen catalyst and commercial household 

bleach (sodium hypochlorite) as a stoechiometric oxygen source yielded (S,S)- and 

(R,R)-epoxides 4a and 4b, respectively (Scheme 1). Enantiomeric purity of both 

epoxides was confirmed by HPLC analysis, using a LiChroCART (R,R)-Whelk-01 

column (25x0,4 cm) and n-hexane/isopropanol (95:5) as eluent. 
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Scheme 1. Synthesis of the benzopyran ring system and enantiomeric pure (S,S)- 
and (R,R)-epoxide 4a,b; (i) DBU, CuCl2, -4 °C, Ar atmosphere; (ii.a) (S,S)-Mn (III) 
Salen NaOCl solution, buffer to pH 11.3, 0 °C; (ii.b) (R,R)-Mn (III) Salen NaOCl 
solution, buffer to pH 11.3, 0 °C                                                                                                                  

Nucleophilic ring opening of these epoxides with L- and D-amino acid t-butyl esters 

is regioselective and stereoselective, thus giving optically pure trans 3,4-disubstituted 

benzopyranes. t-butyl esters of L-alanine, L- and D-valine as well as L-phenylalanine 

were reacted with each epoxid-enantiomer to give the diastereomeric esters 5a -7b, and 

10a,b, respectively. 5a-6b and 10a,b were further N-methylated to yield 8a-9b (derived 

from L-alanine and -valine) and 11a,b (derived from D-valine). All tert-butyl-esters 

(5a-11b) were hydrolysed with 70% HClO4 [19] to yield the corresponding acids which 

were subsequently cyclisized without further purification using bis-(2-oxo-3-

oxazoldinyl) phosphinic chloride, 4-dimethylaminopyridine and triethylamine to yield 

the target compounds 12a-18b (Scheme 2). In the subsequent sections, compounds 

derived from epoxide enantiomers 4a and 4b are classified as series (a) and series (b), 

respectively.                                                                                                                                                           
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Scheme 2. Synthesis of target compounds 12a-18b; (iii) 96% ethanol, reflux; (iv) 

Acidic menthol, paraformaldehyde, sodium cyanoborohydride (v) 70% HClO4; (vi) 4-
dimethylaminopyridine, bis-(2-oxo-3-oxazolidinyl)-phosphinic chloride, triethylamine, 
dicholoromethane. 
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For means of comparison, also a set of corresponding ethers were synthesized. The 

solution of both enantiomers of epoxides 4a,b in 96% ethanol were reacted with L-

valinol to yield amino alcohol substituted 2H-1-benzopyran-3-ols 19a,b. N-methylation 

as described before gave the tertiary amines 20a,b. Valinol analogs 19a,b were 

successfully cyclised by mesylation followed by intramolecular O-alkylation to yield 

21a,b. Surprisingly, in case of the tertiary amine (20a,b), the cyclisation failed and the 

respective chloro derivatives 22a,b were obtained (Scheme 3). 
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Scheme 3. Synthesis of target compounds 19a-22b; (vii) 96% ethanol at 65°C reflux 
for 5 days; (viii) Trimethylamine, triethylamine hydrochlorid, and solution of methane 
sulfonyl chloride in small amount of toluene at 0°C. 

3. Pharmacology 

Biological activity of target compounds 5a-22b was assessed using the daunorubicin 

efflux protocol as described previously [20]. Briefly, multidrug resistant CCRF-CEM 

vcr 1000 cells were incubated with daunorubicine and the decrease in mean cellular 

fluorescence in dependence of time was measured in presence of various concentrations 

of the modulator. IC50 values were calculated from the concentration-response curve of 

efflux Vmax/Km vs concentration of the modulator. Thus, the effect of different 

modulators on the transport rate is measured in a direct functional assay. Values are 

given in Table 1 and are the mean of at least three independently performed 

experiments. Generally, inter experimental variation was below 20%. 
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Table 1. Enantiomerically pure benzopyrano[3,4-b][1,4]oxazines (5a-22b) and their 

IC50 values. 

O

O
N

C

R1

N
OR2

O

N
R2

N
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O
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OH
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HN

O
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N
N

Cl

OH
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(A) (B) (C) (D) (E)  
# Scaffold Stereo Chemistry R1 R2 IC50µM logP(o/w)

5a 
5b 
6a 
6b 
7a 
7b 
8a 
8b 
9a 
9b 
10a 
10b 
11a 
11b 
12a 
12b 
13a 
13b 
14a 
14b 
15a 
15b 
16a 
16b 
17b 
18a 
18b 
19a 
19b 
20a 
20b 
21a 
21b 
22a 
22b 

(A) 
(A)  
(A) 
(A) 
(A) 
(A) 
(A) 
(A) 
(A) 
(A) 
(A) 
(A) 
(A) 
(A) 
(B) 
(B) 
(B) 
(B) 
(B) 
(B) 
(B) 
(B) 
(B) 
(B) 
(B) 
(B) 
(B) 
(C) 
(C) 
(C) 
(C) 
(D) 
(D) 
(E) 
(E) 

(3S,4R) 
(3R,4S) 
(3S,4R) 
(3R,4S) 
(3S,4R) 
(3R,4S) 
(3S,4R) 
(3R,4S) 
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29.85 
14.55 
2.40 
2.70 
0.55 
0.77 
3.96 
3.72 
0.96 
1.35 
4.62 
1.34 
1.01 
1.00 
1241.65 
76.89 
15.32 
59.33 
2.68 
259.78 
47.83 
28.93 
47.51 
16.70 
9.63 
79.27 
27.84 
54.05 
102.64 
5.46 
6.84 
48.80 
44.00 
35.22 
45.17 

2.84 
2.84 
3.82 
3.82 
4.38 
4.38 
3.11 
3.11 
4.08 
4.08 
3.81 
3.81 
4.08 
4.08 
1.98 
1.98 
2.94 
2.94 
3.51 
3.51 
2.24 
2.24 
3.21 
3.21 
2.95 
3.22 
3.22 
2.14 
2.14 
2.14 
2.14 
3.10 
3.10 
3.66 
3.66 

4. Results and Discussion 
4.1 Structure Activity Relationships (SAR) 
Biological activity values of the data series cover a range of more than three orders 

of magnitude (Table 1) with the two phenylalanine esters 7a and 7b being the most 
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active compounds (7a: 0.55 µM; 7b: 0.77 µM), followed by N-methylated L-valine 

analogues 9a (0.96 µM) and 9b (1.35 µM), which are by a factor of 2 more active than 

the corresponding unsubstituted analogs 6a (2.40 µM) and 6b (2.70 µM). The same 

trend could be observed for the respective D-valine derivatives. This observation is even 

more pronounced for the alanine derivatives (compare methylated analogs 8a (3.96 µM) 

and 8b (3.72 µM) vs respective secondary amines 5a (29.85 µM) and 5b (14.55 µM)). 

This most probably is due to a logP effect with more lipophilic compounds showing 

higher biological activity, which has been shown for numerous classes of P-gp 

inhibitors [21].  

It has to be noted that for all seven diastereoisomeric pairs showing a bicyclic 

scaffold almost no differences in biological activity exist. However, this pattern changes 

remarkably upon ring closure to the tricyclic benzopyrano[3,4-b][1,4]oxazines. While 

all stereoisomers containing a valine moiety (13a,b; 16a,b, 18a,b, 19a,b-22a,b) are still 

within one order of magnitude, both the alanine and phenylalanine derivatives exhibit 

remarkable differences in their activity values. Interestingly, in case of alanine, the 

4aS,10bR-isomer 12a is by a factor of 15 less active than the diastereomeric 4aR,10bS 

analogue 12b, whereas in case of the phenylalanine derivatives this behavior reverses 

with the 4aS,10bR-isomer 14a being by two orders of magnitude more active than 14b. 

This difference in their activities might be due to difference in mode of interaction of 

diastereoisomeric pairs as has been indicated in a preceding publication [10]. 

4.2 Hansch Analysis  

3D structures of all diastereoisomers were built with the builder function of MOE 

2009-10 and energy minimised using the MMFF94 force field which uses a bond charge 

increment method to set the electrostatic partial charges [22]. In order to determine the 

influence of physicochemical properties of the compounds on their biological activity, 

QSAR analyses were performed by using the software package MOE version 2009-10. 

Multiple linear regression analysis using MOE’s contingency analysis tool for 

identification of the most important descriptors revealed an equation solely based on the 

hydrophobic Van der Waals surface area (Vsa_hyd) (Equ. 1). Interestingly, descriptors 

related to electrostatic properties, such as topological polar surface area and molar 

refractivity, did not show significant contributions to the model. 

Log(1/IC50) = 0.01 (Vsa_hyd) – 4.74   (Equ. 1) 
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n = 35, R² = 0.67, q2 (LOO) = 0.63, RMSE = 0.48 
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Figure 1. Plot of observed vs. predicted MDR-modulating activity, predicted values were 
obtained with leave-one-out cross validation procedure. 

Figure 1 shows a plot of observed vs biological activity predicted by QSAR equation 

1, which demonstrates the validity of the QSAR model. However, compounds 14b and 

22b show outlier behaviour (residual value above one log unit). Upon removal of these 

two compounds, the q² value improves to 0.70. Interestingly, both compounds belong to 

the (b) series of diastereoisomers, which indicates that for this series additional factors 

other than lipophilicity might play a role.  

Vsa_hyd describes the sum of VDW surface areas of hydrophobic atoms (Å2). This 

is perfectly in line with previous studies which showed that distribution of 

hydrophobicity within the molecules influences their mode of interaction with P-gp [23] 

and lipophilicity needs to be considered as a space directed property [24, 25]. This 

space-directedness might be indicative for different orientations of molecules within the 

binding area of P-gp, which is mainly hydrophobic [26]. In addition, overall 

lipophilicity (logP(o/w)) of the compounds (i.e. to enrich in biological membranes) also 

plays an important role, as stressed out in numerous publications [7, 27, 28]. A separate 

logP(o/w) analysis of the two diasteroisomeric series reveals the same picture as already 

outlined previously [10]. Also for this extended data set the (a) series of compounds 

shows a better correlation with logP values (R² = 0.60) than the respective 
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diastereoisomers of the (b) series (R² = 0.41) (Figure2). However, within the latter the 

phenylalanine 14b seems to be an outlier. Upon removal of 14b from the data set, the R² 

value improves up to 0.59. This once more strengthens the hypothesis of steric 

constrains caused by the benzyl moiety in 14b which might lead to a different binding 

mode [10]. 
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Figure 2. Correlation of MDR-modulating activity of compounds vs. logP(o/w) values. 

4.3.  GRID Independent Molecular Descriptor (GRIND) Analysis 

Molecules along with their activity values (expressed as log1/IC50) were loaded into 

the software package Pentacle (v 1.06) [29] to derive 3D-QSAR model using GRIND 

descriptors (see methods). According to previous findings for propafenone analogs, all 

compounds were modeled in their neutral form [30]. Structural variance of the data was 

analyzed with principal component analysis (PCA) performed on the complete set of 

GRIND descriptors. The first two principal components explain about 32% of the 

descriptor variance in the data set. Principal component analysis (PCA) on the data 

matrix showed that the whole data set splits up into three different clusters (Figure 3). 

The 1st PC separates the compounds on basis of shape and H-bond donors in the 

molecules. Molecules in the cluster on the right hand side (cluster 1) do not contain any 

H-bond donor, while those located on the upper left hand side (cluster 2) contain one H-

bond donor group. The 3rd cluster (cluster 3) exhibits compounds containing two H-
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bond donor groups in their structures. The 2nd PC separates rigid and smaller 

compounds (cluster 1 and cluster 2) from the flexible ones (cluster 3). 
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Figure 3. PCA Score plot shows the whole data set consists of three different types of inhibitors 
of P-gp overall no outlier has been observed in the dataset. 

To analyze the pharmacophoric aspect of ligand-protein interaction, PLS analysis 

correlating the activity with the complete set of variables (450) was carried out using the 

AMANDA algorithm implemented in Pentacle (v 1.06). This resulted in a one-latent 

variable model with an r2 = 0.51 and a cross-validated (LOO) q2 value of 0.27, which 

was quite unsatisfactory. Thus, variable selection was applied to reduce the variable 

number using FFD factorial selection [31] implemented in Pentacle. This resulted in 

decrease of active variables from 335 to 196 and an increase of model performance (r² 

of 0.72, q2 = 0.58, standard error of prediction 0.52 (Figure 4).  
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Figure 4. Plot of observed vs. predicted (LOO) MDR-modulating activity (log1/IC50), of 
inhibitors of P-gp obtained with the GRIND algorithm 
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With the exception of compounds 14b, 5a, and 12a, all compounds were within one 

order of magnitude with their predicted values (14b: obs, 23.21; pred, 259.77; 5a: obs, 

29.84; pred, 2.80; 12a, obs, 1241.65; pred, 58.30) (Figure 4). The outlier behavior of 

these three compounds might be due to potential different interaction behavior of the 

two diastereomeric series as reported by Jabeen et al [10]. However, building two 

separate QSAR models composed of compounds of series (a) and series (b) in two 

separate training sets showed an analogous picture and did not improve the results (data 

not shown). Thus, although GRIND descriptors are able to capture different 

configurations, they were not able to extract the stereochemical differences of the two 

series. This might be due to the fact that the molecules are quite compact (Figure 5). 

 
Figure 5. 3D representatives of series (a) having 2S,4aS,10bR-configuration and series (b) 
having 2S,4aR,10bS-configuration. 
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Analysis of the PLS coefficients profile of the 1st Latent Variable of the PLS model 

allows to identify those descriptors which exhibit strongest contribution to the model. 

According to the correlogram plot given in figure 6, certain distances of the N1-N1, O-

N1, and O-TIP probes are participating most in explaining the variance in the activity 

values. 

 
Figure 6. PLS Coefficient correlograms showing the descriptors which are directly (positive 
value) or inversely (negative values) correlated to activity. Activity particularly increases with 
the increase in (N1-N1), (O-N1) and (O-TIP) descriptor value.  

Table 2. Summary of GRIND variables and their corrasponding distances that are 

identified as being highly correlated to biological activity of compounds 5a-22b 

Veriable Correlogrm Distance Comment 

33 DRY-DRY 13.20-13.60 Å Optimal distance separating two hydrophobic 
groups. More pronounced in phenylalanine 
derivatives 

112 N1-N1 8.80-9.20 Å Related to two hydrogen bond acceptor atoms in 
the molecules. This is mainly associated to the 
carbonyl group and the hydroxyl groups in 
tertiary butyl esters. 

321 O-N1 2.40-2.80 Å Well pronounced in tert-butyl esters with 
IC50~1µM. Positive contribution towards 
biological activity. 

339 O-N1 9.60-10.00 Å Complements N1-N1, contributing directly to 
the biological activity 

392 O-TIP 12.80-13.20 Å H-bond donor present far away from a steric hot 
spot; positive contribution 

374 O-TIP 5.60-6.00 Å H-bond donor present quite near to a steric hot 
spot; contributing negatively 

308 DRY-TIP 15.20-15.60 Å Complements to DRY-DRY correlogram;, 
positive contribution to biological activity 
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The sum of the VDW surface areas of hydrophobic atoms (vsa_hyd) has emerged as 

an important determinant for high biological activity of benzopyran-type P-gp inhibitors 

(Equ. 1). The 3D-QSAR model using GRIND descriptors further refines this general 

property and identified two hydrophobic regions (DRY-DRY) seperated by a certain 

distance range in all active compounds. These represent the aromatic ring of the 

benzopyran ring systen and R1. In the most active phenylalanine derivatives (7a,b and 

14a,b) the two regions are separated by a distance of 13.20-13.60 Å, which is 

considered optimal according to the GRIND model. Thus, adding a large hydrophobic 

group (large vsa_hyd) at the position of R1 might lead to a further increase of the 

biological activity.  

Previous QSAR studies on propafenone derivatives have demonstrated the 

importance of H-bond acceptors and their distance from the central aromatic ring [32, 

33]. Furthermore, Seelig [34, 35] more explicitly defined two patterns of H-bond 

acceptor groups and their fixed spatial distance observed in ligands of P-gp. Pattern I 

contains two H-bond acceptors separated by a distance of 2.51±0.30 Å, while pattern II 

comprises two or three H-bond acceptor groups at a distance of 4.60 ±0.60 Å apart. 

Interestingly, the 3D-QSAR model based on benzopyrano[3,4-b][1,4]oxazines 

identified an optimal distance of 8.80-9.20 Å between two H-bond acceptor groups (N1-

N1) in all compounds exhibiting IC50~1 µM. The N1-N1 probe is mainly associated to 

the carbonyl group and the hydroxy group in tertiary butyl esters 7a-11b. For tricyclic 

compounds (15a-16b and 18a,b) it is associated to the distance of the carbonyl group 

and the tertiary nitrogen atom. Finally, for amino alcohols 19a-20b this descriptor refers 

to the two hydroxy groups in the molecules. This indicates that two H-bond acceptors 

are important attributes for biological activity of P-gp inhibitors if they are separated by 

a distance of ~8.80-9.20 Å (Figure 7a), which is in line with several other studies. 

Crivori et al, used GRIND descriptors to identify 3D pharmacophoric features which 

differentiate P-gp inhibitors from substrates. They reported two H-bond acceptors at a 

distance of 8.00 Å apart from each other in P-gp inhibitors [36], whereas a distance of 

11.50 Å between two H-bond acceptors, along with the importance of shape descriptors, 

have been reported by Cianchetta et al for substrates of P-gp [37].  

However, despite of similarities in the number of H-bond acceptors necessary for 

good biological activity, a direct comparison of distance matrices thereof across 
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different chemical scaffolds reveals some differences. This most probably is due to the 

fact that the large binding site of P-gp has multiple spots able to contribute to H-bond 

interactions and that different chemical series most probably utilize different H-bond 

interaction patterns.  

Apart a certain number of H-bond acceptors, also one H-bond donor along with 

hydrophobicity have been identified as important pharmacophoric features of P-gp 

inhibitors/substrates [9, 33]. It is worth noting that a very similar MIF based 

pharmacophore of P-gp inhibitors was recently published by Broccatelli et al [38]. They 

identified one H-bond acceptor and two large hydrophobic regions, together with an 

optimal molecular shape, as being important for high activity, and successfully used 

their model for virtual screening to identify new P-gp inhibitors. The results are further 

in line with Boccard et al [39] outlining an optimal shape and hydrophobicity as major 

physicochemical parameters responsible for the affinity of flavonoid derivatives for P-

gp [40, 41].  

Also in our GRIND model shape based probes (TIP) defining steric hot spots exhibit 

a significant contribution. Especially the 9-carbonitrile group in the benzopyran scaffold 

encodes an important molecular boundary (steric hot spot) and serves as anchor for 

defining optimal distance ranges to an H-bond donor (O-TIP correlogram) as well as to 

a hydrophobic feature (DRY-TIP correlogram). The O-TIP combination of probes 

encodes the shape of the molecules (steric hot spots) together with an H-bond donor 

group. Interestingly, O-TIP coefficients are negative for a distance between 5.60-6.00 

Å, but become positive for larger distances (12.80 to 13.20 Å). These distances (12.80 

to 13.20 Å) are present in benzopyranes bearing tertiary butyl esters (5a-11b) and 

amino alcohol derivatives (19a-20b and 22a,b) as shown in figure 7c. In tricyclic 

diastereoisomers (12a-14b and 17b) these descriptors are linked to  shorter distances 

and mark (-NH) as an H-bond donor at a distance of 5.60-6.00 Å apart from the cyano 

group, which is the main group contributing to the TIP MIF. This is related to a 

negative influence towards biological activity (Figure 7d). This indicates that more 

potent P-gp inhibitors show extended conformations and have an H-bond donor group 

far from regions with a strong TIP probe related field.  

Analyzing the Dry-TIP correlogram it becomes evident that a hydrophobic group in a 

distance of 15.20-15.60 Å from one of the “edges” of the molecule (steric hot spot, 
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cyano group) positively contributes to biological activity. In tert-butyl esters (5a-11b) 

and 14a,b these two probes map the distance between a hydrophobic group (R1) (14a,b) 

or tert-butyl group in 5a-11b from the cyano group (Figure 7b). In analogy to the O-TIP 

correlogram, DRY-TIP shows a negative contribution towards biological activity for 

shorter distances (7.60-8.00 Å) of these probes.  

Finally, the O-N1 correlogram (H-bond donor – H-bond acceptor) points towards two 

positive contributions at a distance of 9.60-10.00 Å and 2.40-2.80 Å, respectively 

(Figure 7e, f). The first distance is linked to the hydroxyl and carbonyl group in 5a-11b 

and is complementary to the N1-N1 correlogram as already discussed. The second 

distance refers to the –NH and carbonyl group. O-N1 probes at both distance ranges are 

well pronounced in t-butyl esters (5a-11b) as well as in amino alcohol substituted 

derivatives (19a-20 b and 22a,b). However, in all tricyclic compounds (12a-18b) the 

two probes do not fit either of the distance ranges.   

To summarize, two H-bond-acceptor groups and one H-bond donor at a particular 

distance from each other and from a particular “edge” or steric hot spot of the molecule 

plays a major role in the interaction of benzopyran-type P-gp inhibitors (Figure 7). 

 
                      (a). 7a             (b). 6b 

 
                     (c). 10b                                      (d). 20b 
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                      (e). 10a     (f). 10b 

 Figure 7. (a). Represents two H-bond acceptors (N1-N1: blue hots pots) at a distance of 8.80-
9.20 Å (b). Dry-TIP represents a hydrophobic probe (DRY: yellow hot spots) at a distance of 
15.20-15.60 Å from a steric hot spot (TIP: green region) (c) O-TIP outline an H-bond donor 
(OH) (O: red hot spot) at a distance of 12.80-13.20 Å from the 9-carbonitril edge” of the 
molecule. (d) Marks an H-bond donor (-NH) at a distance of 5.60-6.00 Å from the 9-carbonitril 
edge of the molecule (O-TIP) (e) Representing an H-bond donor (OH) at a distance of 9.60-
10.00 Å from an H-bond acceptor (C=O), present only in esters (O-N1). (f) Representing, H-
bond donor (-NH) at a distance of 2.40-2.80 Å from an H-bond acceptor (C=O) (O-N1). 

5. Conclusions 

Benzopyrano-[3,4-b][1,4]oxazines are versatile molecular tools to probe the 

stereoselectivity of P-glycoprotein. For a distinct substitution pattern, different pairs of 

diastereoisomers exhibit a large difference in their potency to inhibit P-gp mediated 

drug efflux pump. However, GRIND-based 3D-QSAR models emphasise could not link 

these differences to concrete differences of distances of pharmacophoric hot spots. 

Nevertheless, GRIND analysis provided a reasonably well performing 3D-QSAR model 

outlining a set of important distances of pharmacophoric features. Two H-bond-acceptor 

groups, one H-bond donor at a particular distance from each other as well as distinct 

distances of these probes to steric hot spots play a major role in the interaction of 

benzopyran-type P-gp inhibitors. Activity particularly increases with increase of the 

distance of an H-bond donor or a hydrophobic feature from a particular steric hot spot 

of the benzopyran analogs. This not only further strengthens the importance of H-

bonding, but also indicates that a certain shape/configuration of the molecules is 

important for high activity. Further analyses will focus on a generalisation of this 

concept.  
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6.  Experimental Section. 

6.1.  Chemistry 

Melting points all compounds were determined on Kofler hot plate apparatus and are 

uncorrected. Infrared spectra were recorded on a Perkin Elmer 298 spectrometer, a 

Bruker Avance Dpx 200 spectrometer, a varain Unity plus 300 spectrometer 1H spectra 

were refernced to tetramethylsilan  internal standard (δ 0.0); 13C spectroscopy CDCl3 

served as the internal standard (δ 77.0) and on a Bruker  AM 360 L spectrometer. An 

asterisk indicates peaks of double intensity. GC-MS spectrum was recorded on a HP 

5890 A gas chromatography / HP 5970 mass detector. Optical rotations were measures 

on a Perkin Elmer 241 polarimeter in a standardised cuvette. Flash chromatography was 

carried out on MERCK silica gel 60, TLC on plastic sheets (Merck silica gel 60 F254). 

6.1.1. General procedure for the enantiomerically pure (S,S)- (4a) and 

(R,R)- epoxide (4b). Commercial household bleach (DanKlorix®) was buffered to pH 

11.3 with 0.05 N Na2HPO4 and 1N NaOH and then cooled to 0°C. To 1000 mL of this 

solution a solution of  3 (75.58 mmol) and Mn(III) Salen catalyst (2.74x10-3 mmol) in 

76 mL of CH2Cl2 was added, stirred at 0°C for 5 hr and then at room temperature 

overnight. The mixture was filtered through Celite and the organic phase was separated, 

brined once, dried (Na2SO4) and brought to dryness. Purification by flash 

chromatography (petroleum ether-ethylacetate; 8:2) yield 76.9% of (S,S)-4a and 78.9% 

of (R,R)-4b as colourless crystals; mp 133-135oC; 1H NMR (200MHz; CDCl3): δ = 1.28 

(s, 3H, CH3), 1.57(s, 3H, CH3), 3.52 (d, 1H, J = 4.52 Hz, 3-H/ 4-H), 3.89 (d, 1H, J = 

4.52 Hz, 3-H/ 4-H), 6.84 (d, 1H, J = 8.53 Hz, 8-H), 7.51 (dd, 1H, J = 2.00 Hz, J = 8.41 

Hz, 7-H), 7.63 (d, 1H, J = 2.01 Hz, 5-H); 13C NMR (200MHz, CDCl3): δ =  22.99 

(CH3),  25.46 (CH3), 49.34 (3-C), 62.27 (4-C), 74.64 (2-C), 104.27 (6-C), 118.70 (CN), 

119.00 (8-C), 121.67 (4a-C), 133.77, 134.38 (5-C, 7-C), 156.45 (8a-C); IR (KBr): 2227 

(CN) cm-1, 1280 (epoxide) cm-1. 

6.1.2. General procedure for amino acid-tert-butyl-ester (5a–7b, 10a,b). A 

solution of enantiomeric pure epoxide 4a or 4b (4.97 mmol) and corresponding D and 

L-amino acid-tert-butyl ester  (5.47 mmol) in 50 mL 96% ethanol was stirred at 80oC 

for 5 days, then evaporated in vacuo. Purification by flash chromatography (petroleum 

ether/ethylacetate = 8/2) yield respective amino acid t-butyl ester (5a-11b). Compounds 

5a-7b and 12a-14b are already published by Jabeen et al.[10] 
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6.1.2.1. (3S,4R)-N-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-

benzopyran-4-yl)-D-valine-tert-butyl-ester (10a). (S,S) epoxide 4a and D-valine tert-

butyl-ester gave 10a, yield   (59%) as yellowish oil; [α]20 = (+) 182.38 (c = 0. 105, in 

CH2Cl2); 1H NMR (200MHz, CDCl3): δ = 0.89, 0.99 (each d, each 3H, each J = 7.03 

Hz, CH(CH3)2), 1.17 (s, 3H, 2-CH3), 1.44 (s, 12H, 2-CH3, C(CH3)3), 1.86-2.05 (m, 1H, 

CH(CH3)2), 2.38 (br, 1H, NH), 2.76 (d, 1H, J = 4.27 Hz, N-CH-CO), 3.14 (dd, 1H, J = 

9.54 Hz, 3.77 Hz, 3-H), 3.78 (d, 1H, J = 9.54 Hz, 4-H), 3.84 (d, 1H, J = 3.77 Hz, OH), 

6.80 (d, 1H, J = 8.53 Hz, 8-H), 7.39 (dd, 1H, J = 8.56 Hz, 1.76 Hz, 7-H), 7.94 (d, 1H, J 

= 1.76 Hz, 5H); 13C NMR (200 MHz, CDCl3): δ= 17.67 (CH-CH3), 19.06 (2CH3), 19.77 

(CH-CH3), 27.04 (2-CH3), 27.84 (C(CH3)3), 32.65 (CH(CH3)2), 56.54 (4-C), 60.53 (N-

CH-CO), 71.01 (3-C), 79.60 (C(CH3)3), 82.33 (2-C), 103.58 (6-C), 118.19 (8-C), 119.34 

(CN), 123.82 (4a-C), 132.42, 133.40 (5-C, 7C), 157.56 (8a-C), 177.98 (C=O); MS m/z 

375 (0.10%, M+), 273 (36.9%), 160 (22.7%); Anal. Calcd for C21H30N2O4 %: C 67.35, 

H 8.07, N 7.48; found: C 67.62, H 8.27, N 7.21. 

6.1.2.2 (3R,4S)-N-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-

benzopyran-4-yl)-D-valine-tert-butyl-ester (10b). (R,R) epoxide 4b and D-valine tert-

butyl-ester gave 10b, yield   (57%) as yellowish oil; [α]20 = (+) 27.43 (c = 0. 113, in 

CH2Cl2); 1H NMR (200MHz, CDCl3): δ = 0.92, 1.06 (each d, each 3H, each J = 6.78 

Hz, CH(CH3)2), 1.13 (s, 3H, 2-CH3), 1.43 (s, 12H, 2-CH3, C(CH3)3), 2.00-2.19 (m, 1H, 

CH(CH3)2), 1.86 (br, 1H, NH), 3.37 (d, 1H, J = 4.26 Hz, N-CH-CO), 3.43 (br, 2H, 3H, 

4H), 4.17 (br, 1H, OH), 6.74 (d, 1H, J = 8.54 Hz, 8-H), 7.34 (dd, 1H, J = 8.53 Hz, 1.75 

Hz,  7H), 7.69 (d, 1H, J = 1.75 Hz, 5H); 13C NMR (200 MHz, CDCl3): δ= 17.69 (CH-

CH3), 18.81 (2-CH3), 19.49 (CH-CH3), 26.70 (2-CH3), 27.92 (C(CH3)3), 32.55 

(CH(CH3)2), 56.68  (4-C), 66.54 (N-CH-CO), 74.24 (3-C), 79.72 (C(CH3)3), 82.13 (2-

C), 103.33(6-C), 117.91 (8-C), 119.28 (CN), 126.38 (4a-C), 132.30 (5-C, 7-C), 156.46 

(8a-C), 175.98 (C=O); MS m/z 375 (0.18, M+), 273 (28.7%), 160 (32%);   Anal. Calcd 

for C21H30N2O4 %: C 67.35, H 8.07, N 7.48; found: C 67.65, H 8.36, N 7.38. 

6.1.3. General procedure Synthesis of N-methyl derivatives of tert-butyl 

esters (8a–9b, 11ab). The suspension of corresponding amino acid-ter-buty ester (5a-

6b, 10a,b) with paraformaldehyde and sodium cyanoborohydride in acidic menthol was 

stirred and refluxed at room temperature, 4 days, then evaporated in vacuo. Flash 

chromatography (petroleum ether: ethyl acetate/ 6:1:2) 



Benzopyrano[3,4-b][1,4]oxazines: P-gp Inhibitors                                  CHAPTER 3    

89 

 

6.1.3.1. (3S,4R)-N-methyl-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-

1-benzopyran-4-yl)-L-alanine-tert-butyl-ester (8a).From 5a gave 8a, yield  81% as 

yellowish oil; [α]20 = (+) 6.92 (c = 0.325, in CH2Cl2); 1H NMR (200MHz, CDCl3): δ = 

1.21, 1.50 (each s, each 3H, 2x2-CH3), 1.52 (s, 9H, C(CH3)3), 1.55 (d, 3H, J = 5.56 Hz, 

CH-CH3), 2.17 (s, 3H, N-CH3), 3.77 (br, 2H, 3-H, 4-H),3.84 (q, 1H, J = 5.56 Hz, CH-

CH3), 5.52 (br, 1H, OH), 6.82 (d, 1H, J = 8.46 Hz, 8-H), 7.39 (dd, 1H, J = 2.02 Hz, 8.46 

Hz, 7-H), 7.65 (d, 1H, J = 2.02 Hz, 5-H); 13C NMR (CDCl3): δ= 17.11, 18.47 (2x2-

CH3), 26.76 (CH-CH3), 27.63 (C(CH3)3), 63.42 (4-C), 65.24 (N-CH-CO), 68.76 (3-C), 

79.66 (C(CH3)3), 82.33 (2-C), 103.12 (6-C), 117.90 (8-C), 119.22 (CN), 123.96 (4a-C), 

132.04*, 132.52* (5-C, 7-C), 157.54 (8a-C), 175.67 (C=O); MS m/z 360 (0.35, M+), 

259 (52.7), 160 (23.5);  Anal. Calcd for C20H28N2O4 %: C 66.64, H 7.83, N 7.77; found: 

C 66.38, H 7.69, N 7.73. 

6.1.3.2. (3R,4S)-N-methyl-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-

benzopyran-4-yl)-L-alanine-tert-butyl-ester (8b). From 5b gave 8b, yields 78% as 

colourless oil; [α]20 = (-)40.31 (c = 0.129, in CH2Cl2); IR (KBr) 2225 (CN) cm-1, 1708 

(COOR) cm-1; 1H NMR (200MHz, CDCl3): δ=1.20 (s, 3H, 2-CH3), 1.42 (d, 3H, J = 7.45 

Hz, CH-CH3), 1.45 (s, 9H, C(CH3)3), 1.50 (s, 3H, 2-CH3), 2.44 (s, 3H, N-CH3), 3.60 

(dd, 1H, J = 2.15 Hz, 9.85 Hz, 3-H), 3.91 (d, 1H , J = 9.85, 4-H), 5.62 (br, 1H, OH), 

6.78 (d, 1H, J = 8.59 Hz, 8-H), 7.37 (dd, 1H, J = 2.15 Hz, 8.46 Hz, 7-H), 7.63 (d, 1H, J 

= 2.15 Hz, 5-H); 13C NMR (CDCl3): δ=16.69 , 18.86 (2x2-CH3), 27.13 (CH-CH3), 

27.91 (C(CH3)3), 34.96 (N-CH3), 58.66 (4-C), 59.61 (N-CH-CO), 70.05 (3-C), 80.21 

(C(CH3)3), 82.45 (2-C), 103.40 (6-C), 118.01 (8-C), 119.63 (CN), 125.11 (4a-C), 

132.25*, 132.83* (5-C, 7-C), 158.08 (8a-C), 177.79 (C=O); MS m/z 361 (0.35, M+1), 

259 (53.5%); Anal. Calcd for C20H28N2O4 %: C 66.64, H 7.83, N 7.77; found: C 66.76, 

H 7.55, N 7.65. 

6.1.3.3. (3S,4R)-N-methyl-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-

benzopyran-4-yl)-L-valine-tert-butyl-ester (9a). From 6a gave 9a, yield (96%) as 

colourless oil; [α]20 = (+) 25 (c = 0. 252, in CH2Cl2); 1H NMR (200MHz, CDCl3): δ = 

0.97,1.09 (each d, each 3H, each J = 6.70 Hz, CH(CH3)2), 1.12 (s, 3H, 2-CH3), 1.45 (s, 

12H, 2-CH3, C(CH3)3), 2.09 (s, 3H, N-CH3), 2.11-2.27 (m, 1H, CH(CH3)2), 3.34 (d, 1H, 

J = 7.83 Hz, N-CH-CO), 3.68 (d, 2H, J=9.59 Hz, 4-H), 3.74 (dd, 1H, J = 9.54 Hz, 2.40 

Hz, 3-H), 4.74 (d, 1H, J = 2.4 Hz, OH), 6.76 (d, 1H, J = 8.46 Hz, 8-H), 7.34 (dd, 1H, J = 
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8.46 Hz, 2.02 Hz, 7-H), 7.82 (d, 1H, J = 2.02 Hz, 5H); 13C NMR (CDCl3): δ= 18.49 

(CH-CH3), 19.49, 19.85 (CH-CH3, 2-CH3), 26.91 (2-CH3), 27.91(C(CH3)3, CH(CH3)2), 

29.83 (N-CH3), 65.15 (4-C), 68.28 (N-CH-CO), 74.02 (3-C), 79.68(C(CH3)3), 82.61 (2-

C), 103.44 (6-C), 118.24 (8-C), 119.43 (CN), 124.53 (4a-C), 132.22, 132.84 (5-C, 7C), 

157.67 (8a-C), 174.30 (C=O); MS m/z 338 (0.12%, M+), 287 (36%), 160 (17%); Anal. 

Calcd for C22H32N2O4 %: C 68.01, H 8.30, N 7.21; found: C 68.76, H 6.66, N 6.86. 

6.1.3.4. (3R,4S)-N-methyl-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-

benzopyran-4-yl)-L-valine-tert-butyl-ester (9b). From 6b gave 9b, yield 84% as 

colourless oil; [α]20 = (-) 20.94 (c = 0. 117, in CH2Cl2); 1H NMR (200MHz, CDCl3): δ 

= 0.95, 1.06 (each d, each 3H, each J = 6.57 Hz, CH(CH3)2), 1.17 (s, 3H, 2-CH3), 1.46 

(s, 12H, 2-CH3, C(CH3)3), 2.28 (s, 3H, N-CH3), 2.07-2.22 (m, 1H, CH(CH3)2), 3.14 (d, 

1H, J = 8.97 Hz, N-CH-CO), 3.92 (d, 1H, J=9.51 Hz, 4-H), 3.61 (dd, 1H, J = 9.51 Hz, 

2.27 Hz, 3-H), 5.48 (br, 1H, OH), 6.76 (d, 1H, J = 8.46 Hz, 8-H), 7.34 (dd, 1H, J = 8.46 

Hz, 2.02 Hz, 7-H), 7.65(s, 1H, 5H); 13C NMR (CDCl3): δ= 18.66 (CH-CH3), 19.59 (2-

CH3), 21.12 (CH-CH3), 27.05 (2-CH3), 27.91 (C(CH3)3, 28.22 (CH(CH3)2), 33.89 (N-

CH3), 58.88 (4-C), 69.20 (N-CH-CO), 72.36 (3-C), 79.94 (C(CH3)3), 82.64 (2-C), 

103.38 (6-C), 118.09 (8-C), 119.46 (CN), 124.53 (4a-C), 132.17, 133.01 (5-C, 7C), 

158.11 (8a-C), 177.34 (C=O); MS m/z 338 (0.10%, M+), 287 (31%), 160 (15.3%); 

Anal. Calcd for C22H32N2O4 %: C 68.01, H 8.30, N 7.21; found: C 68.05, H 8.32, N 

6.97. 

6.1.3.5. (3S,4R)-N-methyl-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-

benzopyran-4-yl)-D-valine-tert-butyl-ester (11a). From 10a gave 11a, yield 96% as 

colourless oil; [α]20 = (+) 19.05 (c = 0. 273, in CH2Cl2); 1H NMR (200MHz, CDCl3): δ 

= 0.96, 1.07 (each d, each 3H, each J = 6.63 Hz, CH(CH3)2), 1.17 (s, 3H, 2-CH3), 1.47 

(s, 12H, 2-CH3, C(CH3)3), 2.28 (s, 3H, N-CH3), 2.08-2.22 (m, 1H, CH(CH3)2), 3.16 (d, 

1H, J = 8.97 Hz, N-CH-CO), 3.62 (d, 1H, J = 9.54 Hz, 3-H), 3.93 (d, 1H, J = 9.54 Hz, 4-

H), 5.54 (br, 1H, OH), 6.77 (d, 1H, J = 8.46 Hz, 8-H), 7.35 (dd, 1H, J = 8.46 Hz, 1.64 

Hz, 7-H), 7.66 (s, 1H, 5H); 13C NMR (CDCl3): δ= 18.59 (CH-CH3), 19.59 (2-CH3), 

21.13 (CH-CH3), 27.06 (2-CH3), 27.94 (C(CH3)3), 28.24(CH(CH3)2), 33.89 (N-CH3), 

58.81  (4-C), 69.24 (N-CH-CO), 72.41 (3-C), 79.96 (C(CH3)3), 82.73 (2-C), 103.30 (6-

C), 118.13 (8-C), 119.50 (CN), 124.54 (4a-C), 132.23, 133.04 (5-C, 7-C), 158.16 (8a-
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C), 177.42 (C=O); MS m/z 338 (0.14%, M+), 287 (56.6%), 160 (22.3%); Anal. Calcd 

for C22H32N2O4 %: C 68.01, H 8.30, N 7.21; found: C 68.24, H 8.32, N 7.47. 

6.1.3.6. (3R,4S)-N-methyl-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-

benzopyran-4-yl)-D-valine-tert-butyl-ester (11b). From 10b gave 11b, yield 92% as 

colourless oil; [α]20 = (-) 25.79 (c = 0.126, in CH2Cl2); 1H NMR (200MHz, CDCl3): δ = 

0.98, 1.11 (each d, each 3H, each J = 6.70 Hz, CH(CH3)2), 1.14 (s, 3H, 2-CH3), 1.46 (s, 

12H, 2-CH3, C(CH3)3), 2.10 (s, 3H, N-CH3), 2.15-2.26 (m, 1H, CH(CH3)2), 3.36 (d, 1H, 

J = 7.7 Hz, N-CH-CO), 3.69 (dd, 1H, J = 9.73 Hz, 2.27 Hz, 3-H), 3.75 (d, 1H, J = 9.73 

Hz, 4-H), 4.77 (d, 1H, J = 2.27 Hz, OH), 4.77 (d, 1H, J =8.50 Hz, 8H), 7.35 (dd, 1H, J = 

8.50 Hz, 2.00 Hz, 7-H), 7.83 (s, 1H, J = 2.00 Hz, 5H); 13C NMR (CDCl3): δ= 18.54 

(CH-CH3), 19.54 (2-CH3), 19.88 (CH-CH3), 26.96 (2-CH3), 27.97 (C(CH3)3), 

(CH(CH3)2), 29.89 (N-CH3), 65.24 (4-C), 68.34 (N-CH-CO), 74.08 (3-C), 79.73 

(C(CH3)3), 82.71 (2-C), 103.48 (6-C), 118.29 (8-C), 119.50 (CN), 124.56 (4a-C), 

132.28, 132.91 (5-C, 7-C), 157.73 (8a-C), 174.39 (C=O); MS m/z 338 (0.17%, M+), 

287 (46.6%), 160 (22%);   Anal. Calcd for C22H32N2O4 %: C 68.01, H 8.30, N 7.21; 

found: C 68.24, H 8.55, N 6.99. 

6.1.4. General procedure for cyclisation (12a-18b). 4.61 mmol of amino 

acid-tert-butyl ester (5a,b-11a,b) was dissolved in a small amount of  CH2Cl2 , 

hydrolysed by 6 mL of 70% HClO4, stirred overnight, and 4N NH4OH solution was 

added slowly. The precipitate was dried and used in the next reaction step without 

further purification. A suspension of  precipitates  (2.76 mmol) , 4-

dimethylaminopyridine (0.69 mmol) and bis (2-oxo-3oxazolidinyl) phosphinic  chloride 

(4.12 mmol) in CH2Cl2 (50 mL) was heated to reflux at 80°C for 10 min, then 

triethylamine (0.95 mL, 6.85 mmol) was added and the solution was  refluxed at 70°C 

for 4 days. The suspension was filtered and evaporated to dryness. Purification was 

done by flash chromatography (petroleum ether/ethylacetate; 9:1) to yield the target 

compounds (12a-18b). 

6.1.4.1. (2S,4aS,10bR)-N-methyl-,2,5,5-trimethyl-3-oxo-1,4a,5,10b-tetrahydro-

3H[1] benzopyrano[3,4-b][1,4]oxazine-9-carbonitril (15a). From 8a gave 15a, 51% 

as white crystal; mp 120-121oC; [α]20 = (+)112.40 (c = 0.121, in CH2Cl2); IR (KBr) 

2231 (CN) cm-1, 1745 (lactone) cm-1; 1H NMR (CDCl3): δ = 1.30 (s, 3H, 5-CH3), 1.51 

(d, 3H, J = 7.2 Hz, 2-CH3), 1.54 (s, 3H, 5-CH3), 2.20 (s, 3H, N-CH3), 3.95 (q, 1H, J = 
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7.2 Hz, N-CH-CO), 4.19 (d, 1H, J = 11.24 Hz, 4a-H), 4.51 (d, 1H, J = 11.24 Hz, 10b-

H), 6.87 (d, 1H, J = 8.53 Hz, 7H), 7.45 (dd, 1H, J = 1.87 Hz, 8.53 Hz, 7H), 7.75 (d, 1H, 

J = 1.87 Hz, 10H); 13C NMR (CDCl3) δ 14.93, 19.66 (2x5-CH3), 26.05 (2-CH3), 31.11 

(N-CH3), 56.24 (10b-C), 61.14 (2-C), 74.50 (4a-C), 78.19 (5-C), 104.47 (9-C), 118.51 

(7-C), 118.88 (CN), 120.08 (10a-C), 131.53*, 133.19* (8-C, 10-C), 156.61 (6a-C), 

171.49 (C=O); MS m/z 286 (1.00, M+), 185 (22%), 170 (100%); Anal. Calcd for 

C16H18N2O3 %: C, 67.12, H 6.34, N 9.78: found: C 67.20, H 6.29, N 9.75. 

6.1.4.2. (2S,4aR,10bS)-N-methyl-2,5,5-trimethyl-3-oxo-1,4a,5,10b-

tetrahydro-3H[1] benzopyrano[3,4-b][1,4]oxazine-9-carbonitril (15b). From 8b 

gave 15b, yielded 62% as yellow crystal; mp 91.5-92.5 oC; [α]20 = (-)114.91 (c = 0.108, 

in CH2Cl2); IR (KBr): 2224 (CN) cm-1, 1750 (C=O) cm-1; 1H NMR (CDCl3): δ = 1.29 

(s, 3H, 5-CH3), 1.54 (d, 3H, J = 4.8 Hz, 2-CH3), 1.56 (s, 3H, 5-CH3), 2.32 (s, 3H, 

NCH3), 3.60 (q, 1H J = 7.33 Hz, 2H), 4.11 (d, 1H , J = 10.99 Hz, 4a-H),  4.51 (d, 1H, J 

= 10.99 Hz, 10b-H), 6.87 (d, 1H, J = 8.56 Hz, 7H), 7.45 (dd, 1H , J = 1.96 Hz, 8.56 Hz, 

8H), 7.72 (d, 1H, J = 1.96 Hz, 10-H); 13C NMR (CDCl3): δ = 18.69, 19.43 (2x5-CH3), 

26.05 (2-CH3), 37.26 (N-CH3), 51.23 (10b-C), 60.49 (N-CH-CO), 73.92 (4a-C), 78.03 

(5-C), 104.50 (9-C), 118.46 (7-C), 118.87 (CN), 120.37 (10a-C), 131.66*, 133.11* (8-

C, 10-C), 156.69 (6a-C), 171.83 (C=O); MS m/z 286. (1.86, M+), 185 (21%), 170 

(100%); Anal. Calcd for C16H18N2O3 %: C 67.12, H 6.34, N 9.78; found: C 67.26, H 

6.50, N 9.36. 

6.1.4.3. (2S,4aS,10bR)-2-isopropyl-1,5,5-trimethyl-3-oxo-1,4a,5,10b-

tetrahydro-3H[1]benzopyrano[3,4-b][1,4]oxazine-9-carbonitril (16a). From 9a gave 

16a, 57% as yellowish oil; [α]20 = (+) 119.57 (c = 0.115, in CH2Cl2); IR (KBr) 2225 

(CN) cm-1, 1757 (lactone) cm-1, 1574 (NH); 1H NMR (CDCl3): δ = 0.97, 1.06  (each d, 

each 3H, J = 6.57 Hz, CH(CH3)2), 1.38 (s, 3H, 5-CH3), 1.54 (s, 3H, 5-CH3), 1.63-1.84 

(m, 1H, CH-(CH3)2), 2.71(s, 3H, N-CH3), 2.92 (d, 1H, J = 10.24 Hz, N-CH-CO), 3.61 

(d, 1H, J = 11.75 Hz, 4a-H), 4.26 (d, 1H, J = 11.75 Hz, 10b-H), 6.83 (d, 1H, J = 8.56 

Hz, 7H), 7.44 (dd, 1H, J = 8.56 Hz, 2.02 Hz, 8H), 7.72 (br, 1H, 10H); 13C 

NMR(CDCl3): δ = 19.30 (CH-CH3), 20.40, 21.19 (5-CH3, CH-CH3), 27.14 (5-CH3), 

32.55 (CH(CH3)2), 47.14 (N-CH3), 57.05 (10b-C), 73.27 (N-CH-CO), 76.13 (4a-C), 

78.58 (5-C), 104.17 (9-C), 117.83 (7-C), 119.23 (CN), 123.90 (10a-C), 130.95, 132.97 

(8-C, 10-C), 155.59 (6a-C), 170.31 (C=O); MS m/z 314 (0.41%, M+), 185 (38.5%), 170 
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(92.4%); Anal. Calcd for C18H22N2O3 %: C, 68.77, H 7.05, N 8.91: found: C 68.65, H 

7.11, N 8.47. 

6.1.4.4. (2S,4aR,10bS)-2-isopropyl-1,5,5-trimethyl-3-oxo-1,4a,5,10b-

tetrahydro-3H[1]benzopyrano[3,4-b][1,4]oxazine-9-carbonitril (16b). From 9b gave 

16b, 52% as yellowish solid; mp 124-125 oC; [α]20 = (-) 119.35 (c = 0.124, in CH2Cl2); 

IR (KBr) 2230 (CN) cm-1, 1741 (lactone) cm-1; 1H NMR (CDCl3): δ = 1.07, 1.14  (each 

d, each 3H, J = 6.69 Hz, CH(CH3)2), 1.26 (s, 3H, 5CH3), 1.55 (s, 3H, 5CH3), 2.30 (s, 

3H, N-CH3), 2.35-2.45 (m, 1H, CH(CH3)2), 3.17(d, 1H, J = 5.94 Hz, N-CH-CO), 4.07 

(d, 1H, J = 10.55 Hz, 4a-H), 4.54 (d, 1H, J = 10.55 Hz, 10b-H), 6.88 (d, 1H, J = 8.58 

Hz, 7H), 7.46(dd, 1H, J = 8.56 Hz, 1.64 Hz, 8H), 7.78 (br, 1H, 10H); 13C NMR(CDCl3): 

δ = 19.06 (CH(CH3)2), 19.99*25.99 (2*5-CH3), 31.81 (CH(CH3)2), 37.93 (N-CH3), 

53.21 (10b-C), 70.86 (N-CH-CO), 73.63 (4a-C), 78.01 (5-C), 104.62 (9-C), 118.70 (7-

C), 118.95 (CN), 120.26 (10a-C), 131.81, 133.10 (8-C, 10-C), 156.73 (6a-C), 170.73 

(C=O); MS m/z 314 (7.3%, M+), 243 (31%), 170 (100%); Anal. Calcd for C18H22N2O3 

%: C 61.62, H 6.61, N, 7.98; found: C 60.01, H 6.11, N 7.47 

6.1.4.5. (2R,4aR,10bS)-2-isopropyl-5,5-dimethyl-3-oxo-1,4a,5,10b-

tetrahydro-3H[1]benzopyrano[3,4-b][1,4]oxazine-9-carbonitril (17b). From 10b 

gave 17b, 45% as pale yellowish crystal; mp 164.5-166oC; [α]20 = (-) 84.81 (c = 0.158, 

in CH2Cl2); IR (KBr) 2224 (CN) cm-1, 1733 (lactone) cm-1; 1H NMR (CDCl3): δ = 1.00, 

1.12  (each d, each 3H, each J = 7.08 Hz, CH(CH3)2), 1.29 (s, 3H, 5-CH3), 1.52 (s, 3H, 

5-CH3), 2.47-2.62 (m, 1H, CH(CH3)2), 3.86 (br, 1H, 10b-H), 3.96 (d, 1H, J = 5.94 Hz, 

N-CH-CO), 4.06 (d, 1H, J= 9.98 Hz, 4a-H), 6.87 (d, 1H, J = 8.59 Hz, 7H), 7.46 (dd, 1H, 

J = 8.59 Hz, 2.02 Hz, 8H), 7.82 (d, 1H, J = 2.02 Hz, 10H); 13C NMR(CDCl3): δ = 17.42 

(CH-CH3), 19.01 (5-CH3), 25.87 (5-CH3), 19.80 (CH-CH3), 30.98 (CH(CH3)2), 49.28 

(10b-C), 63.73 (N-CH-CO), 77.95 (5-C), 83.03 (4a-C), 104.23 (9-C), 118.25 (7-C), 

118.88 (CN), 121.34 (10a-C), 131.30, 133.37 (8-C, 10-C), 155.96 (6a-C), 169.47 

(C=O); MS m/z 300 (0.57%, M+), 185 (38.5%), 170 (100%); Anal. Calcd for 

C17H20N2O3 %: C 67.98, H 6.71, N 9.33; found: C 68.28, H 6.91, N 9.04. 

6.1.4.6. (2R,4aS,10bR)-2-isopropyl-1,5,5-trimethyl-3-oxo-1,4a,5,10b-

tetrahydro-3H[1]benzopyrano[3,4-b][1,4]oxazine-9-carbonitril (18a). From 11a 

gave 18a, 45% yellowish solid; mp: 151-153 °C; [α]20 = (+) 107.17 (c = 0.30, in 

CH2Cl2); IR (KBr) 2230 (CN) cm-1, 1741 (lactone) cm-1; 1H NMR (CDCl3): δ = 1.07, 
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1.14  (each d, each 3H, J = 6.69 Hz, CH(CH3)2), 1.26 (s, 3H, 5-CH3), 1.56 (s, 3H, 5-

CH3), 2.30 (s, 3H, N-CH3), 2.35-2.45 (m, 1H, CH(CH3)2), 3.17 (d, 1H, J = 5.93 Hz, N-

CH-CO), 4.07 (d, 1H, J= 10.67 Hz, 4a-H), 4.54 (d, 1H, J = 10.67 Hz, 10b-H), 6.89 (d, 

1H, J = 8.53 Hz, 7H), 7.46 (dd, 1H, J = 8.53 Hz, 1.51 Hz, 8H); 7.78 (br, 1H, 10H); 13C 

NMR(CDCl3): δ = 19.08 (CH(CH3)2), 20.00 (5-CH3), 25.99 (5-CH3), 31.82 

(CH(CH3)2), 37.94 (N-CH3), 53.19 (10b-C), 70.86 (N-CH-CO), 73.64 (4a-C), 78.01 (5-

C), 104.63 (9-C), 118.71 (7-C), 118.95 (CN), 120.27 (10a-C), 131.82, 133.11 (8-C, 10-

C), 156.74 (6a-C), 170.72 (C=O); MS m/z 314 (5.36%, M+), 243 (18.2%), 170 (100%); 

Anal. Calcd for C18H22N2O3 %: C 68.77, H 7.05, N 8.91; found: C 68.32, H 7.06, N 

8.71. 

6.1.4.7. (2R,4aR,10bS)-2-isopropyl-1,5,5-trimethyl-3-oxo-1,4a,5,10b-

tetrahydro-3H[1]benzopyrano[3,4-b][1,4]oxazine-9-carbonitril (18b). From 11b 

gave 18b, 52% yellowish solid; mp: 93-96 °C; [α]20 = (-) 125.71 (c = 0.105, in CH2Cl2); 

IR (KBr) 2225 (CN) cm-1, 1757 (lactone) cm-1; 1H NMR (CDCl3): δ = 0.97, 1.06  (each 

d, each 3H, J = 6.57 Hz, CH(CH3)2), 1.37 (s, 3H, 5-CH3), 1.54 (s, 3H, 5CH3), 1.62-1.81 

(m, 1H, CH(CH3)2), 2.71 (s, 3H, N-CH3), 2.91 (d, 1H, J = 10.23 Hz, N-CH-CO), 3.60 

(d, 1H, J= 11.74 Hz, 4a-H), 4.25 (d, 1H, J = 11.74 Hz, 10b-H), 6.83 (d, 1H, J = 8.56 Hz, 

7H), 7.44 (dd, 1H, J = 8.56 Hz, 1.52 Hz, 8H); 7.71 (br, 1H, 10H); 13C NMR(CDCl3): δ 

= 19.28 (CH-CH3), 20.38 (5-CH3), 21.17 (CH-CH3), 27.12 (5-CH3), 32.52 CH(CH3)2, 

47.12 (N-CH3), 57.01 (10b-C), 73.27 (N-CH-CO), 76.09 (4a-C), 78.55 (5-C), 104.12 (9-

C), 117.80 (7-C), 119.21 (CN), 123.87 (10a- C), 130.93, 132.94 (8-C, 10-C), 155.56 

(6a-C), 170.30 (C=O); MS m/z 314 (1.14%, M+), 243 (16.2%), 185 (45%), 170 (100%); 

Anal. Calcd for C18H22N2O3 %: C 68.77, H 7.05, N 8.91; found: C 68.78, H 7.12, N 

8.61. 

6.1.5. General Procedure for reaction of epoxide with valinol (19a,b). A 

solution of enentiomeric pure epoxide (4a, 4b) (4.97mmol) and L-valinol (4.47mmol) in 

50mL 96% ethanol was heated to reflux at 65 °C for 5 days. The solvent was removed 

under reduced pressure. Purification was done by flash column chromatography 

(petroleum ether: ethylacetate /8:2)  

6.1.5.1 (2S,3S,4R)-3-hydroxy-4-(1-hydroxy-3-methyl-2-butyl-amino)-2,2-

dimethyl-2H-3,4-dihydro-1-benzopyran-6-carbonitril (19a). Yielded 67% pale 

yellowish crystal; mp: 141-142 °C; [α]20 = (+) 13.45 (c = 0.119, in CH2Cl2); IR (KBr) 
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3234 (OH) cm-1, 2224 (CN) cm-1; 1H NMR (CDCl3): δ = 1.00, 1.03  (each d, each 3H, J 

= 1.63 Hz, CH(CH3)2), 1.22 (s, 3H, 2-CH3), 1.47 (s, 3H, 2-CH3), 1.61 (br, 1H, NH), 

1.74-1.91 (m, 1H, CH(CH3)2), 3.02-3.10 (m, 1H, N-CH), 3.48 (d, 1H, J = 10.04 Hz, 

3H), 3.61 (m, 2H, CH2O), 3.86 (dd, 1H, J = 10.04 Hz, 3.26 Hz, 4H), 4.83 (br, 1H, OH), 

6.78 (d, 1H, J = 8.53 Hz, 8H); 7.38 (dd, 1H, J = 8.53 Hz, 1.51 Hz, 7H), 7.92 (d, 1H, J = 

1.51 Hz, 5H); 13C NMR(CDCl3): δ = 18.79, 18.98, 19.34 (2-CH3, CH(CH3)2), 26.85 (2-

CH3), 32.00 (CH(CH3)2), 57.32 (CH2OH), 63.94 (4-C), 64.31 (N-CH), 77.21 (3-C), 

97.80 (2-C), 103.30 (6-C), 117.94 (8-C), 119.61 (CN), 127.08 (4a- C), 123.38, 132.69 

(5-C, 7-C), 156.65 (8a-C); MS m/z 305 (0.72%, M+), 273 (39.8%), 160 (60.6%); Anal. 

Calcd for C17H24N2O3 %: C 67.08, H 7.95, N 9.20; found: C 67.07, H 7.77, N 9.20. 

6.1.5.2. (2S,3R,4S)-3-hydroxy-4-(1-hydroxy-3-methyl-2-butyl-amino)-2,2-

dimethyl-2H-3,4-dihydro-1-benzopyran-6-carbonitril (19b). Yielded 65% pale 

yellowish oil; [α]20 = (+) 8.65 (c = 0.104, in CH2Cl2); IR (KBr) 3446 (OH) cm-1, 2226 

(CN) cm-1; 1H NMR (CDCl3): δ = 0.90, 0.94  (each d, each 3H, J = 3.91 Hz, CH(CH3)2), 

1.21 (s, 3H, 2-CH3), 1.47 (s, 3H, 2-CH3), 1.70-1.86 (m, 1H, CH(CH3)2), 2.92-3.00 (m, 

1H, N-CH), 3.50 (m, 2H, J = 8.65 Hz, CH2O), 3.69 (d, 1H, J = 10.05 Hz, 3H), 3.81 (dd, 

1H, J = 10.05 Hz, 3.16 Hz, 4H), 6.77 (d, 1H, J = 8.56 Hz, 8H), 7.36 (dd, 1H, J = 8.56 

Hz, 1.84 Hz, 7H), 8.02 (s, 1H, 5H); 13C NMR(CDCl3): δ = 16.96 (CH-CH3), 19.30, 

19.58 (2-CH3, CH-CH3), 26.63 (2-CH3), 30.28 (CH(CH3)2), 54.71 (4-C), 61.75 

(CH2OH), 62.24 (N-CH), 73.99 (3-C), 79.58 (2-C)  102.88 (6-C), 117.85 (8-C), 119.48 

(CN), 126.41 (4a-C), 132.20, 132.83 (5-C, 7C), 156.81 (8a-C); MS m/z 305 (0.47%, 

M+), 273 (16.6%), 160 (21.9%); Anal. Calcd for C17H24N2O3 %: C 67.08, H 7.95, N 

9.20; found: C 67.12, H 7.88, N 9.10. 

6.1.6. General Procedure for N-methylation of 3-hydroxy-4-(1-hydroxy-3-

methyl-2-butyl-amino)-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-6-carbonitril. 

The suspension of educt 26a,b, paraformaldehyde (250mg) and 95% sodium 

cyanoborohydride (NaBH3CN) (326mg) in MeOH (30mL) were adjusted pH to 6 with 

glacial acetic acid. The suspension was stirred at room temperature overnight. Flash 

chromatography (petroleum ether: ethylacetate /9:1) were used to purify.  

6.1.6.1. (2S,3S,4R)-3-hydroxy-4-(1-hydroxy-3-methyl-2-butyl-N-methyl-

amino)-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-6-carbonitril (20a). From 19a 

yielded 87% colourless crystal of 20a; mp 143-144 °C; [α]20 = (+) 39.45 (c = 0.109, in 
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CH2Cl2); IR (KBr) 3216 (OH) cm-1, 2227 (CN) cm-1; 1H NMR (CDCl3): δ = 1.00, 1.03  

(each d, each 3H, J = 6.00 Hz, CH(CH3)2), 1.20 (s, 3H, 2-CH3), 1.48 (s, 3H, 2-CH3), 

1.73-1.89 (m, 1H, CH(CH3)2), 2.22 (s, 3H, N-CH3), 3.07-3.17 (dt, 1H, J = 10.7 Hz, 4.30 

Hz, N-CH), 3.74 (d, 1H, J = 9.85 Hz, 4H), 3.78 (d, 1H, J = 9.85 Hz, 3H), 3.85 (dd, 1H, J 

= 10.7 Hz, 4.30 Hz,  OCHA), 3.98 (t, 1H, J = 10.7 Hz, OCHB ), 6.79 (d, 1H, J = 8.46 Hz, 

8H), 7.38 (dd, 1H, J = 8.46 Hz, 1.65 Hz, 7H), 7.96 (d, 1H, J = 1.65 Hz, 5H); 13C 

NMR(200MHz, CDCl3): δ = 19.03 (CH-CH3), 19.95, 20.07 (2-CH3, CH-CH3), 27.17 (2-

CH3), 28.64 (N-CH3), 32.98 (CH(CH3)2), 62.43 (CH2OH), 66.04 (4-C),  69.08 (3-C), 

69.23 (N-CH), 79.63 (C (CH3)3), 103.28 (6-C), 118.17 (8-C), 119.88 (CN), 125.12 (4a-

C), 132.23, 133.01 (5-C, 7-C), 158.01 (8a-C); MS m/z 318 (0.38%, M+), 160 (43.2%), 

86 (100%); Anal. Calcd for C18H26N2O3 %: C 67.90, H 8.23, N 8.80; found: C 68.04, H 

8.01, N 8.97. 

6.1.6.2. (2S,3R,4S)-3-hydroxy-4-(1-hydroxy-3-methyl-2-butyl-N-methyl-

amino)-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-6-carbonitril (20b). From 19b 

yielded 95% pale yellowish solid of 20b; mp: 137-138 °C; [α]20 = (-) 20.91 (c = 0.112, 

in CH2Cl2); IR (KBr) 3215 (OH) cm-1, 2225 (CN) cm-1; 1H NMR (CDCl3): δ = 0.92, 

1.02  (each d, each 3H, J = 6.82 Hz, CH(CH3)2), 1.20 (s, 3H, 2-CH3), 1.48 (s, 3H, 2-

CH3), 2.00-2.16 (m, 1H, CH(CH3)2), 2.32 (s, 3H, N-CH3), 2.80-2.88 (m, 1H, N-CH), 

3.72 (d, 1H, J = 10.1 Hz, 4H), 3.78 (d, 1H, J = 11.56 Hz, OCHA), 3.92 (dd, 1H, J = 

11.56 Hz, 2.21 Hz, OCHB ), 4.08 (d, 1H, J = 10.01 Hz, 3H), 6.78 (d, 1H, J = 8.46 Hz, 

8H), 7.37 (dd, 1H, J = 8.46 Hz, 1.90 Hz, 7H), 7.90 (d, 1H, J = 1.90 Hz, 5H); 13C NMR 

(200 MHz, CDCl3): δ = 17.43 (CH-CH3), 19.07(2-CH3), 21.22 (CH-CH3), 27.08 (2-

CH3), 28.97(N-CH3), 34.90 (CH(CH3)2), 60.64 (CH2OH), 69.81 (3-C),  70.65 (N-CH), 

80.21 (2-C), 103.07 (6-C), 117.93 (8-C), 119.83 (CN), 125.65 (4a-C), 132.20, 133.12 

(5-C, 7-C), 157.99 (8a-C); MS m/z 318 (0.35%, M+), 160 (43.5%), 86 (100%); Anal. 

Calcd for C18H26N2O3 %: C 67.90, H 8.23, N 8.80; found: C 67.93, H 8.14, N 8.73. 

6.1.7. General Procedure for ring closure via intramolecular ether formation 

(21a,b). A suspension of 19a,b (600mg), trimethylamine (0.44mL) and trimethylamine 

hydrochloride (0.2mg) in toluene (2mL), cooled at 0 °C in an ice-acetone bath, than 

added cooled solution of methane sulfonyl chloride (0.5mg) in toluene and stirred at 

0°C for 1.5 hr. The solvent was removed under reduced pressure. The residue was 

dissolved in dry tetrahydrofuran 10mL and 60% sodium hydride dispersion in mineral 
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oil (6.25 mmol) was added bit by bit, and then stirred overnight. Excess of sodium 

hydride was destroyed by adding water, organic phase was separated. The water phase 

was extracted two times with ethyl acetate. Combined organic phase was dried with 

anhydrous sodium sulphate and brought to dryness. The residue was purified by flash 

column chromatography (petroleum ether: ethylacetate /9:1). Surprisingly, in case of the 

tertiary amine (20a,b), the cyclisation failed and the respective cloro derivatives 22a,b 

were obtained. 

6.1.7.1. (2S,4aS,10bR)-2-isopropyl-5,5-dimethyl-1,4a,5,10b-tetrahydro-3H 

[1]benzopyrano-[3, 4-b] [1, 4]oxazine-9-carbonitril (21a). Yielded 50% yellowish oil; 

IR (KBr) 2224 (CN) cm-1; 1H NMR (CDCl3): δ = 0.98, 1.02  (each d, each 3H, J = 2.66 

Hz, CH(CH3)2), 1.25 (s, 3H, 5-CH3), 1.66 (s, 3H, 5-CH3), 1.76- 1.83 (m, 1H, 2H), 1.99-

2.15 (m, 1H, CH(CH3)2), 2.50 (d, 1H, J = 6.83 Hz, 4a-H), 2.56 (d, 1H, J = 6.83 Hz, 10b-

H), 3.69 (d, 2H, J = 4.68 Hz, 3-CH2), 6.86 (d, 1H, J = 8.37 Hz, 7H), 7.47 (dd, 1H, J = 

8.37 Hz, 2.02 Hz, 8H), 7.57 (d, 1H, J = 2.02Hz, 10H); 13C NMR(CDCl3): δ = 19.19, 

19.27 (CH(CH3)2), 24.47 (5-CH3), 26.12 (5-CH3), 31.32 (CH(CH3)2), 37.45 (10b-C), 

45.98 (3-C), 48.90 (2-C), 73.95 (5-C), 74.26 (4a-C), 103.85 (9-C), 119.21(7-C), 123.98 

(10a-C), 132.51, 132.70 (8-C, 10-C), 156.12 (6a-C); MS m/z 269 (54.4%, M+), 170 

(22.9%), 157 (75.4%); Anal. Calcd for C17H22N2O2 %: C 71.30, H 7.78, N 9.78; found: 

C 71.12, H 7.65, N 9.85 

6.1.7.2. (2S,4aR,10bS)-2-isopropyl-5,5-dimethyl-1,4a,5,10b-tetrahydro-3H 

[1]benzopyrano-[3, 4-b] [1, 4]oxazine-9-carbonitril (21b). Yielded 51% yellowish 

oil; IR (KBr) 2224 (CN), 1572 (NH) cm-1; 1H NMR (CDCl3): δ = 0.98, 1.10  (each d, 

each 3H, J = 6.26 Hz, CH(CH3)2), 1.25 (s, 3H, 5-CH3), 1.44 (s, 3H, 5-CH3), 2.15-2.29 

(m, 1H, CH(CH3)2), 2.36 (dd, 1H, J = 10.36 Hz, 2.91 Hz, 2H), 3.08 (d, 1H, J = 10.11 

Hz, 4a-H), 3.62 (dd, 1H, J = 11.75 Hz, 3.03 Hz,  3CH2A), 3.80  (d, 1H, J = 10.11 Hz, 

10b-H), 4.16 (d, 1H, J = 11.87 Hz, 3CH2B), 6.79 (d, 1H, J = 8.59Hz, 7H), 7.39 (dd, 1H, 

J = 8.59 Hz, 1.51 Hz, 8H), 7.69 (d, 1H, J = 1.51 Hz, 10H); 13C NMR(CDCl3): δ = 19.86 

(CH-CH3), 20.70, 20.81 (CH-CH3, 5-CH3), 25.80 (CH(CH3)2), 26.69 (5-CH3), 45.36 

(10b-C), 58.77 (2-C), 69.40 (3-C), 78.79 (5-C), 81.88 (4a-C), 103.41 (9-C), 117.75 (7-

C), 119.35 (CN), 124.10 (10a-C), 130.06, 132.51 (8-C, 10-C), 156.44 (6a-C); MS m/z 

286 (11.9%, M+), 243 (100%), 170 (25%); Anal. Calcd for C17H22N2O2 %: C 71.30, H 

7.74, N 9.78; found: C 71.45, H 7.64, N 9.61 
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6.1.7.3. (2S,3S,4R)-4-(N-(1-chloro-3-methyl-2-butyl-N-methyl-amino)-3-

hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-6-carbonitril (22a). From 20a 

yielded 55% yellowish oil; [α]20 = (-) 7.77 (c = 0.103, in CH2Cl2); IR (KBr) 3479 (OH) 

cm-1, 2226 (CN) cm-1; 1H NMR ( 200 MHz, CDCl3): δ = 0.90, 1.02  (each d, each 3H, 

each J = 6.63 Hz, CH(CH3)2), 1.18 (s, 3H, 2-CH3), 1.48 (s, 3H, 2-CH3), 1.90-2.05 (m, 

1H, CH(CH3)2), 2.51 (s, 3H, N-CH3), 2.95 (br, 2H, CH2Cl) 3.24 (br, 1H, OH), 3.61 (d, 

1H, J = 10.17 Hz, 3H), 3.69 (d, 1H, J = 10.17 Hz, 4H), 3.97-4.05 (m, 1H, N-CH), 6.80 

(d, 1H, J = 8.50 Hz, 8H), 7.36 (dd, 1H, J = 8.50 Hz, 1.77 Hz, 7H ), 7.64 (br, 1H, 5H); 
13C NMR (200MHz, CDCl3): δ = 16.64 (2-CH3), 18.73 (CH-CH3), 20.35 (2-CH3), 26.84 

(CH-CH3), 31.84 (CH(CH3)2), 38.84 (N-CH3 at 60 °C 300 MHz), 60.18 (CH2Cl at 60 

°C 300 MHz), 63.50 (4-C), 68.54 (N-CH), 70.01 (3C), 79.61 (C(CH3)3), 103.28 (6-C), 

118.48 (8-C), 119.38 (CN), 123.46 (4a-C), 132.39, 132.44 (5-C, 7-C), 157.57 (8a-C); 

MS m/z 336 (0.43%, M+), 229 (56.5%), 160 (35.1%); Anal. Calcd for C18H25ClN2O2 

%: C 64.18, H 7.48, N 8.32; Cl 10.52 found: C 63.61, H 7.17, N 7.79, Cl 9.93. 

6.1.7.4. (2S,3R,4S)-4-(N-(1-chloro-3-methyl-2-butyl-N-methyl-amino)-3-

hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-6-carbonitril (22b). From 20b 

yielded 60% yellowish oil; [α]20 = (-) 31.98 (c = 0.111, in CH2Cl2); IR (KBr) 3310 

(OH) cm-1, 2227 (CN) cm-1; 1H NMR ( 200 MHz, CDCl3): δ = 1.00, 1.08  (each d, each 

3H, each J = 6.70 Hz, CH(CH3)2), 1.19 (s, 3H, 2-CH3), 1.50 (s, 3H, 2-CH3), 1.97-2.12 

(m, 1H, CH(CH3)2), 2.22 (s, 3H, N-CH3), 3.12 (dd, 1H, J = 13.64 Hz, 10.23 Hz, 

CH2ACl), 3.40 (dd, 1H, J = 14.08 Hz, 7.14Hz, CH2BCl), 3.59 (d, 1H, J = 10.04 Hz, 3H), 

3.71 (d, 1H, J = 10.04 Hz, 4H), 4.02-4.11 (m, 1H, N-CH), 6.84 (d, 1H, J = 8.08 Hz, 8H), 

7.37 (s, 1H, 5H), 7.39 (d, 1H, J = 8.08 Hz, 7H); 13C NMR(200MHz, CDCl3): δ = 16.80 

(CH-CH3), 18.66 (2-CH3), 20.30 (CH-CH3), 26.88 (2-CH3), 32.07 (CH(CH3)2), 34.96 

(N-CH3 at 60 °C 300 MHz), 64.07 (CH2Cl at 60 °C 300 MHz), 65.37 (4-C), 69.67 (N-

CH), 70.89 (3-C), 79.74 (C(CH3)3), 103.17 (6-C), 118.83 (8-C), 119.41 (CN), 122.48 

(4a-C), 132.20, 132.59 (5-C, 7-C), 157.77 (8a-C); MS m/z 336 (0.51%, M+), 229 

(37.08%), 160 (71.2%); Anal. Calcd for C18H25ClN2O2 %: C 64.18, H 7.48, N 8.32, Cl 

10.52; found: C 64.25, H 7.57, N 7.80, Cl 9.01. 
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6.2. Biological Essay 

The human T-lymphoblast cell line CCRF-CEM and the multidrug resistant 

CEM/vcr1000 cell line were provided by V. Gekeler (Byk Gulden, Konstanz, 

Germany). The resistant CEM/vcr1000 line was obtained by stepwise selection in 

vincristine containing medium. Cells were kept under standard culture conditions 

(RPMI1640 medium supplemented with 10% fetal calf serum). P-gp-expressing 

resistant cell line was cultured in presence of 1000ng/ml vincristine. One week prior to 

the experiments cells were transferred into medium without selective agents or 

antibiotics. Briefly, cells were pelleted, the supernatant was removed by aspiration and 

cells were resuspended at a density of 1 x 106/ mL in PRMI1640 medium containing 

3µmol/l daunomycin. Cell suspensions were incubated at 37°C for 30 min. After this 

time a steady state of daunorubicin accumulation was reached. Tubes were chilled on 

ice and cells were pelleted at 500 x g. Cells were washed once in RPMI1640 medium to 

remove extracellular daunorubicin. Subsequently, cells were resuspended in medium 

prewarmed to 37°C, containing either no modulator or chemosensitizer at various 

concentrations ranging from 3nM to 500 µM, depending on solubility and expected 

potency of the modifier. Generally, 8 serial dilutions were tested for each modulator. 

After 1, 2, 3 and 4 min aliquots of the incubation mixture were drawn and pipetted into 

4 volumes of ice cold stop solution (RPMI1640 medium containing verapamil at a final 

concentration of 100 µM). Parental CCRF-CEM cells were used to correct for simple 

membrane diffusion, which was less than 3% of the efflux rates observed in resistant 

cells. Samples drawn at the respective time points were kept in an ice water bath and 

measured within one hour on a Becton Dickinson FACS Calibur (Becton Dickinson, 

Heidelberg, Germany) flow cytometer as described. Dose response curves were fitted to 

the data points using non-linear least squares and IC50 values were calculated as 

described by Chiba et al [20]. IC50 values of individual compounds the average of at 

least triplicate determinations (Table 1). A CV of below 20% was obtained in all 

determinations.  

6.3. Computational Methods 

6.3.1. Hansch Analysis 

Molecular descriptors supplied by the program MOE (atom and bond counts, 
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connectivity indices, partial charge descriptors, pharmacophore feature descriptors, 

calculated physical property descriptors, etc.) were computed. QSAR-Contingency [42], 

a statistical application in MOE, was used for selection of relevant descriptors. PLS 

analysis was performed to determine the relationship between 2D molecular descriptors 

and biological activity of the compounds. The predictive value of the model was 

determined by leave one out cross validation (LOO). 

6.3.2. GRIND 

Molecular Interaction Fields (MIF) were calculated using GRID based fields in 

Pentacle [29] using four different probes: Dry probe to represent hydrophobic 

interactions, O sp² carbonyl oxygen probe to represent H-bond donor feature of the 

molecules, N1 probe to represent –NH which is a neutral flat probe as an H-bond 

acceptor in the molecules and the TIP probe that represents the shape of the molecule 

and refers to steric hot spots. The regions with highest MIF were extracted by applying 

the AMANDA algorithm [43] that uses the intensity of the field at a node and the 

mutual node-node distances between the chosen nodes. At each point, the interaction 

energy (Exyz) was calculated as a sum of Lennard-Jones energy (Elj), Hydrogen bond 

(Ehb) and Electrostatic (Eal) interactions. 

Exyz=∑Elj + ∑Eel + ∑Ehb 

Default values of probe cutoff (DRY= -0.5, O= -2.6, N1= -4.2, TIP= -0.74) was used 

for discretization of MIF. Nodes with an energy value below this cutoff were discarded. 

The Consistently Large Auto and Cross Correlation (CLACC) algorithm [29] was used 

for encoding the prefiltered nodes into GRIND thus producing most consistent variables 

as compared to MACC [44]. The values obtained from the analysis can be represented 

directly in correlogram plots, where the product of node-node energies is reported 

versus the distance separating the nodes. Highest energy product can be define by the 

same probe (obtaining four auto correlograms: Dry-Dry, O-O, N1-N1 and TIP-TIP) and 

by pair of probes (obtaining six cross correlograms: Dry-O, Dry-N1, Dry-TIP, O-N1, O-

TIP, and N1-TIP). The QSAR model obtained was assessed by means of the q² and 

standard deviation error of prediction (SDEP). Classical leave one out (LOO) method 

was applied to calculate q² values. 
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Development of a Predictive 3D-QSAR Model for a Structurally Diverse Set of 

Inhibitors of P-glycoprotein (P-gp)                Page 104-116 

 

In this chapter the GRIND approach was used to build a predictive 3D-QSAR model for 
an extended data set of P-glycoprotein inhibitors belonging to different chemical 
scaffolds. 
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Development of a Predictive 3D-QSAR Model for a Structurally 

Diverse Set of Inhibitors of P-glycoprotein (P-gp)  

Introduction  

About two decades ago propafenone, which is originally an anti-arrhythmic agent of 

the class Ic, has been identified as a promising P-glycoprotein inhibitor.1,2 Later on 

some of its derivatives were among few highly effective agents involved in 

resensitization of multidrug-resistant tumor cells.3 In order to probe structural features 

important for P-gp inhibitory activity and to design promising inhibitors of this efflux 

pump, extensive SAR and QSAR studies have been performed on propafenone analogs 

including acylpyrazoles, acylpyrazolones, dihydrobenzopyrans, tetrahydroquinolines, 

benzophenones and benzofuranes.3-6 Hansch analyses,7-11 CoMFA, CoMSIA, HQSAR 

studies,12 pharmacophore modeling13 as well as similarity-based descriptors 

(SIBAR)14,15 were computed for building local models across a particular chemical 

scaffold. Most of these studies point towards the importance of hydrogen bond 

acceptors and their strength, a certain distance between aromatic moieties and hydrogen 

bond acceptors, as well as the influence of global physicochemical parameters, such as 

lipophilicity and molar refractivity.10,11,16  

Ligand based P-gp inhibition models, reviewed in the 1st chapter of this thesis, show 

that their performance diminished when tested against nonlocal external test sets. This 

represents one of the major drawbacks of classical QSAR models.13,17-22 3D-QSAR 

methods on the other hand need a proper alignment of the molecules. Moreover, 

pharmacophore-based as well as CoMFA and CoMSIA models do not consider ADME 

(e.g membrane permeability) properties of the compounds. This can be overcome by 

using descriptors derived from molecular interaction fields (MIF), such as Volsurf or 

GRIND,23 which are alignment-independent and thus allow the analysis of structurally 

diverse data series. Recently, Broccatelli et al, used MIF based descriptors to predict 

optimal ADME properties and to generate a pharmacophore model to identify more 

potent and nontoxic inhibitors of P-gp.24 In their model 3D shape of the molecules along 

with one hydrogen bond acceptor atom and one large hydrophobic region appears as a 

basic pharmacophoric pattern for P-gp inhibitors across a data set of diverse chemical 

scaffolds. Within this study we used MIF based descriptors (GRIND) to identify 3D 
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pharmacophoric features and pinpoint their mutual distances by using a training set of 

structurally diverse propafenone-type P-gp inhibitors.  

Data sets 

The data set used consists of 375 inhibitors of P-gp, including some previously 

published propafenones,3,4,9 acylpyrazoles, acylpyrazolones10 dihydrobenzopyrans,25 

tetrahydroquinolines,11 benzofuranes7 as well as some newly synthesized benzophenone 

derivatives. Smile codes and biological activity values of the compounds are provided 

in appendix A3. The diverse subset selection tool in MOE was applied to assign a 

ranking order to the entries in the database. 185 2D-descriptors together with P-gp 

inhibitory activity values were used to calculate the pair wise distances between all 

compounds. A subset (80%) which is diverse with respect to chemical structures (e.g., 

2D molecular descriptors) as well as P-gp inhibitory activities was used as training set 

and the remaining compounds comprised the test set (20%).  

Results and Discussion 

Extended 3D conformations of the molecules were generated by CORINA.26 All 

compounds were modeled in their neutral form as the role of the nitrogen atom as a 

hydrogen bond acceptor has already been demonstrated for P-gp inhibitors,5 suggesting 

that molecules should be modeled in their neutral state. The software package Pentacle 

(v. 1.06)27 was used to construct 3D-QSAR models using GRIND descriptors. (See 

methods section of chapter 2 and 3). 

Structural variance of the data was analyzed with principal component analysis 

(PCA) performed on the complete set of GRIND descriptors. The first two principal 

components explain about 36% of the chemical variance of the data. The PCA on the 

data matrix showed that the whole training set consists of structurally diverse 

compounds divided into three major clusters which differ with respect to their 

shape/size and number of hydrogen bond donor groups (Figure 1). Compounds in 

cluster 1, which is located in the upper left corner of the plot do not contain any 

hydrogen bond donor (-OH, -NH) group. In the central cluster, which consists of simple 

propafenone derivatives and dihydrobenzopyrans, all compounds contain one hydrogen 

bond donor group. Compounds in the 3rd cluster located just below the central cluster 

are acylpyrazoles and acylpyrazolones, all possessing two hydrogen bond donors. In 
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addition, a general trend of decrease in size and flexibility has been observed from the 

upper right to the lower left section of each cluster (Figure 1). Thus, principal 

component analyses groups the compounds according to their chemical variability with 

respect to their shape and size as well as number of hydrogen bond donor groups. 
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Figure 1. PCA score plot showing that the whole data set is divided into three major 
clusters, which are different with respect to number of hydrogen bond donor groups. 
Within each cluster the flexibility and size of the ligands decreases from the upper right 
corner to the lower left part. 

In order to explore the pharmacophoric pattern of ligand-protein interaction across 

structurally different series of P-gp inhibitors, PLS analysis correlating the activity with 

the complete set of GRIND variables (750) was carried out using the AMANDA 

algorithm implemented in Pentacle (v 1.06).27 This resulted in a two-latent variable 

model with an r2 = 0.54 and a leave one out cross-validated (LOO) q2 value of 0.45, 

which was quite unsatisfactory. Thus, variable selection was applied to reduce the 

number of active variables by using FFD factorial selection.28 Finally, the performance 

of the model increased (r² of 0.61, q2 = 0.56, standard error of prediction 0.68) when the 

number of active variables decreases from 552 to 422. Figure 2 shows the plot of the 

experimental versus calculated biological activities. 
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Figure 2. Plot of observed vs. predicted MDR-modulating activity (log1/IC50) of 
compounds in the training set, predicted values were obtained by leave-one-out cross-
validation procedure. 

The entire training set could be modeled nicely although some of the compounds in 

the training set reveal residual values above one log unit. This might be due to the quite 

large diversity in chemical structures in the training set. Figure 3 shows the 

experimental vs. predicted biological activities of the external test set. Biological 

activities of all compounds could be predicted with a difference of less than one log 

unit, except for PCO_GPV738 (obs: -0.004; pred: -1.21) and PCO_GP734 (obs: 0.005; 

pred: -1.93), which belong to the series of dihydrobenzopyrans, and for GPV936 (obs 

1.23; pred: 0.005), which is a propafenone derivative. All three compounds have been 

predicted as being about one log unit more active then observed. However, the overall 

performance of the model is quite satisfactory, which indicates that a similar 

pharmacoporic pattern across different chemical scaffolds of P-gp inhibitors may exist. 
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Figure 3. Experimental vs. predicted biological activity values of the external test set 
compounds.  

Analysis of the PLS coefficients profile allows to identify those descriptors which 

exhibit strong contribution to the model. According to the correlogram plot given in 

figure 4, Dry-Dry, Dry-TIP, Dry-N1 and Dry-O are GRIND variables that contribute 

most in explaining the variance in activity values.  

 
Figure 4. PLS Coefficient correlograms showing the descriptors which are directly (positive 
values) or inversely (negative values) correlated to the biological activity. The activity 
predominantly increases with the increase in (DRY-DRY), (DRY-TIP), (DRY-N1) and (DRY-
O) descriptor values. 

The DRY-DRY correlogram is important for explaining the model, as all coefficients 

are positive and well spread in distance between 2.00-15.60 Å. The correlogram 

indicates that two large hydrophobic regions at a distance of 14.40-14.80 Å are present 

in all compounds exhibiting an activity value (IC50) below 1µM, while in least active 
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compounds (IC50 > 1) the distance is shorter (Figure 5). These results demonstrate once 

more that hydrophobicity is a key property for P-gp inhibitors across a wide range of 

chemical scaffolds. Most of the studies in the past already highlighted the importance of 

lipophilicity for high potency of P-gp inhibitors.10,11,16 Several other studies showed that 

lipophilicity might influence pharmacological activity in a space-directed manner rather 

than as a general physicochemical determinant.29,30 This space-directedness might be 

indicative of different orientations of molecules within the binding pocket of P-gp as 

reported by  Pleban et al.31 This is perfectly in-line with the findings of our model, as all 

important correlograms for high biological activity measure the distance of a hydrogen 

bond acceptor, -donor and shape probes from one particular hydrophobic probe of the 

molecules (DRY-N1, DRY-O and DRY-TIP). Thus, one of the hydrophobic 

substitutions seems to be a crucial hallmark for the mapping of the pharmacophoric 

pattern of P-gp inhibitors. 

 
Figure 5. DRY-DRY pair of probes representing important hydrophobic regions 
separated by a distance of 14.40-14.80 Å present in the highly potent (IC50 < 1µM) P-gp 
inhibitor GPV0647.  

The DRY-TIP correlogram refers to the distance of highly hydrophobic substituents 

from different edges of the molecules. This pair of probes at a distance of 16.00-16.80 

Å is present in all compounds of the training set having IC50 < 1µM. In propafenones 

this descriptor predominantly represents the distance between the central aromatic ring 

of the scaffold and the N-substituted hydrophobic moiety (Figure 6a). A similar distance 

range (17.60-18.00 Å) between two pharmacophores has been observed in chalcone 

derivatives as discussed previously in chapter 2. However, Cianchetta and co-workers 

identified a distance of 20.5 Å between the same probes.23 The steric hot spots (TIP-

TIP) were identified making three important boundaries of the molecules. This includes 

N-substituted hydrophobic groups in propafenone derivatives, which is separated by a 

distance of 18.40-18.80 Å from any of the two other ends of the molecules (Figure 6b). 



Predictive 3D-QSAR Model for P-gp Inhibitors                                      CHAPTER 4                        

111 

 

It demonstrates the importance of hydrophobic molecular boundaries for high biological 

activity of P-gp inhibitors. Similar molecular shape has been identified for chalcones 

derivatives (Chapter 2). This is in agreement with Broccatelli and co-workers, who 

provided first evidence for the importance of an optimal shape for P-gp inhibitors.24  

 
(a) GPV0576            (b) WISE_B005 

Figure 6. (a) Represents a distance of 16.00-16.80 Å between a hydrophobic group at 
the nitrogen atom (Dry: yellow region) and one of the three molecular edges (TIP; green 
region), (b) represents two edges of the molecule (TIP-TIP) 18.40-18.80 Å apart from 
each other. 

The N1-TIP correlograms provide the important distances of a hydrogen bond 

acceptor from different edges of the molecules. These coefficients show an interesting 

behavior, having negative value at shorter distances (3.60-4.00 Å), but become positive 

for larger distances (17.20-17.60 Å) (Figure 7a,b). This indicates that potent P-gp 

inhibitors (IC50 < 1µM) show elongated conformations and have a hydrogen bond 

acceptor far away from molecular boundaries. Weak P-gp inhibitors (IC50 > 1µM) seem 

to be more compact have their hydrogen bond acceptor group close to one of its edges. 

This is well pronounced in the least active propafenone analogs (IC50 > 100µM), where 

the phenylpropionyl-moiety of the propiophenone scaffold was replaced by a CH3 

group.  

  
 (a) GPV0610            (b) GPV0017 
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Figure 7. (a) Shows a region (blue color) surrounding a hydrogen bond acceptor group 
(C=O) present in the middle of the molecule, at a distance of 17.20-17.60 Å away from 
a hydrophobic edge, identified in all potent P-gp inhibitors (IC50 < 1µM). (b) A 
representative of compounds having IC50 > 100µM, where (C=O) is found close (3.60-
4.00 Å) to one of the edges.  

The DRY-N1 correlogram is identical with the highest positive variable of the N1-

TIP correlogram and refers to the distance of a hydrogen bond acceptor from a large 

hydrophobic moiety. In propafenone derivatives it represents the distance (14.40-14.80 

Å) between the carbonyl group and the hydrophobic substituent at the basic nitrogen 

atom. It is present in most of the compounds having IC50 values below 1µM (Figure 

8a,b), except for a few smaller compounds such as benzopyrano-[3,4-b][1-4]oxazines 

PCO770 and PCO726 which are discussed separately in chapter 3. The Dry-O 

correlogram provides the distance of a hydrogen bond donor from the same 

hydrophobic N-substituent (12.40-12.80 Å). However, in propafenone analogs 

containing a 4-hydroxypiperidine moiety, it represents the distance between the 3-

phenyl substitution of the propafenone scaffold and the 4-hydroxy group at the 

piperidine (Figure 8c) and thus confirms our previous findings about the importance of 

4-hydroxy-4-phenyl piperidines for high biological activity of propafenones.8,32 This 

pair of probes is present in highly active (IC50 < 1µM) compounds of different series 

and thus further emphasizes the importance of a hydrophobic moiety which also reflects 

an important shape parameter in the TIP-TIP and N1-TIP correlograms.  

 
(a) GPV0649 

 
                 (b) ERK_PA008         (c) GPV 0062 
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Figure 8. (a) (b) Shows a hydrogen bond acceptor at a distance of 14.40-14.80 Å apart 
from a large hydrophobic group in P-gp inhibitors having different chemical scaffolds. 
(c) Represent a region (red color) around a hydrogen bond donor group and map its 
distance (12.40-12.80 Å) from a hydrophobic moiety. 

Finally, the N1-N1 correlogram outlines the influence of the distance separating two 

hydrogen bond acceptors (8.80-9.20 Å). However, this correlogram is not consistent in 

the present model and could not separate completely the highly active (IC50 < 1µM) 

compounds from low active (IC50 > 1µM) ones. This might reflect the fact that the 

highly promiscuous binding site of P-gp possesses multiple spots able to participate in 

hydrophobic and hydrogen bond interactions and that different chemical series most 

probably utilize different hydrogen bond interaction patterns. 

Overall, the present model, by using structurally diverse compounds, reflects a large 

hydrophobic moiety present at a specific distance from a hydrogen bond acceptor as 

global property for P-gp inhibitors. Our GRIND model further points towards the 

importance of the distance of a hydrophobic group from hydrogen bond acceptor/–

donor and from different edges of the molecules and thus elucidates the crucial 

attributes for variations in biological activity of P-gp inhibitors.  

Conclusions 

P-gp can accommodate a wide range of structurally diverse compounds in its binding 

pocket. Our 3D-QSAR model containing different chemical scaffolds identified three 

important molecular features of P-gp inhibitors, one of which is a large hydrophobic 

moiety. The GRIND models indicate a favourable distance range of this hydrophobic 

edge from different hydrogen bond acceptor and donor groups of the molecules. The 

distances remain consistent for all compounds having IC50 < 1µM. This indicates that 

large hydrophobic groups in the molecules get an optimal fit within the binding pocket 

and orientate the rest of the molecule in a way that hydrogen bond acceptors, donors as 

well as the other edges of the molecue get most favorable positions of these groups 

within the binding pocket. 
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In this chapter a data set of diastereoisomers of benzopyrano[3,4-b][1,4]oxazines were 
docked into a homology model of P-glycoprotein to probe stereoselective interaction  of  
diastereoisomeric pairs. 

Contents 

1. Introduction 

2. Chemistry 

3. Structure Activity Relationships 

4. Docking 

� Appendix available: Page 173-193 

1. Biological Essay 

2. Chemistry 

L Information: This chapter was published in Chem Comm, 2011, Volume 47, 2586-
2588 by Jabeen Ishrat, Wetwitayaklung  Penpun, Klepsch Freya, Parveen  Zahida, 
Chiba Peter, Ecker Gerhard F. 

 
 
 
 
 



 
This article is part of the 

 

Enzymes & Proteins web 
themed issue

 
This issue showcases high quality research in the field of enzymes and 

proteins. 
 

Please visit the website to access the other articles in this issue:-
http://www.rsc.org/chemcomm/enzymesandproteins

 
 

 

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

t W
ie

n 
on

 1
0 

N
ov

em
be

r 
20

11
Pu

bl
is

he
d 

on
 2

1 
D

ec
em

be
r 

20
10

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0C
C

03
07

5A

View Online / Journal Homepage / Table of Contents for this issue

118

http://www.rsc.org/chemcomm/organicwebtheme2009
http://www.rsc.org/chemcomm/organicwebtheme2009
http://www.rsc.org/chemcomm/enzymesandproteins
http://dx.doi.org/10.1039/c0cc03075a
http://pubs.rsc.org/en/journals/journal/CC
http://pubs.rsc.org/en/journals/journal/CC?issueid=CC047009


2586 Chem. Commun., 2011, 47, 2586–2588 This journal is c The Royal Society of Chemistry 2011

Cite this: Chem. Commun., 2011, 47, 2586–2588

Probing the stereoselectivity of P-glycoprotein—synthesis, biological
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A series of enantiomerically pure benzopyrano[3,4-b][1,4]-

oxazines have been synthesised and tested for their ability to

inhibit P-glycoprotein. Reducing the conformational flexibility

of the molecules leads to remarkable differences in the activity of

diastereoisomers. Docking studies into a homology model of

human P-gp provide first insights into potential binding areas for

these compounds.

P-glycoprotein (P-gp) is a transmembrane, ATP-dependent drug

efflux pump which transports a wide variety of structurally and

functionally diverse compounds out of cells.1 P-gp is expressed in

epithelial cells of the kidney, liver, pancreas, colon, as well as at

the blood–brain barrier,2 underscoring its role in maintaining

concentration gradients of (toxic) compounds at physiological

barriers.3 In addition, it is very often overexpressed in tumor cells

and thus is one of the major factors responsible for multiple drug

resistance in anticancer therapy. Inhibition of P-gp has therefore

been advocated as promising concept to overcome the MDR

phenotype. However, although several inhibitors of P-gp have

been evaluated in clinical studies, none of them has reached the

market so far, which questions the druggability of P-gp.4

One of the initial candidates for use as P-gp inhibitor was

the calcium channel blocker verapamil. However, clinical

studies indicated that the serum concentrations required to

reverse MDR lead to severe cardiovascular side effects due

to the original biological profile of verapamil. As the cardio-

vascular activity is concentrated in the S-enantiomer and both

enantiomers are equipotent at P-gp, R-verapamil was used for

further clinical studies. Unfortunately, also this compound

failed in clinical phase 3 studies.

Lack of significant stereoselectivity in drug/P-gp interaction

was also observed for other compounds, such as niguldipine,

nitrendipine, felodipine, carvedilol, propranolol, zosuquidar5

and propafenone.5

However, there are also a few reports of remarkable stereo-

specificity.6 Furthermore, the recently published crystal

structure of mouse P-gp co-crystallised with the two enantio-

meric cyclopeptides QZ59-RRR and QZ59-SSS revealed

distinct binding sites for the two enantiomers. QZ59-RRR

binds in the center of the P-gp binding pocket, whereas

QZ59-SSS binds at two positions: in one position it interacts

with hydrophobic residues between TMs 6 and 12, while in the

other position it interacts with TMs 8 and 9 and is surrounded

by three polar residues. Amino acid residue Val982 plays an

important role having close proximity to all three QZ59 sites.7

Analogous positions of the QZ-isomers were found in docking

experiments of the two isomers into a homology model of

human P-gp based on the mouse P-gp structure.8

In light of our intense structure–activity relationship studies

of inhibitors of P-gp, we also synthesized and tested a series of

3-hydroxy-4-amino-dihydrobenzopyranes.9 These compounds

showed biological activities in the low micromolar range,

which is comparable to propafenone and verapamil.

In contrast to our main lead compound propafenone, the

dihydrobenzopyranes offer the advantage of remarkably

reduced conformational flexibility and thus might be versatile

molecular tools for probing stereoselective differences of drug/

P-gp interaction. Especially annelation of a third ring leading to

benzopyrano[3,4-b][1,4]oxazines and introduction of large

substituents at position 2 of the tricyclic system should lead to

compounds with pronounced configurational differences. The

compound design is thus based on synthesis of both enantiomers

of epoxide 4, nucleophilic ring opening with tert-butyl esters of

selected amino acids followed by ester hydrolysis and cyclisation

to yield enantiopure target compounds 11–13 (Scheme 1).

Synthesis of the benzopyrane ring system was achieved

according to Godfrey et al.10 O-alkylation of 4-hydroxy-

benzonitril (1) with 3-trifluoroacetyl-3-methyl-but-1-yne
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followed by thermal cyclization gave 6-cyano-2,2-dimethyl-2H-

1-benzopyran 3. Enantioselective epoxidation using a

Jacobsons Mn(III) Salen epoxidation catalyst and commercial

household bleach (sodium hypochlorite)11 as the oxygen source

gave (S,S)- and (R,R)-epoxide 4a and 4b (Scheme 2). Enantio-

meric purity of both epoxides was confirmed by HPLC analysis,

using a LiChroCART (R,R)-Whelk-01 column (25 � 0.4 cm)

and n-hexane/isopropanol (95 : 5) as eluent.

Nucleophilic ring opening of epoxides with L-alanine-,

L-valine- and L-phenylalanine-tert-butyl-esters yields optically

pure trans-3,4-disubstituted diastereomeric esters 5a,b–7a,b.

These were hydrolysed with 70% HClO4
12 to yield the corres-

ponding acids 8a,b–10a,b, which were subsequently cyclised

without further purification using bis-(2-oxo-3-oxazoldinyl)-

phosphinic chloride, 4-dimethylaminopyridine and triethyl-

amine to yield the target compounds 11a,b–13a,b (Table 1).

Biological activity of target compounds 11–13 as well as of

intermediates 5–7 was assessed using the daunorubicin efflux

protocol as described previously (see ESIz). As negative

charges are known to be detrimental for P-gp inhibitory

activity the carboxylic acids 8–10 were not measured. In the

daunorubicin efflux assay the effect of different modulators on

the transport rate is measured in a direct functional assay.

Furthermore, EC50 values obtained correlate well with those

from cytotoxicity assays and rhodamine 123 efflux studies.13,14

Values are given in Table 1 and are the mean of at least three

independently performed experiments. Generally, interexperi-

mental variation was below 20%.

EC50 values cover a range of more than three orders of

magnitude with the two phenylalanine esters 7a and 7b being

the most active compounds (7a: 0.55 mM; 7b: 0.77 mM),

followed by the valine analogues 6a (2.40 mM) and 6b

(2.70 mM). Least active compounds in the series of esters were

the alanine derivatives with 29.85 mM (5a) and 14.55 mM (5b),

respectively. It has to be noted that for all three diastereo-

isomeric pairs almost no differences in biological activity was

observed. This pattern changes remarkably upon ring closure

to the benzopyrano[3,4-b][1,4]oxazines. Whereas the valine

analogues 12a,b are still within one order of magnitude, both

the alanine and phenylalanine derivatives exhibit remarkable

differences in their potential to inhibit P-gp. Most strikingly, in

the case of alanine the 4aS,10bR-isomer 11a is by a factor of

15 less active than the diastereomeric 4aR,10bS analogue 11b,

whereas in the case of the phenylalanine derivatives this

behaviour reverses with the 4aS,10bR-isomer 13a being by

two orders of magnitude more active than 13b.

It is widely accepted that access of substrates/inhibitors to

the binding cavity of P-gp occurs directly from the membrane

bilayer rather than from the aqueous intracellular medium.

Thus, QSAR studies very often show a correlation between

lipophilicity of the compounds under investigation and their

P-gp inhibitory activity.

In this case, differences in activity more likely reflect the ability

of the compounds to enter the membrane bilayer rather than

differences in their interaction pattern with P-gp. Calculating the

log P values of all target compounds with the software package

MOE and correlating the values with the log(1/EC50) values

exhibit remarkable differences between the (a) and (b) series

of compounds. Compounds derived from the (S,S)-epoxide

(a series, showing a (3S,4R)-configuration at the benzopyrane

ring after aminolysis of the epoxide) showed an excellent correla-

tion (r2 = 0.96, n = 6). This indicates that within this series of

compounds differences in their P-gp inhibitory potency are

mainly due to their capability to permeate into the membrane

bilayer rather than to protein–ligand interactions at P-gp.

Compounds from the (b) series yielded a significantly lower

r2 value (0.42). Considering the remarkable drop of activity for

the benzyl-derivative 13b strongly indicates steric constraints

for this series of diastereoisomers and thus maybe leading to

different binding modes at P-gp. This is further supported by

results of docking studies performed on a homology model of

human P-gp based on the X-ray structure of mouse P-gp

co-crystallised with the cyclic peptide QZ59 (PDB ID: 3G5U;

for details see ESIz).
Both esters 5a,b–7a,b as well as lactones 11a,b–13a,b

were docked into the homology model of human P-gp. Ag-

glomerative Hierarchical Cluster analysis of the consensus

RMSD matrix of esters 5a,b–7a,b based on the common

scaffold identifies 10 clusters. Five clusters contain all

compounds of configuration (3S,4R), while four clusters contain

all compounds having configuration (3R,4S). However, we

Scheme 1 Synthesis of target compounds 11–13; (i) 96% ethanol,

reflux; (ii) 70% HClO4; (iii) 4-dimethylaminopyridine, bis-(2-oxo-3-

oxazolidinyl)-phosphinic chloride, triethylamine.

Scheme 2 Synthesis of the benzopyrane ring system and enantiomeric

pure (S,S)- and (R,R)-epoxide 4a and 4b; (iv) CH3CN, DBU, CuCl2,

�4 1C, Ar atmosphere; (v.a) (S,S)-Mn(III) Salen NaOCl solution,

buffer to pH 11.3, 0 1C; (v.b) (R,R)-Mn(III) Salen NaOCl solution,

buffer to pH 11.3, 0 1C.

Table 1 Chemical structure and biological activity of enantio-
merically pure benzopyrano[3,4-b][1,4]oxazines

# R log P EC50/mM

5a CH3 2.84 29.85
5b CH3 2.84 14.55
6a CH(CH3)2 3.82 2.40
6b CH(CH3)2 3.82 2.70
7a CH2(C6H5) 4.38 0.55
7b CH2(C6H5) 4.38 0.77
11a CH3 1.98 1241.65
11b CH3 1.98 76.89
12a CH(CH3)2 2.95 15.32
12b CH(CH3)2 2.95 59.33
13a CH2(C6H5) 3.51 2.69
13b CH2(C6H5) 3.51 259.78
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also identified one cluster which contains five (5a,b; 6a,b

and 7b) out of six docked esters. Analysis of the ligand protein

interaction profile of eight of these clusters showed mainly

interactions with amino acid residues of TM5 and TM6. The

dominant interacting amino acids for 5a,b–7a,b include

Tyr307, Tyr310, Phe343, Phe336 and Gln347 (Fig. S1, ESIz).
However, two clusters (one of series (a), one of series (b))

showed different interaction patterns. Compounds of (3S,4R)-

configuration additionally interact with amino acid residues of

TM11, including Phe951, Ser952, Cys956 and Met 69, while

compounds of (3R,4S)-configuration showed interaction with

TM1, TM2 and TM11, including Tyr117, Ser952, Phe72 and

Met69. Using an identical clustering approach for the tricycles

11a,b–13a,b identified 15 different clusters. Seven of them

contain only compounds with (4aS,10bR)-configuration

(11a–13a), and are located close to the potential entry pathway

(Fig. 1A). Analysis of the protein–ligand interaction pattern

showed mainly interactions with TM 4, 5, and 6, in particular

with amino acid residues Tyr307, Phe343, Ala342, and

Phe303. Eight clusters contain all compounds with

(4aR,10bS)-configuration (11b–13b). These clusters are located

in two different positions. One position is identical with those

of 11a–13a, the second position is located close to TM 7, 8, 9

and 12, surrounded by amino acid residues Ala985, Ile765

and Leu724 (Fig. 1B). Similar results are obtained when

performing the agglomerative hierarchical clustering on the

whole set of poses obtained (5a–13b; Table S1, ESIz).
Comparing the main positioning of the benzopyrano-

[3,4-b][1,4]oxazines with those of QZ59 some overlap could be

observed. Especially interaction with Tyr307, Phe343, Phe336,

Ala985, Ala342, Met69 and Phe728 was observed for all ligands

(Fig. S2, ESIz). Interestingly, almost all clusters observed are

located near TM 4, 5, and 6, which are forming one of the two

rings. This is consistent with our recent observation of two

pseudosymmetric drug translocation pathways.15

Furthermore, it is also interesting to note that compounds

of series (a), which show excellent correlation between log P

values and P-gp inhibitory activity, are predominantly

positioned at the potential entry gate, whereas compounds

of the series (b), which show a structure–activity pattern

independent of log P values, are populating both the entry

gate and positions deeper inside the protein. This might

provide first insights into the entry path for the ligands.

A closer look of ligand–protein interaction profiles of

compounds 13a,b and 7a,b identified 4 poses of 13b showing

a steric constraint of the benzyl moiety of 13b, which is about

2 Å apart from Tyr307 and about 2.5 Å apart from Phe343.

All these poses are located at the entry gate. No such steric

constraint has been observed for 13a or for 7a,b. In the case of

7b this is most probably due to its conformational

flexibility, which allows adopting a conformation to minimize

the steric interactions. This indicates that the differences

observed for the biological activities of phenylalanine deriva-

tives 13a and 13bmight be due to steric constraints at the entry

path rather than differences in drug/transporter binding. Of

course, at the current stage this has to be taken very

cautiously, as P-gp undergoes major conformational changes

during the transport cycle and docking experiments represent

only a single snapshot of this complex movement.

Within this manuscript we present a series of stereoisomers,

which, upon rigidisation, show significant differences in their

inhibitory potency of the drug efflux pump P-glycoprotein.

Ligand docking studies into a homology model of P-gp could

provide first evidence for different binding areas of the

two diastereomeric compound series. Thus, benzopyrano-

[3,4-b][1,4]oxazines are versatile tools for exploring the stereo-

selectivity of drug/P-glycoprotein interaction.
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Fig. 1 (A) Shows the three main clusters obtained on the basis of a

common scaffold clustering; blue: (4aS,10bR)-isomers 11a–13a; green:

(4aR,10bS)-isomers 11b–13b; brown: 5a–7b, (B) a docking pose of 13a

(blue) and 13b (green) near the entry gate showing steric constraints for

13b, as well as a pose of 13b deeper inside the membrane (green); brown:

a docking pose of the ester 6b viewed from outside into the TM region.
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Structure-Activity Relationships, Ligand Efficiency and Lipophilic Efficiency 

Profiles of Benzophenone-Type Inhibitors of the Multidrug Transporter P-

glycoprotein                   Page 122-156 

 

In this chapter a data set of benzophenone analogs along with some compounds in 
clinical investigations were used for ligand efficiency and lipophilic efficiency 
profiling, in order to get insights about the importance of these parameters for the 
design of P-gp inhibitors. 
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Abstract 

The drug efflux pump P-glycoprotein (P-gp) has been shown to reverse multidrug 

resistance (MDR) in tumors as well as to influence ADME properties of drug 

candidates. Here we synthesized and tested a series of benzophenone derivatives 

structurally analogous to propafenone-type inhibitors of P-gp. Some of the compounds 

showed ligand efficiency and lipophilic efficiency (LipE) values in the range of 

compounds which entered clinical trials as MDR modulators. Interestingly, although 

lipophilicity plays a dominant role for P-gp inhibitors, all compounds investigated 

showed LipE values below the threshold for promising drug candidates. Docking 

studies of selected analogs into a homology model of P-glycoprotein suggest that 

benzophenones show an interaction pattern similar to that previously identified for 

propafenone-type inhibitors. 

Introduction 

Membrane transporters are increasingly recognised for playing a key role in safety 

profiles of drug candidates, predominantly by their involvement in drug-drug 

interactions.1,2 One of the most intensively studied families in this context is the ATP-

binding cassette (ABC) transporter superfamily.3-5 Several members of these ATP-

driven transporters are expressed at tissue barriers and thus influence uptake and 

elimination of drugs and drug candidates.6 Originally they have been linked to 

development of multidrug resistance (MDR) in tumour therapy, as they transport a wide 

variety of natural product toxins such as anthracyclines, vincristine and taxanes out of 

tumour cells.7,8 Thus, P-glycoprotein (P-gp/ABCB1), discovered in 1976 and considered  

the paradigm ABC transporter,9,10 shows a remarkably broad substrate pattern, 

transporting numerous structurally and functionally diverse compounds across cell 

membranes.3 P-gp is expressed at the blood brain barrier (BBB), the blood cerebro 

spinal fluid (B-CSF) barrier and the intestinal barrier, thus modulating the absorption 

and excretion of xenobiotics across these barriers.6 P-gp and its ligands (substrates and 

inhibitors) are therefore extensively studied both with respect to reversing multidrug 

resistance in tumors and for modifying ADME-Tox properties of drug candidates,11 

such as blood-brain barrier permeation.12,13 Within the past two decades numerous 
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modulators of P-gp mediated drug efflux have been identified14,15 and several entered 

clinical studies up to phase III. However, up to now no compound achieved approval, 

which is mainly due to severe side effects and lack of efficacy. This further emphasizes 

the physiological role of efflux transporters in general and P-gp in particular16 and 

stresses the need for a more detailed knowledge on the structure and function of these 

proteins and the molecular basis of their interaction with small molecules.17 The latter 

has been approached by numerous SAR- and QSAR studies, which revealed that high 

lipophilicity seems to be a general prerequisite for high P-gp inhibitory activity, valid 

across different chemical scaffolds. This is also in line with recent structure-based 

studies, which indicate an entry pathway via the membrane bilayer.18  

In recent years the concepts of “Binding energy of the ligand per atom” or ligand 

efficiency (LE)19-21 and lipophilic efficiency (LipE),22,23 which combines both “potency 

and lipophilicity”, have been shown to be useful tools in the lead optimization 

process.24,25 In the light of our extensive SAR and QSAR studies on propafenone 

analogues26,27 (Figure 1) and related compounds, we also utilized benzophenone based 

probes, which contain a photoactive arylcarbonyl group as part of the pharmacophore. 

This led to the identification of key amino acid residues interacting with these 

ligands.28,29 Within this study we extended the set of benzophenones in order to identify 

compounds with higher potency, utilizing also the concepts of LE and LipE. In addition, 

docking studies of selected compounds into a homology model of P-gp were performed 

to shed light on the potential binding mode of these compounds and to compare it with 

the binding hypothesis derived for analogous propafenones.17 

GPV0062 GPV576Propafenone GPV005

H
N N N N N

O

O
OH

(R) =

R

OH

 
Figure 1. Selected propafenone analogs used in this study. 
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Results and discussion 

Chemistry  

Synthesis of benzophenone analogs 6-24 was carried out in analogy to the synthesis 

of propafenone derivatives.26 Briefly, the respective ortho-, meta- or para-

hydroxybenzophenone (1a-c) was alkylated with epichlorohydrine yielding ortho-, 

meta- and para-oxiranes 2a-c. Subsequent nucleophilic oxirane ring opening with 

primary or secondary amines (R) gave target compounds 6-20. Excessive amount of 

oxirane 2a upon nucleophilic ring opening with piperazine yielded the homodimer 23, 

whereas equimolar amounts of both partners predominantly gave the piperazine analog 

5 (Scheme 1). 

Scheme 1a  

O O

O
O

O

O R
OH

OH

1a-c 2a-c 6-20

(i) (ii)

N N

OHO

O(23)

(5) N NH

R=

R=

(9-11)

(6-8)

R=

(12-14) R=

(15, 16) R=

(17, 18) R=

(19) R=

(20) R=

NN

N N

N N F

N O

N

N

N
H

OH

R=

  

a Reagents and conditions: (i) NaOH, epicholorohydrine, reflux for 24 hours; (ii) 
methanol, respective amine (R), reflux for 24 hours (5-20, 23) 

Further treatment of piperazine analog 5 with phenylisocyanate and it’s thio-analog 

as described by Pitha et al,30 yielded 21 and 22, respectively. O-alkylation of 2-hydroxy 

5-methyl acetophenone (3) with epichlorohydrine yielded 4, which, upon subsequent 

nucleophilic ring opening by piperazine 5 yielded the heterodimer 24 (Scheme 2). 
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Scheme 2a 

O

O
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OH
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(21) X = O (22) X = S

(iv)

O

O OH

N

N N N
H

X

O
OH

O

N
O

OH O

 
a Reagents and conditions: (i) NaOH, epicholorohydrine, reflux for 24 hours; (iv) p-

tolyl isocyanate, CH2Cl2, stirring 2 hours (X = O); p-tolylisothiocyanate, CH2Cl2, 
stirring 2hours (X = S); (v) methanol, reflux 5 hours 

Biological Activity 

Biological activity of target compounds 6-24 was assessed using the daunorubicin 

efflux protocol as described previously.31 Briefly, multidrug resistant CCRF-CEM vcr 

1000 cells were preloaded with daunorubicin and efflux was monitored by time-

dependent decrease in mean cellular fluorescence in the absence and presence of various 

concentrations of compounds. IC50 values were calculated from concentration-response 

curves of efflux Vmax/Km as a function of compound concentration. Thus, the effect of 

different modulators on the transport rate is measured in a direct functional assay. 

Values are given in Table 1 and are the mean of at least three independently performed 

experiments. Generally, interexperimental variation was below 20%.  

Table 1. Chemical structure, ligand efficiency (LE), lipophilic efficiency (LipE) and 

pharmacological activity of compounds 6-24 
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O

O R
OH

 

Comp    Positionc           R               IC50 (µM)     LE          LE_Scale        clogP         LipE 
6 Ortho 

NN  
0.08 0.30 0.30 5.52 1.58 

7 Meta 
NN  

0.17 0.29 0.30 5.52 1.24 

8 Para 
NN  

0.65 0.26 0.30 5.52 0.66 

9 Ortho N N F  
0.15 0.30 0.30 4.96 1.86 

10 Meta N N F  
0.58 0.28 0.30 4.96 1.27 

11 Para N N F  
0.97 0.27 0.30 4.96 1.04 

12 Ortho N  1.20 0.33 0.36 3.88 2.04 

13 Meta N  3.55 0.31 0.36 3.88 1.57 

14 Para N  2.18 0.32 0.36 3.88 1.78 

15 Ortho N O
 

13.37 0.28 0.36 2.66 2.21 

16 Para N O
 

5.32 0.30 0.36 2.66 2.61 

17 Meta 
N N  

0.20 0.30 0.30 5.07 1.62 

18 Para 
N N  

0.50 0.28 0.30 5.07 1.23 

19 Ortho N
OH

 
0.31 0.29 0.30 3.65 2.86 

20 Ortho N
H  1.21 0.35 0.37 3.64 2.28 

21 Ortho 
N N N

H

O

 
0.48 0.26 0.28 4.28 2.04 

22 Ortho 
N N N

H

S

 
0.38 0.26 0.28 5.07 1.34 

23 Ortho 
N N

OHO

O

 

0.05 0.23 0.23 4.27 3.01 

24 Ortho 
N N O

OH

O

 
9.48 0.18 0.25 3.17 1.85 

                                                 
c Position of the side chain at central aromatic ring. 
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Structure Activity Relationships 

Table 1 shows the P-gp inhibitory activity of compounds 6-24. The IC50 values cover 

a broad range, spanning from 0.05 µM for the dimer 23 up to 13.37 µM for the 

morpholine analog 15. Besides the ortho-benzophenone dimer 23, also the ortho analogs 

showing an arylpiperazine moiety (6, 9) are highly active. Interestingly, the heterodimer 

24 is one of the least active compounds in the data set, together with the morpholine 

derivatives 15 and 16. With respect to substitution pattern at the central aromatic 

benzene moiety, the rank order for arylpiperazine substituted compounds generally is 

ortho > meta > para. An analogous trend has also been observed for propafenone 

analogs.32 However, for compounds bearing piperidine or morpholine moieties, this 

trend is partly reversed. In case of piperidine derivatives, the para-derivative is slightly 

more active than the meta analog (1.20 vs 3.55 vs 2.18). Interestingly, also for the 

morpholine analogs, the para is by a factor of 2 more active than ortho-derivative (P = 

0.01). Thus, the influence of the substitution pattern at the central aromatic ring seems 

to be more pronounced if the vicinity of the nitrogen comprises large, lipophilic 

moieties. This is in line with our previous findings using hydrophobic moments as 

descriptors in QSAR studies.33 

Our intensive studies on propafenone-type inhibitors of P-gp also revealed the 

importance of H-bond acceptor and –donor groups in the vicinity of the basic nitrogen 

atom.34,35 To further explore this, we synthesized the urea and thiourea analogs 21 and 

22. The two compounds showed activities in the sub-micromolar range. Notably, the 

urea and thiourea derivatives exhibit almost identical IC50 values, which might rule out 

the importance of the urea carbonyl group as H-bond acceptor. Nevertheless, the loss in 

H-bond capabilities for the thiourea derivative is more than compensated by an increase 

in its lipophilicity (4.28 vs 5.07). Lipophilicity has been shown in numerous QSAR 

studies to be a general predictive descriptor for high P-gp inhibitory activity.36,37,38 

We thus calculated logP values using the software Bio-Loom39 and correlated them 

with logIC50 values (Figure 2). The r2 value of 0.56 demonstrates that also in the series 

of benzophenones lipophilicity plays a dominant role. This is in agreement with the 

notion that compounds most probably enter the binding cavity of P-gp directly from the 

membrane bilayer. This is additionally supported by the recent X-ray structure of mouse 



CHAPTER 6                                                   LE and LipE Profiles of P-gp Inhibitors 

130 

 

P-gp, which shows a large inner cavity accessible from the membrane via putative entry 

ports composed of transmembrane helices 4/6 on one side and 10/12 on the other side.18 
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Figure 2. Correlation of P-gp inhibitory activity of compounds 6-24 (expressed as 
log1/(IC50) values) vs. calculated logP values of the ligands. 

The clogP/log (potency) plot further supports our hypothesis about the urea/thiourea 

compound pair. Urea derivative 21 is located above the correlation line which indicates 

that it exhibits higher biological activity than would be expected solely from its clogP 

value (0.10 calcd vs 0.32 obs), indicating an additional H-bond mediated by the 

carbonyl group. The thiourea derivative 22 lies much closer to the line. The 4-hydroxy-

4-phenylpiperidine analog 19 is also located above the clogP/logIC50 correlation line (-

0.24 calcd vs 0.51 obs), which further confirms our previous results on the importance 

of the 4-hydroxy-4-phenylpiperidines moiety for high biological activity of propafenone 

derivatives.34 These results were recently supported by extensive docking studies of 

propafenone analogs.17 It is also interesting to note that the homodimer 23 is by a factor 

of 15 more active than predicted by the clogP/logIC50 plot (0.09 calcd vs 1.28 obs). A 

pair wise comparison of equilipophilic compounds 23 vs 21 (clogP: 4.27 vs 4.28; IC50: 

0.05 vs 0.48) and 19 vs 20 (clogP: 3.65 vs 3.64; IC50: 0.31 vs 1.21) indicates that mutual 

activity differences might also be due to difference in molecular size. The dimer 23 (44 

heavy atoms) is about one order of magnitude more active then 21 (35 heavy atoms). 

Similarly, 19 (32 heavy atoms) is about a factor of four more active than 20 (24 heavy 
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atoms). This also points towards a commonly observed phenomenon in lead 

optimisation programmes, i.e. activity increases with the size of the molecules. 

Therefore, ligand efficiency (LE)19-21 and lipophilic efficiency (LipE),22,23 profiles of 

inhibitors/substrates of P-gp have been used to identify the derivatives with the best 

activity/size (or logP) ratio, which should provide further insights for the design of new 

ligands.24,25  

Ligand Efficiency (LE), most commonly defined as the ratio of free energy of 

binding over the number of heavy atoms, is a simple metric for assessing whether a 

ligand derives its potency from optimal fit with the target protein or simply by virtue of 

making many contacts.40 In order to get more information on the most promising P-gp 

inhibitors and to compare them to well established P-gp inhibitors/substrates, we 

calculated ligand efficiency values of benzophenones 6-24, selected propafenone 

analogs, as well as P-gp inhibitors which entered clinical studies. Ligand efficiencies 

were calculated as described in the methods section. For benzophenones, small ligands 

such as the N-propyl derivative 20 and the piperidine analog 12 show higher efficiency 

values (0.35; 0.33) than the large dimers 23 and 24 (0.23; 0.18). For the whole data set 

it can be observed that ligand efficiencies drop dramatically when the size of the ligands 

increases above 50 heavy atoms (Figure 3). A similar trend has been observed in the 

literature, with LE showing generally a dependency on ligand size.20 As LE in principle 

is supposed to normalize for the size of the ligand, various proposals have been made to 

solve this problem.41,21 As the heavy atom count of the ligands in our data set varies 

from 24 to 86 (20; valspodar), LE values were subsequently scaled as described by 

Reynolds et al,20,21 to retrieve a size-independent ligand efficiency value (LE_Scale). 

This was achieved by fitting the top ligand efficiency versus heavy atom count to a 

simple exponential function, as outlined by Reynolds et al,20 (Equ 1; Figure 3). 

Subsequently, the ratio of ligand efficiency over normalized ligand efficiency scale 

gives a scoring function called “Fit Quality” (FQ) (Equ. 2). According to Reynolds et 

al, Fit Quality scores close to 1.0 or above indicate near optimal ligand binding, while 

low fit quality scores are indicative of sub-optimal binding.  

LE_Scale = 0.104 + 0.65 e-0.037*HA      (Equ. 1) 
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FQ = LE / LE_Scale       (Equ. 2) 

Use of this criterion shows that most of the compounds under clinical investigation 

show FQ scores above 1, including zosuquidar, ONT093, elacridar and tariquidar, along 

with benzophenones 6 and 23, as well as propafenone and its analogs GPV0062 and 

GPV0576 (Figure 1; Table 2).  

Table 2. Pharmacological activities, ligand efficiency (LE) and lipophilic efficiency 
(LipE) profiles of selected propafenones and P-gp inhibitors which entered in clinical 
studies. 

Comp. pIC50 HA LE clogP LipE 

Verapamil 6.24 33 0.27 4.47 1.77 

Elacridar 7.14 42 0.24 4.21 2.93 

Tariquidar 7.48 48 0.22 5.55 1.93 

Zosuquidar 7.23 39 0.26 4.96 2.27 

ONT093 7.50 37 0.29 7.30 0.19 

Valspodar 6.30 86 0.10 15.09 -8.79 

Cyclosporine A 6.99 85 0.12 14.36 -7.37 

Niguldipine 6.15 45 0.20 7.80 -1.65 

Propafenone 6.48 25 0.37 3.64 2.84 

GPV576 8.25 35 0.33 6.02 2.23 

GPC0062 7.24 34 0.30 4.15 3.09 

GPV005 6.22 27 0.33 4.38 1.84 

 

It is interesting to note that especially those compounds which were specifically 

designed as P-gp inhibitors (ONT093, zosuquidar, elacridar, tariquidar) show higher FQ 

values than those originating from drug repurposing attempts (verapamil, cyclosporine 

and its analog valspodar). With respect to propafenone analogs, GPV0576 is the 

hitherto most active analog we synthesized showing a highly lipophilic but quite 

compact substituent at the nitrogen atom (4-tolylpiperazine). Interestingly, the top 

ranked benzophenone analog 6 also has a 4-tolylpiperazine moiety. This might point 

towards the tolylpiperazine substituent for being a priviledged substructure for P-gp 

inhibitors. GPV0062 bears a 4-hydroxy-4-phenyl piperidine moiety, which has been 

shown to influence biological activity independent of lipophilicity, resulting in an 
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almost tenfold increase of inhibitory activity when compared to compounds having 

other substituents at the nitrogen atom. This points towards a distinct additional 

interaction mediated by the 4-hydroxy group, most probably in form of a hydrogen 

bond. Finally, propafenone itself shows a very good value, thus retrospectively 

demonstrating its validity as starting point for structural modifications.  

 
Figure 3. Plot of ligand efficiency versus heavy atom count for benzophenone analogs, 
compounds which entered clinical studies and selected propafenones. 



CHAPTER 6                                                   LE and LipE Profiles of P-gp Inhibitors 

134 

 

 

6

7

8

9

10

11

12

13
14

15

16

17

18
1920

21
22

23

24

Propafenone

GVP005

GPV062

GPV576

Valspodar

Verapamil

Niguldipine

Zosuquidar

Cyclosporine A

Elacridar

ONT093

Tariquidar

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

10 20 30 40 50 60 70 80 90

Fi
t Q

ua
lit

y 
(F

Q
)

No of Heavy Atoms (HA)

Figure 4. Fit quality scores around 1 indicate a near optimal ligand binding affinity for 
a given number of heavy atoms. 

As already outlined, lipophilicity has been shown in numerous studies to be a general 

predictor for high P-gp inhibitory activity. This most probably is due to the proposed 

access path of the compounds, which seems to be directly from the membrane bilayer. 

On the other hand, high lipophilicity is very often associated with poor oral drug-like 

properties. This led to the assumption that clog P values between 2 and 3 are considered 

optimal in an oral drug program and prompted Leeson et al, to introduce the concept of 

lipophilic efficiency.22 

Liphophilic Efficiency (LipE) is a parameter that combines both potency and 

lipophilicity and is defined as a measure of how efficiently a ligand exploits its 

lipophilicity to bind to a given target. Briefly, in a lead optimization series there is a 

greater likelihood of achieving good in vivo performance when potency can be 

increased without increasing logP or logD values. To explore this concept also for P-gp 

inhibitors, we calculated LipE values for the whole set of benzophenones as well as for 

the compounds used for the LE study (Table 2). The clogP values vary from 2.66 to 
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15.09, leading to a lipophilic efficiency range between -8.79 and +3.08. This is 

somewhat surprising as it has been reported that a lipophilic efficiency greater than 5 

combined with clog P values between 2 and 3 is considered optimal for a promising 

drug candidate.22,23 None of the clinically tested P-gp inhibitors fulfils these 

requirements. Only the 4-hydroxy-4phenyl-piperidine analogous propafenone GPV0062 

as well as the dimer 23 exhibit values slightly higher than 3. All other compounds show 

values lower than 3 (Figure 5). It is tempting to speculate whether this is due to the 

unique entrance pathway directly from the membrane bilayer, which requires a different 

logP profile than for compounds which access their binding site directly from the 

extracellular or intracellular aqueous compartment.  
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Figure 5. Plot of clogP versus biological activity of inhibitors of P-gp; LipE values 
higher than 5 are considered to be the threshold for compounds of clinical interest. 

To study in more detail whether the unique access path of P-gp inhibitors directly 

from the membrane bilayer is linked to this unexpectedly low LipE values, we studied 

the distribution of LipE profiles for a set of targets showing different access pathways 
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of their ligands: P-glycoprotein (via membrane bilayer), the serotonin transporter SERT 

(from the extracellular environment), and the hERG potassium channel hERG (from the 

cytoplasm) (Figure 6). LipE values of inhibitors of SERT (extracted from the ChemBL 

data base),42 hERG blockers,43 and propafenone-type inhibitors of P-gp (in-house data) 

were calculated as described in the method section.  

 
Figure 6. Schematic representation of access of inhibitors/substrates to the binding sites 
of P-gp, SERT and hERG along three different pathways. Ligands of P-gp approach the 
binding cavity via the membrane bilayer, in SERT the ligands get access from the 
extracellular environment, while in hERG this access occurs via the cytoplasm. 

The LipE distribution profile of SERT inhibitors extracted from the ChemBL data 

base identified about 13% of the compounds that cross the LipE threshold of 5 (Figure 

7). These compounds cover a wide range of activity (0.01 nM- 10 mM) and clogP (-

3.42 to 4.66) (SM Figure 1). Moreover, 15 SERT inhibitors have been identified with 

clogP ~2.5, LiPE > 5 and IC50< 10 nM. However, none of them was listed as a marketed 

drug. In case of hERG only 2.5 % of the compounds cross the LipE threshold of 5. They 

showed a potency distribution from 5 nM to 18 µM and clogP values between -0.77 and 

2.21 (SM Figure 1). Only two compounds, almokalant and dofetilide, complied with the 

desired profile (clogP~2.5, LipE > 5, potency values < 10 nM). Dofetilide is a registered 

class III antiarrhythmic agent, while almokalant is in phase II clinical investigations.44,45  
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Figure 7. LipE distribution profiles of ligands of P-gp, SERT and the hERG potassium 
channel. 

LipE profiles of P-gp inhibitors could not identify any compound that reaches the 

standard threshold value of 5. Most of the ligands fall in the LipE range of 1-2 (39%) or 

2-3 (28%) with wide a range in distribution of their clogP (1.32 to 15.09) as well as IC50 

(5.6 nM to 1.8 mM) values (SM figure 1). Thus, the LipE threshold for ligands of P-gp 

needs to be reconsidered. Nevertheless, from the benzophenone data set presented here, 

compounds 15, 16, 19, 20, and 23, might be the most promising ones as their LipE 

values are between 2 and 3, a range where most of the compounds which in the past 

entered clinical trials are located.  

Docking into a homology model of P-glycoprotein. To get insights into the 

potential binding mode of propafenone-type benzophenones we selected compounds 6, 

19, 20 and the dimer 23 for further in silico studies. Compounds 19, 20, and 23 were 

selected as they are ranked high both in LipE and FQ scores, and 6 was additionally 

included as it is top ranked with respect to FQ. Interestingly, this selection resembles 

the key features observed for propafenone analogs: compound 6 shows a 4-

tolylpiperazine substituent (analogous to GPV0576), compound 19 is analogous to 



CHAPTER 6                                                   LE and LipE Profiles of P-gp Inhibitors 

138 

 

GPV0062 (4-hydroxy-4-phenyl-piperazine) and derivative 20 is the direct propafenone 

analog (N-propyl). The docking protocol follows those previously published46 and is 

provided in detail in the methods section. 

The analysis of the interaction pattern of selected docking poses indicates that the 

benzophenone scaffold interacts with F343 and F303 near the entry gate, whereas the 

lipophilic substituents in the vicinity of the basic nitrogen atom are surrounded by 

hydrophobic amino acid residues L724, I720, V981, I840, I836 and I765 located at TM 

7, 9, and 12 (Figure 8). This further supports the importance of high lipophilicity and 

also is in line with previous studies performed by Pajeva and Wiese, who showed that 

for a series of inhibitors of P-gp hydrophobicity represents a space directed molecular 

property rather than a simple overall descriptor.47 The top ranked cluster of poses are in 

close vicinity of our previously purposed binding positions for benzopyrano[3,4-

b][1,4]oxazines, where compounds having 4aS,10bR configuration interact mainly with 

amino acid residues of TM4, 5 and 6 near the entry gate, while compounds having 

4aR,10bS configuration are positioned deeper inside the binding cavity, being  mainly 

surrounded by hydrophobic amino acid residues of TM7, 8, 9 and 12.46 Interestingly, 

the top scored dimer 23 is positioned in a way to bridge these two positions (Figure 8). 

Moreover, this pose might also aid in the explanation for the activity differences of 

homodimer 23 (0.05 µM) and heterodimer 22 (9.48µM): The additional benzene ring in 

the best scored pose of homodimer 23 is surrounded by several hydrophobic amino 

acids (I836, L720, I840 and L724). Overall, benzophenones shared a similar interaction 

profile as propafenones. Amino acids S952, F434, F336, L721 and Y307 have been 

identified as common interacting amino acid residues of all three classes of propafenone 

type inhibitors of P-gp (SM Figure 3). 
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Figure 8. Ligand-protein interaction profile of the best cored pose of benzophenone 
dimer 23. Blue circle represent the putative position of benzopyrano[3,4-b][1,4]oxazines 
having 4aS,10bR configuration, while the green circle indicates the position of 
diastereoisomers with 4aR,10bS configuration.  

Selected benzophenone analogs have been previously used as photo-affinity ligands 

to characterize the drug-binding domain of propafenone-type analogs. In these studies, 

TM 3, 5, 6, 8, 10, 11, and 12 were identified as potential interacting helices.28,29,48,49 

This is well in line with our docking studies, which show main interactions with TM 5 

and 6 near the entry gate and TM 7, 8 and 12 deeper inside the cavity (SM figure 4). No 

significant cluster of poses has been identified on the second wing (2/11 interface), 

which might be due to the asymmetry in the template used for building the homology 

model of P-gp, thus narrowing the available space at this side. 

Conclusions 

Calculation of ligand efficiency and lipophilic efficiency values for a set of P-gp 

inhibitors shows that ligands of P-gp exhibit LipE values below the threshold of 5 

considered to be optimal for clinical candidates. This might be due to the unique 

entrance pathway of these classes of compounds, taking a rout directly from the 

membrane bilayer. However, LipE and LE values of benzophenones 6, 19, 20, as well 

as of the dimer 23, are close to compounds which entered clinical studies, thus 
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qualifying them for further studies. Docking studies further strengthen the evidence 

provided by QSAR studies that the benzophenones bind to the same region as 

propafenone-type inhibitors. Moreover, the dimer 23 seems to bridge the two distinct 

binding sites recently proposed for benzopyrano[3,4-b][1,4]oxazines. This further 

supports the general assumption of a binding zone with distinct, but overlapping binding 

sites for individual scaffolds as a basis for the promiscuity of P-gp.   

Experimental Section 

Chemistry 

Material and Methods. The data set used consists of a set of previously published 

benzophenones 9,34 12, 19 and 2028 well as a series of newly synthesised analogs. 

Melting points were determined on Leica Galen III (ser. no. 1413 WT) and are 

uncorrected. Elemental analysis was performed at micro analytical laboratory of 

institute of physical chemistry (Mag. Johannes Theiner); University of Vienna. The 

used equipment was a “2400 CHN-Elemental Analyzer” Perkin Elmer. Mass spectra 

were recorded on a Maldi-TOF, Kratos-instruments, matrix assisted laser-desorption-

ionization time of flight, reflection mass spectrometer. NMR spectra were recorded on a 

Bruker spectrospin for 200 MHz 1H-NMR and 50 MHz for 13C-NMR. CDCl3 and 

DMSO at room temperature were used as internal standards. Column chromatographic 

separations were performed by using silica gel 60 (Particle size 40-63µm, 230-300 

mesh) from J.T. Baker or Merck. 

General procedure for the preparation of (2-Oxiranylmethoxy-phenyl)-phenyl-

methanone C16H14O3 (2a). 10 g (51mmol) of 2-hydroxy-benzophenone was dissolved 

in epichlorohydrine (120 mL), treated with 2.04 g (51mmol) sodium hydroxide and 

refluxed for 24 h. After cooling, the residue was filtered off and washed with diethyl 

ether. Subsequently the solvent was removed by rotary evaporation. The remaining oil 

was taken up in diethyl ether and washed with water (175 mL). The organic phase was 

then dried over anhydrous sodium sulfate. After removal of the solvent by rotary 

evaporation yellow oil was obtained, yield 12.81g (98.85%); 1H-NMR (CDCl3) δ 2.37-

2.66 (m, 2H, CH2-O-CH), 2.96 – 3.00 (m, 1H, CH), 3.92- 4.15 (m, 2H, Ar-O-CH2), 

6.97-7.81 (m, 9H, arom H); 13C-NMR (CDCl3) δ  44.03 (m, 2H, CH-CH2-O), 49.59 
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(CH), 68.62 (Ar-O-CH2), 112.72, 121.13, 128.05 (arom C), 129.00 (Ar-CO); 129.38, 

129.69, 131.97, 132.66 (arom C); 137.93 (Ph-CO), 156.08 (Ar-O), 196.15 (CO). 

General procedure for the preparation of (3-Oxiranylmethoxy-phenyl)-phenyl-

methanone C16H14O3 (2b). 5 g (25.25 mmol) of 3-Hydroxy-benzophenone was 

dissolved in epichlorohydrine (60 mL), treated with 1.01 g (25.25 mmol) sodium 

hydroxide, refluxed for 6 h and stirred over night. The residue was filtered off and 

washed with diethyl ether. After removal of the solvents under reduced pressure, the 

resulting oil was taken up in diethyl ether and washed with water several times. The 

organic layers were combined, dried over anhydrous sodium sulfate and evaporated to 

dryness yielding yellow oil. For further purification a column chromatography (Silica 

gel, ether/ petrol ether, 70+30) was performed. Subsequent removal of the solvents 

under reduced pressure gave white opalescent oil, yield 6g (93.6%); 1H-NMR: (CDCl3) 

δ 2.71-2.74 (m, 1H, HA), 2.86 (t, 1H, J = 4.42, HB), 3.29- 3.37 (m, 1H, CH), 3.93 (dd, 

1H,J = 5.94/11.12, HX), 4.28 (dd, H, J = 2.90/10.98, HY), 7.10-7.78 (arom H); 13C-NMR 

(CDCl3) δ 44.34 (CH2-O), 49.81 (CH), 68.76 (Ar-O-CH2), 114.93, 119.17, 123.10, 

128.11, 129.18, 129.81, 132.31, (arom C), 137.28, 138.70 (C), 158.24 (Ar-O), 196.08 

(CO). 

General procedure for the preparation of (4-Oxiranylmethoxy-phenyl)-phenyl-

methanone C16H14O3 (2c). 6 g (30.30 mmol) of 4-Hydroxy-benzophenone was 

dissolved in epichlorohydrine (50 mL), treated with 2 g (50 mmol) sodium hydroxide, 

refluxed for 5 h and stirred over night. The residue was filtered off and washed with 

diethyl ether. Subsequently the solvent was removed by rotary evaporation. The 

remaining opalescent oil was taken up in diethyl ether and washed with water several 

times. The organic phase was then dried over anhydrous sodium sulfate. After removal 

of the solvents by rotary evaporation a white solid was obtained, yield 6.7g (87.54%); 
1H-NMR (CDCl3) δ 2.76 (dd, 1H, J=2.66/4.8, HA), 2.92(t, 1H, J=4.64, HB), 3.35-3.40 

(m, 1H, CH ), 3.96-4.0 (dd, 1H, J=5.81-11.12, HX), 4.29-4.36 (dd, 1H, J = 2.91/11.11, 

HY), 6.95-7:00 (m, 2H, H-3, H-5), 7.42-7.56 (m, 5H,H-2,H-6, H-3’, H-4’, H-5’), 7.72-

7.83 (m, 2H, H-2’, H-6’); 13C-NMR (CDCl3) δ 44.51 (CH2-O), 49.84 (CH), 68.82 (Ar-

O-CH2), 114.07, 128.14, 129.65, 131.90, 132.46, (arom C), 130.54 (Ar-CO), 138.06 

(Ph-CO), 161.93 (Ar-O), 195.41 (CO).  
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General procedure for the preparation of [2-(2-Hydroxy-3-piperazine-1-yl-

propoxy)-phenyl]-phenyl-methanone (5). 1.82 g (7.20 mmol) of (2-Oxiranylmethoxy-

phenyl)-phenyl-methanone (2a) was dissolved in 20-30 mL of  methanol, added 1.6 g 

(18.6 mmol) piperazine and then the reaction mixture was refluxed for 5 h. After 

removal of the solvent by rotary evaporation a column chromatography was performed 

(silica gel, CH2Cl2/methanol/concentrated NH3, 100/10/1) subsequent evaporation to 

dryness yielded 1.88 g (77.33%) yellow oil which was solidified on cooling. ; 1H-NMR 

(CDCl3) δ  2.01- 2.42 (m, 6H, CH2-N-(CH2)2), 2.77-2.81 (m, 4H, (CH2)2-N), 3.68- 3.75 

(m, 1H, CH), 3.90-3.94 (m, 2H, O-CH2), 6.96-7.79 (m, 9H, arom H); 13C-NMR 

(CDCl3) δ 45.86 (N-(CH2)2), 54.30 ((CH2)2-NH), 60.79 (CH2-N), 65.27 (CH), 70.76(O- 

CH2), 112.56, 121.05, 128.28, 129.51, 130.07, 132.33, 132.83 (aromC), 128.79 (Ar-

CO), 138.36(Ph-CO), 156.55 (arom C-O), 196.56 (CO). 

(2-{3-[4-(2,3-xylyl)-piperazin-1-yl]-2-hydroxy-propoxy}-phenyl)-phenyl 

methanone (6). 700 mg (2.75 mmol) of (2-Oxiranylmethoxy-phenyl)-phenyl-

methanone 2a was dissolved in 15 mL of methanol and treated with 526 mg (2.75 

mmol) 1-(2-3-xylyl)-piperazine. The mixture was refluxed for 24 h. Subsequent 

removal of the solvent yielded yellow oil, crystallization from ethyl acetate / 

diethylether gave 904 mg (73.8%) white crystals; mp 116-118°C; 1H-NMR (CDCl3) δ 

2.19-2.27(m, 2H, CH2), 2.21 (s, 3H, CH3), 2.27 (s, 3H, CH3), 2.42- 2.47 (m, 2H,  CH2), 

2.58-2.66 (m, 2H,  CH2), 2.83-2.88 (m, 4H, -(CH2)2)-N-Xyl), 3.77-3.83 (m, 1H, CH), 

3.91-4.02 (m, 2H, O-CH2), 6.90 (dd, 2H, J=2.9/7.83 Hz; arom H), 6.99-7.12 (m, 3H, 

arom H), 7.44-7.58 (m, 5H , arom H), 7.79-7.83( m, 2H, arom H); 13C-NMR (CDCl3) δ 

13.93 (CH3-ortho), 20.61 (CH3-meta), 51.97 (N-(CH2)2), 53.79 (CH2-N), 60.36 ((CH2)2-

N-Ph), 65.42(CH), 70.75(O-CH2), 112.64, 116.56, 121.12, 125.01, 125.81, 128.33, 

128.86, 129.58, 130.12, 132.37, 132.87 (arom C), 137.99 (Ar-CO), 138.43 (Ph-CO), 

151.29 (Ar-N), 156.58 (Ar-O). Anal. Calcd for C28H32N2O3:  C, 74.89; H, 7.29; N, 6.24. 

Found: C, 74.73; H, 7.59; N, 6.32. 

(3-{3-[4-(2,3-xylyl)-piperazin-1-yl]-2hydroxy-propoxy}-phenyl)-phenyl-

methanone (7). 560 mg (2.20 mmol) of 3-Oxiranylmethoxy-phenyl)-phenyl-methanone 

2b was dissolved in 20 mL of methanol and treated with 418 mg (2.20 mmol) 1-(2, 3-

Xylyl)-piperazine. The mixture was refluxed for 6 h. After removal of the solvent under 
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reduced pressure, a yellow oil was obtained which crystallized from ethyl acetate 

/diethyl ether yielding 960 mg (98%) white crystals; mp 92-99°C; 1H-NMR (CDCl3) δ 

2.23, 2.27 (2s, 6H, 2CH3), 2.62-2.66 (m, 4H, N-(CH2)2), 2.83-2.93 (m, 6H, CH2-N, 

(CH2)2-N-Ph), 4.08-4.18 (m, 3H, O-CH2-CH), 6.92 (d, 2H, J = 7.07, H-4, H-6), 7.05-

7.20 (m, 2H, arom H), 7.37-7.79 (m, 6H , arom H), 7.80-7.83 ( m, 2H, arom H); 13C-

NMR: (CDCl3) δ 13.92 (CH3-ortho), 20.60 (CH3-meta), 52.15 (N-(CH2)2), 53.77 

((CH2)2-N), 60.38 (CH2-N), 65.38(CH), 70.49(O-CH2), 115.07, 116.58, 119.30, 123.09, 

125.03, 125.81, 128.24, 129.26, 130.00 (arom C); 131.19 (C), 132.42 (arom C), 137.52, 

137.97, 138.86, 151.31, (C), 158.70 (Ar-O), 196.41(CO); MS m/e 444.68(M, 90%). 

Anal. Calcd for C28H32N2O3. 0.3H2O: C, 74.64; H, 7.31; N, 6.22. Found: C, 74.76; H, 

7.56; N, 6.08. 

(4-{3-[4-(2,3-Xylyl)-piperazin-1-yl]-2-hydroxy-propoxy}-phenyl)-phenyl-

methanone (8). 700 mg (2.76 mmol) of (4-Oxiranylmethoxy-phenyl)-phenyl-

methanone 2c was dissolved in 15 mL of methanol, treated with 523.6 mg (2.756 mmol) 

1-(2, 3 Xylyl)-piperazin and the mixture was refluxed for 5 h. Removal of the solvent 

under reduced pressure yielded white crystals which were recrystallized from methanol 

giving 1.06 g (94.62%) white crystals; mp 122-126°C; 1H-NMR (CDCl3) δ 2.23-2.27 

(2s, 6H, 2CH3), 2.55-2.70 (m, 4H, (CH2)2-N-Ph), 2.70- 3.00 (m, 6H, CH2-N-(CH2)2), 

3.40-3.70 (bs, 1H, OH), 4.10-4.17 (m, 3H, O-CH2-CH), 6.90-7.03 (m, 5H, arom H), 

7.44 -7.51 (m, 3H, arom H), 7.74-7.81( m, 4H, arom H); 13C-NMR (CDCl3) δ 13.90 

(CH3- ortho), 20.58 (CH3- meta), 52.15, 53.76 (CH2-N-(CH2)2), 60.38((CH2)2-N), 

65.31(CH), 70.44 (O-CH2),  114.08, 116.57, 125.05, 125.81, 128.15, 129.69 (arom C), 

130.37, 131.88 (C), 131.88, 132.50 (arom C), 137.97, 138.18 (C), 151.29 (Ar-N), 

162.34 (Ar-O), 195.50(CO); MS m/e 445.4(M+, 100%). Anal. Calcd for C28H32 N2O3: 

C, 75.65; H, 7.26; N, 6.30. Found: C, 75.61; H, 7.48; N, 6.33. 

(3-{3-[4-(4-Fluoro-phenyl)-piperazin-1-yl]-2hydroxy-propoxy}-phenyl)-phenyl-

methanone (10). 500 mg (1.97 mmol) of (3-Oxiranylmethoxy-phenyl)-phenyl-

methanone 2b was dissolved in 15 mL of methanol, treated 360 mg (2 mmol) p-F-

phenyl-piperazine and the mixture was refluxed for 6 h. The solution was allowed to 

cool down and stirred at room temperature overnight. The obtained solid was filtered 

off and washed with diethyl ether giving 690 mg (80.76%) white crystals; mp 131-133 
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°C; 1H-NMR (CDCl3) δ 2.60-2.85 (m, 6H, CH2-N-(CH2)2), 3.12-3.17 (m, 4H, (CH2)2-

N-Ph), 4.05-4.18 (m, 3H, O-CH2-CH-OH), 6.87-6.97(m, 4H, arom H), 7.19-7.25 (m, 

1H, arom H), 7.37-7.60 (m, 6H,arom H), 7.78-7.82(m, 2H, arom  H); 13C-NMR: 

(CDCl3) δ 50.18, 53.28, 60.30 (CH2-N-(CH2)4), 65.46 (CH), 70.36 (O-CH2), 115.04, 

115.29, 115.73, 117.81, 117.97, 119.28, 123.15, 128.24, 129.99, 132.43  (arom C), 

137.48 (Ar-CO), 138.87 (Ph- CO), 147.71 (Ar-N), 157.22 (J = 239 Hz, C-F), 

158.64(Ar-O), 196.39(CO); MS m/e 434.77 (M, 100%). Anal. Calcd for C26H27FN2O3: 

C, 71.87; H, 6.26; N,6.45. Found: C, 71.65; H, 6.45; N, 6.46. 

(4-{3-[4-(4-Fluoro-phenyl)-piperazin-1-yl]-2-hydroxy-propoxy}-phenyl)-phenyl-

methanone (11). 700 mg (2.75 mmol) of (4-Oxiranylmethoxy-phenyl)-phenyl-

methanone 2c was dissolved in 15mL of methanol, treated with 496 mg (2.75 mmol) p-

F-phenyl-piperazine and refluxed for 5 h. Removal of solvent under reduced pressure 

left a yellow oil which crystallized from iso-propanol yielding 1 g (83.6%) white 

crystals; mp 94-97 °C 1H-NMR (CDCl3) δ 2.61-2.69 (m, 4H, N-(CH2)2), 2.80-2.91 (m, 

2H, CH2-N), 3.12- 3.17 (m, 4H, (CH2)2-N-Ph), 3.56 (br, 1H, OH), 4.11- 4.19  (m, 3H, 

CH2-CH), 6.89-7.85  (m, 13H, arom H); 13C-NMR: (CDCl3) δ 50.24, 53.28, 60.28 

(CH2-N-(CH2)4), 65.40 (CH), 70.33 (O-CH2), 114.07, 115.31, 115.75, 117.81, 117.96, 

128.17, 129.71, (arom C), 130.42 (Ar-CO), 131.92, 132.52 (arom C), 138.15 (Ph-CO), 

147.77 (Ar-N), 162.28 (Ar-O), 195.50 (CO); MS m/e 435.3 (M+, 100%). Anal. Calcd 

for C26H27FN2O3: C, 71.87; H, 6.26; N, 6.45. Found: C, 71.61; H, 6.43; N, 6.41. 

[3-(2-Hydroxy-3-piperidin-1-yl-propoxy)-phenyl]-phenyl-methanone (13). 700 

mg (2.75 mmol) of (3- Oxiranylmethoxy-phenyl)-phenyl-methanone was dissolved in 

15 mL of methanol and treated with 234 mg (2.75 mmol) piperdine. The mixture was 

refluxed for 4 h and stirred at room temperature overnight. After removal of the solvent 

under reduced pressure  336 mg (36%) yellow oil was obtained; mp 64 °C; 1H-NMR 

(CDCl3) δ 1.45-1.59 (m, 6H, CH2), 2.37-2.50 (m, 4H, N-(CH2)2), 2.56- 2.62(m, 2H, 

CH2-N), 4.02- 4.13(m, 3H, O-CH2-CH), 7.13-7.81 (m, 9H, arom H); 13C-NMR (CDCl3) 

δ 24.17, 26.05 (CH2), 54.67 (N-(CH2)2), 60.89 (CH2-N), 65.18 (CH), 70.64 (O-CH2), 

115.11, 119.28, 122.99,128.23, 129.22 130.00, 132.39 (arom C), 137.54, 138.82 (C), 

158.75 (Ar-O), 196.44 (CO); MS m/e 340.43 (M+, 100%). Anal. Calcd for C21H25NO3: 

C, 73.53; H, 7.46;  N, 4.08. Found: C, 73.51; H, 7.71; N, 4.11. 
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[4-(2-Hydroxy-3-piperidin-1-yl-propoxy)-phenyl]-phenyl-methanone (14). 700 

mg (2.75 mmol) of (4-Oxiranylmethoxy-phenyl)-phenyl-methanone 2c was dissolved in 

10 mL of piperidine and refluxed for 2.5 h. After removal of piperidine under reduced 

pressure a yellow oil was obtained, for further purification a column chromatography 

was performed (silica gel, CH2Cl2/ methanol/ concentrated NH3, 95/5/1 after removal of 

piperidine the percentage of methanol was increased to 80/20/1). Solvents were 

removed by rotary evaporation to yield light yellow oil, which crystallized from ethyl 

acetate. Further recrystallization from methanol /diethyl ether yielded 400 mg (42.8%) 

white crystals; mp 106 °C; 1H-NMR (CDCl3) δ 1.49-1.72 (m, 6H, CH2), 2.58-2.73 (m, 

6H, CH2- N-(CH2)2), 4.05- 4.08 (m, 2H, O-CH2), 4.20- 4.29 (m, 1H, CH), 4.32 (s, 1H, 

OH), 6.97 (d, 2H, J = 8.85,H-3, H-5), 7.45-7.82 (m, 7H, arom H); 13C-NMR (CDCl3) δ 

23.65, 25.33 (CH2), 54.78 (N-(CH2)2), 61.21 (CH2-N), 64.89 (CH), 70.64 (O-CH2), 

114.06, 128.15, 129.67 (arom Cr), 130.38 (Ar-O), 131.89, 132.48 ( arom C), 138.13 

(Ph-CO), 162.21 (Ar-O), 195.49 (CO); MS m/e 340.3(M+, 100%). Anal. Calcd for 

C21H25NO3: C, 71.77; H, 7.55; N, 3.99. Found: C, 71.68; H, 7.51; N, 4.02.  

[3-(2-Hydroxy-3-morpholine-4-yl-propoxy)-phenyl]-phenyl-methanone (15). 1 g 

(4.33 mmol) of (2-Oxiranylmethoxy-phenyl)-phenyl-methanone 2a was dissolved in 20 

mL of methanol and treated with 500mg (5.75 mmol) of morpholine. The mixture was 

refluxed for 4 h. Removal of the solvents gives yellow oil which was purified via 

Column chromatography (silica gel, CH2Cl2 / methanol/ concentrated NH3, 200/10/1). 

Subsquent removal of the solvents under reduced pressure yielded 400  mg (27%) of 

light yellow oil; mp 185-193°C; 1H-NMR (CDCl3) δ 1.97-2.46 (m, 6H, CH2-N-(CH2)2), 

3.73 (t, 2H, J = 4.67, O-CH2), 3.71- 3.80 (m, 4H, O-(CH2)2), 6.95-7.10 (m, 2H, arom 

H), 7.41-7.58 (m, 5H, arom H), 7.75-7.79 (m, 5H, arom H); 13C-NMR (CDCl3) δ 53.57, 

60.68 (CH2-N-(CH2)2), 62.24 (CH), 66.68 (O-(CH2)2), 70.60 (O-CH3), 112.54, 121.07, 

128.25 (arom C), 128.72 (Ar-CO), 129.48, 130.04, 132.31, 132.80 (arom C), 138.31 

(Ph-CO), 156.45 (Ar-O), 196.41 (CO); MS m/e 341.50 (M, 20%). Anal. Calcd for 

C20H23NO4: C, 68.55; H, 6.90; N, 4.00. Found: C, 68.30; H, 6.62; N, 4.29. 

[4-(2-Hydroxy-3-morpholine-4-yl-propoxy)-phenyl]-phenyl-methanone 

C20H23NO4 (16). 700 mg (2.75 mmol) of (4-Oxiranylmethoxy-phenyl)-phenyl-

methanone 2c was dissolved in 15 mL of methanol and treated with 240 mg of 
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morpholine and refluxed for 7 h. Subsequent removal of the solvent under reduced 

pressure left 910 mg (96.8%) of yellow oil; mp 135-141°C; 1H-NMR (CDCl3) δ 2.44- 

2.71 (m, 6H, CH2-N-(CH2)2), 3.73 (t, 4H, J = 4.56, (CH2)2-O), 4.06- 4.17 (m, 3H, O-

CH2), 6.98 (d, 2H, J = 8.82, H-3, H-5), 7.42-7.56 (m, 3H,  arom H), 7.72-7.84 (m, 4H, 

arom H); 13C-NMR (CDCl3) δ 53.69, 60.83  (CH2-N-(CH2)2), 65.18 (CH), 66.94  

((CH2)2-O), 70.28 (O-CH2), 114.04, 128.15, 129.68 (arom C), 130.40 (Ar-CO), 

131.90,132.49 (arom C), 138.13 (Ph-CO), 162.24 (Ar-O), 195.48 (CO); MS m/e 342.30 

(M+, 95%). Anal. Calcd for C20H23NO4: C, 69.15; H, 6.87; N, 4.03. Found: C, 69.16; H, 

7.07; N, 4.18. 

{3-[2-Hydroxy-3-(4-o-tolyl-piperazin-1-yl)-propoxy]-phenyl}-phenyl-methanone 

(17). 700 mg (2.75mmol) of (3-Oxiranylmethoxy-phenyl)-phenyl-methanone 2b was 

dissolved in 15 mL of methanol and treated with 500 mg (2.84 mmol) of o-tolyl-

piperazine and the mixture was refluxed for 6 h. Subsequent removal of the solvent 

yielded 1.07 g (90.29%) of yellow oil; mp 173-179 °C; 1H-NMR (CDCl3) δ 2.31(s, 3H, 

CH3), 2.61-2.66 (m, 4H, N(CH2)2), 2.28-2.96 (m, 6H, CH2-N, (CH2)2)-N-Phe ), 4.05-

4.18 (m, 3H,  O-CH2-CH), 6.99-7.05 (m, 2H,  arom H), 7.37-7.60 (m, 6H, arom H), 

7.79-7.83 (m, 2H, arom H); 13C-NMR (CDCl3) δ 17.82 (CH3), 51.71 (N-(CH2)2), 53.74 

(CH2-N), 60.34 ((CH2)2-N-Ph), 65.37(CH), 70.46(O-CH2), 115.05, 118.92, 119.28, 

123.07, 123.18, 126.53, 128.23, 129.23, 131.02, 132.40 (arom C), 132.40 (Ar-CO), 

138.83 (Ph-CO), 151.23(Ar-N), 158.68 (Ar-O); MS m/e 430.52 (M, 20%). Anal. Calcd 

for C27H30N2O3: C, 73.78; H, 7.11; N, 6.37. Found. C, 73.71; H, 7.31; N, 6.24. 

{4-[2-Hydroxy-3-(4-o-tolyl-piperazin-1-yl)-propoxy]-phenyl}-phenyl-methanone 

(18). 700 mg (2.75 mmol) (4-Oxiranylmethoxy-phenyl)-phenyl-methanone 2c was 

dissolved in 15 mL of methanol and  treated with 500 mg (2.84 mmol) of o-tolyl-

piperazine, the mixture was refluxed for 5 h. Subsequent removal of the solvent under 

reduced pressure yield 1.1 g (92.83%) of white crystals which were recrystallized from 

methanol; mp 107-114°C; 1H-NMR (CDCl3) δ 2.31(s, 3H, CH3), 2.63-2.67 (m, 4H, 

N(CH2)2), 2.84-2.97 (m, 6H, CH2-N, (CH2)2)-N-Phe ), 4.10- 4.22 (m, 3H,  O-CH2-CH), 

6.99-7.03 (m, 4H,  arom H), 7.15-7.21 (m, 2H, arom H), 7.48-7.58 (m, 3H, arom H), 

7.74- 7.86 (m, 4H, arom H); 13C-NMR (CDCl3) δ 17.82 (CH3), 51.71 (N-(CH2)2), 53.74 

(CH2-N), 60.36 ((CH2)2-N-Ph), 65.29 (CH), 70.42 (O-CH2), 114.09, 118.94, 123.24, 
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126.57, 128.17, 129.71, (arom C), 130.38 (Ar-CO), 131.06, 131.90, 132.52 (arom C), 

138.18 (Ph-CO), 151.22 (Ar-N), 162.34 (Ar-O),  195.51 (CO); MS m/e 431.4 (M+, 

100%). Anal. Calcd for C27H30N2O3: C, 75.32; H, 7.02; N, 6.51. Found: C, 75.11; H, 

7.12; N, 6.39. 

4-[3-(2-Benzoyl-phenoxy)-2-hydroxy-propyl]-piperazine-1-carboxylic acid p-

tolylamide (21). 186 mg (0.54 mmol) of [2-(2-hydroxy-3-piperazine-1-yl-propoxy)-

phenyl]-phenyl-methanone (5) was dissolved in 15 mL of dichloromethane and a 

solution of  75 mg (0.57 mmol) of 4-methyl phenyl isocyanate in dichloromethane was 

added drop wise. The mixture was stirred at room temperature and monitored by TLC. 

After evaporation to dryness a yellow oil was obtained which was purified by column 

chromatography (silica gel, CH2Cl2 /methanol/ concentrated NH3, 100/10/1). 

Subsequent removal of the solvents under reduced pressure yielded 136 mg (52.56%) of 

a colorless oil; 1H-NMR (CDCl3) δ 2.41- 2.53 (m, 6H, CH2-N-(CH2)2), 2.43 (s, 3H, 

CH3), 3.13 (s, 1H, OH), 3.51-3.53 (m, 4H, (CH2)2-N), 3.86-3.95 (m, 1H, CH), 4.09 (d, 

2H, J = 4.8, O-CH2), 7.08-7.96 (m. 14H, arom H, NH); 13C-NMR (CDCl3) δ  20.57 

(CH3), 43.70 ((CH2)2-N-CO), 52.76 (N-(CH2)2), 59.97 (CH2-N), 65.60 (CH), 70.60 (O-

CH2), 112.56, 120.32, 120.96, 128.20, 29.07, 129.42, 129.88, 132.27, 132.85 (arom C), 

128.54 (Ar-CO), 132.30 (Ar- CH3), 136.38 (NH-Ar), 138.08 (Ph-CO), 155.24 (N-CO-

NH), 156.39 (arom C-O), 196.54 (CO); MS m/e 473.8 (M, 18%). Anal. Calcd for 

C20H24N2O3: C, 71.02; H, 6.60; N, 8.87. Found: C, 70.77; H, 6.89; N, 8.64. 

4-[3-(2-Benzoyl-phenoxy)-2-hydroxy-propyl]-piperazine-1-carbothioic acid p-

tolylamide (22). 200 mg (0.58 mmol) of [2-(2-hydroxy-3-piperazine-1-yl-propoxy)-

phenyl]-phenyl-methanone (5) was dissolved in 10 mL of dichloromethane and a 

solution of 91 mg (0.61 mmol) of 4-methyl phenyl isothiocyanate in dichloromethane 

was added drop wise. The mixture was stirred at room temperature and monitored by 

TLC. After evaporation to dryness, yellow oil was obtained which was purified by 

column chromatography (silica gel, CH2Cl2/methanol/ concentrated NH3, 100/10/1). 

Subsequent removal of the solvents under reduced pressure yielded 181 mg (62.92%) of 

a light yellow oil; mp 99-101°C; 1H-NMR (CDCl3) δ 2.12- 2.20 (m, 2H, CH2-N), 2.33 

(s, 3H, CH3), 3.39- 2.47 (m, 4H, N-(CH2)2), 3.74-3.79 (m, 5H, (CH2)2-N, CH), 3.96 (d, 

2H, J= 4.9, O-CH2), 6.96-7.80 (m, 14H, arom H, NH); 13C-NMR (CDCl3) δ 20.89 
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(CH3), 49.02 (N-(CH2)2), 52.55 ( (CH2)2-N), 59.78 (CH2-N), 65.88 (CH), 70.74 (O-

CH2), 112.73, 121.15, 123.47, 125.45, 128.31, (arom C), 128.71 (Ar-CO), 129.53, 

129.63, 130.12, 132.38, 132.93 (arom H), 135.11 (Ar-CH3), 137.34 (NH-Ar), 138.25 

(Ph-CO), 156.51 (arom C-O), 183.26 (CS), 196.47(CO); MS m/e 489.5 (M, 15%). Anal. 

Calcd for C28H31N3O3S: C, 68.69; H, 6.38; N, 8.58. Found: C, 68.60; H, 6.53; N, 8.47. 

[2-(3-{Benzoyl-phenoxy)-2-hydroxyl-propyl]-piperazin-1-yl}-2-hydroxy-

propoxy)-phenyl]-phenyl-methanone (23). 356 mg (1.40 mmol) of (2-

Oxiranylmethoxy-phenyl)-phenyl-methanone 2a was dissolved in 20-30 mL of 

methanol, added 50.8 mg (0.59 mmol) of piperazine and the reaction mixture was 

refluxed for 5h. After removal of the solvent by rotary evaporation a column 

chromatography was performed (silica gel, CH2Cl2 /methanol/concentrated NH3, 

100/10/1). Subsequent evaporation to dryness gave yellow oil which crystallized from 

isopropanol to leave 424 mg (51%) of white solid; mp 125-135 °C; 1H-NMR (CDCl3) δ 

1.98-2.42 (m, 12H, CH2-N-(CH2)2-N-CH2), 3.10 (s, 1H, OH), 3.70-3.76 (m, 2H, 2CH), 

3.94-4.07 (m, 5H, O-CH2, OH), 6.99-7.83 (m, 18H, arom H); 13C-NMR (CDCl3) δ  

53.13 (N-(CH2)4-N), 60.06 (CH2-NH), 65.47 (CH), 70.78 (O-CH2), 112.62, 121.10, 

128.28, 129.53, 130.09, 132.33, 132.82 (arom C), 128.81 (Ar-CO), 138.34 (Ph-CO), 

156.55 (Ar-O), 196.46 (CO); MS m/e 594.7 (M, 100%). Anal. Calcd for C36H38N2O6: C, 

70.57; H, 7.14; N, 4.22. Found: C, 70.91; H, 7.02; N, 4.26. 

1-[2-(3-{4-[3-(2-Benzoyl-phenoxy)-2-hydroxyl-propyl]-piperazin-1-yl}-2-

hydroxy-propoxy)-5-methyl-phenyl]-ethanone (24). 500 mg (2.43 mmol) of 1-(5-

methyl-2-oxiranylmethoxy-phenyl)–ethanone (4) was dissolved in 10 mL of methanol, 

treated with 857.1 mg (2.52 mmol) of [2-(2-hydroxy-3-piperazin-1-yl-propoxy)-

phenyl]-phenyl-methanone and refluxed for 5 h. After removal of solvent under reduced 

pressure a column chromatography was performed (silica gel, 

CH2Cl2/methanol/concentrated NH3, 120/10/1). Subsequent removal of the solvents 

under reduced pressure yielded 1.20 g (90.67 %) of an orange oil: mp 89-93 °C; 1H-

NMR (CDCl3) δ 2.05-2.13 (m, 2H, CH2-N), 2.29 (s, 3H, CH3), 2.33-2.55 (m, 10H, N-

(CH2)4-N-CH2), 2.62 (s, 3H, CO- CH3), 2.98-3.01 (m, 1H, OH), 3.69-4.10 (m, 6H, 2O-

CH2-CH), 6.83-7.80 (m. 12H, arom H); 13C-NMR (CDCl3) δ 20.22 (CH3-Ar), 31.81 

(CH3-CO), 53.20 (N-(CH2)2), 60.03, 60.49 (N-CH2), 65.43, 65.51 (CH), 70.75, 71.12  
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(O-CH2), 128.03, 128.82 (Ar-CO), 130.25 ( CH3-Ar), 112.61, 112.79, 121.10, 128.27, 

129.51, 130.08, 130.59, 132.32, 132.81, 134.12 (arom C), 138 (Ph-CO), 156.00, 156.55 

(Ar-O), 196.46(CO), 199.88 (Ar-CO-CH3); MS m/e 594.7 (M+, 100% ). Anal. Calcd 

for C32H38N2O6: C, 61.82; H, 6.65; N, 4.51. Found: C, 61.60; H, 6.91; N, 4.37. 

Computational Studies 

Ligand Efficiency (LE), ligand efficiency (Δg) values of the data were calculated by 

normalizing binding free energy of a ligand for number of heavy atoms. Free energy 

calculation was carried out as described by Hopkins et al, (Equ. i). According to 

Hopkins et al, IC50 from percentage inhibition can be substituted for Kd (dissociation 

constant potency)50 which was further confirmed by experimental results of Kuntz and 

co-workers.40 Ligand efficiency calculations was done for a temperature of 310 K and 

given in kcal per heavy atom (Equ. ii). 

∆G = -RTlnKd    (Equ. i) 

∆g = -∆G/HA(non-hydrogen atom)  (Equ. ii) 

A size independent fit quality score was obtained as described by Reynolds et al,20 

by fitting the maximum LE over a large range of molecular size. All calculations 

regarding ligand efficiency were done by using Excel worksheet. Activity values of the 

propafenone type inhibitors (GPV576, GPV005, GPV0062 and propafenone) were 

determined experimentally by a daunorubicin efflux essay.51,34 Inhibition of rhodamine 

123 efflux in the transfectant mouse lymphoma line L5178 VMDR1 C.06 were used to 

characterize the MDR- modulating activity values of verapamil, niguldipine, and 

cyclosporine A. IC50 values of tariquidar,52 elacridar,53,54 valdapodar,55 zosuquidar 56,57 

and ONT-09358  were taken from literature (Table 2). IC50 values for most of the 

compounds in clinical studies were reported by using rhodamine efflux essays. We use 

these values as there is a direct correlation between the IC50 values from daunorubicin 

and rhodamine efflux essays 37 

Lipophilic Efficiency (LipE), of benzophenones were calculated (Equ. iii), and 

compared with the compounds which reached clinical studies (verapamil, tariquidar, 

valspodar, elacridar, zosuquidar, ONT-093, niguldipine and cyclosporine A), as well as 

with selected propafenone analogs.  



CHAPTER 6                                                   LE and LipE Profiles of P-gp Inhibitors 

150 

 

LipE = LLE = pEC50 – clogP    (Equ. iii) 

clogP values of the data set were computed by using the Bio-loom software 

package39 and the LipE calculations were performed by using excel worksheet. In order 

to compare the standard threshold of LipE along three different entry pathways of 

ligands into respective binding pockets of P-gp, hERG and SERT, a data set from 

literature was used. It includes 744 SERT inhibitors extracted from the ChEMBL data 

base,59 313 hERG blockers43 from literature, and 372 inhibitors of P-gp mediated 

daunorubicin efflux (in-house data). The data sets are available at our homepage 

(pharminfo.univie.ac.at) and from Chemspider (www.chemspider.com).  

Docking, Compounds 6, 19, 20 and 23 were docked in their neutral form into an 

open state homology model of human P-gp17 based on the X-ray structure of mouse P-

gp (PDB ID: 3G5U)18 by using  the software package GOLD. In order to avoid any bias 

we considered the whole transmembrane domain region as binding pocket. 100 poses 

per ligand were obtained and finally ligand protein complexes were minimized by LigX, 

a minimization tool implemented in MOE, by using the MMFF94 force field.  

Agglomerative Hierarchical Cluster analysis of the consensus RMSD matrix based 

on the common scaffold of the ligands identified 2 interesting clusters of poses 

containing all four ligands. However, additional 5 clusters have been identified 

containing three out of four ligands. All seven clusters were occupying the center of the 

binding cavity mainly interacting with amino acid residues of TM1, 5, 6, 7, 8, 10 and 11 

(SM Figure 2A). For a more detailed analysis of the ligand–protein interaction profiles 

of selected ligands, we used the two clusters containing all four ligands (SM Figure 2B). 

In order to prioritize among the two clusters, a rescoring of all docking poses by 

using four different scoring functions in MOE, (ASE, affinity dG, Alpha HB, London 

dG) was performed. Subsequently, for each ligand, the top 10 ranked poses according to 

consensus scoring were taken and analyzed. Out of these 40 poses, 7 poses were present 

in cluster 1 while only one showed up in cluster 2. In addition, taking only the top 

ranked pose per ligand, two (6, 23) out of four ligands were located in cluster 1 (SM 

Figure 2B). Therefore interaction position of cluster 1 was supposed to be the most 

likely one for benzophenones. 
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Biological Assay 

Cell lines 

The resistant CCRF vcr1000 cell line was maintained in RPMI 1640 medium 

containing 10% fetal calf serum (FCS) and 1000ng/ml vincristine. The selecting agent 

was washed out 1 week before the experiments. This cell line was selected due to its 

distinct P-gp expression. 

Inhibition of daunorubicin efflux 

IC50 values for daunorubicin efflux inhibition were determined as reported31. Briefly, 

cells were sedimented, the supernatant was removed by aspiration, and the cells were 

resuspended at a density of 1 x 106/mL in RPMI 1640 medium containing daunorubicin 

(Sigma Chemical Co., St. Louis, MO) at a final concentration of 3 µmol/l. Cell 

suspensions were incubated at 37°C for 30 min. Tubes were chilled on ice and 

centrifuged at 500 g in an Eppendorf 5403 centrifuge (Eppendorf, Hamburg, Germany). 

Supernatants were removed, and the cell pellet was resuspended in medium pre-warmed 

to 37°C containing either no inhibitor or compounds at various concentrations ranging 

from 20 µM to 200 µM, depending on the solubility and expected potency of the 

inhibitor. Eight concentrations (serial 1:3 dilution) were tested for each inhibitor. After 

60, 120, 180 and 240 seconds, aliquots of the incubation mixture were transferred to 

tubes containing an equal volume of ice-cold stop solution (RPMI medium containing 

GPV31 at a final concentration of 5µmol/L). Zero time points were determined by 

immediately pipetting daunorubicin-preloaded cells into ice cold stop solution. Samples 

drawn at the respective time points were kept in an ice water bath and measured within 

1h on a Becton Dickinson FACS Calibur flow cytometer (Becton Dickinson, Vienna, 

Austria). Viable cells were selected by setting appropriate gates for forward and side 

scatter. The excitation and emission wavelengths were 482 nm and 558 nm, 

respectively. Five thousand gated events were accumulated for the determination of 

mean fluorescence values. 
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Abstract: ABC-transporters have been recognized as being responsible for multiple drug resistance in tumor therapy, for decreased brain 
uptake and low oral bioavailability of drug candidates, and for drug-drug interactions and drug induced cholestasis. P-glycoprotein 
(ABCB1), the paradigm protein in the field, is mainly effluxing natural product toxins and shows very broad substrate specificity. Within 
this article we will highlight SAR and QSAR approaches for designing natural product type inhibitors of ABCB1 and related proteins as 
well as in silico strategies to predict ABCB1 substrates and inhibitors in order to design out undesirable drug/protein interaction.  

Keywords: Natural products, ABC transporter, P-glycoprotein, in silico methods.  

INTRODUCTION 

 More than 30 years ago P-glycoprotein (P-gp, ABCB1), the 
paradigm ABC-transporter, has been discovered as being 
responsible for decreased accumulation of natural product toxins in 
tumor cells. [1] It soon became evident that P-gp has a remarkably 
broad substrate pattern transporting numerous structurally and 
functionally diverse natural products across cell membranes. The 
multispecific nature of this drug efflux transporter and its potential 
role in clinical drug resistance raised high expectations and initiated 
development of inhibitors that would re-establish sensitivity to 
standard therapeutic regimens [2]. However, since the identification 
of the P-gp inhibitory potential of verapamil [3] almost 3 decades 
have passed and still no P-gp inhibitor entered the market. 
Furthermore, since the discovery of P-gp in 1976 [4], additional 47 
human ABC-transporters have been identified of which several 
have been related to either human disease or drug resistance [5]. 
Within the past decade considerable progress has been made in 
unravelling the physiological function of P-gp and other ABC-
transporters. Results clearly demonstrated the multiple involvement 
of several members of the ABC-transporter family in drug-uptake, -
disposition and –elimination [6] rendering them antitargets rather 
than classical targets suited for drug therapy. Within this article we 
will highlight ligand- and structure-based approaches targeting P-gp 
and some of its homologues by natural products and related 
compounds. In addition, we will also summarise recent attempts for 
predicting P-gp substrates, a topic which is becoming more and 
more important in the ABC-transporter field.  

LIGAND BASED APPROACHES 

 P-glycoprotein and its congeners are membrane-spanning 
proteins and thus until very recently only little structural infor-
mation was available. Therefore, in lead optimization programs, 
mainly ligand-based approaches have been pursued. These include 
QSAR studies on structurally homologous series of compounds, 
such as verapamil analogues, triazines, acridonecarboxamides, 
phenothiazines, thioxanthenes, flavones, dihydropyridines, propa-
fenones and cyclosporine derivatives [7, 8]. These studies pinpoint 
the importance of H-bond acceptors and their strength, of the 
distance between aromatic moieties and H-bond acceptors as well 
as the influence of global physicochemical parameters, such as 
lipophilicity and molar refractivity. In the quest for designing more 
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potent inhibitors of ABC-transporter with high selectivity, also 
natural products served as basic scaffolds for lead optimization 
programs. In the following section we will highlight selected 
studies dealing with flavonoids, steroids and sesquiter-penes.  

Flavonoids 

 Flavonoids represent a major class of natural compounds 
widely present in foods and herbal products (Fig. (1)). They have 
been shown to block both the breast cancer resistance protein 
(BCRP, ABCG2) [9, 10] and P-glycoprotein (P-gp) [11]. In order to 
develop more potent inhibitors of ABCG2, a set of flavonoids 
covering five flavonoid subclasses (flavones, isoflavones, chal-
cones, flavonols and flavanones) (Fig. (2)), were selected for 
quantitative structure activity (QSAR) relationship studies [9].   

 

 

 

 

 

Fig. (1). Basic Structure of flavonoids (taken from [9]).  

 

 Systematic structure activity relationship studies showed that 
the presence of a 2, 3-double bond in ring C, ring B attached at 
position 2, hydroxylation at position 5, lack of hydroxylation at 
position 3 and hydrophobic substituents at positions 6, 7, 8 or 4´, 
are the structural requirements for potent flavonoid- type BCRP 
inhibitors. Remarkably, although both ABCB1 and ABCG2 are 
polyspecific in ligand recognition, flavonoids show a different SAR 
pattern for the two transporters. A notable difference is that 3-
hydroxylation was shown to increase flavonoid–P-gp interaction, 
whereas O-methylation of this hydroxyl group markedly decreased 
the interaction. Furthermore, hydroxylation at position 7 did not 
alter flavonoid–Pgp interaction [12], but moderately increased the 
flavonoid–BCRP interaction. Also in the series of propafenone-type 
inhibitors, subtle differences in ABCB1 and ABCG2 inhibitory 
activity could be observed within the same chemical scaffold [13]. 
In a study on tariquidar analogs, Wiese and co-workers performed 
Free- Wilson [14] analyses to identify the structural elements which 
significantly influence the inhibitory effect on ABCB1 and ABCG2 
[15]. It was shown that methoxy groups in positions 6 and 7 of the 
tetrahydroisoquinolinylamide substructure contribute statistically 
significant to ABCB1 inhibition. In contrast, the elimination of 
methoxy groups in positions 6 and 7 of the tetrahydroisoquinoline 
substructure strengthened the interaction with ABCG2. Moreover, it 
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was demonstrated that the introduction of an electrophilic 
substituent, such as a nitro group, increases ABCG2 inhibitory 
potency relative to that for ABCB1.  

 However, in contrast to propafenones, flavonoids are supposed 
to interact with the nucleotide binding domain of the transporter. 
Thus, these differences in the SAR pattern may reflect the distinct 
structural requirements for binding to the NBDs of ABCG2 and 
ABCB1. Based on the QSAR model derived, logP makes a positive 
contribution to the ABCG2 inhibition activity. These findings were 
considered useful for developing potent flavonoid type inhibitors of 
ABCG2 (e.g. 7, 8-benzoflavone) with potential clinical appli-
cability [9].  

Steroids 

 Steroids have been shown in numerous experiments to exhibit 
typical properties of MDR-reversing agents [16, 17]. Steroids are 
perfectly suited for 3D-QSAR studies such as CoMFA and 
CoMSIA, as they are rather rigid and small differences in structure 
give rise to considerable changes in biological activity. [18] 
Remarkably, in the class of steroids CoMSIA models were built for 
distinguishing which characteristic features are important for a 
steroid to be a substrate or an inhibitor of ABCB1. [19] Twenty 
steroids were selected from the literature [20] and divided into two 
groups: the substrate group contained 13 compounds, while the 
inhibitor group comprised all 20 compounds (Table 1). The overall 
chemical structures are shown in Fig. (3).   

 

 

 

 

 

 

 

 

 

 

Fig. (3). Template structures of two different types of steroidal Compounds 
(taken from [19]). 

 
 The authors conclude that the requirement for strong 
hydrophobicity is more essential for inhibitors than for substrates. 
Another major difference is that for steroid substrates bulky subs-
titutions surrounding C-6 are not well tolerated, whereas 
electronegative charged groups in position C-11  are favorable. 
Moreover, for steroid inhibitors bulky groups around C-3 decrease 
the activity, while there is no specific requirement at C-3 for steroid 
substrates. Any substituents around C-17  and C-21  favor 
inhibitory potency, but disfavor or have little impact on substrates 
properties (Fig. (4) and (5)).  

 

 

Table 1. Steroidal Data Set Used in 3D-QSAR Analysis 

No Steroid Compound Structural 

Type 

Substrate (S)/ 

Inhibitor (I) 

1 Cortisol SA S + I 

2 17 -Hydroxyprogesterone SA S + I 

3 Progesterone SA S + I 

4 Corticosterone SA S + I 

5 11-Deoxycortisol SA S + I 

6 Medroxyprogesterone Acetate SA S + I 

7 Aldosterone SA S + I 

8 Dexamethasone¶ SA S + I 

9 Dehydroepiandrosterone† SB S + I 

10 Pregnenolone† SB S + I 

11 Testosterone‡ SB S + I 

12 Androstenedione‡ SB S + I 

13 Dihydrotestosterone SB S + I 

14 Deoxycorticosterone SA I Only 

15 Medroxyprogesterone SA I Only 

16 16 -Methylprogestrone SA I Only 

17 17 - Hydroxypregnenolone† SB I Only 

18 Androsterone SB I Only 

19 Pregnanedione SB I Only 

20 6, 16- -Methylpregnenolone† SB I Only 

¶1, 2-Double bond, †5, 6-Double bond, ‡4, 5-Double bond 

Sesquiterpenes 

 Sesquiterpenes have been isolated from the extracts of the 
Celastraceae family and have been used for centuries in traditional 
medicine. Furthermore, they have shown clinical potential as anti-
cancer drugs [21]. In a comprehensive study, 76 Dihydro- -agaro-
furan derivatives were used to inhibit P-gp-mediated daunorubicin 
(DNR) efflux from intact cells [22] (Fig. (6)).  

 Structure-activity relationship studies [22] of compounds varied 
at the A-ring of sesquiterpenes suggest that an ester group at 
position C-2 seems essential for the inhibition of ABCB1.  
 

 

 

 

 

 

 

Fig. (2). Basic structures of five flavonoid subclasses (flavones, isoflavones, chalcones, flavanols and flavanones) used for QSAR study (taken from [9]) 
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Fig. (6). Common Scaffold of sesquiterpenes assayed for the inhibition of 
the human P-gp.  

 

Sesquiterpenes with the OAc substituent at position C-3 were found 
to be more potent than the compounds with a hydroxyl or hydrogen 
group at the same position. It seems that the presence of an H-bond 
acceptor at C-3 is important for activity.  

 CoMSIA and CoMFA studies demonstrated that the carbonyl 
groups at the C-2, C-3, and C-8 position, act as acceptors for H-
bond donors in the binding site (Fig. (7)). In addition, the models 
also point towards the importance of a bulky hydrophobic 
substituent at the C-2  position (depicted as a green sphere) and a  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Summary of the most prominent structural elements of ligands that 
are important for high P-gp activity obtained by 3D-QSAR/CoMFA (taken 
from [22]). 

 

 

 

 

 

 

Fig. (4). (a) shows steric contour maps of steroid substrates, the green contours suggest that the larger substituent around the C-21  position is sterically 
favorable while substitutions at C-6, C-17  and C-21  positions are sterically unfavorable. (b) shows the electrostatic contour maps of steroid substrates, red 
and blue contours describe the electrostatic regions, which are favorable and unfavorable to a negative charge, respectively. A negatively charged substituent 
at C-11  and electrostatic groups around C-3, C-17  and C-21 are favorable for interaction between steroid substrates and Pgp (taken from [19]). 

 

 

 

 

 

 

 

 

 

Fig. (5). (a) shows electrostatic contour maps of steroid inhibitors, negative charge favored red regions were found near C-3, C-17 and C-21 positions while 
positive charge favored or negative charge unfavored blue region is found around C-16  position. (b) shows steric contour plots of steroid inhibitors. Bulky 
groups in the vicinity of C3 are not tolerated, whereas a bulky substituent like –C (O) CH3 around C-21 may greatly enhance the binding affinity to P-gp. (c) 
Representation of H-bond donor and acceptor contour maps of steroid inhibitors. The cyan and purple contours indicate regions, where an H-bond donor group 
increases or decreases activity, respectively. The magenta and red contours indicate regions, in which an H-bond acceptor group increases or decreases 
activity, respectively. Small purple contours around C-3 suggest that a hydrogen-bond acceptor such as a carbonyl group may increase the inhibitory effect. 
Large cyan contours around the first hexagonal ring (constituted by C-1–C-6 with the exception of C-3), and the C-21a positions reveal that hydrogen-bond 
donors such as a methyl or hydroxyl group may enhance the inhibitory potency. Red and magenta contours around C-17 and C-21 indicate that these regions 
are very sensitive to hydrogen-bond donor or acceptor strength with respect to interaction with P-gp (taken from [19]).  
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hydrophobic substituent at the C-6 position (depicted as a blue 
sphere). In general, the important features rendering sesquiterpenes 
highly active are the overall esterification level of the compounds, 
the presence of at least two aromatic-ester moieties (such as a 
benzoate-nicotinate or benzoate-benzoate), and the size of the 
molecule. Tetra- or penta-substituted sesquiterpenes show the 
highest potency, whereas additional ester moieties in the molecule 
lead to inactive compounds.   

STRUCTURE-BASED STUDIES 

 The general architecture of ABC transporters are more or less 
the same throughout this superfamily (Fig. (8)). Two transmem-
brane (TM) and two nucleotide binding (NB) domains are 
necessary to yield a functional efflux pump which can export its 
substrates. Since the NB domains harbor the hallmark ABC motifs 
they are highly conserved among all ABC transporters. Much less 
sequence identity can be found in the two transmembrane domains 
(TMD) which are generally responsible for drug binding and 
therefore the reason for diverse substrate/inhibitor profiles of 
representatives of this protein family. The structures of majorly 
prokaryotic ABC transporters were recently reviewed by Rees et al. 
[23], so we will concentrate on the three main human ABC trans-
porters that are involved in multidrug resistance, ABCB1, ABCC1 
and ABCG2. In the case of ABCB1 and ABCC1 all four domains 
are fused into a single polypeptide chain with the first TMD 
containing the N-terminus and the second NBD representing the C-
terminus of the proteins. By contrast ABCG2 is a half transporter 
which has to homodimerize to be functional [24]. In addition, an 
inverse topology with respect to ABCB1 and ABCC1 can be 
observed, indicating that the NBD lies N-terminal of the TMD [25]. 
The hallmark of the ABCC1 transporter is a third TMD at the N-
terminus referred to as TMD0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Comparison of different domain architecture of the ABC 
transporters ABCB1, ABCC1 and ABCG2.  

 
 ABC efflux pumps are flexible proteins that in association with 
drug binding and subsequent ATP hydrolysis undergo confor-
mational changes. ABCB1 adopts at least three different states 
following ATP-binding and subsequent hydrolysis (reviewed in 
[26]). The apo or “open-inward” conformation is considered the 
ground state. In this conformation the protein shows an inverted 
“V” open towards the cytosolic environment of the cell. Substrates 
are considered to bind to this state with higher affinity. The second 
conformation that can be captured by ABCB1 is the nucleotide-
bound form which is open to the extracellular space. After 
hydrolysis of two ATP molecules ABCB1 returns to the initial state 
(Fig. (9)).  

 

 

 

 

 

 

 

 

 
 

Fig. (9). Schematic illustration of the catalytic cycle of ABC transporters on 
the basis of ABCB1. The two different conformations are depicted before 
and after drug binding.  

Homology Models 

 The fact that ABC transporters are embedded in the membrane 
complicates the crystallization process of such proteins. Therefore, 
protein homology modeling based on templates of bacterial 
homologues representing different catalytic states, was the method 
of choice for structure-based studies. Table 2 gives an overview of 
current available homology models of selected ABC transporters. 
Due to its high resolution the crystal structure of the Staphylo-
coccus aureus transporter SAV1866 (PDB code: 2HYD, resolution: 
3. 00 Å) [27] in the ADP bound “outward-facing” form often 
served as modeling template [28-33]. Interestingly, the same 
transporter crystalized in the AMP.PNP bound state [34] did not 
serve as modeling template. Several high resolution structures of 
different cata-lytic states of ABC-proteins were also obtained with 
the bacterial transporter MsbA [35] as template. This information 
gave new insights into the transport cycle and the associated 
conformational change of ABC proteins (Table 3).  

 Since March 2009 the first X-ray structure of a eukaryotic ABC 
efflux pump, ABCB1 (mouse) is available [36] (PDB code: 3G5U, 
resolution: 3. 8 Å). With 87 % sequence identity to human ABCB1 
and moderate resolution (3. 80) it serves as a good template for 
homology modeling [37]. Additionally the structure was published 
together with two co-crystallised enantiomeric cyclic peptide 
inhibitors (CPPIs; QZ59-RRR and QZ59-SSS) (Fig. (10)). This 
new information sheds light on possible ligand binding areas of 
ABCB1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Cocrystallized ABCB1 with cyclic P-gp inhibitors (CPPIs) QZ59-
RRR (black) QZ59-SSS (dark and light grey). 
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Binding Sites 

 It was shown that a functional unit of ABC-transporters has to 
consist of two TM and two NB domains. Only with this architecture 
a functional transporter can be obtained. Nevertheless, mutational 
studies showed that ABC transporters consisting of just two TMD 
regions without NBDs were able to bind ligands [38]. This led to 
the assumption that drug binding occurs in the TMD region.  

 Numerous experimental studies were performed trying to 
determine the different drug binding sites of P-glycoprotein, com-
prising among others cysteine and arginine scanning and 
photoaffinity labeling (reviewed in [26, 39, 40]). The overall 
assumption in this case is that P-glycoprotein possesses a huge 
binding pocket with at least four distinct binding sites, with TM 6 
as main interaction helix. Well characterized are the binding sites of 
Rhodamine and Hoechst 33342, the so called R- and the H-site [41, 
42]. Additionally, there is evidence for an allosteric regulatory site 
as well as a region where progesterone and prazosin may bind [43, 

44]. These conclusions go hand in hand with the previously 
mentioned co-crystal structure of ABCB1 together with isomeric 
CPPIs [36]. The structure shows a huge binding pocket where the 
rather large cyclopeptides bind on different sites with partially 
overlapping interacting amino acid residues. Some of these residues 
are identical with the ones that are involved in rhodamine or vera-
pamil binding [45, 46]. These data are also consistent with drug 
binding studies with the ABC transporter ABCG2. Also for 
ABCG2 at least four different binding sites, one H-site, a prazosin 
area and probably two different R-sites on each monomer have 
been postulated. [47]. The involvement of both monomers in 
rhodamine 123 binding can also be observed with ABCC1 where 
TMD1 and TMD2 are interacting [48].  

 Nature derived substrates, especially cytotoxins, are supposed 
to bind to a certain region in the binding pocket of the trans-
membrane domains of ABC transporters. However, large com-
pounds with a steroidal architecture tend to bind to the ATP-
binding site in the NBD region of the protein. As competitors of 

Table 2. Homology Models of the ABC Transporters ABCB1, ABCC1 and ABCG2  

ABC Transporter Template Sequence Identity / Homology Catalytic State References 

ABCB1 Mouse ABCB1 87 % / 93 % Apo [36] 

ABCB1 SAV1866 34 % / 52 % ADP-bound [28-30, 33, 37, 67] 

ABCB1 MsbA 37 % / 57 % AMP-PNP [28] 

ABCB1 MalK 31 % / 50 % Apo [33] 

ABCC1 SAV1866 28 % / 49 % ADP [31] 

ABCG2 SAV1866 27 % / 49 % ADP [32] 

 
Table 3. Structures of Whole ABC Transporters that are Available Until Now 

ABC Transporter Organsim Catalytic State Resolution [Å] PDB Code References 

ABCB1 Mouse Apo 3. 80 3G5U [36] 

ABCB1  Mouse Apo 4. 40 3G60 [36] 

ABCB1 Mouse Apo 4. 35 3G61 [36] 

ABCB1 Hamster Apo ~20 - [68] 

ABCB1 Hamster AMP-PNP ~20 - [68] 

ABCB1 Hamster ATP 8 - [69] 

ABCC1 Human ATP ~22 - [70] 

ABCG2 Insect ATP ~18 - [71] 

SAV1866 Staphylococcus aureus ADP 3. 00 2HYD [27] 

SAV1866 Staphylococcus aureus AMP-PNP 3. 40 2ONJ [34] 

MsbA Escherichia coli Apo 5. 30 3B5W [35] 

MsbA Vibrio cholerae Apo 5. 50 3B5X [35] 

MsbA Salmonella typhimurium AMP-PNP 4. 50 3B5Y [35] 

MsbA Salmonella typhimurium ADP-OV 4. 20 3B5Z [35] 

MsbA Salmonella typhimurium AMP-PNP 3. 70 3B60 [35] 
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ATP they are also able to inhibit the function of the MDR trans-
porter.  

Ligand Docking 

 The computational method of ligand docking is a good way to 
validate experimentally derived binding pockets or even to propose 
new areas of binding. Several docking studies of natural com-
pounds have been performed. Recently published docking results 
show quinazolinones binding at the same site like the CPPIs [37]. 
The docking poses are in accordance with pharmacophore 
modeling, which suggests a hydrogen bond between the ligand and 
the amino acid residue Tyr307 (TM5). In addition, protein-ligand 
interaction fingerprints (PLIF) were calculated, resulting in the 
residues Phe336 (TM6), Tyr953 (TM11) and Phe957 (TM11) 
performing contact interactions (Fig. (11)). The binding pocket was 
described as highly hydrophobic which excludes ionic interactions 
with tertiary amines. Therefore it was suggested that such inter-
actions can be built after the conformational change of the protein 
and thus has to be validated with an outward facing model.  

 Similar results were also obtained in our group when 
performing docking studies with a homology model of ABCB1 and 
propafenone derivatives. Our results also showed interactions with 
the transmembrane helices mentioned above. This confirms the 
assumption of a large binding pocket and indicates overlapping 
quinazolinone and propafenone binding sites. In Fig. (12) an 
overview of interactions of drugs with certain TM helices is 
depicted. As can be noticed, TM 6 plays a crucial role in ligand 
binding.  

 The assumption that certain ABC transporter inhibitors of 
natural origin compete with ATP at the NBDs could also be 
confirmed by docking [49]. A screening of 122 compounds against 
the three MDR related proteins ABCB1, ABCC2 and ABCG2, 
revealed that several compounds showed multi-specificity. Since 
the highest sequence identity among these proteins can be found in 
the NBDs these compounds were docked into the crystal structure 
of the NBD1 of ABCC1 [50]. The results showed that the most 
hydrophilic natural products quercetin and sylimarin together with 
the potent compound MK571 were able to bind to the structure with 

 

 

 

 

 

 

 

 

Fig. (11). a) Docking poses of quinazolinones in an ABCB1 homology model, b) Pharmacophore model (taken from [37]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Transmembrane (TM) helix interactions with investigated ABCB1 ligands. The circle size depends on the level of interaction.  
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high scores. More lipophilic inhibitors were not able to provide 
reasonable scoring values. Regarding the docking poses obtained it 
is noteworthy to mention that the negatively charged MK571 
extends into the catalytic site and its aromatic rings are placed 
similar to the adenosine base ring of ATP. By contrast the poses of 
the lipophilic inhibitors showed no interaction with the catalytic site 
(Fig. (13)).  

 Also steroids and flavonoids were examined with respect to 
their binding affinity to the ATP binding site [51]. In this study 
docking of eleven different steroids, one flavonoid, ATP and 
MANT-ATP into ABCB1 and ABCG2 was performed. The results, 
which were rather the same for both transporters, suggest 
overlapping steroid and ATP binding sites near the P-loop of the 
nucleotide binding domains (Fig. (14) and (15)). The P-loop (or 
Walker A) is one of the three characteristic motifs of the NBDs of 
ABC transporters (Walker A, Walker B and signature motif C) and 
interacts with the phosphates of the nucleotides. The flavone 
kaempferide showed amino acid residue interactions similar to 
ATP. On the other hand the hydrophobic steroid RU-486 bound to a 
different area than the other steroids and ATP, but overlapped with 
the kaempferide and the MANT-ATP binding site. RU-486 and 
MANT-ATP share a highly hydrophobic moiety and both bind 

within the hydrophobic cleft around I1050 (Fig. (14c)). Addi-
tionally the binding free energy of the complexes was calculated. 
According to this study the steroids investigated bind with the same 
affinity as ATP, which renders them potential competitors of ATP 
(Table 4).  

 Similar findings were published in a docking study that con-
centrated on flavonoids, including flavones, flavonols, flavanones 
and chalcones [52] (Fig. (16)). Calculated binding free energies 
were compared to experimentally derived Kd-values and a good 
correlation could be obtained. This study also showed that 
flavonoids preferably bind to the P-loop of the NBD, especially 
interacting with residues L1076 and S1077. In addition, the B-ring 
of flavonoids was supposed to build hydrophobic interactions with 
Y1044, which originally interacts with the adenosine base of ATP 
[52]. Comparing the different flavonoid derivatives showed that the 
additional hydroxyl-group at position 3, which is the only diffe-
rence between flavonols and flavones, decreases the predicted 
docking energy because an additional hydrogen bond could be 
formed. Additional hydrophobic substituents added to flavones and 
flavonols at positions 6 or 8 also had a positive effect on binding. 
Chalcones, which show higher flexibility due to the open C-ring 
structure, also showed reduced docking energy. Especially with  

 

 

 

 

 

 

 

Fig. (13). a) MRP NBD1 cocrystallized with ATP. b) MRP NBD1 with MK-571. c) MRP with lipophilic inhibitors (taken from [50]). 

 

Table 4. Amino Acid Interactions Observed With Docking Studies of Steroids and Flavonoids Into the NBD 

Compound ABCB2 NBD2 

Hydrophobic Interaction 

Hydrophilic Interaction References 

Steroids Y1044, I1050, V1052, G1075, S1077 L1076, R1047, Q1085, P1051  [51] 

RU-486 I1050, P1051, V1052, Q1054, N1248 None predicted [51] 

Kaempferide Y1044, V1052, G1073, G1075 R1047, S1077, T1078 [51] 

ATP Y1044, G1073 G1073, C1074, G1075, S1077, T1078 [51] 

MANT-ATP Y1044, I1050, V1052 G1073, C1074, G1075, L1076, S1077, T1078, Y1087 [51] 

Flavones G1070-T1077 L1076 [52] 

substituted Flavones  Y1044, V1052, G1072-T1075, G1073, G1075,  S1072, L1076, S1077, T1078 [52] 

Flavonols G1071-T1076, E1201, D1200, H1232 S1071, C1074, G1075, S1077 [52] 

Chalcones Y1044, V1052, G1071-T1078,  S1077, T1078 [52] 

Substituted Chalcones Y1044, P1048, I1050-V1052, H1232, Q1247-

E1249 

S1072, G1073, C1074, G1075, L1076, S1077 [52] 
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Fig. (14). Docking poses of MANT-ATP, ATP and RU-486 into the 
homology models of ABCB1 NBD2 and ABCG2 NBD. (taken from [51]). 

 

substituted chalcone derivatives, such as O-n-C10H21 chalcone, very 
low docking energy values were predicted.  

 Until now the number of docking studies into ABC transporters 
is still low. As outlined above, most docking studies are restricted 
to the nucleotide binding domain. This can be explained by the lack 
of crystal structures of the transmembrane domain, which is the part  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (15). Docking poses of steroids in a homology models of ABCB1 
NBD2 (taken from [51]). 

 

of the protein with quite low sequence similarity. However, this 
trend will probably change due to the recent publication of the 
structure of mouse P-gp.   

IMPORTANCE OF ABC-TRANSPORTER FOR ADMET  

 With our increasing knowledge on the physiological role of 
ABC transporter it became evident that there are several distinct 
transporters which are responsible for severe side effects of drugs 
and for drug/drug interactions. In these cases the focus shifts from 
the design of inhibitors to the design of “non-ligands”. Thus, the 
major challenge is to establish models for prediction of substrate 
properties with the ultimate goal to avoid interaction with these 
proteins.  

 ABCB1 is constitutively expressed at several diffusion barriers, 
such as the blood-brain barrier, the kidney, the liver and the 
intestine. At the latter it plays an important role in limiting the 
intestinal absorption of a wide variety of orally administered drugs. 
One paradigm example is the quinidine-digoxin interaction, where 
the P-gp inhibitor quinidine increases the digoxin absorption rate by 
about 30%. But it is not only drug/drug interaction playing a role, 
there is also proven evidence for drug/nutrient interaction [53]. 
These include mainly flavonoids found in fruit juices, vegetables, 
flowers and tea. Especially grapefruit juice has been shown to 
interfere with plasma levels of colchicines [54], paracetamol [55], 
and cyclosporine [56].  

 Thus, the importance of drug transporters for uptake and 
disposition is now widely accepted and Benet and co-workers 
proposed a biopharmaceutics Classification System (BCS) which 
allows prediction of in vivo pharmacokinetic performance of drug 
candidates based on measurements of their permeability and 
solubility [57]. Subsequently, this classification system was modi-
fied in order to allow prediction of overall drug disposition, 
including routes of drug elimination and the effects of efflux and 
absorptive transporters on oral drug absorption [58]. The overall 
message is that compounds with low water solubility being subs-
trates of P-glycoprotein bear the inherent risk of low bioavailability.  

 Also at the blood-brain barrier (BBB) the important role of 
ABCB1 and ABCG2 is increasingly recognised. In vitro studies 
demonstrated that the uptake of vincristine was reduced in primary 
cultured bovine capillary endothelial cells expressing P-gp at the 
luminal side and that this decreased accumulation was due to active 
efflux. Steady state uptake was significantly increased in the 
presence of the P-gp blocking agent verapamil [59]. Additionally, 
mdr1a double knock out mice show hypersensitivity to a range of 
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drugs known to be transported by P-gp [60]. Undoubtedly, selected 
ABC-transporter are an important impediment for the entry of 
hydrophobic drugs into the brain.  

PREDICTING SUBSTRATE PROPERTIES FOR ABCB1 

 As already outlined above, ABCB1 is constitutively expressed 
in several organs, such as kidney, liver, intestine and also at the 
blood brain barrier (BBB). P-gp substrates therefore show poor oral 
absorption, enhanced renal and biliary excretion and usually do not 
enter the brain [61]. Furthermore, they are likely to be affected by 
the MDR phenotype and are thus not suitable as anticancer agents. 
This spurred the development of medium- and high-throughput 
systems addressing the P-gp substrate properties of compounds of 
interest.  

 However, data sets for in silico classification studies are rather 
small and sometimes also inconsistent [62]. Recently the group of 
Gottesman published a comprehensive study analysing data from 
the NCI60 screen [63], which comprises mostly natural product 
toxins. m-RNA levels of all 48 human ABC-transporter in 60 
human tumour cell lines of the NCI60 anticancer drug screening 
panel were evaluated and correlated with cellular toxicity values of 
1400 selected compounds. An inverse correlation between trans-
porter mRNA levels and compound toxicity indicates that a 
compound is a substrate for the respective transporter. Undoub-
tedly, this is by far the largest consistent data set available by now. 
It is almost exclusively built of natural products, and studies from 
our group indicate that it might be successfully used as basis for P-
gp substrate prediction models.  

Based both on this data set as well as on a set of 259 compounds 
compiled from the literature we explored the performance of 
several classification methods combined with different descriptor 
sets. These include simple ADME-type descriptors (such as logP, 
number of rotable bonds, number of H-bond donors and acceptors), 
VSA descriptors as described by Labute [64] and 2D auto-
correlation vectors. The latter have already been successfully 
applied for prediction of P-gp inhibitors [65]. When comparing 
binary QSAR and support vector machines, the latter gave more 
robust models with total accuracies in the range of 80%. Generally, 
the prediction of non-substrates performs better than those for 
substrates [66]. However, more detailed studies are necessary to 
fully explore the potential and limits of this data set. If successful, 
this approach might be useful for in silico screening of natural 
product libraries in order to identify hitherto unknown drug/nutrient 

interactions at P-gp and related ABC-transporter involved in 
ADMET.   

OUTLOOK  

 Although P-glycoprotein and its prominent role in tumour 
multidrug resistance is known since 1976, up to now no P-gp 
inhibitor has reached the market. Thus, there is still need for 
development of new, specific P-gp inhibitors. As P-gp is mainly 
addressing natural product toxins as substrates, compounds from 
natural origin are versatile starting points for design of new ligands. 
Due to the polyspecificity of the protein, complex methods such as 
self organising maps or random forest classification might pave the 
way for successful in silico screening approaches, targeted at 
natural compound libraries. However, within the past decade the 
focus of interest shifted towards the role of ABC-transporters for 
ADMET and drug/drug interactions. Several pharmaceutical 
companies established high throughput screening systems for 
measuring P-gp substrate properties of their compound libraries and 
in silico methods have been developed which reach classification 
accuracies in the range of 80%. In this case the most comprehensive 
data set available up to now uses data from the NCI60 screening 
library, which is mostly composed of natural product related toxins. 
Finally, the publication of the structure of mouse P-glycoprotein 
will aid in the understanding of the molecular principles underlying 
the ligand-polyspecificity of these transporters and pave the way for 
structure-based drug design approaches.   
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(E)-2-Methylthiocinnamaldehyde (1). Yield: 0.660 g (90%) yellow crystals; mp: 74-

76 °C. 1H NMR (CDCl3): δ 9.75 (AB-system, 1H, JAB=7.8 Hz), 8.03 (AB-system, 1H, 

JAB=15.8 Hz), 7.69-7.51 (m, 1H), 7.49-7.15 (m, 3H), 6.67 (2x AB-system, 1H, JAB=15.8 

Hz, JAB=7.8 Hz), 2.51 (s, 3H). 13C NMR (CDCl3): δ 193.9, 149.2, 139.8, 133.0, 131.2, 

129.9, 127.6, 127.3, 125.8, 16.7. MS m/z: 178 (9%, M+), 149 (75%), 134 (100%), 131 

(95%), 116 (12%). Anal. Calcd for C10H10OS: C 67.38; H 5.66. Found: C 67.60; H 5.45. 

3,4,5-Trimethoxycinnamaldehyde (2).1 Yield: 1.022 g (92%) pale yellow crystals; 

mp: 112-114°C. 1H NMR (CDCl3): δ 9.69 (AB-system, 1H, JAB=7.7 Hz), 7.40 (AB-

system, 1H, JAB=15.9 Hz), 6.80 (s, 2H), 6.64 (2x AB-system, 1H, JAB=15.9 Hz, JAB=7.7 

Hz), 3.91 (s, 9H). 13C NMR (CDCl3): δ 193.4,153.5, 152.7, 129.4, 127.9, 105.6, 61.0, 

56.2. MS m/z: 178 (9%, M+), 149 (75%), 134 (100%), 131 (95%), 116 (12%). 

(E)-3-(2,4,6-Trimethylphenyl)-1-(2’-methoxyphenyl)-2-propen-1-one (3).2 Yield: 

1.562 g (98%) white crystals; mp: 116-117 °C. 1H NMR (CDCl3): δ 7.80 (AB-system, 

1H, JAB=16.3 Hz), 7.71-7.60 (m, 1H), 7.53-7.40 (m, 1H), 7.12-6.88 (m, 5H), 3.87 (s, 

3H), 2.37 (s, 6H), 2.29 (s, 3H). 13C NMR (CDCl3): δ 192.9, 158.1, 141.5, 138.2, 137.1 

(2C), 132.9, 132.0, 131.7, 130.5, 129.1 (2C), 120.7, 111.4, 55.6, 21.1 (2C), 21.0. MS 

m/z: 280 (21%, M+), 265 (100%), 249 (14%), 135 (64%), 129 (30%). Anal. Calcd for 

C19H20O2x0.1H2O: C 80.88; H 7.22. Found: C 80.82; H 7.11. 

6-Methoxy-2-[1-naphthalen-2-yl-methylidene]-3,4-dihydro-2H-naphthalen-1-one 

(11).3 The compound was synthesized by using 2.5 mmol (0.441 g) 6-methoxy-1-

tetralone and 2.5 mmol (0.391 g) 2-naphthaldehyde. Yield: 0.130 g (17%) brown 

crystals. mp: 145-148°C. 1H NMR (CDCl3): δ 8.15 (d, J=8.7 Hz, 1H), 8.06-7.79 (m, 

5H), 7.63-7.42 (m, 3H), 6.90 (dd, J=8.7 Hz, J=2.4 Hz, 1H), 6.72 (d, J=2.4 Hz, 1H), 3.88 

(s, 3H), 3.30-3.11 (m, 2H), 3.03-2.85 (m, 2H). 13C NMR (CDCl3): δ 190.4, 163.6, 
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149.2, 145.7, 136.1, 135.9, 133.6, 133.1, 133.0, 130.8, 129.4, 128.3, 128.0, 127.7, 

127.3, 126.7, 126.4, 113.4, 112.3, 55.5, 29.3, 27.4. MS: m/z 314 (M+, 58%), 313 

(100%), 165 (25%), 141 (16%), 120 (18%). Anal. Calcd for C22H18O2: C 84.05; H 5.77. 

Found: C 83.77; H 5.90. 

 
Suppl figure 1. Correlation of P-gp inhibitory activity of compounds 3-24 (expressed as 

log (1/IC50) vs clogP of the ligands. 
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1. Table1 . Number of clusters obtained in common scaffold clustering in one run, in separate runs and the interacting 

amino acid residues 

 

 

 
# 
Compounds 

 (# of 
clusters) 
Clustering 
in one run 

(# of clusters) 
clustering in 
separate runs  

 
Interacting amino acid residue 

5a;  6a; 7a 
5a;  6a; 7a 
5b; 6b; 7b  
5b; 6b; 7b  
5a,b; 6a,b; 7b 
11a; 12a; 13a 
11b; 12b; 13b 
11b; 12b; 13b 

2 
1 
4 
1 
1 
4 
7 
1 

4 
1 
3 
1 
1 
7 
7 
1 

Try307,Tyr310,Phe343, Phe336, Gln347  
Phe951, Ser952, Cys956, Met69 
Try307,Tyr310,Phe343, Phe336, Gln347 
Tyr117, Ser952, Phe72, Met69  
Try307,Tyr310,Phe343, Phe336, Gln347  
Tyr307, Phe343, Ala342, Phe303 
Tyr307, Phe343, Ala342, Phe303 
Ala985, Ile765, Leu724 

 

2. Figure 1. Ligand protein interaction of the selected docking poses in different positions. 
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6a 
 
 
3. Figure 2 Comparison of the main positioning of the benzopyrano[3,4-b][1,4]oxazines with those of the both 

stereoisomers of cocrystallised tetrapeptides. 

 

 
4. Homology Modeling and Docking 

The homology model was generated with the modeling program Modeller 9v71 based on the sequence alignment suggested 
by Aller et al2. Using the automodel procedure 100 different homology models were created and refined. For a slight 
correction of the distorted TM helix 12 a secondary structure constraint was put on residues 885 – 918. The final model was 
selected on basis of the smallest number of outliers and a high DOPE score and was evaluated with the program 
PROCHECK3. The Ramachandran plot showed that 84.6 % of the residues lie in most favored, 12.5 % in additional 
allowed, 2.1 % in generously allowed regions and 0.8 % in disallowed regions. The 2.9 % of the residues that are in 
generously allowed or disallowed regions are located in the nucleotide binding domains (NBD) or extracellular loops (ECL) 
and are therefore not involved in drug binding. 
Compounds were docked into the homology model of human P-gp by using the software package GOLD, creating 100 
poses per ligand. The binding site was defined as covering the complete transmembrane region, which leads to distribution 
of poses in a large area. Ligand protein complexes were minimized by the LigX graphical interface implemented in MOE by 
using the MMFF94 force field. 

5. Biological Assay. The human T-lymphoblast cell line CCRF-CEM and the multidrug resistant CEM/vcr1000 cell line were 
provided by V. Gekeler (Byk Gulden, Konstanz, Germany). The resistant CEM/vcr1000 line was obtained by stepwise 
selection in vincristine containing medium. Cells were kept under standard culture conditions (RPMI1640 medium 
supplemented with 10% fetal calf serum). The P-gp-expressing resistant cell line was cultured in presence of 1000ng/ml 
vincristine. One week prior to the experiments cells were transferred into medium without selective agents or antibiotics. 
 Briefly, cells were pelleted, the supernatant was removed by aspiration and cells were resuspended at a density of 1 x 
106/ml in PRMI1640 medium containing 3µmol/l daunomycin. Cell suspensions were incubated at 37°C for 30min. After 
this time a steady state of daunorubicin accumulation was reached. Tubes were chilled on ice and cells were pelleted at 500 
x g. Cells were washed once in RPMI1640 medium to remove extracellular daunorubicin. Subsequently, cells were 
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resuspended in medium prewarmed to 37°C, containing either no modulator or chemosensitizer at various concentrations 
ranging from 3nM to 500 µM, depending on solubility and expected potency of the modifier. Generally, 8 serial dilutions 
were tested for each modulator. After 1, 2, 3 and 4 min aliquots of the incubation mixture were drawn and pipetted into 4 
volumes of ice cold stop solution (RPMI1640 medium containing verapamil at a final concentration of 100µM). Parental 
CCRF-CEM cells were used to correct for simple membrane diffusion, which was less than 3% of the efflux rates observed 
in resistant cells. Samples drawn at the respective time points were kept in an ice water bath and measured within one hour 
on a Becton Dickinson FACSCalibur (Becton Dickinson, Heidelberg, Germany) flow cytometer as described. Dose response 
curves were fitted to the data points using non-linear least squares and EC50 values were calculated as described1. EC50 
values of individual compounds are the average of at least triplicate determinations. A cv of below 20% was obtained in all 
determinations.  
 

6. General procedure for the enantiomerically pure (S,S) (4a) and (R,R)- epoxide (4b). Commercial household bleach 
(DanKlorix) was buffered to pH 11.3 with 0.05 N Na2HPO4 and 1N NaOH and then cooled to 0°C. To 1000 mL of this 
solution a solution of  3 (75.58 mmol) and Mn(III) Salen catalyst (2.74x10-3 mmol) in 76 mL of CH2Cl2 was added, stirred 
at 0°C for 5 hr and then at room temperature overnight. The mixture was filtered through Celite and the organic phase was 
separated, brined once, dried (Na2SO4) and brought to dryness. Purification by flash chromatography (petroleum ether-
ethylacetate; 8:2) yield 76.9% of (S,S)-4a and 78.9% of (R,R)-4b and as colourless crystals; mp 133-135oC; IR (KBr): 2227 
(CN) cm-1, 1280 (epoxide) cm-1;  δH (200MHz; CDCl3)  1.28 (s, 3H, CH3), 1.57(s, 3H, CH3), 1.57 (d, 1H, J = 4.52 Hz, 3-H/ 
4-H), 3.89 (d, 1H, J = 4.52 Hz, 3-H/ 4-H), 6.84 (d, 1H, J = 8.53 Hz, 8-H), 7.51 (dd, 1H, J = 2.00 Hz, J = 8.41 Hz, 7-H), 7.63 
(d, 1H, J = 2.01 Hz, 5-H); δC (CDCl3) 22.99(CH3),  25.46 (CH3), 49.34 (3-C), 62.27 (4-C), 74.64 (2-C), 104.27 (6-C), 
118.70 (CN), 119.00 (8-C), 121.67 (4a-C), 133.77, 134.38 (5-C, 7-C), 156.45 (8a-C). 

 
7. General procedure for L-amino acid-tert-Butyl Ester (5–7). A solution of enantiomeric pure epoxide 4a or 4b (4.97 

mmol) and corresponding L-amino acid-tert-butyl ester  (5.47 mmol) in 50 mL 96% ethanol was stirred at 80oC for 5 days, 
then evaporated in vacuo. Purification by flash chromatography (petroleum ether/ethylacetate = 8/2) yield  respective L- 
amino acid t-butyl ester (5-7).   

 
(3S,4R)-N-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-4yl)-L-alanine-tert-butyl-Ester (5a). 
(S,S)-epoxide 4a and L-alanine-tert-Butyl ester gave 5a yield 67% as yellowish oil; mp 145-147 °C; IR (KBr): 2225 (CN) 
cm-1, 1724 (COOR) cm-1; δH (200MHz; CDCl3) 1.20 (s, 3H, 2-CH3), 1.37 (d, 3H, J = 7.03 Hz, CHCH3), 1.41 (s, 9H, 
C(CH3)3), 1.43 (s, 3H, 2-CH3), 1.85 (br, 1H, NH), 3.37 (d, 1H, J = 10.04 Hz, 3-H), 3.44 (d, 1H, J = 10.29 Hz, 4-H), 3.58 (q, 
1H, J = 7.03 Hz, N-CH-COO), 4.60 (s, 1H, OH), 6.72 (d, 1H, J = 8.53 Hz, 8-H), 7.31 (dd, 1H, J = 2.01 Hz, J = 8.53 Hz, 7-
H), 7.54 ( d, 1H, J = 1.75 Hz, 5-H) ; δC (CDCl3) 18.80, 20.31 (2x2-CH3), 26.72 (CHCH3), 27.82 (C(CH3)3), 56.75 (N-CH-
CO, 4-C), 73.83 (3-C), 79.86 (C(CH3)3), 82.20 (2-C), 103.41 (6-C), 117.93 (8-C), 119.22 (CN), 126.31 (4a-C), 
131.80,132.38 (5-C, 7-C), 156.49 (8a-C), 176.66 (C=O); Ms m/z 347 (0.32, M+), 160 (29.7);  [α]D

20  +5.32 (c 0.141, in 
CH2Cl2); (Found: C, 65.69; H, 7.34; N, 8.20. C19H26N2O4 requires C, 65.88; H, 7.56; N, 8.09).  
(3R,4S)-N-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-4yl)-L-alanine-tert-butyl-Ester (5b). 
(R,R)-epoxide 4b and L-alanine-tert-Butyl ester gave 5b  yield 56%  as  yellowish oil; mp 101-102 °C; IR (KBr) 2226 (CN) 
cm-1, 1722 (COOR) cm-1; δH (200MHz; CDCl3) 1.18 (s, 3H, 2-CH3), 1.28 (d, 3H, J = 7.38 Hz, CHCH3 ), 1.43 (s, 9H, 
C(CH3)3), 1.46 (s, 3H, 2-CH3) 2.98 (q, 1H, J = 7.28 Hz, CHCH3), 3.13 (dd, 1H, J = 3.51 Hz, J = 9.92 Hz, 3-H), 3.78 (d, 1H, 
J = 9.79 Hz, 4-H), 4.03 (d, 1H, J = 3.51 Hz, OH), 6.81 (d, 1H, J = 8.54 Hz, 8-H), 7.40 (dd, 1H, J = 1.88 Hz, J = 8.47 Hz, 7-
H), 7.87 (d, 1H, J = 1.88 Hz, 5-H)¸ δC (CDCl3) 19.11 (2-CH3), 21.25 (2-CH3), 27.19 (CHCH3), 27.78 (C(CH3)3), 51.18 (N-
CH-CO), 56.42 (4-C), 70.86 (3-C), 79.68 (C(CH3)3), 82.35 (2-C), 103.78 (6-C), 118.21 (8-C), 119.48 (CN), 123.90 (4a-C), 
132.38, 132.52 (5-C,7-C), 157.77 (8a-C), 178.79 (C=O); MS m/z 347 (0.12, M+), 160 (24.7); [α]D

 20 -188.03 (c 0.117, in 
CH2Cl2; (Found: C, 66.13; H, 7.78; N, 7.88. C19H26N2O3 requires C, 88; H, 7.56; N, 8.09) 
(3S,4R)-N-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-4yl)-L-valine-tert-butyl-Ester (6a). (S,S)-
epoxide 4a and L-valine-tert-Butyl ester gave 6a yield 65% yellowish oil; mp 128-130 °C; IR (KBr): 2226 (CN) cm-1, 1721 
(CO), 3478 (OH) cm-1; δH (200MHz; CDCl3) 0.91, 1.05 (each d, each 3H, each J= 6.77 Hz, CH(CH3)2), 1.13 (s, 3H, 2-CH3), 
1.43 (s, 12H, CH3, C(CH3)3), 1.85 (br, 1H, NH), 2.01-2.15 (m, 1H, CH(CH3)2), 3.36 (d, 1H, J = 4.27 Hz, N-CH-CO), 3.42 
(br, 2H, 3-H, 4-H), 4.16 (s, 1H, OH), 6.74 (d, 1H, J= 8.53 Hz, 8-H), 7.33 (dd, 1H, J = 8.53/1.88 Hz, 7-H), 7.69 (d, 1H, J = 
1.88 Hz, 5-H); δC (CDCl3) 17.71 (CH-CH3), 18.82 (2-CH3), 19.51 (CH-CH3), 26.72 (2-CH3), 27.93 (C(CH3)3), 32.58 
(CH(CH3)2), 56.72 (4-C), 66.58 (N-CH-CO), 74.28 (3-C), 79.74 (C(CH3)3), 82.16 (2-C), 103.38 (6-C), 117.92 (8-C), 
119.28(CN), 126.40 (4a-C), 132.31 (5-C, 7-C), 156.49(8a-C) 176.02(C=O); Ms m/z 375 (0.79, M+), 273 (57.1%) 160 
(40.9%);  [α]D

 20 -30.00 (c 0.113, in CH2Cl2); (Found: C, 67.33; H, 7.98; N, 7.26. C21H30N2O4 requires C, 67.35; H, 8.07; N, 
7.48) 
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(3R,4S)-N-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-4yl)-L-valine-tert-butyl-Ester (6b). (R,R)-
epoxide 4b and L-valine-tert-Butyl ester gave 6b yield 60% yellowish oil; mp 79-81°C; IR (KBr): 2226 (CN) cm-1, 1703 
(C=O), 3493 (OH) cm-1; δH (200MHz; CDCl3) 0.98, 0.99 (each d, each 3H, each J= 6.77 Hz, CH(CH3)2), 1.17 (s, 3H, 2-
CH3), 1.44 (s, 12H, CH3, C(CH3)3), 1.86-2.01 (m, 1H, CH(CH3)2), 2.38 (br, 1H, NH), 2.76 (d, 1H, J = 4.26 Hz, N-CH-CO), 
3.15 (dd, 1H, J = 9.54/3.76 Hz, 3-H), 3.78 (d, 1H, J= 9.54 Hz, 4-H), 3.83 (d, 1H, J = 3.76 Hz, OH), 6.80 (d, 1H, J = 8.28 Hz, 
8-H), 7.39 (dd, 1H, J= 8.28/1.75 Hz, 7-H), 7.94 (d, 1H, J= 1.75Hz, 5-H ); δC (CDCl3) 17.66 (CH-CH3), 19.06 (2-CH3), 19.76 
(CH-CH3), 27.02 (2-CH3), 27.82 (C(CH3)3), 32.63 (CH(CH3)2), 56.54 (4-C), 60.55 (N-CH-CO), 71.01 (3-C), 79.58 
(C(CH3)3), 82.31 (2-C), 103.58 (6-C), 118.18 (8-C), 119.32(CN), 123.82 (4a-C), 132.40, 133.39 (5-C, 7-C), 157.75(8a-C) 
177.94(C=O); Ms m/z 375 (0.41%, M+), 273 (16%) 72 (100%);  [α]D

 20 -193.80 (c 0.129, in CH2Cl2); (Found: C, 67.58; H, 
8.01; N, 7.25. C21H30N2O4 requires C, 67.35; H, 8.07; N, 7.48) 
(3S,4R)-N-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-4yl)-L-phenylalanine-tert-butyl-Ester 
(7a). (S,S)-epoxide 4a and L-phenylalanine-tert-Butyl ester gave 7a  yield 59% yellowish oil;  mp 99-101oC; IR (KBr): 
2225 (CN) cm-1, 1722 (C=O), 3441 (OH) cm-1; δ H (200MHz; CDCl3) 1.11 (s, 3H, 2-CH3), 1.43 (s, 3H, 2-CH3), 1.48 (s, 9H, 
C(CH3)3), 1.71 (br, 1H, NH), 2.74 (dd, 1H, J = 12.70/10.36 Hz, benzyl Ha), 3.22 (dd, 1H, J = 12.70/3.53 Hz, benzyl Hb),  
3.31 (br, 2H, N-CH-CO, 3-H), 3.77 (dd, 1H, J= 9.79/3.41 Hz, 4-H), 4.34 (br, 1H, OH), 6.68 (d, 1H, J = 8.46 Hz, 8-H), 6.88 
(s, 1H, 5-H), 7.28-7.40 (m, 6-H, 7-H, phenyl-H); δC (CDCl3) 18.76 (2-CH3), 26.74 (2-CH3), 27.89 (C (CH3)3), 40.26 (benzyl 
CH2), 56.90 (4-C), 63.40 (N-CH-CO), 74.09 (3-C), 79.74 (C(CH3)3), 82.53 (2-C), 103.38 (6-C), 117.79 (8-C), 118.89 (CN), 
126.00 (4a-C), 127.66 (arm. CH), 129.01 (2x arom.CH), 129.06 (2x arom. CH), 131.25, 132.43 (5-C, 7-C), 137.05(arom.C), 
156.39 (8a-C), 175.50 (C=O); Ms m/z 423 (1.95%, M+), 275 (47.6%), 160 (89%); [α]D

 20 +0.90 (c 0.111, in CH2Cl2); 
(Found: C, 70.35; H, 7.09; N, 6.72. C25H30N2O4 requires C, 71.07; H, 7.16; N, 6.63) 
(3R,4S)-N-(6-cyano-3-hydroxy-2,2-dimethyl-2H-3,4-dihydro-1-benzopyran-4yl)-L-phenylalanine-tert-butyl-Ester 
(7b). (R, R)-epoxide 4b and L-phenylalanine-tert-Butyl ester gave 7b yield 53% yellowish oil;  mp 94-96 oC; IR (KBr): 
2229 (CN) cm-1, 1695 (C=O) cm-1; δH (200MHz; CDCl3) 1.20 (s, 3H, 2-CH3), 1.52 (s, 12H, 2- CH3, C(CH3)3), 2.40 (br, 1H, 
NH), 2.78 (dd, 1H, J = 13.27/8.84 Hz, benzyl Ha), 3.05 (dd, 1H, J= 13.27/4.17Hz, benzyl Hb), 3.18 (m, 2H, N-CH-CO, 3-
H), 3.79 (d, 1H, J = 9.98 Hz, 4-H), 3.93 (d, 1H, J=3.41 Hz, OH), 6.84 (d, 1H, J= 8.59Hz, 8-H), 7.12(s, 1H, 5-H), 7.27(m,1H, 
7-H), 7.33-7.46(m, 5H, phenyl-H); δC (CDCl3) 18.76 (2-CH3), 27.12 (2-CH3), 27.77 (C (CH3)3), 41.03 (benzyl CH2), 56.44 
(4-C), 57.27 (N-CH-CO), 71.00 (3-C), 79.54 (C(CH3)3), 82.66 (2-C), 103.77 (6-C), 118.07 (8-C), 119.28 (CN), 123.32 (4a-
C), 127.63 (arm. CH), 128.59 (2x arom. CH), 129.50 (2x arom.CH), 132.38, 132.63 (5-C, 7-C), 136.81(arom.C), 157.64 (8a-
C), 177.66 (C=O); Ms m/z 423 (2.44%, M+), 160 (59.5%), 120 (100%);  [α]D

 20  -117.5 (c 0.12, in CH2Cl2); (Found: C, 
70.88; H, 7.21; N, 6.56. C25H30N2O4 requires C, 71.07; H, 7.16; N, 6.63) 

 
8. General procedure for cyclisation. (4.61 mmol) of L-amino acid-tert-butyl ester (5-7) was dissolved in a small amount of  

CH2Cl2 , hydrolysed by  6 mL of 70% HClO4, stirred overnight, and 4N NH4OH solution was added slowly. The precipitate 
was dried and used in the next reaction step without further purification. A suspension of  precipitates  (2.76 mmol) , 4-
dimethylaminopyridine (0.69 mmol) and bis (2-oxo-3oxazolidinyl) phosphinic  chloride (4.12 mmol) in CH2Cl2 (50 mL) 
was heated to reflux at 80°C for 10 min, then triethylamine (0.95 mL, 6.85 mmol) was added and the solution was  refluxed 
at 70°C for 4 days. The suspension was filtered and evaporated to dryness. Purification was done by flash chromatography 
(petroleum ether/ethylacetate; 9:1) to yield the target compounds (11-13). 

 
(2S,4aS,10bR)-2,5,5-trimethyl-3-oxo-1,4a,5,10b-tetrahydro-3-H[1]benzopyrano[3,4-b][1,4]oxazine-9-carbonitril (11a) 
yield 52% as colourless crystals; mp 157-158oC; IR (KBr): 2224 (CN) cm-1; 1751 (lactone) cm-1; δH (200MHz; CDCl3) 1.31 
(s, 3H, 5-CH3), 1.52 (s, 3H, 5-CH3), 1.56 (d, 3H, J= 7.08 Hz, 2-CH3), 3.86-4.03 (m, 2H, N-CH-CO, 4a-H), 4.14 (d, 1H, J = 
10.30 Hz, 10b-H), 6.87 (d, 1H , J = 8.53 Hz, 7-H),  7.46 (dd, 1H, J = 8.53/2.02 Hz, 8-H), 7.84 (d, 1H, J = 2.02 Hz, 10-H); δC 
(CDCl3) 18.28 (5-CH3), 19.86 (5-C), 25.88 (2-CH3), 49.63 (10b-C), 54.21 (N-CH-CO), 78.07(5-C), 83.87 (4a-C), 104.25 (9-
C), 118.24 (7-C), 118.83 (CN), 121.89 (10a-C), 131.22, 133.45 (8-C, 10C), 155.59 (6a-C), 169.98 (C=O); MS m/z 272 
(3.37%, M+), 185 (39.6%), 170 (100%); [α]D

 20 +95.34 (c 0.118, in CH2Cl2); (Found: C, 65.94; H, 5.98; N,10.15. 
C15H16N2O3 requires C, 66.16; H, 5.92; N, 10.29) 
(2S,4aR,10bS)-2,5,5-trimethyl-3-oxo-1,4a,5,10b-tetrahydro-3-H[1]benzopyrano[3,4-b][1,4]oxazine-9-carbonitril (11b) 
yield 45% as colourless crystals; mp 125-127.5oC; IR (KBr) 2224 (CN) cm-1; 1737 (lactone); δH (200MHz; CDCl3) 1.31 (s, 
3H, 5-CH3), 1.52 (d, 3H, J = 7.03 Hz, 2-CH3), 1.55 (s, 3H, 5-CH3), 3.90 (q, 1H, J = 7.03 Hz, N-CH-CO), 4.05 (d, 1H, J = 
10.54 Hz, 4a-H), 4.21 (d, 1H, J = 10.29, 10b-H), 6.86 (d, 1H, J = 8.54 Hz, 7-H), 7.45 (dd, 1H, J = 1.88 Hz, J = 8.54 Hz, 8-
H), 7.77 (d, 1H, J = 1.88, 10-H); δC (CDCl3) 18.64, 19.93 (2x2-CH3), 26.19 (2-CH3), 47.36 (10b-C), 50.88 (N-CH-CO), 
77.93 (5-C), 81.08 (4a-C), 104.33 (9-C), 118.07 (7-C), 118.88 (CN), 122.62 (10a-C), 131.68, 133.25 (10-C, 8-C) 155.66 
(6a-C), 171.52 (C=O); MS m/z 273 (0.7, M+), 185 (35), 170 (100); [α]D

 20 -147.52 (c 0.101, in CH2Cl2); (Found: C, 66.27; 
H, 6.04; N, 10.05 C15H16N2O3 requires C, 66.16; H, 5.92; N, 10.29 ) 
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(2S,4aS,10bR)-2-isopropyl-5,5-dimethyl-3-oxo-1,4a,5,10b-tetrahydro-3-H[1]benzopyrano[3,4-b][1,4]oxazine-9-
carbonitril (12a) yield 66% as yellowish solid; mp 145-146oC; IR (KBr) 2220 (CN) cm-1; 1741 (lactone); δH (200MHz; 
CDCl3) 1.01, 1.13 (each d, each 3H, each J= 6.95 Hz, CH(CH3)2), 1.30 (s, 3H, 5-CH3), 1.53 (s, 3H, 5-CH3), 2.49-2.64 (m, 
1H, CH(CH3)2), 3.87 (d, 1H, J = 5.81Hz, N-CH-CO), 3.97 (d, 1H, J = 9.50 Hz, 4a-H), 4.06 (d, 1H, J= 9.50 Hz, 10b-H), 6.88 
(d, 1H, J = 8.58 Hz, 7-H), 7.48 (dd, 1H, J = 8.58/2.02 Hz, 8-H), 7.83 (s, 1H, 10-H); δC (CDCl3) 17.46 (CH-CH3), 19.05 (5-
CH3), 19.84 (CH-CH3), 25.92  (5-CH3), 31.00 (CH(CH3)2), 49.34 (10b-C), 63.77 (N-CH-CO), 78.02 (5-C), 83.16 (4a-C), 
104.37 (9-C), 118.32 (7-C), 118.87 (CN), 121.35 (10a-C), 131.31, 133.45 (8-C, 10-C), 156.00 (6a-C), 169.45 (C=O); Ms 
m/z 300 (0.80%, M+), 170 (100%);  [α]D

 20 +80 (c 0.05, in CH2Cl2); (Found: C, 67.78; H, 6.67; N, 9.08. C17H20N2O3 
requires C, 68.71; H, 6.71; N, 9.33) 
(2S,4aR,10bS)-2-isopropyl-5,5-dimethyl-3-oxo-1,4a,5,10b-tetrahydro-3-H[1]benzopyrano[3,4-b][1,4]oxazine-9-
carbonitril (12b) yield 80% as white crystals; mp 120-123 oC; IR (KBr) 2224 (CN) cm-1; 1745 (lactone), 1575 (NH); δH 
(200MHz; CDCl3) 1.02, 1.11 (each d, each 3H, each J= 6.82 Hz, CH(CH3)2), 1.28 (s, 3H, 5-CH3), 1.53 (s, 3H, 5-CH3), 1.66 
(br, 1H, NH), 2.38-2.54 (m, 1H, CH(CH3)2), 3.65 (br, 1H, 10b-H), 3.89 (t, 1H, J = 9.68 Hz, N-CH-CO), 4.15 (d, 1H, J = 
9.68 Hz, 4a-H), 6.87 (d, 1H, J = 8.52 Hz, 7-H), 7.47 (dd, 1H, J=8.52/1.77 Hz, 8-H), 7.90 (br, 1H, 10-H); δC (CDCl3) 17.47 
(CH-CH3), 19.62, 19.76 (CH-CH3, 5-CH3), 26.02 (5-CH3), 31.80  (CH(CH3)2), 49.30 (10b-C), 59.87 (N-CH-CO), 77.89 (5-
C), 82.45 (4a-C), 104.38 (9-C), 118.22 (7-C), 118.92 (CN), 122.11 (10a-C), 131.42, 133.39 (8-C, 10-C), 155.79 (6a-C), 
170.31(C=O); Ms, m/z 300 (0.66%,  M+), 185 (39.7%), 170 (92%);  [α]D

 20 -116.97 (c 0.109, in CH2Cl2); (Found: C, 67.94; 
H, 6.66; N, 9.32. C17H20N2O3 requires C, 67.98; H, 6.71; N, 9.33) 

(2S,4aS,10bR)-2-benzyl-5,5-dimethyl-3-oxo-1,4a,5,10b-tetrahydro-3-H[1]benzopyrano[3,4-b][1,4]oxazine-9-
carbonitril (13a) yield (51%) as yellowish solid; mp 140-142 °C; IR (KBr): 2226 (CN) cm-1, 1740 (lactone) cm-1; δH 
(200MHz; CDCl3) 1.29 (s, 3H, 5-CH3), 1.46 (s, 3H, 5-CH3), 3.23 (dd, 1H, J = 14.02/4.67 Hz, benzyl Ha), 3.47 (dd, 1H, J= 
14.02/5.69 Hz, benzyl Hb), 3.69(d, 1H, J = 10.11 Hz, 4a-H), 3.97(d, 1H, J = 10.11 Hz, 10b-H), 4.21 (dd, 1H, J = 5.69/4.67 
Hz, N-CH-CO), 6.84(d, 1H, J = 8.43 Hz, 7-H), 7.27-7.43 (m, 5H, phenyl-H), 7.61 (dd, 1H, J= 8.43/1.96 Hz, 8-H), 7.75 (d, 
1H, J = 1.96 Hz, 10-H); δC (CDCl3) 19.78 (5-CH3),  25.75 (5-CH3), 37.65 (benzyl CH2), 49.45 (10b-C), 59.38 (N-CH-CO), 
77.85 (5-C), 83.22 (4a-C) 104.26 (9-C), 118.18 (7-C), 118.80 (CN), 121.00 (10a-C), 127.47 (arom.CH), 129.07 (2x 
arom.CH), 129.37 (2x arom.CH), 131.13, 133.39 (8-C, 10-C), 135.99 (arom.C), 155.84 (6a-C), 169.27 (C=O); Ms m/z 348 
(3.05%, M+), 257 (17%), 170 (70.8%), 91 (100%);  [α]D

 20 +133.33 (c 0.12, in CH2Cl2); (Found: C,72.17; H, 5.86, N, 7.96. 
C21H20N2O3 requires C, 72.40; H, 5.79; N, 8.04) 
(2S,4aR,10bS)-2-benzyl-5,5-dimethyl-3-oxo-1,4a,5,10b-tetrahydro-3-H[1]benzopyrano[3,4-b][1,4]oxazine-9-
carbonitril (13b) yield  (45%) as yellowish oil; mp 202-201 °C; IR (KBr): 2223 (CN) cm-1, 1744 (lactone) cm-1; δH 
(200MHz; CDCl3) 1.05 (s, 3H, 5-CH3), 1.48 (s, 3H, 5-CH3), 1.83 (br, 1H, NH), 3.18 (dd, 1H, J= 13.56/6.44 Hz, benzyl Ha), 
3.28 (dd, 1H, J= 13.56/4.99 Hz, benzyl Hb), 3.45 (d, 1H, J= 10.11 Hz, 4a-H), 4.09 (d, 1H, J = 10.11 Hz, 10b-H), 4.11 (dd, 
1H, J = 6.44/4.99 Hz, N-CH-CO), 6.81(d, 1H, J = 8.53 Hz, 7-H), 7.27-7.32 (m, 5H, phenyl-H), 7.42 (dd, 1H, J= 8.53/2.02 
Hz, 8-H), 7.72 (br, 1H, 10-H); δC (CDCl3) 19.35 (5-CH3), 25.84 (5-CH3), 39.82 (benzyl CH2), 47.10 (10b-C), 56.77 (N-CH-
CO), 77.75 (5-C), 82.58 (4a-C) 104.26 (9-C), 118.03 (7-C), 118.91 (CN), 121.71 (10a-C), 127.08 (arom.CH), 128.59 (2x 
arom.CH), 129.64 (2x arom.CH), 131.02, 133.23 (8-C, 10-C), 137.26 (arom.C), 155.70 (6a-C), 170.11 (C=O); Ms m/z 348 
(2.38%, M+), 257 (20.5%), 170 (39.40%), 91 (100%);  [α]D

 20 -33.65 (c 0.104, in CH2Cl2); (Found: C, 72.20; H, 5.74; N, 
7.87. C21H20N2O3 requires C, 72.40; H, 5.79; N, 8.04) 
 
 
 
1. P. Chiba, G. Ecker, D. Schmid, J. Drach, B. Tell, S. Goldenberg and V. Gekeler, Mol Pharmacol, 1996, 49, 1122-

1130. 
 

9. 1H and 13C-NMR spectras of target compounds (11a-13b) 
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SM Figure 1. LipE distribution profiles of inhibitors of P-gp, SERT and hERG. A LipE 
value of greater than 5, clog ~2.5 and potency of ~10 nM are considered to be standard 
threshold of most promising ligands by Leeson et al.1 

 

 
SM Figure 2. (A) showing docking poses in 7 clusters based on common scaffold of 
ligands. (B) Docking poses of 23 in two different clusters containing all four ligands, 
poses with green and blue color are representatives of cluster 1 and 2 respectively. 

0

2

4

6

8

10

12

-5 0 5 10 15 20

pI
C

50

clogP

P-gp 

SERT

hERG



APPENDIX A3 

196 

 

 
 

SM Figure 3. Overlap of interacting amino acid residues of propafenone type inhibitors 
of P-gp.  

 

SM Figure 4. Photolabeled drug binding domains of propafenones analogous (TM3, 5, 
8 and 11) represented by gray color looking from outside in the binding pocket of P-
gp.1,2,3 Yellow regions represents TM5, 6, 7, 8, 9 and 12 as proposed interaction 
positions of benzophenones in present studies. 
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MDR DATA SET 

Code  IC50µM  SMILES  Reference 

WIESE_E106  0.68  S1c2cc(OCC)ccc2N(c2c1cccc2)CCCN1CCN(CC1)C 

WIESE_E095  0.11 
S1c2c(N(c3c1cccc3)CCCCNCC(c1ccccc1)c1ccccc1)c
ccc2 

WIESE_E085  1.48  S1c2c(N(c3c1cccc3)CCCCCCN1CCN(CC1)CCO)cccc2 

WIESE_E080  15.40  S1c2c(N(c3c1cccc3)CCOCCN1CCN(CC1)C)cccc2 

WIESE_E073  1.02 
S1c2c(N(c3c1cccc3)C(=O)CCCN1CCN(CC1)C)cc(cc2)
C(F)(F)F 

WIESE_E051  3.28  S1c2c3c(ccc2N(c2c1cccc2)CCN1CCCCC1)cccc3 

WIESE_E050  2.06  S1c2c(N(c3c1cccc3)CCN1CCCCC1)cccc2 

WIESE_E013  5.95 
S1c2c(N(c3c1cccc3)C(=O)CCCN1CCN(CC1)CCO)ccc
c2 

WIESE_E008  5.20  S1c2c(N(c3c1cccc3)C(=O)CCCN1CCN(CC1)C)cccc2 

WIESE_B015  0.45  S1c2c(N(c3c1cccc3)CCCN1CCNCC1)cc(cc2)C(=O)C 

WIESE_B013  3.30 
Clc1cc(N2CCN(CC2)CCCN2c3cc(Cl)ccc3Sc3c2cccc3)
ccc1 

WIESE_B011  2.19 
S1c2c(N(c3c1cccc3)CCCN1CCN(CC1)C)cc(cc2)C(=O)
CCC 

WIESE_B008  16.96 
S1(=O)c2c(N(c3c1cccc3)CCCN1CCN(CC1)C)cc(cc2)C
(=O)C 

WIESE_B007  0.99 
S1(=O)(=O)c2c(N(c3c1cccc3)CCCN1CCNCC1)cc(cc2
)C(F)(F)F 

WIESE_B006  3.49 
S1(=O)(=O)c2c(N(c3c1cccc3)CCCN1CCNCC1)cc(cc2
)C(=O)C 

WIESE_B005  0.55 
S1c2c(N(c3c1cccc3)CCCN1CCN(CC1)CCO)cc(cc2)C(
=O)CCC 

WIESE_B001  36.09 
S1(=O)(=O)c2c(N(c3c1cccc3)CCCN1CCN(CC1)C)cc(c
c2)C(=O)C 

UNT_REM 100  0.20  s1c2c(ccc3c2cccc3)c(CCc2ccccc2)c1C(O)CNC(C)C 

UNT_REM 097  0.46  s1c2c(ccc3c2cccc3)c(CCc2ccccc2)c1C(O)CNCCC 

UNT_REM 091  0.29  s1c2c(cccc2)c(CCc2ccccc2)c1C(O)CNCCC 

UNT_REM 044  0.31  s1c2c(cccc2)c(CCc2ccc(F)cc2)c1C(O)CNCCC 

UNT_REM 030  0.29  s1c2c(cccc2)c(CCc2ccc(cc2)C)c1C(O)CNCCC 

UNT_REM 025  0.64  s1c2c(cccc2)c(CCc2ccc(cc2)C)c1C(O)CNC(C)C 
SONST_Glybencl
amide  219.50 

Clc1cc(C(=O)NCCc2ccc(S(=O)(=O)NC(=O)NC3CCCC
C3)cc2)c(OC)cc1 

SONST_Fumitre
morginC  21.41 

O(C)c1cc2[nH]c3c(C=C4N(C3C=C(C)C)C(=O)C3N(CC
C3)C4=O)c2cc1 

RICHT_P018  37.98  O1C2C(=CN(CC)CC)C(=O)CCC2(c2cc(ccc12)C)C 

RICHT_P006  27.69  O1C2C(=CN3CCCCC3)C(=O)CCC2(c2cc(ccc12)C)C 

REC2252  0.42 
O(CCCCN(CC(CC(c1ccccc1)c1ccccc1)C)C)c1ccccc1C
(=O)CCc1ccccc1 

REC2223  0.68 
O(CCCN(CCC(c1ccccc1)c1ccccc1)C)c1ccccc1C(=O)C
CC=1C=CCCC=1 

REC2220  0.94 
O(CCN(C(CC(c1ccccc1)c1ccccc1)C)C)c1ccccc1C(=O)
CCc1ccccc1 

REC2219  3.03  O(CCNC)c1ccccc1C(=O)CCc1ccccc1 
 
 

REC2218  0.56  O(CCCN(Cc1ccccc1)C)c1ccccc1C(=O)CCc1ccccc1 

REC2203  0.91  O(CCCN(C(CC(c1ccccc1)c1ccccc1)C)C)c1ccccc1C(=
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O)CCC=1C=CCCC=1 

PCO_GP794PW  48.80 
O1c2c([C@H]3N[C@H](CO[C@@H]3C1(C)C)C(C)C)
cc(cc2)C#N 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP790PW  45.18 
ClC[C@@H](N(C)C1c2cc(ccc2OC(C)(C)C1O)C#N)C(
C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP788PW  35.22 
ClC[C@@H](N(C)[C@@H]1c2cc(ccc2OC(C)(C)[C@
H]1O)C#N)C(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP786  6.84 
O1c2c(cc(cc2)C#N)C(N([C@@H](C(C)C)CO)C)C(O)C
1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP784  5.46 
O1c2c(cc(cc2)C#N)[C@@H](N([C@@H](C(C)C)CO)
C)[C@H](O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP782  54.06 
O1c2c(cc(cc2)C#N)[C@@H](N[C@@H](C(C)C)CO)[
C@H](O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP778  2.69 
O1c2c([C@H]3N[C@@H](Cc4ccccc4)C(O[C@@H]3
C1(C)C)=O)cc(cc2)C#N 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP777  259.78 
O1C2C(N[C@@H](Cc3ccccc3)C1=O)c1cc(ccc1OC2(
C)C)C#N 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP774  0.55 
O1c2c(cc(cc2)C#N)[C@@H](N[C@@H](Cc2ccccc2)
C(OC(C)(C)C)=O)[C@H](O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP770  0.77 
O1c2c(cc(cc2)C#N)C(N[C@@H](Cc2ccccc2)C(OC(C)
(C)C)=O)C(O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP767  27.84  O1C2C(N(C)C(C(C)C)C1=O)c1cc(ccc1OC2(C)C)C#N 
Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP766  79.27 
O1c2c([C@H]3N(C)[C@H](C(C)C)C(O[C@@H]3C1(
C)C)=O)cc(cc2)C#N 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP764  47.84 
O1c2c([C@H]3N(C)C(C)C(O[C@@H]3C1(C)C)=O)cc
(cc2)C#N 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP763  1241.51 
O1c2c([C@H]3NC(C)C(O[C@@H]3C1(C)C)=O)cc(cc
2)C#N 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP761  76.90  O1C2C(N[C@@H](C)C1=O)c1cc(ccc1OC2(C)C)C#N 
Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP759  9.63  O1C2C(NC(C(C)C)C1=O)c1cc(ccc1OC2(C)C)C#N 
Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP758  59.33 
O1C2C(N[C@@H](C(C)C)C1=O)c1cc(ccc1OC2(C)C)
C#N 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP757  15.32 
O1c2c([C@H]3N[C@@H](C(C)C)C(O[C@@H]3C1(C
)C)=O)cc(cc2)C#N 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP754  3.96 
O1c2c(cc(cc2)C#N)[C@@H](N([C@H](C(OC(C)(C)C)
=O)C)C)[C@H](O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP750  3.72 
O1c2c(cc(cc2)C#N)C(N([C@H](C(OC(C)(C)C)=O)C)C
)C(O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP746  14.55 
O1c2c(cc(cc2)C#N)C(N[C@H](C(OC(C)(C)C)=O)C)C(
O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP742  29.85 
O1c2c(cc(cc2)C#N)[C@@H](N[C@H](C(OC(C)(C)C)
=O)C)[C@H](O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP730  1.35 
O1c2c(cc(cc2)C#N)C(N([C@@H](C(C)C)C(OC(C)(C)
C)=O)C)C(O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP726  0.96 
O1c2c(cc(cc2)C#N)[C@@H](N([C@@H](C(C)C)C(O
C(C)(C)C)=O)C)[C@H](O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP723  4.63 
O1c2c(cc(cc2)C#N)[C@@H](N[C@H](C(C)C)C(OC(C
)(C)C)=O)[C@H](O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP719  1.34 
O1c2c(cc(cc2)C#N)C(NC(C(C)C)C(OC(C)(C)C)=O)C(
O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO31  310.75  O1c2c(cc(cc2)C#N)C(NC)C(O)C1(C)C 

PCO29  35.62  O1c2c(cc(cc2)C#N)C(NCc2ccccc2)C(O)C1(C)C 

LACHM_Verb5  1874.00  O1c2c(cc(N)c(O)c2)C(=CC1=O)C 

LACHM_Verb3  225.70  O1c2c(cc(N)c(N3CCCC3CO)c2)C(=CC1=O)C 
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LACHM_Verb2  65.70 
O1c2c(cc([N+](=O)[O‐
])c(N3CCCC3CO)c2)C(=CC1=O)C 

HOLZ_THPROP  0.82  s1ccc(OCC(O)CNCCC)c1C(=O)CCc1ccccc1 

HOLZ_MB049  1.14  Ic1ccc(cc1)C(=O)c1cc(ccc1OCC(O)CNCCC)C 

HOLZ_MB043  0.86  Ic1ccccc1CN(CC(O)COc1ccccc1C(=O)c1ccccc1)C 

HOLZ_MB041  6.14 
Ic1ccc(cc1)C(=O)N(CCN(CC(O)COc1ccccc1C(=O)c1c
cccc1)C)C 

HOLZ_LAN9  95.20 
s1cccc1C(=O)C=1C(=O)N(N(CC(O)CNCCC)C=1C)c1c
cccc1 

HOLZ_LAN8  81.11 
O=C1N(N(CC(O)CNC(C)(C)C)C(C)=C1C(=O)c1ccccc1
)c1ccccc1 

HOLZ_LAN7  82.69 
O=C1N(N(CC(O)CNC(C)C)C(C)=C1C(=O)c1ccccc1)c1
ccccc1 

HOLZ_LAN6  122.53 
s1cccc1C(=O)C=1C(=O)N(N(CC(O)CNC(C)C)C=1C)c1
ccccc1 

 
 

HOLZ_LAN5  72.83 
s1cccc1C(=O)C=1C(=O)N(N(CC(O)CNC(C)(C)C)C=1C
)c1ccccc1 

HOLZ_LAN4  2.70 
O=C1N(N(CC(O)CNCCCC)C(C)=C1C(=O)CCc1ccccc1)
c1ccccc1 

HOLZ_LAN3  7.73 
O=C1N(N(CC(O)CNC(C)(C)C)C(C)=C1C(=O)CCc1cccc
c1)c1ccccc1 

HOLZ_LAN2  11.66 
O=C1N(N(CC(O)CNC(C)C)C(C)=C1C(=O)CCc1ccccc1
)c1ccccc1 

HOLZ_LAN10  184.72 
O=C1N(N(CC(O)CNCCC)C(C)=C1C(=O)c1ccccc1)c1c
cccc1 

HOLZ_LAN1  6.31 
O=C1N(N(CC(O)CNCCC)C(C)=C1C(=O)CCc1ccccc1)c
1ccccc1 

HOLZ_Kar1  3.73  O=C1N(N=C(C)C1C(=NCCC)CCc1ccccc1)c1ccccc1 

HOLZ_KAR9a  11.03  O=C(c1c(nn(c1NCCC)‐c1ccccc1)C)c1ccccc1 

HOLZ_GB010A  24.04 
O=C1N(N(CC(O)CN(C(C)C)C(C)C)C(C)=C1C(O)c1ccc
cc1)c1ccccc1 

HOLZ_GB007  1.21 
O(CC(O)CN(C(C)C)C(C)C)c1n(nc(C)c1C(=O)c1ccccc1
)C 

HOLZ_GB006  24.12 
O=C1N(N(CC(O)CN(C(C)C)C(C)C)C(C)=C1C(=O)c1cc
ccc1)C 

HOLZ_GB005  0.90 
O=C1N(N(CC(O)CN2CCN(CC2)c2ccccc2C)C(C)=C1C(
=O)c1ccccc1)c1ccccc1 

HOLZ_GB004  0.68 
O=C1N(N=C(C)C1=C(N1CCN(CC1)c1ccccc1C)c1cccc
c1)c1ccccc1 

HOLZ_GB001  15.69 
O=C1N(N(CC(O)CN(C(C)C)C(C)C)C(C)=C1C(=O)c1cc
ccc1)c1ccccc1 

HOLZ_BRI47/1  8.22  O=C(CCc1ccccc1)c1c(nn(c1NCCC)‐c1ccccc1)C 

HOLZ_BP037  5.50  O(CC(O)CN1CCCCC1)c1ccccc1C(O)c1ccccc1 

HOLZ_BP030  0.40 
[Si](OC(CN1CCCCC1)COc1ccccc1C(=O)c1ccccc1)(C(
C)(C)C)(c1ccccc1)c1ccccc1 

HOLZ_BP029  1.42 
O(CC(OC(=O)C)CN1CCCCC1)c1ccccc1C(=O)c1ccccc
1 

HOLZ_BP028  8.96  O(CC(O)CN1CCCCC1)c1ccccc1‐c1ncccc1 

HOLZ_BP026  1.33  O(CC(O)CN1CCCCC1)c1ccccc1NCc1ccccc1 

HOLZ_BP025  1.27 
O(CC(O)CN1CCCCC1)c1c2c(ccc1)C(=O)c1c(cccc1)C
2=O 

HOLZ_BP024  1.36 
O(CC(O)CN1CCCCC1)c1cc([N+](=O)[O‐
])ccc1C(=O)c1ccccc1 

HOLZ_BP023  1.15  O(CC(O)CN1CCCCC1)c1ccccc1Cc1ccccc1 

HOLZ_BP022  0.16  Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2‐
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c2nc3c(cc2)cccc3)cc1 

HOLZ_BP021  0.05 

O(C[C@H](O)CN1CCN(CC1)c1cccc(C)c1C)c1ccccc1‐
c1nc2c(cc1)cccc2 
 

HOLZ_BP020  0.04 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccccc1‐
c1nc2c(cc1)cccc2 

HOLZ_BP019  5.44 
O1CCN(CC1)C[C@@H](O)COc1ccccc1‐
c1nc2c(cc1)cccc2 

HOLZ_BP018  1.04  O(CC(O)CN1CCCCC1)c1ccccc1‐c1nc2c(cc1)cccc2 

HOLZ_BP017  2.75  O(CC(O)CN1CCCCC1)c1ccccc1C(=NOC)c1ccccc1 

HOLZ_BP015  8.07  O(CC(O)CN1CCCCC1)c1ccccc1C(=NO)c1ccccc1 

HOLZ_BP013  1.09  Clc1cc(OCC(O)CN2CCCCC2)ccc1C(=O)c1ccccc1 

HOLZ_BP011  0.55  O(CC(O)CN1CCCCC1)c1cc(OC)ccc1C(=O)c1ccccc1 

HOLZ_BP007  4.32  O(CC(O)CN1CCCCC1)c1nccnc1C(=O)c1ccccc1 

HOLZ_BP002  1.03  s1ccc(OCC(O)CNCCCC)c1C(=O)c1ccccc1 

HOLZ_BP001  1.17  s1ccc(OCC(O)CN2CCCCC2)c1C(=O)c1ccccc1 
Submitted in  J Med Chem 
(Chapter 6) 

HOLZ_B59  1.20  O(CC(O)CN1CCCCC1)c1ccccc1C(=O)c1ccccc1 

GPV0930  0.12 
O(CC(O)CN(C(C)C)C(C)C)c1ccc(cc1)C(=O)CCc1c2c(c
cc1)cccc2 

GPV0929  0.26 
O(CC(O)CN1CCCCC1)c1ccc(cc1)C(=O)CCc1c2c(ccc1
)cccc2 

GPV0927  0.44  O(CC(O)CN(C(C)C)C(C)C)c1ccc(cc1)C(=O)c1ccccc1 

GPV0926  0.26 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1cc(ccc1)C(=
O)CCc1c2c(ccc1)cccc2 

GPV0921  0.41 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccc(cc1)C(=O)C
Cc1c2c(ccc1)cccc2 

GPV0920  0.56 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccc(cc2)C(=O)CCc2c
3c(ccc2)cccc3)cc1 

GPV0902  0.58 
Fc1ccc(N2CCN(CC2)CC(O)COc2cc(ccc2)C(=O)c2ccc
cc2)cc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0901  7.84  O(CC(O)CN(C(C)C)C(C)C)c1ccc(cc1)C(=O)CC 
Submitted in  J Med Chem 
(Chapter 6) 

GPV0900  2.18  O(CC(O)CN1CCCCC1)c1ccc(cc1)C(=O)c1ccccc1 
Submitted in  J Med Chem 
(Chapter 6) 

GPV0899  5.32  O1CCN(CC1)CC(O)COc1ccc(cc1)C(=O)c1ccccc1 
Submitted in  J Med Chem 
(Chapter 6) 

GPV0898  0.02 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2C(=O)CCc2c3
c(ccc2)cccc3)cc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0896  0.08 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccccc1C(=O)
c1ccccc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0893  1.54 
O1CCN(CC1)CC(O)COc1ccc(cc1)C(=O)CCc1c2c(ccc1
)cccc2 

GPV0865  32.91  O(CC(O)CN1CCCCC1)c1ccc(cc1)C(=O)CC 

GPV0863  0.86 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccc(cc1)C(=O)C
C 

GPV0862  1.43 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccc(cc2)C(=O)CC)cc
1 

GPV0861  1.42 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccc(cc1)C(=
O)CC 

GPV0855  0.50 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccc(cc1)C(=O)c
1ccccc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0845  3.18 
O(CC(O)CN1CCN(CC1)c1ccc(cc1)C)c1ccc(cc1C(=O)
C)C 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0842  7.34  O(CC(O)CN1CCN(CC1)C(=O)Nc1ccc(cc1)C)c1ccc(cc
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1C(=O)C)C 

GPV0839  9.48 
O(CC(O)CN1CCN(CC1)C[C@@H](O)COc1ccccc1C(=
O)c1ccccc1)c1ccc(cc1C(=O)C)C 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0831  0.05 
O(CC(O)CN1CCN(CC1)CC(O)COc1ccccc1C(=O)c1ccc
cc1)c1ccccc1C(=O)c1ccccc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0826  0.48 
O(CC(O)CN1CCN(CC1)C(=O)Nc1ccc(cc1)C)c1ccccc1
C(=O)c1ccccc1 

Submitted in  J Med Chem 
(Chapter 6 

GPV0825  0.38 
S=C(Nc1ccc(cc1)C)N1CCN(CC1)CC(O)COc1ccccc1C(
=O)c1ccccc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0824  0.06 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccc(cc1C(=O
)CCc1ccccc1)C 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0823  0.24 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccc(cc2C(=O)CCc2cc
ccc2)C)cc1 

GPV0821  1.67  O1CCN(CC1)CC(O)COc1ccc(cc1C(=O)CCc1ccccc1)C 

GPV0818  0.27  O(CC(O)CN1CCCCC1)c1ccc(cc1C(=O)CCc1ccccc1)C 

GPV0810  0.33 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccc(cc1C(=O
)C)C 

GPV0809  3.60 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccc(cc2C(=O)C)C)cc
1 

GPV0808  6.13  O(CC(O)CN(C(C)C)C(C)C)c1ccc(cc1C(=O)C)C 

GPV0807  12.65  O1CCN(CC1)CC(O)COc1ccc(cc1C(=O)C)C 

GPV0806  10.77  O(CC(O)CN1CCCCC1)c1ccc(cc1C(=O)C)C 

GPV0798  0.12 
O(CC(O)CNCCC(c1ccccc1)c1ccccc1)c1ccccc1C(=O)C
C  Kaiser et al 20052 

GPV0797  0.17  O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccccc1C(=O)CC 

GPV0796  1.45  O(CC(O)CN1CCN(CC1)Cc1ccccc1)c1ccccc1C(=O)CC  Kaiser et al 2005 

GPV0795  4.29  O(CC(O)CN(C(C)C)C(C)C)c1ccccc1C(=O)CC  Kaiser et al 2005 

GPV0793  0.08 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccccc1C(O)C
Cc1ccccc1  Zdrazil 20073 

GPV0792  0.04 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccccc1C(OC)CC
c1ccccc1  Zdrazil 2007 

GPV0791  0.04 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccccc1C(O)CCc
1ccccc1  Zdrazil 2007 

GPV0790  0.08 
O(CC(O)CN1CCN(CC1)Cc1ccccc1)c1ccccc1C(OC)CC
c1ccccc1 

GPV0789  0.19 
O(CC(O)CN1CCN(CC1)Cc1ccccc1)c1ccccc1C(O)CCc
1ccccc1 

GPV0788  10.09  O(CC(O)CN(C(C)C)C(C)C)c1ccccc1C(=O)C 

GPV0704  0.87 
O(CC(O)CN1CCN(CC1)C(OC(C)(C)C)=O)c1ccccc1C(=
O)c1ccccc1 

GPV0703  0.09 
O(CC(O)CN1CCC(O)(CC1)c1ccccc1)c1ccc(OCc2cccc
c2)cc1C(=O)CCc1ccccc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0649  0.19 
O(CC(O)CNCCC(c1ccccc1)c1ccccc1)c1cc(ccc1)C(=O
)CCc1ccccc1  Klein et al, 20024 

GPV0647  0.07 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1cc(ccc1)C(=O)C
Cc1ccccc1  Klein et al, 2002 

GPV0645  0.18 
O(CC(O)CNCCC(c1ccccc1)c1ccccc1)c1ccc(cc1)C(=O
)C  Klein et al, 2002 

GPV0643  0.04 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1cc(OC)ccc1C(=
O)CCc1ccc(N(C)C)cc1  Klein et al, 2002 

GPV0636  0.12 
Clc1cc(C(=O)C)c(OCC(O)CN2CCN(CC2)c2ccccc2C)cc
1Cl  Klein et al, 2002 

GPV0626  0.25  O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccccc1C(=O)C  Klein et al, 2002 

GPV0616  0.21 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1cc(C)c(cc1C(=O
)C)C(=O)C  Klein et al, 2002 
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GPV0615  0.40 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccc(cc1C(=O)C)
C  Klein et al, 2002 

GPV0613  0.86 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccc(OC)cc1C(=
O)C  Klein et al, 2002 

GPV0610  0.01 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccccc1C(=O)CC
c1ccc(N(C)C)cc1  Klein et al, 2002 

GPV0608  0.30 
O(CC(O)CN1CCCCC1)c1cc(OC)ccc1C(=O)CCc1ccccc
1  Langer et al, 20045 

GPV0600  0.23 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccc(cc1)C(=
O)CCc1ccccc1  Langer et al, 2004 

GPV0595  48.92  O1c2c(cccc2)C(C)C1CN1CCCCC1  Klein et al, 2002 

GPV0594  1.62  O1c2c(cccc2)C(CCc2ccccc2)C1CN1CCCCC1  Klein et al, 2002 

GPV0591  103.57  O1c2c(cccc2)C(C)C1C(=O)N1CCCCC1  Klein et al, 2002 

GPV0590  6.66  O1c2c(cccc2)C(CCc2ccccc2)C1C(=O)N1CCCCC1  Klein et al, 2002 

GPV0579  0.38 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1cc(ccc1)C(=
O)C  Langer et al, 2004 

GPV0577  1.55  O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccc(cc1)C(=O)C  Langer et al, 2004 

GPV0576  0.01 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccccc1C(=O)
CCc1ccccc1  Langer et al, 2004 

GPV0571  1587.49  O(CC(O)=O)c1ccccc1C(=O)CCc1ccccc1  Klein et al, 2002 

GPV0570  23.18  O(CC(OCC)=O)c1ccccc1C(=O)CCc1ccccc1  Klein et al, 2002 

GPV0568  1251.09  O1c2c(cccc2)C(=O)CC1CN1CCOCC1 

GPV0566  8.86  O1c2c(cccc2)C(=O)CC1CN1CCN(CC1)Cc1ccccc1 

GPV0563  2.06  O1c2c(cccc2)C(=O)CC1CN1CCN(CC1)c1cccc(C)c1C 

GPV0562  17.72  Fc1ccc(N2CCN(CC2)CC2Oc3c(cccc3)C(=O)C2)cc1 

GPV0559  1.73  O1c2c(cccc2)C(CCc2ccccc2)C1C(O)CN1CCCCC1  Langer et al, 2004 

GPV0543  176.30  O1c2c(cccc2)C(=O)CC1CN1CCCCC1  Langer et al, 2004 

GPV0525  0.29 
O1CCN(CC1)CC(O)COc1c2c(CC(Cc3ccccc3)C2=O)cc
c1 

GPV0524  0.39 
O(CC(O)CN1CCN(CC1)c1ccc(OC)cc1)c1c2c(CC(Cc3c
cccc3)C2=O)ccc1 

GPV0523  0.17 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1c2c(CC(Cc3c
cccc3)C2=O)ccc1  Langer et al, 2004 

GPV0522  0.14 
O(CC(O)CN1CCCCC1)c1c2CC(Cc3ccccc3)C(=O)c2cc
c1  Langer et al, 2004 

GPV0491  0.29 
O(CC(O)CNC(C(C)(C)C)c1ccccc1)c1ccccc1C(=O)CCc
1ccccc1  Langer et al, 2004 

GPV0485  9.68  O(CC(O)CN1CCCCC1)c1c2c(CCC2=O)ccc1  Langer et al, 2004 

GPV0476  0.02 
Clc1cc(C(=O)CCc2ccccc2)c(OCC(O)CN2CCN(CC2)c2
ccccc2C)cc1Cl  Langer et al, 2004 

GPV0472  0.15 
O(CC(O)CNC(C1CCCCC1)c1ccccc1)c1ccccc1C(=O)C
Cc1ccccc1  Langer et al, 2004 

GPV0470  0.21 
O(CC(O)CNC(C(C)C)c1ccccc1)c1ccccc1C(=O)CCc1cc
ccc1  Langer et al, 2004 

GPV0442  1.21  O(CC(O)CNCCC)c1ccc(cc1C(=O)c1ccccc1)C 
Submitted in  J Med Chem 
(Chapter 6) 

GPV0409  1.84 
S(=O)(=O)(N(CCN(CC(O)COc1ccccc1C(=O)c1ccccc1)
C)C)c1c2c(ccc1)c(N(C)C)ccc2 

GPV0391  302.05  O1CCN(CC1)CC(O)COc1ccc(cc1)C(=O)C 

GPV0389  48.97  O(CC(O)CN1CCCCC1)c1ccc(cc1)C(=O)C  Langer et al, 2004 

GPV0388  0.13 
O(CC(O)CN1CCN(CC1)C(=O)c1ccccc1)c1ccccc1C(=
O)CCc1ccccc1  Langer et al, 2004 

GPV0386  10.07  Fc1ccc(N2CCN(CC2)CC(O)COc2cc(ccc2)C(=O)C)cc1  Langer et al, 2004 
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GPV0382  0.07 
O(CC(O)CN1CCC(O)(CC1)c1ccccc1)c1ccccc1C(=O)C
Cc1c2c(ccc1)cccc2  Langer et al, 2004 

GPV0381  0.30 
O(CC(O)CN1CCC(O)(CC1)c1ccccc1)c1ccccc1C(=O)C
C  Langer et al, 2004 

GPV0376  0.47 
O(CC(O)CN(C(C)C)C(C)C)c1ccccc1C(=O)CCc1c2c(cc
c1)cccc2  Langer et al, 2004 

GPV0366  1.69 
O(CC(O)CN(C(=O)c1ccccc1)CCC)c1ccccc1C(=O)CCc
1ccccc1  Langer et al, 2004 

GPV0363  0.19 
Fc1ccc(N2CCN(CC2)CCCCOc2ccccc2C(=O)CCc2cccc
c2)cc1  Langer et al, 2004 

GPV0361  1.01  O1CCN(CC1)CCCCOc1ccccc1C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0359  2.57 
O(CC(O)CNc1ccc([N+](=O)[O‐
])cc1)c1ccccc1C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0358  8.49 
FC(F)(F)c1ccc(NCC(O)COc2ccccc2C(=O)CCc2ccccc2
)cc1  Langer et al, 2004 

GPV0356  0.18 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccc(OC)cc1C(=
O)CCc1ccccc1  Langer et al, 2004 

GPV0339  1.54 
O(CC(O)CNc1ccc(cc1)C(OC)=O)c1ccccc1C(=O)CCc1
ccccc1  Langer et al, 2004 

GPV0338  0.34 
O(CC(OC(=O)C)CN1CCCCC1)c1ccccc1C(=O)CCc1ccc
cc1  Langer et al, 2004 

GPV0336  0.01 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccccc1C(=O)CC
c1ccc(OC)cc1  Langer et al, 2004 

GPV0334  0.02 
Clc1ccc(cc1)CCC(=O)c1ccccc1OCC(O)CN1CCN(CC1)
c1ccccc1C  Langer et al, 2004 

GPV0323  3.20  O(CC(O)CN1CCC(O)(CC1)c1ccccc1)c1ccccc1C(=O)C  Langer et al, 2004 

GPV0321  0.36  O(CC(O)CN1CCC(CC1)Cc1ccccc1)c1ccccc1C(=O)C  Langer et al, 2004 

GPV0317  0.31 
O(CC(O)CN1CCC(O)(CC1)c1ccccc1)c1ccccc1C(=O)c
1ccccc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0304  0.85  O(CC(O)CN1CCCCC1)c1ccccc1C(O)CCc1ccccc1 

GPV0265  0.40 
O(CC(O)CN1CCCCC1)c1ccccc1C(OC(C)(C)C)CCc1ccc
cc1 

GPV0264  0.46 
O(CC(O)CN1CCCCC1)c1ccccc1C(OC(C)C)CCc1ccccc
1 

GPV0254  0.53 
O(CC(O)CN1CCN(CC1)Cc1ccccc1)c1ccc(O)cc1C(=O)
CCc1ccccc1 

GPV0253  0.12 
O(CC(O)CN1CCN(CC1)Cc1ccccc1)c1ccc(OCc2ccccc2
)cc1C(=O)CCc1ccccc1 

GPV0246  0.08 
O(CC(O)CN(C(C)C)C(C)C)c1ccc(OCc2ccccc2)cc1C(=
O)CCc1ccccc1  Chiba et al, 19976 

GPV0245  1.04 
O(CC(O)CN(C(C)C)C(C)C)c1ccc(O)cc1C(=O)CCc1ccc
cc1  Chiba et al, 1997 

GPV0242  0.34  O(CC(O)CNC1CCCCC1)c1ccccc1C(=O)CCc1ccccc1 

GPV0240  6.47  O(CC(O)CNc1ccccc1)c1ccccc1C(=O)CCc1ccccc1 

GPV0233  1.73  O(CC(O)CN1CCCCC1)c1ccc(O)cc1C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0232  0.17 
O(CC(O)CN1CCCCC1)c1ccc(OCc2ccccc2)cc1C(=O)C
Cc1ccccc1  Chiba et al, 1997 

GPV0231  0.11 
O(CC(O)CNCCC)c1ccc(OCc2ccccc2)cc1C(=O)CCc1cc
ccc1  Chiba et al, 1998 

GPV0227  1.81  O1CCN(CC1)CC(O)COc1ccccc1C(OC)CCc1ccccc1  Langer et al, 2004 

GPV0226  9.54  O1CCN(CC1)CC(O)COc1ccccc1C(O)CCc1ccccc1  Langer et al, 2004 

GPV0220  0.75 
O(CC(O)CNCCC(c1ccccc1)c1ccccc1)c1ccccc1C(OC)C
Cc1ccccc1  Langer et al, 2004 

GPV0216  0.14  O(CCCCCCCCN1CCCCC1)c1ccccc1C(=O)CCc1ccccc1 

GPV0211  0.18  O(CCCCCCCN1CCCCC1)c1ccccc1C(=O)CCc1ccccc1  Langer et al, 2004 
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GPV0206  0.20  O(CCCCCCN1CCCCC1)c1ccccc1C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0201  0.24  O(CCCCCN1CCCCC1)c1ccccc1C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0195  0.53  O(CCCCN1CCCCC1)c1ccccc1C(=O)CCc1ccccc1  Klein et al, 2002 

GPV0189  1.45  O(CCN1CCCCC1)c1ccccc1C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0186  0.65  O(CCCN1CCCCC1)c1ccccc1C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0184  0.72 
O(CC(O)CNCCC(c1ccccc1)c1ccccc1)c1ccccc1C(=O)C
Cc1c2c(ccc1)cccc2  Langer et al, 2004 

GPV0182  10.40 
O(CC(O)CNC(c1ccccc1)c1ccccc1)c1ccccc1C(=O)CCc
1ccccc1  Langer et al, 2004 

GPV0181  0.80 
O(CC(O)CNCC(c1ccccc1)c1ccccc1)c1ccccc1C(=O)CC
c1ccccc1  Langer et al, 2004 

GPV0164  0.66  O(CC(O)CN(C(C)C)C(C)C)c1ccccc1C(OC)CCc1ccccc1  Langer et al, 2004 

GPV0163  1.74  O(CC(O)CN(C(C)C)C(C)C)c1ccccc1C(O)CCc1ccccc1  Langer et al, 2004 

GPV0159  0.92 
O(CC(O)CN(C(C)C)C(C)C)c1ccc(cc1)C(=O)CCc1ccccc
1  Langer et al, 2004 

GPV0156  0.23 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2C(OC)CCc2cc
ccc2)cc1  Langer et al, 2004 

GPV0155  0.67 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2C(O)CCc2ccc
cc2)cc1  Langer et al, 2004 

GPV0149  6.88  O1CCN(CC1)CC(O)COc1ccc(cc1)C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0135  0.42  O(CC(O)CN1CCCCC1)c1cc(ccc1)C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0134  2.54 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccc(cc2)C(=O)CCc2c
cccc2)cc1  Langer et al, 2004 

GPV0129  3.02  O(CC(O)CNCCC)c1ccc(O)cc1C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0128  0.26 
O(CC(O)CN1CCC(CC1)Cc1ccccc1)c1ccccc1C(=O)CCc
1ccccc1  Langer et al, 2004 

GPV0095  0.18 
o1c2c(cccc2)c(CCc2ccccc2)c1C(O)CN1CCN(CC1)c1c
cccc1OC  Klein et al, 2002 

GPV0094  1.10  o1c2c(cccc2)c(CCc2ccccc2)c1C(O)CNCCC  Langer et al, 2004 

GPV0092  11.52  o1c2c(cccc2)c(CC)c1C(O)CNCCC  Klein et al, 2002 

GPV0090  0.17  O(CC(O)CN1CCCCC1)c1ccccc1C(OC)CCc1ccccc1  Langer et al, 2004 

GPV0062  0.06 
O(CC(O)CN1CCC(O)(CC1)c1ccccc1)c1ccccc1C(=O)C
Cc1ccccc1  Langer et al, 2004 

GPV0056  0.32  O(CC(O)CN1CCCCC1)c1ccccc1C(=O)C=Cc1ccccc1 

GPV0051  2.32  O(CC(O)CN(CC)CC)c1ccccc1C(=O)c1ccccc1  Chiba et al, 1997 

GPV0050  0.42  O(CC(O)CN(CCC)C)c1ccccc1C(=O)CCc1ccccc1 

GPV0049  67.32  O1CCN(CC1)CC(O)COc1ccccc1C(=O)C 

GPV0048  2.48  O(CC(O)CN(C)C)c1ccccc1C(=O)CCc1ccccc1 

GPV0046  207.20  O1CCN(CC1)CC(O)COc1ccccc1C(=O)CC 

GPV0031  0.07 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2C(=O)CCc2cc
ccc2)cc1  Langer et al, 2004 

GPV0029  0.66 
O(CC(O)CN1CCN(CC1)Cc1ccccc1)c1ccccc1C(=O)CC
c1ccccc1  Langer et al, 2004 

GPV0023  0.68 
O(CC(O)CN1CCN(CC1)c1cc(OC)ccc1)c1ccccc1C(=O)
CCc1ccccc1  Langer et al, 2004 

GPV0019  0.61 
O(CC(O)CN1CCN(CC1)c1ccccc1)c1ccccc1C(=O)CCc
1ccccc1  Langer et al, 2004 

GPV0017  31.96  O(CC(O)CN1CCCCC1)c1ccccc1C(=O)C  Langer et al, 2004 

GPV0012  14.31  O(CC(O)CN1CCCCC1)c1ccccc1C(=O)CC  Langer et al, 2004 

GPV0009  0.38  O(CC(O)CN(C(C)C)C(C)C)c1ccccc1C(=O)CCc1ccccc1  Langer et al, 2004 
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GPV0001R  0.28  O(CC(O)CNCCC)c1ccccc1C(=O)CCc1ccccc1 

ERK_Ti93  0.84  S1CCCN(c2ccsc12)C(=O)CCNCCc1ccccc1 

ERK_Pi98t  1.42 
S1c2sccc2N(CCN(C)C)C(=O)C(OC(=O)C)C1c1ccc(OC
)cc1 

ERK_PA008  0.42 
S1c2sc(cc2N(CCN(C)C)C(=O)C(OC(=O)C)C1c1ccc(O
C)cc1)Cc1ccccc1 

ERK_MSD057Ox  10.79  s1c2SCCN(c2cc1CC)C(=O)NCCN1CCCC1 

ERK_MSD028  3.39  s1c2SCCN(c2cc1CC)C(=O)NCCCN(CC)CC 

ERK_MSD025  0.58  s1c2SCCN(c2cc1CC)C(=O)CCNCCc1cc(OC)c(OC)cc1 

ERK_MSD024  0.22 
s1c2SCCN(c2cc1CC)C(=O)CCN(CCc1cc(OC)c(OC)cc1
)C 

ERK_MSD023  38.20  s1c2SCCN(c2cc1CC)C(=O)NCCN(C)C 

ERK_MSD017  44.82  s1c2SCCN(c2cc1CC)C(=O)N1CCN(CC1)C 

ERK_MS098  26.07  s1c2SCCN(c2cc1CC)C(=NC#N)N1CCN(CC1)C 

ERK_MS087HCl  72.13  s1c2SCCN(c2cc1CC)C(=O)Nc1cccnc1 

ERK_MS083  0.49 
O1CCN(c2c1cccc2)C(=O)NCCN(CCc1cc(OC)c(OC)cc
1)C 

ERK_MS074HCl  20.23  s1c2SCCN(c2cc1CC)C(=S)N1CCN(CC1)C 

ERK_MS069HCl  119.37  s1c2SCCN(c2cc1CC)C(=O)c1cccnc1 

ERK_MS068HCl  0.28 
s1c2SCCN(c2cc1CC)C(=O)NCCN1CCc2cc(OC)c(OC)c
c2C1 

ERK_MS055Ox  28.89  s1c2SCCN(c2cc1CC)C(=O)NCCN1CCOCC1 

ERK_MS048Ox  5.12  s1c2SCCN(c2cc1CC)C(=O)N1CCN(CC1)Cc1ccccc1 

ERK_HO7Ox  0.36 
s1c2SCCN(c2cc1Cc1ccccc1)C(=O)NCCN(CCc1cc(OC
)c(OC)cc1)C 

ERK_HO5Ox  4.77  s1c2SCCN(c2cc1Cc1ccccc1)C(=O)N1CCN(CC1)C 

CSOEL_UCHL14  0.08 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2NC(OCCCC)=
O)cc1 

CSOEL_UCHL13  0.20 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2NC(OCCC)=O
)cc1 

CSOEL_UCHL12  0.33 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2NC(OCC)=O)c
c1 

AG‐
227/33912017  158.30  [N+]1(=NC(C=C1C)C)c1nnc(nn1)NN=Cc1cccnc1 
AG‐
205/37047268  0.82 

Clc1ccc(N2C(Nc3c(cccc3)C2=O)c2ccc(cc2)C(CC)C)c
c1 

AG‐
205/33114008  102.20  Oc1c(cccc1O)C=[NH+]NC(=O)C(=O)NC 
AF‐
399/34011064  17.70  Clc1cc(Cl)cc(Cl)c1NN=C(C(OCC)=O)C(OCC)=O 
AF‐
399/13927090  311.80  O(C(=O)c1ccc(N)cc1)CCOCC 

Test Set 

UNT_REM 104  2.89  s1c2c(cccc2)c(CCc2ccccc2)c1C(O)CNCCC 

UNT_REM 014  1.03  s1c2c(cccc2)c(CCc2ccccc2)c1C(O)CNC(C)C 

UNT_REM 013  1.46  s1c2c(cccc2)c(CCc2ccccc2)c1C(O)CNCCC 

PCO_GP780  0.01 
O1c2c(cc(cc2)C#N)[C@H](N[C@@H](C(C)C)CO)[C
@@H](O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP768  0.06 
O1C2C(N(C)[C@@H](C(C)C)C1=O)c1cc(ccc1OC2(C)
C)C#N 

Submitted in Eur J Med 
Chem (Chapter 3) 
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PCO_GP765  0.02 
O1c2c([C@H]3N(C)[C@@H](C(C)C)C(O[C@@H]3C
1(C)C)=O)cc(cc2)C#N 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP762  0.03 
O1C2C(N(C)[C@@H](C)C1=O)c1cc(ccc1OC2(C)C)C
#N 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP738  0.99 
O1c2c(cc(cc2)C#N)[C@@H](N([C@H](C(C)C)C(OC(
C)(C)C)=O)C)[C@H](O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

PCO_GP734  1.01 
O1c2c(cc(cc2)C#N)[C@H](N([C@H](C(C)C)C(OC(C)(
C)C)=O)C)[C@@H](O)C1(C)C 

Submitted in Eur J Med 
Chem (Chapter 3) 

HOLZ_BP031  0.41  O(CC(O)CN1CCCCC1)c1ccccc1‐c1nccc2c1cccc2 

HOLZ_BP027  0.80  O(CC(O)CN1CCCCC1)c1ccccc1CNc1ccccc1 

HOLZ_BP017a  0.73  O(CC(O)CN1CCCCC1)c1ccccc1C(=NOC)c1ccccc1 

HOLZ_BP016  0.16  O(CC(O)CN1CCCCC1)c1ccccc1C(=NO)c1ccccc1 

HOLZ_B047  0.11  O(CC(O)CN1CCCCC1)c1nccnc1C(=O)c1ccccc1 

GPV0936  17.02 
O(CC(O)CN(C(C)C)C(C)C)c1cc(ccc1)C(=O)CCc1c2c(c
cc1)cccc2 

GPV0935  6.90 
O(CC(O)CN1CCCCC1)c1cc(ccc1)C(=O)CCc1c2c(ccc1
)cccc2 

GPV0934  1.58 
O1CCN(CC1)CC(O)COc1cc(ccc1)C(=O)CCc1c2c(ccc1
)cccc2 

GPV0933  14.17 
Fc1ccc(N2CCN(CC2)CC(O)COc2cc(ccc2)C(=O)CCc2c
3c(ccc2)cccc3)cc1 

GPV0932  6.35 
Fc1ccc(N2CCN(CC2)CC(O)COc2cc(ccc2)C(=O)CCc2c
3c(ccc2)cccc3)cc1 

GPV0928  0.09  O1CCN(CC1)CC(O)COc1cc(ccc1)C(=O)c1ccccc1 

GPV0919  2.08 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccc(cc1)C(=
O)CCc1c2c(ccc1)cccc2 

GPV0906  4.87 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1cc(ccc1)C(=O)c
1ccccc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0904  0.28  O(CC(O)CN1CCCCC1)c1cc(ccc1)C(=O)c1ccccc1 
Submitted in  J Med Chem 
(Chapter 6) 

GPV0903  5.76 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1cc(ccc1)C(=
O)c1ccccc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0897  0.07  O1CCN(CC1)CC(O)COc1ccccc1C(=O)c1ccccc1 
Submitted in  J Med Chem 
(Chapter 6) 

GPV0859  1.53 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccc(cc1)C(=
O)c1ccccc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0854  1.03 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccc(cc2)C(=O)c2ccc
cc2)cc1 

GPV0840  0.29 
O(CC(O)CN1CCN(CC1)c1ccc(OC)cc1)c1ccc(cc1C(=O
)C)C 

GPV0794  1.20  Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2C(=O)CC)cc1  Zdrazil 2007 

GPV0787  0.45  Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2C(=O)C)cc1 

GPV0655  1.98 
O(CC(O)CNCCC(c1ccccc1)c1ccccc1)c1ccc(cc1)C(=O
)CCc1ccccc1  Klein et al, 2002 

GPV0653  0.29  O1CCN(CC1)CC(O)COc1cc(ccc1)C(=O)CCc1ccccc1  Klein et al, 2002 

GPV0651  7.30 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1cc(ccc1)C(=
O)CCc1ccccc1  Klein et al, 2002 

GPV0633  6.17 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1cc(ccc1C(=O)C)
C 

GPV0607  32.26 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1cc(OC)ccc1C(=
O)CCc1ccccc1 

GPV0598  5.00 
O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccccc1C(=O)
C  Langer et al, 2004 

GPV0596  1.86  O(CC(O)CN1CCN(CC1)c1ccccc1C)c1cc(ccc1)C(=O)C  Langer et al, 2004 

GPV0574  0.74  O(CC(O)CN1CCN(CC1)c1cccc(C)c1C)c1ccc(cc1)C(= Langer et al, 2004 
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O)C 

GPV0558  0.48  O1c2c(cccc2)C(CCc2ccccc2)C1C(O)CN1CCCCC1  Langer et al, 2004 

GPV0557  0.87  O1c2c(cccc2)C(CCc2ccccc2)C1C(O)CN1CCCCC1  Langer et al, 2004 

GPV0556  1.54  O1c2c(cccc2)C(CCc2ccccc2)C1C(O)CN1CCCCC1  Langer et al, 2004 

GPV0515  4.72 
O(CC(O)CN1CCCCC1)c1c2c(CC(Cc3ccccc3)C2=O)cc
c1  Klein et al, 2002 

GPV0512  0.09  O(CC(O)CN1CCCCC1)c1c2c(ccc1)C(=O)CC2  Klein et al, 2002 

GPV0479  0.18  O(CC(O)CN1CCCCC1)c1ccc(cc1C(=O)C)C  Langer et al, 2004 

GPV0390  0.08  Fc1ccc(N2CCN(CC2)CC(O)COc2ccc(cc2)C(=O)C)cc1  Langer et al, 2004 

GPV0385  0.11  O(CC(O)CN1CCCCC1)c1cc(ccc1)C(=O)C  Langer et al, 2004 

GPV0384  0.01  O1CCN(CC1)CC(O)COc1cc(ccc1)C(=O)C  Langer et al, 2004 

GPV0374  1.37 
O1CCN(CC1)CC(O)COc1ccccc1C(=O)CCc1c2c(ccc1)
cccc2  Langer et al, 2004 

GPV0360  0.61 
O(CC(O)CN(Cc1ccccc1)C(=O)CC)c1ccccc1C(=O)CCc
1ccccc1  Langer et al, 2004 

GPV0357  38.46 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccc(cc1C(=O)CC
c1ccccc1)C  Langer et al, 2004 

GPV0354  16.95 
Clc1cc(C(=O)CCc2ccccc2)c(OCC(O)CN2CCN(CC2)c2
ccccc2C)cc1  Langer et al, 2004 

GPV0337  26.32 
Clc1cc(ccc1Cl)CCC(=O)c1ccccc1OCC(O)CN1CCN(CC
1)c1ccccc1C 

GPV0335  55.56 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccccc1C(=O)CC
c1ccc(cc1)C  Langer et al, 2004 

GPV0319  6.80 
Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2C(=O)c2ccccc
2)cc1 

Submitted in  J Med Chem 
(Chapter 6) 

GPV0303  0.67  O(CC(O)CN1CCCCC1)c1ccccc1C(O)CCc1ccccc1 

GPV0302  1.14  O(CC(O)CN1CCCCC1)c1ccccc1C(O)CCc1ccccc1  Chiba et al, 1998 

GPV0301  0.59  O(CC(O)CN1CCCCC1)c1ccccc1C(O)CCc1ccccc1 

GPV0238  1.39 
O(CC(O)CNCCC(c1ccccc1)c1ccccc1)c1ccccc1C(=O)C
Cc1ccccc1 

GPV0180  5.81 
O(CC(O)CN1CCCCC1)c1ccccc1C(=O)CCc1c2c(ccc1)c
ccc2 

GPV0157  0.89 
Fc1ccc(N2CCN(CC2)CC(O)COc2cc(ccc2)C(=O)CCc2c
cccc2)cc1  Langer et al, 2004 

GPV0093  0.94  o1c2c(cccc2)c(CCc2ccccc2)c1C(O)CNCCC  Klein et al, 2002 

GPV0088  1.11  O(CC(O)CN1CCCCC1)c1ccccc1C(O)CCc1ccccc1 

GPV0073  1.03  O(CC(O)CN1CCCCC1)c1ccc(cc1)C(=O)CCc1ccccc1  Klein et al, 2002 

GPV0057  0.27  O1CCN(CC1)CC(O)COc1ccccc1C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0045  0.48  Fc1ccc(N2CCN(CC2)CC(O)COc2ccccc2C(=O)C)cc1 

GPV0027  37.45 
O(CC(O)CN1CCN(CC1)c1ccccc1C)c1ccccc1C(=O)CC
c1ccccc1  Langer et al, 2004 

GPV0025  3.90 
O(CC(O)CN1CCN(CC1)c1ccc(OC)cc1)c1ccccc1C(=O)
CCc1ccccc1  Langer et al, 2004 

GPV0021  4.35 
O(CC(O)CN1CCN(CC1)c1ccccc1OC)c1ccccc1C(=O)C
Cc1ccccc1  Langer et al, 2004 

GPV0005  1.67  O(CC(O)CN1CCCCC1)c1ccccc1C(=O)CCc1ccccc1  Langer et al, 2004 

GPV0002  1.10  O(CC(O)CN(CC)CC)c1ccccc1C(=O)CCc1ccccc1 

GPV0001S  2.09  O(CC(O)CNCCC)c1ccccc1C(=O)CCc1ccccc1 

GPV0001  3.04  O(CC(O)CNCCC)c1ccccc1C(=O)CCc1ccccc1 

ERK_MS084Ox  0.74 
O1CCN(c2c1cccc2)C(=O)NCCN(CCc1cc(OC)c(OC)cc
1)C 
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SERT DATA SET  
 
#  ChEMBL_ID  pIC50  SMILES 

1  102223  9.09  FC(F)(F)c1ccc(OC(CCNC)c2ccccc2)cc1 

2  104584  2.96  Oc1cc(ccc1O)CCN 

3  106643  9.89  Fc1ccc(cc1)[C@@H]1CCNC[C@H]1COc1cc2OCOc2cc1 

4  114193  10.10  Br\C=C/c1ccc(cc1)C1CC2N(C(CC2)C1C(OC)=O)C 

5  114239  6.41  Clc1ccc(cc1)C1CC2N(C(CC2)C1C(Oc1ccccc1)=O)C 

6  114240  9.44  Ic1ccc(cc1)C1CC2NC(CC2)C1C(OC)=O 

7  114241  8.38  Ic1ccc(cc1)C1CC2N(C(CC2)C1C(OC)=O)C 

8  114255  8.87  Br\C(\Br)=C\c1ccc(cc1)C1CC2N(C(CC2)C1C(OC)=O)C 

9  114256  9.96  I\C=C/c1ccc(cc1)C1CC2N(C(CC2)C1C(OC)=O)C 

10  114263  8.05  O1CCNCC1C(Oc1ccccc1OCC)c1ccccc1 

11  114309  10.30  I\C=C/c1ccc(cc1)C1CC2NC(CC2)C1C(OC)=O 

12  114353  10.10  Br\C(\Br)=C\c1ccc(cc1)C1CC2NC(CC2)C1C(OC)=O 

13  114367  8.80  Fc1ccc(cc1)C1(OCc2c1ccc(c2)C#N)CCCN(C)C 

14  114378  10.40  Br\C=C/c1ccc(cc1)C1CC2NC(CC2)C1C(OC)=O 

15  126465  6.70  Clc1cc(N2CCN(CC2)CCCN2N=C(N(CCOc3ccccc3)C2=O)CC)ccc1 

16  127278  8.05  O(C)c1ccc(cc1)C(CN(C)C)C1(O)CCCCC1 

17  127714  9.28  Brc1cc(CO)c(Sc2ccccc2CN(C)C)cc1 

18  128068  9.60  S(c1ccccc1CN(C)C)c1ccc(cc1N)C 

19  128220  6.08  Ic1cc(N)c(Sc2ccccc2CN(C)C)cc1 

20  135586  5.68  O(C(c1ccccc1)c1ccccc1)CCN1CCN(CC1)CCCc1ccccc1 

21  146076  6.48  O(C(=O)c1ccccc1)C1C[C@@H]2[N@](C(CC2)C1C(OC)=O)C 

22  146385  7.30  Clc1ccc(cc1)C1(O)N2C(=NCC2)c2c1cccc2 

23  149842  4.19  O(C(=O)C(C1NCCCC1)c1ccccc1)C 

24  153616  9.54  Clc1cc(ccc1Cl)[C@@H]1CC[C@H](NC)c2c1cccc2 

25  166246  6.69  O(C(CCNC)c1ccccc1)c1ccccc1OC 

26  166727  7.92  Clc1cc(ccc1Cl)[C@H]1CC2N(C(CC2)[C@H]1C(OC)=O)C 

27  185619  7.13  O(C)c1cc2CCN(Cc2cc1)C1CCC(CC1)c1c2cc(ccc2[nH]c1)C#N 

28  185656  8.39  O(C)c1cc2CCN(Cc2cc1)C1CCC(CC1)c1c2cc(ccc2[nH]c1)C#N 

29  185717  8.35  [nH]1cc(c2cc(ccc12)C#N)C1CCC(N2CCc3c(C2)cccc3)CC1 

30  185740  7.04  [nH]1cc(c2cc(ccc12)C#N)C1CCC(N2CCc3c(C2)cccc3)CC1 

31  186089  8.05  O(C(CCNC)c1ccccc1)c1ccccc1C 

32  200496  5.62 
O(C(=O)[C@@H]1[C@@H]\2C[C@@H]3 
[N@@](C/C/2=C\c2ccccc2)C1CC3)C 

33  200530  7.52 
Clc1cc(ccc1Cl)\C=C/1\[C@H]2C[C@@H]3 
[N@@](C\1)C(CC3)[C@@H]2C(OC)=O 

34  200531  7.28 
O(C)c1ccc(cc1)\C=C/1\[C@H]2C[C@@H]3 
[N@@](C\1)C(CC3)[C@@H]2C(OC)=O 

35  204260  7.41  O(C(=O)C1C2N(C(CC1c1cc(ccc1)‐c1ccccc1)CC2)C)C 

36  204525  8.91  Ic1cc(ccc1)C1CC2NC(CC2)C1C(OC)=O 

37  204526  7.13  s1cc(cc1)‐c1cc(ccc1)C1CC2N(C(CC2)C1C(OC)=O)C 

38  204735  6.05  Fc1ccc(cc1)CCNCC1CCCN(C1)CCOC(c1ccccc1)c1ccccc1 

39  204970  7.26  o1cccc1‐c1cc(ccc1)C1CC2N(C(CC2)C1C(OC)=O)C 
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40  205064  6.68  O(C(c1ccccc1)c1ccccc1)CCNCC1CCCN(C1)CCCc1ccccc1 

41  205104  5.85  O(C(c1ccccc1)c1ccccc1)CCN(C)C1CCN(CC1)CCCc1ccccc1 

42  205443  8.02  Ic1cc(ccc1)C1CC2N(C(CC2)C1C(OC)=O)C 

43  205523  6.28  Fc1ccc(cc1)CCN(CC1CCCN(C1)CCOC(c1ccccc1)c1ccccc1)C 

44  205555  6.46  Fc1ccc(cc1)CCN1CC(CCC1)CNCCOC(c1ccccc1)c1ccccc1 

45  205753  7.26  O(C(c1ccccc1)c1ccccc1)CCN1CCC(NCCCc2ccccc2)CC1 

46  205779  7.06  O(C(c1ccccc1)c1ccccc1)CCN1CCC(N(CCCc2ccccc2)C)CC1 

47  205780  6.66  Fc1ccc(cc1)CCNC1CCN(CC1)CCOC(c1ccccc1)c1ccccc1 

48  205781  6.49  O(C(c1ccccc1)c1ccccc1)CCN1CC(CCC1)CNCCCc1ccccc1 

49  205788  5.67  O(C(c1ccccc1)c1ccccc1)CCNC1CCN(CC1)Cc1ccccc1 

50  207150  6.99 
Clc1ccc(cc1)C1CC2N(C(CC2)C1C(=O)NCCCCCCN 
C(=O)C1C2N(C(CC1c1ccc(Cl)cc1)CC2)C)C 

51  207151  8.10 
Clc1ccc(cc1)C1CC2N(C(CC2)C1C(=O)NCCCCCCCCN 
C(=O)C1C2N(C(CC1c1ccc(Cl)cc1)CC2)C)C 

52  207152  5.50 
Clc1ccc(cc1)C1CC2N(C(CC2)C1C(=O)NCCCCNC(=O) 
C1C2N(C(CC1c1ccc(Cl)cc1)CC2)C)C 

53  207153  7.35  Clc1ccc(cc1)C1CC2N(C(CC2)C1C(OC)=O)C 

54  207666  6.45 
Clc1ccc(cc1)C1CC2N(C(CC2)C1C(=O)NCCCNC(=O) 
C1C2N(C(CC1c1ccc(Cl)cc1)CC2)C)C 

55  214406  4.76  O1CCNCC1COc1ccccc1OCC 

56  233091  9.17  Ic1ccc(cc1)[C@H]1C[C@@H]2[N@@](C(CC2)[C@H]1C(OC)=O)C 

57  236836  4.00  O(C)c1cc(ccc1OC)C1=NNC(=O)C2C1CC=CC2 

58  260577  6.75  O(C(=O)C1C2[N@](C(C[C@@H]1c1ccccc1)CC2)C)C 

59  261229  5.49  Fc1ccc(cc1)C(OC1CC2N(C(C1)CC2)C)c1ccc(F)cc1 

60  265576  3.21  O(C(=O)c1ccccc1‐c1cc2c(cc1)cccc2)C 

61  272541  9.48  S(c1ccccc1CN(C)C)c1ccc(cc1N)C(F)(F)F 

62  272642  8.96  S(c1ccccc1CN(C)C)c1ccc(cc1N)C#N 

63  272866  9.57  Clc1cc(N)c(Sc2ccccc2CN(C)C)cc1 

64  272867  8.72  S(c1ccccc1CN(C)C)c1ccc(OC)cc1N 

65  283149  7.92  O(C)c1cc2c(cc(cc2)[C@H]2C3CC(CC3)[C@@H]2CNC)cc1 

66  283190  8.44  N(C[C@H]1C2CC(CC2)[C@@H]1c1cc2c(cc1)cccc2)C 

67  283225  8.64  N(C[C@H]1C2CC(CC2)[C@@H]1c1cc2c(cc1)cccc2)(C)C 

68  283226  7.28  N(CC1C2CC(CC2)C1c1c2c(ccc1)cccc2)(C)C 

69  283269  8.55  N(CC1C2CC(CC2)C1c1cc2c(cc1)cccc2)(C)C 

70  283270  8.24  N(C[C@@H]1C2CC(CC2)[C@H]1c1cc2c(cc1)cccc2)(C)C 

71  283772  7.24  Clc1cc(ccc1Cl)[C@H]1C2CCC(CC2)[C@H]1CN(C)C 

72  283813  8.31  N(CC1C2CC(CC2)C1c1cc2c(cc1)cccc2)C 

73  283814  7.60  O(C)c1cc2c(cc(cc2)[C@H]2C3CC(CC3)[C@@H]2CN(C)C)cc1 

74  283891  8.59  Fc1cc2c(cc(cc2)[C@H]2C3CC(CC3)[C@@H]2CN(C)C)cc1 

75  283892  7.60  Clc1cc(ccc1)[C@H]1C2CCC(CC2)[C@@H]1CN(C)C 

76  283893  7.33  O(C)c1cc2c(cc(cc2)[C@H]2C3CC(CC3)[C@@H]2CNC)cc1 

77  283894  8.36  Fc1cc2c(cc(cc2)[C@H]2C3CC(CC3)[C@@H]2CNC)cc1 

78  286129  11.00  S(C)c1ccc(cc1)C1c2c(C3N(C1)CCC3)cccc2 

79  286845  10.01  Ic1cc(CO)c(Sc2ccccc2CN(C)C)cc1 

80  292607  2.51  s1cccc1[C@@H](Oc1c2c(ccc1)c(OS(=O)(=O)[O‐])c(OC)cc2)CCNC.[Na+] 
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81  292608  2.84  s1cccc1[C@@H](Oc1c2c(cc(OC3OC(C(O)=O)C(O)C(O)C3O)cc2)ccc1)CCNC 

82  292634  4.19  s1cccc1[C@@H](Oc1c2c(cccc2)c(O)cc1)CCNC 

83  292635  5.97  s1cccc1[C@@H](Oc1c2c(cc(O)cc2)ccc1)CCNC 

84  292643  2.00  s1cccc1[C@@H](Oc1c2c(cccc2)c(OC2OC(C(O)=O)C(O)C(O)C2O)cc1)CCNC 

85  292644  4.50  s1cccc1[C@@H](Oc1c2c(ccc1)c(O)c(O)cc2)CCNC 

86  292867  5.44  S(c1ccccc1CN(C)C)c1ccc(OC)cc1N 

87  292899  3.58  s1cccc1[C@@H](Oc1c2c(ccc1)c(O)c(OC)cc2)CCNC 

88  292900  5.02  s1cccc1[C@@H](Oc1c2c(ccc1)c(O)ccc2)CCNC 

89  292908  9.10  s1cccc1[C@@H](Oc1c2c(ccc1)cccc2)CCNC 

90  293317  2.00 
s1cccc1[C@@H](Oc1c2c(ccc1)c(OC1OC(C(O)=O)C(O)C(O)C1O)c(OC1OC(C(O)
=O)C(O)C(O)C1O)cc2)CCNC 

91  293318  2.00  s1cccc1[C@@H](Oc1c2c(ccc1)c(OC1OC(C(O)=O)C(O)C(O)C1O)c(OC)cc2)CCNC 

92  299712  5.82  O(C(c1ccccc1)c1ccccc1)CCN(CCCN(CCc1ccccc1)C)C 

93  299713  6.94  Fc1ccc(cc1)C(OCCN1CCN(CC1=O)CCc1ccccc1)c1ccc(F)cc1 

94  299920  6.90  Fc1ccc(cc1)C(OCCNCCCNCCc1ccccc1)c1ccc(F)cc1 

95  299921  5.94  Fc1ccc(cc1)C(OCCNCCCNC(=O)Cc1ccccc1)c1ccc(F)cc1 

96  299924  6.28  Fc1ccc(cc1)C(OCCNCCCCNC(=O)Cc1ccccc1)c1ccc(F)cc1 

97  299926  6.11  Fc1ccc(cc1)C(OCCN(CCN(CCOC(c1ccc(F)cc1)c1ccc(F)cc1)C)C)c1ccc(F)cc1 

98  299953  5.23  O=C1N(CCN(C1)CCOC(c1ccccc1)c1ccccc1)CCCc1ccccc1 

99  300006  6.26  Fc1ccc(cc1)CCN(CCN(CCOC(c1ccccc1)c1ccccc1)C)C 

100  300010  6.36  O(C(c1ccccc1)c1ccccc1)CCN(CCCN(CCCc1ccccc1)C)C 

101  300046  6.25  Fc1ccc(cc1)C(OCCNCCNC(=O)Cc1ccccc1)c1ccc(F)cc1 

102  300049  6.45  Fc1ccc(cc1)C(OCCNCCNC(=O)Cc1ccc(F)cc1)c1ccc(F)cc1 

103  300050  6.23  Brc1ccc(cc1)CC(=O)N\C=C\NCCOC(c1ccc(F)cc1)c1ccc(F)cc1 

104  318085  8.64  OC1(N2C(=NCC2)c2c1cccc2)c1cc2c(cc1)cccc2 

105  318244  7.96  OC1(N2C(=NCC2)c2c1ccc1c2cccc1)c1cc2c(cc1)cccc2 

106  318269  7.59  Clc1ccc(cc1)C1N2C(=NCC2)c2c1cccc2 

107  318272  8.26  Clc1ccc(cc1)C1(O)N2C(=NCCC2)c2c1ccc1c2cccc1 

108  318273  6.65  Clc1ccc(cc1)C1(O)N2C(=NCCC2)c2c1cccc2 

109  318282  7.41  Clc1ccc(cc1)C1(O)N2C(=NCCC2)c2c1cccc2 

110  318306  7.42  Clc1ccc(cc1)C1(O)N2C(=NCC2)c2c1cccc2F 

111  318401  5.75  OC1(N2C(=NCC2)c2c1cccc2)c1ccccc1 

112  318763  6.22  Clc1ccc(cc1)C1(O)N2[C@@H]3[C@@H](N=C2c2c1cccc2)CCCC3 

113  318824  5.70  Clc1ccc(cc1)C1(O)N2C(=NCC2)c2c1c(OC)ccc2 

114  318825  5.87  Clc1cc2c(cc1Cl)C=1N(CCN=1)C2(O)c1ccc(Cl)cc1 

115  318833  7.25  O(C)c1ccc(cc1)C1(O)N2C(=NCCC2)c2c1cccc2 

116  318853  7.11  OC1(N2C(=NCCC2)c2c1cccc2)c1ccc(O)cc1 

117  318935  6.06  Clc1ccc(cc1)C1(O)N2C(=NCC2)c2c1cccc2OC 

118  318936  5.99  Clc1ccc(cc1)C1(O)N2C(=NCC2)c2c1cc(OC)cc2 

119  319035  5.00  O(C(=O)C=1C2N(C(CC=1c1cc(C(=O)C)c(cc1)C(=O)C)CC2)C)C 

120  319036  6.77  O(C(=O)C1C2N(C(CC1c1cc(C(=O)C)c(cc1)C(=O)C)CC2)C)C 

121  319219  5.00  Oc1cc(ccc1O)C1CC2N(C(CC2)C1C(OC)=O)C 

122  319255  5.00  Oc1cc(ccc1O)C=1CC2N(C(CC2)C=1C(OC)=O)C 
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123  319532  7.34  O(C)c1cc(ccc1OC)C1CC2N(C(CC2)C1C(OC)=O)C 

124  337830  8.98  S(c1ccccc1CN(C)C)c1ccc(cc1N)CF 

125  343756  6.13  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](NC(C)(C)C)c2c1cccc2 

126  343759  5.33  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](N(C(C)(C)C)C)c2c1cccc2 

127  343761  7.36  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](N(C(C)C)C)c2c1cccc2 

128  343778  7.89  Clc1cc(ccc1Cl)[C@@H]1C[C@H](N(CC)C)c2c1cccc2 

129  343779  6.70  Clc1cc(ccc1Cl)[C@@H]1C[C@H](N(CCC)C)c2c1cccc2 

130  343780  7.14  Clc1cc(ccc1Cl)[C@@H]1C[C@H](N(C(C)C)C)c2c1cccc2 

131  343789  6.74  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](N(Cc2ccccc2)C)c2c1cccc2 

132  343790  8.62  Clc1cc(ccc1Cl)[C@@H]1C[C@H](N(C)C)c2c1cccc2 

133  343910  10.22  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](N(C)C)c2c1cccc2 

134  343943  5.00  Clc1cc(ccc1Cl)[C@@H]1C[C@H](N(C(C)(C)C)C)c2c1cccc2 

135  343975  7.03  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](NC(C)C)c2c1cccc2 

136  344059  7.42  Clc1cc(ccc1Cl)[C@@H]1C[C@H](NC)c2c1cccc2 

137  344092  6.42  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](NCc2ccccc2)c2c1cccc2 

138  344099  8.30  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](NC)c2c1cccc2 

139  344195  7.04  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](N(CCC)C)c2c1cccc2 

140  344220  6.89  Clc1cc(ccc1Cl)[C@@H]1C[C@H](NC(C)C)c2c1cccc2 

141  344221  6.30  Clc1cc(ccc1Cl)[C@@H]1C[C@H](NCCC)c2c1cccc2 

142  344222  8.33  Clc1cc(ccc1Cl)[C@@H]1C[C@H](NCC)c2c1cccc2 

143  344393  5.68  Clc1cc(ccc1Cl)[C@@H]1C[C@H](NCc2ccccc2)c2c1cccc2 

144  344418  5.77  Clc1cc(ccc1Cl)[C@@H]1C[C@H](NC(C)(C)C)c2c1cccc2 

145  344452  7.80  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](N(CC)C)c2c1cccc2 

146  344453  8.70  Clc1cc(ccc1Cl)[C@@H]1C[C@@H](NCC)c2c1cccc2 

147  344483  7.77  Ic1cc2c(cc1)[C@@H](C[C@H]2N(C)C)c1cc(Cl)c(Cl)cc1 

148  344484  6.52  Clc1cc(ccc1Cl)[C@@H]1C[C@H](N(Cc2ccccc2)C)c2c1cccc2 

149  347074  6.04  n1ccc(cc1)C(Cc1ccccc1)c1ccccc1 

150  347479  5.94  n1ccc(cc1)C(c1ccccc1)c1ccccc1 

151  347480  5.00  n1ccc(cc1)Cc1ccccc1 

152  347503  5.00  n1cc(ccc1)‐c1c2c(cc3c1cccc3)cccc2 

153  347506  5.00  n1ccc(cc1)‐c1c2c(cc3c1cccc3)cccc2 

154  347584  4.46  n1ccccc1C(c1ccccc1)c1ccccc1 

155  347585  4.90  n1cc(ccc1)C(c1ccccc1)c1ccccc1 

156  388042  10.30  I\C=C/c1ccc(cc1)[C@H]1CC2NC(CC2)[C@H]1C(OC)=O 

157  388504  8.94  I\C=C\c1ccc(cc1)[C@H]1CC2NC(CC2)[C@H]1C(OC)=O 

158  397259  5.53  Fc1ccc(cc1)CC1CCCN(C1)C[C@@H]1CCCC[C@H]1NC(=O)Nc1cc(ccc1)C(=O)C 

159  401194  5.58  Clc1cc2c(CCNC[C@@H]2C)cc1 

160  394158  8.82  S([C@H]([C@H]1OCCNC1)c1ccccc1)c1ccccc1OC 

161  402750  7.83  S([C@H]([C@H]1OCCNC1)c1ccccc1)c1ccccc1C 

162  402799  6.18  O1CCNC[C@H]1[C@@H](Oc1ccccc1OCC)c1ccccc1 

163  403062  7.44  S([C@H]([C@H]1OCCNC1)c1ccccc1)c1ccccc1 

164  409927  8.09  s1c2c(cccc2O[C@@H](CCNC)c2ccccc2)cc1 

165  409928  8.72  s1c2c(cccc2O[C@H](CCNC)c2ccccc2)cc1 
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166  409946  8.92  s1c2c(cc(O[C@H](CCNC)c3ccccc3)cc2)cc1 

167  409970  9.00  s1c2c(cccc2OC(CCNC)c2ccc(F)cc2)cc1 

168  409971  8.82  s1cccc1[C@@H](Oc1c2sccc2ccc1)CCNC 

169  409992  8.27  s1c2c(cc1)c(O[C@H](CCNC)c1ccccc1)ccc2 

170  409993  9.30  s1c2c(cc1)c(O[C@@H](CCNC)c1ccccc1)ccc2 

171  410036  9.30  s1c2cc(O[C@@H](CCNC)c3ccccc3)ccc2cc1 

172  410070  9.30  s1c2c(cccc2OC(CCNC)c2ccc(F)cc2)cc1 

173  410071  8.77  s1c2c(cc(O[C@@H](CCNC)c3ccccc3)cc2)cc1 

174  410104  8.62  s1c2c(cccc2OC(CCNC)c2cc(ccc2)C)cc1 

175  410120  8.96  s1c2c(cccc2OC(CCNC)c2cc(F)ccc2)cc1 

176  410137  8.66  s1c2c(cccc2OC(CCNC)c2cc(OC)ccc2)cc1 

177  410201  9.15  s1c2c(cc1)c(O[C@H](CCNC)c1ccccc1)ccc2F 

178  410207  9.05  s1c2c(cc1)c(O[C@@H](CCNC)c1ccccc1)ccc2F 

179  410219  8.49  s1c2c(cccc2OC(CCNC)c2cc(ccc2)C(F)(F)F)cc1 

180  413195  11.05  S(C)c1ccc(cc1)[C@@H]1c2c([C@H]3N(C1)CCC3)cccc2 

181  413405  9.92  Ic1cc(CO)c(Oc2ccccc2CN(C)C)cc1 

182  413592  7.31  Ic1cc(N)c(cc1)Cc1ccccc1CN(C)C 

183  413759  9.43  Ic1cc(N)c(Oc2ccccc2CN(C)C)cc1 

184  416660  8.69  S(c1ccccc1CNC)c1ccc(cc1N)CC 

185  416692  8.80  S(c1ccccc1CN(C)C)c1ccccc1N 

186  416693  8.95  S(c1ccccc1CN(C)C)c1ccc(cc1N)C=C 

187  416848  7.30  S(c1ccccc1CN(C)C)c1ccc(cc1N)CCO 

188  416849  8.07  S(c1ccccc1CN(C)C)c1ccc(cc1N)CCF 

189  416956  7.08  S(c1ccccc1CNC)c1ccccc1N 

190  417023  9.31  S(c1ccccc1CN(C)C)c1ccc(cc1N)CC 

191  190937 9.24 S(c1ccccc1CN(C)C)c1ccc(cc1N)CO 

192  417171  7.03  S(c1ccccc1CN(C)C)c1ccc(cc1N)CCCO 

193  417172  8.07  S(c1ccccc1CN(C)C)c1ccc(cc1N)CCCF 

194  417571  7.82  S(c1ccccc1CNC)c1ccc(cc1N)CO 

195  420276  8.84  S(c1ccccc1CN(C)C)c1ccc(F)cc1N 

196  420351  7.15  S(c1ccccc1CNCC)c1ccc(cc1N)C 

197  420383  7.15  S(c1ccccc1CNCCF)c1ccc(cc1N)C 

198  420472  7.09  S(c1ccccc1CNCC=C)c1ccc(cc1N)C 

199  420566  7.52  S(c1ccccc1CN)c1ccc(cc1N)C 

200  420593  6.75  S(c1ccccc1CN(C)C)c1cc(F)c(cc1N)C 

201  420665  5.66  S(c1ccccc1CNCCC)c1ccc(cc1N)C 

202  420692  6.29  S(c1ccccc1CNCCCF)c1ccc(cc1N)C 

203  423713  5.41 
Fc1ccc(cc1)C[C@@H]1CCCN(C1)C[C@@H]1CCCC[C@H]1NC(=O)Nc1cc(ccc1)‐
c1nnnn1C 

204  424590  5.63 
s1c(C(=O)C)c(nc1NC(=O)N[C@@H]1CCCC[C@H]1CN1C[C@@H](CCC1)Cc1ccc
(F)cc1)C 

205  196468  9.74  [nH]1cc(c2cc(ccc12)C#N)[C@H]1C[C@@H]1CN(C)C 

206  429090  8.08  FC(F)(F)c1ccc(OC(CCN(C)C)c2ccccc2)cc1 

207  429873  7.00  O=C1N(c2c(CC1CCCNC)cccc2)c1ccccc1 
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208  429874  7.00  O=C1N(c2c(CC1CCCCNC)cccc2)c1ccccc1 

209  429890  7.00  Fc1cc(N2c3c(CC(CCCNC)C2=O)cccc3)ccc1 

210  429891  7.00  Clc1cc(N2c3c(CC(CCCNC)C2=O)cccc3)ccc1 

211  429913  7.00  O=C1N(c2c(CC1CCNC)cccc2)c1ccccc1 

212  430009  6.80  O=C1N(c2c(CC1(CCCNC)CCC)cccc2)c1ccc(cc1)C 

213  430015  7.00  Fc1cc2CC(CCCNC)C(=O)N(c2cc1)c1ccc(cc1)C 

214  430023  7.00  Clc1cc2CC(CCCNC)C(=O)N(c2cc1)c1ccc(cc1)C 

215  430031  6.89  Clc1cc2CC(CCCNC)(CC)C(=O)N(c2cc1)c1ccc(cc1)C 

216  430070  7.00  O=C1N(c2c(CC1(CCCNC)C)cccc2)c1ccccc1 

217  430076  7.00  O=C1N(c2c(CC1(CCCNC)C)cccc2)c1cc(ccc1)C 

218  430077  7.00  Fc1ccc(N2c3c(CC(CCCNC)C2=O)cccc3)cc1 

219  430083  7.00  Clc1ccc(N2c3c(CC(CCCNC)C2=O)cccc3)cc1 

220  430084  7.00  O=C1N(c2c(CC1CCCNC)cccc2)c1ccc(cc1)C 

221  430089  7.00  O=C1N(c2c(CC1CCCNC)cccc2)c1ccc(cc1)CC 

222  430090  7.00  FC(F)(F)c1ccc(N2c3c(CC(CCCNC)C2=O)cccc3)cc1 

223  430096  7.00  O=C1N(c2c(CC1(CCCNC)C)cccc2)c1ccc(cc1)C 

224  430097  7.00  O=C1N(c2c(CC1(CCCNC)C)cccc2)c1ccc(cc1)C(C)C 

225  430102  7.00  Clc1cc(N2c3c(CC(CCCNC)C2=O)cccc3)ccc1Cl 

226  430108  7.00  Fc1cc(N2c3c(CC(CCCNC)(C)C2=O)cccc3)ccc1F 

227  430109  7.00  Fc1cc(N2c3c(CC(CCCNC)(C)C2=O)cccc3)cc(F)c1 

228  430115  7.00  Clc1cc(N2c3c(CC(CCCNC)(C)C2=O)cccc3)cc(Cl)c1 

229  430116  7.00  O=C1N(c2c(CC1(CCCNC)CC)cccc2)c1ccccc1 

230  430123  7.00  O=C1N(c2c(CC1(CCCNC)CCC)cccc2)c1ccccc1 

231  430124  7.00  O=C1N(c2c(CC1(CCCNC)CC)cccc2)c1ccc(cc1)C 

232  431966  6.15 

Clc1cc(ccc1Cl)[C@H]1CC2N(C(CC2)[C@H]1C(OC)=O)CCNC(=O)C1CCC(CC1)CN
S(=O)(=O)c1cc(S(=O)(=O)[O‐
])c(cc1)C=1c2c(OC=3C=1C=C/C(=[N+](/CC)\CC)/C=3)cc(N(CC)CC)cc2 

233  432003  6.64 
Clc1cc(ccc1Cl)[C@H]1CC2N(C(CC2)[C@H]1C(OC)=O)CCNC(=O)CCCN1CCCc2c1
cc1c(C=C3C(=C\C(=[N+](/C)\C)\C=C3)C1(C)C)c2 

234  432046  5.83 

Clc1cc(ccc1Cl)[C@H]1CC2N(C(CC2)[C@H]1C(OCCNC(=O)CCCCCNS(=O)(=O)c1
cc(S(=O)(=O)[O‐
])c(cc1)C=1c2c(OC=3C=1C=C/C(=[N+](/CC)\CC)/C=3)cc(N(CC)CC)cc2)=O)C 

235  432087  6.41 

Clc1cc(ccc1Cl)[C@H]1CC2N(C(CC2)[C@H]1C(OC)=O)CCNC(=O)CCCCCNS(=O)(
=O)c1cc(S(=O)(=O)[O])c(cc1)C=1c2c(OC=3C=1C=C/C(=[N+](/CC)\CC)/C=3)cc(
N(CC)CC)cc2 

236  435202  5.21  O(C)c1cc2c(cc1)cccc2N1CCN(CC1)CCCCN1N=CC(=O)N(C)C1=O 

237  438679  5.48  o1cccc1‐c1ccc(cc1)C(=O)C(N1CCCC1)CCC 

238  438680  6.20  Clc1cc(ccc1Cl)C(=O)C(CCC)CN1CCCC1 

239  438681  6.09  Clc1cc(ccc1Cl)C(=O)C(N1CCCC1)CC 

240  438753  5.54  O=C(C(N1CCCC1)CC(C)C)c1ccc(cc1)C 

241  438754  5.00  O=C(C(N1CCCC1)CC=C)c1ccc(cc1)C 

242  438762  5.97  Clc1cc(ccc1Cl)C(=O)C(N1CCCC1)CC=C 

243  438769  5.00  OC(C(N1CCCC1)CCC)c1ccc(cc1)C 

244  438770  6.45  O(C(=O)c1ccccc1)[C@H]1CC2N(C(CC2)[C@H]1OC(OC)=O)C 

245  438973  5.48  s1cccc1‐c1ccc(cc1)C(=O)C(N1CCCC1)CCC 

246  438988  6.08  Brc1ccc(cc1)C(=O)C(N1CCCC1)CCC 
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247  438989  6.52  Ic1ccc(cc1)C(=O)C(N1CCCC1)CCC 

248  438990  5.85  Ic1cc(ccc1)C(=O)C(N1CCCC1)CCC 

249  439000  5.39  O=C(C(CCC)CN1CCCC1)c1ccc(cc1)C 

250  439012  5.00  O=C(C(N1CCCC1)CCC)c1ccc(cc1)C#N 

251  439024  5.42  O=C(C(N1CCCC1)CCC)c1ccc(cc1)C 

252  439025  5.65  O=C([C@@H](N1CCCC1)CCC)c1ccc(cc1)C 

253  439032  5.00  O=C([C@H](N1CCCC1)CCC)c1ccc(cc1)C 

254  439033  5.00  O=C(C(N1CCCC1)CCC)c1ccccc1 

255  439034  5.00  Fc1ccc(cc1)C(=O)C(N1CCCC1)CCC 

256  439040  5.00  O=C(C(N1CCCC1)CCC)c1ccc(NC(=O)C)cc1 

257  439041  6.02  FC(F)(F)c1ccc(cc1)C(=O)C(N1CCCC1)CCC 

258  439042  5.17  O=C(C(N1CCCC1)CCC)c1ccc(cc1)C#CC 

259  439047  5.43  O=C(C(N1CCCC1)CCC)c1ccccc1C 

260  439048  5.00  O=C(C(N1CCCC1)CCC)c1ccc(cc1)‐c1n(ccc1)C 

261  439054  5.00  O=C(CC(N1CCCC1)CC)c1ccc(cc1)C 

262  439055  5.41  Clc1cc(ccc1Cl)C(=O)CC(N1CCCC1)CC 

263  439057  5.00  O=C(C(N1CCCC1)C#C)c1ccc(cc1)C 

264  439144  5.29  Clc1cc(ccc1Cl)C(=O)C(NCCCC)CCC 

265  439151  5.61  Clc1cc(ccc1Cl)C(=O)C(N1CCCCC1)CCC 

266  439317  5.00  OCc1ccc(cc1)C(=O)C(N1CCCC1)CCC 

267  439318  5.00  Oc1ccc(cc1)C(=O)C(N1CCCC1)CCC 

268  439319  5.61  O=C(C(N1CCCC1)CCC)c1ccc([N+](=O)[O‐])cc1 

269  439331  7.48  O=C(C(N1CCCC1)CCC)c1cc2c(cc1)cccc2 

270  439339  5.23  O=C(C(N1CCCC1)CCC)c1cc(ccc1)C 

271  439502  5.39  O(C)c1ccc(cc1)C(=O)C(N1CCCC1)CCC 

272  439503  6.70  Clc1cc(ccc1Cl)C(=O)C(N1CCCC1)CCC 

273  439511  5.00  Oc1cc(ccc1O)C(=O)C(N1CCCC1)CCC 

274  439512  5.13  O(C)c1cc(ccc1OC)C(=O)C(N1CCCC1)CCC 

275  440274  6.64  O(C(c1ccccc1)c1ccccc1)CCC1CCN(CC1)CC[C@H](O)c1ccccc1 

276  440293  7.37  Fc1ccc(cc1)C(OCCC1CCN(CC1)CC[C@@H](O)c1ccccc1)c1ccc(F)cc1 

277  440437  6.35  O(C(c1ccccc1)c1ccccc1)CCC1CCN(CC1)C[C@@H](O)Cc1ccccc1 

278  440444  7.39  Fc1ccc(cc1)C(OCCC1CCN(CC1)C[C@H](O)Cc1ccccc1)c1ccc(F)cc1 

279  440448  6.54  O(C(c1ccccc1)c1ccccc1)CCC1CCN(CC1)C[C@H](O)Cc1ccccc1 

280  440451  7.09  Fc1ccc(cc1)C(OCCC1CCN(CC1)C[C@@H](O)Cc1ccccc1)c1ccc(F)cc1 

281  440543  7.66  Fc1ccc(cc1)C(OCCC1CCN(CC1)CC[C@H](O)c1ccccc1)c1ccc(F)cc1 

282  440552  7.24  Fc1ccc(cc1)C(OCCC1CCN(CC1)CC[C@@H](C)c1ccccc1)c1ccc(F)cc1 

283  440558  7.12  Fc1ccc(cc1)C(OCCC1CCN(CC1)CC[C@H](C)c1ccccc1)c1ccc(F)cc1 

284  440593  6.90  Fc1ccc(cc1)C(OCCC1CCN(CC1)CC=1CCc2c(C=1)cccc2)c1ccc(F)cc1 

285  440601  7.80  Fc1ccc(cc1)C(OCCC1CCN(CC1)C[C@@H]1C[C@H]1c1ccccc1)c1ccc(F)cc1 

286  440657  6.64  Fc1ccc(cc1)C(OCCC1CCN(CC1)C[C@H](N)Cc1ccccc1)c1ccc(F)cc1 

287  440716  6.64  Fc1ccc(cc1)C(OCCC1CCN(CC1)C[C@@H](N)Cc1ccccc1)c1ccc(F)cc1 

288  440756  7.72  Fc1ccc(cc1)C(OCCC1CCN(CC1)C[C@H](O)CCc1ccccc1)c1ccc(F)cc1 

289  440757  7.42  Fc1ccc(cc1)C(OCCC1CCN(CC1)C[C@@H](O)CCc1ccccc1)c1ccc(F)cc1 
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290  440909  6.87  Fc1ccc(cc1)C(OCCC1CCN(CC1)C[C@H]1C[C@@H]1c1ccccc1)c1ccc(F)cc1 

291  441010  7.28  Fc1ccc(cc1)C(OCCC1CCN(CC1)C[C@@H](Cc1ccccc1)C)c1ccc(F)cc1 

292  441017  6.91  Fc1ccc(cc1)C(OCCC1CCN(CC1)C[C@H](Cc1ccccc1)C)c1ccc(F)cc1 

293  441025  6.55  O(C(c1ccccc1)c1ccccc1)CCC1CCN(CC1)CC[C@@H](O)c1ccccc1 

294  442514  6.00  O(CC1CC1)Cc1nc2N3[C@H](Cc2cc1)CNC[C@H]3C 

295  444371  5.00  O(C)c1cc(N2CCN(CC2)CCCCN2N=CC(=O)N(C)C2=O)ccc1 

296  1140708  9.32  N1CCC(N(Cc2cc(ccc2)C#N)CC(C)C)CC1 

297  447015  8.82  N1CCC(N(Cc2ccccc2C)CC(C)C)CC1 

298  447022  8.66  N1CCC(N(Cc2cc(ccc2)C)CC(C)C)CC1 

299  447063  8.72  Fc1ccc(cc1)CN(CC(C)C)C1CCNCC1 

300  447116  9.02  Clc1cc(Cl)ccc1CN(CC(C)C)C1CCNCC1 

301  447118  9.52  Fc1cc(C(F)(F)F)c(cc1)CN(CC(C)C)C1CCNCC1 

302  447203  8.37  FC(F)(F)c1ccccc1CN(CC(C)(C)C)C1CCNCC1 

303  447342  8.80  Clc1ccccc1CN(CC(C)C)C1CCNCC1 

304  447415  8.85  FC(F)(F)c1ccccc1CN(CC(C)C)C1CCNCC1 

305  447459  8.51  Fc1cc(F)ccc1CN(CC(C)C)C1CCNCC1 

306  447469  8.24  Fc1cc(ccc1CN(CC(C)C)C1CCNCC1)C(F)(F)F 

307  449376  5.84  o1c(ccc1Oc1cc2c(cc1C)CCC2(C)C)C(=O)Nc1c(OC)nc(nc1OC)NCCCN1CCOCC1 

308  455079  5.85  O1CCNC[C@@H]1[C@H](Oc1ccccc1OCC)c1ccccc1 

309  457974  8.11  N12CC(C3C1CCC2CC3c1ccc(cc1)C)=C 

310  458003  9.55  Brc1ccc(cc1)C1C2C3N(CC2=C)C(C1)CC3 

311  458004  9.09  Clc1ccc(cc1)C1C2C3N(CC2=C)C(C1)CC3 

312  458091  10.05  Ic1ccc(cc1)C1C2C3N(CC2=C)C(C1)CC3 

313  458120  7.01  O(C(=O)\C=C\1/C2C3N(C/1)C(CC2c1ccc(cc1)C)CC3)C 

314  458121  8.25  Brc1ccc(cc1)C1C\2C3N(C/C/2=C/C(OC)=O)C(C1)CC3 

315  458122  7.73  Clc1ccc(cc1)C1C\2C3N(C/C/2=C/C(OC)=O)C(C1)CC3 

316  459546  6.54  Ic1ccc(cc1)[C@H]1CCN(C[C@H]1C(OC)=O)C 

317  461477  9.70  Br\C=C\c1cc(ccc1)[C@H]1CC2NC(CC2)[C@H]1C(OC)=O 

318  465711  5.41  Clc1ccc(cc1)C(CC(C)(C)C)C1NCCCC1 

319  465712  5.49  Clc1ccc(cc1)C(CC1CCCC1)C1NCCCC1 

320  465713  6.05  Clc1ccc(cc1)C(CC1CCCCC1)C1NCCCC1 

321  465721  5.38  O(C)c1cc(ccc1)C(CC(C)C)C1NCCCC1 

322  465722  5.48  N1CCCCC1C(CC(C)C)c1ccc(cc1)C(C)C 

323  465723  5.11  O=C(C(C1NCCCC1)c1ccccc1)C 

324  465731  5.22  Clc1ccc(cc1)C(C(OC)=O)C1NCCCC1 

325  465732  5.04  Clc1ccc(cc1)C(C)C1NCCCC1 

326  465740  5.37  Clc1ccc(cc1)C(Cc1ccccc1)C1NCCCC1 

327  465741  6.19  Clc1ccc(cc1)C(CCc1ccccc1)C1NCCCC1 

328  465742  5.82  Clc1ccc(cc1)C(CCCc1ccccc1)C1NCCCC1 

329  465749  5.32  Clc1ccc(cc1)C(C(CC)CC)C1NCCCC1 

330  465750  5.34  Clc1ccc(cc1)C(C1CCCC1)C1NCCCC1 

331  465751  5.49  Clc1cc(ccc1)C(CC(C)C)C1NCCCC1 

332  465758  5.11  Clc1ccc(cc1)C(CC)C1NCCCC1 
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333  465759  5.49  Clc1ccc(cc1)C(CCC)C1NCCCC1 

334  465760  2.00  Clc1ccc(cc1)C(C(C)C)C1NCCCC1 

335  465761  5.32  Clc1ccc(cc1)C(CCCC)C1NCCCC1 

336  465768  6.35  Clc1cc(ccc1Cl)C(CC(C)C)C1NCCCC1 

337  465769  5.89  Clc1cc(ccc1Cl)C(CC(C)C)C1N(CCCC1)C 

338  465770  6.02  O(C)c1ccc(cc1)C(CC(C)C)C1NCCCC1 

339  465777  5.60  Clc1cc(ccc1Cl)C(C(OC)=O)C1NCCCC1 

340  465778  5.74  Clc1cc(ccc1Cl)C(CCC)C1NCCCC1 

341  465779  5.96  Clc1cc(ccc1Cl)C(CCCC)C1NCCCC1 

342  465787  5.37  Clc1ccc(cc1)C(CC(C)C)C1NCCCC1 

343  465788  5.66  Clc1ccc(cc1)C(CCCCC)C1NCCCC1 

344  465789  5.30  Clc1ccc(cc1)C(CCC(C)C)C1NCCCC1 

345  467469  7.40 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CCO)CCCNC(=O)Nc1cc(cc(c1)C(=O)C)C(
=O)C 

346  467470  6.67 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CCCO)CCCNC(=O)Nc1cc(cc(c1)C(=O)C)
C(=O)C 

347  467474  7.96 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CC(=O)C)CCCNC(=O)Nc1cc(cc(c1)C(=O)
C)C(=O)C 

348  467475  6.15 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CC(=O)N)CCCNC(=O)Nc1cc(cc(c1)C(=O)
C)C(=O)C 

349  467480  7.31 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CCF)CCCNC(=O)Nc1cc(cc(c1)C(=O)C)C(
=O)C 

350  467481  6.52 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CC#C)CCCNC(=O)Nc1cc(cc(c1)C(=O)C)C
(=O)C 

351  467486  6.48 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CC(F)F)CCCNC(=O)Nc1cc(cc(c1)C(=O)C)
C(=O)C 

352  467491  5.26 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)C(=O)C)CCCNC(=O)Nc1cc(cc(c1)C(=O)C
)C(=O)C 

353  467496  6.65 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)C(=O)CC)CCCNC(=O)Nc1cc(cc(c1)C(=O)
C)C(=O)C 

354  467497  7.72 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)C(N)=N)CCCNC(=O)Nc1cc(cc(c1)C(=O)C
)C(=O)C 

355  467508  7.27  O=C(Nc1cc(ccc1)C#N)NCCC[C@@H]1NCC[C@H](C1)Cc1ccccc1 

356  467530  7.38  Fc1ccc(cc1)C[C@H]1C[C@@H](NCC1)CCCNC(=O)Nc1cc(ccc1)C(=O)C 

357  467531  7.74  Fc1ccc(cc1)C[C@H]1C[C@@H](NCC1)CCCNC(=O)Nc1cc(ccc1)C(=O)C 

358  467536  8.46  Fc1ccc(cc1)C[C@H]1C[C@@H](NCC1)CCCNC(=O)Nc1cc(cc(c1)C(=O)C)C(=O)C 

359  467537  6.24  Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)C)CCCNC(=O)Nc1cc(ccc1)C(=O)C 

360  467542  6.53  Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CCC)CCCNC(=O)Nc1cc(ccc1)C(=O)C 

361  467543  6.93  Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CC1CC1)CCCNC(=O)Nc1cc(ccc1)C(=O)C 

362  467553  6.66  Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CC=C)CCCNC(=O)Nc1cc(ccc1)C(=O)C 

363  467554  7.30  Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CCO)CCCNC(=O)Nc1cc(ccc1)C(=O)C 

364  467559  6.78 
Fc1ccc(cc1)C[C@H]1C[C@@H](N(CC1)CCC)CCCNC(=O)Nc1cc(cc(c1)C(=O)C)C(
=O)C 

365  476460  6.73  O1CCNC[C@H]1[C@@H](Oc1ccccc1OC)c1ccccc1 

366  482415  5.00  s1cc(nc1CF)C#Cc1cc(cc(F)c1)C#N 

367  482978  5.57  Clc1ccc(cc1)[C@H]1C[C@H]2N([C@H](CC2)[C@H]1c1sc(cn1)‐c1ccccc1)C 

368  482979  6.19  Clc1ccc(cc1)[C@H]1C[C@H]2N([C@H](CC2)[C@H]1c1sc(cn1)‐c1ccc(F)cc1)C 

369  482980  5.62 
Clc1ccc(cc1)‐
c1sc(nc1)[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(Cl)cc1)CC2)C 
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370  482981  5.24 
Brc1ccc(cc1)‐
c1sc(nc1)[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(Cl)cc1)CC2)C 

371  482982  5.82 
Brc1cc(ccc1)‐
c1sc(nc1)[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(Cl)cc1)CC2)C 

372  482983  5.74 
Clc1ccc(cc1)[C@H]1C[C@H]2N([C@H](CC2)[C@H]1c1sc(cn1)‐
c1ccc([N+](=O)[O‐])cc1)C 

373  482984  6.13 
Clc1ccc(cc1)[C@H]1C[C@H]2N([C@H](CC2)[C@H]1c1sc(cn1)‐
c1cc([N+](=O)[O‐])ccc1)C 

374  482985  5.28  Clc1ccc(cc1)[C@H]1C[C@H]2N([C@H](CC2)[C@H]1c1sc(cn1)‐c1ccc(OC)cc1)C 

375  482988  5.57  Clc1ccc(cc1)C(CCCCC)C1NCCCC1 

376  482989  5.44  Clc1ccc(cc1)C(CCC(C)C)C1NCCCC1 

377  482990  5.76 
s1c(cnc1[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(cc1)C)CC2)C)‐
c1ccc(F)cc1 

378  482991  5.88 
Clc1ccc(cc1)‐
c1sc(nc1)[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(cc1)C)CC2)C 

379  482992  5.73 
Brc1ccc(cc1)‐
c1sc(nc1)[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(cc1)C)CC2)C 

380  482993  6.06 
Brc1cc(ccc1)‐
c1sc(nc1)[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(cc1)C)CC2)C 

381  482995  5.79 
s1c(cnc1[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(cc1)C)CC2)C)‐
c1ccc([N+](=O)[O‐])cc1 

382  482996  6.24 
s1c(cnc1[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(cc1)C)CC2)C)‐
c1cc([N+](=O)[O‐])ccc1 

383  483010  5.44 
s1c(cnc1[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(cc1)C)CC2)C)‐
c1ccc(OC)cc1 

384  483011  5.53 
Clc1cc(ccc1Cl)‐
c1sc(nc1)[C@@H]1[C@@H]2N([C@H](C[C@@H]1c1ccc(cc1)C)CC2)C 

385  483012  5.11 
s1c(cnc1C1[C@@H]2N([C@H](C[C@@H]1c1ccc(cc1)C)CC2)C)‐
c1cc(OC)c(OC)cc1 

386  488386  10.10  I\C=C/c1ccc(cc1)C1CC2NC(CC2)C1C(OCCF)=O 

387  488452  10.10  I\C=C/c1ccc(cc1)C1CC2NC(CC2)C1C(OCCF)=O 

388  492076  8.22  Ic1ccc(cc1)[C@H]1C[C@@H]2N([C@@H](CC2)[C@H]1C(OC)=O)C 

389  492077  5.73  Clc1cc(ccc1Cl)[C@H]1CCN(C[C@H]1C(OC)=O)C 

390  492083  4.57  O(C(=O)[C@@H]1CN(CC[C@@H]1c1ccccc1)C)C 

391  492087  4.33  O(C(=O)[C@@H]1CN(CC[C@H]1c1ccccc1)C)C 

392  492091  5.55  Ic1ccc(cc1)[C@@H]1CCN(C[C@H]1C(OC)=O)C 

393  492092  6.36  O(C(=O)C=1CNCCC=1c1cc2c(cc1)cccc2)CC 

394  492093  6.66  Clc1cc(ccc1Cl)C=1CCNCC=1C(OCC)=O 

395  492095  5.52  O(C(=O)C=1CNCCC=1c1cc([N+](=O)[O‐])ccc1)CC 

396  492097  3.10  Clc1cc(ccc1Cl)C=1CCCC=1C(OC)=O 

397  492099  2.55  Clc1ccc(cc1)C=1CCCC=1C(OC)=O 

398  492101  2.65  Clc1cc(ccc1)C=1CCCC=1C(OC)=O 

399  492102  3.38  O(C(=O)C=1CCCC=1c1cc2c(cc1)cccc2)C 

400  492103  2.57  O(C)c1ccc(cc1)C=1CCCC=1C(OC)=O 

401  492104  2.84  O(C(=O)C=1CCCC=1c1ccc(cc1)C(C)(C)C)C 

402  492105  2.42  FC(F)(F)Oc1ccc(cc1)C=1CCCC=1C(OC)=O 

403  492107  3.53  O(C(=O)C=1CCCC=1c1ccc(cc1)C(=O)C)C 

404  492109  2.71  O(C(=O)C=1CCCC=1c1cc(N)ccc1)C 

405  492111  2.94  O(C(=O)C=1CCCC=1c1ccc([N+](=O)[O‐])cc1)C 

406  492113  3.64  Clc1cc(ccc1Cl)C=1CCCCC=1C(OC)=O 
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407  492115  2.73  Clc1ccc(cc1)C=1CCCCC=1C(OC)=O 

408  492117  2.93  Clc1cc(ccc1)C=1CCCCC=1C(OC)=O 

409  492119  3.96  O(C(=O)C=1CCCCC=1c1cc2c(cc1)cccc2)C 

410  492120  3.08  O(C(=O)C=1CCCCC=1c1ccc(cc1)‐c1ccccc1)C 

411  492122  2.65  O(C(=O)C=1CCCCC=1c1ccc(cc1)C(C)(C)C)C 

412  492125  2.33  FC(F)(F)Oc1ccc(cc1)C=1CCCCC=1C(OC)=O 

413  492126  3.18  O(C(=O)C=1CCCCC=1c1ccccc1)C 

414  492128  2.30  FC(F)(F)c1cc(ccc1)C=1CCCCC=1C(OC)=O 

415  492130  2.33  FC(F)(F)c1ccc(cc1)C=1CCCCC=1C(OC)=O 

416  492132  3.24  Oc1ccc(cc1)C=1CCCCC=1C(OC)=O 

417  492134  4.54  O(C(=O)C=1CCCCC=1c1cc([N+](=O)[O‐])ccc1)C 

418  492139  3.83  Clc1cc(ccc1Cl)C=1CCCCCC=1C(OC)=O 

419  492141  3.15  Clc1ccc(cc1)C=1CCCCCC=1C(OC)=O 

420  492143  3.33  Clc1cc(ccc1)C=1CCCCCC=1C(OC)=O 

421  492144  3.27  O(C(=O)C=1CCCCCC=1c1cc2c(cc1)cccc2)C 

422  492149  4.49  O(C(=O)C=1CCCCCC=1c1ccc(cc1)‐c1ccccc1)C 

423  492151  3.42  Clc1cc(ccc1Cl)C=1CCCCC=1\C=C\C 

424  492375  3.41  O(C(=O)[C@@H]1CCCC[C@@H]1c1ccc(cc1)‐c1ccccc1)C 

425  492376  2.04  O(C(=O)[C@@H]1CCCC[C@@H]1c1ccc(cc1)C(C)(C)C)C 

426  492379  3.22  FC(F)(F)Oc1ccc(cc1)[C@H]1CCCC[C@H]1C(OC)=O 

427  492380  2.82  O(C(=O)[C@@H]1CCCC[C@@H]1c1ccccc1)C 

428  492382  2.72  FC(F)(F)c1cc(ccc1)[C@H]1CCCC[C@H]1C(OC)=O 

429  492385  3.73  FC(F)(F)c1ccc(cc1)[C@H]1CCCC[C@H]1C(OC)=O 

430  492386  4.14  O(C(=O)[C@@H]1CCCCC[C@@H]1c1ccc(cc1)‐c1ccccc1)C 

431  492389  2.74  O(C(=O)[C@@H]1CCCCC[C@@H]1c1ccc(cc1)C(C)(C)C)C 

432  492394  2.98  O(C(=O)C=1CCCCCC=1c1ccc(cc1)C(C)(C)C)C 

433  496256  7.62  Fc1cc(ccc1C)[C@@H]1C[C@@H]2N[C@H](CC2)[C@H]1C(OC)=O 

434  496260  7.55  O(C(=O)[C@@H]1[C@@H]2N[C@@H](C[C@H]1c1ccc(cc1)C)CC2)C 

435  496262  8.68  Ic1ccc(cc1)[C@@H]1C[C@@H]2N[C@H](CC2)[C@H]1C(OC)=O 

436  496264  8.72  O(C(=O)[C@@H]1[C@@H]2N[C@@H](C[C@H]1c1ccc(cc1)C=C)CC2)C 

437  1153074  8.74  O(C(=O)[C@@H]1[C@@H]2N[C@@H](C[C@H]1c1ccc(cc1)C#C)CC2)C 

438  499913  9.10  S(C)c1ccc(Oc2ccc(cc2CNC)C#CCCN2CCOCC2)cc1 

439  499923  8.72  S(C)c1ccc(Oc2ccc(cc2CNC)C#CCCN2CCOCC2)cc1C 

440  499942  9.05  S(C)c1ccc(Oc2ccc(cc2CNC)C#CCCN2CCC(F)CC2)cc1 

441  499962  8.96  S(C)c1ccc(Oc2ccc(cc2CNC)C#CCCN(C)C2CC2)cc1 

442  505795  9.60  S(c1ccc(OCCF)cc1CN(C)C)c1ccccc1N 

443  505799  10.00  S(c1ccc(OCCF)cc1CN(C)C)c1ccc(F)cc1N 

444  1144290  10.52  Clc1cc(N)c(Sc2ccc(OCCF)cc2CN(C)C)cc1 

445  505805  10.30  Brc1cc(N)c(Sc2ccc(OCCF)cc2CN(C)C)cc1 

446  505806  8.85  S(c1ccc(OCCCF)cc1CN(C)C)c1ccccc1N 

447  505809  9.02  S(c1ccc(OCCCF)cc1CN(C)C)c1ccc(F)cc1N 

448  505811  9.82  Brc1cc(N)c(Sc2ccc(OCCCF)cc2CN(C)C)cc1 

449  253184  8.96  S(c1ccc(OCCO)cc1CN(C)C)c1ccccc1N 
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450  138354  8.92  S(c1ccc(OCCO)cc1CN(C)C)c1ccc(F)cc1N 

451  1147706  8.89  S(c1ccc(OCCCO)cc1CN(C)C)c1ccccc1N 

452  505816  9.68  Brc1cc(N)c(Sc2ccc(OCCCO)cc2CN(C)C)cc1 

453  505817  8.30  S(c1ccc(OC)cc1CN(C)C)c1ccccc1N 

454  505819  7.77  S(c1ccc(O)cc1CN(C)C)c1ccccc1N 

455  510296  8.38  S(C)c1ccc(cc1)C1c2c(cc(OCCCN3CCC(F)CC3)cc2)CN(C1)C 

456  510302  8.42  S(C)c1ccc(cc1)C1c2c(cc(OCCCN3CCOCC3)cc2)CN(C1)C 

457  510304  7.89  O1C[C@@H](N(CC1)CCCOc1cc2c(cc1)[C@@H](CN(C2)C)c1ccc(OC)cc1)C 

458  512300  8.08  O(CCCN1CCCCC1)c1cc2[C@@H]3N(C[C@H](c2cc1)c1cccnc1)CCC3 

459  516686  3.30  Clc1cc(ccc1Cl)C=1CCCC=1C(=O)N1CCOCC1 

460  516688  3.28  Clc1cc(ccc1Cl)C=1CCCC=1C(=O)N1CCCC1 

461  516696  3.52  Clc1cc(ccc1Cl)C=1CCCC=1C(=O)N(CC)CC 

462  516697  3.00  Clc1cc(ccc1Cl)C=1CCCC=1C(=O)NC1CCC1 

463  516708  3.30  Clc1cc(ccc1Cl)C=1CCCC=1C(=O)NCCF 

464  516709  3.27  Clc1cc(ccc1Cl)C=1CCCC=1C(=O)N(OC)C 

465  516710  3.30  Clc1cc(ccc1Cl)C=1CCCC=1C(=O)NOC 

466  516711  3.96  Clc1cc(ccc1Cl)C=1CCCC=1C(=O)NCc1sccc1 

467  516712  4.62  Clc1cc(ccc1Cl)C=1CCCC=1C(=O)NCc1occc1 

468  516713  3.00  Clc1cc(ccc1Cl)C=1CCCC=1C(OC1CCCCC1)=O 

469  516714  3.30  Clc1cc(ccc1Cl)C=1CCCC=1C(OC(C)C)=O 

470  516715  4.30  Clc1cc(ccc1Cl)C=1CCCC=1C(OCCO)=O 

471  516716  3.41  Clc1cc(ccc1Cl)C=1CCCC=1C(OCCF)=O 

472  516717  3.00  Clc1cc(ccc1Cl)C=1CCCC=1C(OCC(F)(F)F)=O 

473  516718  3.30  Clc1cc(ccc1Cl)C=1CCCC=1C(Oc1ccccc1)=O 

474  516720  3.30  Clc1cc(ccc1Cl)C=1CCCC=1C(Oc1ccccc1C)=O 

475  516721  3.00  Clc1cc(ccc1Cl)C=1CCCC=1C(Oc1cc(ccc1)C)=O 

476  516722  3.04  Clc1cc(ccc1Cl)C=1CCCC=1C(OCc1sccc1)=O 

477  516723  4.62  Clc1cc(ccc1Cl)C=1CCCC=1C(OCc1occc1)=O 

478  1138354  8.90  S(c1ccc(F)cc1CN(C)C)c1ccc(cc1N)CO 

479  241646  9.54  Brc1cc(CN(C)C)c(Sc2ccc(cc2N)CO)cc1 

480  519030  9.51  Ic1cc(CN(C)C)c(Sc2ccc(cc2N)CO)cc1 

481  521450  5.54 
Fc1ccc(cc1)C[C@@H]1CCCN(C1)C[C@@H]1CCCC[C@H]1NC(=O)Nc1cc(ccc1)C
(=O)C 

482  521513  4.54  Clc1cc(ccc1Cl)C=1CCCC=1C(OC1CCCCC1)=O 

483  527083  7.74  Clc1cc(CC)c(Oc2cc(ncc2CNC)C)cc1 

484  527889  6.13  Fc1cc(OC)c(O[C@H]([C@H]2OCCNC2)c2ccccc2)cc1 

485  527891  6.96  Clc1cc(OC)c(O[C@H]([C@H]2OCCNC2)c2ccccc2)cc1 

486  527892  7.96  Clc1cc(OC)c(O[C@@H]([C@@H]2OCCNC2)c2ccccc2)cc1 

487  527976  7.55  Clc1cc(OC)c(OC(C2OCCNC2)c2ccccc2)cc1 

488  528065  7.22  Clc1cc(OCC)c(OC(C2OCCNC2)c2ccccc2)cc1 

489  528112  6.62  Clc1cccc(OC(C2OCCNC2)c2ccccc2)c1OCC 

490  528327  7.06  Clc1cc(OC)c(O[C@H]([C@H]2OCCNC2)c2ccc(cc2)C)cc1 

491  528376  7.24  Clc1cc(OC)c(O[C@H]([C@H]2OCCNC2)c2cc(F)ccc2)cc1 
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492  528378  7.02  Clc1cc(OC)ccc1O[C@H]([C@H]1OCCNC1)c1ccccc1 

493  528429  7.70  O1CCNC[C@@H]1[C@H](Oc1c2OCCc2ccc1)c1ccccc1 

494  528430  7.00  Clc1c(O[C@H]([C@H]2OCCNC2)c2ccccc2)cccc1Cl 

495  528471  7.92  Fc1c(O[C@@H]([C@@H]2OCCNC2)c2ccccc2)cccc1F 

496  528474  7.47  Fc1cc(C)c(O[C@@H]([C@@H]2OCCNC2)c2ccccc2)cc1 

497  528475  5.47  Fc1c(O[C@H]([C@H]2OCCNC2)c2ccccc2)cccc1F 

498  528520  6.59  Clc1cc(F)ccc1O[C@H]([C@H]1OCCNC1)c1ccccc1 

499  528521  7.70  Clc1cc(F)ccc1O[C@@H]([C@@H]1OCCNC1)c1ccccc1 

500  528522  6.73  Fc1cc(C)c(O[C@H]([C@H]2OCCNC2)c2ccccc2)cc1 

501  533477  5.85  O(c1cc(ncc1CN(C)C)C)c1ccccc1OC 

502  533479  6.66  O(c1cc(ncc1CNC)C)c1ccccc1OCC 

503  533510  6.58  O(c1cc(ncc1CNC)C)c1ccccc1OC 

504  533512  6.36  O(c1cc(ncc1CNC)C)c1ccccc1CC 

505  533513  6.55  O(c1cc(ncc1CN(C)C)C)c1ccccc1CC 

506  533726  5.39  O(c1cc(ncc1CN(C)C)C)c1ccccc1Oc1ccccc1 

507  533759  6.08  O(c1cc(ncc1CNC)C)c1ccccc1Oc1ccccc1 

508  533799  5.55  O(c1cc(ncc1CN(C)C)C)c1ccccc1CCC 

509  533802  6.09  O(c1cc(ncc1CNC)C)c1ccccc1CCC 

510  533804  5.83  O(c1cc(ncc1CN(C)C)C)c1ccccc1C(C)C 

511  533834  6.62  Clc1ccccc1Oc1cc(ncc1CN(C)C)C 

512  533836  5.70  O(c1cc(ncc1CNC)C)c1ccccc1C(C)C 

513  533867  7.06  Clc1ccccc1Oc1cc(ncc1CNC)C 

514  533868  6.42  S(C)c1ccccc1Oc1cc(ncc1CN(C)C)C 

515  533895  6.88  S(C)c1ccccc1Oc1cc(ncc1CNC)C 

516  533897  6.63  O(c1cc(ncc1CN(C)C)C)c1ccccc1C 

517  533927  6.87  O(c1cc(ncc1CNC)C)c1ccccc1C 

518  533955  5.32  O(c1cc(ncc1CN(C)C)C)c1ccccc1OCC 

519  537760  8.05  Clc1cc(Oc2ccc(cc2CNC)C(=O)N2CCCN(CC2)C2CC2)ccc1Cl 

520  537761  8.00  Clc1ccc(Oc2ccc(cc2CNC)C(=O)N2CCCN(CC2)C2CC2)cc1 

521  537804  7.92  S(C)c1ccc(Oc2ccc(cc2CNC)C(=O)N2CCCN(CC2)C2CC2)cc1C 

522  538179  7.77  FC(F)(F)c1ccc(Oc2ccc(cc2CNC)C(=O)N2CCCN(CC2)C2CC2)cc1 

523  538226  6.63  Fc1cc(Oc2ccc(cc2CNC)C(=O)N2CCCN(CC2)C2CC2)ccc1 

524  538272  7.33  Clc1cc(Oc2ccc(cc2CNC)C(=O)N2CCCN(CC2)C2CC2)ccc1 

525  538273  6.64  O(c1ccc(cc1CNC)C(=O)N1CCCN(CC1)C1CC1)c1ccccc1 

526  538399  8.09  S(C)c1ccc(Oc2ccc(cc2CNC)C(=O)N2CCN(CC2)C(C)C)cc1C 

527  538451  8.30  S(C)c1ccc(Oc2ccc(cc2CNC)C(=O)N2CCN(CC2)C2CC2)cc1 

528  538503  8.23  S(C)c1ccc(Oc2ccc(cc2CNC)C(=O)N2CCN(CC2)C(C)C)cc1 

529  538546  6.81  Clc1cc(Oc2ccc(cc2CNC)C(=O)N2CCN(CC2)C2CC2)ccc1 

530  538630  7.55  O(c1ccc(cc1CNC)C(=O)N1CCN(CC1)C(C)C)c1cc(OC)ccc1 

531  538777  7.64  Clc1ccc(Oc2ccc(cc2CNC)C(=O)N2CCN(CC2)C2CC2)cc1 

532  538879  8.17  Clc1cc(Oc2ccc(cc2CNC)C(=O)N2CCN(CC2)C2CC2)ccc1Cl 

533  538924  8.20  Clc1cc(Oc2ccc(cc2CNC)C(=O)N2CCN(CC2)C(C)C)ccc1Cl 

534  539103  7.96  S(C)c1ccc(Oc2ccc(cc2CNC)C(=O)N2CCN(CC2)C2CC2)cc1C 
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535  540306  6.92  S([C@H]([C@H]1OCCNC1)c1ccccc1)c1ccccc1OCCCF 

536  540307  6.30  S([C@H]([C@H]1OCCNC1)c1ccccc1)c1ccccc1C(OC)=O 

537  540308  6.13  S([C@H]([C@H]1OCCNC1)c1ccccc1)c1ccccc1OCCF 

538  540332  6.21  O1CCNC[C@H]1[C@@H](Oc1ccccc1C(OC)=O)c1ccccc1 

539  540334  7.04  S(C)c1ccccc1O[C@H]([C@H]1OCCNC1)c1ccccc1 

540  546745  6.56  O(C(=O)c1ccccc1)[C@H]1C[C@H]2N([C@H](CC2)[C@H]1C(OC)=O)C 

541  549148  7.20  Clc1cc(ccc1Cl)C12C(C1)CNC2 

542  554328  9.37  I\C=C/c1cc(ccc1)C1CC2NC(CC2)C1C(OCCF)=O 

543  554329  9.48  Br\C=C/c1cc(ccc1)C1CC2NC(CC2)C1C(OCCF)=O 

544  554400  9.59  I\C=C/c1cc(ccc1)C1CC2NC(CC2)C1C(OCCCF)=O 

545  554401  9.48  Br\C=C/c1cc(ccc1)C1CC2NC(CC2)C1C(OCCCF)=O 

546  554402  7.82  I\C=C\c1cc(ccc1)C1CC2NC(CC2)C1C(OCCF)=O 

547  1152751  8.68  Fc1cc(CCC2OC(CC2)CCN)c(OC)cc1 

548  558469  8.15  Fc1cc(CCCC2OC(CC2)CCN)c(OC)cc1 

549  558470  4.00  BrCCCCCN1N=C([C@@H]2[C@@H](CC=CC2)C1=O)c1cc(OC)c(OC)cc1 

550  558471  6.81 
Fc1cc(CCC2OC(CC2)CCNCCCCCN2N=C([C@@H]3[C@@H](CC=CC3)C2=O)c2cc
(OC)c(OC)cc2)c(OC)cc1 

551  558472  6.71 
Fc1ccc(OC)cc1CCCC1OC(CC1)CCNCCCCCN1N=C([C@@H]2[C@@H](CC=CC2)C
1=O)c1cc(OC)c(OC)cc1 

552  558542  7.67  Fc1cc(CCC2OC(CC2)CCNC)c(OC)cc1 

553  572103  7.03  O1CCNC[C@H]1[C@@H](Oc1ccccc1C)c1ccccc1 

554  572104  6.37  FCCc1ccccc1O[C@H]([C@H]1OCCNC1)c1ccccc1 

555  572105  6.33  FCCCc1ccccc1O[C@H]([C@H]1OCCNC1)c1ccccc1 

556  573109  7.30  FC(F)(F)c1ccc(O[C@@H](CCN)c2ccccc2)cc1 

557  573110  7.59  FC(F)(F)c1ccc(O[C@H](CCN)c2ccccc2)cc1 

558  573174  4.00  BrCCCCCN1N=C(C2C(CC=CC2)C1=O)c1cc(OC)c(OC)cc1 

559  573175  6.52 
FC(F)(F)c1ccc(O[C@@H](CCNCCCCCN2N=C(C3C(CC=CC3)C2=O)c2cc(OC)c(OC)
cc2)c2ccccc2)cc1 

560  573176  7.19 
FC(F)(F)c1ccc(O[C@H](CCNCCCCCN2N=C(C3C(CC=CC3)C2=O)c2cc(OC)c(OC)cc
2)c2ccccc2)cc1 

561  576087  5.98  Clc1cc(F)ccc1[C@H]1C[C@@H]1CN 

562  577102  5.42  Brc1ccccc1[C@H]1C[C@@H]1CN 

563  577104  5.57  Brc1ccccc1C1CC1CN 

564  577180  5.26  NC[C@H]1C[C@@H]1c1cc(ccc1)C 

565  577184  5.57  Fc1ccc(cc1)[C@H]1C[C@@H]1CN 

566  578777  5.22  Fc1cc(ccc1)‐c1ccc(cc1C#N)C(=O)Nc1nc(ccc1)C 

567  579324  5.22  s1cc(nc1C)C#Cc1cc(cc(F)c1)‐c1cccnc1 

568  579326  5.22  s1cc(nc1C)C#Cc1cc(F)c(cc1)‐c1cccnc1 

569  579418  5.22  O=C(Nc1nc(ccc1)C)c1cc(C#N)c(cc1)‐c1ccccc1 

570  586074  4.28  O(C)c1ccc(cc1)CCN(CCN1CCCCC1)C 

571  586075  5.15  FC(F)(F)Oc1ccc(cc1)CCN(CCN1CCCC1)C 

572  586930  5.42  FC(F)(F)Oc1ccc(cc1)CCN(CCN1CCCC1)CC 

573  586931  5.02  FC(F)(F)Oc1ccc(cc1)CCN(CCN1CCCCC1)C 

574  586932  5.48  FC(F)(F)Oc1ccc(cc1)CCN(CCN1CCCCC1)CC 

575  586933  4.00  FC(F)(F)Oc1ccccc1CCN(CCN1CCCC1)C 
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576  586934  4.00  FC(F)(F)Oc1ccccc1CCN(CCN1CCCC1)CC 

577  586935  4.00  FC(F)(F)Oc1ccccc1CCN(CCN1CCCCC1)C 

578  587001  4.00  FC(F)(F)Oc1ccccc1CCN(CCN1CCCCC1)CC 

579  587002  5.00  FC(F)(F)Oc1cc(ccc1)CCN(CCN1CCCC1)C 

580  587003  5.00  FC(F)(F)Oc1cc(ccc1)CCN(CCN1CCCC1)CC 

581  587004  5.00  FC(F)(F)Oc1cc(ccc1)CCN(CCN1CCCCC1)C 

582  587005  5.00  FC(F)(F)Oc1cc(ccc1)CCN(CCN1CCCCC1)CC 

583  589211  6.02  O=C(N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1)C(C)C 

584  589345  8.21  FCCCOc1cc2CCN(Cc2cc1)C1CCC(CC1)c1c2cc(ccc2[nH]c1)C#N 

585  589346  6.49  FCCCOc1cc2CCN(Cc2cc1)C1CCC(CC1)c1c2cc(ccc2[nH]c1)C#N 

586  589527  6.14  O=C(N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1)CCC 

587  589530  6.26  O=C(N(Cc1ccccc1C(C)C)[C@H]1CCNC1)C(C)C 

588  589531  6.91  O=C(N(Cc1ccccc1C1CC1)[C@H]1CCNC1)C(C)C 

589  589534  5.39  S(=O)(=O)(N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1)C 

590  589535  5.25  S(=O)(=O)(N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1)CC 

591  589536  5.25  S(=O)(=O)(N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1)CCC 

592  589540  6.39  O(CC)C(=O)N(Cc1ccccc1‐c1ccccc1)[C@@H]1CCNC1 

593  589541  5.27  S(=O)(=O)(N(Cc1ccccc1‐c1ccccc1)[C@@H]1CCNC1)C 

594  589606  7.30  S(C)c1ccccc1CN(C(=O)C(C)C)[C@H]1CCNC1 

595  589607  6.64  O(c1ccccc1CN(C(=O)C(C)C)[C@H]1CCNC1)c1ccccc1 

596  589608  5.35  O(C(=O)N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1)C 

597  589609  5.95  O(CC)C(=O)N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1 

598  589610  5.33  S(=O)(=O)(N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1)C(C)C 

599  589611  5.28  S(=O)(=O)(N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1)C(F)(F)F 

600  589612  5.54  S(=O)(=O)(N(Cc1ccccc1C(F)(F)F)[C@H]1CCNC1)C 

601  589613  5.90  S(C)c1ccccc1CN(S(=O)(=O)C)[C@H]1CCNC1 

602  589614  5.57  S(=O)(=O)(N(Cc1ccccc1Oc1ccccc1)[C@H]1CCNC1)C 

603  589615  5.48  S(=O)(=O)(N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1)N(C)C 

604  589682  5.97  N1C[C@@H](NCc2ccccc2‐c2ccccc2)CC1 

605  589683  6.06  O=CN(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1 

606  589686  6.10  O(C(C)C)C(=O)N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1 

607  589687  6.12  O(CC)C(=O)N(Cc1ccccc1C(C)C)[C@H]1CCNC1 

608  589688  6.37  FC(F)(F)c1ccccc1CN(C(OCC)=O)[C@H]1CCNC1 

609  589690  6.35  O(c1ccccc1CN(C(OCC)=O)[C@H]1CCNC1)c1ccccc1 

610  589691  5.30  O=C(N(Cc1ccccc1‐c1ccccc1)[C@H]1CCNC1)N(C)C 

611  609149  8.39  Fc1cc2c([nH]cc2CCCN2CCc3cc(OC)ccc3C2)cc1 

612  609150  8.19  Fc1cc2c([nH]cc2CCCN2CCc3c(C2)cccc3OC)cc1 

613  609205  7.94  Brc1cc2c([nH]cc2CCCN2CCc3cc(OC)ccc3C2)cc1 

614  609206  5.72  Brc1cc2c([nH]cc2CCCN2CCc3c(C2)cccc3OC)cc1 

615  609207  6.43  Ic1cc2c([nH]cc2CCCN2CCc3cc(OC)ccc3C2)cc1 

616  609208  6.67  Ic1cc2c([nH]cc2CCCN2CCc3c(C2)cccc3OC)cc1 

617  615167  7.89  [nH]1c2cc(ccc2cc1)C1(CCNC1)Cc1ccccc1 

618  615170  7.64  [nH]1cc(c2c1cccc2)C1(CCNC1)Cc1ccccc1 
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619  615171  7.28  [nH]1c2c(cc(cc2)C2(CCNC2)Cc2ncccc2)cc1 

620  615172  7.82  Fc1ccc(cc1)CC1(CCNC1)c1cc2c([nH]cc2)cc1 

621  615242  7.47  O(C)c1cc(ccc1)CC1(CCNC1)c1cc2c([nH]cc2)cc1 

622  615243  7.89  [nH]1c2c(cc(cc2)C2(CCNC2)CCc2ccccc2)cc1 

623  615244  8.40  n1(c2c(cc(cc2)C2(CCNC2)Cc2ccccc2)cc1)C 

624  615245  8.40  O(C(=O)c1[nH]c2c(cc(cc2)C2(CCNC2)Cc2ccccc2)c1)CC 

625  615246  9.40  [nH]1c2c(cc(cc2)C2(CCNC2)Cc2ccccc2)cc1C#N 

626  615247  8.70  O=C(N)c1[nH]c2c(cc(cc2)C2(CCNC2)Cc2ccccc2)c1 

627  615307  7.89  O=C(NC)c1[nH]c2c(cc(cc2)C2(CCNC2)Cc2ccccc2)c1 

628  615308  7.66  O=C(N(C)C)c1[nH]c2c(cc(cc2)C2(CCNC2)Cc2ccccc2)c1 

629  615309  7.18  [nH]1c2ncc(cc2cc1)C1(CCNC1)Cc1ccccc1 

630  615310  6.06  [nH]1c2c(cc(cc2)C2(CCNC2)C)cc1 

631  615311  7.18  [nH]1c2c(cc(cc2)C2(CCNC2)CCC)cc1 

632  615312  7.80  [nH]1c2c(cc(cc2)C2(CCNC2)CCCC)cc1 

633  616227  8.05  [nH]1cc(c2c1cccc2)C(CCNC)c1ccccc1 

634  616304  8.00  [nH]1c2c(cc(cc2)C2(CCNC2)Cc2ccccc2)cc1 

635  616307  9.00  [nH]1ncc2cc(ccc12)C1(CCNC1)Cc1ccccc1 

636  616308  8.15  O=C(N(C)C)c1[nH]c2c(cc(cc2)C2(CCNC2)Cc2ccccc2)c1 

637  616309  7.39  [nH]1cc(c2cc(ccc12)C1(CCNC1)Cc1ccccc1)C#N 

638  618133  7.37  O1C(CCC1CN)c1ccccc1 

639  618134  5.96  Clc1ccc(cc1)C1OC(CC1)CN 

640  618199  5.95  Brc1ccc(cc1)C1OC(CC1)CN 

641  618200  5.16  O1C(CCC1CN)c1ccc(OC)cc1 

642  618201  5.00  O1C(CCC1CN)c1ccc(cc1)C(C)(C)C 

643  618202  7.35  O1C(CCC1CN)c1cc2c(cc1)cccc2 

644  618203  6.76  O1C(CCC1CN)c1c2c(ccc1)cccc2 

645  618204  7.17  O1C(CCC1CN)CCc1ccccc1 

646  618205  7.74  O1C(CCC1CN)CCc1c2c(ccc1)cccc2 

647  618206  5.67  Fc1c(CCC2OC(CC2)CN)c(F)c(F)c(F)c1F 

648  618279  5.34  O1C(CCC1CN)CCc1cccnc1 

649  618280  5.42  O1C(CCC1CCN)Cc1ccccc1 

650  618281  6.16  Fc1ccc(cc1C)CCC1OC(CC1)CCN 

651  618282  5.13  O1C(CCC1CCN)CCc1ccc(O)cc1 

652  618283  5.00  O1C(CCC1CCN)c1occc1 

653  618284  5.20  Fc1cc([C@@H]2O[C@H](CC2)CN)c(OC)cc1 

654  618285  5.16  Fc1cc(C2OC(CC2)CN)c(OC)cc1 

655  618286  5.74  Fc1cc([C@@H]2O[C@H](CC2)CCN)c(OC)cc1 

656  618385  5.32  Fc1cc([C@H]2O[C@H](CC2)CCN)c(OC)cc1 

657  618386  6.72  Fc1cc(C[C@@H]2O[C@H](CC2)CN)c(OC)cc1 

658  618387  6.82  Fc1cc(C[C@H]2O[C@H](CC2)CN)c(OC)cc1 

659  618388  7.70  Fc1cc(C[C@@H]2O[C@H](CC2)CCN)c(OC)cc1 

660  618389  7.68  Fc1cc(C[C@H]2O[C@H](CC2)CCN)c(OC)cc1 

661  511500  8.49  Fc1cc(CC[C@@H]2O[C@H](CC2)CN)c(OC)cc1 
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662  618391  7.66  Fc1cc(CC[C@H]2O[C@H](CC2)CN)c(OC)cc1 

663  1152805 8.68  Fc1cc(CC[C@@H]2O[C@H](CC2)CCN)c(OC)cc1 

664  618493  7.71  Fc1cc(CC[C@H]2O[C@H](CC2)CCN)c(OC)cc1 

665  618494  9.10  Fc1cc(CCC[C@@H]2O[C@H](CC2)CN)c(OC)cc1 

666  618495  8.55  Fc1cc(CCC[C@H]2O[C@H](CC2)CN)c(OC)cc1 

667  618498  8.40  Fc1cc(CCCC[C@@H]2O[C@H](CC2)CN)c(OC)cc1 

668  618499  8.70  Fc1cc(CCCCC2OC(CC2)CCN)c(OC)cc1 

669  618664  7.04  O1C(CCC1CCN)CCc1c2c(cccc2)c(OC)cc1 

670  618665  7.07  O1C(CCC1CCN)CCc1c2c(ccc1OC)cccc2 

671  647314  7.59  O1c2cc(ccc2OC1)C1(O)N2C(=NCCC2)c2c1cccc2 

672  647748  7.32  O[C@H]([C@@H](CN(C)C)c1ccccc1)c1ccccc1 

673  647750  8.21  O[C@H]([C@@H](CN)c1cc2c(cc1)cccc2)C(C)(C)C 

674  647768  7.40  O[C@H]([C@@H](CN(C)C)c1ccccc1)C(C)(C)C 

675  647773  5.52  O[C@H]([C@@H](CN)c1ccccc1)c1ccccc1 

676  647796  8.92  O[C@H]([C@@H](CN(C)C)c1cc2c(cc1)cccc2)C(C)(C)C 

677  647886  8.07  O[C@H]([C@@H](CN(C)C)c1ccccc1)c1c(cc(cc1C)C)C 

678  652260  8.25  O[C@H]([C@@H](CN(C)C)c1cc2c(cc1)cccc2)c1ccccc1 

679  652273  8.21  O[C@H]([C@@H](CN)c1cc2c(cc1)cccc2)c1ccccc1 

680  652284  7.12  O(C)c1ccc(cc1)[C@@H]([C@@H](O)C1CCCCC1)CN 

681  652309  5.96  O[C@H]([C@@H](CN)c1ccccc1)C(C)(C)C 

682  652326  7.52  O(C)c1ccc(cc1)[C@@H]([C@@H](O)C1CCCCC1)CN(C)C 

683  652343  6.93  O[C@H]([C@@H](CN)c1ccccc1)c1c(cc(cc1C)C)C 

684  655551  6.68  FC(F)(F)c1ccccc1C(=O)N([C@H]1CCNC1)C1CCC1 

685  655577  6.18  O(c1ccccc1C(=O)N(C)[C@H]1CCNC1)c1ccccc1 

686  655578  6.65  O(c1ccccc1C(=O)N([C@H]1CCNC1)C1CCC1)c1ccccc1 

687  655590  6.00  [nH]1c2c(cc(N(C3CCNCC3)c3ccccc3)cc2)cc1 

688  655610  8.20  [nH]1c2c(cc(N(CCc3ccccc3)C3CCNCC3)cc2)cc1 

689  657263  6.63  O=C(N(CC1CCC1)[C@H]1CCNC1)c1ccccc1CC 

690  657280  7.80  FC(F)(F)c1ccccc1C(=O)N(CC1CC1)[C@H]1CCNC1 

691  657281  6.95  FC(F)(F)c1ccccc1C(=O)N([C@H]1CCNC1)c1ccccc1 

692  657309  9.10  [nH]1c2c(cc(N(Cc3ccccc3)C3CCNCC3)cc2)cc1 

693  657310  8.20  [nH]1c2c(cc(N(Cc3ccccc3)C3CCCNC3)cc2)cc1 

694  658956  7.41  Clc1ccccc1C(=O)N(CC1CCC1)[C@H]1CCNC1 

695  658965  7.21  S(C)c1ccccc1C(=O)N([C@H]1CCNC1)C1CCC1 

696  658980  6.24  FC(F)(F)c1ccccc1C(=O)N(CC1CC1)[C@H]1CCNC1 

697  659013  6.73  FC(F)(F)c1ccccc1CN(C(=O)C1CCC1)[C@H]1CCNC1 

698  659028  8.90  [nH]1ncc2cc(N(Cc3ccccc3)C3CCNCC3)ccc12 

699  659029  7.40  [nH]1c2c(cc(N(C(C)c3ccccc3)C3CCNCC3)cc2)cc1 

700  659059  8.60  [nH]1c2c(cc(N(Cc3ccc(cc3)C#N)C3CCNCC3)cc2)cc1 

701  660749  6.18  O=C(N(CC(C)C)[C@H]1CCNC1)c1ccccc1‐c1ccccc1 

702  660762  6.07  O=C(N(CC1CCC1)[C@H]1CCNC1)c1ccccc1C(C)C 

703  660763  6.82  O(c1ccccc1C(=O)N(CC1CCC1)[C@H]1CCNC1)c1ccccc1 

704  660770  6.34  FC(F)(F)c1ccccc1C(=O)N(C(C)C)[C@H]1CCNC1 
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705  660782  5.54  O=C(N(CC1CC1)[C@H]1CCNC1)c1ccccc1C(C)C 

706  660783  6.18  O=C(N([C@H]1CCNC1)C1CCCC1)c1ccccc1C(C)C 

707  660784  6.48  O=C(N(CC1CCCC1)[C@H]1CCNC1)c1ccccc1C(C)C 

708  660798  5.78  FC(F)(F)c1ccccc1C(=O)N(CC1CCC1)[C@@H]1CCNC1 

709  660828  8.70  Fc1ccc(cc1)CN(C1CCNCC1)c1cc2c([nH]cc2)cc1 

710  660836  9.60  [nH]1c2c(cc(N(Cc3cc(ccc3)C#N)C3CCNCC3)cc2)cc1 

711  662579  6.75  S(C)c1ccccc1C(=O)N(CC1CCC1)[C@H]1CCNC1 

712  662580  6.46  O(CC)c1ccccc1C(=O)N(CC1CCC1)[C@H]1CCNC1 

713  662588  6.10  O=C(N(CC1CCC1)[C@H]1CCNC1)c1ccccc1C1CCCC1 

714  662602  6.11  O=C(N([C@H]1CCNC1)C1CCC1)c1ccccc1C(C)C 

715  662631  7.60  O=C(N(C1CCNCC1)c1cc2c([nH]cc2)cc1)c1ccccc1 

716  662642  7.40  O1CCC(CC1)CN(C1CCNCC1)c1cc2c([nH]cc2)cc1 

717  662643  8.40  [nH]1c2c(cc(N(Cc3ccccc3C#N)C3CCNCC3)cc2)cc1 

718  662650  8.80  O(C)c1cc(ccc1)CN(C1CCNCC1)c1cc2c([nH]cc2)cc1 

719  662670  8.68  s1cccc1[C@]1(Oc2c3c(ccc2)cccc3)C[C@H]1CNC 

720  664268  6.93  O=C(N(CC1CCC1)[C@H]1CCNC1)c1ccccc1C 

721  664274  6.65  FC(F)(F)c1ccccc1C(=O)N(CC1CCC1)[C@H]1CCNC1 

722  664286  5.96  S(C)c1ccccc1C(=O)N(CCC)[C@H]1CCNC1 

723  664287  7.44  S(C)c1ccccc1C(=O)N([C@H]1CCNC1)C1CCCC1 

724  664302  5.28  O=C(N(CCC)[C@H]1CCNC1)c1ccccc1C(C)C 

725  664321  6.40  [nH]1c2c(cc(N(CCNC)c3ccccc3)cc2)cc1 

726  664335  7.70  [nH]1c2c(cc(N(Cc3ccccc3)C3CCNC3)cc2)cc1 

727  1138354  8.20  S(=O)(=O)(N)c1cc(ccc1)CN(C1CCNCC1)c1cc2c([nH]cc2)cc1 

728  666074  6.58  S(CC)c1ccccc1C(=O)N(CC1CCC1)[C@H]1CCNC1 

729  666090  7.19  S(C)c1ccccc1C(=O)N([C@H]1CCNC1)c1ccccc1 

730  666111  5.79  O(c1ccccc1C(=O)N(CC)[C@H]1CCNC1)c1ccccc1 

731  666112  6.80  O(c1ccccc1C(=O)N(CC(C)C)[C@H]1CCNC1)c1ccccc1 

732  666119  6.23  O(c1ccccc1C(=O)N(CC1CCC1)[C@@H]1CCNC1)c1ccccc1 

733  666134  8.40  [NH2+]1CCC(N(Cc2ccccc2)c2cc3c(n(cc3)C)cc2)CC1 

734  666174  7.48  s1cccc1[C@@]1(Oc2c3c(ccc2)cccc3)C[C@H]1CNC 

735  667945  6.96  FC(F)(F)c1ccccc1C(=O)N(CC1CCCC1)[C@H]1CCNC1 

736  667949  7.17  O(c1ccccc1C(=O)N([C@H]1CCNC1)c1ccccc1)c1ccccc1 

737  667950  5.97  S(C)c1ccccc1C(=O)N(CC1CCC1)[C@@H]1CCNC1 

738  667961  5.70  O=C(N(CC1CCC1)[C@@H]1CCNC1)c1ccccc1C(C)C 

739  667967  7.50  [nH]1c2c(cc(cc2)C(CCNC)c2ccccc2)cc1 

740  667979  7.90  s1c2c(cc(N(Cc3ccccc3)C3CCNCC3)cc2)cc1 

741  667993  8.40  Fc1ccccc1CN(C1CCNCC1)c1cc2c([nH]cc2)cc1 

742  667994  8.90  Fc1cc(ccc1)CN(C1CCNCC1)c1cc2c([nH]cc2)cc1 

743  668021  7.75  s1cccc1[C@]1(Oc2c3c(ccc2)cccc3)C[C@@H]1CNC 

744  668022  7.52  s1cccc1[C@@]1(Oc2c3c(ccc2)cccc3)C[C@@H]1CNC 
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Abstract der Dissertation  
angestrebter akademischer Grad: Doktor der Naturwissenschaften Chemie (Dr. rer.nat)  
A 091419 Chemie   
      Ishrat Jabeen, M.Phil Chemistry 
      Pharmacoinformatics Research Group 
      Department für Medizinische Chemie 
      Althanstraße 14, 1090, Wien 
      Universität Wien, Österreich 

Der aktive Effluxtransporter P-Glykoprotein (P-gp) ist verantwortlich für Multidrug 

Resistenz (MDR) in Tumoren und beeinflusst außerdem die ADME Eigenschaften von 

Arzneistoffkandidaten. P-gp zeigt eine sehr breite Substratspezifität und transportiert 

daher eine hohe Anzahl von strukturell und funktionell diversen Substanzen aus 

Tumorzellen hinaus und über physiologische Barrieren hinweg. Obwohl in den letzten 

zwei Jahrzehnten einige Inhibitoren von P-gp identifiziert wurden, scheiterten alle von 

ihnen in klinischen Studien, entweder wegen schwerwiegenden Nebenwirkungen, oder 

wegen fehlender Wirksamkeit. Dies betont die Notwendigkeit von verlässlichen in 

silico Modellen für die Vorhersage von P-gp Substraten und Inhibitoren bereits in 

frühen Phasen der Wirkstoffentwicklung. In dieser Arbeit wurden daher 

unterschiedliche in silico Methoden verwendet um Einblicke in die dreidimensionalen 

strukturellen Voraussetzungen der Liganden, ihren Bindungsmodus und ihre 

Stereoselektivität gegenüber P-gp zu erhalten. 

Verschiedene 2D- und 3D-QSAR Modelle wurden mit einfachen physicochemischen 

sowie komplexen 3D-Deskriptoren (GRIND) für unterschiedliche chemische 

Grundkörper erstellt, um globale strukturelle Merkmale von P-gp Inhibitoren zu 

untersuchen. Um die vielversprechendsten P-gp Liganden mit dem besten 

Wirksamkeits/Lipophilie- oder Größenverhältnis zu identifizieren, verwendeten wir 

zum bisher ersten Mal ligandeneffizienz- und lipophilieeffizienzbasierte Ansätze. 

Interessanterweise überschritt keine der vielversprechendsten Substanzen den LipE 

Grenzwert von 5. Dies könnte mit dem einzigartigen Zugangsweg der Substanzen 
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zusammenhängen, der anders als bei anderen Transportern oder Ionenkanälen direkt aus 

der Zellmembran erfolgt. Unsere Dockingstudien bieten einen ersten Nachweis über 

unterschiedliche Bindungsareale für zwei diastereomere Substanzserien und zeigen eine 

stereoselektive Ligandenerkennung von P-gp. Zusätzlich war es uns möglich zu zeigen, 

dass sich ein Benzophenon-Dimer so platzieren lässt, dass diese beiden Areale 

verbunden werden, was die Hypothese von mehreren, teilweise überlappenden, 

Bindunsarealen von P-gp verstärkt. Die in dieser Dissertation beschriebene Arbeit wird 

den Weg für die Entwicklung von zukünftlichen neuen und vielversprechenderen 

Inhibitoren von P-gp bereiten, die bessere ADME Eigenschaften und verringerte 

Toxizität besitzen. 

Keywords: P-glycoprotein, ABCB1, Multidrug Resistenz (MDR), 

Lipophilieeffizienzbasierte, Ligandeneffizienz,  QSAR, GRIND, Docking. 
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      Ishrat Jabeen, M.Phil Chemistry 
      Pharmacoinformatics Research Group 
      Department of Medicinal Chemistry 
      Althanstraße 14, 1090, Vienna 
      University of Vienna, Austria 

The drug efflux pump P-glycoprotein (P-gp) has been shown to cause multidrug 

resistance (MDR) in tumors as well as to influence ADME properties of drug 

candidates. P-gp is highly promiscuous in its ligand recognition profiles and thus 

transports numerous structurally and functionally diverse compounds out of tumor cells 

and accross physiological barriers. Several inhibitors of  P-gp mediated drug efflux have 

been identified in the past two decades, but all of them failed in clinical trials due to 

severe side effects and lack of efficacy. This further emphasizes the necessity of reliable 

in-silico tools for prediction of P-gp substrates and inhibitors during the early phases of 

drug discovery. Therefore, in this thesis, various in silico tools have been utilized to get 

insights into 3D structural requirements of ligands, their binding modes, as well as their 

stereoselectivity towards P-gp. 

Different 2D- and 3D-QSAR models using simple physicochemical and GRID 

independent molecular descriptors have been constructed across different chemical 

scaffolds to investigate global structural attributes of P-gp inhibitors. In order to identify 

most promising P-gp ligands with best potency/lipophilicity or size ratio, we, for the 

first time, also used ligand efficiency and lipophilic efficiency based approaches. 

Interestingly,  none of the P-gp inhibitors/substrates cross the LipE threshold of 5 for 

highly promising compounds. This might be linked  to the unique entry pathway 

directly from the membrane bilayer, which is rather unique for transporters and ion 
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channels. Our docking studies  provide the first evidence for different binding areas of 

two diastereomeric compound series and provides evidence for stereoselective ligand 

recognition of by P-gp. In addition we could show that a benzophenone dimer is well 

docked in a pose bridging these two distinct binding sites, which further strengthens the 

hypothesis of multiple, partly overlapping binding sites at P-gp. The work described in 

this thesis will pave the way for the design of new and more promising inhibitors of P-

gp in the future with better ADME properties and reduced toxicity. 

Keywords: P-glycoprotein, ABCB1, Multidrug Resistance (MDR), Lipophilic 

Efficiency, Ligand Efficiency,  Stereoselectivity, QSAR, GRIND, Docking. 
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List of Abbreviations 

P-gp   P-glycoprotein 

ABC   ATP Binding Cassette 

MDR   Multidrug Resistance 

TMD   Transmembrane Domain 

NBD   Nucleotide Binding Domain 

ADME-Tox  Absorption, Distribution, Metabolism, Excretion and Toxicity 

BBB   Blood–Brain Barrier 

B-CSF   Blood Cerebrospinal Fluid 

SAR   Structure Activity Relationship 

QSAR   Quantitative Structure Activity Relationship 

HQSAR  Hologram Quantitative Structure Activity Relationship 

CoMFA  Comparative Molecular Field Analysis 

CoMSIA  Comparative Molecular Similarity Index Analysis 

MIF   Molecular Interaction Field  

GRIND  GRID Independent Descriptors 

TPSA   Topological Polar Surface Area 

LE   Ligand Efficiency 

LipE   Lipophilic Efficiency 

MOE   Molecular Operating Environment  

GOLD   Genetic Optimization for Ligand Docking 

RMSD   Root Mean Square Deviation 

PLS   Partial Least Square  

PC   Principal Component 

PCA   Principal Component Analysis 

PDB   Protein Data Bank 

hERG   human Ether-à-go-go Related Gene 

SERT   Serotonine transporter 

CYP3A4  Cytochrome P450 3A4 
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