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Kurzfassung

Das grundsätzliche Ziel dieser Arbeit ist es, Materialeigenschaften basierend auf
”
First

Principles“ Rechnungen, d.h. ohne Verwendung empirischer Parameter, zu beschreiben.
Dazu wurden insbesondere die aktuellsten Ansätze der Dichtefunktionaltheorie (DFT)
verwendet. Besonderes Augenmerk galt auch dem wichtigen Beitrag der Schwingungen
zur Freien Energie. Dabei lieferte die Standard DFT die Grundzustandsenergie und die
elektronische Struktur bei T = 0 K, aus der viele physikalische Eigenschaften einer geord-
neten Struktur hergeleitet werden können. Hierfür wurde das

”
Vienna Ab-intio Simulation

Package“ (VASP) verwendet. Kräfte, die auf Atome wirken, können mit DFT berechnet
werden und in weiterer Folge dazu verwendet werden, um Schwingungseigenschaften, wie
Phononenspektren und die Freie Energie der Schwingungen, herzuleiten. In der Praxis
wurde dazu das Programm f PHON verwendet, eine eigene Adaption von PHON, welches
nun auch für allgemeine Kristallstrukturen angewandt werden kann.

Zwei unterschiedliche Materialien wurden genau untersucht, und zwar die Verbindung
Mo3Al2C und Fe-Cu Legierungen.

Die Mo3Al2C1�x Verbindung ist von besonderem Interesse, da diese supraleitende Eigen-
schaften aufweist, aber die Kristallstruktur keine Inversionsymmetry beinhaltet. Durch
Phononenrechnungen wurde festgestellt, dass die Verbindung ohne Kohlensto✏eerstellen
dynamisch instabil ist, d.h. um Stabilität zu erreichen muss x größer als 0 sein. Jedoch
zeigen die Standard DFT Rechnungen bei T = 0 K, dass Kohlensto✏eerstellen energe-
tisch ungünstig sind. Die Berücksichtigung der Freien Energie der Schwingungen in einem
thermodynamischem Modell korrigierten dies für die Temperaturen, bei denen die Pro-
ben experimentell hergestellt wurden, d.h. die Kohlensto✏eerstellen werden energetisch
stabil. Eine Untersuchung des durch Leerstellen herforgerufene

”
Phonon Softening“ im

Zusammenhang mit diesem thermodynamischen Modell erlaubten es, den Bereich, in dem
Mo3Al2C1�x stabil ist, auf 0.09 < x < 0.14 einzuschränken. Eine wohl definierte Leerstel-
lenkonzentration ist wichtig für das Verständnis der supraleitenden Eigenschaften, da die
Fermiflächen stark von der Kohlensto✏eerstellenkonzentration x abhängig sind.

Kupfer ist ein technologisch wichtiger Härtezusatz zu Stahl. Das Ziel war nun, die Kup-
ferlöslichkeit in Eisen basierend auf

”
First Principles“ Rechnungen vorherzusagen. Dabei

muss erwähnt werden, dass es im gesamten Mischungsbereich keine stabilen Verbindun-
gen gibt. Basierend auf Superzellenrechnungen wurde ein thermodynamisches Modell für
isolierte Einzel- und Paar-Atom Defekte entwickelt. Wird der Schwingungsanteil der Frei-
en Energie berücksichtigt, dann erhöht sich die Kupferlöslichkeit in Eisen dramatisch auf
Werte, die den experimentellen Ergebnisse gleichen. Dieses Modell ist jedoch nur auf iso-
lierte, nicht interagierende Defekte anwendbar und daher nur für verdünnte Lösungen
richtig.



Für ein konzentrationsabhängiges Model des Fe-Cu Phasendiagrammes wurde die
”
Clu-

ster Expansion“ (CE) Methode, so wie sie im
”
UNiversal CLuster Expansion“ (UNCLE)

Programmpacket implementiert ist, gewählt. Basierend auf einer großen Anzahl von In-
putstrukturen, die mit spin-polarisierten DFT berechnet wurden, wurde mit CE die ef-
fektiven Clusterwechselwirkungsenergien (ECIs) des dazugehörigen Satzes von Figuren
ermittelt. Dies stellte sich wegen der fehlenden Fe-Cu Mischverbindungen als besonders
schwierig heraus. Nach Abschluss der CE wurde eine Monte-Carlo (MC) Simulation mit
den ECIs und dem dazugehörigen Figurensatz durchgeführt. Dabei wurde die Simulati-
onszelle in zwei Blöcke aufgeteilt, die bei T = 0 K aus reinem Eisen und Kupfer bestan-
den. Unter Berücksichtigung der Temperatur und nach Erreichen des thermodynamischen
Gleichgewichtes wurde die Kupferlöslichkeit in Eisen durch Zählen der gelösten Kupfe-
ratome im Eisenblock ermittelt. Die so gefunden Werte stellten sich als viel zu niedrig
heraus.

Erneut wurde die Freie Energie der Schwingungen berücksichtigt, indem für jede Input-
struktur die Kraftkonstanten berechnet und die dazugehörigen dynamischen Matrizen
diagonalisiert wurden. Dadurch sind die ECIs auch temperatur-abhängig, d.h. es muss
bei jeder Temperatur eine eigene CE gemacht werden. Es stellte sich heraus, dass dies
massive Konvergenzprobleme verursacht, welches nur durch ein Mitteln der ECIs und
Figursätze gelöst werden kann. Dies führt zu einem viel größeren Satz an Figuren als bei
der Standard CE. Die Verwendung dieser mittleren Figursätze in der MC resultiert in
einer signifikant höheren Kupferlöslichkeit, die den Werten des Defektmodelles gleichen.
Diese konzentrations- und temperatur-abhängige CE Studie macht es nun möglich, die
Bildung von Kupferausscheidungen richtig zu beschreiben.



Abstract

The fundamental aim of the thesis is to describe properties of solid materials from first-
principles without the need of any empirical parameter and with the accuracy of up-to-
date density functional theory (DFT) approaches. A particular e↵ort is made to include
the most important contribution to the temperature dependent free energy of the material
in terms of the vibrational free energy. Standard DFT applications yield the ground state
total energy and electronic structure at T = 0 K, for which many physical properties of
structurally ordered systems are derived. In this work, this was achieved by making use
of the Vienna ab-initio simulation package (VASP). Forces acting on the atoms can be
obtained from DFT calculations which are then used for deriving vibrational properties
such as phonon spectra and vibrational free energies. In practice, this was done within
the harmonic approximation by applying the program package f PHON, which works
for general crystal structures. It was developed as part of this thesis by substiantially
extending the package PHON, which is available on the web.

Two types of material classes were studied in detail, namely the compound Mo3Al2C and
the Fe-Cu alloy system.

The compound Mo3Al2C1�x is of particular interest because it is superconducting but its
crystal structure has no centre of inversion. From phonon calculations it was found that
it is dynamically unstable without carbon vacancies, i.e. for x = 0. Yet, from standard
DFT T = 0 K supercell calculations it turned out that carbon vacancies are energetically
very costly. However, by including the corresponding vibrational free energies in a ther-
modynamic model at temperatures, at which the experimental samples were fabricated,
carbon vacancy formation became favourable. By analysis of the vacancy dependent
phonon softening and thermodynamic stability the carbon vacancy concentration range,
for which Mo3Al2C1�x is dynamically and thermodynamically stable, was derived to be
0.09 < x < 0.14. A well-defined vacancy concentration is important for understanding
the superconducting properties because the Fermi surface strongly depends on x.

Cu enrichment of steel is technologically important for hardening the material. The task
for the first-principles theory now is to derive the solubility of Cu in Fe, whereby no
thermodynamic stable compound phase exists in the whole composition range. Based
on a supercell description for isolated single-atom and pairwise defects a thermodynamic
model was developed. When vibrational formation energies were taken into account the
solubility of Cu in Fe increased dramatically and the result is in very good agreement to
experiment. The described model is limited to non-interacting defects which in practice
refers to very dilute concentrations.

For a truly concentration dependent modelling of the Fe-Cu phase diagram the cluster
expansion (CE) technique as implemented in the universal cluster expansion (UNCLE)



package was chosen. Based on a large set of spin-polarised DFT calculations as input
structures for the CE the e↵ective cluster interaction energies (ECI) and the corresponding
set of CE figures were derived. Achieving DFT accuracy for the CE was a particularly
di�cult task in this case because of the non-miscibility of the Fe-Cu system. After the
CE was completed Monte Carlo (MC) simulations were performed, which were initiated
by partitioning the simulation cell into two blocks of materials consisting at T = 0 K of
pure Fe and Cu. Switching on temperature and reaching the thermodynamic equilibrium
allows then the determination of the Cu solubility in Fe by counting the number of
dissolved Cu atoms in the Fe block. Thereby, it is found that the resulting Cu solubility
is far too small.

Again, vibrational free energies were now taken into account by calculating force-constants
and diagonalising the dynamical matrix for each of the DFT input structures of the CE.
Including temperature dependent vibrational free energies in the CE results in ECI’s also
becoming temperature dependent. Hence, at each temperature of interest a separate CE
needed to be done. This caused severe convergency problems, finally requiring the aver-
aging of figure-sets from di↵erent CE’s at the same temperature leading to a substantially
larger figure-set than typically used for standard CE applications. Applying the averaged
figure-sets in MC runs resulted in significantly increased Cu-solubilities, as similarly found
with the isolated defect model. With the concentration dependent treatment of the CE
the study of the formation of Cu precipitation became possible.
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Chapter 1

Introduction

The fundamental aim of the thesis is to describe properties of solid materials from first-

principles without the need of any empirical parameter and with the accuracy of up-to-

date density functional theory (DFT) approaches. A particular e↵ort is made to include

the most important contribution to the temperature dependent free energy of the material

in terms of the vibrational free energy. Standard DFT applications yield the ground state

total energy and electronic structure at T = 0 K, for which many physical properties of

structurally ordered systems are derived.

In this thesis, this was achieved by making use of the Vienna ab-initio simulation pack-

age (VASP). Forces acting on the atoms are obtained from DFT calculations which are

then used for deriving vibrational properties such as phonon spectra and vibrational free

energies. In practice, this was done within the harmonic approximation by applying the

program package f PHON, which works for general crystal structures. It was developed

as part of this thesis by extending the package PHON.

Two types of material classes were studied in detail, namely the ordered compound

Mo3Al2C1�x and the Fe-Cu alloy system.

The compound Mo3Al2C1�x is of particular interest because it is superconducting but

its crystal structure has no centre of inversion. Obviously, the phonon dispersion and in

particular soft modes are searched for to get a hint about the superconducting mechanism.

On the other hand, carbides and carbid-like compounds are known to have vacancies on

the carbon sublattice. Therefore, also thermodynamical stabilities are of importance, for

which the vibrational free energy is essential.

Cu enrichment of steel is technologically important for hardening the material. The task

for the first-principles theory now is to derive the solubility of Cu in Fe, whereby no

thermodynamic stable compound phase exists in the whole composition range. Because

the concentration of Cu in Fe (which is the most interesting case for these alloys) is rather
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small, modelling the solubility by isolated defects seems reasonable and therefore will be

applied as a first step.

For a truly concentration dependent modelling of the Fe-Cu phase diagram the cluster

expansion (CE) technique as implemented in the universal cluster expansion (UNCLE)

package was chosen. Standard CE applications are done for alloy system with stable

ordered phases, which is not the case for Fe-Cu alloys. The major task will be to in-

clude vibrational free energies for generating the e↵ective cluster interactions (ECI’s).

In doing this, the ECI’s will become temperature dependent which means that for each

temperatures a di↵erent CE has to be done.

To the knowledge of the author first-principles studies of an alloy system in such a tem-

perature dependent manner are rather rare.

Chapter 2 provides a short overview about the underlying fundamental theory, the density

functional theory (DFT) and its application in the Vienna ab-initio simulation package

(VASP) [1–4].

Continuing with chapter 3 a thorough theoretical discussion about modelling of vibra-

tional properties within the harmonic approximation is given. For the calculations the

direct force-constant matrix is used which relies on the forces as derived from DFT. The

described method is implemented in the program f PHON, which is an extension of the

package PHON of D. Alfè’s [5, 6] PHON.

For describing solubility of dilute alloys in terms of isolated defects, DFT supercell en-

ergies at T = 0 K and temperature dependent vibrational free energies are combined

within a thermodynamical model elaborated in chapter 4. A general description of the

configurational entropy for single and pair-wise defects was developed, which was then

used to construct a grand canonical potential.

Chapter 5 introduces the cluster expansion (CE), for which the universal cluster expansion

(UNCLE) code [7, 8] is applied. The standard CE approach is extended to include

vibrational free energies for each of the DFT input structures which results in temperature

dependent ECI’s.

In chapter 6 the vibrational and thermodynamical stabilities of the superconducting car-

bide Mo3Al2C1�x are discussed.

Finally, in chapter 7 the results of the ab-initio calculations for the Fe-Cu alloy are

discussed in great detail elaborating on the di�culties caused by including vibrational

free energies.

Appendix A overviews to the most widely used scheme for Brillouin zone sampling. A

manual for applying the program package f PHON is given in the appendix B and the

2



Chapter 1. Introduction

special points in the first Brillouin Zone for a selection of crystal structures are found in

appendix C.
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Chapter 2

Density Functional Theory

The time-independent non-relativistic Schrödinger equation for the groundstate (GS) is

defined by

Ĥ  GS( ~X1 . . . ~XNe , ~R1 . . . ~RNn) = ĒGS  GS( ~X1 . . . ~XNe , ~R1 . . . ~RNn) (2.1)

for a many-body system consisting of Ne electrons and of Nn nuclei, where the positions

of the atomic nuclei are defined by ~Rk, and the electronic coordinates are defined by
~Xj(~xj, sj) comprising both, spin sj and position ~xj. The Hamiltonian is built up according

to

Ĥ = T̂e + V̂ee + T̂n + V̂nn + V̂en . (2.2)

The di↵erent terms are the the electronic kinetic energy

T̂e = � ~2

2m

Ne
X

j=1

r2
j , (2.3)

the electronic Coulomb interaction

V̂ee =
1

2

Ne
X

j=1

Ne
X

k=1

e2

| ~Xj � ~Xk|
, (2.4)

the kinetic energy of the nuclei

T̂n = �~2

2

Nn
X

l=1

r2
l

Ml

, (2.5)
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the nuclei-nuclei interaction

V̂nn =
1

2

Nn
X

l=1

Nn
X

m=1

ZlZm e2

|~Rl � ~Rm|
, (2.6)

and the electron-nuclei Coulomb interaction

V̂en = �1

2

Nn
X

l=1

Ne
X

j=1

Zl e2

|~Rl � ~Xj|
. (2.7)

The mass of the electrons is defined by m while that of nucleus i is given by Mi, and

its charge by Zi. The ground state energy eigenvalue ĒGS is the lowest of the eigenvalue

spectrum of the Hamiltonian and gives the total ground state energy of the system of

electrons and nuclei. If, as usual the Born-Oppenheimer approximation is assumed the

motion of the nuclei can be taken out from the Hamiltonian and the ground state total

energy of the system is written as

ĒGS =: EGS,tot = EGS + Vnn , (2.8)

where EGS is now the ground state total energy of the electronic system and Vnn is the

Coulomb energy of the nuclei-nuclei interaction. It should be noted that the Hamiltonian

for deriving EGS still contains the Coulomb interaction between electrons and nuclei, V̂ne.

This is called in the phraseology of density functional theory the external potential. The

electronic wavefunctions must obey Pauli’s exclusion principle, i.e. being antisymmetric

about exchanging electrons, and further must fullfil the normalisation condition

h | i = 1 . (2.9)

Here and later on one is only interested in the ground state of the system. Schrödinger’s

equation for the ground state can now be reformulated in terms of a variational principle

making use of the total energy as a functional of  ,

E[ ] = h |Ĥ| i , (2.10)

under the constraint of the normalisation condition in Eq. 2.9 introducing a Lagrangian

multiplier. This, after minimisation will become the ground state energy eigenvalue ĒGS.

The variational principle requires that

E[ GS]  E[ ] , (2.11)
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Chapter 2. Density Functional Theory

with  GS for the ground state wavefunction. The ground state energy describing the

minimum of the functional is defined by,

ĒGS = min E[ ] . (2.12)

2.1 Density Functional Theory

From the ground state wavefunction a ground state density for the electronic system

⇢GS( ~X) =

Z

 GS({ ~Xi}) d ~X1 . . . ~XNe�1 (2.13)

is integrated out fulfilling the condition of classical electronic density by

Z

⇢GS( ~X) d ~X = Ne , (2.14)

whereby the integration also includes the summation over the spin coordinates.

The original concept of Hohenberg and Kohn’s [9] density functional theory (DFT) was

to replace the ground state functional of Eq. 2.10 and its minimisation by

EGS := E[⇢GS] = min E[⇢] . (2.15)

The total energy of the ground state is derived from an energy functional of the density

⇢ under the constraint of Eq. 2.14, instead of the many-body wavefunction  . After

mastering all problems concerning uniqueness a direct equation for the ground state

density is derived. However, it turns out to be useless for deriving a quantitative useful

ground state density and thus the ground state total energy for realistic atomic systems.

Immediately following the publication of the original DFT the concept of Kohn and

Sham was presented [10], in which a step backwards is made towards a wavefunction-like

concept. This is done by introducing single particle like wave functions defined by,

⇢GS( ~X) =
X

i

�?
i ( ~Xi)�i( ~Xi) , (2.16)

i.e. the orbitals �i build up the true ground state density ⇢GS( ~X). This requirement

is, strictly speaking, the only physical meaning of the Kohn-Sham orbitals �i. In other

words, one searches for a fictitious system of independent quasi-particles described by

the orbitals � fullfilling Eq. 2.16. The total energy functional as utilised in Eq. 2.15 is

replaced by functional E[{�i}]. Again, its uniqueness and existence had to be proven,

which resulted in a vast amount of studies and publications. Searching for the ground

7



Chapter 2. Density Functional Theory

state total energy by minimizing the functional E[{�i}] under the constraint

Z

⇢GS( ~X) d ~X =
X

i

Z

�?
i ( ~Xi)�i( ~Xi) d ~X = Ne (2.17)

leads to the renowned Kohn-Sham equations

ĥKS�i = ✏i�i (2.18)

which appear to be Schrödinger-like equations for single, or rather, quasi particle like

states. The Kohn-Sham Hamiltonian

ĥKS�i = � ~2

2m
r2 + Ve↵ (2.19)

consists of a single-particle kinetic energy and an e↵ective potential, which at a first

glance looks like a local quantity only dependent on the coordinates ~X. It is however

obvious, that if the Kohn-Sham equations express the correct physics then Ve↵ must also

contain all non-local interactions. In particular, the interactions due to the exchange and

correlation properties of the many-body electronic system. The big technical advantage

of single-particle equations like the Kohn-Sham equation (Eq. 2.18) is, that there exits

a vast experience pool to numerically solve these types of self-consistent equations very

e�ciently. Of course, the crucial point for deriving quantitatively useful results is how

well the many-body exchange-correlation interactions can be approximated as discussed

later on.

The e↵ective potential

Ve↵( ~X) = Vext( ~X) + Vcoul(⇢GS) + Vxc (2.20)

consists of the classical external potential Vext( ~X)(i.e. the Coulomb electron-nuclei in-

teractions), the classical Coulomb interaction of the electron density Vcoul(⇢GS) and the

exchange correlation potential

Vxc =
�Exc[⇢]

�⇢
, (2.21)

which is a functional derivative of the unknown exchange-correlation functional Exc[⇢].

Once the Kohn-Sham equations are solved self-consistently the two fundamental quan-

tities of density functional theory, the ground state density ⇢GS and consequently the

8



Chapter 2. Density Functional Theory

ground state total energy

EGS =
X

i

✏i �
1

2

Z

⇢GS( ~X)⇢GS( ~X 0)

|~r � ~r0|
d ~X d ~X 0

+Exc[⇢GS]�
Z

Vxc[⇢GS]⇢GS( ~X) d ~X (2.22)

can be derived (see Ref. [11]). Due to the Born-Oppenheimer approximation the total

energy EGS describes the potential energy EGS({~Ri}) with respect to the positions of the

nuclei, i.e. the positions of the nuclei are fixed when minimizing the electronic state.

Therefore, the force ~Fi acting on atom i is defined as

~Fi := ~F (~Ri) = �@EGS(~R1 . . . ~RNn)

@ ~Ri

. (2.23)

2.2 Approximations and Implementation

For the actual calculations the unknown exchange correlation functional Exc for a real-

istic many-body system of interacting electrons and nuclei has to be approximated. In

practical terms the success of any formal theory depends firstly on how well Êxc can be

approximated and secondly on how the formal machinery can be cast into an e�cient

computer code.

Concerning the first point, in this work the two most common local or semi-local approx-

imations are applied the local density approximation (LDA) and its extended version

the general gradient approximation (GGA). Within LDA the exchange-correlation en-

ergy is expressed in terms of the exchange-correlation energy ✏xc(⇢) per particle in the

homogenous free electron gas,

ELDA
xc [⇢] =

Z

⇢( ~X)✏xc(⇢)d ~X . (2.24)

Within GGA the local expression are extended by including the density gradient in the

functional,

EGGA
xc [⇢,r⇢] . (2.25)

It is well known, that LDA su↵ers from over binding e↵ects for bulk systems with smaller

nuclear charges (e.g. the 3d-transition metal elements) or for surfaces in general. There

the assumption of the charge density being comparable to an homogeneous electron gas

is much worse than in the bulk. In such cases GGA solves most of the problems but is

less accurate for bulk systems with large nuclear charges such as the 5d-transition metal

elements. Therefore, a proper selection of the many-body approximation for the actual

9



Chapter 2. Density Functional Theory

calculations has to be made. This is sometimes not straightforward. Strictly speaking,

due to the choice between either LDA or GGA the calculations are not truly ab-initio. On

the other hand, for the actual calculations in this work only these two choices are made

for the whole periodic table and the results are very or reasonably accurate for a wide

class of materials. Of course, there exists a range of materials and properties at which

these rather simple and computationally costless LDA and GGA approximations fail in

some respects. These are strongly correlated systems (e.g. 3d-transition metal oxides),

gap sizes in general (which is a more fundamental DFT problem), and van-der-Waals

bonding. Cures to these problems exist, at least partially, but are computationally very

demanding and on the forefront of research and code development.

For the actual calculations in this work the GGA parametrisation of Perdew, Burke and

Ernzerhof (PBE) [12] was chosen.

The second crucial point for the ab-initio calculation of physical properties of large

systems is the computational machinery, which largely depends on the choice of basis

functions, i.e. the Kohn-Sham orbitals. For such orbitals in three-dimensional periodic

systems plane waves are ideal candidates if the construction of pseudopotentials can be

mastered. Relying on the projector-augmented wave (PAW) description of Blöchl [13]

flexible and trustable pseudopotentials can be designed [4] which seem to work for all

valence atomic orbitals (including 3d and 4f orbitals) if constructed and tested carefully.

This fundamental requirement is the backbone of one of ther most powerful DFT (and

post-DFT) computer code, the Vienna ab-initio simulation package (VASP) as developed

by G. Kresse and his group [1–4]. The reader who is interested in details and applica-

tions of this code is referred to the VASP manual [14]. With the VASP code, bulk and

surface systems (in terms of a repeated slab) with up to 200-300 atoms can be studied

with fully optimised atomic geometries. Of particular importance for the present work,

which focusses on vibrational properties, is the possibility to reliably calculate the force

for such large systems.
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Chapter 3

Lattice Dynamics

In the crystal atom  vibrates around its equilibrium position ~Rl = ~Rl +~⌧, i.e. the sum

of the Bravais lattice vector ~Rl pointing at unit cell l and the basis vector ~⌧ pointing at

atom  in that cell. It is displaced from this equilibrium position by a displacement ~ul,

and therefore its current position ~rl is given by

~rl = ~Rl + ~ul , (3.1)

as illustrated in Fig. 3.1. The index l denotes the unit cell in which the atom  is

positioned, whereby l = 0, . . . , (C � 1) and  = 1, . . . , N , where C describes the total

number of unit cells and N the number of atoms per unit cell.

Figure 3.1: Sketch illustrating the position of atom  in unit cell l, with lattice vector
~Rl, displacment ~ul and current position ~rl.
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Chapter 3. Lattice Dynamics

Assuming that the displacements ~u = {~ul, ~ul00 , ~ul0000 , . . . } are su�ciently small the cor-

responding total energy E of the crystal is expanded in a Taylor series at the equilibrium

position ~u = 0,

E(~u) = E0 +
X

l,↵

ul,↵
@E0

@ul,↵

�

�

�

�

�

~u=0

+
1

2

X

l,↵

X

l00,�

ul,↵ul00,�
@2E0

@ul,↵@ul00,�

�

�

�

�

�

~u=0

+
1

6

X

l,↵

X

l00,�

X

l0000,�

ul,↵ul00,�ul0000,�
@3E0

@ul,↵@ul00,�@ul0000,�

�

�

�

�

�

~u=0

+ O(~u 4) ,(3.2)

in which E0 describes the groundstate energy (~u = 0 for all atoms), which in the present

work is the DFT equilibrium total energy. The indices ↵, � and � label the three com-

ponents of the displacement vectors (i.e. ↵, �, � = 1, 2, 3). The zeroth-order term is just

a constant, whereas the first-order term comprises the forces acting on the atoms. If the

atoms are at their equilibrium positions, i.e. all forces are zero, then the first-oder term is

zero. The second-order term is the harmonic potential energy term (Vharm), which is the

quantity aimed for in terms of the force-constant matrix. Higher-order terms describing

anharmonic e↵ects will not be considered further on.

In the harmonic approximation the relation between atom displacement ~u and the back-

driving force ~F (~u) is linear, i.e. F = �Ku for the most simple one-dimensional case

with spring-constant or force-constant K = �F/u. Obviously, K has to be replaced in

the three-dimensional crystal by a suitably constructed force-constant matrix �.

3.1 Force-Constant Matrix

The force-constant matrix as defined by

�
⇣

l l0

0

⌘

↵�
=

@2E0

@ul,↵ @ul00,�

�

�

�

�

~u=0

, (3.3)

appears in the harmonic potential [15],

Vharm =
1

2

X

l,↵

X

l00,�

�
⇣

l l0

 0

⌘

↵�
ul,↵ ul00,� , (3.4)

with the vector component indices ↵ and �. The force-constant matrix � has the following

symmetry properties:
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• As a direct result of the invariance of the interchange of derivatives in Eq. 3.3,

�
⇣

l l0

 0

⌘

↵�
= �

⇣

l0 l
0 

⌘

�↵
. (3.5)

• If the crystal structure has a centre of inversion, i.e. the potential energy of the

crystal obeys V (~R) = V (�~R), then the stricter symmetry relation

�
⇣

l l0

 0

⌘

↵�
= �

⇣

l0 l
0

⌘

↵�
(3.6)

is valid.

• Due to translational symmetry of the underlying Bravais lattice the summation l, l0

can be reformulated to give

�
⇣

l00

 0

⌘

↵�
= �

�

l�l0 0
 0

�

↵�
= �

⇣

l l0

 0

⌘

↵�
. (3.7)

Since the di↵erence between two lattice vectors is also a lattice vector, as
~Rl00 = ~Rl � ~Rl0 , the index l00 = l � l0 is introduced.

• If the same displacement ~d = ~u acts on all atoms in the crystal, thereby displacing

the entire crystal without a distortion, then Vharm(~d ) = Vharm(~u ! 0) = 0. Hence,

X

l,↵

X

l00,�

�
�

l�l0 0
 0

�

↵�
d↵d� =

X

↵�

CNd↵d�

X

l00

�
�

l�l0 0
 0

�

↵�
= 0 .

It follows that
X

l000

�
⇣

l00

0

⌘

↵�
= 0 . (3.8)

3.2 Equation of Motion

From the harmonic potential and Newton’s second law the equations of motions are

derived,

Fl,↵ = M
@2

@t2
ul,↵ = �@Vharm

@ul,↵

= �
X

l00,�

�
�

l�l0 0
 0

�

↵�
ul00,� , (3.9)

in which M denotes the mass of atom .
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To solve these equations a plane wave ansatz for the displacements is made [15],

ul,↵(t) =
1p
M

✏,↵(~q ) ei(~q·~Rl�!(~q ) t) , (3.10)

with angular frequency !(~q ) and the polarization vector ~✏(~q ) for a chosen point ~q which

is due to the periodic bounadary condition an element of the first Brillouin zone (BZ),

i.e. ~q 2 BZ. Applying this ansatz to Eq. 3.9 and considering the translational symmetry

from Eq. 3.7 the expression per unit cell

!2(~q )✏,↵(~q ) =
X

0,�

"

X

l00

1p
MM0

�
�

l00

 0

�

↵�
ei~q·~Rl00ei~q·(~⌧�~⌧0 )

#

✏0,�(~q ) , (3.11)

finally arises.

The expression in square brackets defines with

D0

↵� (~q ) =
X

l00

1p
MM0

�
�

l00

 0

�

↵�
ei~q·~Rl00ei~q·(~⌧�~⌧0 ) (3.12)

element  0 of the dynamical matrix

D(~q ) =

0

B

B

B

B

B

B

B

@

{D1 1
↵�} . . . {D1 N

↵� }
. . .

... {D0
↵� } ...

. . .

{DN 1
↵� } . . . {DN N

↵� }

1

C

C

C

C

C

C

C

A

. (3.13)

Thus, Eq. 3.11 is reformulated by

!2(~q )✏,↵(~q ) =
X

0,�

D0

↵� (~q ) ✏0,�(~q ) . (3.14)

This is an eigenvalue problem with eigenvalues !2(~q ) and eigenvectors ~✏ (~q ). The square

roots of these eigenvalues yield the dispersion relation !(~q ). It is obvious, that negative

eigenvalues for !2(~q ) will result in imaginary frequencies, i.e. non oscillating displace-

ments. Conventionally when plotting !(~q ) the imaginary frequencies are shown as nega-

tive values.

As the dynamical matrix D(~q ) has dimension 3N ⇥ 3N (N being the number of atoms

in the unit cell), a total of 3N solutions exist for each wavevector ~q, corresponding to a

vibrational mode j. The eigenvectors of these modes, distinguished
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by index j = 1, . . . , 3N are orthonormal to each other, hence,

X



~✏ ?
,j(~q ) ~✏,j0(~q ) = �jj0 . (3.15)

Three of these branches describe acoustic modes, i.e. modes of vibration which vanish at

the long-wavelength limit. Therefore !(~q) ! 0 if ~q ! ~0 . The other 3(N � 1) modes,

which do not vanish at the long-wavelength limit, describe optical modes. Along high-

symmetry paths in ~q-space, the eigenvectors of a set of three modes can be classified in

terms of a longitudinal (~✏,j k ~q ) and two transversal polarisation (~✏,j ? ~q ).

3.3 Quantum Mechanical Formulation

Using the harmonic potential of Eq. 3.4 and the kinetic energy for mass M, the Hamil-

tonian is given by

Ĥ = T̂ + V̂harm =
X

l

p̂ 2
l

2M

+
1

2

X

l,↵

X

l00,�

�
�

l�l0 0
 0

�

↵�
ul,↵ ul00,� . (3.16)

Both the momentum operator and the displacement vectors are redefined in terms of

fourier transformation

p̂l =

r

M

CN

Nq
X

~q

3N
X

j

~✏,j(~q )P̂j(~q )e�i ~q ·~Rl (3.17)

and

~ul =
1p

CNM

Nq
X

~q

3N
X

j

~✏ ?
,j(~q )X̂j(~q )ei ~q ·~Rl , (3.18)

whereby Nq defines the number of ~q-points in the BZ.

In these definitions one introduces the normal coordinate operators X̂j(~q ) and P̂j(~q )

which are the Fourier transforms of ~ul and p̂l [16] utilizing

X̂j(~q ) =
X

l

s

M

Nq

~✏,j(~q )~ule
�i ~q ·~Rl (3.19)

P̂j(~q ) =
X

l

1
p

NqM

~✏ ?
,j(~q )p̂le

i ~q ·~Rl . (3.20)
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It should be noted that both, ~ul and p̂l, correspond to an observable quantity and,

therefore, have to be self-adjoint (see page 88 in Ref. [17]). As a consequence,

P̂j(~q ) = P̂ †
j (�~q ) (3.21)

and

X̂j(~q ) = X̂†
j (�~q ) (3.22)

has to be valid.

The Hamiltonian (Eq. 3.16) is simplified in two steps, starting with the kinetic energy.

As p̂ is an observable, i.e. p̂ 2
l = p̂ lp̂ l, the kinetic term is defined by

T̂ =
1

2CN

X

l

X

~q ~q 0

X

jj0

~✏,j(~q )~✏,j0(~q 0)P̂j(~q )P̂j0(~q 0)e�i(~q+~q 0)·~Rl . (3.23)

From the orthonormality of the polarisation vectors ~✏,j(~q ), ~✏,j0(~q 0) and from transla-

tional symmetry, i.e.
P

l

ei(~q+~q 0)· ~Rl = CN�~q+~q 0,0, [15] one derives

~q + ~q 0 = 0 ) ~q 0 = �~q . (3.24)

Rewriting Eq. 3.23 leads to

T̂ =
1

2

X

~q

X

j

P̂j(~q )P̂ †
j (~q ) . (3.25)

Similar steps are now made for the potential energy part of the Hamiltonian

V̂harm =
1

2CN

X

l,↵

X

l00,�

X

~q ~q 0

X

jj0

1p
MM0

�
�

l0�l 0
 0

�

↵�
✏ ?
,j,↵(~q )✏ ?

0,j0,�(~q 0)

X̂j,↵(~q )X̂j0,�(~q 0)ei ~q·~Rlei ~q 0·~Rl00 . (3.26)

Rewriting the exponentials

ei (~q·~Rl+~q 0·~Rl00 ) = ei ~q·(~Rl�~Rl00 ) ei ~Rl00 ·(~q+~q 0) , (3.27)

and applying again translational symmetry one arrives at

V̂harm =
1

2

X

~q

X

j

X

,↵

X

0,�

"

X

l00

1p
MM0

�
�

l00

 0

�

↵�
ei~q·~Rl00ei~q·(~⌧�~⌧0 )

#

✏0,j,�(~q )✏?
,j,↵(~q )X̂j,↵(~q )X̂†

j,�(~q ) . (3.28)
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The part in the square brackets can be identified as matrix element D0
↵� (~q ) of the

dynamical matrix (Eq. 3.12). Based upon the eigensolutions of the dynamical matrix in

Eq. 3.14, the potential energy part (Eq. 3.28) can be simplified to

V̂harm =
1

2

Nq
X

~q

3N
X

j

!2
j (~q )X̂j(~q )X̂†

j (~q ) , (3.29)

summing over all phonon modes j for each ~q.

Thus, the Hamiltonian amounts to

Ĥ =
1

2

Nq
X

~q

3N
X

j

⇣

P̂j(~q )P̂ †
j (~q ) + !2

j (~q )X̂j(~q )X̂†
j (~q )

⌘

. (3.30)

At this point it is convenient to introduce creation operator â†
~q,j and annihilation operator

â~q,j [16]

â†
~q,j =

r

!j(~q )

2~ X̂†
j (~q )� i

s

1

2~!j(~q )
P̂ †

j (~q ) (3.31)

â~q,j =

r

!j(~q )

2~ X̂j(~q ) + i

s

1

2~!j(~q )
P̂j(~q ) . (3.32)

With [X̂j, X̂
†
j ] = [P̂j, P̂

†
j ] = 0 and [X̂j, P̂j] = i~ the creation and annihilation operators

lead to the elegant formulation of the Hamiltonian

Ĥ =

Nq
X

~q

3N
X

j

~!j(~q )

✓

â†
~q,j â~q,j +

1

2

◆

. (3.33)

The creation and annihilation operators change the number of phonons of an

eigenstate |n~q,ji consisting of n phonons with mode j and wavevector ~q by

â†
~q,j |n~q,ji =

p

n~q,j + 1 |n~q,j + 1i (3.34)

and

â~q,j |n~q,ji =
p

n~q,j |n~q,j � 1i . (3.35)

Applying the creation and annihilation operators on |n~q,ji derives the number of phonons

occupying the chosen state ~q, j with

â†
~q,j â~q,j |n~q,ji = n~q,j |n~q,ji , (3.36)
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defining the number operator n~q,j.

The commutator relations

[â~q,j , â†
~q 0,j] = �~q~q 0 (3.37)

[a~q,j , a~q 0,j] = [a†
~q,j , a†

~q 0,j] = 0 (3.38)

identify the phonons as bosons.

Finally, the temperature dependent total energy of the oscillating system E(T ) can be

described by,

E(T ) =

Nq
X

~q

3N
X

j

~!j(~q )

✓

n̄~q,j(T ) +
1

2

◆

=

Nq
X

~q

3N
X

j

Ej(T, ~q) , (3.39)

with the phonon energy Ej(T, ~q) of mode j at ~q and T , and the Bose-Einstein distribution

function

n̄~q,j(T ) =
1

e�~!j(~q ) � 1
, (3.40)

wherein � = 1/(kBT ) is defined using Boltzmann’s constant kB.

3.4 Ab-initio Phonon Calculations

For calculating the phonon dispersion on an ab-initio level mainly two approaches are

used, namely the linear response approach [18–22] and the direct method [1, 23].

In this work, the direct force-constant method is used and will therefore be discussed in

more detail.

3.4.1 Force-Constant Method

Starting with a crystal, where all atoms are at their equilibrium positions, the displace-

ment of one atom from its equilibrium induces net forces on itself and all other atoms.

Specifically, force ~F
⇣

~ul, ~Rl00

⌘

acts on the atom at ~Rl00 when atom l is displaced by

~ul.

When calculating with DFT a cell with periodic boundary conditions (see Ref. [24]

and chapter 8 in Ref. [25]) is used. Therefore, not a system with infinite proportions is

described but a system containing periodically repeated simulation cells. If this simulation

cell contains multiples of the primitive unit cell it is refered to by the term supercell.
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The force-field of the supercell collects all forces acting on the atoms resulting from

displacement ~ul and is defined by

F(~ulk) =
n

~F
⇣

~ul, ~R11

⌘

, . . . , ~F
⇣

~ul, ~Rl

⌘

, . . . , ~F
⇣

~ul, ~Rl00

⌘

, . . . , ~F
⇣

~ul, ~RCN

⌘o

,

(3.41)

as sketched for graphene in Fig. 3.2.

When deriving the force-fields generated by displacement ~ul a suitably large supercell has

to be chosen, so that the interaction between the periodically repeated displaced atoms is

insignificant. As it is not sure that this criteria is always fulfilled one has to consider under

the nearest image convention (see chapter 8 in Ref. [25]) that the force acting on an atom

at ~Rl00 due to displacement ~ul also includes superimposed forces of the displacements ~ul00

via the nearest images in the adjacent supercells acting through the periodic boundary as

sketched in Fig. 3.3. It is important to correct these superimposed forces for equidistant

nearest images as shown in the example for diamond (Sec. 3.4.2) by normalizing the acting

force by the number of images with |~Rl� ~Rl00| = |~Rl00� ~Rl00|. Further ramifications of

the periodic boundary on the minimum supercell size are discussed later in section 3.4.3.

The choice of a set of three linear independent displacements is arbitrary, yet for the

sake of convenience and simplicity the displacements are oriented along the axis of the

coordinate system, i.e.,

~ul,1 = ul,1~e1 , ~ul,2 = ul,2~e2 and ~ul,3 = ul,3~e3 , (3.42)

using unit vectors ~e1 = (1, 0, 0), ~e2 = (0, 1, 0) and ~e3 = (0, 0, 1).

The harmonic approximation requires a linear relationship between displacement and

force (Eq. 3.9), i.e.,

�
�

l�l0 0
 0

�

↵�
= �

F↵

⇣

ul,�~e�, ~Rl00

⌘

ul,�

. (3.43)

Force component ↵ is divided by ul,�, thus defining component ↵� of the force constant

matrix �.

In principle, it is necessary to calculate F(ulk,�~e�) for all three orthonormal displacements

of the chosen atom in the supercell. When choosing ul = ul,1 = ul,2 = ul,3 the

number of possible displacements can be reduced if a point group operation S under

which the crystal structure is invariant exists that applied to ~e� rotates it to ~e�0 with

�0 6= � with �, �0 = {1, 2, 3}. This S can then be used to rotate all forces ~F in the

supercell with

S ~F
⇣

ul S~e�, S�1 ~Rl00

⌘

= ~F
⇣

ul~e�, ~Rl00

⌘

. (3.44)
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graphene

Figure 3.2: Force-field for graphene, due to the displacement of the central atom
by |u| = 0.02 Å in the direction of the black arrow. The direction of the forces
is indicated by arrows which are scaled as well as colour coded according to their

magnitude. Supercell boundaries are indicated by the solid lines.

Furthermore, the number of atoms that have to be displaced is reduced to those in the

primitive unit cell that are under all invariant non-symmorphic space group operations

Ssg = {S,~t } and point group operations S of the primitive unit cell non equivalent. (Note

that Ssg consists of S and a non-proper translation ~t.) The force-constant �
⇣

l�l̃0 0
̃ ̃0

⌘

↵�

of the atoms at ~Rl̃ and ~Rl̃0̃0 , equivalent to atoms at ~Rl and ~Rl00 under Ssg or S, can

then be derived from �
�

l�l0 0
 0

�

↵�
by

�
⇣

l�l̃0 0
̃ ̃0

⌘

↵�
= S �

�

l�l0 0
 0

�

↵�
S�1 , (3.45)

with

|~Rl � ~Rl00| = |~Rl̃ � ~Rl̃0̃0| . (3.46)
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periodic
boundary

images of  the
displaced atom

Figure 3.3: Displacement ~ul is mirrored by the periodic boundary leading to further
three equidistant displacements to the atom on ~Rl00 . Thus, the force acting on atom

l00 is overestimated by a factor of four.

3.4.2 Example: Diamond

To illustrate the practical implementation of the force-constant method the phonon modes

of diamond are derived by pencil for a supercell containing just one primitive unit cell in

the cartesian coordinates.

Fig. 3.4 shows the primitive unit cell of diamond consisting of two carbon atoms whose

positions with lattice constant a are ~R0 1 = (0, 0, 0) and ~R0 2 = (0.25, 0.25, 0.25)a.

This diamond structure is invariant under 48 space group operations of which 24 are pure

point group operations and 24 are non symmorphic space group operations.

The atom at ~R0 2 is equivalent to the atom at ~R0 1 under, for example, the space group

operation,

Ssg =

8

>

<

>

:

0

B

@

�1 0 0

0 �1 0

0 0 �1

1

C

A

,

0

B

@

0.25

0.25

0.25

1

C

A

a

9

>

=

>

;

, (3.47)
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4 2

0 1

0 2

1 1 2 1

3 1
6 2

5 2

direct cartesian
[a]

atoms in unit cell: ~R0 1 ( 0, 0,0) ( 0, 0, 0)
~R0 2 ( 1/4, 1/4, 1/4) ( 1/4, 1/4, 1/4)

neighbours to ~R0 1: ~R0 2 ( 1/4, 1/4, 1/4) ( 1/4, 1/4, 1/4)
~R4 2 ( -3/4, 1/4, 1/4) ( 1/4, -1/4, -1/4)
~R5 2 ( 1/4,-3/4, 1/4) ( -1/4, 1/4, -1/4)
~R6 2 ( 1/4, 1/4,-3/4) ( -1/4, -1/4, 1/4)

neighbours to ~R0 2: ~R0 1 ( 0, 0,0) ( 0, 0, 0)
~R1 1 ( 1, 0, 0) ( 0, 1/2,1/2)
~R2 1 ( 0, 1, 0) ( 1/2, 0, 1/2)
~R3 1 ( 0, 0, 1) ( 1/2, 1/2, 0)

Figure 3.4: A sketch of the diamond structure for which the underlying lattice is
face-centred cubic. The primitive unit cell contains two atoms coloured orange at
~R0 1 = (0, 0, 0) and ~R0 2 = (0.25, 0.25, 0.25)a. The cartesian coordinates are scaled by
lattice constant a. Both atoms have four nearest neighbours, of which three are situated

outside the primitive unit cell and are coloured yellow.
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describing an inversion and a non primitive translation, as

Ssg
~R0 2 =

8

>

<

>

:

0

B

@

�1 0 0

0 �1 0

0 0 �1

1

C

A

,

0

B

@

0.25

0.25

0.25

1

C

A

a

9

>

=

>

;

~R0 2 =

8

>

<

>

:

0

B

@

�1 0 0

0 �1 0

0 0 �1

1

C

A

,

0

B

@

0.25

0.25

0.25

1

C

A

a

9

>

=

>

;

0

B

@

0.25

0.25

0.25

1

C

A

a

=

0

B

@

�1 0 0

0 �1 0

0 0 �1

1

C

A

0

B

@

0.25

0.25

0.25

1

C

A

a +

0

B

@

0.25

0.25

0.25

1

C

A

a = �

0

B

@

0.25

0.25

0.25

1

C

A

a +

0

B

@

0.25

0.25

0.25

1

C

A

a

=

0

B

@

0.0

0.0

0.0

1

C

A

= ~R0 1 . (3.48)

Therefore, it is su�cient to consider the three orthonormal displacements for one of the

two atoms. This can be further reduced to a single displacement when considering that

the point group operator

S =

0

B

@

0 0 1

1 0 0

0 1 0

1

C

A

, (3.49)

describing a three-fold rotation, applied to unit vector ~e1 gives ~e2 and to ~e2 gives ~e3.

As an example of a VASP DFT calculation displacing by u0 1~e1, with u0 1 = 0.02 Å, results

in the force-field

F(u0 1~e1) =
n

~F
⇣

u0 1~e1, ~R0 1

⌘

, ~F
⇣

u0 1~e1, ~R0 2

⌘o

=

8

>

<

>

:

0

B

@

�0.74

0

0

1

C

A

eV/Å,

0

B

@

0.74

0

0

1

C

A

eV/Å

9

>

=

>

;

.

(3.50)

As the application of the inverse of the point group rotation (Eq. 3.49) on ~R0 2 yields,

S�1 ~R0 2 =

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

0

B

@

0.25

0.25

0.25

1

C

A

a =

0

B

@

0.25

0.25

0.25

1

C

A

a = ~R0 2 , (3.51)

the force-fields for u0 1~e2 and u0 1~e3 are derived by

F(u0 1~e2) =
n

S ~F
⇣

u0 1S~e1, S
�1 ~R0 1

⌘

, S ~F
⇣

u0 1S~e1, S
�1 ~R0 2

⌘o

=
n

S ~F
⇣

u0 1~e2, ~R0 1

⌘

, S ~F
⇣

u0 1~e2, ~R0 2

⌘o

=

8

>

<

>

:

0

B

@

0

�0.74

0

1

C

A

eV/Å,

0

B

@

0

0.74

0

1

C

A

eV/Å

9

>

=

>

;

(3.52)
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and

F(u0 1~e3) =

8

>

<

>

:

0

B

@

0

0

�0.74

1

C

A

eV/Å,

0

B

@

0

0

0.74

1

C

A

eV/Å

9

>

=

>

;

. (3.53)

This allows, using Eq. 3.43, for the construction of the force-constant matrix

�
�

0
1 1

�

= �

0

B

B

B

@

~F T
⇣

u0 1~e1, ~R0 1

⌘

/u0 1

~F T
⇣

u0 1~e2, , ~R0 1

⌘

/u0 1

~F T
⇣

u0 1~e3, , ~R0 1

⌘

/u0 1

1

C

C

C

A

=

0

B

@

37.1 0 0

0 37.1 0

0 0 37.1

1

C

A

eV/Å
2

(3.54)

(3.55)

and using S of Ssg (Eq. 3.47),

�
�

0
2 2

�

= S �
�

0
1 1

�

S�1 =

0

B

@

37.1 0 0

0 37.1 0

0 0 37.1

1

C

A

eV/Å
2

. (3.56)

Constructing the force-constant matrix between the atoms at ~R0 1 and ~R0 2 can not be

done so easily. As the supercell is much too small the nearest images of the displacement

have to be considered correctly. When comparing the graphene unit cell (Fig. 3.4) with

the sketch in Fig. 3.3 one realises, that the force ~F
⇣

u0 1~e1, ~R0 2

⌘

also includes in addition

to the force from u0 1~e1 through the periodic boundary the forces from u1 1~e1 at ~R1 1,

u2 1~e1 at ~R2 1 and u3 1~e1 at ~R3 1. Equivalently, the net acting force ~F
⇣

u0 2~e1, ~R0 1

⌘

also

includes in addition resulting forces from displacements u4 2~e1, u5 2~e1 and u6 2~e1. As such,

the forces have to be normalised by a factor of four when constructing the force-constant

matrix.

�
�

0
1 2

�

=
1

4

0

B

B

B

@

~F T
⇣

u0 1~e1, ~R0 2

⌘

/u0 1

~F T
⇣

u0 1~e2, ~R0 2

⌘

/u0 1

~F T
⇣

u0 1~e3, ~R0 2

⌘

/u0 1

1

C

C

C

A

=

0

B

@

�9.275 0 0

0 �9.275 0

0 0 �9.275

1

C

A

eV/Å
2

. (3.57)
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Furthermore, the nearest images allow for the derivation of the force-constant matrices

�
�

1
1 2

�

= �
�

2
1 2

�

= �
�

3
1 2

�

= �
�

0
1 2

�

. (3.58)

Using S from Ssg (Eq.3.47) leads to the last four force-constant matrices with

�
�

0
2 1

�

= S �
�

0
1 2

�

S�1

= �
�

4
2 1

�

= �
�

5
2 1

�

= �
�

6
2 1

�

=

0

B

@

�9.275 0 0

0 �9.275 0

0 0 �9.275

1

C

A

eV/Å
2

. (3.59)

With this set of ten force-constant matrices all necessary ingredients to construct the

dynamical matrix exist and

D(~q ) =

 

D1 1 D1 2

D2 1 D2 2

!

. (3.60)

There are only carbon atoms in the primitive unit cell, with Mcarbon = 12.01 amu (amu

is a abbreviation for the unified atomic mass unit), hence the dynamical matrix becomes

D(~q ) =
1

Mcarbon

0

B

B

B

B

@

� (0
1 1) ei~q·(~R0 1�~R0 1)

0,1,2,3
X

l0

�
⇣

l0

1 2

⌘

ei~q·(~R0 1�~Rl0 2)

0,4,5,6
X

l0

�
⇣

l0

2 1

⌘

ei~q·(~R0 2�~Rl0 1) � (0
2 2) ei~q·(~R0 2�~R0 2)

1

C

C

C

C

A

. (3.61)

To solve the eigenvalues of the dynamical matrix one now has to choose a value for ~q

inside the first Brillouin zone of the face-centred cubic cell sketched in Fig. 3.5. The

simplest high symmetry point is �, where ~q = ~0 and therefore the phase factor is one. At

this ~q-point the dynamical matrix is given by

D(�) =

0

B

B

B

B

B

B

B

B

@

3.087 0 0 �3.087 0 0

0 3.087 0 0 �3.087 0

0 0 3.087 0 0 �3.087

�3.087 0 0 3.087 0 0

0 �3.087 0 0 3.087 0

0 0 �3.087 0 0 3.087

1

C

C

C

C

C

C

C

C

A

eV

amu Å
2 . (3.62)

Before solving the eigenvalue problem one should consider its units. To derive angular

frequencies in THz one needs to convert from eV/(amu Å2) to 1/(2⇡)2 J/((kg m2). This
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L

U

X W

K
X `

high-symmetry points:
direct cartesian

[2⇡a�1]
� ( 0, 0, 0) ( 0, 0, 0)
X (1

2 ,
1
2 , 0) ( 0, 0, 1)

L ( 1
2 ,

1
2 ,

1
2) (1

2 ,
1
2 ,

1
2)

K ( 3
4 ,

3
8 ,

3
8) ( 0, 3

4 ,
3
4)

W ( 3
4 ,

1
2 ,

1
4) ( 0, 1

2 , 1)
U ( 5

8 ,
5
8 ,

1
4) (1

4 ,
1
4 , 1)

high-symmetry paths:
(cartesian coordinates in units of 2⇡a�1)
� : � !X [0 0 ⇠], 0 < ⇠ < 1
⌃ : � !K!X’ [⇠ 0 ⇠], 0 < ⇠ < 1
⇤ : � !L [⇠ ⇠ ⇠], 0 < ⇠ < 1/2

Figure 3.5: First Brillouin zone of a face-centred cubic cell with the high symmetry
points and the reciprocal basis B. The coordinates of the high symmetry points are
given in direct and cartesian coordinates. The direct coordinates are scaled by factor

2⇡a�1.

is done by multiplying the dynamical matrix with

1

(2⇡)2

[eV ! J]

[amu ! kg][Å
2 ! m2]

=
1

(2⇡)2

1.6022⇥ 10�19 J

1.6605⇥ 1027 kg 1⇥ 10�20 m2
= 244.4 THz2 .

(3.63)

Two sets of three degenerate eigenvalues !2
1 = !2

2 = !2
3 = 0 THz2 and !2

4 = !2
5 = !2

6 =

1508.68 THz2 are now derived from Eq. 3.62. Therefore, the frequencies of the modes at

� are !1 = !2 = !3 = 0 THz and !4 = !5 = !6 = 38.84 THz.

Next, the dynamical matrix at ~q =X is derived. At this high symmetry point the o↵

diagonal elements of the dynamical matrix become zero, because

0,1,2,3
X

l0

�
⇣

l0

1 2

⌘

ei~q·(~R0 1�~Rl0 2) = �
�

0
1 2

�

e
i⇡
2 + �

�

4
1 2

�

e�
i⇡
2 + �

�

5
1 2

�

e�
i⇡
2 + �

�

6
1 2

�

e
i⇡
2

= �i�
�

0
1 2

�

+ i�
�

4
1 2

�

+ i�
�

5
1 2

�

� i�
�

6
1 2

�

= 0 . (3.64)
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Therefore, the dynamical matrix is now described by

D(X) =

0

B

B

B

B

B

B

B

B

@

3.087 0 0 0 0 0

0 3.087 0 0 0 0

0 0 3.087 0 0 0

0 0 0 3.087 0 0

0 0 0 0 3.087 0

0 0 0 0 0 3.087

1

C

C

C

C

C

C

C

C

A

eV

amu Å
2 . (3.65)

The eigenvalues of this matrix are trivially degenerate according to !2
1 = !2

2 = !2
3 = !2

4 =

!2
5 = !2

6 = 754.4628 THz2, from which ! = 27.47 THz is derived.

From Fig. 3.8 one observes that the phonon dispersion for diamond using just the unit

cell compared to calculations done with supercells is as expected wrong. The supercell is

too small to accurately describe the phonon dispersion.

3.4.3 Supercell Size

An important question within the force-constant method to consider is the minimum size

of the supercell necessary to accurately describe the phonons. For this one needs to take

into account the superposition of the forces due to the periodic boundary condition. From

the example of graphene in Fig. 3.6 one observes, that this e↵ect can be substantial if the

size of the supercell is too small. In the extreme case, where the supercell only consists of

a single unit cell, then not only is |~F | equal for both atoms but also spatial information

on the force vector is lost, i.e. the direction of the force vectors are wrong.

To correctly calculate D(~q ) the supercell has to be large enough so that in the direction

where its diameter is the smallest the magnitude of the forces acting on the furthest atom

away from the displaced atom, in regards to the nearest image convention, are su�ciently

small. The contributions of any atom further away can then be safely omitted from the

construction of the dynamical matrix. Further, to reduce the e↵ect of force superposition

on the atoms the supercell should be as isotropic as possible. If this is not the case a

much larger supercell has to be used.

As can be seen in Fig. 3.7 for our case of the two dimensional graphene the supercell has

to include at least 32 atoms (a supercell with 4⇥ 4⇥ 1 unit cells) to allow for a correct

computation of the dispersion relation. From the dispersion relations of diamond (Fig.

3.8) and alumnium (Fig. 3.9) we can discern that for a three-dimensional system at least

16 atoms are necessary for a reasonable result. To derive an accurate dispersion relation

the isotropic supercell should include at least ⇡ 30 atoms. This can be seen in particular
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graphene

unit cell 2⇥ 2⇥ 1 supercell 4⇥ 4⇥ 1 supercell
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/Å
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unit cell
2x2x1 unit cells
4x4x1 unit cells
6x6x1 unit cells

Figure 3.6: The force-field of graphene resulting from the displacement ~u = 0.02~e1Å
for a unit cell, for a 2 ⇥ 2 ⇥ 1 supercell and for a 4 ⇥ 4 ⇥ 1 supercell are shown in the
upper panels. In the lower panel the magnitude of the forces |F | as a function of the
distance |R| from the displaced atom are compared to those of a 6⇥ 6⇥ 1 supercell.
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Figure 3.7: The dispersion relation of graphene calculated for a unit cell (green solid
lines), for a 2⇥ 2⇥ 1 supercell (red dashed-dotted lines), for a 4⇥ 4⇥ 1 supercell (blue

dashed lines) and for a 6⇥ 6⇥ 1 supercell (black solid lines).

for diamond (Fig. 3.8) where !(~q ) is wrong at the high-symmetry points X and W when

the supercell consists of only 16 atoms.

Further, one notices that the phonon dispersion for both, graphene (Fig. 3.7) and dia-

mond (Fig. 3.8), is independent of supercell size at the high-symmetry point � with a

primitive unit cell containing two atoms. The reason for this is that at � the phase factor

is one for all terms in the sum of Eq. 3.12. Therefore,

D0
(�) =

1p
MM0

X

l00

�
�

l00

 0

�

. (3.66)

From the symmetry property
X

l00

�
�

l�l0 0
 0

�

= 0 (Eq. 3.8) one deduces

X

l00

� ( l00
  ) = �

X

l00,0 6=

�
�

l00

 0

�

. (3.67)

By a longer deduction one arrives at

X

l00 6=0

� ( l00
  ) = 0 . (3.68)
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Figure 3.8: The phonon dispersions for diamond calculated with f PHON and VASP
using a supercell with 2 atoms (red lines), 16 atoms (blue lines) and 54 atoms (black
lines) are compared to experimental values [26] (circles). The phonons were calculated

with a displacement of 0.02 Å.

From this one can deduce that D only depends on the acting forces ~F (ul ~e�, ~Rl) of

the displaced atom at ~Rl with

D(�) =
1

M

� ( 0
  ) . (3.69)

Therefore, deriving

D(�) = �
X

0 6=

p
MM0

M

D0
(�) . (3.70)

As graphene and diamond have two carbon atoms in the unit cell,

i.e. Mcarbon = M = M0 , the relation

D11(�) = �D12(�)

D22(�) = �D21(�) , (3.71)

is valid. Hence, the calculated dispersion at � is independent of the supercell size. The

slight discrepancy in the calculated dispersion for the single unit cell graphene case (Fig.

3.7) can be attributed to the falsification of the forces due to the force superposition.
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face-centred cubic aluminium
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Figure 3.9: The phonon dispersions for face-centred cubic aluminium calculated with
f PHON and VASP using a supercell with 4 atoms (red lines), 8 atoms (blue lines) and
27 atoms (black lines) are compared to experimental values [27] (circles). The phonons

were calculated with a displacement of 0.02 Å.

3.5 Imaginary Frequency

If in Eq. 3.12 the eigenvalue !2 is negative, then frequency ! is imaginary. Inserting

this imaginary ! into the time factor ei!t of Eq. 3.10 makes the e↵ect of the imaginary

frequency obvious. With the exponent becoming real the exponential function stops

oscillating with t. It now describes a non-vibrating mode. Depending on the prefix

(+ or �) ~u(t) ! 0 or ~u(t) !1.

f PHON distinguishes imaginary frequencies by representing them as negative values,

while real frequencies are given as positive values. Furthermore, imaginary frequencies

are usually discarded when calculating thermodynamical parameters such as entropy or

free energy. Subsequently these parameters are underestimated if the relative number of

imaginary modes is high.

There are several reasons for non-vibrating modes: the crystal is dynamically unsta-

ble; higher-order anharmonic terms are necessary to describe the lattice dynamics; the

displacement amplitude was too small or too large.
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body-centred cubic zirconium

-2

0

2

4

6
Fr

eq
ue

nc
y 

[T
H

z]

H Γ H N N ΓP P

Figure 3.10: The phonon dispersions for body-centred cubic zirconium is shown as
calculated for a supercell with 32 atoms and using a displacement of 0.02 Å Imaginary

frequencies are indicated by negative values.

In Fig. 3.10 the dispersion relation of body-centred cubic zirconium as calculated by

using a 3 ⇥ 3 ⇥ 3 supercell with 27 atoms is shown. As is well known [28] this system

needs anharmonic terms to correctly describe the phonons. Therefore it is not surprising

that imaginary modes are found in this calculation.

3.6 Physical Properties

3.6.1 Displacements

Time dependent displacements ~ul,j(t) can be calculated using !j(~q ) with the correspond-

ing polarisation vector ~✏,j in Eq. 3.10. As the polarisation vectors are orthonormal (see

Eq. 3.15) only the real part of the displacement is used (see chapter 22 of Ref. [15]) with

ul,j,↵(t) =
1p
M

Re
h

✏,j,↵(~q ) ei(~q·~Rl�!j(~q )t)
i

. (3.72)

3.6.2 Density of States

The phonon density of states (DOS) g(E) is defined by an integral over ~q and a sum over

modes j (see page 179 in Ref. [15] and page 96 in Ref. [29]) normalised by the volume of
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Table 3.1: Conversion factors for phonons.

THz meV cm�1

THz - 4.1357 33.357
meV 0.2418 - 8.066
cm�1 0.03 0.124 -

the reciprocal cell ((2⇡)3/⌦ with ⌦ defining the cell volume) with

g(E) =

Z

~q

3N
X

j

⌦

(2⇡)3
�(Ej(~q)� E) d3~q . (3.73)

Deriving the number of states per energy interval �(Ej(~q) � E) in units of meV. As

Ej(~q ) = ~!j(~q), the phonon density of states can also be given in terms of frequencies,

i.e. in unit THz, or as wave length � in the units cm�1 using the speed of light c as a

conversion factor with � = c/!. One can easily convert from one of the units to another

by simply using the correct conversion factors listed in table 3.1. An example for the

phonon density of states is shown in Fig. 3.11 for face-centred tetragonal indium.

If the unit cell contains more than one atom, the partial density of states (PDOS) can be

useful. These are derived by reformulating Eq. 3.39 to

E =

Nq
X

~q

3N
X

j

�

�~✏ ?
,j(~q ) · ~✏,j(~q )

�

� ~!j(~q )

✓

n̄~q,j +
1

2

◆

=

Nq
X

~q

3N
X

j

�

�~✏ ?
,j(~q ) · ~✏,j(~q )

�

� Ej(~q ) .

(3.74)

As the sum over all eigenvector scalar products is one, the sum of the PDOS

g(E) =

Z

~q

3N
X

j

⌦

(2⇡)3
�(E,j(~q )� E) d3~q (3.75)

equals the DOS,

g(E) =
X



g(E) . (3.76)
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face-centred tetragonal indium
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Figure 3.11: Phonon density of states (DOS) for face-centred tetragonal indium cal-
culated by f PHON and VASP.

3.6.3 Partition Function

Phonons are bosons, hence, their partition function at temperature T is given as the sum

over all n phonons with frequency !j(~q ) (page 89 in Ref. [30]),

Z(T, V,N) =

Nq
X

~q

3N
X

j

X

n~q,j

exp(��n~q,jEj(~q, !)) with � =
1

kBT
. (3.77)

One notices that the sum over n is the geometric series of 1/(1 � e��~!j(~q )). Therefore,

the partition function can be rewritten in its final form

Z(T, V,N) =

Nq
X

~q

3N
X

j

✓

1

1� e��~!j(~q )

◆

. (3.78)
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face-centred tetragonal indium
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Figure 3.12: For face-centred tetragonal indium the vibrational free energy Fphon

(green solid line) is shown in comparison to the vibrational internal energy Uphon (blue
dotted line) and the vibrational entropy Sphon times temperature T (red dashed line).

These values were calculated with f PHON and VASP.

3.6.4 Free Energy

Using the partition function (Eq. 3.78) the Helmholtz free energy F is expressed by (see

page 62 in Ref. [30])

F = �kBT ln(Z) . (3.79)

Adding the zero point energy
~!

2
of Eq. 3.39 derives

Fphon =

Nq
X

~q

3N
X

j

✓

~!j(~q )

2
+ kBT ln

�

1� e��~!j(~q )
�

◆

. (3.80)

Applying the relation

~!j(~q )

2
= �kBT

~!j(~q )

2
= kBT ln(e

�~!j(~q )

2 ) (3.81)
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Eq. 3.80 is rewritten to

Fphon = kBT

Nq
X

~q

3N
X

j

ln

✓

2 sinh

✓

�~!j(~q )

2

◆◆

. (3.82)

Now the sum over ~q can be replaced by using the DOS g(!) (Eq. 3.73), finally leading

to the free energy

Fphon = kBT

1
Z

!=0

d! g(!) ln

✓

2 sinh

✓

�~!

2

◆◆

. (3.83)

As an example Fig. 3.12 shows Fphon(T ) for face-centred tetragonal indium.

3.6.5 Internal Energy

The internal energy of a system is defined by (see page 182 in Ref. [31])

U = �@ ln(Z)

@�
. (3.84)

Again, using the phonon partition function and taking the zero point energy into account

derives the following expression for the internal energy

Uphon =

Nq
X

~q

3N
X

j

✓

~!j(~q )

2
+

@ ln(1� e��~!j(~q ))

@�

◆

(3.85)

Derivating the logarithm term the above equation becomes

Uphon =

Nq
X

~q

3N
X

j

✓

~!j(~q )

2
+ ~!j(~q )e��~!j(~q ) 1

1� e��~!j(~q )

◆

=
1

2

X

~q

X

j

~!j(~q )

✓

e�~!j(~q ) + 1

e�~!j(~q ) � 1

◆

. (3.86)

Reformulating the sum to an integration over ! using the DOS and substituting the

exponential functions by coth the internal energy can be formulated as

Uphon =
1

2

1
Z

!=0

d! g(!) ~! coth

✓

�~!

2

◆

, (3.87)

plotted again in Fig. 3.12 for face-centred tetragonal indium.
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Figure 3.13: Vibrational specific heat CV of face-centred tetragonal indium, calcu-
lated using f PHON and VASP.

3.6.6 Entropy

The vibrational entropy Sphon can be formulated in terms of internal energy Uphon and

free energy Fphon with (see page 185 in [31])

Fphon = Uphon � TSphon . (3.88)

Hence,

Sphon =
Uphon � Fphon

T
. (3.89)

Inserting Uphon (Eq. 3.83) and Fphon (Eq. 3.87) leads to the final form

Sphon = kB

1
Z

!=0

d! g(!)



~!

2kBT
coth

✓

�~!

2

◆

� ln

✓

2 sinh

✓

�~!

2

◆◆�

. (3.90)

3.6.7 Specific Heat

The specific heat at constant volume V is defined as (see page 67 in Ref. [30])

CV =
@Uphon

@T

�

�

�

�

V =const

. (3.91)
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Using the phonon energy term (Eq. 3.39) the vibrational specific heat is formulated as

CV =

Nq
X

~q

3N
X

j

~!j(~q )
@n̄~q,j(T )

@T

=

Nq
X

~q

3N
X

j

kB (�~!j(~q))
2 e�~!j(~q )

(e�~!j(~q ) � 1)2
, (3.92)

or reformulated in terms of the DOS g(!) as

CV = kB

1
Z

!=0

d! g(!) (�~!)2 e�~!

(e�~! � 1)2
. (3.93)

The vibrational specific heat of face-centred tetragonal indium at constant volume CV is

shown in Fig. 3.13. As the electronic contribution to the specific heat is not considered

the calculated value of 24.7 J/(mol K) at 298.15 K is lower than the experimentally

derived value of 26.9 J/(mol K) [32] .

3.7 Implementation in f PHON

The force-constant phonon program f PHON, short for full-symmetry PHON, is based on

the package PHON, a phonon calculation program written by D. Alfè [5, 6].

The original code was substantially modified.

• The primitive unit cell and its lattice vectors are now automatically identified as well

as the space and point group symmetry using the lattice and symmetry subroutines

of VASP. These subroutines were written by J. Furthmüller and published as open

source (GPL) under www.freeware.vasp.de. The program f PHON uses these lattice

vectors to identify the coordinates of the unit cell atoms.

The benefits of using these VASP subroutines are twofold. It is not anymore nec-

essary to construct the supercell as multiples of the primitive unit cell, as f PHON

will automatically find the correct cell type and primitive vectors regardless of how

the supercell is constructed. Furthermore, f PHON can now calculate the phonon

dispersion for a greater variety of lattice types, e.g. also for tetragonal lattice struc-

tures.
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• An error in the symmetrization scheme enforcing of the force-constant matrix � has

been corrected! This scheme is enforced in two steps. First, by subtracting

�� = (NC)�1
X

l00

�
⇣

l l0

0

⌘

↵�
(3.94)

(with N defining the number of atoms in the primitive cell and C the number of

primitive cells in the supercell) from all force-constants and then by averaging the

force-constant matrices �
�

l l0
0

�

↵�
and �

�

l0 l
0

�

�↵
. An error occurred in the previous

code where this symmetrization was enforced on the force-constant which should

not exist as either one of the two atoms at positions Rl or Rl00 did not exist. This

led due to Eq. 3.94 to wrong values for all force-constants and hence to erroneous

results for body-centred tetragonal compounds without a centre of inversion like

BaPtSi3, SrPdGe3 and SrPtGe3.

f PHON now checks if the force-constant really exists before enforcing the sym-

metrization.

• It is now possible to calculate the vibrational free energies, the vibrational entropies,

the vibrational internal energies and the specific heat for a range of temperatures.

This is done by calculating the eigenvectors and eigenvalues once, and then using

them repeatedly to calculate the thermodynamical parameters at di↵erent temper-

atures. All values are now written temperature dependent into the file ENTRO.

Note, the specific heat is now given in J/(mol K).

• If net forces exist in a supercell in equilibrium, i.e. with ~u = 0, then this force-field

F(~u = 0) is subtracted from all other force-fields F(~ulk) by

F̄(~ulk) = F(~ulk)� F(~u = 0) . (3.95)

Thereby the accuracy of the phonon calculations for low-symmetry supercells is

increased when full atomic relaxation is di�cult to obtain.

• The partial density of states (PDOS) of every atom in the primitive unit cell, not

just the PDOS of an atom species as implemented in PHON, can now be written

out. Furthermore, f PHON groups the PDOS according to the atom species or

symmetrically equivalent atoms.

• Parts of the code, in which the DOS and the dispersion relation are calculated,

are now in separate subroutines. This makes future changes in the code easier to

handle.

• The file DYNMAT, in which VASP writes the force fields from a linear-response

calculation, can now be used in f PHON.
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• The frequencies, eigenvalues, eigenvectors and time-dependent displacement-vectors

can be written into the file EIGENPHON. Further it is possible to write POSCAR

files at di↵erent time steps, where all atoms are displaced using ~u(t).

• The use of symmetry as well as the reduction to the primitive unit cell can now be

selectively switched on and o↵ in f PHON.

The detailed user manual of f PHON is given in Appendix B.
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Isolated Defect Model

Within the supercell approach the defect formation energy "Xi for a single substitutional

defect cluster Xi consisting of nXi defect atoms is defined by

"Xi = (nXi + nH)EXi+H
DFT � (nXiE

Xi
DFT + nHEH

DFT) , (4.1)

which is the di↵erence between the DFT total energies of the supercell containing the

defect cluster with nXi defect atoms and nH host atoms and the corresponding reference

energies of the ground-state phases of the host and defect atomic species. For substitu-

tional defects the sum nXi + nH equals the number of sites in the supercell.

One can go beyond the standard supercell DFT total energies approach by including vi-

brational free energies derived within the harmonic approximation. Then, the vibrational

defect formation energy fXi(T ) is given by

fXi(T ) = (nXi + nH)FXi+H
phon (T )�

�

nXiF
Xi
phon(T ) + nHFH

phon(T )
�

. (4.2)

It should be noted, that the vibrational free energy Fphon(T ) = Uphon(T )� TSphon(T ) is

temperature dependent and includes the vibrational entropy Sphon(T ). The reference free

energies entering Eq. 4.2, again, correspond to the ground-state phases of the defect and

host atomic species and are substracted from the vibrational free energy of the supercell.

So far, only ordered phases in terms of the supercell approach are considered. Describing

e↵ects of alloying by defects the configurational entropy has to be taken into account

(see next section) which allows to derive temperature and concentration dependent free

energies.
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4.1 Configurational Entropy

In this section a strategy to describe the configurational entropy of non-interacting (inde-

pendent or isolated) defect clusters that may contain any finite number of defect atoms

(including vacancies) is elaborated. In the spirit of Kikuchi et al. [33] the configurational

entropy is evaluated in terms of bonds rather than sites. Assuming non-interacting defect

clusters the number of di↵erent distributions probability of cluster Xi is given by the

standard binomial distribution

Wi(Bi, bi) =
Bi!

(Bi � bi)!bi!
, (4.3)

in which Bi denotes the total number of bonds in the system available for the defect

cluster Xi, whereas bi is the number of bonds occupied by the defect cluster Xi. Then,

the total probability for a set of independent defect clusters X1 . . . Xi . . . Xm occuring

n1 . . . ni . . . nm times in the system will be a product of the individual probabilities

Wtot = W1 · · ·Wi · · ·Wm . (4.4)

In the corresponding configurational entropy Sconf one has to divide by the total number

of available bonds B which makes it independent of the actual size of the system.

In the present work combinations of n1 single-atom defects X1 with nX1 = 1 and n2 pair-

wise defects X2 with nX2 = 2 are taken into account, whereby the pair-wise defects consist

of two nearest-neighbour defect atoms. The concept for deriving Wtot (and concomitantly

Sconf) can be generalised to any type of substitutional defect clusters, e.g. pair-wise, 3-

atoms, 4-atoms, etc. nearest-neighbour atom clusters. In fact, such elaborate studies

were already done for the Fe-Cu system and the results are now prepared for publication.

Each lattice site is connected to its neighbouring sites by ⌫ bonds, whereby ⌫ is one half

of the number of nearest-neighbour distances for a given lattice. For example, ⌫ = 4 or 6

correspond to a bcc or fcc lattice, respectively. Hence, the total number of bonds B for

a given lattice with N lattice sites is given by B = ⌫N . Since each single-atom defect

is connected by ⌫ bonds to its neighbouring sites, the possible distributions of all these

single-atom defects is described by

W1(B1, b1) : B1 = B , b1 = ⌫n1 . (4.5)

If no other defects are present the resulting entropy Sconf will be the standard mixing

entropy for an ideal solution.

Considering pair-wise substitutional defects, it is noted that each pair-wise defect is con-

nected by 2⌫�1 bonds to its neighbouring sites, since each substitutional pair-wise defect
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contains one complete bond, namely the bond between the two defect atoms. Therefore,

for n2 pair-wise defects the total number of available bonds is reduced to B2 = B � n2

and the number of di↵erent distributions of these pair-wise defects is given by

W2(B2, b2) : B2 = B � n2 , b2 = (2⌫ � 1)n2 . (4.6)

The resulting total number of distributions of single-atom and pair-wise defects W2+1 is

described by the product of the distributions of single-atom and pair-wise defects by

W2+1 = W2(B2, b2)W1(B2 � b2, b1) (4.7)

=
B2!

b1! b2! (B2 � b1 � b2)!
. (4.8)

It should be noted, that the number of available bonds for the single-atom defects is now

reduced to B � 2⌫n2, since 2n2 sites are occupied by atoms belonging to the pair-wise

defects. Making use of Eq. 4.6 this di↵erence is equal to B2 � b2.

From Sconf = kB ln W2+1 and applying Stirling’s approximation, the configurational en-

tropy for a mixture of independent single-atom and pair-wise substitutional defects is

finally given by

Sconf = kB

"

⇣

1� c2

⌫

⌘

ln

✓

1� c2
⌫

1� c1 � 2c2

◆

�

c2 ln

✓

c2

1� c1 � 2c2

◆

� c1 ln

✓

c1

1� c1 � 2c2

◆

#

, (4.9)

in which the abbreviation  = 2⌫�1
⌫

and the concentrations c1 = n1/N, c2 = n2/N of the

single-atom and pair-wise defects are introduced. If the number of pair-wise defects is

zero, i.e. c2 = 0, the well-known expression of Sconf for the standard mixing entropy of

an ideal solution is rederived.

4.2 Grand Canonical Approach

The configurational entropy for the system with single-atom and pair-wise defects is

treated by a grand canonical approach writing the total free energy, which depends on

the temperature T and the concentrations of point and pair-wise defects c1 and c2, as

Ftot(c1, c2, T ) = c1"
e↵
1 (T ) + c2"

e↵
2 (T )� TSconf(c1, c2) . (4.10)
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In this equation the e↵ective substitution energies are introduced for point defects "e↵
1 (T ) =

"X1+fX1(T ) and pair-wise defects "e↵
2 (T ) = "X2+fX2(T ), i.e. the sum of the DFT-derived

formation energy "Xi (Eq. 4.1) and the vibrational formation energy fXi (Eq. 4.2) which

already includes the vibrational entropy.

Using Ftot a grand canonical potential can be designed in terms of an Euler-Lagrange

equation with the constraint x = c1 + 2c2 as

J 0(c1, c2, T ) = Ftot(c1, c2, T ) + µ(x� c1 � 2c2) . (4.11)

The Lagrange parameter µ represents the chemical potential.

Calculating the gradient of J 0 with respect to the variables c1 and c2 leads to,

@J 0(c1, c2, T )

@c1
= "e↵

1 (T )� µ� T
@Sconf(c1, c2)

@c1
, (4.12)

@J 0(c1, c2, T )

@c2
= "e↵

2 (T )� 2µ� T
@Sconf(c1, c2)

@c2
. (4.13)

Inserting the entropy from Eq. 4.9 leads to

@J 0(c1, c2, T )

@c1
= "e↵

1 (T )� µ + kBT ln

✓

c1

1� c1 � 2c2

◆

, (4.14)

@J 0(c1, c2, T )

@c2
= "e↵

2 (T )� 2µ + 2kBT ln

0

@

�

1� c2
⌫

�

1
2⌫ (c2)


2

1� c1 � 2c2

1

A . (4.15)

(4.16)

Requiring the minimizing condition rJ(c1, c2) = ~0 and abbreviating � =
1

kBT
gives the

final set of coupled equations,

@J 0

@c1
= 0 ) e��("e↵

1 �µ) =
c1

1� c1 � 2c2
. (4.17)

@J 0

@c2
= 0 ) e�

�
2 ("e↵

2 �2µ) =

�

1� c2
⌫

�

1
2⌫ (c2)


2

1� c1 � 2c2
. (4.18)

Reformulating Eq. 4.17 for a system containing only single-atom defects (c2 = 0) leads

to

c1 =
e��("e↵

1 )

1 + e��"e↵
1

. (4.19)

The reader might notice, that the Lagrange parameter µ has vanished in the above

equation. This is a result of the constrain trivially becoming x = c1.
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common tangent

x I
x II

I + II
I

II

Figure 4.1: Example of the grand canonical potential J 0 for a A1�xBx alloy at a given
temperature for thermodynamically stable solid solutions at the A-rich and B-rich sides.
The common tangent defining the limits of solubility touches J 0 at xI and xII, between
which the alloy decomposes into a mixture of phases with concentrations xI and xII,
respectively. The thermodynamically stable phase I exists in the range 0  x  xI,

whereas phase II is stable for xII  x  1.

Assuming very small defect point defect concentrations, i.e. c1 ⇡ 0 and hence

1 >> e��("e↵
1 ), one arrives at the well known expression (page 784 in [15])

c1 ⇡ e��"e↵
1 . (4.20)

4.3 Solubility

The phase diagram for a binary system A1�xBx with two stable phases I and II consisting

of A-rich and B-rich solid solutions (i.e. small concentrations of defect atoms) is con-

structed from Eq.s 4.17 and 4.18. The constraints for the set of coupled equations are

x = cB
1 +2cB

2 1�x = cA
1 +2cA

2 , and the concentrations cB
1 and cB

2 describe the single-atom

and pair-wise defect concentrations of element B in an A host, whereas cA
1 and cA

2 is

used to describe A defects in a B host. Solving the equations self-consistently for a given

concentration x and temperature T yields the defect concentrations cB
1 , cB

2 , cA
1 and cA

2

with corresponding chemical potentials µA and µB. Numerically this is done by means

of the global convergent Newton-Raphson method (chapter 9.6 in [34]). Inserting these

45



Chapter 4. Isolated Defect Model

values into Eq. 4.10 the grand canonical potentials J 0I and J 0II for the A-rich and B-rich

side, respectively, are found.

As illustrated in Fig. 4.1 the common tangent construction [35] allows to determine the

solubility range of defects in the host materials. The common tangent touches the J 0I
and J 0II at the limiting concentrations xI and xII, respectively. Thermodynamically stable

phases exist in the ranges 0 � x � xI (phase I) and xII � x � 1 (phase II). Thus, defining

the miscibility gap xI < x < xII where the two phases are mixed with weights

wII =
x� xI

xII � xI
, wI = 1� wII . (4.21)

In the miscibility range the potential becomes the common tangent

J 0tot(x) = J 0I(xI)
xII � x

xII � xI
+ J 0II(xII)

x� xI

xII � xI
. (4.22)

Calculating the concentration dependent J 0(x, T ), as described above, for a set of tem-

peratures and using the common tangent construction the solubility range of defects in

A- and B-rich solid solutions can be determined [36].
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Cluster Expansion

By standard DFT approaches systems with cells containing a few hundred atoms can be

treated to derive total energies, forces, etc. with typical DFT accuracies.

Furthermore, when describing concentration dependent thermodynamical properties of

a multicomponent system one has to sample configuration space, which scales by 2N

for a binary system with N lattice sites. Within DFT this is unfeasible even for small

unitcells/supercells. A technique to overcome this size and configuration limitation by

maintaining DFT accuracy is the cluster expansion (CE) method. CE applies a set of

DFT input structures to fit a set of e↵ective cluster interaction energies (ECI). This set

can then be used to calculate the properties of a much larger set of structures at T = 0 K

maintaining the DFT accuracy of the input structures. This allows for a fast calculation

of the formation energy for any given configuration in a large simulation cell making

a thermodynamical statistical sampling of configuration space with Monte Carlo (MC)

sampling possible. Thus, using thermodynamical statistics built upon ab-initio principles

it is possible to predict thermodynamical processes at T > 0 K in an alloy with DFT

accuracy.

All CE calculations in this work were done using the universal cluster expansion (UNCLE)

code developed by S. Müller et al. [7, 8].

5.1 Theoretical Background

In CE the Hamiltonian of an alloy with atomic configuration �, i.e. distribution of atoms

on a given lattice, is constructed via an Ising-like ansatz [37] on a fictitious fixed lattice.

For example, in a binary system atom A on the lattice site i is described by a pseudo-spin

si = +1 while atom B on the same site is described by si = �1. This binary formalism can
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= ...

Figure 5.1: The CE decomposition of the crystal into points, pairs, triplets and
many-body figures is illustrated.

be expanded to ternary, quaternary and larger multicomponent systems using Chebychev

polynomials as a orthogonal basis as discussed in Ref. [38].

The energy of any atomic configuration �, describing a specific distribution of the atoms

on the lattice, is constructed in terms of an expansion [39], as illustrated in Fig. 5.1, by

ECE(�) = J0 +
X

i

Jisi(�) +
X

j<i

Jijsi(�)sj(�) +
X

k<j<i

Jijksi(�)sj(�)sk(�) + . . . , (5.1)

with J as the ECI’s. J0 is a configuration independent energy term, while the sum over

Jisi(�) is the site independent energy of the system depending only on the concentration

of the atoms. The summation over Jijsi(�)sj(�) includes all possible pair-figures in the

alloy while higher order terms reflect many-body interaction, i.e. triplets, quadruplets,

etc.

In order to find a more compact formulation of Eq. 5.1 one starts by describing the spin

product by

⇧k(�) = si1(�) · si2(�) · si3(�) · · · simk
(�) , (5.2)

for figure k with mk vertices, i.e. over all mk lattice sites contained within figure k. Using

this spin product ⇧k(�) one introduces the correlation function ⇧̄f(�) for all figures of

class f [40], i.e. all symmetry equivalent figures k collected with a prototype figure f,

⇧̄f(�) =
1

NlattDf

NlattDf
X

k

⇧k(�) , (5.3)

where Nlatt describes the number of lattice sites in the system, Df gives the number of

figures that are invariant under the point group symmetry with the sum over all NlattDf

symmetry equivalent figures in the system.

This correlation function allows for a reformulation of Eq. 5.1 [40],

ECE(�) = Nlatt

1
X

f

DfJf⇧̄f(�) , (5.4)
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with Jf being the ECI for figure class f.

One should note that the ECI’s are fitting parameters obtained by fitting ECE(�) to values

calculated by methods like DFT and, therefore, have no direct physical meaning. The

physical nature of the ECI’s is determined by the property on which the CE is applied

to, e.g. a CE can be done for elastic properties.

However, the CE is only mathematically exact if all possible figures in the crystal are

included, i.e. the summations run over an infinite number of figures on an infinite number

of sites. Thus, for practical reasons the figure-set {f } has to be truncated to a set of Nf

figures including all important figures. This problem, i.e. the reasonable truncation

of figures, is formulated as a least squares fit procedure of CE derived energies to the

energies computed by DFT for N� structures (a structure defines a finite cell with fixed

configuration � and periodic boundary conditions) by [8]

N�
X

�=1

"

EDFT(�)�Nlatt

Nf
X

f

DfJf⇧̄f(�)

#2

+
Nf
X

f

c(r̄f)
�Jf = min . (5.5)

The last term is a damping term penalising figures with a large spatial extent by using the

average figure vertex length r̄f with scaling parameters c and � determined internally by

UNCLE. This damping is necessary because of the finite size of the input structures and

their periodic boundary conditions. Such unphysical figures extending across the periodic

boundary condition might correctly reproduce the DFT energies of the input structures

but can lead to an artificially periodically ordered system in a larger simulation cell.

When calculating EDFT the structures are allowed to relax fully with respect to atomic

positions, cell shape and cell volume. However, the relaxation has to be restricted so that

the symmetry of the original lattice is maintained. The fully relaxed DFT energies are

then used in the CE on a fixed (i.e. static) lattice. It has been shown by Wolverton and

Zunger [41] that this leads to a more accurate CE description of the alloy.

A good figure-set with corresponding ECI’s should be able to ‘accurately’ predict the

energies of structures not included in the CE. Of course, determining such a reasonable

set is the paramount goal in CE. Thereby one limits oneself to structures that only contain

a predefined maximum number of atoms N reducing the maximum number of possible

lattice configurations described by these structures. Thus, the total number of possible

crystal configurations scales with 2N for binary systems.

The formation enthalpy of a structure describing configuration � is given by

�H(�) = EDFT(�)�
�

xEA
DFT + (1� x)EB

DFT

�

, (5.6)
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Figure 5.2: The formation enthalpy �H(x) versus the concentration of A-atoms x in
AxB1�x is shown for di↵erent structures. The red line represents the ground-state line.
Note, that the structure below the ground-state line, marked with a red circle, is an
important structure and it has to be included as an additional input structure in the

CE.

with EDFT(�) denoting the DFT energy of structure �, x the A-atom concentration, EA
DFT

the reference energy of the stable A phase and EB
DFT that of the stable B phase.

Now, in AxB1�x if for three structures describing configurations ↵, � and � with concen-

trations x(↵) < x(�) < x(�) the condition

�H(�)  x(�)� x(�)

x(↵)� x(�)
�H(↵) +

x(�)� x(↵)

x(�)� x(↵)
�H(�) , (5.7)

is valid in addition to all three configurations being the ones with the lowest formation

enthalpy at their respective concentration and both ↵ and � are ground-state structures,

then the structure with configuration � is also a ground-state structure, as sketched in

Fig. 5.2.

In practice a new input structure is found by using a set of structures calculated by DFT

as input to a CE. If the CE predicts new structures below the ground-state line that were

not included then these are calculated with DFT and subsequently added to the new set
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No
Yes

Figure 5.3: The standard workflow for the CE is sketched. The formation enthalpies
of an initial set of configurations defined by Nset input structures calculated with DFT
is used for an initial CE. With the fitted set of interaction energies {Jf} the enthalpies
�HCE({�}all) of all possible Nall configurations (limited by the maximum number of
atoms allowed in the structures) are predicted by CE. Configurations predicted to be
below the ground-state line defined by the Nset input configurations are then identified
and the Nnew structures describing these configurations are calculated with DFT and
added to the set of Nset input structures. If no new configuration below the ground-state

line is found then the CE has converged.

of input structure used for the next CE. This is repeated until no new structure is found

below the ground-state line as the work flow illustration in Fig. 5.3 shows.

It should be noted, that because of mathematical reasons the number of input structures

N� has to be larger than the number of figures Nf in figure-set {f}.

5.2 Implementation in UNCLE

The question still left unanswered is the minimization method for the multivariable prob-

lem. UNCLE uses a genetic algorithm (chapter 10.6.3 in [42]) to find the minimum of

Eq. 5.5. Within this genetic algorithm (described in greater detail in the next section)
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UNCLE uses a cross validation score (CVS) SCV describing the average error of the CE

prediction compared to actual DFT values. However, it is useless to have a set of Nf

figures with corresponding ECI’s that is only able to accurately reproduce the energies of

the input structures. Rather, one wishes to arrive at a set of Nf figures and corresponding

ECI’s that can accurately predict the energies of structures not used in the fit. The CVS

SCV =

s

1

nNpred

X

n

X

Npred

[�HDFT (�)��HCE(�)]2 , (5.8)

is evaluated by dividing the set of N� input structures calculated with DFT into n di↵erent

sets. UNCLE fits the ECI’s separately for each set and uses the individual ECI’s of a set

to predict the energy of Npred structures not included. Therefore, the CVS measures the

predictive power of a set of ECI’s. To evaluate the CVS correctly UNCLE predicts all

structures, except the pure phases, at least once.

5.2.1 Genetic Algorithm

A minimization using genetic algorithm was first used for the CE by Hart et al. [43]. In

this approach the figure list is represented as a binary string. A figure used is marked

by the value 1, otherwise the value is 0. Furthermore, the interaction energies are also

represented as a binary string. The combination of both binary strings, including figures

used and their interaction energies, is now the genetic ‘DNA’ of a solution, who’s fitness

is described by the CVS. A higher CVS compared to other solutions means, that this

solution has a lower fitness.

Now, a ‘population’ of npop di↵erent solutions is created, in which the fitness of every

individual solution is calculated. Of those npop individuals only the fittest nfit (0 < nfit <

npop) individuals are selected to survive to the next iteration process.

The other npop�nfit solutions are replaced by ‘descendants’ of the surviving fittest ‘parent’

solutions. Their ‘DNA’ is created by two di↵erent processes as sketched in Fig. 5.4:

• In crossover, the ‘DNA’ of the ‘o↵spring’ is created by mixing the ‘DNA’ of two

randomly selected ‘parent’ solution. Thereby the ‘DNA’ of one ‘parent’ solution is

used up to the crossover point. After that point the ‘DNA’ of the second ‘parent’

is used.

• In mutation, a random binary bit of the ‘DNA’ string is flipped from one state to

the other, i.e. 1 ) 0 or 0 ) 1.

Note, that one may replace all surviving ‘parent’ solutions with the ‘children’, as long as

only the fittest ‘parent’ solutions are used to create them.
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a)

1 0 1 0 0 0 1 0 1 0 1 0
1 0 1 0 0 0 1 1 0 0 0 1

0 1 1 1 0 0 1 1 0 0 0 1
1 1 0 0 0 1

b)

1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 00

Figure 5.4: Illustration of the genetic algorithm: In a) an example of crossover is given.
Two ‘parent’ solutions marked red and green are used to create a ‘child’ solution. The
sketch in b) shows mutation. A random bit in the binary string is flipped into the

opposite state.

Thus, the fitness of the new ‘population’ created by this process can be reevaluated and

the whole procedure is repeated until a solution with a small enough CVS is found.

This procedure will always find a minimum. But it remains unclear, if a local or global

minimum has been found. Therefore, it is advisable to do a number of separate CE and

take the solution with the lowest CVS as the final solution. UNCLE can be set up to

do this automatically by doing a number of runs sequentially and only storing the best

solution at the end.

5.2.2 Monte Carlo

The ECI’s from the CE can be combined with a Monte Carlo (MC) algorithm to sta-

tistically sample configuration space allowing for a thermodynamical description of the

system.

In principle, MC is based upon a biased random walk of a stationary Markov chain, in

which the next state �� of the system is only dependent on the previous state �↵. The

probability for a state �↵ is given in MC (chapter 2 in Ref. [44]) by

p↵ =
1

Z
e
“
�E(�↵)

kBT

”

, (5.9)
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No

Yes

Is E(��) < E(�) ?

Keep new state ��

Calculate total energy E(��)

No
Yes

Figure 5.5: A standard MC workflow is shown. In the system with state � the spin
of two arbitrary atoms i and j, which have the opposite pseudo spins, is exchanged. If
the energy of the new state �0 is lower than the original state, than that state is kept.
Otherwise the Boltzmann factor of the energy is calculated and compared to a random
number in the range {0, 1}. If the random number is smaller than the Boltzmann factor,
then the new state is kept. If this is not the case the state is discarded and the process

is reinitiated.

with E(�↵) denoting the energy of state �↵. T and kB are as always temperature and

Boltzmann constant and Z describes the grand partition function.

The stationary Markov chain process is reversible and follows the principle of detailed

balance (chapter 2 in Ref. [44]), implying that the probability for the transition from

state �↵ to �� is equal for the reverse process. Hence,

p↵p↵� = p�p�↵ , (5.10)

with p↵ and p� for the probabilities of the respective states. The transition probability

from one state to the other is given by p↵� and p�↵.
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Reformulating Eq. 5.10 gives

p↵�

p�↵

=
p�

p↵

= e
“
� �E

kBT

”

, (5.11)

stating that the probability of the state change �↵ ! �� and its inverse �� ! �↵ is only

dependent on the energy di↵erence �E = E(��)� E(�↵).

Note that Eq. 5.11 does not yet give a singular transition probability from one state to

another. For that di↵erent approaches are applied. One of the most well known is that

of Metropolis et al. [45], also used in UNCLE, which defines the transition probability

as:

p↵� =

(

e
“
� �E

kBT

”

if �E > 0

1 else
(5.12)

Therefore, if the energy in the system decreases with the state change, then the change

will always happen, otherwise the probability for the change is given by the Boltzmann

factor e��E/kBT . This whole process is sketched in Fig. 5.5.

5.3 Solubility and Phase Boundaries

5.3.1 Grand Canonical Approach

In this approach the number of atoms in the ensemble is not conserved and a chemical

potential µj is introduced describing the energy change associated with the change in the

number of atoms nj of species j in the ensemble. Hence, µj is the derivative of the Gibbs

free energy (G = U � TS + pV ) with

µj =
dG

dnj

�

�

�

�

p,T

. (5.13)

Practically, the grand canonical MC is implemented by including the terms µjnj for atom

species j into the Boltzmann factor used to evaluate the transition probability of a spin

flip, i.e. for a binary system the change in occupation from atom A to B or vice versa.

Therefore, Eq. 5.12 has to be rewritten for a system with M components:

p↵� =

8

<

:

e

 
�

�E+
PM

j µjnj
kBT

!

if �E > 0

1 else
(5.14)
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common tangent

x I
x II

I + II
I

II

G

µ = µcrit.

µ > µcrit.

µ < µcrit.

µ =
�G
�x p,T

Figure 5.6: Sketch of the common tangent method. The e↵ective chemical potential
µ, i.e. the derivative of G is a constant in the concentration range where the two phases
coexist marked by I + II while it varies in the one phase regions of both phase I and II.

In a binary system the number of atoms of both species can not change independently of

each other. Rather, the change of the number of atoms nA of species A goes in hand with

a change of the number of atoms nB of species B conserving the total number of atoms

N = nA + nB.

Reformulating Eq. 5.13 in terms of x = nA/N results in

µA(x) =
dG(x, p, T )

dx

�

�

�

�

p,T

. (5.15)

By defining the B-atom concentration in terms of x, i.e. nB = N �nA = (1� x)N , finds,

µB(x) = � dG(x, p, T )

dx

�

�

�

�

p,T

. (5.16)

Thus, for the chemical potential of both species one can trivially state that

µB = �µA . (5.17)

Using for a binary system the already discussed common tangent method (chapter 4),

sketched in Fig. 5.6, one can deduce that for a single stable phase, i.e. x < xI or x > xII,

the chemical potential µ(x) varies strongly while in the concentration range where the
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x

phase boundary ?

Figure 5.7: E↵ective chemical potential of Cu (µCu) versus Cu concentration shown
for a grand canonical Monte Carlo simulation with 512000 atoms at T = 1200 K. The
phase boundary is estimated by fitting two lines onto the curve. At the point where
these lines intersect an arrow indicates the phase boundary between the Fe phase and

the Fe+Cu phase.

two phases coexist, i.e. xI  x  xII, the chemical potential µ = µcrit. stays constant.

This allows to easily identify the phase boundaries by looking at µ(x).

Although this approach is part of the standard repertoire to calculate the phase diagram

its application to a non-mixing phase diagram (in the present thesis the Fe1�xCux alloy)

is impractical due to its inaccuracy. This can be observed from Fig. 5.7 for a Fe-Cu

grand-canonical MC at 1200K, where the transition from the two phase Fe+Cu area, i.e.

µ nearly constant for a large range of xCu, to the one phase Fe area is ambiguous. This

is due to the finite size of the simulation cell.

5.3.2 Canonical Approach

Another standard tool for phase diagram calculations is the canonical MC in which the

solubility is obtained by fixing the atomic concentration and varying the temperature.

An appropriately large change in the calculated enthalpies then indicates a phase tran-

sition. This is shown in Fig. 5.8 for the Fe1�xCux system, where x = 1 at.% Cu atoms

are dissolved in the system by distributing them randomly within the simulation cell.

Starting of at 1800 K the system is cooled down in 100 K steps. The phase transition is

accompanied by the formation of Cu precipitates at 500 K resulting in a change of the
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Figure 5.8: Concentration of Cu dissolved (red diamonds), Cu in precipitate (green
circles) and enthalpy �E (blue squares) plotted versus T for a canonical MC simulation

with x = 1 at. % of Cu in the simulation cell.

dissolved Cu atoms from 1 at.% to 0.05 at.% at 500 K and an energy decrease of ⇡ 4

meV/atom. Note, the total number of Cu atoms in the simulation cell remains unchanged

as the Cu atoms are either solved or attached onto the Cu precipitate. The Cu solubility

was calculated by dividing the number solved, i.e. unattached, Cu atoms through the

number of lattice sites. In this thesis an atom was counted as part of a precipitate if one

of its nearest neighbours belonged to a precipitate, i.e. a cohesive cluster of more than

10 atoms of the same species.

Two problems have to be dealt with in this approach: First the temperature dependent

CE is very costly and has to be done at every temperature step, as will be discussed in

greater detail in the next section: Second, as is well known from nucleation theory [46],

precipitates need to grow to a critical radius to be stable. Hence, if the probability of

removing an atom from a precipitate is comparatively larger than adding an atom to

it, then it will take a very long computational timespan or a very large simulation cell

will be needed, as the formation of a stable precipitate is unlikely. Therefore, although

in the example of dissolved Cu in an Fe host the dissolved Cu might be energetically

unfavourable the Cu atoms need a stable Cu precipitate to be removed from the Fe host.

This classical metastability problem leads to an overestimation of Cu solubility in this

thesis, as visualised in Fig. 5.9.
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x [Cu at. %]

Cu atoms

exact solubility
overestimated s.

Figure 5.9: Sketch of the metastability problem. If the simulation cell with
x = 1 at. % is cooled below the correct phase boundary (black solid line) the Cu
atoms stay in solution, as shown by the simulation cell cross-section in the insets where
only the Cu atoms are indicated by red squares, since the formation of a stable Cu
precipitate needs a larger computational timespan. This results in a overestimation of

the Cu solubility.

5.3.3 Local Grand Canonical Approach

The metastability problem of the canonical MC approach can be circumvented by provid-

ing a way for the dissolved atoms to be removed from the solution. For a binary system

this is done by modelling a perfect phase separation by dividing the simulation cell into

two equal halves each of which is initially fully occupied by one atom species as shown

in Fig. 5.10. This local grand canonical setup has a fixed finite reservoir of A and B

atoms (i.e. Cu and Fe) allowing an exchange of atoms between the two slabs. Hence,

the initial configuration is given at 0 K and the solubility is then determined by counting

the dissolved atoms in the host slab at thermodynamical equilibrium for a fixed temper-

ature. However, the boundary between the reservoirs also relaxes. Therefore, to make

sure that no atom from the other slab is accidentally counted as dissolved the first three
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area used to determine 
Cu solubility 

initial setup

thermodynamical equilibrium

Figure 5.10: Cross sections along [111] of the simulation cell with Fe atoms coloured
in black and Cu in red. The initial setup (i.e. one slab Cu and one slab Fe) is brought
to thermodynamical equilibrium. The volume used to determine the concentration of

dissolved Cu (i.e Cu solubility in Fe) is indicated by the two green lines.

layers around the original slab boundary are not taken into account when determining

the solubility.
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5.4 Temperature Dependent CE

The inclusion of the vibrational free energy into CE has been discussed in previous works.

Notably by Van de Walle et al. [47], describing the influence of the vibrational free energy

Fphon(T ) on the thermodynamics of substitutional alloys. Using the isolated defect model,

described in detail in the previous chapter, confirms the importance of the vibrational

free energy for the Fe1�xCux alloy (chapter 7.2). This provides the necessary motivation

to attempt a temperature dependent CE. Yuge et al. [48] combined CE with ab-initio

phonons to calculate the quasi-binary phase diagram of (BN)(1�x)(C2)x. This seems to

be very similar to the one used in the present thesis, but gives no explanation on the

criteria used the reduced the set of 251 CE input structures used in the standard CE

to 25 input structure selected for the calculation of the phase diagram with vibrational

contributions. This is unsatisfactory.

It should be emphasised, that the DFT energies of the structures used for the CE are

strictly defined for T = 0 K. Hence, the ECI’s are also defined at T = 0 K. Finite

temperatures are included into Eq. 5.5 by adding the vibrational free energy (Eq. 3.83

in chapter 3) to the CE,

N�
X

�=1

"

EDFT(�) + Fphon(�, T )�Nlatt

Nf
X

f

DfJf(T )⇧̄f(�)

#2

+
Nf
X

f

c(r̄f)
�Jf(T ) = min , (5.18)

yielding a set of temperature dependent ECI’s {Jf(T )}.

Additionally, to the temperature independent formation enthalpy of configuration � (Eq.

5.6) a temperature dependent vibrational formation energy term has to be taken into

account

�f(�, T ) = Fphon(�, T )�
�

xFA
phon(T ) + (1� x)FB

phon(T )
�

. (5.19)

Hence, this temperature dependent addition to Eq. 5.6 might lead to di↵erent sets of

ground state structures at di↵erent temperatures. Implying that a converged CE at

T = 0 K might not be converged when temperature dependent contributions of the

phonons are included.

Furthermore, the addition of vibrational free energies also results in a temperature de-

pendent increase of SCV(T ) (Eq. 5.8), simply because an increase in Fphon(�, T ) also

increases the error.

A further important problem is the occurrence of imaginary vibrational modes. Strictly

seen, one would have to remove all structures with imaginary modes as these are dy-

namically unstable. In this thesis the CE has been done for a non-mixing Fe-Cu system

with no stable phase between pure Fe and Cu. Hence, all structures used in the CE are
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Figure 5.11: Cu solubility in bcc Fe calculated from figure-sets of twenty separate
CE’s (blue crosses) compared to results using a merged figure-set (red diamonds and

dotted line).

energetically unstable and, therefore, it is viable to include structures with a low enough

percentage (i.e. i! below 5%) of imaginary frequencies. As discussed in chapter 3 the

imaginary modes are discarded when calculating vibrational free energies. If a temper-

ature dependent CE is done for an alloy with stable phases in-between the pure phases

then it is prudent to be more strict and discard all structures with imaginary vibration

modes.

In a naive first calculation one immediately notices that the solubility of the dissolved

atom scatterers strongly at each temperature step, as seen for dissolved Cu in Fe in Fig.

5.11. This is the case because the figure selection in the CE is not unique. Each CE

will select a di↵erent set of figures emphasising di↵erent structural energetics. This has

nothing to do with the temperature dependent CE and also occurs for the CE at T = 0 K.

But, as all further MC calculations within the standard CE approach are always based

on the same figure-set of a single CE, this problem is usually not noticed. However, in

the temperature dependent CE where a separate CE has to be done at each temperature

step it thus becomes obvious.

It is possible to reliably calculate the solubility of dissolved atoms by averaging over

a number of separate CE performed at a fixed temperature. This averaging is done

by merging the individual figure-sets of all individual CE’s. All figure-sets {f(T )} are

merged and the corresponding e↵ective interaction energies {Jf(T )} are averaged over
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NCE independent CE’s for a given temperature T by

{f(T )} = {f }1(T ) [ · · · [ {f }NCE(T ) (5.20)

and

{J{f }(T )} =
1

NCE

X

{f }

{Jf(T )} . (5.21)

This merged figure-set {f(T )} contains more figures than any one of the individual CE

figure-sets used for merging. In the Fe1�xCux CE the number of figures is increased from

about 40 to more than 100 when merging twenty figure-sets from twenty individual CE’s.

Ultimately, this merging allows to accurately study the thermodynamics of an alloy using

a single merged figure-set by MC. As shown in Fig. 5.11 for the example of Cu solutes

in Fe this approach allows for a more accurate description of the Cu solubility in Fe.
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Mo
3

Al
2

C: Phonons and Phase

stability

The compound Mo3Al2C (first synthesised in the 1960s [49]) is of particular interest as

a superconductor which has a �-Mn-type crystal structure without a centre of inversion.

Because of the missing inversion symmetry the classification of Cooper pairs into either

spin-singlet or spin-triplet is not possible. In non-centrosymmetric superconductors the

electron pairing-process is explained to be a mixture of spin-singlet and spin-triplet pairs

states [50, 51] .

The finding of superconductivity in the non-centrosymmetric compound CePt3Si [52] got

a lot of attention. DFT calculations were attempted [53] which, however, encountered the

usual DFT problems with localised f-states and therefore the results were inconclusive.

On the other hand compounds without inversion symmetry such as BaPt3Si [54] and

Mo3Al2C contain no problematic localised states and are therefore an ideal playground for

DFT studies. Dealing with superconductivity for these cases with no centre of inversions

needs the inclusion of spin-orbit interactions, which are usually (and also in VASP) done

in a perturbative way. BaPt3Si appears to behave like a normal BCS superconductor,

because the spin-orbit splitting of states close to the Fermi energy is very small, and the

transition temperature Tc = 2.25 K is very low. Interestingly, Mo3Al2C has a relatively

high critical temperature of Tc = 9.05 K (see Fig. 6.1) when compared to similar �-Mn

compounds and to BaPt3Si.

The renewed interest in Mo3Al2C due to its superconducting and structural properties

is manifested by a recent publication by Bauer et al. [55]. In the present thesis the

focus is put in particular on the vibrational properties of Mo3Al2C in order to search

for soft phonon modes which might couple with proper pair-forming electronic states.

Thermodynamic stability of vacancies on the carbon sites, as elaborated later on, also

need to be considered.
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Table 6.1: Physical properties of Mo3Al2C.

crystal structure Cubic, �-Mn type
space group P4132
exp. lattice parameter [55] 6.863 Å
DFT lattice parameter 6.890 Å
exp. supercondcuting transition temperature 9.0K

Experimentally the compound is prepared by cold compacting the elemental powder and

reacting it for 24 h at the relatively high temperature of 1500�C. The material is then

ball milled and hot pressed at a pressure of 56 MPa with a temperature of 1250�C. [55].

The unit cell of its structure is cubic and contains of 24 atomic positions, of which 12 are

Mo, 8 are Al and 4 are C. The structure sketched in Fig. 6.1 shows that the C atoms

are placed within trigonal prisms formed by the Mo atoms, resulting in octahedral Mo6C

subunits. Table 6.1 summarises a few properties and compares the experimental lattice

constant to the DFT value, which is 0.4 % larger. It should be noted, that for the DFT

calculations a PBE flavoured GGA exchange-correlation was considered. In the VASP

calculations a 21 ⇥ 21 ⇥ 21 Monkhorst-Pack [56] ~k-point mesh was used for converging

the total energy, and a 13 ⇥ 13 ⇥ 13 mesh for geometrical relaxations and for deriving

force-constants. The integration in ~k-space for the total energies applied the tetrahedron

smearing method with Blöchl corrections [57], whereas for the relaxation of the atomic

positions and for deriving the force-constants the first order Methfessel-Paxton smearing

method [58] with a smearing of 0.2 eV was chosen.

6.1 Vibrational Properties

The structural parameters, i.e. the volume and shape of the unit cell as well as the position

of all 24 atoms within this unit cell, were relaxed to residual forces of less than 10�4 eV/Å.

Furthermore, for a high accuracy of the phonon calculation the force-constants derived

from the displaced atoms were corrected by subtracting the still finite force-constants

of the fully relaxed structure, as discussed in chapter 3. The perfectly stoichiometric

compound Mo3Al2C is dynamically not stable, as can be realised from panel a) of Fig.

6.2 due to bands of modes with imaginary frequencies. Particularly noticeable is the

situation at � where three imaginary optical modes arise. The dynamical instability

seems surprising, considering the well-established crystal structure of Mo3Al2C and the

published experimental data in Ref. [55]. However, one should keep in mind, that the

actual content of C on the C sublattice is experimentally not easily accessible, and carbides

like to have vacancies on their sublattice.
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a)
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b)

=286 K and a saturation value !sat=350 "# cm. An esti-
mation of the electron-phonon interaction strength $e,ph is
possible in terms of the McMillan formula.17 Applying this
model, and taking the repulsive screened Coulomb part "!

!0.13, yields $e,ph!0.8; this characterizes Mo3Al2C as a
SC well beyond the weak-coupling limit.

The pressure dependence of Tc of Mo3Al2C is displayed
in the inset of Fig. 2. Obviously, Tc"p# increases but tends to
saturate for high pressures. An increase in Tc is rarely found
in simple materials; rather, such a behavior frequently occurs
in unconventional SCs like in high-temperature SCs, in vari-
ous pyrochlores, in some Fe-pnictides, or heavy-fermion ma-
terials. Bogolyobov et al.18 demonstrated that there are two
principal parameters determining Tc :%D and the electronic
density of states "DOS# at the Fermi energy, N"EF#. Since the
application of pressure hardly modifies !"T , p# in the normal-
state region "not shown here#, %D"p# remains unchanged.
Thus, a slight increase in N"EF# is concluded, enhancing Tc
on pressurizing Mo3Al2C.

Figure 3"a# shows the electronic temperature-dependent
specific heat CeS"T# of Mo3Al2C taken at 0 T and plotted as
CeS /T vs T2. For subtracting the phonon background, high-
field measurements were extrapolated to T!0 using a De-
bye temperature %D=315 K "see also below#. Bulk SC is
evidenced from a distinct anomaly at 9 K, rendering the on-
set of the SC phase transition. A closer inspection of the data
gives evidence of various non-BCS-type features: "i# the
jump of the specific heat at Tc, &Cp / "'nTc#!2.28, is well
above the value expected for an s-wave BCS SC with
&Cp / "'Tc#!1.43. This hints at strong-coupling SC. "ii# The
temperature-dependent heat capacity below Tc significantly
deviates from the universal BCS dependence as indicated by
the solid line. Rather, a power law with Cp"T(Tc#)T3 is
obvious from the experimental data above 3 K "compare
Fig. 3#, which is sketched by the dashed line as well. Below
3 K, the heat-capacity data reveal an anomaly at about 1 K
$see also Fig. 4"a#%, which may be attributed either to a tiny
fraction of impurity states or to a quite complicated gap
structure, where a small fraction of the Fermi surface exhib-
its a very small gap which opens just at the lowest tempera-
tures. Due to the low-temperature anomaly in the heat capac-
ity it remains unclear whether or not CeS of Mo3Al2C is
compatible with a nodal structure. A clean exponential tem-
perature dependence is not observed in the present study.

The 1 /T1
27Al NMR relaxation rate, taken at "0H

=1.24 T and partially at 6.95 T is plotted in Fig. 3"b# on a
double logarithmic scale. A Hebbel-Slichter peak right at Tc
is absent. This is compatible with a partial disappearance of
the SC gap at the Fermi energy, in line with non-s-wave SC.
Below Tc, a nonexponential but rather a Tn temperature de-
pendence hints toward a nodal structure, closing partially the
SC gap at the Fermi surface. We note that a 1 /T1)T com-
ponent, expected as a signature of a finite impurity density of
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FIG. 1. "Color online# Rietveld refinement "Guinier-Huber im-
age plate system, Cu K*1# and crystallographic data of Mo3Al2C.
The inset shows a three-dimensional view of the crystal structure.
Traces of Mo2C are indicated by vertical bars.
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FIG. 2. "Color online# Temperature-dependent electrical resis-
tivity ! of Mo3Al2C. The dashed line is a least-squares fit according
to the parallel resistance model. The inset shows the pressure de-
pendence of Tc.
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FIG. 3. "Color online# "a# Electronic specific-heat contribution
CeS"T# of Mo3Al2C plotted as CeS /T vs T2. The dashed line is a
guide for the eye and indicates an idealized superconducting phase
transition together with a T3 dependence of Cp"T# for T(Tc. The
solid line represents Cp"T# of a spin-singlet fully gapped BCS su-
perconductor according to Mühlschlegel "Ref. 19#. The dashed-
dotted line indicates an exponential temperature dependence sug-
gested in Ref. 30. "b# Temperature-dependent 1 /T1

27Al NMR
relaxation rate deduced at "0H=1.24 and 6.95 T. The solid lines are
guides for the eye. The dashed line represents an exponential tem-
perature dependence.
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Figure 6.1: Properties of Mo3Al2C. Panel a): crystal structure; panel b): experi-
mental electrical resistivity (yellow circles) [55]. Inset in panel b) sketches the pressure

dependency of conducting transition temperature Tc.
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In order to test the numerical accuracy and the reliability of these puzzling imaginary fre-

quencies for the perfectly stoichiometric compound force-constant calculations with sev-

eral displacements of |~u| = 0.05 Å, 0.1 Å, 0.2 Å, 0.3 Å, 0.4 Å were done, and furthermore

all symmetry were removed. All tests confirm for Mo3Al2C the existence of imaginary

modes.

Exploiting the calculation with a displacement of |~u| = 0.01 Å imaginary optical modes

with frequencies of 1.62 i are found at �. A further test was performed by a linear-

response calculation directly done by VASP at � confirming with 1.65 i THz the imaginary

frequency. VASP’s linear-response results for the force-constants were taken as input for

f PHON calculations and the thus derived dispersion relation as shown in panel a) of Fig.

6.2 is very similar to the previously derived one based on the force-constant method. To

test the structural stability of the atomic distribution all atoms were slightly displaced

from their equilibrium positions and allowed to relax without any symmetry constraints.

Furthermore, a tetragonal deformation was enforced to the unit cell. In all of these

tests the cell relaxed back to the initial crystal structure and atomic distribution. Any

significantly di↵erent crystal structure seems to be unlikely, because this structure was

confirmed by many experiments [49, 55].

A further explanation for the occurrence of imaginary modes for the perfectly stoichio-

metric compound could be that the experimental samples contain defects, in particular

vacancies.

Assuming that a certain C-vacancy concentration is present suitable supercell calculations

were done to simulate the defect structures. Calculations with a given displacement of

|~u| = 0.01 Å were done for a single carbon vacancy in a 1⇥1⇥1 supercell, i.e. Mo3Al2C0.75

containing 23 atoms with 3 out of possible 4 C atoms, for a single carbon vacancy in a

2 ⇥ 1 ⇥ 1 supercell, i.e. Mo3Al2C0.875 containing 47 atoms with 7 out of possible 8 C

atoms, and in a 2⇥2⇥2 supercell containing 191 atoms, i.e. Mo3Al2C0.96875. While both

Mo3Al2C0.75 and Mo3Al2C0.75 were found to be dynamically stable with no imaginary

modes, Mo3Al2C0.96875 was found to be significantly unstable, with imaginary optical

modes at � quite close to the result for the perfect compound. Comparing Mo3Al2C0.875

with Mo3Al2C0.75 in Fig. 6.2 one notices that with a lower carbon vacancy concentration

the lowest optical mode at � softens from about 3 THz to below 1 THz. Furthermore, a

softening of the acoustic modes at R and X occurs. The result for the 2⇥ 2⇥ 2 supercell

indicates, that there might be a critical concentration of carbon vacancies below which

the compound becomes dynamically unstable. Assuming that the frequency of the lowest

optical mode at � scales linearly with the carbon vacancy concentration xvac = 1� x the

critical carbon vacancy is estimated, using the values of � in Mo3Al2C1, Mo3Al2C0.96875

and Mo3Al2C0.875 as input (Fig. 6.3), to be xcrit = 0.089.
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Figure 6.2: Vibrational properties of Mo3Al2Cx with x  1, i.e. vacancies on the
C sublattice. In panel a) for Mo3Al2C the calculated phonon dispersion derived from
the displaced-atoms force-constant method (black line) is compared to a calculations
with force-constants derived from linear response (red line). In panels b), c) and d) the
dispersion relation, as calculated directly from the displaced-atoms force-constants, are
presented for Mo3Al2C0.96875, Mo3Al2C0.875 and Mo3Al2C0.75, respectively. It should
be noted, that the paths in reciprocal space are di↵erent, because for Mo3Al2C0.875 a
2⇥ 1⇥ 1 simple tetragonal supercell has been used but for the other cases a 1⇥ 1⇥ 1

or a 2⇥ 2⇥ 2 simple cubic supercell.
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Figure 6.3: Carbon vacancy concentration x versus the frequency of the lowest optical
mode at �.
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Figure 6.4: Panels a) and b) prsent the dispersion relation, as derived from the
displaced-atoms force-constant method for Mo2.75Al2C1 and Mo3Al1.75C1.
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Further stoichiometries were studied, enforcing vacancies on the other two sublattices.

As a result, Fig. 6.4 shows two di↵erent phonon dispersion relations for two di↵erent

stoichiometries, namely Mo2.75Al2C and Mo3Al1.75C. Clearly, the phonon dispersion rela-

tions in Fig.s 6.2 and 6.4 reveal that no significant imaginary modes exist for the other

two vacancy stoichiometries. The small dip below the zero line (i.e. imaginary axis) close

to � is a numerical artifact.

All these results indicate that the compound might be stabilised by vacancy formation.

However, both molybdenum and aluminium have a comparatively large X-ray cross sec-

tion [59] and can be easily detected by experiment, and so far no vacancies on these

sublattices have been measured. The situation is di↵erent for carbon, which is a light

atom, and one may speculate that carbon vacancies exist in the experimental samples.

Two questions then remain: what is the true ground state structure of Mo3Al2C, and is

it thermodynamically possible that vacancies are formed under the given conditions, i.e.

preparation temperature? The discussion in the next subchapter deals with the second

point, which at the moment is of particular interest.

Coming back to the vibrational properties, in Fig. 6.5 the normalised phonon DOS of un-

stable Mo3Al2C and Mo3Al2C0.96875 are compared to the stable compounds Mo3Al2C0.875

and Mo3Al2C0.75. While no Debye-like !2 behaviour of the DOS is observed close to

� for Mo3Al2C and Mo3Al2C0.96875, it can be found for the other presented cases. For

Mo3Al2C0.875 the Debye-like behaviour occurs in a rather narrow range up to ⇡ 0.5 THz

due to the softening of the acoustical and optical modes, for Mo3Al2C0.75 the Debye-

feature is more strongly pronounced up to 1.5 THz. The partial DOS reveals that Mo,

as the heaviest atom species, dominates in the spectrum the lower frequencies (up to 7

THz) whereas carbon, being the lightest atom, contributes only at frequency higher than

13.5 THz. A direct comparison of the DOS of Mo3Al2C with that of Mo3Al2C0.875 and

Mo3Al2C0.75 shows that the large Al dominated peak at ⇡12.2 THz is strongly reduced by

the carbon vacancy from 0.55 to 0.12 for Mo3Al2C0.96875. With increasing carbon vacancy

concentration this peak increases to 0.21 and 0.36 for Mo3Al2C0.875 and Mo3Al2C0.75. Fur-

thermore, the carbon dominated frequencies mode are shifted down by the introduction

of vacancies from above 15 THz to about 13.5 THz.

For the sake of completeness the phonon DOS of the remaining of Mo2.75Al2C1 and

Mo3Al1.75C1 are presented in Fig. 6.6. They reveal a similar behaviour, namely a Debye-

like !2 increase in the frequency range 0� 1.5 THz and the reduction of the aluminium

dominated peak at ⇡12.2 THz. In both cases one observes that the carbon frequencies

are shifted to lower values. Furthermore, for Mo2.75Al2C1 a hybridisation of the carbon

modes with aluminium modes between 11.5� 13THz is observed.
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a) b)

c) d)

Figure 6.5: Vacancies on the C sublattice: Phonon DOS (black solid line) and the
partial phonon DOS of Mo (purple dashed line), Al (green dotted line) and C (blue
dashed-dotted line) are shown in panels a), b), c) and d) for Mo3Al2C, Mo3Al2C0.96875,
Mo3Al2C0.875 and Mo3Al2C0.75, respectively. In the inset the total DOS at low frequen-

cies is compared to a Debye-like !2 behaviour (red dashed line).

Returning to the discussion of the carbon vacancies the question about the mechanism

behind the stabilisation of the optical low-frequency molybdenum modes arises. Obvi-

ously, the Mo-C bonding in the Mo6C subunits is very important for this phenomenon.

This can be tested by removing a C atom from one of the four Mo6C subunits in the unit

cell of Mo3Al2C. The removal strongly influences the Mo-C bonds in all the remaining

three Mo6C subunits because they share a common Mo atom with the defect subunit.

By relaxing the Mo atoms in all subunits the carbon shifts into an o↵-center position, by

which the average molybdenum carbon bond length of the three perfect Mo6C subunits

is increased by 1.4 %, and the corresponding octahedral volume is increased by 3.6 %. It

seems that this distortion is the stabilizing factor for the vibrational modes.
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a)

b)

Figure 6.6: Vacancies on the Mo or Al sublattice: Phonon DOS (black solid line)
and the partial phonon DOS of Mo (purple dashed line), Al (green dotted line) and C
(blue dashed-dotted line) are shown in a)for Mo2.75Al2C1 and in b) for Mo3Al1.75C1.
The inset compares the increase of the total DOS at low frequencies is compared to a

Debye-like !2 behaviour (red dashed line).

6.2 Formation Energy

As discussed above, a certain amount of C-vacancies is needed in order to stabilise some

of the optical modes, which indicates that the experimental samples are not perfectly sto-

ichiometric. The question now arises, if the formation of vacancies is thermodynamically

possible. Investigating this key question the vacancy formation energy is calculated by

subtracting the total energy EDFT(Mo12Al8C4) of the stoichiometric compound from the

total energy EDFT(Mo12Al8C4 � X) of the compound with vacancy X and the ground

state reference energy EDFT(X) of the removed atom X by

"X(vac) = EDFT(Mo12Al8C4 �X) + EDFT(X)� EDFT(Mo12Al8C4) . (6.1)
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Table 6.2: Formation energies for vacancies in Mo3Al2C for 1⇥ 1⇥ 1 and 2⇥ 1⇥ 1
unit cells without vibrational contributions (DFT T=0 only), adding fX(T ), and finally

completing with the configurational entropy
Sconf(cX) = �[cX ln(cX) + (1� cX) ln(1� cX)] at temperatures of 1250�C and 1500�C.

Mo(vac) Al(vac) C(vac) C(vac)
[meV] [meV] [meV] [meV]

supercell size 1⇥1⇥1 1⇥1⇥1 1⇥1⇥1 2⇥1⇥1
"X(vac) 1738 855 595 561

T=1250�C: "X(vac) + fX(vac)(T ) 1582 497 196 �393
T=1500�C: "X(vac) + fX(vac)(T ) 1506 387 75 �661

Suitably replacing the DFT total energies (EDFT) with vibrational free energies (Fphon)

leads to the vibrational vacancy formation energy

fX(vac)(T ) = Fphon(Mo12Al8C4 �X) + Fphon(X)� Fphon(Mo12Al8C4)� Fphon(X) . (6.2)

The reference energies EDFT(X) and Fphon(X) were calculated for the ground states of

bcc-Mo, fcc-Al and C in the graphene structure. The formation energy of the carbon

vacancy in the 2 ⇥ 1 ⇥ 1 supercell (as needed for small vacancy concentrations) was

calculated by doubling the value of the reference Mo12Al8C4 compound that is subtracted

from Mo24Al16C7.

Comparing the vacancy formation energies in Table 6.2 for one notices that at T = 0 K

(DFT only) they are all strongly positives, whereby the Mo vacancy with a formation

energy of 1738 meV is by far the most unfavourable one. As hoped, carbon vacancies are

the most favourable ones, with a formation energy of 595 meV for 1 ⇥ 1 ⇥ 1 supercell

corresponding to Mo3Al2C0.75. This value is reduced by only 34 meV for the 2 ⇥ 1 ⇥ 1

supercell corresponding to a composition of Mo3Al2C0.875.

It should, however, be noted that the experimental samples were synthesised at 1500�C

and heat treated at 1250�C. Therefore, theory should consider temperature dependent

vacancy formation energies fX(vac) combined with the compostion dependent configura-

tional entropy Sconf(x). For this derivation the fully stoichiometric compound Mo3Al2C1

was chosen with its imaginary modes, as described above. Concerning the vibrational

free energy, its imaginary modes were not included because only 3% of all vibrational

states are imaginary.

Table 6.2 and Fig. 6.7 show that the vibrational contribution reduces the strongly positive

values of the vacancy formation energies as derived directly from the DFT total energies.
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Figure 6.7: Total vacancy formation energy (sum of the DFT " and vibrational f
formation energies) versus temperature for a Mo vacancy (purple dashed line), an Al
vacancy (green dotted line) and a C vacancy (blue dashed-dotted line) in a unit cell
(1 ⇥ 1 ⇥ 1 supercell). Also the result for a carbon vacancy in a 2 ⇥ 1 ⇥ 1 supercell is

shown (red solid line).

While this reduction is comparatively small for the Mo vacancy, (from 1738 meV to 1506

meV at 1500�C ) it is much larger for the other two types of vacancies.

In particular, the formation energy of the carbon vacancy for the single unit cell, i.e.

Mo3Al2C0.75, decreases from 595 meV to 75 meV at 1500�C. Remarkably, this reduction

is much larger for the larger supercell, i.e. the composition Mo3Al2C0.875 with the vacancy

formation energy decreasing by more than 1 eV down to �661 meV. As a conclusion, the

sum of DFT and vibrational vacancy formation energy, " + f(T ), strongly depends on x

and T .

From the isolated defect model of chapter 4 (Eq. 4.19) the temperature dependent equi-

librium vacancy concentration x can be calculated. However, as the formation energy per

vacancy, " + f(T ), is strongly dependent on x the model of chapter 4 cannot be applied

directly here. The total vacancy formation energy U(x, T ) = (" + f(T ))x is not a linear

function of x any more, but is described as

U(x, T ) = ax2 + bx , (6.3)
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Figure 6.8: Total vacancy formation energy, " + f(T ), times carbon vacancy concen-
tration x versus x at temperatures of 1250�C (blue diamond) and 1500�C (red circles).
The dashed lines (blue for 1250�C and red for 1500�C ) are obtained by parabolic

interpolation between the calculated data.

wherein a and b are parameters fitted to the directly calculated vacancy formation ener-

gies, as shown in Fig. 6.8.

Thus, the total free energy including the configurational entropy is now described as,

F (x, T ) = ax2 + bx� TkBSconf(x) . (6.4)

Defining Sconf as the mixing entropy of an ideal solution,

Sconf(x) = x ln(x) + (1� x) ln(1� x) the derivative of F with respect to x becomes,

@F (x, T )

@x
= 2ax + b� TkB [ln(x)� ln(1� x)] . (6.5)

Searching for the concentration x minimising the free energy, i.e. @F (x, T )/@x = 0 one

obtains
@F (x, T )

@x
= 0 ) x =

e��(2ax+b)

1 + e��(2ax+b)
, (6.6)

with � =
1

kBT
. This allows for the numerical calculation of x using a simple bracketing

root finding algorithm (page 445 in [34]).

Considering experimental preparation temperatures the likely carbon vacancy concentra-

tion of the sample is 0.13�0.14., according to the model described by Eq. 6.6. From
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Figure 6.9: Temperature dependent carbon vacancy concentration plotted as a solid
red line. Experimental preparation temperatures are indicated as dashed black lines.
The critical carbon vacancy concentration, below which the structure becomes dy-
namically unstable, is shown by a green dash-dotted line, while the carbon vacancy

concentrations of the calculated supercells are drawn as blue dotted lines.

these findings, it seems plausible that the superconducting transition temperature might

be altered by annealing the sample at a di↵erent temperatures

However, one should be aware that only three input values where considered when calcu-

lating x. It is probable that as the concentration dependent phonon softening over a large

part of BZ occurs according to Fig.s 6.2 and 6.3 the vibrational entropy increases. This

makes a vacancy concentration close to the critical x more favourable as the total vacancy

formation energy increases. Therefore, the sample might have a vacancy concentration

of x ⇡ 0.09.
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6.3 Conclusions

As a result of the investigations it turns out that the perfectly stoichiometric compound

Mo3Al2C is dynamically unstable, i.e. imaginary frequencies appear in the phonon dis-

persion. This finding is of particular importance because its superconducting properties,

as recently published [55], are phonon mediated. On the other hand, Mo3Al2C is not a

simple BCS-like superconductor because its crystal structure has no centre of inversion

making the description of the electron-pairing process more complicated.

If, however, carbon vacancies are introduced (by means of supercell calculations) then

the corresponding phonon dispersions may consist of only real frequencies provided the

vacancy concentration x in the compound Mo3Al2C1�x is larger than a critical value.

Thus, as a result it appears that phonon softening might be controlled by the carbon

stoichiometry although experimentally this might be hard to achieve.

The key question is now if the formation of carbon vacancies is thermodynamically possi-

ble. The answer is no, if only the DFT energies (i.e. formation enthalpies at T = 0 K) are

considered. Based on a thermostatistical model including also the vibrational free ener-

gies it is found that at the elevated temperatures at which the experimental samples were

fabricated carbon vacancies formation becomes favourable. Assuming that the cooling

down of the sample freezes in the vacancies it becomes plausible, that the measurements

for the superconducting properties for T < 10 K are done with carbon deficient samples.

Of course, also the electronic structure are needed for more detailed discussion on super-

conductivity. This would involve calculations of the electronic band structures and Fermi

surfaces of the vacancy structures including spin-orbit coupling (because of the missing

centre-of-inversion) and an elaborate discussion of the results. This is, however, beyond

the scope of the present thesis which focusses on dynamic and thermodynamic stabilities.

Nevertheless, all the necessary calculations were done also for the electronic structure and

the results are currently prepared for publication.
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Fe
1�xCux

In the steel production elements are added to Fe in order to improve its material proper-

ties. One of these elements is Cu which hardens steel. Fig. 7.1 depicts Cu precipitates in

an Fe matrix whose formation is essential for the hardening e↵ect. The precipitation for-

mation is stimulated by the correct heat treatment. Once formed the precipitates hinder

the movements of dislocations and thus makes the steel more resistant against mechanical

loads. The hardening e↵ect is demonstrated by Fig. 7.2 in which experimental data [60]

for the change of Vicker’s hardness versus ageing time for an Fe1�xCux, x = 1.17 at. %

alloy is presented. The alloy hardens because of precipitate formation by annealing at

773 K. If the heat treatment is too long then a softening is observed which is attributed

Figure 7.1: Atom probe microscope image as derived by Harald Leitner and Michael
Schober at the Montan University of Leoben of Cu precipitates in Fe after the alloy has

been annealed for 500000 seconds at 773 K.
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Figure 7.2: Change in hardness versus time at T = 773 K for Fe1�xCux, x = 1.17
at.%. Experimental data of Ref. [60].

to Oswald ripening [61]: a well known precipitate ageing process by which larger pre-

cipitates grow at the cost of smaller ones thus decreasing the number precipitates in the

alloy. Further softening can also occur when the interaction of the dislocations with the

precipitates changes due to the size change of the precipitates.

The industrial interest in controlling the hardening process in steel is enormous. There-

fore, Fe-rich Fe-Cu alloys are well studied by a large number of publications but ab-initio

DFT studies are still rather scarce. As will be demonstrated in the present work, these

studies mostly do not take into account all the important material properties, i.e. vibra-

tional free energies. The aim of this work is now to model the precipitation formation

by two di↵erent concepts maintaining DFT accuracy in both of them and taking into

account vibrational properties. The first approach deals with independent one- and two-

atom defects whereas the second, much more elaborate task, fully derives concentration

dependent interaction energies between atoms of the alloy. The ab-initio results in terms

of phase boundaries and miscibility range are compared to data of the semi-empirical

CALPHAD (computer coupling of phase diagrams and thermochemistry) method [62]

much loved by the technologically based material’s scientist. However, while often the

parameters which enter CALPHAD simulations are empirical the mechanisms behind

them are not well understood. The experimental results are just used to fudge the sim-

ulations to more or less well-defined values. One of the major goals of the present thesis

is to demonstrate that purely based on DFT total energies (and related quantities such

as force-constants) thermodynamical stabilities can be modelled rather well with the ad-

vantage that the fundamental mechanisms of bonding and stability can be analysed and

understood comprehensively.
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Figure 7.3: DFT total energies EDFT (PBE parametrisation) for Fe and Cu as a
function of volume V , whereby the energy zero corresponds to the minimum of EDFT .
The ground states are bcc ferromagnetic (FM) Fe and fcc Cu. Left panel: results for
Fe bcc and fcc non-spinpolarised (NM), antiferromagnetic (AFM) and ferromagnetic

(FM). Right panel: results for fcc and bcc Cu.

7.1 Bulk Fe and Cu

Fig. 7.3 presents volume dependent total energies, EDFT for bcc and fcc structures and

in case of Fe for several magnetic orders. As it is obvious, bcc ferromagnetic (FM) Fe

and fcc Cu are the equilibrium ground states at T = 0 K.

Table 7.1 summarises a variety of results for both metals. To test the accuracy of the

present DFT results they are compared to other recent DFT studies (also applying VASP)

[63, 64] as well as to experimental data. For further cross-checks the full-potential lin-

earised augmented plane-wave (FLAPW) approach flair [65, 66] was also applied. Sum-

marising, the flair and VASP results of the present work agree very well between each

other and with the data of Ref. [63]. For Fe in particular, however, there is a significant

di↵erence to the published data of Domain et al. [64] which can be ascribed to di↵erence

in constructing the pseudopotential. Liu at. al [63] and the present study utilised pro-

jector augmented wave (PAW) potentials whereas in Ref. [64] ultrasoft pseudopotentials

(USPP) were chosen. It is well known, that USPP potentials exaggerate magnetic e↵ects

as can be seen from table 7.1 for Fe, a result of the larger volume.

Considering the bulk results it is reasonable to continue from now on by using VASP with

a PBE parametrisation as basis.
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Table 7.1: Results of several VASP and flair calculations and experimental data
for ground state properties of bcc Fe and fcc Cu: lattice parameter a0, total magnetic
moment M and bulk modulus B. PAW: projected augmented wave pseudopotentials,
USPP: ultrasoft pseudopotentials. GGA parametrisations of the exchange-correlation

functionals according to Ref. [12] (PBE) and Ref. [67] (PW91).

Method a0 M B
[Å] [µB] [GPa]

bcc Fe flair (PBE) 2.838 2.24 199
flair (PW91) 2.837 2.23 199
VASP (PAW:PBE) 2.831 2.19 198
VASP (PAW:PW91) 1 2.827 2.16 194
VASP (USPP:PW91)2 2.856 2.32 160
exp. 3 2.8662 2.18 168

fcc Cu VASP (PAW:PBE) 3.636 - 147
flair (PBE) 3.627 - 143
VASP (PAW:PW91)1 3.634 - 134
VASP (USPP:PW91)2 3.641 - 140
exp.3 3.614 - 137

7.1.1 Vibrational Properties

For both Fe and Cu the phonon dispersions and density of states (DOS) were calculated

at their most stable states, namely bcc FM Fe and fcc Cu. The force constant matrices

were derived using a 64 atom supercells (i.e. the primitive cells vectors were enlarged by

a factor of 4) in which the forces acting on displaced atoms were directly derived from

VASP calculations using the Methfessel-Paxton [58] method for the ~k-space integration.

In Fig. 7.4 the dispersion relation for bcc FM Fe with two di↵erent lattice parameters is

presented. There is hardly any di↵erence between both DFT results and both agree rather

well with the experimental dispersions with the exception of a measured softening at the

N point. This well known phenomena of temperature dependent phonon softening in bcc

Fe is described in Ref.s [70–73]. Also including thermal expansion in terms of the slightly

enlarged lattice parameter of a = 2.841 Å (about 0.3 % larger than a0) has hardly any

e↵ect on the dispersion N . (For more details about calculating the thermal expansion,

see next section.) Therefore, the discrepancy to experiment has to be attributed to some

temperature dependency of the magnetic ordering, which is not taken into account in the

present work.

For fcc Cu, the dispersions as presented in Fig. 7.5 were calculated for the T = 0 K

lattice constant, a = 3.636 Å. It shows, that the agreement with experiment is excellent.
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Figure 7.4: Phonon dispersion for bcc FM Fe along some high symmetry directions.
DFT results (black line) for the equilibrium lattice parameter at T = 0 K, a0 = 2.831 Å
are compared to experiment [69] (circles), as measured at T = 296 K. A further DFT
calculation was made for a = 2.841 Å (red line), corresponding to the DFT derived

thermal expansion at T = 296 K. For details see text.
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Figure 7.5: Phonon dispersion relation for fcc Cu along high-symmetry paths. DFT
results (black line) are compared to experiment measured at T = 49 K [74] (circles).
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7.1.2 Thermal Expansion - Quasiharmonic Approach

Thermal expansion is modelled within the quasiharmonic approach, as based on volume

dependent phonon DOS from which volume and temperature dependent vibrational free

energies Fphon(a, T ) (see Eq. 3.83, Ref.s [75–78]) can be derived. For the actual calcu-

lations supercells consisting of 27 atoms were constructed by multiplying each primitive

lattice vector by 3. These supercells are due to the computational costs smaller than the

ones used to derive the very accurate phonon dispersions. For each lattice parameter a

the total free energy Ftot(a, T ) = EDFT(a) + Fphon is summed up, and then for a given

fixed temperature T = Tf the minimum of Ftot(a, Tf ), as a function of a, is searched

for. By this procedure temperature dependent equilibrium lattice parameter a(T ) are

obtained.

The phonon DOS was calculated by using a 25 ⇥ 25 ⇥ 25 ~q-point mesh according to

Monkhorst and Pack [56] for the ~q-space integration. In general, the phonon dispersion

relation at di↵erent lattice constants reveal volume dependent shifts. Discussing this

e↵ect for Cu, Fig. 7.6 shows the di↵erences of the normalised phonon DOS

�g(E) = ga0(E)� ga(E) , (7.1)

with respect to the T = 0 K equilibrium lattice parameter a0 = 3.636 Å . As can

be seen for the larger lattice spacing, there is a negative peak in the energy range up

to 20 meV followed by a positive peak with a smaller range. This implies that the

DOS g(!) of the larger lattice parameter is enhanced in this range and reduced in the

subsequent smaller range. Therefore, for larger lattice parameters the vibrational entropy

is enhanced (according to Eq. 3.90) or the free energy is lowered when compared to the

reference spacing at least up to a certain temperatures corresponding to the DOS changes

in the discussed energy ranges. This makes it plausible that at increased temperatures

the system will tend to a larger equilibrium volume, i.e. the minimum of the volume

dependent free energy occurs at larger volumes.

The thermal expansion is derived from the lattice parameter a(T ) at which Ftot(a, T ) has

a minimum for the fixed temperature T , and the equilibrium parameter aRT corresponding

to T = 298.15 K,

�l(T ) =
a(T )� aRT

aRT
. (7.2)
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Figure 7.6: Di↵erences �g(E) = ga0(!) � ga(!) of normalised phonon DOS of fcc
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a = 3.650 Å. The inset shows the phonon DOS for the T = 0 K equilibrium lattice
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constant at minimum energy is indicated by a red dot. The energy zero coincides with

the minimum of EDFT(a0).
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Figure 7.8: DFT derived thermal expansion of Fe (red solid line) in comparison to
experiment [79] (black circles and dashed line). The Curie temperature TC is is indicated

by an arrow.

7.2 Independent Defect Model for Fe-Cu

For Cu defects in Fe and Fe defects in Cu the influence of the vibrational free energy

on the thermodynamic properties within the independent defect model of 4 is studied.

In particular, the e↵ect of the vibrational free energy on the solubility of the defects is

investigated, which is comparable to previous studies [84–86].

7.2.1 Formation Energies

The relation introduced in chapter 4, as Eq. 4.1,

"Xi = (ni + nH)EXi+H
DFT � (niE

Xi
DFT + nHEH

DFT) , (7.3)

is now used to derive the formation energies of single and pair-wise Cu defects in a bcc Fe-

matrix and Fe single and pair-wise defects in a fcc Cu-matrix. For the reference energies

EH
DFT and EXi

DFT the energies per atom of fcc Cu and bcc Fe are taken.

The formation energy of one substitutional Cu defect in bcc Fe, "Cu1 , is presented in

more detail in table 7.3. Compared to previous DFT results [64] the table reveals a sig-

nificant di↵erence. The formation energies of this work are always larger than 750 meV,

independent of the chosen numerical conditions. On the other hand, the published data
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Figure 7.9: DFT derived thermal expansion of Cu. Present study: blue solid line;
other calculation [78]: magenta dotted line; experiment [80]: black circles and dashed

line.

Fig. 7.8 shows the results for Fe in comparison with experiment [79]. There are
two significant di↵erences between theory and experiment: The experimental expansion
grows faster with increasing temperature, and there is a kink at the Curie Temperature
(T = 978 K�1043 K) reflecting the order-disorder phase transition of the ferromagnetic
ordering. Both e↵ects are attributed to temperature e↵ects of the magnetic ordering
which are not included in the present quasiharmonic approach.
For non-magnetic Cu, however, DFT theory and experiment agree very well according
to Fig. 7.9. The present result for Cu matches experiment better than the data of a
previous DFT work of Nara et al. [78]. The authors used the plane wave code PWSCF
[81] and derived the vibrational properties within perturbation theory [82, 83].
Taking into account the thermal expansion the phonon free energies are not significantly
a↵ected, as can be seen in Fig. 7.10. There, Fphon(a(T ), T ) is compared to Fphon(a0, T ),
in which a0 is the T = 0 K equilibrium parameter (i.e. at which EDFT has its minimum).
Therefore, from now on all DFT calculations are done without considering thermal ex-
pansion considerably reducing computational cost.
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Figure 7.10: Phonon free energies for temperature dependent equilibrium parameters
a(T ), Fphon(a(T ), T ) (solid lines) are compared to Fphon(a0, T ) (dashed lines) for both
Fe (red and orange) and Cu (dark blue and light blue). The lattice parameter a0

corresponds to the DFT minimum.

of Domain et al. are by at least 200 meV significantly smaller, which of course strongly

alters the thermodynamical properties. To test for accuracy in the present study various

test calculations were performed using VASP as well as flair. Table 7.3 shows results for

two sizes of supercells (16 and 64 atoms) for three di↵erent cases, namely with and with-

out relaxation of atomic positions and with all structural parameters relaxed including

volume. In all these test cases the defect formation energies agree within 3%. Indicating

that the relaxation e↵ect on the defect formation energies is rather small. This can be

expected since the atomic sizes are quite similar: the atomic volume of Cu is only 0.5%

smaller than the one of Fe. Further test were done by recalculating the ground state

properties of some intermetallic Cu-Fe compounds needed for the CE and given in Ref.

[63], namely FeCu (B2 structure), FeCu3 and Fe3Cu with the DO3 structure. In all these

cases the energies and structural parameters calculated agree within 3% rather well with

Ref. [63]. Although Liu et al. [63] applied a di↵erent exchange-correlation GGA potential

[67] (according to Perdew and Wang, PW91) compared to the present work [12] (accord-

ing to Perdew, Burke and Ernzerhof, PBE) all the results are very similar. Similar test

calculations were done using a completely di↵erent code. Namely, flair which is based

on the all-electron full potential linearised augmented plane wave method and considered

to be one of the most precise DFT concepts as no pre-constructed pseudopotential are

necessary. Thus, it is concluded that the discrepancies to Domain et al.’s results are not

due the di↵erent choice of the GGA parametrisation but due to the construction of the
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pseudopotentials. In the work of Ref.[64] the so-called ultrasoft pseudpotentials (USPP)

was used provided in older versions of VASP. It is well-known that USPP exaggerates

magnetic properties with too large volumes and local moments [87].

Table 7.2: Formation energy per atom for the single atom defect, "X1 , and pair-wise
substitutional defects, "X2/2 per atom for Cu in bcc Fe and Fe in Cu. All geometrical

parameters are relaxed.

"X1 "X2/2 "X2/2� "X1

[meV] [meV] [meV]
Cu in Fe 773 682 -91
Fe in Cu 853 531 -322

Table 7.2 lists the results for the single and pair-wise defects of Cu in bcc Fe and Fe in

fcc Cu. For the pair-wise defects the energy is reduced considerably, in comparison to

the single atom defects, which is due to the bonding between the defects atoms in the

nearest-neighbour pairwise arrangement, but nevertheless all values are strongly positive.

The bonding e↵ect is particularly strong for the Fe defect pairs, which is attributed to the

ferromagnetic coupling. A calculation with antiferromagnetic coupling resulted in a by

about 320 meV significantly higher formation energy compared to the ferromagnetic case.

Anticipating the discussion about thermodynamical stability and solubility one would ex-

pect, that because of the substantially lower formation energy of Fe defect pairs compared

to Cu pairs the miscibility of Fe defects in fcc Cu would be higher than the miscibility of

Cu defects in bcc Fe. This is indeed the case as long as vibrational free energies are not

taken into account, as illustrated in Fig. 7.14. If, however, they are taken into account

the situation reverses dramatically demonstrating the strong and unpredictable (as far as

predictions based on T = 0 K values) e↵ect of vibrational free energies and entropies in

particular on thermodynamic properties. This finding is elaborated later on.
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Chapter 7. Fe1�xCux

Table 7.4: Temperature dependence of the di↵erences of vibrational free energy, fX1

and fX2/2, according to Eq. 7.6.

T fX1 fX2/2
[K] [meV] [meV]

Cu in Fe: 0 -43 -23
400 -118 -69
800 -227 -130
1200 -339 -191

Fe in Cu: 0 -5 29
400 -14 80
800 -28 178
1200 -40 288

7.2.2 Vibrational Formation Energies

Fig.s 7.11 and 7.12 show the di↵erences of normalised phonon densities of states g,

�g(!) = gXi+H(!)� gH(!) . (7.4)

The results for �g for single atom and pair-wise Cu defects in Fe show a very similar

behaviour for both types of defects. For Cu defects in Fe, the phonon DOS is significantly

enhanced at lower energies between 14 and 22 meV with respect to pure Fe. This red shift

might be understood by the replacement of Fe with heavier Cu atoms, assuming that the

spring constants, i.e. bonding strength, remain unchanged. The fluctuations of �g at

larger energies are a consequence of the normalisation
R

�gd! = 0. The negative peaks

are centred at the higher energy of about 37 meV indicating that the spectrum of the

defect modes is restricted to lower frequencies. �g is also shown in Fig. 7.12 for single

atom and pair-wise Fe defects in fcc Cu. The prominent features are more pronounced

for the pair-wise defect, which can be attributed to the strong ferromagnetic bonding

between the two Fe atoms. In contrast to the Cu defects, there is a blue shift, i.e. loss of

states, in the defect phonon DOS at energies between 12 and 20 meV. In the high energy

region above 28 meV �g is positive, as the defect Fe atoms are lighter than the Cu host

atoms. In both cases of �g, a significant negative peak arises at medium energies centred

at 25 meV, which is more pronounced with the pair-wise defect.

The temperature dependent vibrational free energy Fphon is derived by integration over

the phonon DOS g(!), as derived in chapter 3, with

Fphon(T ) = kBT

Z 1

0

g(!) ln

✓

2 sinh

✓

~!

2kBT

◆◆

d!. (7.5)
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Figure 7.11: Di↵erences �g of normalised phonon DOS for substitutional Cu defects
in comparison to pure bcc Fe: single-atom Cu defect (yellow dashed line) and pair-wise

Cu defect (red solid line). The phonon DOS for bcc Fe is shown in the inset.

The change of the free vibrational energy fXi(T ) is calculated by (Eq. 7.6)

fXi(T ) = FXi+H
phon (T )� (niF

Xi
phon(T ) + nHFH

phon(T )), (7.6)

using, as with the calculation of the formation energies, the corresponding reference pure

phases, bcc-Fe and fcc-Cu.

Inspecting Fig. 7.13 and table 7.4, one realizes that the temperature dependency of

the defect vibrational free energies are very di↵erent for the respective defects. For Cu

defects in bcc Fe (single atom as well as pair-wise defects) the behaviour is very similar

for both cases, namely a strong decrease of f with increasing temperature, which means

thermodynamical stabilisation of these defects according to Eq. 4.10. For Fe defects in

fcc Cu, however, the di↵erence energies f behave totally di↵erent. For the single defect

f is rather zero over the whole temperature range. On the other hand, for the pair-wise

Fe defects the vibrational free energy di↵erence increases very strongly, which in turn

reduces the thermodynamical stability of pairwise Fe-defects.

Volume relaxation has a noticeable influence on f(T ). The energies fCu1 and fCu2 are
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Figure 7.12: Di↵erences �g of normalised phonon DOS for substitutional Fe defects
in comparison to pure fcc Cu: single-atom Fe defect (turquoise dashed line) and pair-
wise Fe defect (blue solid line). The phonon DOS for bulk fcc Cu is shown in the

inset.

less negative when the volume is not relaxed: for example, the di↵erence to the volume

relaxed defects at 1200 K is ⇡ 240 meV, and for T = 800 K it is ⇡ 160 meV. This e↵ect

can also be observed on the Cu rich side where fFe1 and fFe2 are by about 30 meV less

negative at 800 K and fFe1 is by 40 meV less negative at 1200 K while it is 130 meV less

for fFe2 .

It should be noted, that in all the studied cases the temperature dependence of f comes

exclusively from the di↵erences of the vibrational entropies. The corresponding di↵erences

of internal energies are rather independent of temperature (at least on the energy scale

of Fig. 7.13).

All values of f(T ) have been calculated for each of the defects at the equilibrium lattice

constants at T = 0 K. E↵ects of thermal expansion were not taken into account and it

is assumed that the di↵erences of free energies f(T ) are only weakly a↵ected by thermal

expansion.
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Figure 7.13: Temperature dependence of changes of di↵erences of vibrational free
energies f(T ) (see Eq. 7.6). Defects in bcc Fe: single Cu atom (yellow dashed line) and
pairs of Cu atoms (red solid line); defects in fcc Cu: single Fe atom (turquoise dashed
line) and pairs of ferromagnetic Fe atoms (blue dashed-dotted line). The plotted values
for pair-wise defects correspond to the vibrational defect energy of the two atoms (not

divided by 2).

Table 7.5: Relative distribution of one atom and pair-wise defects (in % of x) at
800 K and 1200 K, and the corresponding total concentration x of the solute spcies.

without vibr. with vibr.
T [K] x [at. %] c1 2c2 x [at. %] c1 2c2

Cu in Fe 800 0.003 49 51 0.047 75 25
1200 0.115 48 52 1.940 75 25

Fe in Cu 800 0.024 2 98 0.006 9 91
1200 0.419 6 94 0.124 30 70

7.2.3 Phase diagram

Including the calculated formation energies and the change in the free vibrational energy

of single and pair-wise defects into the thermodynamical model discussed in

chapter 4, yields the phase diagram for the dilute Fe-Cu alloy. Fig. 7.14 shows this

phase diagram at both, the Fe-rich side and the Cu-rich side. No other stable phases

exist over the whole range of concentrations, as is clearly evident by the rather large and

positive, i.e. nonbonding, formation energies derived from DFT calculations for Fe-Cu
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a)

exp

metastable

b)

with vib.

no vib. 

Cu [at. %]

Figure 7.14: Phase diagram of the Fe-Cu system at the Fe-rich and Cu-rich side.
Panel a: Comparison between the experimental data of Ref. [62] (black solid line) to
the calculations including the vibrational energy according to Eq. 4.10. Hatched areas:
regions of metastable phases. The upper boundaries of the hatched areas mark the ther-
modynamically stable phase boundaries. Panel b: Analysis the calculated results for
the thermodynamically stable phase boundaries. Without vibrational energies: dashed
lines, with vibrational energies: full lines. Results for single and both (single and pair-
wise) defects at the Fe-rich side are shown in yellow and red colours, correspondingly.
On the Cu-rich side only the results for both (or rather pair-wise) defects are shown

(blue colour), because the e↵ect of single defects is hardly visible.
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ordered compounds [63]. Therefore, only solid solutions and defect clusters might be

thermodynamically stabilised by entropy.

In Fig. 7.14 a) the Fe-rich alloy experimental data [62] (black line) indicates, that a

significant amount of Cu can be added. These results are in good agreement as they

lie within the hatched region. It should, however, be noted that the model only covers

single and pair-wise defects. Larger Cu-clusters might lead to even more favourable lower

boundaries, if there is a su�cient gain in bonding energy for larger clusters compared to

pairs of Cu-atoms. On the other hand, considering Fig. 7.14 b) and comparing the yellow

and red lines, there is almost no change of the phase boundary when pair-wise defects

are added to the mixture with single atom Cu-defects.

The situation is very di↵erent at the Cu-rich side, where the miscibility range is rather

narrow, as indicated by the experimental boundary [62].

From the calculated results in Fig. 7.14 b) without vibrational free energies, one derives

a very narrow miscibility range at the Fe-rich side (coloured dashed lines), and a wider

range at the Cu-rich side (blue dashed line). The mixing entropy alone is obviously to-

tally insu�cient for a reasonable estimate of the phase boundaries. Including vibrational

free energies changes the calculated results dramatically. Fig. 7.14 b) emphasises these

findings: for the Fe-rich side by looking at the dashed and solid lines the miscibility range

widens significantly, whereas at the Cu-rich side it is strongly narrowed. This asymmetric

behaviour of the miscibility ranges is due to the asymmetry of the total free energies Ftot

of both phases. Whereas at the Fe-rich side the vibrational energy (i.e. the vibrational

entropy) lowers Ftot, the e↵ect is opposite on the Cu-rich side as illustrated in Fig. 7.13.

For a truly quantitative description of the phase boundary on the Fe-rich side for temper-

atures T > TC = 1043 K larger than the Curie temperature of Fe, the change of magnetic

ordering also needs to be included. Nevertheless, the most important e↵ects occur al-

ready far below TC (see Fig. 7.14) underlying the important role of vibrational entropy

for the modelling of the Fe-Cu alloys. This is also manifested by table 7.5. For the Fe-

rich side it shows, that without vibrational energies the Cu concentrations c1 and 2c2 are

rather equal, at least in the given temperature range of 800 K< T <1200 K. This balance

changes dramatically when vibrational entropies are included, as single atom defects are

much more abundant than pairs, the ratio is now 3 to 1. In both cases the mixture of

defects remains rather constant in the studied temperature range. At the Cu-rich side the

mixture of defects for the calculation with vibrational energies depends much stronger on

temperature: for 800K the ratio c1 : 2c2 is 1:10, and it changes to 3:7 at 1200K. Clearly,

the magnetic coupling of the Fe-pairs manifests itself in the dominance of the pair-wise

defects.

Summarising, the vibrational free energies (in particular their entropy contributions)

are indeed very important. By including them one reproduces the main features of the
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experimental phase diagram, which consists of a wide miscibility range at the Fe rich side

and a very narrow range at the Cu-rich side. So far, non-interacting independent defects

were considered with their formation energies independent of the concentration of defects

in the host. Clearly, a much more general approach would be to derive concentration

dependent thermodynamical properties on a truly ab-initio level, which is the subject of

the next section dealing with the CE. In which, as for the independent defect case also

vibrational free energies will be taken in a more elaborate study into account.
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7.3 Cluster Expansion

In a first step towards a temperature dependent CE a standard CE utilising only DFT

energies was made. The formation enthalpy �H(�) of the Fe-Cu system within the CE

was derived by

�H(�) = EDFT(�)�
⇣

xECu(fcc)
DFT + (1� x)EFe(bcc)

DFT

⌘

, (7.7)

using DFT total energies of bcc Fe EFe(bcc)
DFT and fcc Cu ECu(fcc)

DFT as reference values. No

stable phases for any atomic configurations � between the pure elemental phases are

found, i.e. the formation enthalpies are always positive. Hence, at T = 0 K the system

completely decomposes in to the two elemental phases. This causes a technical problem

for the CE procedure as presented in chapter 5, because the input structures cannot

be selected automatically. The structures with the lowest formation enthalpies {�}min

between the pure phases are those representing Fe-Cu phase-separation, i.e. two slabs of

pure Cu and Fe orientated along some arbitrary direction. Hence, it is unlikely that the

important interactions needed for a useful CE are present in the set of structures {�}min.

It was therefore necessary to include structures which are energetically unfavourable.

Still, the familiar procedure could be pursued. New structures predicted by CE with

lower energies then the ones already calculated by DFT were included into the set {�}
until no new ones were found.

Furthermore, it should be noted that the two parent lattices, bcc for Fe and fcc for Cu,

are di↵erent. Since the main interest lies in Fe-rich Fe-Cu alloys the bcc parent lattice

was chosen as basis for the CE. To correctly calculate �H the energy of pure fcc Cu

was taken as reference. Proceeding with this approach a set of 53 input structure was

obtained resulting in a cross validation score SCV (see Eq. 5.8 in chapter 5) of 3.74 meV.

For unit cells up to 8 atoms UNCLE can set up, on the bcc parent lattice, 631 possible

configurations �, i.e. structures for the CE. The CE predicted energies of these structures

are shown in Fig. 7.15. From these 631 structures the random mixing energy (see Fig.

7.15) can be calculated, which agrees very well with a previous CE by Liu et al. [63].

On the basis of the chosen set of CE structures other physical alloy properties, such as

the average magnetic moment per atom, can be derived for the random alloy. The result

for the averaged moment for the Fe1�xCux alloy system is shown in Fig. 7.16 and was

recently published in Ref. [88]. The change of the average moment with Cu concentration

is not linear and can be fitted by a third-order polynomial,

M(x) =
�

0.51x3 � 1.437 x2 � 1.272 x + 2.199
�

µB . (7.8)
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Figure 7.15: Enthalpy of formations vs. atomic fraction x of the Fe1�xCux alloy
system. Comparison of DFT input values (green squares) to CE predictions (black
crosses). The random mixing energy of this work (dashed black line) is compared to
a CE of Liu et al. [63] (blue circles). The averaging is done over all 8 atom unit cell

structures with a bcc parent lattice.

The nonlinearity at higher Fe concentrations, i.e. for x < 0.5, may be ascribed to the

ever so slight volume mismatch of Fe and Cu with a calculated DFT volume (see table

7.1) of 11.35 Å3 and 12.02 Å3 , respectively. Thus, with the volume expansion due to the

mixing of Fe and Cu the Fe atoms have with increasing x in the interval x = {0, 0.5} more

space available leading to a slightly higher local magnetic moment for Fe. At smaller Fe

concentrations, i.e. x > 0.5, the behaviour of the average magnetic moment becomes a

linear function of x as the change in the Fe atomic volume becomes marginal.

7.3.1 Temperature Dependent CE

In a second, much more elaborate step, the CE was extended by taking vibrational

free energies for all structures under consideration into account. This makes the ECI’s

temperature dependent which has, as will be discussed in greater detail, the consequence

that for di↵erent temperatures di↵erent CE’s have to be done. Furthermore, one has

to deal with a variety of structures where parts of the vibrational spectrum consists of

imaginary frequencies.
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Figure 7.16: Magnetic moment per atom versus Cu concentration x for Fe1�xCux.

The standard Fe-Cu CE is now extended by adding the relative vibrational free energy

�f(�, T ) = Fphon(�, T )� xFCu(fcc)
phon (T )� (1� x)FFe(bcc)

phon (T ) , (7.9)

again using bcc Fe (FFe(bcc)
phon ) and fcc Cu (FCu(fcc)

phon ) as references.

From Fig.s 7.17 and 7.18 one notices that most of the input structures have imaginary

vibration modes, with the structures on the Cu bcc rich side having a bias towards a

higher imaginary frequency percentage. This can be easily explained by fcc Cu being

more stable than bcc Cu resulting in Cu rich structures being more likely to be dynam-

ically unstable. It is not necessary to remove all imaginary structures because of their

dynamically instability from the CE as these structures are already energetically unstable

and no alternatives exist. Still, to reduce the error contributions from imaginary phonon

modes two structures where the amount of imaginary frequencies (i!) were found to be

greater then 5 % had to be removed, thereby reducing the number of input structures to

51 as shown in Fig.s 7.17 and 7.18.

Using the sum of both �f(T ) and �H in the CE now yields, as discussed in chapter 5, a

set of temperature dependent figures {f(T ) } with the corresponding interaction energies

{Jf(T )}. At each temperature step twenty separate CE were done and the separate figure-

sets {f } merged into a single set {f } (see Eq.s 5.20 and 5.21 in chapter 5). The merged

{f } now contains more then 100 figures, making it much larger then any individual set
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Figure 7.17: Enthalpy of formation �H as derived from temperature dependent CE
by taking into account vibrational free energies, representation similar to Fig. 7.15.
The percentage of imaginary frequency indicates how much of the total vibrational

spectrum is a↵ected by the non-vibrational modes.

which only included between 30 to 40 figures. As discussed previously this is most likely

stems from the choice of figures being ambiguous.

In general, it is disputable by which way modes with imaginary frequencies should be

taken into account in the vibrational free energy, i.e. in the entropy. In this work the

most common recipe was taken: the imaginary modes were just not taken into account.

The next crucial point concerns the quality of the temperature dependent CE.

The temperature dependent cross validation score SCV(T ) of the original twenty unmerged

figure-sets now increases from 3.74 ± 0.11 meV for the standard CE without phonons to

5.48 ± 0.08 meV for the temperature dependent CE at 1200 K, as sketched in Fig. 7.19

and table 7.6. It should be noted, that SCV is evaluated for each figure-set separately

within the UNCLE code during the CE fitting procedure. It is impossible to evaluate

SCV for the merged figure-sets (see chapter 5).

The temperature dependency of the e↵ective interaction energy after merging the figure-

sets is demonstrated in Fig.s 7.20 and 7.21. The ECI’s ¯J(T ) of the figures are shown

without and with vibrational contributions at T=600 K and 1200 K. For the sake of clarity

only the figures with |J̄ | > 5 meV are shown. The symbol J̄ refers to the interaction

energy of the merged figure-set. Each figure is classified by its average vertex-vertex
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Figure 7.18: Frequency of imaginary modes occuring in Fig. 7.17.
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Figure 7.19: Temperature dependency the cross validation score SCV(T ). At each
temperature several figure-sets with varying SCV(T ) are obtained. Average of SCV(T )

indicated by solid line.
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Table 7.6: Cross validation score S̄CV(T ) averaged over twenty figure-sets for CE’s
without the vibrational contributions and with vibrational contributions at 600 K, 900 K

and 1200 K.

T S̄CV(T )
[K] [meV]

CE without vib.: - 3.74 ± 0.11
CE with vib.: 600 4.37 ± 0.05

900 4.82 ± 0.05
1200 5.48 ± 0.08

distances v, i.e. the average distance between each corner point of the figure. For example,

for pairs the (now exact) distance between the atoms is given by dpair = 2v as the pair-

figures consist of two vertices.

Inspecting Fig.s 7.20 and 7.21 shows that adding the vibrational free energy decrease

the value of the strongly negative nearest neighbour pair-interaction energy, namely from

�115.25 meV (no vibrational free energy) to �92.43 meV (with vibrational free energy)

at 1200 K. and similarly the 2. nearest neighbour pair-interaction increases from �20.7

meV to�10.5 meV. The changes in the higher-order interaction energies is less distinctive.

The kink in Fig. 7.21 for the pair-figures ECI’s at 650 K has by itself no physical meaning

as it may be compensated by higher-order figures, i.e. triplet, quadruplet, etc. which are

not shown. This underlies the importance of viewing the pair figures not independently

but as part of the larger figure-set, i.e. Fig. 7.21 only reflects a general trend.

The results when using the merged figure-set for the random mixing energy at T = 0 K

(no vibrational contribution), 5 K, 300 K, 600 K, 900 K and 1200 K are shown in Fig.

7.22. It is obvious that the higher the temperature the more the maximum is shifted

towards higher Cu concentrations, and also that the value of the maximum is lowered

with increasing temperature. This leads to a decrease of the random solution gradient

at the Fe-rich side, while increasing the gradient weakly on the Cu-rich side. Clearly,

this has the e↵ect of increasing the solubility of Cu at the Fe-rich side, whereas on the

Cu-rich side the e↵ect is opposite. This mirrors the results found with the independent

defect model where the same influence of the vibrational free energies on the solubilities

has been observed.
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7.3.2 Monte Carlo simulation: Solubility of Cu

To determine the Cu solubility x in Fe-rich alloys the quasi grand-canonical Monte Carlo

approach described in chapter 5 was applied. For the accurate determination of the Cu

solubility it has to be ensured that only atoms dissolved in the Fe host are counted.

Therefore, the first three layers of the Fe block forming the interface were discarded in

order to avoid that Cu atoms from the Cu block are counted as dissolved.

Fig. 7.23 shows cross-sections through the simulation for T =900 K, 1050 K and 1200 K

without and with vibrational contributions. The Fe-Cu interface is oriented in the [111]

direction of the bcc lattice. Clearly Fig. 7.23 demonstrates that the solubility of Cu in Fe

increases with temperature and most importantly, that the Cu solubility is much higher

when vibrational free energies are included into the CE. On the other hand, hardly any

Fe is dissolve in Cu as already observed for the independent defect model. It should be

noted, that applying the defect model for the Cu-host the fcc lattice was correctly chosen,

whereas now in the CE the bcc parent lattice is underlying the calculations. Nevertheless,

the trend of solubility at the Cu-rich side is similar in both cases.

At this point it should be emphasised that the MC simulation is statistical and suit-

able averages have to be taken. Therefore, the correct solubility was determined by five

separate MC calculations using di↵erent random-number generator seeds. The result-

ing standard-deviation for the solubility of Cu was smaller than 4% which is very small

compared to the standard-deviation of the calculations with the 20 individual unmerged

figure-sets.

For example, for the CE with twenty unmerged figure-sets at T = 1150 K a rather bad

standard deviation of 18% is obtained and for T = 0 K (no vibrational free energies)

the deviation is even worse, namely 21%. Table 7.7 reveals a small di↵erence between

the average solubility of the 20 unmerged CE calculations and the value for the merged

figure-set, listed for T = 850 K, 1000 K and 1150 K. This small di↵erence can be explained

by the standard-deviation of 4% from the five separate MC calculations.

Finally, the standard deviation of the 20 unmerged figure-set for each temperature step

(see table 7.7) are now included in the phase diagram shown in Fig. 7.24, replacing the

MC standard deviation where the merged figure-set are used as they are much larger.

A comparison of the CE derived solubility to the CALPHAD data of Ref. [62] and to

the model of independent defects shows in Fig. 7.24 that there is a very good agree-

ment between CE and the defect model. However, at larger temperatures the deviation

of the Cu concentrations is getting more significant, because concentration dependent

interactions, as included in the CE, now become more important. The agreement to the

(semi)-empirical CALPHAD results is rather good, demonstrating the power and relia-

bility of the applied ab-initio DFT+CE+MC+vibrational energy approach. This is done
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Figure 7.21: Pair figure ECI’s of the merged figure-set J̄ versus temperature up to
the sixth nearest neighbour pair interactions.

without any empirical parameter. (Note, the exchange-correlation functional was param-

eterised by a standard GGA model.) Summarising, Fig. 7.24 demonstrates very clearly

that the solubility of Cu in the Fe-rich alloy is very strongly underestimated and therefore

very wrong when vibrational free energies are not included.

7.3.3 Supersaturation and Precipitations

Technologically, the most important e↵ect is the formation of precipitates [89]. This can

be simulated from first-principles by using CE and MC, but requires two major extension

dealing with the migration of Cu atoms which are not available at present. To make

space available for the migration, vacancies have to be introduced enlarging the CE to

a ternary case. To connect the MC steps to physical time a kinetic MC approach with

a residence time algorithm [90] is needed in which migration barriers are also included
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Figure 7.22: Random mixing energies without and with vibrational free energies for
temperatures T = 0 K (no phonons), 5 K, 300 K, 600 K, 900 K and 1200 K.

Table 7.7: Mean solubility of Cu c̄Cu(F ) as derived from 20 individual CE fits in
comparison to the value cCu(F̄ ) corresponding to the merged figure-sets.

T c̄Cu(F ) cCu(F̄ )
[K] Cu [at. %] Cu [at. %]

E without phonons: 1150 0.19 ± 0.04 0.18
CE with phonons: 850 0.08 ± 0.04 0.06

1000 0.48 ± 0.11 0.43
1150 1.69 ± 0.33 1.58

correctly. All this can be done in principle (and is done at the moment within a major

FWF project) with DFT accuracy but goes beyond the scope of the present thesis. The

thermodynamical MC technique in this work is based on the direct exchange between any

two atoms of di↵erent species within an defined cuto↵ radius, which in the present case

covers the whole simulation cell. A qualitative description of the precipitation process is

possible by the thermodynamic MC as long as as one accepts that the number of MC

steps, i.e. the number of times an atom exchange is attempted, is not directly connected

to any real time scale and that the di↵udion process itself is unphysical.

The definition of the size of a precipitate is arbitrary and must be defined beforehand,

as also done by the experimentalists when, e.g. analysing the results of an atom probe

107



Chapter 7. Fe1�xCux

900K

area used to determine 
Cu solubility 

without vib. with vib.

1050K

without vib. with vib.

1200K

without vib. with vib.

Figure 7.23: Cross-sections of the simulation box the in [111] direction with and
without vibrational contributions as well as the layer concentration of Cu at the T =
900 K, 1050 K and 1200 K. The Fe atoms are coloured black and Cu atoms red. Area
(volume) in which the Cu atoms were counted is marked by two green lines (planes).
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Figure 7.24: Fe-Cu phase diagram at the Fe-rich side: CALPHAD according to Lan-
dolt and Börnstein [62] (black solid line); CE results with vibrational contributions (red
dashed line and diamond) and without the (blue dashed line and triangle). Independent

defect model indicated by (orange solid line).

experiment. In this work the definition is that any cluster consisting of more than 10

nearest-neighbour linked Cu atoms is a precipitate and each Cu in this cluster belongs

to this specific precipitate. All other smaller objects of Cu atoms are considered to be

Cu dissolved in the matrix of the Fe host. The chosen precipitate size is close to 12 Cu

atoms, the size estimated by Yuge et al. [91] for the critical size of a Cu precipitate. Of

course, the periodic boundary condition must be taken into account properly for a correct

counting of precipitates.

This procedure is in contrast to the one used for finding the thermodynamical equilibrium,

i.e. the solubility, as discussed in the previous section. In the search for the equilibrium

one had to start at T = 0 K and when at a given temperature equilibrium was reached,

the dissolved atoms in a locally predefined Fe-box were counted. Now, the starting state

is prepared at high temperature in order to simulate the e↵ect of supersaturation upon

cooling down. The simulations starts now by randomly filling the box in Fig. 7.25 by

nCu. When cooling the box down the Cu atoms start to be either included in a precipitate

or remain dissolved in the Fe matrix.

The total number of Cu atoms defines the concentration of available Cu, x = nCu/Ntot

whereby Ntot is the total number of Fe and Cu atoms in the box. Consequently, the

concentration of atoms dissolved in the matrix is defined as xmat = ndis/Ntot and the

concentration of atoms in the precipitates xprec = nprec/Ntot is given accordingly. The
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assignment, if a Cu object and its atoms belong to the matrix or to a precipitate was

described above.

In Fig. 7.25 the 50 ⇥ 50 ⇥ 50 simulation cell with 125000 lattice sites has as an initial

starting configuration of 3750 Cu atoms, which are randomly distributed. The number

of Cu atoms corresponds to x = 3 at.%, which at the beginning is is equal to xmat. By

annealing the simulation cell at 800 K a decomposition reaction takes place: precipitates

first form via nucleation and then grow. This decomposition reaction is illustrated in more

detail by the two panels of Fig. 7.26. Panel a) shows the change of Cu concentrations

xmat and xprec as well as the enthalpy per atom �H versus the number of Monte Carlo

steps whereas panel b) demonstrates the change of the average size of precipitates and

the change of the number of precipitates in the simulation cell.

One can roughly distinguish between three separate processes. In a first step, in the

supersaturated mixture Cu precipitates are formed by a nucleation process, for which

panel a) reveals the largest enthalpy change of �8.36 meV per atom and a sharp drop of

xmat from the initial 3 at.% to 0.43 at.% with the accompanying rise in xprec from

0 at.% to 2.57 at.%. For this situation panel b) shows an exponential growth of precipitate

size. The second process is a rather fast Ostwald ripening [61]: larger precipitates grow

by swallowing smaller ones. This process is accompanied by a change in the average

precipitate size from 111 to 498 and a large fluctuation of precipitate size as well as a

reduction in the number of precipitates from 24 to 7. The enthalpy changes by �2.06 meV

while xmat drops further down to 0.22 at.%. In the last phase the Ostwald ripening process

slows down considerably as all smaller precipitates have been consumed. The change in

precipitate size becomes much slower and each time before the number of precipitates is

decreased by one the standard deviation of the average precipitation size increases. After

25⇥ 106 MC steps Cu is still oversaturated in the simulation cell with a x of 0.16 at. %

as the equilibrium solubility in Fig. 7.24 is x = 0.03 at.%.

Although the discussion of the precipitation process is only a qualitative assessment it

becomes clear that the timespan for Cu to reach equilibrium concentration is much larger

then the observation timespan, i.e. final number of MC steps. The value of x also depends

on the size of the Cu precipitates in the simulation cell. The larger the Cu precipitate

the more it resembles bulk Cu and the more favourable it becomes for the Cu atoms

to attach to the precipitate. This might point to an overestimation of x in the semi-

empirical CALPHAD calculations [62] as they are based on empirical data with a limited

observation timespan.
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T = 800K, x = 3 Cu at.%

MC steps = 0 MC steps = 1⇥ 106

MC steps = 3⇥ 106 MC steps = 6⇥ 106

MC steps = 11⇥ 106 MC steps = 21⇥ 106

Figure 7.25: Cu distribution in a 50 ⇥ 50 ⇥ 50 simulation cell with x = 3 at.% at
T = 800 K is shown at di↵erent MC steps. The initially randomly distributed Cu atoms

(red spheres) coalescence into Cu precipitates as time progresses.
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Figure 7.26: Panel a) plots the concentration of dissolved Cu atoms in the Fe-matrix
and the concentration of Cu atoms in precipitates as well as the the energy change
per atom versus MC steps. In panel b) the change in average precipitate size and its
standard deviation and the number of precipitates are shown. In the ’time’ regions
distinguished by I, II and III a nucleation and two separate Ostwald ripening processes,

a fast and a slow one, are shown.
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7.4 Interface Entropy

Doing MC (in the present case with temperature dependent ECI’s from the CE) one

can derive the entropy change of a thermodynamical system at constant pressure and

temperature T as [92],

SCE =
Eequ

CE � Eini
CE

T
, (7.10)

with Eini
CE being the free energy at the start of the MC simulation and Eequ

CE the energy

at equilibrium reached at the end of the MC runs. This section considers the interface

system as sketch in Fig. 7.23. The starting point of a MC run for a given temperature T

is perfectly ordered because the atoms are exclusively located in their respective blocks.

Then, starting the MC simulation atoms are exchanged until the final equilibrium distri-

bution is obtained. Thus, the change in disorder is directly proportional to the change in

entropy.

The same methodology was applied for the independent defect case as elaborated in

section 7.2 because the defect model yields solubilities which are very similar to the one

derived by CE+MC. A comparison between both cases, with and without vibrational

free energy, is shown in Fig. 7.27. The configurational entropy Sdef of the isolated defect

model as constructed in chapter 4 is given by

Sdef = kB



⇣

1� c2

⌫

⌘

ln

✓

1� c2
⌫

1� c1 � 2c2

◆

� c2 ln

✓

c2

1� c1 � 2c2

◆

� c1 ln

✓

c1

1� c1 � 2c2

◆�

,

(7.11)

with c1 and c2 being the concentrations of Cu or Fe single and pair-wise defects in the

respective hosts. The expression  = 2⌫�1
⌫

contains ⌫ which denotes the number of bonds

per site. It is important to consider that the interface system contains the same number

of Fe and Cu atoms. Therefore one has to average the corresponding entropies,

Sav
def =

SCu
def(c

Fe
1 , cFe

2 ) + SFe
def(c

Cu
1 , cCu

2 )

2
, (7.12)

with SCu
def(c

Fe
1 , cFe

2 ) for the entropy of the Cu-rich phase and SFe
def(c

Cu
1 , cCu

2 ) for that of the

Fe-rich phase. It should be noted that Sav
def refers to a slightly di↵erent system as the one

used for CE+MC. For the independent defect case the fcc lattice was taken for the Cu-rich

phase, whereas in the CE+MC simulations only a bcc parent lattice was used. Another,

more important di↵erence is that the defect model refers to a bulk system, whereas the

CE+MC simulation is done for an interface system in which the interface separates two

bulk-like blocks. Therefore, the entropy resulting from the CE+MC calculations also

contains the interface entropy and it seems plausible that in general SCE is larger than

Sav
def.
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Table 7.8: Estimated interface entropy Sintf versus temperature without and with
vibrational free energy (�f(T )). The value in the bracket is given under the assumption

that the interface entropy with vibrational free energy increases continuously.

T without �f(T ) with �f(T )
[ K ] [µJ/(m2 K)] [µJ/(m2 K)]
900 5.5 38.0
1050 22.1 68.4
1200 57.8 45.3 (101.1)

At T =1050 K the CE+MC calculations yield a value of 0.56 µeV/K without vibrational

free energy and 2.85 µeV/K with it. These values are much higher than the values for

the isolated defect model with Sav
def = 0.03 µeV/K and 2.04 µeV/K, respectively with

and without vibrational free energy. The di↵erence of the entropy models, as shown in

the inset in Fig. 7.27, may therefore be used to derive the interface entropy Sintf, i.e.

Sintf = SCE�Sav
def, as listed in table 7.8 resulting in values of 22.1 µJ/(m2 K) respectively

68.4 µJ/(m2 K), with and without �f(T ) at T = 1050 K.

The inset in Fig. 7.27 shows that Sintf as the entropy di↵erence between CE+MC and

defect model behaves similar for both cases, i.e. with and without vibrational contri-

butions, up to ⇡1050 K. Above this temperature the entropy di↵erence Sintf decreases

strongly for the case with vibrational free energy. This might be interpreted by the bulk

entropy becoming dominant at a su�ciently high temperatures presumably because the

interface is getting dissolved. However, this interpretation should be accepted with some

reservation because the entropies of two quite di↵erent models enter the derivation of

Sintf. Nevertheless, it might be worthwhile to analyse this mentioned e↵ect at 1050 K

more deeply in the future, which interestingly enough does not occur for the case without

vibrational free energies.
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Figure 7.27: Entropy versus temperature calculated using CE without vibrational
free energy (blue diamonds and blue dotted line) and with vibrational free energy (red
circles and red dotted line) compared to values calculated using the isolated defect
model without vibrational free energy (blue dashed line) and with (red dashed line).
The inset gives the di↵erence Sintf = SCE � Sav

def for both, without (blue line) and with
(red line) vibrational free energy. The black dashed-dotted line extrapolates the values
for the case with vibrational free energy assuming that it has a similar behavior to the

one without.
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7.5 Conclusion

The Fe-Cu system was chosen to demonstrate the power of DFT based approaches when

dealing with vibrational, thermodynamical and concentration dependent properties. By

DFT supercell calculations and thermodynamical modelling using the isolated defect

model of chapter 4 for the dilute Fe-Cu alloys it was demonstrated that vibrational free

energies have a substantial influence on the thermodynamical stability and miscibility

range. The Fe-Cu alloy system is very well suited for such a task, as the rather wide

miscibility range at the Fe-rich and the Cu-rich side of the phase diagram can only be

described realistically by entropic e↵ects: no stable intermetallic phases exist and the

formation energies of Cu and Fe defects in Fe and Cu derived from DFT are highly

positive and non bonding. In the dilute alloys modell single atom defects and pair-

wise substitutional defects were considered, for which a formulation of the entropy of

mixing was worked out in chapter 4. Applying a DFT approach to determine vibrational

properties within the harmonic approximation the temperature dependent free vibrational

energies for each defect species was calculated. These were entered in a grand canonical

thermodynamical ansatz of the total free energies. Magnetic interactions were included

in terms of spin-polarised total energies, but a temperature induced change of magnetic

ordering of the ferromagnetically aligned Fe moments was not taken into account. Using

the isolated defect model it was found, that indeed, vibrational free energies and in

particular their entropy contributions are very important. By including them one can

reproduce in terms of Cu solubility in the Fe-matrix the main features of the experimental

phase diagram.

The much more demanding task consisted in the concentration dependent treatment

of phase stability and solubility which goes far beyond the isolated, independent defect

model. The concentration dependent modelling was done by the CE elaborated in chapter

5. For that it was necessary to calculate the vibrational free energy for each structure

entering the CE. Thereby a basic problem arises in how dynamically unstable structures

should be dealt with, i.e. structures with imaginary frequency modes in the phonon

dispersions. An ad hoc criterion based on experience was applied: structures with more

than 5 % imaginary modes were removed from the input data set for the CE. It is found

that the strongly binding interactions are reduced, i.e. the energies are less negative, when

the vibrational free energy contribution increase with temperature. For example, the

nearest-neighbour pair interaction is reduced from -115.25 meV, without the vibrational

free energy, to -92.43 meV with vibrational free energies at 1200 K. Finally, with the

much more elaborate CE plus MC simulation procedure the same main e↵ect was found,

namely that vibrational free energies (and their entropy contribution) have a very strong

influence on the solubility by substantially increasing the miscibility of Cu in an Fe-rich

matrix.
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Furthermore, the ECI’s from the temperature dependent CE were used in a MC with

supersaturated Cu in Fe. However, as vital ingredients are still missing, i.e. vacancies

and a correct di↵usion mechanism, this assessment was purely qualitative. Nevertheless,

the nucleation and Ostwald ripening process could be observed. The timespan for Cu

to reach equilibrium concentration is observed to be much larger then the observation

timespan.

Comparing the entropy derived from MC simulations based on the CE ECI’s, which

included the interface entropy between Fe and Cu slabs, to that of the entropy of the

isolated defect model, which represents a bulk system, it is possible to estimate the

temperature dependent Fe-Cu interface entropy at, e.g. 1050 K to be 68.4 µJ/(m2 K)

including the vibrational free energy. This value is by 46 µJ/(m2 K) larger than when

the vibrational free energies are not considered. Again demonstrating the important role

of the vibrational free energy.

Summarised, this study emphasises the fundamental importance of vibrational entropy

in determining the correct solubilities in the Fe-Cu alloy and thus the correct energetics.

Not considering Fphon greatly underestimates the Cu solubility (and overestimates Fe

solubility).
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Brillouin Zone Sampling

One of the most widely used schemes to create a ~k/~q-point mesh is that of Monkhorst

and Pack [56], in which ~k/~q-points are uniformly distributed within the first Brillouin

Zone (BZ). This is done by defining the interval along the reciprocal vectors as

dri = (2ri �Ri � 1)/2Ri ri = 1, . . . , Ri i = 1, 2, 3 (A.1)

with Ri as an input integer defining the number of ~k/~q-points along ~Bi. All uniformly

distributed ~k/~q-points within the BZ are then given by

~kr1r2r3 = dr1
~B1 + dr2

~B2 + dr3
~B3 . (A.2)

This scheme is used to construct the ~k-point mesh for all DFT calculations and the ~q-point

mesh for the lattice vibration calculations.
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fPHON Manual

B.1 Files used by fPHON

A short overview:

INPHON contains all controlling parameters IN

OUTPHON main log file OUT

POSCAR defines the crystal structure IN

SPOSCAR supercell to be used for the force-field calcula-

tions

OUT

DISP displacements for the force-field calculations OUT

FORCES force-fields for the phonon calculations IN

DYNMAT dynamical matrix from VASPs linear response

calculation (used instead of FORCES)

IN

QPOINTS defines the irreducible ~q-point mesh IN&OUT

DOS, DOS.meV, DOS.cm phonon density of states OUT

ENTRO vibrational entropy, free energy, internal energy

and specific heat

OUT

FREQ, FREQ.meV, FREQ.cm phonon dispersion OUT

FPROJ, EIGENPHON projector, eigenvalues and eigenvectors OUT

HARMONIC force-constant matrices OUT

DYNPHON dynamical matrices OUT

B.1.1 INPHON

This is the main input file of f PHON containing all controlling parameters. Check section

B.2 for a detailed description of these parameters as well as section B.3 for some examples
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on its usage.

B.1.2 OUTPHON

OUTPHON is the output log file and will always be created. This file provides all relevant

information necessary to understand what f PHON has done. Most importantly, the prim-

itive unit cell vectors and the atom positions in that unit cell are given and additionally

a list of the symmetry operations can be found.

B.1.3 POSCAR

This input file defines the lattice geometry and the atomic positions and it is the same file

used by the latest version of VASP. For example, a file containing the D03 Fe3Al structure

will look like this:

D03

2.77136

0.0 1.0 1.0

1.0 0.0 1.0

1.0 1.0 0.0

Al Fe

1 3

Direct

0.0 0.0 0.0

0.5 0.5 0.5

0.75 0.75 0.75

0.25 0.25 0.25

The first line is a comment line. The second line provides a scaling factor (usually the

lattice constant) with which all lattice vectors and atomic coordinates are scaled. As in

VASP f PHON interprets a negative value as the total cell volume of the supercell/unit

cell.

The following three lines define the three lattice vectors of the supercell/unit cell in row

form, i.e. the first line corresponds to the first, the second to the second and the third

line to the third lattice vector.

The next line is optional and describes the atom types (as in VASP versions greater than

5). The sixth (or seventh) line supplies the number of atoms per atom type.
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The seventh (or eighth) line specifies whether the atomic positions are provided in direct

or cartesian coordinates. Note, that f PHON only checks if the first letter in this line

starts with a ‘c’ or ‘C’ to switch to the cartesian coordinate system. The subsequent lines

define the three coordinates for each atom in the coordinate system specified above.

B.1.4 SPOSCAR

This output file has to be used as input for the DFT force-field calculations and subsequent

f PHON phonon calculations.

The setup of this file concerning lattice geometry and atomic positions is identical to the

POSCAR file (see section B.1.3 for more information). The atomic positions are always

given in direct coordinates. f PHON creates a new SPOSCAR file when

LDISP = .TRUE.

has been set in the INPHON file. The form of the SPOSCAR file is defined by the INPHON

parameters NDIM and IBCELL.

If IBCELL = 0 the SPOSCAR file is nearly identical to the original POSCAR file, with the

only di↵erence being a possible reordering of the atomic coordinates list.

With IBCELL = 1 the SPOSCAR file is constructed using the lattice vectors of the primitive

unit cell ~A,PRIM
i found by f PHON multiplied by the values provided by NDIM = n1 n2 n3,

i.e.

~A SPOSCAR
i = ni ~A PRIM

i for i = {1, 2, 3} . (B.1)

Setting IBCELL = 2 results in a SPOSCAR for a supercell constructed from lattice vectors

of the POSCAR file ~A POSCAR
i multiplied by the values provided by NDIM = n1 n2 n3, i.e.

~A SPOSCAR
i = ni ~A POSCAR

i for i = {1, 2, 3} . (B.2)

In both cases, i.e. IBCELL = 1, 2, the total number of atoms in SPOSCAR is naturally a

multiple of n1 n2 n3 times the atoms in the unit cell respectively the POSCAR file.

In order to obtain an accurate dispersion relation one should create a SPOSCAR file contain-

ing at least thirty atoms. For more details please refer to the discussion on the supercell

size in chapter 3.4.3.
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B.1.5 DISP

This output file is written if the parameter

LDISP = .TRUE.

has been set in the INPHON file and it looks as follows:

" 0 0.00000000 0.00000000 0.00000000 " \

" 1 -0.00174362 0.00174362 0.00174362 " \

" 9 -0.00174362 0.00174362 0.00174362 " \

" 17 -0.00174362 0.00174362 0.00174362 " \

The first integer value in a line indicates which atom in the SPOSCAR has to be displaced by

the displacement vector given by the next columns. This displacement vector is always

given in direct coordinates based on the lattice vectors defined in the corresponding

SPOSCAR file.

If LZFORCE=.TRUE. has been set in INPHON then DISP will contain in the first line:

" 0 0.00000000 0.00000000 0.00000000 " \!

This indicates that the force-field F(~u = 0) should be calculated without displacing any

atoms. f PHON then subtracts this force-field from all other force-fields by

F̄(~ulk) = F(~ulk)� F(~u = ~0) . (B.3)

The resulting corrected force-fields F̄(~ulk) are then used for the construction of the force-

constant matrices. This setting increases the accuracy of the phonon calculations for

supercells where not all atomic positions have been fully relaxed.

B.1.6 FORCES

This input file contains all force-fields necessary for the construction of the force-constant

matrices:

1 # number of force-fields

5 -0.0028 0.0028 0.0056 # displ. atom & disp. vector (dir.)

0.39111343 0.11218241 0.00167954 # forces (cart.) of 1. atom
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0.18083650 -0.05489937 -0.03701212 # forces (cart.) of 2. atom

0.18902986 -0.06238748 0.06383136 # ...

-0.01683632 0.00760789 0.00946216 # ...

-0.83191269 0.06451551 -0.00966764 # ...

0.00748872 0.00006703 -0.07662493 # ...

0.00691357 -0.00021969 0.05768324 # ...

0.07336694 -0.06686630 -0.00935160 # forces (cart.) of 8. atom

The integer in the first line indicates the number of force-fields contained in FORCES.

Each force-field block starts with a line similar to the DISP file indicating which atom

has been displaced and providing the displacement vector in direct coordinates based on

the lattice vectors defined in the SPOSCAR file. Note, the SPOSCAR file has to be copied

to POSCAR since f PHON only reads from the POSCAR file. The following lines provide the

three component force-vectors given in cartesian coordinates corresponding to the atoms

in the (new) POSCAR file. Hence, it is vital that the POSCAR file read in is the same POSCAR

file, without displacements, that was used for the DFT force-field calculations (i.e. the

SPOSCAR file created with LDISP = .TRUE.).

B.1.7 DYNMAT

The DYNMAT file is read in instead of FORCES if the parameter

LDYNMAT = .TRUE.

has been set in INPHON. DYNMAT is a VASP output file resulting from a DFT linear re-

sponse calculation. For this calculation a VASP version greater than 5 is needed and the

parameter IBRION = 8 has to be set in the INCAR file. For further details please refer to

the VASP manual.

B.1.8 QPOINTS

This output file contains a list of irreducible ~q-points created by the Monkhorst and Pack

[56] scheme (see appendix A) that is needed for the DOS and free energy calculations.

The QPOINT file is created when LFREE = .TRUE. and LDISP = .FALSE. are set in the

INPHON file:
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6

-0.3750000000000000 -0.3750000000000000 -0.3750000000000000 8.000000

-0.3750000000000000 -0.3750000000000000 -0.1250000000000000 12.000000

-0.3750000000000000 -0.3750000000000000 0.3750000000000000 6.000000

-0.3750000000000000 -0.1250000000000000 0.1250000000000000 24.000000

-0.3750000000000000 0.1250000000000000 0.1250000000000000 8.000000

-0.1250000000000000 -0.1250000000000000 0.1250000000000000 6.000000

The integer in the first line specifies the number of ~q-points provided in the file. In

the subsequent lines a ~q-point is defined by the first three values of the line in direct

coordinates. The last value in each line specifies the weight of that ~q-point.

The size of the ~q-points mesh is controlled in INPHON by the integer values of QA, QB and

QC.

B.1.9 DOS, DOS.meV and DOS.cm

These output files contain the phonon density of states (DOS) in the units states/THz,

states/meV and states/cm�1 (see table 3.1 for the conversion factors) and are created

when parameter LDISP = .FALSE. is set in INPHON. If LFREE = .TRUE. then the phonon

DOS is integrated over all ~q-points in the BZ as given in the QPOINTS file otherwise the

phonon DOS is only integrated over the ~q-points of the paths defined by QI and QF.

In the output files the first column represents the energy while the second column gives

the normalised DOS.

All INPHON parameters concerning the DOS are given in the units THz. The INPHON

parameter DOSIN sets the DOS startpoint while DOSEND sets its endpoint. DOSSTEP sets

the step size and DOSSMEAR is the smearing parameter � of a Gaussian smearing function

exp
“
�!2

�2

”

.

B.1.10 ENTRO

This output file is written when the INPHON parameter LFREE = .TRUE. and

LDISP = .FALSE. have been set.

The first column gives the temperature in K. The second column gives the vibrational

entropy S = U�F
kBT

of the primitive unit cell in 1/K and the third and fourth column give

the vibrational free energy F and the vibrational internal energy U of the primitive unit
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cell in eV. The next three columns give S, F and U per atom, and the last column gives

the specific heat CV at constant volume of the primitive unit cell in J/(mol K).

If the parameter LDELTAT has not been set or LDELTAT = .FALSE. then ENTRO will only

contain one line with S, F , U and CV given at the temperature in K defined in the INPHON

file by TEMPERATURE.

If LDELTAT = .TRUE. has been set then the lowest temperature has to be defined using

TMIN and the highest temperature using TMAX. The number of steps in between is then

defined by ITSTEP.

B.1.11 FREQ, FREQ.meV and FREQ.cm

The output files FREQ, FREQ.meV and FREQ.cm contain the phonon dispersion relation in

the units THz, meV and cm�1, respectively, (see table 3.1 for the conversion factors) and

are created when parameters LFREE = .FALSE. and LDISP = .FALSE. are set.

The paths in ~q-space are defined by the following parameters in INPHON:

IND = 2; INPOINTS = 100

QI = 0.0 0.5 0.0 0.0 0.0 0.0

QF = 0.0 0.0 0.0 -0.5 0.5 0.5

Parameters IND and INPOINTS define the number of paths and the number of ~q-points on

each of these paths, respectively. QI defines sequentially the three components of each

initial ~q-point of a path while the components of each final point is defined by QF.

These initial and final ~q-points are to be given in direct coordinates of the reciprocal

lattice if the parameter LRECIP = .FALSE. is not explicitly set. If LRECIP = .FALSE.

then the ~q-points are interpreted as cartesian coordinates given in the units 2⇡a�1 with

a for the scaling parameter provided in the POSCAR file.

In the FREQ files at the beginning of each path a line is written

# 1 path from 0.000 0.500 0.000 to 0.000 0.000 0.000

indicating the path number and the start and end points in the specified coordinate

system. After which the phonon dispersion relation along the path is listed. The value in

the first column defines the absolute path length already covered in units of 2⇡a�1 with

the scaling parameter a from the POSCAR file. The frequency of the vibrational modes are

given in the other columns. If more than three vibrational modes exist then the vibration
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modes are written in sets of three into the files FREQ1-FREQ999 in THz, whereby the first

column in all files describes the absolute path length in units 2⇡a�1.

B.1.12 FPROJ and EIGENPHON

These output files are created if LPFREQ = .TRUE. is set in addition to LFREE = .FALSE.

and LDISP = .FALSE. in the INPHON file.

The files FPROJ1-FPROJ999 contain in the first column the absolute path in units of 2⇡a�1

and in the subsequent columns the projectors p,j of all the atoms in the primitive unit

cell for vibrational mode j.

The EIGENPHON file contains the eigenvalues and eigenvectors of each ~q-point and vibra-

tional mode as well as the corresponding displacement vectors in the time interval 0 ps

to 2 ps.

Warning, the size of these files can quickly become enormously large. Using small values

for IND and INPOINTS is recommended.

B.1.13 HARMONIC

With the parameters LHARMONIC = .TRUE. and LDISP = .FALSE. the output file HARMONIC

is created. It contains the atomic positions in a POSCAR like manner and the force-constant

matrices.

B.1.14 DYNPHON

The dynamical matrices are written into DYNPHON if the parameters

LDPHON = .TRUE.; LDISP = .FALSE.; LFREE = .FALSE.

have been set in the INPHON file.

Warning, the size of this file can quickly become enormously large. Using small values

for IND and INPOINTS is recommended.
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B.2 Configuration Options in INPHON

B.2.1 MASS

This array assigns to each atom type, in the same order as specified in the POSCAR file,

the corresponding atom mass in the unified atomic mass units (amu). It is not necessary

to set this parameter when calculating displacements (i.e. LDISP = .TRUE.).

Usage example:

MASS = 87.62000 106.42000 72.61000

B.2.2 RMAX

Default:

RMAX = 15.0

This parameter defines the cuto↵ radius in Å in real space of the shell lattice vector

|~Rl�l0 + ~⌧ � ~⌧0| used to search for equivalent atoms in the supercell.

If the value for RMAX is too small then f PHON will have a problem constructing the

force-constant matrix. Hence, one should set RMAX larger than the maximum diameter of

the supercell.

B.2.3 ISYM

Default:

ISYM = 3

This parameter controls the symmetry routine used by f PHON in the calculation of the

displacement vectors and in the construction of the force-constant matrix. Furthermore,

ISYM controls the search for the primitive unit cell.
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The possible settings are:
ISYM use symmetry reduce to primitive unit cell

0 no no

1 no yes

2 yes no

3 yes yes

If there exists doubt about the quality of the phonon calculations with the standard value

of ISYM, i.e. imaginary phonon modes, then a calculation with ISYM = 1 should be done

to crosscheck the results.

Warning, the ISYM setting has to be the same for the displacements calculation

(LDISP = .TRUE.) and for the force-constant matrices construction (LDISP = .FALSE.)

of the phonon calculations.

B.2.4 LHARMONIC

Default:

LHARMONIC = .FALSE.

The force-constant matrix is written into the file HARMONIC if parameter LHARMONIC = .TRUE.

is set in INPHON.

B.2.5 INTI and LSYMM

Default:

INTI = 100

LSYMM = .TRUE.

With these two parameters one can control if and how f PHON imposes the symmetries

X

l000

�
⇣

l00

0

⌘

↵�
= 0 (B.4)

and

�
⇣

l l0

 0

⌘

↵�
= �

⇣

l0 l
0 

⌘

�↵
crystal with no centre of inversion (B.5)

�
⇣

l l0

 0

⌘

↵�
= �

⇣

l0 l
0

⌘

↵�
crystal with centre of inversion (B.6)
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onto the force-constant matrices (see chapter 3.1).

The parameter INTI controls the maximum number of iteration steps. If the error is

su�ciently small (i.e. when 10�8 >
X

↵,�

X

l000

�

�

�

�

�
⇣

l00

0

⌘

↵�

�

�

�

�

) then f PHON will stop before it

reaches this limit.

Setting INTI=0 will not enforce any symmetries onto the force-constant matrices. If

LSYMM = .FALSE. then only the translational symmetry, i.e. Eq. B.4, is enforced in the

iterative procedure upon the force-constant matrices.

B.2.6 Finding Displacements and Constructing Supercells

Important parameters:

LDISP, DISP, IBCELL, NDIM

In all the calculations for finding the displacements and constructing the supercells the

parameter LDISP = .TRUE. has to be set. If LZFORCE (see section B.2.6.2) is set to .TRUE.

(advisable for supercells with low symmetries) then f PHON will write in addition a ‘zero

displacement’ into the first line of the DISP file.

B.2.6.1 LDISP and DISP

Default:

LDISP = .FALSE.

DISP = 0.02

If the parameter LDISP = .TRUE. f PHON calculates all displacements necessary for the

force-constant method and writes them into the file DISP (see section B.1.5).

Furthermore, f PHON writes the supercell on which the displacements are based into the

file SPOSCAR. The form of the supercell written into SPOSCAR depends on the values of

the parameters IBCELL and NDIM. It is absolutely vital, that the displacements in the file

DISP are applied to the output SPOSCAR and not to the input POSCAR as the order of

atoms might di↵er even when no new supercell is created.

The parameter DISP defines the size of the displacements in Å. Usually, the default size

should be su�cient. When increasing displacement size one should always check if the
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displacements are still within the harmonic regime. A too small value for DISP might

result in an inaccurate phonon dispersion due to numerical inaccuracies of the DFT

calculated force-fields calculated by DFT.

B.2.6.2 LZFORCE

Default:

LZFORCE = .FALSE.

With the setting LZFORCE = .TRUE. f PHON writes as the first displacement a ‘zero

displacement’, displacing atom 0 with vector ~u = (0.0, 0.0, 0.0), into the file DISP (if

LDISP=.TRUE.). This indicates that the force-fields without any displacements has to be

calculated.

If f PHON finds in FORCES this zero displacement for the first displacement then the force-

field F(~u = 0) is subtracted from all other force-fields F(~ulk) in FORCES. Hence, correcting

the force-fields with

F̄(~ulk) = F(~ulk)� F(~u = 0) . (B.7)

This will greatly improve the phonon calculations for supercells with low symmetry where

not all atomic positions have been fully relaxed.

B.2.6.3 IBCELL and NDIM

Default:

IBCELL = 0

NDIM = 1 1 1

IBCELL controls how the new supercell, written into SPOSCAR (see section B.1.4), is do be

constructed. The settings are:
IBCELL

0
f PHON writes the original cell, as defined in the POSCAR file, into SPOSCAR.

Note, that the order of atoms in SPOSCAR might di↵er.

1
f PHON builds the supercell using multiples, defined by NDIM, of the

primitive unit cell vectors.

2
f PHON builds the supercell using multiples, defined by NDIM, of the

lattice vectors from the POSCAR.
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If IBCELL6=0 then the multiples n1, n2 and n3, defined by parameter NDIM, i.e.

NDIM = n1 n2 n3, are used to construct the new lattice vectors of the new supercell by,

~A SPOSCAR
i = ni ~Ai i = {1, 2, 3} , (B.8)

with ~Ai either being a primitive unit cell vector or a lattice vector from the POSCAR file

depending on IBCELL.

In order to accurately calculate the phonons the supercell should contain at least ⇡30

atoms and it should be as cubic as possible as discussed in greater detail in chapter 3.4.3.

B.2.7 Phonon Density of States, F , U , S and CV Calculations

Important parameters:

LFREE, QA, QB, QC, TEMPERATURE

For all phonon DOS calculations LFREE = .TRUE. and LDISP = .FALSE. has to be set.

Furthermore, the temperature has to be defined with TEMPERATURE or with LDELTAT,

TMIN, TMAX and ITSTEP and the ~q-mesh has to be defined with QA, QB and QC.

B.2.7.1 LFREE

Default:

LFREE = .FALSE.

LGAMMA = .FALSE.

f PHON will calculate the phonon DOS if LFREE = .TRUE. is set and writes the results

into the files DOS, DOS.meV and DOS.cm (see section B.1.9). Furthermore, the vibrational

free energy F , the vibrational internal energy U , the vibrational entropy S and the specific

heat at constant volume CV are evaluated at the temperature defined by TEMPERATURE

in K and written to the file ENTRO (see section B.1.10).

B.2.7.2 QA, QB, QC and LGAMMA

The size of the ~q-mesh within the Monkhorst and Pack scheme is defined by the integer

values of the parameters QA, QB and QC. If LGAMMA = .TRUE. is set then the ~q-mesh is

shifted so that one ~q-point coincides with the �-point.
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B.2.7.3 TEMPERATURE, LDELTAT, TMIN, TMAX, ITSTEP

Default:

LDELTAT = .FALSE.

The temperature in K is set with TEMPERATURE and has to be defined if LFREE = .TRUE.

and LDELTAT = .FALSE..

If LDELTAT = .TRUE. is set then f PHON will calculate F , U , S and CV ( file ENTRO see

section B.1.10) for a range of temperatures. Thereby, the lowest temperature is set by

TMIN, the highest temperature by TMAX and the number of steps between these two by

the integer ITSTEP.

B.2.7.4 DOSIN, DOSEND, DOSSTEP and DOSSMEAR

Default:

DOSIN = 0.0

DOSEND = 25.0

DOSSTEP = 0.1

DOSSMEAR = 0.02

Although these parameters influence the computation of the phonon DOS that is written

into the files DOS, DOS.meV and DOS.cm (see section B.1.9) the values of these parameters

are only given in THz.

DOSIN defines the lowest frequency of the DOS and DOSEND the highest frequency. The

interval between these two values is defined by DOSSTEP. The smearing parameter � of a

Gaussian smearing function exp
“
�!2

�2

”

is defined by DOSSMEAR.

B.2.7.5 IPDOS

Default:

IPDOS = 0
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The integer value of IPDOS controls if and how the partial phonon DOS’s is written in

states/THz into the files DOS1, DOS2, etc. when LFREE = .TRUE.. Thereby one should

note that the number of the created DOS* files depends on the setting of IPDOS.

IPDOS write partial phonon DOS’s

0 no

1 for each atom type

2 for all non-equivalent atoms in the primitive unit cell

3 for every atom in the primitive unit cell

B.2.8 Calculating the Phonon Dispersion Relation

Important parameters:

IND, INPOINT, QI, QF

To calculate the phonon dispersion relation the parameters LFREE = .FALSE. and

LDISP =.FALSE. have to be set in addition to the parameters IND, INPOINT, QI and QF.

B.2.8.1 IND, INPOINT, LRECIP, QI and QF

Default:

LRECIP = .TRUE.

The path through ~q-space for the phonon dispersion relation is defined by these parame-

ters for example:

IND = 2; INPOINTS = 100

QI = 0.0 0.5 0.0 0.0 0.0 0.0

QF = 0.0 0.0 0.0 -0.5 0.5 0.5

Parameters IND and INPOINTS define the number of paths and the number of ~q-points

on each path, respectively. QI defines sequentially the three components of each initial

starting ~q-point of a path while the components of each end point are defined by QF.

These initial and end ~q-points have to be given in direct coordinates of the reciprocal

lattice if the parameter LRECIP = .FALSE. is not explicitly set. If LRECIP = .FALSE.
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then the ~q-points are interpreted in cartesian coordinates given in units of 2⇡a�1 whereby

a is the scaling factor from the file POSCAR.

The output is written into the files FREQ, FREQ.cm, FREQ.meV and FREQ* (see section

B.1.11 for more details).

B.2.8.2 LPFREQ and LDPHON

Default:

LPFREQ = .FALSE.

LDPHON = .FALSE.

The output files FPROJ* and EIGENPHON (see section B.1.12 for more details) containing

projector and eigenvalues are created if LPFREQ = .TRUE. is set in addition to

LFREE = .FALSE. and LDISP = .FALSE. in the INPHON file.

The dynamical matrices are written into DYNPHON when parameter LDPHON = .TRUE. is

set.

Warning, the size of these files can become huge for large values of IND and INPOINTS.

B.2.9 IMOV, ISTEP, TSTEP, IBRANCH and Q

Default:

IMOV = 0

ISTEP = 0

TSTEP = 1.0

IBRANCH = 1

Q = 0.0 0.0 0.0

With the setting IMOV = 1 fPHON will calculate the displacements and atomic positions

over ISTEP iterations for the vibrational mode IBRANCH at ~q-point Q. The time interval

of each iteration is defined by TSTEP in picoseconds.
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B.2.10 LO�TO Splitting

In ionic semiconducting or insulating crystals electric dipols are created when ions are

displaced by longitudinal optical vibrations at the long-wavelength limit. Resulting in a

splitting of the longitudinal optical (LO) and transversal optical (TO) phonon modes. At

~q ! 0 the dynamical matrix can be split into a analytical part D0
↵� and a non-analytical

part D0,NA
↵� , i.e.

D0

↵� = D0

↵� + D0,NA
↵� . (B.9)

In the subroutine written by M. Hieckel [93] the non-analytical part is calculated at ~q by,

D0,NA
↵� =

4⇡e2

⌦
p

MM0

(~q · Z)↵(~q · Z0)�

~q · ✏1 · ~q , (B.10)

with the born e↵ective charge tensor Z and atomic mass M of atom , the dielectric

tensor ✏, elemental charge e and cell volume ⌦. For more details please refer to Ref.

[93, 94]. This correction is applied to both cases, the integration over ~q-space for the

DOS, U , S, F and CV calculations and for the dispersion relation calculation.

B.2.10.1 LBORN

Default:

LBORN = .FALSE.

Setting LBORN = .TRUE. activates the LO�TO splitting subroutine.

B.2.10.2 BORN

If LBORN = .TRUE. is set the born e↵ective charge tensor of each atomic species has to

be defined in the INPHON file by:

BORN001 = Z(1,1) Z(1,2) Z(1,3) Z(2,1) Z(2,2) Z(2,3) Z(3,1) Z(3,2) Z(3,3)

.

.

.

BORN999 = Z(1,1) Z(1,2) Z(1,3) Z(2,1) Z(2,2) Z(2,3) Z(3,1) Z(3,2) Z(3,3)
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For example, in a system with two atomic species the born e↵ective charge tensors Z1 =
0

B

@

�2.07 0 0

0 �2.07 0

0 0 �2.07

1

C

A

and Z2 =

0

B

@

2.07 0 0

0 2.07 0

0 0 2.07

1

C

A

are defined as follows;

BORN001= -2.07 0.0 0.0 0.0 -2.07 0.0 0.0 0.0 -2.07

BORN002= 2.07 0.0 0.0 0.0 2.07 0.0 0.0 0.0 2.07

B.2.10.3 INELEC, RDIELECTRIC and RDIETENSOR

Default:

INELEC = 0

If INELEC = 1 then the dielectric tensor ✏ is read in by

RDIETENSOR=e(1,1) e(1,2) e(1,3) e(2,1) e(2,2) e(2,3) e(3,1) e(3,2) e(3,3)

otherwise (i.e. INELEC = 0) a scalar value for ✏1 is defined with RDIELECTRIC.

B.2.10.4 RESIGMA

In the subroutine a Gaussian weighting function

f(q) = exp

✓

� q2

�2

◆

, (B.11)

is used to define the weight with which D0,NA
↵� (~q) is added to the dynamical matrix. The

Gaussian function has to vanish at the BZ boundary. This condition is determined by the

RESIGMA parameter which defines the width of the Gaussian function 0 < f(qmax) << 1

with

f(qmax) = exp

✓

�q2
max

�2

◆

= RESIGMA . (B.12)
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B.3 Example

The standard fPHON workflow is outlined for the example of Fe3Al in the structure D03

defined by the following POSCAR:

D03

2.880

0.0 1.0 1.0

1.0 0.0 1.0

1.0 1.0 0.0

Al Fe

1 3

Direct

0.00 0.00 0.00

0.50 0.50 0.50

0.75 0.75 0.75

0.25 0.25 0.25

The supercell and displacements necessary to construct the FORCES file are calculated

using the INPHON file settings:

LDISP=.TRUE. #calculate displacements

IBCELL=1 #use the vectors of unit cell

NDIM=2 2 2 #build a 2x2x2 supercell

Running fPHON with

:~/> fphon

creates a SPOSCAR file containing 32 atoms, i.e. 8 Al and 24 Fe atoms, and the DISP file:

" 1 -0.00173611 0.00173611 0.00173611 " \

" 9 -0.00173611 0.00173611 0.00173611 " \

" 17 -0.00173611 0.00173611 0.00173611 " \

The python script
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:~/> ./phonon_disp

then creates the directories ~/00,~/01 and ~/02 and copies the VASP files INCAR, KPOINTS,

POTCAR into these directories. Furthermore, the file SPOSCAR is copied to these directories

as POSCAR and the atoms identified in DISP are displaced by the given vector, i.e. in ~/00

the 1st atom is displaced by ~d =

0

B

@

�0.00174362

0.00174362

0.00174362

1

C

A

etc.

After running VASP the forces are extracted with the python script

:~/> ./phonon_forces

and written to ~/PHON/FORCES. The file ~/SPOSCAR is copied by the script to ~/PHON/POSCAR.

This brings all the necessary ingredients together for the next step, the phonon calcula-

tion.

B.3.1 Dispersion Relation

As the primitive unit cell is face-centred cubic the dispersion relation along a path con-

necting the special points in the BZ is set up in ~/PHON/INPHON with

LDISP = .FALSE. #do not calculate displacements

LFREE = .FALSE. #do not calculate DOS etc.

MASS = 26.982 55.847 #mass of both atom species

IND = 4 #calculate dispersion relation for 4 path

INPOINTS = 200 #each path consists of 200 points

QI = 1.0 1.0 1.0 0.500 1.000 0.500 0.375 0.750 0.375 0.0 0.0 0.0

QF = 0.5 1.0 0.5 0.375 0.750 0.375 0.000 0.000 0.000 0.5 0.5 0.5

# Gamma’ -> X’ -> K -> Gamma -> L

Executing fPHON in ~/PHON with

:~/PHON> fphon

calculates the dispersion relation which can be found in the file FREQ in units of THz as

plotted in Fig. B.1.

140



Appendix C. fPHON Manual

Figure B.1: Phonon dispersion relation for D03 Fe3Al.

B.3.2 Phonon DOS

The phonon DOS calculation is initialised using the ~/PHON/INPHON file:

LDISP = .FALSE. #do not calculate displacements

LFREE = .TRUE. #calculate DOS etc.

MASS = 26.982 55.847 #mass of both atom species

TEMPERATURE = 200 #temperature in K

IPDOS = 1 #calculate the partial DOSes of each species

QA = 30; QB = 30; QC = 30 #q-mesh

DOSIN = 0; DOSEND = 11; DOSSTEP = 0.02; DOSSMEAR = .05 #DOS smearing

Thus, with

:~/PHON> fphon

the phonon DOS is calculated and the total DOS is written to DOS in states/THz and the

partial DOS’s of Al and Fe can be found in the files DOS1 and DOS2, respectively. These

results are shown in Fig. B.2.
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Figure B.2: Density of states for D03 Fe3Al.

B.3.3 F ,U ,S and CV

To calculate the vibrational free energy, internal energy, entropy and specific heat for a

temperature range the ~/PHON/INPHON file of the previous calculation has to be modified

to:

LDISP = .FALSE. #do not calculate displacements

LFREE = .TRUE. #calculate DOS etc.

MASS = 26.982 55.847 #mass of both atom species

IPDOS = 1 #calculate the partial DOS’s of each species

QA = 30; QB = 30; QC = 30 #q-mesh

LDELTAT = .TRUE. #calculate F, U, S and C_V for a temperature range

TMIN = 5;TMAX = 1800 #starting and end temperature in K

ITSTEP = 400 #number of temperature intervals

DOSIN = 0; DOSEND = 11; DOSSTEP = 0.02; DOSSMEAR = .05 #DOS smearing

The values of the vibrational free energy F and internal energy U are given in the units

eV/atom and eV/cell and the entropy in K�1/atom and K�1/cell in the file ENTRO as

plotted in Fig. B.3. Furthermore, the specific heat CV is also given in ENTRO in J/(K mol

cell) as shown in Fig. B.4.
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Figure B.3: Vibrational free energy F , internal energy U and entropy times temper-
ature �kBTS for D03 Fe3Al.
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Figure B.4: Specific heat CV for D03 Fe3Al.
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Special Points in the First Brillouin

Zone

C.1 Simple Cubic (sc)

lattice vectors:

~A1 = a (1, 0, 0)
~A2 = a (0, 1, 0)
~A3 = a (0, 0, 1)

high-symmetry points:

direct cartesian

[2⇡a�1]

� ( 0, 0, 0) ( 0, 0, 0)

X ( 1
2 , 0, 0) ( 1

2 , 0, 0)

M ( 1
2 ,

1
2 , 0) ( 1

2 ,
1
2 , 0)

R ( 1
2 ,

1
2 ,

1
2) ( 1

2 ,
1
2 ,

1
2)

high-symmetry paths (cartesian coordinates in units of 2⇡a�1):
� : � !X described by [⇠ 0 0] with 0 < ⇠ < 1/2

⌃ : � !M described by [⇠ ⇠ 0] with 0 < ⇠ < 1/2

⇤ : � !R described by [⇠ ⇠ ⇠] with 0 < ⇠ < 1/2
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C.2 Body-Centred Cubic (bcc)

lattice vectors:

~A1 = a

✓

�1

2
,
1

2
,
1

2

◆

~A2 = a

✓

1

2
,�1

2
,
1

2

◆

~A3 = a

✓

1

2
,
1

2
,�1

2

◆

high-symmetry points:

direct cartesian

[2⇡a�1]

� ( 0, 0, 0) ( 0, 0, 0)

N ( 0, 1
2 , 0) ( 1

2 , 0, 1
2)

H (-1
2 ,

1
2 ,

1
2) ( 1, 0, 0)

P ( 1
4 ,

1
4 ,

1
4) ( 1

2 ,
1
2 ,

1
2)

N

H
P

high-symmetry paths (cartesian coordinates in units of 2⇡a�1):
� : � !H described by [⇠ 0 0] with 0 < ⇠ < 1

⌃ : � !N described by [⇠ 0 ⇠] with 0 < ⇠ < 1/2

⇤ : � !P described by [⇠ ⇠ ⇠] with 0 < ⇠ < 1/2
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C.3 Face-Centred Cubic (fcc)

lattice vectors:

~A1 = a

✓

0,
1

2
,
1

2

◆

~A2 = a

✓

1

2
, 0,

1

2

◆

~A3 = a

✓

1

2
,
1

2
, 0

◆

high-symmetry points:

direct cartesian

[2⇡a�1]

� ( 0, 0, 0) ( 0, 0, 0)

X ( 1
2 ,

1
2 , 0) ( 0, 0, 1)

L ( 1
2 ,

1
2 ,

1
2) ( 1

2 ,
1
2 ,

1
2)

W ( 1
2 ,

3
4 ,

1
4) ( 1

2 , 0, 1)

U ( 5
8 ,

5
8 ,

1
4) ( 1

4 ,
1
4 , 1)

K ( 3
8 ,

3
4 ,

3
8) ( 3

4 , 0, 3
4)

X0 ( 1
2 , 1, 1

2) ( 1, 0, 1)

L

U

X W

K
X `

high-symmetry paths (cartesian coordinates in units of 2⇡a�1):

� : � !X described by [0 0 ⇠] with 0 < ⇠ < 1

⌃, S0 : � !K!X0 described by [⇠ 0 ⇠] with 0 < ⇠ < 1

⇤ : � !L described by [⇠ ⇠ ⇠] with 0 < ⇠ < 1/2
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C.4 Hexagonal and Hexagonal Close-Packed (hcp)

lattice vectors:

~A1 = a

✓

1

2
,�1

2

p
3, 0

◆

~A2 = a

✓

1

2
,
1

2

p
3, 0

◆

~A3 = c (0, 0, 1)

high-symmetry points:

direct cartesian

� ( 0, 0, 0) ( 0, 0, 0)

M ( 1
2 , 0, 0) (⇡

a
, - ⇡p

3a
, 0)

K ( 1
3 ,

1
3 , 0) (4⇡

3a
, 0, 0)

M0 ( 1
2 ,

1
2 , 0) (2⇡

a
, 0, 0)

A ( 0, 0, 1
2) ( 0, 0, ⇡

c
)

L ( 1
2 , 0, 1

2) (⇡
a
, - ⇡p

3a
, ⇡

c
)

H ( 1
3 ,

1
3 ,

1
2) (4⇡

3a
, 0, ⇡

c
)

L0 ( 1
2 ,

1
2 ,

1
2) (2⇡

a
, 0, ⇡

c
)

K
M

L

A

H

M `

L `

high-symmetry paths (cartesian coordinates):

� : � !A described by [0 0 ⇠] with 0 < ⇠ < ⇡c�1

⌃ : � !M described by [⇠ � 0] with 0 < ⇠ < ⇡a�1 and 0 > � > �⇡(
p

3a)�1

⇤, T : � !K!M0 described by [⇠ 0 0] with 0 < ⇠ < 2⇡a�1
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C.5 Simple Tetragonal (st)

lattice vectors:

~A1 = a (1, 0, 0)
~A2 = a (0, 1, 0)
~A3 = c (0, 0, 1)

high-symmetry points:

direct cartesian

� ( 0, 0, 0) ( 0, 0, 0)

X ( 1
2 , 0, 0) ( ⇡

a
, 0, 0)

M ( 1
2 ,

1
2 , 0) ( ⇡

a
, ⇡

a
, 0)

Z ( 0, 0, 1
2) ( 0, 0, ⇡

c
)

R ( 1
2 , 0, 1

2) ( ⇡
a
, 0, ⇡

c
)

A ( 1
2 ,

1
2 ,

1
2) ( ⇡

a
, ⇡

a
, ⇡

c
)

MX

AR

Z

high-symmetry paths (cartesian coordinates):
� : � !X described by [⇠ 0 0] with 0 < ⇠ < ⇡a�1

⌃ : � !M described by [⇠ ⇠ 0] with 0 < ⇠ < ⇡a�1

⇤ : � !Z described by [0 0 ⇠] with 0 < ⇠ < ⇡c�1
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C.6 Body-Centred Tetragonal (bct) and Face-Centred

Tetragonal (fct)

c
c

The crystal structure can be described by both an bct or fct lattice. However, the

coordinate system of the fct lattice is rotated by 45o around the z-axis and the lattice

constant a is rescaled by
p

2.
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a0
p

2
= a < c a0

p
2

= a > c

P

Z

N

X

X `

Z `

PN

X

X `

Z `

C.6.1 Body-Centred Tetragonal (bct):

~Bbct
1 =

✓

0,
2⇡

a
,

2⇡

c

◆

~Bbct
2 =

✓

2⇡

a
, 0,

2⇡

c

◆

~Bbct
3 =

✓

2⇡

a
,

2⇡

a
, 0

◆

high-symmetry points:

direct cartesian

� ( 0, 0, 0) ( 0, 0, 0)

X ( 0, 0, 1
2) ( ⇡

a
, ⇡

a
, 0)

P ( 1
4 ,

1
4 ,

1
4) ( ⇡

a
, ⇡

a
, ⇡

c
)

N ( 0, 1
2 , 0) ( ⇡

a
, 0, ⇡

c
)

Z ( 1
2 ,

1
2 ,-

1
2) ( 0, 0, 2⇡

c
)

X0 ( 1
2 ,

1
2 , 0) ( ⇡

a
, ⇡

a
, 2⇡

c
)

Z0 (-1
2 ,

1
2 ,

1
2) ( 2⇡

a
, 0, 0)

high-symmetry paths

(cartesian coordinates):
� : � !X described by [⇠ ⇠ 0] with 0 < ⇠ < ⇡a�1

⌃, (F0(a < c)) : � !Z0 described by [⇠ 0 0]

with 0 < ⇠ < 2⇡a�1

⇤, (V0(a > c)) : � !Z described by [0 0 ⇠]

with 0 < ⇠ < 2⇡c�1

C.6.2 Face-Centred Tetragonal (fct):

~Bfct
1 =

✓

�2⇡

a0
,

2⇡

a0
,

2⇡

c

◆

~Bfct
2 =

✓

2⇡

a0
, �2⇡

a0
,

2⇡

c

◆

~Bfct
3 =

✓

2⇡

a0
,

2⇡

a0
, �2⇡

c

◆

high-symmetry points:

direct cartesian

� ( 0, 0, 0) ( 0, 0, 0)

X ( 0, 1
2 ,

1
2) ( 2⇡

a0 , 0, 0)

P ( 1
4 ,

3
4 ,

1
2) (2⇡

a0 , 0, ⇡
c
)

N ( 0, 1
2 , 0) (2⇡

a0 ,-
2⇡
a0 ,

2⇡
c
)

Z ( 1
2 ,

1
2 , 0) ( 0, 0, 2⇡

c
)

X0 ( 1
2 , 1, 1

2) ( 2⇡
2a0 , 0,2⇡

c
)

Z0 (-1
2 ,

1
2 , 0) (2⇡

a0 ,-
2⇡
a0 , 0)

high-symmetry paths

(cartesian coordinates):
� : � !X described by [⇠ 0 0] with 0 < ⇠ < 2⇡a0 �1

⌃,
⇣

F0
⇣

a0
p

2
< c
⌘⌘

: � !Z0 described by [⇠ � ⇠ 0]

with 0 < ⇠ < 2⇡a0 �1

⇤,
⇣

V0
⇣

a0
p

2
> c
⌘⌘

: � !Z described by [0 0 ⇠]

with 0 < ⇠ < 2⇡c�1
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Dresden, Germany, D. Reith, W. Püschl, W. Pfeiler und F. Haider, The

influence of vacancy movement on the character of phase transformations

03/2005 Deutsche Physikalische Gesellschaft, Frühjahrstagung
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