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Abstract

The heterogeneity in the composition of species and the mix of forest ecosystems of the present 

tropical flora in western Central Africa has been subject of many publications. Most of the authors 

agree on the idea that  changing climatic  conditions in  the past  have led to disturbances that 

subsequently caused different stages in plant succession in the present picture. This work's aim is 

to find out which climatic parameters have a significant impact on the stability of tropical forest 

ecosystems, such as the showcase biome of the Western Congolian Lowland Rainforest (WCLR).

Using  the  stochastic  weather  generator  MarkSim,  climate  time  series  with  quantified 

meteorological parameters, such as the amount and year-to-year variation of annual rainfall, the 

distribution of rainfall within the year and the quality of the cloud cover, are generated. For this 

reason MarkSim is adapted and validated for sites in Gabon where the WCLR-biome is native.

The mechanistic ecosystem model Biome-BGC, parametrized for the WCLR-biome, simulates the 

cycling of water, energy, carbon and nitrogen through different plant compartments and is applied 

to  asses  tropical  forest  ecosystem  stability,  based  on  the  climate  time  series  generated  with 

MarkSim.

The methods developed in the course of this work are applicable to other forest ecosystems and 

can be regarded as an innovative approach to assess the impact of climatic change.
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Zusammenfassung

Die  Heterogenität  der  Artenzusammensetzung,  sowie  der  Waldökosystemgefüge  der  heutigen 

tropischen  Flora  im  westlichen  Zentralafrika  ist  Thema  vieler  Publikationen.  Ein  Großteil  der 

Autoren gibt Veränderungen des Klimas, welche in Folge zu Störungen dieser Systeme führten, 

die Verantwortung für die heute bestehenden unterschiedlichen sukzessionalen Stadien tropischer 

Wälder.  Zielsetzung  dieser  Arbeit  ist  es,  anhand  des  Beispielbioms  Westkongolesischer 

Tieflandregenwald  (WCLR)  den  Einfluss  klimatischer  Parameter  auf  die  Stabilität  tropischer 

Waldökosysteme zu untersuchen.

Der stochastische Wettergenerator MarkSim wird benutzt um Klimazeitserien mit  quantifizierten 

klimatischen  Parametern,  wie  die  Gesamtniederschlagsmenge,  die  jährliche  Variation  des 

Niederschlags, die Verteilung des Niederschlags über das Jahr sowie die Art der Wolkendecke, zu 

generieren.  Zu  diesem Zeck  wird  MarkSim  für  Gabun,  welches  das  WCLR-Biom  beheimatet, 

adaptiert und validiert. 

Das für das WCLR-Biom parametrisierte mechanistische Ökosystemmodell Biome-BGC simuliert 

die Kreisläufte von Wasser, Energie, Kohlenstoff und Stickstoff durch unterschiedliche Bestandteile 

eines Waldökosystems, und wird zur Abschätzung der Stabilität solcher Systeme basierend auf 

den zuvor generierten Klimaten herangezogen. 

Die  im  Zuge  dieser  Arbeit  entwickelten  Methoden  lassen  sich  auch  auf  andere  Typen  von 

Waldökosystemen übertragen und können als innovativer Ansatz zur Bewertung des Einflusses 

klimatischer Veränderungen auf diese Systeme erachtet werden. 
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 1  Introduction

 1.1  Background
Putting our focus on African tropical regions, including Southern Cameroon, Gabon and Congo as 

far as the eastern Congo Basin (figure 1.1), different authors have documented the heterogeneity 

in  the  composition  of  species  of  the  present  tropical  flora  for  this  region.  One  can  observe 

evergreen forests as well as forests of type semi-deciduous, savannas and typical for some areas: 

forest-savanna mosaics, with pioneer species on their lines of intersection. Most of the authors 

agree on the idea that  changing climatic  conditions in  the past  have led to disturbances that 
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Figure 1.1: Vegetation map of eastern Central Africa (source:  Joint Research Center). 1. Monte Alén-Monts de Cristal 

Landscape ; 2. Gamba-Mayumba-Conkouati Landscape; 3. Lopé-Chaillu-Louesse Landscape; 4. Dja-Odzala-Minkébé 

(Tridom) Landscape; 5. Sangha Tri-National Landscape; 6. Léconi-Batéké-Léfini Landscape ; 7. Lake Télé-Lake Tumba 

Landscape; 8. Salonga-Lukenie-Sankuru Landscape; 9. Maringa-Lopori-Wamba Landscape; 10. Maiko-Tayna-Kahuzi-

Biega Landscape ; 1. Ituri-Epulu-Aru Landscape; 12. Virunga Landscape. 



subsequently caused different stages in plant succession in the present picture (Elenga et al.,1994; 

Reynaud-Farrera et al., 1996; Zogning et al., 1997; Maley & Brenac, 1998a). 

To trace down the effect of climate change on vegetation, interpreting the “stratification of fossil 

pollen  records  and  other  metabolic  proxies”  (Leal,  2004),  which  can  help  to  determine  the 

dominant species of the period of deposition, has become very popular (Ngomanda, 2005; Maley,

2001). Additionally lake level reconstructions based on similar methods can provide estimates of 

rainfall on a decadal or centennial scale. Especially J. Maley (Maley, 1997 and 2001), as well as A. 

Ngomanda (Ngomanda et al., 2009) have given rise to the idea, that not only a change in the total 

amount of rainfall, or the year-to-year variation of rainfall (which is hard to determine considering 

the rather rough resolution of paleo-climatic reconstructions), but also a shift in the distribution of 

rainfall within the year could have led to catastrophic events, such as massive forest break down in 

the past, as documented for about 3000-2500 BP by Maley, 2001 and Ngomanda, 2005.

The present-day climate dynamics for this region can be connected to sea surface temperatures 

(SST) which are controlled by the interaction of the Benguela Current (cold water) and the Gulf of 

Guinea (relatively warm water): If the cold water from the Benguela current is able to reach the sea 

surface (“upwelling”), which is usually the case during the long dry season in boreal summer, the 

humidity gradient is reversed as evaporation is replaced by condensation, which influences the 

direction of convection and as a result facilitates the formation of a stratiform cloud cover (Flohn,

1983). Stratiform clouds of this kind are usually non-precipitant and can therefore persist through 

out the whole dry season, which significantly reduces the amount of incident solar radiation and 

thereby also temperature and evaporation. Different records of SST from 1963-1975 (Maley, 1997) 

prove the existence of anomalies in the Gulf of Guinea expressed as year-to-year fluctuations of 

SST of several degrees Celsius. Years have been recorded where the  absence of the upwelling of 

cold water inhibited the formation of stratiform clouds, and lead to the generation of cumuliform 

clouds,  which goes hand in hand with an increase of  annual  rainfall,  solar  radiation  and also 

evaporation. A shift in the interaction of the two currents on a larger temporal scale could therefore 

have led to a change in the quality of the dry season and the distribution of rainfall during the year 

(Maley, 2001). 

We can summarize that the climatic factors that might have disturbed forest growth in the past can 

be cut down to the amount of annual rainfall, the distribution of rainfall within the year, the year to 

year variation of precipitation and also the role of the cloud cover, influencing solar radiation input, 

temperature and evaporation. Ecosystem behavior of the Western Congolian Lowland Rainforest 

(Gabon) under different climatic setups will be subject of this work, based on generated climate 

and ecosystem model simulations. 
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 1.2  Availability of climate records in Gabon
Gabon is a Central African state where, according to J.D. Maloba Makanga (Maloba Makanga,

2010),  climatological  or  meteorological  research  as  well  as  weather  forecasting  face  two 

fundamental  problems:  Not  only  the bad quality  of  archived data,  but  also  the low density  of 

weather stations available. Actually, only 14 out of 97 stations in Gabon, a country with about three 

times the size  of  Austria  (where more than 260 weather  stations take measurements of  daily 

precipitation, minimum and maximum temperature), can be accounted for as “synoptic stations”, 

where several weather variables are registered – most of the others only consist of a pluviometer 

or rain gauge, an instrument to capture and measure precipitation. Heterogeneity concerning the 

periods of observation in different stations make the recorded data in the most part unsuitable for 

interpolation. Furthermore 83% of all weather stations were installed between 1950 and 1959 and 

since the 1980ies we register a declining number of weather stations in Gabon. 

Generally, considering homogeneous landscape, one precipitation station within a region of 100 

km², one thermo-hygrometric station measuring temperature and humidity for 500 km² and one 

station capturing air  pressure,  wind speed and solar  radiation or  insolation in  about  5000 km² 

should be sufficient for regional studies, if the observation period covers at least 30 consecutive 

years  (according  to  the World  Meteorological  Organization).  For  more  complex  terrain,  taking 

Austria's mountainous regions as an example, a considerably higher density of weather stations is 

crucial for a detailed description of a local climate. Taking into account that 14 synoptic stations 

register data more or less frequently all over the country, the observation network is very weak, 

speaking of one station on an average of 19000 km²! Hence, according to the former director of  

Gabon's  National  Meteorological  Service  (“Service  Nationale  de la  Météorologie”),  the  country 

requires an increase in the number of weather stations that at least doubles the current amount 

(Maloba Makanga, 2010). 
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 2  Goals
This work's main focus is put on the stability of tropical forest ecosystems, like those described in 

the  introduction.  We  want  to  uncover  climatic  triggers  for  system  break  down,  and  develop 

mechanisms  to  quantify  criteria  for  stability  or  resilience.  To  force  a  shift  towards  unstable 

conditions,  different  climatic  setups  will  be  applied  to  an  ecosystem  model,  that  has  been 

parametrized for the Western Congolian Lowland Rainforest which was shown to have existed for 

several  thousand years (Pietsch,  Tanga and Ngok-Banak,  2009),  including those years where 

surrounding  forest  ecosystems  faced  massive  break  down  or  a  change  in  their  species 

composition (~2500 BP). Since tropical climate only exhibits minor differences in temperature in 

the course of the year, the meteorological parameters we want to investigate include the amount of 

annual  precipitation,  the  distribution  of  rainfall  within  a  year  (which  can  be  connected  to  the 

duration of the long dry season), and the year-to-year variation of precipitation, as well as the role 

of the cloud cover (cumuliform vs. stratiform). In order to customize these climatic conditions we 

will not use real climate, as recorded from a weather station, but need to make use of a stochastic 

weather generator. MarkSim is a weather generator that has been validated for various tropical 

regions around the world (Jones and Thornton, 2000), and that we will use for our research. First 

MarkSim will be tested with respect to precipitation, temperature and solar radiation for several 

sites in Gabon, Central Africa, where the eco-physiological parameters for Biome-BGC, the forest 

ecosystem model of our choice (Thornton, 1998; Thornton et al., 2002; Pietsch et al. 2003; Pietsch

and Hasenauer 2006), have been measured and validated (Gautam and Pietsch, 2011 submitted). 

The quality of generated weather data for Gabon will then be compared with generated climate 

from other  tropical  sites in  Africa and South America.  Since the long dry season in  Gabon is 

marked  by  a  continuous  stratiform  cloud  cover  causing  the  lowest  amount  of  incident  solar 

radiation and coolest  temperatures during the year,  there is a possibility  that MarkSim creates 

biased  estimates  of  solar  radiation  and  maximum  temperature  (which  is  derived  from  solar 

radiation) for this region. In a global context this cloud cover is a rather local phenomenon, and a 

bias  could  result  from  the  procedure  how  solar  radiation  is  calculated:  The  reduction  of 

extraterrestrial  radiation  to  global  radiation,  in  MarkSim  only  depends  on  the  appearance  of 

precipitation. If  we detect discrepancies in generated and observed maximum temperature and 

solar radiation, we will adapt MarkSim to fit accordingly. We will develop extensions for the weather 

generator that will allow us to customize climate, by defining the amount of annual precipitation, the 

duration of the dry season and the year-to-year variation of rainfall, without changing MarkSim's 

site  specific  parameters  that  determine  daily  precipitation  patterns,  and  thereby  patterns  of 

temperature and solar radiation. Furthermore, we will introduce a way of generating paleo time 

series  and  climate  change  time  series  of  daily  weather.  Generating  vast  amounts  of  climatic 

setups, including low precipitation regimes and climates exhibiting very long dry seasons of up to 
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half  a  year,  these data will  be used for  Biome-BGC simulations to spot  unstable regions and 

triggers for system break down in a statistical approach. The dependence of quantified measures 

of stability on well-defined climatic conditions will be investigated in the final section.

The working steps of this thesis can be summarized as follows:

1) a) MarkSim will  be introduced as one possibility to create daily climate data for tropical 

Africa.  The weather generator will be validated and adapted for sites in Gabon (chapter 5.1 

- Validating and correcting stochastic climate for Gabon).

b)  Further  methods will  be introduced to customize climates with quantitatively  defined 

meteorological parameters (chapter 5.2 - Customizing climate for BGC-simulations ).

2) Using  the  mechanistic  ecosystem  model  Biome-BGC  and  applying  large  amounts  of 

climate time series, ecosystem stability under different climatic conditions will be tested and 

according climatic thresholds will  be identified (chapter  6.1 -  Testing ecosystem stability

under different climatic conditions).
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 3  Methods
The computational methods utilized within this work comprise the stochastic weather generator 

MarkSim and the mechanistic ecosystem-model Biome-BGC. Statistical  methods necessary for 

evaluations and validations are illustrated in APPENDIX B. 

 3.1   Weather generators
Weather  data  originating  from a stochastic  weather  generator  are commonly  produced in  two 

steps:  First,  using  the  usually  site  specific  statistical  characteristics  of  one  variable,  e.g. 

precipitation (Richardson,  1981;  Jones and Thornton,  1993) or  temperature (Strandman et  al.,

1993) a time series of desired length on a daily scale is modeled including a stochastic element, 

such as a Markov chain approach. Next, all remaining variables, like daily maximum and minimum 

temperature, solar radiation, wind speed etc., are computed according to their correlations with the 

initially generated variable and the correlations with each other.  A set  of  parameters for  every 

month is required to reflect the seasonal trend of a generated year. The most typical approach, 

however, follows the Richardson model (Richardson, 1981), where missing weather variables are 

generated depending on the occurrence or non-occurrence of precipitation. One criticism of this 

approach is that solar radiation and maximum temperature strongly depend on the occurrence of 

significant cloud, which is not necessarily linked to precipitation (Hutchinson, 1995). Further, as 

described  by  Jones  and  Thornton  (Jones  and  Thornton,  1993),  both,  the  Richardson  model 

(Richardson,  1981)  and  their  own  precipitation  model,  based  on  a  third  order  Markov  chain 

approach, fail to mimic adequately the length of dry or wet periods. Later, however, their model 

gave rise to the commercial weather generator MarkSim (Jones and Thornton, 2000). Examples 

for other weather generators are WGEN (Soltani et al., 2000) and an approach by Durban and 

Glasbey (Durban and Glasbey, 2001). Anyway, weather generators are not to be confused with 

climate interpolation tools, where geostatistical interpolation methods, such as kriging (Krige, 1951; 

Delfiner and Delhomme, 1975), thin plate smoothing splines (e.g.  Hutchinson, 1995;  Price et al.,

2000) or a weighted Gaussian filter (Thornton et al., 1997, Hasenauer et al., 2003) create weather 

data for a specific site based on the data available in surrounding weather stations. 

 3.1.1  Why to use weather generators?
There are situations when the use of a weather generator remains the only option. Usually the 

motive to use a weather generator is limited availability of recorded data for the site of interest 

(Jones and Thornton, 1997). The constraints can be of different nature: 

1. Limited number of weather variables in the database: While daily temperature and 

precipitation measurements may be available from official weather stations, humidity 

(VPD) or solar radiation are restricted to a small number of stations, and may have 
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to  be  estimated  as  functions  of  the  available  variables.  In  this  case  just  some 

structural parts of the weather generator would be required to calculate the missing 

variables. 

2. Limited  number  of  years  with  climate  records,  or  missing  data  in  the  record: 

Concerning weather variability a large number, usually a minimum of 30 recorded 

years (suggested by the World Meteorological Organization) is crucial in order to 

describe the climatic state of a site of interest including most of its variability.

3. Inappropriate temporal  scale:  Often weather data is  only available on a monthly 

scale  which  may  be  insufficient  for  many  research  applications.  Daily  values 

therefore have to be generated using some sort of stochastic approach. 

4. Insufficiently dense network of weather stations and lack of interpolation facilities.

For our research, however, it might be sufficient, and the only choice we have, to use a weather 

generator. One assumption that justifies the use of a weather generator is that for assessing the 

qualitative behavior of an ecosystem, realistic, but not necessarily real weather data are required. 

This implies, that we are not necessarily interested in the exact daily,  monthly or even annual 

values, as long as weather patterns (duration and variability of the length, onset and ending of the 

dry season, number of dry vs. wet days, amount of precipitation on a wet day, etc.) are close to the 

real conditions, and the trend over decades is reasonable. We will even profit from the ability to 

customize our  own climate,  to  test  ecosystem robustness  or  stability  under  climatic  stress  or 

climate change conditions, which would not easily be possible with real weather data from the last 

50 to 60 years.  As this work goes hand in hand with the effort of a group of researchers at the 

Institute of Forest Growth Research, University of Natural Resources and Life Sciences Vienna, to 

model  the  Western  Congolian  Lowland  Rainforest  and  savanna  ecosystems  and  since  the 

simulation software of choice, namely Biome-BGC (Thornton, 1998; Thornton et al., 2002; Pietsch

et al. 2003; Pietsch and Hasenauer 2006) requires, among other parameters, daily weather input 

data  and  because  climate  records  in  Gabon  are  of  insufficient  quality  for  the  analytic  work 

performed  in  the  course  of  this  thesis,  we  chose  to  generate  climate  time  series  using  the 

probabilistic weather generator MarkSim:

 3.1.2  MarkSim: A probabilistic weather generator
MarkSim's core algorithm is a rainfall generator based on a 3rd order Markov Chain approach to 

estimate daily precipitation values, extensively tested for applications within tropical regions (Jones

and Thornton, 1993, 1997 and 2000). The occurrence and amount of rain on the last three days 

together with site specific parameter sets and a stochastic element decide upon the quality of an 

event on the present simulation day, while the amount of rain on a wet day is derived from a 
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truncated gamma distribution. Based on whether a day is dry or wet, daily maximum and minimum 

temperature are generated using the DSSAT weather generator (Pickering et al., 1994) based on 

routines of Richardson (Richardson, 1985) and Geng et al. (Geng et al., 1988). Therefore long-

term monthly mean values are needed as input parameters. These climate normals are computed 

through  an  interpolation  procedure,  using  data  from  about  10.000  weather  stations  for  Latin 

America, 7000 for Africa and 4500 for Asia creating climate surfaces over a digital elevation map. 

Each set of surfaces comprises monthly precipitation, monthly average temperature, and monthly 

average diurnal temperature range. In order to generate solar radiation, a procedure suggested by 

Donatelli and Campbell (Donatelli and Campbell, 1997) is applied which reduces potential, or extra 

terrestrial radiation outside the earth's atmosphere by a transmissivity coefficient to an estimate of 

solar radiation on the earth's surface. Potential radiation is a function of the declination, the day of 

the year, and the latitude. Clear sky transmissivity, daily maximum and minimum air temperature 

and two empirical parameters define actual transmissivity, a further reduction of solar radiation is 

then performed on wet days. 

Further information about MarkSim is provided in APPENDIX A. 

 3.2  Biome-BGC: A biogeochemical ecosystem model
For  our  studies  we  used  the  terrestrial  ecosystem  model  Biome-BGC 4.1.1  (Thornton,  1998; 

Thornton et al., 2002; Pietsch et al. 2003; Pietsch and Hasenauer 2006).

Biome-BGC is a mechanistic computer model simulating pools and fluxes of mass and energy for 

different vegetation compartments (leaf, root, stem) and other external storages (e.g. soil, litter) on 

a daily basis. Biomass can therefore be seen as evenly spread over the whole environment: the 

unit for total carbon content, for example, is given in kg / m².

The most important structural parts of this ecosystem model include the leaf area index (LAI), 

which is the ratio of the total one-sided leaf surface and the ground surface on which vegetation is 

growing. LAI controls canopy radiation absorption and thereby influences photosynthesis, water 

interception from rainfall, and litter inputs, having a direct impact on decomposition. GPP (gross 

primary production) is calculated via a routine suggested by Farquhar et al. (Farquhar et al., 1980), 

NPP (net primary production) is GPP minus autotrophic respiratio. Autotrophic respiration is split 

into  maintenance  respiration  and  growth  respiration  which  refers  to  the  release  of  CO2 for 

generating energy and other metabolic intermediates to maintain a healthy state or to support plant 

growth,  respectively.  Maintenance  respiration  depends  on the  concentration  of  tissue  nitrogen 

(Ryan,  1991),  whereas  growth  respiration  is  a  function  of  carbon  allocated  to  different  plant 

compartments. Carbon not consumed by autotrophic respiration (NPP) is dynamically allocated to 

leaf, root and stem pools regarding the availability of and competition for nitrogen.
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The  model  requires  certain  inputs,  which  include  daily  weather  data,  such  as  minimum  and 

maximum temperature, solar radiation, precipitation and vapour pressure deficit. Further, elevation, 

aspect, physiological soil properties, atmospheric CO2 and nitrogen deposition as well as a set of 

eco-physiological parameters are required to compute: “daily canopy interception, evaporation and 

transpiration;  soil  evaporation,  outflow,  water  potential  and  water  content;  LAI;  stomatal 

conductance and assimilation of sunlight and shaded canopy fractions; growth and maintenance 

respiration; GPP and NPP; allocation; litter-fall and decomposition; mineralization, denitrification, 

leaching and volatile losses” (Pietsch and Hasenauer, 2002). 

Biome-BGC is a dissipative dynamical system with persisting energy input through solar radiation, 

and energy losses mainly through latent heat by plant transpiration and soil evaporation. Note, that 

energy lost this way is not transferred to another form of energy, as it does not have any effect on 

the micro climate (i.e.  on vapour  pressure deficit  or  temperature).  In this  study we used eco-

physiological  parameters  for  the  Western  Congolian  Lowland  Rainforest  biome established  by 

Gautam and Pietsch, 2011 submitted.

To perform a simulation using Biome-BGC the model is usually initialized with little leaf carbon on 

which  growth  is  based.  Biomass  is  accumulated  depending  on the quality  of  the  climate.  By 

definition a stationary state is reached as soon as fluctuations in the soil carbon pool, which is the 

slowest changing pool, are reduced to a minimum. In most of the cases measurements are taken 

as soon as the system is stationary. Unfavourable climate, however, can also lead to system break 

down characterized by a leaf carbon pool carrying so little carbon, that growth in the next season is 

inhibited, which immediately results in zero productivity. Leaf C is then set to zero once passing a 

certain threshold. Another option to initialize a simulation is offered by using a so-called “restart-

file”, where all necessary information about a system state to start from are stored. 
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 4  Data
This chapter lists data from literature and weather stations required for the validation of MarkSim. 

All data required for the BGC simulations will be provided later in chapter 5.2 (Customizing climate

for BGC-simulations ). 

Generated data comes from a series of 99 simulation years (the maximum number of years that 

can be generated during one MarkSim simulation with one simulation seed), monthly mean values 

are computed from daily values. MarkSim's output provides maximum temperature (tmax) [°C], 

minimum  temperature  (tmin)  [°C],  precipitation  (prcp)  [mm/month]  and  solar  radiation  (srad) 

[MJ/m²/day].  For  the  evaluation  we  chose  13  sites  from  Gabon,  were  longitude,  latitude  and 

elevation correspond to weather stations found at the specific site (Maloba Makanga, 2010, p.25) 

and 6 international sites in tropical regions. The determination of elevation of the international sites, 

is based on MarkSim's digital elevation map (DEM).
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Table  4.1:  Coordinates  and  elevation  of  weather  stations  in  

Gabon, from Maloba Makanga 2010, p.25 (*sites where long term 

data in monthly resolution is available)

SITE LATITUDE LONGITUDE ELEVATION
m.a.s.l

1 Bitam 02°05' N 11°29' E 600
2 Cocobeach 01°00' N 09°36' E 8
3 Franceville 01°38' S 13°34' E 424
4 Lambaréné 00°43' S 10°14' E 26
5 Lastoursville* 00°50' S 12°43' E 483
6 Libreville 00°27' N 09°25' E 12
7 Makokou 00°34' N 12°52' E 513
8 Mayumba 03°25' S 10°39' E 31
9 Mékambo 01°01' N 13°56' E 499
10 Mitzic 00°41' N 11°32' E 583
11 Mouila* 01°52' S 11°01' E 88
12 Port-Gentil 00°42' S 08°45' E 3
13 Tchibanga 02°51' S 11°01' E 83
14 Moanda* 01°32' S 13°16'30'' E 572

Table 4.2: Coordinates and elevation of international tropical sites that  

will be used in an evaluation in chapter 5.1.
SITE LATITUDE LONGITUDE ELEVATION

[°N] [°W] [m.a.s.l.]
15 Mombasa, Kenia -4,1 39,7 61
16 Nairobi, Kenia -1,3 36,8 1661

2,1 45,3 12
-3,7 37,7 300
4,6 -74,1 2640

-3,1 -60,0 92

17 Mogadishu, Somalia
18 Usangi, Tanzania
19 Bogotá, Colombia
20 Manaus, Brazil



Additionally  recorded  weather  data  from  1961  to  2000  of  three  weather  stations  in  Gabon 

(Moanda, Lastoursville, Mouila) were available in monthly resolution. The measured variables are 

tmax [°C], tmin [°C], prcp [mm/month] and insolation, or sun shine hours [hrs/month], which makes 

a direct comparison of incident solar radiation difficult. Due to years of missing observation, some 

of the recorded data sets are fairly short (~25 years). Data sets that differ in size from N=40 years 

are: Lastoursville: prcp (N=25), Moanda: prcp (N=29), insolation (N=34), Mouila: prcp (N=35).  In 

Mouila, however, no insolation has been recorded at all.

Monthly mean values of the measured variables as well a quartile analysis of the annual values 

(mean,  median,  minimum,  25%-quartile,  75%-quartile,  maximum)  for  Moanda,  Mouila  and 

Lastoursville are provided in tables 4.3 and 4.6 to 4.12 below. Further a similar representation of 

annual precipitation of 13 sites in Gabon (table 4.5) derived from Maloba Makanga, 2010, will be 

utilized for the evaluation of rainfall distributions.   
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Figure 4.1: Map of tropics in and outside of Gabon, as listed in table 4.1 and 4.2, Latin American & western African sites 

(blue, 16-20), Gabonese sites from Maloba Makanga 2010, p.25 (red, yellow, green; 1-14), Gabonese sites used for 

comparison in section 5 (yellow & green), sites where long-term weather data are available (green). 

Table 4.3: Annual precipitation mean, median, minimum and maximum value, 25%-quartile (Q1) and 75%-quartile (Q3)  

derived from long term data of three weather stations. Relative minimum, maximum, Q1 and Q3 in percent of the median  

(min%, max%, Q1% and Q3%, respectively), all values either in mm/yr or percent. Number of recorded years (N) within  

recording period from 1961 to 2000. 
Annual precipitation [mm/yr]

Site mean median min Q1 Q3 max min% Q1% Q3% max% N
Lastoursville 1317 1172 799 975 1535 2304 68 83 131 197 25
Moanda 1940 1974 777 1792 2221 3048 39 91 113 154 29
Mouila 2069 1988 1079 1755 2352 3473 54 88 118 175 35



Note the difference of the median of annual precipitation for Lastoursville, derived from the weather 

station data (1172 mm/yr) and from literature (1778 mm/yr). The recorded data set with the lower 

value, however, has only 25 recorded years in the period from 1961 to 2000. Bad recording quality 

might also be the reason why Lastoursville is the only site where annual rainfall is not normally 

distributed, as suggested by the Shapiro-Wilk test at a 95% level of significance. Computing the 

relative standard deviation using the literature mean yields a reasonable result of SD=25.6%.
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Table  4.4:  Annual  precipitation  tested  for  normality  (SW-test,  p-value),  

standard  deviation  in  %  of  the  mean,  number  of  records  (N)  within  

recording period from 1961 to 2000. 
Variation of annual precipitation [mm/yr]

Site SW-test (p-val) SD% N
Lastoursville 0,01 34,5 25
Lastoursville * 25,6 25
Moanda 0,52 24,1 29
Mouila 0,56 24,4 35
* literature mean of 1778 mm/yr was taken to compute relative SD

Table 4.5: Literature values of annual precipitation for sites in Gabon, after Maloba Makanga (2010), p. 83 and 

86.  Median,  minimum and maximum value,  25%-quartile  (Q1)  and 75%-quartile (Q3).  Relative minimum,  

maximum, Q1 and Q3 in percent of the median (min%, max%, Q1% and Q3%, respectively), all values either  

in mm/yr or percent. Recording period from 1951 to 1990. 

Q1 Q3 Q1% Q3%
1735 1210 1555 1831 2526 70 90 106 146
3242 1668 2646 3570 4715 51 82 110 145
1870 1193 1733 2055 2333 64 93 110 125
1961 1397 1825 2148 2721 71 93 110 139
1778 851 1561 1955 2422 48 88 110 136
2840 1857 2506 3265 3981 65 88 115 140
1693 1285 1521 1866 3209 76 90 110 190
1801 746 1493 2109 2875 41 83 117 160
1610 947 1428 1820 2184 59 89 113 136
1772 787 1544 1853 2412 44 87 105 136
2205 1325 1891 2388 3006 60 86 108 136
1976 1149 1683 2304 3099 58 85 117 157
1465 802 1243 1577 1954 55 85 108 133

Literature annual precipitation [mm/yr]
Site median min max min% max%
Bitam
Cocobeach
Franceville
Lambaréné
Lastoursville
Libreville
Makokou
Mayumba
Mékambo
Mitzic
Mouila
Port-Géntil
Tchibanga
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Table  4.6: Mean monthly precipitation and standard deviation (sd) derived 

from data of three weather stations in mm/month. For number of recorded  

years (N) refer to table 4.3.

Jan 91 67 172 80 202 104
117 83 183 81 242 167
173 89 249 104 230 104
166 95 252 154 232 95
183 87 194 121 163 74
42 52 46 53 23 41
5 8 11 18 6 9

Aug 14 27 16 23 8 7
108 73 102 54 49 73
177 131 264 135 310 155
144 128 267 135 367 153
96 85 184 90 235 87

Monthly precipitation [mm/month]
Lastoursville Moanda Mouila

mean sd mean sd mean sd

Feb
Mar
Apr
May
Jun
Jul

Sep
Oct
Nov
Dec

Table  4.9: Annual minimum temperature mean, median, minimum and maximum value, 25%-quartile (Q1) and 75%-

quartile (Q3) derived from data of three weather stations. Relative minimum, maximum, Q1 and Q3 in percent of the  

median (min%, max%, Q1% and Q3%, respectively), all values either in °C or percent. Number of recorded years (N)  

within recording period from 1961 to 2000. 
Annual average minimum temperature [°C]

Site mean median min Q1 Q3 max min% Q1% Q3% max% N
Lastoursville 20,6 20,2 19,2 19,8 21,3 23,5 95 98 105 116 40
Moanda 19,9 19,9 19,0 19,6 20,1 20,9 96 98 101 105 40
Mouila 22,1 22,1 21,4 22,0 22,3 22,7 97 99 101 103 40

Table  4.7: Annual maximum temperature mean, median, minimum and maximum value, 25%-quartile (Q1) and 75%-

quartile (Q3) derived from data of three weather stations. Relative minimum, maximum, Q1 and Q3 in percent of the  

median (min%, max%, Q1% and Q3%, respectively), all values either in °C or percent. Number of recorded years (N)  

within recording period from 1961 to 2000. 
Annual average maximum temperature [°C]

Site mean median min Q1 Q3 max min% Q1% Q3% max% N
Lastoursville 28,3 28,2 27,6 28,1 28,5 29,1 98 100 101 103 40
Moanda 28,4 28,3 27,3 28,1 28,8 29,5 96 99 102 104 40
Mouila 30,4 30,3 29,5 30,1 30,7 31,1 97 99 101 103 40

Table 4.8: Mean monthly maximum temperature and standard deviation (sd) 

derived  from data of  three  weather  stations in  °C.  Number  of  recorded  

years (N) = 40.

Jan 28,8 0,7 28,8 0,7 31,4 0,6
29,5 0,6 29,6 0,7 32,1 0,6
29,9 0,7 30,0 0,7 32,3 1,0
29,7 0,7 29,9 0,7 32,5 0,7
28,8 0,8 28,9 0,6 31,0 1,1
27,1 0,6 27,2 0,7 28,3 0,8
25,6 0,8 26,3 0,6 27,2 0,9

Aug 26,1 0,7 26,9 0,5 27,5 0,6
28,3 0,6 28,2 0,6 29,4 0,6
28,6 0,5 28,6 0,6 30,9 0,6
28,5 0,5 28,5 0,9 31,0 0,6
28,2 0,6 28,1 1,1 30,7 0,9

Monthly maximum temperature [°C]
Lastoursville Moanda Mouila

mean sd mean sd mean sd

Feb
Mar
Apr
May
Jun
Jul

Sep
Oct
Nov
Dec
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Table  4.10: Mean monthly  minimum temperature and standard deviation  

(sd) derived from data of three weather stations in °C. Number of recorded  

years (N) = 40.
Monthly minimum temperature [°C]

Lastoursville Moanda Mouila
mean sd mean sd mean sd

Jan 21,2 1,2 20,3 0,4 22,7 0,5
Feb 21,1 1,3 20,3 0,6 22,6 0,6
Mar 21,1 1,2 20,3 0,6 22,6 0,5
Apr 21,3 1,4 20,5 0,5 22,8 0,4
May 21,0 2,1 20,4 0,5 22,9 0,4
Jun 20,2 1,0 19,4 0,5 21,4 0,6
Jul 19,2 1,0 18,6 0,7 20,1 0,6
Aug 19,5 1,0 19,0 0,6 20,6 0,6
Sep 20,4 1,0 19,7 0,4 21,9 0,5
Oct 20,7 1,2 19,9 0,4 22,6 0,3
Nov 20,8 1,3 19,9 0,4 22,5 0,4
Dec 20,9 1,3 20,1 0,5 22,6 0,4

Table  4.11: Hours of sunshine per month mean, median, minimum and maximum value, 25%-quartile (Q1) and 75%-

quartile (Q3) derived from data of two weather stations. Relative minimum, maximum, Q1 and Q3 in percent of the  

median (min%, max%, Q1% and Q3%, respectively), all values either in hrs/month or percent. Number of recorded years  

(N) within recording period from 1961 to 2000. 
Average hours of sunshine per month

Site mean median min Q1 Q3 max min% Q1% Q3% max% N
Lastoursville 131 130 107 124 137 157 82 95 106 121 40
Moanda 123 125 99 114 131 141 79 91 104 112 34

Table 4.12: Hours of sunshine per month and standard 

deviation (sd) derived from data of two weather stations  

in °C. For number of recorded years (N) refer to table  

4.11.
Hours of sunshine per month

Lastoursville Moanda
mean sd mean sd

Jan 151 26 142 19
Feb 154 24 138 21
Mar 166 20 154 20
Apr 160 20 144 24
May 146 27 131 27
Jun 119 28 96 30
Jul 82 24 94 25
Aug 74 23 82 23
Sep 108 16 97 21
Oct 135 16 127 17
Nov 138 21 139 16
Dec 139 25 137 20



 5  Analysis and improvements
MarkSim has been introduced as the method of choice to produce daily weather data required for 

the assessment of ecosystem stability using Biome-BGC. This chapter addresses the evaluation of 

generated weather and the provision of long-term climate time series needed for simulations using 

Biome-BGC. This part of the work can be structured as follows:

1) First, in chapter 5.1 - Validating and correcting stochastic climate for Gabon - daily weather 

variables will be examined, and adapted if necessary. Results will be validated using data 

from  three  weather  stations  in  Gabon.  The  distribution  of  annual  rainfall  of  generated 

climate will then be compared to literature values. 

2) Second, in chapter 5.2 - Customizing climate for BGC-simulations  - we will provide long-

term  climate  time  series  for  the  BGC-simulations  (in  chapter  6.1 -  Testing  ecosystem

stability  under  different  climatic  conditions).  Since we want  to  determine thresholds  for 

ecosystem stability it is important that the exact value for mean annual precipitation as well 

as its variation and the distribution of rainfall within the year are parameters that we are 

able to define and alter in a quantified way.

 5.1  Validating and correcting stochastic climate for Gabon
First,  it  will  be  illustrated that  discrepancies  in  solar  radiation  and maximum temperature is  a 

problem typical for Gabon, comparing MarkSim's climate normals with the actual simulation output. 

As  we  will  show  MarkSim  produces  contradictory  results  for  solar  radiation  and  maximum 

temperature,  while  precipitation  and  minimum  temperature  seem  reasonable.  A  correction 

procedure  for  maximum  temperature  and  solar  radiation  on  a  daily  basis  is  introduced  in 

APPENDIX C. For sites within Gabon generated weather output will be tested against the climate 

normals to underline need for a correction procedure. 

 5.1.1  Comparison of international tropical sites with sites in Gabon
In this section the focus is put on the main meteorological variables (precipitation = prcp, minimum 

temperature = tmin, maximum temperature = tmax and incident solar radiation = srad), and how 

well generated weather data fits to MarkSim's intrinsic climate normals (CLX vs. WTG, APPENDIX 

A). It is crucial to understand that no external data are used for this comparison, all information 

comes  from MarkSim itself.  A measure  for  the  seasonality,  as  described  in  APPENDIX  B,  is 

Pearson's  correlation  coefficient  r.  For  this  test  we  expect  r  values  close  to  +1  (proper 

representation of seasonality), close to -1 (inverse representation of seasonality) or close to zero 

(no correlation at all). The deviation of monthly predictions from climate normals is given by the 

residual D, its standard deviation SD, 95%-confidence interval CI and 95%-prediction interval PI. 

D, SD, CI and PI all have the same unit as the variable in question. If the data set fails the Shapiro-
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Wilk-test (Shapiro and Wilk, 1965: p < 0.05), i.e. they are not normally distributed, then CI and PI 

will be determined using the trimmed estimates for the bias DT according to Rauscher, 1986, and 

instead of performing a t-test, a non-parametric test, namely the U-test (Wilcoxon, 1945; Mann and

Whitney  1947)  will  be  applied.  Monthly  averages  of  each  sample  are  computed  from  N=99 

generated years. For the comparison we chose six sites from tropical regions in western Africa and 

Latin  America,  and  nine  sites  within  Gabon that  cover  most  of  the  country's  climatic  regions 

(Maloba Makanga, 2010; see Figure 4.1). All results are derived from uncorrected MarkSim output.

Note, that while making a comparison between simulation output and climate normals, 12 monthly 

residuals averaged to form one annual residual, which can be either biased or unbiased. Whether 

this annual residual is biased or not, does not tell us how each predicted monthly value mimics its 

corresponding climate normal. But we can interpret the statistics as follows: If the generated data 

fit well to the according climate normals, we will obtain a narrow confidence interval, and no bias. If 

the seasonal trend of the generated data and the climate normals diverge, we might get a wider 

confidence  interval  since  the  residuals  contributed  by  each  month  differ  highly  in  size,  also 

resulting in unbiased annual means.  If  for  example,  the generated data are able to mimic the 

seasonal  trend,  but  overestimate the climate normal  by the same amount in each month,  this 

results  in  a  biased  annual  mean  since  the  confidence  interval   becomes  narrow.  Therefore 

“unbiased” results do not always indicate good quality of prediction vs observation (or simulation 

output and climate normal). A “biased” output, on the other hand, does not tell us that the data are 

useless, since we can account for an over- or underestimation by redefining the climate normals, if 

the bias is the same in all months which is indicated by a narrow CI. To get an understanding for 

the origin of  a possible bias (is it  due to a bad seasonal  trend or due to a constant  over-  or 

underestimation?)   the  correlation  coefficient  is  introduced  as  an  indicator  of  the  quality  of  a 

seasonal trend. 

Precipitation

Since the evaluation is based on monthly values, the residual of the annual value is also given in 

units  of  mm/month,  which  results  from the  fact  that  precipitation  is  an accumulative  variable, 

compared to temperature and solar radiation, where monthly and annual values should stay within 

the same scale.

As  for  the  minimum  temperature,  we  cannot  identify  differences  in  the  quality  of  predicted 

precipitation comparing sites in Gabon and international sites. D, PI and CI are generally of the 

same scale and also the linear correlation is high for all sites: [0.81,1.00] is the range for Gabon, 

and [0.65,1.00] the range for international sites. The rainfall generator seems to face difficulties in 

predicting the right amount of precipitation with the right distribution over all  months in Usangi, 

where we observe the lowest correlation (r=0.65) accompanied by the highest residual (D=18.2 
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mm/month) and the widest CI of the international sites. Since our interest concerns Gabonese sites 

only, we wont put further attention to this.

Minimum temperature

For the minimum temperature (table 5.2) we cannot detect any major differences between Gabon 
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Table 5.1: Comparing precipitation of Gabonese and international sites: climate normal vs. simulation output (CLX vs.  

WTG). Pearson correlation (r), residual (D), trimmed residual (DT), standard deviation (SD), p-value (t-test), p-value  

(u-test), p-value (Shapiro-Wilk-test = SW-test), 95%-confidence-interval (+/-CI), 95%-prediction-interval (+/-PI)

PRCP [mm/month]
SITE r D SD p (t-test) p (u-test) p (SW-test) +/- CI +/- PI

INTERNATIONAL
Mombasa 0,98 -0,2 15,6 0,97 0,68 9,9 35,8
Nairobi 0,99 -3,7 9,1 0,19 0,35 5,8 21,0
Mogadishu 0,96 -10,4 -8,6 16,8 0,13 0,03 9,4 31,1
Bogotá 1,00 1,6 3,8 0,16 1,00 2,4 8,6
Usangi 0,65 18,2 39,5 0,14 0,76 25,1 90,6
Manaus 0,98 0,6 17,9 0,91 0,23 11,4 41,1

GABON
Mitzic 0,81 16,6 64,5 0,39 0,88 41,0 147,8
Libreville 1,00 2,2 17,0 0,67 0,77 10,8 38,9
Makokou 0,99 6,3 16,4 0,21 0,14 10,4 37,6
Mékambo 0,99 -6,6 13,0 0,11 0,65 8,3 29,8
Mouila 0,98 3,1 26,4 0,70 0,45 16,8 60,4
Tchibanga 0,96 0,4 27,5 0,97 0,21 17,4 62,9
Mayumba 0,99 -2,6 15,7 0,57 0,20 9,9 35,9
Moanda 0,99 1,4 10,2 0,64 0,88 6,5 23,4
Lastoursville 0,97 -9,7 21,7 0,15 0,27 13,8 49,7

DT

Table  5.2: Comparing minimum temperature of Gabonese and international  sites: climate normal vs. simulation  

output (CLX vs. WTG). Pearson correlation (r), residual (D), trimmed residual (DT), standard deviation (SD), p-value  

(t-test),  p-value (u-test),  p-value  (Shapiro-Wilk-test  =  SW-test),  95%-confidence-interval  (+/-CI),  95%-prediction-

interval (+/-PI)

TMIN [°C]
SITE r D SD p (t-test) p(u-test) p (SW-test) +/- CI +/- PI

INTERNATIONAL
Mombasa 1,00 0,02 0,13 0,60 0,31 0,08 0,29
Nairobi 0,99 0,03 0,05 0,16 0,23 0,01 0,07 0,23
Mogadishu 1,00 0,01 0,15 0,78 0,12 0,10 0,34
Bogotá 0,96 0,06 0,18 0,27 0,65 0,11 0,41
Usangi 1,00 0,01 0,09 0,60 0,31 0,05 0,20
Manaus 0,93 -0,01 0,13 0,81 0,18 0,09 0,31

GABON
Mitzic 0,98 0,02 0,15 0,72 0,99 0,09 0,33
Libreville 0,99 0,05 0,13 0,19 0,87 0,08 0,31
Makokou 1,00 0,02 0,09 0,41 0,87 0,06 0,20
Mékambo 0,99 -0,02 0,16 0,65 0,81 0,10 0,37
Mouila 1,00 0,02 0,23 0,73 0,42 0,15 0,54
Tchibanga 1,00 < 0,01 0,14 0,91 0,07 0,09 0,32
Mayumba 1,00 0,01 0,18 0,82 0,63 0,11 0,40
Moanda 0,99 0,01 0,13 0,78 0,31 0,09 0,31

DT



and international sites. All data are unbiased, |D| is continuously below 0.10 for all locations and 

the largest  PI  and CI appear in Lastoursville,  which are still  narrow compared to the intervals 

observed for maximum temperature (table 5.3). The accurate representation of seasonality of tmin 

is outlined by r values close to 1. 

Maximum temperature

Data in table 5.3 indicate unbiased predictions in terms of significantly high or low D-values for all 

of the international sites and sites within Gabon, supported with p-values (from the t-test) far away 

from the 0.05 threshold. Comparing the residuals Gabon's sites are better off (with its maxima in 

Libreville,  D=0.07°C  and  Lastoursville,  D=-0.07°C)  compared  to  Mogadishu  (D=0.27°C)  and 

Usangi (D=0.26°C). More interesting, though, is the size of SD, CI and PI as they give an idea of 

how far monthly residuals are scattered around their annual mean. These measures indicate that 

predictions for sites in Gabon exhibit a higher uncertainty, i.e. higher discrepancies between D, the 

estimator for  the bias,  and the true bias,  as well  as broader  confidence intervals.  This  fact  is 

accompanied by lower correlation coefficients, suggesting that the seasonal trend is met better by 

the international sites, with a range for r of 0.71 to 0.98 compared to 0.51 – 0.90 for Gabon. As 

explained before, improper representation of seasonality leads to broader CI and PI while the D 

value might still stay close to zero. In Usangi we see a a high correlation (r=0.97), a CI in the lower 

range (+/-CI = 0.42°C) and a large residual, compared to the other sites. This indicates a “constant 

underestimation  scenario”  (constant  underestimation  in  all  months),  as  the seasonality  seems 

good, the CI is narrow but D is still high and furthermore, we observe a lower p-value (p=0.20). The 
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Table 5.3: Comparing maximum temperature of Gabonese and international sites: climate normal vs. simulation output  

(CLX vs. WTG). Pearson correlation (r), residual (D), trimmed residual (DT), standard deviation (SD), p-value (t-test),  

p-value (u-test), p-value (Shapiro-Wilk-test = SW-test), 95%-confidence-interval (+/-CI), 95%-prediction-interval (+/-PI)
TMAX [°C]

SITE r D SD p (t-test) p (u-test) p (SW-test) +/- CI +/- PI
INTERNATIONAL

Mombasa 0,97 0,03 0,53 0,83 0,34 0,34 1,22
Nairobi 0,81 0,01 1,03 0,97 0,44 0,65 2,35
Mogadishu 0,71 0,27 0,86 0,30 0,74 0,55 1,98
Bogotá 0,85 0,02 0,34 0,87 0,85 0,22 0,79
Usangi 0,97 0,26 0,67 0,20 0,62 0,42 1,52
Manaus 0,98 0,03 0,07 0,32 0,30 0,03 0,12 0,40

GABON
Mitzic 0,55 0,01 1,03 0,98 0,52 0,66 2,37
Libreville 0,81 0,07 0,74 0,75 0,56 0,47 1,70
Makokou 0,51 0,01 1,31 0,99 0,45 0,83 3,00
Mékambo 0,70 -0,01 1,10 0,96 0,53 0,70 2,52
Mouila 0,61 -0,01 0,98 0,98 0,10 0,63 2,25
Tchibanga 0,77 0,02 1,27 0,95 0,45 0,80 2,90
Mayumba 0,90 0,01 0,86 0,98 0,66 0,54 1,96
Moanda 0,53 0,01 0,94 0,99 0,45 0,60 2,15
Lastoursville 0,69 -0,07 1,33 0,85 0,30 0,84 3,04

DT



other extreme can be seen in Moanda, where the annual means of prediction and climate normal 

are  virtually  equal  (D=0.0027,  not  rounded)  and  the  CI  is  larger  than  before  in  Usangi  (+/-

CI=0.60°C). But this time the width of the CI is caused by an improper seasonality (r=0.53), which 

indicates scattered monthly residuals. These scattered monthly values lead to a behavior that is 

not  detected  by  the  t-test,  which  indicates  no  significant  differences  between  predicted  and 

observed data (p=0.99, table 5.3). 

Solar radiation

The monthly values of solar radiation seem to be the most difficult to predict, as we can read from 

table 5.4. Usually the range for srad values over the year is roughly between 15 and 25 MJ/m²/day, 

speaking of a monthly average. The difference in the quality of generated srad is reflected in by the 

r  values:  For  international  sites  the  correlation  coefficient  has  its  lowest  value  of  r=0.69  in 

Mogadishu and its highest of r=0.89 in Mombasa, while for Gabon r is spread between -0.72 in 

Moanda, and its highest value of 0.50 in Mekambo. r=-0.72 means that the average generated 

trend is close to the inverse trend of the climate normals! Nevertheless the annual means are all 

unbiased due to a CI of  +/-2°C, caused by the inaccurate representation of the seasonality.
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Table  5.4: Comparing solar radiation of Gabonese and international sites: Climate normal vs simulation  

output (CLX vs WTG). Pearson correlation (r), residual (D), trimmed residual (DT), standard deviation (SD),  

p-value (t-test),  p-value (u-test),  p-value (Shapiro-Wilk-test  = SW-test),  95%-confidence-interval  (+/-CI),  

95%-prediction-interval (+/-PI)
SRAD [MJ/m²/day]

SITE r D SD p (t-test) p (SW-test) +/- CI +/- PI
INTERNATIONAL

Mombasa 0,89 -0,15 1,40 0,71 0,93 0,89 3,21
Nairobi 0,73 < 0,01 1,38 0,99 0,45 0,88 3,17
Mogadishu 0,69 0,65 1,43 0,15 0,98 0,91 3,28
Bogotá 0,83 -0,23 0,74 0,32 0,32 0,47 1,70
Usangi 0,92 0,80 1,26 0,05 0,53 0,80 2,88
Manaus 0,83 -0,39 1,83 0,47 0,08 1,16 4,20

GABON
Mitzic -0,31 -0,10 2,45 0,89 0,77 1,56 5,61
Libreville -0,16 -0,21 3,86 0,85 0,17 2,45 8,85
Makokou 0,00 -0,07 3,09 0,94 0,46 1,96 7,07
Mékambo 0,50 0,08 1,44 0,85 0,42 0,91 3,29
Mouila -0,44 0,53 2,97 0,55 0,16 1,89 6,81
Tchibanga 0,30 < 0,01 3,55 1,00 0,71 2,26 8,14
Mayumba 0,17 0,07 3,17 0,94 0,16 2,01 7,25
Moanda -0,72 0,12 3,70 0,92 0,21 2,35 8,48
Lastoursville -0,17 0,20 3,36 0,84 0,50 2,13 7,69



Even working with a relatively small data set of six international sites, and nine sites in Gabon only, 

two  trends  become  apparent:  First,  generated  minimum  temperature  and  precipitation  highly 

correlate with their according climate normals for both, sites within Gabon, and all other tropical 

sites. On the other hand, predicting values for tmax and srad for Gabon yield biased results or an 

improper seasonal trend. Tmax estimates exhibit lower correlation coefficients and broader CI and 

PI for Gabon than for the other African and Latin American sites (table 5.3). The same is true for 

predictions of solar radiation in Gabon, with high SD and broad CI and PI, and with correlation 

coefficients  around  zero,  and  below.  We can  conclude  that  MarkSim's  difficulties  to  generate 

weather  data is  arise  especially  for  sites  in  Gabon,  and that  the development  of  a corrective 

procedure  for  this  region is  appropriate,  though we might  question  the usefulness  of  intrinsic 

climate normals, if the stochastic output does not hold on to them.  

 5.1.2  Correction of daily solar radiation and maximum temperature
The previous section has pointed out clearly the lack of accuracy when it comes to generating 

estimates  of  daily  solar  radiation  and  maximum  temperature  and  underlines  the  need  for  a 

correction procedure. For the interested reader, a detailed description of a correction on a daily 

basis is outlined in APPENDIX C (Correction of solar radiation and maximum temperature). Here, 

we will go on with the evaluation of the corrected output: 

Evaluating the quality of the correction

Similar  to the evaluation performed in chapter  5.1.1, now the corrected output  values of  solar 

radiation and maximum temperature are tested against  the climate normals (CLX vs corrected 

WTG). Thus we'll put our attention on data sets from sites in Gabon only and the focus will be put 

only on variables that have been subject to a corrective procedure described in APPENDIX C.
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Table 5.5: Evaluating corrected maximum temperature of Gabonese sites: climate normal vs. corrected simulation output  

(CLX vs. corrected WTG). Pearson correlation (r), residual (D), trimmed residual (DT), standard deviation (SD), p-value (t-

test), p-value (u-test), p-value (Shapiro-Wilk-test = SW-test), 95%-confidence-interval (+/-CI), 95%-prediction-interval (+/-

PI)
CORRECTED TMAX [°C]

SITE r D SD p (t-test) p (u-test) p (SW-test) +/- CI +/- PI
GABON

Mitzic 0,99 0,03 0,15 0,46 0,31 0,09 0,31
Libreville 0,99 0,02 0,14 0,53 0,06 0,09 0,31
Makoko 1,00 0,03 0,15 0,48 0,23 0,09 0,33
Mekambo 0,98 < 0,01 -0,05 0,29 0,52 0,03 0,10 0,32
Mouila 1,00 -0,01 0,11 0,78 0,25 0,07 0,25
Tchibanga 0,99 < 0,01 0,23 0,97 0,15 0,14 0,52
Mayumba 1,00 0,03 0,17 0,07 0,11 0,39
Moanda 0,99 0,01 0,14 0,77 0,26 0,09 0,32
Lastoursville 0,99 < 0,01 0,22 0,96 0,46 0,14 0,50

DT



A reduction of  SD, narrower  CI  and PI  as well  as the convergence of  r  towards one become 

apparent  investigating  the adjusted output.  The reduction  of  the  range  of  the  confidence  and 

prediction interval  can be connected to the fact  that  each simulated monthly  value mimics  its 

climate normal with higher accuracy than before the correction, which is underlined by the range of 

the  correlation  coefficients  that  has  narrowed down and  moved  towards  one:  [0.97,  1.00]  for 

corrected solar radiation and [0.98,1.00] for maximum temperature. All data is unbiased.

 5.1.3  Validation of generated climate using data from three weather 
stations 

So far we have modified solar radiation and maximum temperature in a way so that they fit to their 

according climate normals, while this is not necessary for minimum temperature and precipitation. 

Chapter  5.2 (Customizing climate for  BGC-simulations  ),  as  well  as  APPENDIX  A tell  us that 

climate normals can be customized by the user, and due to the correction we can be sure that 

these climate normals are really reflected in the stochastic output.

But until now we have only focused on MarkSim's intrinsic elements, i.e. corrected and uncorrected 

measures  of  monthly  average  weather  data  have  been  tested  against  climate  normals.  No 

statement has yet been made on whether the output makes any sense if we validate it using real 

climate records, which will be the topic of this chapter. 

First the residuals D (i.e. observed – predicted values) for each available variable (prcp, tmax, 

tmin, tdif = tmax-tmin), using monthly means, where put together on one stack, i.e. data of one kind 

from all different weather stations were treated as one set of independent variables, which resulted 

in one set of 36 (=12 months x 3 weather stations) residuals for every variable. Performing the 

Shapiro-Wilk tests for normality, it turned out that sets from combined weather station data are very 
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Table 5.6: Evaluating corrected solar radiation of Gabonese sites: climate normal vs. corrected simulation output (CLX  

vs. corrected WTG. Pearson correlation (r), residual (D), trimmed residual (DT), standard deviation (SD), p-value (t-test),  

p-value (u-test), p-value (Shapiro-Wilk-test = SW-test), 95%-confidence-interval (+/-CI), 95%-prediction-interval (+/-PI)

CORRECTED SRAD [MJ/m²/day]
SITE r D SD p (t-test) p (u-test) p (SW-test) +/- CI +/- PI

GABON
Mitzic 0,99 0,12 0,32 0,21 0,17 0,21 0,75
Libreville 1,00 0,07 0,23 0,18 0,80 0,16 0,58
Makoko 0,99 0,12 0,30 0,19 0,08 0,19 0,69
Mekambo 0,99 0,04 0,14 0,30 0,99 0,09 0,33
Mouila 0,97 0,13 0,27 0,13 0,31 0,17 0,62
Tchibanga 0,98 0,16 0,11 0,50 0,62 0,01 0,27 0,88
Mayumba 0,99 0,12 0,09 0,33 0,62 0,03 0,20 0,67
Moanda 1,00 0,10 0,20 0,11 0,78 0,12 0,45
Lastoursville 1,00 0,14 0,29 0,11 0,53 0,18 0,66

DT



unlikely to meet the normality preconditions as required to perform further statistic tests. Only prcp 

and tmax_bc (bc standing for “before correction”, ac for “after correction”) residuals showed normal 

behavior. As a result, data was then checked for normality using several sets of 12 residuals for 

each  weather  station  separately.  This  time  most  of  the  stets  seemed  to  meet  the  normality 

preconditions, excluding two sets from Lastoursville that appeared to be significant at the 5% level 

(prcp and tmax_ac). 

First, in the manner of the previous evaluation, for each climate variable (prcp, tmin, tmax_bc, 

tdif_bc, tmax_ac, tdif_ac) monthly residuals were comprised to one annual residual, which was 

then statistically tested against the null hypothesis of being equal to zero. Further 95%-confidence 

and prediction intervals (CI and PI, respectively) as well an estimation of Pearson's correlation 

coefficient r were computed.

Since solar radiation was not measured directly for our data sets, we cannot directly determine a 

bias in this variable. We therefore only compute the linear correlation, and compare corrected and 

uncorrected versions of the output. D-values accompanied by SD, CI and PI give an idea of how 

strong data is biased, r can be interpreted as how well the seasonal trend has been mimicked by 

the weather generator. However, only both combined can give a whole picture of the quality of the 

generated data.  

Precipitation

R values are spread out between 0.9 and 1.0 which stands for MarkSim's capability of mimicking 

the seasonality. Lastoursville, however, is biased as it faces a significant overestimation (negative 

D). Here it is important to mention, that the climate record of precipitation for Lastoursville only  

comprises 25 years, and compared to the literature values from table  4.5 the annual amount of 

rainfall derived from weather stations is 461 mm/yr lower. A mean monthly overestimation of 43.1 

mm (which is equal to an annual overestimation of 517 mm) corresponds to the difference between 

literature  value and  data  from the weather  station.  Therefore  the bad  quality  of  the  recorded 

weather  data,  or  the  rather  small  number  of  recorded  years  in  the  data  base  can  be  made 

responsible  for  the  bias  in  annual  precipitation  for  the  site  Lastoursville.  The  confidence  and 

prediction intervals  are of  the same scale  as those resulting from a comparison of  generated 

weather data with MarkSim's climate normals. 
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Table 5.7: Validation of precipitation: Pearson correlation (r), average precipitation residual of all months (D),  

standard deviation (SD), p-value (t-test), p-value (Shapiro-Wilk-test = SW-test), 95%-confidence-interval (+/-CI),  

95%-prediction-interval (+/-PI)

PRCP [mm/month]
SITE r D SD p (t-test) p (SW-test) +/- CI +/- PI
Moanda 0,98 1,1 19,4 0,85 0,18 12,3 44,4
Lastoursville 0,94 -43,1 38,5  < 0,01 0,98 24,5 88,2
Mouila 0,97 -4,4 31,5 0,63 0,35 20,0 72,2



The month-wise comparison will  uncover possible biases in monthly values. As we can see in 

figure 5.1, all of the monthly residuals of Moanda are unbiased since the confidence intervals all 

include 0, the reason for the narrow annual CI. For the site Mouila, all monthly values from May to 

September are biased,  but  the maximum absolute bias does not  exceed 60mm of  rainfall  per 

month. It seems clear that biased data most frequently appears during the drier months, since little 
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Figure  5.1:  Validation  of  precipitation:  monthly  precipitation  residuals  [mm/month]  with  95%-confidence intervals  for 

Moanda, Mouila and Lastoursville. If the dashed line stays within the CI, the data point is unbiased.



rainfall variation leads to a narrow CI and a little over- or underestimation might hence result in a 

bias. Responsible for the biased annual residual of Lastoursville are most definitely not the drier 

months,  but  the wet,  boreal fall  and winter  months October to January,  with overestimation of 

around 100 mm/month.  

Minimum temperature

In the case of minimum temperature, which has not been subject of a correction procedure, CI and 

PI are narrow, the mean of the residual (D) is between 0 and 1, and r = 0.95. Table 5.8 suggests 

that tmin for Moanda is biased at the 5%-level of significance. As we can see, this results from its 

small CI and PI. We can interpret that phenomenon as follows: There is a bias in tmin, and since 

CI and PI are so narrow, the bias wont exceed 1°C in the annual mean. In Lastoursville, we detect 

the smallest D, but CI an PI are stretched out further than in Moanda, which can be explained by a 

seasonal trend which is not perfectly met by the generated data (r = 0.72). The U-test, however, 

does not suggest any bias at the 5% level. Similar as for Moanda,  Mouila's generated seasonality 

shows a high correlation to the real trend, but the data is biased at an underestimation of about 

3°C (positive D),  suggested by the t-test.  Note that  for  all  three sites minimum temperature is 

underestimated.
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Table  5.8:  Validation  of  minimum temperature:  Pearson  correlation  (r),  annual  minimum temperature  residual  (D),  

standard deviation (SD), p-value (t-test), p-value (u-test), p-value (Shapiro-Wilk-test = SW-test), 95%-confidence-interval  

(+/-CI), 95%-prediction-interval (+/-PI)
TMIN [°C]

SITE r D SD p (t-test) p (u-test) p (SW-test) +/- CI +/- PI
Moanda 0,95 0,58 0,20  < 0,01 0,62 0,13 0,47
Lastoursville 0,72 0,35 0,57 1,00 0,05  < 0,01 0,32 1,06
Mouila 0,94 2,93 1,00  < 0,01 0,07 0,63 2,29

DT



The month-wise analysis in figure 5.2 underlines what has been mentioned before in the case of 

site Moanda: All residuals are lined up at approximately 0.6°C, parallel to the zero-line, but none of 

the monthly values include zero in their CI, which means that all values can be seen as biased, but 

all of them at virtually the same level that does not exceed 1°C. The same is true for Lastoursville,  

with one exception: the minimum temperature in March, which overestimates the true value for 

about 2°C. Since all other months tend to underestimate the observed, this leads to an unbiased 
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Figure  5.2:  Validation  of  minimum  temperature:  monthly  minimum  temperature  residuals  [mm/month]  with  95%-

confidence intervals for Moanda, Mouila and Lastoursville. If the dashed line falls into the CI, the data point is unbiased.



annual residual.  For the site Mouila,  MarkSim fails to estimate minimum temperature, which is 

especially true for the drier months, June to September, with a maximum underestimation of more 

than 4°C in September. 

Maximum temperature

As already mentioned, a correction has been applied on daily tmax values, which of course leads 

to a change of  its monthly  mean values.  One thing that  we recognize immediately is that  the 

correction  narrows prediction  and  confidence intervals  of  the  annual  residuals,  and  shows  an 

almost perfect seasonal trend, with r close to 1. D, however, does not change a lot. A contradictory 

result of that comparison is that after the correction annual tmax is biased in Moanda, which hasn't 

been the case before. We can again give the following explanation: The seasonal trend is met 

better by the corrected output, which means that the monthly residuals are all of the same size. 

This results in a narrow CI, compared to the uncorrected output where bad seasonality created a 

wide CI due to fluctuating residuals. Since PI and CI are narrower now, we can be sure that the 

bias is not above 1°C, which we couldn't be sure of before, where the CI was wider. Also in Mouila 

we observe the same pattern as we did in the case of  tmin:  a constant  overestimation of the 

generated tmax, but still a good seasonality. 

The month-wise analysis reveals the impact of the correction procedure. In figure 5.3, which shows 

residuals before the correction has been applied, we observe for sites Lastoursville and Moanda 

that  most  of  the  estimated monthly  values are  biased.  Residuals  perform an S-shaped curve 

around the zero-line, which indicates that maximum temperature is overestimated in boreal winter 

and summer, but underestimated in spring and fall. This variation causes a broad annual CI, which 

leads to unbiased annual estimates, while at the same time the monthly estimates are biased. As 

already observed for the minimum temperature, Mouila has to be treated with special care. All 

months are biased, but here all tend to overestimate the observed values, with a maximum of 5°C 
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Table  5.9: Validation of maximum temperature:  Pearson correlation (r),  annual maximum temperature residual (D),  

standard  deviation  (SD),  p-value  (t-test),  p-value  (u-test),  p-value  (Shapiro-Wilk-test  =  SW-test),  95%-confidence-

interval (+/-CI), 95%-prediction-interval (+/-PI)
TMAX [°C]

SITE r D SD p (t-test) p (u-test) p (SW-test) +/- CI +/- PI
Moanda bc 0,54 0,16 1,00 0,59 0,18 0,63 2,28
Moanda ac 1,00 0,20 0,18  < 0,01 0,92 0,11 0,40

Lastoursville bc 0,71 -0,30 1,02 0,33 0,28 0,64 2,33
Lastoursville ac 0,93 -0,22 -0,09 0,72 0,52  < 0,01 0,18 0,60

Mouila bc 0,73 -2,92 1,36  < 0,01 0,29 0,86 3,11
Mouila ac 0,98 -2,89 0,70  < 0,01 0,10 0,45 1,61

DT



in July.

Figure 5.3: Validation of uncorrected maximum temperature: monthly maximum temperature residuals [mm/month] with 

95%-confidence intervals for Moanda, Mouila and Lastoursville, before correction. If the dashed line falls into the CI, the 

data point is unbiased.
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After the correction (figure 5.4), this bias has at least been reduced to maximum of 4°C in August. 

For the other two sites the outcome of the correction procedure is quite satisfactory, where most 

monthly  values are  unbiased.  Nevertheless,  all  of  the  monthly  estimates,  except  for  July  and 

August for the site Moanda tend to be lower than the real values for not more than 0.5°C, which 

causes a bias in the estimate of the annual mean. Note, that the pattern for corrected maximum 
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Figure  5.4: Validation of corrected maximum temperature: monthly maximum temperature residuals [mm/month] with 

95%-confidence intervals for Moanda, Mouila and Lastoursville, after correction. If the dashed line falls into the CI, the  

data point is unbiased.



temperature and minimum temperature in Lastoursville seems to be similar, with about 2 degrees 

overestimation in March. This suggests an error in the climate normal for the mean temperature in 

March, which can be accounted for when generating climate for sites near Lastoursville. On the 

other  hand,  Mouila  shows  an  overestimation  in  tmax,  and  an  underestimation  in  tmin,  which 

indicates a badly defined climate normal for temperature range which is more than 5°C higher than 

it should be in the annual average.

Temperature range (temperature difference)

What we can observe in tdif is actually just a superposition of phenomena we have seen so far in 

tmax  and  tmin.  So  Mouila  faces  a  overestimation  in  tdif  of  nearly  6°C,  while  Moanda  and 

Lastourville are better off, with an overestimation not exceeding 1°C. Similar, to what we have seen 

before, the correction produces a bias in the annual mean, that has not been present before the 

correction in Lastoursville and Moanda. The explanation is analogous: Narrow PI and CI indicate 

that each single monthly estimate mimics the real value with higher accuracy, but the reduction in 

variation of the monthly residuals results in a bias in annual tdif. But we know exactly what size of 

error we have to reckon with in each month. Note that the r values for all locations have been 

negative  before  a  correction  has  been  performed,  which  indicates  a  seasonal  course  of  the 

generated data that is closer to the inverse than to the real trend. The correction, however, moves r 

for Moanda and Lastoursville closer towards one. Since Mouila is biased in tmax and tmin, we see 

a superposition of these effects which result in a bias in tdif, and an obviously wrong seasonal 

trend (r remains negative). 
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Table  5.10: Validation of temperature difference (corrected and uncorrected): Pearson correlation (r), annual  

temperature range residual (D), standard deviation (SD), p-value (t-test), p-value (Shapiro-Wilk-test = SW-test),  

95%-confidence-interval (+/-CI), 95%-prediction-interval (+/-PI)

TDIF [°C]
SITE r D SD p (t-test) p (SW-test) +/- CI +/- PI
Moanda bc -0,35 -0,43 1,03 0,18 0,54 0,66 2,37
Moanda ac 0,91 -0,38 0,28  < 0,01 0,49 0,18 0,65

Lastoursville bc -0,31 -0,65 1,50 0,16 0,62 0,95 3,44
Lastoursville ac 0,78 -0,57 0,45  < 0,01 0,44 0,29 1,03

Mouila bc -0,62 -5,85 2,16  < 0,01 0,12 1,37 4,95
Mouila ac -0,31 -5,81 1,66  < 0,01 0,06 1,06 3,81



Solar radiation & insolation

Solar radiation is a special case since there were no measurements available for this work. We can 

only compare the seasonal course of radiation with the measured insolation (sunshine hours per 

month) on-hand for Moanda and Lastoursville only, and assume that they are correlated. As table 

5.11 suggests the correction pushes the negative r value (Moanda) or a r value close to zero 

(Lastoursville), indicating no correlation at all, more towards the desired r=1 mark. Unfortunately 

we can't make any statement on the bias of the corrected versions of the data, but at least we 

know that  the  seasonality  is  presented  more  accurately  by  the corrected variables  under  the 

assumption that insolation and radiation are correlated in reality. 

The effort to develop a correction procedure pays off, as confirmed by an enhanced quality of the 

corrected output, which is reflected in higher correlation coefficients, narrower confidence intervals 

(in annual resolution, tables 5.7 - 5.11) and smaller number of months that are biased (figures 5.1, 

5.2,  5.3 and  5.4). Biased precipitation estimates for Lastoursville can be connected to a lack of 

accuracy  of  the  recorded data (literature values in  table  4.5 suggest  a  different  mean annual 

rainfall  than  the  climate  records  bought  from  Lastoursville's  weather  station).  The  bias  in 

temperature (detected in maximum and minimum temperature) for Mouila can be traced back to a 

wrong climate normal of temperature range, since the seasonality is of good quality, but we face 

over estimation of maximum temperature and underestimation of minimum temperature. 

Graphical presentation of the seasonal trends

Monthly mean values over the year for each variable will be shown in addition, to make statistical  

results more understandable. All plots are organized in the same way: 

Line-1 in black represents the observed data, line-2 in red the uncorrected simulated data, and if  

available,  line-3  in  green  the  corrected  data.  Only  in  the  case  of  solar  radiation  line-1  is 

uncorrected and line-2 is corrected data, since no measured values are available. 
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Table  5.11:  Pearson  correlation  (r)  between  solar  radiation  

[MJ/m²/day]  and  insolation  [hrs/day]  before  (bc)  and  after  

correction (ac), for Moanda and Lastoursville.
SRAD [MJ/m²/day]

SITE r
Moanda bc -0,68
Moanda ac 0,84

Lastoursville bc 0,10
Lastoursville ac 0,85
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Figure  5.5:  Monthly  precipitation  [mm/month]  from 

weather station (black line), generated (red line)

Figure 5.6: Monthly mean tmin [°C] from weather station 

(black line), generated (red line)

Figure  5.7:  Monthly  mean  solar  radiation  [°C] 

uncorrected (black line), and corrected (red line)



 5.1.4  Evaluating the distribution of annual rainfall
The distribution of observed annual rainfall from table  4.5 (Maloba Makanga, 2010) is compared 

with generated precipitation for the same sites. For each quantity (min, Q1, median, Q2, max) and 

each site a residual (observed minus predicted) is computed, and transformed to relative values in 

percent of the according literature (=observed) quantity. This results in a set of 10 relative residuals 

for each quantity, which is tested against the null hypothesis of the sets mean residual being equal 

to zero,  performing a t-test. The mean residual (in percent of the according median), p-value and 

95%-confidence interval are presented in table  5.12. For an unknown reason, MarkSim was not 

able to produce weather data for Franceville, Lamabaréné and Port-Gentil. 
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Figure 5.8: Monthly mean tmax [°C] from weather station 

(black line), generated uncorrected (red line), corrected 

(green line)

Figure  5.9:  Monthly  mean temperature  difference  [°C] 

from weather station (black line), generated uncorrected 

(red line), corrected (green line)



None of the compared quantities is biased. In average MarkSim overestimates the minimum for 

12.4% of  the literature value for  the  minimum, and the maximum for  only  1.2%,  and we see 

broader confidence intervals for the extreme values (min and max), which implies that for some of 

the sites there is considerable over- or underestimation. The smallest CI of +/-3.9% is exhibited by 

the median, which is in average 1.0% higher than the literature median. Q1 and Q3 are 2.4% and 

2.7% above the observed, respectively. Note that in general all quantities tend to be overestimated 

by MarkSim (negative residuals!).

 5.2  Customizing climate for BGC-simulations 
In the introduction of chapter  5 we have underlined the importance being able to quantitatively 

change  and  adapt  meteorological  parameters,  so  when  a  climate  is  used  for  an  ecosystem-

simulation  we  can  separate  observed  effects  and  dedicate  them  to  certain  qualities  of  the 

underlying climate. Since fluctuations of temperature in tropical regions are small, the parameters 

we wish being able to adjust are: mean annual rainfall, the distribution of rainfall within the year 

(the length of the dry season), the year-to-year variation of annual rainfall, and also the kind of 

cloud cover (stratiform vs. cumuliform).  
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Table 5.12: Annual precipitation from N=99 generated years for sites in Gabon. Median, Mean, minimum (min)  

and maximum (max) value, 25%-quartile (Q1) and 75%-quartile (Q3) of N=99 climate years, all in mm/yr. 

Generated annual precipitation [mm/yr]
Site median mean min Q1 Q3 max
Bitam 1784 1818 1278 1576 2012 2623
Cocobeach 2995 3010 1925 2758 3232 4120
Lastoursville 1744 1761 1099 1569 1972 2498
Libreville 2920 2937 1674 2703 3192 4069
Makokou 1665 1654 810 1414 1844 2584
Mayumba 1752 1695 830 1439 1978 2572
Mitzic 1688 1672 989 1330 1916 2857
Moanda 1913 1925 1327 1741 2129 2448
Mouila 2115 2128 1586 1950 2278 2739
Tchibanga 1603 1619 932 1422 1843 2384

Table  5.13: Mean residual  (observed-predicted) in percent of the 

according  observed  quantity,  p-value  (t-test),  95%-confidence  

interval also in percent of the according observed quantity. Refer to  

table 5.12 and table 4.5.
D p (t-test) +/- CI

min -12,4 0,18 19,3
Q1 -2,7 0,29 5,3
median -1,0 0,58 3,9
Q3 -2,4 0,42 6,4
max -1,2 0,81 11,1



A functional implementation of MarkSim allows us to define our own climate normals (APPENDIX A 

- MarkSim file structure). This was originally designed to allow users to alter monthly mean values 

of precipitation, temperature and temperature range if better knowledge of certain climate variables 

than those derived from the interpolated climate surfaces (of MarkSim's database) is available. 

MarkSim uses the same parameters for the stochastic (Markov Chain) process but tries to achieve 

different  monthly  mean values during the simulation.  We will  make use of  this  functionality  to 

create and customize our own climatic setups, including extremely dry and humid regimes. How 

this is done will be explained in this chapter, and since we cannot be sure that MarkSim produces 

the desired results,  the generated output  will  be tested with respect  to annual  values and the 

distribution of annual rainfall. New methods to define the mean and standard deviation of  rainfall of 

a climate will further be introduced. 

 5.2.1  Customizing dry season and annual rainfall
The usefulness of “customizing” a climate might appear questionable in the first place if one is 

interested in an as accurate as possible approach of the real climate at a specific site, but for 

system analytical  approaches  well  defined  amounts  of  annual  rainfall  and  the  number  of  dry 

months are crucial parameters. As will be illustrated later in this work, it might be of interest to learn 

about the influence of the length of the dry season on the capability of an ecosystem (-model) to 

store carbon, or to investigate how ecosystem breakdown is connected to the amount of annual 

precipitation.

In order to create different climatic setups with respect to the amount of annual rainfall and the 

length  of  the  dry  season,  rising  from the  same underlying parametrization  (which is  MarkSim 

intrinsic  and depends  on  longitude,  latitude  and  elevation)  a  method was  designed  to  modify 

existing climate normals (monthly precipitation, mean temperature and temperature range). Note, 

that as for the correction procedure illustrated in APPENDIX C (Correction of solar radiation and

maximum temperature), we consider climates that have their driest months in boreal summer (i.e. 

July and August). The aim is to keep site specific parameters, but to change the amount of annual 

precipitation and how it is distributed over the year (with respect to the length of the dry season). 

The procedure to do so is quite simple: The precipitation, temperature, temperature range and 

solar radiation means of dry months July and August are calculated (i.e. mean = (aug+jul)/2), and 

one month with these values is pasted between July and August. This shifts the monthly means of 

June and July to the left (towards the beginning of the year): June overwrites the old value of May, 

July becomes the new value June, all other values stay the same. In the next step the same is 

applied to the other side of the year: October is replaced by September, September by August, all 

other months stay the same. This procedure is repeated until the desired number of dry months is 

reached, with a maximum of 4 months that can be pasted in between. The original setup up is 
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referred to as climate with “two months of dry season”, sticking with this definition the range of dry 

seasons that can be produced that way lies between two and six months. Precipitation is then 

raised (or reduced) in all months in relative proportions to adjust the annual amount to a desired 

value. 

The information required for this process is mainly taken from the CLX-file (APPENDIX  A) that 
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Figure 5.10: Forming a dry season: monthly precipitation [mm/month] for two to six months of dry season, site Birougou 

Mountains P3: 12°20' E / 1°45' S or 12.334 / -1.750, 1500 mm annual precipitation, elevation 800 masl. Climate normal  

(black line) and generated rainfall (dashed line).



serves as template, additionally annual rainfall and the desired number of dry months (2 to 6) have 

to be defined. The header of the template CLX consisting of a site identification code (maximum of 

8 letters), as well as latitude, longitude and elevation (see APPENDIX A - MarkSim file structure, 

for  closer  information)  is  then together  with the new annual  distribution of  precipitation,  mean 

temperature  and  temperature  range  written  into  a  DAT-file.  This  file  carries  the  necessary 

information for MarkSim to generate a new CLX file,  and further the daily climate.  In order to 

perform the correction of maximum temperature and solar radiation, another CLX file is created 

directly that should only be used for the correction (APPENDIX C), but never to run MarkSim itself. 

The reason,  why we do not  make use of  the CLX file  that  is  generated by  MarkSim for  the 

correction procedure is that the adjusted solar radiation can not be addressed within the DAT-file, 

which also results in an unchanged profile of solar radiation in the original CLX file. 

For an unknown reason MarkSim does not exactly hold on to the climate normals, but adds some 

variation. This is especially true shifting the climate towards longer dry seasons, as we can see in 

the example illustrated in figure 5.10. 

In APPENDIX D a further method to create climate time series mimicking climate change or paleo 

climate is introduced.

 5.2.2  Climate for Biome-BGC simulations
This section will focus on the climate needed for simulations performed with Biome-BGC (chapter 

6.1 -  Testing ecosystem stability under different climatic conditions). For our study we chose to 

simulate  ecosystem  behavior  for  a  small  region  in  the  tropical  Congo  basin,  the  Birougou 

Mountains of Gabon, were a parametrization of Biome-BGC concerning eco-physiological (epc) 

parameters  for  the  Western  Congolian  Lowland  Rainforest  has  been  performed (Gautam and

Pietsch,  2011  submitted).  From  a  variety  of  possible  sites  we  chose  P3  with  the  following 

coordinates at 800 m.a.s.l.

P3: 12°20' E / 1°45' S or 12.334 / -1.750

In chapter 5.1 (Validating and correcting stochastic climate for Gabon) we have seen that MarkSim 

faces  no  difficulties  generating  precipitation  for  sites  in  Gabon.  The  configurations  we  have 

compared within that section only contained “real” climates, i.e. the present climates at specific 

sites, based on MarkSim's intrinsic database for its climate normals. Is the same quality of the 

output guaranteed if we change the climate normals (especially towards low precipitation regimes, 

or long dry seasons)?
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Annual precipitation as given in the climate normal (CLX-file) is compared with the actual value of 

annual rainfall after the simulation, for some records (a similar approach as in chapter  5.1). We 

again define the residual (D) as  D=prcpclx− prcpmean = climate_normal - simulation_mean. A 

positive residual means underestimation (or the generated output is too small compared to the 

climate normal),  while values below zero indicate overestimation. The analysis covers selected 

climates with annual precipitation ranging from 250mm/yr to 5000 mm/yr and dry seasons from 2 to 

6 months. In most of the lower range records we observe overestimation of around 50 mm/yr 

(tables 5.14 and 5.15), an error that can be accounted for when using MarkSim, if it was the same 

for all climatic setups. But for unknown reason especially the 500 mm and 550 mm records are
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Table  5.14: Precipitation analysis for  2DM and 3DM: annual rainfall  as defined in the climate normal (clx),  true  

median and mean, residual (D), further minimum and maximum value, 25%-quartile (Q1) and 75%-quartile (Q3) and  

standard deviation (SD). Relative minimum, maximum, Q1 and Q3 in percent of the median (min%, max%, Q1% and  

Q3%, respectively) and relative standard deviation in percent of the mean (SD%). Number of climate years within a  

climate (N). All values are either in mm/year or percent.

clx median mean D min Q1 Q3 max SD min% Q1% Q3% max% SD% N

P
3_

80
0_

2D
M

250 231 238 12 87 191 288 461 70 38 83 125 199 29 99
500 338 345 155 80 222 434 917 151 24 66 129 271 43 99
550 341 365 185 89 260 453 800 150 26 76 133 235 41 99
600 641 654 -54 347 531 768 1166 168 54 83 120 182 25 99
650 672 680 -30 263 558 791 1177 167 39 83 118 175 24 99
700 732 748 -48 298 620 889 1267 191 41 85 121 173 25 99
750 780 779 -29 387 639 883 1246 200 50 82 113 160 25 99
800 783 814 -14 358 664 954 1407 205 46 85 122 180 25 99
850 862 862 -12 492 725 1006 1435 190 57 84 117 166 22 99
900 1007 987 -87 506 832 1141 1527 205 50 83 113 152 20 99
950 941 954 -4 452 821 1098 1478 213 48 87 117 157 22 99

1000 1034 1029 -29 645 876 1179 1503 205 62 85 114 145 19 99
1050 1082 1073 -23 564 903 1212 1683 223 52 83 112 156 20 99
1100 1136 1164 -64 530 1002 1332 1736 242 47 88 117 153 20 99
1150 1144 1179 -29 728 1027 1282 1925 231 64 90 112 168 19 99
1200 1173 1186 14 630 1035 1328 1717 234 54 88 113 146 19 99
1250 1289 1297 -47 746 1156 1450 2088 232 58 90 112 162 17 99
1500 1356 1365 135 665 1108 1595 2193 332 49 82 118 162 24 99
1750 1372 1382 368 566 1171 1580 2355 348 41 85 115 172 25 99
2000 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2500 2498 2533 -33 1744 2244 2872 3414 405 70 90 115 137 15 99
3000 3126 3123 -123 2104 2794 3375 4193 432 67 89 108 134 13 99
3500 3545 3512 -12 2270 3226 3849 4365 458 64 91 109 123 13 99
5000 5190 5089 -89 2910 4503 5733 7120 834 56 87 110 137 16 99

P
3_

80
0_

3D
M

250 292 315 -65 22 233 395 708 125 8 80 135 242 39 99
500 505 531 -31 187 438 675 939 161 37 87 134 186 30 99
550 361 388 162 113 256 467 1043 170 31 71 129 289 43 99
600 665 674 -74 326 574 748 1192 162 49 86 112 179 24 99
650 682 706 -56 305 593 815 1433 182 45 87 120 210 25 99
700 719 745 -45 279 605 858 1389 203 39 84 119 193 27 99
750 826 842 -92 292 683 993 1308 218 35 83 120 158 25 99
800 845 854 -54 297 718 1000 1422 205 35 85 118 168 24 99
850 895 921 -71 503 782 1036 1531 205 56 87 116 171 22 99
900 947 955 -55 357 793 1075 1578 225 38 84 114 167 23 99
950 994 996 -46 494 827 1165 1650 236 50 83 117 166 23 99

1000 1029 1046 -46 630 915 1176 1830 214 61 89 114 178 20 99
1050 1161 1143 -93 565 944 1304 1877 279 49 81 112 162 24 99
1100 1208 1189 -89 657 1017 1326 1742 237 54 84 110 144 19 99
1150 1181 1198 -48 583 1033 1353 1732 241 49 87 115 147 20 99
1200 1198 1210 -10 748 1037 1370 1772 239 62 87 114 148 19 99
1250 1204 1242 8 751 1054 1401 1937 256 62 88 116 161 20 99
1500 1450 1459 41 1159 1327 1550 1903 166 80 92 107 131 11 99
1750 1750 1760 -10 1336 1620 1910 2217 199 76 93 109 127 11 99
2000 1968 1983 17 1290 1856 2146 2560 227 66 94 109 130 11 99
2500 2474 2468 32 1970 2312 2602 3024 222 80 93 105 122 8 99
3000 3046 3029 -29 1916 2797 3313 4094 445 63 92 109 134 14 99
3500 3414 3456 44 2255 3234 3719 4496 412 66 95 109 132 11 99
5000 5014 5024 -24 3937 4787 5292 6151 430 79 95 106 123 8 99



generated with more than 100 mm underestimation. We have tried to resolve that  problem by 

changing the simulation  seed in  the  weather  generator,  which unfortunately  yielded the same 

underestimated  output.  In  the  higher  precipitation  range  we  faced  problems  while  generating 

climate,  where  MarkSim  stopped  the  simulation  with  an  error  concerning  a  gamma  shape 

parameter. This resulted in either a reduced number of climate years for a given climate normal, or 

no output years at all. Noteworthy, a record close to the true climate at P3, namely the setup with 

2000 mm rainfall and unchanged number of dry months couldn't be generated. 

The fact that MarkSim does not actually produce an output which fits the desired input (as soon as 

we make use of customized climate normals), and that it is not possible to generate climate years 

at certain precipitation ranges at all,  couples with a second effect:  the heterogeneity in rainfall 

distributions on an annual scale. We have tested climate records with respect to the distribution of 

all climate years (maximum: N = 99) that together form one climate. How are the annual values of  

precipitation of the climate years distributed, what are their maximum and minimum values and 

how far are they scattered within one climatic configuration? 
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Table 5.15: Precipitation analysis for 4DM, 5DM and 6DM: for a description of the listed quantities refer to table 5.14

clx median mean D min Q1 Q3 max SD min% Q1% Q3% max% SD% N

P
3_

80
0_

4D
M

250 266 304 -54 55 216 382 701 128 21 81 144 263 42 99
500 494 515 -15 218 400 622 877 149 44 81 126 178 28 99
550 593 600 -50 210 501 708 990 164 35 85 119 167 27 99
600 622 606 -6 276 479 688 1086 159 44 77 111 175 26 99
650 690 693 -43 338 558 822 1127 185 49 81 119 163 26 99
700 728 755 -55 393 635 858 1266 175 54 87 118 174 23 99
750 795 798 -48 413 669 922 1223 184 52 84 116 154 23 99
800 869 855 -55 412 673 997 1345 230 47 77 115 155 26 99
850 897 925 -75 337 802 1051 1427 207 38 89 117 159 22 99
900 987 975 -75 490 819 1100 1574 215 50 83 111 159 22 99
950 964 983 -33 515 790 1174 1659 240 53 82 122 172 24 99

1000 1058 1058 -58 594 896 1204 1624 226 56 85 114 153 21 99
1050 1078 1108 -58 625 970 1242 1558 207 58 90 115 145 18 99
1100 1109 1127 -27 655 998 1251 1706 213 59 90 113 154 18 99
1150 1215 1175 -25 562 1027 1320 1577 206 46 85 109 130 17 99
1200 1170 1185 15 760 1076 1283 1688 171 65 92 110 144 14 99
1250 1196 1207 43 697 1106 1335 1511 154 58 92 112 126 12 99
1500 1452 1439 61 1095 1298 1559 1933 183 75 89 107 133 12 99
1750 1683 1682 68 1080 1552 1819 2386 213 64 92 108 142 12 99
2000 1944 1956 44 1384 1744 2109 2656 261 71 90 108 137 13 99
2500 1933 1937 563 966 1743 2102 2656 284 50 90 109 137 14 6
3000 1996 2088 912 1384 1793 2288 3755 432 69 90 115 188 20 20
3500 3470 3475 25 2437 3236 3696 4573 367 70 93 107 132 10 99
5000 4934 4936 64 3562 4699 5227 5848 435 72 95 106 119 8 99

P
3_

80
0_

5D
M

250 309 313 -63 96 236 388 545 108 31 77 126 176 34 99
500 558 556 -56 156 451 643 911 139 28 81 115 163 25 99
550 596 608 -58 246 498 721 918 146 41 83 121 154 24 99
600 656 646 -46 188 558 744 1044 149 29 85 113 159 23 99
650 740 728 -78 311 627 831 1101 147 42 85 112 149 20 99
700 743 734 -34 369 641 832 979 124 50 86 112 132 16 99
750 783 810 -60 305 560 1054 1627 304 39 72 135 208 37 99
800 860 891 -91 199 704 1111 1757 315 23 82 129 204 35 99
850 942 951 -101 364 751 1127 1584 253 39 80 120 168 26 99
900 932 930 -30 260 737 1104 1796 266 28 79 118 193 28 99
950 978 982 -32 337 798 1132 1592 252 34 82 116 163 25 99

1000 1127 1101 -101 530 857 1281 1948 280 47 76 114 173 25 99
1050 1151 1111 -61 292 844 1388 2116 366 25 73 121 184 32 99
1100 1164 1165 -65 495 948 1375 1825 286 43 81 118 157 24 99
1150 1258 1258 -108 656 1014 1470 2000 314 52 81 117 159 25 99
1200 1188 1227 -27 323 989 1458 2065 335 27 83 123 174 27 99
1250 1258 1299 -49 451 1095 1549 2190 339 36 87 123 174 26 99
1500 1593 1596 -96 938 1416 1795 2366 249 59 89 113 149 15 99
1750 1805 1816 -66 1228 1621 1973 2474 265 68 90 109 137 14 99
2000 2096 2078 -78 1408 1906 2233 2742 259 67 91 107 131 12 99
2500 2093 2068 432 1408 1874 2232 3396 304 67 90 107 162 14 22
3000 2096 2134 866 1408 1883 2259 4354 436 67 90 108 208 20 8
3500 2189 2453 1047 1408 1933 2621 5085 802 64 88 120 232 32 24
5000 5140 5134 -134 3987 4751 5448 6223 532 78 92 106 121 10 99

P
3_

80
0_

6D
M

250 265 270 -20 38 192 322 628 114 14 72 121 237 42 99
500 394 396 104 98 280 508 820 149 25 71 129 208 37 99
550 467 465 85 121 348 566 1007 161 26 75 121 216 34 99
600 625 621 -21 232 546 732 1088 160 37 87 117 174 25 99
650 646 666 -16 312 561 776 1035 144 48 87 120 160 21 99
700 681 695 5 288 574 800 1258 175 42 84 117 185 25 99
750 713 717 33 213 608 812 1172 172 30 85 114 164 24 99
800 790 792 8 432 673 881 1215 173 55 85 112 154 21 99
850 852 824 26 485 686 954 1272 186 57 81 112 149 22 99
900 841 853 47 490 758 955 1302 167 58 90 114 155 19 99
950 993 997 -47 706 894 1092 1401 127 71 90 110 141 12 99

1000 1048 1038 -38 739 928 1118 1544 145 70 89 107 147 14 99
1050 1106 1106 -56 685 992 1219 1658 175 62 90 110 150 15 99
1100 1143 1144 -44 791 1031 1233 1589 172 69 90 108 139 15 99
1150 1194 1196 -46 817 1094 1297 1584 153 68 92 109 133 12 99
1200 1256 1234 -34 860 1136 1341 1697 160 69 90 107 135 12 99
1250 1283 1277 -27 830 1144 1402 1908 174 65 89 109 149 13 99
1500 1522 1532 -32 1054 1404 1670 1944 187 69 92 110 128 12 99
1750 1938 1908 -158 1181 1686 2129 2636 311 61 87 110 136 16 99
2000 2114 2064 -64 1093 1818 2334 2812 338 52 86 110 133 16 99
2500 2486 2529 -29 1732 2229 2844 3524 409 70 90 114 142 16 99
3000 2872 2914 86 2058 2636 3216 3823 377 72 92 112 133 12 99
3500 3070 3245 255 1668 2713 3678 6749 892 54 88 120 220 27 99
5000 5048 5049 -49 3948 4613 5355 6944 500 78 91 106 138 9 99



It seems obvious that large fluctuations of annual rainfall within a climate might be a trigger for 

ecosystem collapse. Equally delicate are the precipitation minima within a climate, as they might 

be far away from the initially desired mean value, and thereby create a stressful environment when 

they  pop  up  by  chance  during  a  simulation.  The  problem  that  comes  along  with  the  use  of 

MarkSim, besides that the desired value of annual rainfall is more often over- or underestimated 

than exact, is that the distribution climate years with respect to precipitation differs strongly from 

climate to climate. 

In  table  5.15,  P3_800_5DM we see that  numerous climates contain years with extremely  low 

precipitation (columns min and min%). 800mm (clx) has a minimum of 23% of the median (860mm) 

which is 199mm, 1050mm (clx) at 25%, and 1200mm (clx) at 27%. The problem is not that we do 

have these extremes, but that they appear in some of the records, and miss in others. For our work 

it is crucial to have comparable distributions, maxima and minima in order to perform analytical 

work using Biome-BGC. As we can see from table 4.5, recorded minima for sites all over Gabon 

are not below 41% of the median (Mayumba), which is by far not the case for the artificial climates 

in table  5.14 and  5.15, for 5DM configurations in particular.  Especially interesting are the sites 

Lastoursville and Mouila with 48% and 60% minima respectively, and 136% maxima, since they 

are geographically closest to P3. A summary of mean relative minimum, maximum, Q1 and Q3 

values in percent of the median of all generated climates as well as for the two closest sites is 

presented in table 5.16. 

Table 5.16: Mean values of relative minimum, maximum, Q1 and Q3 in percent of the according median and standard  

deviations, from table 5.14 & 5.15 and table 4.5 (Lastoursville and Mouila)

P3 (generated): Mouila: Lastourvsille:

min = (52 +/- 16)% min = 60% min = 48%

Q1 = (86 +/- 6)% Q1 = 86% Q1 = 88%

Q3 = (115 +/- 8)% Q3 = 108% Q3 = 110%

max = (163 +/- 32)% max = 136% max = 136%

As we can see, minimum and maximum, as well as Q1 and Q3-quartile of the literature values are 

at least within the error range (standard deviation) of the generated climate. The problem that we 

see  is  the  large  error  of  these  values,  which  indicate  differences  in  the  underlying  rainfall 

distributions.  Hence  climates  are  not  comparable,  as  they  might  cause  qualitatively  diverging 

model behavior, caused by different characteristics of the extreme values. 

We can conclude that we cannot be sure that generated climate does exhibit a mean precipitation 

value close to the desired value. Further we don't know how the underlying rainfall distribution of 
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the climate looks like, with respect to minimum and maximum, which as result might lead to wrong 

predictions or ambiguous observations using these climates for other software applications, such 

as Biome-BGC. 

Thus our  strategy to select  climate years for  certain  simulation purposes has to be changed. 

Instead of labeling the output of one MarkSim simulation as “one climate”, a whole series of climate 

records using different simulation seeds and climate normals (from 50mm/yr-6500mm/yr) will be 

generated and put together in a pool of climate years to actively select from. We thereby level out 

the effect of under- or overestimation of the mean annual rainfall, we can define the distribution of 
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Figure 5.11: Histograms proving information about the amount of available climate year per 100mm of rainfall for 2 to 6 

DM. 



climate years,  the size of  the minimum and maximum, as well  as the number of  records that 

together  form  one  climate.  Table  4.4 consistently  suggests  that  annual  rainfall  is  distributed 

normally,  with a standard deviation of  around 25% (using the literature value of  mean annual 

rainfall  for  Lastoursville  to  calculate  the  relative  standard  deviation).  A procedure  we  use  to 

generate  normally  distributed  climate  (with  respect  to  annual  rainfall)  with  defined  standard 

deviation and mean can be described as follows: First we generate N=100 random numbers to 

form a Gaussian distribution with a desired standard deviation and mean. Next a Shapiro-Wilk test 

is performed on these data and only highly significant distributions with p > 0.9 are accepted. 

Further we only allow distributions with a mean diverging for a maximum of 5% from the desired 

mean. Extreme values exceeding two times the standard deviation are cut off and set to this limit 

(statistically nearly 96% of all random numbers should fall into the interval spanned by +/- 2 times 

the standard deviation). Finally we pick climate records out of the pool with annual rainfall closest 

to the random numbers generated before, and make sure that each climate year can only appear 

once within each climate, though it is allowed to be present within another climates. 

With this approach we can be sure that our data follows a well-defined distribution (p > 0.9), we 

also know the extreme values (+/- 2*SD) and that the mean is close to the desired mean (+/- 5%), 

but still climates are selected stochastically to some extent.

Figure  5.11 shows that the highest availability of climate data is given for 2 and 3 dry months.  

MarkSim stopped generating weather for regions around 3000-4000mm/yr and longer dry seasons 

4-6DM), which is the reason for obvious shortages illustrated by the histograms. Even in areas with 

lower availability the data should be enough to create accurate distributions of rainfall. 

 5.2.3  Climatic parameters and varieties for BGC-simulations
The quantified climatic parameters on which the investigations in chapter 6.1 are based are:

1) Mean annual precipitation: 50mm/yr to 4500mm/yr in steps of 50mm/yr which results in 90 

varieties. 

2) Standard deviation of annual precipitation distribution: 10%, 15%, 20%, 25%, 27.5%, 30%, 

32.5%, 35%, 37.5%, 40% of the mean respectively, resulting in 10 varieties.  

3) Number of dry months (distribution of rainfall within the year): 2 to 6 resulting in 5 options. 

4)  Quality of the cloud cover: cumuliform vs. stratiform resulting in 2 options.

All in all this results in 90 * 10 * 5 * 2 = 9000 different climates each comprising 100 different years.
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 6  Results

 6.1  Testing ecosystem stability under different climatic conditions
Performing BGC simulations there is a chance that the virtual ecosystem does not develop into a 

stationary state, or first develop and then after some hundred or thousand years break down. In 

detail, a break down is characterized by a leave carbon pool carrying so little carbon, that growth in 

the next season is inhibited, which immediately results in zero productivity. Leave C is set to zero 

once passing a certain threshold. Anyway, two identical simulations, i.e. same underlying climate 

and parametrization, with the only exception that they use different seeds, which determine the 

sequence of climate years used for the simulation, can result in a qualitative difference in system 

state, with refer to break down. This behavior suggests weather sensitivity of the ecosystem, i.e. 

diverging short term fluctuations within the same climate can at one point lead to break down, and 

at another point lead to full development of a more ore less stable system. 

In this chapter we want to detect stable and unstable regions and determine what triggers could 

cause a shift in stability. In the first place we expect mean annual rainfall to have major influence 

on whether a simulation is successfully carried out, or collapses. A rule of thumb states that below 

2000 mm of precipitation per year tropical rain forests can not develop, and that the existence of 

such forests in Gabon at even lower amounts of rainfall is made possible only by the presence of 

the stratiform cloud cover. This cloud cover might therefore be another parameter causing shifts in 

the stability as it directly influences incident solar radiation and temperature, and thereby has an 

impact on evaporation and transpiration. On the other hand, as we see in table 4.7 and table 4.9 

annual  mean  temperatures  do  not  exhibit  strong  fluctuations,  and  wont  be  subject  of  our 

investigation. Ngomanda et al., 2009 and Maley, 2001 connect massive forest break down in the 

past (~2500 BP) to a change in the repartition of rainfall within the year, linked to an elongation of 

the  long  dry  season.  Finally,  since  climate  change  is  often  connected  to  growing  climatic 

fluctuations, it might be of interest to understand what influence the year to year variation of rainfall 

has on the stability of the simulated ecosystem. Summarizing, we want to investigate dependence 

of system break down on

1) the amount of annual precipitation

2) the distribution of precipitation within the year (the length of the dry season)

3) the year-to-year variation of annual precipitation.

4) the  influence  of  the  stratiform  cloud  cover  during  the  dry  season  (corrected  versus 

uncorrected climate)
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 6.1.1  Methodical approach
Since simulations with the same setup but a different sequence of the same (!) climate years can 

result in a different final system state a statistical approach is required for this investigation, i.e. to 

test whether a certain climatic setup yields a stable simulation, multiple simulations based on the 

same climate have to be carried out in order to sum up over the dichotomous state variables 

(“dead” or “alive”) and receive a probabilistic image. Note, that the only difference in repeated 

simulations is the way single climate years are shuffled together, determined by the seed of the 

random number generator selecting climate years. We classify the simulation output in two groups, 

“dead” or “alive”, without paying attention to the actual system's productivity. Each climate group 

characterized by (see chapter 5.2.3 - Climatic parameters and varieties for BGC-simulations)

1) its mean annual rainfall (50mm to 4500mm in steps of 50mm)

2) the length of the dry season (2 to 6 months)

3) the width of the distribution of annual precipitation (As explained in chapter 5.2.2, Climate

for  Biome-BGC simulations,  we  generate  normally  distributed  climates,  with  respect  to 

rainfall,  each consisting of  100 climate years.  The distribution is  truncated at  twice the 

standard deviation, and the standard deviations we used for our investigation are 10%, 

15%, 20%, 25%, 27.5%, 30%, 32.5%, 35%, 37.5% and 40% of the mean.)

4) whether or not daily maximum temperature and global radiation have been corrected or not 

(influence of the cloud cover).

Each group is formed by results of 20 similar simulations with different seeds. This binary approach 

allows us to define some sort of state probability, that tells us how stable a certain system is with 

refer to the applied climate. If, for instance 18 out of 20 systems collapse, the systems probability  

to fully develop is 10%.

How can this binary classification method be implemented in Biome-BGC? The problem that one 

faces right away is the the lack of clarity when it comes to the definition of the state (“dead”, or 

“alive”).  It  is  quite  clear  that  “alive”  means  positive  productivity,  and  “dead”  refers  to  zero 

productivity, or an empty leave carbon pool. But usually, an ecosystem is productive in the first 

place and accumulates some carbon and nutrients during its ongoing simulation and breaks down 

after that.  It  might even develop until  reaching its upper limit  of  productivity,  or in other words 

become saturated, and then collapse. Is this system “dead” or “alive”? Or at what point is the 

decision made whether it is “dead” or “alive”? Since any ecosystem might collapse if you just wait 

long enough, the classification has to be applied in combination with a certain simulation period, 

after which the measurement is done. 
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 6.1.2  Two concepts to approach a stable state
As a representative time scale we chose the spinup interval. BGC is initiated with a small amount 

of leave carbon in the order of 10 ², still large enough to enable future growth, and converges⁻  

towards  a  dynamical  equilibrium.  “Dynamical”  means that  fluctuations  caused by  weather  and 

mortality  are  of  course possible  and desired,  but  they don't  show trends.  In  other  words:  the 

system is stationary.  Equilibrium is reached when soil  carbon,  the slowest  changing pool,  has 

reduced its fluctuations to a minimum. The time span that has elapsed between BGC initiation and 

the point where soil C becomes stable is referred to as spinup interval, which is not constant but 

usually around 5000 years. So state probability in this context can be interpreted as the chance 

that an ecosystem develops into its stationary state. Along with this approach come two conceptual 

errors: First,  considering two systems that both “die” in 100% of all  cases, but one in average 

reaches a higher level of development then the other one are treated as equal with refer to state 

probability.  This error  is tiny,  keeping in mind that one system that  develops further within the 

spinup interval also has a higher chance that one of 20 simulations will actually reach a stable 

state, and thereby change the state probability. It can therefore be neglected as it only affects the 

0% to 1% interval of the probability  (e.g. a system with real probability of 0.8% might be mistaken 

for a system with 0%). The second error that comes hand in hand with this approach is of the same 

nature,  but  on the other  side of  the probability  scale:  It  concerns ecosystems that  are almost 

perfectly stable. A system that has reached a stable state in terms of satisfying the requirements to 

finish the spinup can still be disturbed and break down by a “bad” combination of certain climate 

years . Considering a mean spinup time of 5*10³ years and 20 simulations per climate, set together 

this results in a simulated time of hundred thousand years. What about a system, that collapses 

only  after  150.000  years? It  is  addressed  as  perfectly  stable  by  our  classification.  This  error, 

however, cannot  be eliminated since it  is  in the nature of experiments to work with finite time 

series. Of course, the length of the time series, i.e. the number of simulations, could be raised 

easily, but this would result in enormous amounts of data, and computing capacity needed during 

simulation procedure and analysis. We therefore accept that systems surviving a period of 100.000 

years are referred to as “100% stable”.

In the preceding illustration concerning error estimation for the spinup approach, we have implicitly 

assumed that 20 consecutive  spinup simulations, all of a duration of around 5*10³ years can be 

regarded as one single time series of hundred thousand years. In fact, it is quite obvious that non-

stationary systems, or systems in development, might react to weather fluctuations in a different 

way than stable state systems (Yet, we don't want to make a guess whether stationary systems or 

systems in development are more vulnerable). To set forth this idea, starting with a low carbon 

ecosystem increases or decreases the probability of break down compared to initiating the system 

directly  into  a  stationary  state  and  then  applying  a  difficult  climate.  At  this  point  we  have  to 

distinguish between two issues, that only diverge in a little detail:  Do we want to learn what is  
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going to happen when already stable forest ecosystems face an unfavorable change in climate, or  

do we want to put a statement on whether or not a forest is able to grow (from scratch) once a  

different climate has actually become present? We have so far  only discussed the conceptual 

approach to define a probability of growth from scratch (which can also be understood as regrowth 

after a disturbance), which will be referred to as “spinup-approach”. Of course the other issue is of  

equal interest but it requires a slightly different systematic approach: The simulation will first be 

initialized with a stable state, and then the climate will  be changed. Again the time it  takes to 

reduce the fluctuations in soil carbon to a minimum will be the period of measurement. Simulations 

of this kind will be addressed as “spindown-approch”. Differences in the stability exhibited during 

these two approaches can be seen as a hysteresis effect. 

 6.1.3  Spinup simulations
We have already explained that if a simulation performs a successful spinup, this single simulation 

contributes with a “one” (=”alive”). On the other hand, a marker for break down is when the leave C 

pool  becomes  (exactly)  zero.  Systems  that  have  broken  down  in  terms  of  that  classification 

contribute with a “zero”  (=”dead”)  to  the state probability  of  their  group (formed by 20 similar 

simulations of the same climate). Since we assume systems based on dryer climates, i.e. with 

lower  mean annual  precipitation  to  break  down  more  frequently  than  those  with  more  humid 
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Figure  6.1:  Exemplary transition from 100% collapse (left  side) to 

100% development of stationary system (right side) based on spinup 

simulations with a  3DM, uncorrected climate (with respect to solar 

radiation and maximum temperature), and 37.5% standard deviation 

of the annual rainfall distribution. P is the chance (in %) to develop a 

stationary state, X0.5 is the point of inflection, and W the width of the 

transition phase (=risky phase). 



climates, we expect to see a transition from 0 (all simulations dead) to one (all simulations alive), 

with  increasing  precipitation.  It  seems  appropriate  to  apply  a  logistic  regression  (refer  to 

APPENDIX  B -  Logistic regression analysis) which is designed to describe transitions between 

binary states and therefor is a tool to quantitatively compare transitions resulting from different set  

ups. 

A measure derived from the logistic regression that marks the point at which this transition occurs 

is the point of inflection (X0.5) at P=0.5 (=50%). This point of inflection will be taken as a surrogate 

for the instability of system based on a certain climate (a point of inflection at a higher level of  

precipitation indicates a less stable state). Further the width (W) of the transition phase is defined 

as the distance between the precipitation value at P=0.01 (=1%) and P=0.99 (=99%) and gives an 

idea of the size of the risky phase, as it includes all points where P is either not exactly one or zero, 

with a few exceptions. X0.5 and W will be used for further analysis, where presentations like figure 

6.1 wont be illustrated. 

In order to draw conclusions on the connection between the amount of biomass and stability of the 

ecosystem, of all successful simulations, total carbon content, leaf carbon and dead stem carbon 

content are recorded and averaged over the last mortality cycle (where carbon fluctuations should 

be  at  a  minimum).  Leaf  carbon and dead  stem carbon  form the pool  of  above  ground  living 

biomass.  

Uncorrected climate (cumuliform)

First  the  results  from simulations  based on climate  that  has  not  been subject  of  a correction 

procedure  will  be  presented.  As  explained  before,  these  climates  exhibit  tendentially  higher 

temperatures  and  larger  amounts  of  incident  solar  radiation  during  the  dry  months,  but  are 

generally cooler in wet months, where solar radiation is also om a lower level. The influence of the 

standard  deviation  (SD)  and  the  number  of  dry  months  (DM)  on  the  position  of  the  point  of  

inflection (X0.5) and the width of the transition phase (W) is shown in figures 6.2 to 6.4. 
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Figure 6.2: Point of inflection (solid line), 1% and 99% probability boundaries in mm rainfall per year (upper and lower  

dashed line, respectively) derived from logistic regression as marker for stability, based on simulations with uncorrected 

climate. The underlying rainfall distributions ranges from SD=10% to SD=25%.
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Figure 6.3: Point of inflection (solid line), 1% and 99% probability boundaries in mm rainfall per year (upper and lower  

dashed line, respectively) derived from logistic regression as marker for stability, based on simulations with uncorrected 

climate. The underlying rainfall distributions ranges from SD=27.5% to SD=35%.



An important insight from illustrations 6.19-6.21 is, that the year-to-year variation of rainfall (i.e. the 

standard deviation of the precipitation distribution) seems to have the largest impact on where the 

transition from “dead” to “alive” occurs. While the border between “more likely to break down” and 

“more likely to fully develop” indicated by the solid line can be drawn below 400mm/yr for SD=10%, 

we see the same border between 2500 and 2000 mm/yr at a variation of SD=40%. Obviously, a 

change like that could not be induced by the variation of the number of dry months, though we are 

able to see an influence caused be the length of the dry season. For SD=10%, climates with 6 dry  

months  (as  defined  in  chapter  5.2.1 -  Customizing  dry  season  and  annual  rainfall)  yield  the 

unstablest  simulations,  though there is  little  difference between simulations based on different 

number of dry months. But this trend seems to be gradually inverted, as variation increases, and 

simulations with 6 dry months become the stablest.  As we have seen,  standard deviations of 

around 25% seem to be a realistic estimate (table 4.4) for sites around P3, and for SD=25%  there 

is also only little influence of the dry season, as the (solid) line that connects the points of inflection 

does not show a clear trend. 

As explained before, the region enclosed by the dashed lines (W) can be interpreted as a “risky 
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Figure 6.4: Point of inflection (solid line), 1% and 99% probability boundaries in mm rainfall per year (upper and lower  

dashed line, respectively) derived from logistic regression as marker for stability, based on simulations with uncorrected 

climate. The underlying rainfall distributions ranges from SD=37.5% to SD=40%.



phase”, where the ecosystem is between the completely stable state, and the state where any 

development is impossible. We get the impression that this phase of transition starts relatively wide 

with 2 dry months, narrows down towards 4 months and gets wider again approaching 6 months of 

dry season. It is, however, hard to conclude whether longer dry seasons do have a positive impact 

on system stability or not, including the length of the transition phase in our thoughts. Even if 6DM-

simulations seem more stable for higher variations, we must not forget, that the transition phase is 

the broadest here. Since the influence of the length of the dry season remains unclear to some 

extent, the focus will mainly be put on the impact of the variation. In figure 6.5 all points of inflection 

for a given SD of the precipitation distribution are put together, neglecting the influence of the dry 

season.  As we can observe,  the amount of  rainfall  describing the point  of  inflection increases 

exponentially with SD! 

An exponential regression based on a scaled Levenberg-Marquardt algorithm (Levenberg, 1944; 

Marquardt, 1963)  was used to fit the mean values (red points) of the points of inflection (black 
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Figure  6.5:  Exponential  growth  of  point  of  inflection  (black  points)  in  mm/yr  with 

increasing  year-to-year  variation  of  rainfall  (SD  of  the  precipitation  distribution). 

Larger red points indicate the mean of black points, the dashed red line is derived 

from an exponential regression. 



points) in figure 6.5. The form of the exponential function is 

     y= y0+A⋅exp (
x
t
) eq. 6.1

where  y  is  the  estimated  mean  point  of  inflection,  y0  is  the  offset,  A the  amplitude  and  x 

corresponds  to  the  standard  deviation  SD.  r²  (square  of  the  linear  correlation  coefficient  as 

introduced in APPENDIX B “Testing predicted vs. observed“) and RMSE (root mean square error, 

definition analogous to standard deviation) have been calculated using all (black) points. Results 

are presented in table 6.1. 

Table  6.1: Results from exponential regression of mean points of inflection derived from simulations with uncorrected  

climate.

                              A = (21 +/- 5) mm/yr                                        r² = 0.96

                              t = (9.0 +/- 0.5) [%]-1                                        adj. r² = 0.96

                              y0 = (320 +/- 30) mm/yr                                  RMSE = 174 mm/yr

Corrected climate (stratiform)

Before we allow a comparison between corrected and uncorrected climate with respect to stability, 

similar illustrations as featured in the previous section will be presented for simulations based on a 

climate that has undergone a correction procedure. These (corrected) climates are closer to the 

real climatic situation in Gabon, as we learn from Chapter  5.1.3 (Validation of generated climate

using  data  from three weather  stations  ).  Reduced  global  solar  radiation  and  daily  maximum 

temperature try to mimic the presence of a stratiform cloud layer during the dry season.

While simulations based on climate with little fluctuations of SD=10% show their inflection point at 

400mm/yr, and an instable phase (marked by the dashed lines) ending at about 800mm/yr for 6 dry 

months, simulations with SD=40% exhibit a transition slightly below 3000mm/yr, accompanied by a 

transition phase reaching even 5000mm/yr. A change in variation of the underlying climate from 

10% to 40% (which implies that the extreme values of these distributions should be close to 20% 

or 80% of the mean, due to the truncation performed before → chapter 5.2.2 - Climate for Biome-

BGC simulations) causes a shift in stability of about 750%! It seems that, against our expectations, 

the uncorrected climate yields simulations with higher stability. Similarly we observe and inversion 

of the trend as also present for the uncorrected climate, where 6 dry months can be connected to 

the  unstablest  simulations  for  SD=10% and  with  increasing  variation  give  rise  to  the  stablest 

simulations. On the other hand, the width of the transition phase for 6DM is generally larger than 

for other configurations, (seemingly the narrowest phase occurs at 4DM) which leads to the effect 

52



that the unstable phase begins at similar amounts of annual rainfall, and sometimes at even higher 

amounts than for shorter dry seasons. Later in this chapter we will see, that this inversion of the 

trend can be connected to the amount of carbon stored in living biomass.

The same methods as introduced in the previous section to fit the exponential growth of instability 

with increasing variation have been applied in figure 6.8, results of the regression are presented in 

table 6.2. 

Table  6.2:  Results from exponential  regression of  mean points of  inflection derived from simulations with corrected  

climate.

                                  A = (20 +/- 3) mm/yr                                 R² = 0.98

                                  t = (8.5 +/- 0.3) [%]-1                                                         adj. R² = 0.98

                                  y0 = (340 +/- 25) mm/yr                           RMSE = 100 mm/yr
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Figure 6.6: Point of inflection (solid line), 1% and 99% probability boundaries in mm rainfall per year (upper and lower  

dashed line, respectively) derived from logistic regression as marker for stability, based on simulations with corrected 

climate. The underlying rainfall distributions ranges from SD=10% to SD=25%.
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Figure 6.7: Point of inflection (solid line), 1% and 99% probability boundaries in mm rainfall per year (upper and lower  

dashed line, respectively) derived from logistic regression as marker for stability, based on simulations with corrected 

climate. The underlying rainfall distributions ranges from SD=27.5% to SD=35%.



Corrected and uncorrected compared

Both, the corrected and the uncorrected variants yield exponential regression estimates that highly 

correlate  with  their  underlying  data  (R²  =  0.98  and  R²  =  0.96,  respectively).  Note,  that  for  a 

theoretical  SD of  0%, which means that  all  consecutive climate years have virtually the same 

amount of annual rainfall, the regression predicts X0.5 = (341 +/- 35) mm/yr (uncorr.) and X0.5 = (360 

+/- 28) mm/yr (corr.), which cover the same range regarding the errors. This might be interpreted 

as a natural threshold for water required to enable growth, neglecting all other parameters, such as 

variation of rainfall, and also the influence of the dry season (which causes only little difference in 

stability in the lower range of SD). We have, however, seen that simulations could successfully 
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Figure  6.8:  Exponential  growth  of  point  of  inflection  (black  points)  in  mm/yr  with 

increasing  year-to-year  variation  of  rainfall  (SD  of  the  precipitation  distribution). 

Larger red points indicate the mean of black points, the dashed red line is derived 

from an exponential regression. 



develop a stationary state with annual rainfall down to about 100 mm/yr, but in this case we used 

one repeated climate year only – which reduces not only year-to-year variation of the total amount 

of rainfall to zero, but also the variation of the repartition of dry days versus wet days during the 

year. So the threshold of around 350mm/yr might be a realistic, though theoretical, estimate.

The data set based on corrected climate has been tested against the uncorrected data performing 

a paired t-test (table  6.3), to determine whether there is a significant difference in stability. One 

data-set corresponds to one value of SD and therefore comprises 5 data points (= 2 dry months to 

6  dry  months)  from the corrected,  and  5  points  from the uncorrected version.  The  difference 

between X0.5(corrected) and X0.5(uncorrected) is defined as D = X0.5(corrected) – X0.5(uncorrected), 

and remains positive for all values of SD. This suggests (neglecting the impact of the width of the 

transition  phase)  that  simulations  with  underlying corrected climate are less stable  than those 

based on the uncorrected climate. Note that a set of D has to be distributed normally in order to 

perform the t-test, which is the reason why a Shapiro-Wilk test (APPENDIX B - Test for normality) 

has been performed in advance. Only one set (SD=35%) exhibits non-normal behavior at a level of 

significance of 5%. By truncating the data (as suggested by Rauscher, 1986) the number of data 

points would have been reduced to 3, which would reduce the validity of the t-test. We therefore 

apply the test with the full data set, but have to keep in mind that discrepancies could arise from 

the non-normal nature of the data. 

57



Even though X0.5(uncorrected) lies always below X0.5(corrected) (compare the blue and red line in 

figure  6.9), the t-test suggests that this difference becomes significant at SD=27.5% for the first 

time, and remains significant for variations larger than SD=30.0% at a level of significance of 5%. 

This implies, that for a realistic variation of SD=25% there is no significant difference between 

corrected and uncorrected, or in other words, whether the sky in the long dry season is covered or 

remains  clear  does  not  have  an  effect  on  the  precipitation  threshold  where  the  (simulated) 

ecosystem becomes unstable (Note that this is only valid for a system that is able to grow “from 

scratch” under these conditions, what we can not be sure of in the case of the real ecosystems, 

which have always been confronted with changing climate)! 
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Figure  6.9: Exponential growth of mean point of inflection corrected (red symbols) 

versus uncorrected (blue symbols) in mm/yr with increasing year-to-year variation of 

rainfall (SD of the precipitation distribution). The dashed lines present the exponential 

regression. 



To make the picture complete,  we must  also  include the width  of  the  transition  phase in  our 

calculations.  The  steps performed are  exactly  the  same as  before  (when the  mean points  of 

inflection were fitted), table 6.4 provides a comparison of estimates derived from the exponential 
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Table  6.3:  Corrected  (stratiform)  vs  uncorrected  (cumuliform)  

estimates  of  instability:  SD  =  standard  deviation  of  the  rainfall  

distribution  [%],  p-value  (Shapiro-Wilk-test),  p-value  (t-test),  D  = 

X0.5(corr.)  -  X0.5(uncorr.),  confidence  interval  (CI).  One  data-set  

corresponds to one value of SD and comprises 5 data points (= 2 dry  

months to 6 dry months) from the corrected, and 5 points from the  

uncorrected version.
Corrected vs. Uncorrected

SD[%] p-val (SW-test) p-val (t-test) D +/-CI
10,0 0,99 0,17 27 46
15,0 0,91 0,06 31 34
20,0 0,92 0,32 28 69
25,0 0,13 0,06 46 50
27,5 0,83 0,04 87 79
30,0 0,86 0,05 96 99
32,5 0,40 < 0,01 169 81
35,0 0,04 < 0,01 222 94
37,5 0,79 < 0,01 310 88
40,0 0,76 < 0,01 421 165

Figure 6.10: Exponential growth of mean length of the transition phase (W) corrected 

(red symbols) versus uncorrected (blue symbols) in mm/yr with increasing year-to-

year  variation  of  rainfall  (SD  of  the  precipitation  distribution).  The  dashed  lines 

present the exponential regression. 



regression for the corrected and uncorrected version. 

Table 6.4: Results from the exponential regression of the transition phase (W) for simulations based on uncorrected and  

corrected climates.

Uncorr:                      A = (23 +/- 8) mm/yr                                 r² = 0.77

                                  t = (8.8 +/- 0.7) [%]-1                                                         adj. r² = 0.76

                                  y0 = (340 +/- 60) mm/yr                           RMSE = 370 mm/yr

Corr:                          A = (13 +/- 8) mm/yr                                 r² = 0.79

                                  t = (7.5 +/- 0.2) [%]-1                                                         adj. r² = 0.78

                                  y0 = (420 +/- 120) mm/yr                         RMSE = 440 mm/yr

Higher variation in W makes it harder to predict then X0.5. This is expressed by lower r² values and 

root mean squared errors. Still, the fact that the uncorrected climates yield stabler simulations also 

seems to hold in this case (compare blue and red line in figure  6.10). We have mentioned that 

there is a trend visible in W, as it appears that the width of the transition phase starts at a relatively  

high value for 2DM, narrows down towards 4DM, and that widens again approaching 6DM (figures 

6.6-Error: Reference source not found). To make that trend visible, in figure 6.11 we expressed W 

in percent of the according point of inflection for all dry months. The distribution derived that way is 
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Figure 6.11: Width of transition phase in percent of the according X0.5 (corrected vs. uncorrected) for 2DM to 6DM. Dots  

illustrate the mean, the boxplot provides information about the underlying distribution of relative W. 



presented in form of a boxplot, mean values of the distribution are indicated by round symbols and 

dashed lines. 

What we have qualitatively observed is supported by figure 6.11, mean (dots) as well as median 

(black  lines)  at  4DM are  the lowest,  in  both,  the  corrected and  the uncorrected version,  and 

furthermore most of the distribution stays below the 100% mark. 6DM exhibits the largest W in 

percent of X0.5, but at least in the uncorrected case the distribution is probably too wide to make 

save predictions. 

How does this presentation help us? To demonstrate the surplus value of the functions we have 

derived,  X0.5 &  W will  be  estimated  for  sites  Moanda,  Mouila  and  Lastoursville,  and  we  will 

determine whether they are within a stable or unstable region, according to the simulation results. 

U is defined as the upper boundary of the transition phase (U = W/2 + X0.5), so it tells where the 

system might start to get unstable. A worst case estimation for U using figure 6.11 will be provided 

as well. 

We consider stratiform cloud during the dry season, and therefore apply the functions derived for 

the corrected climate. (Note that to calculate  X0.5, W and U the exact regression coefficients were 

used, so the results might diverge applying the rounded functions below.)

     X 0.5=[340+20⋅exp(
SD
8.5

)±100 ]mm/ yr eq. 6.2

    W=[420+13⋅exp(
SD
7.5

)±440]mm / yr eq. 6.3

Moanda's mean annual rainfall is 1940 mm/yr, with a standard deviation of 24.1% of the mean. 

This results in X0.5 = (690 +/- 100) mm/yr and W = (740 +/- 440) mm/yr and further U = (1060 +/- 

320) mm/yr or in U = (1060 +/- 650) mm/yr if we make use of the Gaussian error propagation. 

Taking the worst case as suggested by the error estimates, we obtain U = 1710 mm/yr.  If  we 

assume a climate with 2 dry months (as originally generated by MarkSim), figure  6.11 suggests 

that W is in average around 110% of  X0.5, which would result in U = (1070 +/- 160) mm/yr (since W 

= 1.1*X0.5 and U = X0.5 +W/2 = X0.5 + 1.1*X0.5/2, U only depends on the error in X0.5). Taking the 

furthest point out in the distribution for 2DM in figure  6.11, we would approximately obtain W = 

170% of X0.5,  further using the maximum error suggested for X0.5 (which leads to in X0.5 = 790 

mm/yr), this results in U = 1460 mm/yr, as a worst case scenario. To summarize: X0.5  = (690 +/- 

100) mm/yr, a good estimate for U might be U = (1070 +/- 100) mm/yr, but in the worst case U = 

1460 mm/yr. We can conclude that Moanda's rainforest (neglecting the fact that the samples taken 

to parametrize the ecosystem model were not taken in Moanda exactly) should be in a stable 

region with prcp = 1940 mm/yr +/- 24.1%. Table 6.5 provides further estimates for the other sites, 

always using the functions for corrected climate, and presenting a 2DM worst case estimate for U. 
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Table 6.5: Estimates for point of inflection (X0.5), transition width and upper boundary of the transition phase. U (110%)  

is the most probable estimate for U, U (170%) constitutes a “worst case scenario”. Lastoursville*: mean annual rainfall  

was taken from literature (table 4.5). 

Site Annual 
rainfall
[mm/yr]

Rainfall 
variation 
[%]

X0.5 

[mm/yr]

W 

[mm/yr]

U 

[mm/yr]

U (110%)

[mm/yr]

U (170%)
worst case
[mm/yr]

Conclusion

Moanda 1940 24.1% 690+/-100 740+/-440 1060+/-650 1070+/-160 1460 stable

Mouila 2069 24.4% 700+/-100 760+/-440 1080+/-650 1090+/-160 1480 stable

Lastoursv. 1317 34.5% 1500+/-100 1720+/-440 2360+/-630 2330+/-160 2960 unstable

Lastoursv.* 1778 25.6% 750+/-100 810+/-440 1160+/-650 1170+/-160 1580 stable

We can conclude that  Moanda and Mouila  are  far  away  from unstable  regions.  Lastoursville, 

including data from literature (Maloba Makanga, 2010) for our calculations is still in a stable region. 

If  we  make  use  of  data  derived  from  weather  station  measurements  (which  are  seemingly 

fragmentary) the results tell us that Lastoursville is in a region below the point of inflection, and that 

forest should only be able to develop with little chance. 

In order to explain how against our expectations the uncorrected climates (with higher temperature 

in  the  dry  season and more global  radiation  causing  larger  amounts  of  water  losses through 

evaporation and transpiration) could yield stabler simulations than the corrected climates, and why 

a dry season of 6 dry months increases stability when variation is getting higher, it might be helpful 

to assess the role of carbon stored in above-ground living biomass. It seems obvious, that the 
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Figure  6.12: Above-ground living biomass carbon (= leaf carbon + dead stem carbon) from all successful simulations 

averaged over the last  mortality cycle of  each simulation.  Carbon levels  (in different colors)  correspond to different 

amounts of dry months (2 to 6). 



more carbon stored in living biomass, the higher are the costs to support the ecosystem with water 

and nutrients. If variation of annual rainfall is little, i.e. the supply of available water remains more 

or less constant over time, ecosystems carrying a lot of carbon can develop with a minimum of risk. 

With increasing variation of annual precipitation, the chance is getting higher that the system might 

have to face a situation  where water  supply  in  not  enough to support  the living  costs  of  the 

biomass.  If  a stressful  situation like that  remains for  some years,  the ecosystem will  probably 

collapse.  Systems with smaller living biomass have lower “cost of  living”,  so they are adapted 

better to water shortages. On the other hand, a surplus of water is not used for growth but leaves 

the system through runoff events. This might explain why a simulation based on a climate with 

600mm rainfall per year and little variation of SD=10% (which means that the extreme values are 

480mm/yr and 720mm/yr) can be perfectly stable, but based on a higher annual mean of 1200 and 

a variation of SD=30% (also resulting in a minimum of 480mm/yr and a maximum of 1920mm/yr)  

rather tends to collapse: The system developing with less water does not  accumulate a lot  of 

carbon in the first place and is prepared for water shortage. The other system might even use 

years with precipitation of 1920 mm/yr to extent its storage of carbon over its average level, and 

facing a year with little rainfall the costs to support living biomass are higher than the available 

supply, which causes break down. This theory is supported by figure 6.12, which suggests that the 

above-ground living biomass stored in a system with prcp=1200mm/yr is about 50% higher than 

the amount stored in an ecosystem based on prcp=600mm/yr. 

Furthermore Figure 6.12 demonstrates, that systems with longer dry seasons develop less living 

biomass,  in fact  we can observe distinct  levels  of  carbon corresponding to the amount of  dry 

months of the underlying climate. Again the same explanation applies: Longer dry seasons inhibit 

the accumulation of carbon due to a reduced growing season, the surplus of water in the short wet 

season can not be used for growing purposes. A smaller pool of living biomass allows the system 

to survive shortages of water and nutrients, due to reduced “costs of living” and is thereby better 

prepared for higher climatic fluctuations. This explains why for little variation 2DM climates yield 

stabler simulations, or simulations equally stable, and as variation increases the role of carbon 

stored in living biomass becomes more and more important, and these simulations tendentially 

become the unstablest. So if we state that an ecosystem developing under a climate with a long 

dry season of 6DM is more stable than the according system based on a climate with a shorter dry 

season, we must not forget that the first system has less standing biomass in the first place, which 

is not desirable in common sense!

Does this  explication  also  hold  to  make us  understand the difference in  stability  between the 

corrected and the uncorrected versions? In figure  6.12 the corrected climate produces carbon 

curves that first form and than decline towards higher precipitations, while the other one seems to 

approach a constant level. Depending on the range of precipitation considered, either the corrected 
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or the uncorrected version is at a higher level, and the differences are smaller than the divergences 

in carbon resulting from different numbers of dry months, which cause a shift in stability at the 

same scale. 

 6.1.4  Spindown simulations
Until  now  we  have  considered  the  development  of  stationary  ecosystems  “from  scratch”, 

probabilities computed this way can be interpreted as probabilities of regrowth or reestablishment 

after  a disturbance.  A different  situation,  as discussed before,  is  when a steady state system, 

established on a “well-behaved” climate with only a short dry season and enough rainfall, suddenly 

faces a  climatic  change.  The methods described for  the spinup-simulations  are still  valid,  but 

include further considerations since break down might on one hand depend on the initial steady 

state system itself, and on the other hand also on where within the mortality cycle the climate is 

changed, since mortality might affect the system's reaction to the same climatic transition. This 

implies  a  larger  number  of  time  series  to  be  computed  considering  all  combinations  of  initial 

stationary systems and positions in the mortality cycle (shift dates), and keeping in mind that each 

simulation has to be repeated multiple times. Since we could theoretically choose of an infinite 

variety of climates setting up the initial stable state system, a reasonable approach that reduces 

the amount of simulations is to select only the original MarkSim climate of P3, where the samples 

for the epc-parametrization of Biome-BGC have been taken. Or in other words we use a climate 

based on the unchanged climate normals that served as template to create all P3 climate varieties 

(since this allows us to tell  how the  present ecosystem might  react  to a shift  in climate).  This 

climate's  mean  annual  precipitation  =  1550  mm/yr,  with  SD=26%  (normally  distributed).  The 

stationary  state  variables  are  stored,  and  each  simulation  is  initialized  based  on  the  same 
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Figure  6.13:  Mortality cycle  of  the underlying parametrization (black 

line), selected points where climatic change is performed (dots).



variables.  Within the mortality cycle of 500 years 8 positions are defined where the climate is 

changed.  Until  having reached this  point,  the  model  continues  to  base its  simulations  on the 

original climate.  

The maximum of the mortality cycle is at 7.85%, while the minimum is at 1.85%. Further the low 

and high mortality phase take 400 years and 100 years, respectively.  We chose 5 equidistant 

mortality  steps  between  minimum  and  maximum,  and  computed  their  according  years  of 

occurrence in the mortality cycle:  1.85% → 200yrs, 3.35% → 27yrs and  373yrs, 4.85% → 0yrs 

and 400yrs, 6.35% → 407yrs and 493yrs, 7.85% → 450yrs

This results in 8 shift dates in the mortality cycle, where the climatic change is performed (ordered: 

0, 27, 200, 373, 400, 407, 450 and 493 yrs).

The analytical steps to assess the results delivered by the spindown simulations are undertaken in 

analogy to the methods presented before, discussing the outcome of the spinup procedure, with 

one exception, that is, the different shift dates in the mortality cycle. For this reason, the following 

chapter is based mainly on the presentation of figures, while explaining text sections are reduced, 

since many observations and arguments are similar to statements in the previous chapter. First 

simulations based on an uncorrected climate are discussed, after that the corrected version is 

presented. Finally we will again provide a comparison between corrected and uncorrected.

Uncorrected climate (cumuliform)

Since we chose to split the mortality cycle with respect to equidistant mortality values (instead of  

equidistant shift dates), some regions in the cycle appear in higher resolutions (the high mortality 

phase between the 401st and the 500th year in the mortality cycle) than others. 
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Figure 6.14: Point of inflection (X0.5)  in mm/yr derived from logistic regression for different shift dates within the mortality  

cycle of 500 years, based on an underlying uncorrected climate with different values of annual rainfall variation (SD=10% 

to 30%). The numbers indicate the amount of dry months (2-6DM) of the according graph. The dashed line presents a 

linear regression performed on the data to illustrate a possible trend.



This approach has the disadvantage that possible fluctuations in regions with a lower resolution 

(the low mortality phase) might  be hidden,  and that it  becomes difficult  to put  a statement on 

whether the fluctuations around year 450 in  the cycle can be connected to the high mortality 

(compare with figure 6.13), or whether this variations occur all along the cycle. Nevertheless, one 

effect becomes apparent: A linear regression (dashed line) has been fitted to all data points of one 

certain  variation  (standard deviation  of  the rainfall  distribution),  just  to  qualitatively  assess the 

trend. We can observe an increasing trend for low variations that becomes flatter as variation is 

rising, and seems horizontal at SD=35%, where it starts to turn around to become decreasing for  

SD=37.5% and SD=40.0%. This means, that a shift performed to a climate with low variation in the 

beginning of the mortality cycle yields stabler simulations than when the shift is done towards the 

end of the mortality cycle. The opposite becomes true, once th variation has exceeded SD=35.0%. 

An interesting fact, that results from the periodicity of the mortality cycle is, that a shift in year 0  
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Figure 6.15: Point of inflection (X0.5)  in mm/yr derived from logistic regression for different shift dates within the mortality 

cycle  of  500  years,  based  on  an  underlying  uncorrected  climate  with  different  values  of  annual  rainfall  variation 

(SD=32.5% to 40.0%). The numbers indicate the amount of dry months (2-6DM) of the according graph. The dashed line 

presents a linear regression performed on the data to illustrate a possible trend.



should yield the same results as a shift  in  year 500.  As a matter  of  fact,  we see the biggest 

difference between year 0 and year 493 (or, with this assumption, between year 493 and 500). So, 

a small difference of 7 years in the cycle causes the largest difference in stability!  (Note that W 

does not depend on the shift date in the mortality cycle, figure 6.27)
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Figure  6.16: Point  of  inflection (X0.5) and upper limit of  the transition phase (U) in mm/yr derived from the logistic 

regression, for simulations based on uncorrected climate with 2-6 dry months and annual rainfall variation from SD=10% 

to SD=25%. Boxplots indicate the variation resulting from different shift  dates in the mortality cycle, the dashed line 

represents the mean values. 
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Figure  6.17: Point  of  inflection (X0.5) and upper limit of  the transition phase (U) in mm/yr derived from the logistic 

regression,  for  simulations  based  on  uncorrected  climate  with  2-6  dry  months  and  annual  rainfall  variation  from 

SD=27.5% to SD=35%. Boxplots indicate the variation resulting from different shift  dates in the mortality cycle,  the 

dashed line represents the mean values. 



In figures  6.16-6.18, X0.5 and U (the upper boundary of the transition phase) are presented (the 

lower boundary is symmetric to U around X0.5), boxplots indicate the variation due to the different 

shift dates. As figures  6.14 and 6.15 already suggest, the infleunce of the different shift dates is 

dominant  for  lower  variations  of  annual  precipitation,  as  boxplots  showing  wide  distributions 

indicate. With higher variation, this effect shrinks, and gradually the influence of the dry season 

becomes  predominant.  In  analogy  to  results  of  the  spinup  simulations  we  see  that  for  low 

variations simulations based on climates with 6 dry months are the unstablest, and step-by-step 

become the most stable as variation increases.   

One might  suspect  similar  effects behind the inversion of  the trend of  stability with respect  to 

different shift dates in the mortality cycle, and with respect to the length of the dry season caused 

by increasing variation of the annual rainfall distribution. 
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Figure  6.18: Point of  inflection (X0.5) and upper limit  of the transition phase (U) in mm/yr derived from the logistic 

regression,  for  simulations  based  on  uncorrected  climate  with  2-6  dry  months  and  annual  rainfall  variation  from 

SD=37.5% to SD=40%. Boxplots indicate the variation resulting from different shift  dates in the mortality cycle, the  

dashed line represents the mean values. 



Corrected climate (stratiform)

Simulations  based on corrected climates don't  show any surprising behavior  compared to the 

results illustrated before. For the sake of completeness the results are presented below without 

discussion.  
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Figure 6.19: Point of inflection (X0.5)  in mm/yr derived from logistic regression for different shift dates within the mortality  

cycle of 500 years, based on an underlying corrected climate with different values of annual rainfall variation (SD=10% to 

30.0%). The numbers indicate the amount of dry months (2-6DM) of the according graph. The dashed line presents a 

linear regression performed on the data to illustrate a possible trend.
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Figure 6.20: Point of inflection (X0.5)  in mm/yr derived from logistic regression for different shift dates within the mortality 

cycle of 500 years, based on an underlying corrected climate with different values of annual rainfall variation (SD=32.5% 

to 40.0%). The numbers indicate the amount of dry months (2-6DM) of the according graph. The dashed line presents a 

linear regression performed on the data to illustrate a possible trend.
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Figure  6.21: Point  of  inflection (X0.5) and upper limit of  the transition phase (U) in mm/yr derived from the logistic 

regression, for simulations based on corrected climate with 2-6 dry months and annual rainfall variation from SD=10% to 

SD=25%.  Boxplots  indicate  the  variation  resulting  from different  shift  dates  in  the  mortality  cycle,  the  dashed line 

represents the mean values. 
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Figure  6.22: Point  of  inflection (X0.5) and upper limit of  the transition phase (U) in mm/yr derived from the logistic 

regression, for simulations based on corrected climate with 2-6 dry months and annual rainfall variation from SD=27.5% 

to SD=35%. Boxplots indicate the variation resulting from different shift  dates in the mortality cycle, the dashed line 

represents the mean values. 



Corrected (stratiform) and uncorrected (cumuliform) compared

Table 6.6 shows information on whether the exponential increase in instability of simulations based 

on  corrected  climate  are  significantly  different  from the  uncorrected.  Compared  to  the  spinup 

approach, the data set is here considerably larger due to the different shift dates (40 pairs for the 

spindown  versus  5  pairs  for  the  spinup  approach).  This  larger  number  of  pairs  results  in  a 

reduction  of  the  95%  confidence  intervals,  which  means  further  that  the  difference  between 

corrected and uncorrected becomes significant  at  lower variations,  than for  the spinup.  Before 

SD=27.5% was the first rainfall variation to show a significant difference, here the level is down at 

the 15.0% threshold. In both situations, the spinup and the the spindown, the simulations with 

underlying corrected climate show less stability than their corrected counterparts. 

Both, the increase in W and X0.5 are fitted using a exponential regression model  based on a scaled 

Levenberg-Marquardt algorithm (Levenberg, 1944). Note that only the mean values (for each SD-

value) are fitted. To put a statement on the quality of the entire fit with respect to the whole data  

set, the RMSE and r² are computed with all points. Eq.  6.1 defines the form of the exponential 

function. 
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Figure  6.23: Point  of  inflection (X0.5) and upper limit of  the transition phase (U) in mm/yr derived from the logistic 

regression, for simulations based on corrected climate with 2-6 dry months and annual rainfall variation from SD=37.5% 

to SD=40.0%. Boxplots indicate the variation resulting from different shift dates in the mortality cycle, the dashed line 

represents the mean values. 
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Table  6.6:  Corrected  (stratiform)  vs.  uncorrected  (cumuliform)  estimates  of  

instability:SD = standard deviation of the rainfall distribution [%], p-value (Shapiro-Wilk-

test), p-value (t-test), D = X0.5(corr.) - X0.5(uncorr.), confidence interval (CI). One data-

set corresponds to one value of SD and comprises 40 data points (= 5 different lengths  

of dry season x 8 different shift dates in mortality cycle) from the corrected, and 40  

points from the uncorrected version.
Corrected vs. Uncorrected

SD[%] p-val (SW-test) p-val (t-test) D +/-CI
10,0 0,06 0,17 4 6
15,0 0,29 < 0,01 21 6
20,0 0,52 0,05 7 7
25,0 0,10 < 0,01 37 9
27,5 0,12 < 0,01 71 12
30,0 0,20 < 0,01 85 15
32,5 0,44 < 0,01 134 14
35,0 0,03 < 0,01 191 18
37,5 0,54 < 0,01 261 22
40,0 0,36 < 0,01 362 35

Figure 6.24: Exponential growth of mean point of inflection corrected (red symbols) 

versus uncorrected (blue symbols) in mm/yr with increasing year-to-year variation of 

rainfall (SD of the precipitation distribution). The dashed lines present the exponential 

regression. 



Table 6.7: Results from the exponential regression of points of inflection (X0.5) for simulations based on uncorrected and  

corrected climates.

Uncorr:                      A = (7.7+/- 0.2) mm/yr                            r² = 0.96

                                  t = (7.5 +/- 0.2) [%]-1                                                      adj. r² = 0.95

                                  y0 = (580 +/- 20) mm/yr                         RMSE = 110 mm/yr

Corr:                          A = (9.5 +/- 0.9) mm/yr                           r² = 0.98

                                  t = (7.5 +/- 0.2) [%]-1                                                      adj. r² = 0.98

                                  y0 = (570 +/- 20) mm/yr                         RMSE = 90 mm/yr

Also the width of the transition phase (W) in figure 6.26 shows a behavior that we already know 

from the spinup analysis.  W is increasing exponentially with SD (the standard deviation of the 

rainfall  distribution)  and  we  can  therefore  expect  a  linear  relation  between  X0.5 and  W.  The 

regression performed on W results in a higher level of uncertainty than the fitted X0.5 as suggested 

by a higher root mean squared error (RMSE) and a lower correlation coefficient (r²). 

Table 6.8: Results from the exponential regression of length of transition phase (W) for simulations based on uncorrected  
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Figure  6.25: Exponential  growth of mean length of transition phase (W) corrected 

(red symbols) versus uncorrected (blue symbols) in mm/yr with increasing year-to-

year  variation  of  rainfall  (SD  of  the  precipitation  distribution).  The  dashed  lines 

present the exponential regression. 



and corrected climates.

Uncorr:                      A = (12 +/- 4) mm/yr                            r² = 0.79

                                  t = (7.8 +/- 0.4) [%]-1                                                adj. r² = 0.78

                                  y0 = (400 +/- 10) mm/yr                      RMSE = 320 mm/yr

Corr:                          A = (11 +/- 7) mm/yr                            r² = 0.81

                                  t = (7.4 +/- 0.8) [%]-1                                                adj. r² = 0.81

                                  y0 = (400 +/- 10) mm/yr                      RMSE = 370 mm/yr

The influence of the length of the dry season on W on percent of X0.5 is similar for simulations with 

corrected and uncorrected climate: A minimum is visible at 3-4DM, and 6DM in average exhibits 

the largest W/X0.5 ratio,  which means that although 6DM simulations are seemingly getting the 

stablest for higher variations of annual rainfall, their unstable phases are wider than for the rest of 

the simulations. A similar behavior has already been observed at the spinup approach. 
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Figure  6.26:  Length  of  transition  phase  (W)  in  percent  of  the  according  point  of  inflection  (X0.5)  (corrected  vs. 

uncorrected) for 2DM to 6DM. Dots illustrate the mean, the boxplot provides information about the underlying distribution 

of relative W. 
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Figure  6.27:  Length  of  transition  phase  (W)  in  percent  of  the  according  point  of  inflection  (X0.5)  (corrected  vs. 

uncorrected) for different shift dates in the mortality cycle. Dots illustrate the mean, the boxplot provides information 

about the underlying distribution of relative W. 

Figure  6.28: Above-ground living biomass carbon (= leaf carbon + dead stem carbon) from all successful simulations 

averaged over the last  mortality cycle of  each simulation.  Carbon levels  (in different colors)  correspond to different 

amounts of dry months (2 to 6). 



Although we see a decreasing trend, a clear dependence of the W/X0.5 ratio on the shift date in the 

mortality cycle can not be determined (figure 6.27) since the scale of the width of the distributions 

(illustrated as boxplots) is far above the scale of differences between successive means / medians 

of the distributions. 

 6.1.5  Hysteresis (spinup vs. spindown)
In this last section of the chapter assessing ecosystem stability, the results derived from the spinup 

and  spindown approaches  will  be  compared.  In  the  introduction  we  have  stated  that  spinup-

simulations mimic the growth or regrowth of an ecosystem under certain climatic conditions. On the 

other hand, the spindown emulates a situation where an existing ecosystem that has reached a 

stationary state faces climate change.

In ecology the term “hysteresis” describes the path dependency of the stable state that is reached 

by  similar ecosystems under the same environmental conditions. “Path” in this case refers to the 

past of the system, or the states that have been occupied by the system before a shift in external 

forces pushed the system into the current state. We can directly translate the idea of hysteresis to 

our experiment: On one side the a simulated ecosystem has to develop from scratch (spinup), on 

the other side climate change is performed on an existing stable system (spindown). We thereby 

have different past situations, or different paths to the current state. It is crucial to know that the 

change in environmental factors has to be identical in both situations, which is also true here: We 

have reduced the external influence to the impact of climate on which the simulations are based. 

The climate files used in the spinup and spindown approach are identical! 

Although  the  model  is  kept  rather  simple  (no  alternative  forms  of  vegetation  within  one 

parametrization) and although the ecosystem does not have a feedback effect on the micro climate 

in the forest, we can observe effects of hysteresis (figure 6.29), that is, in lower regions of variation 

of annual rainfall the spinup yields stabler simulations than the spindown, under equal conditions. 

In  other  words,  a  system  developing  under  unfavorable  climatic  conditions  (e.g.  under  dry 

conditions)  has  a  higher  chance  to  reach  a  stable  state,  than  a  functioning  system  that  is 

confronted with the same climate. The difference we observe between spinup and spindown might 

take place at a small scale, but again, the type of ecosystem can not be altered (since it is defined 

by the eco-physiological paramters included in Biome-BGC) and feedback effects on climate are 

not implemented, and both factors are very important factors in connection with hysteresis in real 

ecosystems. 

In figure 6.29 we see that the small difference between the fitted curves resulting from spinup and 

spindown simulations vanishes for variations of annual rainfall above SD=30% to 35%. The width 

of the transition phase (figure  6.30) is virtually unaffected by the underlying path to the current 

stable state, i.e. it exhibits only minor to no hysteresis at all. 
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Figure 6.29: Hysteresis: Instability is increasing differently for spinup (solid line) and spindown (dashed line). Exponential 

regression of mean point of inflection (symbols) in mm/yr with increasing year-to-year variation of rainfall  (SD of the 

precipitation distribution). 
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Figure  6.30:  Hysteresis:  only  minor difference between spinup (solid  line)  and spindown (dashed line).  Exponential 

regression of mean width of transitions phase (symbols) in mm/yr with increasing year-to-year variation of rainfall (SD of 

the precipitation distribution). 



 7  Discussion
In the course of this work, concepts and methods to assess the stability of tropical ecosystems 

have  been  developed.  These  included  the  adaption  and  validation  of  the  weather  generator 

MarkSim for  sites  in  Gabon,  where  the computation  of  incident  solar  radiation  and  maximum 

temperature  underwent  an  improper  procedure  and  hence  created  biased  results.  After  the 

correction  and  validation  using  data  from three  weather  stations,  MarkSim's  functionality  was 

enhanced to the effect that  we could alter  and define climatic parameters in a quantified way. 

These parameters included the amount of annual rainfall, the distribution of precipitation within the 

year (which connects to the length of the dry season), the quality of the cloud cover (cumuliform vs. 

stratiform) and the exact year-to-year variation of annual rainfall. Utilizing the ecosystem model 

Biome-BGC, repeated simulations for each of the 900 climates we generated, made it possible to 

put  a  statistical  statement  on  the  stability  of  an  ecosystem  based  on  a  certain  climate.  We 

integrated these data using a logistic regression function, and used the function's point of inflection 

combined with the width of  the transition phase (or  risky phase) as a surrogate for  instability. 

Finally we defined two ways for a simulated ecosystem to approach a stable state: The first option 

refers to forests that grow “from scratch” (“spinup”), the second method mimics stationary forests 

that have already accumulated biomass and that undergo climatic change (“spindown”).  Among 

many results, where some require further in depth research, three points clearly stand out:

1) Variation  of  annual  rainfall  has  proved  to  be  the  key  factor  influencing  the  stability  of 

modeled ecosystems,  which is,  as  climate change is  on everyones lips,  an interesting 

result. The quality of the exponential regression fitted to the data can be valued as very 

high, underlined by high coefficients of determination (correlation coefficients) and rather 

small RMSEs, which allows accurate predictions.

2) We observed a significant influence of the length of the dry season on the carbon level of 

living biomass, in a way that systems based on longer dry periods exhibit  lower carbon 

content. Can this reduction in C be interpreted as forest break down, observed by many 

authors (chapter 1.1) around 2500BP? Maley, 2001, states that in some regions the climatic 

event that has taken place around 2500BP has not expressed itself in forest break down, 

but in a visible change in vegetation composition, that is, a significant advance of pioneer 

species. In a breath, Maley suggests that the amount of annual rainfall has staid at the 

same level, while the repartition of rainfall within the year might have changed. This idea 

results from the fact that sediment layers belonging to this epoch indicate the presence of 

enhanced erosive events, as they would occur if  all the rain was falling within a shorter 

period of the year due to an extended dry season. Biome-BGC, as mentioned before, lacks 

the possibility to support alternative forms of vegetation within one simulation, so it cannot 

switch to a more successful plant type, if one type fails to adapt adequately. It is very likely 
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that the reduction in biomass of the modeled old grown forest due to a shift in seasonality 

might in a real forest ecosystem be accompanied by the propagation of pioneer species, as 

documented by Maley, 2001.

3) The third interesting result is, that we could to some extent observe hysteresis-effects, i.e. 

systems developing “from scratch” showed a significant difference in stability compared to 

established systems facing climate change.  We showed that,  within the lower range of 

rainfall variation, forests growing in undesirable climatic conditions are stabler than grown 

forests that undergo a shift in climate. In a real system this effect could be connected to the 

possibility of adaption, i.e. a forest developing in certain climatic conditions can adapt due 

to alternative genetic pathways or by creating niches for other plants, for example, while the 

old grown forest has already adapted to conditions that are no longer present. The result is 

remarkable  because  Biome-BGC  does  not  support  adaption  of  the  eco-pysiological-

parameters nor does it support alternative forms of vegetation. Although the model is based 

on rather simple functional implementations, we could still observe an effect of hysteresis.

The concepts and methods developed in the course of this work are applicable to other types of 

forest ecosystems and can be regarded as an innovative approach to assess the impact of climate 

on the stability of forest ecosystems.
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APPENDIX A - MarkSim file structure
For our needs, the two most important file types are the climate parameter file (or CLX file) and the 

daily weather output in the WTG-file (figures A.1 and A.2). 

  moanda   Interpolated -1.533  13.267  571 
 1.000 0.190 0.119 0.161 0.197-0.024-0.174 0.053-0.163-0.244-0.018 0.345 
 0.190 1.000 0.101 0.255 0.303 0.247 0.221 0.065 0.011-0.016-0.088 0.462 
 0.119 0.101 1.000 0.332 0.218-0.115 0.073 0.239-0.065 0.066 0.140 0.154 
 0.161 0.255 0.332 1.000 0.335-0.013-0.136-0.203-0.136-0.164 0.082 0.210 
 0.197 0.303 0.218 0.335 1.000 0.298-0.044-0.050-0.163-0.138-0.038 0.239 
-0.024 0.247-0.115-0.013 0.298 1.000-0.066-0.276 0.154-0.011 0.061 0.162 
-0.174 0.221 0.073-0.136-0.044-0.066 1.000 0.242 0.296 0.303-0.077-0.018 
 0.053 0.065 0.239-0.203-0.050-0.276 0.242 1.000 0.114 0.046 0.289 0.148 
-0.163 0.011-0.065-0.136-0.163 0.154 0.296 0.114 1.000 0.306 0.184 0.037 
-0.244-0.016 0.066-0.164-0.138-0.011 0.303 0.046 0.306 1.000 0.101 0.193 
-0.018-0.088 0.140 0.082-0.038 0.061-0.077 0.289 0.184 0.101 1.000-0.017 
 0.345 0.462 0.154 0.210 0.239 0.162-0.018 0.148 0.037 0.193-0.017 1.000 
MONTH  AV     P     BETA    RAINDAYS  S.E. 
   1   8.9   0.693 -0.173  0.619     0.35800 
   2   9.6   0.673  0.014  0.722     0.35674 
   3   9.6   0.653  0.566  0.900     0.36151 
   4   8.8   0.647  0.236  0.800     0.36364 
   5   9.9   0.677 -0.016  0.697     0.35118 
   6   6.0   0.798 -1.265  0.154     0.41392 
   7   5.6   0.821 -1.384  0.091     0.40734 
   8   5.1   0.883 -1.449  0.083     0.42337 
   9   8.1   0.743 -0.641  0.402     0.36036 
  10  10.7   0.770  0.417  0.849     0.36281 
  11  10.4   0.763  0.285  0.825     0.36601 
  12  10.1   0.719 -0.133  0.646     0.35387 
D1-3 0.4920 0.1880 0.1200   N=  2 Cluster 372 Phase  0.082 
rain 174. 195. 261. 218. 204.  37.  11.  16. 100. 277. 262. 199. 
temp 24.2 24.5 24.8 24.9 24.0 23.0 22.2 22.7 23.7 23.9 23.8 23.5 
rang  8.9  9.5  9.8  9.7  8.8  8.0  8.1  8.5  9.1  9.1  9.1  8.6 
radn 18.6 20.2 21.0 20.4 18.2 15.8 14.6 16.0 18.6 19.5 19.3 17.5

Figure A.1: Example of a CLX file (Moanda, Gabon), monthly climate normals (bold)

The CLX file contains latitude, longitude and elevation of a point of interest in the first line, followed 

by a correlation matrix for the baseline probits and a list of monthly parameters responsible for the 

Markov  Chain  rainfall  estimation.  Printed  bold  are  the  computed  climate  normals  of  rain 

[mm/month],  average  temperature  (temp,  [°C]),  diurnal  temperature  range  (rang,  [°C]),  and 

radiation (radn, [MJ/m²/day]) in monthly resolution covering the whole course of a year. Applying 

procedures mentioned in chapter 3.1.2, this file gives rise to the WTG output files, one single WTG 

file covering one year's constitutes. It is possible to generate a maximum of 99 simulation years, 

each year's daily weather variables represented in one WTG file. It is, however, possible to define 

your own climate normals using the DAT-file, which includes only longitude, latitude, elevation and 

the climate normals for monthly mean temperature, temperature range and precipitation. MarkSim 
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uses the DAT-file as a template to create a CLX file and to compute the stochastic output in the 

next step.

To generate multiple climates from different DAT-files at the same time, MarkSim provides CBF 

and XBF files where input DAT-files and output CLX-files, or input CLX-files and output WTG-files, 

respectively, are listed in the order that climates should be produced. These files (CBF and XBF) 

can be generated using MarkSim's drag and drop function.

*WEATHER : moan From Interpolated Surfaces 

@ INSI      LAT     LONG  ELEV   TAV   AMP REFHT WNDHT 
  moan   -1.533   13.267   571  23.8   9.8 -99.0 -99.0 

@DATE  SRAD  TMAX  TMIN  RAIN      
01001  20.6  26.6  18.7  36.4 
01002  25.1  27.9  17.6   0.0 
01003  20.7  29.8  18.1   0.0 
01004  27.8  28.1  20.2   0.0 
01005  26.4  28.5  21.1   0.0 
01006  22.8  25.6  18.5   0.0 
01007  24.8  26.3  18.2  11.8
...

Figure A.2: Extract of the header and first seven entries of a WTG file (Moanda, Gabon)
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APPENDIX B - Statistical methods

B.1  Test for normality
In order to perform a t-test, or conventional confidence and prediction interval, the precondition is a 

normally distributed dataset. All data will therefore be tested for normality using the Shapiro-Wilk-

test as described in Shapiro and Wilk, 1965. Tabulated p values < 0.05 lead to the rejection of the 

null hypothesis, that the tested data set is distributed normally.

B.2  Testing predicted vs. observed
Either  two data  sets  are compared using a paired test,  or  the residuals  (i.e.  observed minus 

predicted) of the two sets are tested using a one sample test – which yields the same exact result. 

Assuming a one sample test, data is tested against the null hypothesis that the mean bias (mean 

of residuals) is equal to zero. Again, p < 0.05 leads to rejection of the null hypothesis, and the 

underlying data set will be considered “biased at a 5%-level of significance”. Normally distributed 

data sets are tested by the conventional t-test, while data failing the precondition to be normally 

distributed undergo a non-parametric test, the U-test (Wilcoxon, 1945; Mann and Whitney 1947). 

Confidence (CI) and prediction-interval (PI) for residuals
The precondition to apply  statistics as suggested by Reynolds (Reynolds,  1984) is a normally 

distributed underlying data set. Prediction  and confidence interval are defined as:

     CI : [D−
S⋅t1−α/2(n−1)

√n−1
; D+

S⋅t1−α/2(n−1)

√n−1
] eq. B.1

     PI : [D−√1+
1
n
⋅S⋅t 1−α/2(n−1); D+√1+

1
n
⋅S⋅t1−α/2(n−1)] eq. B.2

where n are the degrees of freedom, D (eq. B.3) is the mean residual or the estimator for the bias, 

and S its standard deviation (eq. B.4):

     
D=

1
n
⋅∑

i

n

Di
eq. B.3

     S²=
1
n−1

⋅∑
i

n

(D i−D)² eq. B.4

t 1−α/2(n−1) is the 1-α/2 quantile of the t distribution with n-1 degrees of freedom.

The interpretation of the prediction interval in the case of the correction procedure introduced in 

APPEDNIX C is, that if MarkSim is repeatedly used to produce new stochastic weather data with 

the same underlying climate normals, the probability that a future value of D will fall in this interval 

91



is 1-α. Each sample leading to a specific D value and its according PI must therefore be selected 

at random from the distribution of D.

On the other hand, the confidence interval gives an idea of the scale of discrepancies between D 

and E(D), where E(D) can be thought of as the expected value of the bias over all possible sets of 

generated weather data from one site which use the same underlying climate normals. In the usual 

terminology, assuming that  α = 0.05, we can be 90% confident, that the value which includes 95% 

of  absolute  errors  |D|  is  located  somewhere  within  the  CI.  Testing  residuals  against  the  null 

hypothesis of being equal to zero, if the confidence interval includes 0 the tested data is referred to 

as “unbiased”, and as “biased” if it does not. 

If, however, the underlying data set is not normally distributed, the upper and lower 10% of the 

distribution of D are truncated, as suggested in  Rauscher, 1986. The trimmed bias DT and the 

trimmed standard deviation are then used to compute PI and CI. 

Pearson's linear correlation coefficient & sample mean error
The Pearson correlation (eq.  B.5), or product momentum correlation coefficient gives an idea of 

how well  two samples are correlated in a linear way and is within this  work often taken as a 

surrogate for the quality of seasonality. Consider the comparison of weather data: If both samples 

(“observed” and “predicted”)  experience higher precipitation in  one part  of  the year,  and lower 

values in  a different  time period,  then r  will  be positive and close to one.  On the other  hand 

contrasting seasonal trends lead to negative r, close to -1. This, however, does not tell us how far 

two samples are apart from each other, and we therefore define the sample's mean error (eq. B.6).

     r=
∑
i

n

[( yi− ŷ)⋅(x i− x̂ )]

√∑
i

n

( y i− ŷ )
2∑

i

n

(x i− x̂)
2

eq. B.5

     err=
1
n
∑
i

n

∣x i− y i∣ eq. B.6

r = -1 means complete negative correlation of the two samples, i.e. their seasonal trends contrast 

perfectly. r = 1 on the other hand tells you that both samples feature the same seasonality. If r = 0 

the two samples are not correlated linearly. The subscripted variables are monthly averages of the 

two samples (e.g.: climate normal vs. actual value), x and y are their mean values, i.e. annual 

means. Note, that performing regression analysis of any kind, r² is usually used as a measure to 

quote the quality of fitted data. 
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B.3  Box-and-whiskers plot
A box-and-whiskers plot  is,  similar  to a histogram, a graphical representation of  a distribution, 

making use of the quantiles of the distribution in question. The line in the middle presents the 

median (or 50%-quartile, Q2), the two boxes to the left and right (or below and above the middle 

line) provide information about the size of the 25% (Q1) and 75%-quartile (Q3), respectively. The 

lines (whiskers)  indicate a range for  all  points of  the distribution that  are within 1.5 times the 

interquartile range (Q3-Q1), all other points are referred to as “outliers”, and are displayed by a dot 

outside the whiskers. (Turkey, 1977; Dalgaard, 2008)

Figure B.1: Box-and-Whisker plot, schematically

B.4  Logistic regression analysis
Later  in  this  work  techniques  to  asses  ecosystem  stability  will  be  presented,  and  therefore 

simulation results  will  be categorized into two groups:  “dead”  and “alive”,  telling us weather  a 

simulation has successfully developed a “living” ecosystem or whether it has failed to do so. In 

common  sense  logistic  regression  analysis  (LRA)  refers  to  situations  where  a  dichotomous 

variable  is  explained by  the linear  combination  of  a  set  of  predictors and errors,  which is  an 

extension of multiple linear regression analysis. A dichotomous set can be divided into two parts, 

where every element must belong to either one part,  or the other,  but non can simultaneously 

belong to both parts (Dalgaard, 2008). An example is given by the system states “dead” or “alive”, 

as present in our approach, but here we only have one discrete predictor, which is mean annual 

precipitation.  We will  adopt  LRA techniques,  not  to  distinguish  influential  predictors  from less 

important predictors, which is the usual purpose, but to quantify the transition between the two 

states (from low rainfall regimes which face break down more often, to more humid climates, which 

should lead to full development with a higher probability). 

The logistic regression function with only one predictor is of the form:

     P(x )=
1

1+e−(a+b⋅x) eq. B.7

P is restricted to [0,1] and can be interpreted as the probability that an ecosystem simulation at a 

given mean annual rainfall, with an according number of dry months and variation of annual rainfall 
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does develop into stationary state. x is the only predictor (precipitation) and a and b are regression 

coefficients,  intercept  and  slope,  respectively.  The  regression  coefficients  are  estimated  by  a 

maximum likelihood procedure (Dalgaard, 2008).

Using the logistic regression function data can be integrated and reduced to two measures, which 

can be interpreted as surrogates for instability: 

1) The x-value of the function's point of inflection [mm/yr] at P = 0.50.

2) The width of the transition phase, from P = 0.01 to P = 0.99.
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APPENDIX C - Correction of solar radiation and maximum 
temperature

Even though generating weather  is  based on a stochastic  procedure,  the monthly  average of 

climate variables should not be too far off the original climate normals. This statement is true for 

many locations worldwide, but not for sites within Gabon, where we face constant overestimation 

of solar radiation (SRAD) and maximum temperature (TMAX) within the long dry season during 

boreal summer, and underestimation of the same variables during the rest of the year. Based on 

this fact a correction procedure has been developed, which fits the monthly averages computed 

from a set of WTG files to the climate normals from the CLX file (figure  A.1), assuming that the 

interpolated climate normals are close to the real conditions. A correction is performed on SRAD 

and TMAX only. 

The different working steps of the correction algorithm can be summarized as follows:

1. One CLX and its corresponding number of N WTG files (= N simulation years) are read into 

the system and daily,  as  well  as monthly  average values over  N simulation  years are 

computed.

2. A cumulative approach determines the boundaries of each year's long dry season (DS). 

According  to  the  FAO (source:  FAO)  Gabon features  a  long  dry  season,  taking  place 

between June and October, during which the sky stays covered.

3. Monthly mean WTG variables are compared with CLX climate normals and the monthly 

residuals between those two are estimated. Further, correction factors (CF) are calculated 

that define how values of a single day are changed. 

4. Residuals are computed again within each loop if the main cycle (CLX-WTG)

5. Depending on the CF and the size  and sign of  the residuals,  a probability  function  is 

defined that is responsible for the amount of days within a month to be changed, so that the 

mean of the whole month reaches a different desired value.

6. A stochastic  correction  function  chooses days according to its  probabilities  where daily 

SRAD and TMAX are adjusted by their according CFs. The results cannot exceed certain 

truncation factors TF to prevent from generating extremely high or low values of the given 

variable.

7. Optionally changes on the dry season only can be performed using the defined boundaries 

of each year's DS.

8. Some statistics on the correction, corrective factors and daily to monthly values before and 

after correction are printed to different files. 
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In  the  following  section  the  focus  will  first  be  put  on  the  main  cycle  of  the  algorithm  which 

comprises step 4, 5 and 6 (highlighted in the flow chart). After that, step 2 and 7 will be explained 

since  7 explicitly depends on 2. 

C.1  The main cycle
To apply a correction we can distinguish between two approaches: Either a correction is performed 

on a monthly, or on a daily basis. 

1. The benefit of the monthly corrective approach is, that all days in a month in question are 

treated equally and the initial sequence of daily values produced by MarkSim stays more or 

less undisturbed since each daily value is multiplied by the same correction factor  that 

leads to an either decreased or increased monthly mean value.

2.  A more invasive method applies a correction on a daily basis, i.e. single selected days 

within a month are multiplied by a corrective factor with the result that the monthly mean is 

changed. The advantage of this second approach is higher flexibility:  A bigger range of 

options  to  try  out  different  CFs,  and  the  possibility  to  actively  select  days  that  should 

undergo a correction. 

All that will become more clear after we have discussed how that algorithm has been implemented 

in our case: First, correction factors that tell us how a certain daily value is changed, are computed. 

These factors can be chosen on a monthly scale, or to be valid for the whole year and they work in 

96

Figure C.1: Flow chart of corrective procedure, main cycle indicated by highlighted boxes.



both directions, i.e.  there are factors slightly below one, and slightly above one, depending on 

whether the initial value of the meteorological variable is too high or too low, respectively. The size 

of a CF and the residual between climate normal and WTG average, however, define a certain 

probability function (PF) that is responsible for the amount of days within a month to be changed, 

so that the mean of the whole month reaches a different desired value. According to the PF each 

day has a certain probability (0 < p < 1) to undergo a corrective procedure, where p is compared 

with a random number (0 < r < 1). Now we can again emphasize the advantages of that method: 

a) The size of the CF defines the shape of the PF dynamically. If we move the CFs closer 

towards 1, the PF becomes higher and converges towards the case, where all days are 

corrected. So approach 2 in fact includes method 1, if CFs are chosen in the right way. 

b) In the present implementation probabilities are distributed equally over each month, i.e. 

all  days within a certain month have the same chance to be “selected” by the random 

number generator. The PF, however, can be changed or extended easily to apply certain 

selective patterns. If, for example, we find out that rainy days show a too large amount of 

incident solar radiation in general, we can adjust the PF with the result that these days are 

more likely to be corrected in a specific way. 

Since the correction is based on the stochastic selection of days that are adjusted, and afterwards 

truncated if they exceed certain defined values, the residuals will not completely vanish after one 

iteration loop of the main cycle. Further, we expect a certain saturation effect taking place, were the 

difference between desired and actual values will  not get any smaller due to stochasticity and 

truncation. As we will discuss later, after five iterations the procedure has usually reduced the error 

to its minimum. The monthly probabilities, however, will get smaller with every iteration performed 

since they directly depend on the difference between desired and actual value of a variable in 

question (TMAX or SRAD), i.e. the residual.  

Correction Factors (CF) and Truncating Factors (TF)
As already mentioned, the choice of the corrective factors depends on the desired output and can 

be  adapted  according  to  the  end  user  needs.  Nevertheless  a  set  of  CFs  and  TFs,  which  is 

implemented in the current version is suggested here:

SRAD_MAX + ε: Mean over all N simulations of the maximum values of daily solar radiation, each 

year (or each WTG) contributes with its highest SRAD value. Fitting daily solar radiation, this value 

cannot be exceeded.

SRAD_MIN + ε: Mean over all N simulations of the minimum values of daily solar radiation, each 

simulation year contributes with its lowest SRAD value. Fitting daily solar radiation, the corrected 

value cannot fall below SRAD_MIN + ε.

97



TMAX_MAX + ε: Similar to SRAD_MAX, but using the maximum values of TMAX.

TDIF_MIN + ε: Average minimum diurnal temperature range, the smallest TDIF (=TMAX-TMIN) of 

every simulation year contributes to this TF. A newly generated daily TMAX value must not be 

lower than its corresponding TMIN value plus TDIF_MIN+ ε. 

SRAD_CORR_H: The ratio between the mean solar radiation on wet versus dry days, averaging 

over  the  whole  year  and  all  WTGs.  SRAD_CORR_H <  1  is  the  CF correcting  the days  that 

experience a too high value of SRAD in their monthly mean. 

SRAD_CORR_L: The ratio SRAD_MAX/SRAD, where SRAD_MAX has been explained before and 

SRAD is the average solar radiation of all simulation years. SRAD_CORR_L > 1 is responsible for 

corrections on days where SRAD is too low in its monthly mean. 

TMAX_CORR_H is equivalent to the relation TMIN/TMAX < 1, where TMIN is the mean annual 

minimum and maximum temperature, respectively, averaged over all simulation years. 

TMAX_CORR_L is chosen similar to SRAD_CORR_L: TMAX_MAX/TMAX > 1.

For  simplicity  only  SRAD_CORR_H and  SRAD_CORR_L have  to  be  chosen  explicitly.  These 

factors determine the probability function, and since it makes sense to perform a correction of daily 

TMAX on the same days as SRAD is changed, TMAX_CORR is computed depending on the CFs 

of  solar  radiation  (explanation  follows).  TMAX_CORR_H  and  TMAX_CORR_L  simply  restrict 

TMAX_CORR to the interval TMAX_CORR_H < TMAX_CORR < TMAX_CORR_L. This approach, 

again, ensures the dynamic behavior of the correction procedure, since the user only has to make 

up a pair of CFs for the solar radiation, which then define the average amount of days that will 

have to undergo an adjustment (PF) and which finally leads to the definition of the CFs for the 

maximum temperature. ε is a normally distributed random error, derived from the samples standard 

deviation. It is computed as follows:

     = m x⋅ eq. C.1

     x=⋅cos  eq. C.2

     =−2⋅log 1−b eq. C.3

     =2⋅⋅c eq. C.4

b and c are random numbers between zero and one, m and σ are the sample's mean and standard 

deviation, respectively.  ε is truncated if it leaves the interval [-2σ, 2σ]. 

The probability function (PF)
The PF in the recent implementation allocates the same probability p (0 < p < 1) to all days of a  

certain month:
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     days [ i ]=
sradCLX [i ]−sradWTG [ i ]

sradWTG [i ]
⋅
dpm [ i ]
CF−1

 eq. C.5

     PF : p[ i ]=
sradCLX [i ]−sradWTG [i ]

sradWTG [ i ]
⋅

1
CF−1

eq. C.6

days[i] is the amount of days within a month with a total number of dpm[i] days, where a correction 

has to be performed in order to meet the desired monthly mean value for SRAD. sradCLX[i] is the 

monthly climate normal, or desired monthly mean value, and sradWTG[i] refers to the actual mean 

value that  has to be adjusted.  sradCLX[i]-sradWTG[i]  therefore define the residual  that  has to be 

reduced during the correction. If sradWTG[i] > sradCLX[i] : CF = SRAD_CORR_H, and if sradWTG[i] < 

sradCLX[i]  : CF = SRAD_CORR_L, the index i runs over all months from 0 to 11 (including 0 as the 

first month), p[i] stays constant for all days within one month. 

Figure C.2 presents an example for the residuals of solar radiation for the site Moanda before a 

correction has been performed and considering no dynamic transition dates (we will come to this 

soon).  Negative  values  indicate  an  overestimation  while  values  above  zero  stand  for  an 

underestimation  of  the  desired  value.  This  distribution  of  the  residuals  and  assuming 

SRAD_CORR_H = 0.58 and SRAD_CORR_L = 1.67 leads to the probability distribution in figure 

C.3
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Figure C.2: Residuals of solar radiation (sradCLX-sradWTG; [MJ/m²/day]), exemplary for Moanda .



As mentioned before, this PF is defined on a monthly scale, i.e. all days within a certain month 

have  the  same  probability  as  indicated  by  the  distribution.  Theoretically,  applying  selective 

patterns, a non-flat PF on a daily basis could be defined, with the side condition that the over all  

monthly probability stays the same. 

A dynamic CF responsible for TMAX adjustments can now be defined as follows:

     TMAX CORR[ i ]=
dpm [ i ]⋅tmaxCLX [ i ]− tmaxWTG [ i ]

days [ i ]⋅tmaxWTG [ i ]
1 eq. C.7

tmaxCLX[i] is the climate normal, and tmaxWTG[i] the actual monthly mean value, again tmaxCLX[i]-

tmaxWTG[i] define the residual between current and desired situation. 

To summarize: TMAX_CORR has a different value from month to month, but the same value for 

the same month in different simulation years, and explicitly depends on SRAD_CORR and the 

SRAD-residuals. These solar radiation CFs are fixed, i.e. they don't change between months, and 

neither they do so between simulation years. 

Finally all necessary elements have been defined to perform the correction:

if rand [ i ]p [ i ] : srad new=srad⋅CF and tmaxnew=tmax⋅CF eq. C.8

If that condition is met, an adjustment of this certain day according to the month's CF is initialized. 

rand[i]  is a random number in [0,  1] which is newly computed for each day in each year.  The 

correction follows the simple relation: new value = old value x CF. 

The probability function – a different representation
We have already emphasized the advantage of the dynamic handling of the probability function as 

it  has been implemented here. Just two correction factors have to be computed, some climate 
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Figure C.3: Monthly correction probabilities (0 < p < 1), for Moanda exemplary



normals to be defined, the rest is taken care of by the algorithm. In the introduction of this chapter 

(the main cycle) we have introduced two approaches of how a correction can be applied on the 

weather data: Either all days in a month in question are treated equally or single days are selected 

(by chance, or actively). We have stated that in fact method 2 (active selection) includes method 1 

(treat all days equally), if the corrective factors are chosen in the right way. We therefore define the 

CFs that will lead to probability = 1 on every day (i.e. each day will be corrected)

     CF=
sradCLX [ i ]−sradWTG [i ]

sradWTG [ i ]
1 eq. C.9

Dynamic transition dates (DTD)
It has to be emphasized, that even though we adjust single daily values, the focus of the whole 

correction process is to be put on monthly values. But “one month” in this algorithm is somewhat 

different  from  its  conventional  meaning.  Assuming  months  as  we  know  them,  i.e.  January, 

February  (...)  and  their  fixed  transition  dates  from one  month  to  another,  e.g.  January  31  to 

February 1, certain artifacts have emerged concerning daily mean values. A daily mean value here 

is the average of all values of a certain variable on that particular day but of all different simulation 

years (e.g. February 1 in year 1, year 2...). These artifacts, however, express themselves as leaps 

of that variable on transition dates. 

Looking at figure C.4 the problem becomes apparent, especially between August and September, 

as well as September and October. This happens, because statistically, the whole month is just 
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Figure  C.4:  Daily mean values of  solar  radiation [MJ/m²/day] averaged over N=99 simulation years,  with leaps, for  

Moanda exemplary.



raised or lowered to a different mean value, each day having the same probability to take part in 

the corrective procedure.  So,  the trend within the month is  not  addressed directly  or,  roughly 

spoken, one month is just cut out of the original seasonal course and pasted into the new one,  

according to its corrected monthly averages, without changing the shape of the curve within the 

month. This fact, however, does not have any influence on the quality of monthly mean values, but 

avoiding  to  take  a  look  at  daily  mean  values  can  hide  important  trends  that  can  lead  to 

unpredictable behavior in succeeding applications. 

The solution to get rid of those leaps is the introduction of dynamic transition dates. The idea is 

quite simple: If we avoid to choose the same transition dates in every simulation year, the leaps will 

hopefully  level  out  and  the  whole  course  of  one  daily  mean  variable  over  the  year  will  get 

smoother. The introduction of new boundaries of each month of course requires the definition of 

new  climate  normals,  which  where  assumed  to  be  located  on  a  straight  line  between  its 

neighboring, original climate normals. The procedure can be described as follows: For a given 

simulation year, i.e. for one WTG file, the start of the year is shifted for s days, 0 < s < 31, where s  

is generated randomly for each simulation year. The transition dates retain the same distances 

between each others, but the whole set of transition days is shifted for s days. The new climate 

normals are computed as follows: 

     cnnew [ i ]=cn[ i ]cn[ i1]−cn [i ]⋅
s

dpm[ i ]
eq. C.10

cn[i] are the monthly climate normals for SRAD or TMAX, dpm[i] is the number of days per month, i  

indicates the corresponding month and s is the random start day. The approach works on closed 

boundary conditions, which means that if the index reaches the end of the year, it starts again at 

the beginning. 
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Figure  C.5:  Daily  mean values of  solar  radiation  [MJ/m²/day]  averaged over  N=99 simulation years,  smoothed,  for 

Moanda exemplary. Black line = uncorrected, red line = corrected output.



If we now have a look at the seasonal trend of the same data set of 99 years (figure C.5), that has 

led to the curve in figure C.4 full of leaps but now assuming dynamic transition dates, we see how 

technically all of the leaps have vanished. The red curve is the corrected, the black one shows the 

uncorrected data set. The monthly mean values stay unaffected using dynamic instead of static 

boundaries. Since new (shifted) climate normals have been defined, for each shifted time interval 

the PF changes too.

To produce this distribution (figure C.6), the start day of the year has been iterated from 0 to 30, 

while the sizes of the time intervals stay the same, e.g. January has 31 days, but the beginning of 

January in the course of the year has been moved forward for 0 <= n <= 30 days. The same is is 

valid for the other months too.   

After CFs for solar radiation have been computed, a probability function has been established, the 

corresponding CFs for TMAX have been defined, and the correction has been performed, to finish 

the main cycle, daily values of TMAX and SRAD are truncated to their allowed range using the 

previously defined truncating factors TMAX_MAX, TDIF_MIN, SRAD_MAX and SRAD_MIN. The 

main cycle is repeated five times before further steps are performed. 

C.2  The dry season
The dry season deserves special attention since its onset and duration critically affect plant growth, 

as described in  Ngomanda et al., 2009. It is crucial being able to treat this period independently 

from the rest of the year, e.g. to apply changes that only affect the dry season and to have a clear  

and well defined transition from rain period to dry season, especially when it comes to investigating 

the dynamics of a model driven by daily input weather data. It is therefore necessary to re-adapt 

dry season boundaries year by year, for each year of the simulation.  For that reason a function 
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Figure C.6: Shifted correction probabilities (0 < p < 1) over the year for a shift of 0 to 30 days.



depending on precipitation patterns over the year has been implemented to determine each year's 

onset and end of the dry period. Additionally one application depending on the knowledge of the 

dry season's boundaries will be demonstrated.

Estimating dry season boundaries
To extract the dry season from a precipitation signal over the year, it appears helpful to apply a 

cumulative  approach,  i.e.  to  sum  up  daily  precipitation,  setting  the  lower  boundary  of  the 

summation A constantly to the first day of the year, and moving the upper boundary B step by step 

from the second day to the end of the year (the summation goes from day A to day B). Anyway, 

instead  of  summing  up  we  chose  to  integrate  the  precipitation  curve,  with  the  same  result. 

Theoretically  a  flat  precipitation  curve (i.e.  constant  precipitation,  or  zero  precipitation  as in  a 

“perfect” dry season) creates a flat interval, or plateau, in the integrated curve (which is a function 

of B), while possible δ-function-like precipitation peaks interrupting the dry season should lead to 

Θ-function-like steps in the integrated curve. In the first of our approach we're trying to detect those 

plateaus. 

Figure C.7 shows precipitation and radiation patterns of the mean of 99 simulations from Batéké 

Plateau,  Gabon  (02°13'S,  14°02'E,  609m,  elevation  according  to  MarkSim's  DEM)  before 

correction. As in the following figures,  day one of the year corresponds to Jan/01,  day 365 to 

Dec/31. 
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Figure C.7: Daily mean rainfall [mm/day] (left scale) and uncorr. solar radiation [W/m²] (right scale), averaged over N=99 

simulation years, for Batéké Plateau, exemplary. Regions with lower rainfall  exhibit  higher amounts of incident solar 

radiation and vice versa (uncorrected radiation).



1. First  an integration is  performed on the precipitation signal  using “Simpson's  Rule”,  an 

approved method in numerical integration. The precipitation signal in daily resolution is the 

mean  of  all  N  simulation  years.  For  a  first  estimate  of  the  dry  season,  the  algorithm 

determines a value along the ordinate (y-axis) of the integrated signal, referred to as mean, 

with a  maximum number  of  neighbors  with  the same value,  or  values  within  a  certain 

tolerance. In a next step we define a tolerance interval  dy (also placed on the ordinate), 

which defines the length of the dry season in the first place. More precisely, the x-value of 

the points  of  intersection between the integrated precipitation signal  and y=mean-dy or 

y=mean+dy (see figure C.8) define the onset and end of the dry season, respectively. The 

tolerance interval  dy therefore directly regulates the size of the initial estimate of the dry 

season.

2. Second, the position of the whole dry season as defined above is moved for +/- 20 days 

without changing its total length, trying to maximize the total number of dry days within the 

interval. The improved dry season is the interval with the highest number of dry days, i.e. 

were the daily precipitation = 0 mm/day. 

3. Next another correction is performed, where the boundaries of that period are modified 

independently by +/-30 days (i.e. a month), looking for the highest value of the ratio  dry 

days : season length, where the duration of the dry season is not kept at a constant value 

and  dry days refers to days with precipitation < 0.5 mm. It has to be mentioned that the 

algorithm works perfectly symmetrical on both sides, i.e. at the beginning and at the end. 

The end will be set 30 days earlier in the year and then be shifted forward day by day, when 

at the same time the beginning is held at its constant date – and vice versa. The variable 

defining the shift of the boundaries will be called move in the following description. For each 
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Figure  C.8: Integrated precipitation signal (from figure  C.7), the plateau in the middle of the curve indicating the dry 

season becomes visible.



DS (dry season) formed that way the ratio (as defined above) will be computed and finally 

the begin/ending with the highest ratio will be used. Additionally, if this boundary is moved 

over a certain period of dry days (interntolerance = 7 days custom settings) in a row (i.e. 

where precipitation < 0.5 mm, a certain tolerance was allowed to make the algorithm less 

sensitive to small  precipitation events),  the DS' end cannot  be set  to dates before (the 

begin cannot be set after) or in that period. Even if the possible end of the variation interval  

(determined by move) is reached, move can be enlarged to make sure the DS does not end 

between a number of dry days. The attempt of this is to include smaller rainless episodes 

that are separated from the main DS through a number of precipitation events, but that are 

still close to the main DS. The parameter  interntolerance  controls the duration of the dry 

season, by defining the length of these smaller rainless patches.  

move is downscaled iteratively from 30 to a minimum of 7 days, i.e. the interval in which the 

boundaries can be varied is narrowed. Of course the aforenamed exceptions to extend 

move are still valid (e.g. the end of the DS must not be set if there are still dry days coming 

up later in the same row of dry days). Each reduced value for move produces dry season 

boundaries, some of which are equal to each other. Finally the DS with the most hits, i.e. 

the time interval that results from multiple reduced shifting intervals, is picked. This assures 

that even if we choose different ranges for the iteration (to generate the onset and ending of 

the DS), the algorithm will look for reasonable dates on which to set the boundaries. If the 

program finds the same dates for onset and ending, despite different starting days and 

range of the iteration procedure, we can be quite sure the detected day fulfills the required 

conditions. This iterative function, however, can be seen as the fine tuning of start and end 

of the DS and works at the same time against a bias towards too long dry seasons, which 

could result if move=30 is always the favored shift of the dry season.

Once again from the beginning: We are looking for a new value for the one boundary of the 

dry season, lets pick the onset for example. The interval we're looking in is [onset-30 days; 

onset+30 days], and we're looking for the day with the highest ratio (as defined above), and 

apply additional rules, that assure that we really pick a day which has a lot of precipitation 

on one side, and a dry period on the other side. These rules can also widen the interval 

we're looking in,  to  be sure we don't  pick a day in  the middle of  the dry season,  just  

because it has the highest ratio. Step by step we narrow the interval we're looking in, and 

according to our side conditions the same optimal boundary will be detected multiple times, 

despite a narrower searching interval. But the point will come, that the interval becomes so 

small that this boundary might not be included in the searching range any more, and a new 

optimal boundary will be detected multiple times. We now pick that one boundary, that has 

been detected more often. 
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As will be discussed later the initial tolerance interval determining the first estimate of the size of a 

dry season, is linked to the variability of the integrated precipitation signal around its mean. This 

assures that years with higher precipitation do not necessarily experience a shorter dry season. 

     error=
1
N

⋅∑
n=1

365

∣prcp integ [n]− m∣ eq. C.11

     dy=
error
dyreg

eq. C.12

We can think of  the mean ( m )  as the value that  defines the plateau (figure  C.8),  and  of 

prcpinteg[n]  as  all  the  values  that  together  form the  integrated  precipitation  curve.  Dyreg =  15 

(empirical). By calling the program with a desired (different) length of the dry season, i.e. if the dry 

season is known from literature,  dyreg is iteratively optimized to move the mean duration of the 

computed dry season towards the desired result.

On one hand, the newly defined boundaries for each years dry season are used within the main 

cycle of the correction procedure. As we have learned before, correction does take place on a daily 

basis, but based on monthly residuals between the desired climate normals and the actual WTG 

monthly averages. So, there are months where the mean value of the variable in question (srad or 

tmax) have to be raised and that border months where the opposite is the case, i.e. the mean has 

to be lowered. The transition date from one month to the other therefore represents a change in 

the qualitative behavior of the daily values of tmax or srad. If a transition date of that kind falls into 

the dry season, it is moved to the day where the dry season starts, or ends. This is put into effect 

by  only  allowing  reductions  of  daily  values  (of  tmax  or  srad)  during  the  dry  season  since 

temperature and solar radiation are constantly overestimated during the DS at all sites tested in 

Gabon. If a month's average has to be increased, and this months is partly within the dry season 

(this could easily happen since we implemented dynamic transition dates), the correction is only 

performed outside the DS and therefore creates a qualitative change between daily values within 

and outside  the dry season.  

On the other hand the information, when a dry season starts and when it stops is valuable since it  

permits us to perform changes that concern the DS only. One application, that should only serve as 

inspiration but that has not been validated, will be introduced:

One application 
It is reasonable to assume that during the dry season, the solar radiation will experience less day-

to-day fluctuations than during the rest of the year. In Gabon the skies in that time of the year stay 

mainly covered, so the variables that influence the amount of incident solar radiation per day are 

molecular structure of the cloud aerosol, thickness of the cloud layer and day length. Since clouds 
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don't  produce precipitation and the continuous layer stays stable for  several  months,  we don't 

expect too many fluctuations resulting from the cloud cover. Since Gabon is close to the equator, 

day  length is  of  no consequence.  Nevertheless MarkSim produces a radiation  (and maximum 

temperature) signal that fluctuates during dry season just as much as is does during the rest of the 

year. The boundaries of the dry season can, for example, be used to smoothen the signals that 

they enclose: 

     srad new [ i ]=srad DS−srad DS−srad old [ i ]⋅SMF eq. C.13

sradDS is the mean value of the solar radiation in all estimated dry seasons, srad[i] are daily values 

of the solar radiation within the dry season and SMF is a smoothing factor between zero and one. 

The new daily values of srad[i] will now be scattered around the over all mean of the dry season. 

The magnitude of the variation is regulated by SMF: values close to 0 mean little variation, values 

near one lead to results close to the initial distribution. Again it must be said here that this is only a 

suggestion, that has not been validated! 

C.3   Vapor pressure deficit (VPD)
Since  MarkSim does  not  support  estimations  for  daily  VPD in  the  atmosphere,  although  this 

variable is required as input for Biome-BGC, it is also generated within this process. The estimation 

of vapor pressure deficit is based on the assumption that VPD stays constant during the day and 

that the minimum temperature can be set equal to the dew point temperature (Kimball et al., 1997). 

VPD at a given daily mean temperature can then be calculated according to Abbott and Tabony,

1985, where vapor pressure at dew point (pva) is subtracted from saturation vapor pressure (pvs) 

at the daily mean temperature (tday). Tday is calculated from minimum and maximum temperature:

      tday=
tmax+tmin

2
+0,45⋅(tmax−

tmax+tmin
2

) eq. C.14

      pva=610,7⋅e
17,38⋅tmin
239+tmin  pvs=610,7⋅e

17,38⋅tday
239+tday eq. C.15

     VPD = { pvs− pva ( pvs> pva)
0 ( pvs≤pva ) } eq. C.16

C.4  Output files
The output  interface of  the whole application works through text  files where weather  data are 

stored at different temporal resolutions. For most of these files there is a “beforecorr” (before the 

correction has been applied, i.e. unchanged output) and an “aftercorr” (after the correction has 

been applied) representation in the same format. We distinguish between the following output files:

DailyMeanVal_beforecorr.dat  &  DailyMeanVal_aftercorr.dat:  In  these  files  tmin  (minimum 
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temperature in °C), tmax (maximum temperature in °C), srad (solar radiation MJ/m²/day) and prcp 

(precipitation in mm/day) are listed in daily resolution. Each entry refers to a day in the year and 

represents the average on that specific day of all N simulations, which means that there is a total of 

365 entries.

DayMetList_beforecorr.dat & DayMetList_aftercorr.dat: This is probably the most interesting output 

concering further use of the weather data. Tmin [°C], tmax [°C], prcp [cm/day] and srad [W/m²], as 

well as tday (daily mean temperature) [°C], VPD [Pa] and day length [s] are presented in daily 

resolution. The file has N x 365 entries, where N is (as usually) the number of simulation years.

MonthlyMeanVal_beforecorr.dat  &  MonthlyMeanVal_aftercorr.dat:  tmax  [°C],  tmin  [°C],  prcp 

[mm/month] and srad [MJ/m²/day] are listed in monthly resolution, monthly mean values are the 

average of all days in the according month and of all N simulation years, the file therefore has 12 

entries.  Each variable is  accompanied by its  climate normal  (e.g.  TMAXclx)   and its standard 

deviation (e.g. sdTMAX). 

Statistics_beforecorr.dat  &  Statistics_aftercorr.dat:  Pearson's  linear  correlation  coefficient  r  & 

sample mean error  (err)  as defined in APPENDIX  B (Pearson's linear  correlation coefficient  &

sample mean error) are computed for every variable. The intention is to give the user a feeling for 

the quality and success of the correction that has been performed. 

Seasons.dat: For each of all N simulation years the onset and ending, as well as the duration of 

the estimated dry season are listed. 

CorrFactors.dat:  Here  one  can  observe  what  correction  and  truncation  factors  have  been 

computed.

C.5  Optimization
In this chapter we will briefly discuss how certain parameters used for the corrective process have 

been defined and tuned to achieve the most accurate results possible.

Iterations of the main cycle
Every time running through the main cycle, the residuals become a bit smaller. But we expect a 

certain number of  repeated runs of  the main cycle,  until  the mean error  between desired and 

current output is saturated, i.e. when it doesn't get any smaller due to random fluctuations caused 

by the stochastic correction and truncation process. We examine how the mean error (as defined 

before), and the Pearson correlation develop with the number of iterative runs of the main cycle. 

Since  the  correction  contains  a  stochastic  element  too,  each  correction  process  has  been 

performed 20 times with differing number of iterations of the main cycle, and the average r and the 

mean error accompanied by their standard deviations have been computed. 
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Figure C.12: Development of linear correlation, maximum temperature

Figure C.11: Development of linear correlation, solar radiation

Figure C.10: Mean error development of maximum temperature

Figure C.9: Mean error development of solar radiation



As we can read from the graphs, the error of the solar radiation has shrunk to less than 5% of its 

initial value for all three sites after only 5 iterations. For Lastoursville, the error of the maximum 

temperature after 5 iterations is also below 5% of the original value, while for the other sites we can 

observe a saturation effect  at  the 8% level.  The same is  apparent  for  the trend of  the  linear 

correlations r, where after 5 iterations their final value is reached. For this reason the main cycle is 

repeated 5 times per corrective process. 

dyreg – regulating the length of the dry season
It can be concluded that (besides  interntolerance)  dy is the most important parameter within the 

application that determines year by year boundaries of the dry season, as it defines the size of the 

first estimate of the dry season. Tuning dy turned out tricky, since each precipitation profile (=one 

WTG file, i.e. one year of daily precipitation values) has to be checked by hand and it has to be 

decided whether the boundaries of the dry season as defined by the algorithm introduced before 

make sense, or not. For each site this procedure was repeated 99 times with multiple values of dy. 

It appeared helpful to link dy to the variation of the cumulated precipitation signal around its annual 

mean (i.e. the “plateau”) divided by a certain number. Different numbers have been tried, with the 

attempt to fit the mean duration of the dry season of certain sites in Gabon to their actual literature 

values. Dy was finally defined as dy = error / dyreg, where error is the mean difference between 

annual  mean of  the precipitation and its daily  values,  and  dyreg = 15.  Apart  from this default 

setting, dy can be changed within a certain range to achieve a value for the mean duration of the 

dry season closer to the desired value. For this, a desired duration of the DS can be entered when 

calling the program, and dy will be iteratively changed to optimize the duration of the DS.
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Figure  C.13: Dry seasons compared. Grey drop lines: literature values, black squares: computed 

mean  dry  seasons  with  dyreg=15,  and  light  grey  circles:  computed  values  with  an  iteratively 

optimized dyreg (a desired dry season has been entered).



 We have to admit, that literature values are in monthly resolution and therefore quite imprecise. 

Taking into  account  that  literature  values are vague estimates the results  are quite satisfying. 

Except for sites Moanda and Mouila, the duration of the dry season is overestimated by around 10 

days,  the computed values with optimized  dyreg are somewhat closer to the literature values. 

Technically the computed estimates of the dry season with fixed dyreg (black squares) could be 

moved closer towards the desired values by increasing dyreg (and thereby reducing dy), but this 

results in significantly short annual dry seasons for the site Moanda and is therefore not possible. 
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APPENDIX D - Generating paleo climate and climate change
There  is  growing  interest  in  ecosystem  behavior  under  changing  climate,  which  comprises 

scenarios of future climate with increasing temperature and a possible shift in annual precipitation, 

and the influence of past climate on the present state of an ecosystem of interest. Climate time 

series containing annual mean values might stem from paleo climate reconstructions, abundantly 

available for many parts of the world, or be variants of climate change that might affect us in future, 

such as the 2°+ or the 4°+ scenario. It is, however, possible to directly translate a climatic trend, 

expressed in annual mean values of temperature and rainfall, into a series of daily weather files 

with well defined fluctuations around the desired trend.  

All  the  information  required  is  one  time  series  of  annual  rainfall  and  one  of  annual  mean 

temperature  and  the  according  years  of  occurrence  in  ascending  order.  This  can  either  be 

interpreted as future events in years AC (?) (e.g. 2050 – 2100 – 2200 etc) or as past events, in 

years BP or years BC (8 – 50 – 130 etc.). The years of occurrence of the two time series don't  

have to be equal (which allows us to combine information from various climate reconstructions for 

instance), but of course an overlap of the time intervals is necessary. Additionally a template CLX 

file is required that contains the proper distribution of monthly rainfall, temperature and temperature 

range, as well as longitude, latitude and elevation of the site of interest. 

The application interpolates linearly between two data points (one data point contains either annual 

precipitation [mm/yr], or annual mean temperature [°C] and the year of occurrence). For each year 

in the overlapping time interval of the two climate time series a DAT-file is created containing the 

interpolated  values  of  rainfall  and  temperature,  distributed  like  in  the  template  CLX-file. 

Precipitation  is  increased  or  reduced  (from  the  template  value  to  the  real  value)  in  relative 

proportions of the monthly values to adjust the annual amount to the desired value. The same is 

true for monthly mean temperature, which has first to be transformed to the Kelvin scale, in order 

to enable calculation with relative amounts. As explained in the previous section, MarkSim features 

XBF and CBF files to deal with multiple DAT-files at the same time, which is used to turn the time 

series, which contained only annual values in the beginning, into a series in daily resolution. Each 

DAT file should be set to generate 99 climate years, even if only one time series of daily values is  

needed, and the amount of computing time and disk space is much higher. The reason for this is 

that on one hand MarkSim often tends to under, or overestimate its output compared to the desired 

annual mean (see Figure D.1, grey line for instance), and by generating 99 climate years per year 

in the time series, we can select only those years containing values within a certain range of the 

mean (Figure D.1, red line). Rather than having linear transitions from one data point to the other, 

year-to-year  fluctuations  are  usually  preferred.  Furthermore,  applying climate  change  or  paleo 

climate series on ecosystem models, only repeated simulations with similar time series that exhibit 

different  year-to-year  variations,  will  allow us  to  define  a  range  for  the  error  of  the  predicted 
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measure. Therefore, by working with 99 climate years we can create multiple similar time series 

that only differ in year to year variation, but that are similar in their general trend. The other reason 

for choosing 99 climate years rather then any smaller number is that the correction procedure of 

solar radiation and maximum temperature has been developed for 99 climate years, even though it 

has shown to work with smaller numbers too. 

Once for each year in the climate series there are 99 climate years are available, the corrective 

procedure of solar radiation and maximum temperature can be performed. Next we have to apply a 

mechanism that selects only one year out of each set of 99. One option is to randomly select a 

climate year, and to check whether it is within a desired range of the mean, and to reapply this  

procedure until one year is found that meets the conditions. Another possibility would be to chose a 

random precipitation value from a normal distribution with mean as defined in the original time 

series and a certain variance, and see which year of the set of 99 has the amount of annual rainfall 

closest to this random number. While the first approach only makes sure that all variation stays 

within a certain range of the mean, the second approach also tries to mimic the distribution of the 

fluctuations, which can be considered as Gaussian. By repeating these processes with a different 

seed of the random number generator, various time series of daily weather data can be produced. 
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Figure  D.1:  Example  paleo climate  reconstruction  from pollen records  for  Lake  Kamalété,  Gabon,  as  described  in 

Ngomanda, 2005. The grey line in the upper graph presents the mean annual precipitation from 99 climate years, the red 

line in the lower graph shows annual precipitation of selected climate years which were chosen to stay within a +/- 5% 

range of the original time series (black line).
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