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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der mathematischen Optimierung von

stochastisch-dynamischen Entscheidungsproblemen. Diese Problemklasse stellt eine

besondere Herausforderung für die mathematische Optimierung dar, da bislang kein

Lösungsverfahren bekannt ist, das in polynomieller Zeit zu einer exakten Lösung kon-

vergiert. Alle generischen Verfahren der dynamischen Optimierung unterliegen dem

sogenannten Fluch der Dimensionen, der dazu führt, dass die Problemkomplexität

exponentiell in der Anzahl der Zustandsvariablen zunimmt. Da Entscheidungsprob-

leme von realistischer Größenordnung meist über eine Vielzahl von Zustandsvariablen

verfügen, stoßen exakte Lösungsverfahren schnell an ihre Grenzen.

Einen vielversprechenden Ausweg, um dem Fluch der Dimensionen zu entgehen,

stellen Verfahren der approximativ-dynamischen Optimierung dar (engl.: approxi-

mate dynamic programming), welche versuchen eine Nährungslösung des stochastisch-

dynamischen Problems zu berechnen. Diese Verfahren erzeugen eine künstliche

Stichprobe des Entscheidungsprozesses mittels Monte-Carlo-Simulation und konstru-

ieren basierend auf dieser Stichprobe eine Approximation der Wertfunktion des dy-

namischen Problems. Dabei wird die Stichprobe so gewählt, dass lediglich diejeni-

gen Zustände in die Stichprobe aufgenommen werden, welche für den Entschei-

dungsprozess von Bedeutung sind, wodurch eine vollständige Enumeration des Zu-

standsraums vermieden wird. In dieser Arbeit werden Verfahren der approximal-

dynamischen Optimierung auf verschiedene Probleme der Produktions- und En-

ergiewirtschaft angewendet und daraufhin überprüft, ob sie in der Lage sind, das

zugrundeliegende mathematische Optimierungproblem nährungsweise zu lösen.

Die Arbeit kommt zu dem Ergebnis, dass sich komplexe stochastisch-dynamische

Bewirtschaftungsprobleme effizient lösen lassen, sofern das Optimierungsproblem kon-

vex und der Zufallsprozess unabhängig vom Entscheidungsprozess ist. Handelt es

sich hingegen um ein diskretes Optimierungsproblem, so stoßen auch Verfahren der

approximativ-dynamischen Optimierung an ihre Grenzen. In diesem Fall sind gut

kalibrierte, einfache Entscheidungsregeln möglicherweise die bessere Alternative.



Abstract

This thesis studies mathematical optimization methods for stochastic-dynamic deci-

sion problems. This problem class is particularly challenging, as there still exists no

algorithm that converges to an exact solution in polynomial time. Existing generic

solution methods are all subject to the curse of dimensionality, which means that

problem complexity increases exponentially in the number of state variables. Since

problems of realistic size typically come with a large number of state variables, ap-

plying exact solution methods is impractical.

A promising methodology to break the curse of dimensionality is approximate

dynamic programming. To avoid a complete enumeration of the state space, solu-

tion techniques based on this methodology use Monte Carlo simulation to sample

states that are relevant to the decision process and then approximate the value func-

tion of the dynamic program by a function of much lower complexity. This thesis

applies approximate dynamic programming techniques to different resource manage-

ment problems that arise in production and energy settings and studies whether these

techniques are capable of solving the underlying optimization problems.

The thesis concludes that stochastic-dynamic resource management problems can

be solved efficiently if the underlying optimization problem is convex and randomness

independent of the resource states. If the optimization problem is discrete, however,

the problem remains hard to solve, even for approximate dynamic programming tech-

niques. In this case, simple but well-adjusted decision policies may be the better

choice.
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Chapter 1

Introduction

Many decision-makers face the problem that they have to manage resources over time while

environmental conditions are changing randomly. For example, a financial portfolio manager

has to find the right timing to buy and sell an asset, not knowing how prices will develop. A

retailer has to order on time, not knowing how demand will be in the future. The operator of

a hydro reservoir needs to decide how much water to release, not knowing how much water will

arrive during the next month. All of these problems are classic examples of stochastic-dynamic

decision problems. We make decisions not knowing how things will develop, then observe new

information, and again make decisions not knowing how things will develop, and so on. It may

be easy to formulate these problems in terms of a mathematical model, but optimizing them is

a different matter.

1.1 Motivation and Research Questions

To date, no reasonably fast generic solution method is known which is able to solve stochastic-

dynamic decision problems to optimality. The research outlined in this thesis is motivated by

recent progress in developing new methods that approximately solve these problems, or, more

specifically, a subclass of stochastic-dynamic decision problems known as Markov decision pro-

cesses (MDPs). Like any stochastic-dynamic decision problem, MDPs have the unpleasant prop-

erty that they are getting increasingly difficult to solve as the number of decision states increases,

a phenomenon also known as the curse of dimensionality of dynamic programs. A promising

methodology to break the curse of dimensionality is approximate dynamic programming (ADP),

also known as neuro-dynamic programming, which combines Monte Carlo simulation with func-

tion approximation techniques.

ADP has its roots in computer science in the field of artificial intelligence, where it is referred

to as reinforcement learning. From an artificial intelligence perspective, a decision-maker or

agent learns to make the right decisions by interacting with his environment. By repeatedly

1



2 CHAPTER 1. INTRODUCTION

making decisions and observing the consequences of these decisions, the agent creates a model

in his mind which guides his decisions in the future. The aim of reinforcement learning is to

artificially reconstruct the process of learning to enable machines to make decisions in a complex

and uncertain environment. In ADP, the idea of learning is a key concept and still an active

area of research. Here, learning takes place by sampling the decision process and collecting

information about the relationship between actions and outcomes. This information is then

used to construct a mathematical model of this relationship which is an approximation of the

true, but unknown causal mechanism. In contrast to reinforcement learning, ADP takes a more

formal perspective on the underlying stochastic-dynamic decision problem and combines the

idea of learning with the mathematical rigor of operations research.

The objective of the research outlined in this thesis is to apply ADP to complex resource

management problems which cannot be solved by generic solution methods in reasonable time.

Since each solution strategy has to be tailored to the problem at hand, different solution strate-

gies are applied to different resource management problems that frequently arise in production

and energy settings. All of these problems have in common that the size of the state space is

driven by the number of resources that have to be managed over time. The problems differ in the

way decisions are made and whether the resource states are discrete or continuous. With these

problems in mind, the thesis aims at exploring the boundaries of ADP to answer the following

research questions:

1. Which ADP technique is most useful for which problem? ADP is not a generic solution

method and there exists various algorithms and paradigms within the field that need to

be explored to find the technique that fits the problem. Answering this question involves

experimenting with different techniques as well as carefully tuning algorithmic parameters.

2. How does ADP compare to other methods? Solutions based on ADP are only competi-

tive if they represent a significant improvement over alternative solutions. For most re-

source management problems, there exist simple heuristics or rules of thumb to guide the

decision-making process. Also, for small problems, optimal solutions are readily available.

Therefore, it is important to benchmark ADP against other methods.

3. What characterizes a problem that ADP cannot solve? Every method has got its bound-

aries, and ADP is certainly no exception. To answer this question, we need to find a

problem that ADP cannot solve and compare it with the class of problems that ADP can

solve. Although we have to be careful to infer to the general case, identifying a problem

that at present is too difficult to solve is important for future developments in the field.
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1.2 Structure of the Thesis

The thesis is organized in four chapters, of which Chapters 3 to 5 present applications of ADP

to solve complex resource management problems along with numerical results.

Chapter 2 provides a short introduction to Markov decision processes as well as a brief overview

of various ADP techniques. The chapter covers the algorithmic concepts necessary to un-

derstand the idea behind ADP and discusses different types of function approximation as

well as learning strategies.

Chapter 3 deals with the problem of finding an optimal bidding strategy for a power generating

company that operates system of renewables and a single energy storage. The problem is

motivated by the large-scale development of renewable power generation combined with

the opportunity to trade on wholesale electricity markets, which has created new challenges

for resource management in the energy sector. The problem is modeled as a continuous-

state Markov decision process and solved using an ADP algorithm that uses least squares

to approximate the value function. The results of this chapter have been published in

Energy Systems (Loehndorf and Minner, 2010).

Chapter 4 complements the previous chapter. Although the solution method proposed in

Chapter 3 shows promising results, the model formulation lacks details of the actual de-

cision process found in practice. Chapter 4 presents a more detailed model formulation

which decomposes the decision problem into a short-term bidding problem and a long-

term problem of managing the storage content of multiple hydro reservoirs over time. The

short-term problem is formulated as a stochastic program and involves day-ahead bidding

decisions under price uncertainty. The long-term problem is modeled as a Markov de-

cision process, whereby the continuous state space is approximated by a set of discrete

states which serve as explanatory variables of an econometric electricity price model. The

problem is solved using an ADP algorithm that constructs a polyhedral approximation

of the value function of the dynamic program. The proposed ADP algorithm is provably

convergent if the optimization problem is convex. Numerical results for an industry-scale

problem indicate that the algorithm is capable of solving the problem efficiently. The

chapter is based on a working paper (Loehndorf et al., 2011).

Chapter 5 covers a stochastic-dynamic decision problem that frequently arises in production

systems. In production planning, lot-sizing and scheduling decisions are often treated

as deterministic optimization problems. Although this assumption is reasonable in some

production environments, there are many applications where demand uncertainty requires

integrating lot-sizing and scheduling with safety stock planning. The chapter studies sim-

ulation optimization methods to optimize the stochastic economic lot-scheduling problem
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(SELSP) formulated as a semi-Markov decision process. Based on a large-scale numerical

study, ADP is compared with a global search for parameters of simple control policies.

Although ADP worked well for small problems, it was clearly outperformed by the global

policy search as soon as the complexity of the SELSP increased. The chapter is based on

a working paper (Loehndorf and Minner, 2011).



Chapter 2

Methodological Background

Although each chapter is self-contained in terms of terminology and notation, this chapter

provides a brief overview about the fundamentals relevant for understanding the models and

methods presented in the remainder of this book.

2.1 Markov Decision Processes

In our treatment of stochastic-dynamic decision problems, we focus on a specific class of models

referred to as Markov decision processes. Following Puterman (2005), a decision problem can be

modeled as a Markov decision process (MDP) if the problem fits the following description. The

decision-maker takes actions at specific points in time called decision epochs, and there exist

distinct states of the environment which provide the decision-maker with all relevant information

to assess the outcome of an action. During a decision epoch, the decision-maker observes the

current state and chooses an action which incurs an immediate reward. Then, the environment

evolves into a new state according to a probability distribution that only depends on the current

state as well as the action chosen. The decision-maker observes the new state during the next

decision epoch, where faced with a similar decision problem. The rules that guide the decision-

maker’s actions are provided by a policy. During each decision epoch, the policy tells the

decision-maker which actions to take in a given state. As the decision process evolves over

time, following a particular policy produces a sequence of rewards. The stochastic-dynamic

decision problem is to select a policy such that this sequence of rewards is optimized. Many

stochastic-dynamic decision problems that arise in the real world fit this description, and unless

the evolution of the stochastic process depends on the complete sequence of previous states and

actions, most of these problems can be modeled as MDPs.

5



6 CHAPTER 2. METHODOLOGICAL BACKGROUND

2.1.1 Terminology and Notation

Now that we have a basic idea of the type of decision problem covered in this book, it is useful

to introduce some terminology and notation.

Let us begin with the definition of decision epochs. In discrete-time problems, the timing

of a decision epoch t is defined by periods or stages and a decision is made at the beginning of

each period. If the set of decision epochs {1, . . . , T} is finite, in which case T <∞, we refer to

the decision problem as a finite horizon problem. Otherwise, we refer to it as an infinite horizon

problem. In continuous-time problems, on the other side, decision epochs occur at random

points in time or after discrete events, in which case the timing of decision epochs is defined on

the interval [0, T ] for finite horizon problems or [0,∞) for infinite horizon problems.

At the beginning of each decision epoch, the environment is in a certain state St which is

an element of a set of states called the state space S. The decision-maker observes this state

and takes an action xt from a set of state-dependent, feasible actions X (St), also referred to as

the action space. If the decision-maker uses a specific rule during each decision epoch, we refer

to this rule as the policy π which specifies an action xt given a state St. Note that a general

dependence of S on t is unnecessary if we define S =
⋃T
t=1 St.

At the end of each decision epoch, the environment evolves from the current state St into

a new state St+1 with probability P(St+1|St, xt). The function P(St+1|St, xt) is referred to as

the probability transition function or probability transition matrix if we assume that state and

action space are both discrete and finite. Since the transition probability to the next state only

depends on the current state and action, the stochastic process is called a Markov process.

As a result of action xt ∈ X (St), the decision-maker receives a finite, real-valued, reward

rt(St, xt). The reward is accumulated during the decision epoch and its (expected) value is known

before an action is taken. The reward may reflect the (expected) profit, cost, or any real-valued

performance measure. Accordingly, the result of implementing a policy is that the decision-

maker receives a sequence of rewards. To evaluate the policy of a finite horizon problem, it is

often sufficient to compute the (expected) total reward. In infinite horizon problems, however,

the expected total reward may be infinite, so that either the long-term average reward is used

or the discounted reward which requires specification of a discount factor γ.

In contrast to discrete-time problems, where decision epochs have unit length, the length

of a decision epoch in continuous-time problems is given by the sojourn time τt(St, xt, St+1)

which depends on the current state and action as well as the subsequent state. In a more

general continuous-time model, called semi-Markov decision process (SMDP), the state may

change multiple times during a decision epoch and the length of an epoch follows a general

probability distribution. To streamline the presentation and avoid redundancy, the remainder

of this chapter deals with discrete-time problems. The interested reader is referred to Chapter

5 for a stochastic-dynamic decision problem formulated as an SMDP.
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(1) Input arguments: final value function VT

(2) Do for t = T − 1, T − 2, . . . , 1

(2.1) Do for all St ∈ S

(2.1.1) Solve π(St) = arg maxxt∈X (St)

{
rt(St, xt) + γ

∑
St+1∈S P(St+1|St, xt)Vt+1(St+1)

}
(2.1.2) Compute Vt(St) = rt

(
St, π(St)

)
+ γ

∑
St+1∈S P

(
St+1|St, π(St)

)
Vt+1(St+1)

(3) Return value function Vt, t = 1, . . . , T − 1

Figure 2.1: Backward dynamic programming for finite horizon problems

2.1.2 Finite Horizon Problems

In general, a Markov decision process can be formulated as a recursive function that relates

the value of being in a state at the beginning of a period to the value of the states that are

(possibly) encountered during subsequent periods. This recursive function is known as the

value function Vt of the dynamic program. Assuming that the decision-maker’s objective is to

maximize the discounted reward over a finite planning horizon and that VT is given, a policy

π = {x∗1, . . . , x∗T−1} is optimal if it holds that

Vt(St) = max
xt∈X (St)

{
rt(St, xt) + γE

[
Vt+1(St+1)|St, xt

]}
∀ St ∈ S, 1 ≤ t ≤ T − 1. (2.1)

Note that the discount factor γ can be dropped if the optimality criterion is total reward.

Equation (2.1) is the expectation form of the optimality equation, also known as Bellman

equation. If we assume that state and action space are discrete, we can express the expectation

explicitly, which gives us the standard form of the optimality equation,

Vt(St) = max
xt∈X (St)

{
rt(St, xt) + γ

∑
St+1∈S

P(St+1|St, xt)Vt+1(St+1)

}
∀ St ∈ S, 1 ≤ t ≤ T − 1.

(2.2)

Let us assume for now that S and X are discrete, so that we use the standard form of the

optimality equation unless otherwise noted.

When we solve a finite horizon problem, we assume that there exists a function VT to evaluate

the final state of the system, also known as the salvage value. To find an optimal policy, we start

at the last decision epoch T − 1 using VT to evaluate ST , compute the optimal decision for each

state ST−1 and then use the associated optimal values in T − 2. An outline of the algorithm

known as backward dynamic programming is shown in Figure 2.1.

In case VT is not given, we can simply choose T larger than the planning horizon and then
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set VT ≡ 0. If T is sufficiently large and covers more periods than necessary, we can assume that

the quality of the policy during the relevant decision epochs is sufficiently good. Otherwise, we

may be better off by modeling the problem as an infinite horizon problem.

2.1.3 Infinite Horizon Problems

When we solve an infinite horizon problem, we assume that parameters of the reward function,

the transition function, and the stochastic process are stationary over time. For this reason, in

many formulations of infinite horizon problems, the time index is dropped, and St+1 is replaced

by S′ to denote the successor state. The steady state optimality equations are then given by

V (S) = max
x∈X (S)

{
r(S, x) + γ

∑
S′∈S

P(S′|S, x)V (S′)

}
∀ S ∈ S. (2.3)

Note that if time is relevant for the state transition, e.g., to model a weekly planning cycle, it

can be included as an additional state variable.

In contrast to finite horizon problems, we cannot simply drop the discount factor if we are

interested in maximizing the total expected reward of an infinite horizon problem. Instead,

we have to reformulate the problem using the average reward criterion. The corresponding

optimality equations are given by

V (S) = max
x∈X (S)

{
r(S, x)− gπ +

∑
S′∈S

P(S′|S, x)V (S′)

}
∀ S ∈ S, (2.4)

with gπ as the average reward or gain under policy π,

gπ = lim
T→∞

E

[
T∑
t=1

rt(St, xt)

T

]
. (2.5)

For operational decision problems, the average reward criterion appears to be the most natural

choice, since economic discounting rarely plays a role if decision epochs are hours or days.

However, algorithms for solving average reward MDPs are unstable for some problems (Gosavi,

2009), so that we focus on the discounted reward criterion as the default unless otherwise noted.

The most widely used algorithm to solve infinite horizon problems is value iteration which

converges towards the actual value function by iterative improvement. An outline of the algo-

rithm is shown in Figure 2.2. The algorithm begins with an initial estimate of the value function,

typically V 0 ≡ 0. Then, for each iteration n, the algorithm computes an approximation of the

value function V n by using the approximation of the value function from the previous iteration

V n−1 to solve the optimality equation. The algorithm stops when an ε-optimal policy has been

found, i.e., when the maximum difference between the optimal value V ∗(S) and the infinite
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(1) Input arguments: initial value function V 0 ≡ 0

(2) Repeat

(2.1) Increment n← n+ 1

(2.2) Do for all S ∈ S

(2.1.1) Solve πn(S) = arg maxx∈X (S)

{
r(S, x) + γ

∑
S′∈S P(S′|S, x)V n−1(S′)

}
(2.1.1) Compute V n(S) = r

(
S, πn(S)

)
+ γ

∑
S′∈S P

(
S′|S, πn(S)

)
V n−1(S′)

Until ‖V n(S)− V n−1(S)‖∞ < ε(1− γ)/2γ

(3) Return value function V n

Figure 2.2: Value iteration for infinite horizon problems

horizon value from following the current policy V π(S) is less than ε,

‖V π(S)− V ∗(S)‖∞ < ε, (2.6)

where ‖ · ‖∞ is defined as the maximum norm. Since we can neither measure the optimal value

nor the infinite horizon value from following policy πn, the algorithm measures the maximum

difference between the value of the previous iteration V n−1(S) and the current iteration V n(S)

instead. If we change the stopping criterion to

‖V n(S)− V n−1(S)‖∞ < ε(1− γ)/2γ, (2.7)

then it can be shown that the algorithm converges to an ε-optimal policy (Puterman, 2005,

Theorem 6.3.1).

An alternative approach to solve infinite horizon problems is by formulating the problem as

a linear program. Denote V (S) ∈ R as the unconstrained decision variables of the primal and

λ(S, x) ∈ R+ as the decision variables of the dual formulation. Then, we can find the optimal

value function by solving the following linear program

min
V (S)∈R

∑
S∈S

V (S) (2.8)

s.t. V (S) ≥ r(S, x) + γ
∑
S′∈S

P
(
S′|S, x)V (S′) ∀ S ∈ S, x ∈ X . (2.9)

An optimal policy is found by choosing action x in state S where constraint (2.9) is binding, so
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that

π(S) = arg max
x∈X

{
λ∗(S, x)

}
∀ S ∈ S. (2.10)

Note that in case no constraint is binding, an arbitrary decision is chosen (Puterman, 2005,

Theorem 6.9.4).

Another algorithm for solving MDPs is policy iteration. As it also requires performing ma-

trix operations, its computational effort is comparable to that of linear programming. However,

modern solvers can perform matrix operations much more efficiently than any ordinary imple-

mentation of policy iteration, so that this algorithm will not be addressed here.

An advantage of using value iteration over linear programming is that we do not have to

store a complete matrix in memory since rewards and transition probabilities can be computed

when needed. Moreover, looping over all states as part of the inner loop can be easily distributed

over multiple processors. However, if the problem fits into memory, solving the problem as a

single linear program may be faster. Modern linear programming solvers are designed to exploit

sparse matrices and can handle problems with millions of constraints.

2.1.4 The Curse of Dimensionality

In most MDPs, a state is typically defined as a vector of state variables St = (St1, . . . , StI),

where each state variable Sti is itself defined as an element of a set of discrete values Sti ∈
{Sti1, . . . , StiJ}. As a result, the size of the state space increases exponentially in the number of

state variables, |S| = TJI . Consider that each state variable represents a resource state, e.g.,

inventory for a specific product, as in Chapter 5. Then, the problem size grows exponentially

in the number of resources that ought to be managed over time. In the inventory example,

the state space for a problem with 10 products and at most 100 items on stock has already

10010=1020=100,000,000,000,000,000,000 states. Although advances in computing technology

continuously shift the boundary for solving ever larger and more complex problems, any of the

previously discussed algorithms eventually falls prey to this so-called curse of dimensionality.

2.2 Approximate Dynamic Programming

As a methodology to break the curse of dimensionality, approximate dynamic programming

(ADP) has recently received increasing attention. To avoid a complete enumeration of the state

space, an ADP algorithm uses Monte Carlo simulation to sample the Markov decision process

and then approximates the original value function by a function of much lower complexity.

When developing an ADP algorithm, there are three problem-specific issues that have to be

addressed. First, a policy that uses an approximate value function has to be able to mimic the

behaviour of the optimal policy. Second, the sampling process has to be designed such that
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those states are sampled sufficiently often which can be reached by the optimal policy. Third,

the mechanism that updates the value function approximation has to account for noise in the

sampled observations.

This section only provides a brief overview of approximate dynamic programming and intro-

duces its key concepts. Comprehensive text books on the subject are Bertsekas and Tsitsiklis

(1996), Sutton and Barto (1998), and Powell (2007), where most of the ADP techniques pre-

sented next are discussed in more detail.

2.2.1 Finite Horizon Problems

In the previous section, we assumed that we had access to an explicit model of the state transition

process which was given by the probability transition matrix. This model allowed us to compute

the expected value over all possible successor states for a given state and action. By contrast,

in approximate dynamic programming, we do not require an explicit model but merely assume

that we have access to a simulation model of the state transition process.

Since we want to solve the problem without using a transition matrix, let us return to the

expectation form of the optimality equations

Vt(St) = max
xt∈X (St)

{
rt(St, xt) + γE

[
Vt+1(St+1)|St, xt

]}
∀ St ∈ S, 1 ≤ t ≤ T − 1. (2.11)

Although we cannot compute the expectation explicitly without a model of the state transition

process, we can compute a sample average using Monte Carlo simulation. A straightforward

solution based on simulation is to replace the value function by a function of an estimate of the

state-action value, Qt(St, xt), also known as Q-factors. Again, let us assume that QT (ST , xT ) is

given. To compute the Q-factors, we simulate N state transitions for each Qt(St, xt) and solve

the following equations using backward recursion,

Qt(St, xt) = rt(St, xt) +
γ

N

N∑
n=1

max
xnt+1∈X (Sn

t+1)

{
Qt(S

n
t+1, x

n
t+1)

}
∀ St ∈ S, xt ∈ X (St), (2.12)

from t = T − 1, . . . , 1. Of course, this approach only works when state and action space are

reasonably small. In high-dimensional state and action spaces, however, this approach is itself

subject to the curse of dimensionality.

To avoid the problem of looping over the entire action space, we are going to express the

value function in terms of the post-decision state (Powell, 2007, p. 101), also known as the

afterstate value function (Sutton and Barto, 1998, p. 156). In contrast to Q-factors which

return the value before an action is taken, the post-decision value function returns the value at

the end of a decision epoch. Let us express the expectation of the value right after a decision
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has been made by V̄t(St, xt), so that Equation (2.11) becomes

Vt(St) = max
xt∈X (St)

{
rt(St, xt) + γV̄t(St, xt)

]}
∀ St ∈ S. (2.13)

Note that the expectation is hidden inside the function V̄t, which turns the problem into a

deterministic optimization problem. The new formulation now allows us to rewrite the optimality

equation in terms of the post-decision value function

V̄t(St−1, xt−1) = E

[
max

xt∈X (St)

{
rt(St, xt) + γV̄t(St, xt)

}∣∣∣∣St−1, xt−1

]
∀ St ∈ S, xt ∈ X (St).

(2.14)

Such a formulation is clearly advantageous in decision problems with large action spaces, where

only a subset of actions is relevant for the state transition. We make extensive use of the post-

decision value function in Chapter 4, where the maximization problem requires solving a large

mathematical program.

Up to now, we have assumed that we compute a separate value for each state-action pair.

However, this strategy does not yet solve the dimensionality problem. A strength of approximate

dynamic programming is to solve the optimization problem by approximating the (post-decision)

value function by a function of much lower complexity. This function, called the approximate

value function, takes advantage of the fact that in most problems knowing something about one

state may tell us something about another.

Assume that we have an approximate value function V̄ ( · ;wt) dependent on a parameter

vector wt ∈ RK . The objective of an approximate dynamic programming algorithm is to find a

wt that minimizes the approximation error,

min
wt

{
‖V̄t(St, xt;wt)− V̄t(St, xt)‖

}
, ∀ 1 ≤ t ≤ T − 1. (2.15)

The resulting function is then an approximation of the expectation given in (2.14), i.e.,

V̄t(St, xt;wt) ≈ V̄t(St, xt), ∀ 1 ≤ t ≤ T − 1. (2.16)

Since both functions are defined recursively, finding the optimal parameter vector requires solv-

ing the recursion and constructing an approximation simultaneously. Let us introduce two

algorithms that are capable of solving this problem efficiently.

Approximate Value Iteration

Due to its simplicity, the most widely used ADP algorithm is approximate value iteration. An

outline of the algorithm is shown in Figure 2.3. The algorithm is initialized with an approximate

value function V̄t( · ;w0
t ) and a set of (possibly identical) initial states Sn1 . Then, over N
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(1) Input arguments: approximate value function V̄t( · ;w0
t ), t = 1, . . . , T ; initial states (Sn1 )Nn=1

(2) Do for n = 1, 2, . . . , N

(2.1) Do for t = 1, 2, . . . , T − 1

(2.1.1) Solve xnt = arg max x∈X (Sn
t )

{
rt(S

n
t , x) + γV̄t(S

n
t , x;wn−1t )

}
(2.1.2) Simulate Snt+1 = SM (Snt , x

n
t )

(2.2) Solve vnT = max x∈X (Sn
T )

{
rT (SnT , x) + γV̄T (SnT , x;wT )

}
(2.3) Do for t = T − 1, T − 2, . . . , 2

(2.3.1) Compute vnt = rt(S
n
t , x

n
t ) + γvnt+1

(2.3.2) Update wnt−1 = UV (V̄t−1, w
n−1
t−1 , S

n
t−1, x

n
t−1, v

n
t )

(3) Return approximate value function V̄t( · ;wNt ), t = 1, . . . , T − 1

Figure 2.3: Approximate value iteration for finite horizon problems

iterations, it alternates between a forward pass (Step 2.1) and a backward pass (Steps 2.2-2.3).

At each iteration of the forward pass, the algorithm chooses the action that maximizes the sum

of the immediate reward and the current estimate of the discounted post-decision value (Step

2.1.1). The algorithm then calls the simulation model SM which generates the next state given

the current state and action (Step 2.2.2). At each iteration of the backward pass, the algorithm

first recursively computes the discounted value of the state-action pair sampled during the

forward pass (Step 2.2.1),

vnt = rt(S
n
t , x

n
t ) + γvnt+1. (2.17)

Then, it passes this value to the updating function UV (see Section 2.2.3) to update the estimate

of the approximate value function of the previous state-action pair (Step 2.2.2). In Step 3, the

algorithm returns the final approximation of the post-decision value function.

Note that many implementations of approximate value iteration update the value function

during the forward pass. While this is inevitable in infinite horizon problems, as we will see

shortly, in finite horizon problems, it would take T iterations of the outer loop to pass information

from the final stage to the first stage, which slows down convergence of the algorithm.

In Chapter 4, a variant of approximate value iteration is used to solve a multi-stage stochastic

programming problem.

Approximate Policy Iteration

Another popular ADP algorithm is approximate policy iteration. The label policy iteration

is somewhat misleading, since we are still updating the value function. In the reinforcement
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(1) Input arguments: approximate value function V̄t( · ;w0
t ), t = 1, . . . , T ; initial states (Sn1 )Nn=1

(2) Do for m = 1, 2, . . . ,M

(2.1) Do for n = 1, 2, . . . , N

(2.1.1) Do for t = 1, 2, . . . , T − 1

(2.1.1.1) Solve xn,mt = arg max x∈X (Sn,m
t )

{
rt(S

n,m
t , x) + γV̄t(S

n,m
t , x;wm−1t )

}
(2.1.1.1) Simulate Sn,mt+1 = SM (Sn,mt , xn,mt )

(2.1.2) Solve vn,mT = max x∈X (Sn,m
T )

{
rT (Sn,mT , x) + γV̄T (Sn,mT , x;wT )

}
(2.1.3) Do for t = T − 2, T − 2, . . . , 2

(2.1.3.1) Compute vn,mt = rt(S
n,m
t , xn,mt ) + γvn,mt+1

(2.4) Update wmt = UP
(
V̄t, w

m−1
t , (Sn,mt , xn,mt , vn,mt )Nn=1

)
, t = 1, . . . , T − 1

(3) Return approximate value function V̄t( · ;wMt ), t = 1, . . . , T − 1

Figure 2.4: Approximate policy iteration for finite horizon problems

learning community, this class of algorithms is therefore also referred to as batch methods. The

idea is to store a batch of observations of (St, xt, vt+1) tuples and update the value function after

a complete batch has been collected. An outline of the algorithm is shown in Figure 2.4.

What immediately stands out is that approximate policy iteration has an additional outer

loop. During each iterations of this outer loop, the algorithm performs N forward and backward

passes as in approximate value iteration. However, instead of updating the approximate value

function during the backward pass, the algorithm stores the entire information about state,

action, and value collected during all N sample paths. After N iterations of the second loop,

the algorithm passes the collected information to the updating function UP to obtain a new

estimate of the approximate value function.

An obvious disadvantage of approximate policy iteration is that it only updates the value

function every N iterations. However, if updating the value function is computationally expen-

sive while generating new samples is not, then approximate policy iteration may be the better

choice.

2.2.2 Infinite Horizon Problems

In line with our presentation of infinite horizon MDPs, we drop the time index and replace St+1

with S′. The steady state version of the post-decision value function is then given by

V̄ (S, x) = E

[
max

x′∈X (S′)

{
r(S′, x′) + γV̄ (S′, x′)

}∣∣∣∣S, x] ∀ S ∈ S. (2.18)
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(1) Input arguments: approximate value function V̄ ( · ;w0), initial state S0, x0

(2) Do for n = 1, 2, . . . , N

(2.1) Simulate S′ ← SM (S, x)

(2.2) Solve x′ ← arg max x′∈X (S′)

{
r(S′, x′) + γV̄ (S′, x′;w)

}
(2.3) Compute v ← r(S′, x′) + γV̄ (S′, x′;w)

(2.4) Update w ← UV (V̄ , w, S, x, v), S ← S′, x← x′

(3) Return approximate value function V̄ ( · ;w)

Figure 2.5: Approximate value iteration for infinite horizon problems

The algorithmic strategies used for solving infinite horizon problems are essentially the same as

for finite horizon problems, but there are a few subtleties.

Approximate Value Iteration

In contrast to the finite horizon case, approximate value iteration for infinite horizon problems

updates the approximate value function during one single forward pass. An outline of the

algorithm is shown in Figure 2.5.

After observing a state transition from S to S′ (2.1), the algorithm chooses an action x′ that

maximizes the expected discounted reward based on its current estimate about the post-decision

value (2.2). Then, the algorithm computes the value estimate of the new state and action (2.3),

updates the parameters of the approximate value function with the new information, and sets

S ← S′ and x ← x′ (2.4). When the iteration counter reaches N , the algorithm returns

the approximate value function (3). This algorithm has been first proposed in Rummery and

Niranjan (1994) and is often referred to as SARSA, as it requires the current State and Action,

the Reward, and the next State and Action for an update (Sutton and Barto, 1998, p. 146).

Of course, one could also include a backward pass. This immediately makes sense if we

assume that all policies have an absorbing state, e.g., the decision-maker sells all of his assets.

However, a difficulty with infinite horizon problems is that we may update the same state

multiple times during a backward pass which distorts its value estimate. Nevertheless, there

exists a variant of approximate value iteration which passes information backwards through

time. The idea is to update the value estimates of a number of previous states but to discount

the weight of the update depending on the temporal difference between the updated state and

the current state. This variant of approximate value iteration was first proposed by Sutton

(1988) and is known as temporal difference (TD) learning. It largely depends on the problem

whether adding a backward pass really makes the difference (Sutton and Barto, 1998, Ch. 7).
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(1) Input arguments: approximate value function V̄ ( · ;w0), initial state S0, x0

(2) Do for m = 1, 2, . . . ,M

(2.1) Do for n = 1, 2, . . . , N

(2.1.1) Simulate Sn ← SM (Sn−1, xn−1)

(2.1.2) Solve xn ← arg max x∈X (Sn)

{
r(Sn, x) + γV̄ (Sn, x;wm−1)

}
(2.1.3) Compute vn ← r(Snt , x

n) + γV̄ (Sn, xn;wm−1)

(2.2) Update wm = UP
(
V̄ , wm−1, (Sn, xn, vn)Nn=1

)
(2.3) Set S0 ← SN , x0 ← xN

(3) Return approximate value function V̄ ( · ;wM )

Figure 2.6: Approximate policy iteration for infinite horizon problems

An application of approximate value iteration to approximate the value function of an infinite

horizon semi-Markov decision process can be found in Chapter 5.

Approximate Policy Iteration

Just like approximate value iteration, the inner loop of approximate policy iteration for infinite

horizon problems has only a single forward pass, during which the algorithm generates a sample

path of state-action-value tuples. An outline of the algorithm is shown in Figure 2.6. As in the

finite horizon case, the algorithm updates the value function after a batch of N tuples has been

collected. Since there exists no fix initial state in infinite horizon problems, the last state of the

previous pass is used as initial state during the next forward pass.

In Chapter 3, a variant of approximate policy iteration is used to approximate the value

function of an infinite horizon Markov decision process which is defined on a continuous state

space.

2.2.3 Value Function Approximation

So far, the approximate value function has only been vaguely described by its dependence on

a vector of parameters. Let us now assume that we approximate the original value function

by a linear combination of K basis functions φk, where each basis function is multiplied with

a real-valued weight wk, k ∈ {1, 2, ...,K}. A basis function φk can be an arbitrary (possibly

non-linear) function of S and x. Denote w and Φ as the corresponding vectors of length K and
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w> as the transpose of the weight vector. Then, the approximate value function is given by

V̄ (S, x;w) = w>Φ(S, x) =
K∑
k=1

wkφk(S, x). (2.19)

To avoid notational clutter, let us drop the possible dependence of V̄ , S, x, and w on t, since

the difference between finite and infinite horizon is irrelevant to function approximation.

Updating Mechanisms

In approximate value iteration, the updating function UV is typically based on stochastic gra-

dient algorithms (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Powell, 2007). A

stochastic gradient algorithm adjusts the weight vector w after each observation in the direction

that minimizes the mean squared error

min
w

1

2

(
V̄ (Sn, xn;w)− vn+1

)2
. (2.20)

For a linear function, the stochastic sample gradient with respect to w is given by Φ(S, x). Since

the actual gradient is unknown, the stochastic gradient algorithm adjusts the weight vector in

the direction of the gradient only by a small amount αt ∈ (0, 1], referred to as stepsize. The

function UV that updates the weight vector is then given by

UV
(
wn−1, S, x, v

)
= wn−1 + αt

(
v − V̄ (S, x;wn−1)

)
Φ(S, x). (2.21)

For a stationary policy, the weight vector w is guaranteed to converge to a local optimum as long

as we gradually reduce the stepsize to zero (Bertsekas, 2007, p. 333). Practical convergence,

however, is largely affected by choosing the right stepsize for each updating step. Although

the optimal stepsize schedule is unknown, experimental work has shown that there exist simple

stepsize rules that work well in practice. A rule that is simple yet effective is the generalized

harmonic stepsize, which is given by

αn =
a

a+ n− 1
b, (2.22)

with a ∈ R+ and b ∈ (0, 1] as scaling parameters. See (Powell, 2007, Ch. 6), for a review

of deterministic as well as stochastic stepsize rules. Ryzhov et al. (2011) propose an optimal

stepsize rule which chooses the stepsize automatically such that the mean squared error after

each new observation is minimized. In this work, we are going to assume that (2.22) is used

unless noted otherwise.

An alternative to using stochastic gradients and perform an update after each transition is
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to collect a batch of observations and then using (non-) linear regression to update the weight

vector. We apply this strategy in approximate policy iteration, where the updating function UP

receives an entire batch of observations. Batch-wise updating is particularly useful when we are

fitting continuous functions, e.g., polynomials or radial basis functions (see Section 2.2.3).

The most commonly used method to estimate the weights of a linear value function for a

given set of observations is least squares. We can use least squares to estimate the weight vector

w if we assume that all basis functions in Φ(S, x) are linearly independent. The weight vector

is then computed by solving

UP
(
V̄ , wm−1, (Sn, xn, vn)Nn=1

)
= (1− αm)wm−1 + αm

(
N−1∑
n=1

Φ(Sn, xn)Φ>(Sn, xn)

)−1(N−1∑
n=1

Φ(Sn, xn)vn+1

)
. (2.23)

An advantage of using least squares over stochastic gradients is that it converges with fewer

training samples and is not as sensitive to the choice of the stepsize parameter (Boyan, 2002). A

major disadvantage, however, is that if we update too frequently efficiency becomes a problem,

since (2.23) involves solving a system of linear equations. To combine the updating frequency of

approximate value iteration with the efficiency of least squares estimation, we can use recursive

least squares (RLS) instead. While RLS has only O(n2) time complexity, keep in mind that the

stochastic gradient algorithm has an even lower O(n) time complexity and that only coefficients

of non-zero basis functions need to be updated. For an analysis of using least squares for

approximate policy iteration, see Boyan (2002); Nedic and Bertsekas (2003); Lagoudakis and

Parr (2003).

State Aggregation

A special type of a linear function approximation is state aggregation, where the state space is

partitioned into a manageable number of K disjoint subsets A, i.e.,

S × X =
K⋃
k=1

Ak. (2.24)

Instead of storing a separate value for each state, we aggregate several states in one set and only

store one value for each set. The easiest way to think of state aggregation is as a coarse grid

laid over the state space (Sutton and Barto, 1998, p. 204).

To represent state aggregation as a linear combination of basis functions, each basis function
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can be viewed as an indicator function 1Ak
which is defined as

φk(S, x) = 1Ak
(S, x) =

1 if (S, x) ∈ Ak,

0 otherwise
∀ k = 1, . . . ,K. (2.25)

The indicator function returns 1 when the state-action tuple (S, x) is a member of partition Ak
and 0 otherwise. This concept is related to that of dummy variables often used in regression

analysis to represent categorical variables.

An approximate value function that uses K indicator functions as basis functions is given by

V̄ (S, x;w) = w>Φ(S, x) =

K∑
k=1

wk1A(S, x). (2.26)

If Equation (2.24) holds, then V̄ (S, x;w) returns wk if (S, x) ∈ Ak(S, x), in which case the

updating step given in (2.21) simplifies to

wnk = UV
(
wn−1, S, x, v

)
= wn−1

k + αn(v − wn−1
k ) (2.27)

Evidently, updating the weight of a single basis function using stochastic gradients is far more

efficient than updating the entire matrix of basis function values as it is done by least squares

methods.

Although coarse grids are often used for state aggregation in approximate dynamic pro-

gramming, they do not solve the dimensionality problem, since the size of the state space still

increases exponentially in the number of state variables. A way to deal with this problem is

by allowing the subsets to overlap so that each state is mapped to multiple subsets. Instead of

updating one subset at a time, several subsets are being updated simultaneously. An efficient

data structure that allows subsets to overlap is the CMAC neural network (Glanz et al., 1991),

which can be viewed as multiple layers of the same grid shifted against one another. Another

way to implement overlapping subsets is by combining multiple levels of aggregation (Powell,

2007, p. 233). An application of state aggregation to approximate the value function of a

stochastic production planning problem is given in Chapter 5, where a linear combination of

piecewise-constant functions is used to approximate the value function.

Regression Models

A problem of state aggregation is its poor ability to interpolate, so that approximation er-

rors at the boundaries of a subset get large when the value function becomes steeper. Let us

briefly introduce two linear architectures which circumvent this problem and are well-suited to

approximate continuous value functions.
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In empirical research, the influence of a vector of input variables on an output variable

is often modeled as a polynomial function. An advantage of using polynomials is that we

can approximate high-dimensional continuous value functions through a function which has a

relatively low number of terms. For example, with n and m being the dimension of the state and

action space, respectively, a second-order polynomial has at most (n+m−1)(n+m)/2+n+m+1

terms. Moreover, if we use a second- or third-order polynomial as approximate value function,

we can find an optimal action analytically. Using higher-order polynomials, we lose this property

and have to resort to numerical techniques.

For example, assume that states and actions are both scalar and that a second-order poly-

nomial is used. Then, the approximate value function is given by

V̄ (S, x;w) = w0 + w1S + w2x+ w3S
2 + w4Sx+ w5x

2, (2.28)

with the optimum either at x∗ = (−w2 − w4S)(2w5)−1 if w5 6= 0 or at the boundaries of X .

The derivation for larger numbers of state variables follows along the same lines. See Chapter

3, for an application where second- and third-order polynomials are used for value function

approximation.

Finding the global optimum in higher-dimensional action spaces is computationally more

complex. Also, overfitting quickly becomes a problem, if the ratio of sample size to number of

weights is too small. One way to deal with these problems is by including additional assumptions

about the value function. In many resource management problems, for example, the value

function is jointly concave in the resource state. We can include this information by solving

the least squares problem with the additional constraint that the polynomial is jointly concave

in the action variables, which requires solving a semidefinite programming problem (Magnani

et al., 2005; Boyd and Vandenberghe, 2004).

Another powerful class of models for value function approximation are radial basis functions

(RBFs). Like polynomials, RBFs are able to approximate any real-valued function defined on

a compact subspace with arbitrary precision (Park and Sandberg, 1993). An RBF returns a

weighting of the distance between a fixed center point and a query point or a query state, as in

our case. Typical choices of RBFs are Gaussian functions, (inverse) multiquadric functions or

thin-plate splines.

For example, assume that the state space is continuous and normalized, so that S ∈ [0, 1]n,

and there exists a finite number of actions, X = {x̂1, . . . , x̂m}. Also assume that there is a set

of Gaussian radial basis function with center points at ck assigned to each action. Then, each

basis function is defined as

φk(S, x) =

wk exp (−‖ck − S‖2) if x = x̂i,

0 otherwise.
(2.29)
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As opposed to state aggregation, each basis function is defined over the entire state space, but

the weight of the function decreases with increasing Euclidean distance between ck and S.

A question that arises when using radial basis functions is how to define the center points.

If the state space is high-dimensional and the samples only cover a small subset, it makes no

sense to scatter the center points randomly over the state space. A simple solution is to first run

a clustering algorithm to find good center points and then use least squares to find the optimal

weights. Other iterative approaches are in Jung and Polani (2007) or Xu et al. (2007).

A somewhat related approach to function approximation using radial basis functions are

tree-based regression techniques (Ernst et al., 2005). In tree-based regression, all observations

are stored in a spatial data structure which partitions the state space into several regions, e.g.,

k-d-trees (Cormen et al., 2009, Ch. 10). To approximate the value function, the tree returns

the (weighted) average of all observations which are in a neighborhood around the query point.

A radial basis function with its center at the query point can then be used to assign each

observation a weight that depends on its distance to the query point. Alternatively, one can fit

a local model around the query point using locally weighted regression (Atkeson et al., 1997).

This is particularly useful in sparse regions where the sample heterogeneity increases the variance

of the predictor.

2.2.4 Exploration vs. Exploitation

In our discussion of approximate dynamic programming algorithms, we have assumed until

now that all algorithms apply a greedy policy during the forward simulation, i.e., they choose

the action that maximizes the sum of the immediate reward and the current estimate of the

discounted post-decision value. However, since the current policy determines what we know

about the value of an action in a particular state, it could happen that the policy never chooses

the optimal action simply because its estimate of the post-decision value is incorrect. Therefore,

it may be useful to take actions which are considered sub-optimal by the current value estimate

to learn more about what they contribute and into which states they can take us. The question

is, do we exploit our knowledge about an action or do we explore some new territory? Let us

briefly review heuristic learning strategies which trade off exploration against exploitation.

Pure Exploitation

A pure exploitation strategy is identical to the greedy policy, i.e, an action is chosen by solving

xn = arg max
x∈X (Sn)

{
r(Sn, x) + γV̄ (Sn, x;wn−1)

}
. (2.30)

The problem with this strategy is that it may lead to a locally optimal policy, unless we can

ensure that our estimate of the post-decision value is always optimistic, e.g., it is an upper bound
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of the true value. In Chapter 4, we use a pure exploitation strategy, where the approximate

value function is a polyhedral approximation of the true value function. In that case, we can

show that this strategy finds an optimal policy.

Optimistic Initial Values

A simple solution to circumvent the problem of getting stuck in local optima is to start with

optimistic initial values. For example, if the objective is to minimize discounted cost, starting

with a default initial estimate of zero will encourage a greedy policy to explore actions which it

has not tried yet.

Pure Exploration

A pure exploration strategy would be to choose actions randomly. This guarantees that, in the

limit, every state-action pair is going to be sampled infinitely often. Using pure exploration,

actions are chosen as follows

x = xi, i ∼ Ud
(
1, |X |

)
, (2.31)

with Ud as the discrete uniform distribution. In very large problems, however, pure exploration

eventually falls prey to the curse of dimensionality, because we can only cover a small fraction of

the complete state and action space during the sampling process. Nevertheless, pure exploration

can be used during the initial phase of information collection when there still exists no or only

little information about the value of taking an action in a particular state.

Epsilon-Greedy Exploration

The most basic strategy to combine pure exploitation with pure exploration is to use an epsilon-

greedy policy which follows the greedy policy with probability 1− ε and takes a random action

otherwise. Using an epsilon-greedy policy πE , actions are chosen as follows,

xn = πE(Sn, u, i) =


arg max
x∈X (Sn)

{
r(Sn, x) + γV̄ (Sn, x;wn−1)

}
if u < 1− ε,

xi otherwise,

(2.32)

where u ∼ U c(0, 1) and i ∼ Ud
(
1, |X |

)
with U c being the continuous uniform distribution. In

the early iterations, it makes sense to choose ε large and decrease its value as the number of

iterations increases. Another option is to decrease ε depending on the number of times a state

has been visited. However, similar to pure exploration, this strategy only works as long as the

number of actions is small.
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Boltzmann Exploration

A problem with pure or epsilon-greedy exploration is that all actions have the same probability

of being sampled even if these actions yield very poor rewards. A somewhat more elaborate

strategy is to rank all actions by their value estimate and adjust the probabilities accordingly. A

popular exploration strategy in this spirit is Boltzmann exploration, also referred to as softmax

action selection (Sutton and Barto, 1998, p. 30).

Let Q(S, x) = r(S, x) + γV (S, x) and denote N(S) as the number of times that state S has

been sampled. Using a softmax policy πS , at iteration n, we would choose action x in state S

with probability,

P (S, x) =
exp

(
Q(S, x)/τ

)∑
x∈X (S) exp

(
Q(S, x)/τ

) , ∀ x ∈ X , (2.33)

where τ =
(

maxx∈X (S)Q(S, x)−minx∈X (S)Q(S, x)
)
/N(S) serves as scaling factor, with τ → 0

in the limit (see Powell, 2007, p. 328). The softmax policy then chooses an action by recursively

solving,

xn = πS(Sn, 1, u) =

xi if Pn(Sn, xn) ≤ u,

πS(Sn, i+ 1, u) otherwise,
(2.34)

with u ∼ U c(0, 1).

Boltzmann exploration focuses on actions with high value estimates, but still explores actions

which yield very poor rewards. The strategy thereby makes more informed decisions than

epsilon-greedy exploration.

Interval Estimation

One of the central motives of exploration is to reduce uncertainty in the value estimates. How-

ever, neither epsilon-greedy nor Boltzmann exploration take the variance in the estimates into

account. Instead these strategies explore the action space by choosing actions randomly, which

is like searching for a needle in a haystack in large action spaces. An exploration strategy that

circumvents this problem is interval estimation which is designed to reduce the uncertainty in

the estimates. The basic idea behind interval estimation is to add a bonus to the value estimate

that is equal to a certain number of standard deviations above the value estimate.

In (2.14), we defined the post-decision value function as the function of the expected value

of the value after a decision has been made but before transition to the next state,

V̄ (S, x) = E
[
V (S′)|S, x

]
. (2.35)

Accordingly, let us define a function of the corresponding variance of the value after a decision
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has been made, but before transition to the next state,

Var
[
V (S, x)

]
= E

[
V (S′)2

∣∣S, x]− E[V (S′)
∣∣S, x]2. (2.36)

Since the second term of the right-hand side is the squared estimate of the post-decision value,

all we need is an estimate of the squared post-decision value to obtain the first term. Let us

define an approximate squared value function,

V̄ 2(S, x;wσ) ≈ E
[(
V (S′)

)2∣∣∣S, x], (2.37)

with wσ as another parameter vector. An estimate of the standard deviation that is based on

V̄ and V̄ 2 is then given by

σ̄(Sn, xn;wn−1
σ ) =

√
V̄ 2(Sn, x;wn−1

σ )−
(
V̄ (Sn, x;wn−1)

)2
. (2.38)

Together with our point estimate, we can now use the standard deviation to compute an opti-

mistic estimate of the post-decision value, e.g.,

V̄ (Sn, xn;wn−1) + 2σ̄(Sn, xn;wn−1
σ )

/√
N(S, x),

which returns a value two standard deviations above the point estimate. The value converges

towards the point estimate as N(S, x) increases, i.e., in the number of times that (S, x) has been

sampled. A policy based on interval estimation then chooses the next action by solving

xn = arg max
x∈X (Sn)

{
r(Sn, x) + γ

(
V̄ (Sn, x;wn−1) + 2σ̄(Sn, x;wn−1

σ )
/√

N(S, x)
)}

. (2.39)

The weight vectors w and wσ can be updated simultaneously, so that this type of exploration

integrates well with the approximate dynamic programming algorithms described above.

A comparison of different learning strategies as well as a more detailed discussion of the

underlying information collection problem can be found in Powell (2007), Ch. 10.



Chapter 3

Optimal Bidding and Storage of

Renewable Energies

Many European countries today subsidize investments in renewable energies by guaranteeing a

fixed rate for each kilowatt hour of electricity fed into the grid. Since this rate decreases over the

years, a producer of renewable power is going to begin selling electricity directly at the market

as soon as subsidies yield lower profits than direct trading. This combination of renewable power

production and trading has created new investment opportunities but also challenges for power

generating companies.

One challenge is that prices in electricity markets are uncertain. A wholesale electricity

market typically consists of a day-ahead and a real-time market. At the day-ahead market, pro-

ducers (e.g., generating companies) place supply bids and consumers (e.g., electricity providers)

place demand bids which mature at the following day. After the day-ahead market is closed, the

system operator announces a uniform clearing price which depends on the cumulated bids of all

market participants. Since market participants do not reveal their bidding decisions, bidding

eventually takes place under price uncertainty.

Another challenge is that the bidding volume may not match the physical volume generated

by the renewable power source. In that case, the difference is cleared at the real-time market,

also known as the balancing market. If the total difference of demand and supply is positive, the

system operator activates operational reserves, which increases the real-time price. If the total

difference is negative, the system operator deactivates operational reserves, which decreases the

real-time price. Some markets, such as NordPool in Scandinavia, even create asymmetric real-

time prices, so that a negative imbalance always settles above and a positive imbalance always

below the day-ahead price. A renewable power producer therefore has to account for the cost

that arises when a bid does not match supply. Moreover, in a market with a significant share

of solar or wind power, producers are going to use the same weather forecasts, which leads to

25



26 CHAPTER 3. OPTIMAL BIDDING AND STORAGE OF RENEWABLE ENERGIES

a correlation of forecast errors and real-time price deviations. Bidding decisions of renewable

power producers therefore take place under price and supply uncertainty.

Most literature on optimal bidding strategies in electricity markets deals with supplier in-

teraction and the commitment of thermal units. See Wen and David (2000) for an overview.

Renewable power producers, however, are often too small to exercise market power and influence

other player’s decisions. Only few authors deal with the optimal bidding strategy of renewable

power producers. Bathurst et al. (2002) propose a stochastic model to minimize the expected

cost of balancing. The authors assume that real-time prices are known in advance and develop a

stochastic supply model from historical data. Matevosyan and Söder (2006) propose a two-stage

stochastic program to minimize the cost of balancing of a wind power producer. The authors

use price scenarios and model wind power supplies as an autoregressive (ARMA) model.

An even greater challenge arises when a renewable power producer has the additional option

to store electricity. Storage can then be used as a hedge against the costs of balancing and

allows the producer to respond to market prices. In addition to price and supply uncertainty, an

optimal bidding strategy has to account for future price and supply realizations as well as future

bidding decisions. The ability of energy storage to take advantage of arbitrage opportunities is

addressed in Graves et al. (1999), although not in combination with renewable energies. Optimal

bidding strategies for hybrid systems of wind power generation and energy storage are addressed

in Bathurst and Strbac (2003), Korp̊as and Holen (2006) and Brunetto and Tina (2007) for

deterministic supply and price paths. Uncertainty is considered in Fleten and Kristoffersen

(2007) and Garćıa-González et al. (2008) who model optimal bidding strategies as two-stage

stochastic programs. However, there still exists a research gap for models that consider both,

supply and price uncertainty, as well as making bidding decisions over time.

Note that renewable power sources, such as wind or solar, do not have the natural means

to control their energy output, and for them storage capacity requires additional investments.

The most common storage scheme is pumped-hydro storage, where water is pumped into an

elevated reservoir to consume excess electricity and released to generate electricity when it is

needed later on. See Schainker (2004) for an overview of different energy storage technologies.

We propose to model the optimal bidding problem of a renewable power producer with

storage as a continuous-state Markov decision process (MDP). A feature of the MDP is that an

optimal bidding strategy derived from solving the problem not only considers price and supply

uncertainty, but also takes future states and decisions into account. The difficulty with this

formulation is that generic solution algorithms for MDPs, such as value or policy iteration, are

subject to the curse of dimensionality. These algorithm are therefore only capable of computing

an optimal bidding strategy for a small number of discrete states and decisions with known

transition matrix. However, the state and action space of the bidding problem is continuous

and a discretization with increasing resolution is computationally intractable.
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To circumvent the curse of dimensionality and solve the problem efficiently, we propose a

solution based on approximate dynamic programming (ADP). The ADP strategy presented in

this chapter goes back to a class of methods known as temporal difference (TD) learning (Sutton

and Barto, 1998). These methods learn the value function of an MDP by controlling the decision

process according to some policy and iteratively updating the value function estimate. We will

focus on a variant known as least squares policy evaluation (LSPE) (Nedic and Bertsekas, 2003)

which approximates the value function by a set of linearly independent basis functions, where

the function weights are estimated by least squares methods. A key advantage of using LSPE for

our problem is that this method can handle a continuous state space. In line with Lagoudakis

and Parr (2003), we combine LSPE with policy iteration to approximate the value function

and to find a near-optimal policy, i.e., we iteratively find a near-optimal bidding strategy. For

policy evaluation and improvement, our ADP algorithm has access to a simulation model of the

stochastic decision process.

As a benchmark, we compute the transition matrix for an equivalent discrete state MDP

and use linear programming to determine an optimal solution. We then compare the LP policy

against two ADP policies with different value function approximations. Additionally, to study

the influence of model parameters on discounted rewards, we analyze the response surface with

a regression model.

3.1 Model Formulation

3.1.1 Markov Decision Process

We assume that during each day the renewable power producer places a bid at the day-ahead

market before observing the realization of price and supply. If the realized supply is below the

volume of a bid, the producer first empties the storage and then purchases the remainder at the

real-time market. If the realized supply exceeds the bidding volume, the producer first stores

excess supply before using the real-time market to clear the imbalance.

The power producer is assumed to be price-taker and the bidding strategy does not affect

the bidding behavior of other market participants – think of a small player such as an individual

wind farm operator. Since the marginal value of wind power is zero, we assume that the producer

places a fixed-volume bid for any realization of the uncertain price. Price and supply follow an

autoregressive stochastic process so that both observations contain information on price and

supply of the following day. A bid that does not match supply is automatically balanced by

the system operator. We assume that the price of positive reserve is always u times higher and

the price of negative reserve always o−1 times lower than the day-ahead price. We aggregate

reservoir, pump and generator capacity as storage capacity. Charges and discharges are subject

to losses; the total loss is referred to as round-trip efficiency.
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Each period the power producer observes the current market price p as well as renewable

power supplies y. The producer furthermore observes the amount of energy available in storage

g at the end of period previous period. These three variables constitute a state of the process

S = {y, p, g} ∈ S, with S as the state space. The transition function P (S′|x, S) denotes the

probability that the next state will be S′ given that the previous state was S and decision x

was made. Based on this information, the producer makes a bidding decision x ∈ X . Then, a

random transition to the next state occurs, in which the bid matures, and the producer obtains

a reward r(S, x, S′) that depends on the bid as well as the transition from S to S′.

The objective of the power producer is to select a policy π(S) that assigns each state in S a

decision in X such that the expected discounted cash flow of rewards is maximized. Let us state

the objective function as the following infinite horizon, discounted Markov decision process,

V (S) = max
x∈X

{∫
S′∈S

P (S′|S, x)
(
r(S, x, S′) + γV (S′)

)
dS′
}
, (3.1)

with V being the value function and γ being the discount factor.

Denote C as storage capacity and c+ (c−) as the amount of energy charged (discharged)

during a period and η+ (η−) as the efficiency of the charging (discharging) process with 0 <

η± ≤ 1, i.e.,

c+ = max
{

min
{
y′ − x, C − g

η+

}
, 0
}
, (3.2)

c− = max
{

min
{
x− y′, η−g

}
, 0
}
. (3.3)

The storage state transition from g to g′ is deterministic for given realizations of price and

supply. In case of a positive imbalance, the final storage level in the next period is C, and in

case of a negative imbalance the final storage level is zero. The storage balance equation is given

by

g′ = g + η+c+ − c−

η−
. (3.4)

Rewards r(S, x, S′) are uncertain and depend on the capability to match the bid x with available

capacity in the next period. If a bid exceeds renewable power supplies, the storage is discharged

until x− c−− y′ = 0. Then the producer has to pay u · p′ with u > 1 to the system operator for

each unit of negative imbalance. If a bid is lower than renewable power supplies, the storage is

charged until y′ − x− c− = 0. Then the producer receives o · p′ with 0 ≤ o < 1 from the system
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operator for each unit of positive imbalance. The reward function is given by

r(S, x, S′) =

(y′ + c−)p′ − up′(x− y′ − c−) if x > y′,

xp′ + op′(y′ − x− c+) otherwise.
(3.5)

Note that the limitation of first using storage to clear an imbalance and then the real-time

market may not be an optimal ex-post decision for all realizations of price and supply.

3.1.2 Stochastic Processes

In line with the literature, we assume that the stochastic processes of price and supply follow a

first-order autoregressive process, i.e., an AR(1) process with normally distributed error terms.

Moreover, as soon as multiple renewable power producers trade in the same market, their supplies

will be positively correlated and the market price will move inversely proportional to the overall

renewable supply – an effect that has already been observed with wind power supplies and spot

market prices in Germany (Neubarth et al., 2006). We therefore additionally assume that the

price is dependent on supply to account for the homogeneous trading patterns of renewable

power producers.

We define mean, variance, autocorrelation and correlation of price and supply exogenously.

Denote Y as the autoregressive process of supply with mean µY , variance σ2
Y and autocorrelation

θY ∈ [0, 1). Since the realized supply y of the previous period partially explains the supply

realization y of the current period, it has a direct effect on mean and variance of the overall

stochastic process. The autoregressive supply process with given mean and variance is modeled

as

y′ = θY y + εY with εY ∼ N(µεY , σ
ε
Y ), (3.6)

µεY = (1− θY )µY , (3.7)

σεY =
√

(1− θ2
Y )σ2

Y . (3.8)

Equations (3.7) and (3.8) adapt the moments of the error term εYt , such that the supply process

has mean µY and variance σ2
Y .

Denote P as the stochastic process of the price with mean µP , variance σ2
P , autocorrelation

θP ∈ [0, 1) and parameter θPY to control the dependence of P on Y . In this case, the current

price p′ is partially explained by the realized price p of the previous period as well as the random

change in supplies of the current period. The stochastic model is then given by

p′ = θP p+ θPY (y′ − θY y) + εP , with εPt ∼ N(µεP , σ
ε
P ), (3.9)

µεP = (1− θP )µP − θPY (1− θY )µY , (3.10)



30 CHAPTER 3. OPTIMAL BIDDING AND STORAGE OF RENEWABLE ENERGIES

σεP =
√

(1− θ2
P )σ2

P − θ2
PY (1− θ2

Y )σ2
Y . (3.11)

As before, equations (3.10) and (3.11) adapt the moments of the error term εP such that the

price process has the intended mean and variance. Moreover, the parameter θPY controls the

dependency of prices on supplies. Let us define the correlation of price and supply which is used

as an exogenous parameter later on,

ρ =
θPY (1− θ2

Y )

1− θY θP

√
σ2
Y

σ2
P

with |ρ| ≤

√
(1− θ2

Y )(1− θ2
P )

1− θY θP
. (3.12)

By rearranging terms, we can compute θPY as a function of autocorrelation and correlation of

Y and P , which allows to model both processes with a given correlation. Note that Equation

(3.11) is undefined for some θP , θY and θPY , such that the correlation coefficient ρ is bounded

from above and below.

3.2 Solution Methods

We approximate the optimal policy of the proposed Markov decision process by using an al-

gorithm which iteratively combines policy evaluation and policy improvement. The algorithm

thereby approximates the value function of a given policy and then uses the learned relationship

of state and reward to improve the policy.

To assess the solution quality of this approach, it is desirable to know the optimal policy.

If we relax the assumption of a continuous state space and use a discrete state space instead,

we can compute the transition matrix and have linear programming compute an optimal policy.

We use this discrete policy as a benchmark for the ADP policy.

3.2.1 Computing the Transition Matrix

For a discrete solution of the value function (3.1), we need a discrete representation of the state

transition function, which we refer to as transition matrix. Such a discrete state transition is

characterized by discrete realizations of the random variables P and Y as well as a discrete

storage state transition. As a result, we need a formulation of the conditional probabilities

of price and supply defined over a discrete set of state values. To determine the conditional

probability of supply PY (y′|y), we restate (3.6), such that

εY = y′ − θY y, (3.13)
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With ΦY ∼ N(µεY , σ
ε
Y ) as the probability distribution of the random shock εY , the cumulated

probability of y′ conditional on y then becomes

PY (y′|y) = ΦY (y′ − θY y). (3.14)

If we define the stochastic supply process over the discrete set Y d = {YL, ..., YU} for the dis-

crete probabilities P dY it needs to hold that
∑

y′∈Y d P dY (y′|y) = 1 ∀ y. To map the continuous

distribution ΦY to the finite set Y d, we round all real values to the next integer and cumulate

the probability mass of the tails at the upper and lower bounds. Then, the truncated discrete

conditional probability of supply is

P dY (y′|y) =


ΦY (YL − θY y + 0.5) if y′ = YL,

1− ΦY (YU − θY y − 0.5) if y′ = YU ,

ΦY (y′ − θY y + 0.5)− ΦY (y′ − θY y − 0.5) if YL < y′ < YU .

(3.15)

Accordingly, we derive the conditional probability of the price PP (p′|p, y′, y) by mapping the

distribution ΦP ∼ N(µεP , σ
ε
P ) to the discrete set P d = {PL, ..., PU}. We restate (3.9) as before

and the truncated discrete conditional probability of the price becomes

P dP (p′|p, y, y′) =



ΦP (PL − θP p− θPY (y′ − θY y) + 0.5) if p′ = PL,

1− ΦP (PU − θP p− θPY (y′ − θY y)− 0.5) if p′ = PU ,

ΦP (p′ − θP p− θPY (y′ − θY y) + 0.5)

−ΦP (p′ − θP p− θPY (y′ − θY y)− 0.5) if PL < p′ < PU .

(3.16)

To complete the discrete transition function, we restate the storage balance equation of (3.4).

As it is difficult to model a discrete storage state transition with η < 1.0 we assume perfect

round-trip efficiency so that the storage balance simplifies to

g′ = max
{

min
{
y′ + g − x,C

}
, 0
}
. (3.17)

By this, we avoid additional rounding errors when using the discrete policy as benchmark to

control the continuous-state process.

With this discretization of the stochastic process, we can formulate the probability transition

matrix P(S′|S, x) which assigns a probability to each transition from a state S to a subsequent

state S′ after decision x has been made. The matrix is defined as

P(S′|S, x) =

P dY (y′|y)P dP (p′|y, y′, p) if g′ = max
{

min
{
y′ + g − x,C

}
, 0
}
,

0 otherwise.
(3.18)
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The transition probabilities are computed by multiplying the conditional probabilities of price

and supply subject to a constraint on the storage balance. If (3.17) does not hold, the storage

transition is infeasible and its probability set to zero.

3.2.2 Linear Programming Formulation

Denote V (S) as the decision variable of the linear program. With P(S′|S, x) as the probability

of a state transition from state S to state S′ after decision x is made and r(S, x, S′) as the

corresponding reward, we can state the discrete state, infinite horizon Markov decision process

as

min
V (S)∈R

∑
s∈S

∑
x∈X

V (S) (3.19)

s.t. V (S) ≥
∑
S′∈S

P(S′|S, x)
(
r(S, x, S′) + γV (S′)

)
∀ s ∈ S, x ∈ X (3.20)

The optimal policy is found by selecting π(S) = x where (3.20) is binding. In case no constraint

is binding, an arbitrary decision is chosen (Puterman, 2005, p.223).

The tractability of this method is limited by the |S|-dimensional decision vector with |S|×|X |
inequality constraints and the necessity of a transition matrix. For the benchmark, we therefore

compute the optimal policy only for a small discrete state space.

3.2.3 Least Squares Policy Evaluation

A widely used algorithm in approximate dynamic programming is temporal difference (TD)

learning (Sutton and Barto, 1998) which combines Monte Carlo simulation with dynamic pro-

gramming. Denote V̄ as the post-decision value function which returns the expected value after

a decision has been made,

V̄ (S, x) =

∫
S′∈S

P (S′|S, x)
(
r(S, x, S′) + γV (S′)

)
dS′. (3.21)

Suppose that we use a simulation model to sample N state transitions, where each transition

gives us a realization of the expectation. The TD learning algorithm updates the value estimate

of a given state S and decision x by observing the reward and the discounted value of the

subsequent state associated with the simulated state transition. The value estimate after n

iterations is given by

V̄ n+1(Sn, xn) = V̄ n(Sn, xn) + αn
(
r(Sn, xn, Sn+1) + γV̄ n(Sn+1, xn+1)− V̄ n(Sn, xn)

)
, (3.22)

where the parameter αn ∈ (0, 1] is used to smooth the updates of the estimates.
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The updating step in (3.22) only works if we assume that the state space is discrete. Since

we are dealing with a continuous state and action space, however, let us resort to another

popular approximation architecture. Assume that V̄ (S, x;w) is a linear combination of basis

functions φi(S, x) with weights wi and k ∈ {1, 2, ...,K} which approximates the true value

function. Denote w and Φ(S, x) as the corresponding vectors of length K with w> and Φ> as

their transposes. Then, the approximate value function is defined as

V̄ (S, x;w) =

K∑
k=1

wkφk(S, x) = w>Φ(S, x) ≈ V̄ (S, x). (3.23)

A basis function φk(S, x) may be any non-linear function of S and x. If all basis functions in

Φ(S, x) are linearly independent, we can use ordinary least squares to estimate the weight vector

w, such that

w =

(
N−1∑
n=1

Φ(Sn, xn)Φ>(Sn, xn)

)−1(N−1∑
N=1

Φ(Sn, xn)r(Sn, xn, Sn+1)

)
. (3.24)

This gives us an approximation of the function of expected immediate rewards, which would be

sufficient for γ = 0.0. However, a basic idea of TD learning is that future rewards are included in

the value function. Let wm−1 be an estimate of w at iteration m, before a least squares update

is made. Then, we can use V̄ (S, x;wm−1) to obtain a value estimate of the action taken at the

successive state, such that

wm =

(
N−1∑
n=1

Φ(Sn, xn)Φ>(Sn, xn)

)−1

×

(
N−1∑
n=1

Φ(Sn, xn)
(
r(Sn, xn, Sn+1) + γV̄ (Sn+1, xn+1;wm−1)

))
. (3.25)

By repeating the least squares update over M iterations while collecting new samples, we can

approximate the value function associated with the given policy. This algorithm is known

as least squares policy evaluation (Nedic and Bertsekas, 2003). In the next section, we are

going to present an approximate policy iteration algorithm which uses this method for policy

improvement.

3.2.4 Approximate Policy Iteration

The idea of combining least squares updates with policy iteration has been first proposed in

Lagoudakis and Parr (2003). The authors use the approximate value function of a given policy

to compute an improved policy which is then used to construct a new approximate value function.
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(1) Input arguments: approximate value function V̄ ( · ;w0); initial state S

(2) Define function z(m, k) =
(
(m− 1)N + kmodD

)
+ 1

(3) Do for m = 1, 2, . . . ,M

(3.1) Do for n = 0, 1, . . . , N − 1

(3.1.1) x← πE(S)

(3.1.2) Lz(m,n) ← (S, x)

(3.1.3) S′ ← SM (S, x)

(3.2) wm ←
(∑z(m,D−1)

d=z(m,1) Φ(Sd, xd)Φ
>(Sd, xd)

)−1
×
(∑z(m,D−1)

d=z(m,1) Φ(Sd, xd)
(
r(Sd, xd, Sd+1) + γV̄ (Sd+1, xd+1;wm−1)

))
(4) Return approximate value function V̄ ( · ;wM )

Figure 3.1: Least squares approximate policy iteration

The least squares approximate policy iteration (LSAPI) algorithm used in this chapter is shown

in Figure 3.1.

The algorithm performs M value function updates, i.e., policy improvement steps. At each

iteration m, it generates a sample of N state transitions by following policy πE and then up-

dates the weight vector. A simple random exploration policy is sufficient, e.g., epsilon-greedy

exploration, since the action space is only one-dimensional. The function SM (S, x) implements

the simulation model of the Markov decision process which produces a new state S′ for a given

state and action. The set L = {(S, x, r)1, . . . , (S, x, r)D} represents a circular list implementa-

tion which stores a set of D state-action tuples that have been sampled sequentially. The least

squares update is then made over the entire set. However, to speed up learning and ensure

stability of the least squares update, only a fraction of the entire set is being changed at each

iteration m, i.e., D = kN with 1 ≤ k ≤M , k ∈ N.

3.3 Numerical Results

Our research goals are to study the performance of the approximation algorithm for differ-

ent parameter configurations and to analyze the influence of changes in model parameters on

discounted rewards.
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# Parameter Default Value Lower Bound Upper Bound

1 Supply Std Deviation (σY ) 2 1 4
2 Supply Autocorrelation (θY ) 0.5 0.0 0.75
3 Price Std Deviation (σP ) 2 1 4
4 Price Autocorrelation (θP ) 0.5 0.0 0.75
5 Correlation of Y and P (ρPY ) -0.5 -0.75 0.0
6 Storage Capacity (C) 4 0 10
7 Storage Efficiency (η) 1 0.5 1
8 Discount Rate (γ) 0.9 0.0 0.9
9 Negative Imbalance Price Factor (u) 1.0 0.5 2.0

10 Positive Imbalance Price Factor (o) 0.0 0.0 0.5

Table 3.1: Default parameters and parameter ranges for the experimental design

3.3.1 Experimental Design

As experimental design, we adopted a so-called space filling design which samples not only at the

edges of the hypercube which spans the experimental area but also at its interior. We generated

a low-discrepancy Faure sequence to select design points which are uniformly scattered over the

design space. Faure sequences have the useful property that a longer sequence can be constructed

from a shorter one by resuming the sequence while still preserving uniformity, see Chen et al.

(2006) for a review on designs for computer experiments.

As the basic setup for our studies we used default values and parameter intervals as shown in

Table 3.1. Mean supply and mean price are fixed to µY = µP = 5, because their magnitude only

influences the volume but not the structure of the bids as long as the ratios of mean, variance

and capacity are held constant. The storage efficiency is defined by its round-trip efficiency,

η = η+η−.

To ensure tractability of the linear program, the stochastic processes of Y and P were

bounded to the discrete set {0, 1, ..., 10}. Accordingly, the continuous counterparts were trun-

cated at zero and 2µ to ensure comparability.

The parameters of LSAPI were pre-optimized so that the algorithm converges. The algorithm

was set to collect batches of T = 500 samples and performs M = 200 value function updates.

All samples were stored in a circular list of size N = 25′000. As exploration policy the algorithm

used a simple epsilon-greedy policy, where a random bid is chosen with probability ε = 0.01 and

policy π is executed with probability 1− ε.

We implemented the proposed algorithms in Java with Matrix computations being done by

the Jama package. The linear programming approach was implemented and solved with FICO

Xpress 7 and linked to Java via the XPRM model interface. All statistical analyses were done

with SPSS 17.
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Policy Algorithm Mean Reward Mean Difference

Optimal Discrete Policy LP 19.94 LP LSAPI-2
Second-order Polynomial LSAPI-2 20.63 0.69± 0.31 –
Third-order Polynomial LSAPI-3 20.74 0.80± 0.33 (0.11± 0.14)

Table 3.2: Mean rewards and 95% confidence intervals of the difference

3.3.2 Solution Quality

To test the quality of the approximation method, we benchmarked the policies of two value

function approximations against policies computed with linear programming (LP). To use the

optimal discrete policy during simulation, we projected the continuous states into the discrete

state space by rounding to the next integer. Also, the round-trip efficiency was set to η = 1.0

to ensure comparability. For η < 1.0, we can expect the discrete policy to perform even worse,

due to the additional rounding error.

The Weierstrass approximation theorem states that every continuous function defined on

a closed interval can be approximated by a polynomial function to any degree of accuracy.

Denote z = {x, y, p, g} and V̄2(S, x) and V̄3(S, x) as second-order and third-order polynomial

value function approximations, such that

V̄2(S, x) = w0 +
4∑
i=1

wizi +
4∑
i=1

4∑
j=i

wijzizj , (3.26)

V̄3(S, x) = w0 +
4∑
i=1

wizi +
4∑
i=1

4∑
j=i

wijzizj +
4∑
i=1

4∑
j=i

4∑
k=j

wijkzizjzk. (3.27)

Let LSAPI-2 and LSAPI-3 be the corresponding ADP algorithms. For a large enough sample

size, we expect LSAPI-3 to compute a more accurate approximation than LSAPI-2 because

V̄2(S, x) is contained in V̄2(S, x).

We ran the Faure sequence to generate 90 model configurations uniformly distributed over

the parameter space. LSAPI-2, LSAPI-3 and LP then approximated an optimal policy for each

configuration. The average reward from following each policy is recorded during simulation.

The results are summarized in Table 3.2.

The table shows that LSAPI was able to approximate the optimal bidding strategy and de-

livers sufficient policies with both value function approximations. The LSAPI-2 policy achieved

a 3.5% (p < .01) higher reward than the LP policy, and the LSAPI-3 policy achieved a 4.0%

(p < .01) higher reward than the LP policy. The difference between LSAPI-2 and LSAPI-3,

however, is not significant.
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Figure 3.2: Contour plots of the approximate policies at g = 0
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Figure 3.3: Contour plots of the approximate policies at g = 4

3.3.3 Policy Analysis

For illustrative purposes, we plot the different policies produced by LSAPI-2, LSAPI-3 and the

LP for the default parameter configuration. Since the state-action space is four-dimensional, we

fixed the storage state and drew contour plots of the surface which maps inputs of price and

supply to bidding decisions, as suggested by the respective policies. Figures 3.2 and 3.3 show

the contour plots of the three value functions for storage state g = 0 and g = 4, respectively.

The contour plot of the LP policy is non-smooth and areas with equal elevation, i.e., bidding

decision, are shaded in the same color. For the two LSAPI policies, contour lines are drawn

along integer elevations. Although the contour plots do not look alike, they share important

similarities. Across all three policies, the elevation around the means of price and supply is

nearly identical. The differences among the policies become larger towards the edges of the

graph where state transition probabilities are lower and the associated errors have less impact
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Model R2 R2
adj Std Error

Q̂1 0.530 0.528 1.900

Q̂2 0.898 0.897 0.889

Table 3.3: Model summary

on policy performance. The slopes of the contour lines exhibit a comparable inclination, so that

bids respond to an increase in price and supply.

Note that the contour lines of the LP and LSAPI-3 policies share a comparable curvature.

The LSAPI-2 policy, on the other hand, does not capture this detail because the derivative of

its value function is linear in price, supply and storage. This leads to an increasing difference

between LSAPI-2 and LSAPI-3/LP towards the edges of the graph where the state transition

probabilities become lower. LSAPI-2 puts more weight on states which are frequently visited

and balances the errors which emerge from decisions in extreme states.

We conclude that using simple polynomials to approximate the value function of the contin-

uous state MDP yields excellent results. The corresponding policies performed even better than

the optimal policy of the discrete counterpart.

3.3.4 Metamodel Analysis

To study the sensitivity of the objective value towards changes in model parameters, we analyze

the model using regression analysis. We ran the model with 2000 different parameter configura-

tions generated by the space filling design. To approximate the corresponding optimal rewards,

we used LSAPI-2 as it produces high-quality policies at low computational cost.

Denote Z as the set of model parameters and Zi as the value of the i-th parameter, and let

us analyze the relationship of model parameters and discounted reward with the following two

regression equations:

Q̂1 = β0 + β1Z1 + β3Z3 + β5Z5 + β6Z6 + β9Z9 + β10Z10 (3.28)

Q̂2 = Q̂1 + β12Z12 + β345Z345 +

10∑
i=1

βi6ZiZ6 (3.29)

The first equation captures the main effects of model parameters which have a direct influence on

the response variable, i.e., the impact of a parameter change on the discounted reward obtained

by following the LSAPI-2 policy. The second equation additionally includes interactions of model

parameters with storage capacity Z6 as well as two interaction terms to account for the indirect

effect of autocorrelation. For both models, a summary of the regressions analysis is given in

Table 3.3.

Table 3.4 shows the results from running a regression on Q̃1. The explanatory power of
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Q̂1 Main Effect Coefficient Std Error t-Statistic p-Value

Z0 (Constant) 24.719 0.252 97.917 0.000
Z1 Supply Std Deviation -2.008 0.049 -40.924 0.000
Z3 Price Std Deviation -0.296 0.049 -6.040 0.000
Z5 Correlation of Y and P 2.661 0.294 9.038 0.000
Z6 Storage Capacity 0.274 0.015 18.614 0.000
Z9 Negative Imbalance Price Factor -0.805 0.098 -8.206 0.000
Z10 Positive Imbalance Price Factor 1.636 0.294 5.555 0.000

Table 3.4: Coefficients of the main effects

this model is poor (R2 = 0.53) because it only accounts for the individual effects of variability,

storage capacity, correlation and imbalance costs on discounted rewards.

We find that supply and price deviation both have a negative effect on rewards (β1 < 0,

β3 < 0), because higher variability increases the costs of imbalances. The difference in magnitude

between both effects is substantial. This asymmetry originates in the nature of the stochastic

processes with the unilateral dependency of price on supply. Changes in the standard deviation

of the supply process therefore affect the price process but not vice versa, so that the overall

impact of price variability is lower than the impact of supply variability. However, the correlation

of price and supply increases rewards (β5 > 0), which may be an argument in favor of investments

in solar power which has the maximum yield when consumption is up, i.e., during daytime and

summertime in warmer climates. As a matter of course, a higher storage capacity and price

factor for positive imbalance have a positive effect on rewards (β6 > 0, β10 > 0) while a higher

price factor for negative imbalance has a negative effect (β9 < 0).

Table 3.5 reports the results from running a regression on Q̃2, but shows only the interaction

terms. A high sample correlation (R2 = 0.898) indicates that the second model already delivers

a relatively accurate prediction of the relationship between model parameters and rewards.

Theoretically, supply and price autocorrelation do not have a direct effect on discounted

rewards, because they explain the variability of the stochastic process only to some extent.

Therefore, we study the interaction of supply autocorrelation with supply standard deviation.

In contrast to the supply process, prices moreover depend on their correlation with supplies, so

that we need to study the three-way interaction of price variability, autocorrelation and supply-

price correlation. In both cases, we find that autocorrelation decreases the negative impact of

variability (β12 > 0, β345 > 0), as it stabilizes the time series and thereby decreases the risk of

imbalances.

Two-way interactions of model parameters with storage capacity uncover the individual

impact of parameter changes on the contribution of storage capacity to rewards. While the value

of storage increases in standard deviation (β16 > 0, β36 > 0), supply and price autocorrelation

decrease the value of storage (β26 < 0, β46 < 0). This effect can be explained by comparing two
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Q̂2 \ Q̂1 Interaction Effect Coefficient Std Error t-Statistic p-Value

Z1Z2 Supply Autocor × Supply Std Dev 1.525 0.057 26.986 0.000
Z3Z4Z5 Price Autocor × Price Std Dev × Cor 0.899 0.148 6.080 0.000
Z1Z6 Capacity × Supply Std Deviation 0.156 0.008 19.561 0.000
Z2Z6 Capacity × Supply Autocorrelation -0.162 0.026 -6.236 0.000
Z3Z6 Capacity × Price Std Deviation 0.019 0.008 2.399 0.017
Z4Z6 Capacity × Price Autocorrelation -0.134 0.020 -6.577 0.000
Z5Z6 Capacity × Correlation of Y and P -0.285 0.048 -5.967 0.000
Z6Z6 Capacity × Capacity -0.063 0.003 -23.432 0.000
Z7Z6 Capacity × Storage Efficiency 1.391 0.024 58.343 0.000
Z8Z6 Capacity × Discount Rate 0.348 0.013 26.265 0.000
Z9Z6 Capacity × Negative Imbalance Price 0.233 0.016 14.692 0.000
Z10Z6 Capacity × Positive Imbalance Price -0.581 0.048 -12.163 0.000

Table 3.5: Coefficients of the interaction effects

stochastic processes with identical first two moments, one with positive autocorrelation and one

without. The process with positive autocorrelation will exhibit a wider average amplitude than

the process without. With wider amplitudes we need more storage to buffer the same variability,

which decreases the per unit value of storage capacity. The effect of autocorrelation is strong

in a renewable power portfolio with only one power source. To decrease its unfavorable effect,

investors should diversify, e.g., combine wind and solar power or invest cross-regionally.

Furthermore, we expect the marginal value of storage to decrease due to diseconomies of

scale. The negative quadratic effect (β66 < 0) of storage capacity provides evidence for a

concave function of storage value on storage capacity. Storage efficiency, on the other hand,

increases the value of storage (β76 > 0).

From a technical point of view, the discount factor enables the approximation method to

develop a bidding strategy which anticipates future states and decisions. Without a discount

factor (γ = 0.0), there is no need for policy iteration and a one-shot least squares estimation as

in (3.24) would be sufficient. This would produce a myopic policy which maximizes the second-

stage reward, in line with the two-stage stochastic programs proposed in Fleten and Kristoffersen

(2007) and Garćıa-González et al. (2008). Figure 3.4 shows the average reward, i.e., equivalent

annuity value, for the default model configuration from using a multistage policy (γ = 0.9)

versus using a myopic policy (γ = 0.0). For the system with storage (C = 4), the multistage

policy yields a higher average reward than the myopic policy. A power producer with a hybrid

system would therefore benefit from using a policy which anticipates future states and decisions.

This also explains why the value of capacity increases in the discount factor (β86 > 0). For the

system without storage (C = 0), however, multistage and myopic policy yield identical rewards,

because there is no storage balance which links successive periods. In that case, a two-stage

approach similar to the one proposed in Matevosyan and Söder (2006) is optimal.

Figure 3.4 also shows that for the given model configuration rewards of the system without
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Figure 3.4: Rewards from optimal and myopic policies for systems with and without storage

storage are significantly lower than rewards of the hybrid system. We conclude that the financial

benefit of storage is twofold: first, there is the risk associated with imbalance costs. A lower

price for positive imbalance as well as a higher price for negative imbalance both increases the

value of storage (β96 > 0, β10,6 < 0). Second, storage has the ability to take advantage of price

arbitrage and alleviates the necessity to sell power when the price is low. Accordingly, the value

of storage increases in negative correlation of price and supply (β56 < 0).

3.4 Discussion

In this chapter, we presented a model of the optimal bidding strategy for renewable power gener-

ation with storage option at a day-ahead market. We formulated the model as a continuous-state

Markov decision process and presented a solution approach based on approximate dynamic pro-

gramming. We used least squares policy evaluation within the approximate policy iteration

framework to approximate the value function of the optimal policy. For policy evaluation and

improvement, the algorithm had access to a simulation model of the process. As a bench-

mark, we computed the transition matrix of the stochastic decision process for a small discrete

approximation of the state space and used linear programming to determine an optimal policy.

We found that approximate value functions based on simple polynomials yield better policies

for the continuous state space than the optimal policy of a discretization. This effect will become

even more profound when rounding errors occur due to storage efficiency losses.

A numerical analysis of the response surface of rewards on model parameters revealed that

supply uncertainty, imbalance costs and a negative correlation of market price and supplies are

the main drivers for investments in storage. An interesting result is that the value of storage

decreases in autocorrelation, as more capacity is needed to buffer a stochastic process with a

wider amplitude.
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Chapter 4

Optimizing Trading Decisions for

Hydro Storage Systems using

Approximate Dual Dynamic

Programming

The steady increase of electricity from intermittent renewable energy sources poses challenges

for the electrical grid. A key component of a more flexible, smarter grid is the ability to store

electricity and thereby to decouple electricity generation from electricity consumption. The most

common large-scale storage technology for electricity is hydro storage. A hydro storage power

plant either stores the natural flow of water or pumps water into an elevated reservoir to be able

to release the water and produce electricity when it is needed. Hydro storage systems thereby

offer the ability to buffer the intermittent supply of electricity from renewable power sources such

as wind, solar, or run-off river. The European electricity mix, for example, consists of 15 percent

hydropower with a total capacity of 260 gigawatts of which 45 gigawatts are pumped-hydro

storage (Auer, 2011; Zuber, 2011). The growing share of renewable energies increases Europe’s

demand for storage, so that generating companies are currently investing about 26 billion Euros

into new pumped-hydro storage plants with a total capacity of 27 gigawatts (Zuber, 2011).

Today, generating companies trade their capacities in wholesale electricity markets. Most

generating companies in Austria, Germany, and Switzerland, for example, sell electricity at the

European Energy Exchange (EEX), which is one of the largest European electricity markets.

Since supply and demand have to be synchronized in advance, the EEX provides different types

of forward markets, of which the day-ahead market and the intraday market are the most

important markets for owners of storage plants. At the day-ahead market, producers (e.g.,

generating companies) place supply bids and consumers (e.g., electricity retailers) place demand

43
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bids for each hour of the following day, one day ahead of delivery. After the day-ahead market

is closed, the intraday market allows market participants to clear imbalances that arise during

the day up to 45 minutes before delivery. In case actual volumes deviate from day-ahead or

intraday bids, all remaining imbalances are automatically cleared at the balancing market with

a high risk of additional cost. A generating company with hydro storage capacities typically

buys electricity at the market when the price is low and sells electricity when the price is high,

while trying to mitigate the risk of positive and negative imbalances.

Evidently, trading with a system of hydro storage plants in a wholesale electricity market

involves many decisions as well as a great deal of uncertainty. In particular, there exist two major

challenges to solve the problem efficiently. First, not only are day-ahead and intraday prices

uncertain, but also the development of electricity prices over time as well as the inflow of water

into the reservoirs. Second, a system of hydro storage plants with multiple reservoirs requires a

coordinated water release policy, since upstream releases influence downstream reservoir levels.

In addition to day-ahead and intraday bidding decisions, a generating company has to decide

about water releases from multiple reservoirs over time. Future decisions and states of the system

as well as their probabilities therefore have to be considered while making decisions today. This

turns storage operation into a complex stochastic-dynamic decision problem.

In the literature, the day-ahead bidding problem is typically modeled as a two-stage stochas-

tic program, with bidding decisions at the first stage and price realizations as well as operational

decisions at the second stage (Báıllo et al., 2004; Nowak et al., 2005; Fleten and Kristoffersen,

2007; Garćıa-González et al., 2007). A two-stage approach is well-suited for optimizing bidding

decisions in the short-term, but does not anticipate future storage states and decisions. To opti-

mize bidding decisions over a longer planning horizon, we have to solve a multi-stage stochastic

programming problem. For this class of problems, two basic solution strategies have emerged in

the literature.

One strategy is to construct a scenario tree to represent uncertainty and solve the problem as

one large mathematical program (Heitsch and Römisch, 2003; Eichhorn et al., 2009; Hochreiter

and Wozabal, 2010). This strategy can handle discrete decisions as well as any type of stochastic

process, but is limited to problems with a small number of stages. Fleten and Kristoffersen (2008)

and Matevosyan et al. (2009) propose mixed-integer programs of hydro storage operation where

a scenario tree is used to model uncertainty over a weekly planning horizon. A comparison of

solution methods for a tree-based stochastic unit commitment problem is given in Cerisola et al.

(2009).

Another strategy is based on formulating the problem as a dynamic program and then

applying Benders’ decomposition to recursively construct the value function at each stage around

a set of sample decisions (Pereira and Pinto, 1991). This strategy, also known as stochastic dual

dynamic programming (SDDP), can handle problems with a large number of stages as long as the
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optimization problem at each stage is convex and the stochastic process stagewise independent.

Most SDDP formulations of hydro storage operation only consider inflow or demand uncertainty,

e.g., Flach et al. (2010), Guigues (2011), and Philpott and de Matos (2011). To the best of our

knowledge, the only SDDP formulation that also considers price uncertainty is given in Gjelskvik

et al. (2010). However, the authors only model weekly price averages, which keeps the problem

tractable but also underrates the short-term value of storage.

We propose a model formulation which decomposes the multi-stage problem into an in-

trastage and an interstage problem (Pritchard et al., 2005). Day-ahead bidding decisions as well

as hourly reservoir operations are modeled as part of the intrastage problem which is formu-

lated as a stochastic program with random prices. Reservoir management from day to day, on

the other hand, is modeled as part of the interstage problem which is formulated as a Markov

decision process (MDP). Accordingly, we separate intrastage (hourly) from interstage (daily)

randomness by modelling hourly price distributions conditional on an environmental state vari-

able that follows a Markov process with daily transitions. To solve the problem efficiently, we

integrate SDDP with ideas from approximate dynamic programming (ADP). ADP algorithms

simulate the state transition process of an MDP and use the sampled information to approxi-

mate the high-dimensional value function by a function of much lower complexity (Powell, 2007).

Loehndorf and Minner (2010) propose an ADP algorithm to optimize bidding and operational

decisions of a single storage unit, but only for a simplified decision process.

The solution strategy proposed in this chapter aims at approximating the value function

of the interstage problem. First, we fit a discrete-state Markov chain to the continuous-state

Markov process by using a clustering method to reduce the state space. The resulting reference

states then determine the intrastage price distributions. Second, we propose to use a relaxed

version of the intrastage problem to approximate the value function of the interstage problem.

As in SDDP, we iteratively solve the interstage problem using forward simulation to sample

candidate decisions and backward recursion to construct an approximation of the value function.

Third, we construct a polyhedral approximation by removing candidate decisions to accelerate

the sampling process. The polyhedral value function approximation of the interstage problem

is then used inside the original intrastage problem to find near-optimal bidding and operational

decisions. Due to its resemblance to SDDP, we refer to the solution approach as approximate

dual dynamic programming (ADDP).

4.1 Model Formulation

4.1.1 Assumptions

We consider the stochastic unit commitment problem of a power generating company that

operates a network of hydro storage plants and participates in a wholesale electricity market.
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The objective of the company is to maximize expected profits from buying and selling electricity

while operating its resources efficiently.

We assume that the company is planning storage operation over an entire year, but schedules

its resources on a daily basis. Uncertainty enters the planning problem through stochastic

natural inflows into the reservoirs as well as through stochastic electricity prices. We assume

that the dynamics of the random variables can be separated into an interday and an intraday

process. The interday process is characterized by a state transition model of environmental

variables, e.g., temperature, wind speed, natural inflows, as well as calendar information, i.e.,

day of the year, day of the week. This process is assumed to be a Markov chain with a finite

state space. The intraday process describes random hourly electricity prices which depend on

the realization of interday randomness.

We assume that the electricity market implements a multi-settlement system with a day-

ahead, an intraday (hour-ahead) and a balancing (real-time) market. The company makes

the majority of its trades in the day-ahead market where it places price-dependent supply and

demand bids for each hour of the following day. A bid can have multiple parts, so that producers

and consumers are bidding for different volumes at different prices. After the day-ahead market

is closed, the system operator announces a uniform clearing price. Day-ahead bidding therefore

takes place under price and volume uncertainty. In case produced volumes deviate from day-

ahead bids, the company clears all foreseeable imbalances at the intraday market and does not

deliberatively use the balancing market. Since the intraday market has a lower market depth

than the day-ahead market, we assume that the generating company is price-taker in the day-

ahead market, but price-setter in the intraday market. Moreover, we assume that the expected

day-ahead price equals the expected intraday price.

The topology of the network of hydro storage plants is convergent, so that each reservoir may

have multiple inflows but only a single outflow. Connected reservoirs are close, so that there

are no significant delays regarding the flow of water from one reservoir to another. We assume

that head effects can be ignored so that the power conversion function only depends on water

release per time unit but not on reservoir levels. The natural inflow of water into a reservoir is

state-dependent and remains constant throughout the day. Each reservoir is associated with a

single turbine and possibly a pump.

4.1.2 Markov Decision Process

We model the interday decision process of storage operation as a finite horizon Markov decision

process (MDP) with decision epoch of length one day. Denote t as the time index for a day

of the year. Randomness is separated into a process of environmental variables (St)
T
t=1 and

a process of intraday electricity prices (Pt)
T
t=1. Both processes are discrete and defined on a

common probability space (Ω,Ξ,P). We assume that St and Pt are adapted to filtrations F1
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and F2, respectively, and F1 ≤ F2, i.e., given a realization of St, the distribution of Pt|F1 is

known.

The objective of the generating company is to maximize its discounted expected profits for

a given environmental state St ∈ St and initial storage states Rt−1 ∈ R in stage t ∈ {1, . . . , T},
with St being the set of environmental states in t and R being the set of all possible reservoir

states. Denote P(St+1|St) as the state transition probability of the Markov process. Let π =

{π1, . . . , πT } be a decision policy that encompasses all operational decision variables subject to

the state-dependent feasible set Πt(St, Rt−1) (see Section 4.1.3), and define C(St, Rt−1, πt) as

the random intraday profit (contribution) and γ as discount factor. For R0 and VT+1 fixed, the

value of being in state St with initial reservoir states Rt−1 is given by the optimality equations

Vt(St, Rt−1) = max
πt∈Πt(St,Rt−1)

{
E
[
C(St, Rt−1, πt)

+ γ
∑

St+1∈St+1

P(St+1|St) Vt+1

(
St+1, Rt(πt)

)]}
, (4.1)

for St ∈ St, Rt−1 ∈ R and t = 1, . . . , T . Since πt assigns a decision to every realization of

intraday randomness, it results in random reservoir states Rt(πt). An optimal decision policy

maximizes the sum of expected intraday profits and expected future profits. Future profits

depend on the random state transition from St to St+1 as well as the (random) final reservoir

state Rt = Rt(πt) in t which is the initial reservoir state in t + 1. For notational convenience,

we suppress the dependence of Rt on πt and Πt on St, Rt−1 where no confusion can arise.

In line with Powell (2007), let us reformulate (4.1) using the post-decision state. Denote V̄t

as value function around the post-decision state, which gives us the value of being in state St at

the end of the day after realization of Rt but before a random transition to the next state. For

a fixed function V̄T , the post-decision value function is

V̄t(St, Rt) =
∑

St+1∈St+1

P(St+1|St) Vt+1(St+1, Rt)

=
∑

St+1∈St+1

P(St+1|St) max
πt+1∈Πt+1

{
E
[
C(St+1, Rt, πt+1) + γV̄t+1(St+1, Rt+1)

]}
, (4.2)

for St ∈ St, Rt ∈ R and t = 1, . . . , T − 1. This formulation of the optimality equations is

equivalent to (4.1) but provides us with a computational advantage, because the expectation

operator associated with the state transition is now outside of the maximization problem. For

now, let us assume that V̄t(St, Rt) is known. In Section 4.2, we are going to show how to

recursively built an approximation of the post-decision value function.
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Figure 4.1: Bidding curve with four breakpoints and four price scenarios per segment

4.1.3 Stochastic Programming Formulation

For a given post-decision value function, the intraday problem can be formulated as a stochastic

program with recourse, with the objective to maximize the expected profit for a given state St

and initial reservoir state Rt. Although all variables and random parameters of the intraday

problem depend on St, we suppress this dependence to streamline the presentation. Furthermore,

most parameters and decision variables depend on an hour h and a scenario s. We indicate this

by adding the corresponding subscripts.

First-Stage Decision: Day-Ahead Bidding

The first stage of the stochastic program involves fixing price-dependent bidding curves (see

Figure 4.1). For each hour h ∈ H = {1, . . . , 24} of the following day, the generating company

submits I price-volume pairs (ρhi, Xhi), with ρhi < ρhi+1 and Xhi ≤ Xhi+1 for i < I. A linear

interpolation of these pairs yields a monotone increasing, piecewise-linear function that maps

price realizations to bidding decisions. However, choosing prices and volumes simultaneously

yields a non-convex decision problem. In line with Fleten and Kristoffersen (2007), we therefore

fix the price points in advance and only decide about bidding volumes (in megawatt hours).

Denote ps ∈ R24, s ∈ S = {1, . . . ,K} as the finite set of realizations of the price process

Pt|St and psh as a day-ahead price realization in hour h. We assume P(Pt = ps|St) = 1/K,

so that each price scenario has equal probability. The realized day-ahead bid xdsh in scenario s

depends on the bidding curve as well as the realized day-ahead prices,

xdsh =


Xh1 if psh < ρh1, ∀ s ∈ S , h ∈H ,

Xhi−1 +
Xhi−Xhi−1

ρhi−ρhi−1
psh if ρhi−1 ≤ psh < ρhi, 1 < i ≤ I, ∀ s ∈ S , h ∈H ,

XhI if psh ≥ ρhI , ∀ s ∈ S , h ∈H .

(4.3)
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Depending on the sign of the bid, each bidding decision either represents an offer (Xhi ≥ 0) or

a purchase (Xhi < 0) of electricity (in megawatt hours). To additionally enforce monotonicity,

we include the following constraint,

Xhi−1 ≤ Xhi ∀ h ∈H , i ∈ {2, . . . , I}. (4.4)

Instead of spreading the price breakpoints ρhi evenly over the price domain, we assign each line

segment approximately the same number of price scenarios. More specifically, we compute the

breakpoints by first partitioning the set of sorted prices into I + 1 subsets and then calculate

ρhi as the mean of the adjacent prices that are not of the same subset, i.e.,

ρhi =
p′hg(i)−1 + p′hg(i)

2
, g(i) =

⌊
iK

I + 1
+ 1

⌋
∀ h ∈H , i ∈ I , (4.5)

with p′sh as the day-ahead prices sorted in ascending order. The resulting bidding curve is

smoother in areas where the probability mass is high and coarser where the probability mass is

low. Note that the number of scenarios K has to satisfy K ≥ 2I + 2. For example, if there was

only one scenario per segment, first-stage bidding decisions could be made with full knowledge

of second-stage randomness, which violates non-anticipativity.

Second-Stage Decision: Short-Term Unit Commitment

Short-term operational decisions are modeled at the second stage of the stochastic program.

At this stage, day-ahead bids have realized and the generating company uses either storage

capacities or the intraday market to close its positions. In line with other authors (Fleten and

Kristoffersen, 2007; Garćıa-González et al., 2007), we model the unit commitment problem as a

mixed-integer program.

Denote J = {1, . . . , J} as the set of reservoirs, csjh as charge into reservoir j, and dsjh as

discharge from reservoir j (in metric tons). The topology of the reservoir network is defined

by matrix A = (Ajk) ∈ {−1, 0, 1}J×J , with Ajk = 1 if water can be released from j into k

and Akj = −1 if water can be pumped from k into j. The hourly natural inflow of water into

reservoir j is given by INtj on day t. Denote rsjh as the reservoir state with rsj0 = Rt−1j and

osjh as the overflow (or spill). Then, the storage state at the end of hour h is given by the

following balance equation

rsjh = rsjh−1 − dsjh + csjh − osjh
+

∑
k∈J :Akj=1

(dskh + oskh)−
∑

k∈J :Ajk=−1

cskh + INtj ∀ s ∈ S , j ∈J , h ∈H . (4.6)

The generating company must balance realized day-ahead and intraday bids with power gen-
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eration and consumption. Denote xbsh as the amount of power (in megawatt hours) sold or

purchased at the intraday market in hour h and scenario s. All open positions are closed if

xdsh + xbsh =
∑
j∈J

(η+
j dsjh − η

−
j csjh) ∀ s ∈ S , h ∈H , (4.7)

with η+
j and η−j as constant power conversion factors (in megawatts per metric ton of water)

which relate flow volume to power quantity.

Charge and discharge decisions are constrained by minimum and maximum capacities of

pumps and turbines. Denote UBR
j as the maximum volume of reservoir j (in metric tons),

[LB+
j ,UB+

j ] as power limits of the j-th turbine, and [LB−j ,UB−j ] as power limits of the j-th

pump (in megawatt). Then,

rsjh ≤ UBR
j ∀ s ∈ S , j ∈J , h ∈H , (4.8)

z+
sjh LB+

j ≤ η
+
j dsjh ≤ z

+
sjh UB+

j ∀ s ∈ S , j ∈J , h ∈H , (4.9)

z−sjh LB−j ≤ η
−
j csjh ≤ z

−
sjh UB−j ∀ s ∈ S , j ∈J , h ∈H , (4.10)

with binary variables, z+
sjh and z−sjh, to model the on/off status of turbines and pumps, respec-

tively.

Objective Function

The objective of the generating company is to maximize its expected intraday profits through

efficient bidding and storage operation while considering the expected future value of storage as

defined by the post-decision value function. Following Pereira and Pinto (1991), we model the

post-decision value vs as a concave, piecewise-linear function of the final reservoir states rsj24

at the end of the day. Note that rsj24 is a realization of the j-th element of Rt in (4.1) and

(4.2). For a given state St, the post-decision value function is defined as the minimum of a set of

hyperplanes N = {1, . . . , N} with intercepts a(St)n and slopes b(St)nj so that the future value

of storage is given by

vs = min
n∈N

a(St)n +
∑
j∈J

b(St)njrsj24

 ∀ s ∈ S . (4.11)

If we add vs to the objective function of a maximization problem, we can reformulate (4.11) by

the following set of linear constraints,

vs ≤ a(St)n +
∑
j∈J

b(St)njrsj24 ∀ n ∈ N , s ∈ S . (4.12)
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Denote psh − βxbsh as the expected intraday price, with β ≥ 0 as the slope of the price-response

function. For a given state St and an initial reservoir state Rt−1, we formulate the optimization

problem as the following stochastic mixed-integer quadratic program

Vt(St, Rt−1) = max
1

K

K∑
s=1

24∑
h=1

(
pshx

d
sh + (psh − βxbsh)xbsh + γvs

)
(4.13)

s.t. (4.3), (4.4), (4.6), (4.7), (4.8), (4.9), (4.10), (4.12);

Xhi ∈ R ∀ h ∈H , i ∈ I ; xdsh, x
b
sh ∈ R ∀ s ∈ S , h ∈H ;

rsjh, csjh, dsjh, osjh ≥ 0 ∀ s ∈ S , j ∈J , h ∈H ;

z+
sjh, z

−
sjh ∈ {0, 1} ∀ s ∈ S , j ∈J , h ∈H ;

vs ≥ 0 ∀ s ∈ S .

4.2 Solution Methods

To obtain the hyperplanes required in (4.11) or (4.12), we integrate stochastic dual dynamic

programming (SDDP) with ideas from approximate dynamic programming (ADP). The method

referred to as approximate dual dynamic programming (ADDP) constructs a polyhedral ap-

proximation of the post-decision value function defined in Section 4.1.2 by sampling the state

transitions of the Markov decision process.

4.2.1 Approximate Value Function

To be able to construct a polyhedral approximation of the post-decision value function, we relax

certain requirements of the original model formulation.

Definition (Relaxed Problem) Define the relaxed problem as the linear relaxation of the stochas-

tic mixed-integer quadratic program in (4.13) with β = 0, and denote V ′t (St, Rt−1) as its optimal

objective value and V̄ ′t−1 as the corresponding post-decision value function.

By modeling the post-decision value function as the minimum of a set of linear functions (4.12),

we tacitly assume that the true function admits a tight concave approximation. While we

cannot make this assertion for the post-decision value function associated with the original

model formulation, we can show that concavity holds for the post-decision value function of the

relaxed problem.

Proposition 4.2.1 The objective value V ′t (St, Rt−1) as well as the post-decision value V̄ ′t (St, Rt)

are both concave in the reservoir levels.
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Proof With the binary variables relaxed to z+
sjh, z

−
sjh ∈ [0, 1], the maximization problem in

(4.13) is an ordinary linear program. From the theory of linear programming we know that

a problem of this type is jointly concave in the right-hand sides of its constraints, e.g., by

Proposition 2.22 in (Rockafellar and Wets, 1998). The vector Rt enters the right-hand side

of equation (4.6). Therefore, V ′t (St, Rt−1) is concave in Rt−1. Denote V ′T (ST , RT−1) as the

objective value of the relaxed problem in the final stage and V̄ ′T as an arbitrary piecewise-linear

function which is assumed to be concave in RT . Since V ′T (ST , RT−1) is concave in RT−1, the

expected value
∑

ST∈S P(ST |ST−1) V ′T (ST , RT−1) is concave in RT−1. Hence, V̄ ′T−1(ST−1, RT−1)

is concave in RT−1. Concavity of V̄ ′t (St, Rt) for t = 1, . . . , T − 2 follows by backward induction.

�

With β = 0 in the relaxed problem, we assume that the generating company is price-taker

in both markets, day-ahead and intraday. Without an intraday price response, however, the

company has no incentive to trade in the day-ahead market as long as we assume that the mean

intraday price is identical to the realized day-ahead price. Instead, the company could move all

of its trades to the intraday market. In that case, the relaxed version of the stochastic program

can be decomposed into K linear programs, which is supported by the following proposition.

Proposition 4.2.2 Without a price response, i.e., β = 0, the relaxed problem is the sample

average of K linear programs.

Proof For each feasible decision (xbsh, x
d
sh) = (x̄b, x̄d), the decision (xbsh, x

d
sh) = (x̄b + x̄d, 0) is

feasible with respect to (4.7), ∀ s ∈ S , h ∈H . With β = 0, the marginal prices of xdsh and xbsh
in (4.13) are identical and the decisions (x̄b, x̄d) and (x̄b + x̄d, 0) have the same objective values.

Hence, there exists an optimal decision, where Xhi = 0 ∀ h ∈H , i ∈ I . The non-anticipativity

constraints (4.3) can then be dropped, and the relaxed problem can be decomposed, such that

V ′t (St, Rt−1) =
1

K

K∑
s=1

V ′ts(St, Rt−1),

where V ′ts(St, Rt−1) is defined as V ′t (St, Rt) for a single scenario s ∈ S . �

The objective value associated with the relaxed problem is an upper bound of the optimal

objective value, i.e., V ′t (St, Rt−1) ≥ Vt(St, Rt−1). An operational policy, where the generating

company does not bid in the day-ahead market, however, is of little practical use. Nevertheless,

as long as the difference between upper bound and optimum is reasonably small, we can use

the optimal solution of the relaxed problem to construct an approximation of the post-decision

value function. We then use this function inside the original problem formulation to compute

near-optimal intraday decisions. As we will see in Section 4.4.1, the difference is small for the

actual problems considered in this chapter.
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Let us briefly outline how a polyhedral approximation of the post-decision value function

can be constructed. Since V ′t (St, · ) is the optimal objective value of a linear program, the post-

decision value function of the relaxed problem can be described by a concave, piecewise-linear

function, i.e., by a polyhedral function. We can construct an approximation ˆ̄V ′t−1(St−1, R) of

the post-decision value function by first defining a set of sample reservoir states, {R̂1, . . . , R̂N},
with R̂n ∈ R, and then deriving the corresponding hyperplanes going through

(R̂11, . . . , R̂1J , V
′(St, R̂1)), . . . , (R̂N1, . . . , R̂NJ , V

′
t (St, R̂N )) ∀ St ∈ St.

To obtain the hyperplanes, let ∂RVt(St, Rt) be the set of super-gradients of the function Rt 7→
V ′t (St, Rt). From this set, we select a super-gradient, b(St) ∈ ∂RV ′t (St, R̂), which is the slope of

the supporting hyperplane of V ′t (St, · ) going through (R̂1, . . . , R̂J , V
′
t (St, R̂)). The hyperplane

is given by the linear function

H(St, R; R̂i) = a(St) + b(St)
>R, a(St) = V ′(St, R̂)−

∑
j∈J

b(St)jR̂ij , (4.14)

with a(St) ∈ R as the intercept and b(St) ∈ RJ as the vector of slopes. Since we are dealing with

linear programs, the slopes can be obtained from the dual variables λ associated with constraints

(4.6) for h = 1,

b(St)j =
∑
s∈S

λsj1. (4.15)

The resulting approximate post-decision value function is then given by

ˆ̄V ′t−1(St−1, R) = min

{∑
St∈St

P(St|St−1)
(
a(St)n + b(St)

>
n (R− R̂n)

)
, n = 1, ..., N

}
, (4.16)

where the hyperplane going through R̂n is the weighted sum of all hyperplanes H(St, R; R̂n)

over all successor states. For a given set of sample reservoir states at each stage, a polyhe-

dral approximation of the post-decision value function can be easily constructed by solving the

dynamic program using backward recursion.

4.2.2 Approximate Dual Dynamic Programming

Although the number of supporting hyperplanes of V ′t (St, · ) is finite, computing all hyperplanes

is prohibitive for larger problems. Like SDDP, the ADDP algorithm therefore uses Monte Carlo

simulation to define a set of sample reservoir states, thereby finding those hyperplanes that are

necessary to obtain an optimal decision policy.

The ADDP algorithm is outlined in Figure 4.2. The algorithm is initialized with an environ-

mental state S1, a reservoir state R0, and a function of the salvage value of the final reservoir
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Input arguments: initial states S1 and R0, salvage value function ˆ̄V ′T

Do for n = 1, 2, . . . , N

Forward Pass

(1) Do for t = 1, 2, . . . , T − 1

(1.1) Sample ps from Pt|St

(1.2) Solve R̂nt ← arg maxπt

{
C(St, Rt−1, πt) + ˆ̄V ′t (St, Rt(πt))

}
for the single scenario ps

(1.3) Sample St+1 ← SM (St)

Backward Pass

(2) Do for t = T, T − 1, . . . , 2

(2.1) Do for all St ∈ St

(2.1.1) Do for m ∈Mt ∪ {n}

(2.1.1.1) Get hyperplane (a(St)m, b(St)m)← Hmt(St, R; R̂mt−1) ∈ ∂RV ′t (St, R̂mt−1)

(2.2) If ∃ St ∈ St : |V̂ ′t (St, R̂nt−1)− V ′t (St, R̂nt−1)| > ε then Mt ←Mt ∪ {n}

(2.3) Do for all St−1 ∈ St−1

(2.3.1) ˆ̄V ′t−1(St−1, R)← min

{ ∑
St∈St

P (St|St−1)
(
a(St)m + b(St)

>
m(R− R̂mt)

)
,m ∈Mt

}
Return post-decision value functions ˆ̄V ′t (t = 1, . . . , T − 1)

Figure 4.2: Approximate dual dynamic programming for Markov decision processes

state V̄ ′T . Over N iterations, ADDP alternates between a forward and a backward pass. During

the forward pass, the algorithm generates new states by sampling the state transition function,

SM . For each state, the algorithm solves the relaxed problem for a single (random) price scenario

using the current approximation of the value function and stores the final reservoir state (Step

1.2). During the backward pass, in each stage, the algorithm loops over all environmental states

and previously stored reservoir states and computes the supporting hyperplanes (Step 2.1). For

each predecessor state, we compute the weighted sum of all hyperplanes over all successor states

and then update the approximation of the post-decision function (Step 2.3).

In conventional SDDP, the size of the set of sample reservoir states increases by one during

each iteration of the outer loop. Some hyperplanes around the set of reservoir states, however,

may be redundant or at least similar to existing hyperplanes. For ADDP, we therefore propose

that hyperplanes which do not improve the approximation quality by more than ε are being

omitted (Step 2.2). Denote V̂ ′ as the approximate (pre-decision) value function constructed
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from a set of hyperplanes Hmt, with m ∈Mt, such that

V̂ ′t (St, R) = min

{∑
St∈St

(
a(St)m + b(St)

>
m(R− R̂mt)

)
,m ∈Mt

}
. (4.17)

A new hyperplane Hnt is added to Mt if

∃ St ∈ St : V̂ ′t (St, R̂nt−1)− V ′t (St, R̂nt−1) > ε. (4.18)

In this way, ADDP converges to an upper bound of the solution to the relaxed problem, since

the approximate value function in general remains an approximation and never converges to

the true value function. Note that we also obtain an upper bound if we stop ADDP before an

optimal solution is found, as this is often done in the literature, e.g., Flach et al. (2010); Philpott

and de Matos (2011). A practical advantage of using ε > 0 instead of ε = 0 is that, omitting

new hyperplanes accelerates computation of the outer loop, which allows a larger number of

states to be sampled in the same amount of time.

Existing convergence results for SDDP algorithms require that randomness is stagewise in-

dependent and enters only the right-hand sides of the constraints of the linear program at each

stage (Philpott and Guan, 2008; Shapiro, 2011). Both assumptions are necessary if the linear

program is only being solved for a subset of scenarios during the backward pass. Right-hand side

randomness guarantees that the optimal dual solutions for scenarios in the subset are also dual

feasible for all other scenarios, which significantly accelerates the generation of new hyperplanes.

Stagewise independence, in turn, enables sharing hyperplanes among different scenarios at the

previous stage, since the post-decision value function is identical for all scenarios. Algorithms

that exploit these properties are in Higle and Sen (1991) and Chen and Powell (1999). Although

in our model these assumptions are not fulfilled, the algorithm still converges almost surely.

First of all, dual solutions are always feasible because the linear program is being solved for

the entire set of scenarios during the backward pass. Second of all, hyperplanes are not shared

among scenarios, since we can construct a separate post-decision value function for each scenario

by using the transition matrix of the Markov process.

Proposition 4.2.3 Denote πε as the policy obtained by ADDP for ε > 0 and π∗ as the optimal

policy of the relaxed problem. For a given initial reservoir level R0, the policies obtained by

ADDP for ε = 0 converge to the optimal policy in a finite number of steps. The values obtained

from following πε are at most ε(T − 1) worse than the optimal values.

Proof We first consider the case ε = 0. It follows from Lemma 1 in Philpott and Guan (2008),

that for fixed St the functions

R 7→ Vt(St, R) (4.19)



56 CHAPTER 4. OPTIMIZING TRADING WITH HYDRO STORAGE SYSTEMS

are the pointwise maxima of finitely many linear functions, i.e., are piecewise linear for all

1 ≤ t ≤ T . Note that each possible sequence of states (S1, . . . , ST ) has positive probability

and therefore by the Borel-Cantelli Lemma occurs infinitely often in the forward pass. Since we

add a hyperplane in each iteration, the finiteness of the set of hyperplanes implies that there

exists an n̄ ∈ N such that no further hyperplanes are added after iteration n̄ . We denote the

approximate value function after that state by V̂ ′t for 1 ≤ t ≤ T .

Suppose that the policy π̂ found by using (V̂ ′t )1≤t≤T is suboptimal in period T − 1 and

some (S1, . . . , ST ), i.e., maxπ C(ST , RT−1, π) + V̄T (ST , RT ) < V̂ ′T (ST , RT−1). Since (S1, . . . , ST )

is sampled in iterations n > n̄, the value function approximation would be updated in these

iterations – a contradiction to the choice of n̄. Hence, V̂ ′T (ST , RT−1) coincides with V ′T for all

R that can be reached by π̂ and for all ST ∈ ST . The same holds for the post-decision value

function ˆ̄V ′T−1. Having established the accuracy of V̄ ′T−1, we can inductively show the accuracy

of all V̂ ′t and ˆ̄V ′t for all St and t. Hence, the solutions obtained with V̂ ′t coincide with the optimal

solutions of the relaxed problem.

The finite convergence property carries over to the case ε > 0. To proof the second part of

the proposition, we begin with the last period T and note that by definition

V̂ ′T (ST , RT−1)− V ′T (ST , RT−1) ≤ ε, ∀ ST ∈ ST , (4.20)

for all states of the system RT that can be reached from R0 by following πε. This inequality

also holds for the respective post-decision value functions.

Let ∆ ≡ C(ST−1, RT−2, π
∗)− C(ST−1, RT−2, π

ε). Since πε is optimal for V̂ ′T it follows that

ˆ̄V ′T−1(ST−1, RT−1, π
ε) ≥ ˆ̄V ′T−1(ST−1, RT−1, π

∗) + ∆. (4.21)

Therefore it holds for all ST−1 ∈ ST−1,

0 ≤ C(ST−1, RT−2, π
∗) + V̄ ′T−1(ST−1, RT−1(π∗))

− C(ST−1, RT−2, π
ε)− V̄ ′T−1(ST−1, RT−1(πε)) (4.22)

= ∆ + V̄ ′T−1(ST−1, RT−1(π∗))− V̄ ′T−1(ST−1, RT−1(πε)) (4.23)

≤ ∆ + V̄ ′T−1(ST−1, RT−1(π∗))− ˆ̄V ′T−1(ST−1, RT−1(πε)) + ε (4.24)

≤ ∆ + ˆ̄V ′T−1(ST−1, RT−1(π∗))− ˆ̄V ′T−1(ST−1, RT−1(πε)) + ε (4.25)

≤ ε, (4.26)

where (4.24) follows from (4.21) and (4.25) from V̄ ′T−1 ≤
ˆ̄V ′T−1. Since V̂ ′T−1 is an ε-approximation

of the function

R 7→ max
πε

C(ST−1, R, π
ε) + ˆ̄V ′T−1(ST−1, RT−1(πε)), (4.27)
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we have V̂ ′T−1(ST−1, RT−2) ≤ 2ε+V ′T−1(ST−1, RT−2). Since the above holds for all ST−1 ∈ ST−1,

the property carries over to the post-decision value function V̄ ′T−2 and the error bound follows

by induction. �

4.3 Econometric Model

Consistent with our model formulation, we propose an econometric model that separates ran-

domness into a process of environmental variables with daily time increments and a process of

electricity prices with hourly time increments. The objective of the econometric model is to

accurately describe the dynamics of electricity prices and natural inflows by a small number of

explanatory variables that fit into this modeling framework.

As with every commodity, the price of electricity is determined by supply and demand. In the

short term, the supply is primarily driven by seasonal variations of intermittent power sources,

such as wind, solar, and run-of-river, or by power plant outages. In particular, wind power

generation drives down the electricity price, since wind power replaces other, more expensive,

technologies. In the long term, it is mainly the price of oil that influences the price of primary

energy and thereby the price for electricity. Electricity demand, on the other side, can be

largely explained by temperatures and deterministic seasonal factors. The temperature affects

electricity prices due to higher demand for heating and cooling. To verify this relationship, we

ran a linear regression of the mean demand for electricity per day in Austria and Germany on

the mean day temperature, the day length (i.e., the time from sunrise to sunset), as well as

dummy variables for national holidays in Germany and Austria. Based on a sample of 1461

observations from 2007 to 2010, the linear model explains 89% of the variance in electricity

demand. Accordingly, we model electricity prices dependent on those variables that influence

supply and demand. In addition to seasonal variables, such as day length, weekday, and hour,

explanatory variables include oil futures prices, the mean day temperature, and the total wind

power generation per day.

To meet the requirements of a finite horizon Markov decision process, we decompose the dy-

namics of the environmental variables into a time-dependent trend and a state transition process

which has the Markov property. Since oil prices are varying slowly and can be predicted well by

their futures prices, at least in the short-term, we assume that the oil prices are known. Together

with the seasonal variables, oil prices can then be viewed as deterministic and dependent on the

day of the year. The state of the Markov process on day t is defined by the weekday (DAY),

the mean day temperature (TEMP), the total wind power generation per day (WP), and the

natural inflow (IN),

St = (DAYt,TEMPt,WPt, INt). (4.28)
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Day of the Year

State

Hour of the Day Day of the WeekOil Forward Price

Load / Demand Day-Ahead Price Intraday Price

Wind Power Natural InflowTemperature

Figure 4.3: Econometric modeling framework

For a given realization of the state and a given day of the year, we model the hourly condi-

tional expectations of the electricity prices, E(p1, . . . , p24|St). An illustration of the econometric

modeling framework is given in Figure 4.3.

For model estimation, we used hourly day-ahead and intraday spot prices from 2007 to 2010

as published by the European Energy Exchange (EEX). Analogous data on wind power forecasts

is published by E.ON, EnBW, RWE, and Vattenfall for the four major German transmission

zones. We used day-ahead wind forecasts instead of realized generation because spot prices

are fixed one day in advance so that forecasts have a greater explanatory power than actual

generation data. Since the price effect of temperature is a function of population density and

local temperatures, we define the mean day temperature as a population weighted index over

all Austrian and German cities with a population of more than 10,000. The index has been

calculated using Mathematica 7 CityData and WeatherData. Data on natural inflows has been

provided by an Austrian generating company for two glacier rivers that feed a hydro-storage

system in the Alps (see Section 4.4 for further details). As both inflow patterns exhibit a

correlation of ρ = 0.8, we aggregated these inflows into a single state variable.

4.3.1 State Transition Model

We decompose the state (St)1≤t≤T into a deterministic trend component (Dt)1≤t≤T and a random

error (Et)1≤t≤T which follows a time-homogeneous Markov chain,

St = Dt + Et, t = 1, . . . , T. (4.29)
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(a) Temperature Index
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(b) Total Wind Power
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(c) Cumulated Natural Inflows

Figure 4.4: Partial Autocorrelation Functions of State Variables

To represent temperatures, we used the temperature index for the years 2007 to 2010 and

estimated the parameters δ, α and u of the trigonometric regression model,

TEMPt = δ + α sin

(
365− t

2π
− u
)

+ εt1. (4.30)

The total wind power generation per day exhibits annual seasonality because of higher wind

speeds during winter as well as an upward trend over time due to the ongoing installation of

new wind power units. To capture these two trends, we include a quadratic term as well as

an interaction term. We estimated the parameters δi, i ∈ {1, 2, 3}, α1, α2, u1 and u2 of the

trigonometric regression model,

WPt = δ1 + δ2t+ δ3t
2 + α1 sin

(
365− t

2π
− u1

)
+ α2 sin

(
365− t

2π
− u2

)
t+ εt2. (4.31)

Based on 18 years of inflow data, we estimated the trend in natural inflows by simply computing

the sample average over all 18 observations for each day. We model

INt = wtεt3, (4.32)

where wt is the mean inflow during day t. We obtain the residuals by dividing the inflow

realizations by their respective means.

To estimate a model of Et, we used the detrended state variables êt = (ε̂t1, ε̂t2, ε̂t3), i.e., the

residuals from (4.30) to (4.32) for 2007 to 2010. Figure 4.4 shows the partial autocorrelation

functions of êt. The strong autocorrelation inherent in all state variables supports the hypothesis

of stagewise dependence. By modeling the transition from one state to another as a Markov

process, we capture autocorrelation up to the first lag. To ensure parsimony of the model, we

do not include higher order lags.



60 CHAPTER 4. OPTIMIZING TRADING WITH HYDRO STORAGE SYSTEMS

Data 01-01-2007 to 31-12-2010
Observations for weekend models 415
Observations for working day models 1041
Average number of regressors 9.92
In-sample fit (R2) for continuous state variables 70.33%
In-sample fit (R2) for clustered state variables 69.73%

Table 4.1: Model summary of the day-ahead price model

We estimated the transition probabilities of the Markov chain for Et by first fixing a number

of states M and applying k-means clustering to organize the observations (êt)
T
t=1 into M clus-

ters, C1, . . . , CM . In a second step, we estimated the transition probabilities by counting the

number of transitions between clusters as they occur in the sample. Accordingly, the transition

probability matrix is given by

P(Et+1 = Cj |Et = Ci) =
| {t : êt+1 ∈ Cj , êt ∈ Ci} |

|êt ∈ Ci|
, ∀ i, j. (4.33)

For our implementation, we chose M = 20 to obtain the cluster centers C1, . . . , C20.

4.3.2 State-Dependent Price Models

Day-ahead prices were modeled using linear models. We estimated one model for every hour

and distinguish between working days and weekends, i.e., a total of 48 models. The regressors

consist of all state variables, daily demand for electricity, day length, monthly oil future prices

as well as three and six month lagged oil future prices. We included all interactions of the

regressors up to the second order.

In order to ensure parsimony of the model, we performed stepwise combined forward-

backward elimination as described in Draper and Smith (1998), Section 15.2. We used the

Bayesian information criterion (BIC) for model selection. For the day-ahead price models, the

selection routine chooses 9.92 regressors on average, but at most 19 out of 36 regressors. The

number of regressors is reasonable, considering that we used around 415 observations for the

weekend models and 1041 observations for the working day models.

The overall in-sample fit of the linear models for the day-ahead prices is R2=70.33%, which

is satisfactory, considering the fact that the time horizon includes the boom of 2007 and 2008

with high prices as well as the recession of 2009 and 2010 where exceptionally low prices were

seen. When replacing the actual realizations of the state variables by their respective nearest

cluster centers, the overall in-sample fit becomes R2=69.73%. The model fit decreases slightly

due to the loss of information induced by clustering. See Table 4.1.

To estimate the price response on the intraday market, we regressed the difference of intraday
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and day-ahead price on the hourly demand for electricity. The linear regression yielded an

intercept of -20.3 (Euro) and a slope coefficient of 0.0011 (Euro per megawatt), with an in-

sample fit of R2=45.07%. The negative intercept reflects the fact that the true price response

function is non-linear. Based on this data, we set the slope of the price-response function in the

objective function of the stochastic program to β = 0.0011.

4.3.3 Simulation

To simulate price trajectories over one year, we began by sampling a state from the steady-state

distribution of the Markov chain. The state transition process is simulated using the probabilities

in (4.33). Based on the realization of the state variable, the oil futures price, and the day of the

year, we generated hourly day-ahead prices using the linear models discussed above. Random

noise was added by sampling the error term of location scale t-distributions fitted to the residuals

of the linear models. The approach is supported by the Kolomogorov-Smirnov goodness of fit

test, which does not reject the null hypothesis of a t-distribution in any of the linear models

(α = 0.05). Using the t-distribution yields heavy-tailed prices, as they are often observed in

electricity markets.

To generate day-ahead price scenarios for the stochastic program, we resorted to Latin Hyper-

cube sampling (LHS) as variance reduction technique (Shapiro, 2003). LHS generates scenarios

which are more evenly distributed than pseudo-random scenarios. Denote F−1
h (St, Ul) as the

inverse CDF (t-distribution) of the day-ahead price during hour h for a given St, and denote Ul

as a uniform random variable. Then, we can generate K day-ahead prices using

phs = p′hΘ(s), p′hl = F−1
h (St, Ul) with Ul ∼ U [(l − 1)/K, l/K] ∀ l ∈ {1, . . . ,K}, (4.34)

where Θ is defined as a mapping from s to l such that ph is a random permutation of p′h, i.e.,

we shuffled until the correlation between all ph was below a threshold.

4.4 Numerical Results

To validate the efficiency of the proposed algorithm, we conducted a numerical analysis based on

data from a generating company in Austria. The company operates a large hydro storage system

in the Austrian Alps, which consists of an upper (1) and a lower reservoir (2). Both reservoirs

are fed by natural inflows of two glacier rivers, and water can be pumped from the lower into the

upper reservoir. In 2011, the system received a capacity upgrade which increased the pumping

and generating capacities at the upper reservoir by factor five. System specifications before and

after the upgrade for both reservoirs are given in Table 4.2.

For our numerical analyses, we sampled the Markov process as well as electricity price sce-
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Before Upgrade After Upgrade
Reservoir j 1 2 1 2

Max reservoir content 1000m3 UBRj 84 941 83 000
Initial reservoir content 1000m3 R0j 34 333 37 000
Average hourly inflow 1000m3 w̄j 2.90 0.76
Max pumping capacity MW UB−j 120 0 600

Min pumping capacity MW LB−j 20 0

Max generating capacity MW UB+
j 112 220 592 220

Min generating capacity MW LB+
j 15 10

Pump efficiency MW/1000m3 η−j 4.23 0

Turbine efficiency MW/1000m3 η+j 3.17 7.51

Table 4.2: System specifications

narios from the econometric model described in Section 4.3. The full problem has T = 365 stages

and St = {S1, . . . , S20} states at each stage. For each state, we generated K = 20 scenario paths,

each containing H = 24 price realizations (see Section 4.3.3). The discount factor was set to

γ = 1.0 and all bidding curves had four segments with I = 3 breakpoints.

The algorithm and the electricity price model were implemented in Java, using FICO Xpress

BCL to model the mathematical programs. Computing times were measured on an Intel i7-2600

with 16 GB memory using the 64 bit versions of Java 6, Windows 7, and Xpress Optimizer 20.

4.4.1 Computational Results

To verify convergence of the algorithm, we compared expected first-stage profits with realized

profits. We ran ADDP for 25 iterations with both system configurations (before and after the

upgrade) setting V̄T ≡ 0. To obtain the expected profits, after each iteration, we computed the

objective values of the stochastic program at T = 1. Then, for 100 sample paths, we simulated

the realized profits that result from executing bidding and operational decisions obtained by

solving the stochastic program.

To obtain a practitioner’s benchmark, we solved the deterministic counterpart of the prob-

lem as a single linear program using the weighted hourly price averages of the entire year.

We then took the dual solutions associated with the reservoir balance equations at hours

h ∈ {25, 49, 73, ...} as salvage values in t ∈ {1, 2, 3, ...} and again simulated the realized profits

as above.

The convergence of expected and simulated profits for the upgraded system along with the

computing times are shown in Figure 4.5 for ε = 0 and ε = 10000. The latter equals about 2.5%

of the mean intraday profit. For the smaller system, the algorithm converged faster, but plots

look alike and offer no additional insights.

We find that, despite using the relaxed problem to approximate the value function, the gap
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Figure 4.5: Convergence of ADDP for the system after the upgrade

between expected and simulated profits after 10 iterations was below 1%. Moreover, not adding

hyperplanes that do not improve the approximation by more than ε = 10000 did not significantly

increase the gap, which implies that the polyhedral approximation has no detrimental effect.

Upon convergence, simulated profits from ADDP are 14% above the practitioner’s benchmark,

which reflects the value of having a stochastic solution to the problem. We can expect comparable

results for problems with similar parameters, which includes a wide range of existing hydro

storage systems.

Also, choosing ε = 10000 reduced the computational time by 15 percent after 10 iterations

and by 45 percent after 25 iterations. The linear increase in computational time after 10 itera-

tions for ε = 10000 indicates that the algorithm has converged and that no further hyperplanes

are being added. This observation corresponds to the convergence of expected and simulated

profit. Since it is easy to track how many hyperplanes have been added during a backward

pass, one could use this information to stop the algorithm automatically, which would be an

alternative to the classic stopping criterion proposed in Pereira and Pinto (1991).

4.4.2 Structural Insights

In addition to studying the behaviour of the algorithm, we were interested in how the capacity

upgrade influences intraday profits as well as the decision policy. To avoid that reservoirs are

being emptied at the end of the year, the value function of the final stage V̄T is such that it

sufficiently penalizes any reservoir content below the initial reservoir levels.

The profitability of investments in storage in the current market environment is high. Our

results indicate that the system upgrade increases profits from e335,000 to e485,000 per day.

Assuming 8.0% cost of capital and a stationary price path, the investment will have earned its



64 CHAPTER 4. OPTIMIZING TRADING WITH HYDRO STORAGE SYSTEMS

0

10

20

30

40

50

60

70

80

0 1200 2400 3600 4800 6000 7200 8400

R
es

er
v
oi

r
C

on
te

n
t

(i
n

M
m

³)

Hour

0.1/0.9 Quantile

Median

(a) Before upgrade

0

10

20

30

40

50

60

70

80

0 1200 2400 3600 4800 6000 7200 8400
R

es
er

v
oi

r
C

o
n
te

n
t

(i
n

M
m

³)
Hour

0.1/0.9 Quantile

Median

(b) After upgrade

Figure 4.6: Reservoir content curves

investment cost of e405M after 11 years. However, the marginal value of power capacity appears

to be decreasing, since an increase of turbine and pump capacities by factor five increases average

profits by merely 45%.

Figure 4.6 shows the reservoir contents of the upper reservoir over the course of the year for

the system before (a) and after the upgrade (b). Although we used 100 different sample paths,

both reservoir content curves exhibit little variation in between the sample paths. Nevertheless,

the capacity upgrade increases the variability of the reservoir content, since less time is needed

for large changes in reservoir contents.

Figure 4.7 shows the distribution of electricity prices (a) and natural inflows into the upper

reservoir (b) over one year. By taking weekly price averages, we level the price effects of the

individual hours as well as the effect of working days versus weekends. Before the upgrade, the

optimal decision policy has been largely governed by long-term effects. In winter, when inflows

were low but average prices high, the upper reservoir was being emptied, while in summer when

average prices were low, but inflows high, the reservoir was being filled up again. By contrast,

after the upgrade, the optimal decision policy now additionally takes advantage of low electricity

prices around the winter holidays. Since there are virtually no natural inflows during this time

of year, water is being pumped into the upper reservoir, so that more electricity can be sold

during the more profitable weeks in late January and early December.

Figure 4.8 shows two plots of the post-decision value function at stage T = 1 for the system

before and after the upgrade. Both functions remain linear over a wide range of reservoir states.

We conjecture that this observation is a general feature of the problem, which also explains the
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Figure 4.7: Stochastic processes

fast convergence of the algorithm.

4.5 Discussion

We modeled the bidding problem of a generating company that operates a network of hydro stor-

age plants as a multi-stage stochastic program and proposed a solution strategy that integrates

stochastic dual dynamic programming with ideas from approximate dynamic programming. We

divided the annual planning horizon into daily stages with hourly bidding decisions as part of the

intrastage bidding problem. Accordingly, we separated intrastage from interstage randomness,

which enabled us to model price uncertainty at each stage dependent on a state variable that

evolves over time following a Markov process. To solve the multi-stage decision problem, we

proposed a solution strategy that computes an approximation of the value function of the inter-

stage process. The algorithm, referred to as approximate dual dynamic programming (ADDP),

relaxes the original problem formulation and constructs a polyhedral approximation of the value

function. This approximation can be used inside the original, more complicated intraday bidding

problem to derive near-optimal bidding decisions.

We showed that the algorithm converges and derived an error bound of the polyhedral

approximation. Tailored to the modeling framework, we developed an econometric model of

electricity prices and stochastic inflows fitted to data from the EEX wholesale electricity market

as well as actual inflow data. We then carried out an extensive case study based on a hydro

storage system in Austria. We find that approximating the continuous state transition process
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Figure 4.8: Post-decision value functions of the first stage

by a discrete-state Markov chain provides a good model fit. Numerical results indicate that the

algorithm converges to a near-optimal solution, despite using a relaxed version of the original

problem to approximate the value function of the interstage problem. Moreover, using a polyhe-

dral approximation to accelerate the algorithm had no noticeable detrimental effect on solution

quality.

Future work should focus on models that additionally consider the market for reserve elec-

tricity. It would also be interesting to find out whether the concave value function could be

approximated well by a linear function.



Chapter 5

Simulation Optimization for the

Stochastic Economic Lot Scheduling

Problem

Lot-sizing and scheduling are classical problems of production planning, with particularly many

applications in the process industry. Most researchers treat this problem as a deterministic

optimization problem, since this task is usually seen as short term and operational. Although this

assumption is reasonable in some production environments, there are many applications where

demand uncertainty requires integrating lot-sizing and scheduling with safety stock planning.

Besides finding the optimal production sequence and respective lot sizes, production planning

needs to provide the right amount of flexibility in response to uncertainty.

We address the problem of scheduling production of multiple products on a single machine

with significant setup times under uncertain demand in continuous time. In the literature,

this problem is known as the stochastic economic lot scheduling problem (SELSP). The SELSP

is a computationally complex problem, where the deterministic counterpart, the economic lot

scheduling problem (ELSP), is already NP hard (Hsu, 1983). For literature reviews on the

ELSP, we refer to Elmaghraby (1978) and Davis (1990). A comprehensive literature review on

stochastic lot scheduling problems with a focus on modeling and solution methods is provided

by Sox et al. (1999). Winands et al. (2011) review and classify the literature on the SELSP

according to sequencing and lot-sizing decisions and include several practical applications.

In general, the SELSP can be formulated as a semi-Markov decision process (SMDP) (Graves,

1980; Qiu and Loulou, 1995), but since this formulation suffers from the curse of dimensionality

only small problem instances can be solved to optimality. Most research is therefore dedicated

towards simpler policies. Gallego (1990) and Bourland and Yano (1994) both propose procedures

where a production plan is set in advance and then a policy is used that restores the plan in

67
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response to uncertain demand. For Poisson demands, Federgruen and Katalan (1996) propose

analytical solutions to find optimal base-stock levels and idle times for a given sequence. In

Federgruen and Katalan (1998), the authors derive the optimal relative frequencies for each

product, from which a fixed sequence can be constructed. For more general renewal processes,

Anupindi and Tayur (1998) use infinitesimal perturbation analysis to find optimal base-stock

levels for a given production sequence, and Markowitz et al. (2000) propose optimal control

policies for pure rotation cycles using heavy-traffic approximation. Other approaches are in

Krieg and Kuhn (2002), Wagner and Smits (2004), and Brander and Forsberg (2006). Although

a fixed sequence is often a good choice, the optimal sequence is likely to be dynamic and has to

take the entire vector of inventory states into account. For products with identical parameters,

Vaughan (2007) finds that a dynamic sequence resulting from order-point methods outperforms

a fixed cyclical schedule in systems with a large number of products and low utilization. Graves

(1980) and Gascon et al. (1994) compare several heuristic scheduling rules where the sequencing

decision is determined by a product’s number of periods of supply. Altiok and Shiue (1994,

1995) derive optimal (s,S) policies for dynamic sequences and Poisson demands by analyzing

the underlying Markov chain. Paternina-Arboleda and Das (2005) use a two-level approach of

first searching for optimal base-stock levels and then using reinforcement learning to optimize

the sequencing decisions.

Although much progress has been seen in simulation optimization, only few authors dis-

cuss approximations to optimize the SMDP (Paternina-Arboleda and Das, 2005) or propose

black box algorithms to optimize control policies (Anupindi and Tayur, 1998). Our contribu-

tion is to close this gap by proposing two different simulation optimization approaches. First,

as a methodology to address the curse of dimensionality, approximate dynamic programming

(ADP) has received considerable attention (Powell, 2007). ADP uses Monte Carlo simulation

to approximate the state-dependent value function of a dynamic program, avoiding a complete

enumeration of the state space. We propose two approximate value functions based on lin-

ear combinations of piecewise-constant functions and then use an ADP algorithm to find the

weights of these functions. Second, even for simple control policies closed-form solutions are

complex, so that finding the right parameters is computationally challenging. Global optimiz-

ers therefore present a promising alternative. We propose representations of simple base-stock

policies amenable to unconstrained global optimization for cyclic as well as dynamic production

sequences. To search for the optimal parameters of these policies, we resort to the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) algorithm (Hansen and Ostermeier, 2001).

To study the SELSP as well as the various solution methods, we performed a large-scale

simulation study to answer the following questions. Which simulation optimization method

produces the best policy on average and how often? How much worse is a policy if it is not

best? Under which circumstances is a particular policy better than another? How far from
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Figure 5.1: Illustrative example of the stochastic economic lot scheduling problem

optimal is the best policy found by simulation optimization? What is the influence of model

parameters on average cost?

5.1 Model Formulation

5.1.1 Assumptions

We consider the continuous-time stochastic economic lot scheduling problem with n ∈ {1, . . . , N}
products. There is a single machine that can only manufacture one product at a time. If the

machine state changes from idle to busy or from one product to another, the machine has to be

set up. This requires a deterministic, sequence-independent setup time Wn and incurs a setup

cost of An. We further assume that the setup status cannot be preserved over an idle period.

The production for one unit of product n requires a deterministic production time pn. During

a setup or production of a single item, interruption is not permitted. Inventories are subject to

holding cost hn per item and unit of time and cannot exceed a maximum inventory level ȳn.

Demand for each product n follows a compound renewal process with interarrival distribution

FAn and demand size distribution FDn . Interarrival times and demand size are independent for

each product and across products. Unsatisfied customer demand is lost at cost vn per item, but

we allow for partial fulfillment of an order. More specifically, we model the compound renewal

process as stuttering Poisson process, where arrivals follow a Poisson process and the demand

size per arrival follows a geometric distribution. Denote λn as the arrival rate of demand for
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product n and Cn(t) as the number of arrivals of product n during a time interval of length

t. Then, the probability for the number of arrivals being equal to k is Poisson distributed and

given by

PAn (Cn(t) = k) =
(λnt)

k

k!
exp(−λnt), k ∈ N+, (5.1)

with mean number of arrivals λnt. Denote 0 < qn ≤ 1 as the probability of the demand size Dn

per arrival being equal to 1. The probability of the demand size being equal to d is given by

PDn (Dn = d) = qn(1− qn)d−1, d ∈ N+, (5.2)

with mean demand size 1/qn. In general, compound Poisson demand over a time interval of

length t is defined as

P (Dn(t) = d) =
d∑
i=0

(λt)i

i!
exp(−λt)fd(i), (5.3)

where fd(i) denotes the probability that d demands occur on i demand occasions. Recursive

computation of stuttering Poisson demands (Feeney and Sherbrooke, 1966), where Cn(t) = k

customers with total demand Dn(t) = d arrive during time period t, is given by

P (Dn(t) = d) =
d∑

k=0

fn(d, k), (5.4)

with fn(d, k) = (1 − qn)fn(d − 1, k) + qn
λnt
k fn(d − 1, k − 1), fn(0, 0) = exp(−λnt), fn(d, k) = 0

if d < k, and fn(d, 0) = 0 if d > 0.

For a given period demand with mean µn and standard deviation σn, the required stuttering

Poisson parameters to obtain the same first two moments are qn = 2µn(µn + σ2
n)−1 and λn =

µnqn. Note that PDn is only defined if qn ≤ 1 so that feasible mean-variance combinations are

limited to µn ≤ σ2
n.

5.1.2 Semi-Markov Decision Process

We model the SELSP under compound Poisson demand as an infinite horizon, average cost

semi-Markov decision process (SMDP). In an SMDP, decisions are only made after a change of

the system state which is relevant for the decision-making process. During such a decision epoch,

the system state may change several times due to multiple demand arrivals, but no decision can

be made.

We describe the state of the production system by the vector S = (m, y) ∈ S, where y

denotes the inventory state y = (y1, ..., yN ), with 0 ≤ yn ≤ ȳn and m the machine state, with

m ∈ {0, ..., N}. Machine status m = 0 indicates that the machine is idle and m = n > 0 that the

machine is currently set up for product n. We assume that sojourn times are finite and a finite
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number of transitions takes place during a (finite) decision epoch. Denote x ∈ X = {0, ..., N}
as a production decision. A new decision epoch begins after production or setup of an item has

been completed, or, in case the machine has been idle, upon arrival of new customer demand.

To solve the infinite horizon SMDP, we have to find an optimal policy π∗ such that the

average cost per unit of time g is minimized. Let g∗ denote the minimal expected average cost

and V ∗(S) the minimal average cost (or value) when being in state S. Denote P(S′|S, x) as

the probability of a transition from state S to successor state S′ when decision x is taken; and

denote τ̄(S, x) as the average time and c(S, x) as the total cost associated with state S and

decision x prior to transition to S′. Then, the optimization problem is to find g∗ and V ∗(S),

such that

V ∗(S) = min
x∈U

{
c(S, x)− g∗τ̄(S, x) +

∑
S′∈S

P(S′|S, x)V ∗(S′)

}
∀ S ∈ S. (5.5)

For the problem described, the Markov chain of every stationary policy has a unichain transition

matrix, so that the expected average cost do not vary with the initial state.

The probability of a transition from state S to S′ after decision x is given by

P(S′|S, x) =

N∏
n=1

Pn(S′|S, x). (5.6)

The product-specific transition probabilities Pn(S′|S, x) are defined as

Pn(S′|S, x) =



λnP
(
Dn = yn − y′n

)(∑N
m=1 λm

)−1
if x = 0 and y′n > 0,

λnP
(
Dn ≥ yn

)(∑N
m=1 λm

)−1
if x = 0 and y′n = 0,

P (Dn(pn) = yx − y′x + 1) if n = x, x = m and y′n > 1,

P (Dn(pn) ≥ yx) if n = x, x = m and y′n = 1,

P (Dn(px) = yn − y′n) if n 6= x, x = m and y′n > 0,

P (Dn(px) ≥ yn) if n 6= x, x = m and y′n = 0,

P (Dn(Wx) = yn − y′n) if x 6= m and y′n > 0,

P (Dn(Wx) ≥ yn) if x 6= m and y′n = 0,

0 otherwise.

(5.7)

If the machine goes idle (x = 0), we multiply the probability of the next event being demand

for product n with the probability of demand being either of size equal to yn − y′n for y′n > 0

or of size greater than yn for y′n = 0. If the machine is set up to produce an item other than n

(x = m = n), demand over pn periods either depletes inventory from yn to y′n > 1 or to y′n = 1,
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so that y′n ≥ 1 always includes the previously produced item. If the machine is already set up

but produces another product (x = m 6= n), demand over px periods either depletes inventory

from yn to y′n > 0 or to zero. If the machine has to be set up (x 6= m), demand over Wx periods

either depletes inventory from yn to y′n > 0 or to zero.

The average sojourn time τ̄(S, x) of a decision epoch is given by

τ̄(m, y, x) =


px if x = m,

Wx if x 6= m,(∑N
n=1 λn

)−1
if x = 0.

(5.8)

Note that in case the machine goes idle, the average sojourn time until the next demand event

is a Poisson process with rate
∑N

n=1 λn.

The cost c(S, x) of being in state S and taking decision x consists of setup or variable

manufacturing costs, inventory holding costs, and lost sales penalty costs.

c(S, x) =


cx +

∑N
n=1

(
Hn(yn, px) + vn

∑∞
d=yn+1(d− yn)P (Dn(px) = d)

)
if x = m

Ax +
∑N

n=1

(
Hn(yn,Wx) + vn

∑∞
d=yn+1((d− yn)P (Dn(Wx) = d)

)
if x 6= m,∑N

n=1

(
hnyn + vnλn

∑∞
d=yn+1(d− yn)PDn (d)

)(∑N
i=1 λi

)−1
if x = 0.

(5.9)

The determination of product-specific and time-dependent expected holding cost Hn(yn, t) re-

quires to track each of the yn items. Demand for item k occurs on the l-th demand event if

D
(l−1)
n < k and D

(l)
n ≥ k where D

(l)
n is the cumulative demand for product n over l transactions

and F
(l)
n denotes the l-fold convolution of the demand size distribution

θn(k, l) = P (D(l−1)
n < k ∧D(l)

n ≥ k) =
k−1∑
i=1

P (D(l−1)
n = i)P (Dn ≥ k − i)

=
k−1∑
i=1

f (l−1)
n (i)(1− FDn (k − i− 1)) = F (l−1)

n (k − 1)− F (l)
n (k − 1),

with F
(l)
n (1) = 0, F

(0)
n = 1. Note that k ≥ 1 and for l = 1, P (Dn ≥ k) = 1 − F (l)

n (k − 1). The

convolution is given by

F (l)
n (k) =

k−1∑
h=1

F (l−1)
n (h)fDn (k − h). (5.10)

The time until the l-th demand is Erlang distributed with parameters λn and l. Then, for a
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given inventory level yn, the expected holding costs over a time interval of length t are given by

Hn(yn, t) = hn

yn∑
k=1

k∑
l=1

P (Dn(l − 1) < k ∧Dn(l) ≥ k)

(∫ t

0
uEn,l(x)du+ t

∫ ∞
t

En,l(u)du

)

= hn

yn∑
k=1

k∑
l=1

(F (l−1)
n (k − 1)− F (l)

n (k − 1))×(
l

λn
(1− PAn (Cn(t) ≤ l)) + t · PAn (Cn(t) ≤ l − 1)

)
. (5.11)

5.2 Solution Methods

5.2.1 Relative Value Iteration

The solution to the system of equations given in (5.5) is unique w.r.t. g∗ and unique up to

an additive constant for all V (S). Therefore, we can set the value of an arbitrary state S0 to

V (S0) = 0 and express the other values relative to this value. The optimal gain and the values

of each state can be successively approximated by the following recursive scheme where gj and

V j(S) denote the respective values obtained in iteration number j.

gj = min
x∈X

{
c(S0, x) +

∑
S∈S\S0

P (S|S0, x) · V j(S)

τ̄(S0, x)

}
(5.12)

V j+1(S) = V j(S)− gj + β ·min
x∈X

{
c(S, x) +

∑
S′∈S\S0

P (S′|S, x) · V j(S′)− V j(S)

τ̄(S, x)

}
(5.13)

for S ∈ S \ S0 and with β < τ̄(S, x) ∀ S ∈ S, x ∈ X to ensure numerical stability. In addition,

this successive improvement scheme provides a lower and an upper bound on the optimal gain

in each iteration (Schweitzer, 1971).

5.2.2 Approximate Value Iteration

Since relative value iteration is subject to the curse of dimensionality for larger problems, we

propose to use approximate value iteration instead (see Figure 5.2). For a given approximate

value function V̄ ( · ;w0) with initial parameters w0 and a starting state S, the algorithm simu-

lates a sample path of T decision epochs while updating the control policy online. The main loop

consists of three steps: (Step 2.1) a (greedy) control policy selects the best decision based on the

value estimate of the previous iteration for the given state of the system; (Step 2.2) a simulation

model SM samples the state transition function and returns a realization of the immediate cost
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(1) Input arguments: value function V̄ ( · ;w0), starting state S

(2) Do for t = 1, 2, . . . , T

(2.1) Solve x∗ ← arg min
x∈X

V̄
(
S, x;wt−1

)
(2.2) Compute

(
ct, τt, S

′)← SM
(
S, x∗

)
r ← c+ exp(−γτ) min

x∈X
V̄
(
S′, x;wt−1

)
(2.3) Update wt = UV

(
wt−1, S, x∗, r

)
, S ← S′

(3) Return value function V̄ ( · ;wT )

Figure 5.2: Approximate value iteration for semi-Markov decision processes

c, the sojourn time τ and the successor state S′, which gives the discounted reward,

r = c+ exp(−γτ) min
x∈X

V̄
(
S′, x;wt−1

)
; (5.14)

(Step 2.3) a function UV updates the value estimate of making the greedy decision x∗ in state

S. After T decision epochs, the algorithm returns the final estimate of the value function

approximation.

For approximate value iteration, we use discounted reward as a proxy for average reward.

We find this formulation to be more stable than approximating the average reward directly. The

discount factor γ can therefore be regarded as a purely algorithmic parameter which has to be

set sufficiently large to obtain a nearly average cost optimal policy without risking numerical

stability.

Value Function Approximation by Stochastic Gradients

The updating function UV is based on stochastic gradient algorithms, a popular class of meth-

ods for function approximation which are particularly well-suited for approximate value iteration

(Bertsekas, 2007; Powell, 2007). In contrast to (non-)linear regression methods, stochastic gra-

dient algorithms have only O(n) time complexity and are able to estimate the mean of a random

variable online while new samples are being collected.

A stochastic gradient algorithm changes the parameters of a function approximator to fit

the observations from a data set. Let the approximate value function V̄ be a linear combination

of basis functions φi with real-valued weights wi and i ∈ {1, 2, ..., D}. A basis function φi may

be any non-linear function of S and x. Denote w and Φ as the corresponding vectors of length
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D, with w> as transpose. Then, the approximate value function is given by

V̄ (S, x;w) = w>Φ(S, x) =
D∑
i=1

wiφi(S, x). (5.15)

A stochastic gradient algorithm adjusts the weight vector w after each observation in the di-

rection that minimizes the mean squared error, minw
1
2

(
V̄ (S, x;w)− r

)2
. For a linear function,

the stochastic sample gradient with respect to w is given by Φ(S, x). Since the true gradient is

unknown, we adjust the weight vector in the direction of the gradient only by a small amount

αt ∈ (0, 1], referred to as stepsize. The function UV that updates the weight vector is then given

by

wt = UV
(
wt−1, S, x, r

)
= wt−1 + αt

(
r − V̄ (S, x;wt−1)

)
Φ(S, x). (5.16)

For a stationary policy, the weight vector w is guaranteed to converge to a local optimum as

long as we gradually reduce the stepsize to zero (Bertsekas, 2007, p. 333). Practical convergence

is thereby largely affected by choosing the right stepsize for each updating step. Although the

optimal stepsize schedule is unknown, experimental work has shown that there exist simple

stepsize rules that work well in practice (Powell, 2007, Ch. 6). One of these rules is the

generalized harmonic stepsize, which is given by αt = ab(a+ t−1)−1, with a ∈ R+ and b ∈ (0, 1]

as scaling parameters.

Piecewise-Constant Value Functions

We use a linear combination of piecewise-constant functions as approximation scheme and apply

the stochastic gradient algorithm to update the weights of the constant function segments. We

assign two separate functions to each production decision: one function for the case when the

machine state is changed after a decision and one function for the case when the machine state

remains the same. This separation takes the different sojourn times during setup or production

of an item into account. We then model each of these functions as a linear combination of

piecewise-constant basis functions of the inventory states.

Denote v̄j as the partial value function, with j ∈ {0, ..., 2N}. The piecewise-constant function

that assigns two partial value functions to each decision is given by

V̄ (S, x;w) =

v̄x(y;w) if x 6= m or x = 0,

v̄N+x(y;w) otherwise.
(5.17)

Note that for the decision to go idle, x = 0, we use only one function, since the sojourn time for

an idle epoch is independent of the machine state.

For the partial value functions v̄j , we test two different approximation schemes. The first
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approximation is the sum over N piecewise-constant functions of each inventory state variable.

The intuition is that the expected immediate cost can be computed separately for each product,

since expected holding and lost sales cost of one product are independent of other products. This

makes the immediate cost function separable in the inventory state variables yn. The separable

(first-order) partial value function is then given by

v̄j(y;w) =

N∑
n=1

v̄
(1)
jn

(
yn;w

)
. (5.18)

Each function v̄
(1)
jn is a piecewise-constant function with K disjoint intervals of width d

(1)
n =

ȳn+1
K : n ∈ {1, ..., N},

v̄
(1)
jn (yn;w) =

K∑
k=1

wI(j,n,k) · φI(j,n,k)(yn) =
K∑
k=1

wI(j,n,k) · 1[(k − 1)d(1)
n , kd(1)

n )(yn), (5.19)

where I(·) maps the multi-dimensional index to a unique index of an element of the weight

vector. Note that by setting d
(1)
n = ȳn+1

K , the right-open interval [(K − 1)d
(1)
n ,Kd

(1)
n ) contains

the maximum inventory level for K ≤ ȳn.

If we take into account that the approximate value function is not only an estimate of the

immediate cost, but also of the discounted value of future states and decisions, then we cannot

assume separability any more. To consider dependencies among inventory state variables, we

propose a second approximation scheme, where we add the sum of piecewise-constant functions

over all
(
N
2

)
combinations of inventory state variables to the first approximation. The (second-

order) partial value function is then given by

v̄j(y;w) =
N∑
n=1

(
v̄

(1)
jn

(
yn;w

)
+

N∑
m=n+1

v̄
(2)
jnm(yn, ym;w)

)
. (5.20)

Each function v̄
(2)
jnm is a piecewise-constant function with two arguments and L × L disjoint

segments with edge lengths of d
(2)
n = ȳn+1

L and d
(2)
m = ȳm+1

L : n,m ∈ {1, ..., N}, so that

v̄
(2)
jnm(yn, ym;w) =

L∑
k=1

L∑
l=1

wI′(j,n,m,k,l) · φI′(j,n,m,k,l)(yn, ym),

=

L∑
k=1

L∑
l=1

wI′(j,n,m,k,l) · 1[(k − 1)d(2)
n , kd(2)

n )(yn) · 1[(l − 1)d(2)
m , ld(2)

m )(ym),

(5.21)

with I ′(·) as another index function.
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(1) Input arguments: initial guess µu, trust region σu

(2) Do for i = 1, 2, . . . , I

(2.1) Get (u1, ..., uK)← GM (K) from internal model

(2.2) Do for k = 1, 2, . . . ,K

(2.2.1) Do for t = 1, 2, . . . , T

(2.2.1.1) Compute
(
ct, τt, S

)
← SM

(
S, π(S;uk)

)
(2.2.2) Compute rk ←

∑T
t=e+1 ct

(∑T
t=1 τt

)−1
(2.3) Update internal model UM

(
(u1, ..., uK), (r1, ..., rK)

)
(3) Return best solution u∗

Figure 5.3: Generic policy search for production control

Let us briefly review the space complexity of the approximate value functions. The first

approximation with a weight vector of length D =
(
2N + 1

)
KN has a worst-case space com-

plexity of O(KN2), while the second approximation with D =
(
2N + 1

)(
KN + L2N(N−1)

2

)
has O(N3L2). Both schemes therefore have only polynomial space complexity, which is low

compared to laying a coarse grid over the state space. A grid where each inventory state is

aggregated into C intervals would produce a weight vector of length D =
(
2N + 1

)
CN which

has an exponential worst-case complexity of O(NCN ) and would thus be itself subject to the

curse of dimensionality.

5.2.3 Direct Policy Search

An alternative to approximating the value function and using this function to control the de-

cision process is to directly search for optimal parameters of simpler control policies. To guide

the search for the optimal parameter vector, we resort to the CMA-ES algorithm (Hansen and

Ostermeier, 2001). CMA-ES generates new candidate vectors from a multivariate normal dis-

tribution, i.e., N
(
µu, diag(σu)

)
, which serves as an internal model of promising search steps,

where dependencies among parameters are described by the covariance matrix. Throughout the

search process, the algorithm updates the distribution’s mean vector and its covariance matrix

to increase the likelihood of previously successful search steps.

Figure 5.3 outlines a generic formulation of the CMA-ES algorithm. Denote π( · ;u) as

control policy which is characterized by a (continuous) parameter vector u. The objective

is to search for an u that minimizes the expected average cost. The algorithm is initialized

with a guess of the best solution, µu, as well as a trust region, σu, in which the solution is
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likely to be found. The main loop consists of three steps: (Step 2.1) the algorithm generates

a set of K candidate solutions (u1, ..., uK) from the internal model GM which controls the

search process; (Step 2.2) for each of the resulting control policies, the algorithm simulates the

transition process and records the average cost; (Step 2.3) the algorithm updates the internal

model using the sampled information about the mapping of parameters (u1, ..., uK) to average

rewards (r1, ..., rK). Evidently, the algorithm searches for the global optimum of a noisy, non-

convex objective function, without guarantee of finding the best solution after I iterations. Let

us now introduce four control policies which can be fully described by a parameter vector u.

Fixed-Cycle Policy

An intuitive solution to the problem of producing multiple products on a single machine is to fix

a sequence in which these products are being produced in addition to quantities and (possibly)

idle times. The fixed-cycle policy follows an idea originally proposed by Dobson (1987) for the

ELSP and adapted by Federgruen and Katalan (1998) for the SELSP. The authors find the

optimal production frequency for each product and then use this information to construct a

fixed production sequence.

Denote R ∈ NN as the set of integer frequencies and Y ∈ NN as the set of order-up-to levels.

We map the corresponding continuous parameter vector u ∈ R2N to these two sets by decoding

the vector into Rn = b|uN+n|c + 1 and Yn = b|uN+n|c + 1. Since the product with the highest

frequency can be scheduled at most every other time, we restrict the maximum frequency to be

less than or equal to the sum of all other frequencies.

Figure 5.4 outlines a simple heuristic method to generate a production sequence Q =

{Q1, ..., QJ} of length J from a given set of integer frequencies. The heuristic assigns each

product to a set of products with identical frequencies, Li = {n : Rn = Ri}. Each set Li is in-

serted into the sequence multiple times according to its frequency. In Step (3.2.2) the algorithm

inserts Li at position z and shifts the element currently at that position to the right. Suppose

we have R = {2, 4, 1, 4, 2}, which gives us L1 = {3}, L2 = {1, 5}, L3 = {}, L4 = {2, 4}. Then,

the heuristic would insert the Li’s into Q in the following way:

Q1 = {3} → Q2 = {1, 5, 3, 1, 5} → Q3 = {1, 5, 3, 1, 5} → Q4 = {2, 4, 1, 2, 4, 5, 3, 2, 4, 1, 2, 4, 5}

The resulting production sequence features products being roughly evenly spaced over the entire

cycle according to their integer frequencies.

For a given position j in sequence Q and order-up-to levels Y , the fixed-cycle policy is now

given by

π(S;x) =

0 if ∀ n : yn = Yn,

Qz(j) otherwise,
(5.22)
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(1) Input arguments: integer frequencies R

(2) Group identical frequencies Li = {n : Rn = i}

(3) Do for i = 1, 2, . . . ,max Rn
n∈N

(3.1) d← dim(Q)R−1i

(3.2) Do for j = 1, 2, . . . , i

(3.2.1) z ← bjd+ 0.5c+ j dim(Li) + 1

(3.2.2) Q← Q′ : Q′k =


Qk ∀ k < z,

Li,k−z ∀ z ≤ k < z + dim(Li),

Qk−dim(Li) ∀ k ≥ z + dim(Li)

(4) Return sequence Q

Figure 5.4: Heuristic method to generate an evenly spaced production sequence from given

integer frequencies

where the recursive function z is defined as

z(j) =

j if yk < Yk : k = Qj ,

z
(
j mod J + 1

)
otherwise.

(5.23)

For a given position j, the function returns the next position in the sequence for which yn < Yn,

where the modulus ensures that the production cycle is repeated as soon as j = J . Note that

this approach allows for simultaneous optimization of production sequence and base-stock levels,

in contrast to Anupindi and Tayur (1998) who propose a two-stage approach of fixing a schedule

and then searching for base-stock levels.

As initial guess for the policy search, we propose to use a heuristic solution that is based on

the common cycle solution to the ELSP. Denote k as a safety factor and T̂ as the common cycle

time. Then, we obtain a policy, where for each product n we set

Rn = 1, Yn = max
{⌊
µnT̂ + kσn

√
T̂
⌋
, 1
}
. (5.24)

Note that Yn ≥ 1 is a lower bound on the order-up-to level, since production would be zero

otherwise. The common cycle time T̂ and the safety factor k are given by

T̂ = max

{√
2
∑N

n=1An∑N
n=1 hnµn(1− µnpn)

,

∑N
n=1Wn

1−
∑N

n=1 µnpn

}
, k = Φ−1

(
vn

vn + hnT̂

)
, (5.25)
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with Φ−1 as inverse normal distribution. Using the quantile of the compound Poisson distribu-

tion instead would add little additional value, since k is merely a parameter of the initial guess.

As trust region we use σui = max
{

1
2µ

u
i , δ
}

for all policies, with δ ≥ 1 to ensure exploration in

case µui = 0.

Fixed-Cycle Policy with Preemption

A major drawback of using a fixed cycle in a stochastic production environment is its lack of

flexibility. For example, assume that product i is next but still close to its order-up-to-level while

product j, which is in line after i, is already out of stock. Then, it could be better to preempt

production of j, instead of setting up for i and risking lost sales of j. Moreover, under the

fixed-cycle policy the machine only goes idle when all products are at their order-up-to levels,

which may not be the best choice when utilization is low, but inventory holding cost high.

To overcome these drawbacks, we suggest to add two additional control parameters, a preemp-

tion point and a can-order level. Denote f ∈ RN+ as before, Y (1) ∈ NN as the set of preemption

points, Y (2) ∈ NN as the set of can-order levels, and Y (3) ∈ NN as the set of order-up-to-

levels. The corresponding parameter vector u ∈ R4N can then be decoded into fn = |un| + 1,

Y
(2)
n = b|uN+n|c, Y (1)

n = max{Y (2)
n − 1− b|u2N+n|c,−1} and Y

(3)
n = Y

(2)
n + 1 + b|u3N+n|c.

Instead of rotating the entire sequence, as in Gallego (1990), we preempt the critical product,

thereby turning the fixed production cycle into a dynamic one. When one or more products

are at their preemption points or below, we update the production sequence and move the next

product with yn ≤ Y (1)
n from its original position to the position that comes next. On the other

side, when all products are still above their can-order level, the machine goes idle.

Given the current position j in sequence Q, the fixed-cycle policy with preemption is given

by

π(S;x) =


0 if ∀ n : yn > Y

(2)
n ,

Q′j+1 if ∃ n : yn ≤ Y (1)
n ,

Qz′(j+1) otherwise,

(5.26)

where Q′ = Z(Q, z′′(j + 1), j + 1). Z is defined as

Z(Q, i, j) =

Q′ ∈ Q : Q′j = Qi, Q
′
k+1 = Qk∀ j ≤ k < i,Q′k = Qk∀ k < j ∧ k > i if j ≤ i,

Q′ ∈ Q : Q′j = Qi, Q
′
k−1 = Qk∀ i < k ≤ j, , Q′k = Qk∀ k < j ∧ k > i otherwise,

(5.27)

with Q as the power set of Q. The function Z returns a new sequence which is identical to Q,

except that the product at position i is moved to position j. The recursive functions z′ and z′′
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are given by

z′(j) =

j if yk < Y
(3)
k : k = Qj ,

z′
(
j mod J + 1

)
otherwise,

(5.28)

z′′(j) =

j if yk ≤ Y
(1)
k : k = Qj ,

z′′
(
j mod J + 1

)
otherwise.

(5.29)

Note that the preemption persists in the next decision epoch, so that Q′ becomes Q after

transition from S to S′.

As initial guess for the policy search, we propose to use the fixed-cycle policy and set Y
(3)
n =

Yn and Y
(1)
n = −1, Y

(2)
n = Y

(3)
n − 1.

Base-Stock Policy

An alternative to following a fixed production sequence is to trigger new production orders

based entirely on current inventory levels (Graves, 1980). In addition to an order-up-to level

which determines production quantities, we define a reorder point that initiates new production

orders. In case two or more products reach their reorder points after a production run has been

completed, we use the earliest run-out time as priority rule (Gascon et al., 1994). The run-out

time is defined as the average time until product n is out-of-stock minus its setup time.

Denote Y
(1)
n as reorder point and Y

(2)
n as order-up-to level, with Y

(1)
n = |un| and Y

(2)
n =

Y
(1)
n + 1 + |uN+n| for a given vector u ∈ R2N . Let I = {n : yn ≤ Y (1)

n } define the set of products

with inventories below their reorder points. The control policy is then given by

π(S;x) =


m if m > 0 and ym < Y

(2)
m ,

arg min
i∈I

{
yi
µi
−Wi

}
else if ∃ n : yn ≤ Y (1)

n ,

0 else if ∀ n : yn > Y
(1)
n .

(5.30)

As initial guess for the policy search, we propose to use a heuristic solution that is based on the

Doll and Whybark heuristic adapted by Gascon et al. (1994). Denote k as a safety factor and

T̂ as the common cycle time as before. Then, we obtain an (s,S) policy, where for each product

n we set

Y (1)
n = max

{⌊
µnWn + k ·

√
σ2
nT̂
⌋
, 0

}
, Y (2)

n = Y (1)
n + max

{⌊
µn(1− µnpn)T̂

⌋
, 1
}
. (5.31)

Note that Y
(1)
n ≥ 0 in order to trigger a production order, and Y

(2)
n − Y (1)

n ≥ 1 to avoid that

production is zero.
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Can-Order Base-Stock Policy

A major drawback of using a simple base-stock policy is its inability to respond to critical

inventory levels during a production run. For example, assume that product i is set up and

below its order-up-to level but far above its reorder point while product j is already out-of-

stock. Then, it could be better to interrupt production of i and change over to j.

For the can-order base-stock policy, we suggest to use a can-order point as well as a can-

order-up-to level in addition to reorder point and order-up-to-level. Denote Y
(1)
n , Y

(2)
n as before

and Y
(3)
n as can-order point and Y

(4)
n as can-order-up-to level, with Y

(3)
n = Y

(1)
n + |u2N+n| and

Y
(4)
n = Y

(3)
n + 1 + |u3N+n| for a given u ∈ R4N . Let I = {n : yn ≤ Y

(1)
n } as before and

I ′ = {n : yn ≤ Y
(3)
n } define the set of products with inventories below their can-order points.

The control policy is then given by

π(S;x) =



m if m > 0 and ym < Y
(2)
m

arg min
i∈I

{
yi
µi
−Wi

}
else if ∃ n : yn ≤ Y (1)

n ,

m else if ∀ n : yn > Y
(1)
n and m > 0 and ym < Y

(4)
m

arg min
i∈I′

{
yi
µi
−Wi

}
else if ∀ n : yn > Y

(1)
n and ∃ n : yn ≤ Y (3)

n ,

0 else if ∀ n : yn > Y
(3)
n

(5.32)

The machine continues production as long as there exists a product with an inventory level

below its can-order point. When a product is above its can order-up-to level but another drops

below its reorder point, production can be interrupted to set up the critical product.

As initial guess for the policy search, we propose to use a simple base-stock policy and set

Y
(1)
n = Y

(2)
n , Y

(3)
n = Y

(4)
n ∀ n.

5.3 Numerical Results

5.3.1 Experimental Design

To answer our research questions, we carried out an extensive numerical study, for which we

generated instances of model parameters which are maximally different and cover a large range

of parameters.

For each instance of the problem, we choose seven values of model parameters for each of

the N products: mean demand per period, its variance, lost sales cost, holding cost, setup cost,

setup time, and production time. For our study, we first fixed mean demand and defined the

variance through the coefficient of variation (CV Demand). Second, we expressed production

time through the workload that would result from producing N products with identical demand

and production rates, ρn = Nµnpn (Load Factor). Third, with the production time given by
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Design Parameter Min Value Max Value

Avg Mean Demand 5 5
Div Mean Demand 0 0.5
Avg Lost Sales Cost 100 100
Div Lost Sales Cost 0 0.5
Avg Hold/LS Cost (κ̄) 0.001 0.01
Div Hold/LS Cost 0 0.5
Avg Setup/Prod Time (η̄) 1 100
Div Setup/Prod Time 0 0.5
Avg CV Demand (c̄D) 0.5 1.5
Div CV Demand 0 0.5
Avg Load Factor (ρ̄) 0.3 0.9
Div Load Factor 0 0.5

Table 5.1: Intervals of the design parameters that span the experimental area

mean demand and load factor, we derived the setup time from the ratio of setup to production

time (Setup/Prod Time). Fourth, we fixed the lost sales cost and expressed the holding cost

through the ratio of holding to lost sales cost (Holding/LS Cost). Finally, we set all setup costs

to zero, since setup cost often represent no more than the cost of working time during a setup,

which is already covered by the setup time.

Since the number of parameters increases proportionally in the number of products N , we

defined experimental design variables which summarize an entire set of N parameter values. If

we view each value of a set as a realization of a uniform random variable, we can describe the set

by an average and a coefficient of variation, with the latter serving as a measure of parameter

diversity, e.g., diversity in mean demand or lost sales cost. For our study, we fixed the averages,

Avg Mean Demand and Avg Lost Sales Cost, to 5 and 100, respectively, and then sampled

the diversity factors, Div Mean Demand and Div Lost Sales Cost, from the interval [0.0, 0.5].

Averages (Avg) and diversity factors (Div) of CV Demand, Load Factor, Setup/Prod Time, and

Holding/LS Cost were sampled accordingly. The ranges of these design parameters are given in

Table 5.1.

With Avg Mean Demand and Avg Lost Sales Cost fixed, a problem instance can now be

described by a ten-dimensional design point. For our numerical study, we generated 1000 design

points for problems with N ∈ {3, 5, 10} products by sampling a ten-dimensional Faure sequence.

This gives us a so-called space-filling design which has the useful property that design points lie

not only at the edges of the hypercube that spans the experimental area but also at its interior

(Chen et al., 2006).

To decode a design point into a model configuration, we used a variant of descriptive sampling

(Saliby, 1990). Denote X as a uniform random variable, with average X̄ and coefficient of

variation (diversity factor) cX , to describe a set of N parameters. Using descriptive sampling,
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Num of Products (N)

3 5 10

T 100,000,000 200,000,000 500,000,000

AVI

γ 0.01 0.01 0.01
a 1,000,000 2,000,000 5,000,000
b 0.1 0.05 0.02
K 20 20 20
L 20 20 20

IK 900 2,500 10,000

DPS
T 100,000 100,000 100,000
e 1000 1000 1000
δ 5 5 5

Table 5.2: Algorithmic parameters

a realization of a parameter xn associated with the n-th product is then given by

xn = x′Θ(n), x
′
j = X̄ +

√
6
(
j−1
N−1 −

1
2

)
X̄cX , n, j ∈ {1, . . . , N} , (5.33)

with Θ serving as a random mapping from n to j, i.e., we shuffle. For example, for a Load

Factor with average ρ̄ = 0.5 and coefficient of variation cρ = 0.2, one possible permutation of

the set of parameters for a three-product problem would be {0.5, 0.378, 0.622}.

5.3.2 Implementation

We implemented the solution algorithms, the simulation model and our experiments in Java,

and used SPSS 17 for our statistical analyses. As implementation of the CMA-ES algorithm, we

used the Java source code provided by Hansen (2007). For all solution algorithms, we carried

out pretests to optimize their algorithmic parameters which are summarized in Table 5.2. Note

that for approximate value iteration (AVI), we have to define maximum inventory levels. We

therefore first optimized the base-stock policy over an unbounded state space using direct policy

search (DPS) and then set ȳn = 1.2Y
(2)
n . For policy evaluation, we generated a single sample

path using common random numbers over 1,000,000 decision epochs, after an initial transient

phase of 10,000 decision epochs. We then evaluated all policies that were optimized by AVI or

DPS using this sample path.

5.3.3 Results

Influence of Model Parameters on Average Cost

We studied the influence of the design parameters on the expected average cost by conducting an

analysis of variance (ANOVA). Since each additional product increases the total mean demand,
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BEST FCP BSP AVI

Factor r2 F r2 F r2 F r2 F df

Num of Products 0.00 4.4 0.00 20.5 0.00 32.9 0.03 391.6 1
Div Mean Demand 0.00 9.3 0.00 41.0 0.01 150.3 0.00 1.0 1
Div Lost Sales Cost 0.00 41.1 0.00 21.8 0.00 0.2 0.00 51.5 1
Avg Hold/LS Cost 0.28 4720.6 0.29 4504.5 0.23 2728.0 0.22 3231.6 1
Div Hold/LS Cost 0.00 7.1 0.00 4.2 0.00 4.7 0.00 4.9 1
Avg Setup/Prod Time 0.22 3603.7 0.21 3341.5 0.19 2264.2 0.19 2907.4 1
Div Setup/Prod Time 0.00 5.0 0.00 4.3 0.00 1.9 0.00 1.1 1
Avg CV Demand 0.03 533.6 0.03 514.5 0.02 260.5 0.02 296.9 1
Div CV Demand 0.00 13.0 0.00 8.5 0.00 7.0 0.00 11.5 1
Avg Load Factor 0.28 4710.7 0.27 4268.7 0.29 3449.0 0.34 5157.2 1
Div Load Factor 0.00 0.4 0.00 0.7 0.00 7.1 0.00 9.2 1

Linear Model 0.82 1245.4 0.81 1161.3 0.75 812.1 0.81 1101.8 11

Sample Size = 3000, r2 = coefficient of determination, F = F test statistic, df = degrees of freedom.

Table 5.3: ANOVA of the influence of design parameters on cost per product for different policies

the expected average cost increases proportionally in the number of products. To remove this

effect, we refer to cost per product as the expected average cost divided by the number of

products.

We ran separate ANOVAs for different policy groups: FCP, BSP, AVI and BEST. We refer

to the group of fixed-cycle policies as FCP, base-stock policies as BSP and approximate value

iteration with one of the two approximation schemes as AVI. For each simulated problem in-

stance, we selected the lowest cost within a policy group for the analysis. Additionally, we

created an auxiliary group, BEST, which contained the lowest known cost for each instance.

The percentage of variance in cost per product that can be explained by a design parameter is

measured by the coefficient of determination (r2).

The results of the ANOVA are shown in Table 5.3. As can be seen from the last row

(Linear Model), all factors together explain 75 to 82 percent of the variance in cost per product,

irrespective of the policy group. Regardless of the solution method, the r2 of all diversity factors

is close to zero. This indicates that all policies were capable of compensating diversity in model

parameters, so that the cost effect of diversity becomes negligible. The most important factors

are Avg Load Factor, Avg Setup/Prod Time, and Avg Holding/LS Cost. Since Avg Load Factor

and Avg Setup/Prod Time largely affect system utilization, this indicates that, within the given

range of parameters, utilization is a more important cost driver than variability. However,

variability has a much larger influence on FCP (F=514.5) than on BSP (F=260.6) or AVI

(F=296.9), which indicates that dynamic-cycle policies are better able to deal with demand

uncertainty than fixed-cycle policies. Also, except for AVI, the number of products does not

have a noteworthy impact on cost per product, which can be seen from the comparatively low
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N ρ̄ η̄ Size BEST FCP0 FCP1 FCP2 BSP0 BSP1 BSP2 AVI1 AVI2

3
low

low 255 0.57 0.74 0.61 0.61 0.91 0.64 0.62 0.90 0.59
high 247 0.88 1.13 0.97 0.96 1.48 1.03 1.00 1.38 0.90

high
low 249 0.93 1.51 1.02 1.02 1.59 1.15 1.10 1.17 0.98
high 249 1.65 3.68 1.83 1.80 3.12 2.17 2.08 2.02 1.81

5
low

low 251 0.51 0.65 0.55 0.53 0.66 0.53 0.53 1.14 0.55
high 250 0.87 1.05 0.93 0.90 1.21 0.93 0.92 1.31 0.92

high
low 255 0.96 1.43 1.02 0.98 1.47 1.13 1.10 1.44 1.14
high 244 1.72 2.98 1.81 1.73 2.79 2.06 2.02 2.44 2.02

10
low

low 254 0.47 0.63 0.56 0.50 0.54 0.47 0.47 1.17 0.56
high 246 0.82 1.03 0.96 0.87 0.98 0.83 0.83 2.20 1.05

high
low 251 0.92 1.27 1.04 0.95 1.23 1.00 0.99 2.06 1.41
high 249 1.75 2.92 1.91 1.77 2.83 2.12 2.05 3.85 2.57

Mean 3000 1.00 1.58 1.10 1.05 1.56 1.17 1.14 1.75 1.20

Table 5.4: Comparison of standardized mean cost per product for different policies and problem
categories

F-values. We therefore expect the solution quality of FCP and BSP to remain fairly stable even

for larger problems.

Policy Evaluation

In our second analysis, we wanted to find out which solution method performs best. As before,

we refer to the fixed-cycle policy as FCP (FCP0 = common cycle solution, FCP1 = fixed-cycle

policy, FCP2 = fixed-cycle policy with preemption) and to the base-stock policy as BSP (BSP0

= Doll & Whybark heuristic, BSP1 = base-stock policy, BSP2 = can-order base-stock policy).

For both types of policies, we used the less sophisticated policy as initial guess during direct

policy search. We refer to AVI with the first approximation scheme as AVI1 and with the

second scheme as AVI2. For all policies, we recorded the mean cost per product for 3, 5, and

10 products, as well as for low and high levels of Avg Load Factor (low: ρ̄ < 0.6, high: ρ̄ ≥ 0.6)

and Avg Setup/Prod Time (low: η̄ < 51, high: η̄ ≥ 51). (For a justification, see Section 5.3.3.)

The mean costs per product in each problem category were standardized by the mean cost per

product of BEST across all problem instances.

The results of the analysis are shown in Table 5.4. The lowest mean in each category

is highlighted in bold. (Note that when the difference to the second lowest average is not

significant, i.e., p ≥ 0.01, both values are highlighted.) Overall, FCP2 yields the lowest mean

cost per product. For small problems with three products, AVI2 returns the lowest mean,

but looses its competitiveness as the problem size increases. Since AVI1 yields a much higher
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Mean MAD Frequency

N ρ̄ η̄ Size FCP BSP AVI FCP BSP AVI FCP BSP AVI

3
low

low 255 0.61 0.62 0.59 0.05 0.10 0.03 16% 42% 42%
high 247 0.95 1.00 0.89 0.11 0.14 0.03 30% 14% 57%

high
low 249 1.01 1.09 0.97 0.10 0.20 0.07 25% 21% 54%
high 249 1.79 2.07 1.73 0.25 0.44 0.14 46% 6% 48%

5
low

low 251 0.53 0.52 0.55 0.02 0.04 0.04 20% 64% 16%
high 250 0.89 0.92 0.91 0.04 0.08 0.06 40% 37% 23%

high
low 255 0.98 1.10 1.13 0.03 0.18 0.18 62% 27% 11%
high 244 1.72 2.01 1.98 0.04 0.34 0.28 82% 12% 6%

10
low

low 254 0.50 0.47 0.56 0.03 0.01 0.09 3% 97% 0%
high 246 0.87 0.82 1.05 0.05 0.07 0.23 9% 91% 0%

high
low 251 0.95 0.98 1.39 0.04 0.18 0.47 34% 66% 0%
high 249 1.76 2.04 2.50 0.05 0.45 0.75 65% 35% 0%

Mean 3000 1.04 1.13 1.18 0.07 0.23 0.23 36% 43% 21%

Table 5.5: Comparison of different groups of policies

mean than AVI2 across all categories, we conclude that an approximate value function that is

completely separable in the inventory state variables is insufficient to approximate the true value

function of the SMDP. The heuristics, FCP0 and BSP0, are also not competitive. Moreover, we

observe that the cost induced by FCP2 are considerably lower than those of BSP2 when both,

Avg Load Factor and Avg Setup/Prod Time, are high. While the difference between FCP1 and

FCP2 gets larger as the number of products increases, the improvement of using BSP2 over

BSP1 is small.

Again, like in the ANOVA, we grouped the policies into FCP, BSP and AVI. For each group

and each category, we then recorded the standardized means of the lowest in-group cost, as

before (Mean). Additionally, we recorded the mean absolute deviation (MAD) of the lowest

in-group cost from the lowest cost across all groups (BEST). For a parameter instance i, the

absolute deviation of FCP is given by

|Costi(FCP)−min {Costi(FCP),Costi(BSP),Costi(AVI)}| .

We then computed the MAD across all instances within a category, omitting cases where the

policy yields the lowest known cost, which gives us the MAD over those instances where the

policy was not best. Also, for each category, we recorded the relative frequency of how often a

group provided the lowest cost (Frequency).

The results of the analysis are shown in Table 5.5. FCP yields the overall lowest mean across

all instances. With the exception of the three product case, it also returns the lowest mean
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Predictor b Std Error Wald χ2 df p-Value Odds Ratio

Num of Products 0.390 0.019 443.113 1 0.000 1.477
Avg Setup/Prod Time -0.031 0.002 292.071 1 0.000 0.969
Avg Load Factor -7.282 0.329 489.731 1 0.000 0.001
Avg Hold/LS Cost -112.512 18.464 37.130 1 0.000 0.000
Div Mean Demand -3.084 0.341 81.658 1 0.000 0.046
Constant 4.825 0.273 312.507 1 0.000 n/a

Test χ2 df p-Value

Log-Likelihood Ratio 1422.000 1 0.000
Hosmer-Lemeshow 20.275 8 0.009

Cox and Snell R2=0.377, Nagelkerke R2=0.504, b = beta coefficient, df = degrees of freedom,
n/a = not applicable.

Table 5.6: Logistic regression analysis of the frequency for BSP having lower average cost than
FCP

in categories with a high Avg Load Factor. On the other hand, BSP has the highest number

of instances where it is the best policy, in particular for problem instances with 10 products.

Considering that FCP yields the lowest MAD overall, this implies that whenever BSP is worse

its difference to the best policy must be larger on average than whenever FCP is worse.

We conclude that, although a base-stock policy is more frequently better, a fixed-cycle policy

is the more robust choice. Moreover, the fixed-cycle policies are generally better than the base-

stock policies in highly utilized systems. In contrast, approximate value iteration only works

well in systems with a small number of products, and only with a value function approximation

that considers dependencies among inventory state variables.

A Discrete Choice Model for Production Policies

The previous analysis has shown that there are some model configurations where it is better

to use a base-stock policy and others where it is better to use a fixed-cycle policy. To analyze

the drivers that make one policy perform better than the other, we developed a discrete choice

model, which can be described by the logit function

logit−1(Yi) =
exp(Yi)

1 + exp(Yi)
, Yi = b0 + b1X1i + ...+ bkXki.

We used this model to specify the probability that BSP performs better than FCP. To estimate

the coefficients of the logit function, we ran a binomial logistic regression. We used backwards

stepwise regression with the design parameters as independent variables and ’BSP is best’ as

dependent variable. Starting with the variable with the lowest Wald statistic, we iteratively

removed variables as long as the change in the log-likelihood ratio was not significant.

Table 5.6 summarizes the of the logistic regression analysis. The odds ratio of 1.477 indicates
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that a larger number of products makes it more likely for BSP to perform better than FCP.

We can also see this tendency in Table 5.5, where the frequency of BSP as the best policy

increases in the number of products. Avg Load Factor and Avg Setup/Prod Time, on the other

hand, decrease the likelihood of BSP being the best policy (odds ratios < 1). Although Avg

Holding/LS Cost and Div Mean Demand are significant, they are less important, which can be

seen by their lower Wald statistics.

Table 5.7 compares the observed frequency for BSP having lower average cost than FCP to

the frequency predicted by the discrete choice model. The prediction is accurate in about 80%

of all cases, compared to 50% if we would randomly choose a policy. The standardized MAD

between cost of BSP versus FCP in case of choosing the wrong policy is 0.033, compared to 0.07

when we always choose FCP. This implies that even if the wrong policy was chosen the error

would be smaller than if the most robust policy was used.

The results highlight the strengths and weaknesses of each policy. Systems with a large

number of products, for instance, require flexible production policies, which increases the odds

that a base-stock policy performs better. In highly utilized systems, however, the base-stock

policy discriminates products with low setup times, as it always skips to the product with the

lowest runout time. This effect increases the odds that a fixed-cycle policy performs better, as

this policy strictly follows a predefined production sequence. This also confirms the finding of

Vaughan (2007) that order-point policies outperform cyclical policies in cases where the number

of products is large and system utilization low.

Comparison With Optimal Policy

In our final analysis, we take a look at the difference between policies obtained through simulation

optimization and the optimal policy derived from relative value iteration (RVI). To keep problems

computationally tractable for RVI, we only study problems with three products and fixed the

maximum inventory level at ȳn = 25. We stopped RVI when the gap between lower and upper

bound was less than one percent. Since the resulting inventory state space is too restrictive for

most problems in the previous sample, we created a new sample, where we reset the intervals of

the design parameters Avg Hold/LS Cost and Avg Setup/Prod Time to [0.01, 0.1] and [1, 20],

Predicted

Observed FCP is best BSP is best % Correct

FCP is best 1277 308 80.6
BSP is best 328 1087 76.8

Overall 78.8

Table 5.7: Observed and predicted frequency for BSP having lower cost per product than FCP
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N ρ̄ η̄ Size RVI FCP0 FCP1 FCP2 BSP0 BSP1 BSP2 AVI1 AVI2

3
low

low 64 1.92 2.25 2.02 2.03 2.24 2.03 2.00 2.13 2.04
high 63 2.68 2.95 2.80 2.77 2.93 2.81 2.78 2.95 2.74

high
low 61 2.67 3.25 2.92 2.90 3.25 3.00 2.91 3.04 2.84
high 62 3.62 4.68 3.88 3.75 4.69 4.25 4.21 3.94 3.69

Mean 250 2.72 3.30 2.92 2.87 3.29 3.04 2.99 3.03 2.84

Table 5.8: Comparison of standardized mean average cost for tractable model instances with 3
products

respectively.

Table 5.8 shows the mean cost per product over these 250 instances, categorized and stan-

dardized as in Tables 5.4 and 5.5, with a new definition of low and high levels of Avg Setup/Prod

Time (low: η̄ < 10.5, high: η̄ ≥ 10.5). As in Table 5.4, the best heuristic policy over all is ob-

tained by AVI2, with cost per product less than 5 percent above the upper bound of RVI on

average. For FCP2, cost are less than 6 percent above, for BSP2, less than 10 percent above the

upper bound on average. Since the number of products only has a small influence on cost per

product (see Table 5.3), we conjecture that the performance of BSP and FCP will be similar for

larger problems. Also note that results for BSP2 have improved, since the mean Avg Setup/Prod

Time in the new sample is now lower than in the old one, which supports the findings of the

logistic regression analysis.

5.4 Discussion

We have studied simulation optimization methods for the stochastic economic lot scheduling

problem. Based on a large-scale numerical study, we found that the classic ADP approach of

approximate value iteration and stochastic gradient updates is not competitive for larger prob-

lems. Initial tests with alternative ADP approaches did not perform better. Using (recursive)

least squares in place of stochastic gradients to update the value function had been considered

but was computationally too expensive. Replacing the piecewise-constant approximation with a

linear interpolation also did not significantly improve approximation quality. Applying soft-max

or epsilon-greedy exploration during sampling provided no advantage over pure exploitation.

These results turn the SELSP into a good benchmark for future research in ADP.

Simple production policies optimized by a global search algorithm provide the most compre-

hensible and robust solution to this problem. In our numerical study, base-stock policies were

more often the better choice, but were outperformed by fixed-cycle policies in highly utilized

systems. The most reliable choice overall was a fixed-cycle policy which preempts production

of a product as soon as the inventory level of an upcoming product drops below a certain level.
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When comparing this policy with the optimal policy for small, tractable problem instances, we

observe that costs are less than six percent above the minimal costs on average.

An interesting extension of the current model would be to consider sequence-dependent setup

times, which would require a reformulation of the value function approximation as well as the

development of new control policies. Other extensions, such as backlogs instead of lost sales

or uncertain process times could be motivated by specific applications but do not significantly

change problem complexity with respect to simulation optimization.
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Chapter 6

Conclusion

This thesis has shed new light on different stochastic-dynamic resource management problems

and on how amenable these problem are to solutions based on approximate dynamic program-

ming (ADP). On the one hand, there is the seemingly small stochastic production planning

problem that resisted all efforts of state-of-the-art ADP techniques. On the other hand, there is

the multi-stage, multi-reservoir management problem which could be solved close to optimality

even for an industry-scale problem.

These findings highlight that ADP is not a panacea to solve every stochastic-dynamic de-

cision problems, and there are problems that still remain intractable even for the state of the

art. Nevertheless, ADP has shifted the boundary, and we are now capable of solving formerly

intractable problems by combining careful modeling with good sampling strategies and suitable

function approximators.

Whether a problem can be solved using ADP or not depends on the problem. All of the

models studied in this thesis had in common that the size of the state space was driven by the

number of resources that had to be managed over time, be it inventories as in the production

planning problem or reservoirs as in the energy planning problem. However, there is a difference

in the way decisions were made. While the action space in the production planning problem was

discrete and a separate value function had to be stored for each production decision, the reservoir

management problem could be reformulated as a convex optimization problem. This property

provided us with a tremendous advantage, since we were able to extract gradient information

from the optimal solution that could be used to construct a polyhedral, global estimate of the

value function. Since the global estimate was optimistic everywhere but in states that had

already been sampled, the sampling process explored prospective states until there were no

more states worth exploring.

This result holds important implications for the optimization of other stochastic-dynamic

resource management problems. As long as the optimization problem is convex and randomness

is independent of the resource state, many problems that appear intractable at first can actually

93
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be solved quite efficiently. By contrast, if the optimization problem is discrete, there exists no

structure that can be exploited to guide exploration. In that case, the problem remains hard

to solve, even for approximate dynamic programming techniques, and simple but well-adjusted

decision policies may be the better choice.

One direction for future research would be to explore these insights and construct polyhedral

approximations to derive tight upper bounds of the value function of other stochastic-dynamic

decision problems. For example, if we reformulated the production planning problem, so that the

optimization problem at each stage was convex, we could easily derive a near-optimal solution

by constructing a polyhedral approximation of the value function. However, it remains an open

question, how well such an approximation would perform for the type of non-convex production

planning problems typically encountered in practice.

Another direction for future work would be to establish the production planning problem

with its discrete action space as a benchmark for new developments in approximate dynamic

programming. In particular, current efforts to improve the efficiency of the information collection

process would benefit from a challenging problem to demonstrate the effectiveness of new learning

strategies.
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Báıllo, A., M. Ventosa, M. Rivier, and A. Ramos (2004). Optimal offering strategies for gen-

eration companies operating in electricity spot markets. IEEE Transactions on Power Sys-

tems 19 (2), 745–753.

Bathurst, G. N. and G. Strbac (2003). Value of combining energy storage and wind in short-term

energy and balancing markets. Electric Power Systems Research 67, 1–8.

Bathurst, G. N., J. Weatherill, and G. Strbac (2002). Trading wind generation in short term

energy markets. IEEE Transactions on Power Systems 17 (3), 782–789.

Bertsekas, D. (2007). Dynamic Programming and Optimal Control (3rd ed.), Volume 2. Athena

Scientific.

Bertsekas, D. P. and J. Tsitsiklis (1996). Neuro-Dynamic Programming. Athena Scientific.

Bourland, K. and C. Yano (1994). The strategic use of capacity slack in the economic lot

scheduling problem with random demand. Management Science 40, 1690–1704.

Boyan, J. A. (2002). Technical update: Least-squares temporal difference learning. Machine

Learning 49, 233–246.

95



96 BIBLIOGRAPHY

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge University Press.

Brander, P. and R. Forsberg (2006). Determination of safety stocks for cyclic schedules with

stochastic demands. International Journal of Production Economics 104 (2), 271–295.

Brunetto, C. and G. Tina (2007). Optimal hydrogen storage sizing for wind power plants in day

ahead electricity markets. IET Renewable Power Generation 1 (4), 220–226.
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