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Part I

Agent-based models in

econophysics
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Chapter 1

Introduction

The question “What research area is Econophysics” is still asked by many

economists and physicists although the term appeared more than 15 years

ago as a merging of the disciplines “Economics” and “Physics” at an inter-

national conference in 1995 on statistical physics in Calcutta, India. The

second chapter of the first part of this work will discuss “Econophysics” and

the interests of physicists in economic issues. It will further be reviewed

how physics influenced and continue to a↵ect other sciences, especially social

sciences and economics.

Particularly important contributions by physicists to other sciences are agent-

based models that can be seen as an extension of the Ising model, a model

of ferromagnetism in statistical mechanics. The concept of the Ising model,

as one of the simplest models describing the competition between an order-

ing force and of imitation behavior, has been adopted by many disciplines,

especially social science and economics. Their development and application,
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particularly in economics and finance, will be discussed in the third chapter.

The first section will cover possible designs of artificial financial markets.

The second chapter will discuss important models in this area developed by

physicists.

In the second part, as suggested and requested by many physicists and em-

phasized in passionate articles in renowned journals like Nature1, an agent-

based model will be used to test the e�ciency and dangers of possible future

financial regulation. As Farmer & Foley (2009) strikingly argue for the usage

of agent-based models in policy advice:

“The leaders of the world are flying the economy by the seat of

their pants.”

Similar to a number of recent publications in this area, which will be pre-

sented in the last chapter of part one, current banking regulation will be

analyzed in a toy model, inspired by the Ising model, of the financial market.

In a further attempt an “ideal world” is constructed where banks completely

hedge against possible losses.

Chapter 5 will present the backgrounds of financial regulation, emphasizing

the di�culties of credit regulation. Chapter 6 will discuss all equations defin-

ing the agent-based model used as a baseline comparison to test regulation

schemes. In chapter 7 the necessary modifications to implement regulatory

measures will be developed. The final chapter presents simulation results

showing that Basle-type regulation works fine in situations of low leverage

levels in the financial system, but become destabilizing in scenarios with re-

1See e.g. Farmer & Foley (2009) and Lux & Westerho↵ (2009).
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alistic leverage level. Further results will indicate that even introducing the

heavy requirement of complete hedging does not make the system systemi-

cally more secure.
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Chapter 2

Econophysics and agent-based

models

Econophysics is an interdisciplinary research area using methods from physics,

in particular from statistical mechanics, in order to analyze problems in eco-

nomics and finance.

Economics is the social science that is about invention, financing, production,

distribution, use and disposal of goods and services.

Statistical mechanics or statistical thermodynamics, on the other hand, is

a sub-discipline of physics that uses a probabilistic framework to study the

thermodynamic behavior of systems composed of a large number of particles.

Statistical mechanics is about relating the microscopic properties of individ-

ual atoms and molecules to the macroscopic properties of bulk materials,

predominantly gases.
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Methods of statistical mechanics, in particular for analyzing microscopic dy-

namics of a system for obtaining average properties of a macroscopic system,

seem to be useful for an economic system as well. Although it does not seem

realistic to formulate equations of motion for “atoms” of an economic system,

concepts such as stochastic dynamics, correlation e↵ects, self-organization,

self-similarity and scaling can be applied to understand the global behavior

of economic systems without detailed microscopic knowledge of the “com-

ponents” of the economic system (Chakraborti, Muni Toke, Patriarca &

Abergel 2011a, Chakraborti, Muni Toke, Patriarca & Abergel 2011b).

The interest of physicists in social sciences is nothing new, e.g. Daniel

Bernoulli developed a theory for risk measurement (Bernoulli 1954). The

beginning of interest of modern physics in economic issues can be seen with

the publication of Majorana (1942)1, who wrote a paper on the parallels of

statistical physics and social sciences. With the exception of John von Neu-

mann and Oskar Morgenstern, who helped founding the mathematical field

of game theory among other things, only few works had been published in

this area in the following decades until the 1990s. The name “econophysics”

was attributed to H. Eugene Stanley in the 1990s, to label a large number of

papers written by physicists dealing with economic problems, in particular

problems associated with stock markets and financial time series. The term

first appeared in an international conference in 1995 on statistical physics in

Calcutta, India (Chakraborti et al. 2011a, Chakraborti et al. 2011b).

Another intersection between physics and economics as well as many other

1For a presentation of the English translation of Majorana’s (1942) paper see Mantegna
(2005).
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fields including computer science, biology and chemistry is the field of com-

plex systems. A complex system is a system consisting of individual parts

that interact with one another so that as a whole it exhibits properties not

apparent from the properties of the individual parts.

Agent-based models (ABMs), which can be used to study complex systems,

are an extension of the famous Ising model, a model of ferromagnetism in

statistical mechanics. The original Ising model, proposed by Lenz and stud-

ied by Ising (1925), assumed that the spins, which determine the magnetic

moment of atoms or ions, can assume only two discrete states. The spins are

arranged on a lattice or network and each spin interacts only with its near-

est neighbors. The aim was to calculate phase changes in the Ising model

to construct a model for phase changes. An Ising model more generally re-

produces the properties of a system where individual elements change their

behavior to adapt to the behavior of the other individuals in their neighbor-

hood. Individual parts can be atoms or molecules or more broadly proteins,

animals, social players or other phenomenons where imitation behavior is

important (Tasca 2009). Many works in social science and economics use

concepts of the Ising model and can be mapped to di↵erent versions of it2

(Zhou & Sornette 2007, Sornette & Zhou 2006).

This is important because of the concept of universality, which is the em-

pirical fact that there exist properties for a large class of systems, which are

independent of microscopic details of the system. Thus, many macroscopic

phenomena can be divided into a small set of universality classes, described

2See e.g. Callen & Shapero (1974), Montroll & Badger (1994), Orléan (1995), Johansen,
Ledoit & Sornette (2000) and Kaizoji, Bornoldt & Fujiwara (2002).
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only by a set of a few relevant observables.

In a more modern definition, ABMs are a class of computational models sim-

ulating actions and interactions of autonomous agents, which are employed

to study their e↵ects on the system as a whole. ABMs combine mainly ele-

ments from game theory, complex systems, multi-agent systems, evolutionary

programming and cellular automata.

ABMs allow to simulate social processes starting from the implementation of

the interactions or actions of many individual agents. The basic challenge is

to understand how individual agents behave locally and to formulate behav-

ioral rules. These rules in general depend on the states and interactions with

the other agents in the system or they can be decided randomly. Random

decisions represent behavior that is not correlated to other agents or events.

With the behavioral rules in place a simulation is conducted to see how the

collective system behaves as a whole.

“In short, ABM are scaled-down, stylized versions of highly intri-

cate and interdependent systems wherein one can develop a better

understanding of the dynamics of complex systems, such as finan-

cial markets.”(Thurner 2011).

With the growing availability of computing power, this approach gained in-

creasing popularity since the 1990s. ABMs are currently in use in many

di↵erent disciplines, most prominent in physics, material science, biology,

economics, finance and social science.
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Chapter 3

ABMs in finance and economics

For the better part of the 20th century, finance was dominated by a repre-

sentative, rational agent approach. With the introduction of theories such

as the e�cient market hypothesis and the Black-Scholes formula for option

and derivative pricing, the discipline was put on solid mathematical grounds

– measure theory in particular.

But with discoveries like the no-trade theorem, excess volatility and bounded

rationality, it became apparent that the representative, rational agent ap-

proach could not explain fundamental aspects of financial markets1.

As in other disciplines since the 1990s, ABMs became a promising tool to

understand behavior of financial markets.

1See e.g. Hommes (2006) for an extensive list of reasons.
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3.1 Di↵erent designs of ABMs

A lot of di↵erent designs of ABMs of financial markets exist. When construct-

ing ABMs researchers face a large number of design questions. According to

LeBaron (2001, 2006) design questions of ABMs of financial markets consist

mainly of: preferences of agents, trading and formation of prices, what secu-

rities are traded, evolution and learning in the model and the creation of use-

ful benchmark comparison. Design preferences in accordance with LeBaron

(2001, 2006) will be briefly presented below.

3.1.1 Agents preference’s

The most important design question of ABMs is the representation, struc-

ture and number of the actual trading agents. There are many di↵erent

approaches possible for the design of agents, varying from agents with zero

intelligence to sophisticated agents applying genetic algorithms. This degree

of freedom is because agents need to transform the large amount of informa-

tion generated during simulation of the artificial financial market into trading

decisions.

A straightforward approach is to build agents with a set of simple rules on

which they form their decisions. These rules can be derived from real world

behavior including trading strategies actually applied in practice. This simple

approach has the advantage of an easily traceable result, but dynamic inter-

actions between agents are only possible within these predefined strategies.

Since modifications of strategies are hard to conduct during a simulation, the
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evolution of agents is often neglected.

Another and even simpler type of agent is called the “zero intelligence” agent.

The only trading rule for such an agent is a budget constraint. These agents

have proved to be quite e�cient when it comes to simulate real world markets.

It is interesting that despite their extremely simple design, their trading

behavior can be perceived as “intelligent” or “learning”.

A third group of agents incorporates learning strategies. Artificial intelligence

techniques are used to adapt the agents’ behavior and allow them to learn

how to capitalize on new market ine�ciencies. Artificial intelligence tools like

artificial neural networks and genetic algorithms are used to determine the

strategies. Interestingly, in many artificial markets, agents start with similar

strategies but di↵erences develop endogenously during the simulation. Due

to constantly changing sets of rules used by each agent on such a artificial

market, not only the behavior of the market but also the behavior of the

agent itself can be studied. Obviously this type of agent design results in

more complex computations, which requires more computing power. Another

issue is, since the very nature of artificial intelligence tools itself is yet to be

studied in detail, that almost nothing is known about their impact on trading

behavior if applied in groups. Another criticism is that algorithms may be not

smart enough and agents do not capitalize on obvious trading opportunities.

21



3.1.2 Trading and price formation

Methods and algorithms used by agents to conduct trading and the process

of price formation play also a crucial role. Basically, four commonly used

methods for price formation can be identified.

First of all, prices can be set by a market maker and adjusted based on supply

and demand. In this case, the price formation process is as the following:

A market maker sets a price, and agents submit requests to buy and sell at

that price. Then the orders are summed, if there is an oversupply, the price

is decreased and if there is an excess demand, the price is increased. Prices

p at time t are often determined proportionally to the excess demand:

p(t+ 1) = p(t) + ↵[D(p(t))� S(p(t))] , (3.1)

with D as demand, S as supply and ↵ as a parameter determining the sen-

sitivity to supply and demand changes. This method is fast and easy to

implement but holds the market in disequilibrium, which can be an advan-

tage if adaptively evolving situations are part of the model. Therefore prices

may stay at a level where they are far from a state that would clear the

market. Furthermore, related criticism is that the method is too sensitive to

the parameter ↵, causing either too high or too low price amplitudes.

The second method addresses the issues from the method above. It is a

method where markets “clear” periodically, either through a numeric algo-

rithm or analytically with some reasonable simplifications. This is quite the

opposite of the first method in terms of advantages and disadvantages. Prices
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are clearing the market, but this is often not a representative nor satisfactory

situation for the permanent trading activity in financial markets.

The other two mechanisms are somewhere in between these extremes. The

most realistic way is to let the agents build up order books for buying and sell-

ing stocks. The drawback of this method is that both, the agents’ strategies

as well as the market architecture must be built using the same constraints.

The final price formation method is to match agents randomly and let them

trade only if it benefits both of them. This method can be used to model

decentralized markets such as the foreign exchange trading.

3.1.3 Securities and assets

The traded assets are another import design question of ABMs. Most re-

searchers are focusing mainly on price formation and agent behavior and

neglect other properties of the market. Therefore, often only a few simple

types of tradable securities are used with prices connected to a fundamental

value, calibrated to actual values from real world data. Often fundamen-

tals of assets like dividends are revealed each period to the agents, which is

seldom the case for investors in the real world.

Limited by computational power and the need for tractability of ABMs, they

seldom feature more than two assets, for example a risky and a risk-free asset,

which is clearly far from real world conditions. Therefore certain aspects of

real markets such as diversification or derivative trading cannot be studied

in this way.
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3.1.4 Evolution and learning

Evolution and learning is important in many artificial markets because judg-

ing strategies beforehand is impossible since their performance depends on

the behavior of others. A striking example for a rational strategy with a

negative outcome is to hold on to a short position on a rising bubble.

Evolution and learning can appear in numerous ways in ABMs. Many ar-

tificial markets use tools from artificial intelligence to model learning. A

common tool to model evolution and learning is to apply genetic algorithms.

These algorithms are often used as an optimization technique for di↵erent

problem solving situations.

In almost every evolutionary method there is a population for problem solving

solutions. For each solution there is a rule or fitness value that allows a

ranking of the solutions in a population. During a simulation, the solutions

with the lowest ranks will be removed. An important design parameter is the

proportion of the population to be removed. If the setting is too high, the

population converges too quickly to a suboptimal solution and if the setting

is to low, simulations converge too slowly.

In artificial financial markets, typical fitness values are either wealth or “util-

ity”. In the case of wealth, modeling evolution is less important because

agents with more wealth automatically impact prices more strongly.

Often trading strategies or rules are evolved and evaluated overtime. Evalua-

tion can be based on forecasts or directly on demand from trading strategies.

Forecast-based models first evaluate predictions and convert them in a second
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step in demand using preferences. In the second case, strategies are evolved

based on their impact on utility.

3.1.5 Benchmarks and calibration

The last design question is calibration and finding of useful benchmark com-

parisons. A benchmark case, so that the behavior of the market is well

defined, is important for the plausibility of the artificial market. The param-

eters for market dynamics such as those leading the market to equilibrium

must be defined and their sensitivity must be well understood. They should

be comparable to estimated parameters derived from actual markets. When

price series of computational markets are compared to those of real markets,

the relevance of each parameter must be shown to increase the plausibility

of the artificial market.

3.2 Types of artificial financial markets

As discussed above, there is a large number of possible designs for ABMs of

financial markets. These artificial financial markets can be characterized in

many ways. A common distinction is by the number of di↵erent strategies

that are used by agents. ABMs that analyze only a small number of trading

strategies in detail are called few-type models. ABMs where many di↵erent

trading strategies are tested, or where agents could dynamically adopt their

strategies are called many-type models.
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Another way of distinguishing ABMs is to focus on the aim of the model.

LeBaron (2006) identified a number of di↵erent classes of models with dif-

ferent aims. He distinguished ABMs that analyze specific trading strategies

from ABMs that create a dynamic trading environment for the agents and

analysis which strategies evolve. Another class of ABMs aims to reproduce

known empirical results from financial market time series, so-called “stylized

facts”, including fat tails or clustered volatility of asset returns. A few ABMs

have even gone further in attempting to actually fit parameters of financial

data in a direct estimation process, which is a complex procedure in terms

of computing power.

Important artificial financial markets have been reviewed by LeBaron (2006)

and Hommes (2006) and will be in part presented in the remainder of the

chapter. With LeBaron (2006) focusing more on many-type models and the

mentioned aims of the models, Hommes (2006) concentrates more on few-

type models and the e↵ects of heterogeneous strategies of agents.

3.2.1 Few-type models

Few-type models analyze only a small number of trading strategies in detail.

Literature is quite extensive on small scale ABMs, but Hommes (2006) pro-

vides an overview of important artificial financial markets in this area. Below

I will present two important examples from the overview, starting with an

early example with chartists and fundamentalists, followed by example work

on behavioral finance.
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Chartists and fundamentalists

Many few-type ABMs contain two di↵erent types of agents, chartist and fun-

damentalists. Chartist or technical analysts do not use market fundamentals

for their trading strategy. Instead they buy and sell according to observed

patterns in the time series of historical prices. They try to extrapolate trends

and patters as their trading strategy. An example for a trading strategy of

a technical analyst is the moving average trading rule, where traders buy an

asset when a short run moving average crosses a long run moving average

from below and sell when crossing from above.

Fundamentalists center their trading strategy and expectation on future price

developments upon market fundamentals and economic data like earnings,

dividends, economic growth and unemployment rates. They invest in an

asset if it is undervalued compared to a perceived fundamental value and sell

if it is overvalued (Farmer & Joshi 2002, Farmer 2002).

Rational versus noise traders

Another group of few-type ABMs depends on two types of heterogeneous

agents called rational and noise traders. These types of ABMs are inspired

by behavioral finance. Noise or ordinary traders, which were introduced by

Shiller (1984), base their trading decisions either on false information or on

non-fundamental considerations. They are perceived as selling and buying

nearly at random. Rational traders, also called “smart money”, are investors

who have completely rational expectations about future asset returns. They

27



use sophisticated techniques to formulate their trading strategies. Compared

to chartist and fundamentalists discussed earlier, which are both not fully

rational, rational traders take the presence of other traders into account,

regardless of their strategies. Examples for rational trades are hedge funds

or large financial institutions engaged in arbitrage.

3.2.2 Many-type models

In contrast to the mentioned few-type models that have only a few di↵er-

ent agents, in most cases only two, many-type models feature many di↵erent

agents with di↵erent trading strategies. The specific trading rules of few-type

models are replaced by a larger set of strategies or by a dynamic trading en-

vironment where agents are evolving. These models start with a random set

of starting strategies for the agents and try to determine which strategies will

fail and which will survive. LeBaron (2006) provides an overview of impor-

tant many-type models, of which two important examples will be presented

below.

Larger sets of strategies

The first subset of may-type models deals with situations where the economic

environment is well-understood and where regularly is a simple homogeneous

rational expectations equilibrium, which can be used for benchmark compar-

ison.

An example for a model of this type was introduced by Lettau (1997). He
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constructs a simple artificial financial market with learning agents and two

assets, one risky and one risk-free, using a genetic algorithm to find the

optimal portfolio strategy. The agents must decide which part of their wealth

they are investing in the risky asset. The price of the risky asset is set

exogenously and it pays a random dividend that is normal distributed. The

risk-free asset pays zero interest. To keep the artificial market simple, there

is no feedback from agents’ demands on the returns of the risky asset and

consumption of assets is neglected. Each period the portfolio of the agents

is composed by the application of a genetic algorithm. With the optimal

solution for the portfolio problem known, the main focus of the model is to

determine if and when agents achieve this optimal portfolio solution.

Emergence of trading strategies

The next type of artificial market models try not to test specific strategies

but provide an dynamic trading environment where it can be observed which

trading strategies will appear through evolution. These types of models are

called artificial complex adaptive systems. They start with a random pool

of initial strategies and it can be seen which are capable of self-reinforcing to

survive and which will fail and vanish. They also study dynamics of market

e�ciency and watch if markets move into a state where ine�ciencies occur

and if strategies appear to exploit these ine�ciencies. The goal of these

models is to study markets which are not classically e�cient but are moving

to informational e�ciency.

A prominent example for this type of ABM is the Santa Fe Artificial Stock
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Market2 (SFASM). The SFASM was developed by the Santa Fe Institute

and is one of the early examples of artificial complex adaptive systems. The

SFASM has existed since 1989 in several di↵erent designs3. A stock ex-

change is simulated with a large number of traders dealing with each other.

Di↵erent traders use di↵erent strategies, and the SFASM allows to modify

these strategies during simulations. It then forms an evolutionary ecology,

where less well-adapted strategies do not survive without eliminating the

more successful ones. Most of the SFASMs features are replaceable and

can be modified to perform di↵erent experiments. The framework can be

used to study problems of finance in particular questions like a transaction

tax, agents who have access to di↵erent information sources or test various

market-making mechanisms. Additionally it allows to use di↵erent classes

of utility functions, apply a number of alternative random processes and use

di↵erent mechanisms for evolutionary selection of agents (Arthur, Holland,

LeBaron, Palmer & Tayler 1997).

3.2.3 Reproducing of empirical results

Another set of artificial financial markets concentrates on the replication of

so called empirical stylized facts. Stylized facts emerging from the statisti-

cal analysis of returns in di↵erent types of financial markets are discussed

in numerous papers4. ABMs have the advantage that they generate sizable

2See e.g. LeBaron, Arthur & Palmer (1998) or LeBaron (2005) for a detailed descrip-
tion.

3See Palmer, Arthur, Holland, LeBaron & Tayler (1994) for a description of an earlier
form.

4See e.g. Cont (2001).
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trading volume consistent with empirical observations and therefore allow

for reviewing and replicating stylized facts. In the literature there are innu-

merable works that use ABMs to reproduce stylized facts5. Many of these

models that are motivated by stylized facts like asset prices indicate a near

unit root behavior, asset returns are not predictable and show virtually no

autocorrelation, the return distributions develop fat tails and show long range

volatility clustering (Hommes 2006).

In all cases the model specifics are always less important than the reproduc-

tion of empirical facts from financial market time series.

Probably the most popular empirical feature to reproduce with ABMs is

clustered volatility first observed by Mandelbrot (1963) in time series of fi-

nancial asset returns. While stock returns themselves are relatively uncor-

related, the volatility of returns is auto correlated. A prominent example

for ABMs successfully explaining stylized facts was introduced and succes-

sively developed further6 by Lux (1995). In particular, clustered volatility

was reproduced through interaction of fundamentalist and chartist. Recently

Thurner, Farmer & Geanakoplos (2009) showed that even under the assump-

tion of reasonably rational value-investors, clustered volatility and fat tails

occur when feedback e↵ects of leverage are included.

5See e.g. Arthur et al. (1997), LeBaron et al. (1998), Farmer & Joshi (2002), Farmer
(2002), Kirman & Teyssière (2002) and Giardina & Bouchaud (2003).

6For follow up research see (Lux 1998, Lux & Marchesi 1999, Lux & Marchesi 2000).
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Chapter 4

ABMs for economic policy

advice

Recent experience of the financial crisis in the first decade of the 21st cen-

tury prompted a broad discussion of financial regulation. Until now, eco-

nomic policy makers had basically two di↵erent types of models at their

disposal. The first type involves statistical models that utilize past empirical

data in order to make forecasts. These models make useful predictions as

long as there are only minor changes, but fail if there occur overall system-

atic or systemic changes. The other type involves models with assumptions

such as the e�cient market hypothesis or the general equilibrium theory,

which also assumes a perfect world with little or no change and are there-

fore incapable of understanding and even less predicting a crisis (Farmer &

Foley 2009, Thurner 2011). Furthermore, these models generally do not take

feedback loops, synchronization or network e↵ects into account. Therefore
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economic policy makers usually base their decision-making process on expe-

rience, common sense, or as Farmer & Foley (2009) put it,

“The leaders of the world are flying the economy by the seat of

their pants.”

With ABMs gaining increasing popularity over the last two decades, they

are about to become an accepted tool for the analysis of economic prob-

lems. Many advocated during the recent financial crisis and in the aftermath

that they should play an important role in deciding future economic policy1.

Thurner (2011) advised the OECD that,

“The recent crisis has made it clear that there is poor understand-

ing of systemic risk. The regulation scheme Basle II, which cost

millions to be established worldwide, has spectacularly failed.”

ABMs have been successfully used in economic modeling for two decades

and are able to reproduce empirical features of financial markets, which is

not possible or only with di�culties through traditional approaches. Fur-

thermore, ABMs are among the most encouraging methods to understand

systemic risk in financial markets and they seem to be the best thing at hand

for testing economic policies prior to their implementation, provided they are

done in a quantifiable, fully reproducible and falsifiable way.

1See e.g. Bouchaud (2008), Farmer & Foley (2009), Lux & Westerho↵ (2009) and
Thurner (2011).
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4.1 Recent examples of ABMs for policy ad-

vice

In the remainder of the chapter I briefly present a current selection of ap-

proaches to use ABMs for policy advice. These models represent a broad

spectrum of economic policy issues, from specific topics like a transaction

tax to broader questions like fiscal policy as a whole, which require simulat-

ing an entire economy.

4.1.1 “Regulatory Medicine Against Financial Mar-

ket Instability: What Helps And What Hurts?”

Based on the model of Thurner et al. (2009), Kerbl (2010) studied the e↵ects

of regulatory measures such as a ban of short selling, a mandatory risk limit

and the introduction of a transaction tax on trading. He used the model

from Thurner et al. (2009) as the representation of the financial market in its

unregulated form and tested regulatory measures on it. His findings showed

that only a mandatory risk limit has positive impact from every point of view,

while a short selling ban reduces volatility but shows increased risk of tail

events. A transaction tax on trading can reduce the likelihood of crashes but

increases volatility. Additionally he showed that the interplay of regulatory

measures is not negligible and can have unforeseen side e↵ects.
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4.1.2 “Who Does a Currency Transaction Tax Harm

More: Short-Term Speculators or Long-Term

Investors?”

Demary (2008) focused also on a currently broadly discussed transaction

tax. He analyzed whether a transaction tax would a↵ect long- or short-

term investors more. His approach used an ABM with more complex trading

strategies of agents. As a result he found that, in line with the expectations of

those advocating of a transaction tax, trading strategies involving short-term

speculation would be reduced in favor of long-term investment. Interestingly

he also found that such a tax is capable of reducing volatility but increases

the likelihood of tail events, quite the opposite of Kerbl’s (2010) findings.

4.1.3 “The Use of Agent-Based Financial Market Mod-

els to Test the E↵ectiveness of Regulatory Poli-

cies.”

Westerho↵ (2008) followed a similar approach to Kerbl’s (2010) and De-

mary’s (2008). He also tried to explore if ABMs o↵er new insights in the

success and failure of regulatory measures, such as central bank interven-

tions, trading halts and a transaction tax as well. He used a relatively simple

and transparent framework for his analysis, with agents using fundamental

and technical indicators for their strategies as discussed above. Contrary to

Kerbl (2010), Westerho↵’s (2008) work indicated that all of these regulatory
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measures in general have a potentially stabilizing e↵ect on financial markets

and they seem to reduce volatility of prices as well as limit distortions.

4.1.4 “Monetary and Fiscal Policy Analysis with an

Agent-Based Macroeconomic Model.”

Another approach was followed by Haber (2008). He introduced a macroe-

conomic ABM of a national economy simulating both the private and public

sector. Each individual actor like households, companies and government

agencies are separate agents with their own behavior and expectations. He

set the focus on monetary and fiscal policy and showed that di↵erent models

of expectation formation can a↵ect the outcome of these policies evaluated

in that context. He further indicated that the results of policy evaluation

could depend on the chosen baseline.
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Part II

Applications to financial

regulation
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Chapter 5

Introduction

In the second part an ABM is now used as a toy model of the financial market

to test the e�ciency and dangers of credit regulation schemes. The ABM

used as a baseline, representing the unregulated market, was first introduced

by Thurner et al. (2009) and will be extended to incorporate credit regulation

schemes. Current banking regulation in the shape of Basle II compliant credit

risk mitigation techniques will be implemented and in a further attempt an

“ideal world” is constructed where banks completely hedge against possible

losses.

In the remainder of chapter 5 I will present the backgrounds of financial

regulation, emphasizing the practical di�culties of credit regulation. Chapter

6 presents the baseline model in accordance with Thurner et al. (2009) and

explains all equations defining the ABM used as a baseline comparison to test

regulation schemes. In chapter 7 the necessary modifications to implement

regulatory measures will be developed. The final chapter presents simulation
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results showing that Basle-type regulation works fine in situations of low

leverage levels in the financial system, however they become destabilizing in

scenarios with realistic leverage level. Further results indicating that even

introducing the heavy requirement of complete hedging does not make the

system systemically more secure.

Regulatory bodies for the financial sector are mainly concerned with pro-

tecting the creditors of banks, the reduction of systemic risk (resulting from

conditions where the failure of a single entity could cause major or multiple

bank failures) and the proper conduct of banking business. To achieve their

objectives regulators require banks to fulfill minimum standards, most im-

portant minimum capital requirements – the amount of money banks need

to put aside, and restrict banks from having too large exposures to a single

counterparty.

To comply with regulations, banks in the credit business need to establish

provisions or commit equity to cover for losses of interest and principal. There

are always some borrowers that default on their obligations, but the actually

experienced losses vary depending on the number and severity of default

events. The average level of credit losses a bank expects to experience is

referred to as expected losses. Banks view these losses as a cost component

of the credit business and include them in pricing of credit exposures. Losses

above the average level are referred to as unexpected losses. These losses

occur only occasionally and interest rates, including risk premium, charged

on individual credit exposures do normally not fully cover them. Therefore

the overall pricing of credit exposure should reflect the possibility of peak
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losses and banks need to hold capital to cover them. Because of high capital

costs, banks have a big incentive to minimize the capital to cover for credit

exposures. Therefore they use a number of legal means to reduce both the

expected and unexpected losses.

Internationally, the Bank for International Settlements Basel Committee on

Banking Supervision provides a framework – the Basel Accords for minimal

capital requirements of banks. The latest version of the accords (Bank for

International Settlements 2006), commonly known as Basle II, incorporates

detailed requirements for recognized credit risk mitigation techniques used

to reduce the capital banks need to hold.

An important credit risk mitigation technique is collateralized transactions

where credit exposure is hedged either fully or in part by collateral deposited

by a counterparty. Often collateral is not fixed in value but changes over-

time. When taking collateral, banks must calculate their adjusted exposure

to counterparties according to the rules of their regulatory body to take full

account of the e↵ects of that collateral. A recognized approach within the

Basle II framework is to apply haircuts or margins on the collateral.

Haircuts are percentages that are subtracted from the value of an asset that

is being used as collateral. The size of the haircut should reflect the possible

future fluctuations in the value of the asset. According to the Basle II frame-

work, banks are required to adjust both the amount of the exposure to the

counterparty and the value of the collateral received from the counterparty.

This ensures volatility adjusted amounts for both exposure and collateral.
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In the following we are discussing and implementing two approaches to limit

the exposure of banks to their counterparties. In the first one, banks adjust

the margin requirement according to internal estimated haircuts determined

by the volatility of the underlying asset, e↵ectively limiting the maximum

leverage investors can use. In the second approach, banks further reduce the

exposure by buying derivatives to secure the collateral they hold.

To calculate interest rates on loans, banks use a benchmark interest rate

and add a risk premium. Because loans are fully collateralized, banks apply

only a minimal fixed spread around a benchmark interest rate. Benchmark

rates are, for example Fed Funds E↵ective (Overnight Rate) or EONIA (Euro

Overnight Index Average).
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Chapter 6

The baseline model

The baseline model, representing the unregulated market, is an ABM with

four di↵erent types agents and a standard market clearing mechanism.

Two of the agents are informed investors, e.g. hedge funds and uninformed

ones, e.g. noise traders. The informed investors are value-investors who

simply put buy low and sell high. Therefore they use a strategy that reacts

on mispricing by taking a long position (buying a positive quantity of assets)

when the price is below a perceived fundamental value V . The noise traders

buy and sell nearly at random, with a small preference that makes the price

weakly mean-revert around V . Both traders, in the baseline model, have

only a choice between owning a single asset, such as a stock or a commodity

(without dividends and consumption) or holding cash.

The third type of agents are banks. Informed investors can increase the size of

there positions by borrowing from a bank using the asset as collateral. Banks
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limit lending so that the value of the loan is always less than the current

price of the assets held as collateral. This limit is called minimum margin

requirement. In case the asset value decreases, so that minimum margin

requirement is no longer sustained, banks issue margin calls and informed

investors must sell assets to maintain minimum margin requirements. If

large price jumps occur and informed investors cannot repay the loan, by

selling their complete portfolio, they default. This kind of transaction is

called margin trading and has the e↵ect of amplifying any profit or loss from

trading. In the baseline model interest rates are fixed to zero and banks set

a fixed minimum margin requirement in relation to the size of the informed

investor.

In addition to these three types of agents there is a representative investor

who finances an informed investor according to the performance. The amount

they invest or withdraw from an informed investor depends on recent his-

torical performance compared to a fixed benchmark return rb. Therefore,

successful informed investors attract additional capital beyond what they

earned through trading, and similarly, unsuccessful informed investors lose

additional capital.

6.1 Supply and demand

At each time step t, the asset prices p(t) are set by equating the sum over

the demand of the informed investors D
h

(t) and the noise traders D
nt

(t), to

46



−0.5 0 0.5 1
0

20

40

60

80

100

120

m(t)

D
h
(t

)p
(t

)

(a)

−1 −0.5 0 0.5 1

−100

−50

0

50

100

m(t)

D
h
(t

)p
(t

)

(b)

Figure 6.1: Demand function D
h

(t)p(t) of an informed investor as a function
of the mispricing signal m(t) = V � p(t). (a) The informed investor does
nothing if the asset is overpriced and starts buying more and more assets as
the price decreases, until the maximum leverage limit at m = mcrit is hit.
Beyond this the demand remains flat. (b) With short selling allowed, the
informed investor additionally shortens the asset if it is overpriced.

the fixed total supply of the asset N

D
nt

(t) +
X

h

D
h

(t) = N . (6.1)

The first type of agents in the model are the informed investors (hedge funds

h). At every time step the informed investors must decide how much of their

wealth W
h

(t) they are going to invest. The wealth of an informed investor is

the sum of its cash M
h

(t), and the current value of the asset D
h

(t)p(t),

W
h

(t) = W
h

(t) = D
h

(t)p(t) +M
h

(t) . (6.2)

When the informed investor is borrowing cash, M
h

(t) is negative and repre-

sents a loan from a bank.

The informed investors in the model are value investors who base their de-
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mand D
h

(t) on a mispricing signal, m(t) = V � p(t). The perceived fun-

damental value V is fixed at a constant value, which is the same for all

informed investors and the noise traders. As Figure 6.1 shows, each in-

formed investor (hedge funds h) calculates its demand D
h

(t), based on the

perceived mispricing. As the mispricing increases, the value of the portfolio

D
h

(t)p(t) an informed investor wants to hold increases linearly. However,

the demand is bounded when the informed investor reaches the maximum

leverage level. Here, informed investors only di↵er in their aggression pa-

rameter �
h

, which quantifies how strong they respond to mispricing signals,

m(t). With W
h

(t) � 0, the informed investor’s demand D
h

(t) = D
h

(t, p(t))

can be written as

D
h

(t) =

8
>>>>>><

>>>>>>:

0 if m(t) < 0

�
max

W
h

(t)/p(t) if m(t) > m
crit

�
h

m(t)W
h

(t)/p(t) otherwise ,

(6.3)

and with short selling allowed1,

D
h

(t) =

8
>>>>>><

>>>>>>:

(1� �
max

)W
h

(t)/p(t) if m(t)  mshort

crit

�
max

W
h

(t)/p(t) if m(t) > mlong

crit

�
h

m(t)W
h

(t)/p(t) otherwise .

(6.4)

With a short selling ban in place and the asset being overpriced (p(t) > V )

the informed investor holds no assets. In the second case the asset is heavily

1See (Kerbl 2010): p. 6 for informed investor’s demand with short selling allowed.
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underpriced causing the informed investor to use the maximum allowed lever-

age, �
h

(t) = �
max

. This happens when m(t) � mcrit

h

= �
max

/�
h

. Otherwise

the asset is underpriced but the mispricing is not too large. The informed

investor takes a position proportional to the mispricing m(t), the informed

investor’s wealth W
h

(t), and its aggression parameter �
h

, which di↵ers be-

tween informed investors.

With short selling allowed and in case the asset is overpriced, the informed in-

vestor takes also a position proportional to the mispricing m(t), the informed

investor’s wealth W
h

(t), and the aggression parameter �
h

. The demand is

again cut of by maximum allowed leverage.

Leverage �
h

is the ratio between the informed investor’s portfolio value and

its wealth,

�
h

(t) =
D

h

(t)p(t)

W
h

(t)
=

D
h

(t)p(t)

D
h

(t)p(t) +M
h

(t)
. (6.5)

The informed investor is required by the bank it borrows from to keep �
h

(t) 

�
max

. In case there is no change in the demand of an informed investor

between two time steps, leverage would be �̄
h

(t) = D
h

(t � 1)p(t)/W
h

(t). If

�̄
h

(t) > �
max

, the informed investor, in the model, must sell assets in order to

bring leverage �
h

(t) below the maximum allowed. This is known as meeting

a margin call.

The cause of a margin call can be either the price falls from p(t� 1) to p(t),

causing W
h

(t) to fall by a larger percentage than the asset price (because

of leverage), or because the wealth falls from W
h

(t � 1) to W
h

(t) due to

withdrawals (redemptions) from investors, as will be discussed below.
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If W
h

(t) < 0, i.e. the value of the loan is larger then the value of the port-

folio, the informed investor defaults and goes out of business. The informed

investor must sell all its assets, therefore D
h

(t) = 0, and returns the revenue

to pay o↵ as much of the loan as possible. The remaining loss is borne by the

bank. For simplicity, it is assumed that the losses do not a↵ect banks and

they continue to lend to other informed investors as before. After T
reintro

time

steps the defaulting informed investor reemerges again as a new informed in-

vestor, as described below.

The noise traders’ demand is defined in terms of the cash value, ⇠
nt

(t), they

want to spend on the asset, which evolves according to the random process

log ⇠
nt

(t) = ⇢ log ⇠
nt

(t� 1) + ��(t) + (1� ⇢) log(V N) , (6.6)

where � is independently normally distributed with mean zero and standard

deviation of one. The noise traders’ demand is consequently

D
nt

(t) =
⇠
nt

(t)

p(t)
. (6.7)

With ⇢ < 1, the cash value ⇠
nt

(t) follows a random walk with a mean re-

version. In the limit as ⇢ ! 1 the log-returns r(t) ⌘ log p(t + 1) � log p(t)

are normally distributed. If there would be no informed investors or the de-

mand of all informed investors would be zero, the asset price is set such that

D
nt

(t) = N . Therefore without the presence of informed investors the log-

returns are nearly normally distributed, with tails that are slightly truncated

(and hence even thinner than normal) due to the mean reversion.
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6.2 Wealth dynamics of informed investors

During simulations, each informed investor starts with the same wealth

W
h

(0) = W
0

. Each time step, the informed investor h calculates its wealth

W
h

(t) = W
h

(t, p(t)) as described below.

The informed investors’ wealth increases or decreases according to the profits

or losses from trading. In addition the cash of informed investors changes

due to deposits or withdrawals by investors, as described below.

A pool of investors, who are treated as a single representative investor, de-

posit or withdraw cash from each informed investor such as a hedge fund

or mutual fund, based on a moving average of its recent performance. This

process is well documented2. This guarantees an approximate steady state

behavior with well-defined first moment in the long-term statistical averages

of the wealth of the informed investors, i.e. it allows the wealth to vary

within boundaries, but prevents it to grow without bound.

In case an informed investor’s wealth decreases below a critical threshold,

W
crit

, the informed investor decides to go out of business. By using a posi-

tive survival threshold to remove informed investors the creation of “zombie

investors”, which persist for many time steps with nearly no wealth and no

relevance for the market, is avoided. After a number of time steps, T
reintro

,

the informed investor is replaced by a new one with initial wealth W
0

and

the same parameter �
h

.

2See e.g. Busse (2001), Chevalier & Ellison (1997), Del Guercio & Tka (2002), Re-
molona, Kleiman & Gruenstein (1997) and Sirri & Tufano (1998).
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Let

r
h

(t) =
D

h

(t� 1)[p(t)� p(t� 1)]

W
h

(t� 1)
(6.8)

be the rate of return by informed investor h on investments at time t. The

investors make their decisions to invest in an informed investor based on

rperf
h

(t), an exponential moving average of the rate of return, given by

rperf
h

(t) = (1� a) rperf
h

(t� 1) + a r
h

(t) . (6.9)

The flow of capital in or out of the informed investor, F
h

(t), is given by

F
h

(t) = max
h
�1, b

⇣
rperf
h

(t)� rb
⌘i

max
h
0, M̃

h

(t)
i

, (6.10)

where

M̃
h

(t) = D(t� 1)p(t) +M(t� 1) (6.11)

is the amount of cash an informed investor would have if selling all assets at

the current price, b is a parameter controlling the fraction of capital with-

drawn or invested, and rb is the benchmark return of the investors. Obvi-

ously, investors cannot take out more cash than the informed investor has.

Initially all informed investors start with the same wealth of W
h

(0) = W
0

.

At each new time step the wealth of the informed investor evolves according

to

W
h

(t) = W
h

(t� 1) +D
h

(t� 1)[p(t)� p(t� 1)] + F
h

(t) . (6.12)
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Chapter 7

Implementation of regulatory

measures

In this chapter we modify the baseline model and introduce regulation schemes.

The first regulation scheme, called the Basle scheme, introduces a typical reg-

ulatory measure to reduce credit risk encouraged by the Basle II framework.

For the second regulation scheme we construct an ideal world, where all

leverage introduced risk – borrowed money from banks used for speculative

investments – is hedged perfectly with options.

7.1 The Basle scheme

In the following we understand under the Basle scheme the baseline model

with two modifications, i.e. the implementation of haircuts and spreads.
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7.1.1 Haircuts

For a collateralized transaction, the volatility adjusted amount for the expo-

sure (E⇤) is calculated as follows1

E⇤ = max[0, E(1 +Hcut

e

)�K(1�Hcut

sec

)] , (7.1)

where E is the exposure to a counterparty, Hcut

e

is haircut on the exposure,

K the collateral received from the counterparty and Hcut

sec

the haircut applied

on the collateral. Unless both sides of the transaction are in cash (in the

same currency), the volatility adjusted value for the collateral will be lower

than the current value of the collateral and for the exposure it will be higher.

For instance, in case of short selling, the exposure of the bank, if acting as

market maker, must be volatility adjusted.

As haircuts could either be used standard supervisory haircuts2 issued by

regulatory bodies or internal estimates of banks. Permission by supervisors

to use own estimates is conditional on the satisfaction of minimum qualitative

and quantitative standards as laid out by the Basle II framework3. A simple

approach used in practice for own internal estimates satisfying the Basle

standards is the following model

Hcut

sec

= min
h
max

⇣
Hcut

min

,��
p

T + c
⌘
, 1
i

(7.2)

1See (Bank for International Settlements 2006): §147.
2See (Bank for International Settlements 2006): §147 for recommendation on supervi-

sory haircuts, e.g. haircut for equities listed on a recognized exchange is 25%.
3See (Bank for International Settlements 2006): §156-165 for qualitative and quantita-

tive standards.
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with Hcut

sec

being the haircut for the specific security, Hcut

min

the floor haircut,

� the confidence interval, � the historical volatility, T the holding duration,

and c the sales costs for the securities.

To use the above model for internal estimated haircuts to adjust margin

requirements, the maximum leverage allowed is no longer constant, but de-

pends on volatility

�̃
max

(t) = max


min

✓
�
max

,
1

�✓�(t)

◆
, 1

�
, (7.3)

where �(t) is the historical volatility defined as the standard deviation of

the log-returns of the underlying security over ⌧ time steps, ✓ is an arbitrary

factor to scale the length of one time step, and where the confidence interval

is defined as

� =
1

�
max

✓�⇤ , (7.4)

with �⇤ set according to market conditions with reasonable low volatility.

Therefore maximum leverage, �
max

, can only be used if the historical volatil-

ity, �(t), is equal or below �⇤. With the parameters listed in table 7.1, a 99th

percentile or above confidence interval, as required according to the Basle

II framework4, is used if �
max

is set to seven or below, which is reasonable

in reality for stocks. By adjusting the margin requirements, the volatility

adjusted exposure of the banks is always zero and by neglecting the costs

involved in selling the collateral, the expected loss is also zero.

To adapt the model to variable maximum leverage the informed investor’s

4See (Bank for International Settlements 2006): §156.
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Figure 7.1: Maximum leverage function �
max

(t) for all informed investors as
a function of historical volatility �(t). The red curve shows the Basle scheme
of equation (7.3), the blue curve shows the situation in the perfect hedge
scheme of equation (7.22).

demand depends on the current price and the historical volatility, D
h

(t) =

D
h

(p(t), �(t)). Consequently, equation (6.3) changes to

D
h

(t) =

8
>>>>>><

>>>>>>:

(1� �̃
max

(t))W
h

(t)/p(t) if m(t)  mshort

crit

(t)

�̃
max

(t)W
h

(t)/p(t) if m(t) > mlong

crit

(t)

�
h

m(t)W
h

(t)/p(t) otherwise .

(7.5)

Still the informed investor takes a long position if the asset is underpriced,

a short position if the asset is over priced and reaches its maximum leverage

if the mispricing is too large.

7.1.2 Spreads

To implement borrowing costs with zero benchmark interest rate in the

model, a term accounting for the spread, S, is added to equation (6.12).
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The informed investors always pay the borrowing costs for the previous time

step. In case the informed investor takes a leveraged long position (M
h

is

negative), the wealth can be written as

W
h

(t) = W
h

(t�1)+D
h

(t�1)[p(t)�p(t�1)]+F
h

(t)+M
h

(t�1)S , (7.6)

and in case of short selling, where the demand is negative, as

W
h

(t) = W
h

(t�1)+D
h

(t�1)[p(t)�p(t�1)]+F
h

(t)+D
h

(t�1)p(t�1)S ,

(7.7)

where S is the spread in percent, e.g. 1%. The maximum amount of cash

investors could take out of the informed investor (6.11) has now to be adjusted

to

M̃
h

(t) = D(t� 1)p(t) +M(t� 1)[1 + S] , (7.8)

and

M̃
h

(t) = D(t� 1)p(t) +M(t� 1) +D
h

(t� 1)p(t� 1)S , (7.9)

respectively. This guarantees that obligations to banks are satisfied before

demands of investors, according to the usual practice.

7.2 The perfect hedge scheme

Under the perfect hedge scheme we understand the baseline model with two

modifications, i.e. implementation of hedging costs and limits to hedging
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costs.

7.2.1 Hedging

To o↵set unexpected losses due to loss of value of the collateral, banks buy

options for the collateral for the loan to the informed investor. The costs for

the options remain with the informed investors. Options are always bought

for one time step only.

The option prices are determined using the Black-Scholes formula. The op-

tion price (P
h

if it is a European put option, or C
h

if it is a European call

option), is calculated with the spot price of the underlying asset s, the strike

of the option k, the risk-free interest rate r and the volatility of returns of

the underlying asset (�). In particular we have

P
h

(t) = P
h

(p(t), �(t),�
h

(t))

= P
h

(s = p(t), r = 0, � = ✓�(t), T = 1, k = k
put

(p(t),�
h

(t)))
(7.10)

and

C
h

(t) = C
h

(p(t), �(t),�
h

(t))

= C
h

(s = p(t), r = 0, � = ✓�(t), T = 1, k = k
call

(p(t),�
h

(t))) .

(7.11)

For volatility � we use the historical volatility �(t), defined as the standard

deviation of the log-returns of the underlying asset over ⌧ time steps. Volatil-

ity is multiplied by an arbitrary factor ✓ to scale the length of one time step,
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Figure 7.2: Black Scholes European call option pricing surface as a function
of leverage and volatility.

which up to this point is not specified. The strike price is set such, that in

case of failure of an informed investor and in case of large price drops the

bank can sell the collateral at the price from the previous time step. In case

the informed investor takes a long position the bank buys a put option with

a strike at the current asset price, reduced by the equity ratio of the informed

investor,

k
put

(p(t),�
h

(t)) = p(t)

✓
1�

1

�
h

(t)

◆
. (7.12)

In case the informed investor takes a short position the bank buys a call

option with a strike at the current asset price, increased by the equity ratio

of the informed investor,

k
call

(p(t),�
h

(t)) = p(t)

✓
1 +

1

�
h

(t)� 1

◆
. (7.13)

To implement borrowing costs in the model a term with costs for the options

is added to equation (6.12). The informed investors always pay the full
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hedging costs for the previous time step. In case the informed investor takes

a long position, wealth changes to

W
h

(t) = W
h

(t� 1)+D
h

(t� 1)[p(t)�p(t� 1)]+F
h

(t)�D
h

(t� 1)P
h

(t� 1) ,

(7.14)

and in case of short selling, where the demand is negative, to

W
h

(t) = W
h

(t�1)+D
h

(t�1)[p(t)�p(t�1)]+F
h

(t)+D
h

(t�1)C
h

(t�1) .

(7.15)

The maximum amount of cash investors could take out of the informed in-

vestor has to be adjusted to

M̃
h

(t) = D(t� 1)p(t) +M(t� 1))�D
h

(t� 1)P
h

(t� 1) , (7.16)

for long positions and to

M̃
h

(t) = D(t� 1)p(t) +M(t� 1)) +D
h

(t� 1)C
h

(t� 1) (7.17)

for short selling. This again guarantees that obligations to banks are satisfied

before demands of investors.

7.2.2 Limits on hedging costs

Banks set limits on hedging costs. These limits are determined by hedging

costs under market conditions with reasonably low volatility �⇤, the current

price of the asset, and the maximum leverage allowed by the bank. In case
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the borrower takes a long position we get

P
max

(t) = P (p(t), �⇤,�
max

) , (7.18)

for a maximum put price and in case of short selling, we get

C
max

(t) = C(p(t), �⇤,�
max

) . (7.19)

Consequently, the maximum leverage �̃
max

(t) is determined by solving the

equation

C(p(t), �(t),�hedge

max

(t)) = C
max

(t) , (7.20)

or by solving the equation

P (p(t), �(t),�hedge

max

(t)) = P
max

(t) , (7.21)

respectively. To limit the maximum leverage with an upper bound the max-

imum leverage becomes

�̃
max

(t) = min
⇥
�
max

,�hedge

max

(t)
⇤

. (7.22)

To adapt the model to limits on hedging costs, demand equation (7.5) is used

with maximum leverage as in 7.22 instead of maximum leverage as in 7.3.
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⇢ = 0.99
� = 0.035
V = 1
N = 1⇥ 109

�
max

= 1, 2, ..., 20
�
h

= 5, 10, ..., 50
r
b

= 0.005
a = 0.1
b = 0.15
W

0

= 2⇥ 106

W
crit

= 2⇥ 105

T
reintro

= 100
⌧ = 10
✓ = 5
�⇤ = �/3
S = 0.0005

Table 7.1: List of the parameters used in the model.
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Chapter 8

Simulation results

In this chapter we discuss the results of the simulations of the extended

model described in the previous chapter. Section 8.1 discusses returns and

correlations in accordance with Thurner et al. (2009). Section 8.2 explains

the results of three time series, the historical asset volatility, the informed

investors wealth, and the cost of capital for the informed investors. Section

8.3 shows the simulated impacts of the regulatory measures on a number of

indicators both for the performance of informed investors and for the market

overall. As performance indicators of the informed investors are discussed,

the average probability of default, cost of capital for the informed investors,

the rate of return of informed investors and the informed investors manage-

ment fees. By management fees we understand a 2% management fee and a

20% performance fee. As market indicators are shown: The standard devia-

tion of log-returns as asset volatility and the respective excess kurtosis as a

measure for market stability, average amount of shares traded per time step
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Figure 8.1: The distribution of log-returns r of the baseline model (with
parameters from table 7.1). (a) Density of log-returns p(r|m > 0) in semi-log
scale. The unleveraged case (red squares) nearly matches the case with only
noise traders’ (red curve). When the maximum leverage is raised to ten (blue
circles), the distribution becomes thinner but the negative returns develop fat
tails. With short selling (demand equation (6.4)) the distribution becomes
even thinner and the tails become heavy on both sides. (b) Cumulative
distribution for negative returns, P (r > R|m > 0), in log-log scale. For
�
max

= 10, a power law is fit in the indicated region, a line is shown for
comparison.

by an informed investor as a measure for market liquidity and the amount

of losses to banks or counterparties.

8.1 Returns and correlations

The statistical properties of price returns are considerably altered with in-

creasing leverage.

Figure 8.1(a) shows the distribution of logarithmic price returns r(t) =

log p(t) � log p(t � 1) for four cases: Noise traders only, informed investors

with no leverage (�
max

= 1), and with substantial leverage �
max

= 10, with
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and without short selling. With noise traders only, the log-returns are al-

most normally distributed. With unleveraged informed investors, volatility

is slightly reduced but log-returns remain nearly normally distributed. When

leverage is increased to �
max

= 10, and a short selling ban is in place, the

distribution becomes thinner but the negative returns develop fat tails. The

asymmetry arises because informed investors are, with a short selling ban

in place, only active when the asset is underpriced, i.e. when the mispric-

ing m(t) > 0. With short selling allowed, the distribution becomes again

more concentrated in the center and develop fat tails on both sides. Due

to higher risk involving short selling, the distribution becomes again slightly

asymmetric. This higher short selling risk arises because of the di↵erent risk

profile of long and short positions. The potential losses from long positions

are limited, since the price can only go down to zero. This is not the case

for short positions, where the loss potential, at least in theory, has no limit.

Figure 8.1(b) shows the cumulative distribution for negative returns for two

cases: Informed investors with no leverage (�
max

= 1) and with substantial

leverage �
max

= 10. The cumulative distribution for the largest negative

returns approximately follows a straight line in a double logarithmic scale,

suggesting that it is reasonable to fit the tails of the distribution as a power

law, of the form P (r > R|m > 0) ⇠ R��.
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Figure 8.2: Wealth time series W
h

(t) for 10 informed investors with �
h

=
5, 10, . . . , 50, and �

max

= 15 for all informed investors. The simulation was
conducted for the perfect hedge scheme with demand equation (7.5), maxi-
mum leverage equation (7.22) and wealth equations as in (7.14) and (7.15).
Simulation parameters are listed in table 7.1.
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Figure 8.3: Annualized historical volatilities over 10 time steps for 10 in-
formed investors with �

h

= 5, 10, . . . , 50, and �
max

= 15 for all informed
investors. The simulation was conducted for the perfect hedge scheme with
demand equation (7.5), maximum leverage equation (7.22) and wealth equa-
tions as in (7.14) and (7.15). Simulation parameters are listed in table 7.1.
To express in annualized terms it is assumed that one time step takes five
days and a year has 250 trading days. The inlay shows the VIX (Chicago
Board Options Exchange Market Volatility Index), a popular measure of the
implied volatility of S&P 500 index options from 1990 to 2010.
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Figure 8.4: Series of annualized interest rates for the most aggressive in-
formed investor with �

h

= 50. The simulation was conducted with 10 in-
formed investors with �

h

= 5, 10, . . . , 50, and �
max

= 15 for all informed
investors in the perfect hedge scheme with demand equation (7.5), maxi-
mum leverage equation (7.22) and wealth equations as in (7.14) and (7.15).
Simulation parameters are listed in table 7.1. Interest rates are calculated
as i

h

(t) = D
h

(t)P
h

(t)/M
h

(t) in case the informed investor takes a long posi-
tion, i

h

(t) = C
h

(t)/p(t) if the informed investor is shorting, and i
h

(t) = 0 if
the informed investor is not borrowing. To express in annualized terms it is
assumed that one time step takes five days and a year has 250 trading days.
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8.2 Time series

All simulation results for the time series shown in figure 8.2, figure 8.3, and

figure 8.4, were performed for the perfect hedge scheme with 10 informed

investors with �
h

= 5, 10, . . . , 50 and a �
max

= 15 for all informed investors.

For the perfect hedge scheme we used demand equation (7.5), maximum

leverage equation (7.22), and wealth equations as in (7.14) and (7.15). As

parameters we used the values listed in table 7.1.

In figure 8.3 we show the time series of the annualized historical volatility

of the underlying asset measured over a 10 time step period. Initially all

informed investors have the same wealth W
h

(0) = 2, as can be seen in fig-

ure 8.2 showing the wealth time series, and thus only a negligible influence

on the market. In a market dominated by noise traders log-returns of the

asset are close to being normally distributed with � = 0.035 which results

in a annualized volatility of �(t) ⇡ 0.175. With volatility at this medium

level, informed investors face higher borrowing costs from banks and thus

take their time to gain a higher market share. After a period with volatil-

ity at medium level, informed investors manage to make higher returns and

their wealth starts to grow. This is particularly true for the more aggres-

sive informed investors as they are higher leveraged. As their wealth grows,

informed investors have more impact, they themselves a↵ect prices, driving

them up when they are buying and down when they are selling or short-

ing. The stabilizing e↵ect of the informed investors leads to a decrease in

volatility with results in lower borrowing cost for the informed investors.

Lower borrowing cost on the other hand allows them to use a higher lever-

69



age, which has a further stabilizing e↵ect on the market resulting in even

lower borrowing costs. This leads to a stable market condition with contin-

uously low volatility and low borrowing costs for informed investors until an

informed investor reaches a wealth at about W = 70 as can be seen best in

figure 8.2, figure 8.3 and in figure 8.4 between t = 20, 000 and t = 30, 000.

There are a series of crashes, which cause defaults, particularly for the higher

leveraged informed investors. These crashes cause large price drops, up too

50%, resulting in volatility spikes. While informed investors waiting to get

reintroduced, volatility level returns to a medium level being again mainly

influenced by noise traders. With informed investors being reintroduced with

initial wealth of W
h

(0) = 2, the leverage cycle starts again. In case a crash

wipes out all but the least aggressive informed investors, as happens around

t = 20, 000 and at about t = 45, 000, most aggressive informed investors

wait to get reintroduced, while lower leveraged informed investors manage to

become dominant for extended periods of time.

8.3 Impacts

All computer simulations with the purpose to clarify the impacts of regula-

tory schemes were conducted for three cases: For the unregulated scheme,

with discussed equations from section 6 with short selling (demand equation

(6.4)). For the Basle scheme with demand equation (7.5) and wealth equa-

tions as in (7.6) and (7.7). And for the perfect hedge scheme we used demand

equation (7.5), maximum leverage equation (7.22) and wealth equations as
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Figure 8.5: Impacts of regulatory measures on indicators for the most aggres-
sive informed investor with with �

h

= 50 as the maximum leverage varies. (a)
Average annual probability of default. (b) Average annualized interest rate
if the informed investor is borrowing from the bank. (c) Average annual rate
of return if the informed investor is in business. (d) Average annual return
to the informed investors management assuming a 2% management fee and a
20% performance fee. For all simulations we used 10 informed investors with
�
h

= 5, 10, . . . , 50 over 5⇥ 105 time steps and the parameters listed in table
7.1. For all indicators it is assumed that one time step takes five days and
a year has 250 trading days. The blue curves show the unregulated scheme
with short selling (demand equation (6.4)). The green curves show the Basle
scheme with varying maximum leverage according to equation (7.3). For
the Basle scheme we used demand equation (7.5) and wealth equations as in
(7.6) and (7.7). In the case of the red curves, banks hedge to o↵set risks from
holding collateral. For the perfect hedge scheme we used demand equation
(7.5), maximum leverage equation (7.22) and wealth equations as in (7.14)
and (7.15). Simulation parameters are listed in table 7.1.
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Figure 8.6: Impacts of regulatory measures on market indicators as the max-
imum leverage varies. (a) Volatility of the underlying asset. (b) Market
liquidity of the underlying asset, measured by the average amount of shares
traded by an informed investor per time step. (c) Market stability of the
underlying asset, measured by excess kurtosis. (d) Annual losses to banks.
For all simulations we used 10 informed investors with �

h

= 5, 10, . . . , 50 over
5 ⇥ 105 time steps and the parameters listed in table 7.1. For annual losses
it is assumed that one time step takes five days and a year has 250 trading
days. The blue curves show the unregulated scheme with short selling (de-
mand equation (6.4)). The green curves show the Basle scheme with varying
maximum leverage according to equation (7.3). For the Basle scheme we
used demand equation (7.5) and wealth equations as in (7.6) and (7.7). In
the case of the red curves banks hedge to o↵set risks from holding collateral
as discussed above. For the perfect hedge scheme we used: Demand equation
(7.5), maximum leverage equation (7.22) and wealth equations as in (7.14)
and (7.15). Simulation parameters are listed in table 7.1.
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in (7.14) and (7.15). For all simulations we used the parameters listed in

table 7.1 and �
max

was varied from 1 to 20. For all indicators that are an-

nualized it is assumed that one time step takes five days and a year has 250

trading days. As impact we understand the e↵ect of regulatory measures on

a number of indicators, both for the performance of informed investors and

for the market overall.

Figure 8.5(a) shows the average annual probability of default for the most

aggressive informed investor. In the unregulated scheme, without credit risk

mitigation, probability of default reaches a maximum around a maximum

leverage of 10, and stays at this high level plateau. In both cases, where

banks use credit risk mitigation techniques, the situation for maximum lever-

age between 1 and 10 is significantly better but get’s much worse above a

maximum leverage of about 15. The perfect hedge scheme performs best

for maximum leverage below 10, because banks restrict their lending policy

more aggressive to an increase in volatility as can be seen in figure 7.1. Both

the Basle scheme and the perfect hedge scheme show a higher probability of

default than the unregulated case, because of the higher cost of capital for

maximum leverage over 10.

Figure 8.5(b) shows the average annualized interest rate if the informed in-

vestor is borrowing from the bank. In the Basle scheme banks apply a mini-

mal fixed credit spread around a benchmark interest rate to cover for unex-

pected losses. This results in higher cost of capital below a maximum leverage

of about 12, in comparison to the perfect hedge scheme, where informed in-

vestors pay for the actual hedging costs of banks depending on leverage and
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volatility. In the Basle scheme banks overestimate the unexpected loss in case

informed investors use low leverage and underestimate it, in case of higher

leverage. Below a maximum leverage of 5 both the perfect hedge and the

unregulated scheme (baseline model) have costs of capital close to zero.

Figure 8.5(c) and (d) show the average annual rate of return of the most

aggressive informed investor and the average annual informed investors man-

agement fee in case the informed investor is in business. As expected, both

figures show that the informed investors in the unregulated scheme have the

best performance because costs of capital is zero. In the unregulated scheme

the rate of return quickly reaches a maximum, around a maximum leverage of

7, and stays at this high level. Because of the management fee, which is pro-

portional to the mean wealth of an informed investor, the informed investors

management salary reaches it’s maximum not below a maximum leverage of

10. Interestingly, in the Basle scheme the rate of return is lower compared to

the unregulated and the perfect hedge scheme, below a maximum leverage

of 10 and higher above a maximum leverage of 15. The informed investors

management on the other hand would always prefer the unregulated or the

perfect hedge scheme. The explanation for this is that the average returns

for an informed investor are higher with lower wealth and market share of all

informed investors. The performance fee in the Basle scheme does not com-

pensate for the lower management fee because of the lower average wealth of

the informed investor.

Figure 8.6(a) shows the asset volatility, figure 8.6(b) the market liquidity.

The standard deviation of log-returns is used as a proxy for asset volatility
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and the average amount of shares traded per time step by an informed in-

vestor as a measure for market liquidity1. As expected, informed investors

have the greatest impact on the volatility and the liquidity in the unregu-

lated scheme, which allows for higher leverage on average. Interestingly, the

impact of the informed investors in the unregulated scheme reaches it’s max-

imum at a low maximum of leverage of around 4. At a maximum leverage

of 2 it surpasses the impact of the regulated schemes. The large increase

at a maximum leverage of 2 is due to short selling, which is not possible

without leverage. Both ways to regulate the market significantly a↵ect both

volatility and liquidity. Informed investors in the perfect hedge scheme, with

cost of capital for the informed investors reflecting the actually used leverage,

have higher impact below a maximum leverage of 10 and a lower for higher

maximum leverage than the Basle scheme. In the perfect hedge scheme the

impact is, due to high cost of capital, decreasing with maximum leverage

above 10.

Figure 8.6(c) shows the excess kurtosis of the log-returns as a measure for

market stability. Again, as expected, informed investors in the unregulated

scheme have the strongest stabilizing influence on the market. Interestingly,

in figure 8.6(d), the average annualized unexpected losses to banks, clearly

shows similar characteristics as shown in figure 8.6(c). As expected, banks,

in the unregulated market, are a↵ected of significantly higher losses due to

the failure of informed investors. This similarity is due to the fact that

large price fluctuations lead to losses for banks because the assets no longer

cover the entire loan. In the perfect hedge scheme banks transfer the risk of

1See (Kerbl 2010): p. 12 for market liquidity.
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unexpected losses to counterparties and do not have to cover for them.
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Chapter 9

Concluding remarks

Econophysics is an interdisciplinary research area using methods from physics,

in particular from statistical mechanics, in order to analyze problems in eco-

nomics and finance. Agent-based models (ABM), which can be used to study

complex systems, are an extension of the famous Ising model, a model of fer-

romagnetism in statistical mechanics. They are a class of computational

models simulating actions and interactions of autonomous agents, which are

employed to study their e↵ects on the system as a whole. With ABMs gain-

ing increasing popularity over the last two decades, they are about to become

an accepted tool for the analysis of economic problems.

In the first part of this work, an overview of ABMs in finance and economics

is presented, in particular di↵erent designs of artificial markets are discussed.

In the second part an ABM is used as a toy model of the financial market to

test the e�ciency and dangers of credit regulation schemes.
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The simulation results showed that Basle-type regulation works fine in sit-

uations of low leverage levels in the financial system, however they become

destabilizing in scenarios with realistic leverage level. Furthermore an “ideal

world”, where all leverage introduced risk is hedged with options was de-

signed. Even by assuming that option writers never default, it turned out

that introducing the heavy requirement of complete hedging does not make

the system systemically more secure.
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Zusammenfassung

Econophysics ist ein interdisziplinäres Forschungsgebiet, in dem Methoden

aus der Physik, insbesondere aus der statistischen Mechanik, angewandt

werden um Probleme im Finanzwesen und in der Ökonomie zu analysieren.

Agenten-basierte Modelle (ABM), welche zur Untersuchung von komplexen

Systemen verwendet werden können, sind eine Erweiterung des bekannten

Ising-Modells, einem Modell des Ferromagnetismus in der statistischen Me-

chanik. Sie sind eine Klasse von Computermodellen zur Simulation von Ak-

tionen und Interaktionen autonomer Agenten, die eingesetzt werden, um de-

ren Auswirkungen auf das System als Ganzes zu studieren. Mit dem zuneh-

mendem Gewinn an Popularität in den letzten zwei Jahrzehnten sind ABMs

dabei, zu einem akzeptierten Instrument für die Analyse von wirtschaftlichen

Problemen zu werden.

Im ersten Teil dieser Arbeit wird ein Überblick über ABMs im Finanzwesen

und in der Ökonomie gegeben, insbesondere werden verschiedene Designs

künstlicher Märkte diskutiert. Im zweiten Teil wird ein ABM als Spielzeug-

Modell des Finanzmarktes genutzt, um die E�zienz und die Gefahren von

Bankenregulierungssystemen für das Kreditwesen zu testen.
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Die Simulationsergebnisse zeigen, dass die Basel-Regulierungsvorschriften gut

in Situationen mit geringem leverage im Finanzsystem funktionieren. In Sze-

narien mit einem realistischeren leverage level haben sie aber destabilisieren-

de Auswirkungen. Auerdem wurde eine “ideale Welt”, wo alle durch leverage

hervorgerufenen Risiken mit Optionen abgesichert werden, entwickelt. Selbst

unter der Annahme, dass Optionsaussteller nie zahlungsunfähig werden, stell-

te sich heraus, dass durch die Einführung einer vollständigen Absicherung das

System nicht systemisch sicherer wird.
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