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Outline of the Thesis 

The main goals of this work has been to investigate and develop a system for production of 

minicircle DNA (mcDNA) loaded Bacterial Ghosts (BGs), that are free of miniplasmid DNA 

(mpDNA) and un-recombined mother plasmid DNA (mopDNA) through enzymatic digestion 

of target DNA. Moreover, the purpose has been to develop an efficient method for 

quantification of anchored mcDNA as well as the amount of residual mpDNA in BGs that is 

free of any further assumptions.  

This Thesis already includes two publications covering topics related to BGs production and 

its application in DNA vaccine delivery. The following results section is divided into four 

chapters and an appendix.  

• Chapter I: “Investigations reducing un-recombined mother plasmid DNA and 

miniplasmid DNA in Bacterial Ghosts” discusses different strategies for cloning of a 

homing endonuclease I-TevII gene on an improved version of Self Immobilizing Plasmid 

(SIP) which was planned to be used as a tool in reduction of mpDNA in BGs. 

• Chapter II: “Minicircle DNA loaded Bacterial Ghosts devoid of un-recombined mother 

plasmid and miniplasmid DNA sequences by nuclease activation” deals with an 

alternative approach for reduction of mpDNA and un-recombined mopDNA in BGs 

involving Staphylococcus aureus nuclease A (SNUC) activation. 

• Chapter III: “Production of minicircle DNA loaded Bacterial Ghosts carrying a reporter 

gene and its quantification using quantitative Real Time PCR (qPCR)” is more focused 

on developing a new strategy for production and quantification of reporter gene encoded 

mcDNA loaded BGs through qPCR that is different from standard methods used in the 

past which for quantification of mcDNA was dependent on assumptions.  

• Chapter IV: “Improvement of Self Immobilization Plasmids (SIP) used in production of 

minicircle DNA loaded Bacterial Ghosts” encompasses ways for improvement of SIP to 

be used in production of BGs harboring mcDNA vaccine through E lysis process. 

The “Appendix” includes the methods for removal or possible ways to dismantle mutated 

mobilization (MobM) sequence present on lysis plasmid pGLysivb. It also includes 

supplementary data for real time PCR quantification of mcDNA. 
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The publication titled “The bacterial ghost platform system - Production and applications” is 

published in Bioengineered Bugs (2010). It explains the basic concept of Bacterial Ghost 

system and covers the topics related to its production and BGs use in white biotechnology. 

The manuscript accepted for publication in “Expert Review of Vaccine” titled “Bacterial 

Ghosts as carriers of protein subunit and DNA encoded antigens for vaccine applications” is 

more concentrated towards applications of BGs including use of empty BG envelope as a 

vaccine candidate, BGs as a carrier of DNA /protein antigens, their possible uses in human 

and veterinary medicine, and their use as an immunocontraceptive drug delivery platform.  

Each publication and all chapters have their own introduction, material and methods, results 

and discussion referring to the topic in consideration. This version of describing the results 

obtained should facilitate an easier conversion of chapters into manuscripts for publication as 

the standard form of description in one block.  
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OBJECTIVES AND AIMS OF THIS STUDY 

 

Plasmid DNA Vaccination is fast and emerging technique, which is being investigated in 

ongoing clinical trials. Its ability to elicit both humoral and cellular immunity is key to its 

wide spread use in basic and advanced research. However, its safety concerns and absence of 

efficient delivery systems are the key limitations, which restrict its use. The issues have been 

addressed separately.  

The safety issue has been addressed by the introduction of small DNA molecules known as 

minicircle DNA (mcDNA) which lack bacterial backbone (BB) sequences and antibiotic 

resistance cassettes. Similarly, the issue of absence of efficient delivery systems has been 

addressed through the introduction of Bacterial Ghosts (BGs), which is used for efficient 

delivery of mcDNA to increase its availability to the immune cells. Previously these two 

systems were combined to produce mcDNA loaded BGs however due to presence of 

miniplasmid DNA (mpDNA) (a by-product of site specific ParA recombination) in BGs its 

use in clinical trials is still restricted. 

The primary objective of this thesis was to investigate and develop a platform for production 

of mcDNA loaded BGs that are free of mpDNA and any unwanted bacterial sequences by 

enzymatic digestion of mpDNA preferentially through action of I-TevII a homing 

endonuclease. I-TevII belongs to group 1 intron of sunY bacteriophage T4 which cleaves its 

target sequence 13-15nt downstream of its intron insertion sites.  In the strategy developed to 

improve the mcDNA system with BGs as carriers the I-TevII gene should be cloned on an 

advanced version of the Self Immobilizing Plasmid (SIP) in such a way that it is transferred 

onto the mpDNA upon recombination of mother plasmid DNA (mopDNA). After 

recombination I-TevII gene should come under direct control of pBAD promoter resulting in 

its expression and release of enzyme which cleaves the 31bp recognition sequence placed 

only on mpDNA/un-recombined mopDNA. 

Second strategy of reducing the amount of residual DNA sequences in the BG preparation, is 

based on exploring the suicidal activity of Staphylococcal nuclease A (SNUC). Due to small 

size of mcDNA and its tight interaction with its specific membrane anchored DNA binding 

protein (LacI-L’), it is assumed that mcDNA can escape the suicidal activity of SNUC, which 
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will be activated only after the completion of recombination and lysis process by addition of 

CaCl2 and MgCl2. Previously SNUC was used for production of gene free BGs, however, it 

was never combined together with ParA recombination and gene E mediated lysis of bacterial 

cells. 

Another objective of this thesis was to develop a technique using quantitative real time PCR 

(qPCR) that is independent of any further assumptions in quantifying the amount of mcDNA 

and mpDNA for efficient quantification of in vivo loaded mcDNA inside BGs and the amount 

of un-recombined mopDNA and retained mpDNA in its preparations. Previous approach 

towards mcDNA quantification had some limitations as the amount quantified had to be 

deducted from the amount of un-recombined mopDNA, which was an estimate based on 

densitometric analysis of end recombination product. 

BGs can activate both arms of immune response i.e. innate and adaptive immunity. In 

principle both the systems will lead to in-vivo loading and production of mcDNA inside the 

BGs that are more likely free of mpDNA/un-recombined mopDNA, eliminating any further 

need of purification. The development of one step quantification method for detection of 

mcDNA loaded BGs based on real time PCR technique will therefore serve as quality 

criterion and revolutionize the mcDNA/mpDNA quantification method. 
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Summary of results 

This thesis “Minicircle DNA Immobilization in the Bacterial Ghosts: Investigation for the 

Reduction of Un-recombined Mother Plasmid DNA and Miniplasmid DNA in BGs” 

discusses the different possibilities for the improvement of current technique for production 

of minicircle DNA loaded BGs, that are free of residual miniplasmid DNA / un-recombined 

mother plasmid DNA. Specific changes in the Self Immobilizing Plasmid and use of 

staphylococcal nuclease A lead to the production of mcDNA loaded BGs that are almost free 

of miniplasmid DNA / un-recombined mother plasmid DNA. Introduction of new method for 

detection of plasmid DNA present in BGs in different forms makes the quantification process 

more easy, efficient and reliable. The study undertaken in this thesis can be best summarized 

under six themes mentioned below. 

 

The bacterial ghost platform system-Production and applications 

The Bacterial Ghost (BG) platform technology is an innovative system for vaccine, drug or 

active substance delivery and for technical applications in white biotechnology. BGs are cell 

envelopes derived from Gram-negative bacteria. BGs are devoid of all cytoplasmic content 

yet with preserved morphology. BGs exhibit intrinsic adjuvant properties and trigger an 

enhanced humoral and cellular immune response to the target antigen. BGs are produced by 

batch fermentation with subsequent product recovery and purification via tangential flow 

filtration. For safety reasons all residual bacterial DNA is inactivated during the BG 

production process by the use of staphylococcal nuclease A and/or the treatment with β-

propiolactone. The broad spectrum of BGs possible applications in combination with the 

comparably low production costs make the BG platform technology a safe and sophisticated 

product for the targeted delivery of vaccines and active agents as well as carrier of 

immobilized enzymes for applications in white biotechnology.  

 

Investigations reducing un-recombined mother plasmid DNA and miniplasmid DNA in 

Bacterial Ghosts 

 

I-TevII (homing endonuclease) mediated enzymatic digestion of miniplasmid DNA 

(mpDNA) / un-recombined mother plasmid DNA (mopDNA) in Bacterial Ghosts (BGs) is 

the basic aim in this particular study. I-TevII gene has been commercially synthesized and 
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tried so as to clone on advanced version of Self Immobilization plasmid (SIP). Different 

bacterial strains with tight internal control of expression through lacIq and several expression 

vectors have been investigated for possible cloning of this potentially toxic gene. The cloning 

strategy although trying several alternative pathways has not been entirely successful but it 

resulted in a new self immobilization plasmid and several other intermediates. Several tries of 

cloning I-TevII gene has resulted in SIP plasmids carrying mutated I-TevII sequences. Among 

them there is a clone carrying a deletion mutation of 48bp which is not a frameshift. This 

deletion of 48bp will lead to shorter protein sequence, however (largely due to time 

limitations) its functioning has not been tested in final experiment. Little available 

knowledge, about the working of I-TevII gene has made it difficult for us to understand the 

underlying reasons for this phenomenon it is therefore assumed that the I-TevII gene in 

combination  with unknown SIP backbone sequences is lethal for the recipient bacteria, and 

could therefore has not been achieved with the strategy applied. However the resulted SIP 

plasmid p4a which has better features than its precedent and several other intermediate 

plasmids can be used in further studies. 

 

Minicircle DNA loaded Bacterial Ghosts devoid of un-recombined mother plasmid and 

miniplasmid DNA sequences by nuclease activation 

  

A new technique based on nuclease activation for the reduction of mpDNA in E. coli Nissle 

1917 BGs is presented here. The plasmid p4aEYFP-C1 is used to produce mcDNA carrying 

an enhanced yellow fluorescent protein (EYFP) under eukaryotic expressional promoter, 

through site specific ParA recombination. The mpDNA and un-recombined mopDNA has 

been hydrolyzed through the enzymatic activity of Staphylococcus aureus nuclease A 

(SNUC). It has shown through real time quantitative PCR that 2.38% of mcDNA (23-59 

plasmid copies / BG) escaped the hydrolysis activity of SNUC. SNUC is more active on 

fragments of DNA that are larger and easily accessible, i.e. mpDNA and un-recombined 

mopDNA therefore, using this method the amount of mpDNA in BGs are reduced to 99.48% 

whereas the remaining amount of mpDNA corresponds to 8.27 plasmid copies / BG, which is 

much lower than the amount of mpDNA obtained through normal ParA and gene E mediated 

lysis procedure i.e. ~412 plasmid copies/BG. BGs with mcDNA produced through this 

technique have been tested in macrophages RAW-264.7 cells  which lead to the expression of 

anchored gene. 
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Production of minicircle DNA loaded Bacterial Ghosts carrying a reporter gene and its 

quantification using quantitative real time PCR (qPCR) 

 

Three different reporter genes, enhanced yellow fluorescent protein (EYFP), red fluorescent 

protein (RFP) and mutated green fluorescent protein (VenusA206K) were cloned on 

advanced version of SIP plasmids. These newly cloned plasmids when tested in CCL-20.2 

cells resulted in better fluorescence signals as compared to their origin plasmids. 

Furthermore, these SIP plasmids showed 99.73% recombination efficiency which has been 

calculated through newly developed quantitative real time PCR (qPCR) method. The newly 

designed primers presented in this study have the added ability to generate different sized 

PCR products depending on the form of mopDNA used i.e. (recombined or un-recombined) 

and through final melt curve analysis of the qPCR product the source of the quantified PCR 

product can be traced. Through introduction of this new technique, mpDNA and mcDNA is 

quantified efficiently without the involvement of any further assumptions. This system has 

another advantage over old quantification method due to its ability to calculate the 

recombination efficiency without the densitometric analysis of recombination product. 

 

Improvement of Self Immobilization Plasmids used in production of minicircle DNA 

loaded Bacterial Ghosts  

 

As is known, in order to use mcDNA for vaccination purpose it is important to get rid of all 

unnecessary sequences and it is more desirable to use only those antibiotics that are not 

commonly used in medical practice. In my research, changes have been made in the structure 

of SIP plasmid by positioning the resolution site1 (res1) the size of mcDNA has been reduced 

to only LacOs sequences and multiple cloning site where one can introduce gene of interest 

where as by inverting the expression cassette LacI-L’/ParA it is now easy to clone genes that 

can lead to enzymatic digestion of mpDNA after recombination. In this new version of SIP 

the antibiotic resistance cassette is changed from ampicillin to kanamycin which is favored 

by the regulatory agencies like Food and Drug Administration (FDA) and European Medicine 

Agency (EMA).   
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Bacterial Ghosts as carriers of protein subunit and DNA encoded antigens for vaccine 

applications 

 

Bacterial Ghosts (BGs) represent vaccine delivery systems gifted with outstanding natural 

adjuvant properties. BGs are empty cell envelopes of Gram-negative bacteria lacking 

cytoplasmic content yet retaining unaltered all morphological and structural features of their 

living counterparts. BGs intact surface make-up is easily recognized by professional antigen-

presenting cells through pattern recognition receptors making them ideal for mucosal 

administration through oral, ocular, intranasal or aerogenic routes, which represent the most 

desirable ways of application in advanced vaccine use. BGs have been designed to be used as 

carrier of active substances and foreign antigens (protein and/or DNA) for vaccine 

development. This review highlights the salient features of the BGs versatile multipurpose 

vaccine platform for application in a wide range of human and veterinary medicines. 
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ZIELSETZUNG DER VORLIEGENDEN STUDIE 

 

Vakzinierung mittels DNA Plasmiden ist eine neu aufkommende Technologie, die derzeit in 

klinischen Studien getestet wird. Dabei stellt die Möglichkeit, sowohl humorale als auch 

zelluläre Immunität hervorzurufen, den Schlüssel für die Anwendung in Grundlagen- und 

angewandter Forschung dar. Sicherheitsbedenken und der Mangel an effizienten 

Trägersystemen gehören allerdings zu den limitierenden Faktoren, die ihre Anwendung bis 

jetzt beschränken. Diese beiden Aspekte wurden separat behandelt. 

Um etwaigen Sicherheitsbedenken entgegen zu wirken, wurden kleine DNA Moleküle, auch 

bekannt als minicircle DNA (mcDNA), konstruiert; dieser mcDNA fehlt es sowohl an 

bakteriellen Backbone (BB) Sequenzen als auch an Antibiotikaresistenzkassetten. Die Frage 

nach effizienten Trägersystemen wurde durch die Verwendung von Bacterial Ghosts (BGs) 

beantwortet, um Immunzellen mcDNA mit hoher Effizienz zu liefern. Diese beiden Systeme 

wurden bereits früher kombiniert um mcDNA-beladene BGs herzustellen; wegen des 

Vorhandenseins von miniplasmid DNA (mpDNA) – einem Nebenprodukt der 

sequenzspezifischen Rekombination durch parA – war die Verwendung dieser BGs in 

klinischen Versuchen bisher nicht möglich. 

Das Hauptziel der vorliegenden Arbeit war die Untersuchung und Entwicklung einer 

geeigneten Plattform zur Herstellung mcDNA-beladener BGs, die keine unerwünschte 

mpDNA oder sonstige bakterielle Sequenzen mehr enthalten. Dies sollte durch den 

enzymatischen Verdau von mpDNA, bevorzugt durch die Homing Endonuclease I-TevII, 

gewährleistet werden. I-TevII gehört zum Gruppe 1 sunY Intron von Bakteriophage T4 und 

schneidet seine Zielsequenz 13-15nt downstream der eigenen Introninsertionssequenz. 

In der hier entwickelten Strategie zur Verbesserung des Systems der BGs als Träger von 

mcDNA wird das I-TevII-Gen so in eine weiterentwickelte Variante des 

Selbstimmobilisierenden Plasmids (SIP) kloniert, dass es nach der Rekombination mit der 

Mutterplasmid-DNA (mother plasmid – mopDNA) auf die mpDNA transferiert wird. Nach 

erfolgter Rekombination gerät das I-TevII-Gen unter direkte Kontrolle des pBAD promoters, 

wodurch das Enzym exprimiert und freigesetzt wird, sodass die 31bp lange 

Erkennungssequenz, die nur auf mpDNA sowie nicht-rekombinierter mopDNA vorliegt, 

geschnitten wird. 
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Als zweite Strategie zur Verringerung der Menge an Rest-DNA während der BG Herstellung 

wurde die suizidale Aktivität der Stapylococcal nuclease A (SNUC) untersucht. Wegen der 

geringen Größe der mcDNA und ihrer engen Interaktion mit dem spezifischen, 

membranverankerten DNA-Bindeprotein (LacI-L‘) wird angenommen, dass mcDNA von der 

suizidalen Aktivität von SNUC verschont bleibt. SNUC wird erst nach erfolgter 

Rekombination und Lyse durch die Beigabe von CaCl2 und MgCl2 aktiviert. SNUC wurde 

zwar bereits früher für die Herstellung von genfreien BGs verwendet, jedoch noch nie in 

Kombination mit ParA Rekombination und Protein E-vermittelter Lyse von Bakterien. 

Ein weiteres Ziel dieser Arbeit war die Entwicklung einer quantitativen Real Time PCR 

(qPCR) Technik, die ohne weitere Vorbedingungen und Annahmen die Menge von mcDNA 

und mpDNA quantifizieren kann, um die Menge von in vivo beladener mcDNA im Inneren 

von BGs sowie die Menge von nicht-rekombinierter mopDNA und verbleibender mpDNA 

festzustellen. Frühere Versuche auf diesem Gebiet waren insofern beschränkt, als dass die 

quantifizierte Menge aus der Menge der nicht-rekombinierten mopDNA geschlossen werden 

musste, während diese wiederum als Schätzung aus der densitometrischen Analyse des 

Rekombinationsendprodukts gewonnen wurde. 

BGs können beide Zweige der Immunantwort, also sowohl die angeborene als auch die 

adaptive Immunität, stimulieren. 

Im Prinzip können beide untersuchten Systeme zur in vivo-Beladung und Produktion von 

mcDNA innerhalb des BGs führen und gleichzeitig eher frei von mpDNA und nicht-

rekombinierter mopDNA sein, sodass folgende Aufreinigungen unnötig sind. Die 

Entwicklung einer Quantifizierungsmethode zur Detektion von mcDNA-beladenen BGs in 

einem Schritt – basierend auf der Real Time PCR-Methodik – dient demnach als 

Qualitätskriterium und revolutioniert die Quantifizierung von mcDNA/mpDNA. 
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Zusammenfassung der Ergebnisse 

Die vorliegende Arbeit „Minicircle DNA Immobilization in the Bacterial Ghosts: 

Investigation for the Reduction of Un-recombined Mother Plasmid DNA and Miniplasmid 

DNA in BGs” diskutiert die verschiedenen Möglichkeiten zur Verbesserung der aktuellen 

Methodik zur Herstellung von Minicircle DNA (mcDNA) beladenen Bacterial Ghosts (BGs), 

die frei von restlicher miniplasmid DNA (mpDNA) sowie nicht-rekombinierter mother 

plasmid DNA (mopDNA) sind. Spezifische Änderungen im Selbstimmobilisierenden 

Plasmid (SIP) beziehungsweise die Verwendung der Staphylococcal Nuclease A (SNUC) 

ermöglichten die Produktion von mcDNA-beladenen BGs, die überwiegend frei von mpDNA 

sowie nicht-rekombinierter mopDNA sind. Die Einführung einer neuen Methode zur 

Detektion von unterschiedlichen Formen von Plasmid DNA in BGs ermöglicht einen 

einfacheren, effizienteren und verlässlicheren Quantifizierungsprozess als zuvor. Die 

Untersuchungen, die im Rahmen dieser Arbeit durchgeführt wurden, lassen sich am besten in 

den unten folgenden sechs Themen zusammenfassen. 

Das Bacterial Ghost Platform System – Produktion und Anwendungen 

Die Bacterial Ghost Platform-Technologie ist ein innovatives Trägersystem für Vakzine, 

Medikamente oder aktive Substanzen sowie für technische Anwendungen in der „Weißen 

Biotechnologie“. BGs sind Zellhüllen, die von Gram-negativen Bakterien gewonnen werden. 

Während das Cytoplasma entleert wird, bleibt die Oberflächenmorphologie von BGs 

erhalten, was die intrinsischen Adjuvanseigenschaften der BGs erklärt und zu einer erhöhten 

humoralen und zellulären Immunantwort auf ein präsentiertes Zielantigen führt. BGs werden 

durch Batch Fermentation und anschließender Produktgewinnung und -aufreinigung durch 

Tangential Flow Filtration hergestellt. Aus Sicherheitsgründen wird während des BG 

Produktionsprozesses alle verbleibende DNA inaktiviert, entweder durch die Verwendung 

von SNUC und/oder die Behandlung mit β–propiolacton. Das breite Spektrum möglicher 

Anwendungen für BGs in Verbindung mit den vergleichsweise geringen Produktionskosten 

machen die Bacterial Ghost Platform-Technologie zu einem sicheren und ausgefeilten 

Produkt zur zielgerichteten Präsentation von Impfstoffen und aktiven Substanzen sowie als 

Träger für immobilisierte Enzyme für Anwendungen in der „Weißen Biotechnologie“. 
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Reduzierung von nicht-rekombinierter mutterplasmid DNA (mopDNA) und 

miniplasmid DNA (mpDNA) in BGs 

Der enzymatische Verdau von mpDNA sowie nicht-rekombinierter mopDNA in BGs durch 

die Homing Endonuclease I-TevII war das grundlegende Ziel dieses Teils dieser Arbeit. Das 

I-TevII-Gen wurde kommerziell synthetisiert und sollte in eine weiterentwickelte Version des 

SIP kloniert werden. Verschiedene bakterielle Stämme mit strenger interner 

Expressionskontrolle durch lacIq sowie mehrere verschiedene Expressionsvektorsysteme 

wurden zur Klonierung dieses potentiell toxischen Genes herangezogen. Auch wenn mehrere 

alternative Herangehensweisen versucht wurden, konnte die Klonierungsstrategie nicht 

vollständig erfolgreich umgesetzt werden. Stattdessen wurden ein neues weiterentwickeltes 

SIP sowie mehrere Intermediate hergestellt. Mehrere Versuche, I-TevII zu klonieren führten 

zu SIP Varianten mit mutierten I-TevII Sequenzen. Dazu gehört ein spezieller Klon mit einer 

48bp Deletion, wobei kein Frameshift hervorgerufen wurde. Diese Deletion führt zu einem 

kürzeren Protein, dessen volle Funktion (hauptsächlich aus Zeitgründen) nicht getestet wurde. 

Aufgrund des geringen verfügbaren Wissens über die Funktion des I-TevII-Gens war es 

schwierig den zugrundeliegenden Mechanismus zu identifizieren, sodass angenommen wird, 

dass die Kombination aus I-TevII-Gen und einer bislang nicht identifizierten SIP Backbone 

Sequenz letal für die Empfängerbakterien ist, sodass die angewandten Strategien erfolglos 

bleiben mussten. Allerdings konnte das Intermediat SIP p4a kloniert werden, das im 

Vergleich mit seinen Vorgängern über einige verbesserte Eigenschaften verfügt. 

MinicircleDNA (mcDNA) beladene BGs befreit von nicht-rekombinierter 

mutterplasmid DNA (mopDNA) und miniplasmid DNA (mpDNA) durch nuclease-

aktivität  

Eine neue Methodik basierend auf Nuclease-Inaktivierung zur Reduzierung von mpDNA in 

E. coli Nissle 1917 BGs wird ebenfalls hier präsentiert. Zur Herstellung von mcDNA durch 

sequenzspezifische parA-Rekombination, die die Sequenz für das Enhanced Yellow 

Fluorescent Protein (EYFG) unter einem eukaryotischen Promoter trägt, wurde das Plasmid 

p4aEYFG hergestellt. Durch die enzymatische Aktivität von SNUC wurde mpDNA und 

nicht-rekombinierter mopDNA hydrolysiert: durch quantitative Real Time PCR (qPCR) 

wurde gezeigt, dass 2.38% der mcDNA (23-59 Plasmidkopien/BG) von der hydrolytischen 

Aktivität von SNUC nicht betroffen waren. SNUC hydrolysiert jene DNA-Fragmente, die 

größer und leichter erreichbar sind (also mpDNA oder mopDNA) bevorzugt, sodass mit 

dieser Methode die Menge von mpDNA in BGs um 99.48% verringert werden konnte (was 

8.27 Plasmidkopien/BG entspricht). Dieser Wert ist sehr viel geringer als der durch normale 
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ParA-Rekombination und Protein E-vermittelte Lyse erreichte Wert von ~412 

Plasmidkopien/BG. mcDNA-beladene Ghosts, die mittels dieser neuen Methodik entwickelt 

wurden, vermittelten in Makrophagenzellen RAW-264.7 die Expression des mcDNA-

verankerten Gens. 

Herstellung von Minicircle DNA (mcDNA)-beladenen, Reportergen exprimierenden 

BGs und ihre Quantifizierung mittels quantitativer Real Time PCR (qPCR) 

Auf eine weiterentwickelte Version des SIPs wurden drei unterschiedliche Reportergene, 

Enhanced Yellow Fluorescent Protein (EYFP), Red Fluorescent Protein (RFP) und Mutated 

Green Fluorescent Protein (VenusA206K) kloniert. 

Diese neu klonierten Plasmide wurden in CCL-20.2 Zellen getestet und führten zu höheren 

Fluoreszenzsignalen verglichen mit den Originalplasmiden. Berechnung mittels der neu 

entwickelten qPCR zeigte für diese SIPs eine Rekombinationseffizienz von 99.73%. Die für 

diese neue Methodik speziell entwickelten Primer haben die zusätzliche Fähigkeit, je nach 

Art der verwendeten mopDNA (also rekombiniert oder nicht-rekombiniert) unterschiedlich 

lange PCR-Fragmente zu liefern, sodass durch die Analyse der finalen Schmelzkurve die 

Quelle des quantifizierten PCR-Produkts gefunden werden kann. Durch die Einführung 

dieser neuen Methodik kann mpDNA und mcDNA ohne weitere Voruntersuchungen oder 

Abschätzungen quantifiziert werden. Im Übrigen verfügt dieses System über den Vorteil der 

Fähigkeit zur Berechnung der Rekombinationseffizienz, ohne auf densitometrische Analysen 

des Rekombinationsprodukts angewiesen zu sein. 

Verbesserung von Selbstimmobilisierenden Plasmiden (SIPs) für die Herstellung von 

Minicircle DNA (mcDNA)-beladenen BGs 

Um mcDNA für Vakzinierungsstudien zu verwenden, müssen alle unnötigen Sequenzen 

entfernt werden; darüber hinaus ist die Verwendung von Antibiotikaresistenzen, die für 

gewöhnlich nicht im medizinischen Bereich verwendet werden, vorteilhaft. In diesem Projekt 

wurde die Struktur des SIP insofern verändert, als dass durch die Positionierung der 

Resolution Site 1 (res1) die Größe der mcDNA verringert werden konnte. Nunmehr besteht 

diese nur noch aus der LacOs-Sequenz und der Multiple Cloning Site zur Einführung des 

Zielgens, wohingegen durch die Invertierung der LacI-L‘/ParA Expressionskassette die 

Klonierung von Genen für den enzymatischen Verdau von mpDNA nach der Rekombination 

erleichtert wurde. In dieser neuen Version des SIP wurde die Antibiotikaresistenzkassette von 

Ampicillin zu Kanamycin ausgetauscht; dies wird von regulatorischen Behörden wie der 
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Food and Drug Administration (FDA) und der European Medicine Agency (EMA) 

empfohlen. 

Bacterial Ghosts als Träger von Proteinuntereinheiten und DNA-kodierten Antigenen 

für Vakzinanwendungen 

Bacterial Ghosts (BGs) stellen Vakzinträgersysteme mit herausragenden natürlichen 

Adjuvanseigenschaften dar. BGs sind leere Zellhüllen Gram-negativer Bakterien, ohne deren 

cytoplasmatischen Inhalt, aber mit unveränderter Morphologie und den intakten strukturellen 

Eigenschaften ihrer lebenden Entsprechung, was ihre einfache Erkennung durch 

professionelle Antigen präsentierende Zellen mittels Pattern Recognition Receptors 

ermöglicht. BGs eignen sich für die Anwendung über Schleimhäute mittels oraler, ocularer, 

intranasaler oder aerogener Route, was den bevorzugten Wegen der Vakzinapplikation 

entspricht. BGs wurden als Träger aktiver Substanzen und von Fremdantigen (als Protein 

oder DNA) entwickelt; diese Übersicht betont die hervorragenden Eigenschaften von BGs als 

Vakzinplattform mit einer Vielzahl an erfüllten Zwecken, für die weitreichende Anwendung 

in humaner und veterinärer Medizin. 
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The Bacterial Ghost (BG) platform technology is an innovative 
system for vaccine, drug or active substance delivery and for 
technical applications in white biotechnology. BGs are cell 
envelopes derived from Gram-negative bacteria. BGs are devoid of 
all cytoplasmic content but have a preserved cellular morphology 
including all cell surface structures. Using BGs as delivery vehicles 
for subunit or DNA-vaccines the particle structure and surface 
properties of BGs are targeting the carrier itself to primary antigen-
presenting cells. Furthermore, BGs exhibit intrinsic adjuvant 
properties and trigger an enhanced humoral and cellular immune 
response to the target antigen. Multiple antigens of the native 
BG envelope and recombinant protein or DNA antigens can be 
combined in a single type of BG. Antigens can be presented on 
the inner or outer membrane of the BG as well as in the periplasm 
that is sealed during BG formation. Drugs or supplements can 
also be loaded to the internal lumen or periplasmic space of the 
carrier. BGs are produced by batch fermentation with subsequent 
product recovery and purification via tangential flow filtration. 
For safety reasons all residual bacterial DNA is inactivated 
during the BG production process by the use of staphylococcal 
nuclease A and/or the treatment with -propiolactone. After 
purification BGs can be stored long-term at ambient room 
temperature as lyophilized product. The production cycle from 
the inoculation of the pre-culture to the purified BG concentrate 
ready for lyophilization does not take longer than a day and thus 
meets modern criteria of rapid vaccine production rather than 
keeping large stocks of vaccines. The broad spectrum of possible 
applications in combination with the comparably low production 
costs make the BG platform technology a safe and sophisticated 
product for the targeted delivery of vaccines and active agents as 
well as carrier of immobilized enzymes for applications in white 
biotechnology.
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Submitted: 12/14/09; Revised: 06/01/10; Accepted: 06/01/10
Previously published online:
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The bacterial ghost platform system
Production and applications

Timo Langemann,1,2 Verena Juliana Koller,1,2 Abbas Muhammad,2 Pavol Kudela,1,3 Ulrike Beate Mayr1 and Werner Lubitz1,2,*

1BIRD-C GmbH and CoKEG; Kritzendorf, Austria; 2Centre of Molecular Biology; University of Vienna; Vienna, Austria; 3Cancer Research Institute; Slovak Academy of Sciences; 
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Abbreviations: BG, bacterial ghost; IM, inner membrane; OM, outer membrane; PPS, periplasmic space; cfu, colony forming 
units; dO

2
, dissolved oxygen; TFF, tangential flow filtration; BPL, -propiolactone; dH

2
O, de-ionized water; OD

600
, optical 

density at 600 nm; FSC, forward scatter; FL1, fluorescence signal 1; IPTG, isopropyl -D-thiogalactopyranoside;  
App, A. pleuropneumoniae; PAMP, pathogen-associated molecular pattern; LPS, lipopolysaccharide; MPL, monophosphoryl lipid A;  

TLR, toll-like receptor; AG, antigen; CPS, cytoplasmic space; DOX, doxorubicin; Caco-2, colorectal adenocarcinoma; DC, 
dendritic cell; pSIP, self-immobilizing plasmid; GFP, green fluorescent protein; mc, minicircle; APC, antigen-presenting cell; 

ADH, alcohol dehydrogenase; IL, ionic liquid

Introduction

Bacterial ghosts (BGs) are envelopes from Gram-negative bac-
teria which have been produced by controlled expression of the 
cloned lysis gene E. The essential role of gene E in the lysis of 
Escherichia coli after infection with bacteriophage X174 was 
discovered in 1966.1 More than 16 years later, when genetic 
engineering had been developed, it could be shown that its sole 
expression after cloning is sufficient to cause subsequent lysis of 
E. coli.2,3 E was the first lethal gene for bacteria which could be 
silenced on plasmids. When established in non-host range bacte-
ria of the phage expression of E converts Gram-negative bacteria 
into BGs whereas Gram-positive bacteria are killed without lysis.

Gene E codes for a 91-aa polypeptide,4,5 which, in contrast 
to lytic proteins from other phages, has no inherent enzymatic 
function.6,7 E represents a membrane protein with the ability to 
oligomerize into a transmembrane tunnel structure.8,9 Analysis 
of the primary structure of protein E revealed a hydrophobic 
region at its N-terminal end suggesting a cotranslational integra-
tion into the cytoplasmic membrane of E. coli.10 The observations 
that stationary phase host cells do not respond to E-lysis induc-
tion but lyse upon provision of fresh medium and other findings 
such as the inhibitory effect of non-physiological pH-values on 
the E-lysis process, indicate that E-mediated lysis is dependent 
on the growth phase of the host cells and its autolytic system.9,11-13

Analysis of the hydropathicity regions of protein E indicated 
an E-specific lysis tunnel spanning the inner (IM) and outer 
membrane (OM) which most probably is located at membrane 
adhesion sites within the host cell.14 E-mediated lysis forms the 
BG by releasing all cytoplasmic content to the environment while 
periplasmic components remained associated with the empty cell 
envelope.9 The collapse of the bacterial membrane potential pre-
cedes the onset of E-lysis.15 When the E-lysed E. coli were viewed 
by high-magnification scanning and transmission electron 
microscopy, the E-specific lysis tunnel was observed (Fig. 1A). 
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three-phase model: (1) integration of protein E into 
the IM with the C-terminus facing the cytoplasm; 
(2) conformational change of protein E translocat-
ing the C-terminal domain to the PPS accompanied 
by oligomerization and targeting of the division ini-
tiation complex via lateral diffusion; (3) fusion of 
IM and OM at membrane adhesion sites induced by 
exposition of the C-terminus of protein E to the cell 
surface. This model implies that the lysis tunnel is 
note solely bordered by protein E oligomers but its 
formation requires protein E-triggered fusion of the 
inner and outer membrane.23 A schematic drawing 
of this model is shown in Figure 2B.

Upon discovery of the remarkable features of pro-
tein E-mediated lysis in E. coli, the principle of E-lysis 
could be shown with other Gram-negative bacte-
ria24,25 but not for Gram-positive bacteria.26 So far, 
BGs of numerous Gram-negative strains (different 
E. coli strains, Salmonella typhimurium, Salmonella 
enteritidis, Klebsiella pneumoniae, Bordetella bron-
chiseptica, Heliobacter pylori, Vibrio cholerae, 
Actinobacillus pleuropneumoniae, Haemophilus influ-
enzae, Mannheimia haemolytica, Pasteurella multo-
cida, Pseudomonas aeruginosa, Pseudomonas putida, 
Ralstonia eutropha, Pectobacterium cypripedii and 
others) have been generated successfully. This sug-
gests that the BG platform might be extended to 
any Gram-negative bacterium.25 The idea of uti-
lizing BGs derived from different Gram-negative 
bacteria as candidate vaccines emerged due to the 
demand for both potent and safe new vaccines.27-31 
The BG system offers many advantages over tra-
ditional vaccination techniques including target-
ing and the intrinsic adjuvant properties of the BG  
particles. In addition, recombinant DNA technol-

ogy facilitates the development of multivalent protein or DNA 
vaccines. Another great feature of BGs is the fact that no denatur-
ing effects occur during E-lysis and hence all antigenic determi-
nants are preserved throughout BG generation. The use of BGs 
as candidate vaccines and advanced drug carriers can be found in 
several recent reviews.24,27,29,32-36

BG—Production Process

Initial cloning and expression studies with gene E used the induc-
ible lac promoter/operator system with an overexpression of the 
lacI repressor gene (lac PO-lacIq1).2,3 Later the temperature-sen-
sitive -system ( p

L
/ p

R
-cI857) has proven to be more suitable 

for quick and efficient lysis without the need of any addition of 
chemical inducers.18 Since the  repressor cI857 shows incipient 
expression of downstream gene E at temperatures above 30°C the 
temperature sensitivity of the system was optimized to meet more 
favorable fermentation temperatures of 35°C or higher. Mutations 
in the O

R
2 operator region of the p

R
 promoter resulted in tight 

repression of downstream genes up to 36°C and 39°C, respec-
tively.37,38 These temperature-inducible E expression cassettes are 

In addition, electron microcopic images showed that E- lysis of 
E. coli was accompanied by a fusion of the inner and outer mem-
brane (Fig. 1B) sealing the periplasmic space (PPS).16 Several 
investigations of E-lysed E. coli cells revealed that the E-specific 
lysis tunnel is located either at the centre or the poles of the bac-
teria, both potential division zones.17 Since protein E-mediated 
lysis is dependent on the physiological state of the host bacte-
rium18,19 and analysis of E-lysis in different E. coli cell division 
mutants suggest that mechanisms involved in cell division are 
mandatory for E-lysis.17,20

The observed lysis tunnel diameter varies between 40 to 200 
nm and does not show any regular structure. The driving force 
for the rapid discharge of the cell content is the osmotic pressure 
difference between the cytoplasm and the surrounding medium. 
However, the native structure of the peptidoglycan within the 
envelope complex remains intact and rigid.21 The observed stimu-
lation of peptidoglycan turnover by about 10%21 would agree with 
genetic evidence that protein E inhibits MryA translocase A.22

Based on these findings and extended experiments using 
an E-streptavidin fusion protein (E-FXa-StrpA), Schön et al.23 
described the process of E-mediated tunnel formation with a 

Figure 1. (A) Lysis tunnel formation and expulsion of the cytoplasmic contents—re-
produced from Ebensen et al.32 (B) Lysis tunnel formation, accompanied by the fusion 
of IM and OM (arrow)—reproduced from Witte et al.16

Abbas
Typewritten Text
18



328 Bioengineered Bugs Volume 1 Issue 5

Figure 2. (A) Different methods for AG presentation in the BG envelope complex—BG themselves carry native AG (LPS, OMP, IMP, TCP, flagella, pili)—
TA may be presented on the cell surface via fusion with OmpA—the PPS can be loaded with TA via MBP-SbsA-fusion proteins (1), by fusion of the TA 
with MBP (2) or as sole TA using the gene III signal sequence (3) Protein TA may be incorporated into the IM via E’, L’ or E’/L’-anchoring, biotinylated AG 
can be attached to E’-FXa-StrpA membrane anchors, DNA carrying the lac operator site can be attached to L’-anchored lacI repressor molecules—TA 
fused with SbsA-/SbsB proteins form S-layers in the PPS. (B) Model of lysis tunnel formation according to Schön et al.23
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sufficient for exponential growth. To maintain a level of dissolved 
oxygen (dO

2
) of approximately 20% saturation both stirring and 

aeration rate are adjusted gradually over the course of the growth 
phase. After 90 min E-lysis of E. coli is induced at cell densities of 
approximately 1–2 x 109 cells/ml.

When recombinant proteins are expressed to become incor-
porated into the envelope complex (before E-mediated lysis) 
expression of the corresponding genes is induced chemically 30 
min after inoculation (e.g., lac-, arabinose induction system). If 
synthesis of the foreign proteins slows down the growth rate so 
that lower cell densities are reached, this growth phase may be 
 prolonged up to 120 min to compensate and increase the BG 
yield.

E-lysis phase. E-lysis of the culture is induced by temperature 
up-shift from 35 to 42°C (Fig. 3a). Currently, it takes roughly 10 
min to reach the new temperature in the fermenter. During this 
time, stirring and aeration control is locked to prevent foaming 
during BG formation. The dO

2
-level subsequently drops below 

5% and so remains for about 30 min. In the fermentation log 
visual evidence for E-lysis onset is a sudden signature increase of 
dO

2
 (Fig. 3b). The E-lysis phase continues for a total of 120 min 

with its end being characterized by the dO
2
 reaching a stationary 

value of >95% saturation (Fig. 3c).
Downstream processing. The BG product is harvested from 

the fermenter via tangential flow filtration (TFF) in a 0.2 m hol-
low fiber module at a temperature of 15°C. Firstly, the fermenta-
tion broth (20 l) is concentrated to 2.0 l (Fig. 5a) and transferred 

widely used in current BG production processes since they are 
robust enough to allow fermentation of the bacterial culture at 
35°C and induction of protein E-mediated lysis at 42 or 44°C.

In standard fermentations of various bacteria the quality cri-
terion for a successful E-lysis process is a BG formation of at 
least 99.9% of the bacterial culture within a time window of 2 h.  
Depending on the host organism E-lysis efficiencies of more than 
99.99% and higher can be achieved in this time frame. In Figure 
3 the time-point of E-lysis induction is defined as time-point zero 
(0 min) with the preceding growth phase denoted in negative 
minutes.

BG production has been established in fermentation volumes 
up to 20 l using Labfors-3 and Techfors-S fermenters (Infors HT, 
Bottmingen, CH). Starting with a pre-culture that is growing 
exponentially, the production fermenter is inoculated with the 
starter culture at a volume ratio of 1:10. The standard fermenta-
tion process can be divided into three major stages: growth phase 
(90 min), E-lysis phase (120 min) and downstream processing.

The overall timeline for the production process is designed 
in such a way as the time from the automatic inoculation of the 
starter culture to the final concentration of the product the whole 
process takes 18 h and can be performed in one working cycle. 
The key events of the BG production process (Fig. 4) are dis-
cussed in more detail below.

Growth phase. The growth phase in an example fermenta-
tion with E. coli harboring plasmids for temperature-inducible 
E-lysis is conducted at 35°C, pH 7.20 and aeration parameters 

Figure 3. Fermentation protocol (growth/lysis phase) monitoring all relevant process parameters; (a) lysis induction, (b) lysis onset as indicated by dO2 
up-shift, (c) stationary dO2 plateau indicating end of lysis phase.
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and reduces the risk of cross-contamination during the han-
dling procedure.

Process and quality control. During fermentation all relevant 
process parameters (T, pH, dO

2
, aeration, stirring) are moni-

tored and controlled. Starting from the time-point of inoculation  
(Fig. 3A, -90 min) samples are taken every 30 min over the course 
of the fermentation (Fig. 3B–H) and analyzed for optical den-
sity (OD

600
) and colony forming units (cfu). All samples are also 

examined by light-microscopy and flow cytometry. Optionally, 
the biomass is also investigated for DNA content by real-time 
PCR and the level of protein E expression.

In standard fermentations with E. coli, the onset of E-lysis 
is linked to a sudden drop in OD

600
 of the culture broth and 

this simple determination is an important indicator of success-
ful E-lysis induction. BG formation can also be observed as the 
appearance of translucent bacterial bodies in light microscopy. 
Both methods are good indicators for the quality of E-mediated 
lysis of E. coli but contain no quantitative information. The 

to a stirred reservoir. Then the concentrate is  inactivated with 
-propiolactone (BPL). Secondly, the BPL-treated broth is 

washed with sterile, de-ionized water (dH
2
O) by diafiltra-

tion in a smaller 0.2 m hollow fiber module. A total of 5.0 l 
dH

2
O displaces the remaining medium and all residual cyto-

plasmic content. During the non-steady-state diafiltration, the 
product suspension is further concentrated to 400 ml (Fig. 5a).  
The overall concentration factor is 50-fold while virtually all 
medium (>99%) is withdrawn. The final BG concentrate is 
divided into aliquots and lyophilized. As freeze-dried product, 
BGs are stable at room temperature for many years.

The TFF procedure as described above is an alternative to 
harvesting and washing BG via centrifugation. In contrast to 
the filtration process, this centrifugation is more laborious, 
time-consuming and might lead to BG aggregation because 
of difficulties with a proper re-suspension of the BG pellet. 
Another advantage of the implementation of TFF for harvest-
ing and washing of BGs keeps all processes in a closed system 

Figure 4. Process timeline for the production of BG including the pre-culture (ON) and downstream processing.

Figure 5. (a) Harvesting of the BG product via TFF; concentration from 20 to 2 l in the fermenter. (b) Washing of the BG product with 5.0 l dH2O via 
diafiltration; concentration from 2.0 l to 400 ml in a stirred reservoir.

Abbas
Typewritten Text
21



www.landesbioscience.com Bioengineered Bugs 331

signal defines a gate for the exclusion of all non-cellular back-
ground. The discrimination of living cells, dead but non-lysed 
cells and BGs is achieved by a combination of the forward scatter 
signal (FSC) and the fluorescence signal (FL1) of the second dye 
[DiBAC

4
(3)] which stains only cells that have lost their mem-

brane potential. DiBAC-negative cells with a high scatter signal 
represent living cells, DiBAC-positive cells with a similar scatter 
signal represent the dead cell fraction. DiBAC-positive cells with 
a diminished scatter signal are identified as BGs. The general 
procedure for online monitoring E-lysis of E. coli by flow cytom-
etry has been developed by Haidinger et al.39,40 and was adapted 
recently. The flow cytometry result for a given sample is available 
in less than 10 min after sampling. Representative dot-plots of 
an E. coli culture growth during the E-lysis process is shown in 
Figure 6 for the time-points induction (a), course (b) and end of 
the E-lysis phase (c).

After lyophilization the dry BG product is investigated with 
respect to sterility and re-suspensibility. For sterility investiga-
tions, 10 mg of BGs are re-suspended in rich medium and ali-
quoted for both nutrient agar plating and enrichment cultures. 
All sterility tests are performed in triplets to ensure that the final 
product does not contain any viable cells. The re-suspensibility 
is evaluated via flow cytometry with a lyophilized sample after 
re-suspension in dH

2
O. Since lyophilized BGs generally are eas-

ily rehydrated, the sample should give a similar picture and cor-
responding particle counts as the original sample.

BG—Inactivation

For the last 2 years, a new quality criterion stipulated that the 
harvested BG product should be free of any living cells before 
lyophilization. Although the efficiency of BG formation reaches 
three to five orders of magnitude during the time window of  
E- lysis (Figs. 3 and 4), any remaining live cells must be inac-
tivated subsequently. The presence of protein E in the envelope 
complex of bacteria does not necessarily kill all bacteria by E-lysis. 
However, protein E in the membrane renders all bacteria more 
acutely sensitive to killing by lyophilization and in the past no 
living cell counts could be detected in the lyophilized BG sam-
ples. In applications where nucleic acid-free BGs are produced, 
inactivation can be accomplished by the expression of an addi-
tional “kill gene” in the host cells in combination with E-lysis.41 
For this, the staphylococcal nuclease A (SNUC) is used, which 
reduces the DNA content below the detection limit of real-time 
PCR. SNUC activity is also responsible for cleaning up residual 
DNA in BGs and can lead to complete inactivation of the culture 
as it degrades the host DNA into fragments no longer than 100 
base pairs.41 Activation of the positive effect of SNUC expres-
sion, minimizing both cell viability and residual DNA-content 
in the BG product, is dependent on the addition of Mg2+ and 
Ca2+ as well as a shift in pH to 8.0.41 Figure 7 shows a Shigella 
flexneri 2a culture harboring plasmid pGLNic for co-expression 
of temperature-inducible protein E and IPTG-inducible SNUC.

Addition of the alkylating agent -propiolactone (BPL) after 
harvesting is effective in fully inactivating all viable cells either in 
combination with or as an alternative to SNUC. BPL is known 

actual E-lysis efficiency is determined by cfu counting one day 
after sample collection. Flow cytometry has been established as a 
reliable real-time tool for the assessment of E-lysis onset and the 
progress of BG formation.39 For flow cytometry diluted samples 
of the culture broth are stained with two fluorescent dyes and run 
through a CyFlow analyzer (Partec, Münster, Germany). The first 
dye (RH414) stains phospholipid membranes and its fluorescence 

Figure 6. Flow cytometry pictures following the progress of lysis in an 
E. coli NM522 culture (pGLysivb); R1: living cells, R2: dead but intact cells, 
R3: lysed cells (BG); RN6: exclusion of non-cellular background with 
RH414 (not shown); FSC - forward scatter, FL1 - fluorescence intensity by 
DiBAC4(3); (a) sample D (0 minutes, lysis induction), (b) sample E  
(30 minutes), (c) sample H (120 minutes, end of lysis phase).
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the potentially lethal pathogen. They also prevented colonization 
of the lungs and tonsils which indicated that immunization with 
BGs is superior to treatment with bacterins.43 More importantly, 
no clinical side-effects have been reported.

The application of BGs via mucosal inoculation is superior to 
parental inoculation. The mucosal application of App BGs as oral 
immunization44 or as aerosols43,45 induced sterile immunity and 
cross-protection against other serotypes in pigs45 whereas intra-
muscular immunization46 fully prevented the vaccinated pigs 
against the disease after lethal challenge but did not confer ster-
ile immunity because the challenge bacteria could be re-isolated 
from the tonsils from the vaccinated pigs.

BG produced from P. multocida and M. haemolytica (for-
merly: P. haemolytica) were used in rabbit and mice models. The 
antibodies produced were cross-protective; effective not only 
against the strain used for immunization but also against other 
Pasteurella strains.47 M. haemolytica BG immunization of cattle 
offered protective immunity comparable to commercially avail-
able vaccines.48

For V. cholera pre-clinical studies have been completed. The 
ilea loop challenge model revealed full protection of rabbits. 
Interestingly, partial cross-protection between the classical O1 
strain and the new upcoming O139 strain was observed.49 In 
most models mucosal application has proven to be a favorable 
route for administration of BG candidate vaccines inducing both 
humoral and cellular immune response.29,36

BGs as adjuvants. The BG morphology is not subject to 
denaturation during the lysis process. Thus all major immune 

to react with nucleic acids, mainly guanine. BPL is widely used 
for the inactivation of viruses and further to sterilize vaccines, 
human tissue implants and plasma.42 The presence of BPL causes 
alterations (transition mutations, cross-linking, nicks) in nucleic 
acids. The presence of water fully hydrolyses BPL at room-tem-
perature into non-toxic -hydroxypropionix acid.42 In BG pro-
duction, the amount of BPL needed for complete inactivation 
of the BG product suspension depends on three parameters: the 
amount of DNA present in the suspension, time and tempera-
ture. Most DNA in the BG suspension is present in the liquid 
phase due to the expulsion of the cytoplasmic content, which 
makes it reasonable to apply BPL in the BG concentrate after 
harvesting but before diafiltration. At this point approximately 
97% of the original fermentation liquid—and therefore 97% of 
the free DNA—has been removed from the product. Two equal 
dozes of BPL given at 30 min intervals are sufficient for total 
inactivation of all surviving cells at 42°C within 60 min. The 
final BG product is washed with another 5.0 l dH

2
O by diafiltra-

tion before dispensing into aliquots for lyophilization.

BGs—Applications

BGs solo. Immunization against pathogenic Gram-negative bac-
teria using BGs has been studied in various animal models.24,36

BGs have been used in model investigations for human lung 
pathogens and for the development of veterinary vaccine can-
didates vaccination of swine with A. pleuropneumoniae (App). 
AppBGs resulted in protection against aerogenic infection with 

Figure 7. Standard fermentation for a S. flexneri 2a culture harboring plasmid pGLNic: (a) IPTG-addition at -45 min to induce biosynthesis of SNUC,  
(b) temperature up-shift to 42°C at 0 min to induce lysis, (c) pH up-shift to 8.0 and addition of Mg2+ and Ca2+ at +90 min to activate the enzymatic func-
tion of SNUC.
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Endogenous drug release was confirmed. Enhanced cytotoxic 
and antiproliferative activities in the Caco-2 cells were observed. 
DOX-loaded BGs were 2–3 orders of magnitude more effective 
compared to the substance alone.57 The water soluble substance 
calcein was used in another delivery model, whereby the former 
lysis holes were plugged with bacterial membrane vesicles.58

BGs from P. cypripedii were used as pesticide delivery systems 
with the lipophilic fungizide tebuconazole. The investigations 
demonstrated that this formulation conferred a higher resistance 
to rainfalls due to adherence of the BGs to the plant. This BG 
application showed protective and curative effects against agri-
cultural plant pathogens.59

It is assumed that organic ring structures bind unspecifically 
to the membrane compartments of BGs. Recent investigations 
of loading BGs with polyphenolic compounds, like resveratrol, 
agree with this assumption. Currently, the modulating ability 
of such substances bound to BGs to induce the innate immune 
system, i.e., iNOS, was examined (Koller and Lubitz, personal 
communication). Furthermore, increased drug cytotoxicity 
was demonstrated. We predict that this effect was due to sta-
bilization and protection of the UV-labile resveratrol derivates, 
(Digalloylresveratrol and M8) by adsorption to the BG-interior 
(Koller and Lubitz, personal communication).

Model investigations for enhanced binding of drugs to a 
substituted matrix on the inner membrane of BGs have used 
membrane anchored streptavidin which bound the biotinylated 
coupling partner to the inside of the cytoplasmic membrane. 
Biotinylated alkaline phosphatase or biotinylated fluorescence-
labelled dextrans displayed successful binding within the inner 
lumen of BGs.51

BGs as carriers of DNA vaccines. Conventional viral and 
bacterial vaccine delivery systems with high transfection efficien-
cies bear a risk of reversion to their original pathogenic forms. 
“Safer” non-viral systems such as attenuated bacteria, polycation/
DNA complexes, nucleoporation have reduced transfection effi-
ciencies.60-67 The BG system represents an alternative to current 
viral and bacterial methods in vaccine development with a new 
highly efficient gene delivery platform. One of the biggest advan-
tages of the new DNA-carrier system is the safety of BGs. Recent 
in vitro investigations proved that BGs have no cytotoxic or geno-
toxic impact on different types of human cells after mutual co-
incubation. This observation was independant of the BG species 
used (Koller and Lubitz, personal communication).

Recently, DNA vaccines were approved for use in veterinary 
practice.68 DNA vaccines still require intensive research and 
improvements before they are considered safe for use in human 
medicine. One reason for this slow pace in development and 
licensing approval of DNA vaccines is the requirement of high 
plasmid dosages and low immunogenicity, most commonly 
attributed to the absence of efficient delivery system.69,70 Many 
experiments have been carried out in order to deliver DNA vac-
cines using BGs as carriers, and a simple procedure for loading 
BGs with plasmid DNA has been standardized. Lyophilized BGs 
are re-suspended in DNA solutions followed by a couple of wash-
ing steps to remove unbound plasmid DNA from inside the BGs. 
The amount of DNA loaded inside the BGs is directly related to 

stimulating elements are preserved. Those elements are referred to 
as pathogen-associated molecular patterns (PAMPs) and include 
lipopolysaccharides (LPS), monophosphoryl lipid A (MPL), 
peptidoglycan or flagella. As PAMPs are recognized by toll-like 
receptors (TLR) they trigger also the innate immune response. 
Consequently, all bacterial strains from which the BGs are derived 
induce innate immune reactions (Abtin, Koller, Lubitz, personal 
communication) as first response. They also carry intrinsic adju-
vant properties which makes them extremely versatile to induce 
specific humoral and cellular immune responses in experimental 
animals.29

BGs as carriers of foreign protein antigens. Using recombi-
nant DNA technology, foreign antigens (AGs) can be incorpo-
rated into or become associated with the envelope complex of the 
bacteria before lysis and become elements of the BGs (Fig. 2A). 
AGs may be presented on the cell surface via fusion with outer 
membrane proteins (e.g., ompA)50 or on the IM as membrane 
anchor fusions with N-, C- or N/C-terminal targeting.30 Fusion 
with these membrane anchors did not affect proper folding and 
assembly or diminish the functionality of enzymes supporting the 
assumption that AGs are in their correct conformation. In addi-
tion to directly fusing the target AG to the membrane anchor, a 
system for subsequent loading of BGs with AGs was developed. 
In this approach the BGs are equipped with membrane-anchored 
streptavidin. After lyophilization such streptavidin BGs can be 
loaded with a desired biotinylated compound.51

Another method of incorporating foreign proteins into BGs 
is the directed export to the PPS via MalE fusion proteins or 
PPS signal sequences. The PPS is sealed during lysis and the vast 
majority of all periplasmic components are retained within the 
envelope complex.9,16 The membrane-derived oligosaccharides52 
of the PPS provide a protective environment against inactivation 
during lyophilisation.34

Fusions of target antigen DNA sequences with the bacterial 
surface layer (S-layer) genes sbsA or sbsB of Bacillus stearother-
mophilus, when expressed heterologous in Gram-negative bacteria, 
form sheet-like self-assembling superstructures within the cyto-
plasmic space.53,54 Since S-layers are made up of several 100,000 
subunits, they are not expelled with the cytoplasm during E-lysis. 
Both S-layer genes accept insertion of foreign sequences coding 
for large foreign proteins.54,55 Linking MalE to SbsA the protein 
subunits can also be exported to the PPS prior to S-layer forma-
tion.56 All different options of AG presentation in BG envelopes 
are summarized in Figure 2A as a schematic drawing.

BGs as carrier of biologically active substances. The BG 
system provides a new promising platform for the delivery of 
drugs and other biologically active substances. BGs are devoid 
of any cytoplasmic content so the carrier capacity of the inner 
 cytoplasmic lumen provides an intracellular space of approxi-
mately 250 femtoliter per BG. This lumen can be filled with 
drugs of interest as liquid or absorbed to the lipid compartment 
(independent of the inner volume) or specifically attached to 
receptors presented in the BGs.

BGs produced from M. haemolytica were used for the in vitro 
delivery of the moderate hydrophilic cytostatic drug doxorubi-
cin (DOX) to human colorectal adenocarcinoma (Caco-2) cells. 
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encoded from parent plasmid.80 A new modified pSIP generation 
is currently under construction with encoded endonuclease activ-
ity to digest non-recombinant mother plasmids and the ParA 
produced miniplasmids.

The main benefit of DNA vaccines is the induction of both 
cellular and humoral immune responses. Processing of AG 
through both endogenous and exogenous pathways followed by 
AG epitopes present both MHC class I and class II molecules.81-83 
Well designed and applied gene therapy should provide successful 
delivery of desired AG DNA to the APCs. This is followed by its 
expression, naturally processing and presentation of AG-derived 
epitopes. T cells raised against delivered, naturally processed and 
presented AGs by APCs might be more effective in recognition 
of the same epitopes presented by cells expressing identical AGs. 
The expression of a delivered gene should induce strong immune 
responses or change the behavior of targeted cells.

BGs with their intact envelope structures include peptido-
glycan and LPS. These elements are not only “waking up” pro-
fessional phagocytic APCs but are also providing stimulatory 
impulses to tumor cells. It is known that e.g., melanoma cells 
have the capacity to behave as non-professional APCs and can 
phagocyte both apoptotic and live cells84-87 and as recently shown 
respond to challenge by BGs.73 Despite the high DNA loading 
capacity of BGs, relatively low concentrations of DNA are suf-
ficient for effective gene delivery and expression by melanoma 
cells. High transfection efficiencies were obtained after incuba-
tion of BGs with melanoma cells. Similar results were seen with 
monocyte-derived DCs encouraging us to design BGs carrying 
selected immunogenic and immunodominant AGs. These DNA 
loaded BGs would be used simultaneously for gene transfer to 
both professional APCs and to tumor cells to induce or amplify 
AG-specific immune responses.

White biotechnology—BGs as micro-bioreactors for 
enzymatic reactions. Another possible application for the 
BG platform is the use of BGs as enzyme carriers. The lack 
of cytoplasm and of a membrane potential due to E-mediated 
lysis of the bacteria does not lead to a total loss of enzymatic 
activities. The enzymatic activities of BG membrane-bound 

-galactosidase and chloramphenicol acetyl transferase have 
been described.88,89 Membrane associated enzymes like ATPases 
are still functionally active in BGs. Moreover, even though the 
cytoplasmic content is expelled during lysis, the inside of the 
cytoplasmic membrane and its associated products are retained. 
As the IM and OM are fused at the border of the E-specific 
lysis tunnel enzymes from the PPS like alkaline phosphatase 
and -lactamase are largely retained and active.9,17 ATPase 
and -lactamase sustained relative activities in suspended BGs 
even after one week storage at 4°C. Enzyme activities were also 
detectable in lyophilized BG-batches stored long-term at ambi-
ent temperatures. The enzyme activities were similar to those 
of recently produced freeze-dried samples, e.g., ATPase activ-
ity no significant differences in enzyme activity were observed 
after five years of storage (Koller, Lubitz—personal communi-
cation). This data confirms that BGs enzymes stay functionally 
preserved during long storage, which indicates the potential of 

the concentration of DNA solution used. This loading procedure 
is very efficient and up to 6,000 midsize plasmid copies per BG 
can be loaded.71

One of the main advantages of BGs is that they are non-
living. They retain all of the surface morphological, structural 
and antigenic components of their living counterparts. BGs 
also have an outstanding loading capacity.72 The inner space of 
BGs empty envelope can be loaded with a combination of pep-
tides, drugs or foreign DNA which gives us an opportunity to 
design new types of polyvalent vaccines.57,71,73,74 We have shown 
that BGs loaded with plasmid DNA encoding green fluorescent 
protein (GFP) are efficiently internalized and phagocytized by 
both professional antigen presenting cells (APCs) and tumor 
cells. BGs were able to deliver the heterologous genes to both 
non-dividing cells (monocyte-derived dendritic cells) and divid-
ing cells (macrophages and melanoma). Study results showed 
that up to 82% of cells expressing the plasmid encoded reporter 
gene delivered by BGs. Importantly, no cytotoxic impact was 
observed on target cells.32,71,74,75 Intradermal and intramuscu-
lar immunization of Balb/c mice with BGs loaded with pCMV 
encoding beta-galactosidase stimulated more efficient humoral 
and cellular AG-specific immune responses than naked DNA. 
Beta-galactosidase-specific immune response was detected after 
intravenous immunization of mice with autologous dendritic 
cells (DCs) transfected ex vivo with pCMVbeta-loaded BGs.32 
An increase of IFN-gamma producing AG-specific CD8+ T cells 
was observed in animals vaccinated with DNA loaded BGs in 
response to restimulation by APCs pulsed with peptide contain-
ing the immunodominant MHC class I epitope. BGs enhanced 
expression of MHC class I molecules and costimulatory mole-
cules on DCs.32 Cross-presentation of AGs delivered to DCs by 
BGs could activate both CD4+ and CD8+ T cells and stimulates 
the immune system to enhance immune response against AGs 
expressed by target cells. Bacterial LPS enhances maturation of 
DCs, affects endosomal acidification of DCs and also improves 
cross-presentation of AGs.76,77 Inner and outer membrane struc-
tures of BGs including LPS remain intact in BGs and the surface 
LPS effectively stimulate the AG-cross-presentation by DCs.17,72

In general the production and loading of BGs with plasmid 
DNA are two separate tasks. With the introduction of our new 
self immobilizing plasmids (pSIP) this multistep procedure was 
simplified into one step in-vivo, cost effective procedure. During 
this process the plasmid DNA carrying an operator sequence is 
bound to a specific DNA binding protein present on the IM of 
the bacteria.78 The bacterial backbone sequences and antibiotic 
resistant genes are considered to be a biological safety risk for 
DNA vaccination and plasmid DNA used in gene therapy. To 
overcome this hurdle, new more sophisticated versions of pSIP 
BG-DNA-vaccines, based on minicircle (mc) DNA devoid of 
such biologically risky remnants were developed. This improved 
version of pSIP is based on the ParA resolvase system to produce 
mcDNA which is bound to the IM receptor. The corresponding 
sister pair miniplasmid produced during this process is expelled 
to the culture media during the gene-E mediated lysis.79 A modi-
fied system for minicircle production, digesting the miniplasmid 
has been reported, based on endonuclease activity of I-SceI gene 
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enzyme. Both product and educts in these kinds of reactions 
are often poorly water-soluble. For this reason, the use of a non-
polar solvents such as a suitable ionic liquid (IL)—is essential. IL 
are organic salts which are liquid at ambient temperatures; due 
to their low vapor pressure they are considered as safe (“green 
solvents”). They feature good in-situ extraction properties for 
product recovery.92 BGs loaded with the reduction equivalent 
solution are dispersed in the ionic liquid. Thus this BG system 
provides the substrate and receives the product. It was shown that 
the enzyme activity of -galactosidase could be vastly increased 

BGs as reservoirs for biological functions e.g., as dietary enzyme 
substitution or for other use.

BGs can act as micro-reactors which follows the idea of 
Pfründer et al. of producing enantiopure fine chemicals such 
as e.g., asymmetric synthesis of a 3,5-dicarboxyhydroxylate in 
biphasic ionic liquid/water systems.90,91 Potent enzymes [e.g., spe-
cialized alcohol dehydrogenases (ADHs)] are anchored to the IM 
while the internal lumen of the BG becomes the reaction space. 
Re-suspension of the BGs in an aqueous solution with a suitable 
reduction equivalent allows for proper function of the desired 

in an IL environment.93 Preliminary stud-
ies of our lab have demonstrated that 

-galactosidase was active when BGs were 
re-suspended in the IL [Bmim]PF

6
.

Qualitative determinations showed 
successful hydrolysis reactions of the sub-
strates which were delivered in the ionic 
liquid. These findings give a first indica-
tion of the feasibility and attainable enzy-
matic activity of such approaches. When 
a multi-step enzyme system is introduced 
a limited series of reactions could be per-
formed within one BG. Therefore the BG 
system could become a versatile vehicle in 
white biotechnology.
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Chapter: I 

Investigations reducing un-recombined mother plasmid 

DNA and miniplasmid DNA in the Bacterial Ghosts 

 

Abstract 

Minicircle DNA (mcDNA) lacking the bacterial backbone (BB) sequence has been 

used in achieving high levels of transgene expression due to their reduced size. BB is needed 

for the replication of plasmid DNA inside the bacteria but it contains some unwanted features 

which interfere with the expression profile of the delivered antigen. These mcDNA are 

produced inside the bacteria via parA resolvase gene expression where the mcDNA 

expression cassette is flanked by two resolution sites (res). The ParA mediated recombination 

of the mother plasmid DNA (mopDNA) results into i) mcDNA carrying the eukaryotic 

expression cassette and ii) miniplasmid DNA (mpDNA) containing BB and antibiotic 

resistance cassettes. The in vivo loading of mcDNA in Bacterial Ghosts (BGs) have been 

demonstrated separately through which the mcDNA is produced via parA recombination and 

anchored inside the BGs via lacI-L’ anchor and its recognition sequence present on mcDNA. 

There were still some left over’s of mpDNA in the prepared BGs. In current study it was 

planned to clone I-TevII homing endonuclease on the self immobilization plasmid pSIP to 

reduce the un-recombined mopDNA and mpDNA within the BG preparations. I-TevII 

belongs to group I sun-Y intron of bacteriophage T4 which cleaves its target sequence 13-

15nt downstream to their intron insertion sites.  The cloning strategy, although trying several 

alternative paths were not successful but resulted in new self immobilization plasmid p4a and 

several other intermediates. It is assumed that I-TevII in combination with unknown pSIP 

backbone sequences was lethal for recipient bacteria and could therefore not been achieved 

with the strategy applied.  
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1.1 Introduction 

Most desirable feature of plasmid DNA vaccines is to be safe and highly efficient in 

expressing high levels of transgene products inside the human body. It has been shown 

previously that production of mcDNA lacking the BB sequence express high levels of 

transgene in vivo [1]. These mcDNA are produced by site specific recombination of 

mopDNA while a replicative mpDNA is released as a by-product containing undesirable BB 

sequence and antibiotic resistance gene [1-7]. The mcDNA carries all the necessary elements 

for expression of cloned gene inside the eukaryotic cells [1]. Up till recently the mcDNA was 

produced in a two step process i.e. its production inside the bacterial cell and its subsequent 

linearization and purification through laborious gradient cesium chloride ultracentrifugation 

which results in high cost of its production thus limiting its production for clinical trials [8]. 

Therefore another one step process was developed by Chen et.al. in which the recombined 

mpDNA and un-recombined mopDNA was digested by the action of I-SceI endonuclease 

whose recognition site is flanked by attP and attB sites and is only present on 

mpDNA/mopDNA, however during this method around 3% of the mopDNA and mpDNA 

was still detectable [8].  

Another approach for production and purification of mcDNA was based on 

Recombinant Plasmid Separation Technology (RPST) in which the mcDNA carrying lactose 

operator sequence was produced through parA resolvase recombination followed by its 

separation through interaction of repressor of lactose operon (lacI) with the lac operator 

sequence (lacOs) [9, 10] via affinity chromatography [11]. However this system is unable to 

separate the mcDNA from un-recombined mopDNA due to presence of recognition sequence 

(lacOs) on them that is why an efficient recombination system is key to the successful 

mcDNA separation via this method. This separation technique was also used by Jechlinger 

et.al. for immobilizing the mcDNA inside the Bacterial Ghosts (BGs) that are highly 

immunogenic due to their preserved antigenic structures present on their surface [6]. BGs are 

the empty cell envelope of Gram-negative bacteria produced by the expression of cloned 

gene E of bacteriophage PhiX174 [12, 13]. After the expression of temperature sensitive lysis 

gene E the inner membrane (IM) and outer membrane (OM) fuses together which results in 

the formation of transmembrane tunnel structure through which the cytoplasmic contents are 

expelled into the surrounding medium due to difference in their osmotic pressure [13, 14]. 

The BGs are used for delivering the proteins or plasmid DNA vaccine due to their intrinsic 
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adjuvant properties bestowed by their preserved surface antigenic structures [15-26]. It has 

been shown in several studies that these BGs loaded with plasmid DNA performs better in 

transfection experiments [21, 27, 28]. The mcDNA loaded BGs [6] are produced by site 

specific parA recombination of mopDNA and followed by anchoring of mcDNA using the 

SIP system [29] and finally lysis via PhiX174 gene E mediation technique [12]. In this 

system through densitometric analysis the recombination efficiency was shown close to 

100% the one of its kind only achievable through parA mediated recombination. However In 

these preparations around ~30% of mpDNA is still detectable in BG palette which poses a 

serious hindrance for the use of mcDNA loaded BGs in human clinical trials.  

Homing is a genetic phenomenon which was discovered in group I intron of budding 

yeast [30-32] responsible for the transfer of mobile intervening sequence to homologous 

allele lacking the desired sequence [31, 33, 34]. This process is initiated through 

endonuclease activity encoded by mobile intervening sequence that recognizes and cleaves 

single or double stranded break in homing endonuclease gene negative (HEG-) strand leading 

to DNA repair mechanisms which through homologous recombination of intron and or 

inteins repairs the damaged strand at the RNA and protein levels, respectively [31, 32, 34].  I-

TevII gene belongs to group I sun-Y intron of bacteriophage T4 lately named as anaerobic 

ribonucleotide reductase nrdD [31, 35]. It cleaves 13-15nt downstream to their intron 

insertion site generating 2nt 3’-OH overhangs [36]. These endonuclease depending on their 

type can tolerate several base substitutions in their recognition sequence [37-39] where as 

other restriction enzyme cannot afford even a single base change. Homing endonuclease have 

ability to cleave sequences other than their homing sites making them toxic and difficult to 

clone [40] previously T7 promoter system was successfully used to clone this toxic gene [41]. 

Homing endonuclease differs from Type-II restriction enzymes on basis that they recognize 

longer target sequences ranging from 14-40nt [36, 37, 42-46] where as the type II restriction 

enzymes are palindromic and recognizes between 4-8nt. sequences[47]. 

This study is aimed to investigate different methods in reducing the amount of 

residual DNA in BGs and to develop a technology for in vivo production and loading of BGs 

with mcDNA that are free of undesired mpDNA or un recombined mopDNA sequences. In 

this study the homing property of I-TevII would be explored in achieving the final goal of 

mpDNA or un-recombined mopDNA reduction in the BGs. I-TevII gene was chosen because 

it recognizes a 31bp sequence [36] which is absent on E. coli genome.  The strategy involved 
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is to clone I-TevII gene on advanced version of self immobilizing plasmid pSIPHCNparA [6] 

with slight modifications necessary to facilitate the insertion of this potentially toxic gene i.e. 

I-TevII [40] in such orientation that it should remain inert before induction of recombination. 

After recombination of mopDNA the I-TevII gene should be transferred onto the mpDNA 

and this should bring I-TevII under direct control of pBAD promoter resulting in its 

expression and production of homing endonuclease enzyme which recognizes and cleaves its 

recognition sequence which will be present only on mpDNA and un recombined mopDNA 

finally the linearised DNA fragment will then be degraded by bacterial exonucleases [48].   

 

1.2 Basic concept 

 

The newly constructed plasmid carrying I-TevII gene will be named pSIP-I-TevII. Will then 

have following property  

1. The plasmid upon induction with arabinose should recombine into two smaller parts i.e.  

i) A replicative mpDNA and ii) mcDNA containing eukaryotic expression cassette and 

lacOs. 

2. After recombination the replicative mpDNA containing the BB and antibiotic resistance 

cassette should be destroyed by the combined action of homing endonuclease I-TevII 

which will linearise the plasmid segment by recognizing its recognition sequence present 

only on mpDNA / un-recombined mopDNA followed by completed degradation through 

bacterial exonuclease activity. This is based on the idea that if small part with gene of 

interest is not present any more in between the pBAD promoter and I-TevII gene, a larger 

mRNA containing LacI-L’, ParA, and I-TevII is generated resulting in expression of I-

TevII gene where as if no recombination takes place only LacI-L’ and ParA are encoded 

by mRNA thus preventing the expression of I-TevII gene in advance (Fig.1).   
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Fig.1. Basic concept of p-SIP-I-TevII; a) The plasmid pSIP-I-TevII un-induced form; b) minicircle DNA 
(mcDNA)produced after induction of pBAD promoter by addition of L-(+)-arabinose carrying only lacOs and res1 
along with multiple cloning site; c) miniplasmid DNA (mpDNA) produced after arabinose induction which brings 
the I-TevII under control of pBAD promoter resulting in production of larger mRNA; lacOs, modified lac operator 
sequence with high affinity to bind lacI; M, Multiple cloning site; res1, resolution site 1; I-TevII; I-TevII homing 
endonuclease gene; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI repressor 
with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose inducible 
promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s ribosomal 
gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
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1.3 Procedure and results 

 

1.3.1 Plasmid construction 

 

For constructing plasmid pSIP-I-TevII carrying I-TevII gene which should come under 

the expressional control of pBAD promoter [49] only after the recombination, it is necessary 

to carry out some necessary modifications in advanced version of self immobilizing plasmid 

pSIPHCNparA. For this purpose two different plasmids p4a (carrying inverted expression 

cassette along with MCS) and p2b (carrying the endonuclease gene) based on pSIPHCNparA 

has to be constructed separately. The two different regions/parts from above mentioned 

plasmids will then serve as a template for construction of final version of plasmid pSIP-I-

TevII. This plasmid should have the ability to recombine upon arabinose addition into 

mcDNA and mpDNA thus bringing I-TevII gene under direct control of pBAD promoter 
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resulting in expression and synthesis of homing endonuclease I-TevII which shall then 

identify and cleave the I-TevII recognition sequence present on mpDNA or on un-recombined 

mopDNA. In this way only mcDNA carrying gene of interest is left behind. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Flow chart showing different cloning strategies of plasmid pSIP-I-TevII 
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1.3.2 Basic strategy (Construction of plasmid p4a) 

 

To construct Plasmid p3a two intermediate plasmid constructions (pSIPHCNparA-

res1, and p2a) was carried out. For easy handling, plasmid pSIPHCNparA [6] (Fig.2a) was 

digested with HindIII (Fermentas) double cut and was re-ligated to remove the resolution site 

1 (res1 140bp). The resulting plasmid was named pSIPHCNparA-res1 (6268bp) (Fig.2a) 
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lacking recombination activity. Suitable restriction sites or multiple cloning sites MCS was 

introduced into this plasmid pSIPHCNparA-res1 by digesting it with NsiI (Fermentas) and 

the 60bp MCS (Synthesized) was inserted into this site the resulting annealed plasmid is then 

called p2a (6128bp) (Fig.2b). This was done by mixing and incubating two primers 

synthesized for MCS (MCS1 and MCS2) and by introducing this annealed MCS into 

respective restriction site present on plasmid pSIPHCNparA-res1 using T4 DNA ligase (New 

England BioLabs, Germany). 

 

 

 
 
 
 
 

 

 
 
 
 
 
 
 

 
Fig.2a. Cloning strategy of plasmid pSIPHCNparA-res; lacOs, modified lac operator sequence with high affinity 
to bind lacI; M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of 
lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose 
inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s 
ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
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In order to allow the easy cloning of lethal gene (e.g. I-TevII homing endonuclease 

that is needed for another study involving plasmid p3a) the expression cassette (LacI-

L’/parA) should be inverted for tight repression and prevention of premature expression of 

cloned gene. i.e. before recombination. For this purpose plasmid p2a was digested with 

HindIII (Fermentas) which cuts the plasmid at two different locations and the plasmid was re-

ligated using T4 DNA ligase (New England BioLabs, Germany) to get plasmid p3a (6128bp) 

(Fig.2c). 
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Fig. 2b: Cloning strategy of plasmid p2a; lacOs, modified lac operator sequence with high affinity to bind lacI; 
M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI 
repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose 
inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s 
ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
MCS1: 5’-ATGCATTAATTAACTAGTGAGCTCACGTGCGGCCGCCCGGGTACCTGCAGTTATAAGCTTATGCAT-3’ 
MCS2: 5’-TACGTAATTAATTGATCAGTCGAGTGCACGCCGGCGGGCCCATGGACGTCAATATTCGAATACGTA-3’ 

PBAD 
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Fig.2c: Cloning strategy of plasmid p3a;  lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
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The required plasmid was constructed the 1% agarose gel picture shows the correct 

plasmid p3a (Fig.3).  

 



37 

 

                                                       

P3a   
Uc 6128bp. Correct
ApaI             6128bp. Correct           
XbaI 6128bp. Correct
HindIII         2838 / 3290   Correct
PstI 719 / 5409 Correct

1 kb 1       2      2        2       2       
Uc ApaI  XbaI HindIII  Pstl

10000-------
8000---------
6000---------
5000---------
4000---------
3500---------
3000---------
2500---------
2000---------
1500---------
1000---------
750----------

500----------

250----------
Fig.3. Restriction analysis; 1% agarose 
gel showing the restriction digest of 
plasmid p3a with different set of enzymes 
(positive clone) All enzymes (Fermentas); 
1kb, GeneRulerTM 1kb DNA ladder 
(Fermentas) 

 

 
 

 

To get the final working plasmid p4a (which has ability to recombine) the resolution 

site1 was introduced into the plasmid p3a. For this purpose the 140bp res1 site was amplified 

through PCR using plasmid pSIPHCNparA (Fig.2a) as a template and primers 5’res1K (5’– 

CAG CAG GGT ACC CCT TGG TCA AAT TGG GTA TAC C –3’) and 3res1P (5’ – CTG 

CTG TTA TAA GCA CAT ATG TGG GCG TGAG – 3) (synthesized by Microsynth AG, 

Switzerland) with KpnI and PsiI restriction sites (underlined sequences in primer). The PCR 

reaction with final volume of 25µl was carried out using 0.25µl of (50 pmol/µl) primers each, 

2.5ul of (2mM) dNTP’s(Fermentas), 2.5ul of (10x) DreamTaq polymerase (Fermentas) 

buffer, 1ul of template DNA, and 0.25ul of DreamTaq polymerase (Fermentas) at final conc. 

of (0.05U/ul). The PCR condition was optimized based on the melting temperature (Tm) of 

the primers, using iCycler iQ Real-Time PCR detection system from Bio-Rad Inc. initially 

95ᵒC for 3min, as pre de-naturating temperature was used followed by 30 cycles of 95ᵒC for 

30sec, 60ᵒC for 30sec and 72ᵒC for 1min and final elongation of 72ᵒC for 10min. 

 



38 

 

 
 
 
 
 

 

 

 
 

 

 
 
 

 

 

 
 
 

Fig.4. Cloning strategy of plasmid p4a; lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid.  
5’res1K 5’– CAG CAG GGT ACC CCT TGG TCA AAT TGG GTA TAC C –3’ 
3res1P 5’ – CTG CTG TTA TAA GCA CAT ATG TGG GCG TGAG – 3 
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The PCR product was analyzed on 2% agarose gel to confirm the amplification. The 

PCR product was digested with KpnI and PsiI (Fermentas) and subsequently cloned into the 

corresponding sites in plasmid p3a to get the vector p4a (6263bp) (Fig.4). A positive clone of 

plasmid p4a digested with different sets of restriction enzymes is shown in (Fig.5). The 

plasmid p4a is under control of pBAD promoter and has two recombination sites. The 

recombination ability of newly constructed plasmid p4a was checked after transforming the 

right clone into E. coli C2988J and inducing the pBAD promoter via L-(+)-arabinose. The 

recombination product was subjected to 1% agarose gel to visualize the mcDNA and 

mpDNA (Fig.6).  
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Uc 6263 Correct
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SacI               6263 Correct
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Fig.5. Restriction analysis; 1% agarose 
gel showing the restriction digest of 
plasmid p4a with different set of enzymes 
(positive clone) All enzymes (Fermentas); 
1kb, GeneRulerTM 1kb DNA ladder 
(Fermentas) 
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1 kb 1 1 1        2      2           2     3        3      3           
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Fig.6. Recombination analysis of plasmid p4a; 1% agarose gel picture showing; a) recombination pattern of 
plasmid p4a. The cells recombine with the addition of 0.25% L-(+)-arabinose. (3) (digested with different 
enzymes), no recombination seen prior to arabinose induction (1 and 2) digested with different enzymes; b) No 
recombination seen in plasmid p3a before (1 and 2) and after (3) addition of 0.25% L-(+)-arabinose due to 
absence of one resolution site. Uc, uncut; ApaI, restriction enzyme; NsiI, restriction enzyme; and 1kb, 
GeneRulerTM 1kb DNA ladder (Fermentas):mcDNA, minicircle DNA; mpDNA, miniplasmid DNA; mopDNA, 
mother plasmid DNA 

a) 

 

b) 
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1.3.3 Construction of plasmid p2b 

 

For construction of plasmid p2b (6851bp) the phage T4 I-TevII gene [50] was 

synthesized by Sloning Biotechnology gene synthesis facility. In order to maximize the gene 

expression of I-TevII in E-coli K12 host the I-TevII gene was codon optimized before its 

synthesis. Codon optimization involves the specific alteration in sequence of cloned antigen 

based on free tRNAs levels available in host cells. In this way the codon optimized sequences 

will use the tDNAs resulting in higher expression of proteins [51-53]. A comparison of 

original gene sequence and codon optimized sequence for E. coli K12 strain is shown in 

(Fig.7). 

  

Codon Optimized Sequence of I-TevII gene 

 
 

Fig.7. Comparison of the original I-TevII sequence vs. Codon Optimized sequence (continued…..) 
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 Fig.7. Comparison of the original I-TevII sequence vs. Codon Optimized sequence (continued…..) 
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The 789bp I-TevII gene flanked by GGGCCC (Bsp120I) restriction sites was ordered 

from (Sloning Biotechnology GmbH, Germany). The gene was provided into a standard 

cloning vector of the provider’s pSlo1.1A with Bsp120I sites flanking I-TevII gene. The 

sequence of I-TevII gene was verified by the Sloning Biotechnology prior to shipment. The 

codon optimized I-TevII gene (783bp) was isolated from the plasmid pSlo1.1A_I-TevII 

(3786bp) (Fig.8a) by digesting it with Bsp120I (Fermentas) restriction enzyme. And was gel 

purified using PurelinkTM Quick Gel extraction kit (Invitrogen) following the manufacturer’s 

instructions.  

 

Fig.7. Comparison of the original I-TevII sequence vs. Codon Optimized sequence 
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Fig.8a. Cloning strategy of plasmid p2b; lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI repressor with 
truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose inducible promoter; 
araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s ribosomal gene; Ampr, 
Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid; f1 ori, phage derived origin of 
replication; pUC ori, origin of replication derived from plasmid  pUC19; plac, lac promoter; LacZ; encodes β-
galactosidase; I-TevII, homing endonuclease I-TevII 
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  The plasmid pSIPHCNparA-res1 (Fig.2a) was digested with NotI creating 5’ GGCC 

overhang which is compatible with overhangs generated through Bsp120I digestion of 

plasmid DNA. The purified I-TevII gene was ligated into the corresponding sites of plasmid 

pSIPHCNparA-res1 using T4DNA ligase (New England BioLabs, Germany) to get the 

plasmid p2b (Fig.8a).  

 

The ligation product from above cloning procedure was transformed into the E. coli 

NM522 and later into E. coli C2988J according to the standard molecular biological 

techniques by Sambrook et.al. [54]. almost 200 bacterial colonies from 9 different 

transformation procedures were picked and inoculated into 5ml Luria-Bertani (LB) medium 

[55] supplemented with ampicillin (100µg/ml). The plasmid DNA was isolated using PeqLab 

Kit I (Plasmid Miniprep kit I, Erlangen, Germany). The samples were digested with 

restriction enzymes (purchased form Fermentas) listed in plasmid collection map and were 

loaded on 1% agarose gel (RothTM) stained using  gel red nucleic acid gel stain (GelRedTM 

Biotium # 41003) and analyzed under UV light in a ChemiDOCTM machine (BioRad 
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laboratories) for analyzing the right clones. Several tries of cloning I-TevII gene into the 

pSIPHCNparA-res1 turned to be unsuccessful. By knowing the toxic nature of I-TevII gene 

due to its ability to cleave sequence other than their homing sites [40] it is therefore suspected 

to be a premature activation of homing endonuclease, hence the only surviving colonies were 

those in which I-TevII gene is ligated in wrong orientation (Fig.9).  

          

1 kb 1 1 2          2            3          3          4          4          5          5           6         6          7     7          8          8           9          9         10       10         1kb
Uc BglII Uc BglII Uc BglII Uc BglII Uc BglII Uc BglII Uc BglII Uc BglII Uc BglII Uc BglII
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1.3.4 Change of cloning strategy (pSIP-res1-pBAD) 

 

Due to unsuccessful cloning of I-TevII gene into plasmid pSIPHCNparA-res1 the 

cloning strategy was changed. The new strategy included the removal of pBAD promoter 

from plasmid pSIPHCNparA-res1 in which the I-TevII gene has to be cloned. As in final 

version of plasmid pSIP-I-TevII the pBAD promoter is taken from already constructed 

plasmid p4a (Fig.4) there is no need of pBAD promoter in plasmid p2b at current stage. For 

this purpose the plasmid pSIPHCNparA-res1 was digested with EcoRV (Fermentas) which 

cuts the plasmid at two different positions flanking the pBAD promoter sequence along with 

some unnecessary parts not needed from this plasmid in construction of final plasmid pSIP-I-

TevII. The 1737bp fragment containing the sequences described above was removed after 

loading and cutting the required fragment of agarose gel the plasmid segment was gel 

Fig.9. Restriction analysis of suggested plasmid p2b; 1% agarose gel showing the restriction digest of 
different clones of plasmid p2b(suggested) with BglII Fermentas); 1kb, GeneRulerTM 1kb DNA ladder 
(Fermentas); clone 2 and 5 has I-TevII in wrong orientation.  
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purified using PurelinkTM Quick Gel extraction kit (Invitrogen) following the manufacturer’s 

instructions. The plasmid was religated to get plasmid pSIP-res1-pBAD 4331bp (Fig.10).  

 

 
 
 
 
 

 

 
 
 
 
 
 
 
 

 
Fig.10. Cloning strategy of plasmid pSIP-res1-pBAD; lacOs, modified lac operator sequence with high affinity to 
bind lacI; M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of 
lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose 
inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s 
ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid; L’An, 
truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’ 
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The new plasmid strain E. coli C2992I (NEB 5-alpha F’Iq) (New England BioLabs) 

was chosen for further cloning and transformation procedures. Tight internal control of 

expression through lacIq makes E. coli C2992I ideal for cloning potentially toxic genes in 

them.  

 

1.3.5 Construction of plasmid p2c 

  

The new plasmid replacing the p2b was named as p2c this plasmid was constructed by 

digesting newly constructed pSIP-res1-pBAD (4331bp) (Fig.10) with NotI (Fermentas). The 

linearised plasmid was subjected to dephosphorelation using FastAPTM Thermosensitive 

Alkaline Phosphatase (Fermentas) and finally purified with PureLinkTM PCR purification kit 

(Invitrogen) following the manufacture’s protocol.  
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Fig.11. Cloning strategy of plasmid p2c; lacOs, modified lac operator sequence with high affinity to bind lacI; M  
Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI repressor with 
truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose inducible promoter; 
araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s ribosomal gene; Ampr  
Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid; f1 ori, phage derived origin of 
replication; pUC ori, origin of replication derived from plasmid  pUC19; plac, lac promoter; LacZ; encodes β-
galactosidase; I-TevII, homing endonuclease I-TevII; L’An, truncated lysis protein of bacteriophage MS2 serving as 
membrane anchor L’ 
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The (783bp) I-TevII gene was isolated by PurelinkTM Quick Gel extraction kit 

(Invitrogen) after double digesting plasmid pSlo1.1A_I-TevII (3786bp) with Bsp120I 

(Fermentas) and was ligated with plasmid pSIP-res1-pBAD to get plasmid p2c (5114bp) 

(Fig.11). The two DNA fragments were ligated at vector to insert ratio of 1:3 using T4-DNA 

ligase (New England BioLabs, Germany) and transformed into E. coli C2992I (New England 

BioLabs, Germany) according to the standard molecular biological techniques by Sambrook 

et.al. [54]. 160 bacterial colonies from 8 different transformation procedures were picked and 

inoculated into 5ml Luria-Bertani (LB) medium [55] supplemented with ampicillin 

(100µg/ml). The plasmid DNA was isolated using plasmid DNA was isolated using PeqLab 

Kit I (Plasmid Miniprep kit I, Erlangen, Germany). The samples were digested with 

restriction enzymes (purchased form Fermentas) listed in plasmid collection map and were 

loaded on 1% agarose gel (RothTM) stained using  gel red nucleic acid gel stain (GelRedTM 

Biotium # 41003) and analyzed under UV light in a ChemiDOCTM machine (BioRad 

Laboratories) for screening of  right clones(Fig.12).  
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Theoretic sequence of plasmid p2c having I-TevII gene in right orientation with 

enzyme BgIII will generate a 836bp and 4278bp fragment whereas plasmid p2c with I-TevII 

in wrong orientation will create DNA fragments of 238bp and 4876bp. However apart from 

above two possibilities some colonies were isolated which upon digestion with BgIII showed 

presence of two DNA fragments around ~500bp and ~4614bp on 1%agarose gel (Fig.12). On 

further investigation of the theoretical sequences of the plasmids used in cloning of p2c it was 

found out that there was a third Bsp120I restriction site present in the plasmid pSlo1.1A_I-

TevII which was synthesized commercially. This was cross checked by a set of restriction 

enzymes to locate exact position of this restriction site. It was found out that this extra 

Bsp120I site is located very close to one of the required restriction sites flanking I-TevII gene 

making it difficult to visualize on 1% agarose gel. In order to narrow down the possible 

reason for unsuccessful cloning of I-TevII gene into plasmid pSIP-res1-pBAD the company 

(Sloning Biotechnology) was requested for re-synthesize of I-TevII gene with two Bsp120I 

restriction sites. This newly synthesized I-TevII gene was received from the company in 

plasmid pSlo3.1A_I-TevII (3351bp) with sequence confirmation showing presence of correct 

I-TevII gene flanked by only two Bsp120I restriction sites.  

 

Fig.12. Restriction analysis of suggested p2c; 1% agarose gel picture of digested colonies of suggested 
plasmid p2c (I-TevII in wrong orientation.) (clone 6 and 8), while clone 10 is has an extra Bsp120I site 
coming from the pSlo1.1A_I-TevII. 



48 

 

 

1.3.6 Cloning of plasmid p2c using plasmid pSlo3.1A_I-TevII 

 

The new plasmid p2c was constructed using the I-TevII gene which was isolated from 

the vector pSlo3.1A_I-TevII (3351bp) (Fig.13). All the restriction digestion, purification of 

DNA samples and ligation procedures were repeated with this newly synthesized I-TevII gene 

as explained earlier previously for construction of plasmid p2c. Approximately 60 clones 

were picked from 3 different transformation experiments and screened for the presence of 

any positive clones. This time one clone having I-TevII gene in right orientation was isolated 

which was hecked with four restriction enzymes listed in plasmid collection and found to be 

in correct orientation (Fig.14).   

 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

Fig.13. Cloning strategy of plasmid p2c; lacOs, modified lac operator sequence with high affinity to bind lacI; 
M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI 
repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose 
inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s 
ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid; f1 
ori, phage derived origin of replication; pUC ori, origin of replication derived from plasmid  pUC19; plac, lac 
promoter; LacZ; encodes β-galactosidase; I-TevII, homing endonuclease I-TevII; L’An, truncated lysis protein of 
bacteriophage MS2 serving as membrane anchor L’ 
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1.3.7 Construction of plasmid p5 

  

Before proceeding for the construction of fully functional plasmid pSIP-I-TevII it is 

necessary to construct an intermediate plasmid that carries all the characteristics of final 

functional plasmid except the presence of recognition sequence for I-TevII. This cloning of 

intermediate plasmid which is named p5 is necessary for testing verifying the efficient 

recombination and anchoring ability of newly constructed plasmid specie. To construct 

plasmid p5 the two plasmids which were constructed earlier i.e. p4a (Fig.5) and p2c (Fig.13) 

were digested with BspHI and SalI. The restriction product from both the plasmids was 

loaded on 1% agarose gel to separate the required fragments. The 4209bp fragment of 

plasmid p4a consisting of inverted lacI-L’/ parA expression cassette and 2489bp fragment of 

plasmid p2c consisting of antibiotic resistant gene and homing endonuclease I-TevII was 

excised and gel purified using PurelinkTM Quick Gel extraction kit (Invitrogen). The 2489bp 

fragment from plasmid p2c was further subjected to dephosphorelation with FastAPTM 

Thermosensitive Alkaline Phosphatase (Fermentas) to prevent self ligation and finally 

purified using PureLinkTM PCR purification kit (Invitrogen). The two DNA fragments were 

then ligated at vector to insert ratio of 1:3 using T4-DNA ligase (New England BioLabs, 

Germany) and transformed into E. coli C2992I (NEB 5-alpha F’Iq)(New England BioLabs) to 

get the bacterial colonies harboring plasmid p5 (7046bp) (Fig.14).   

 

Fig.14. Restriction analysis of plasmid p2c; 1% 
agarose gel showing the restriction digest of plasmid 
p4a with different set of enzymes (positive clone) All 
enzymes (Fermentas); 1kb, GeneRulerTM 1kb DNA 
ladder (Fermentas) 
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Fig.14. Cloning strategy of plasmid p5;  lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of 
lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose 
inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s ribosomal 
gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid; I-TevII, homing 
endonuclease I-TevII; L’An, truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’ 

p5 
7046b

 

 

SalI BspHI 

   pMB1 ori  Ampr    I-TevII  parA rrnB 

 

 res2 

BspHI SalI 

p2c fragment 
2489bp 

p4a  
6263bp 

pMB1 ori  LacOs  res2 

BspHI ApaI 

PBAD 
            LacI-L’  Ampr   araC     parA 

PBAD 
            LacI-L’   araC rrnB     parA 

 res1  M 

  res1 M 

rrnB 

 

 

SalI BspHI 

PBAD 
            LacI-L’   araC     parA S   res1 M rrnB 

 LacOs 

LacOs 

   pMB1 ori  Ampr    I-TevII L 

 Ampr    pMB1 ori    I-TevII 

 res2 

 res2 

BspHI SalI 

p2c fragment 
2489bp 

p2c 
5114b

 

L’An 

SalI 

 
 

Plasmid DNA isolated from 5ml culture medium of single colony freshly transformed 

E. coli C2992I harboring newly constructed plasmid p5 was subjected to restriction digesting 

with set of enzymes recommended for checking the plasmid accuracy based on theoretical 

sequence. The 1% agarose gel loaded with restriction digestion product from plasmid p5 

showed an unexpected ApaI restriction site (Fig.15). On investigation the source of this extra 

ApaI restriction site was traced to plasmid p2c. It was further analyzed to find out its possible 

location within the plasmid p2c. By analyzing the theoretical sequence and double digestion 

of plasmid p2c with different restriction enzymes it was suspected that a point mutation G>C 

at position 4917nt in plasmid p2c (6852nt in case of plasmid p5) could lead to creation of 

extra ApaI site (GGG’CCC) this is the region where inserted gene I-TevII starts. Hence it was 



51 

 

important that the whole region around I-TevII gene should be sequenced in order to verify or 

check any possible amino acid change in the I-TevII gene product. In the mean while the 

plasmid p5 was analyzed for its ability to recombine and to check the expression of lacI-L’ 

anchor protein.  
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1.3.8 Protein expression study of plasmid p5 

  

 In order to check the protein expression and recombination ability of newly 

constructed plasmid p5. The freshly transformed E. coli C2992I cells with p5 and E. coli 

NM522 with plasmid p3a (control lacking recombination ability) were grown in 5ml LBv 

(vegetable peptone) in presence of ampicillin (100µg/ml) and 2% glucose overnight (ON) in 

a shaking incubator. A part of this ON culture was transferred into 100ml autoclaved nose 

flask containing 30ml of LBv supplemented with ampicillin 100µg/ml. and grown in 37ᵒC 

water bath at continuous shaking at 300rpm. Both in plasmid p5 and p3a the lacI-L’ is kept 

under expressional control of pBAD promoter which is induced by addition of 0.25% L-(+)-

arabinose. 375µl of 20% arabinose solution is added around OD600 nm of 0.3-0.4 which 

results in expression of lacI-L’ fusion protein. The samples were kept under induced 

condition and cells were grown for another 60 min. 1ml sample each for Miniprep plasmid 

DNA isolation and for western blot analysis was collected at different time points before and 

Fig.15. Restriction analysis of plasmid p5; 1% agarose gel showing the restriction digest of plasmid p5 with 
different set of enzymes showing presence of extra ApaI restriction site (in red) 2 different clones. All 
enzymes (Fermentas); 1kb, GeneRulerTM 1kb DNA ladder (Fermentas) 
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after the arabinose induction. The growth of cells were monitored by OD600nm, and CFU 

count through plating dilutions of culture medium using automated spiral platter machine the 

OD and CFU values at different time points form expression study of plasmid p5 and p3a is 

shown in (Fig.16).           

              

                
Fig.16. Expression curve of plasmid p5; OD CFU values of expression study from plasmid p5 clone 1 and 2. 
And plasmid p3a clone 17 and 21. No impairment seen in bacterial cell growth upon induction of pBAD 
promoter with addition of 0.25% L-(+)-arabinose. 
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Fig.17. Restriction analysis of recombination product of plasmid p5; 1% agarose gel picture a) recombination 
pattern of plasmid p5in E.coli C2988J. The cells recombine with the addition of 0.25% L-(+)-arabinose. Lane3 
(Time point E digested with different enzymes), no recombination seen prior to arabinose induction (Lane 1 and 2 
Time point A and B) digested with different enzymes; b) no recombination seen in plasmid p3a in E.coli NM522; 
before (Lane 1 and 2Time point A and B) and after (lane 3 Timepoint E); addition of 0.25% L-(+)-arabinose due to 
absence of one resolution site. Uc, uncut; BamHI, restriction enzyme; NsiI, restriction enzyme; and 1kb, 
GeneRulerTM 1kb DNA ladder (Fermentas) 
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The recombination product of plasmid p5 and plasmid p3a which served as a control 

is documented on 1% agarose gel (Fig.17) The gel electrophoresis is carried out after 

linearizing the DNA samples with restriction enzymes that cuts once in mpDNA and once in 

mcDNA. The plasmid p5 is recombined upon arabinose induction into mcDNA and mpDNA 

the mcDNA carries only the lacOs and some spacer sequences where as the mpDNA contains 

the BB and antibiotic resistance cassette. No recombination is seen in samples before the 

addition of 0.25% L-(+)-arabinose in plasmid p5 (Fig.17, a) and in control plasmid p3a (Fig. 

17, b). Western blot analysis for detection of LacI-L’ fusion protein is carried out anti Lac 

repressor serum. The clear background expression of LacI-L’ can be seen at about ~45 kDa at 

the beginning of time point C 20 min after induction (Fig.18, a), which is giving stronger 

signals at time point D and E (Fig.18, b).  
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Fig.18. Western blot analysis of LacI-L’; Western 
blot analysis for detection of LacI-L’ fusion 
protein with anti LacI antiserum in E.coli C2988J 
harboring plasmid p5 clone 1 and 2(lane 
3b,4b,3c,4c, 3d,4d,3e and 4e) and in E.coli 
NM522 harboring plasmid p3a clone 17 and 21 
(lane 3b,4b,3c,4c,3d,4d,3e and 4e); LacI-L’ is 
under control of pBAD promoter which is induced  
by the addition of 0.25% L-(+)-arabinose at time 
point B; a) clear band of lacI-L’ fusion protein 
seen around ~45kDa 20 min(time point C) after 
the addition of L-(+)-arabinose. No lacI-L’ band 
seen at 0’min (time point B) time point of addition 
of L-(+) arabinose (lane 1b-4c); M=unstained 
protein molecular weight marker (Fermentas); b) 
clear band of LacI-L’ seen at time point D and E 
(lane 1d-4e);M=unstained protein molecular 
weight marker (Fermentas) 

 

 

The clear bands at desired ~45 kDa correlates to the fact that LacI-L’ was expressed 

by the addition of L-(+)-arabinose which was added at time point B. No expression of LacI-
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L’ fusion protein observed at time point B which is 0 min and the time point of arabinose 

addition (Fig.18, a).  

 

1.3.9 Sequencing of plasmid p5 (First attempt) 

 

In order to determine the possible effect of mutation which lead to extra ApaI 

restriction site in the plasmid p5 the sequencing was done. The plasmid p5 was transformed 

into E. coli C2988J endonuclease deficient (endA-) strains to get satisfactory results as 

required by the service providing company. The Midiprep of plasmid p5 was prepared using 

PureYeildTM plasmid Midiprep system (Promega) following the manufacturers instruction.  

200µl of Midi Prep sample was sent into a screw tubes to Microsynth, CH. (Switzerland) for 

sequencing (primer walking service D2 verification both strand publication quality). The 

following sets of primers (Table.1) were designed to sequence the I-TevII gene (6067-7046nt) 

along with the res1 and spacer region (1-551nt). (Total sequenced region 1556bp) 

                                

                       

 
Table.1. List of primers used for sequencing of plasmid p5

Primers I.D. Sequence

1Ap5F 6702 5’-AGTTGGTAGCTCTTGATC-3’

1Ap5R 6703 5’-ACCGCATCATCACGCTTC-3’

1Ap5F.2 6722 5’-TTCTTAAAGCCAATGTAG-3’

1Ap5R.2 6740 5’-CCTGAAGATCGCGAACTC-3’

1Ap5R.3 6741 5’-TCAAATCACCCGAATGTG-3’

 

 

The sequencing results showed that this extra ApaI site is due to the deletion of 

around 27bp (frame shift) at position 6822nt-6848nt in plasmid p5 exactly at the start of I-

TevII gene (Fig.19).  
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Fig.19. Schematic Drawing showing location of deletion; Sequencing results for plasmid p5showing the location of deletion 
of 27bp (frame shift) at position 6822nt-6848nt. (newly formed ApaI restriction site marked in pink) 
 

p5 
7046b

 

 

BspHI SalI 

PBAD 
            LacI-L’   araC rrnB     parA   M 

rrnB 

S 

S 

LacOs  Ampr    pMB1 ori    I-TevII res2  res1 

CTGTTTATGTTCCTCGGAATCCGGATACTTGTTGAACTTATAACCGCCGATGGATTTATTGAGGATAAATTCATTATTGAAATATTTGCGAATCAGCATTTC
TTCGTGTTTCAACGCCGATTCATAGGAGTCGAACACCTGCAGAATGATCCACTTTGCTTTGTAATCCTTTAATTTCTCTTTTACGAGTTTGCTAGAGCTATTG
TACTCTTTCCAGTTTGTATCTTTACCGTAAATGGTTTTGAATTTCTTAAAGCCAATGTAGAAAGACTTGTCCGGGAACCGTACCATATAGGTGAACGCAACT
AGTTCGCGATCTTCAGGGATTTGCGCAGTTTCCATTTCATGGGCCGCCCTTGGTCAAATTGGGTATACCCAT   

                                               ATTTGCGCAGTTTCCATTTCATGGGCC  

                                                                Deletion of 27bp 

 
 

Below is the sequencing result blasted against the theoretical sequence using 

EMBOSS Needle blast 2 sequence tool [56].  The following anomaly marked yellow was 

observed in the blast results. Pos 94 G instead of T. Pos 386 Insertion of C. pos 547-555 

insertion of 9nt. CGG CAG TAA and deletion of 27nt at the start of I-TevII gene position 

6822-6848.  

Light blue color= I-TevII gene 

            = start of I-TevII gene  

--------- = deletion   
 
 
EMBOSS_001   6051 TCTTTTCTAGCGGCCCTCATTTCTCCACGCGCTTGTAGCTCACAATGTAA   6100 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6051 TCTTTTCTAGCGGCCCTCATTTCTCCACGCGCTTGTAGCTCACAATGTAA   6100 
 
EMBOSS_001   6101 TTCGGATAATTGTCGTCCAGGCACAGGTCTTTGATGCGACTCGGATGGAG   6150 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6101 TTCGGATAATTGTCGTCCAGGCACAGGTCTTTGATGCGACTCGGATGGAG   6150 
 
EMBOSS_001   6151 TTTCAGATCTTTGGCCGCATCCACAAATGATTTGTAGATATTATCGTTAA   6200 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6151 TTTCAGATCTTTGGCCGCATCCACAAATGATTTGTAGATATTATCGTTAA   6200 
 
EMBOSS_001   6201 TTTTGACATATTCCGGGACAGGATGAATCGTAATTTTAATATCAATCACA   6250 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6201 TTTTGACATATTCCGGGACAGGATGAATCGTAATTTTAATATCAATCACA   6250 
 
EMBOSS_001   6251 TTCGGGTGATTTGAAACCTGTTCTTCAGAACATTTCAGAAATTTAGCGGC   6300 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6251 TTCGGGTGATTTGAAACCTGTTCTTCAGAACATTTCAGAAATTTAGCGGC   6300 
 

Theoretical 
sequence Confirmed 

sequence 
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EMBOSS_001   6301 CGACTTAAAGGAGCGGAATTTGTTGCCCGATTTCAGCGCAATGCTTACAG   6350 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6301 CGACTTAAAGGAGCGGAATTTGTTGCCCGATTTCAGCGCAATGCTTACAG   6350 
 
EMBOSS_001   6351 TTTTTTTCGCGGTGCGGGACCCAATGTTGTTCTTGACATGTGCTTCTGAC   6400 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6351 TTTTTTTCGCGGTGCGGGACCCAATGTTGTTCTTGACATGTGCTTCTGAC   6400 
 
EMBOSS_001   6401 CGGCTGTTATTTTTATAGTGTTCAATCAGCTTTTCACGAATCTTATCTTT   6450 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6401 CGGCTGTTATTTTTATAGTGTTCAATCAGCTTTTCACGAATCTTATCTTT   6450 
 
EMBOSS_001   6451 GTGTTTGAGGCTCAGAATTTTGCCCTTATGGGCGTTCGACAATTTCTGTT   6500 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6451 GTGTTTGAGGCTCAGAATTTTGCCCTTATGGGCGTTCGACAATTTCTGTT   6500 
 
EMBOSS_001   6501 TATGTTCCTCGGAATCCGGATACTTGTTGAACTTATAACCGCCGATGGAT   6550 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6501 TATGTTCCTCGGAATCCGGATACTTGTTGAACTTATAACCGCCGATGGAT   6550 
 
EMBOSS_001   6551 TTATTGAGGATAAATTCATTATTGAAATATTTGCGAATCAGCATTTCTTC   6600 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6551 TTATTGAGGATAAATTCATTATTGAAATATTTGCGAATCAGCATTTCTTC   6600 
 
EMBOSS_001   6601 GTGTTTCAACGCCGATTCATAGGAGTCGAACACCTGCAGAATGATCCACT   6650 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6601 GTGTTTCAACGCCGATTCATAGGAGTCGAACACCTGCAGAATGATCCACT   6650 
 
EMBOSS_001   6651 TTGCTTTGTAATCCTTTAATTTCTCTTTTACGAGTTTGCTAGAGCTATTG   6700 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6651 TTGCTTTGTAATCCTTTAATTTCTCTTTTACGAGTTTGCTAGAGCTATTG   6700 
 
EMBOSS_001   6701 TACTCTTTCCAGTTTGTATCTTTACCGTAAATGGTTTTGAATTTCTTAAA   6750 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6701 TACTCTTTCCAGTTTGTATCTTTACCGTAAATGGTTTTGAATTTCTTAAA   6750 
 
EMBOSS_001   6751 GCCAATGTAGAAAGACTTGTCCGGGAACCGTACCATATAGGTGAACGCAA   6800 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6751 GCCAATGTAGAAAGACTTGTCCGGGAACCGTACCATATAGGTGAACGCAA   6800 
 
EMBOSS_001   6801 CTGAGTTCGCGATCTTCAGGGATTTGCGCAGTTTCCATTTCATGGGCCGC   6850 
                  |||||||||||||||||||||                           || 
EMBOSS_001   6801 CTGAGTTCGCGATCTTCAGGG---------------------------GC   6823 
 
EMBOSS_001   6851 CCTTGGTCAAATTGGGTATACCCATTTGGGCCTAGTCTAGCCGGCATGGC   6900 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6824 CCTTGGTCAAATTGGGTATACCCATTTGGGCCTAGTCTAGCCGGCATGGC   6873 
 
EMBOSS_001   6901 GCATTACAGCAATACGCAATTTAAATGCGCCTAGCGCATTTTCCCGACCT   6950 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6874 GCATTACAGCAATACGCAATTTAAATGCGCCTAGCGCATTTTCCCGACCT   6923 
 
EMBOSS_001   6951 TAATGCGCCTCGCGCTGTAGCCTCACGCCCACATATGTGCAGATCTGGCC   7000 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6924 TAATGCGCCTCGCGCTGTAGCCTCACGCCCACATATGTGCAGATCTGGCC   6973 
 
EMBOSS_001   7001 ACGATGCGTCCGGCGTAGAGGATCTGCTCATGTTTGACAGCTTATC   7046 
                  |||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6974 ACGATGCGTCCGGCGTAGAGGATCTGCTCATGTTTGACAGCTTATC   7019 
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EMBOSS_001      1 ATCGATAATTGTGAGCGCTCACAATTGGAACTCAATACGACGGCAGTGAC     50 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001      1 ATCGATAATTGTGAGCGCTCACAATTGGAACTCAATACGACGGCAGTGAC     50 
 
EMBOSS_001     51 GTATCGGTGATCTTCGCAGGGATGCGAATCGAACAGCTACAGATCGTGTC    100 
                  |||||||||||||||||||||||||||||||||||||||||||.|||||| 
EMBOSS_001     51 GTATCGGTGATCTTCGCAGGGATGCGAATCGAACAGCTACAGAGCGTGTC    100 
 
EMBOSS_001    101 GACGCCGGACGTGTCATATCCTGGCGAGTACGACCGGACACTGGGCGACG    150 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    101 GACGCCGGACGTGTCATATCCTGGCGAGTACGACCGGACACTGGGCGACG    150 
 
EMBOSS_001    151 ATGACGACGTCTTCGTGACCGACGATACGCCAGAAGAACTCGAGGGGGAG    200 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    151 ATGACGACGTCTTCGTGACCGACGATACGCCAGAAGAACTCGAGGGGGAG    200 
 
EMBOSS_001    201 TTGGTTGTCGCACCGACATCCGGCTCGATCGACGACCTCGAGCAACACCT    250 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    201 TTGGTTGTCGCACCGACATCCGGCTCGATCGACGACCTCGAGCAACACCT    250 
 
EMBOSS_001    251 TCACGACCGGACGATCGACACGCTGACGATTCGGTTCCCACCGGATCACT    300 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    251 TCACGACCGGACGATCGACACGCTGACGATTCGGTTCCCACCGGATCACT    300 
 
EMBOSS_001    301 CGCAGAGCAGCGAAACCTACTCCGGCACGGCTAATTGTGAGCGCTCACAA    350 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    301 CGCAGAGCAGCGAAACCTACTCCGGCACGGCTAATTGTGAGCGCTCACAA    350 
 
EMBOSS_001    351 TTATCGATGCATTAATTAACTAGTGAGCTCACGTGCGGCCGCCCGGGTAC    400 
                  ||||||||||||||||||||||||||||||||||| |||||||||||||| 
EMBOSS_001    351 TTATCGATGCATTAATTAACTAGTGAGCTCACGTG-GGCCGCCCGGGTAC    399 
 
EMBOSS_001    401 CCCTTGGTCAAATTGGGTATACCCATTTGGGCCTAGTCTAGCCGGCATGG    450 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    400 CCCTTGGTCAAATTGGGTATACCCATTTGGGCCTAGTCTAGCCGGCATGG    449 
 
EMBOSS_001    451 CGCATTACAGCAATACGCAATTTAAATGCGCCTAGCGCATTTTCCCGACC    500 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    450 CGCATTACAGCAATACGCAATTTAAATGCGCCTAGCGCATTTTCCCGACC    499 
 
EMBOSS_001    501 TTAATGCGCCTCGCGCTGTAGCCTCACGCCCACATATGTGCTTATAA---    544 
                  |||||||||||||||||||||||||||||||||||||||||||||||       
EMBOSS_001    500 TTAATGCGCCTCGCGCTGTAGCCTCACGCCCACATATGTGCTTATAACAG    549 
 
EMBOSS_001    545 ------GCTTTTATTTTTGCTGCTGCGCGTTCCAGGCCGCCCACACTCGT    591 
                        |||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    550 CAGTAAGCTTTTATTTTTGCTGCTGCGCGTTCCAGGCCGCCCACACTCGT    599 
 
EMBOSS_001    592 TTGACCTGGCTCGGGC    607 
                  ||||||||||||||||                                   
EMBOSS_001    600 TTGACCTGGCTCGGGC    615 

 

 

The theoretical amino acid sequence of the I-TevII gene product when compared to 

the proved sequence gave following results the following web based protein translation tool 

was used for analysis. http://web.expasy.org/translate/ The 258a.a. I-TevII gene gives a 

http://web.expasy.org/translate/�
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product size of 30.42kd and a charge of 31.5 assuming N and C termini are not blocked. The 

mutated proved sequence of 239a.a. will give protein size of 28.15kd and a charge of 26.5 

assuming N and C termini are not blocked: Source http://www.encorbio.com/protocols/Prot-

MW.htm. 

 

Comparison between the optimized amino acid sequence with the proved sequence. 1st 

attempt. 

M  K  W  K  L  R  K  S  L  K  I  A  N  S  V  A  F  T  Y  M Originalsequence 
-  -  -  -  -  -  -  -  L  K  I  A  N  S  V  A  F  T  Y  M Proved sequence 
V  R  F  P  D  K  S  F  Y  I  G  F  K  K  F  K  T  I  Y  G Deletion 
V  R  F  P  D  K  S  F  Y  I  G  F  K  K  F  K  T  I  Y  G * Stop codon 
K  D  T  N  W  K  E  Y  N  S  S  S  K  L  V  K  E  K  L  K M Start codon 
K  D  T  N  W  K  E  Y  N  S  S  S  S  S  V  K  E  K  L  K   
D  Y  K  A  K  W  I  I  L  Q  V  F  D  S  Y  E  S  A  L  K 
D  Y  K  A  K  W  I  I  L  Q  V  F  D  S  Y  E  S  A  L  K  
H  E  E  M  L  I  R  K  Y  F  N  N  E  F  I  L  N  K  S  I 
H  E  E  M  L  I  R  K  Y  F  N  N  E  F  I  L  N  K  S  I 
G  G  Y  K  F  N  K  Y  P  D  S  E  E  H  K  Q  K  L  S  N  
G  G  Y  K  F  N  K  Y  P  D  S  E  E  H  K  Q  K  L  S  N  
A  H  K  G  K  I  L  S  L  K  H  K  D  K  I  R  E  K  L  I  
A  H  K  G  K  I  L  S  L  K  H  K  D  K  I  R  E  K  L  I  
E  H  Y  K  N  N  S  R  S  E  A  H  V  K  N  N  I  G  S  R 
E  H  Y  K  N  N  S  R  S  E  A  H  V  K  N  N  I  G  S  R 
T  A  K  K  T  V  S  I  A  L  K  S  G  N  K  F  R  S  F  K 
T  A  K  K  T  V  S  I  A  L  K  S  G  N  K  F  R  S  F  K 
S  A  A  K  F  L  K  C  S  E  E  Q  V  S  N  H  P  N  V  I  
S  A  A  K  F  L  K  C  S  E  E  Q  V  S  N  H  P  N  V  I  
D  I  K  I  T  I  H  P  V  P  E  Y  V  K  I  N  D  N  I  Y   
D  I  K  I  T  I  H  P  V  P  E  Y  V  K  I  N  D  N  I  Y  
K  S  F  V  D  A  A  K  D  L  K  L  H  P  S  R  I  K  D  L  
K  S  F  V  D  A  A  K  D  L  K  L  H  P  S  R  I  K  D  L  
C  L  D  D  N  Y  P  N  Y  I  V  S  Y  K  R  V  E  K  *  
C  L  D  D  N  Y  P  N  Y  I  V  S  Y  K  R  V  E  K  *  
 

 

The protein encoded from mutated amino acid sequence of I-TevII will lack 19a.a. 

hence the question whether this protein which is formed due to translation of this mutated I-

TevII gene is still functional is open, which needs to be answered by in a separate study. 

Little is known about the structure and working of this enzyme. The working of this 

shortened I-TevII gene product totally depends on its affect on proper folding of the protein 

and upon its presence in active site of enzyme.    

 

http://www.encorbio.com/protocols/Prot-MW.htm�
http://www.encorbio.com/protocols/Prot-MW.htm�
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1.3.10 Second attempt for cloning of I-TevII gene in plasmid p2c 

  

All the cloning procedure for plasmid p2c as described in (section 1.3.6) was 

repeated. The absence of ApaI restriction site (Fig.20) in newly cloned plasmid p2c-New was 

confirmed before proceeding to next stage of cloning plasmid p5. The plasmid p5 was cloned 

as described in the (section 1.3.7) all the steps were repeated as same except the homing 

endonuclease carrying part is taken from newly constructed p2c-New. The newly constructed 

plasmid which was named p5-New (to avoid confusion) was screened for restriction sites 

based on theoretical sequence and was found to be correct (Fig.21). The plasmid p5-New was 

sent for sequencing of I-TevII gene and the region surrounding both sides of the cloned insert.  

 

 

                     

Fig.20. Restriction analysis of p2c-New; 1%agarose gel picture showing restriction digest of plasmid p2c-New the 
enzymes marked in red are confirmatory enzymes for absence of 27 bp deletion present in p2c (first attempt). The 
absence of ApaI restriction site and presence of Fsp1 and Pf1MI suggests that the starting portion of I-TevII gene is 
present. Uc, uncut; 1kb, GeneRulerTM 1kb DNA ladder (Fermentas) 

1 kb 1        2         2       2  2        2         2       2     1kb          

Uc HindlI EcoRI    PstI BglII ApaI    Fsp1  Pf1MI   

p2c-New
Uc 5114 Correct
HindIII 5114 Correct
EcoRI 5114 Correct
PstI 1607 / 3507 Correct
BglII 836 / 4278 Correct
ApaI No cut Correct
Fsp1 1553/1658/1903 Correct
Pf1MI 5114 Correct
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Fig.21. Restriction analysis of plasmid p5-New; 1%agarose gel picture showing  restriction digest of plasmid p5-
New; the enzymes marked in red are confirmatory enzymes for absence of 27 bp deletion previously present in p5 
(first attempt). The absence of second ApaI restriction site and presence of Fsp1 suggests that the starting portion of 
I-TevII gene is present in newly cloned p5-New plasmid. Uc, uncut; 1kb, GeneRulerTM 1kb DNA ladder 

1 kb          1          1            1           1          1           2          2           2           2          1kb   

Uc ApaI    BamHI BglII FspI ApaI    BamHI BglII FspI

p5-New
Uc 7046bp Correct
ApaI 7046bp Correct
BamHI 7046bp Correct
BglII 836 / 6210bp Correct
FspI 1234/1903/3909      Correct

•U/c and cut of clone A1 •U/c and cut of clone A2
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1.3.11 Sequencing of plasmid p5-New (Second attempt) 

 

The plasmid p5-New was transformed into E. coli C2988J endonuclease I deficient (endA1) 

strain in order to produce better plasmid copies to get satisfactory results as required by the 

service providing company. The Midiprep of plasmid p5 was prepared using PureYeildTM 

plasmid Midiprep system (Promega) following the manufacturers instruction.  200µl of Midi 

Prep sample was sent into screw tubes to Microsynth, CH. (Switzerland) for sequencing 

(primer walking service D2 verification both strand publication quality). The following sets 

of primers (Table.1) previously designed were used to sequence the I-TevII gene (6067-

7046nt) along with the res1 and spacer region (1-551nt) (Total sequenced region 2204bp). 

The sequencing results were blasted against the theoretical sequence using web based 

EMBOSS Needle blast 2 sequence tool [56]. This time the sequence results showed a 48bp 

deletion within the I-TevII gene at position 6647nt-6696nt in plasmid p5-New which is 

exactly 150bp away from the start of the gene (Fig.22).  
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Fig.22. Schematic drawing showing the location of mutation in plasmid p5-new; Sequencing data shows deletion of 
48bp (no-frame shift) at position 6657nt-6704nt. 150bp from start of I-TevII gene.  
 

p5 
7046b

 

 

BspHI SalI 

PBAD 
            LacI-L’   araC rrnB     parA   M 

rrnB 

S 

S 

LacOs  Ampr    pMB1 ori    I-TevII res2  res1 

TGTTTGTCCGGGAACCGTACCATATAGGTGAACGCAACTGAGTTCGCGATCTTCAGGCGACAATTTCTGTTTATGTTCCTCGGAATCCGGATACTTGTTGA
ACTTATAACCGCCGATGGATTTATTGAGGATAAATTCATTATTGAAATATTTGCGAATCAGCATTTCTTCGTGTTTCAACGCCGATTCATAGGAGTCGAAC
ACCTGCAGAATGATCCACTTTGCTTTGTAATCCTTTAATTTCTCTTTTACGAGTTTGCTAGAGCTATTGA 

                                      CACTTTGCTTTGTAATCCTTTAATTTCTCTTTTACGAGTTTGCTAGAG 

                                    Deletion of 48bp 

 
 

The source of this deletion was also traced back to the plasmid p2c-New suggesting 

the lethal nature of I-TevII gene product. The following anomaly marked yellow was 

observed in the results. Pos 94 G instead of T. Pos 386 Insertion of C. pos 547-555 insertion 

of 9nt. CGG CAG TAA , insertion of 9bases at position 5388- 5396 and deletion of 48nt 

almost 150nt from start of I-TevII gene position 6647-6696nt.  

Light blue color= I-TevII gene 

            = start of I-TevII gene  

--------- = deletion   
 
 
EMBOSS_001   5351 CCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTC---------GCCGG   5391 
                  ||||||||||||||||||||||||||||||||||||         ||||| 
EMBOSS_001   5351 CCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCCAGCAGGCCGG   5400 
 
EMBOSS_001   5392 CTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGC   5441 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5401 CTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGC   5450 
 
EMBOSS_001   5442 TGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGA   5491 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5451 TGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGA   5500 
 
EMBOSS_001   5492 CGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGC   5541 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5501 CGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGC   5550 
 
EMBOSS_001   5542 GTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGC   5591 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5551 GTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGC   5600 
 
 

Theoretical 
sequence 

Confirmed 
sequence 
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EMBOSS_001   5592 TTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCT   5641 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5601 TTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCT   5650 
 
EMBOSS_001   5642 CATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA   5691 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5651 CATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA   5700 
 
EMBOSS_001   5692 GCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTAT   5741 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5701 GCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTAT   5750 
 
EMBOSS_001   5742 CCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCA   5791 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5751 CCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCA   5800 
 
EMBOSS_001   5792 CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGG   5841 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5801 CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGG   5850 
 
EMBOSS_001   5842 TGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAA   5891 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5851 TGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAA   5900 
 
EMBOSS_001   5892 CAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGA   5941 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5901 CAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGA   5950 
 
EMBOSS_001   5942 GTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTT   5991 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   5951 GTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTT   6000 
 
EMBOSS_001   5992 TTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAG   6041 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6001 TTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAG   6050 
 
EMBOSS_001   6042 ATCCTTTGATCTTTTCTAGCGGCCCTCATTTCTCCACGCGCTTGTAGCTC   6091 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6051 ATCCTTTGATCTTTTCTAGCGGCCCTCATTTCTCCACGCGCTTGTAGCTC   6100 
 
EMBOSS_001   6092 ACAATGTAATTCGGATAATTGTCGTCCAGGCACAGGTCTTTGATGCGACT   6141 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6101 ACAATGTAATTCGGATAATTGTCGTCCAGGCACAGGTCTTTGATGCGACT   6150 
 
EMBOSS_001   6142 CGGATGGAGTTTCAGATCTTTGGCCGCATCCACAAATGATTTGTAGATAT   6191 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6151 CGGATGGAGTTTCAGATCTTTGGCCGCATCCACAAATGATTTGTAGATAT   6200 
 
EMBOSS_001   6192 TATCGTTAATTTTGACATATTCCGGGACAGGATGAATCGTAATTTTAATA   6241 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6201 TATCGTTAATTTTGACATATTCCGGGACAGGATGAATCGTAATTTTAATA   6250 
 
EMBOSS_001   6242 TCAATCACATTCGGGTGATTTGAAACCTGTTCTTCAGAACATTTCAGAAA   6291 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6251 TCAATCACATTCGGGTGATTTGAAACCTGTTCTTCAGAACATTTCAGAAA   6300 
 
EMBOSS_001   6292 TTTAGCGGCCGACTTAAAGGAGCGGAATTTGTTGCCCGATTTCAGCGCAA   6341 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6301 TTTAGCGGCCGACTTAAAGGAGCGGAATTTGTTGCCCGATTTCAGCGCAA   6350 
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EMBOSS_001   6342 TGCTTACAGTTTTTTTCGCGGTGCGGGACCCAATGTTGTTCTTGACATGT   6391 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6351 TGCTTACAGTTTTTTTCGCGGTGCGGGACCCAATGTTGTTCTTGACATGT   6400 
 
EMBOSS_001   6392 GCTTCTGACCGGCTGTTATTTTTATAGTGTTCAATCAGCTTTTCACGAAT   6441 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6401 GCTTCTGACCGGCTGTTATTTTTATAGTGTTCAATCAGCTTTTCACGAAT   6450 
 
EMBOSS_001   6442 CTTATCTTTGTGTTTGAGGCTCAGAATTTTGCCCTTATGGGCGTTCGACA   6491 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6451 CTTATCTTTGTGTTTGAGGCTCAGAATTTTGCCCTTATGGGCGTTCGACA   6500 
 
EMBOSS_001   6492 ATTTCTGTTTATGTTCCTCGGAATCCGGATACTTGTTGAACTTATAACCG   6541 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6501 ATTTCTGTTTATGTTCCTCGGAATCCGGATACTTGTTGAACTTATAACCG   6550 
 
EMBOSS_001   6542 CCGATGGATTTATTGAGGATAAATTCATTATTGAAATATTTGCGAATCAG   6591 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6551 CCGATGGATTTATTGAGGATAAATTCATTATTGAAATATTTGCGAATCAG   6600 
 
EMBOSS_001   6592 CATTTCTTCGTGTTTCAACGCCGATTCATAGGAGTCGAACACCTGCAGAA   6641 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6601 CATTTCTTCGTGTTTCAACGCCGATTCATAGGAGTCGAACACCTGCAGAA   6650 
 
EMBOSS_001   6642 TGATCCACTTTGCTTTGTAATCCTTTAATTTCTCTTTTACGAGTTTGCTA   6691 
                  |||||                                              
EMBOSS_001   6651 TGATC---------------------------------------------   6655 
 
EMBOSS_001   6692 GAGCTATTGTACTCTTTCCAGTTTGTATCTTTACCGTAAATGGTTTTGAA   6741 
                     ||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6656 ---CTATTGTACTCTTTCCAGTTTGTATCTTTACCGTAAATGGTTTTGAA   6702 
 
EMBOSS_001   6742 TTTCTTAAAGCCAATGTAGAAAGACTTGTCCGGGAACCGTACCATATAGG   6791 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6703 TTTCTTAAAGCCAATGTAGAAAGACTTGTCCGGGAACCGTACCATATAGG   6752 
 
EMBOSS_001   6792 TGAACGCAACTGAGTTCGCGATCTTCAGGGATTTGCGCAGTTTCCATTTC   6841 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6753 TGAACGCAACTGAGTTCGCGATCTTCAGGGATTTGCGCAGTTTCCATTTC   6802 
 
EMBOSS_001   6842 ATGGGCCGCCCTTGGTCAAATTGGGTATACCCATTTGGGCCTAGTCTAGC   6891 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6803 ATGGGCCGCCCTTGGTCAAATTGGGTATACCCATTTGGGCCTAGTCTAGC   6852 
 
EMBOSS_001   6892 CGGCATGGCGCATTACAGCAATACGCAATTTAAATGCGCCTAGCGCATTT   6941 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6853 CGGCATGGCGCATTACAGCAATACGCAATTTAAATGCGCCTAGCGCATTT   6902 
 
EMBOSS_001   6942 TCCCGACCTTAATGCGCCTCGCGCTGTAGCCTCACGCCCACATATGTGCA   6991 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6903 TCCCGACCTTAATGCGCCTCGCGCTGTAGCCTCACGCCCACATATGTGCA   6952 
 
EMBOSS_001   6992 GATCTGGCCACGATGCGTCCGGCGTAGAGGATCTGCTCATGTTTGACAGC   7041 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001   6953 GATCTGGCCACGATGCGTCCGGCGTAGAGGATCTGCTCATGTTTGACAGC   7002 
 
EMBOSS_001   7042 TTATC   7046 
                  ||||| 
EMBOSS_001   7003 TTATC   7007 
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EMBOSS_001      1 ATCGATAATTGTGAGCGCTCACAATTGGAACTCAATACGACGGCAGTGAC     50 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001      1 ATCGATAATTGTGAGCGCTCACAATTGGAACTCAATACGACGGCAGTGAC     50 
 
EMBOSS_001     51 GTATCGGTGATCTTCGCAGGGATGCGAATCGAACAGCTACAGATCGTGTC    100 
                  |||||||||||||||||||||||||||||||||||||||||||.|||||| 
EMBOSS_001     51 GTATCGGTGATCTTCGCAGGGATGCGAATCGAACAGCTACAGAGCGTGTC    100 
 
EMBOSS_001    101 GACGCCGGACGTGTCATATCCTGGCGAGTACGACCGGACACTGGGCGACG    150 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    101 GACGCCGGACGTGTCATATCCTGGCGAGTACGACCGGACACTGGGCGACG    150 
 
EMBOSS_001    151 ATGACGACGTCTTCGTGACCGACGATACGCCAGAAGAACTCGAGGGGGAG    200 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    151 ATGACGACGTCTTCGTGACCGACGATACGCCAGAAGAACTCGAGGGGGAG    200 
 
EMBOSS_001    201 TTGGTTGTCGCACCGACATCCGGCTCGATCGACGACCTCGAGCAACACCT    250 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    201 TTGGTTGTCGCACCGACATCCGGCTCGATCGACGACCTCGAGCAACACCT    250 
 
EMBOSS_001    251 TCACGACCGGACGATCGACACGCTGACGATTCGGTTCCCACCGGATCACT    300 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    251 TCACGACCGGACGATCGACACGCTGACGATTCGGTTCCCACCGGATCACT    300 
 
EMBOSS_001    301 CGCAGAGCAGCGAAACCTACTCCGGCACGGCTAATTGTGAGCGCTCACAA    350 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    301 CGCAGAGCAGCGAAACCTACTCCGGCACGGCTAATTGTGAGCGCTCACAA    350 
 
EMBOSS_001    351 TTATCGATGCATTAATTAACTAGTGAGCTCACGTGCGGCCGCCCGGGTAC    400 
                  ||||||||||||||||||||||||||||||||||| |||||||||||||| 
EMBOSS_001    351 TTATCGATGCATTAATTAACTAGTGAGCTCACGTG-GGCCGCCCGGGTAC    399 
 
EMBOSS_001    401 CCCTTGGTCAAATTGGGTATACCCATTTGGGCCTAGTCTAGCCGGCATGG    450 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    400 CCCTTGGTCAAATTGGGTATACCCATTTGGGCCTAGTCTAGCCGGCATGG    449 
 
EMBOSS_001    451 CGCATTACAGCAATACGCAATTTAAATGCGCCTAGCGCATTTTCCCGACC    500 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    450 CGCATTACAGCAATACGCAATTTAAATGCGCCTAGCGCATTTTCCCGACC    499 
 
EMBOSS_001    501 TTAATGCGCCTCGCGCTGTAGCCTCACGCCCACATATGTGCTTATAA---    544 
                  |||||||||||||||||||||||||||||||||||||||||||||||       
EMBOSS_001    500 TTAATGCGCCTCGCGCTGTAGCCTCACGCCCACATATGTGCTTATAACAG    549 
 
EMBOSS_001    545 ------GCTTTTATTTTTG    560 
                        ||||||||||||| 
EMBOSS_001    550 CAGTAAGCTTTTATTTTTG    568 
 

The 258a.a. I-TevII gene gives a product size of 30.42kd and a charge of 31.5 

assuming N and C termini are not blocked. The mutated proved sequence of 242a.a. will give 

protein size of 28.55kd and a charge of 28.5 assuming N and C termini are not blocked. 

Source http://www.encorbio.com/protocols/Prot-MW.htm 

http://www.encorbio.com/protocols/Prot-MW.htm�
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The theoretical amino acid sequence of the I-TevII gene product when compared to 

the proved sequence gave following results the following web based protein translation tool 

was used for analysis. http://web.expasy.org/translate/ 

 

Comparison between the optimized amino acid sequences with the proved sequence. 2nd 
attempt. 

M  K  W  K  L  R  K  S  L  K  I  A  N  S  V  A  F  T  Y  M Originalsequence 
M  K  W  K  L  R  K  S  L  K  I  A  N  S  V  A  F  T  Y  M Proved sequence 
V  R  F  P  D  K  S  F  Y  I  G  F  K  K  F  K  T  I  Y  G * Stop codon 
V  R  F  P  D  K  S  F  Y  I  G  F  K  K  F  K  T  I  Y  G M Start codon 
K  D  T  N  W  K  E  Y  N  S  S  S  K  L  V  K  E  K  L  K 
K  D  T  N  W  K  E  Y  N  R  -  -  -  -  -  -  -  -  -  - Deletion 
D  Y  K  A  K  W  I  I  L  Q  V  F  D  S  Y  E  S  A  L  K 
-  -  -  -  -  -  I  I  L  Q  V  F  D  S  Y  E  S  A  L  K 
H  E  E  M  L  I  R  K  Y  F  N  N  E  F  I  L  N  K  S  I 
H  E  E  M  L  I  R  K  Y  F  N  N  E  F  I  L  N  K  S  I 
G  G  Y  K  F  N  K  Y  P  D  S  E  E  H  K  Q  K  L  S  N 
G  G  Y  K  F  N  K  Y  P  D  S  E  E  H  K  Q  K  L  S  N 
A  H  K  G  K  I  L  S  L  K  H  K  D  K  I  R  E  K  L  I 
A  H  K  G  K  I  L  S  L  K  H  K  D  K  I  R  E  K  L  I 
E  H  Y  K  N  N  S  R  S  E  A  H  V  K  N  N  I  G  S  R 
E  H  Y  K  N  N  S  R  S  E  A  H  V  K  N  N  I  G  S  R 
T  A  K  K  T  V  S  I  A  L  K  S  G  N  K  F  R  S  F  K 
T  A  K  K  T  V  S  I  A  L  K  S  G  N  K  F  R  S  F  K 
S  A  A  K  F  L  K  C  S  E  E  Q  V  S  N  H  P  N  V  I 
S  A  A  K  F  L  K  C  S  E  E  Q  V  S  N  H  P  N  V  I 
D  I  K  I  T  I  H  P  V  P  E  Y  V  K  I  N  D  N  I  Y 
D  I  K  I  T  I  H  P  V  P  E  Y  V  K  I  N  D  N  I  Y 
K  S  F  V  D  A  A  K  D  L  K  L  H  P  S  R  I  K  D  L 
K  S  F  V  D  A  A  K  D  L  K  L  H  P  S  R  I  K  D  L 
C  L  D  D  N  Y  P  N  Y  I  V  S  Y  K  R  V  E  K  * 
C  L  D  D  N  Y  P  N  Y  I  V  S  Y  K  R  V  E  K  * 
 

The protein encoded from mutated amino acid sequence of I-TevII will lack 16a.a. 

hence the question whether this protein which is formed due to translation of this mutated I-

TevII gene is still functional is open, which needs to be answered by in a separate study. 

Little is known about the structure and working of this enzyme. The working of this 

shortened I-TevII gene product is totally dependent on presence of this 16a.a. deletion in 

enzymes active site or their role in enzymes proper folding.  

1.3.12 Alternative approach for cloning plasmid p2c (p2c-lat) 

 After several unsuccessful attempts to clone this lethal gene I-TevII into modified 

version of pSIP it was only possible to get two clones from two different attempts and the 

http://web.expasy.org/translate/�
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sequencing results of theses clones showed deletion mutation of 27bp and 48bp in two 

different parts of cloned I-TevII gene.  

 
 
a) 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

                                                                                                                                
b) 
      
       
 
 
 
 
 
 
 
 
 Fig.23. Alternate Cloning strategy of plasmid p2c; a) Alternate Cloning strategy of plasmid p2c; through 
combining unaltered regions of  I-TevII gene from two different clones. b) a small part of sequence of I-TevII gene 
showing location of mutation within p2c and p2c-New and presence of restriction enzyme in between them; lacOs, 
modified lac operator sequence with high affinity to bind lacI; M, Multiple cloning site; res2, resolution site 2; 
parA, ParA resolvase gene; lacI-L’, fusion protein of lacI repressor with truncated lysis protein of bacteriophage 
MS2 serving as membrane anchor L’; PBAD, arabinose inducible promoter; araC, repressor/inducer of PBAD 
promoter; rrnB, transcriptional terminator sequence of 5s ribosomal gene; Ampr, Ampicillin resistance gene; 
pMB1, origin of replication derived from pMB1 plasmid; I-TevII, homing endonuclease I-TevII; L’An, truncated 
lysis protein of bacteriophage MS2 serving as membrane anchor L’ 
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Mutation 

L’An 

836b
 

P2c-recloned  
5114bp 

   pMB1 ori  LacOs  res2  Ampr  parA rrnB    I-TevII 

PstI 

BglII 

L’An 

P2c-New 
~5114bp 

   pMB1 ori 

 

 Ampr  parA    I-TevII L’An 
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ATCCGGATACTTGTTGAACTTATAACCGCCGATGGATTTATTGAGGATAAATTCATTATTGAAATATTTGCGAATCA
GCATTTCTTCGTGTTTCAACGCCGATTCATAGGAGTCGAACACCTGCAGAATGATCCACTTTGCTTTGTAATCCTTTA
ATTTCTCTTTTACGAGTTTGCTAGAGCTATTGTACTCTTTCCAGTTTGTATCTTTACCGTAAATGGTTTTGAATTTCTTA
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   pMB1 ori Amp
 

I-TevII 

TatI 

TatI 

2036bp 

BglII 

TatI 

Mutation 

TatI 

LacOs  parA rrnB L’An 

 LacOs  res2 rrnB 

  res2 

Amp 

TatI 

Amp  

TatI 

3078bp 

 

 



67 

 

By analyzing the sequencing results from these two clones i.e. p2c and p2c-New 

(Fig.23, b) there seemed a possibility to combine the un mutated regions of I-TevII gene due 

to presence of a rare restriction site TatI in between them. This created a possibility to get a 

functional plasmid that carries the whole I-TevII gene without any deletions or mutations see 

cloning strategy (Fig.23.a). For this reason the plasmids p2c and p2c-New were digested with 

TatI (Fermentas) and loaded on 1%garose gel. The 2036bp fragment containing the antibiotic 

resistance marker and the correct part of I-TevII gene from plasmid p2c and 3078bp DNA 

segment of plasmid p2c-New was isolated using PureLinkTM Quick Gel extraction kit 

(Invitrogen) following the manufacturers instruction. The 2036bp fragment of p2c was 

subjected to dephosphorelation using FastAPTM Thermosensitive Alkaline Phosphatase 

(Fermentas) and finally purified with PureLinkTM PCR purification kit (Invitrogen) following 

the manufacture’s protocol. The two plasmid regions were ligated using T4DNA ligase (New 

England BioLabs) to get the plasmid p2c-lat.  

 

1.3.13 Sequencing of plasmid p2c(lat)  

 

 5 different clones of plasmid p2c(lat) was transformed into E. coli C2988J 

endonuclease I deficient (endA1) strain in order to produce better plasmid copies to get 

satisfactory results as required by the service providing company. The Midiprep of plasmid 

p5 was prepared using PureYeildTM plasmid Midiprep system (Promega) following the 

manufacturers instruction.  200µl of Midi Prep sample was sent into screw tubes obtained 

through this procedure were sent for sequencing to Eurofins MGW operon GmbH 

(Germany). The following sets of primers were designed to sequence the I-TevII gene (Total 

sequenced region 819bp).  

 

Primer   location  Sequence 

I-TevIIF 4931-4912  5’-AATTTGACCAAGGGCGGCCC-3’ 

 

The sequencing results were blasted against the theoretical sequence using web based 

EMBOSS Needle blast 2 sequence tool [56]. It showed 48bp deletion exact same mutation as 
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in plasmid p2c-New along with several other point mutations scattered along the plasmid. 

The following anomaly marked yellow was observed in the results. Pos 4296 T instead of C. 

Pos 44646 T instead of C. Pos 4510 T instead of C. Pos 4665 T instead of C. Pos 4813 T 

instead of C and deletion of 48nt almost 150nt from start of I-TevII gene position 4715-

4762nt.  
 

 
EMBOSS_001   3951 CTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC   4000 
                                                             ||||||| 
EMBOSS_001      1 -------------------------------------------TACCTTC      7 
 
EMBOSS_001   4001 GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAG   4050 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001      8 GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAG     57 
 
EMBOSS_001   4051 CGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGAT   4100 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001     58 CGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGAT    107 
 
EMBOSS_001   4101 CTCAAGAAGATCCTTTGATCTTTTCTAGCGGCCCTCATTTCTCCACGCGC   4150 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    108 CTCAAGAAGATCCTTTGATCTTTTCTAGCGGCCCTCATTTCTCCACGCGC    157 
 
EMBOSS_001   4151 TTGTAGCTCACAATGTAATTCGGATAATTGTCGTCCAGGCACAGGTCTTT   4200 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    158 TTGTAGCTCACAATGTAATTCGGATAATTGTCGTCCAGGCACAGGTCTTT    207 
 
EMBOSS_001   4201 GATGCGACTCGGATGGAGTTTCAGATCTTTGGCCGCATCCACAAATGATT   4250 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    208 GATGCGACTCGGATGGAGTTTCAGATCTTTGGCCGCATCCACAAATGATT    257 
 
EMBOSS_001   4251 TGTAGATATTATCGTTAATTTTGACATATTCCGGGACAGGATGAATCGTA   4300 
                  ||||||||||||||||||||||||||||||||||||||||||||||.||| 
EMBOSS_001    258 TGTAGATATTATCGTTAATTTTGACATATTCCGGGACAGGATGAATTGTA    307 
 
EMBOSS_001   4301 ATTTTAATATCAATCACATTCGGGTGATTTGAAACCTGTTCTTCAGAACA   4350 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    308 ATTTTAATATCAATCACATTCGGGTGATTTGAAACCTGTTCTTCAGAACA    357 
 
EMBOSS_001   4351 TTTCAGAAATTTAGCGGCCGACTTAAAGGAGCGGAATTTGTTGCCCGATT   4400 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    358 TTTCAGAAATTTAGCGGCCGACTTAAAGGAGCGGAATTTGTTGCCCGATT    407 
 
EMBOSS_001   4401 TCAGCGCAATGCTTACAGTTTTTTTCGCGGTGCGGGACCCAATGTTGTTC   4450 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    408 TCAGCGCAATGCTTACAGTTTTTTTCGCGGTGCGGGACCCAATGTTGTTC    457 
 
EMBOSS_001   4451 TTGACATGTGCTTCTGACCGGCTGTTATTTTTATAGTGTTCAATCAGCTT   4500 
                  |||||||||||||.|||||||||||||||||||||||||||||||||||| 
EMBOSS_001    458 TTGACATGTGCTTTTGACCGGCTGTTATTTTTATAGTGTTCAATCAGCTT    507 
 
EMBOSS_001   4501 TTCACGAATCTTATCTTTGTGTTTGAGGCTCAGAATTTTGCCCTTATGGG   4550 
                  |||||||||.|||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    508 TTCACGAATTTTATCTTTGTGTTTGAGGCTCAGAATTTTGCCCTTATGGG    557 
 

Theoretical 
sequence Confirmed 

sequence 
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EMBOSS_001   4551 CGTTCGACAATTTCTGTTTATGTTCCTCGGAATCCGGATACTTGTTGAAC   4600 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    558 CGTTCGACAATTTCTGTTTATGTTCCTCGGAATCCGGATACTTGTTGAAC    607 
 
EMBOSS_001   4601 TTATAACCGCCGATGGATTTATTGAGGATAAATTCATTATTGAAATATTT   4650 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    608 TTATAACCGCCGATGGATTTATTGAGGATAAATTCATTATTGAAATATTT    657 
 
EMBOSS_001   4651 GCGAATCAGCATTTCTTCGTGTTTCAACGCCGATTCATAGGAGTCGAACA   4700 
                  ||||||||||||||.||||||||||||||||||||||||||||||||||| 
EMBOSS_001    658 GCGAATCAGCATTTTTTCGTGTTTCAACGCCGATTCATAGGAGTCGAACA    707 
 
EMBOSS_001   4701 CCTGCAGAATGATCCACTTTGCTTTGTAATCCTTTAATTTCTCTTTTACG   4750 
                  ||||||||||||||                                     
EMBOSS_001    708 CCTGCAGAATGATC------------------------------------    721 
 
EMBOSS_001   4751 AGTTTGCTAGAGCTATTGTACTCTTTCCAGTTTGTATCTTTACCGTAAAT   4800 
                              |||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    722 ------------CTATTGTACTCTTTCCAGTTTGTATCTTTACCGTAAAT    759 
 
EMBOSS_001   4801 GGTTTTGAATTTCTTAAAGCCAATGTAGAAAGACTTGTCCGGGAACCGTA   4850 
                  ||||||||||||.||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    760 GGTTTTGAATTTTTTAAAGCCAATGTAGAAAGACTTGTCCGGGAACCGTA    809 
 
EMBOSS_001   4851 CCATATAGGTGAACGCAACTGAGTTCGCGATCTTCAGGGATTTGCGCAGT   4900 
                  ||||||||||                                         
EMBOSS_001    810 CCATATAGGT----------------------------------------    819 
 

 

This could be only possible in case of recloning of plasmid p2c-New. Or the survivors 

are only those plasmid clones that have mutated I-TevII in them. The whole procedure for 

recloning of plasmid p2c(lat) was repeated as described in (section 1.3.6) this time also 5 

clones were picked and after transformation and midiprep DNA isolation as described in 

previously in same section was sent to Eurofins MGW operon GmbH (Germany). The same 

set of primers used to sequence the I-TevII gene (Total sequenced region 819bp).  

Primer   location  Sequence 

I-TevIIF 4986-4967  5’-TGCGTAATTGCTGTAATGCGC-3’ 

 

The sequencing results were blasted against the theoretical sequence using web based 

EMBOSS Needle blast 2 sequence tool [56]. It showed 48bp deletion exact same mutation as 

in plasmid p2c-New along with several other point mutations scattered along the plasmid. 

The following anomaly marked yellow was observed in the results. Pos 4665 T instead of C. 

Pos 4813 T instead of C and deletion of 48nt almost 150nt from start of I-TevII gene position 

4715-4762nt and Pos 4921 deletion of T. 
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EMBOSS_001   4001 GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAG   4050 
                                                        |||||||||||| 
EMBOSS_001      1 --------------------------------------CACCGCTGGTAG     12 
 
EMBOSS_001   4051 CGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGAT   4100 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001     13 CGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGAT     62 
 
EMBOSS_001   4101 CTCAAGAAGATCCTTTGATCTTTTCTAGCGGCCCTCATTTCTCCACGCGC   4150 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001     63 CTCAAGAAGATCCTTTGATCTTTTCTAGCGGCCCTCATTTCTCCACGCGC    112 
 
EMBOSS_001   4151 TTGTAGCTCACAATGTAATTCGGATAATTGTCGTCCAGGCACAGGTCTTT   4200 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    113 TTGTAGCTCACAATGTAATTCGGATAATTGTCGTCCAGGCACAGGTCTTT    162 
 
EMBOSS_001   4201 GATGCGACTCGGATGGAGTTTCAGATCTTTGGCCGCATCCACAAATGATT   4250 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    163 GATGCGACTCGGATGGAGTTTCAGATCTTTGGCCGCATCCACAAATGATT    212 
 
EMBOSS_001   4251 TGTAGATATTATCGTTAATTTTGACATATTCCGGGACAGGATGAATCGTA   4300 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    213 TGTAGATATTATCGTTAATTTTGACATATTCCGGGACAGGATGAATCGTA    262 
 
EMBOSS_001   4301 ATTTTAATATCAATCACATTCGGGTGATTTGAAACCTGTTCTTCAGAACA   4350 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    263 ATTTTAATATCAATCACATTCGGGTGATTTGAAACCTGTTCTTCAGAACA    312 
 
EMBOSS_001   4351 TTTCAGAAATTTAGCGGCCGACTTAAAGGAGCGGAATTTGTTGCCCGATT   4400 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    313 TTTCAGAAATTTAGCGGCCGACTTAAAGGAGCGGAATTTGTTGCCCGATT    362 
 
EMBOSS_001   4401 TCAGCGCAATGCTTACAGTTTTTTTCGCGGTGCGGGACCCAATGTTGTTC   4450 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    363 TCAGCGCAATGCTTACAGTTTTTTTCGCGGTGCGGGACCCAATGTTGTTC    412 
 
EMBOSS_001   4451 TTGACATGTGCTTCTGACCGGCTGTTATTTTTATAGTGTTCAATCAGCTT   4500 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    413 TTGACATGTGCTTCTGACCGGCTGTTATTTTTATAGTGTTCAATCAGCTT    462 
 
EMBOSS_001   4501 TTCACGAATCTTATCTTTGTGTTTGAGGCTCAGAATTTTGCCCTTATGGG   4550 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    463 TTCACGAATCTTATCTTTGTGTTTGAGGCTCAGAATTTTGCCCTTATGGG    512 
 
EMBOSS_001   4551 CGTTCGACAATTTCTGTTTATGTTCCTCGGAATCCGGATACTTGTTGAAC   4600 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    513 CGTTCGACAATTTCTGTTTATGTTCCTCGGAATCCGGATACTTGTTGAAC    562 
 
EMBOSS_001   4601 TTATAACCGCCGATGGATTTATTGAGGATAAATTCATTATTGAAATATTT   4650 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    563 TTATAACCGCCGATGGATTTATTGAGGATAAATTCATTATTGAAATATTT    612 
 
EMBOSS_001   4651 GCGAATCAGCATTTCTTCGTGTTTCAACGCCGATTCATAGGAGTCGAACA   4700 
                  ||||||||||||||.||||||||||||||||||||||||||||||||||| 
EMBOSS_001    613 GCGAATCAGCATTTTTTCGTGTTTCAACGCCGATTCATAGGAGTCGAACA    662 

Theoretical 
sequence 

Confirmed 
sequence 
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EMBOSS_001   4701 CCTGCAGAATGATCCACTTTGCTTTGTAATCCTTTAATTTCTCTTTTACG   4750 
                  ||||||||||||||                                     
EMBOSS_001    663 CCTGCAGAATGATC------------------------------------    676 
 
EMBOSS_001   4751 AGTTTGCTAGAGCTATTGTACTCTTTCCAGTTTGTATCTTTACCGTAAAT   4800 
                              |||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    677 ------------CTATTGTACTCTTTCCAGTTTGTATCTTTACCGTAAAT    714 
 
EMBOSS_001   4801 GGTTTTGAATTTCTTAAAGCCAATGTAGAAAGACTTGTCCGGGAACCGTA   4850 
                  ||||||||||||.||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    715 GGTTTTGAATTTTTTAAAGCCAATGTAGAAAGACTTGTCCGGGAACCGTA    764 
 
EMBOSS_001   4851 CCATATAGGTGAACGCAACTGAGTTCGCGATCTTCAGGGATTTGCGCAGT   4900 
                  |||||||||||||||||||||||||||||||||||||||||||||||||| 
EMBOSS_001    765 CCATATAGGTGAACGCAACTGAGTTCGCGATCTTCAGGGATTTGCGCAGT    814 
 
EMBOSS_001   4901 TTCCATTTCATGGGCCGCCCTTGGTCAAATTGGGTATACCCATTTGGGCC   4950 
                  |||||||||||||||||||| |||||||||                     
EMBOSS_001    815 TTCCATTTCATGGGCCGCCC-TGGTCAAAT--------------------    843 
 

 

1.3.14 Cloning I-TevII in pET-40b (+) 

 

It is by now understood that the I-TevII gene is difficult to clone as with every try and 

change in strategy a new problem arises. It is suggested in previous studies that homing 

endonucleases are toxic in nature because they can cleave sequences other than their homing 

sites [40] , therefore tight repression of expression vector is needed for their successful 

cloning, previously I-TevII gene product has been produced in a soluble form in E. coli with 

T7 driven expression system [41, 57]. Therefore, this time the pET-40b (+) vector 

(Novagene) (Fig.24) was used to clone I-TevII gene under expressional control of strong 

bacteriophage T7 promoters. The pET vector has a strong bacteriophage T7 transcription and 

translation signals, and expression is induced by providing a source of T7 RNA polymerase 

in the host cells. This external source of T7 RNA polymerase was supplied by E. coli C41 

(Lucigen, USA). Target gene I-TevII was cloned into the MCS of pET-40b (+) Schematic 

diagram showing cloning strategy is shown in (Fig.24). 

 Unfortunately this strategy like previous one turned out to be unsuccessful. No 

positive clone obtained even after 3 different transformation experiments with 60 different 

clones are screened. The (Fig.25) shows the clone of plasmid pET-40b-I-TevII in wrong 

orientation. 
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Fig.24. Cloning strategy of plasmid pET-40b.I-TevII; lacI, lacI repressor;T7, bacteriophage  T7 promoter; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator 
sequence of 5s ribosomal gene; Ampr, Ampicillin resistance gene; Kanr, kanamycin resistance cassette; DsbC, 
Dsbc fusion protein tag. pBR322ori, origin of replication derived from pBR322 plasmid; f1 ori, phage derived 
origin of replication; pUC ori, origin of replication derived from plasmid  pUC19; plac, lac promoter; LacZ; 
encodes β-galactosidase; I-TevII, homing endonuclease I-TevII; M; multiple cloning site 
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Fig.25. Restriction analysis of plasmid 
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1.4 Discussion 

The mcDNA carrying the therapeutic available gene under the control of eukaryotic 

promoter resulted in better transgene expression. These mcDNA are produced through 

different system through site specific recombination of mopDNA during which a by-product 

is released that are called mpDNA. These mpDNA not only leads to decrement in gene 

expression due to presence of unmethylated CpG motifs but also poses a serious threat for 

spread of antibiotic resistance gene among wild type strains. Separating these mpDNA from 

the mcDNA is a difficult task which is performed through cesium chloride gradient 

ultracentrifugation or through affinity chromatography by specific interaction of lacI protein 

with the lacOs sequences present on mcDNA. However, these purified mcDNA are not so 

immunogenic like the pathogen itself hence needs an extra help for their efficient delivery. 

Thus an alternate system for in-vivo production and loading of mcDNA was presented 

involving the use of Bacterial Ghost (BG) delivery technology. In this system the self 

immobilization plasmid was used for production of mcDNA through ParA recombination of 

mopDNA into mcDNA carrying lacOs site which is recognized by the membrane anchored 

fusion protein LacI-L’. Through this system most of the mpDNA is expelled out of the BGs 

through lysis tunnel however a considerable amount is still retained inside the BGs making it 

difficult to use these BGs in clinical trials. 

 

 In this study this particular problem was addressed and it was tried to clone and use 

the endonuclease activity of I-TevII (which belongs to sunY intron of bacteriophage T4) to 

reduce the amount of mpDNA and mopDNA in the BGs. However, several tries in cloning 

this potentially toxic gene on SIP plasmid system turned out to be unsuccessful. This could be 

due to many possible reasons. Little available knowledge about the working of I-TevII gene 

made it difficult to understand the reasons underlying this problem. It is therefore assumed 

that the I-TevII gene in combination with unknown SIP backbone sequences is lethal for the 

recipient bacteria, for reason, that only colonies which survived were those carrying mutated 

I-TevII gene after the transformation.  

 

Different bacterial strains with tight internal control of expression through lacIq have 

been tested in current study; these bacterial strains allow cloning of potentially toxic genes in 

them. Two clones with verified mutated I-TevII gene at different locations have been isolated 
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in this study one of the mutations is frame shift however the other mutation is a deletion of 

48bp sequence, this mutation results in generation of shorter protein molecule and it was 

assumed at that time to be non functional. Considering the time being spent on current 

strategy and trying different alternative path ways it was decided not to spend more time on 

this method and divert the focus of research on alternative ways of reducing the mpDNA in 

BGs which is discussed in detail in upcoming chapter II. However, it is still open to find the 

possible working of this shorter protein molecule being generated by mutated I-TevII gene 

after cloning the I-TevII recognition sequence in plasmid p5 in order to get final plasmid 

pSIP-I-TevII. The working of this shorter protein molecule generated by mutated I-TevII gene 

depends on the possible presence of this deletion in active site or its role in proper folding of 

I-TevII enzyme.  

 

Another possibility is to find alternate enzymes that can replace the I-TevII gene 

without affecting the final goal of this study. This new enzyme chosen should have more 

available literature and information about their working. An example of such molecule is I-

SceI endonuclease. This enzyme recognizes the 18bp sequence and linearises the double 

stranded DNA molecule which will further be degraded by the exonuclease activity of 

bacterial enzymes. The possibility of using Staphylococcus aureus nuclease A (SNUC) in 

reduction of mpDNA/ un-recombined mopDNA in BG preparations should also be 

considered as an alternate approach to endonuclease mediated reduction. In this particular 

case the SNUC gene can be cloned under the expressional control of pBAD promoter in 

addition to LacI-L’/ ParA gene in the latest an improved version of SIP plasmid p4a.  
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Chapter: II 

Minicircle DNA loaded Bacterial Ghosts devoid of un-

recombined mother plasmid and miniplasmid DNA 

sequences by nuclease activation 

 

Abstract 

DNA vaccination is an emerging technique currently being investigated in clinical trials. 

The most important concern about plasmid DNA delivery is its efficiency and safety profile. 

One of the safety issues has been addressed successfully by introduction of minicircle DNA 

(mcDNA). This mcDNA is devoid of bacterial backbone (BB) and unwanted antibiotic 

resistance cassette. Currently most of the mcDNA vaccines are produced in a two step 

process i.e. production of minicircle inside the bacterial cells, followed by the rigorous 

purification and separation steps. It has been shown previously that the Bacterial Ghosts 

(BGs) loaded with mcDNA can be produced in an efficient one step process. However, it was 

found that in such preparations certain amount of miniplasmid DNA (mpDNA) can still be 

detected in BGs. This needs to be taken care of before proceeding for use of mcDNA as a 

vaccine in clinical trials. Here, a new technique is reported for producing mcDNA loaded 

BGs devoid of unwanted DNA sequences by action of staphylococcal nuclease A (SNUC). 

Based on the small size of mcDNA and its tight attachment to the inner membrane of 

bacterial envelope it could be shown through real time quantitative PCR assay that a certain 

amount of mcDNA (2.38%) escaped the hydrolysis activity of SNUC. SNUC is more active 

on fragments of DNA that are larger and easily accessible i.e. mpDNA and un-recombined 

mother plasmid DNA (mopDNA) which are reduced to critical in mcDNA carrying BGs. 

BGs with mcDNA were tested in cell culture and lead to the expression of the anchored gene. 

It is assumed that the combination of this mcDNA immobilization along with the E-lysis and 

SNUC activity can represent an efficient technology for the production of in vivo loaded 

hazard free mcDNA BGs. 
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2.1 Introduction 

Plasmid DNA vaccination is one of the most emerging techniques for treatment and 

prevention of diseases now a days. The idea of transfecting mammalian cells with plasmid 

DNA is well documented long ago [1]. The property of plasmid DNA as a vaccine has been 

investigated thoroughly since then [2-6]. However the most important issue faced currently is 

the development of highly safe and efficient delivery system for DNA transfer in eukaryotic 

cells. Currently available delivery systems are viral and non-viral. The non-viral vectors have 

edge over viral vectors due to their high safety profiles, relatively cheap, better capacity to 

deliver antigen and comparably easy to manufacture [7-12]. The plasmid DNA has two 

important features, the transcription unit and the bacterial backbone (BB). The former is 

usually responsible for the delivery of target sequence along with the necessary regulatory 

elements.  The bacterial backbone consist of an origin of replication, antibiotic resistant gene, 

and unmethylated CpG motifs. These unmethylated CpG motifs are 20 times more on 

bacterial chromosome then on eukaryote genome due to the fact of difference in methylation 

pattern and frequency at which these di-nucleotides are utilized by these two different 

organisms [13, 14]. These CpG motifs present on BB of plasmid DNA are inflammatory in 

nature and triggers innate immune response [15, 16] due to which most of the DNA 

transfected cells are lost before they show any efficacy [17-20]. This causes serious obstacle 

in application of plasmid DNA used for human vaccination. Progress has been made in 

understanding the mechanism of episomal transgene silencing and Chen et.al. has shown that 

this silencing is caused due to the covalent attachment of BB to the transcription unit[21].  He 

also showed in his other experiments that separation of the expression cassette from the 

plasmid BB gives much better and higher level of transgene expression [22, 23]. 

 On the other hand the antibiotic resistance gene poses a serious biological safety risk 

leading to adverse effects on patient’s health [24] and responsible for the spread of antibiotic 

resistant strains in the environment, therefore  the regulatory agencies prohibit the use of 

certain antibiotics in production of DNA vaccines or even emphasize on total avoidance of 

antibiotic resistance genes if possible [25-28]. To overcome these biological safety risks 

discussed above a new form of non-viral DNA delivery method comprising of only the 

therapeutic useful transcription unit has been developed named as mcDNA [22, 29, 30]. 

These minicircles not only minimized the risk of spread of antibiotic resistance gene among 
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wild type strain, but showed better transfection efficiency due to their reduced size [22, 30, 

31].  

Minicircles can be produced in E. coli in a different ways by site-specific 

recombination activity from bacteriophage λ integrase [29-31], ParA resolvase [32], Cre 

recombinase of bacteriophage P1 [33] and by the ɸC31 integrase [22]. All of the above 

mentioned enzymes excise the DNA sequences located between the two corresponding 

recombination sites (rec) after recognition. By placing the origin of replication and the 

antibiotic resistance cassette in between these two rec sites the mother plasmid (mop) can be 

divided into, a replicative miniplasmid (mp) carrying undesired sequences and the minicircle 

(mc) carrying only the therapeutic expression cassette [22, 29-31, 34]. Apart from the safety 

profile of DNA vaccines, the efficient delivery system is the main focus in designing novel 

drugs.  

The Bacterial Ghost (BG) delivery platform is a unique and efficient method for 

delivering the plasmid DNA inside the target cells. BGs are non-living bacterial cell 

envelopes which are produced by the expression of lysis gene E of bacteriophage ɸX174 

cloned on the plasmid [35-38]. This model is only feasible in gram negative bacteria due to 

their morphology of having inner membrane (IM) and outer membrane (OM). During the 

lysis process the transmembrane tunnel structure is formed by the fusion of IM and OM 

through which the cytoplasmic content is expelled out due to change in osmotic pressure of 

the bacterial cell and the surrounding medium [39]. The resulting bacterial envelope 

represents an excellent vaccine candidate for the delivery of DNA and or proteins, with an 

intrinsic adjuvant characteristic due to their retained structural integrity [40-51]. These BGs 

show high transfection efficiency for macrophages and primary dendritic cells hence, 

inducing higher cellular and humoral immune response in comparison to naked plasmid DNA 

[46, 52, 53].  

The plasmid DNA delivery by immobilizing it inside the IM of BG has been 

established by Mayrhofer et.al. in 2005 [34]. This in vivo plasmid DNA packaging is based 

on Self Immobilization of plasmid DNA (pSIP) carrying lactose operator sites (lacOs) 

tandem repeat of a modified lactose operator sequence which is recognized by the LacI 

repressor protein [54, 55]. This LacI protein is fused to the hydrophobic membrane anchor 

(L’ membrane anchor) protein derived from the lysis protein of bacteriophage phage MS2 
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[56]. The simultaneous expression of LacI-L’ fusion gene results in the formation of a protein 

complex which immobilize the plasmid DNA inside the cytoplasmic membrane of E. coli 

through the hydrophobic truncated lysis protein (L’) [34]. This system when combined with 

the mcDNA produced by ParA recombinase activity and lysis gene E expression resulted in 

self loaded mcDNA BGs [57]. In this study the eukaryotic expression cassette along with the 

lacOs was flanked by the two ParA resolution sites where as the recombination activity was 

shown close to 100%, compared to other systems described earlier by Darquet et.al. 50%, 

Kreiss et.al. 85% and Chen et.al. 97% [22, 29-31]. The system using ɸC31 took 2 hour to 

achieve 97% recombination [22] while it took only 30 min with ParA recombination system 

to achieve around 100% activity [57]. It has been shown that this technique of mcDNA 

immobilization and BG formation is efficient to get rid of most of the mpDNA however the 

data suggests that a small amount of mcDNA is still detectable in BG preparations [57]. 

Hence it is very important to develop a technique in-order to completely remove this 

remaining BB sequences from the BG preparations. Keeping this in view Chen et.al. in 2005  

developed a technique for enzymatic digestion of mpDNA by the endonuclease activity of I-

SceI gene present on it [58].  

In a study Haidinger et.al. successfully utilized the suicidal activity of staphylococcal 

nuclease A (SNUC) as a secondary kill gene for producing BGs free of genetic material. [59] 

The thermostable nuclease A (EC 3.1.4.7) of Staphylococcus aureus is an extracellular 

enzyme [60] which cleaves the DNA and RNA into 3’ phosphomononucleotides and 

dinucleaotides [61], this hydrolysis activity of SNUC is totally dependent on Ca2+ ions of 

around 0.01M [62] while at this concentration for optimal enzymatic activity the PH of 9 to 

10 is required [63] where as  supplementation of 0.001M Mg2+ ions to the above gave much 

higher DNA hydrolysis activity [63].  Cloned nuclease A gene of Staphylococcus aureus was 

successfully and enzymatically actively expressed in wide range of bacterial strains including 

gram-negative bacteria’s [64-67]. It has been shown that the overexpression of this cloned 

gene SNUC is responsible for the loss in cell viability in different bacterial populations [68], 

hence the idea of using SNUC as a suicidal gene was presented [68] and this was successfully 

shown by Haidinger et.al. in 2003 by producing BGs devoid of genetic material by co-

expression of Lysis gene E along with the staphylococcal nuclease A as a secondary kill gene 

[59]. 
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Current study involves investigation for different possibilities in producing BGs 

loaded with mcDNA devoid of unwanted mpDNA / mopDNA sequences by the action of 

SNUC in vivo. Earlier it has been shown that the majority to mpDNA is lost during the 

production process of BGs loaded with mcDNA however a certain amount of mpDNA 

remains inside the BG preparations which should be removed before advancing towards the 

clinical application of mcDNA loaded BGs [57]. SNUC has been used in production of BGs 

devoid of any unwanted DNA sequences in a separate experiment [59] however it was never 

combined with ParA recombination for the production of mcDNA loaded BGs. It was 

hypothesized that the small size and strong interaction of mcDNA with the LacI-L’ anchor 

protein through lacOs will help them escape the lethal effect of nuclease which interact and 

hydrolyze the larger DNA fragments i.e. mpDNA and other unwanted host DNA that are 

easily accessible to the enzymes. During this procedure the nuclease will be activated after 

the anchoring of mcDNA and completion of lysis process through addition of Ca2+and Mg2+ 

ions hence, the lethal effect of enzyme on mcDNA will be minimized as it will most probably 

interact and hydrolyze the DNA fragments within the viable cells and also the mpDNA 

molecules that are freely moving in the medium where the cytoplasmic contents of lysed cells 

are released after the induction of lysis gene E. Hence it is assumed that this combination of 

mcDNA, BG production and SNUC activation will provide a novel system for in vivo 

mcDNA loaded delivery vehicles that are more likely free of unwanted genetic materials 

eliminating any further purification steps. 

 

2.2 Material and methods 

2.2.1. Bacterial strains, plasmids and growth conditions 

 

2.2.1.1 Bacterial strains 

 

E. coli K12 C2988J (NEB 5-α competent cell) fhuA2 Δ (argF-lacZ) U169 phoA 

glnV44 ɸ80Δ (LacZ) M15 gryA96 recA1 endA1 thi-1 hsdR17) (New England Biolabs, 

Germany) 

E.cloi Nissle 1917 (ARDEYPHARM Hardecke, Germany) 
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E. coli K12 MC4100 [69] F- Δ(arg-lac)U169 araD139 rpsL 150 ptsF25 fibB5301 rbsR deoC 

relA1. 

 

2.2.1.2 Growth conditions  

 

The bacterial cultivation was carried out in Luria-Bertani (LB) medium [70] with 

ampicillin (100µg / ml) and gentamycin (20µg / ml) when needed. The samples were 

supplemented with glucose at final concentration of 2%. For induction of recombination in 

plasmid encoding the ParA resolvase, a 0.25% L-arabinose was added at OD600 (~0.2-0.3), 

while for induction of synthetic A1 promoter [71] in plasmid PGLNIc, 5mM isopropylβ-D- 

thiogalactopyranoside (IPTG) was used [59], The lysis is induced by the expression of cloned 

gene E on plasmid pGLNIc which is kept under transcriptional control of thermosensitive 

promoter / repressor system λpRmut / CI857 [80] due to better lysis profile of E. coli Nissle 

1917 at higher pH the pH of the medium was adjusted to 8.0 before the start of experiments. 

The SNUC was activated by addition of CaCl2 and MgCl2 at final concentration of 10mM 

and 1mM respectively [59]. Growth and lysis of the bacteria was monitored by the measuring 

of optical density at 600nm (OD600), viability of cells were monitored by colony forming 

units (CFU) count and morphology was observed through light microscopy by making simple 

slides of bacterial culture. 

 

2.2.1.3 Plasmids 

 

Plasmid pSIPHCNparA [57], pGLNIc [72],  pEYFP-C1 a kind gift by Dr. Monika 

Sramkova NIH America (Clontech, BD-Biosciences), plasmid pSIPHCNparA-res1 (this 

work), p2a (this work), p3a (this work), p4a (this work), p4aEYFP-C1 (this work) p3aEYFP-

C1 (this work). 

 

2.2.2 Plasmid constructions 

2.2.2.1 Construction of plasmid p3a 

To construct Plasmid p3a two intermediate plasmid constructions (pSIPHCNparA-

res1, and p2a) was carried out. For easy handling, plasmid pSIPHCNparA [57] (Fig.1a) was 
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digested with HindIII (Fermentas) double cut and was re-ligated to remove the resolution site 

1 (res1 140bp). The resulting plasmid was named pSIPHCNparA-res1 (6268bp) (Fig.1a) 

lacking recombination activity.  

 

 
 

Suitable restriction sites or multiple cloning sites MCS was introduced into this 

plasmid pSIPHCNparA-res1 by digesting it with NsiI (Fermentas) and the 60bp MCS 

(Synthesized) was inserted into this site the resulting annealed plasmid is then called p2a 

(6128bp) (Fig.1b). This was done by mixing and incubating two primers synthesized for 

MCS (MCS1 and MCS2) and by introducing this annealed MCS into respective restriction 

site present on plasmid pSIPHCNparA-res1 using T4 DNA ligase (New England BioLabs, 

Germany). In order to allow the easy cloning of lethal gene (e.g. I-TevII homing 

endonuclease that is needed for another study involving plasmid p3a) the expression cassette 

(LacI-L’ / ParA) should be inverted for tight repression and prevention of premature 

expression of cloned gene. i.e. before recombination. For this purpose plasmid p2a was 

digested with HindIII (Fermentas) which cuts the plasmid at two different locations and the 

plasmid was re-ligated using T4 DNA ligase (New England BioLabs, Germany) to get 

plasmid p3a (6128bp) (Fig. 1c). 

 

 

 
 
 
 

 

 
 
 
 
 
 
 

 
Fig.1a. Cloning strategy of plasmid pSIPHCNparA-res1; lacOs, modified lac operator sequence with high affinity 
to bind lacI; M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of 
lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose 
inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s 
ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid 
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2.2.2.2 Construction of plasmid p4a 

 

To get the final working plasmid p4a (which has the ability to recombine) the 

resolution site1 was introduced into the plasmid p3a. For this purpose the 140bp res1 site was 

amplified through PCR using plasmid pSIPHCNparA [57] as template and primers 5’res1K 

(5’– CAG CAG GGT ACC CCT TGG TCA AAT TGG GTA TAC C –3’) and 3res1P (5’ – 

CTG CTG TTA TAA GCA CAT ATG TGG GCG TGAG – 3) (synthesized by Microsynth 

AG, Switzerland) with KpnI and PsiI restriction sites (underlined sequence in primer).  

 
 
 
 

  

 

 

 
 
 

Fig. 1b: Cloning strategy of plasmid p2a; 
MCS1: 5’-ATGCATTAATTAACTAGTGAGCTCACGTGCGGCCGCCCGGGTACCTGCAGTTATAAGCTTATGCAT-3’ 
MCS2: 5’-TACGTAATTAATTGATCAGTCGAGTGCACGCCGGCGGGCCCATGGACGTCAATATTCGAATACGTA-3’ 
 
 

 
 
 

 

 

 
 
 

Fig.1c. Cloning strategy of plasmid p3a;  lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI repressor 
with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose inducible 
promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s ribosomal 
gene; Ampr, ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid 
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The PCR reaction with final volume of 25µl was carried out using 0.25µl of (50 pmol 

/ µl) primers each, 2.5ul of (2mM) dNTP’s(Fermentas), 2.5ul of (10x) DreamTaq polymerase 

(Fermentas) buffer, 1ul of template DNA, and 0.25ul of DreamTaq polymerase (Fermentas) 

at final conc. of (0.05U / ul). The PCR condition was optimized based on the melting 

temperature (Tm) of the primers, using iCycler iQ Real-Time PCR detection system from 

Bio-Rad Inc. initially 95ᵒC for 3min, as pre de-naturating temperature was used followed by 

30 cycles of 95ᵒC for 30sec, 60ᵒC for 30sec and 72ᵒC for 1min and final elongation of 72ᵒC 

for 10 min. The PCR product was analyzed on 2% agarose gel to confirm the amplification. 

The PCR product was digested with KpnI and PsiI (Fermentas) and subsequently cloned into 

the corresponding sites in plasmid p3a to get the vector p4a (6263bp) (Fig.2). The plasmid 

p4a is under control of pBAD promoter and has two resolution sites (res).  

 

 

 
 
 
 

 

 
 

 

 
 

 

 
 
 

Fig.2. Cloning strategy of plasmid p4a; lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid.  
5’res1K 5’– CAG CAG GGT ACC CCT TGG TCA AAT TGG GTA TAC C –3’ 
3res1P 5’ – CTG CTG TTA TAA GCA CAT ATG TGG GCG TGAG – 3 
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2.2.2.3 Construction of plasmid p4aEYFP-C1 

 

Before constructing plasmid p4aEYFP-C1 the removal of multiple cloning site from 

plasmid pEYFP-C1 (4731bp) (Fig.3) a kind gift by Dr. Monika Sramkova NIH America 

(Clontech, BD-Biosciences) was necessary. The plasmid pEYFP-C1 was digested and BglII 

and BamHI (both Fermentas) and 51bp MCS was removed and the plasmid was religated 

using T4DNA ligase (New England BioLabs, Germany) to get a new plasmid pEYFP-C1-

MCS (4680bp) (Fig.3a).  

 

 

 

 

 

 

 

 
Fig.3a. Cloning Strategy of plasmid pEYFP-C1-MCS; pCMV, cytomegalovirus immediate early promoter; 
EYFP, enhanced yellow fluorescent protein; M, multiple cloning site; P; polyadenylation signals derived from 
simian virus 40; F1 ori, phage derived origin of replication;, PSV40: promoter derived from simian virus 40; 
Kanr/neor; Kanamycin and neomycin resistance cassette; HSV TK, Herpes simplex virus thymidine kinase 
polyadenylation signals; pUC ori; origin of replication derived from pUC19. 
 

 

The 1596bp PCR fragment containing human cytomegalovirus (CMV) immediate 

early promoter (IE) and Enhanced yellow florescent protein (EYFP) gene along with polyA 

signals was amplified using primers 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA 

ATA GTA ATC-3’ and 3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT 

GAG -3’ (restriction sites underlined) and plasmid pEYFP-C1-MCS as template. The PCR 

condition was as follows. 25µl of total reaction containing 0.25µl of (50 pmol / µl) primers 

each (Microsynth AG), 2.5ul of (2mM) dNTP’s(Fermentas), 2.5ul of (10x) DreamTaq 

polymerase (Fermentas) buffer, 1ul of template DNA, and 0.25ul of DreamTaq polymerase 

(Fermentas) at final conc. of (0.05U / ul). The PCR condition was optimized based on the 

melting temperature (Tm) of the primers, using iCycler iQ Real-Time PCR detection system 

from Bio-Rad Inc. initially 95ᵒC for 3min, as pre de-naturating temperature was used 
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followed by 30 cycles of 95ᵒC for 30sec, 58ᵒC for 30sec and 72ᵒC for 1min and final 

elongation of 72ᵒC for 10 min. The PCR product was analyzed on 2% agarose gel and 

subsequently digested with SacI and KpnI (Fermentas) and cloned into the corresponding 

sites in plasmid p4a resulting in vector p4aEYFP-C1 (7838bp) (Fig.3b).  

 

 

 

 
 

2.2.2.4 Construction of plasmid p3aEYFP-C1 

  

For cloning plasmid p3aEYFP-C1 (7703bp) the plasmid p3a was used as a vector. 

The plasmid p3a was digested with SacI and KpnI and the 1596bp PCR fragment amplified 

as described above in construction of plasmid p4a was ligated together into their 

corresponding sites after required manipulations to get plasmid p3aEYFP-C1 (Fig.3c). 

 

 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
Fig.3b. Cloning strategy of plasmid p4aEYFP-C1; pCMV, cytomegalovirus immediate early promoter; EYFP, enhanced 
yellow fluorescent protein; M, multiple cloning site; P; polyadenylation signals derived from simian virus 40; F1 ori, 
phage derived origin of replication;, PSV40: promoter derived from simian virus 40; Kanr/neor; Kanamycin and neomycin 
resistance cassette; HSV TK, Herpes simplex virus thymidine kinase polyadenylation signals; pUC ori; origin of 
replication derived from pUC19. lacOs, modified lac operator sequence with high affinity to bind lacI; M, Multiple cloning 
site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI repressor 
with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose inducible promoter; 
araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s ribosomal gene; Ampr, 
Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
Primers; 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA GTA ATC-3’ 
             3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’ 
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2.2.3. Handling of DNA samples 

 

The plasmid DNA was isolated using PeqLab Kit I (Plasmid Miniprep kit I, Erlangen, 

Germany). PCR products were purified using PureLinkTM PCR purification Kit (Invitrogen), 

while the DNA extraction from agarose gel was carried out using PureLinkTM Gel extraction 

Kit (Invitrogen) all the above procedures were carried out following the manufacturer’s 

protocol. All the transformation and electroporation of plasmid DNA was performed 

according to the standard molecular biological techniques by Sambrook et.al [73], all the 

restriction enzymes (unless stated separately) were purchased from Fermentas (St. Leon-Rot, 

Germany) and T4 DNA ligase from New England Biolabs (Frankfurt Am Main, Germany) 

and were used as indicated by the manufacturers / providers.  PCR Amplification of the DNA 

fragments was carried out using iCycler iQTM real time PCR detection system (Bio-Rad) with 

following DNA modifying enzymes, Taq DNA polymerase, Dream Taq DNA polymerase, 

Pfu DNA polymerase and high Fidelity DNA polymerase all provided by Fermentas (St. 

 

 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
Fig.3c. Cloning strategy of plasmid p3aEYFP-C; pCMV, cytomegalovirus immediate early promoter; EYFP, enhanced 
yellow fluorescent protein; M, multiple cloning site; P; polyadenylation signals derived from simian virus 40; F1 ori, 
phage derived origin of replication;, PSV40: promoter derived from simian virus 40; Kanr/neor; Kanamycin and neomycin 
resistance cassette; HSV TK, Herpes simplex virus thymidine kinase polyadenylation signals; pUC ori; origin of 
replication derived from pUC19. lacOs, modified lac operator sequence with high affinity to bind lacI; M, Multiple 
cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI repressor with truncated 
lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose inducible promoter; araC, 
repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s ribosomal gene; Ampr, Ampicillin 
resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
Primers; 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA GTA ATC-3’ 
             3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’ 
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Leon-Rot, Germany). Real time PCR was carried out using iQ-SYBR Green super mix (Bio-

Rad) following the manufacturers instruction. 

 

2.2.4 Production and purification of mcDNA and mpDNA 

 

Bacterial strain E. coli MC4100 carrying plasmid p4aEYFP-C1 was grown over night 

at 36ᵒC shaking, in 5ml LB supplemented with ampicillin (100µg / ml) and 2%glucose. A 

small part of the ON culture was added to 25ml LB supplemented with ampicillin (100µg / 

ml) in a nose flask. The sample was incubated in a 36ᵒC water bath with continuous stirring 

300 rpm until the OD600 of 0.4-0.5 was achieved. The parA resolvase gene was induced by 

addition of 0.25% L-(+)-arabinose. And 1ml sample was collected before induction 0 min 

and mid phase 30 min and on 60 min for analyzing recombination pattern on 1% agarose gel. 

The plasmid DNA isolation was done using PeqLab Kit I (Plasmid Miniprep kit I, Erlangen, 

Germany). After 60 min of L-(+)-arabinose induction the cells were harvested by 

centrifugation at 10,000 rpm for 15min at 4ᵒC. PureYeildTM plasmid Midiprep system 

(Promega) was used for isolating the plasmid DNA. The plasmid DNA was loaded on 1% 

agarose gel (RothTM) and the DNA was stained using GelRed nucleic acid gel stain 

(GelRedTM Biotium # 41003). The gel was analyzed under UV light in ChemiDOCTM 

machine (BioRad laboratories). The mcDNA and mpDNA fragments were excised and gel 

extraction was carried out using PureLinkTM Gel extraction Kit (Invitrogen) finally loaded 

and checked on 1%agarose gel after staining with GelRedTM under ChemiDocTM machine. 

 

2.2.5 Western Blot analysis 

 

The pellet of the bacterial cultures ~1ml is collected at different time points, 

immediately centrifuged at +4ᵒC and stored at -20ᵒC for later use. The sample was 

resuspended in sample buffer (Volume of 1x sample buffer (NuPAGE) in µl= OD600 x 250) 

and was heated at 99ᵒC for 10 min and finally centrifuged at 13,000 rpm for 3 min, 15µl 

supernatant of samples and 5µl of protein marker was loaded on 12% SDS polyacrylamide 

(PAA) gel [74](Invitrogen) as described by Leammli [75]. The proteins were transferred onto 

nitrocellulose membrane (Invitrogen) by semi-dry electro blotting [76] using xCell II Blot 

Module at constant volt of 60V for 30 min / (60 min when 2 gels are blotted). To identify the 

marker bands the nitrocellulose membrane is stained with Ponceau S (Sigma-Aldrich), and 
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the blocking was done overnight at +4ᵒC with 1x Roti-Block (Roth). To detect the LacI-L’ 

protein the sample was incubated with rabbit anti Lac repressor serum (1:5000 dilutions) 

purchased from Stratagene Europe, (Amsterdam, Netherlands) for 2hrs at room temperature 

while shaking. Followed by washing with TBST (Roth) and incubating with 1:10000 dilution 

of goat-derived anti-rabbit antibody linked with horseradish peroxidase (Sigma-Aldrich) for 

1hrs at room temperature while shaking. Chemiluminescent detection was performed by ECL 

(Santa Curz kit, Amersham) and documented using BioRad ChemiDoc machine. 

 

2.2.6 Cell culture and reagents 

 

The human conjunctival cell line (Wong-Kilbourne derivative of Chang conjunctiva, 

CCL-20.2) was kindly provided by Prof. Bernd Binder (Medical University of Vienna, 

Austria) and mouse leukaemic monocyte macrophage cell line (RAW-264.7) kindly provided 

by Dr. Pavol kudela (Cancer Research Institute Bratislava, Slovak Republic). The cells were 

seeded 24 hour before transfection in a 24 well plate (5x104 cells per well) (SARATED, Ag 

& Co. Germany). Cells were maintained in DMEM (Lonza, Verviers, Belgium) 

supplemented with 2mM glutamine (Invitrogen, Carlsband, CA), 100U / ml Penicillin 

(Invitrogen), 100µg / ml Streptomycin (Invitrogen), 10%FCS (Sigma Chemical Co., St. 

Louis, MO) and 10mM HEPES (Lonza) in a 5% CO2 humidified incubator at +37ᵒC [40]. 

Prior to transfection the culture medium was replaced with fresh serum free culture medium. 

Transfections of cells were performed using plasmid DNA (EYFP-C1, p4aEYFP-C1 and 

p3aEYFP-C1. 1µg / well) and transfecting reagent TurboFectTM (Thermo Scientific, Austria) 

following the manufacturer’s instructions. Transfection efficiency of BGs carrying mcDNA 

(mcEYFP) produced by the Recombination Lysis and SNUC Test (RLST) was carried out in 

RAW-264.7 cells. Cells incubated with or without plasmids / BGs and without transfecting 

reagent served as negative control. Transfection efficiencies were analyzed after 24 and 48 

hours of transfection by light fluorescence microscopy (Zeiss Axiovert S100 inverted 

microscope, Carl Zeiss Jena GmbH, Germany). 

 

2.2.7 Residual free mcDNA production and immobilization inside the BGs 

 

The bacterial strain E. coli Nissle 1917 carrying plasmid pGLNIc [72] and the vector 

p4aEYFP-C1 or p3aEYFP-C1 respectively, was inoculated and grown in 5ml LB 
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supplemented with antibiotics ampicillin and gentamycin at different concentrations (100µg / 

ml and 20µg / ml respectively) along with 2% glucose in a rotating wheel at 36ᵒC over night 

(ON). Small portion of this ON culture was inoculated in a nose flasks containing 30ml LB 

pH 8.0. The sample was supplemented with ampicillin (100µg / ml and gentamycin (20µg / 

ml) but no glucose. The nose flask was kept in 36ᵒC water bath at continuous stirring of 300 

rpm with magnetic stirrer to ensure the proper aeration and equal distribution of culture 

medium for efficient growth. Around OD600 of 0.2-0.3 the expression of LacI-L’ fusion 

protein along with ParA resolvase gene was induced by adding 0.25% L-arabinose to the 

medium and growth was continued at same temperature for another 30 min the induction of 

SNUC gene was carried out by the addition of 5mM isopropylβ-D- thiogalactopyranoside 

(IPTG) and grown for another 30 min to accumulate enough amount of nuclease inside the 

bacterial cells. Lysis gene E was induced with the temperature up shift to 42ᵒC and after 60 

min of lysis the SNUC was activated by the addition of MgCl2 and CaCl2 at final 

concentrations of 1mM and 10mM respectively. This whole process of growth, lysis and 

killing of cells with SNUC was monitored by Optical density OD600 measurement, physical 

observation through light microscopy and determination of CFU for viable cells through 

platting dilution of culture medium on LB agar plates.  

 

2.2.8 Alternate protocol for production of residual free mcDNA immobilized inside the 

BGs 

 

Plasmids p4aEYFP-C1 and pGLNIc [72] was co-transformed in E. coli Nissle 1917 

and was inoculated and grown in 10ml LB supplemented with antibiotics ampicillin and 

gentamycin at different concentrations (100µg / ml and 20µg / ml respectively) along with 

2% glucose in rotating wheel at 36ᵒC over night (ON). Small portion of this ON culture was 

inoculated in a nose flasks containing 30ml LB pH 8.0. The sample was supplemented with 

ampicillin and gentamycin but no glucose. The nose flask were kept in 36ᵒC water bath at 

continuous stirring of 300 rpm to ensure the proper aeration and equal distribution of culture 

medium for efficient growth. Around OD600 of 0.2-0.3 the expression of LacI-L’ fusion 

protein along with ParA resolvase gene was induced by adding 0.06% L-arabinose to the 

medium and growth was continued at same temperature for another 60 min after which  the 

lysis gene E was induced with the temperature up shift to 42ᵒC and was continued for 60 min. 

Finally the induction of SNUC gene was carried out by the simultaneous addition of 5mM 
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isopropylβ-D- thiogalactopyranoside (IPTG) and MgCl2 and CaCl2 at final concentrations of 

1mM and 10mM respectively. Incubation was continued for another 3hours for complete 

deactivation of unbound genetic materials. This whole process was monitored by optical 

density OD600 measurement, physical observation through light microscopy and determination 

of CFU for viable cell count through platting dilutions of culture medium on LB agar plates 

and incubating them ON at 36ᵒC.  

 

2.2.9 Determination of Viable cell in culture medium 

 

Standard automated plating procedure was carried out for determination of CFU in 

culture medium used for BG production. During this procedure 50µl or 100µl serial dilutions 

using 0.9% NaCl solution or pure culture medium was subjected to plain LB plates through 

special spiral platter (WSAP system; DON Whitley Scientific Limited, West York Shire, 

UK). The LB plates were grown at 36ᵒC over night in Incubators. The next day the colonies 

were counted using colony counter machine 3.15 (Synoptic Ltd., Cambridge, UK) using the 

program Synbiosis ProtoCOL.  

 

2.2.10 Quantification of plasmid DNA by real time quantitative PCR (qPCR) 

 

Approximately 1ml of sample was taken at different time points to analyze the 

amount of plasmid DNA retained inside the BGs. The pellets were treated for plasmid DNA 

isolation as described in (section 2.2.3). Real time quantitative PCR (qPCR) was performed 

for quantification of mcDNA, mpDNA and mopDNA. In iQ 96 well transparent PCR plates 

(Bio-Rad) containing 12.5ml of iQ-SYBR Green super mix (Bio-Rad), 1µM of each primer 

(Microsynth AG), 5µl of template DNA (see isolation of plasmid DNA) in a final volume of 

25µl. The PCR plates were sealed using Microseal ‘B’ (Bio-Rad) adhesive based sealing to 

prevent evaporation of sample. Following primers listed in the (Table.1) below were designed 

using primer3 web based tool [77] and were used for the quantification of mcDNA, mpDNA 

and mopDNA where as for quantification of gentamycin resistance cassette the primers 

designed by Firas Allaham was used [78].  

 

For generating real time PCR data MIQE (Minimum Information for Publication of 

Quantitative Real-Time PCR Experiments) guideline was followed [79]. BioRad iCycler iQ 
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multiple-color real time PCR detection system with following thermal cycling condition of 

95ᵒC for 3min, followed by 30 cycles of 94ᵒC for 40sec and 60ᵒC for 60sec was used to 

amplify the desired regions. Fluorescence of SYBR Green dye was measured during each 

extension step. To check the specificity of product amplified the sample was subjected to a 

final step of melting gradient form 60ᵒC to 95ᵒC with interval of 10sec. a 10 fold serial 

dilution of minicircle, miniplasmid, or mother plasmid was used to perform standard curve 

for DNA quantification. All samples and standards were quantified in duplicates and the data 

analysis was carried out using special software provided by the manufacturer. 

 

 
 

2.3 Results 

 

2.3.1 Production of mcDNA and mpDNA by site-specific ParA recombination 

 

For standard curve analysis in qPCR purified mcDNA and mpDNA is critical. The 

ParA resolvase gene in plasmid p4aEYFP-C1 (Fig.4.a) is kept under the expressional control 

of pBAD promoter. Bacterial strain E. coli C2988J and E. coli MC4100 carrying plasmid 

p4aEYFP-C1 (Fig.4.a) and plasmid p3aEYFP-C1 (Fig.4b) were used in this experiment to 

check the recombination pattern of both plasmids in different bacterial strains. The pBAD 

promoter was induced by the addition of 0.25% L-(+)-arabinose at time point 0 min, which 

Table.1. List of primers used for real time PCR quantification

Template Amplified region Primer name and primer sequence Fragment 
size and 

Ref

Purified 
mcEYFP

1939-1960nt
7805-7825nt

McXF: 5’-GTGGTTTGTCCAAACTCATCAA-3’
McSR: 5’-ACATGAGCAGATCCTCTACGC-3’

221bp*

Purified
mpDNA

7572-7591nt Ori
2124-2143nt ParA

MpAF: 5’-TTTGCAAGCAGCAGATTACG-3’
MpYR: 5’-CGCAGCAGCAAAAATAAAAG-3’

238bp*

mopDNA 1939-1960nt
2124-2143nt ParA

McXF: 5’-GTG GTT TGT CCA  AAC TCA TCA A-3’
MpYR: 5’-CGC AGC AGC AAA AAT AAA AG-3’

205bp*

pGLNIc Gentamycin 
resistance gene

Lys-Gent-RT-Fwd: 5’-CGATGTTACGCAGCAGGGCAG-3’
Lys-Gent-RT-Rev: 5’-CGATGAATGTCTTACTACGGAG-3’

194bp [78]

* (This work) Primers designed using web based primer3 software using default settings; mcEYFP, minicircle
encoding enhanced yellow fluorescent protein; mpDNA, mini plasmid DNA; mopDNA, mother plasmid DNA;



96 

 

results in ParA mediated recombination of mother plasmid into mpDNA and mcDNA in 

plasmid p4aEYFP-C1 (Fig.5a), whereas no recombination is seen in plasmid p3aEYFP-C1 

(Fig.5b) due to absence of res1 site. Partial recombination seen in bacterial strain E. coli 

C2988J carrying plasmid p4aEYFP-C1 (Fig.5a. lane 5, 6 and 7) as compared to the 

recombination event documented in E. coli MC4100 carrying the same plasmid (Fig.5c).  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. a) Map of plasmid p4aEYFP-C1; b) Map of plasmid p3aEYFP-C1; (for detail of plasmid p4aEYFP-C1 
please see Fig.3b. and for detail of plasmid p3aEYFP-C1 please see Fig.3c respectively)  
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Fig.5a. Restriction analysis of recombination product; 1% agarose 
gel picture showing recombination event in E.coli C2988J carrying 
plasmid p4aEYFP-C1 ; lane 1, GeneRulerTM 1kb DNA ladder 
(Fermentas); lane 2, time point B, before recombination (un-cut); 
lane 3, time point B  before recombination (BamHI); lane 4, time 
point B, before recombination (NsiI);  lane 5, 60min after 
recombination time point E (un-cut); lane 6, 60min after 
recombination (BamHI); lane 7, 60 min after recombination (NsiI) 

  



97 

 

 

 

 

 

 

 

 

10000------- 
8000--------- 
6000--------- 
5000--------- 
4000--------- 
3500--------- 
3000---------
2500---------
2000--------- 

1500--------- 

1000--------- 

750---------- 

500---------- 

250---------- 

  

   1         2           3              4          5           6            7 

Mother plasmid (p3a) 

 
Fig.5b. restriction analysis of recombination product; 1% agarose 
gel picture showing no recombination activity in E.coli C2988J 
carrying control plasmid p3aEYFP-C1; lane 1, GeneRulerTM 1kb 
DNA ladder (Fermentas); lane 2, time point B , before 
recombination (un-cut); lane 3, time point B , before recombination 
(BamHI); lane 4, time point B, before recombination (NsiI);  lane 
5, 60min after recombination time point E (un-cut); lane 6, 60min 
after recombination (BamHI); lane 7, 60 min after recombination 
(NsiI) no recombination is observed in control plasmid.  
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Fig.5c. Restriction analysis of recombination product; 1% 
agarose gel picture showing recombination event in  E.coli 
MC4100 harbouring plsmid plasmid p4aEYFP-C1; lane 1, 
GeneRulerTM 1kb DNA ladder(Fermentas); lane 2, uncut over 
night culture of p4aEYFP-C1; lane 3, timepoint B before 
recombination (NsiI); lane 4, 30 min after recombination 
(NsiI); lane 5, 60 min after recombination (NsiI) 
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No recombination event was seen before the induction of ParA resolvase gene in both 

of the bacterial strains (Fig.5a. lane 2, 3 and 4) and (Fig.5c. lane 3).  The negative control 

lacking one resolution site does not show any recombination pattern before and after the 

addition of L-(+)-arabinose (Fig.5b). The recombination of plasmid p4aEYFP-C1 in E. coli 

MC4100 was continued for 60 min and the cells were harvested for mcDNA and mpDNA 

isolation to be used for real time PCR standards. Clear bands of purified mcDNA and 

mpDNA can be seen in lane 3 and 4 at desired band positions respectively (Fig.5d). 

 

2.3.2. Western blot analysis for expression of LacI-L’ 

Plasmid p4aEYFP-C1 is newly constructed and the (LacI-L’ / ParA) expression 

cassette is inverted therefore it is necessary to do expression study for expression of cloned 

fusion protein LacI-L’ through western blot analysis. The LacI-L’ protein in plasmid 

p4aEYFP-C1 (Fig.4a) and p3aEYFP-C1 (Fig.4b) is under the expressional control of pBAD 

promoter which is induced by the addition of 0.25% L-(+)-arabinose. To determine the 

expression of LacI-L’ fusion protein after the addition of L-(+)-arabinose, 1ml samples were 

collected before, in the mid and at the end of protein expression. The expressed fusion protein 
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Fig.5d. Purified mcDNA/mpDNA; 1% agarose gel picture of 
purified minicircle and miniplasmid DNA obtained from ParA 
mediated recombination of plasmid p4aEYFP-C1 in E.coli. 
MC4100; lane 1, GeneRulerTM 1kb DNA ladder(Fermentas); lane 
2, uncut over night culture of p4aEYFP-C1; lane 3, minicircle 
(NsiI); lane 4, miniplasmid (NsiI) 
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was detected through anti Lac repressor serum. The clear background expression of LacI-L’ 

can be seen at about ~45 kDa at the beginning of time point C 20 min after induction 

(Fig.6a), which is giving stronger signals at time point D and E (Fig.6b), which corresponds 

to 40 and 60 min post induction respectively. The clear bands at desired ~45 kDa correlates 

to the fact that LacI-L’ was expressed by the addition of L-(+)-arabinose which was added at 

time point B. No expression of LacI-L’ fusion protein observed at time point B which is 0 

min and the time point of arabinose addition (Fig.6a). 

    

 

   

 

 

 

 

 

2.3.3 Transfection efficiency of plasmid p4aEYFP-C1 and p3aEYFP-C1 

 

To evaluate the expression of newly cloned gene encoding Enhanced Yellow 

Fluorescent Protein (EYFP) which is kept under expression of cytomegalovirus intermediate 

early (CMV-IE) promoter in plasmid p4aEYFP-C1 and p3aEYFP-C1 (Fig.4. a and b) the 

CCL-20.2 cells were transfected using TurboFectTM and plasmid DNA from both constructs 
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Fig.6. Western blots analysis for LacI-L’; Western blots analysis for detection of fusion protein LacI-L’ with 
anti LacI antiserum in E. coli C2988J harboring plasmid p4aEYFP-C1(lane 3,4,7 and 8) and p3aEYFP-
C1(lane 1,2,5,6), LacI-L’ fusion protein is under control of pBAD promoter which is induced by the addition of 
0.25% L-(+)-arabinose at time point B; a) Clear band of LacI-L’ fusion protein can be seen around ~45 kDa at 
time point C, 20 min after L-(+)-arabinose induction (lane 1, 2, 3and 4) no band detected at the given range at 
time point B, 0 min time of induction (lane 5, 6, 7 and 8) (+ve)= positive control; M, = unstained protein 
molecular weight marker (Fermentas); b) clear band of LacI-L’ seen around time point D(lane 1,2, 3 and 4) 
and E (lane 5, 6, 7 and 8) lane 9, Blank; M= unstained protein molecular weight marker (Fermentas); and 
(+ve) is the positive control.  

a) b) 
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i.e. p4aEYFP-C1 and p3aEYFP-C1. This has to be done before the generation of BG loaded 

with mcDNA carrying the reporte gene under the CMV-IE promoter. The CCL-20.2 cells 

incubated with plasmid p4aEYFP-C1 alone for 24 and 48 hours showed no fluorescence 

when observed under light fluorescent microscope (Fig.7.a). The CCl-20.2 cells transfected 

with 1µg DNA of commercial plasmid pEYFP-C1 using TurboFectTM showed weaker signals 

(Fig.7.b) as compared to both of the newly constructed plasmids i.e. p4aEYFP-C1 and 

p3aEYFP-C1 using same amount of DNA. The highest fluorescent signals were recorded in 

cells transfected with plasmid p4aEYFP-C1 where as medium (Fig.7.d) compared to this, 

medium fluorescence signals were recorded in cells transfected with plasmid p3aEYFP-C1 

(Fig.7c) suggesting the better efficiency of cloned genes in SIP plasmids. This might be due 

to the removal of DNA sequences in between the EYFP protein and polyA tail during the 

construction of plasmid pEYFP-C1-MCS (Fig.3a) which is used further to clone plasmid 

p4aEYFP-C1 and p3aEYFP-C1 (Fig 3b. and 3c. respectively).  

 

 
 

 

 

 

Preliminary results of cells transfected with BGs carrying enhanced yellow 

fluorescent protein minicircles (mcEYFP) produced by recombination of plasmid p4aEYFP-

C1 gave weak expression signals in macrophages RAW-264.7 cells (Fig.8). The experiment 

has to be repeated after production of BGs harboring mcDNA on large scale under controlled 

environment. After which conclusions could be drawn for use of BG loaded with mcDNA as 

a therapeutic target.    

       

24
h

48
h

a b c d

Fig.7. Transfection of CCL-20.2 cells; Expression of enhanced yellow fluorescent protein EYFP in CCl-20.2 
cell line 24 hours and 48 hours post transfection. a) Ctrl; Control, 4x104 cells plus naked DNA; b) pEYFP-
C1 plus TurboFectTM; c) p3aEYFP-C1plus TurboFectTM; d) p4aEYFP-C1plus TurboFectTM  
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2.3.4 Production of mcDNA loaded BGs devoid of mpDNA and un-recombined 

mopDNA 

 

For producing BGs harboring mcDNA that are free of mpDNA and un-recombined 

mopDNA, the newly constructed plasmid p4aEYFP-C1 (Fig.3b) was co-transformed with 

plasmid pGLNIc (carrying lysis and SNUC gene Fig.9) in E. coli Nissle 1917.  

 

 
 

 The plasmid p3aEYFP-C1 (Fig.3c) was used as a control plasmid due to absence of 

res1 site hence it does not recombine. Expression of LacI-L’ / ParA recombinase protein 

(which is controlled by pBAD promoter) was induced at an optical density OD600 of about 

0.2-0.3. by addition of 0.25% L-(+)-arabinose which results in recombination of mopDNA 

into mpDNA and mcDNA and synthesis of membrane anchored fusion protein LacI-L’. Drop 

in CFU was noted in samples upon addition of L-(+)-arabinose (Fig.10. time point -60 min) 

which kept on dropping after the addition of 5mM IPTG (Fig.10 time point -30 min) 

indicating an inhibitory effect of chemical manipulation on cell viability in case of above 

mentioned plasmid combinations. No inhibitory effect was observed in untreated control 

Ctrl                        mcEYFP

1.
5x

10
4

 

 

 

Fig.9. Map of plasmid pGLNIc; PMob, promoter of mob gene; MobM, mutated mobilization sequence; Gentr, 
gentamycin resistance cassette; CI857, thermosensitive allele of the λ phage repressor gene; PRM / Pmut , mutated 
promoter of λ phage; Eivb, in vivo biotinylated  lysis protein E sequence of bacteriophage phiX174; SNUC, 
Staphylococcus aureus nuclease A; t0, terminator sequence; rep, origin of replication (adapted and modified from 
PhD thesis of Timo Lanngamann 2011) 

pGLNIc (83100bp) 
PA1 

     Gentr t0  

S 

SNUC        rep MobM   lacIq 
P 

Eivb 
PRM Pmut 

  CI857 
PMob 

Fig.8. Transfection of RAW-264.7 cells with BGs carrying mcDNA; BGs carrying mcDNA encoding 
enhanced yellow fluorescent protein EYFP resulted in weak expression of clone gene in RAW-264.7celsl line 
48 hours post transfection. Ctrl, Control 1.5X104 cells plus naked DNA; mcEYFP, in vivo loaded Bacterial 
Ghosts (BGs) with minicircle encoding enhanced yellow fluorescent protein (mcEYFP); no signal seen in 
control. 
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group where the OD600 and CFU values did not change (Fig.10 ■ and □ respectively). 

Obtained results from three independent experiments showed 98.62% drop in CFU count in 

samples with ParA and gene E induction (Fig.11, empty bar). The same plasmid combination 

when treated with recombination lysis and SNUC (RLS) showed 99.94% bacterial 

inactivation (Fig.11, striped bar). The highest bacterial inactivation was recorded in nose 

flask with induced gene E followed by nuclease inactivation close to 99.97% (Fig.11 dark 

bar).  
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Fig.10. OD and CFU count of RLS test; E. coli Nissle 1917 carrying plasmid p4aEYFP-C1+pGLNIc (Red 
and Green) ; p3aEYFP-C1+pGLNIc (Black and Blue); Drop in CFU is recorded in samples treated with L-
(+)-arabinose (0.25%) at time point -60 min. no significant change in OD and CFU values were observed in 
untreated control(black line ■ / □ respectively) 

Fig.11. Percentage of killed or inactivated bacterial cells 
obtained through CFU count; 99.97% inactivation of 
bacterial cells in samples induced with lysis gene E and SNUC 
activation (dark bars); 98.62% reduction in CFU count in 
samples treated with arabinose and temperature up shift of 42ᵒ 
(empty bars); and 99.94% decrease in CFU of samples with 
ParA recombination followed by induction of gene E and 
finally SNUC activation RLS (recombination lysis and SNUC) 
(horizontal stripe bars) (mean SD of 3 different experiments) 
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The qPCR analysis for detection of lysis plasmid with primers designed for 

gentamycin resistant cassette (Table.1) is an important tool for monitoring the change in 

amount of genetic material during growth, lysis and SNUC activation. The plasmid DNA 

samples from the above experiments were subjected to real time PCR for monitoring the 

gentamycin resistance gene present on the plasmid pGLNIc. Loss in gentamycin resistant 

gene was recorded to be 62.57% in the samples treated with arabinose and lysis activity 

(Fig.12 white bar). The highest inactivation of genetic material was recorded in samples with 

induced gene E and SNUC activation which was close to 99.22% (Fig.12, black bar). 

Compared to this the samples which were treated with 0.25% L-(+)-arabinose before the 

induction of gene E and activation of SNUC through addition of CaCl2 and MgCl2 (0.01M 

and 0.001M respectively) showed slight drop in genetic inactivation 96.85% (Fig.12, strip 

bar). Form this it can be concluded that the recombination event play an important role in 

decreasing the enzymatic activity of SNUC.  

 

 
 

2.3.4.1 Effect of L-(+)-arabinose on combination of p4aEYFp-C1 and pGLNIc 

 

To investigate whether the final lysis and inactivation of the bacterial culture is not 

due to L-(+)-arabinose addition but due to induction of lysis gene E and SNUC activation it 

was necessary to check the effect of L-(+)-arabinose alone on bacterial cells carrying both 

plasmids i.e. p4aEYFP-C1(Fig.3b) and pGLNIc (Fig.9). To investigate further the effect of 

L-(+)-arabinose on each of the plasmids separately the E. coli Nissle 1917 carrying plasmid 

p4aEYFP and plasmid pGLNIc were also included in the above experiment. Drop in CFU 

was recorded for the first 2 hours upon addition of L-(+)-arabinose in bacteria carrying both 
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Fig.12. Percentage loss of lysis plasmid at the end of chemical and or 
physical induction;. 99.22% reduction in gentamycin resistant cassette 
in samples with induced gene E and SNUC activation (dark bar); 
62.57% reduction of lysis plasmid in samples with ParA recombinase 
and lysis gene E induction (empty bar); and 96.85% decrease in 
genetic material in samples with ParA recombination followed by 
induction of gene E and finally SNUC activation (horizontal stripe 
bar) (mean of 3 individual experiments are indicated by error bars) 
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the plasmids i.e. (p4aEYFP-C1 and pGLNIc) followed by stabilization of bacterial cells and 

normal growth was observed at later stages (Fig.13 ○ blue l ine). No change in OD600 and 

CFU count was recorded in cells carrying plasmid pGLNIc or p4aEYFP-C1 separately upon 

addition of L-(+)-arabinose (Fig.13 □ black and Δ red).  This impaired growth of cells upon 

L-(+)-arabinose addition was only seen in E. coli Nissle 1917 carrying both the plasmids i.e. 

p4aEYFP-C1 and pGLNIc. Hence it is concluded that the final inactivation achieved in 

recombination lysis test or RLS test is due to the effect of BG formation and nuclease activity 

and not due to the L-(+)-arabinose addition. 

 

                      
 

 

 

 

2.3.4.2 Effect of IPTG addition at different time points 

 

It was shown in previous studies that the activity of SNUC is solely dependent on 

addition of CaCl2 and MgCl2, and is independent of time point of nuclease induction through 

addition of IPTG [59]. In this part the effect of IPTG addition at different time points was 

investigated. For this reason E. coli Nissle 1917 carrying two plasmids p4aEYFP-C1 and 

pGLNIc were subjected to 7 different controlled physiological conditions i.e. E lysis alone; 

ParA mediated recombination alone; SNUC activation alone; E lysis and SNUC activity; 

ParA recombination and SNUC activity; ParA recombination and lysis and finally RLS 
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Fig.13. Effect of L-(+) arabinose; OD and CFU count of E. coli Nissle 1917 carrying plasmid p4aEYFP-
C1+pGLNIc (Blue line ● ○); p4aEYFP-C1 (Black line ■ □) and pGLNIc(red line   Δ); drop in CFU recorded 
in E. coli Nissle 1917 carrying both the plasmids p4aEYFP-C1+pGLNIc  upon addition of  0.25% L-(+)-
arabinose for first 2 hours where as cell started to recover and normal growth seen at the end of experiment; 
no effect on cell growth observed in E. coli Nissle 1917 carrying p4aEYFP-C1 or pGLNIc separately upon 
addition of 0.25% L-(+)-arabinose 
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activity altogether (Fig.14 & 15). Slight modification was made in design of this experiment 

by decreasing the amount of L-(+)-arabinose to 0.06% (it has been shown in previous studies 

that the concentration of arabinose can be manipulated without affecting the desired 

expression Schlacher and Abbas).  
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Fig.14. Effect of IPTG addition on SNUC activity; OD and CFU graph of lysis test of E. coli Nissle 1917 
carrying plasmid p4aEYFP-C1 and pGLNIc; drop in CFU seen after addition of L-(+)-arabinose (0.06%) at 
time point -60 min. (Blue); lysis only (Black); lysis+SNUC (Green); SNUC alone (Red). 
 

Fig.15. Effect of IPTG addition on SNUC activity; OD and CFU count of E. coli Nissle 1917 carrying plasmid 
p4aEYFP-C1 and pGLNIc. Drop in CFU seen after addition of L-(+)-arabinose 0.06% at time point -60 min. 
recombination+SNUC (black); recombination lysis (blue); recombination+lysis+SNUC (RLST) (red). 
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Results obtained from the above experiment showed lysis efficiency of 99.69% in the 

E. coli Nissle carrying plasmid p4aEYFP-C1 and pGLNIc (Fig.14 black line) which is 

slightly higher than in samples with ParA mediated recombination followed by  gene E lysis 

where the 98.62%. of bacterial cells were lysed (Fig.15 blue line) this shows that the cells 

lysed better in the absence of L-(+)-arabinose this observation was verified through qPCR 

analysis of DNA samples from above two conditions which showed 75.30% loss in lysis 

plasmid in group with gene E induction alone as compared to 62.57% in samples treated with 

arabinose and gene E induction. It was also found out that the addition of IPTG 30 min prior 

to E lysis is crucial for achieving maximum inactivation of genetic material. Drop in SNUC 

activity is observed upon simultaneous addition of IPTG and CaCl2 and MgCl2 60 min after 

the completion of E mediated lysis of bacterial cells. This drop in SNUC activity was 

supported through qPCR which showed better inactivation of genetic material in sample 

where IPTG was added -30 min / before the induction of lysis gene E than the sample in 

which IPTG was added 60 min after gene E activation. The amount of genetic material 

hydrolyzed by SNUC where IPTG was added 60 min after gene E mediated lysis induction 

dropped by 15-25% in two different cases (Fig.16). 
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2.3.5 Quantification of mcDNA retained inside the BGs 

 

The primary aim of this study was to immobilize the mcDNA inside the BGs and to 

get rid of the unwanted mpDNA which is a by-product of ParA mediated recombination and 

un-recombined mopDNA. The ParA recombination of plasmid p4aEYFP-C1 in bacterial 

strain E. coli Nissle 1917 was carried out by addition of L-(+)-arabinose in which the 

Fig.16. Effect of IPTG addition on SNUC activity; Decrease in 
lysis plasmid (in %) was recorded by qPCR analysis. -30 
represents 30 min before gene E induction and +60 represent 60 
min after gene E induction there is 15% decrease in nuclease 
activity observed when IPTG was added at +60 in recombined 
p4aEYFP-C1 (white bars); 25% decrease in nuclease activity 
observed when IPTG was added at +60 min in un-recombined 
samples.   
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mcDNA is produced. Two different methods were applied to get rid of unwanted mpDNA 

which included i) E mediated lysis of bacterial cell resulting in expulsion of unbound 

mpDNA ii) E mediated lysis of bacterial cells followed by SNUC activity in order to 

hydrolyze the available mpDNA and un recombined mopDNA and achieve maximum 

inactivation of mpDNA in BG pellet. 1ml bacterial culture sample were collected at different 

time points before and after the recombination; before and after the lysis and before and after 

the SNUC activation, where ever needed. In vivo loading efficiency of BGs with mcDNA 

was determined by qPCR amplifying the 221bp region of fully formed mcDNA using primers 

McXF and McSR (for primer sequence see Table.1). The amount of mpDNA retained in the 

BG pellet was calculated through amplifying the 238bp sequence present on fully formed 

mpDNA using primer MpAF and MpYR (prime sequence in Table.1). In samples with gene 

E mediated lysis loss in mpDNA was recorded to be only 18.07% (Fig.17 dark bar) however, 

the percentage loss in amount of mpDNA in samples with induced gene E and SNUC activity 

was considerably high i.e. 99.48% (Fig.17 empty bar).  
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Compared to this the amount of mcDNA retained inside the BG is recorded to be 

68.22% in samples with induced gene E, which means 32.88% of mcDNA is lost during the 

E mediated lysis process (Fig.18 dark bar), whereas there was unexpected decrease in amount 

of mcDNA in sample with induced gene E followed by SNUC activation which is close to 

97.63% (Fig.18 empty bar). This means only 2.37% of mcDNA is still retained inside the 

BGs.  

 

Fig.17. Quantification of mpDNA; Decrease in amount of mini 
plasmid DNA in the pellet of samples taken 240 min after the 
chemical and physical induction. 13.67% reduction in 
miniplasmid DNA in pellet of samples with parA recombinase 
and lysis gene E induction (Dark bars); and 99.48% decrease in 
genetic material in samples with parA recombination followed 
by induction of gene E and finally SNUC activation (Empty 
bars)( mean of two individual experiments shown with error 
bars) 
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However by comparing the amount of mcDNA and mpDNA per BG in set of 3 experimets 

below it is observed that there is a huge drop in mpDNA copy / BG (8.27mpDNA / BG) 

where samples are treated with SNUC. Howereve it is to be noted that amount of mcDNA did 

not drop with that ratio as is seen on mpDNA. The amount of mcDNA retained in BGs 

treated with SNUC was calculated to be 25.7 copies of mcDNA / BG (Table.2).  

 

 

2.4 Discussion 

 

It is understood that the mcDNA devoid of bacterial sequences is a novel DNA 

vaccine candidate, although there are limitations in its practical implications due to its 

laborious production and purification [22, 29-31]. The efficient recombination of plasmid 

DNA to produce minicircles have been addressed by the introduction of in vivo loaded 

Table.2. Amount of mcDNA and mpDNA retained inside the BGs

Method mcDNA
ng. / total no of cells

mcDNA
copy /BG 

mpDNA
ng. / total number of 

cells

mpDNA
copy / BG

ParA recombination 
and E lysis 42.96ng / 5.59x107 322 166ng / 6.49x107 412

ParA recombination 
E lysis and SNUC 2.62ng / 4.28x107 25.7 1.39ng / 2.71x107 8.27

Amount of mcDNA and mpDNA calculated through qPCR: mcDNA generated from two different techniques. The
plasmid ng is converted into the copy number based on following formulae [copy number = (ng of DNA x 6.022 x
1023) / (size of plasmid in bp. x 1 x109x 660)] where 6.02214199x1023 is Avogadro’s number. Size of mcDNA=
2173bp, and mpDNA= 5666bp; mean of three individual experiments

Fig.18. Quantification of mcDNA; Decrease in amount of 
anchored minicircle DNA in the pellet of samples taken 240 min 
after the chemical and physical induction. 32.88% reduction in 
minicircle DNA in pellet of samples with parA recombinase and 
lysis gene E induction (Dark bars); and 97.63% decrease in 
genetic material in samples with parA recombination followed by 
induction of gene E and finally SNUC activation (Empty bars) 
(mean of 3 individual experiments are indicated by error bars) 
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mcDNA BGs, which showed recombination efficiency of around 100% and yet still needs to 

be free of mpDNA that are retained in the pellet of BGs for its practical use in clinical trials 

[57]. Reduction of mpDNA in the BG preparation is the main objective in this study. 

Combination of mcDNA immobilization inside BGs and reduction of un-wanted mpDNA / 

mopDNA sequences through hydrolysis activity of SNUC is investigated to achieve final 

goal. In this investigation 4 different protocols are combined together to get in vivo loaded 

mcDNA free of unwanted mpDNA / mopDNA sequences, including, i) mcDNA production 

through parA recombination, ii) immobilization of mcDNA inside the Gram-negative 

bacteria through SIP system, iii) BG production through gene E mediated lysis, iv) 

elimination of un-recombined mopDNA and mpDNA through SNUC.  

 

 The result obtained from this study highlights the inhibitory effect of L-(+)-arabinose 

addition on bacterial cells carrying both plasmids p4aEYFP-C1 and pGLNIc. This inhibitory 

effect was independent of bacterial strain used for mcDNA production. Three different E. coli 

stains (C2988J, MC4100 and Nissle 1917) carrying plasmid p4aEYFP-C1 and pGLNIc 

showed similar pattern of CFU drop upon addition of L-(+)-arabinose. However, 

investigation for revealing the effect of L-(+)-arabinose addition on bacteria carrying  these 

two plasmids individually did not show any adverse effect leading to conclusion that the final 

drop in CFU is due to the gene E mediated lysis and SNUC inactivation of the bacterial cells. 

Thus the real time PCR results for quantification of anchored mcDNA and unbound retained 

mpDNA are considered accurate. In this study the extra step of nuclease induction serves as 

the quality control measure for production of mcDNA loaded BGs. The remaining amount of 

mpDNA inside the BG preparations can be a serious threat for its use in clinical trials, here in 

this study it has been shown through qPCR the reduction in mpDNA concentration by 

99.48% as compared to previous 70% [57]. However during this inactivation procedure the 

amount of mcDNA was also reduced to critical 2.38% only, which is slightly more than what 

was predicted. When converted to plasmid copy / BG it corresponded to approx ~23-59 

plasmid copies of mcDNA / BG where as  previous studies showed that even 50 plasmid 

copies / BG is enough to get transfection efficiency of around 82% [81]. BGs with mcDNA 

generated from ParA recombination of plasmid p4aEYFP-C1 through procedure explained 

earlier has been tested in cell culture and preliminary data showed weak fluorescence of 

enhanced yellow fluorescent protein in RAW-264.7 cells (Fig.8). These tissue culture 

experiments for reporter gene activity has to be repeated after production of  BGs carrying 
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mcDNA that are devoid of mpDNA using method developed her in on large scale under 

controlled conditions before drawing any final conclusion for use of BGs loaded with 

mcDNA as a therapeutic target. 

 

Another aspect that was studied here was the effect of IPTG addition at different time 

points on SNUC activity earlier reports suggested that the IPTG addition is independent of 

time point of its addition and its activation through addition of CaCl2 and MgCl2 however in 

this study experiments showed that there is a significant drop in killing and hydrolyzing 

activity of SNUC upon simultaneous addition of IPTG and CaCl2 and MgCl2 (Fig.16). This 

might be due to the fact that the bacterial cells are already dead or lysed due to addition of L-

(+) arabinose and or lysis gene E respectively, hence there is not enough bacterial machinery 

for producing the nuclease enzyme which is crucial for DNA hydrolysis. Thus it is important 

to induce SNUC gene 30 min before the induction of lysis gene E in order to achieve 

maximum inactivation of mpDNA / mopDNA in prepared BGs. 
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Chapter III 

Production of minicircle DNA loaded Bacterial Ghosts 

carrying a reporter gene and its quantification using 

quantitative Real Time PCR (qPCR) 

 

Abstract 

Bacterial Ghosts (BGs) loaded with minicircle DNA (mcDNA) carrying reporter genes 

are important tool for basic research and screening of delivered antigen. In this study the 

mcDNA harboring enhanced green-yellow fluorescent protein (EYFP), Red fluorescent 

protein (mCherry), and green fluorescent protein (VenusA206K) was produced along with the 

expression of lysis gene E to get in-vivo loaded mcDNA BGs. The expression of the 

eukaryotic regulated reporter gene cloned in advanced version of Self Immobilizing Plasmid 

(SIP) resulted in better fluorescent signals when tested in CCL-20.2 cells. The mcDNA is 

produced by parA site specific recombination of mother plasmid DNA (mopDNA) and is 

anchored inside the BGs through specific interaction between membrane anchored LacI-L’ 

fusion protein and the lac operator sequence (lacOs) present on the mcDNA followed by gene 

E lysis transformed together on a separate plasmid. Previously the amount of mcDNA 

anchored inside the BGs was quantified through quantitative real-time PCR (qPCR) by 

amplification of lacOs site present on mcDNA, whereas miniplasmid DNA (mpDNA) was 

quantified by amplifying the resistance cassette used for its production. This technique had its 

limitations as the sequences being used for their quantification is also present on mopDNA, 

hence these primers could attach and detect the desired sequence independent of their presence 

on fully formed mcDNA/mpDNA or on un-recombined mopDNA. In this study a new strategy 

is developed to quantify the amount of mcDNA and mpDNA depending on their subsequent 

sequences present on recombined (mcDNA/mpDNA) or on un-recombined mopDNA through 

qPCR. This technique is very simple and highly structured as the final step of melt curve 

analysis will then verifies the source of quantified mcDNA/mpDNA i.e. from fully formed 

mcDNA/mpDNA or from un-recombined mopDNA. 
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3.1 Introduction 

The use of plasmid DNA as a vaccine has been investigated in most of the recent 

studies [1-5]. However its practical use is limited due to the absence of efficient delivery 

system. Among currently available viral and non viral DNA delivery system the non viral 

delivery system has an edge due to its safety profile, ease of manufacturing and for their better 

capacity in delivering antigens [6-11]. The presence of unmethylated CpG sequences and 

antibiotic resistance gene has limited the use of DNA vaccines. For this reason a new smaller 

size DNA molecule lacking these sequences has been developed which is known as mcDNA 

[12-14]. These mcDNA not only minimized the risk for the spread of antibiotic resistance 

among wild type strains but increase the transgene signals in mammalian cells due to their 

reduced size and absence of unmethylated CpG motifs [13-15]. Minicircles are produced in a 

different ways through site-specific recombination activity of bacteriophage λ integrase [12, 

13, 15], ParA resolvase [16], Cre recombinase of bacteriophage P1 [17] and by the ɸC31 

integrase [14] in most of E.coli bacterial strains. The enzyme listed above recognizes and 

cleaves the DNA sequences located in between the two corresponding recombination (rec) 

sites. This property of recombinase is used to produce minicircles thus by positioning the 

origin of replication and the resistance cassette in between these two rec sites the mopDNA 

can be divided into, a replicative mpDNA carrying unwanted bacterial backbone (BB) 

sequences and the mcDNA carrying only the therapeutic active expression cassette [12-15, 

18]. Formally mcDNA was purified through cesium chloride gradient ultra centrifugation 

which is quite laborious [19] and the recombination process itself was not efficient enough 

e.g. Darquet et.al., 50%, Kreiss et.al., 85% and chen et.al., 97% [12-15] until the introduction 

of parA recombination system which was 100% effective and can be achieved in only 30 min 

[20].  

Apart from the safety profile of DNA vaccines, the efficient delivery system is the 

main focus in designing novel drugs. Bacterial ghost system represents a novel system in 

delivering the foreign antigens inside the host. BGs due to their intact surface structures act as 

an adjuvant and can elicit effective humoral and cellular immune response [21]. These BGs 

are produced by the controlled expression of lysis gene E of Phage ɸX174 in Gram-negative 

bacterium [22, 23]. The gene E is kept under the tight control of temperature sensitive 

λpRmut/CI857 promoter/repressor system and can be induced by temperature shift of 36ᵒC to 

42ᵒC [24]. The expression of lethal gene E results in the formation of transmembrane tunnel 

like structure through which the cytoplasmic contents are expelled in the surrounding medium 
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due to difference in their osmotic pressure [25-27]. This system together with self 

immobilizing plasmid is used to produce the self loaded DNA vaccines. In SIP system the 

plasmid carries the lac operator sequences (lacOs) which is recognized by the LacI-L’ anchor 

protein which is composed of lactose repressor (LacI) and hydrophobic membrane anchor L’ 

derived from phage MS2 [18]. In later study the parA system flanking the antibiotic resistance 

cassette and origin of replication was combined together with the LacI-L’ membrane 

anchoring and E lysis process to produce in-vivo loaded mcDNA BGs [20]. This process 

simplified the production of mcDNA by vanquishing the need of laborious purification steps 

in its preparation.  

Real-time quantitative polymerase chain reaction (qPCR) is the method of choice and 

most commonly used molecular biology technique for detection and quantification of nucleic 

acid [28]. Its practical implication ranges from techniques used in molecular diagnostics [29] 

to forensic science [30] and in a wide range of basic research in field of biotechnology. The 

main advantage of this technique is the elimination of need to amplify and detect the final 

product separately on agarose gel. This technique analyzes the quantitative relationship 

between the amounts of target used at the start of reaction to the amount of amplified PCR 

product at a certain cycle. Previously the qPCR was used to quantify the amount of mcDNA 

and mpDNA in the BG preparations. Through amplifying the lacOs site present on mcDNA 

and antibiotic resistance gene present on mpDNA [20]. However there are some limitations in 

quantification through this method due to presence of above sequences on un-recombined 

mopDNA which can interfere with the final results. For this reason the final recombination 

product is subjected to restriction digestion with enzymes cutting once in both mcDNA and 

mpDNA and through densitometric analysis the recombination efficiency was calculated [31] 

after which it was decided that the amount of mcDNA / mpDNA being quantified is coming 

from fully formed mcDNA/mpDNA or from the un-recombined mopDNA.  To overcome this 

problem a new strategy to quantify the amount of mcDNA/mpDNA depending on the 

presence of their relevant sequence on fully formed mcDNA/mpDNA or on un-recombined 

mopDNA is presented. These primers presented herein has the ability to generate different size 

PCR products depending on the form of mopDNA used i.e. recombined or un-recombined and 

through melt curve analysis at the end of qPCR one can trace the source of quantified product 

i.e. from fully formed mcDNA/mpDNA or from un-recombined mopDNA. In melt curve 

analysis a single narrow peak is the indication of a single pure PCR product. This can be 
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double checked through visual analysis of final qPCR product on 2% agarose gel which will 

then serve as a quality control criterion in the end.  

 

3.2 Material and methods 

3.2.1 Bacterial strains, growth conditions and plasmids used 

 

Commercially available bacterial strain E.coli K12 MC4100 [32] F- Δ(arg-lac)U169 

araD139 rpsL 150 ptsF25 fibB5301 rbsR deoC relA1. from (New England Biolabs) was 

grown on LB Luria-Bertani (LB) medium [33] when necessary the LB (purchased form Roth) 

was supplemented with respective amounts of ampicillin and gentamycin at concentration of 

100µg/ml and 20µg/ml respectively (Sigma-Aldrich).  For pBAD derived plasmid vectors 2% 

glucose was added for tight repression of arabinose promoter. The parA resolvase was induced 

by the addition of 0.25% L-(+)-arabinose (Sigma-Aldrich) at optical density 600 of (OD600nm 

~0.2 to 0.3). The lysis gene E in plasmid pGLysivb [34] was induced with the temperature 

change from 36ᵒC to 42ᵒC. The Growth and lysis of the bacterial population was monitored by 

measuring the OD600nm, physical observation through light microscopy and the inactivation of 

cells due to lysis gene E was recorded by plating dilutions of bacterial cultures at different 

time points for colony forming unit count (CFU) as described earlier [35]. Following plasmids 

has been used in this study, Plasmid pSIPHCNparA [20], plasmid pGLysivb [34], pEYFP-C1 

a kind gift by Dr. Monika Sramkova NIH America (Clontech, BD-Biosciences), plasmid 

pSIPHCNparA-res1 (this work), p2a (this work), p3a (this work), p4a (this work), p4aEYFP-

C1 (this work) p3aEYFP-C1 (this work), p4amCherry-C1 (this work), p3amCherry-C1 (this 

work), p4aVenusA206K-C1(this work) and p3aVenusA206K-C1(this work). 

 

3.2.2 Plasmid construction 

3.2.2.1 Construction of plasmid p3a 

To construct Plasmid p3a two intermediate plasmid constructions (pSIPHCNparA-

res1, and p2a) was carried out. For easy handling, plasmid pSIPHCNparA [20] (Fig.1a) was 

digested with HindIII (Fermentas) double cut and was re-ligated to remove the resolution site 

1 (res1 140bp). The resulting plasmid was named pSIPHCNparA-res1 (6268bp) (Fig.1a) 

lacking recombination activity. Suitable restriction sites or multiple cloning sites MCS was 
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introduced into this plasmid pSIPHCNparA-res1 by digesting it with NsiI (Fermentas) and the 

60bp MCS (Synthesized) was inserted into this site the resulting annealed plasmid is then 

called p2a (6128bp) (Fig.1b). This was done by mixing and incubating two primers 

synthesized for MCS (MCS1 and MCS2) and by introducing this annealed MCS into 

respective restriction site present on plasmid pSIPHCNparA-res1 using T4 DNA ligase (New 

England BioLabs, Germany). 

 

 

 

 
 
 
 

 

 
 
 
 
 
 
 

 
Fig.1a. Cloning strategy of plasmid pSIPHCNparA-res1;  lacOs, modified lac operator sequence with high affinity 
to bind lacI; M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of 
lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose 
inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s 
ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 

res1  
144bp 

PBAD 

HindIII 

pSIPHCNparA  
6220bp 

   pMB1 ori           LacI-L’     araC 

 

 LacOs  res2 

152bp 

 Ampr  parA 

res1 

rrnB 

HindIII HindIII 

 Res1 

HindIII 

PBAD 
pSIPHCNparA-res1  
6068bp 

   pMB1 ori           LacI-L’     araC  LacOs  res2  Ampr  parA rrnB 

HindIII 

 
 
 
 

     

 

 

 
 
 

Fig. 1b: Cloning strategy of plasmid p2a; lacOs, modified lac operator sequence with high affinity to bind lacI; 
M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI 
repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose 
inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s 
ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
MCS1: 5’-ATGCATTAATTAACTAGTGAGCTCACGTGCGGCCGCCCGGGTACCTGCAGTTATAAGCTTATGCAT-3’ 
MCS2: 5’-TACGTAATTAATTGATCAGTCGAGTGCACGCCGGCGGGCCCATGGACGTCAATATTCGAATACGTA-3’ 
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In order to allow the easy cloning of lethal gene (e.g. I-TevII homing endonuclease that 

is needed for another study involving plasmid p3a) the expression cassette (LacI-L’/parA) 

should be inverted for tight repression and prevention of premature expression of cloned gene. 

i.e. before recombination. For this purpose plasmid p2a was digested with HindIII (Fermentas) 

which cuts the plasmid at two different locations and the plasmid was re-ligated using T4 

DNA ligase (New England BioLabs, Germany) to get plasmid p3a (6128bp) (Fig. 1c). 

 

 
 

3.2.2.2 Construction of plasmid p4a 

 

To get the final working plasmid p4a (which has the ability to recombine) the 

resolution site1 was introduced into the plasmid p3a. For this purpose the 140bp res1 site was 

amplified through PCR using plasmid pSIPHCNparA [20] as template and primers 5’res1K 

(5’– CAG CAG GGT ACC CCT TGG TCA AAT TGG GTA TAC C –3’) and 3res1P (5’ – 

CTG CTG TTA TAA GCA CAT ATG TGG GCG TGAG – 3) (synthesized by Microsynth 

AG, Switzerland) with KpnI and PsiI restriction sites (underlined sequence in primer). The 

PCR reaction with final volume of 25µl was carried out using 0.25µl of (50 pmol/µl) primers 

each, 2.5ul of (2mM) dNTP’s(Fermentas), 2.5ul of (10x) DreamTaq polymerase (Fermentas) 

buffer, 1ul of template DNA, and 0.25ul of DreamTaq polymerase (Fermentas) at final conc. 

of (0.05U/ul). The PCR condition was optimized based on the melting temperature (Tm) of 

the primers, using iCycler iQ Real-Time PCR detection system from Bio-Rad Inc. initially 

95ᵒC for 3min, as pre de-naturating temperature was used followed by 30 cycles of 95ᵒC for 

 

 
 
 

 

 

 
 
 

Fig. 1c: Cloning strategy of plasmid p3a;  lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
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30sec, 60ᵒC for 30sec and 72ᵒC for 1min and final elongation of 72ᵒC for 10min. The PCR 

product was analyzed on 2% agarose gel to confirm the amplification. The PCR product was 

digested with KpnI and PsiI (Fermentas) and subsequently cloned into the corresponding sites 

in plasmid p3a to get the vector p4a (6263bp) (Fig.2). The plasmid p4a is under control of 

pBAD promoter and has two resolution sites (res).  

 
 

3.2.2.3 Construction of plasmid p4aEYFP-C1 

 

Before constructing plasmid p4aEYFP-C1 the removal of multiple cloning site from 

plasmid pEYFP-C1 (4731bp) (Fig.3) a kind gift by Dr. Monika Sramkova NIH America 

(Clontech, BD-Biosciences) was necessary. The plasmid pEYFP-C1 was digested and BglII 

and BamHI (both Fermentas) and 51bp MCS was removed and the plasmid was religated 

using T4DNA ligase (New England BioLabs, Germany) to get a new plasmid pEYFP-C1-

MCS (4680bp) (Fig.3a).The 1596bp PCR fragment containing human cytomegalovirus 

(CMV) immediate early promoter (IE) and Enhanced yellow florescent protein (EYFP) gene 

along with polyA signals was amplified using primers 5’RYFP-SacI 5’- TGG CCA GAG CTC 

TAG TTA TTA ATA GTA ATC-3’ and 3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA 

 
 
 
 

 

 
 

 
 
 

 

 
 
 

Fig.2. Cloning strategy of plasmid p4a; lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid.  
5’res1K 5’– CAG CAG GGT ACC CCT TGG TCA AAT TGG GTA TAC C –3’ 
3res1P 5’ – CTG CTG TTA TAA GCA CAT ATG TGG GCG TGAG – 3 
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TAC ATT GAT GAG -3’ (restriction sites underlined) and plasmid pEYFP-C1-MCS as 

template. The PCR condition was as follows. 25µl of total reaction containing 0.25µl of (50 

pmol/µl) primers each (Microsynth AG), 2.5ul of (2mM) dNTP’s(Fermentas), 2.5ul of (10x) 

DreamTaq polymerase (Fermentas) buffer, 1ul of template DNA, and 0.25ul of DreamTaq 

polymerase (Fermentas) at final conc. of (0.05U/ul).  

 

 

 

 

 

 

 

 
Fig.3a. Cloning Strategy of plasmid pEYFP-C1-MCS; for details see fig 3b. 
 

 

 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
Fig.3b. Cloning strategy of plasmid p4aEYFP-C1; pCMV, cytomegalovirus immediate early promoter; EYFP, 
enhanced yellow fluorescent protein; M, multiple cloning site; P; polyadenylation signals derived from simian virus 
40; F1 ori, phage derived origin of replication;, PSV40: promoter derived from simian virus 40; Kanr/neor; Kanamycin 
and neomycin resistance cassette; HSV TK, Herpes simplex virus thymidine kinase polyadenylation signals; pUC ori; 
origin of replication derived from pUC19. lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
Primers; 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA GTA ATC-3’ 
             3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’ 
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The PCR condition was optimized based on the melting temperature (Tm) of the 

primers, using iCycler iQ Real-Time PCR detection system from Bio-Rad Inc. initially 95ᵒC 

for 3min, as pre de-naturating temperature was used followed by 30 cycles of 95ᵒC for 30sec, 

58ᵒC for 30sec and 72ᵒC for 1min and final elongation of 72ᵒC for 10min. The PCR product 

was analyzed on 2% agarose gel and subsequently digested with SacI and KpnI (Fermentas) 

and cloned into the corresponding sites in plasmid p4a resulting in vector p4aEYFP-C1 

(7838bp) (Fig.3b).  

 

3.2.2.4 Construction of plasmid p3aEYFP-C1 

  

For cloning plasmid p3aEYFP-C1 (7703bp) the plasmid p3a was used as a vector. The 

plasmid p3a was digested with SacI and KpnI and the 1596bp PCR fragment amplified as 

described above in construction of plasmid p4a was ligated together into their corresponding 

sites after required manipulations to get plasmid p3aEYFP-C1 (Fig.3c). 

 

 

 

 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
Fig.3c. Cloning strategy of plasmid p3aEYFP-C; pCMV, cytomegalovirus immediate early promoter; EYFP, 
enhanced yellow fluorescent protein; M, multiple cloning site; P; polyadenylation signals derived from simian virus 
40; F1 ori, phage derived origin of replication;, PSV40: promoter derived from simian virus 40; Kanr/neor; 
Kanamycin and neomycin resistance cassette; HSV TK, Herpes simplex virus thymidine kinase polyadenylation 
signals; pUC ori; origin of replication derived from pUC19. lacOs, modified lac operator sequence with high 
affinity to bind lacI; M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
Primers; 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA GTA ATC-3’ 
             3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’ 
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3.2.2.5 Construction of plasmid p4amCherry-C1 

 

The red fluorescent protein along with the eukaryotic promoter (CMV) and polyA 

sequence was cloned into the plasmid p4a through following procedure. The plasmid 

pmCherry-C1 (4722bp)(Fig.4a) a kind gift by Dr. Monika Sramkova NIH America 

(Clonetech, BD-Biosciences) was digested with  BglII and BamHI (Fermentas) and re-ligated 

after removal of the multiple cloning site to get plasmid pmCherry-C1-MCS (4671bp) (Fig.4a)  

 
The plasmid pmCherry-C1-MCS serves as a template for PCR amplification of 1587bp 

fragment containing Human cytomegalovirus (CMV) immediate early promoter (IE) and red 

fluorescent protein complex (CMV-mCherry) and polyA signal using primers, 5’RYFP-SacI 

(5’- TGG CCA GAG CTC TAG TTA TTA ATA GTA ATC-3’) and 3’RYFP-KpnI (5’- ATA 

CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’) restriction sites underlined. The PCR 

reaction was same as described before for construction of plasmid p4aEYFP-C1. The PCR 

product and the plasmid p4a were subjected to restriction digest with SacI and KpnI 

(Fermentas) and were gel purified using PurelinkTM Quick Gel extraction kit (Invitrogen). The 

6263bp linearised vector fragment (p4a) was dephosphorelated with FastAPTM 

Thermosensitive Alkaline Phosphatase (Fermentas) to avoid re-ligation of the vector fragment. 

The PCR product was ligated with the plasmid p4a using T4 DNA ligase (New England 

Biolabs, Germany) to get the plasmid p4amCherry-C1 (7829bp) (Fig.4b).  

 

 

3.2.2.6 Construction of plasmid p3amCherry-C1 

 

The plasmid p3amCherry-C1 (7694bp) is similar to plasmid p4amCherry-C1 but lacks 

recombination activity. All the construction steps (except instead of plasmid p4a plasmid p3a) 

described for the construction of plasmid p4amCherry-C1 was used for cloning of plasmid 

p3amCherry-C1 (Fig.4c).  
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Fig.4a. Cloning strategy of plasmid pmCherry-C1-MCS; for details see Fig.4b 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig.4b. Cloning strategy of plasmid p4amCherry-C1; pCMV, cytomegalovirus immediate early promoter; 
mCherry, red fluorescent protein; M, multiple cloning site; P; polyadenylation signals derived from simian virus 40; 
F1 ori, phage derived origin of replication;, PSV40: promoter derived from simian virus 40; Kanr/neor; kanamycin 
and neomycin resistance cassette; HSV TK, Herpes simplex virus thymidine kinase polyadenylation signals; pUC 
ori; origin of replication derived from pUC19. lacOs, modified lac operator sequence with high affinity to bind lacI; 
M, Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
Primers; 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA GTA ATC-3’ 
             3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’ 
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3.2.2.7 Construction of plasmid p4aVenusA206K-C1  

  

To construct plasmid p4aVenusA206K-C1 the removal of multiple cloning site from 

the plasmid pVenusA206K_C1 (4731bp) (Fig.5a) a kind gift by Dr. Monika Sramkova NIH 

America, was necessary. The plasmid pVenusA206K_C1 was digested with BglII and BamHI 

(Fermentas) and re-ligated resulting in plasmid pVenusA206K-C1-MCS (4680bp) (Fig.5a).  

 

The 1596bp PCR fragment with SacI and KpnI restriction sites was amplified using 

pVenusA206K-C1-MCS as template using primers 5’RYFP-SacI (5’- TGG CCA GAG CTC 

TAG TTA TTA ATA GTA ATC-3’) and 3’RYFP-KpnI (5’- ATA CCA GGT ACC TTA 

AGA TAC ATT GAT GAG -3’) and was cloned in corresponding sites of plasmid p4a to get a 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig.4c. Cloning strategy of plasmid p3amCherry-C1; pCMV, cytomegalovirus immediate early promoter; mCherry, 
red fluorescent protein; M, multiple cloning site; P; polyadenylation signals derived from simian virus 40; F1 ori, 
phage derived origin of replication;, PSV40: promoter derived from simian virus 40; Kanr/neor; kanamycin and 
neomycin resistance cassette; HSV TK, Herpes simplex virus thymidine kinase polyadenylation signals; pUC ori; 
origin of replication derived from pUC19. lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI repressor 
with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose inducible 
promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s ribosomal 
gene; Ampr, ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
Primers; 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA GTA ATC-3’ 
             3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’ 
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mcDNA carrying  mammalian expression vector encoding an improved yellow-green 

fluorescent protein “Venus” p4aVenusA206K-C1 (7838bp) (Fig.5b).  

 

  

 
 

 

 

 

 

 

 

 
Fig.5a. Cloning Strategy of plasmid pVenusA206K-C1-MCS;  for details see Fig.5b. 

 

 

 
 
 
 
 
 
 
 

                                                                        
 
 
 
 
 
 
 
 
 
Fig.5b. Cloning strategy of plasmid p4aVenusA206K-C1; pCMV, cytomegalovirus immediate early promoter; 
Venus, improved yellow-green fluorescent protein; M, multiple cloning site; P; polyadenylation signals derived from 
simian virus 40; F1 ori, phage derived origin of replication;, PSV40: promoter derived from simian virus 40; 
Kanr/neor; kanamycin and neomycin resistance cassette; HSV TK, Herpes simplex virus thymidine kinase 
polyadenylation signals; pUC ori; origin of replication derived from pUC19. lacOs, modified lac operator sequence 
with high affinity to bind lacI; M, Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA 
resolvase gene; lacI-L’, fusion protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving 
as membrane anchor L’; PBAD, arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, 
transcriptional terminator sequence of 5s ribosomal gene; Ampr, ampicillin resistance gene; pMB1, origin of 
replication derived from pMB1 plasmid. 
Primers; 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA GTA ATC-3’ 
             3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’ 
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3.2.2.8 Construction of plasmid p3aVenusA206K-C1 

 

For construction of plasmid p3aVenusA206K-C1 the plasmid pVenusA206K-C1-MCS 

was subjected to PCR amplification for the 1596bp CMV-Venus gene along with SV40 polyA 

tail flanked by SacI and KpnI using the primer set 5’RYFP-SacI and 3’RYFP-KpnI (for primer 

sequence and PCR procedure see construction of plasmid p4aVenusA206K-C1). Both the 

PCR product and plasmid p3a was digested with SacI and KpnI restriction enzymes 

(Fermentas) and were ligated at the correct vector to insert ratio after proper manipulation to 

obtain the plasmid p3aVenusA206K-C1 (7703bp) (Fig.5c). 

 

 
 

  
 

 

 

 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
Fig.5c. Cloning strategy of plasmid p3aVenusA206K-C1; pCMV, cytomegalovirus immediate early promoter; 
Venus, improved yellow-green fluorescent protein; M, multiple cloning site; P; polyadenylation signals derived from 
simian virus 40; F1 ori, phage derived origin of replication;, PSV40: promoter derived from simian virus 40; 
Kanr/neor; kanamycin and neomycin resistance cassette; HSV TK, Herpes simplex virus thymidine kinase 
polyadenylation signals; pUC ori; origin of replication derived from pUC19. lacOs, modified lac operator sequence 
with high affinity to bind lacI; M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, 
fusion protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; 
PBAD, arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator 
sequence of 5s ribosomal gene; Ampr, ampicillin resistance gene; pMB1, origin of replication derived from pMB1 
plasmid. 
Primers; 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA GTA ATC-3’ 
             3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’ 
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3.2.3 Handling of plasmid DNA samples 

 

Plasmid DNA samples were collected at different time points and plasmid DNA was 

isolated using PeqLab Kit I (Plasmid Miniprep kit I, Erlangen, Germany). PureLinkTM PCR 

purification Kit (Invitrogen) was used to purify the PCR products for further use. Whereas the 

PureLinkTM Gel purification Kit (Invitrogen) was used to separate the DNA fragments or 

products from agarose gel all the above procedure were carried out according to the 

manufacturer’s instruction. The transformation and electroporation of plasmid DNA was 

performed according to the standard molecular biological techniques by Sambrook et.al. [36]. 

The DNA modifying enzymes like T4 DNA ligase was purchased from New England Biolabs 

(Frankfurt Am Main, Germany), and the restriction enzymes from Fermentas (St. Leon-Rot, 

Germany). The PCR for amplification of DNA fragments was carried out using Pfu DNA 

polymerase and high Fidelity DNA polymerase also provided by Fermentas (St. Leon-Rot, 

Germany) 1µl of each primer, 2mM dNTPs (Fermentas) 10XMgSO4 buffer. The PCR 

condition was set to 95ᵒC for 3 min followed by 35 cycles of 95ᵒC for 30sec 55ᵒC-60ᵒC 

(depending on Primer TM) for 30sec and 72ᵒC for 1min/kb product. Real time PCR for the 

quantification of the plasmid DNA in BGs and supernatant was carried out with iQ-SYBR 

Green super mix (Bio-Rad U.S.A). Both the PCR reactions were carried out in BioRad iCycler 

iQTM Real-Time PCR detection system. For details of qPCR see (section 3.2.8). 

 

 
3.2.4 Cell culture and reagents 

 

 The CCL-20.2 (Human conjunctival cell line) was kindly provided by Prof 

Bernd Binder (Medical University of Vienna, Austria). The cells were seeded 24 hour before 

transfection in a 24 well plate (5x104 cells per well) (SARATED, Ag & Co. Germany). Cells 

were maintained in DMEM (Lonza, Verviers, Belgium) supplemented with 2mM glutamine 

(Invitrogen, Carlsband, CA), 100U/ml Penicillin (Invitrogen), 100µg/ml Streptomycin 

(Invitrogen), 10%FCS (Sigma Chemical Co., St. Louis, MO) and 10mM HEPES (Lonza) in a 

5% CO2 humidified incubator at +37ᵒC [37]. Prior to transfection the culture medium was 

replaced with fresh serum free culture medium. Transfections of cells were performed using 

different sets of plasmid DNA constructed for this work (see plasmid construction 2.2). 

Transfecting reagent TurboFectTM (Thermo Scientific, Austria) and 1µg/well of plasmid DNA 

used to transfect the cells (manufacturer’s instructions followed). Cells incubated with or 
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without plasmid DNA and without transfecting reagent served as negative control. 

Transfection efficiencies were analyzed 24 and 48 hours later with the help of light 

fluorescence microscopy (Zeiss Axiovert S100 inverted microscope, Carl Zeiss, Jena GmbH, 

Germany). 

 

3.2.5 Primer designing strategy 

 

3.2.5.1 Primer for quantification of mcDNA 

  

Two sets of PCR primers were designed which when used in different combinations 

would then be able to quantify miniplasmid, midiplasmid and mother plasmid DNA. These 

primers are designed in a way that they will generate different size PCR products based on the 

physical forms (recombined or un-recombined) of same plasmid DNA used. For e.g. the 

primer McXF: 5’-GTG GTT TGT CCA AAC TCA TCA A-3’ forward primer and McSR: 5’-

ACA TGA GCA GAT CCT CTA CGC-3’ reverse primer for quantification of mcDNA will 

generate two different size of PCR products i.e. 5443bp (un-recombined form) and 221bp 

(fully formed mcDNA). Melt curve analysis at the end of qPCR amplification is necessary to 

check the product size as larger DNA fragments has higher melting temperature. Presence of 

single sharp peak in melt curve graph is indication of the presence of single PCR product 

(Fig.5b). 

 

3.2.5.2 Primers for quantification of mpDNA 

 

The primers designed to quantify the amount of retained miniplasmid in the pellet of 

BG preparations have similar properties to primers used for mcDNA quantification. Primer 

MpAF: 5’-TTT GCA AGC AGC AGA TTA CG-3’ and MpYR: 5’-CGC AGC AGC AAA 

AAT AAA AG-3’ is designed in a way that it is able to differentiate between the recombined 

and un-recombined mopDNA. The size of the PCR product in case of un-recombined 

mopDNA template will be 2401bp where as a 238bp product is generated when the plasmid is 

recombined (Fig.5c). A final melt curve is applied to check the specificity of the amplified 

product. Another advantage of above two primer sets is that they can be used to quantify the 

amount of mopDNA (Fig5a). In this case the forward primer designed for mcDNA 

quantification, McXF: 5’-GTG GTT TGT CCA AAC TCA TCA A-3’ and reverse primer for 

mpDNA quantification, MpYR: 5’-CGC AGC AGC AAA AAT AAA AG-3’ is used to 
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amplify 205bp fragment (only amplifiable in case of un-recombined mopDNA). The 

recombination efficiency (RE) of can be determined by quantifying the amount of mopDNA 

and replicative mpDNA at the end of reaction and calculated using following formulae after 

converting the ng of DNA into plasmid copy number using the formulae [copy number = 

(ng.of plasmid DNA x 6.022 x 1023) / (size of plasmid in bp. x 1 x109x 660)]. 

                           𝑅𝐸 = 100 − mopDNA copy number
mpDNA copy number
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Fig.5. Detailed schema of the parA mediated site specific recombination; production of mcDNA and 
primers binding sites for its quantification through qPCR technique. a) plasmid p4aEYFP-C1 (primer McXF 
and MpYR used to amplify mother plasmid); b) EYFP-mc (primer McXF and McSR used to amplify fully 
formed mcDNA); c) mpDNA (primer MpAF and MpYR used to quantify fully formed mpDNA); araC, 
repressor/inducer of PBAD promoter; EYFP, enhanced yellow fluorescent protein; LacI-L’, fusion protein of 
lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; LacOs, 
modified lac operator sequence with high affinity to bind lacI; ParA, ParA resolvase gene; PBAD, arabinose 
inducible promoter; pCMV, cytomegalovirus early promoter; polyA, SV40 late poly adenylation signal; ori, 
origin of replication derived from pMB1 plasmid; Res1, resolution site 1; Res2, resolution site 2; rrnB, 
transcriptional terminator sequence of 5s ribosomal gene; MpAF, forward primer to amplify miniplasmid 
DNA region; MpYR; reverse primer to amplify miniplasmid DNA region; McXF, forward primer sequence to 
amplify minicircle DNA region; McSR, reverse primer sequence to amplify minicircle DNA region (for 
primer sequences see material and methods section. 

a) 
c) 

b) 
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3.2.7 Production and purification of mcDNA and mpDNA for Real-time PCR Standards 

 

 In qPCR analysis the standard curve is the key to successful and accurate 

plasmid quantification which is dependent of plasmid preparations pure enough for dilution 

series pure plasmid DNA preparations has the ODA260nm/280nm ratio of 1.8-1.95. To get 

purified mcDNA and mpDNA the mother plasmid p4aEYFP-C1 was freshly transformed into 

E.coli MC4100 cells and grown in 5ml LB supplemented with ampicillin (100µg/ml) and 2% 

glucose overnight ON at 36ᵒC in a shaking incubator. A small part of this ON culture was 

shifted into nose flask containing 25ml LB supplemented with appropriate antibiotic 

(ampicillin 100µg/ml) (no glucose added) and grown in a 36ᵒC water bath. The sample was 

continuously stirring at 300rpm until the OD600 of 0.4-0.5 reached. The recombination was 

induced by addition of 0.25% L-(+)-arabinose. 1ml sample before and after the parA induction 

was collected and treated for plasmid DNA isolation through PeqLab Kit I (see handling of 

plasmid DNA) for densitometric analysis. After the 60 min of arabinose addition the cells 

were harvested by centrifugation at 10,000 rpm for 15min at 4ᵒC. PureYeildTM plasmid 

Midiprep kit (Promega) is used to isolate the plasmid DNA. The samples were loaded on 1% 

agarose gel (RothTM) stained using  gel red nucleic acid gel stain (GelRedTM Biotium # 41003) 

and analyzed under UV light in a ChemiDOCTM machine (BioRad laboratories). The mcDNA 

and mpDNA fragments were excised from gel and were isolated using PureLinkTM Gel 

extraction Kit (Invitrogen). The visual quality of the preparation was checked on 1%agarose 

gel and purity through the UV absorption of A260/280 ratio using NanoDrop 2000c (peqlab).  

   

3.2.7 Production of mcDNA loaded BGs 

  

 The plasmid p4aEYFP-C1,p4amCherry and p4aVenusA206k along with the 

plasmid pGLysivb [34] was transformed into E.coli MC4100. In plasmids with recombination 

ability the expression of fusion protein LacI-L’ is kept under tight control of pBAD promoter 

while in plasmid pGLysivb the expression of lysis gene E is kept under temperature sensitive 

promoter/repressor system based on λpRmut/CI857 [24]. The co-transformed E.coli MC4100 

with above mentioned plasmids along with lysis plasmid pGLysivb was grown in 5ml LB 

supplemented with appropriate antibiotics ampicillin and gentamycin at different 

concentrations (100µg/ml and 20µg/ml respectively) along with 2% glucose in shaking 

incubator at 36ᵒC ON. A part of this ON culture is shifted to 100ml nose flask containing 

ampicillin (100µg/ml) and gentamycin (20µg/ml) and no glucose. The sample was grown in 
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36ᵒC water bath at continuous stirring of 300rpm until OD 0.15-0.2 was achieved. The 

expression parA resolvase and of LacI-L’ fusion protein is induced by the addition of L-(+)-

arabinose at final concentration of 0.25% resulting in recombination of mopDNA into 

mpDNA and mcDNA the later is immobilization inside the bacterial membrane via LacI-L’ 

anchor protein. 30min after induction of pBAD promoter the lysis gene E is induced by 

shifting the flask from 36ᵒC to 42ᵒC water bath and stirring at 300rpm. The lysis was continued 

and monitored for another 2 hours through optical density observation OD600, physical 

observation of bacterial cells done through light microscopy and determination of viable 

bacterial cells was carried out through platting culture on plain LB plates using automated 

system spiral platter (WSAP system; DON Whitley Scientific Limited, West York Shire, UK). 

The LB plates were grown at 36ᵒC over night. The colonies were counted using colony counter 

machine 3.15 (Synoptic Ltd., Cambridge, UK) using the program Synbiosis ProtoCOL.  

 

3.2.8 Sample preparation and quantification of mcDNA/mpDNA through qPCR 

For quantification of mcDNA and mpDNA at different time points 2 ml of the culture 

medium is collected in 2ml eppendorf tubes and centrifuged at 13000rpm for 3 min. the 1ml of 

the supernatant was filtered using 0.2µm sterile cellulose acetate membrane filters (VWR, 

international) and treated for plasmid DNA isolation (see section 3.2.3). The qPCR was 

performed in iQ 96 well transparent PCR plates (Bio-Rad) containing 12.5µl of iQ-SYBR 

Green super mix (Bio-Rad) 1µM of each primer (Microsynth AG), 5µl of template DNA in a 

final volume of 25µl. Microseal ‘B’ (Bio-Rad) adhesive based sealing was used to seal and 

prevent the sample evaporation from the plate. Following cycling condition was applied to 

quantify the mcDNA or mpDNA, 95ᵒC for 3min, followed by 30 cycles of 94ᵒC for 40sec and 

60ᵒC for 60sec., the fluorescence signal was recorded during each extension step. BioRad 

iCycler iQ Multiple-color Real Time PCR detection system was used for performing the 

whole procedure. 10 fold serial dilutions 10-1 -10-6 of purified mcDNA and mpDNA (section 

3.2.7) with known concentration were used to perform standard curve analysis for final 

quantification. In order to check the specificity of PCR product amplified the sample was 

subjected to a final step of melting gradient form 60ᵒC to 95ᵒC with interval of 10sec. and 

checked on 2% agarose gel. For primers sequences please check (section 3.2.5). The whole 

experimental procedure was carried out according to MIQE (Minimum Information for 

Publication of Quantitative Real-Time PCR Experiments) guidelines [38].  
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3.3 Results 

3.3.1 Transfection efficiency of CCl-20.2 cells 

 

 To check the expression of eukaryotically regulated cloned genes in newly constructed 

plasmids (p4aEYFP-C1 (Fig.3b), p3aEYFP-C1 (Fig.3c), p4amCherry-C1 (Fig. 4b), 

p3amCherry-C1 (Fig.4c), p4aVenusA206K-C1 (Fig.5b), p3aVenusA206K-C1(Fig.5c)) the 

plasmids were tested in CCL-20.2 cell line. The cells were transfected using TurboFectTM and 

in combination with above mentioned plasmids and the plasmids from which the fluorescent 

genes were taken and cloned in them i.e. pEYFP-C1 (Fig.3a), pmCherry-C1 (Fig.4a) and 

pVenusA206K_C1 (Fig.5a). The light fluorescent microscopy of samples after 48hours of 

transfection revealed no fluorescence in cells incubated with the plasmid DNA alone (Fig.6. 

a1, a2 and a3). Medium to high fluorescence signals were detected in plasmid p3aEYFP-C1 

and p4aEYFP-C1 respectively (Fig.6. c1 and d1) compared to the plasmid pEYFP-C1 (Fig.6. 

b1) from which Enhanced Yellow Fluorescent Protein has been cloned into former two 

plasmids. Apparently no change in fluorescence intensity was observed in cells transfected 

with plasmid preparations from pmCherry-C1, p3amCherry-C1 and p4amCherry-C1 (Fig.6. 

b2, c2 and d2 respectively). In case of Venus which is a mutated green fluorescent protein 

higher fluorescent signals were detected in cells transfected with plasmid p3aVenusA206K-C1 

(Fig.6. c3) compared to the origin plasmid pVenusA206K_C1 (Fig.6. b3) where as the 

fluorescence intensity in cells incubated with p4aVenusA206K-C1 was medium as compared 

to the above two plasmids of the same group (Fig.6. d3). The above transfection experiment 

shows that the fluorescence signals of the reporter gene was enhanced by their subsequent 

cloning into plasmid p4a and p3a where as among them the best fluorescence was recorded in 

plasmid p3aVenusA206K-C1 and p4aEYFP-C1.  

     

Table.1. Relative Intensity of different plasmid constructs

Enhanced yellow 
fluorescent protein

Red fluorescent protein Yellow green fluorescent 
protein

Relative 
intensity

EYFP-
C1

p3aEYF
P-C1

p4aEYF
P-C1

mCherry
-c1

p3amCh
erry-c1

p4amCh
erry-c1

VenusA
206K_C

1

p3aVenu
sA206K

-C1

p4aVenu
sA206K

-C1

+(+) ++(+) ++++ ++(+) ++(+) ++(+) ++ ++++ +++(+)

Amount of 
plasmid

DNA used
1µg 1µg 1µg

CCl-20.2 cells transfected with different plasmid constructs with TurboFectTM
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3.3.2 Production and purification of mcDNA by site-specific ParA recombination 

 

ParA recombination was induced by the addition of L-(+)-arabinose in E.coli MC4100 

harboring plasmid p4aEYFP-C1, p4amCherry-C1 and p4aVenusA206K. Complete 

recombination is seen in plasmid p4aEYFP-C1 after 120 min of induction (Fig.7. lane 3) while 

no recombination is observed before the arabinose induction. (Fig.7. lane 2).  Supplementation 

of 2% glucose inhibits premature recombination in ON culture (Fig.7. lane 1). Harvested cells 

were subjected to DNA isolation and were purified for use in Real-time PCR standards (see 

section 3.2.3). Clear bands of mcDNA and mpDNA can be seen at desired positions after the 

gel purification (Fig.8). 

 

       
a b c d

1

2

3

Fig.6.Transfection of CCL-20.2 cells; Transfection of CCL-20.2 cells resulted in better fluorescence of 
cloned; enhanced yellow fluorescent protein EYFP, Red fluorescent protein RFP and VenusA206K green 
fluorescent proteins 48 hours post transfection. 1a) Control, 4x104 cells plus naked DNA; 1b) pEYFP-C1 
plus TurboFectTM; 1c) p3aEYFP-C1plus TurboFectTM; 1d) p4aEYFP-C1plus TurboFectTM ; 2a) Control, 
4x104 cells plus naked DNA; 2b) pmCherry-C1 plus TurboFectTM; 2c) p3amCherry-C1plus TurboFectTM; 2d) 
p4amCherry-C1plus TurboFectTM; 3a) Control, 4x104 cells plus naked DNA; 3b) pVenusA206K_C1 plus 
TurboFectTM; 3c) p3aVenusA206K-C1plus TurboFectTM; 3d) p4aVenusA206K-C1plus TurboFectTM  
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time point A before recombination (NsiI); lane 3, 
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GeneRulerTM 1kb DNA ladder(Fermentas); 
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3.3.3 Production of immobilized mcDNA loaded BGs 

 

The plasmid p4aEYFP-C1 (Fig.3b) has all necessary genetic elements for its 

recombination into mcDNA and mpDNA and its immobilization inside the bacterial 

membrane. The LacI-L’ fusion protein is expressed within the bacterial strain E.coli MC4100 

carrying plasmid p4aEYFP-C1. The resolvase gene is also under the expressional control of 

pBAD promoter which upon induction recombines the mopDNA into mcDNA and mpDNA, 

of which the former carries the lacOs site responsible for its immobilization inside the BGs by 

interacting with LacI-L’ anchor protein. In-order to produce the bacterial ghosts carrying these 

immobilized mcDNA a second plasmid system pGLysivb [39] carrying lysis gene E under the 

control of temperature sensitive promoter/repressor system is co-transformed inside the 

bacterial cells. No inhibition in growth of bacterial cells recorded upon induction of pBAD 

promoter (Fig.9a.). The microscopic picture of cells did not show any morphological changes 

after the addition of L-(+)-arabinose (Fig.9b.i) and about 50 min after the induction of pBAD 

promoter the mcDNA is visible on gel (Fig.9c. lane 4) upon induction of lysis gene E the 

cytoplasmic content is expelled from the bacterial cells. A light microscopic picture of BG can 

be seen in (Fig.9b. ii). Loss in lysis plasmid and mopDNA where as decrease in amount of 

mpDNA can be seen in (Fig.9c. lane 4, 5, 6 and 7).  
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Fig.9a. Expression of ParA gene and lysis curve of plasmid p4aEYFP-C1; OD and CFU count of 
recombination lysis test. E.coli MC4100 carrying plasmid p4aEYFP-C1+pGLysivb. Black line is the control. 
Drop in OD and CFU is recorded in samples treated with L-(+)-arabinose (0.25%) at time point -30mi and 
induction of gene E (Red line) a lysis efficacy of 99.99%. -30’min is the time point of arabinose where as 0’ 
min is the time pint of lysis induction.  
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Fig.9c. Anchoring of mcDNA in BGs; 1% agarose gel 
picture of recombination event followed by lysis induction 
in MC4100 harbouring plasmid p4aEYFP-C1 and 
pGLysivb; lane 1, GeneRulerTM 1kb DNA ladder 
(Fermentas); lane 2, uncut p4aEYFP-C1+pGLysivb 
(7838bp/ 6201bp) time point A arabinose addition time; 
lane 3, time point B 30min after recombination and 0’min 
time point of lysis (NsiI)partial digest) ; lane 4, 20min 
after Lysis; lane 5, 40 min after lysis immobilized 
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lysis induction (NsiIcut) lane 7, 120min after lysis mini 
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Fig.9b. Microscopic picture of MC4100Cell harboring plasmid p4aEYFP-C1 and pGLysivb; i) intact cells 
growing normally after recombination and before lysis induction; ii) Bacterial Ghosts,  120 min after gene E 
induction. 
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3.3.4 Qualitative PCR detection of desired sequences of mcDNA / mpDNA 

 

Qualitative PCR was carried out to determine the specificity of used primers. The 

qualitative PCR was performed as described in material and methods (section 3.2.3). A 221bp 

fragment of fully formed mcDNA was amplified with the primer McXF and McSR (for primer 

sequence see section 3.2.5) when a recombination product from plasmid p4aEYFP-C1 was 

used as a template (Fig.10a lane 5), the same primer yielded product of varying size when un-

recombined plasmid or mother plasmid p4aEYFP-C1 was used as template (5887bp and 

221bp product suggesting partial recombination) (fig.10a lane 4). No DNA band at 221bp 

region seen on 2% agarose gel in case of p3aEYFP-C1 (fig.10a. lane 3) due to the absence of 

resolution site1 (res1).  
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Fig.10a. Amplification of mcDNA; 2% agarose gel picture of 
PCR product of different regions of plasmid p4aEYFP-C1 and 
p3aEYFP ; lane 1, GeneRulerTM 100bp DNA ladder 
(Fermentas); lane 2, negative control for minicircle DNA 
primers; lane 3, plasmid p3aEYFP-C1; lane 4, plasmid 
p4aEYFP-C1 221bp if recombined and un-recombined 
5887bp(sample partially recombined); lane 5, plasmid 
p4aEYFP-C1 recombined (221bp fragment only) 

 
 

The primers designed for amplification of mpDNA MpAF and MpYR (for sequence 

see section 3.2.5) gave a clear band of 238bp size when recombined plasmid p4aEYFP-C1 

was used as a template (Fig.10b.lane 11 and 12). Whereas the above primer set amplified 

2401bp region when un-recombined plasmid p4aEYFP-C1 was used as template (Fig.10b. 

lane 10), a faint band at 238bp region suggests slight recombination. A simple PCR with 

plasmid p3aEYFP-C1 yielded a 2275bp product when primer MpAF and MpYR was used 

(Fig.10b. lane 9). The above two primer sets are designed in a way that if the forward primer 

of one (McXF) and the reverse primer of second (MpYR) is used in a reaction; it will only 

amplify the mopDNA (Fig.5). This is because if the plasmid is recombined the two region will 

be distributed among the daughter plasmids i.e. mcDNA and mpDNA.  This primer 

combination amplified 71bp region on plasmid p3aEYFP-C1 (Fig.10b. lane 3) and 205bp 



140 
 

region on plasmid p4aEYFP-C1. No amplifications seen when lysis plasmid pGLysivb and 

pGLNIc was used as template (Fig.10b. lane 7 and 13 respectively).  

 

 
   

3.3.5 Quantification of mcDNA and mpDNA 

  

Samples for mcDNA/mpDNA quantification in pellet and supernatant of the lysis 

culture were prepared as described in (section 3.2.8). The samples from the recombination and 

lysis experiments were collected at different time points and subjected to qPCR for 

mcDNA/mpDNA load (Fig.11). Induction of parA resolves gene at time point -30’min results 

in recombination and the amount of minicircle can be seen increasing in the pellet and stays 

constant even after lysis of cell suggesting the anchoring of mcDNA via LacI-L’ anchor 

protein to the bacterial inner membrane (Fig.11a). The amount of mcDNA and mpDNA in the 

supernatant increases upon lysis induction time point 0’min (Fig.11b and d) this release is due 

to the lysis tunnel formed by fusion of inner and outer membrane through which most of the 

cytoplasmic content is released [26].   
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Fig.10b. Analysis of PCR product of motherplasmid and miniplasmid DNA; 2% agarose gel picture of 
PCR product of different regions of plasmid p4aEYFP-C1 and p3aEYFP ; lane 1, GeneRulerTM 1kb DNA 
ladder (Fermentas); lane 2, negative control for mop DNA primers; lane 3, plasmid p3aEYFP-C1 71bp; lane 
4,5and 6 plasmid p4aEYFP-C1 205bp for mop; lane 7, pGLysivb; lane 8, negative controll for mpDNA 
primer; lane 9, p3aEYFP-C1 2275bp region; lane 10, p4aEYFP-C1 unrecombined (2401bp region); lane 11 
and 12, p4aEYFP-C1 (recombined) 238bp fragment ; lane 13, pGLNIc. 



141 
 

 

 
 

 

 

After this E lysis majority of the mpDNA along with mopDNA is expelled whereas 

along with this some amount of mcDNA is also expelled but still most of the mcDNA is 

retained inside the BG through L’anchor this change in DNA content is recorded through 

qPCR and the percentage loss of mcDNA and mpDNA during lysis process is shown in graph 

(Fig.12a).  The percentage of mcDNA recovered from the pellet of the lysed culture was 61% 

where as the rest is mpDNA. Similarly the percentage of mpDNA was found to be higher in 

the supernatant (Fig.12b). The amount of mcDNA and mpDNA isolated from pellet of 1ml 

culture quantified through qPCR after conversion into number of mcDNA / BGs and mpDNA 

/ BGs from two different experiments is presented in (Table.2). 
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Fig.11. Monitoring of recombination and lysis process through real time PCR; Pattern of mcDNA / 
mpDNA concentration at different time points; a)mcDNA increase after addition of arabinose in pellet; b) 
amount of mcDNA in the supernatant of culture medium which increases after lysis induction time point 
0’min; c) Amount of mpDNA in the pellet of the culture medium; d) concentration of mpDNA in the 
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Table.2. Amount of mcDNA and mpDNA retained inside the BGs

mcDNA
ng. / total no of cells

mcDNA
copy /BG 

mpDNA
ng. / total number of cells

mpDNA
copy / BG

13.5ng / 1.19x107 479.7 27.3ng / 1.19x107 371

39.0ng / 4.32x107 378.5 133ng / 4.32x107 495.78

Results from two different recombination lysis experiments showing amount of minicircle DNA (mcDNA) and
miniplasmid DNA (mpDNA) retained inside the BGs. The plasmid ng is converted into the copy number based on
following formulae [copy number = (ng of DNA x 6.022 x 1023) / (size of plasmid in bp. x 1 x109x 660)] where
6.02214199x1023 isAvogadro’s number. Size of mcDNA= 2173bp, and mpDNA= 5666bp

Fig.12a. Graphical presentation of amount of mcDNA and mpDNA in BGs; percentage of total mcDNA 
(left) and mpDNA (right) at different time points of lysis quantified through qPCR; Loss in mpDNA can be 
seen in pellet after 120 min of lysis (right) while a considerable amount of mcDNA is still retained in the 
pellet after 120min of lysis (left); mean SD of two different recombination lysis experiments.      

Fig.12b. Graphical presentation of total amount of DNA 
quantified; percentage of mcDNA and mpDNA in pellet and 
supernatant of the lysed culture calculated through qPCR; 
61%mcDNA in pellet (dark part) 39%is mpDNA (empty part)  
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To find out whether the amount of mcDNA or mpDNA being quantified is totally 

coming from the fully form mcDNA / mpDNA, a final step of melt curve analysis at 60ᵒC to 

95ᵒC with the interval of 10sec is applied at the end of qPCR. Different PCR products based 

on their size melt at different temperatures, since SYBR Green does not differentiate between 

the two different size DNA product, it is therefore important to verify that the PCR product 

being amplified through this method has same melting temperatures. During melt curve 

analysis the temperature of the reaction is increased by a certain factor and at certain point the 

DNA strand (depending on their size) is denatured, which then results in detachment of SYBR 

Green from double stranded DNA. This results in decrease in fluorescence signal as SYBER 

Green when attached to double stranded DNA molecule gives 100 times more fluorescence. 

The drop in fluorescence is recorded and plotted on a graph by special software provided by 

the manufacturer; a single narrow peak indicates the presence of single PCR product. A melt 

curve graph generated for mcDNA quantification is shown in (Fig.13) A single narrow peak 

present at same temperature can be seen which is indicative of single PCR product being 

amplified this could be further verified and confirmed after loading the product on 2% agarose 

gel. The supplementary data for the quantification of mcDNA / mpDNA related to PCR curve 

and standard curve generated through serial dilutions of purified mcDNA and mpDNA can be 

found in the Appendix. The qPCR products from two different runs was subjected to 2% 

agarose gel, which also confirms the presence of single amplified product at around 221bp for 

mcDNA (Fig.14a) and 238bp product for mpDNA (Fig.14b).  

 

 

            
 

 

 

Fig.13. Melt curve Graph for SYBR-490; Primer used McXF and McSR to amplify 221bp region of fully 
formed mcDNA. Single peak shows the specificity of PCR as different size products melt at different 
temperatures; -d(RFU)/dT; change in relative fluorescence unit with time.(T) 
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Fig. 14a. qPCR product from mcDNA quantification; 
2% agarose gel picture of qPCR product showing 
amplification of 221bp mcDNA; lane 1, 100bp DNA 
ladder (fermentas); lane 2 and 3, mcDNA plasmid 
standard 10-2 10-7; lane 4 to 7, mcDNA isolated from BG 
pellete collected at different time points; lane 8 netagive 
control. 
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Fig. 14b. qPCR product from mpDNA quantification;2% 
agarose gel picture of qPCR product showing amplification of 
238bp mpDNA; lane 1, 1kb DNA ladder (fermentas); lane 2 
and 3, mpDNA standard 10-2 10-7; lane 4 to 6, mpDNA isolated 
from BG pellete collected at different time points; lane 7 
netagive control; lane 8, 1kb DNA ladder (fermentas) 
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This system has another advantage over the previous methods due to its ability to 

calculate recombination efficiency through qPCR. The primer set used for calculating the 

recombination efficiency is McSF and MpYR. The primer McXF present on the polyA tail 

and MpYR present on ParA gene is distributed among mcDNA and mpDNA respectively 

upon recombination (Fig.5). Thus by quantifying the amount of replicating plasmid species 

i.e. mpDNA and mopDNA in the BG pellet the recombination efficiency can be calculated. 

The plasmid p4aEYFP-C1 in an experiment showed recombination efficiency of 99.73% 

(Table.3).  
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3.4 Discussion 

 

Minicircle DNA is a promising technique in DNA vaccination with broad range of 

applications in future clinical studies. However there has been no proper technique for its 

quantification. Present study is focused on the real time PCR quantification of mcDNA along 

with mpDNA and un-recombined mopDNA. In this study a quantification method for 

monitoring the recombination, immobilization and lysis event was developed by quantifying 

the amount of mcDNA produced, immobilized and or released after the lysis process 

(Fig.11a). In previous studies mcDNA was quantified through primers against LacOs 

sequence which is present both on fully formed mcDNA and on un-recombined mopDNA, 

therefore it was difficult to draw any conclusion about the source of quantified mcDNA. A 

densitometric analysis of linearised recombination product was necessary for calculating 

recombination efficiency thus making sure that the amount of mcDNA being quantified is 

only coming from lacOs sequence present on fully formed mcDNA and not from the 

mopDNA [31]. Previously used strategy for mcDNA quantification was based on assumption 

that only mcDNA is anchored inside the BGs where as mopDNA is released via lysis tunnel, 

this theory itself is debatable, as by having a closer look to mechanism of self immobilization 

of plasmid DNA will give us better insight about the underlying mechanism through which the 

LacI-L’ protein is synthesized and anchored inside the bacterial membrane. This LacI-L’ 

protein will then recognize and bind to the lacOs sequence which is present on both i) fully 

formed mcDNA and ii) un-recombined mopDNA. Hence it is more likely possible that a 

Table.3. Recombination efficiency (RE) of plasmid p4aEYFP-C1 through qPCR

Primer r2 Slope RE in %
mpDNA

copy number/ 4.32x107 Cells
mopDNA 

copy number/ 4.32x107 Cells

MpAF
MpYR 0.984 -3.333

99.73

2.14E+10
(133ng) ---

McXF
MpYR 0.994 -3.687 ----

5.56E+09
(47.8ng)

Recombination efficiency calculated by formulae [E=100- (mopDNA copy / mpDNA copy]
Primer; MpAF and MpYR , primer set for quantifying midiplasmid DNA (mpDNA); McXF and MpYR, primer 
set used to quantify mother plasmid DNA (mopDNA); r2 , r square value for assessment of standard curve fit; 
Slope, slope for standard curve. The plasmid ng is converted into the copy number based on following formulae 
[copy number = (ng. of plasmid DNA x 6.022 x 1023) / (size of plasmid DNA in bp. x 1 x109x 660)] where
6.02214199x1023 is Avogadro’s number. Size of mpDNA= 5666bp, and mopDNA= 7838bp
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certain amount of un-recombined mopDNA is also anchored inside the BGs via lacOs, this 

argument is supported by the real time PCR data for quantification of mcDNA in which it is 

observed that not all of the mcDNA formed due to recombination event is anchored inside the 

BGs, a certain amount of mcDNA is expelled via lysis tunnel (fig.12a). This could only be 

possible if there is no free anchoring machinery available as they are being already occupied 

by the lacOs present on the un-recombined mopDNA thus resulting in the release of mcDNA 

into the medium. Further, determining the recombination efficiency through densitometric 

analysis of recombination product is always a qualitative and not the quantitative. Therefore 

by introduction of this new quantification technique, recombination efficiency can be 

calculated accurately through qPCR analysis. 

 

The reporter genes chosen for this study has advantage over the LacZ (β-gal assay) as 

they don’t require any kind of substrates for their visualization inside the living cells [40]. The 

resulting increase in fluorescence signal observed by subsequent cloning of the following 

reporter genes (EYFP, RFP and VenusA206K) into plasmid p3a and p4a could be due to the 

removal of multiple cloning site (MCS) present in between the respective fluorescent genes 

and the polyA signals (Fig 1a and 2a). The MCS was necessary to remove before cloning the 

amplified PCR product containing the eukaryotic promoter (CMV) and desired reporter gene 

into advanced version of SIP plasmid system which has ability to recombine and anchor inside 

the bacterial cell wall through LacI-L’ anchor protein. This removal of 51bp MCS resulted in 

decrement of the gap between the fluorescent proteins and polyA tails. The polyA tails has an 

important role in mRNA stability and its transportation within the cells [41, 42]. Therefore by 

removing the extra sequences in between the polyA tail and the fluorescence genes might have 

resulted in better mRNA stability thus leading to efficient translation of the reporter gene 

which results in better and higher fluorescent signals. In conclusion the cloning of reporter 

gene onto the improved version of SIP plasmid resulted in better and higher fluorescence 

signals then their origin plasmids when tested in CCL-20.2 cells. 
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Chapter IV 

Improvement of Self Immobilization Plasmid used in 

production of minicircle DNA loaded Bacterial Ghosts  

 

4.1 Introduction 

Self immobilization plasmid (pSIP) contains all the essential features for its efficient 

immobilization inside the bacterial membrane. Use of DNA as a vaccine candidate has 

opened a new doors in fighting infectious diseases [1]. However their ability to elicit better 

immune response is entirely dependent on efficient delivery system [2] Bacterial Ghosts 

(BGs) are used to deliver DNA vaccine by anchoring them to the bacterial inner membrane 

via pSIP system[3]. In pSIP the plasmid DNA carries a tandem repeat of modified lactose 

operator sequences (lacOs) which is recognized by the LacI-L’ fusion anchor protein which is 

composed of lactose repressor (LacI) and hydrophobic membrane anchor L’ derived from 

phage MS2 [3]. The pSIP system was combined with ParA mediated recombination of 

mother plasmid DNA mopDNA to produce minicircle DNA (mcDNA) devoid of bacterial 

backbone sequences (BB) [4]. It has been shown in certain studies that transgene silencing is 

caused due to the covalent attachment of BB to the transcription unit [5]. Hence the mcDNA 

devoid of BB shows much better and gives higher level of transgene expression [6, 7].  

BGs loaded with mcDNA are produced in a single one step procedure through ParA 

mediated recombination of mopDNA into mcDNA and mpDNA and the attachment of 

mcDNA inside the bacterial membrane via LacI-L’ fusion protein followed by gene E 

mediated lysis of bacterial cell wall [4]. The pSIP plasmid used for production of this 

mcDNA carries ampicillin resistance gene.  The European Medicines Agency (EMA), 

formerly European Agency for Evaluation of Medicinal Products (EMEA), and Food and 

Drug Administration of the USA (FDA) strictly prohibit the use of penicillin and other β-

lactam antibiotics during vaccine production processes due to serious biosafety risks posed by 

these sequences [8-10]. Therefore these antibiotic resistance cassettes must be replaced by 

other antibiotics that are not widely used in medicinal practice. For this purpose the above 

mentioned regulatory agencies recommend only the use of Kanamycin or Neomycin 
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antibiotic resistant markers for the purpose of plasmid DNA vaccination or gene therapy as 

these aminoglycoside antibiotics are not widely used in medical practice [8-11].  

In this study improvements has been made in previous version of SIP plasmid in order 

to allow cloning of homing endonuclease gene which is induced by the pBAD promoter [12] 

only after the ParA mediated recombination of mopDNA into mcDNA and mpDNA further 

more to make it available for use in vaccine production the current ampicillin antibiotic 

resistance gene is replaced by the kanamycin resistance which is favored by the regulatory 

agencies like FDA and EMA due to their less use in medical practice. This change in 

kanamycin resistant gene is carried out in two of the newly cloned SIP plasmids i.e. p3a and 

p4a. The plasmid p4a has ability to recombine into mcDNA carrying only the lacOs and the 

MCS for easy cloning of reporter gene in it and the mpDNA carrying BB and antibiotic 

resistance gene. The plasmid p3a lack recombination due to absence of resolution site 1. 

 

4.2 Material and methods. 

4.2.1 Bacterial strains, plasmids and growth conditions 

 

4.2.1.1 Bacterial strains 

 

E. coli K12 C2988J (NEB 5-α competent cell) fhuA2 Δ (argF-lacZ) U169 phoA 

glnV44 ɸ80Δ (LacZ) M15 gryA96 recA1 endA1 thi-1 hsdR17) (New England Biolabs, 

Germany) 

 

4.2.1.2 Growth conditions 

 

The bacterial cultivation was carried out in Luria-Bertani (LB) medium [13] with 

ampicillin (100µg/ml) and kanamycin (50µg/ml) when needed. The LB plates and medium 

used for cloning and growth of plasmid p4a was supplemented with glucose at final 

concentration of 2% in order to prevent premature recombination. 

 

 



151 

 

4.2.1.3 Plasmids 

 

Plasmid pSIPHCNparA [4], plasmid pBHR1 [14], plasmid pSIPHCNparA-res1 (this 

work), p2a (this work), p3a (this work), p4a (this work), p3aKan (this work) and p4akan( this 

work). 

 

4.3 Results and discussion 

4.3.1.1 Construction of plasmid p3a 

To construct Plasmid p3a two intermediate plasmid constructions (pSIPHCNparA-

res1, and p2a) was carried out. For easy handling, plasmid pSIPHCNparA [4] (Fig.1a) was 

digested with HindIII (Fermentas) double cut and was re-ligated to remove the resolution site 

1 (res1 140bp). The resulting plasmid was named pSIPHCNparA-res1 (6268bp) (Fig.1a) 

lacking recombination activity. Suitable restriction sites or multiple cloning sites MCS was 

introduced into this plasmid pSIPHCNparA-res1 by digesting it with NsiI (Fermentas) and 

the 60bp MCS (Synthesized) was inserted into this site the resulting annealed plasmid is then 

called p2a (6128bp) (Fig.1b).  

 
 
 
 

 

 
 
 
 
 
 

 
Fig.1a. Cloning strategy of plasmid pSIPHCNparA-res1; lacOs, modified lac operator sequence with high affinity 
to bind lacI; M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of 
lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose 
inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s 
ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
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This was done by mixing and incubating two primers synthesized for MCS (MCS1 

and MCS2) and by introducing this annealed MCS into respective restriction site present on 
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plasmid pSIPHCNparA-res1 using T4 DNA ligase (New England BioLabs, Germany). In 

order to allow the easy cloning of lethal gene (e.g. I-TevII homing endonuclease that is 

needed for another study involving plasmid p3a) the expression cassette (LacI-L’/ParA) 

should be inverted for tight repression and prevention of premature expression of cloned 

gene. i.e. before recombination. For this purpose plasmid p2a was digested with HindIII 

(Fermentas) which cuts the plasmid at two different locations and the plasmid was re-ligated 

using T4 DNA ligase (New England BioLabs, Germany) to get plasmid p3a (6128bp) (Fig. 

1c). 

 
 
 

  

 

 
 
 

Fig. 1b: Cloning strategy of plasmid p2a; lacOs, modified lac operator sequence with high affinity to bind lacI; 
M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI 
repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose 
inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s 
ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
MCS1: 5’-ATGCATTAATTAACTAGTGAGCTCACGTGCGGCCGCCCGGGTACCTGCAGTTATAAGCTTATGCAT-3’ 
MCS2: 5’-TACGTAATTAATTGATCAGTCGAGTGCACGCCGGCGGGCCCATGGACGTCAATATTCGAATACGTA-3’ 

PBAD 
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Fig. 1c: Cloning strategy of plasmid p3a;  lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid. 
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4.3.1.2 Construction of plasmid p3aKan 

To replace the antibiotic resistance gene of plasmid p3a from ampicillin to kanamycin 

we amplified 934bp kanamycin fragment from the plasmid pBHR1(5300bp)  [14] using the 

primers listed in (Table.1) and inserted into the AhdI restriction site of linearised p3a plasmid, 

resulting in plasmid p3aKan (7062bp) (Fig.1d) The Ampicillin gene of plasmid p3a is 

destroyed by AhdI restriction digestion. The polymerase chain reaction (PCR) reaction was 

carried out as follows. 25µl of total reaction containing 0.25µl of (50 pmol/µl) primers each 

(Microsynth AG), 2.5ul of (2mM) dNTP’s (Fermentas), 2.5ul of (10x) DreamTaq buffer 

(Fermentas), 1ul of template DNA, and 0.25ul of DreamTaq polymerase (Fermentas) at final 

conc. of (0.05U/ul).  

 

                       

 
                                                                                        
               
 
                                                     
 
 

 
 

 

 
 

 
 

Fig.1d. Cloning strategy of plasmid p3aKan;  lacOs, modified lac operator sequence with high affinity to bind lacI; 
M, Multiple cloning site; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion protein of lacI repressor 
with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, arabinose inducible 
promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence of 5s ribosomal 
gene; Ampr, Ampicillin resistance gene; Kanr, kanamycin resistance gene; pMB1, origin of replication derived from 
pMB1 plasmid.MOB; mobilization sequence; rep; origin of replication; Chlorampr, chloramphenicol  resistance 
gene 
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The PCR condition was optimized based on the melting temperature (Tm) of the 

primers, using iCycler iQ Real-Time PCR detection system from Bio-Rad Inc. initially 95ᵒC 

for 3min, as pre de-naturating temperature was used followed by 30 cycles of 95ᵒC for 30sec, 
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60ᵒC for 30sec and 72ᵒC for 1min and final elongation of 72ᵒC for 10min. The PCR product 

was analyzed on 2% agarose gel and subsequently digested with AhdI (Fermentas) both the 

Vector and insert were purified using PureLinkTM PCR purification kit (invitrogen) following 

manufacturer’s instructions. The vector fragment was dephosphorelated with FastAPTM 

Thermosensitive Alkaline Phosphatase (Fermentas) before purification step to prevent re-

ligation and subsequently cloned into the corresponding AhdI site in plasmid p3a to get 

plasmid p3aKan. 

 

The ligation product from the cloning procedure of plasmid p3akan was used to 

transform the E.coli C2988J mops competent cells according to the standard molecular 

biological techniques by Sambrook et.al. [15]. About 20 bacterial colonies were picked and 

inoculated into 5ml Luria-Bertani (LB) medium [13] supplemented with kanamycin 

(50µg/ml). The plasmid DNA was isolated using PeqLab Kit I (Plasmid Miniprep kit I, 

Erlangen, Germany). The samples were digested with restriction enzymes (purchased form 

Fermentas) listed in plasmid collection map and were loaded on 1% agarose gel (RothTM) 

stained using  gel red nucleic acid gel stain (GelRedTM Biotium # 41003) and analyzed under 

UV light in a ChemiDOCTM machine (BioRad laboratories) for analyzing the right clones. A 

restriction digest of positive clone of plasmid p3aKan is shown in (Fig.1e). 
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Fig.1e. Restriction analysis of plasmid p3aKan; 1% agarose gel 
picture showing positive clone of plasmid p3aKan; lane1, 
GeneRulerTM 1kb DNA ladder (Fermentas); lane2, uc,7062bp; 
lane3, ApaI 7062bp; lane4,BamHI 7062bp; lane5,HindIII 1799 / 
1973/ 3290bp; lane6, SmaI 2026/5036bp; lane7, GeneRulerTM 1kb 
DNA ladder (Fermentas). 
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Table.1. Primers list

Template Amplified 
region

Primer Fragment 
size

pBHR1
Kanamycin 
resistance 
cassette

PKanAhdIF 5’-TTA GCA GAC GG‘G GAG TCG CCA CGT TGT 
GTC T -3’

934bpPKanAhdIR 5’- CAC CAG GAC GG‘G GAG TCT TAG AAA AAC 
TCA T -3’

pSIPHCNparA Resolution 
site 1

5’res1K 5’– CAG CAG GGT ACC CCT TGG TCA AAT TGG GTA 
TAC C –3’ 140bp

3res1P 5’ – CTG CTG TTA TAA GCA CAT ATG TGG GCG TGAG 
– 3’ 

Primers designed using web based primer3 software using default settings
 

 

4.3.2.1 Construction of plasmid p4a 

 

For construction of plasmid p4a the plasmid p3a was used as a backbone, the 

resolution site 1 was introduced into the plasmid p3a in order to get the final working plasmid 

p4a (which has the ability to recombine). For this purpose the 140bp res1 site was amplified 

through PCR using plasmid pSIPHCNparA [4] as template and primers 5’res1K and 3res1P 

(synthesized by Microsynth AG, Switzerland) with KpnI and PsiI restriction sites Italicized 

sequence in primer (Table.1) 

 

The PCR reaction with final volume of 25µl was carried out using 0.25µl of (50 

pmol/µl) primers each, 2.5ul of (2mM) dNTP’s(Fermentas), 2.5ul of (10x) DreamTaq 

polymerase (Fermentas) buffer, 1ul of template DNA, and 0.25ul of DreamTaq polymerase 

(Fermentas) at final conc. of (0.05U/ul). The PCR condition was optimized based on the 

melting temperature (Tm) of the primers, using iCycler iQ Real-Time PCR detection system 

from Bio-Rad Inc. initially 95ᵒC for 3min, as pre de-naturating temperature was used 

followed by 30 cycles of 95ᵒC for 30sec, 60ᵒC for 30sec and 72ᵒC for 1min and final 

elongation of 72ᵒC for 10 min. The PCR product was analyzed on 2% agarose gel to confirm 

the amplification. The PCR product was digested with KpnI and PsiI (Fermentas) and 

subsequently cloned into the corresponding sites in plasmid p3a to get the vector p4a 

(6263bp) (Fig.2a). 
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Fig.2a. Cloning strategy of plasmid p4a; lacOs, modified lac operator sequence with high affinity to bind lacI; M, 
Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, Ampicillin resistance gene; pMB1, origin of replication derived from pMB1 plasmid.  
5’res1K 5’– CAG CAG GGT ACC CCT TGG TCA AAT TGG GTA TAC C –3’ 
3res1P 5’ – CTG CTG TTA TAA GCA CAT ATG TGG GCG TGAG – 3 
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4.3.2.2 Construction of plasmid p4aKan 

For construction of plasmid p4aKan (Fig.3a) the resolution site1 was introduced into 

the plasmid p3a. For this purpose the 140bp res1 site was amplified through PCR using 

plasmid pSIPHCNparA [4] as template and primers 5’res1K and 3res1P (synthesized by 

Microsynth AG, Switzerland) (Table.1). The PCR reaction with final volume of 25µl was 

carried out using 0.25µl of (50 pmol/µl) primers each, 2.5ul of (2mM) dNTP’s (Fermentas), 

2.5ul of (10x) DreamTaq buffer (Fermentas), 1ul of template DNA, and 0.25ul of DreamTaq 

polymerase (Fermentas) at final conc. of (0.05U/ul). The PCR condition was optimized based 

on the melting temperature (Tm) of the primers, using iCycler iQ Real-Time PCR detection 

system from Bio-Rad Inc. initially 95ᵒC for 3min, as pre de-naturating temperature was used 

followed by 30 cycles of 95ᵒC for 30sec, 60ᵒC for 30sec and 72ᵒC for 1min and final 

elongation of 72ᵒC for 10min. The amplification of PCR product was checked on 2% agarose 

gel and subsequently digested with KpnI and PsiI (Fermentas) and subsequently cloned into 

the corresponding sites in plasmid p3aKan resulting in vector p4aKan (7197bp). A positive 

clone of plasmid p4aKan is shown in (Fig.3b). The plasmid p4aKan is under control of 
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pBAD promoter and has ability to recombine into mcDNA and mpDNA upon addition of L-

(+)-arabinose. 

 

 
 
 
 

 

 

 
 

 
 

 

 

 
 
 

Fig.3a. Cloning strategy of plasmid p4aKan; lacOs, modified lac operator sequence with high affinity to bind lacI; 
M, Multiple cloning site; res1, resolution site 1; res2, resolution site 2; parA, ParA resolvase gene; lacI-L’, fusion 
protein of lacI repressor with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; PBAD, 
arabinose inducible promoter; araC, repressor/inducer of PBAD promoter; rrnB, transcriptional terminator sequence 
of 5s ribosomal gene; Ampr, Ampicillin resistance gene; Kanr, kanamycin resistance gene pMB1, origin of 
replication derived from pMB1 plasmid.  
5’res1K 5’– CAG CAG GGT ACC CCT TGG TCA AAT TGG GTA TAC C –3’ 
3res1P 5’ – CTG CTG TTA TAA GCA CAT ATG TGG GCG TGAG – 3 
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The ligation product from the cloning procedure of plasmid p4akan was used to 

transform the E.coli C2988J mops competent cells according to the standard molecular 

biological techniques by Sambrook et.al. [15]. About 15 bacterial colonies were picked and 

inoculated into 5ml Luria-Bertani (LB) medium [13] supplemented with kanamycin 

(50µg/ml). The plasmid DNA was isolated using PeqLab Kit I (Plasmid Miniprep kit I, 

Erlangen, Germany). The samples were digested with restriction enzymes (purchased form 

Fermentas) listed in plasmid collection map and were loaded on 1% agarose gel (RothTM) 

stained using  gel red nucleic acid gel stain (GelRedTM Biotium # 41003) and analyzed under 

UV light in a ChemiDOCTM machine (BioRad laboratories) for analyzing the right clones. A 

restriction digest of positive clone of plasmid p4aKan is shown in (Fig.3b). 
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Fig.3b. Restriction analysis of Plasmid p4aKan; 1% agarose gel 
picture showing successful cloning of res1 site in plasmid p3aKan ; 
lane1, GeneRulerTM 1kb DNA ladder (Fermentas); lane2, 
uc,7197bp; lane3, PstI 7197bp; lane4,HindIII 1934/1974/3290bp; 
lane5, SmaI 2026/5171bp; lane6, XhoI 48/2097/5060bp; lane7, 
GeneRulerTM 1kb DNA ladder (Fermentas). 
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Abstract 

Bacterial Ghosts (BGs) represent vaccine delivery systems gifted with outstanding 

natural adjuvant properties. BGs are empty cell envelopes of Gram-negative bacteria lacking 

cytoplasmic content yet retaining unaltered all morphological and structural features of their 

living counterparts. BGs intact surface make-up is easily recognized by professional antigen-

presenting cells through pattern recognition receptors making them ideal for mucosal 

administration through oral, ocular, intranasal or aerogenic routes, which represent the most 

desirable ways of application in advanced vaccine use. BGs have been designed to be used as 

carrier of active substances and foreign antigens (protein and/or DNA) for vaccine 

development. This review highlights the salient features of the BGs versatile multipurpose 

vaccine platform for application in a wide range of human and veterinary medicines. 
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Abbreviations 

Ag, antigen; APCs, antigen-presenting cells; BB, bacterial backbone; BGs, Bacterial Ghosts; 

BPL, β-propiolactone; CMV, cytomegalovirus; DCs, dendritic cells; EHEC, enterohemorragic 

Escherichia coli; EMA, European Medicines Agency; FDA, Food and Drug Administration; 

GnRH, gonadotrophin-releasing hormone; HA, heamagglutatnin; HBV, hepatitis B virus; 

hCG, human chorionic gonadotrophin; HIV, human immunodeficiency virus; IE, immediately 

early enhancer; IM, inner membrane; LPS, Lipopolysaccharide; MBP, maltose-binding 

protein; mcDNA, minicircle DNA; mpDNA, miniplasmid DNA; NK cells, natural killer cells; 

NTHi, nontypable Haemophilus influenzae; OM, outer membrane; ompA, outer membrane 

protein A; PAMPs, pathogen-associated molecular patterns; pSIP, self-immobilizing 

plasmids; RITARD, reversible intestinal tie adult rabbit diarrhea; SNUC, Staphylococcus 

aureus nuclease A; TLR, toll-like receptor; TCP, Toxin-coregulated pilus; ZP, zona pellucida. 

    

Key issues 
 The Bacterial Ghost platform technology represents a novel, safe, cost effective, 

progressive and versatile multipurpose approach in the development of safe and potent 

vaccines in the prophylaxis of a variety of infectious diseases. 

 Successful delivery of Ags from various pathogens to target cells requires the adequate 

form and suitable compartments of the selected delivery system, and should induce strong 

humoral and cellular immune responses, and long protections against the disease caused 

by pathogen or change the behavior of targeted cells. 

 The selected delivery system possessing excellent adjuvant properties should not represent 

any potential hazard for horizontal gene transfer and must demonstrate a suitable safety 

profile and stability at room temperature permitting its easy storage and handling in less 

developed countries. 

 BGs can be produced very efficiently by fermentation in disposable or conventional steel 

fermenters of various sizes in research laboratories or in large GMP units of 

pharmaceutical industry. The initial engineered working stocks of target bacteria can 

easily generate large quantities of a BGs vaccine in a short period of time at low costs. 

 Optimization and improvement of the selected prospective model type of BGs would help 

to progress the development of microbial-mediated disease vaccine and their application in 

future clinical trials. 
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The word vaccine (Latin word vacca means cow) is derived from the work of Edward Jenner 

who inoculated cowpox in humans consequently protecting them against smallpox [1-2], 

hence providing one of the first clues pointing to the relationship between human and 

veterinary infectious disease sciences. In 1960 Ito et al. discovered the property of naked 

DNA to transfect mammalian cells in vivo [3]. Later on, this concept was further implemented 

by Wolf et al. when he and his colleagues inoculated plasmid DNA carrying a reporter gene 

into the muscle of mice which resulted in in vivo expression of the encoded gene [4-5]. Since 

then the use of naked DNA as a vaccine has been intensively studied and a variety of such 

vaccines using naked DNA have undergone clinical trials in both human and veterinary 

practices [6-9]. Although the use of DNA vaccines as intramuscular injection is a quite simple 

procedure, the mechanism responsible for the induction of a specific immune response was 

proven to be multifaceted as most of the cells transfected by this method are non-effective in 

the antigen (Ag) presentation and priming of naïve immune cells [4,10-11]. These facts 

provide a need for the development of an efficient DNA delivery system capable to target 

professional antigen-presenting cells (APCs), e.g. macrophages and dendritic cells (DCs), and 

stimulate strong and efficient Ag-specific immune responses. Among commonly used viral 

and non-viral DNA delivery systems the non-viral DNA delivery systems are more promising 

due to their simplicity and higher safety regardless their reduced transfection efficiencies [12-

13].  

The most commonly used veterinary vaccines are killed microorganisms (bacteria) 

inactivated either by heat, irradiation or chemical treatment. Unfortunately, during this 

“inactivation” process most of the essential structural components of the bacterial cell wall are 

denatured resulting in impaired function and non-efficient immune responses [14-20].   

 Recently several synthetic systems serving as adjuvants capable to increase the poor 

immunogenicity of defined highly purified Ags when using subunit vaccines have been 

intensively studied. Membrane vesicles – liposomes– made of one (unilamellar) or more 

(multilamellar)  phospholipid membranes containing both hydrophobic and hydrophilic 

domains represent interesting delivery systems capable after specific modifications to 

efficiently stimulate specific immune responses [21]. The hydrophilic core of liposomes can 

protect Ags or drugs from degradation by environmental impacts after particular 

administration before reaching the final destination [22]. Moreover, liposomes allow using 

lower concentrations of highly toxic or poorly soluble compounds bringing them directly to 

specific target cells. Only few anticancer drug loaded liposomes were used in veterinary 



164 

 

medicine [23-25]. The cationic surface of liposomes and its modulation with 

immunostimulators including pathogen-associated molecular patterns (PAMPs) such as LPS, 

monophosphoryl lipid A, flagellin and others enhance the recognition and internalization by 

APCs hence having a positive impact on their maturation leading to effective stimulation of 

Ag-specific immune responses [21,26-30]. However, administration of novel adjuvants or 

vaccines comprising non-biolological combinations of various ligands for immunomodulatory 

receptors presented on the surface of APCs or other target cells should be considered very 

carefully, because inappropriately selected combinations might lead to unspecific 

immunostimulatory signals and unpredicted adverse effects. These facts will lead to more 

thorough safety studies required by regulatory agencies and have a negative impact on 

production costs and the final price of the product  [31]. 

The Bacterial Ghost system represents a novel and progressive approach in the 

development of safe and potent vaccines in the prophylaxis of a variety of infectious diseases 

[14,32-33]. Bacterial Ghosts (BGs) are produced by controlled expression of cloned gene E of 

bacteriophage ΦX174 [32-36], resulting in the formation of a trans-membrane tunnel structure 

spanning the whole cell envelope, through which the entire cytoplasmic content is expelled 

due to the change in osmotic pressures between the cell interior and the culture medium [37]. 

The empty inner space of BGs can be filled with drugs, proteins, DNA, enzymes and other 

compounds. Additionally, BGs can be closed or sealed with membrane vesicles if desired [38-

39].  The main advantage of BGs compared to other non-living vaccines is the fact that all 

surface structural components of the envelope are non-denatured and remain intact [40].  The 

induced lysis process does not harm the essential structural components of the bacteria giving 

raise to immunologically active particles capable to stimulate the host immune system and 

deliver specific Ag to professional APCs or active substances to the target cells [41]. 

Production of BGs is an efficient, stable, and safe process resulting in freeze dried vaccine 

preparations which are stable at ambient temperatures for many months [42]. In addition to 

multiple immunization ways used for successful administration of BGs, e.g. intradermal, 

intramuscular, intravenous, subcutaneous, intraperitoneal, oral, aerosol, intragastric etc., 

prepared BG formulations can be also effectively administered through other mucosal routes 

[43-56]. This review will highlight the potential of BGs to be used as carriers of protein 

subunit and DNA vaccines, their use as a combination vaccine, and summarize results from 

applications in veterinary vaccine trials, and preclinical and animal studies for human vaccine 

candidates. 
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Bacterial Ghost System  

BGs are empty cell envelopes of Gram-negative bacteria produced by controlled 

expression of lysis gene E. Gene E codes for 91 amino acids and exerts its lytic function in 

Gram-negative bacteria by fusion of the inner and outer cell membranes forming a specific 

transmembrane tunnel structure, through which all the cytoplasmic content is expelled leaving 

a bacterial envelope called Bacterial Ghost devoid of nucleic acids, ribosomes and other 

intracellular constituents [57-61]. Induced E-specific transmembrane lysis tunnels are of 

different size (40-200 nm) and are more abundant about 2/3 in the potential zone of cell 

division in the middle of bacteria than at the polar sites [40,58,62-64]. The inner membrane 

(IM) and outer membrane (OM) structures of BGs remains intact during the lysis process 

[37,40,58]. Electron microscopy studies [37,58] and enzymatic studies [40,65] clearly showed 

a sealed periplasmic space at the border of the lysis tunnel. It is believed that protein E 

induces occurrence of lysophosphatidylethanol-amine in the host cell membrane, which most 

probably facilitates the fusion of IM and OM [64]. E-mediated lysis strictly depends on 

several bacterial host factors, e.g. active growth and cell division. Bacteria entering the 

stationary phase are phenotypically resistant to this activity [66]. Moreover, the efficient 

production of BGs also significantly depends on pH and osmotic pressure of the medium [42]. 

Detailed overview of various factors affecting the E-mediated lysis is described in Table 1.   

The E-specific lysis process in growing bacteria includes integration of protein E into 

the IM, followed by its conformational change, which leads to the fusion of IM with OM and 

sealing of the periplasmic space. Transmembrane tunnel structures are build-up by the 

assembly of protein E into multimers at the potential cell division sites [67]. The mechanism 

of the conformational change is most probably due to a cis-trans isomerization of the proline 

residue (P21) within the first membrane-embedded α-helix of protein E [68]. The local fusion 

of IM and OM is completed by the transfer of the C-terminal domain of protein E towards the 

surface of the OM of the bacterium [67].  
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Table 1. Bacterial cell factors affecting E-mediated lysis.

Cellular conditions/ Mutant genes 
Inhibition
of lysis 

Retardation 
of lysis 

Ref. 

Stationary growth Yes No [66]
Slow growth rates No Yes [66]
Low proton motive forces (pmf) Yes No [65] 
Penicillin binding Protein mrcA (pbp1a) No No [58]
mrcB (pbp1b) No No [58]
pbpA (pbp2) No No [58]
pbpB (pbp3) No No [58] 
dacB (pbp4) No No [58]
mepA, mepB No Yes [58]
lytA Yes No [132]
envC + rle Yes No [133] 
envC No Yes [133]
slyD Yes No [134]
pxlA Yes No [135]
ftsZ Yes No [136] 
ftsA12 Yes No [136]
fabB, fade No Yes [133]
wee No Yes [135]
ftsA3 No No [136] 
ftsQ No No [136]
relA No No [137]
pldA1 No No [64] 
gpK No No [138]
MraYF288L Yes No [139]
BsMraY Yes No [139]  

 

Mechanism and expression of the lysis gene E 

 Expression of the lysis gene E in the host bacterium has to be under tight genetic 

control. Leakage in the expression control of lysis gene E during the BGs formation process 

could be lethal for the host bacterium. Bearing this in mind the expression of cloned gene E 

can be regulated by several control promoter-repressor systems including thermosensitive 

λpL/pR-cI857, the chemically inducible lac PO-lacIq, the arabinose or the TOL promoter-

repressor system [33,69-70]. To further extend the heat stability of the λpR promoter/cI857 

repressor system Jechlinger et al. in 1999 identified and described a single point mutation in 

the OR2 operator region of the rightward λpR promoter, which enhanced the temperature 

stability of the λpR/cI857 gene expression system. This discovered specific mutation (λpRmut) 

strictly repress the expression of gene E at temperatures lower than +37°C, but allows the E 

lysis at higher temperatures between +38°C and +42°C [57].  
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Furthermore, a cold sensitive method for the production of BGs by lowering the 

growth temperature of bacteria down to +30°C or lower was developed. In this system the 

expression of lysis gene E is kept under the expressional control of either the lac PO-lacI or 

the phage 434 cI/pR expression system. Both repressor genes lacI and the phage 434 gene cI 

are regulated by transcriptional control of the rightward λpR promoter and the cI857 

temperature-sensitive repressor. Expression of repressors (lacI /cI) is inhibited at temperatures 

lower than +30°C and lack of the repressors leads to the expression of gene E and bacterial 

lysis at low temperatures. Besides carrying the repressor system on the E-mediated lysis 

plasmid, the corresponding repressor system preloaded in a bacterium, expressed either 

chromosomally or encoded on an extra plasmid, is essential to moderate the highly lethal 

effects of the gene E product  [71]. 

 

Production of BGs 

BGs can be produced by controlled expression of the lysis gene E in a wide range of 

non-pathogenic, pathogenic and probiotic Gram-negative bacteria, e.g. Escherichia coli K12 

strains, Actinobacillus pleuropnemoniae (App), Bordetella bronchiseptica, Edwardsiella 

tarda, enterohemorrhagic Escherichia coli (EHEC), enterotoxigenic Escherichia coli 

(ETEC), Francisella tularensis LVS, Helicobacter pylori, Klebsiella pneumoniae, 

Mannheimia (Pasteurella) haemolytica, Neisseria meningitidis, Pasteurella multocida, 

Pectobacterium cypripedii,  Ralstonia eutropha, Salmonella typhimurium, Salmonella 

enteritidis, Shigella flexneri, Vibrio cholera, Vibrio anguillarum and probiotic Escherichia 

coli Nissle 1917 [14,62,72]. This demonstrates the large ability of the BG system for selection 

of suitable bacterial candidates in vaccine development for veterinary and human 

applications. Determinations of the number of total and reproductive bacteria present during 

the time course of growth and lysis process plus optical densities of the cultures represent 

standard microbiological procedures used at the time of BGs production [14].  

Efficiency of the E-mediated lysis process, and quantification of generated BGs and 

non-lysed viable bacteria are determined by flow cytometry assays using a specific dye, 

which is sensitive to the changes of discriminatory power of membrane potential and stains 

only cells that have lost membrane potential (BGs or dead bacteria). Number of fermentation 

studies related to the controlled expression of the lysis gene E led to the development and 

determination of standardized conditions for the BGs generation of at least 99.9% of the total 
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number of bacteria in the culture. Remaining non-lysed, but reproductive bacterial cells are 

inactivated by β-propiolactone (BPL) to avoid the presence of any living cell already before 

lyophilization.  BPL is chemical agent alkylating with nucleic acid mostly guanine and widely 

used for inactivation of viruses and for sterilization of vaccines, human tissue implants and 

plasma [73]. Moreover, an alternative process of nucleic acid degradation during the BGs 

production can be used to eliminate any danger related to nucleic acids such as horizontal 

gene transfer of either pathogenic or antibiotic resistance genes.  To avoid any of these 

hazards the Staphylococcus aureus nuclease A (SNUC) can be expressed along with the lysis 

gene E. SNUC completely degrades the host DNA and any other nucleic acid into fragments 

no longer than 100 base pairs [74]. The combination of BGs formation and SNUC expression 

has been performed in consistency study of BGs production from S. flexneri with results 

showing the values of presented residual chromosomal or plasmid DNA below the detection 

limit of real time PCR [75]. In order to obtain dry-powdered BGs ready for further 

applications in vivo or ex vivo, produced BGs are intensively washed and freeze-dried. The 

whole BGs production process is kept under sterile conditions.The detailed BG production 

process  is described in a recent review of Langemann et al. [42]. 

 

BGs-vaccine candidates in human and veterinary medicine 

 The BG system represents a novel non-living highly efficient Ag and drug delivery 

platform as an alternative to viral and bacterial methods applied in current vaccine 

development.  The safety profile of DNA delivery systems applicable and effectual in human 

and veterinary medicines represents one of the biggest demands in the development of new 

DNA carrier/delivery systems. Our recent studies confirmed no cytotoxic and genotoxic 

impacts of BGs on the viability and metabolic activity of a wide range of tested cells 

including macrophages [12], dendritic cells [43,76], tumor cells [77-78], endothelial cells [79] 

and epithelial cells [80].  It has been shown that BGs with their intact surface structures are 

efficiently recognized and phagocytosed by professional APCs through various surface 

receptors, e.g. complement receptors and Toll-like receptors [81]. Internalization of BGs 

derived from A. pleuropneumoniae by porcine APCs led to enhanced expression of antigen-

presenting molecules on the surface of APCs and significantly increased the capacity of APCs 

to stimulate proliferation of T cells [82]. Moreover, futher studies using DCs as model of the 
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most professional APCs revealed that their phagocytic activity and uptake of BGs depend on 

the bacterial strain used for the production of BGs [76].   

 

BGs-carrier of subunit proteins 

The recombinant DNA technology has been used either to anchor foreign protein Ags 

to the cell membrane complex of bacteria used for BGs generation or to load foreign Ags 

inside the BG envelopes for the use of BGs as carriers of subunit vaccines [62,83-85]. 

Selected Ags may be presented on the surface of BGs either via fusion with outer membrane 

proteins [50,86], or anchored to the IM by its fusion to N-, C- ,or N- and C- terminal 

membrane anchors [33]. It has been shown that these anchors do not affect the proper folding 

of attached Ags, e.g. β-galactosidase and polyhydroxybutyrate-synthetase [87], while their 

self assembly and clustering can be further manipulated [38]. This particular procedure allows 

the attachment of Ag to the IM keeping the structure of conformational epitopes intact and the 

enzymatic activities fully active [38]. Moreover, loading of target Ags into the periplasmic 

space can prevent sudden degradation of the Ag due to the external environmental factors or 

lyophilization process during BGs production. This gel resembling area of the periplasmic 

space is rich in membrane derived oligosaccharides [88] and is tightly sealed by the fusion of 

IM and OM during the lysis process [37,62]. Target Ags alone or incorporated into SbsA or 

SbsB S-layer fusion proteins are exported to the periplasmic space by their fusion to the 

maltose binding (MalE) protein [54,89-91]. 

  Furthermore, the property of S-layer protein matrices SbsA (hexagonally ordered) and 

SbsB (obliquely ordered) which are forming sheet like self-assembly structures can be also 

explored as carriers of foreign Ags in the inner lumen of BGs. These protein structures are not 

expelled with the cytoplasm to the external environment during E-mediated lysis and remain 

in the empty BGs [90]. The p6 self-assembly lattice of S-layer protein SbsA showed higher 

capacity to accept foreign Ags compared to p2 lattice of SbsB due to its capacity to tolerate 

larger inserts e.g. Omp26 (NTHi) [92-93]. Recombinant BGs carrying the fusion protein 

made of Zona pellucida 3 (ZP3), SbsA and maltose-binding protein (MBP), which was 

expressed and transported to the periplasmic space, were used to deliver the target Ag as an 

immunocontraceptive vaccine in possums [94]. A schematic picture of miscellaneous 

possibilities for an emplacement of target Ags within the BG envelope complex is depicted in 

FIGURE 1. 
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Figure 1. Diversity of target Ag (TA) location in the different areas of the BG envelope. 1) Recombinant or 
induced pilus (RecP) acting as TA (a); export of target Ag (TA) to sealed periplasmic space as maltose-binding 
protein (MBP) fusion (b); protein TA anchored into the inner membrane (IM) via E’, L’ or E’ and L’ anchor 
sequences or attachment of biotinylated TA to E'-membrane anchored Streptavidine (StrepA) (c). 2) Presentation 
of TA on the outer membrane (OM) surface as fusion protein with outer membrane protein A (OMP A) (a); 
export of TA to the sealed periplasmic space as MBP-sbsA or -sbsB S-layer fusion proteins (b); minicircle DNA 
(mcDNA) carrying the lac operator sequence (LacOs) anchored to the IM via L’-membrane anchored LacI 
(LacI-L’) or inner membrane protein (IMP) acting as TA (c). 3) Lipopolysaccharide (LPS) acting as TA (a); 
export of TA to the sealed periplasmic space using a signal sequence that is cleaved off after transport, e.g. GIII, 
MBP signal sequence (b); loading of bacterial lumen with linear and cDNA plasmids  making BG as carrier for 
DNA vaccines (c). 4) Outer membrane protein (OMP) acting as TA (a); export of TA to the sealed periplasmic 
space as sbsA or sbsB  S-layer fusion proteins using a signal sequence that is cleaved off after transport, e.g. 
GIII, MBP signal sequence (b); DNA carrying the LacOs anchored to the IM via L’-membrane anchored LacI 
(LacI-L’) repressor molecule (c). 5) Pilus acting as TA (a); periplasmic space (b); cytoplasmic space filled up 
with recombinant S-layer proteins carrying foreign TA (c). 

 

Plasmid DNA vaccines  

Plasmids most commonly used for vaccination are double stranded DNA molecules 

encompassing two functional units,  the eukaryotic expression cassette and the bacterial 

backbone (BB). The eukaryotic expression cassette also known as transcription unit 

comprises of promoters, enhancers and the polyadenylation signal necessary for successful 

expression of the desired gene(s) in the target cell. The BB of the plasmid in most cases 
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consists of the antibiotic resistance gene, an origin of replication (critical for plasmid DNA 

production inside the bacteria) and unmethylated phosphodiester-linked cytosine and guanine 

(CpG) motifs, which stimulate the innate immune response [95].  

Genes encoding immunomodulatory proteins possessing the capacity to increase and 

modulate the immune responses driven against the specific Ag encoded on an expression 

plasmid can either be included on the same plasmid or administered separately via an 

additional plasmid(s). Genes encoding cytokines, chemokines, T cell co-stimulatory 

molecules and other molecules involved during the entire process of Ag-specific immune 

responses have been investigated for their capacity to stimulate and enhance the plasmid-

encoded Ag-specific immune response [4,96-97]. 

Unmethylated CpG motifs are important components of DNA vaccines. They play an 

important role in the activation of the innate immune system of the host by binding to the 

TLR9 of professional APCs [98-99]. Because of their less frequent presence in vertebrates, 

unmethylated CpG motifs are considered to act as an alarm signal for the immune system 

during bacterial infection [95].  Moreover, recognition and binding of CpG motifs to TLR9 

stimulate maturation, differentiation and proliferation of natural killer cells (NK), 

plasmacytoid DCs, macrophages and T cells, followed by secretion of cytokines polarizing 

the development of T cell immune responses toward Th1 type [98-99]. Furthermore, CpG 

motifs alone also act as Ag-independent endogenous adjuvant.  

Antibiotic resistant genes represent an important part of plasmid DNA vaccines 

because of their significant role in selection of bacteria carrying relevant pDNA during the 

production process. The European Medicines Agency (EMA), formerly European Agency for 

Evaluation of Medicinal Products (EMEA), and Food and Drug Administration of the USA 

(FDA) strictly prohibit the use of penicillin and other β-lactam antibiotics during vaccine 

production processes due to serious biosafety risks posed by these sequences [100-102]. 

Traces of these antibiotics in administered vaccines might lead to serious allergic reactions 

and/or the resistance against these markers in environmental micro-organisms. Therefore the 

regulatory agencies, e.g. EMA and FDA recommend only the use of Kanamycin or Neomycin 

antibiotic resistant markers for the purpose of plasmid DNA vaccination or gene therapy as 

these aminoglycoside antibiotics are not widely used in medical practice [100-103]. 

Moreover, regulatory agencies strongly recommend full elimination of the use of antibiotic-

resistance genes in plasmid DNA, as well as the use of antibiotics during DNA vaccine 
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production processes. Following these recommendations, our group focused on the 

development and the construction of novel plasmid DNA vaccines lacking plasmid BB e.g. 

minicircle DNA (mcDNA). Using of mcDNA together with BGs for future vaccine 

applications is discussed in the next section. 

At present time only a few DNA vaccines have been approved in veterinary practice, 

e.g. vaccine against Infectious Hematopoietic Necrosis virus (IHNV) in Salmon inducing 

protective immunity, which leads to the improvements of animal welfare, and quality and 

quantity of food [104]; vaccine against West Nile virus in horses inducing efficient Ag-

specific humoral and cellular immune responses capable to protect animals against infection 

[105-106]; xenogeneic DNA vaccine against dog melanoma, the first approved DNA vaccine 

against cancer, leading to development of Ag-specific humoral immune responses and 

survival prolongation [107]; and the most recently intramuscular DNA vaccination of pigs 

with plasmids encoding growth hormone releasing hormone, which stimulated Ag-specific 

humoral immune responses, enhanced the protection against Mycoplasma hyopneumonia and 

significantly decreased the mortality and the clinical disease associated with Mycoplasma 

hyopneumonia [108] . There is still a need for an intensive research for the development of 

DNA vaccines and their practical use in veterinary medicine. The requirement for the use of 

high doses of plasmid copies as a consequence of the low immunogenicity of current DNA 

vaccines represents one of the reasons responsible for the slow pace in the development and 

licensing approval of current DNA vaccines. This fact is most commonly attributed to the 

absence of efficient carrier systems capable to deliver specific DNA (Ag) to the target cells 

and stimulate them to induce effective Ag-specific immune responses [109].  Plasmid DNA 

vaccination strategy has a lot of potential due to its simplicity, versatility of application 

routes, modes of vaccine delivery, and the capacity to induce desired Ag-specific immune 

responses. However extensive investigations are needed for the development of novel 

delivery systems capable to target specific immune cells and increase the immunogenicity of 

delivered Ags [110].  

 

BGs-carrier of DNA encoded Ag 

BGs possess excellent loading capacity and can be filled with high amounts of nucleic 

acids [89].  Loading of BGs involves simple resuspension of powdered dried lyophilized BGs 

in a high concentrated plasmid DNA solution followed by extensive washing steps to remove 
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unbound plasmid DNA. The final amount of DNA present within the BGs depends on the 

concentration of the DNA solution used. Previous studies showed that using this method up to 

6000 mid size plasmid copies can be stored within a single BG proving both the great loading 

capacity of BGs and the high efficiency of the used procedure for loading of BGs [12]. The 

interaction between plasmid or linear dsDNA and the cytoplasmic membrane of BGs is most 

likely due to an electrostatic interaction of negatively charged molecules of DNA and 

positively charged moieties (amine groups) present on the non polarized IM [12]. Moreover, 

plasmid DNA can be loaded and stored inside the BGs either by binding to biotinylated 

dextran or to polylysin present within the inner space of BGs [38]. Furthermore, BGs can be 

efficiently loaded by plasmid DNA using the simultaneous binding of a LacI repressor protein 

from the fusion complex of LacI and a hydrophobic IM-anchoring sequence (L’ anchor) to a 

particular DNA sequence (a tandem repeat of a modified lactose operator sequence-the LacOs 

sites) of a specific self-immobilizing plasmid DNA (pSIP). Expression of the fusion complex 

LacI-L’ membrane anchor leads to its incorporation to the IM of BGs. Plasmid DNA bound to 

the fusion complex through the LacOs sites is therefore immobilized within the bacteria and 

stays there during the E-lysis process yielding into BGs carrying pSIP in the interior [111-

112]. To sum up, two potential mechanisms can be employed for using BGs to deliver DNA 

into the target cells. In a two step procedure BGs are first produced and lyophilized to obtain a 

dry-powdered form, and then BGs are loaded with high amounts of desired plasmid DNA 

[12,43,76-77]. Alternatively, a simple one step process for generation of BGs carrying 

specific plasmid DNA using the pSIP system has been developed. This process allows us to 

get DNA loaded BGs already before the lyophilization without the need of any additional 

step. 

The pSIP technology has been recently further improved especially for DNA vaccines. 

One of the most critical points in DNA vaccine advancement is to develop a system capable 

to deliver only the target gene of interest without the transfer of other genetic information, e.g. 

antibiotic resistance markers and origin of replication. The BB sequences including the 

antibiotic resistance genes are considered as high biological safety risk for vaccination using 

plasmid DNA, therefore in the future vaccine development all these issues need to be 

addressed as a matter of priority. A novel advanced version of the pSIP technology based on 

mcDNA devoid of entities posing a biological risk to vaccinated subject was developed to 

overcome this hurdle in using BGs loaded plasmid DNA in vaccination. This improved 

version of pSIP is based on the ParA resolvase system capable to produce both mcDNA 
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bound to the IM receptor and the sister-pair miniplasmid DNA (mpDNA) which is released to 

the cytoplasm and expelled together with other cytoplasmic content to the culture media 

during the E-mediated lysis (FIGURE 2) [112].  

 

Figure 2. Advanced version of pSIP produces minicircle DNA without the antibiotic resistance genes anchored 
to the IM of BG envelopes via the LacOs - LacI-L’ interaction. Mother plasmid after recombination is divided  
into miniplasmid comprising antibiotic resistant gene, one recombination site along with bacterial backbone, and 
into minicircle containing only LacOs necessary for binding to IM anchored LacI-L’ and the gene of interest 
along with promotor, repressor system, polyA signal and one recombination site (A). Detailed schema of the 
parA mediated site specific recombination during production of minicircle DNA (B). araC, repressor/inducer of 
PBAD promoter; GOI, gene of interest; Kan, Kanamycin resistance gene; LacI-L’, fusion protein of LacI repressor 
with truncated lysis protein of bacteriophage MS2 serving as membrane anchor L’; LacOs, modified lac operator 
sequence with high affinity to bind LacI; ParA, ParA resolvase gene; PBAD, arabinose inducible promoter; 
pCMV, cytomegalovirus early promoter; polyA, SV40 late poly adenylation signal; pUC ori, origin of 
replication derived from pUC19; Res1, resolution site 1; Res2, resolution site 2; rrnB, transcriptional terminator 
sequence of 5s ribosomal gene. 

Moreover, a modified system of mcDNA production using the endonuclease activity 

of I-SceI gene encoded from the parent plasmid for digestion of the mpDNA has been 

reported lately [113]. Additionally to our previous studies with BGs and the pSIP technology, 

a novel system involving ParA recombination, E-lysis and SNUC activity combined all at 

once is under investigation. The advantage of this new technique is the potential to get rid of 

unwanted mpDNA by the action of SNUC and to prove that BGs harboring mcDNA can be 

produced in one step process simplified even further (Muhammad and Kudela, personal 

communication). Combination of endonuclease activity along with the pSIP technology 

would further allow increasing the purity of BGs comprising specific mcDNA by digestion of 

all unwanted plasmids which could be present within BGs, e.g. non-recombinant mother 

plasmids and the ParA produced mpDNA. Moreover, implementation of this technique into 
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the practice would simplify the whole production process and eliminate additional necessary 

purification steps. 

 

BGs stimulate effective humoral and cellular immune responses 

The capacity of BGs to elicit specific humoral and cellular immune responses either 

against the bacterial strain used for BGs generation or the target Ag along with 

characterization of stimulated immune responses were investigated using a wide range of 

different types of experimental animals, e.g. mice, rabbits, pigs, possum, fish and cattle 

[43,46,49,51-52,54,114-115]. Different models of immunization schemes concerning BGs 

administration including intraperitoneal, intradermal, intramuscular, subcutaneous, 

intragastric, and aerogenic routes or intravenous immunization by DCs ex vivo transfected 

with DNA loaded BGs were performed to assess the induced specific humoral and cellular T 

cell immune responses [43,46-47,50-51,53,55,82,116]. 

Aerosol immunization of pigs with BGs derived from the lung pathogen A. 

pleuropneumoniae led to a significant increase of specific IgG titers together with enhanced 

ratio levels of CD4+/CD8+ lymphocytes [51]. Mutual co-incubation of APCs and A. 

pleuropneumoniae BGs with T cells isolated from blood of animals immunized with A. 

pleuropneumoniae BGs resulted in significantly higher proliferation of specific T cells 

compared to proliferation of T cells stimulated with APCs but without BGs. Furthermore, 

flow cytometry analysis of the co-stimulatory and antigen-presenting molecule expressions on 

the surface of porcine DCs after incubation with A. pleuropneumoniae BGs revealed their 

significant up-regulation. Observed fluorescence intensities of MHC class II molecules 

expressed on the surface of  DCs incubated with BGs was at least one magnitude higher 

compared to non-stimulated DCs [82]. Moreover, entire analysis showed that the vaccination 

of pigs against respiratory diseases caused by A. pleuropneumoniae using an aerosol form of 

A. pleuropneumoniae BGs fully protects animals against clinical disease or lung lesions [51]. 

The capacity of BGs to activate the immune system of the host and protect the host from a 

lethal challenge with the bacterial pathogen was also detected after intragastric immunization 

of BALB/c mice with BGs prepared from EHEC. BG’s induced humoral immune response 

and stimulated Ag-specific IFN-γ producing T cells were able to protect and enhance survival 

of animals immunized with a single-dose of BGs up to 86% after the challenge with a 
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heterologous EHEC strain. Furthermore, additional booster with BGs increased the level of 

survival up to 93% [53].  

Intramuscular immunization of C57BL/6 mice with BGs prepared from recombinant 

V. cholerae carrying the major outer membrane protein of Chlamydia trachomatis induced 

local mucosal and systemic Th1 type specific immune responses.  The enhanced Ag-specific 

T cell immune responses were confirmed by detection of elevated IFN-γ production by T cells 

isolated and purified from the mucosal genital area and spleen after stimulation in the 

presence of APCs and the specific Ag. Detailed analysis showed no significant difference in 

the IL-4 production by T cells from immunized animals after re-stimulation with the specific 

Ag. Moreover, Ag-specificity and functional efficiency of stimulated T cells was confirmed 

by the transfer of purified T cells from immunized animals to naïve animals followed by the 

challenge with specific bacterial pathogens. Obtained results showed that mice with 

adoptively transferred effector T cells were highly resistant and protected against the 

pathogen infection compared to the infected non-immunized naïve mice [44,47]. Moreover, 

capacity of BGs prepared from Vibrio cholerae expressing Porin B and polymorphic 

membrane protein-D proteins of C. trachomatis to induce long lasting immune responses was 

examined after intramuscular immunization of C57BL/6 mice. Strong anamnestic systemic 

and mucosal immune responses were observed in vaccinated animals. Immunized mice 

efficiently cleared pathogens within 12 days after intravaginal challenge with chlamydia 

inclusion forming units when compared to the control group. Furthermore, re-challenging of 

mice 98 days after resolution of the primary infection resulted in the recall of Ag-specific 

humoral and cellular immune responses indicating effective long-lasting protective immunity 

induced by BGs carrying multisubunit Ags [117].  Altogether, these results emphasize the 

capacity of BGs used as protein Ag carrier to significantly participate in the induction of a 

Th1 type specific T cell immune response after intramuscular immunization. 

    Therapeutic immunization of C57BL/6 mice with BGs prepared from H. pylori 

carrying recombinant Omp18 protein 4 weeks after three oral inoculations with a cocktail of 5 

Iranian type-I Hp strains led to the lowest rate of infection compared to animals immunized 

with pure Cholera Toxin adjuvant and PBS. Moreover, statistically significant increase of 

Omp18-specific antibody titers and reduction in bacterial gastric colonization of the infected 

mice were observed after immunization with H. pylori-rOmp18 BGs compared to control 

mice [118]. 
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Intramuscular immunization of BALB/c mice with V. cholerae and E. coli NM522 

BGs loaded with plasmid DNA encoding gp63 of Leishmania major induced significantly 

increased Ag-specific humoral and cellular immune responses. Moreover, T cells isolated 

from the spleen of immunized animals restimulated with recombinant gp63 produced 

increased levels of IFN-γ but not of IL-4 indicating induction of a Th1 type Ag-specific 

immune response (Tabrizi and Lubitz, manuscript in preparation). 

 Intradermal and intramuscular immunization of BALB/c mice with M. haemolytica 

BGs loaded with pCMV encoding β-galactosidase induced efficient humoral and cellular 

responses against the delivered Ag. The humoral response against the Ag delivered as plasmid 

DNA within BGs was at least one order of magnitude higher than the response observed after 

immunization with naked DNA. Evaluation of stimulated Ag-specific T cell responses 

displayed the presence of both Th1 and Th2 components of the induced immune response, but 

further analysis showed a shift to the predominant Th2 response suggesting a modulation of  

the Ag specific Th response by the bacterial strain used for preparation of BGs [43].  

Furthermore, studies with mouse professional APCs, e.g. macrophages and DCs 

confirmed an excellent capacity of BGs to deliver plasmid DNA encoding a specific Ag to the 

target cells resulting in the expression of Ags within the targets with transfection efficiency up 

to 85% [12,43]. Besides, intravenous immunization of mice with bone-marrow derived DCs 

ex vivo transfected with M. haemolytica BGs loaded with pCMV-β-galactosidase induced 

specific anti-β-galactosidase Ab responses in all vaccinated animals. Moreover, an enhanced 

number of IFN-γ producing T cells recognizing the peptide comprising the most 

immunogenic MHC class I epitope from β-galactosidase was observed after vaccination [43]. 

Similarly to the results obtained after treatment of porcine DCs with BGs from A. 

pleuropneumoniae, co-incubation of mouse DCs with M. haemolytica and V. cholerae BGs 

stimulated an increased expression of antigen-presenting and co-stimulatory molecules on the 

surface of DCs [43,47,82]. Quantitative analysis of BG’s loading capacity showed that the 

relatively low DNA concentration (50 plasmids per BG) is sufficient for efficient DNA 

delivery to the target cells leading to transfection efficiency up to 82% [77]. Taking into 

account the excellent DNA loading capacity of BGs up to 6000 plasmid copies per single BG 

and the lowest DNA concentration sufficient enough to successfully transfect target cells (50 

per BG), the high loading capability of BG’s inner space suggests the use of BGs as delivery 

vehicle for multiple types of plasmids encoding various types of Ags and/or other types of 

active immunomodulary substances. 
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Evaluation of immune responses induced by BGs prepared from different bacterial strains 

using various animal models and different target cells indicates unique properties of BGs to 

stimulate effective humoral and cellular immune responses against the bacterial strain used 

for BG preparation and Ag carried and delivered by BGs to the target cells sufficient enough 

to protect tested animals after the challenge infection with the specific strain or Ag, and/or to 

induce effective immune responses against Ags delivered by DNA loaded BGs (Table 2). 

Application of BGs to the target animals using different preparation forms, e.g. aerosol, food, 

liquids, and diverse routes for immunization together with the facts concerning BG’s 

immunostimulatory capabilities mentioned above point directly to the prospective use of BGs 

in the development of polyvalent vaccines. Assessment of results from animal experiments 

obtained after immunization with BGs will help us to select the most suitable bacterial strain 

for preparation of BGs in order to stimulate the most effective type of cellular and humoral 

immune responses against the specific type of disease (pathogen). Summarized overviews of 

immune responses obtained from studies using BGs as vaccine candidate and antigen carrier 

are shown in Table 3 (human applications), Table 4 (veterinary applications), and Table 5 

(tissue culture studies). 

   

Table 2.  Overview of immune responses stimulated by BGs and Ag delivered by BGs. 
Immune response Model Ref. 
Innate   

Induced expression of 
antimicrobial peptides 

Keratinocytes: psoriasin, β-defensin [140] 

Increased secretion of pro-
inflammatory cytokines PBMCs, DCs: IL-6, IL-8, IL-12, TNF-α, IFN- 

 [Lubitz and 
Haslberger, 

personal 
communication] 

Adaptive / Humoral   

Antigen-specific immune 
response 

E. coli HIV-1 RT; E. coli HIV-1 gp41;   
E. coli ZP2; V. cholerae pDNA-GP63 (Th1);  

M. haemolytica pCMVβ (Th0/Th2);  
V. cholerae MOMP (Th1); V. cholerae M1-2 (Th1); 

E. coli NTHi OMP26 (Th1) 

[33,43,54,93,141] 
[Tabrizi and Lubitz, 

manuscript in 
preparation] 

Protective immunity against 
homologous challenge 

V. cholerae M1-2; EHEC;  
A. pleuropneumoniae 

[51,53,141] 

Long-lasting protective immunity V. cholerae [117] 

Cross-protective immunity 
against heterologous serovars 

V. cholerae  CTA2B-MOMP; K. pneumoniae;  
E. coli NTHi OMP26; P. multocida; V. cholerae 

TCP

[33,46-
47,52,93,121] 

   

Adaptive / Cellular   

CD4+ 
A.pleuropneumoniae; V. cholerae rGP63;  
E. coli ZP2; M. haemolytica pDNA-CMVβ 

[43,51,54][Tabrizi 
and Lubitz, 

manuscript in 
preparation] 

 
CD8+ 

 
EHEC [53] 

 
CD4+/CD8+ 

 

 
E. coli HIV-1 gp41; V. cholerae  CTA2B-MOMP [33,47] 

PBMCs, peripheral blood mononuclear cells; DCs, dendritic cells; MOMP, major outer membrane protein; OMP, 
outer membrane protein   
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e
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o
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 B
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s
 

D
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s
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o
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n
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. 

C
e
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p
e 

 
T

C
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e
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e 
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V
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ri
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-s
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ec
ifi
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h

u
m

o
ra

l r
e

sp
o

ns
e
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[5

5
] 

C
e

ll 
en

ve
lo

p
e 

 
T

C
P

 
C

h
o

le
ra

 
V

. 
ch

ol
e

ra
e 

R
a

b
b

its
 

S
u

b
cu

ta
n

eo
u

s/
 

In
tr

a
m

u
sc

u
la

r 
P

ro
te

ct
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e
 h
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o

ra
l r

es
p

on
se

;  
cr

os
s-

se
ro

gr
o

u
p

 p
ro

te
ct

iv
e

 im
m

u
ni

ty
. 

[4
5

] 

C
e

ll 
en

ve
lo

p
e 

 
T

C
P

 
C

h
o

le
ra

 
V

. 
ch

ol
e

ra
e 

R
a

b
b

its
 

O
ra

l/R
IT

A
R

D
  

m
o

d
el

 
C

ro
ss

-p
ro

te
ct

iv
e
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u

m
o

ra
l r

e
sp

o
n

se
; d
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e

-d
e

p
e
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e

n
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p
ro

te
ct

iv
e

 im
m

u
n

ity
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g
a

in
st

 in
tr

a
d

u
o

de
n

al
 c

h
a

lle
n

ge
. 

[4
6

] 

C
e

ll 
en

ve
lo

p
e 

G
a

st
ri

tis
, 

D
is

p
ep

si
a

, 
U

lc
e

rs
, 

C
a

nc
e

r 
H

. 
p

yl
o

ri 
M

o
u

se
 

O
ra

l 
S

ig
n

ifi
ca

n
t 

re
d

u
ct

io
n

 o
f b

a
ct

e
ria

l l
oa

d
; 1

5
/2

0
 a

ni
m

al
s 

p
ro

te
ct

e
d

 w
ith

ou
t 

us
e

 o
f 

a
dj

u
va

n
t; 

co
m

p
le

te
 p

ro
te

ct
io

n 
a

ft
e

r 
co

a
dm

in
is

tr
a

tio
n

 w
ith

 m
uc

o
sa

l a
d

ju
va

n
t. 

[1
1

6
] 

C
e

ll 
en

ve
lo

p
e 

P
n

e
u

m
o

n
ia

 
K

. 
p

n
e

u
m

on
ia

e 
P

ig
le

ts
 

S
u

b
cu

ta
n

eo
u

s 
A

b
 t

ite
rs

 c
o

m
p

a
ra

b
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 t

ite
rs

 a
ft

e
r 

in
fe

ct
io

n 
w

ith
 v

ir
u

le
nt

 
b

a
ct

e
ri

a
; c

ro
ss

-r
e

a
ct

iv
ity

 t
o

 r
el

a
te

d
 s

u
bs

p
ec

ie
s.

 
[3

3
] 

C
e

ll 
en

ve
lo

p
e 

T
yp

h
o

id
-l

ik
e 

d
is

ea
se

 
S

. 
ty

ph
im

u
ri

u
m

 
M

o
u

se
 

O
ra

l 
S

ig
n
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ca

n
tly

 in
cr

ea
se

d
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u
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a

l o
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a
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in
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e
d
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a
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. 

[3
3

] 

C
e

ll 
en

ve
lo

p
e 

B
lo

o
d

y 
d

ia
rr

h
ea

 
E

.c
o

li 
M

o
u

se
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tr

a
p

er
ito

n
e

a
l/ 

S
u

b
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ta
n

eo
u
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A

g
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c 
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u

m
o
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l r

e
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n
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u
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a
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e

. 
[3

3
] 

C
e

ll 
en

ve
lo

p
e 

B
lo

o
d

y 
d

ia
rr

h
ea

 
E

.c
o

li 
R

a
b

b
its

 
S

u
b

cu
ta

n
eo

u
s 

A
g

-s
p

ec
ifi

c 
h

u
m

o
ra

l r
e

sp
o

ns
e

; e
lic

ite
d
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-c

e
ll 

st
im

ul
a

tio
n

. 
[3

3
] 

H
IV

-1
 g

p
41

 
IM

 a
n

ch
o

re
d 

A
ID

S
 

E
.c

o
li 

M
o

u
se

 
In

tr
a

p
er

ito
n

e
a

l 
C

e
llu

la
r 

im
m

u
n

e
 r

e
sp

o
n

se
. 

[3
3

] 

H
IV

-1
 R

T
- 

IM
 a

n
ch

o
re

d 
A

ID
S

 
E

.c
o

li 
M

o
u

se
 

In
tr

a
p

er
ito

n
e

a
l/ 

S
u

b
cu

ta
n

eo
u

s 
A

g
-s

p
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ifi
c 

h
u

m
o

ra
l r

e
sp

o
ns

e
. 

[3
3

] 

rG
P

6
3

 o
f 

L
e

is
h

m
an
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- 
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n
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o
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d 
L

e
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h
m
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s 
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. 

ch
ol

e
ra
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o
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a
m

u
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u
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n
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m

o
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l a
n
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 c

e
llu

la
r 

  
(T

h1
 t

yp
e

) 
im

m
u

ne
 r

es
p

on
se

. 

[T
ab

ri
zi

 a
nd

 
Lu

bi
tz

, 
m

an
us

cr
ip

t 
in

 p
re

pa
ra

tio
n]

 
C

. 
tr

a
ch

o
m

a
tis

 
rM

O
M

P
/O

M
P

2
  

 -
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 a
n

ch
o

re
d 

C
h
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m
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n
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V
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ra
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l m
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T
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p
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m
u

ne
 r
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. 
[1

4
1

] 

C
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A
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B
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e
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h
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m
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G
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n
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V
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ra
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M
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u
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 c
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; c
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. 
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u
se

 
S

u
b

cu
ta

n
eo

u
s 

S
ig

n
ifi

ca
n

t 
H

bc
A

g
-1

4
9

 s
p

ec
ifi

c 
h

u
m

o
ra

l r
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 c
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p
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R
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ra
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al
 /

  
In

tr
a

d
uo

d
en

a
l 

O
m

p
2

6
-s

p
ec

ifi
c 

hu
m

or
a

l i
m

m
un

e
 r

es
p

o
ns

e
. 

[9
3

] 

M
B

P
-O

m
p2

6 
N

T
H

i  
  

p
e

ri
pl

a
sm

ic
 s

p
a

ce
 

R
e

sp
ira

to
ry

 t
ra

ct
 

in
fe

ct
io

n
s 

a
n

d
 o

tit
is

 
m

e
d

ia
 

E
.c

o
li 

R
a

ts
 

In
te

st
in

al
 /

  
In

tr
a

d
uo

d
en

a
l 

O
m

p
2

6
-s

p
ec

ifi
c 

hu
m

or
a

l i
m

m
un

e
 r

es
p

o
ns

e
. 

[9
3

] 

IM
, 

In
n

e
r 

m
em

b
ra

ne
; 

O
M

, 
o

u
te

r 
m

em
b

ra
n

e
; 

T
C

P
, 

T
o

xi
n

-c
o

re
g

u
la

te
d

 P
ilu

s 
 

 



180 

 

      

  

T
a

b
le

 4
. O

ve
rv

ie
w

 o
f 

im
m

u
n

e 
re

sp
o

n
se

s 
ag

ai
n

st
 B

G
s 

u
se

d
 a

s 
em

p
ty

 c
el

l e
n

ve
lo

p
e,

 s
u

b
u

n
it

 o
r 

 D
N

A
 v

ac
ci

n
e 

fo
r 

ve
te

ri
n

a
ry

 m
ed

ic
in

e.
 

T
ar

g
et

 A
g

s/
 

L
o

ca
ti

o
n

 in
 B

G
s

 
D

is
ea

se
 c

au
s

ed
 

B
G

 c
ar

ri
e

r 
A

n
im

al
 

M
o

d
el

 
R

o
u

te
 o

f 
im

m
u

n
iz

at
io

n
 

Im
m

u
n

e 
re

sp
o

n
se

 
R

ef
. 

C
e

ll 
en

ve
lo

p
e 

P
or

ci
ne

 
p

le
u

ro
p

n
eu

m
on

ia
 

A
. 

p
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p
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C
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p
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P
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le
u
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n
eu

m
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A
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p
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ur
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u
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o
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l 
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S
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h
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m
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 C
D

4
+
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D
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+
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a
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; c
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e
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p
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 c
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a
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ct
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n
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1
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C
e

ll 
en

ve
lo

p
e 

B
o
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n

e
 r
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p

ira
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d
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M
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h

a
e

m
o

ly
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C

a
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S
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b
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a
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h
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l 
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P
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e
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; c
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u
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[5
2

] 

C
e

ll 
en

ve
lo

p
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B
o
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n

e
 r
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p
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d
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P

. 
m

u
lto
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d

a
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M
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h
a

e
m

o
ly

tic
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R
a

b
b

it 
S

u
b

cu
ta

n
eo

u
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S
ig

n
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n

t 
A

g
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p
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c 

h
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o
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m
u
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o
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a
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o
us
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te
u
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lla

 
se

ro
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p
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[1

2
1

] 

C
e

ll 
en
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lo

p
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B
o
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n

e
 r
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d
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m

u
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a
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h
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e
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o
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M
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p
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H

o
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o
lo

g
o
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a
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e 

S
ig

n
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n
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g
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p
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c 

h
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o
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m
u
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sp
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o
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e

ac
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 t
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a
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o
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te
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re
lla
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ro
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p
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; 
p
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te

ct
iv

e
 im

m
u

n
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 a
g

a
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h
o

m
ol

o
go

u
s 

ch
a
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n

g
e.

 

[1
2

1
] 

C
e

ll 
en

ve
lo

p
e 

G
a

st
ro

e
nt

e
ri

tis
, 

h
e

m
o

rr
h

a
gi

c 
co

lit
is

, 
h

e
m

ol
yt

ic
 u

re
m

ic
 

sy
n

d
ro

m
e 

E
H

E
C

 
M

o
u

se
 

O
ra

l, 
In

tr
a

g
as

tr
ic

/ 
H

e
te

ro
lo

g
o

us
 

ch
a

lle
ng

e 

S
ig

n
ifi

ca
n

t 
A

g
-s

p
ec

ifi
c 

ce
llu

la
r 

a
n

d
 h

u
m

o
ra

l 
im

m
u

n
e

 r
e

sp
o

ns
e

; 
hi

g
h 

ra
te

s 
o

f 
p

ro
te

ct
io

n
 a

ft
e

r 
ch

a
lle

ng
e

 (
86

,6
%

-9
3

,3
%

) 
in

 c
om

p
a

ris
on

 t
o

 
n

e
g

a
tiv

e
 c

on
tr

o
l (

2
6

,7
%

-3
0

%
).

 

[5
3

] 

Z
P

2
/P

e
rip

la
sm

ic
 

sp
ac

e 
 

E
.c

o
li 

P
o

ss
u

m
 

N
a

sa
l/ 

C
o

n
ju

nc
tiv

a
l m
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a 
A

g
-s

p
ec

ifi
c 

ce
llu

la
r 

a
nd

 h
um

o
ra

l i
m

m
un

e
 

re
sp

on
se

; 
re

du
ce

d
 p

os
su

m
 fe

rt
ili

ty
. 

[5
4

] 

C
e

ll 
en
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lo

p
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E
d

w
a

rd
si

e
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E
. 
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rd
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F

is
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O
ra
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ig
n
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n

d 
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a
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ra
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e 
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e

. 
[1

2
6
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C
e
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en
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lo

p
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E
d
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a
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In

tr
a

g
as

tr
ic

 c
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m
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e
sp

on
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g
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fic

a
n

t i
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re
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es
 o

f  
C

D
3

+
, C

D
3

+
C

D
4

+
C

D
8

-  
a

n
d

 C
D

3
+
C

D
4
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Table 5.  Overview of in vitro studies with BGs used as empty cell envelope, subunit
               or DNA vaccine delivery system.  
Target Ags/ 
Location in BG 

BG carrier Model 
Proof of 
principle

Outcome Ref. 

pEGF/ 
Cell envelope 

E. coli 
M. haemolytica 

Human DCs 
 

Tissue 
culture 

Efficient expression of 
delivered heterologous  
gene (>77%);  
no toxic impact on DCs 

[76] 

pEGF/ 
Cell envelope 

M. haemolytica 

Mouse DCs 
 
Mouse 
macrophages 

Tissue 
culture 

Efficient expression of 
delivered heterologous gene; 
enhanced  expression of MHC 
molecules and co-stimulatory 
molecules by DCs 

[43] 

pEGF/ 
Cell envelope 

E. coli 
Mouse 
macrophages 

Tissue 
culture 

Efficient expression of 
delivered heterologous gene 
by target cells; determination 
of BG’s high loading capacity 
(up to 6000 plasmid copies 
per single BG)

[12] 

pEGF/ 
Cell envelope 

M. haemolytica 
Melanoma 
cells 

Tissue 
culture 

High expression levels of 
delivered gene after 
incubation with low amount of 
BGs (1 BG per single cell) 

[77] 

Cell envelope  A. pleuropneumoniae Porcine DCs 
Tissue 
culture 

Significant enhancement of 
antigen-presenting and co-
stimulatory molecules on DCs; 
significant  increase of BG’s 
specific T cell response 

[82] 

DCs, dendritic cells  

 

BGs-veterinary vaccines 

The route of immunization is of great importance in veterinary practice. The most 

preferred way of vaccine application is the mucosal administration like oral, intranasal, 

intraocular or aerogenic immunization. Previously performed studies using BGs as vaccine 

showed that the oral vaccine administration needs almost ten times higher doses of BGs 

compared to the dose applied intramuscularly, while intranasal and intraocular applications 

requires only the double doses than what is sufficient for intramuscular injection [119].  The 

mucosal route of immunization has several advantages over other routes because of easy 

administration, reduced side effects and the high potential for frequent boosting [120]. 

Immunizations with BGs produced from various pathogenic Gram-negative bacterial strains 

have been studied using different animal models [14,91]. BGs prepared from A. 

pleuropneumoniae were used to protect pigs against actinobacillosis. Animals vaccinated 

intramuscularly with A. pleuropneumoniae BGs were not only protected against the clinical 

disease but were also protected against colonization of lungs by  A. pleuropneumoniae upon 

exposure [49]. Moreover, pigs immunized with A. pleuropneumoniae BGs aerosols developed 

sterile immunity against the lung pathogen [51].  The capacities of P. multocida and M. 

heamolytica BGs to stimulate specific immune responses against the examined pathogen were 
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tested in rabbits and mice. Administration of P. multocida and M. heamolytica BGs using 

distinct immunization routes-subcutaneously (rabbits) or intraperitoneally (mice) led to 

development of specific antibodies against the strains used for generation of BGs. Further, 

study results showed that the induced antibodies exhibited cross-reactivity against other 

Pasteuella serotypes and field isolates. Moreover, intraperitoneal immunization of mice with 

BGs fully protected vaccinated animals against challenge with a virulent P. multocida 

depending on the immunization dose.  Obtained results demonstrate dose dependent capacity 

of Pasteurella BGs to induce protective immunity [121]. Furthermore, cattle immunized with 

M. heamolytica BGs developed better protective immunity compared to commercially 

available vaccines [52]. BGs from E. coli O78:K80 and other serotypes provided protection to 

one day old chicks against colibacillosis when administered intramuscularly while the chicks 

vaccinated intranasally showed similar mortality as observed in the controlled group when 

challenged with the specific pathogen [14]. An orally administered autogenous E. coli vaccine 

made of BGs prepared from three E.coli isolates E. coli 078K80, E. coli 7155/06 and E. coli 

115/7 was compared with an intramuscularly administered conventional vaccine. Observed 

results clearly demonstrated that the BGs vaccine was at least as well tolerated as the 

conventional vaccine under standard commercial production conditions without showing any 

adverse effect on animal health. Low numbers of losses (< 2.3%) were observed in both 

groups of vaccinated animals. Moreover, no acute infection was detected after administration 

of the BGs vaccine compared to the conventional vaccine. (Lubitz, unpublished data).  

Further, the immunization of piglets with K. pneumoniae Kpn-3 BGs elicited antibody titers 

comparable to that seen after an infection by virulent bacteria. The sera from K. pneumoniae 

Kpn-3 BGs infected piglets also showed reactivity against the human K. pneumoniae strain 

A565 indicating cross-protective immunity with other serotypes [33]. V. cholerae BGs 

prepared from O1 or O139 strains were evaluated as vaccines in the reversible intestinal tie 

adult rabbit diarrhea (RITARD) model. Rabbits orally immunized with different doses of V. 

cholerae BG formulations were fully protected against the disease [46].  

 

BG-fish vaccine 

The growing importance of aquaculture, more particularly fish farming, has an 

industrial boom due to an increased demand of marine food on the nutrition market. The 

majority of industrial farm animals including fishes suffer from physical stress because of 
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their growth in unnatural environment which is usually overcrowded. These stressful 

conditions make them more prone to bacterial infections like Edwardsiellosis and Vibriosis, 

which in most cases result in massive economic losses. Continuous treatment of these 

diseases with antibiotics leads to the development of antibiotic resistant bacterial strains. 

Recently there is a growing concern among end consumers regarding drug residues in meat of 

industrial farm animals including fishes. These facts also point out why the prophylaxis of 

infectious diseases in farmed marine and freshwater fish is so critical, as well as the 

importance of fish vaccine development [122]. 

Edwardsiella tarda is a Gram-negative bacterium causing Edwardsiellosis in both 

fresh and marine fish, e.g. Catfish, Tilapia, Eel, and Chinook salmon. This disease is 

characterized by the septicemia with extensive skin lesions and leads to massive economic 

losses [123]. So far, there is no effective vaccine available against this disease due to wide 

range of E. tarda serotypes [124]. BGs prepared from E. tarda represent a novel potential 

system for design and development of a prospective vaccine applicable in farmed fish 

industry. Intraperitoneal immunization of Tilapia fish (Oreochromis mosambicus) with E. 

tarda BGs provided a higher degree of protection against Edwardsiellosis, compared to the 

group injected with formalin killed E. tarda [72]. Furthermore, E. tarda BGs administered 

orally to Olive Flounder (Paralichthys olivaceus) proved to be an ideal vaccine candidate 

eliciting both systemic and mucosal immune responses. Moreover, both studies confirmed 

that immunization with BGs is simple and less stressful to vaccinated fish of any size 

[122,125-127]. Recently BGs from another important fish pathogen Vibrio anguillarum were 

produced for future animal studies to counter the most serious fish disease named Vibriosis 

[128]. Although the use of BGs as a carrier of DNA vaccines regarding the application in fish 

was not intensively studied in last decades, results obtained from previously performed 

animal immunization studies using BGs together with the recent outcomes from 

investigations concerning fish pathogens indicate prospective use of BGs also in the 

development of fish vaccine.  Furthermore, the BG system has been used to design a novel 

type of attenuated fish vaccines combining live attenuated V. anguillarum successfully used 

to induce cross-protective immunity against Vibrio pathogens [129] and BG technology. In 

this novel approach the attenuated bacteria carrying an in vivo inducible lysis gene E will be 

administered orally to the target fish population followed by specifically induced expression 

of gene E within the fishes, which will lead to the production of BGs from attenuated bacteria 

in vivo. This new vaccine system provides two major benefits. First, the BG technology 
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applied to the selected attenuated pathogen will guarantee no reversal to the native pathogenic 

form, and second the target expression of foreign recombinant Ags in the cytoplasm or their 

incorporation into the membrane of the host pathogen selected for immunization might serve 

as multivalent vaccine and stimulate immune responses against both delivered Ags and the 

pathogen.  This type of multivalent vaccine was recently tested in vivo using a non-pathogenic 

recombinant E. coli as live vector capable to release expressed recombinant heterologous 

proteins in vivo after E-mediated lysis of the carrier vector. A heterologous Ag, the gapA gene 

encoding the protective GAPDH from the fish pathogen Aeromonas hydrophila LSA34, was 

produced in the live vector under control of the strong promoter PT7, while the lysis gene E 

was tightly regulated by the iron-responsive promoter PviuB. Intraperitoneal vaccination of 

Turbot (Scophatalmus maximus) followed by the induction of E-mediated lysis successfully 

led to the release of target Ag in vivo and the stimulation of protective immune responses. 

More than 80% of fishes immunized with the recombinant live vector expressing the Ag 

survived the challenge with pathogenic Aeromonas hydrophila LSA34, 30 days post 

vaccination [115]. These results indicate the future exploitable potential of the novel 

vaccination system combining the features of the BG technology and live bacterial vectors.  

 

BG-immunocontraceptive vaccine 

Immunocontraception was developed in the past decades to control the fertility of 

target subject through the immune system. Identification of a specific target Ag involved 

during reproduction of chosen subjects plays a critical role to reach the final contraceptive 

effect caused by induced Ag-specific immune responses. Unfortunately, the majority of newly 

identified Ags applicable as an immunocontraceptive vaccine has shown poor 

immunogenicity. To improve their potential to stimulate efficient humoral and cellular 

immune responses several modifications of the native molecule by coupling Ags with 

adjuvants and antibodies, or binding Ags to immunogenic carriers were performed and 

investigated [130-131]. Moreover, poor immunogenicity of selected Ags might be improved 

by using a system which combines the features of an adjuvant and an efficient delivery 

vehicle. Hence BGs carrying recombinant immunocontraceptive Ags were used to control the 

population of brush tail possums (Trichosurus vulpecula) in New Zealand.  Brush tail possum 

is one of the most serious pest animals in New Zealand causing enormous economic and 

environmental damage and is responsible for the spread of Bovine Tuberculosis in wild life 
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population. The challenge for the development of a successful immunocontraceptive vaccine 

against this important pest not only lies in the identification of reproductive responsible target 

Ags as mentioned above, but also on the efficient delivery of the vaccine to the natural 

environment of the pest. Zona pellucida (ZP) protein 2 and 3 represent major targets of choice 

for controlling the possum population using the immunocontraception approach, however 

their delivery to the pest in wild life is still questionable.  Recently the ZP2-N-terminal and 

ZP2-C-terminal proteins were fused to the maltose-binding protein followed by the 

expression and transportation into the periplasmic space of the E. coli NM522. Generated 

BGs were used to deliver the Ags into natural environment of the wild life of the target animal 

subjects. Female possums were immunized with prepared vaccine constructs mucosally 

through both nasal and conjunctival routes, and were examined after superovulation and 

artificial insemination. The possums immunized with ZP2-C-terminal protein constructs 

showed a significant drop in fertilization of eggs compared to the control group immunized 

with plain BGs [54], while the ZP2-N- terminal protein constructs showed no changes in 

fertilization levels. Moreover, it was observed that the BGs carrying the ZP3 Ag can induce 

strong humoral and cellular immune responses in the target species making them ideal for 

aerosol administration and/or delivery in the form of bait [94]. 

 

Expert commentary  

 Improvement of current vaccines or development of novel types of vaccines against 

the global diseases including infectious diseases caused by pathogenic microorganisms still 

represents a major task necessary to be successfully solved in order to prevent an increased 

risk of widespread epidemics, accidental outbreaks but also to decrease the incidences of 

diseases which occurrence can be eliminated or cured with known medicines. Novel advanced 

systems encompassing in future developed drugs and vaccines should comprise minimal 

undesired side effects but highly efficiencies, and have to be available for all people 

especially for those living in challenged conditions, and in less developed countries and 

poverty. 

Majority of bacteria express potent toxins causing systemic damage of a wide range of 

tissues leading without particular treatment to diseases with severe outcomes and might 

produce causalities in both humans and animals especially in countries with less prosperous 

economies. Number of treatment strategies how to eliminate and minimize consequences 
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caused by bacterial infections were studied intensively over the past decades. Unfortunately, 

the antibiotic treatment is not effective or potent enough for the most important pathogens. 

Moreover, increased consumption of antibiotics by consumers even without the relevant need 

is getting popular for treatment of banal diseases and leads to increased rates of microbial 

drug resistances. Therefore European and American medical regulatory agencies due to this 

serious biosafety risk strictly recommend minimizing prescriptions of antibiotics without the 

significant need, and supporting progress and search for new types of disease treatment and 

vaccines development against severe bacterial infections allowing to decrease the amount of 

antibiotics used. However the final licensing of new products and their approval for clinical 

testing are getting strictly regulated with focus on their definition and safety. 

BGs represent an efficient carrier system for delivery of protein, subunit or DNA 

encoded Ags endowed with intrinsic adjuvant properties capable to stimulate the innate and 

the adaptive immune system. BGs have a unique ability to induce specific cellular and 

humoral immune responses either against the bacteria used for their generation or the target 

Ags loaded inside the BG-envelopes. Moreover, the presence of unaltered BG surface 

structures efficiently enhances the immune response against poorly immunogenic Ags without 

the need of an extra adjuvant. A great advantage of BGs used as carrier of subunit vaccines is 

their simple production and loading with target Ags, making the production process more 

efficient and at lower costs. BGs can be produced very easily by fermentation in disposable or 

conventional steel fermenters of various sizes in research laboratories or in large GMP units 

of pharmaceutical industry. Meeting the modern requirements of rapid vaccine production the 

initial engineered working stocks of BGs vaccine candidates can easily produce large 

quantities of a BGs vaccine in a short period of time at low costs which makes the BG system 

ideal for use in veterinary and human vaccines. Furthermore, BG’s safe vaccine profile poses 

no risk of reversal to the pathogenic form and minimizes the risk of horizontal gene transfer.   

The route of administration is of great importance in both human and veterinary 

practice. Animal studies performed with BG vaccines using different models have shown the 

possibility of administration through various routes including the mucosal which is the most 

practical way for immunization of large populations as it is safe, less expensive and easily 

distributable worldwide. For example, a single oral [53] or rectal (Mayr and Lubitz, submitted 

manuscript) immunizations of mice with EHEC BGs prepared from a pathogen of food-borne 

diseases causing severe harms, especially in children and the elderly is equally protective as 

double immunizations after the lethal challenge in mice. This implies the possibility to 
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develop a novel efficacious single dose mucosal BGs vaccine using a simplified 

immunization regimen. These and other results indicate a high potential of BGs in mucosal 

administration without the need of an additional adjuvant making the immunization product 

more simple and affordable. Moreover, rectal vaccine administration in form of suppository is 

easily applicable also for children and might avoid the risk of target active substance/Ag 

degradation by stomach acid and proteolytic enzymes when administered orally. Besides 

mucosal administration of BGs, recent study showed that intramuscular immunization of mice 

with a BGs-based multisubunit chlamydial vaccine is capable to stimulate efficient local 

mucosal and long-term systemic cellular and humoral immune responses.  

BGs can be generated from probiotic E. coli Nissle 1917, non-pathogenic and 

pathogenic Gram-negative bacterial strains, therefore selection of specific bacteria for 

generation of BGs prepared as bacterial vaccine only or as a carrier of single or multisubunit 

protein Ags or DNA should be based on the character of the target disease. For development 

of a vaccine against a single pathogen, the BGs made from that particular pathogen possessing 

the intact surface structural Ags in their original state along with their natural adjuvant 

properties related to the presence of various pathogen-associated molecular patterns such as 

LPS, monophosphoryl lipid A, flagellin and others on the BG envelope is functionally 

contributing to efficient induction of both innate and adaptive immune responses against the 

target pathogen. Furthermore, these natural adjuvant properties of BGs along with no 

cytotoxic and genotoxic impact of BGs on the viability and metabolic activity of cells 

recognizing BGs enhance the stimulated immune response against the Ag(s) after 

administration of a single or multisubunit BGs vaccine.  

Altogether, data obtained from in vivo and in vitro studies performed over the past 

years indicate that BGs represent a promising, safe, cost effective and versatile multipurpose 

vaccine platform for application in a wide range of preventives and therapeutics in human and 

veterinary medicines.   

 

Five-year view 

Additional confirmation and assessment of the immune responses stimulated by 

administration of BGs alone or as carrier of subunit protein Ags or DNA can be expected 

from planned animal and human clinical studies.  Further investigations will be partially 
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aimed on the generation of BGs from important bacterial pathogens infecting both the farm 

animals and the pets, causing spread of foodborne and zoonotic diseases, respectively. Novel 

Ag delivery by BGs are going to be continuously evaluated in vitro as well as using 

appropriate animal model. We are aware that the presence of various intact PAMPs on the BG 

envelopes will require a complex regulatory approval process, but according to our safety data 

and previously obtained results we expect to start GMP production of an animal BGs vaccine 

and market it within the period of next five years. Concurrently our studies focus on the 

delivery of tumor Ags by BGs to DCs and tumor cells to determine whether this approach can 

be useful in tumor therapy as the PAMPs, e.g. peptidoglycan and LPS not only stimulate 

professional APCs but are also capable of providing stimulatory signals to non-professional 

APCs such as tumor cells. Adjuvant properties of BGs positively affect maturation and Ag 

presentation by DCs and lead to stimulation of effective Ag-specific T cells hence increase 

the recognition of tumor Ags presented on the surface of tumor cells by CTLs. The selection 

of the right envelope will be based on the capacity to stimulate proper cytokine secretion by 

DCs and also by the capability to stimulate Ag-specific T cells from naive cells. These 

concepts are expected to lead to phase I clinical trials and to an application of the system to 

the tumor treatment of patients with malignant melanoma side by side with the animal study 

oriented for the treatment of melanoma in pets.  

Moreover, our recently obtained results demonstrated a high capacity of primary human 

conjunctiva-derived epithelial cells to internalize BGs with no cytotoxic effects on the cell 

viability and metabolic activity without restrictions to the bacterial species used for their 

preparation. The eye mucosa represents a prospective route for the vaccine administration 

having the capacity to induce both efficient systemic and mucosal Ag-specific immune 

responses. Eyedrop immunization with BGs carrying specific subunit protein Ags, DNA or 

drugs might be useful for future therapeutic ocular surface applications and an eye-specific 

disease vaccine development. Future investigations would help to progress the development 

of a microbial-mediated ocular disease vaccine and drug carriers. 
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Box 1. Advantages of the Bacterial Ghost System
 BGs can be produced from a wide range of non-pathogenic, pathogenic and probiotic Gram-

negative bacteria. 

 Large ability of the BG system for the selection of suitable bacterial candidates in vaccine 

development for veterinary and human applications. 

 Safe, non-living system with absolutely no risk of reversal to the native pathogenic form. 

 No potential hazard for horizontal gene transfer of plasmid encoded antibiotic resistance genes 

or pathogenic islands to the recipient. 

 Capacity to serve as a natural adjuvant because of the intact morphological, structural and 

antigenic surface components of their living counterparts and to provide immunostimulatory 

signals to target cells. 

 High potential to target various histological types of cells; recognition by a wide range of cells 

including dendritic cells, macrophages, tumor cells, endothelial cells and epithelial cells. 

 No cytotoxic and genotoxic impacts of BGs on the viability and metabolic activity of cells 

recognizing BGs.  

 Miscellaneous possibilities for an emplacement of target Ag within the BG envelope complex - 

inner membrane, periplasmic space, outer membrane, lysis hole. 

 Ability to deliver chemotherapeutic drugs without modification of its pharmacological properties. 

 Various possibilities of BGs administration-oral, aerosol, intradermal, intramuscular, intravenous, 

subcutaneous, intraperitoneal, intragastric, rectal, intravaginal. 

 Immunizations with BGs induce strong humoral and cellular immune responses; cross-protective 

immunity against heterologous serovars and long-lasting protective immunity. 

 High protection rates after mucosal or systemic administration without any addition of adjuvant. 

 Simple and high dose manufacture process; production of BGs can be easily and quickly 

performed either in disposable fermenters, small lab steel fermenters or in large scale fermenters. 

 Fermentation technology for BGs production allows the use of the system in a broad number of 

differently developed countries. 
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Appendix 

 

A.1 Removal of mutated mobilization sequence (MobM) of plasmid 

pGLysivb  
 

A.1.1 Introduction 

 

It was an aim to get rid of all unnecessary sequences present on the lysis plasmids that are 

used in generation of BGs. Mobilization sequence (Mob) protein is a relaxase with 

autoregulation properties, the mob protein recognizes and binds to the 52bp region which 

contains the transfer origin (oriT) known as recombination site A (RSA) and promoters of 

mob gene [1]. These sequences are found in plasmid pGLysivb a derivative of pBBR1MCS5 

[2] although the mob gene present on pGLysivb is mutated (MobM), but still it is desirable to 

remove the whole gene including the 52bp sequence which include the promoters of mob 

gene which is necessary for the mobilization of plasmid. Thus a strategy has been made to 

remove the MobM gene along with the gentamycin resistance cassette which is replaced by 

the amplified gentamycin resistance gene devoid of any extra sequences.  

 

A.1.2 Procedure 

 

A.1.2.1 Cloning of plasmid pGELysR 

 

In order to remove the MobM sequence from the plasmid pGLysivb (6201bp) (Fig.1), the 

plasmid pGLysivb was digested with ApaI and SnaI to remove 2238bp fragment containing 

the gentamycin resistance cassette and the MobM sequence. The 3683bp fragment of 

pGLysivb was gel purified using PurelinkTM Quick Gel extraction kit (Invitrogen). In parallel 

the 1197bp fragment including the gentamycin resistance gene was amplified through PCR 

using primers GentFowr(ApaI) 5’- ATA GGG CC’C GGT ACC CAG CTT TT- 3’ and 

GentRev(SnaI) 5’- ATA GTA’ TAC TTA GGT GGC GGT ACT TGG GTC- 3’ (Restriction 

sites Italicized) and plasmid pGLysivb as a template. The newly synthesized 1197bp PCR 

product containing gentamycin resistance cassette was digested with ApaI and SnaI 

(Bst1107I) both from (Fermentas) and subsequently cloned into the 3683bp fragment of 
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linearised pGLysivb to get plasmid pGELysR (5060bp) the cloning strategy is explained in 

detail in (Fig.1). 

 
 

 
 

 

 

A.1.3 Results 

 

The ligation product from above cloning procedure was transformed into the E.coli C2988J 

according to the standard molecular biological techniques by Sambrook et.al. [3]. About 110 

 
 
 
 
 

 

 

 

 
 
 
 
 

 

 

 

 

Fig.1. Cloning strategy of plasmid pGELysR; PMob,prmoter of  MobM, mutated mobilization sequence; Gentr, 
Gentamycin  resistance cassette; CI857, thermosensitive allele of  the λ phage repressor gene; PRM / λPmut , mutated 
promoter of λ phage; Eivb, in vivo biotinylated  lysis protein E sequence of bacteriophage phiX174;rep, origin of 
replication 

λpmut 

PCR  
1197bp 

PRM 

ApaI SnaI 

ApaI SnaI 

pGLysivb  
6201bp 

  Eivb       Rep  MobM      cI857      Gent. 

     Gent. 

λpmut 

pGELysR 
5060bp 

PRM 

ApaI SnaI 

ApaI SnaI pGLysivb Vector 
Fragment 
(3863bp)    Eivb       Rep      cI857 

     Gent. 

PRM 
  Eivb       Rep      cI857 

λpmut 

GentForw 

     (ApaI) 

GentRev 

(SnaI) 

PMob 

Fig.2. Adapted from Szpirer et.al.; The 52-bp sequence containing the oriT and the promoter of the mob gene. 
This region is present on lysis plasmid pGLysivb and its derivatives. 
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bacterial colonies from 20 different transformation procedures (transformation of bacteria 

with this plasmid was always inefficient and only few colonies were growing on LB plates) 

were picked and inoculated into 5ml Luria-Bertani (LB) medium [4] supplemented with 

gentamycin (20µg/ml). The plasmid DNA was isolated using PeqLab Kit I (Plasmid 

Miniprep kit I, Erlangen, Germany). The samples were digested with restriction enzymes 

(purchased form Fermentas) listed in plasmid collection map and were loaded on 1% agarose 

gel (RothTM) stained using  gel red nucleic acid gel stain (GelRedTM Biotium # 41003) and 

analyzed under UV light in a ChemiDOCTM machine (BioRad laboratories) for analyzing the 

right clones. A restriction digest of positive clone of plasmid pGELysR is shown in (Fig.2). 

 

   
 

A.1.4 Consistency study of plasmid pGELysR 

Procedure and results  

 

The aim of this consistency study was to determine the lysis behavior of newly cloned 

plasmid. 6 single colonies of freshly transformed bacteria E.coli NM522 carrying plasmid 

pGELysR were picked and grown in 5ml LB supplemented with gentamycin (20µg/ml) and 

grown for several hours at 36ᵒC and 25% glycerin stocks were prepared. Usually the 

consistency study is performed with three clones at a time for better and fast handling. 900µl 

ON culture of each clone is inoculated in a 100ml nose flask containing 25ml of fresh LB 

supplemented with gentamycin (20µg/ml) starting OD600 nm of 0.1. The samples were grown 

      
 

 
     
 

                   

  1kb          1              2             2             2                2            1kb         
                Uc           ApaI        XhoI      BamHI       BglI      
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250---------- 
  

Fig.2. Restriction digest of plasmid pGELysR; 1% agarose gel 
picture showing positive  clone of plasmid pGELysR ; lane1, 
GeneRulerTM 1kb DNA ladder (Fermentas); lane2, uc 5060bp; 
lane3, ApaI 5060bp; lane4, XhoI 5060bp; lane5, BamHI 1433 / 
3637bp; lane6, BglI 739 / 1352 / 2969bp;  lane7, GeneRulerTM 1kb 
DNA ladder (Fermentas). 
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in 36ᵒC water bath at continuous stirring 300rpm. Until OD600 nm of 0.4-0.5 is reached. At 

this time lysis was induced by temperature shift from 36ᵒC to 42ᵒC. The lysis was continued 

and monitored for 2 hours through optical density observation OD600, physical observation of 

bacterial cells done through light microscopy and determination of viable bacterial cells was 

carried out through platting dilutions of bacterial culture collected at different time points on 

plain LB plates using automated system spiral platter (WSAP system; DON Whitley 

Scientific Limited, West York Shire, UK). The LB plates were grown at 36ᵒC over night. The 

colonies were counted using colony counter machine 3.15 (Synoptic Ltd., Cambridge, UK) 

using the program Synbiosis ProtoCOL. Six individual clones were studied during this study 

the average lysis efficiency was calculated to be 78.96% however best lysis efficiency was 

observed in clone 6 with efficiency of 93.0% and the lowest with the efficiency of 51.14% 

(Fig.3).  

 

                  
                  

 

 

A.1.5 Discussion 

 

Plasmid pGElysR is derivative of plasmid pGLysivb but without the mutated mobilization 

sequence (MobM sequence). In this study the MobM along with its promoter and oriT 

sequence was removed from plasmid pGLysivb which is a derivative of plasmid 

pBBR1MCS5.  It is important to note that in this newly constructed plasmid the rate at which 

cells were growing was slower than their counter parts pGLysivb. Similarly the consistency 
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Fig.3. Consistency study of E.coli NM522 with pGELysR; Cfu values of 6 different plasmid clones 
showing lysis efficiency of between the range of 51-93%  
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study showed poor lysis efficiency (Fig.3) as compared to the pGLysivb 99.762% [5]. 

Therefore it is more likely assumed that there are some other sequences other then mob and 

oriT with in this excised region who presence is crucial for plasmid stability/for its replication 

ability. That is why a better lysis efficiency in plasmids with MobM sequences is observed, it 

is shown that the lysis efficiency is directly related to the cell replication, the better cell 

replicates the higher is the lysis efficiency in them. However the above assumption is not 

proven, it needs to be studied more thoroughly before drawing any final conclusions. 

Therefore one must keep on searching for an alternate ways in tackling the current issue. It is 

shown in a study conducted by Szpirer et.al. that the mob gene depends on two amino acids 

(aspartate 120 and glutamate 121) for its mobilization thus by introducing frameshift 

mutation in amino acids above they managed to impair the functioning of mob gene by factor 

of 10-8 [1].  Therefore following the above mentioned strategy frameshift mutation could be 

introduced in the oriT region of the pGLysivb plasmid which has MobM gene thus making it 

almost impossible for current plasmid to be mobilized thus ensuring its free use in production 

of BGs. 

 

A.2 Supplementary data for chapter III 

 
The quantitative real time PCR is the most commonly used molecular biology technique for 

detection and quantification of nucleic acid [6-8]. It’s wide use in field of biotechnology for 

basic research is due to its rapid data generation, sensitivity and reproducibility [9]. The main 

advantage of this technique is the elimination of need to amplify and detect the final product 

separately on agarose gel. This technique analyzes the quantitative relationship between the 

amounts of target used at the start of reaction to the amount of amplified PCR product at a 

certain cycle. This technique is being used in quantification of minicircle DNA (mcDNA) in 

several studies [10, 11]  and also used as a quality control criterion in production of DNA free 

Bacterial Ghost (BG) vaccine [12]. During this technique the SYBR Green dye is used to 

quantify the amount of DNA. SYBR Green dye has ability to fluorescence 100-500 times 

more when it intercalates with the double stranded DNA. The iCycler iQ determine the 

critical threshold cycle of the sample. It is the time when the fluorescence is detected 

statistically to be higher than the background signals. The time point at which the curves in 

PCR graph crosses the threshold is called quantification cycle Cq previously known as 
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threshold cycle Ct.  A PCR graph generated for the quantification of mcDNA is shown in the 

(Fig.4). 

   
 

The standard curve is generated from the dilutions series constructed from the known DNA 

samples in this case the purified mcDNA in dilutions of 10-1 to 10-6 is used to generate the 

standard curve. The unknown is then plotted by the iQ software on the curve generated to 

quantify the amount of unknown DNA samples. The melt curve analysis for the same 

mcDNA can be found in chapter III under heading quantification of mcDNA and mpDNA. 

The standard curve generated here in this experiment shows ideal curve. The PCR efficiency 

shows that with every cycle the number of DNA is exponentially grown.   

       

 
 

 

 

 

Fig.4. PCR graph; showing the curves generated from mcDNA standards dilution 10-1 to 10-6and 
unknown samples  

Fig.5. standard curve generated by the quantification of mcDNA. 10fold serial Dilutions of purified 
mcDNA used to generate standard curve (blue dots); unknown samples are plotted against the standard 
curve (red dots) 
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Table.1. List of primers used

Template Amplified region Primer Fragment 
size

Purified mcEYFP 1939-1960nt
7805-7825nt

McXF: 5’-GTG GTT TGT CCA  AAC TCA TCA A-3’
McSR: 5’-ACA TGA GCA GAT CCT CTA CGC-3’

221bp

Purified mpDNA 7572-7591nt Ori
2124-2143nt ParA

MpAF: 5’-TTT GCA AGC AGC AGA TTA CG-3’
MpYR: 5’-CGC AGC AGC AAA AAT AAA AG-3’

238bp

mopDNA 1939-1960nt
2124-2143nt ParA

McXF: 5’-GTG GTT TGT CCA  AAC TCA TCA A-3’
MpYR: 5’-CGC AGC AGC AAA AAT AAA AG-3’

205bp

pGLNIc Gentamycin 
resistance gene

GentFwd1: 5’-CGATGTTACGCAGCAGGGCAG-3’
GentRev: 5’-CGA TGA ATG TCT TAC TAC GGA G-3’

194bp*

pBHR1 Kanamycin 
resistance cassette

PKanAhdIF 5’-TTA GCA GAC GG‘G GAG TCG CCA CGT TGT GTC T -3’
PKanAhdIR 5’- CAC CAG GAC GG‘G GAG TCT TAG AAA AAC TCA T -3’

934bp

pSIPHCNparA Resolution site 1 5’res1K 5’– CAG CAG GGT ACC CCT TGG TCA AAT TGG GTA TAC C –3’
3res1P 5’ – CTG CTG TTA TAA GCA CAT ATG TGG GCG TGAG – 3’ 

140bp

pEYFP-C1-MCS CMV-EYFP 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA G TA ATC-3’
3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’

1596bp

pmCherry-C1-
MCS

CMV-mCherry 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA G TA ATC-3’
3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’

1587bp

pVenusA206K-
C1-MCS

CMV-Venus 5’RYFP-SacI 5’- TGG CCA GAG CTC TAG TTA TTA ATA G TA ATC-3’
3’RYFP-KpnI 5’- ATA CCA GGT ACC TTA AGA TAC ATT GAT GAG -3’

1596bp

pGLysivb Gentamycin 
resistance

GentFowr(ApaI) 5’-ATA GGG CC’C GGT ACC CAG CTT TT- 3’
GentRev(SnaI) 5’- ATA GTA’ TAC TTA GGT GGC GGT ACT TGG GTC- 3’ 

1197bp

All Primers designed using web based primer3 software using default settings
* Allaham 2006
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List of Abbreviations 
 
Ag    antigen;  
APCs    antigen-presenting cells 
BB     bacterial backbone 
BGs    Bacterial Ghosts 
BPL    β-propiolactone 
CFU    colony forming units 
CMV    cytomegalovirus 
DCs    dendritic cells 
EHEC    enterohemorragic Escherichia coli 
EMA    European Medicines Agency 
FDA    Food and Drug Administration 
GnRH    gonadotrophin-releasing hormone 
HA    heamagglutatnin 
HBV    hepatitis B virus 
hCG    human chorionic gonadotrophin 
HIV    human immunodeficiency virus 
IE    immediately early enhancer 
IM    inner membrane 
IPTG    isopropyl β- 
LPS    Lipopolysaccharide 
MBP    maltose-binding protein 
mcDNA   minicircle DNA 
mpDNA   miniplasmid DNA 
mopDNA   mother plasmid DNA 
NK cells   natural killer cells 
NTHi    nontypable Haemophilus influenza 
OD    optical density 
OM    outer membrane 
ompA    outer membrane protein A 
PAMPs   pathogen-associated molecular patterns 
pSIP    self-immobilizing plasmids 
qPCR    quantitative real time PCR 
RITARD   reversible intestinal tie adult rabbit diarrhea 
SIP    self immobilizing plasmid 
SNUC    Staphylococcus aureus nuclease A 
TLR    toll-like receptor 
TCP    Toxin-coregulated pilus 
ZP    zona pellucida. 
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