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Abstract 

The present thesis deals with the visual system of Cupiennius salei, a nocturnal 

hunting spider established as model organism in neuroethology. Cupiennius is equipped 

with eight simple lens eyes that are divided into four pairs according to their position on 

the carapax. The anterior median eyes are referred to as principal eyes. Two tiny eye 

muscles attach to the retinae of the principal eyes and shift the eyes’ fields of view. The 

remaining three pairs, the so-called secondary eyes, have stationary retinae and are 

equipped with a reflecting tapetum.  

The eye muscles attaching to the retinae of the principal eyes enhance activity 

when objects are moving within the visual field of the secondary eyes (Neuhofer et al., 

2009). In two of the present studies we investigated the spatial and temporal cut-off 

frequencies of the secondary eyes. For this purpose, we recorded the eye muscle activity 

in the principal eyes while visual stimuli were presented to the secondary eyes. 

In a first study (Fenk and Schmid, 2010) we determined to what extent the 

wavelength of a grating can be reduced to still elicit a significant increase in eye muscle 

activity. The interreceptor angles calculated by Land and Barth (1992) on the basis of 

anatomical data suggest that spatial resolution in the secondary eyes should be better for 

vertical gratings than for horizontal ones. We indeed found a difference in the response to 

moving gratings in different orientations. Vertical gratings elicited a significant response 

down to a wavelength of 2 deg, horizontal gratings down to 2.7 deg. The difference was, 

however, less pronounced than suggested by the difference in the corresponding 

interreceptor angles. Thus we hypothesized that the spiders also respond to temporal 

intensity modulations. We simulated the intensity modulations in a very simplified model 

for the movement of the gratings used in our experiments and the results suggest that 

temporal intensity modulations represent a possible explanation for the behavioural data. 

In a subsequent study we could confirm the hypothesis that no directed 

movement is needed to elicit retinal movements in the spiders. The increase in eye muscle 

activity as a response to flicker stimuli was then used to estimate the temporal cut-off 

frequency. In our experiments the cut-off frequency was found to be between 4.3 and 8.6 

cycles per second (Fenk and Schmid, submitted). The low behavioural cut-off frequency 

is well in line with intracellular recordings by Pirhofer-Walzl et al. (2007). 

Cupiennius was known to be able to hunt successfully crawling and flying prey 

without any visual input. In a third study we were now able to show that it is possible to 

elicit attack behaviour with visual stimuli alone, in the absence of any mechanosensory 



2  Abstract  

input. Attack behaviour in these animals might represent an interesting model to study the 

integration of multi-sensory input in complex behaviour (Fenk et al., 2010b). 

A fourth study (Fenk et al., 2010a) deals with the maturation of spider eyes after 

moulting. We discovered enlarged pigment rings in the eyes of freshly moulted 

Cupiennius leaving a pupil that increases in size in the following days. Using micro CT 

imaging we could show that the pigment rings cover the part of the cornea that is not yet 

filled by the growing lens. We suggest that the pigment rings maintain vision in 

spiderlings after moulting by shielding light rays that would enter beside the lens and 

degrade the image on the retina. 
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Zusammenfassung 

Die vorliegende Arbeit beschäftigt sich mit dem visuellen System von 

Cupiennius salei, einer nachtaktiven Jagdspinne, die als Modellorganismus für die 

Neuroethologie etabliert ist. Wie die meisten Spinnen besitzt Cupiennius salei acht 

Linsenaugen, die nach ihrer Position am Carapax in vier Paare eingeteilt werden können. 

Die anterior-median liegenden Augen werden auch Hauptaugen genannt. Die Retinae der 

Hauptaugen können durch je zwei Muskeln bewegt werden. Alle anderen Augen werden 

als Nebenaugen zusammengefasst. Sie sind unbeweglich und mit einem licht-

reflektierenden Tapetum ausgestattet. 

Die Perzeption von Bewegung in den Nebenaugen löst eine Erhöhung der 

Augenmuskelaktivität in den Hauptaugen aus (Neuhofer et al., 2009). In zwei Studien 

wurden die Muskelpotentiale in den Hauptaugen aufgezeichnet und eine signifikante 

Erhöhung der Frequenz als Indikator für visuelle Perzeption in den Nebenaugen 

herangezogen.  

In der ersten Studie (Fenk und Schmid, 2010) wurde die höchste räumliche 

Frequenz eines Streifenmusters gemessen, für die bei Bewegung der Streifen noch eine 

signifikante Erhöhung der Muskelaktivität nachweisbar war. Die von Land und Barth 

(1992) anhand anatomischer Daten berechneten Interrezeptorwinkel legen nahe, dass 

vertikale Streifen von den Spinnen besser aufgelöst werden als horizontale Streifen. 

Tatsächlich konnten wir eine Aktivitätserhöhung für vertikale Streifenmuster bis zu einer 

Wellenlänge von 2° nachweisen, und für horizontale Streifenmuster bis zu 2.7°. Dieser 

Unterschied ist aber geringer als es die anatomischen Daten erwarten ließen, was zu der 

Annahme führte, dass die Spinnen auch auf zeitliche Intensitätsmodulationen reagieren. 

Wir simulierten die Intensitätsschwankungen, die bewegte Streifen in den 

Photorezeptoren in den zwei Orientierungen auslösen, und konnten zeigen, dass dies eine 

plausible Erklärung für die Verhaltensdaten liefert.  

In einer Folgestudie konnte dann mit Hilfe von Flimmer-Stimuli nachgewiesen 

werden, dass die Spinnen tatsächlich auf zeitliche Intensitätsmodulationen reagieren. 

Darauf basierend konnte auch die Flimmerfusionsfrequenz der Spinnen gemessen 

werden. Bei 4.3 Hz wurde noch eine signifikante Erhöhung der Muskelaktivität 

registriert, für eine Frequenz von 8.6 Hz konnte keine signifikante Erhöhung festgestellt 

werden (Fenk und Schmid, submitted). Unsere Daten für die Verhaltensschwelle der 

Spinnen passen somit sehr gut zu den Werten für die Integrationszeit, welche von 

Pirhofer-Walzl et al. (2007) in intrazellulären Ableitungen gemessen wurden.  
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In einer weiteren Studie (Fenk et al., 2010b) wurde erstmals gezeigt, dass 

Cupiennius salei auf bewegte visuelle Stimuli mit abrupten, gezielten Annäherungen 

reagiert. Dies deutet darauf hin, dass die Spinne trotz ihrer nachtaktiven Lebensweise in 

der Lage ist, visuelle Informationen für die Jagd zu nutzen. Da Cupiennius für ihr 

ausgezeichnetes mechanosensorisches System bekannt ist, würde sich ihr Jagdverhalten 

für das Studium multisensorischer Integration bei komplexen Verhaltensweisen anbieten. 

In der vierten Studie haben wir die zeitliche Variabilität von Spinnenpupillen 

beschrieben (Fenk et al., 2010a). Gleich nach der Häutung weisen Spinnen breite 

Pigmentringe auf, die sich dann im Laufe der Zeit zurückbilden. Mit Hilfe von Micro CT 

Aufnahmen konnten wir zeigen, dass die Linse nach der Häutung zuerst auf einen kleinen 

Bereich der Cornea beschränkt ist und die peripheren Bereiche durch die Pigmentringe 

abgedeckt werden. Wenn sich dann in den folgenden zehn Tagen die Linse auf ihre 

endgültige Form ausdehnt, gehen die Pigmentringe zurück und der Pupillenradius wächst 

an. Die Funktion der Pigmentringe könnte es sein, die negativen Auswirkungen der 

Häutung auf den Sehsinn abzuschwächen, indem sie verhindern, dass Lichtstrahlen, die 

nicht von der wachsenden Linse auf die Retina gebündelt werden, peripher durch die 

Cornea in das Auge eintreten. 
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Synopsis 

The present studies deal with the visual system of a nocturnal hunting spider. The 

following chapter provides a brief introduction of the model organism Cupiennius salei, 

focusing on neuro-ethological aspects. The specific aims of the thesis will be listed and 

finally the results gained will be summarized and discussed. 

 

Introduction 

Cupiennius salei (Ctenidae) is a large hunting spider native to Central America. It 

is most common to Mexico, Guatemala and Honduras, where it is found at sea levels 

ranging between 200 and 1250 m (Barth, 2002). Cupiennius is a strictly nocturnal spider 

(Barth and Seyfarth, 1979; Seyfarth, 1980) and can be described as a typical sit-and-wait 

hunter (Melchers, 1967). Adult animals can reach a leg span of more than 10 cm (Barth, 

2002). 

The spiders retreat during the day, preferably in monocotyledons; moulting, 

mating and hunting take place during the night (Melchers, 1963; Barth and Seyfarth, 

1979). After sunset, at a light intensity of about 20 lx, the spiders leave their hiding place. 

The animals remain motionless in the retreat’s immediate vicinity for about half an hour 

before searching for an appropriate place to ambush passing prey (Barth and Seyfarth, 

1979). At night the spiders are protected from diurnal predators and, perhaps even more 

importantly, from heat and direct sunlight that could lead to desiccation (Barth, 2002). 

The greatest distances are travelled by adult males (Fig. 1a) straying at search for females 

(Fig. 1b) (Schmitt et al., 1990). 

 

      

Fig. 1 (a) An adult male and (b) an adult female Cupiennius salei.  

a b
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There are multiple reasons for the choice of Cupiennius as a model organism for 

sensory physiology. Maybe the most important reason is a historical one. Several 

individuals of the impressive spiders have been transported along with bananas to 

Munich's largest market hall in the 1960ies and caught the attention of M. Melchers, a 

PhD-student at that time (Barth, 2002). She cultivated the spiders and studied many 

aspects concerning the animals’ biology (Melchers, 1963; Melchers, 1967). The spiders 

are bred easily in the laboratory and are not very aggressive. Despite the close 

relationship to the very poisonous spiders of the genus Phoneutria (see e.g., Lucas, 1988), 

the bite of Cupiennius salei is reported to be rather harmless (Barth, 2002). The 

impressive mechanosensory organs quickly caught the attention of sensory physiologists. 

Cupiennius salei is today certainly the most thoroughly studied spider and probably the 

only spider species that is considered to be a model organism for neuro-ethology (Uetz 

and Roberts, 2002). In the past years it has also been established as model organism in the 

field of evolution and development (for a review see Mc Gregor (2008)).   

Cupiennius salei is able to accomplish essential behavioural tasks (i.e., prey 

capture and mating) only using its mechanosensory systems, without any visual input 

(Melchers, 1967; Hergenröder and Barth, 1983; Barth, 1993). The most important 

mechanoreceptors involved in the guidance of spider behaviour are i) trichobotria, i.e., 

long hairs that are sensitive to air flow, ii) tactile hairs that are sensitive to direct touch, 

and iii) slit sensilla, i.e., sensory organs that can measure strain in the spiders’ exocuticula 

(Barth, 2004). These sophisticated mechanosensory organs are distributed in large 

numbers over the spiders’ body: Cupiennius has 90 trichobotria on each leg; several 

thousands of slit sensilla are embedded in its exoskeleton and the tactile hairs cover more 

or less the whole spider body, reaching densities of 400 per mm2 (Barth, 2004). 

Despite its strictly nocturnal lifestyle and its impressive mechanosensory systems, 

Cupiennius is also equipped with a sophisticated visual system that will be described 

below.  

Spider vision is, as compared to insect vision, a rather neglected field of research 

and spiders are often thought to have very poor eyesight. This is certainly true for most 

orb weaving spiders. Hunting spiders, however, are often equipped with excellent 

eyesight. For a review concerning spider eyes see Land (1985). Spider eyes are simple 

lens eyes. Most genera have eight eyes which can be divided into four pairs according to 

their position on the carapax: the anterior median eyes (AME), the anterior lateral eyes 

(ALE), the posterior median eyes (PME), and the posterior lateral eyes (PLE). The AME 

are referred to as principal eyes and the three other pairs are summarized as secondary 
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eyes. Principal and secondary eyes differ in several anatomical, developmental and 

functional aspects. In the principal eyes the nuclei of the photoreceptor cells are in the 

centre of the cells and the light absorbing segments lie distal to them, while in the 

secondary eyes the light absorbing segments are proximal to the cell nuclei. The 

secondary eyes usually are equipped with a reflecting tapetum whereas the principal eyes 

lack tapeta but are equipped with a varying number of eye muscles that can move the 

retina.   

Jumping spiders are the family in which visually guided behaviour is most 

obvious. Spatial resolution in Portia was found to be 2.4 min of arc (Williams and 

McIntyre, 1980) which is half way between the resolution record in insects (14.4 min in 

the dragonfly Aeschna) and the cone spacing in humans (Land, 1985). Such a high acuity 

can be achieved because the optical cut-off frequency, limited by diffraction at the pupil, 

is higher in lens eyes than in the facets of insects. Portia is the only spider known to have 

an actual acuity in its principal eyes that approaches the diffraction limit in its lenses 

(Land, 1985). Dinopis, a nocturnal net casting spider, was shown to have a graded 

refractive index in its large lenses reducing spherical aberration (Blest and Land, 1977). 

The spiders are extremely light sensitive with a half-maximum response of the 

photoreceptor cells achieved at light intensities midway between star light and moon light 

(Laughlin et al., 1980). 

The visual system of Cupiennius salei has been investigated by Land and Barth 

(1992). The lenses were found to produce images of good quality on the retinae and it is 

the coarse receptor mosaic that limits spatial resolution in these animals. In the secondary 

eyes the photoreceptor cells are arranged in rows within the reflecting tapeta. The 

interreceptor angles along such a row are smaller than normal to it. The smallest 

interreceptor angles are around 1 deg and were measured along tapetal rows in the PME 

and PLE. In the AME interreceptor angles are about 3 deg. The authors also determined 

the F-number (ratio of the focal length to pupil diameter) of the lenses which ranged 

between 0.58 and 0.74, implying very bright images (Land and Barth, 1992).  

Electroretinograms (ERG) suggested an absolute corneal illuminance threshold 

for white light of 0.0001 - 0.001 lx (Barth et al., 1993), confirming the assumed high light 

sensitivity of the spiders’ visual system. The threshold was 1 - 2 log units lower than the 

lowest intensity that could be measured with the luxmeter used by the authors. The 

receptive spectrum has its maximum at about 450 - 550 nm and drops to zero for 

wavelength larger than 700 nm (Barth et al., 1993). A subsequent study identified three 
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groups of photoreceptor cells whose spectral sensitivity curves peak in the green (520 

nm), the blue (480 nm) and the UV (340 nm), respectively (Walla et al., 1996).  

In Cupiennius, a substantial daily microvilli turnover can be observed. The 

microvillar surface is increased at dusk and is finally ten times larger than during the day 

before it is again reduced at dawn (Grusch et al., 1997). This should imply a concomitant 

increase in sensitivity at the spiders’ night state. Interestingly, the ERG measurements by 

Barth et al. (1993) did only reveal an increase in sensitivity for the AME. An analogous 

situation is reported for the PME in Dinopis, where also a daily cycle of the receptive 

membrane was found (Blest et al., 1978) but no obvious sensitivity change could be 

revealed using ERG measurements (Laughlin et al., 1980).  

The temporal properties of the photoreceptor response to short light pulses were 

investigated by Pirhofer-Walzl et al. (2007) using intracellular recordings: AME 

photoreceptors were found to be slightly faster than PME receptors and both eye pairs 

show an increase in time-to-peak and integration time when dark adapted. The respective 

integration times of light and of dark adapted PME receptors are 79 ms and 138 ms 

(Pirhofer-Walzl et al., 2007). 

Kaps and Schmid (1996) showed that each principal eye is equipped with a dorsal 

and a ventral eye muscle. The dorsal muscle is 600 µm long and contains 15-18 striated 

muscle fibres; the ventral muscle is 650 µm long and consists of 20-22 striated fibres. The 

dorsal eye muscle arises dorso-laterally from the AME tube and is attached at the dorso-

median carapace between the PME. The ventral muscle arises from the ventro-lateral part 

of the eye tube and is attached at the carapace on the ventral surface of the clypei. The 

direction of gaze can be altered in the dorso-lateral and in the ventro-lateral direction, and 

depending on the activity of both eye muscles in any intermediate direction. The action of 

the eye muscles leads to two different modes of retinal movements: spontaneous 

microsaccades, generated by the dorsal muscle alone, and induced saccades, that involve 

the contraction of both muscles. Microsaccades consist in recurring twitches of 2 - 4 deg 

amplitude (Kaps and Schmid, 1996). These values match well the interreceptor angle 

measured in the AME by Land and Barth (1992). The microsaccades are thus perfectly 

suited to prevent an adaptation of the neural image to static objects (Kaps and Schmid, 

1996). Induced saccades have amplitudes of up to 15 deg and can be elicited by 

mechanical or visual stimulation (Kaps and Schmid, 1996; Neuhofer et al., 2009). The 

arrangement of the muscles is shown in Fig. 2.  

The important visual centres in the spiders’ brain have been described by 

Strausfeld and Barth (1993) and Strausfeld et al. (1993) and reveal parallel processing of 
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visual information. Each of the eight eyes has a separate first- and a separate second-order 

neuropil, the pathways of the two principal eyes are then merged in a third-order neuropil 

and the pathways of the six secondary eyes are merged in another third-order neuropil 

(Strausfeld and Barth, 1993; Strausfeld et al., 1993).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Micro CT reconstruction of the prosoma of a Cupiennius salei spiderling. The virtual 
opening in the reconstruction reveals the arrangement of the dorsal and ventral eye muscles. Scale 
bar: 1 mm 
 

The anatomical and electrophysiological studies mentioned above strongly 

suggested that vision is an important sense for this nocturnal hunter, contrasting the 

“paradoxical absence of visual behaviour” (Land and Barth, 1992, p. 227). Virtually no 

involvement of vision in any behavioural context could be demonstrated until the late 

1990ies. The first manifestation of visual behaviour was that Cupiennius changes its 

locomotion pattern when it is suddenly deprived of visual input (Schmid, 1997). Using 

light at a spectral composition that is well out of the receptive spectrum of the spiders’ 

photoreceptors (> 950 nm) Schmid observed that Cupiennius raises its first pair of legs 

and probes the surrounds whenever the light visible to the spider is turned off. 

Interestingly, the second pair of legs does not take over this function, as could be shown 

in experiments where the first pair was removed (Schmid, 1997). In a subsequent study it 

was observed that Cupiennius approaches appropriate visual targets, which allowed the 

investigation of the respective role of the principal and secondary eyes in object detection 

and discrimination (Schmid, 1998). The visual fields of the AME almost completely 

overlap with the visual fields of the PME (Land and Barth, 1992) which led to the 
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assumption of a functional specialization. Indeed, while both secondary and principal 

eyes are sufficient for object detection, the AME were found to be necessary for object 

discrimination (Schmid, 1998). Neuhofer et al. (2009) showed that eye muscle activity in 

the AME is only increased when the moving stimuli are presented in the visual field of 

the secondary eyes. The principal eyes are therefore assumed to be responsible for object 

discrimination and the secondary eyes for movement detection, as it was already 

anticipated by Land and Barth (1992). A similar specialization is long known in jumping 

spiders (Homann, 1928; Land, 1969).   

 

Specific Aims 

This work should address to what extent Cupiennius exploits its visual system, 

i.e., what kind of visual information can actually be perceived by the animals and what it 

is used for.  

Do these nocturnal spiders fully exploit their fine photoreceptor mosaic? And is it 

possible to reveal differences in the spiders’ reaction to gratings of different orientations 

as predicted by the anatomical data? In psychophysical experiments the eye muscle 

activity was monitored while the spiders were confronted with moving gratings at 

different spatial frequencies (Fenk and Schmid, 2010). The difference in the interreceptor 

angles suggests that vertical gratings can be finer to be properly resolved in the secondary 

eyes than horizontal gratings (Land and Barth, 1992). We hypothesized that similar 

differences should be observed in the spiders’ response to the onset of moving gratings. 

The results of the first study led to the assumption that the spiders also respond to 

temporal intensity modulations with an increase in eye muscle activity. This was tested in 

a subsequent study in which the spiders were confronted with flicker stimuli (Fenk and 

Schmid, submitted). The assumption that no directed movement is needed to increase eye 

muscle activity could clearly be confirmed. Using flicker stimuli at different temporal 

frequencies the behavioural temporal cut-off frequency could be determined. 

The psychophysical studies indicated that the spiders should be able to detect 

prey items at any behaviourally relevant distance (at reasonable prey locomotion 

velocities) and it seemed very unlikely that the spiders would not use this precious 

sensory input during prey capture. We assumed that, despite the sufficiency of the 

mechanical senses for successful hunting, also visual input might be integrated in this 
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behavioural context. We tested this in behavioural experiments where the animals were 

confronted with moving visual stimuli (Fenk et al., 2010b). 

The last study (Fenk et al., 2010a) deals with the visual system of spiders after 

moulting and addresses questions raised by the observation of peculiar pigment rings in 

the eyes of Cupiennius. The size of the pupil left by the pigment rings was observed to be 

variable, which was, to our knowledge, not described before. We hypothesized the 

pigment rings to be connected to the maturation of the eye after ecdysis. This was tested 

using micro CT images of one spider right after ecdysis and one spider several days later. 

 

Results and Discussion  

A telemetric monitoring of eye muscle activity does certainly not constitute a 

typical behavioural study. However, retinal movements are the consequence of motor 

commands processed in higher order brain areas. Thus, a significant increase in muscle 

activity shows that a certain stimulus has not only been transduced in the receptor cells 

but that information has travelled along the neural pathways and reached centres 

responsible for sensory perception, and was there judged to be important enough to elicit 

an energy-consuming physical response. Such measurements thus provide completely 

different information about the spiders’ sensory world than electrophysiological 

measurements in receptor cells, and it seems particularly interesting to compare insights 

gained at the sensory level with such “behavioural” data after information processing.   

In the first study we measured the increase in eye muscle activity as a response to 

the movement of vertical and horizontal gratings at different angular wavelengths 

presented on a LCD monitor (Fenk and Schmid, 2010). The spiders responded to vertical 

gratings down to 2 deg wavelengths and to horizontal gratings down to 2.7 deg 

wavelengths. For the vertical orientation the behavioural cut-off frequency measured 

corresponded to the frequency of the finest gratings that could theoretically be properly 

resolved by the spiders’ receptor mosaic. The interreceptor angles along tapetal rows are 

about 1 deg and the finest grating that can thus be properly sampled has a wavelength of 

2 deg (Land and Barth, 1992). In the horizontal direction, however, the corresponding 

interreceptor angles are 2 - 3 deg (Land and Barth, 1992) and a grating at a wavelength of 

2.7 deg, which still elicited a significant response, could theoretically not be properly 

resolved by the photoreceptor mosaic. This led to the assumption that temporal intensity 

modulations produced by the movement of the gratings are sufficient to elicit retinal 
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movements. Using a very simplified model we calculated the relative intensity 

modulations for the finest gratings used in the experiments. The calculations suggested 

that the differences in the intensity modulations represent a possible explanation for the 

behavioural data.  

In a subsequent study (Fenk and Schmid, submitted) we tested the assumption 

that no directional motion of objects is necessary to elicit a response in the animals. The 

animals were confronted with flickering rectangles and we monitored changes in the eye 

muscle activity upon flicker onset. The spiders responded to slow flicker with very 

pronounced increases in muscle activity. For flicker frequencies below one cycle per 

second the averaged response patterns show a rhythmic increase with steep slopes at each 

intensity change. The response drops quickly for increasing flicker frequencies. The 

behavioural cut-off in our experiments was between 4.3 and 8.6 cycles per second. Due to 

the limited brightness and contrast of the computer screen we were not able to determine 

the maximum cut-off frequency – however, the illuminance used in the experiments 

matches well the highest light intensities encountered by the animals in their active 

period. Thus our data might give the order of the biologically relevant temporal cut-off 

frequency. A temporal resolution of a few cycles per seconds is well in line with the 

intracellular recordings by Pirhofer-Walzl et al. (2007). The presentation time of one 

frame at six cycles per second matches the integration time of the photoreceptor cells in 

light adapted PME. 

The psychophysical experiments strongly suggested that this spider could use its 

visual system in more demanding behavioural tasks than known so far. We could show 

that it is possible to elicit attack behaviour in Cupiennius using slowly moving discs 

presented on a computer screen (Fenk et al., 2010b). Since the spiders only attack moving 

objects the presentation of the visual stimuli on a screen was the only possibility to avoid 

concomitant mechanosensory cues. Cupiennius is the first spider for which three different 

sensory modalities could be demonstrated to trigger attack behaviour independently from 

each other. Visual cues, air movements, and substrate vibrations have to be integrated in 

hunting behaviour and this might provide an interesting model to study multisensory 

integration in the context of complex behaviour. Due to the low behavioural temporal cut-

off frequency, one might doubt that the spiders are able to successfully catch fast moving 

prey using visual cues alone. However, the locomotion patterns of prey contain several 

phases that could facilitate the detection and localization of prey. A prey item that 

approaches the spider has a very small angular velocity and would, in the extreme case, 
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appear just as a spot of increasing size. Any kind of erratic movements, and obviously 

stop-and-go motion, include moments in which the object’s image is less blurred. 

The pigment rings discovered in spider eyes could be shown to be related to the 

maturation of the growing lens after ecdysis (Fenk et al., 2010a). After ecdysis the pupil 

left by the pigment rings is restricted to the inner fourth of the total projected lens surface. 

In the following days the pigment ring vanishes. Enhanced post-ecdysal pigment rings 

were observed in all three spider species examined (Cupiennius salei, Lycosa tarentula, 

and Heteropoda venatoria), in both the principal and secondary eyes. We found a rather 

similar dynamics for the increase of the pupil size in three different age groups examined. 

Micro CT scans suggest that the pigment rings shield light rays that would pass beside the 

lens that does not entirely fill out the corneal cup after ecdysis. Such light rays would be 

expected to be focused behind the retina. Light passing beside the lens would therefore 

probably degrade the image on the retina and we thus suggest that the pigment rings 

maintain vision in post-ecdysal spiders by shielding this light. 

The interreceptor angles measured by Land and Barth (1992) in the secondary 

eyes suggest that object localization should be most precise along tapetal rows that are 

parallel to the spiders’ frontal plane. The orientation-dependent spatial cut-off frequency 

determined in our behavioural experiments suggests that objects moving parallel to the 

tapetal strips are more easily detected by the animals. This is probably due to the 

elongated form of the photoreceptors, the receptor subtending smaller angles along 

tapetal rows than normal to it. This might permit to sample more photons, and thus 

increase signal-to-noise ratio, while maintaining high precision of spatial information in 

the spider’s principal plane of action. Cupiennius’ eyes might be tuned to the detection of 

moving objects at dim light conditions. The visual performance of this nocturnal hunter, 

showing a relatively good spatial acuity and a relatively low temporal resolution, does 

well meet the prediction for sedentary animals that are interested in small slowly moving 

prey (Warrant, 1999).  
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SUMMARY 

Cupiennius salei (Araneae, Ctenidae) has, like most spiders, eight camera-type eyes. The 

anterior median eyes are called principal eyes and have a movable retina; all of the other 

eyes are referred to as secondary eyes and are equipped with a reflecting tapetum. The 

photoreceptors in the secondary eyes are arranged in rows on the tapetum and the inter-

receptor angle along such a row is smaller than normal to it. In this study, the vertical and 

horizontal spatial cut-off frequencies of moving gratings were measured for the posterior 

median (PM) eyes, and the data were then compared with the anatomical data reported in 

the literature. Detection of moving objects in the secondary eyes enhances the eye muscle 

potential frequency in the principal eyes. We thus recorded the eye muscle activity with a 

telemetric unit as a monitor for motion detection while moving stimuli – sinusoidally 

modulated bright and dark stripes – were presented to the PM eyes on a computer screen. 

A significant increase in the eye muscle activity was measured for gratings at an angular 

wavelength of 2.0 deg in the vertical orientation and of 2.7 deg in the horizontal direction. 

In the vertical orientation the critical wavelength is twice the inter-receptor angle; in the 

horizontal orientation the spiders responded to wavelengths that are smaller than twice 

the corresponding inter-receptor angle. The cut-off frequency seems thus to be limited by 

the visual field of the photoreceptors rather than the inter-receptor angle. The relative 

intensity modulations modelled for the two different grating orientations in single 

photoreceptor cells were in line with our data.  

KEY WORDS 

spider eyes, electrophysiology, eye muscles, spatial resolution 
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INTRODUCTION 

Cupiennius salei (Keyserling, 1877) is a night-active hunting spider from Central 

America and it is most common in Mexico, Guatemala and Honduras. It prefers to live on 

monocotyledons, such as banana plants and bromeliads, where it remains sheltered during 

daytime (Barth et al., 1988b). At dusk the animals begin to hunt for prey and search for 

mates (Barth and Seyfarth, 1979). The spiders mainly rely on their excellent 

mechanosensory system in these behavioural contexts as has been shown in numerous 

studies (e.g. Melchers, 1967; Barth, 1986; Barth et al., 1988a; Baurecht and Barth, 1992; 

Barth, 1993) and vision seems to play only a minor role. Some manifestations of the 

behavioural significance of the visual system have been reported by Schmid (Schmid, 

1997; Schmid, 1998) and Neuhofer et al. (Neuhofer et al., 2009). The anatomy of the eyes 

(Land and Barth, 1992; Kaps and Schmid, 1996) and the size and structure of the visual 

centres in the brain (Strausfeld et al., 1993; Strausfeld and Barth, 1993) suggest an even 

more important influence of the visual system in at least some behavioural contexts.  

Cupiennius has, like most spiders, eight simple eyes with a cuticular cornea, a 

biconvex lens, a vitellar body and a retina. They can be divided into four different pairs 

according to their position on the carapace. The anterior median eyes (AM) are also 

called principal eyes, while the anterior lateral (AL), the posterior median (PM) and the 

posterior lateral (PL) eyes are referred to as secondary eyes.  

The astonishingly low F-numbers (the ratio of the focal length to the lens 

diameter) of the spiders' eyes – ranging between 0.74 and 0.58 according to Land and 

Barth (Land and Barth, 1992) – indicate a high light sensitivity, and indeed the absolute 

corneal illuminance threshold was found to be well below 0.01 lx (Barth et al., 1993). 

The human eye has a maximal F-number of 2.1 [because the distance between the retina 

and the optical centre of the lens is 17.1 mm and the diameter of the fully open pupil is 8 

mm (Hecht, 2002)] compared with the PM eyes of C. salei with an F-number of 0.71. 

This implies that the image of an extended surface at a given luminance on the retina in 

these eyes is roughly nine times brighter than the image in humans.  

The structure of the principal and the secondary eyes differs considerably. All 

secondary eyes are inverted eyes with the photoreceptor cells turned away from the 

incident light. They are provided with a reflecting grid-shaped tapetum consisting of 

several layers of guanine crystals (Fig. 1). The tapetum strips in the PL and PM eyes are 

roughly orientated parallel to the spiders' longitudinal plane (Land and Barth, 1992). The 

principal eyes are everted eyes, with the rhabdomeres pointing towards the incident light. 
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They lack a reflecting tapetum and their retina can be moved by two eye muscles each 

(Land and Barth, 1992; Kaps and Schmid, 1996).  

The optics of the eyes, the quality of the image and the retinal resolution have 

been investigated by Land and Barth (Land and Barth, 1992). Neither diffraction at the 

aperture nor the optics of the lens but the fineness of its receptor mosaic limits spatial 

resolution in C. salei. The inter-receptor angles Δ  in rad are calculated as the separation 

of the receptor centres divided by the focal length. The posterior eyes (PM and PL) have 

the best resolution with inter-receptor angles of about 1 deg along the rows and 2–3 deg 

in the vertical direction. The poorest resolution was found in the AL eyes. The angular 

separation along the rows is 3–4 deg and between the rows is above 9 deg. For the AM 

eyes an inter-receptor angle of about 3 deg has been measured.  

The inter-receptor angles determine the anatomical limit of spatial resolution. A 

grating can just be properly resolved if the image of one bar falls on a distinct receptor 

and the image of the next bar on the neighbouring receptor, i.e. the angular period λ of the 

grating is twice the inter-receptor angle (λ=2·Δ ) (Land and Nilsson, 2002).  

 

 
 
Fig. 1. Light microscope micrographs of a freshly removed posterior median (PM) eye retina. On 
the left side a large part of the grid-shaped tapetum can be seen (using both transmitted and 
reflected light). The greenish blue gloom is due to guanine crystals reflecting light through the 
photoreceptors. On the right side (dark field microscopy) only three tapetal strips are shown. One 
tapetal strip is equipped with two rows of photoreceptors and the axons of the photoreceptors leave 
the retina through the interjacent slits (Land and Barth, 1992). The arrows indicate the horizontal 
(h) and vertical (v) axis of the tapetum with respect to the body axis.  
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The temporal resolution of the photoreceptors was determined by Pirhofer-Walzl 

et al. using intracellular recordings (Pirhofer-Walzl et al., 2007). The integration time in 

the dark-adapted state was found to be 138±46 ms in the PM eyes and 86±23 ms in the 

AM eyes. For light-adapted eyes the authors measured an integration time of 79±17 ms in 

the PM eyes and of 44±19 ms in the AM eyes (Pirhofer-Walzl et al., 2007).  

Kaps and Schmid investigated the structure and function of the eye muscles that 

move the AM retina (Kaps and Schmid, 1996). Each principal eye is provided with a 

dorsal muscle that is 600 μm long and consists of 15–18 striated muscle fibres and a 

ventral muscle that is 650 μm long and consists of 20–22 striated fibres. The ventral 

muscle inserts at the inner surface of the clypeus and the ventro-lateral surface of the eye 

cylinder. The dorsal muscle is attached to the exoskeleton in between the two PM eyes 

and runs to the dorso-lateral surface of the AM eye tube. The passive elasticity of the eye 

tubes and the eye muscles is assumed to be the counteracting force to the muscle 

contractions. Two different modes of eye movements have been observed: spontaneous 

microsaccades are generated by the dorsal muscle only. The muscle activity was shown to 

be around 12 Hz during the microsaccades, and the retina accomplishes recurring 

twitches of 2–4 deg in the dorso-median direction. This angle matches the inter-receptor 

angle in the AM eyes of 3 deg as reported by Land and Barth (Land and Barth, 1992), and 

it seems indeed reasonable to interpret the microsaccades as a mechanism to prevent the 

receptor cells from adapting when they are confronted with a static image. Induced 

saccades, however, are, as shown by Kaps and Schmid (Kaps and Schmid, 1996), 

generated by both the dorsal and the ventral eye muscles. The amplitude of these 

movements can go up to 15 deg and their direction can be varied depending on the 

activity of the two independent eye muscles. The resulting force is the vector sum of the 

forces produced by the dorsal eye muscle in the dorso-median direction and the ventral 

muscle in the ventro-median direction. The authors show the relationship between the 

muscle potentials frequency and the retinal displacement. Saccades are observed in 

walking animals (Kaps, 1998) and can be induced by mechanical or visual stimulation 

(Kaps and Schmid, 1996).  

Schmid showed that the secondary eyes seem to be responsible for object 

detection whereas the principal eyes are used for object discrimination (Schmid, 1998). 

Neuhofer et al. have recently shown that a visual elicitation of the saccades in the eye 

muscles can only be induced if the secondary eyes are stimulated (Neuhofer et al., 2009). 

The authors showed that the retinae of the AM eyes move when objects are moving 

within the visual field of one or more secondary eyes, which suggests that the secondary 
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eyes alone are responsible for motion perception. This specialisation has already been 

described for jumping spiders (Homann, 1928; Land, 1969), where the principal eyes that 

are responsible for pattern recognition show by far the best spatial resolution. Homann 

compared the principal eyes with the foveal parts and the secondary eyes with the 

peripheral parts of the human retina (Homann, 1928). Interestingly, in Cupiennius, the 

secondary eyes, the motion-detecting eyes, have the better spatial resolution.  

The aim of this study was to determine to what extent these spiders exploit the 

optics of their eyes. In our experiments we make use of the fact that the perception of 

moving objects in the secondary eyes enhances the eye muscle activity in the AM eyes. 

The PM eyes were confronted with movable gratings of variable spatial frequency while 

the eye muscle activity was monitored via a small telemetric unit. The smallest spatial 

frequency that elicited a significant increase in the eye muscle potential frequency was 

then compared with the anatomical data reported by Land and Barth (Land and Barth, 

1992). We also simulated the intensity changes produced by black and white bars moving 

relative to a single photoreceptor for the stimuli sizes and velocities used in our 

experiments by means of a model, which takes the geometry and the integration time of 

the photoreceptors into account. As the inter-receptor angles as well as the receptors 

themselves are smaller along the horizontal than the vertical axis, we expected to observe 

differences in the behavioural responses of the spiders to gratings in different 

orientations.  

 

MATERIALS AND METHODS 

Eye muscle potentials 

Animals 

Adult female Cupiennius salei were used in this study. The spiders were kept in a 

greenhouse in Vienna at a 12 h:12 h day:night cycle. Relative humidity (70–80%) and 

temperature (15–28°C) in the stock resemble natural conditions. The spiders were kept 

separately in glass jars and were fed on flies once a week. 19 spiders were used in the first 

experimental series, 14 in the second one.  

In this study it was necessary to know the position of the PM eye investigated 

with respect to the stimulus and therefore the spiders had to be tethered. They were 

cooled down in a refrigerator (at approximately 3°C) and could then be fixed on a 
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wooden hemisphere using parafilm. The small hairs on the upper side of the prosoma and 

between the eyes were removed. The telemetric unit was then attached to the spiders' 

prosoma using beeswax. The reference electrode was inserted laterally into the prosoma, 

and the measuring electrode just below the PM eyes. The spiders were positioned with 

their body axis perpendicular to the screen at a distance of 20 cm. The spiders were then 

rotated 30 deg in the horizontal plane and 65 deg in the vertical plane with the PM eye of 

interest being the pivot point to ensure that the centre of the stimulus is approximately 

adjusted to the middle of the visual field of the eye. All but the PM eyes were covered 

with red acrylic paint.  

Care and use of the animals comply with the Austrian animal welfare laws, 

guidelines and policies. 

 

Telemetry 

We used a telemetric device as proposed for the wireless transmission of the 

muscle potentials of a locust by Kutsch et al. (Kutsch et al., 1993), which was recently 

adapted for spiders (Neuhofer et al., 2009). Using a small, light and extremely sensitive 

emitter device it is possible to transmit the electric signals generated by the thin eye 

muscles in Cupiennius. The main component is an LC-oscillator circuit, which generates 

a carrier frequency of about 130 MHz and this carrier frequency is frequency- and 

amplitude-modulated by the action potentials of the eye muscles. A coil (4 to 5 turns) 

made of copper wire serves as an inductor. An insulated, very flexible and thin manganin 

wire is used as a recording electrode (alloy of copper, manganese and nickel; diameter 

d=30 μm; resistance per metre ρl=628.3 Ωm–1, Isabellenhütte, Dillenburg, Germany). The 

reference electrode is made of silver wire (d=250 μm). The circuit is powered by a silver 

oxide battery (Renata or Maxell Watch Batteries; 1.55 V) weighing only 270 mg. The 

battery holder is made of hard PVC, and the mass of the transmitting device plus battery 

is about 660 mg. The signal could be received by a conventional world receiver (Conrad 

Voyager RY-630, Conrad Electronics, Hirschau, Germany). It was transmitted through an 

A/D converter (CED 1401, Science Park Cambridge, UK) to a PC using Spike2 (CED) 

for data analysis.  

 

Stimulus 

An LCD monitor (1280 × 1024 pixels, 60 Hz, Belinea, Wittmund, Germany) was 

used in this study. The stimuli were generated in Matlab (MathWorks, Inc., Natick, MA, 
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USA), using the Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997) and 

consisted in one-dimensional, sinusoidal, monochromatic gratings together with a 

transparency mask to prevent fringe effects (Fig. 2A). The spectrum of the screen is 

shown in Fig. 2B together with the spectral sensitivity of the PM eyes reported by Barth 

et al. (Barth et al., 1993). 40 lx (Pocket Light Meter, AZ Instrument, 8581, Taichung 

City, Taiwan) were measured at a distance of 20 cm from the screen showing the 

presented stimuli.  

 

 

Fig. 2. (A) Screen shot of stimuli used in the experiments. This pattern corresponded to an angular 
wavelength of 3.3 deg for animals at a distance of 20 cm. (B) Spectrum of the light emitted by the 
LCD monitor used in the experiments together with the sensitivity spectrum of the posterior 
median (PM) eyes in the day state, modified from Barth et al. (Barth et al., 1993). 
 

 

In the first series we used eight different spatial frequencies, ranging from 0.117 

to 0.667 cycles per degree. The angular wavelength was 8.5 deg for the largest and 1.5 

deg for the smallest stimulus. The gratings remained stationary for 50 s and then moved 

for 5 s at a constant speed (10 deg s–1). Each spatial frequency was successively shown 

four times to the animals; the order in which the spatial frequencies were presented was 

different for each spider. Then the whole cycle was repeated so that each spider was 

confronted with each stimulus in all eight times. The movement onset was accompanied 

by a short trigger signal that could be registered directly with Spike2 together with the 

muscle potentials.  

In the second series only the three gratings with the smallest wavelengths were 

shown to the animals. Thus, it was possible to confront each spider with the horizontal as 

well as the vertical orientation to allow a more direct comparison of the reactions. This 

was not possible in the first series because the presentation of eight different angular 
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wavelengths in both orientations would have lasted too long and the experiments were 

limited by the lifetime of the battery. In the second series a constant temporal frequency 

of 2.5 cycles per second was chosen.  

The stimuli sizes have an uncertainty of 0.1 deg mostly due to the positioning of 

the spiders in front of the screen. 

 

Analysis 

The eye muscle activity varied greatly during the experiments and we thus 

compared the mean muscle frequency in the three seconds prior to the movement onset 

with the frequency in the three seconds after the movement onset for each stimulus. These 

values were calculated by means of a Spike2 script file and the mean frequency change 

was determined for the eight stimuli presentations for each spider.  

During the experiments the spiders occasionally moved their chelicerae and thus 

generated signals that were huge compared with the eye muscle potentials. This 

chelicerae movement was nearly always accompanied by an increase in the frequency of 

the eye muscle potentials. We therefore excluded stimulus presentations from the analysis 

whenever such a chelicerae signal was recorded within 25 s before stimulus onset or 

during the stimulus.  

Spiders were excluded from the analysis if more than 10 responses (or more than 

three for a given stimulus size) were not valid due to chelicerae movements or because of 

a poor signal-to-noise ratio.  

Differences between the mean muscle potential frequency for N spiders before 

and during stimulation were tested with the Wilcoxon signed-rank test using XLSTAT 

(Addinsoft, Paris, France). If the frequency was higher during the movement of the 

gratings, the P-value for the one-tailed test was calculated.  

 

Simulation of the intensity modulation 

The temporal intensity modulation at a single model photoreceptor cell produced 

by a moving rectangular grating was simulated. We considered the size s of the image of 

a bar on the retina and the receptor size r. When the entire receptive area is filled with a 

white bar the intensity measured by the receptor is defined to be 1, when a dark bar 

covers the entire receptor the intensity is 0. When the grating moves relative to the retina 
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the intensity varies over time depending on the ratio of the bar width to the receptor size, 

on the velocity of the grating and the integration time of the photoreceptor.  

For an infinitesimally small integration time only the ratio r/s has to be 

considered. The maximum intensity differences ΔI are measured for bar widths s equal to 

or larger than the receptor, where at a given time the receptor field is entirely filled with 

the image of a bar or a fraction of it. For decreasing bar widths the maximal intensity 

differences fall as ΔI=2·s/r–1, and ΔI obviously equals zero when the stripe width is 

exactly half the receptor size. Intensity differences increase for further decreasing stripe 

widths following ΔI=–2·s/r+1, reaching a maximum at r/s=3. Considering only odd 

receptor-to-stripe ratios, where the intensity differences are maximal, the decrease 

follows ΔI=s/r. If a finite integration time is considered, the maximal intensity differences 

begin to fall below 1 for bar widths bigger than the receptor size.  

The values given above have been calculated assuming a rectangular 

photoreceptor cross section that is evenly filled with microvilli. In reality the microvilli 

are restricted to the two vertical boarders of the receptor, and the intensity for vertical 

bars was therefore calculated as the mean measured by the two microvilli stripes at a 

given time. The intensity variations for a full cycle were calculated for the wavelengths of 

the stimuli in our second experimental series. According to the micrographs given by 

Land and Barth (Land and Barth, 1992), the photoreceptor aspect ratio in the model was 

chosen to be 1:1.5, and one microvilli stripe was assumed to occupy one-fifth of the total 

receptor size. The integration time of the photoreceptors in the model was set to 79 ms as 

reported by Pirhofer-Walzl et al. (Pirhofer-Walzl et al., 2007).  

 

RESULTS 

Eye muscle potentials 

An example of recorded eye muscle action potentials and the frequency increase 

induced by the movement onset of a grating are shown in Fig. 3. The results of the 

experiments are summarised in Tables 1 and 2. The mean responses of the spiders, i.e. the 

difference in the mean muscle potential frequency in the three seconds before and in the 

three seconds after the onset of the grating movement, are shown in Fig. 4A,B for the two 

experimental series.  
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In the first series gratings at angular wavelengths ranging between 8.5 deg and 

1.5 deg were presented to the spiders. Nine spiders were shown the vertical gratings and 

10 spiders the horizontal gratings. The movement onset of the gratings provoked an 

increase in the eye muscle potential frequency. The individual responses varied 

considerably, and the mean frequency increase diminished more or less steadily with 

decreasing wavelength. The highest mean frequency increase shown by a spider was in 

the order of 10 Hz and has been measured for the coarsest horizontal grating (8.5 deg). In 

the vertical subset as well as in the horizontal subset the frequency increases are 

significant for all stimuli sizes down to 2.7 deg (0.003<P<0.033) and not significant for 

2.0 deg (P=0.055 for vertical gratings, P=0.480 for horizontal gratings). The change in 

frequency is not significant for 1.5 deg (P=0.953 for vertical gratings and P=0.386 for 

horizontal gratings). If the two subsets are combined (N=19), the frequency increase is 

significant for all stimuli down to 2.7 deg (P≤0.002); however, the increase for 2.0 deg is 

still not significant (P=0.114). Neither is the change in frequency for 1.5 deg (P=0.443). 

The linear regression (including all data points) has a coefficient of determination of 

R=0.97.  

 

 

 
Fig. 3. An example for the electrophysiological recordings of the eye muscle action potentials can 
be seen at the bottom. The middle channel gives the time of the movement onset. Our method is 
not suited for the measurement of the absolute amplitude; Kaps and Schmid report amplitudes of 
50–150 μV (Kaps and Schmid, 1996). At the top the instantaneous frequency of the eye muscle 
potentials is drawn. The frequency is typically in the order of 15–25 Hz before the grating 
movement and can go up to 100 Hz. 
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In the second series (Fig. 4B) we wanted to test if there were significant 

differences in the response to differently orientated gratings. The spiders (N=14) were 

shown only the stimuli with the smallest three spatial wavelengths of the first series (i.e. 

2.7 deg, 2.0 deg and 1.5 deg). This time the gratings were presented at a constant 

temporal frequency (2.5 cycles per second) and each animal was presented with the 

horizontal as well as the vertical gratings. Therefore, the reaction of the spiders to 

gratings of the same spatial frequency but different orientations could directly be 

compared. The highest mean frequency increases measured for single spiders were in the 

order of 3 Hz. The response to the 2.7 deg grating was significant for the vertical 

(P=0.005) as well as the horizontal (P=0.015) orientation. However, the response to the 

2.0 deg grating was significant only for the vertical orientation (P=0.013) and not for the 

horizontal one (P=0.801, two-tailed). The difference between the responses to the 

differently orientated gratings was also significant (P=0.035, two-tailed test). As in the 

previous series the 1.5 deg grating did not elicit a significant change in the eye muscle 

activity (P=0.776 for vertical gratings and P=0.826 for horizontal ones).  

We thus could show significant responses to moving vertical gratings at angular 

wavelengths as small as twice the spiders' inter-receptor angle. Horizontal gratings 

provoked a frequency increase even for wavelengths smaller than twice the inter-receptor 

angle in this orientation – the inter-receptor angle between tapetum rows is in the order of 

2–3 deg (Land and Barth, 1992) whereas gratings at a wavelength of 2.7 deg still elicited 

a significant response.  

 

 

Table 1. Mean change of the eye muscle activity and the standard error of the mean (s.e.m.) for all 
spiders of the first series for the vertical (N=9) and horizontal subset (N=10) measured for the 
various angular wavelengths of the presented gratings  

 

 
The P-values were calculated using the Wilcoxon signed-rank test. If the mean difference is 
positive the value for the one-tailed test is given, if it is negative the two-tailed value is shown. 

 

Wavelength 
(deg) 

Vertical grating Horizontal grating 
Mean +/- s.e.m. (Hz) P Mean +/- s.e.m. (Hz) P 

8.5 3.0 +/- 0.7 0.005  3.8 +/- 1.2 0.003 
6.1 2.0 +/- 0.7 0.014  1.4 +/- 0.5 0.014 
4.8 1.2 +/- 0.5 0.014  1.6 +/- 0.9 0.023 
3.9 1.2 +/- 0.5 0.019  1.2 +/- 0.4 0.014 
3.3 1.5 +/- 0.7 0.019  1.1 +/- 0.4 0.010 
2.7 0.5 +/- 0.2 0.033  1.2 +/- 0.4 0.008 
2.0 0.7 +/- 0.4 0.055  0.2 +/- 0.5 0.480 
1.5 0.1 +/- 0.3 0.953 -0.3 +/- 0.5 0.386 
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Fig. 4.  (A) Eye muscle potential frequency increase (mean ± s.e.m.) for eight different angular 
wavelengths (see Table 1) moving at an angular velocity of 10 deg s–1. To one group (N=10) the 
gratings were shown in their horizontal orientation, to the other group (N=9) in the vertical 
orientation. (B) Eye muscle potential frequency increase (mean ± s.e.m.) for angular wavelengths 
of 1.5 deg, 2.0 deg and 2.7 deg moving at a contrast frequency of 2.5 cycles per second. The 
increase in muscle potential frequency is significant for 2.7 deg in both orientations. A wavelength 
of 2.0 deg elicited a significant increase in the vertical but not in the horizontal orientation. The 
difference between the responses to the two orientations is also significant. The gratings with a 
wavelength of 1.5 deg did not significantly change the eye muscle frequency.  
 
 
Table 2.  Mean change of the eye muscle activity and the standard error of the mean (s.e.m.) for 
the second series (N=14) measured for the various angular wavelengths of the presented gratings  
 

 
The P-values were calculated using the Wilcoxon signed-rank test. If the mean difference is 
positive the value for the one-tailed test is given, if it is negative the two-tailed value is shown. 

 

Simulation of the intensity modulation 

Fig. 5A–C shows the simulated light intensity variation measured by a single 

model PM eye photoreceptor for the angular wavelengths used in the second 

experimental series (2.7 deg, 2.0 deg and 1.5 deg) during a full cycle. The solid lines 

show the intensity variation for the horizontal gratings, the broken ones illustrate the 

intensity variation for the vertical gratings. In Fig. 5D the maximal intensity variations 

are shown for the three stimuli sizes considering the photoreceptor integration time of 79 

Visual angle 
(deg) 

Vertical grating Horizontal grating 
Mean +/- s.e.m. (Hz) P Mean +/- s.e.m. (Hz) P 

1.3  0.8 +/- 0.3 0.005  0.9 +/- 0.4 0.015 
1.0  0.8 +/- 0.3 0.013 -0.1 +/- 0.2 0.801 
0.8 -0.1 +/- 0.3 0.776 -0.1 +/- 0.2 0.826 
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ms as reported by Pirhofer-Walzl et al. (Pirhofer-Walzl et al., 2007). The grating velocity 

in the experiments was 2.5 cycles per second, which corresponds to roughly 0.2 cycles 

per integration time. Comparing the simulated values with the measured behavioural data 

we can indeed find a cut-off (indicated by the broken line in Fig. 5D). Above this limit 

the spiders showed a significant increase (2.7 deg vertical and horizontal gratings, 2.0 deg 

vertical gratings); the three stimuli for which we calculated lower intensity variations 

elicited no significant response in our experiments. This could explain why we found a 

difference between the responses to the different orientations that was less pronounced 

than expected from the inter-receptor angles. The temporal intensity variation is thus a 

possible explanation for the gathered data.  

 

 

 
 
Fig. 5.  (A–C) Simulated light intensity variation for the three wavelengths presented in the second 
experimental series (1.5 deg, 2.0 deg and 2.7 deg angular wavelength) measured by a single 
photoreceptor cell produced by a rectangular grating during a full cycle. The three subfigures show 
the values calculated for the r/s ratios in the experiments, taking the arrangement of the microvilli 
in the receptor cells into account. (D) Simulation of the maximum light intensity differences 
produced by rectangular gratings moving at a velocity of 0.2 cycles per integration time. Intensity 
changes above the indicated cut-off line (broken line) elicited a significant response in our 
experiments whereas intensity changes below this limit did not enhance the spiders' eye muscle 
activity.  

 



 Spatial cut-off 31 

 

DISCUSSION 

In the secondary eyes of C. salei the photoreceptor size equals receptor spacing in 

the horizontal direction (i.e. along a tapetum strip) because the receptors are conjoined 

but the inter-receptor angle is larger than the angle subtended by the receptors in the 

vertical direction, i.e. normal to the strips. The finest grating that can be properly resolved 

by a given retinal mosaic has a spatial period equal to twice the receptor spacing (Land 

and Nilsson, 2002). In this case the image of one bright or dark bar of the grating falls on 

a given receptor and the image of the next bar falls on the neighbouring receptor.  

In our experiments the finest vertical gratings that elicited a significant response 

matched exactly this so called Nyquist limit. This means that half the angular wavelength 

in the vertical orientation of the stimulus equals the inter-receptor angle (and the angle 

subtended by single receptors) of 1 deg in this orientation. For horizontal gratings we 

measured significant responses for wavelengths down to 2.7 deg, which is considerably 

smaller than twice the inter-receptor angle in this orientation. We found a significant 

difference between the responses to the two different orientations for the condition where 

the wavelength equals twice the inter-receptor angle in the vertical orientation; here only 

the vertical gratings provoked a significant activity increase.  

There are several possible explanations for these findings. Firstly, the tapetum 

consists in reality, not only of strips but, as can be seen in Fig. 1, there are regions where 

the strips turn. These curves are present at the boarders and in the very middle part of the 

retina, and the inter-receptor angles in these regions are clearly smaller than the angle 

between the rows. The receptors in the curves could thus enhance acuity in the horizontal 

direction.  

Secondly, it is quite conceivable that the spiders respond to gratings with higher 

spatial frequencies than the Nyquist limit, because they could still perceive some sort of 

movement even if the grating is too fine to be properly resolved. The secondary eyes do 

not have a movable retina, and as Cupiennius is a typical sit and wait hunter the retinae of 

the secondary eyes are often completely stationary and the neural image in these eyes 

probably adapts (see also Land and Barth, 1992). It is thus thinkable that the spiders 

might not be able to perceive stationary objects with their secondary eyes but only objects 

moving in the visual field, producing intensity changes. The secondary eyes could then be 

imagined as a movement-detecting device using intensity changes over time. For the pure 

detection of intensity changes produced by small objects, telling the animal that there was 

something moving, the angle subtended by a receptor rather than the inter-receptor angle 
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should be the critical factor. Ongoing experiments show that the spiders also respond very 

well to flicker stimuli (L.M.F. and A.S., unpublished) and this corroborates the 

assumption that temporal intensity changes trigger the muscular response.  

However, even if we consider only the temporal intensity changes at a single 

receptor, a difference between the two orientations has to be expected because of the 

aspect ratio of the receptors, which are also larger in the vertical direction than in the 

horizontal one. We simulated the maximal intensity differences produced by gratings of a 

given spatial frequency at single model photoreceptors. It is possible to find a limiting 

intensity change above which the spiders responded to the stimuli and the intensity 

modulation can thus be considered as a possible explanation for the spiders' performance 

in our experiments; the difference in the measured spatial cut-off frequency is smaller 

than the difference between the inter-receptor angles but there is still a difference which 

can be explained by the geometry of the receptor cells and the resulting difference in the 

intensity modulations. The temporal intensity changes measured by the photoreceptor 

cells are the more pronounced, the better the image produced by the lens. This could be 

one of the reasons why animals would invest in lenses that provide much more detail than 

the receptor mosaic can resolve.  

It might also be interesting to compare our data concerning an arthropod lens eye 

with the findings reported for insect eyes. Insect optomotor response is direction sensitive 

but we are unable to make any assumptions concerning the spiders' ability to perceive the 

direction of motion because there was no difference observed between the reactions to the 

two different motion directions of vertical gratings and so we can only compare the 

absolute value of the insect optomotor response with the muscle activity increase in the 

spider. Due to spatial aliasing the optomotor response of Drosophila to moving gratings 

disappears when the single stripes have a visual angle that exactly equals the inter-

receptor angle, and for even smaller bars a response in the opposed direction is observed 

(Götz, 1964; Götz, 1965). Our data do not suggest spatial aliasing effects in Cupiennius 

similar to those observed in insects because the spiders showed a non-minimum 

significant response to gratings at wavelengths equal to twice the inter-receptor angle for 

both grating orientations, where a zero crossing would be predicted.  

Our results suggest that spatial summation in subsequent neuronal processes 

seems not to impair acuity in, at least light-adapted, spiders. In a night-active animal one 

would then expect an important temporal summation to enhance the reliability of faint 

images; and indeed Pirhofer-Walzl et al. found integration times of 138 ms for dark-

adapted and 79 ms for light-adapted PM eyes using intracellular recordings (Pirhofer-
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Walzl et al., 2007). Relatively large integration times and relatively good spatial acuity is 

what one would predict for sedentary animals interested in small, slowly moving objects 

(Warrant, 1999).  

An inter-receptor angle of 1 deg (Land and Barth, 1992) is impressive for a night-

active spider. Dinopis, a night-active visual superstar among arthropods, has inter-

receptor angles of 1.48 deg in its enormous PM eyes (Blest and Land, 1977), the mean 

receptor angular sensitivity function having a half width of 2.3 deg (Laughlin et al., 

1980). However, Cupiennius cannot challenge Dinopis' incredible sensitivity. The 

interommatidial angles of 15 species of bees (day and night-active ones) have been 

measured by Jander and Jander and were found to range between 1.2 deg and 4.7 deg 

(Jander and Jander, 2002). Somanathan et al. measured interommatidial angles in a night-

active carpenter bee of 0.8 deg in the most acute zone of its visual field (Somanathan et 

al., 2009). Spatial resolution in Cupiennius is thus comparable with the resolution 

reported for day and night-active bees.  

It remains to be shown why this night-active spider invests in such a good 

eyesight and in what kind of behavioural contexts the visual sense plays an important 

role.  
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LIST OF ABBREVIATIONS 

AL  anterior lateral 

AM anterior median 

PL posterior lateral 

PM posterior median 

r receptor size 

s size of the image bar 

ΔI intensity differences 

λ angular period 
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SUMMARY 

We investigated changes of the eye muscle activity in the spider Cupiennius salei as a 

response to temporal intensity modulations. These spiders are known to enhance eye 

muscle activity in their principal eyes when moving stimuli are detected in the secondary 

eyes. We monitored the activity of the dorsal eye muscle using a small telemetric unit 

attached to the spiders’ prosoma and confronted the animals to flicker stimuli presented 

on a CRT monitor. We registered a significant increase in eye muscle activity as response 

to temporal light intensity modulations which implies that no directed motion is required 

to trigger the spiders’ response. This allowed the determination of the behavioural 

temporal cut-off frequency. None of the frequencies higher than 8.6 cycles per second 

and all of the frequencies lower than 4.3 cycles per second did elicit a significant increase 

in eye muscle activity. A behavioural cut-off frequency of only a few cycles per second is 

well in line with the temporal properties of the photoreceptor cells determined using 

intracellular recordings. A relatively low temporal resolution and a relatively high spatial 

resolution suit well Cupiennius salei’s lifestyle as a nocturnal sit-and-wait hunter. 
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INTRODUCTION 

Cupiennius salei (Ctenidae) retreats during daytime and starts to hunt and search 

for mates at dusk (Barth and Seyfarth, 1979; Seyfarth, 1980). The spider is a sit-and-wait 

hunter (Melchers, 1967; Barth and Seyfarth, 1979) and extremely polyphageous 

(Nentwig, 1986). Its mechanosensory systems are well developed and the spiders are able 

to catch flying or crawling prey without any visual input (Melchers, 1967; Barth and 

Seyfarth, 1979; Hergenröder and Barth, 1983). Pre-copulatory behaviour involves 

chemical and vibrational communication and no evidence for visual signalling was found 

(Barth, 1993). Vision was therefore often assumed to play a minor role, if any, in prey 

capture and mating behaviour.  

However, in spite of the spider’s nocturnal lifestyle and its impressive mechanical 

senses, also the visual system is astoundingly well developed. Cupiennius has, like most 

spiders, eight camera-type eyes. The two anterior median eyes (AME), which are also 

referred to as principal eyes, are each equipped with a dorsal and a ventral eye muscle 

that can move the retina (Kaps and Schmid, 1996). The three other eye pairs, the posterior 

median eyes (PME), the posterior lateral eyes (PLE), and the anterior lateral eyes (ALE), 

are referred to as secondary eyes. The photoreceptors in those eyes are arranged in rows 

within light reflecting tapetae and the interreceptor angles along such rows are smaller 

than normal to it. Land and Barth (1992) investigated the eyes of Cupiennius salei and 

found that the lenses produce images of good quality on the retina. The smallest 

interreceptor angles are about 0.9-1 deg and were measured in the PME and PLE eyes 

along tapetal rows (Land and Barth, 1992). This implies a spatial resolution that can 

challenge typical diurnal insects.  

The eyes have also been found to be extremely light sensitive: ERG 

measurements suggested an absolute corneal illuminance threshold for white light of 

0.0001 - 0.001 lx, which was 1 - 2 log units below 0.01 lx, the lowest intensity that could 

be measured with the luxmeter used by the authors (Barth et al., 1993). These results 

were confirmed by a more recent study using intracellular recordings (Pirhofer-Walzl et 

al., 2007). The photoreceptors’ spectral range, peaking at 500 - 550 nm, drops to zero for 

wavelength larger than 700 nm (Barth et al., 1993) and light sensitivity should thus be 

even better for light conditions encountered in the animals’ natural habitat than measured 

for white light. A substantial microvilli turnover takes place in all eyes, and during night-

time the microvillar surface is ten times larger than during the day (Grusch et al., 1997). 
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A concomitant increase in sensitivity at the spiders’ night-state was however only found 

for the AME (Barth et al., 1993). 

The morphological and physiological properties of the eye muscles were 

described by Kaps and Schmid (1996). The eye cup can be deflected either by the dorsal 

muscle alone (resulting in microsaccades of about 3 deg amplitude) or by both the dorsal 

and the ventral muscle (resulting in longer excursions of 4 - 15 deg). The counteracting 

force to the muscle contractions is presumably the elasticity of the tissues. The authors 

found a clear correlation between the muscle potential frequency and the deflection of the 

AME retinae (Kaps and Schmid, 1996). 

The elaborate visual system and the importance of the visual centres in the brain 

(Strausfeld and Barth, 1993; Strausfeld et al., 1993) suggested the significance of the 

visual sense for these nocturnal spiders, which could be confirmed in several behavioural 

studies: Schmid (1998) showed that Cupiennius salei approaches appropriate visual 

targets and using twofold choice experiments the different functions of the two sets of 

eyes could be investigated. The spiders are able to detect visual targets using either the 

secondary or the principal eyes, but for object discrimination input from the principal 

eyes is required (Schmid, 1998). The spiders respond to movement presented in the visual 

field of the secondary eyes with an increase in eye muscle activity in the principal eyes 

(Neuhofer et al., 2009). Thus, the secondary eyes seem to be responsible for movement 

detection, while the principal eyes are necessary for object discrimination (Neuhofer et 

al., 2009). The motion detecting system was very recently shown to be colour blind 

(Orlando and Schmid, 2011). The field of view of the AME is shifted during locomotion; 

the spiders enhance eye muscle activity in the ipsilateral eye before turning and thus look 

in the subsequent walking direction (Schmid and Trischler, 2011). Visual stimulation 

alone is sufficient to release attack behaviour and this strongly suggests that the spiders 

are able to use visual cues in the context of hunting behaviour (Fenk et al., 2010b). 

To test the spiders’ spatial cut-off frequency we recorded the increase of the eye 

muscle activity as response to moving gratings at different wavelengths (Fenk and 

Schmid, 2010). The difference between the interreceptor angles along tapetal rows and 

the interreceptor angles normal to the rows implies an orientation-dependent retinal 

resolution (Land and Barth, 1992). Our data indeed revealed an orientation-dependent 

spatial cut-off frequency; the difference between the two orientations was however less 

pronounced than the difference between the corresponding interreceptor angles. This led 

to the assumption that the spiders also react to pure temporal intensity modulations and 

that, consequently, the angles subtended by one photoreceptor in the two orientations are 
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the limiting factor for the response to moving gratings. A simple simulation of the 

intensity modulations taking the photoreceptor geometry into account, suggested that this 

represents a possible explanation for the reaction of the spiders to horizontal gratings that 

were actually to fine to be properly resolved by the receptor mosaic (Fenk and Schmid, 

2010).  

In the present study we tested the assumption that temporal intensity modulations 

lead to significant responses by recording the muscle activity with a telemetric unit while 

the spiders were confronted to stimuli presented on a CRT screen. Our assumption was 

clearly confirmed. The activity increases as response to flicker, moreover, allowed the 

estimation of the behavioural flicker fusion frequency in this nocturnal spider. The values 

obtained in our experiments are well in line with the integration time measured by 

Pirhofer-Walzl et al. in intracellular recordings (Pirhofer-Walzl et al., 2007). 

   

MATERIALS AND METHODS 

Animals  

We breed Cupiennius salei in a greenhouse where relative humidity (70 - 80%) 

and temperature (20 - 28°C) resemble the conditions in the spiders’ natural habitat. The 

animals are kept separately in 5 liter glass jars under a 12h:12h day:night cycle and are 

fed flies (Calliphora sp.) once a week. In this study we used 19 adult female spiders. For 

the experiments the spiders were cooled down and subsequently tethered onto a turnable 

wooden spherical cap that was connected to a magnetic stand by means of a ball bearing. 

The legs, pedipalps and chelicerae were fixed with Parafilm bands, the prosoma and 

opisthosoma were left free. The hairs on the upper part of the prosoma and between the 

PM eyes were removed before the telemetric unit could be attached to the prosoma using 

beeswax. The reference electrode was inserted posterio-laterally into the prosoma; the 

measuring electrode was placed just below a PME. A picture of a tethered spider is 

shown in Neuhofer et al. (2009). When a sufficiently good signal-to-noise ratio was 

achieved, the spiders were positioned at a distance of 20 cm from the screen and rotated 

about 30 deg in the horizontal and in the vertical plane. All but the PME were covered 

with red acrylic paint. 

Post-ecdysal spider eyes show enlarged pigment rings that diminish while the 

lens is growing (Fenk et al., 2010a). The pigment supposedly shields light rays that would 

enter the eye beside the growing lens and might maintain vision in post-ecdysal animals. 
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However, light sensitivity is certainly altered in this state and we thus only used animals 

that did not show significant rings and could therefore be assumed to have fully 

developed lenses.  

 

Stimulus 

The stimuli were generated in MATLAB (MathWorks, Inc., Natick, MA, USA) 

using the psychophysics toolbox (Brainard, 1997; Pelli, 1997) and were presented on a 

CRT monitor (800 x 600 pixels, 120 Hz; Sony Trinitron Multiscan 300sf, Tokyo, Japan). 

The monitor was turned on at least one hour before the experiments started. In the 

following flicker frequencies will be given in cycles per second (cps). 

In the first experimental series, we monitored the response of the animals to 

bright and dark single step stimuli and slow flicker. In this series the whole screen was 

covered with a stationary checkerboard during inter-stimulus time; the flicker stimuli 

were shown in an 18.5 cm x 18.5 cm rectangle in the middle of the checkerboard pattern. 

The checkerboard pattern had a wavelength of 1 deg which is well below the retinal 

resolution reported for Cupiennius salei (Land and Barth, 1992). We measured the 

reaction of 7 spiders to the appearance of a dark rectangle, a bright rectangle, flicker 

starting with a bright rectangle (0.278 cps, 0.554 cps, and 1.11 cps), flicker starting with a 

dark rectangle (0.278 cps), and a counter-phase flicker (0.554 cps). For the counter-phase 

flicker the rectangle was divided into two vertical halves and the overall intensity 

remained constant over time. The stimuli were shown for about 6.3 – 7.2 s, depending on 

the stimulus type; the inter-stimulus time was 50 s. We pooled for each spider the first 

five valid measurements, i.e., measurements for which the signal-to-noise ratio was 

sufficient and where no chelicerae movements have been registered in the 20 s prior to 

the stimulus onset or within the first 3 s after stimulus onset. The order in which the 

different stimuli were shown was different for each spider. 

In a second series we determined the spiders’ behavioural flicker fusion 

frequency. Here only the 18.5 x 18.5 cm rectangle showed the checkerboard pattern (1 

deg wavelength) and the surrounding background was grey. Precise timing was crucial 

for the correct presentation of high frequency stimuli and the stimuli were therefore 

chosen to be as simple as possible. To keep processor load (and thus ventilator noise) as 

constant as possible the checkerboard pattern flickered at the same frequency as the 

subsequent stimulus. After an inter-stimulus time of approximately 30 - 34 s the bright 

rectangle appeared in place of the checkerboard pattern and started to flicker at a given 

frequency for 5.6 - 6.0 s, depending on the flicker frequency. 12 spiders were shown 
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seven different flicker frequencies ranging between 0.55 cps and 60 cps. Again, the order 

in which the different stimuli were shown was different for each spider. The given 

sequence of the seven stimuli was repeatedly shown to the spiders (typically 6 - 8 times) 

until six valid measurements were recorded for each flicker frequency.  

The stimuli were shown at the maximal brightness possible with the monitor 

used. We measured a luminosity of 56.0 ± 0.5 cd/m2 for the bright rectangles, of 2.15 ± 

0.05 cd/m2 for the dark rectangles, and of 28.0 ± 0.5 cd/m2 for the checkerboard pattern 

(Luminance Meter, LS-100, Konica Minolta, Tokyo, Japan). The asymmetry, caused by 

the rendering of the checkerboard on the CRT, was thus in the order of 1 cd/m2. The 

subsequent slight increase in luminance upon flicker onset was not sufficient to enhance 

eye muscle activity (see results for high flicker frequencies). The contrast of the bright 

and dark rectangle was 0.93. Screenshots showing the stimuli used in the two 

experimental series are provided as supplementary material. 

 

Telemetry 

The activity of the dorsal eye muscles was, as already described in previous 

studies (Neuhofer et al., 2009; Fenk and Schmid, 2010), recorded with a small telemetric 

unit. The telemetric device proposed by Kutsch et al. (1993) was adapted for spiders in 

our group. Its main component is a LC-oscillator circuit that generates a carrier frequency 

of roughly 130 MHz that is frequency and amplitude modulated by the AME muscle 

potentials. The signal was recorded using a conventional world receiver (Conrad Voyager 

RY-630, Conrad Electronics, Hirschau, Germany) that was connected to a PC via an A/D 

converter (CED 1401, Science Park Cambridge, UK). We registered the muscles activity 

for data analysis using Spike2 (CED). This setup is not suitable to measure the absolute 

amplitude of the muscle potentials, which is, however, not needed for our analysis. 

 

Analysis 

The eye muscle activity shows a great variation and depends on a large number of 

internal and external factors. The spiders show different resting activities, probably 

depending on their state of arousal and the activity increases as response to visual 

stimulation but also as response to mechanical stimuli (Kaps and Schmid, 1996). We thus 

averaged several stimulus presentations for each individual spider (5 in the first series and 

6 in the second one).  
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To visualize the temporal pattern of the spiders’ response we calculated the mean 

frequency as a function of time for the 35 presentations of the first experimental series 

showing slow flicker and 72 presentations for the second series used to determine the cut-

off frequency. For the calculation of the mean we exported the mean muscle potential 

frequency (bin size: 0.2 s) with an output sample rate of 100 Hz. To determine the highest 

flicker frequency that elicited a significant increase we compared the instantaneous 

muscle potential frequency averaged in the three seconds prior to stimulus onset to the 

averaged frequency in the three seconds after stimulus onset.  

We excluded stimulus presentations when the signal-to-noise ratio was not 

sufficient or when body and/or chelicerae muscle contractions were recorded within 20 

seconds prior to the stimulus presentation or in the first three seconds after stimulus 

onset.  

The significance of the frequency changes were tested for the spiders with the 

Wilcoxon signed-rank test using MATLAB (N = 7 for the first series, N = 12 for the 

second series).  

 

RESULTS 

Single step stimuli and slow flicker 

The spiders responded with a pronounced increase in eye muscle activity to slow 

flicker, to counter-phase flicker, as well as to step stimuli. The mean frequency increase 

in the three first seconds following the onset of the stimuli compared to the three seconds 

preceding the stimulus onset ranged between 3.0 Hz and 9.3 Hz. The responses to all 6 

stimuli were significant (Table 1). Interestingly, the mean increase elicited by the 

counter-phase flicker (4.4 ± 1.1 Hz) was roughly half of the increase elicited by the 

rectangle of the same size that flickered homogeneously at the same frequency (8.9 ± 1.8 

Hz). The mean activity increases as response to the two step stimuli (checkerboard to 

bright and dark rectangle) were in the same order of magnitude (3.0 and 3.6 Hz 

respectively) and step stimuli elicited a significantly lower activity increase than the 

flicker stimuli at low frequencies. Fig. 1 shows the temporal pattern of the response to the 

single step stimuli and to the lowest presented flicker frequency (0.278 cps). The curves 

represent the arithmetic mean of the mean activity (bin size 0.2 s) for the first five 

stimulus presentations to all spiders (n = 35). Both the step stimuli and the slow flicker 

stimuli elicited a mean increase that is steeper for the onset of the dark rectangle than for 
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the bright one. Pooling the response to the step stimulus and the first intensity change of 

the slowest flicker (0.278 cps) for the first 0.6 s after stimulus onset, we obtain a slope of 

approximately 3.0 Hz/s for the change from the checkerboard pattern to a bright 

rectangle, and about 8.5 Hz/s for the change to a dark rectangle (with R2 > 0.95 for both 

regressions, N = 7, n = 70).  

The rhythmic patterns that are observed for the averaged responses of all spiders 

(N = 7, n = 35) can also be observed in single stimulus presentations. Fig. 2 shows the 

response of the spider with the lowest resting activity, where the rhythmic increase can, 

as a consequence, be most easily observed. This spider has primarily increased muscle 

activity upon a decrease in light intensity. The pre-stimulus activity was below 10 Hz and 

frequency was increased up to 75 Hz for the third change to the dark rectangle. 

 

 

 
 
 
Fig. 1. The mean eye muscle activity of 7 spiders with 5 presentations each (35 presentations; bin 
size 0.2 s) for different stimuli as a function of time. The first vertical lines refer to the change 
from the checkerboard pattern to either a bright or a dark rectangle and subsequent lines refer to a 
change from bright to dark or vice versa, as indicated at the top of the diagrams.    
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Table 1. Mean changes of eye muscle activity upon stimulus onset ± standard error of the mean 
(s.e.m.). The significance of the activity increases was tested using the Wilcoxon signed-rank test 
(N = 7, one-sided value). Stimulus onset is the change from the checkerboard pattern (cb) to a 
bright or dark rectangle, or to a counter-phase flicker. The rectangle either remains bright or dark 
(step stimulus) or flickers at a given frequency. 
 

Stimulus Mean ± s.e.m [Hz] p-value 

cb to bright (step stimulus) 3.6 ± 1.4 0.0391 

cb to dark (step stimulus) 3.0 ± 0.8 0.0078 

cb to bright  (0.278 cps)  9.3 ± 1.5 0.0078 

cb to bright  (0.554 cps) 8.9 ± 1.8 0.0078 

cb to bright  (1.11 cps) 7.5 ± 1.4 0.0078 

cb to dark    (0.278 cps) 7.1 ± 2.7 0.0234 

cb to counter-phase (0.554 cps) 4.4 ± 1.1 0.0156 

 
 
 
 

 

 

Fig. 2. An example of a single stimulus presentation (0.554 cps). The first vertical line indicates 
the change from the checkerboard pattern to a bright rectangle and subsequent lines indicate a 
change from bright to dark and vice versa. We show a response of the spider that had the lowest 
resting frequency, because here the changes in eye muscle activity are most distinct. The spider 
did predominantly respond to a decrease in intensity. 
Our experimental setup is not suited for the measurement of the potentials’ absolute amplitudes. 
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Behavioural cut-off frequency 

The mean frequency changes for the 12 spiders after the onset of the flicker are 

shown together with the standard error of the mean in Fig. 3. A flicker frequency of 0.554 

cps elicited a mean increase of the spiders’ eye muscle activity of 9.5 Hz. The response of 

the spiders falls quickly for higher frequencies and the maximal frequency that elicited a 

significant increase in our experiments was 4.28 cps (p = 0.0386, one-sided value). None 

of the higher frequencies, and all of the lower frequencies, elicited a significant response 

(see Table 2). This suggests that the behavioural temporal cut-off frequency lies 

somewhere between 4.3 and 8.6 cps for the stimuli used. 

The temporal patterns of the eye muscle activity for three different flicker 

frequencies are shown in Fig. 4 (mean of all 72 presentations). The first vertical line 

indicates the change from the checkerboard pattern to a white rectangle. All subsequent 

lines indicate a change from bright to dark rectangles and vice versa. The response pattern 

recorded for the slowest flicker frequency (0.554 cps) reveals a rhythmic increase in the 

muscle activity (Fig. 4A). In Fig. 4B, showing the pattern for the highest frequency that 

elicited a significant response (4.28 cps), a slight increase upon flicker onset can be seen, 

with an overall frequency that does not reach the pre-stimulus value in the following three 

seconds. No distinct peak upon stimulus onset is observed for 8.6 cps, i.e., the lowest 

frequency that did not elicit a significant response (Fig. 4C). 

 

 

Table 2. Mean changes of the eye muscle activity upon stimulus onset ± standard error of the 
mean (s.e.m.) for different flicker frequencies. The significance of the activity increases was tested 
using the Wilcoxon signed-rank test (N = 12). The p-values are one-sided values for frequencies 
smaller than 8.6 cps (the first negative mean); subsequently we give the two-sided values (in 
italic). 
 

Flicker Frequency  [cps] Mean ± s.e.m [Hz] p-value 

0.554 9.5 ± 1.6 0.0002 

1.11 8.7 ± 1.2 0.0002 

2.21 5.1 ± 1.2 0.0002 

4.28 1.1 ± 0.6 0.0386 

8.6   -0.2 ± 0.3 0.5186 

15 0.5 ± 0.6 0.8501 

30 0.3 ± 0.4 0.6221 

60 -0.1 ± 0.2 0.9097 
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Fig. 3. The mean activity increase (± s.e.m.) in the first three seconds after flicker onset compared 
to the preceding three seconds as a function of flicker frequency for 12 spiders with 6 
presentations each. Filled circles give the mean of significant responses; grey circles give the mean 
of not significant activity changes. 
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Fig. 4.  The mean eye muscle activity (72 stimulus presentations, 12 spiders, bin size: 0.2 s) as 
response to A) the slowest flicker of the second series (0.554 cps), B) the highest frequency that 
elicited a significant increase (4.28 cps) and C) the lowest frequency that did not elicit a significant 
increase (8.6 cps). 
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DISCUSSION 

Our data clearly confirm the hypothesis that Cupiennius responds to pure 

temporal intensity modulations and that no directed motion is required to elicit an 

increase in eye muscle activity. The net increases in activity of about 9 Hz measured for 

slow flicker frequencies was higher than the increase determined in previous studies for 

moving stripes (Neuhofer et al., 2009; Fenk and Schmid, 2010; Orlando and Schmid, 

2011). The spiders respond reliably, and for sufficiently low flicker frequencies the 

averaged activity exhibits a rhythmic increase. The slope of the averaged increase was 

found to be steeper for an intensity decrease than for an intensity increase. This might be 

compared to the results of a previous study where we could show that the animals are 

able to quickly approach visual targets on a computer screen (Fenk et al., 2010b). We 

found that the spiders were able to follow dark targets on a bright background as well as 

bright targets on a dark background; however the attack rate was significantly higher for 

dark targets. Similar findings are reported for the jumping spider Menemerus bivittatus, 

which was also shown to prefer dark targets on a bright background (Tiedemann, 1993).  

Due to the limited brightness of CRT monitors, the present setup does not allow 

the determination of the spiders’ maximum temporal cut-off frequency. The illuminance 

at the animals’ position was 8 lx for the screen showing the dark rectangle and 38 lx 

showing the white rectangle. The lower value is very close to the light intensity that 

elicited a half-maximum response in ERG measurements (Barth et al., 1993) and is more 

than 4 log-units above the spiders’ threshold. The light intensity at which spiders leave 

their retreat at dusk is about 20 lx (Barth and Seyfarth, 1979), which is in the same order 

of magnitude as the intensity of the presented stimuli. Our measurements might thus give 

the order of magnitude of the behavioural cut-off frequency at maximum light intensities 

encountered by Cupiennius salei during its active period in the natural environment. 

Pirhofer-Walzl et al. (2007) determined the temporal properties of the photoreceptors 

using intracellular recordings. In the dark-adapted PME, the time to peak and the 

integration time were found to be 142 ms and 138 ms respectively, and for light-adapted 

PME 87 ms and 79 ms respectively  (Pirhofer-Walzl et al., 2007). The presentation time 

of half a cycle for a frequency of 6 cps (the frequency midway between 4 and 8 cps) is 83 

ms. The image presentation time, i.e., the presentation time of one bright or dark 

rectangle, thus matches well the magnitude of the integration time of light-adapted PME 

photoreceptors. 
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The eye muscle activity increase elicited by flicker is probably a very direct 

measure of the behavioural cut-off frequency and might thus reflect the highest 

frequencies that can be detected by the animals. Here no directional information has to be 

treated, as it is the case in studies based on optomotor response or prey capture (e.g. 

Autrum and Stoecker, 1950; Autrum, 1952; Haldin et al., 2009), nor are the animals 

required to learn, as it is the case in studies based on discrimination tasks (e.g. Srinivasan 

and Lehrer, 1984a; Srinivasan and Lehrer, 1984b; Railton et al., 2009). The performance 

of animals might differ considerably according to the behavioural tasks investigated. 

Autrum and Stöcker showed that optomotor response in honeybees persists up to 200 Hz 

(Autrum and Stoecker, 1950). In discrimination tasks, however, bees seem to be almost 

unable to use monochromatic temporal intensity modulations (Lehrer et al., 1993).  

It might be interesting to compare Cupiennius salei to the toad, a well studied 

vertebrate with similar lifestyle (see also Pirhofer-Walzl et al., 2007). Both animals are 

nocturnal predators that remain motionless waiting for prey to pass by. The neural images 

in the toads’ eyes and the spiders’ motionless secondary eyes are assumed to adapt and 

only moving objects would pop up on the animals’ retinae (Ewert and Borchers, 1974; 

Land and Barth, 1992). Toad rod photoreceptor cells have integration times of 1.0-1.3 s at 

25°C, and substantially longer integration times at lower temperatures (Haldin et al., 

2009) and are thus roughly ten times slower than photoreceptors in Cupiennius. A good 

match was found between the integration time of the toad rod photoreceptor cells at 

different temperatures and the “exposure time” of a dummy necessary to elicit prey 

capture (Haldin et al., 2009).  

Cupiennius salei’s visual system seems to be tuned to the detection of small, 

slowly moving objects under poor light conditions. The orientation-dependent spatial cut-

off frequencies (Fenk and Schmid, 2010) and the different interreceptor angles (Land and 

Barth, 1992) suggest that object detection and localization should be best in the spiders’ 

frontal plane. The photoreceptor cells subtend smaller angles along the tapetal rows 

parallel to the spiders’ frontal plane than normal to it. The elongated photoreceptor cells 

might permit to increase photon capture, and thus signal-to-noise ratio in the spiders’ dim 

environment, while maintaining relatively precise spatial information about an objects 

position in the spider’s principal plane of action. The behavioural temporal cut-off 

frequency of a few cycles per second and the spatial cut-off frequency of 0.5 cycles per 

degree suggest a predominance of the spatial domain in the trade-off between temporal 

and spatial resolution compared to other arthropods. Relatively large integration times 

and relatively good spatial acuity is what one would predict for sedentary animals 
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interested in small, slowly moving objects (Warrant, 1999). This perfectly meets 

Cupiennius salei's lifestyle as a typical sit-and-wait hunter that also uses visual cues 

during prey capture. 
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Suppl. 1. Screen shots of the stimuli presented in our experiments. The left column shows the 
stimulus for the first experimental series (slow flicker and step stimuli), the right column the 
stimuli used in the second series (determination of the behavioural cut-off).  
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ABSTRACT 

Cupiennius salei (Ctenidae) has been extensively studied for many years and is probably 

the only spider that presently can be considered a model organism for neuro-ethology. 

The night-active spiders have been shown to predominantly rely on their excellent 

mechano-sensory systems for courtship and prey capture, whereas vision was assumed to 

play a minor role, if any, in these behavioral contexts. Using slowly moving discs 

presented on a computer screen it could be shown for the first time that visual stimuli 

alone can elicit attack behavior (abrupt approaching reactions) in these spiders as well. 

These observations suggest that visual information could be used by the spiders to elicit 

and guide predatory behavior. Attack behavior in Cupiennius salei can thus be triggered 

independently by three sensory modalities—substrate vibrations, airflow stimuli, and 

visual cues—and offers an interesting model system to study the interactions of 

multimodal sensory channels in complex behavior.  
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INTRODUCTION 

The ctenid spider Cupiennius salei is certainly one of the most thoroughly studied 

species among arachnids and is in particular well known for its excellent mechano-sensory 

systems. The strictly night-active spiders retreat preferably on monoctyledons during the day 

time (Barth et al. 1988) and begin to hunt and search for mates at dusk (Barth and Seyfarth 

1979; Schmitt et al. 1990).  

Pre-copulatory behavior in Cupiennius is mediated by pheromones and vibrations and 

no evidence for visual signaling has been found (Barth and Seyfarth 1979; Barth 1993).  

It is a well-established fact that both substrate vibrations (Hergenröder and Barth 1983) 

and airflow stimuli (Melchers 1963; Hergenröder and Barth 1983; Barth et al. 1995) alone can 

elicit prey capture in Cupiennius. The spiders are very well able to catch prey with blinded eyes, 

and it has therefore been generally assumed that vision plays only a very minor role, if any, in 

prey capture.  

But the visual system too is very well developed: Land and Barth (1992) investigated 

the optics of the eye and showed that the image of the lens contains much more spatial detail 

than the photoreceptor array can sample and that spatial resolution is thus limited by the inter-

receptor angles. The smallest angles are in the order of 1° and were found in the posterior 

median and posterior lateral eyes along tapetal rows. The astonishing low F-numbers (Land and 

Barth 1992) suggested high light sensitivity, which was indeed confirmed by an absolute 

corneal illuminance threshold that was found to be clearly below 0.01 lx (Barth et al. 1993). 

Likewise, the visual centers in the brain (Strausfeld and Barth 1993; Strausfeld et al. 1993) 

indicate the relevance of the visual sense in at least some behavioral contexts. In behavioral 

studies Cupiennius salei was shown to be able to distinguish vertical from sloped objects 

(Schmid 1998) and to switch the mode of locomotion when the light is turned off (Schmid 

1997). The spiders respond to moving objects in the visual field of the secondary eyes with an 

increase in the activity of the muscles that move the retinae of the principal eyes (Neuhofer et al. 

2009). A significant activity increase in response to moving gratings could be shown for bar 

widths down to 1° visual angle (Fenk and Schmid in press).  

These findings lead to the assumption that the eyes could also be used in more 

demanding behavioral contexts. Thus the aim of this study was to investigate the possible 

relevance of the visual sense in prey capture behavior.  
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MATERIALS AND METHODS 

Five- to six-month-old Cupiennius salei from our stock in Vienna were used in this 

study. The spiders were bred and raised in a greenhouse in Vienna at a relative humidity of 70–

80% and a temperature of 23–28°C. The spiders were kept separately in glass jars and were fed 

flies once a week.  

During the experiments the spiders remained in their habitual glass jars. The animals 

were thus shielded from air movements that could have interfered with the experiments and did 

not have to adjust to a new environment.  

In each session four spiders were positioned simultaneously in front of two 22” 

computer screens (Samsung SyncMaster T220). The distance between the spiders’ eyes in their 

initial position and the screen was 15–20 cm. Styrofoam plates were placed equidistantly 

between the glass jars so that each spider was given a view of half the screen and the spiders 

could not see each other. The individual jars were placed on foam material to insulate them 

mechanically and to reduce vibrations induced by moving spiders that could possibly irritate the 

other animals.  

The spiders have a very pronounced preference to sit in their glass jars with their 

prosoma pointing downwards. At the beginning of the experiments the glass jars were oriented 

in such a way that the spiders sat at the most distant side of the jar with their dorsal side and the 

eyes turned towards the screen.  

Three different stimuli were generated using Microsoft PowerPoint. The first one 

consisted of a black disc that appeared slowly and then moved for 40 s in jerky curves in front 

of a green background. The pathway of the disc is shown in Fig. 1a. The visual angle of the disc 

at the distance of the spiders’ initial position was in the order of 8.5°. The second stimulus was 

identical to the first one except that the contrast was inverted, i.e., a green disc was shown in 

front of a black background. The third stimulus was a control and consisted of a green 

background and a disc in a slightly different green. This control was chosen to ensure that 

processor and screen activity, and subsequent fan activity, was comparable to the activity during 

the presentation of the actual test stimuli. A green rather than a white background was used 

because the angular properties of the color rendering of the screen were less variable using only 

one of the three color channels. The spectral composition of the green channel lies well within 

the receptive spectrum of the spiders’ eyes reported by Barth et al. (1993). The illumination 

level was measured to be in the order of 25 lx at the spiders’ initial position pointing at the 

green screen (MT-51, Voltcraft).  
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 Fig. 1  a The pathway of the moving disc (diameter d = 2.6 cm) on half of the screen. The upper arrow 
gives the starting direction; the lower arrow indicates the position of the disc 10 s after movement onset. 
The height of the screen was about 29.5 cm. b Percentage of sessions in which one or more positive 
reactions were recorded (n = 32). The spiders responded significantly more often to the black disc on a 
green background than to the inverted stimulus, that is, a green disc on a black background. (p = 0.016, 
n = 8, calculated with the Wilcoxon signed-rank test, two-tailed value). No reactions to the green disc on 
green background were recorded  
 
 

The moving discs were presented simultaneously to two spiders while the neighboring 

spiders were only confronted with the respective background. This stimulus inter-stimulus 

sequence was repeated three times for each stimulus type before the next type was shown. Then 

the positions of the spiders were interchanged and the sequence was shown once again. We 

repeated this procedure with the same spiders but with an inverted order in which the three 

different stimulus types (black disc, green disc, and control) were presented.  

The spiders and the stimuli were filmed simultaneously with two web cameras 

(Logitech Webcam Pro 9000). We counted a reaction to the stimulus as positive when the 

spiders abruptly approached the disc on the screen. In Cupiennius salei quick approach 

reactions, like jumps or the abrupt turning of the spiders towards a stimulus source, have been 

used as indicators of predatory behavior in studies investigating its mechano-sensorical 

guidance (Hergenröder and Barth 1983; Barth et al. 1995). The spiders seldom move without 

stimulation and in the rare cases they do so the movements are very slow and limited to a small 

perimeter and can easily be distinguished from the reactions to the presented stimuli. We 

observed such spontaneous movements only once during the experiments reported here.  
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RESULTS 

In the first series, seven out of the eight spiders reacted to the black disc moving in front 

of the green background, and in the second series four spiders out of eight reacted to this 

stimulus. Pooling the two sessions all spiders responded at least once to the stimulus. In 15 out 

of 32 presentations there were one or more positive reactions to the dark disc. The inverted 

stimulus, i.e., the green disc moving in front of a black background, elicited only 4 positive 

reactions during 32 presentations. For the control stimulus no reactions were recorded. The 

results are summarized in Fig. 1b.  

To test whether the spiders responded significantly more often when the disc was darker 

than the background than the other way around, we compared for each spider in how many 

single presentations reactions were observed. Seven out of eight spiders responded more often 

to the dark disc, one spider responded equally often to the two stimuli, and the difference 

showed indeed to be significant (p = 0.016, n = 8, calculated with the Wilcoxon signed-rank 

test, two-tailed value, using MATLAB R2006a).  

The mean time span (± standard error) between the movement onset of the disc and the 

first reaction of the spiders was 9.6 s ± 1.2 s for the black disc (n = 15) and 10.1 s ± 0.8 s for the 

green disc (n = 4).  

The spiders react to the stimuli in a rather abrupt way. Many animals initially raise the 

forelegs before they rapidly approach the target; other animals were observed to approach the 

targets out of their fright posture and at several occasions the spiders even bumped into the glass 

walls of their habitual jars. When the spiders reach the opposite side of the jar facing the target 

with their ventral side they are still able to follow the moving disc performing grasping 

movements with their forelegs. Fig. 2 shows superposed single frames of the videos taken in 

this study to illustrate the spiders’ reactions and video clips are provided as online material.  
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Fig. 2 Three snapshots taken from the videos recorded during the experiments were superimposed on 
each figure to illustrate the spiders’ reactions. The arrows indicate the position of the stimulus on the 
screen just before the spiders’ reactions. The spider is depicted in light gray in its initial position and in 
black in its final position. The turning reaction on the left side was completed in 0.80 ± 0.08 s, the leap on 
the right side in 0.46 ± 0.08 s (where the uncertainty is due to the frame rate of 12.5 frames per second)  
 

DISCUSSION 

We could show that visual stimulation alone can elicit attack behavior (i.e., quick 

approaching reactions) in Cupiennius salei and our results suggest that the spiders could use 

visual information for hunting and aggressive defense behavior.  

Dark targets on bright backgrounds seem to be much more efficient stimuli than bright 

targets on dark backgrounds for Cupiennius salei. This might be compared to the findings of 

Tiedemann (1993) who studied brightness discrimination in the salticid Menemerus bivittatus 

by presenting circular prey stimuli with varying gray values in front of a white, gray, and a 

black background. The response rate increased faster with increasing contrast when the stimulus 

is darker than the background than when the stimulus is brighter than the background. Although 

prey detection mechanisms are probably very different from those known in vertebrates, it 

would make sense for a sit and wait hunter to have detectors similar to “bug perceivers” in frogs 
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(Lettvin et al. 1959) that respond to convex dark objects entering their receptive field and 

moving within this field.  

Most spiders started to react around 10 s after movement onset, and this corresponds to 

a time interval in which the disc was moving for the first time into the lower part of the screen. 

A rather obvious reason for that might be that it is a lot easier to catch prey during a downward 

movement rather than to jump or run upwards, opposed to gravity. This is especially true for 

spiders as large and heavy as Cupiennius salei, and it might also explain why the spiders are 

nearly always positioned with their prosoma pointing downwards (see also Nakata and 

Zschokke 2010).  

The distance of the screen could theoretically be estimated by the spiders using non-

pictorial cues provided via motion parallax, accommodation, and binocular disparity; for an 

animal that uses these cues the monitor and the scene shown on the monitor would appear at the 

same depth plane (Zeil 2000). It is highly unlikely that Cupiennius uses cues from binocular 

disparity or accommodation since the visual fields of the individual eye pairs have no important 

binocular overlap (Land and Barth 1992) and no accommodation mechanisms are known in 

spider eyes. No motion parallax is induced by the spiders remaining stationary before they jump 

at once towards the target. It is therefore hard to imagine that the spiders could have estimated 

the distance to the screen and there were probably no cues telling the spiders that the discs and 

the screen are in the same plane of depth. We thus assume that the animals jumped towards the 

moving targets without knowing their real size. In natural situations, however, several additional 

visual cues and also cues involving other sensory modalities are available that could in principle 

be used to estimate the distance and size of a moving object.  

There are several spiders already known to use their visual sense when capturing prey. 

Salticidae, the spiders with by far the highest spatial resolution are known to hunt primarily with 

their visual sense and they are reported to visually discriminate mates and prey (Homann 1928). 

Evarcha culicivora can even identify blood-fed female mosquitoes via their visual sense 

(Jackson et al. 2005) just to cite one stunning example for the visual capacities of jumping 

spiders. Ctenid spiders have a visual acuity that is up to two orders of magnitude worse than that 

of salticids, and the visual cues that can be used by Cupiennius in prey capture behavior are 

certainly less complex than in most salticids.  

Spiders from several families are known to be able to use multiple cues in prey capture 

behavior. Forster (1982) reports that Trite planiceps—a salticid known to use visual cues in 

prey capture (Forster 1979)—is also able to catch flies in complete darkness or with covered 

eyes, probably being guided by the airflow emitted by the flies at distances smaller than 1–2 cm. 

According to Taylor et al. (1998) all 17 subfamilies of the salticids investigated were able to 



 Visually guided attack behavior  63 

 

catch prey in the absence of visual cues. However, it seems difficult to judge from the reported 

experiments whether airflow stimuli, substrate vibration, direct physical contact, or a mixture of 

these cues drive the actual capturing. The ogre-faced spider Deinopis spinosus uses primarily 

airflow stimuli for backward strikes targeting flying prey and visual cues for forward strikes to 

catch walking prey in a very stereotyped manor (Coddington and Sobrevila 1987). The patch 

residence time in the lycosid Schizocosa ocreata is strongly influenced by visual and chemical 

cues (Persons and Uetz 1996a,1996b) and the species is also reported to attack video playbacks 

of crickets (Persons and Uetz 1997). On the other hand, Lizotte and Rovner (1988) report 

nocturnal lycosids to rely more strongly on their mechano-sensory system than on their visual 

system when hunting fireflies. Lycosids are furthermore known to use multisensory cues during 

courtship (Uetz and Roberts 2002).  

To our knowledge Cupiennius salei is the first spider species for which it could 

explicitly be shown that attack behavior involves three separate sensory modalities and that all 

three modalities—vibrations on the substrate perceived using slit sensilla, airflow stimuli 

perceived using trichobotria, and visual cues perceived using the eyes—are each alone sufficient 

to elicit it. This raises the quite intriguing question where and how the sensory information is 

processed. Given the amount of physiological and neurobiological data available for Cupiennius 

salei, this spider would certainly be an interesting model to study the interaction of different 

sensory channels in the structuring of complex behavioral patterns.  
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ABSTRACT 

In this study we describe a distinctive pigment ring that appears in spider eyes after ecdysis and 

successively decreases in size in the days thereafter. Although pigment stops in spider eyes are 

well known, size variability is, to our knowledge, reported here for the first time. Representative 

species from three families (Ctenidae, Sparassidae and Lycosidae) are investigated and, for one 

of these species (Cupiennius salei, Ctenidae), the progressive increase in pupil diameter is 

monitored. In this species the pupil occupies only a fourth of the total projected lens surface 

after ecdysis and reaches its final size after approximately ten days. MicroCT images suggest 

that the decrease of the pigment ring is linked to the growth of the corneal lens after ecdysis. 

The pigment rings might improve vision in the immature eye by shielding light rays that would 

otherwise enter the eye via peripheral regions of the cornea, beside the growing crystalline lens. 
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INTRODUCTION  

Most spiders have eight simple eyes that can be divided into two different classes 

according to structural and functional differences. The anterior median eyes (AM eyes) are 

referred to as principal eyes. This eye pair points forward and the retinae can usually be moved 

by a varying number of eye muscles. AM eyes are everted eyes with the light absorbing 

segment of the photoreceptors turned towards the incident light. The other eye pairs – the 

posterior-median (PM), the posterior lateral (PL) and anterior-lateral (AL) eyes – are referred to 

as secondary eyes and can cover various fields of view. Their retinae cannot be moved and the 

photoreceptor segment bearing the microvilli is turned away from the incident light. The 

secondary eyes of most nocturnal spiders are equipped with a light-reflecting tapetum. For 

reviews dealing with spider eyes see e.g. [1], [2]. 

Pigment rings restrict the aperture in spider eyes. This iris, consisting of pigment cells 

situated between the rear surface of the cornea and the glassbody, was recognized in the early 

19th century [3]. We will refer to the opening left by the pigment ring as “pupil”. The diameter 

of the pupil in different spider species has been determined in numerous studies and was, 

implicitly or explicitly, assumed to be constant (e.g. [4], [5], [6], [7], [8], [9]). The extent or 

absence of the pigment stop in jumping spiders has been shown to be linked to habitat 

illumination: species observed in shaded forest habitats lack significant pigment stops whereas 

species living in sunny habitats show extensive pigment rings that can reduce the light flux into 

the eye by 50% [7]. 

We first observed variable pigment rings in Cupiennius salei (Ctenidae). The pupil's 

initial size and its successive post-ecdysal growth were determined for three groups of different 

ages. We hypothesized this process to have a causal connection to the maturation of the eyes 

after ecdysis and therefore expected post-ecdysal pigment-rings to be found in other spider 

families as well. 

 

MATERIALS AND METHODS  

Post-ecdysal pupil size and its subsequent increase in Cupiennius salei 

The nocturnal hunting spider Cupiennius salei is common in Central America. The 

animals used in this study were bred separately in glass jars (5 liter) in a greenhouse at 12 h:12 h 

day:night cycle and were fed Calliphora sp. once a week. The temperature (15–28°C) and 

relative humidity (70–80%) resembled the natural conditions found in C. salei's habitat. 
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Cupiennius salei molts 11 times before it reaches adulthood [10], with the first instar 

outside the eggsac having a body size of about 2 mm and adults reaching a body length of up to 

50 mm with a leg span of more than 120 mm. Under laboratory conditions the development is 

usually completed after one year, and the total life span is in the order of two years. Nine 

juvenile Cupiennius salei were selected for our experiments, forming three classes of spiders of 

different ages (five, seven and nine months respectively). 

In order to determine the moment of ecdysis for each spider, a web camera was 

positioned in front of the glass jars containing the individual animals and was set to take a 

picture every five minutes. For the functioning of the camera, the light intensity at night time 

had to be slightly increased. The characteristic molting positions of the spiders, as described by 

Melchers [10], could easily be detected in the photos: Cupiennius prepares for ecdysis by 

attaching itself horizontally to a thread with its dorsal side pointing downwards. After the 

cuticle of the carapax has opened, the pedipalps, the legs, and finally the opisthosoma are 

extracted from the integument. Once ecdysis is completed, spiders perform characteristic leg 

movements that prevent the cuticle in the joint region from hardening [10]. 

After ecdysis the size of the pupil was measured. The animals were anaesthetized with 

CO2, or cooled down, and subsequently tethered onto a wooden spherical cap. The cap's base 

had a diameter of 105 mm and the spiders' legs could be attached to the cap with a piece of 

Parafilm without being bent. A hole in the Parafilm strip left the prosoma and opisthosoma free 

(see also [11]). The cap was connected to a magnetic stand by means of a ball bearing. By 

rotating the cap each eye could then be positioned in the horizontal plane under a reflected-light 

microscope to be photographed (Nikon DS-U1, Adaptors: Nikon Digital Sight DS-U1 and 

Camera Adaptor CMA-D2, Tokyo, Japan). 

The eyes of each spider (left and right AM; left and right PM) were photographed once 

before ecdysis, and then daily during the first week and every second day during the second 

week. The lens and pupil diameters were measured using the program Lucia General 5.10 

(Laboratory Imaging, Prague, Czech Republic). Both the lens and the pupil have a rather 

circular shape and the diameters were determined via an approximated circle calculated from a 

varying number of points that were placed by hand on the outer edge of the pupil and the lens 

on the images. 

The uncertainty of the pupil diameters was estimated by the standard deviation 

calculated for the diameter of a given lens measured on the different photographs. It was found 

to be in the order of 5–10 µm, corresponding to roughly 1% of the lens diameters. 
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Variable pupil size in other spider families 

Two other spider species were examined for variable pigment rings: Lycosa tarentula 

(Lycosidae), belonging, as well as Cupiennius, to the superfamily of Lycosoidea, and 

Heteropoda venatoria (Sparassidae) belonging to the group Dionycha [12]. Five 4-month-old H. 

venatoria and one L. tarentula, that was just before its penultimate ecdysis, were kept in our 

laboratory under a 12 h:12 h day:night cycle. The Heteropoda spiderlings were placed in small 

glass jars (0.4 liter) and the Lycosa in a plastic terrarium (11 liter). The spiders were fed either 

flies (Calliphora sp.) or crickets (Acheta domesticus) once a week. 

Since the objective here was only to document the variability of the pupil size, we did 

not determine the precise moment of ecdysis, but instead checked for exuviae on a daily basis. 

One day after ecdysis and once again several days later the spiders were tethered and 

photographed as described above for Cupiennius salei. 

 

The function of the pigment stop 

We tested the hypothesis that the pigment ring is linked to the growth of the corneal 

lens after ecdysis using X-ray microtomography (microCT) imaging of the cephalothoraxes of 

two Cupiennius salei – one spider was fixed 9 hours after ecdysis and the other 9 days after 

ecdysis. Both spiders were photographed, as described above, before they were prepared for the 

scans. The preparation followed the methodology proposed by Metscher [13], [14]: The samples 

were fixed in Bouin's solution which was washed out two days later with 70% ethanol. After 

dehydration in 100% ethanol the specimens were stained overnight with iodine (1% I2 in 100% 

ethanol). For the scans the samples were placed in small polypropylene tubes filled with 100% 

ethanol. 

Both spiders were scanned with 66 kV and 133 µA at a 4.3 fold optical magnification 

(Xradia MicroXCT, Pleasanton, California), resulting in a projection image pixel size of 2.5 µm 

for the spider fixed 9 days after ecdysis and 2.0 µm for the other, slightly smaller, spider. 

Images were reconstructed with 2×2 pixel binning to reduce noise, resulting in final voxel sizes 

of 5.0 µm and 4.0 µm. Using the Xradia viewer software (TXM 3DViewer), virtual sections at 

any orientation through the reconstructed eyes could be viewed. 
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RESULTS   

Post-ecdysal pupil size and its subsequent increase in Cupiennius salei 

The enlarged pigment rings were observed in both the principal and secondary eyes and 

at all three developmental stages examined (Fig. 1A, B). The mean diameters of the lenses of 

the AM and PM eyes for the three groups before and after ecdysis are given together with the 

initial pupil size estimated from extrapolating linear regressions calculated for a time t<130 

hours after ecdysis in Table 1, 2. The initial pupil-to-lens ratio was found to be in the order of 

0.5, i.e. only a fourth of the total projected lens surface is free from the pigment shield shortly 

after ecdysis. 

In the following days the pupil diameter d increased and the pupil-to-lens ratio 

converged towards a ratio of approximately 0.9. The growths of the PM and AM eye pupils of a 

7-month-old spider with time t after molting are shown in Fig. 1A together with a sigmoidal fit 

(r2>0.999) following d = df –a/(1+exp((t–t0)/b)). In both eye pairs 95% of the asymptotic values 

df were reached after roughly 210 h. 

The increase of the pupil diameter was found to be rather similar for the 7- and 9-

month-old spiders, whereas the 5-month-old spiders seemed to have a slightly larger pupil-to-

lens ratio after ecdysis which increased faster in size in the following days as compared to the 

older spiders (Fig. 1B). 

 

Table 1. Lens and pupil diameters of the PM eyes. 

 d of lens before ecdysis  d of lens after ecdysis d of initial pupil     

5-months (N=4) 645 763 417 

7-months (N=3) 797 933 462 

9-months (N=2) 906 1009 527 

The means of the diameter d (in µm) of the PM eye lenses for the three different age groups are given for 
N spiders before ecdysis and after ecdysis. The last column gives the values for t = 0 calculated from a 
linear regression for the first 130 hours after ecdysis as an estimate of the pupils’ initial diameter. 
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Figure 1.  (A) The mean pupil diameters of the PM and AM eyes for a 7-month-old spider as a function 
of the time after ecdysis. The data were fitted using d = df –a/(1+exp((t–t0)/b)), where d is the pupil 
diameter and df is its asymptotic value for large times t. PM eyes (r2 = 0.9993): df = 817 µm, a = 600 µm, 
t0 = 32 h, b = 69 h. AM eyes (r2 = 0.9997): df = 626 µm, a = 400 µm, t0 = 61 h, b = 60 h. (B) The pupil-to-
lens ratios of the PM eyes of Cupiennius salei, for three different age groups as a function of the time 
after ecdysis. 

 

Table 2. Lens and pupil diameters of the AM eyes. 

 d of lens before ecdysis  d of lens after ecdysis d of initial pupil     

5-months (N=4) 445 559 289 

7-months (N=3) 598 716 327 

9-months (N=2) 670 775 364 

The means of the diameter d (in µm) of the AM eye lenses for the three different age groups are given for 
N spiders before ecdysis and after ecdysis. The last column gives the values for t = 0 calculated from a 
linear regression for the first 130 hours after ecdysis as an estimate of the pupils’ initial diameter. 
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Variable pupil size in other spider families 

To test if a variable pupil size can be found in other spider species, we investigated 

Lycosa tarentula and Heteropoda venatoria. Both species indeed showed large pigment rings 

after ecdysis that disappeared almost entirely in the days thereafter. Pictures of C. salei, L. 

tarentula and H. venatoria one day after ecdysis are shown in Fig. 2. 

 

Figure 2.  Portraits of Cupiennius salei (A), Lycosa tarentula (B) and Heteropoda venatoria (C) the day 
after ecdysis. In all three species the iris formed by the pigment ring is clearly visible and was observed to 
disappear in the days thereafter. Scale bars: 500 µm. 

 

The function of the pigment stop 

Slices through the reconstructed eyes of the spider scanned shortly after ecdysis show 

small lenses attached to the most central part of the corneal cap. The scan of the second spider, 

which was fixed 9 days after ecdysis, reveals a lens that has clearly increased in size compared 

to the cornea, and that now fills out more than the corneal cap. 

A comparison of the in vivo micrographs with virtual slices in the plane of the PM eyes 

indicates a good matching of the part of the cornea covered by the lens and the pupil diameter 

(Fig. 3). Both the ratio of the pupil diameter to the lens diameter in the micrograph, and the ratio 

of the crystalline lens diameter at the corneal surface to the cornea diameter, is in the order of 

0.55 in the post-ecdysal eye. 
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Figure 3. The upper part shows in vivo micrographs of a PM eye of a spider the day after ecdysis (left 
panel) and 9 days after ecdysis (right panel), taken just before the preparation of the spiders for the micro 
CT scans. The lower part shows sections through the reconstructed PM eyes. Scale bars: 200 µm. 

DISCUSSION  

A detailed description of the molting of spider eyes is given by Wagner [15]. He 

recognized that the cuticular cornea and parts of the crystalline lens are formed before ecdysis 

and that the crystalline lens grows in the days thereafter. Browning reported similar findings for 

Tegenaria in a study that deals primarily with the structure of the cuticle before and after 

molting [16]. Our observations clearly confirm these descriptions. However, the crystalline lens 

seems to be initially restricted to the middle of the corneal cup (Fig. 3), which could not be 

derived from Wagner's and Browning's drawings. We assume that the more peripheral parts of 

the cornea, which are not covered by the growing lens, are shielded by the pigment rings. 

Wagner did certainly also observe the pigment rings, since he stated that in Lycosa only three 

quarters of the cornea are transparent. Interestingly, he reported the same for the cornea shed 

with the exuvia, whereas we found all parts of the eyes in the exuviae to be completely 

transparent. Moreover, Wagner did not mention any temporal variability of the pupil size and 

finally concluded that spiders probably have a limited field of view. 
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Future research on the visual systems of spiders should take the post-ecdysal 

development of the lens into account. Measurements of the aperture of the eyes are certainly 

difficult to compare without knowledge of the time since the last molt – at least for some spider 

species. On the other hand, large pigment rings might allow the identification of freshly molted 

individuals collected in their natural environment. 

In kissing bugs (Triatoma infestans) Insausti and Lazzari [17] have specified a similar 

process, as we describe here for spiders. In T. infestans recently emerged adults show an 

elongated narrow pupil surrounded by pigment cells. The pupil widens during the following 

twenty days, and the change in pupil size corresponds well to the growth of the corneal lens. 

The authors suggest that the pigment rings are linked to the development of the ocelli [17]. 

Ocelli of insects can also be equipped with pupils that change size as a response to light stimuli 

as has been observed in two locust species [18]. 

In Cupiennius salei the lens in the mature eye produces an image of good quality on the 

retina as has been shown by Land and Barth using an ophthalmoscope [19]. A significant 

behavioral reaction of the spiders to moving gratings was measured down to spatial periods of 

2° [20], which also indicates that the optical system is well developed in this nocturnal species. 

We measured the radii of curvature of the corneal lens and the distance between the lens 

surfaces and the retina on the microCT sections for a Cupiennius salei fixed nine days after 

ecdysis. Considering these measurements, a homogeneous crystalline lens must be assumed to 

have a refractive index in the order of 1.67 to achieve enough refractive power to focus parallel 

rays on the retina. However, such a high refractive index is not common in biological materials 

and, as argued by Blest and Land, this suggests the existence of a graded refractive index, which 

could also correct for spherical aberrations [21]. Blest and Land investigated the large PM eyes 

of Dinopis and compared the radii of curvature to the focal length measured in excised lenses. 

Based on the radii of curvature the authors calculated the focal length as a function of the 

refractive index and found that a refractive index of 1.65–1.67 would be needed to achieve the 

focal length actually measured in Dinopis. The high apparent refractive index was taken as an 

indication for an inhomogeneous structure of the lens. This assumption was also corroborated 

by a less pronounced spherical aberration measured in these eyes than would be expected for a 

homogeneous lens [21]. If we assume this apparent refractive index for the eye of Cupiennius 

salei fixed nine hours after ecdysis, the calculations suggest that the image of an object at 

infinity is well focused on the retina for light rays passing through the lens and that the growing 

lens can already produce a sharp image on the retina. 

The pigment rings might attenuate the impairment of vision which would result from 

peripheral light rays entering the eye beside the lens. In the absence of shielding pigment two 
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posterior nodal distances must be expected in the immature eye: one for light passing only 

through the curved cornea, and a shorter one for light passing through the cornea plus the 

crystalline lens. If light rays were permitted to enter the eye beside the lens via the outer regions 

of the cornea, a second focal plane would be formed roughly 600 µm behind the retina, and 

additionally a strong spherical aberration should be expected. This would certainly severely 

degrade the quality of the image formed by the crystalline lens on the retina. But since the 

pigment rings restrict the aperture there are no reasons to believe that spatial resolution is much 

impaired after molting. However, the image on the retina must be expected to be less bright due 

to the smaller pupil and the accordingly higher F-number. 

The total time in which spiders have to deal with immature eyes is by no means 

negligible and it might therefore be interesting to investigate in behavioral studies to what 

extent vision is available shortly after ecdysis. 
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