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Introduction

Motivation and Problem

Consider a divisor (=hypersurface) D in a complex manifold S of dimension n. Then D is said
to have normal crossings at a point p if locally at p there exist complex coordinates (x1, . . . , xn)

such that D is defined by the equation x1 · · ·xm = 0 for some 0 ≤ m ≤ n. In general there is
no algorithm to find these coordinates. Hence the question arises: is there an effective algebraic

characterization of a divisor with normal crossings?

Normal crossing divisors appear in many contexts in algebraic and analytic geometry, for exam-
ple in the embedded resolution of singularities [53], in compactification problems [26, 38] or in
cohomology computations [29]. One of the most striking results is the Theorem of Hironaka [53],
namely, that any algebraic variety over a field of characteristic zero can be transformed by a se-
quence of blowups into a divisor with normal crossings. However, given an (algebraic or analytic)
variety, it is not clear how to determine effectively if this variety has normal crossings: only in
case the decomposition into irreducible components is known, the normal crossings property can
be checked rather easily (see e.g. [9]).

The main objective of this thesis is to give an effective algebraic characterization of normal cros-
sing divisors in complex manifolds. By “effective” is meant that one should be able to decide from
data derived from a local defining equation of the divisor whether it has normal crossings at a
point. The guiding idea for our investigations is that the singular locus should carry all infor-
mation about a divisor having normal crossings. This point of view is inspired by the Theorem
of Mather–Yau [61], which says that an isolated hypersurface singularity in (Cn

, 0) is uniquely
determined by its Tjurina algebra, i.e., the quotient of the power series ring in n variables by the
ideal generated by a (reduced) local defining equation and its partial derivatives. On the other
hand the tangent behaviour along the divisor, via so-called logarithmic vector fields, will give us
means to control the normal crossings property. Here the rich theory of logarithmic vector fields
(differential forms) and free divisors, initiated by K. Saito in the 1980’s [81], will be the other
main ingredient for an algebraic criterion characterizing normal crossing divisors.
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Overview

The main result of this thesis is that a divisor D in a complex manifold S of dimension n has
normal crossings at a point p if (and only if) it is free at p, the Jacobian ideal of D at p is a
radical ideal and its normalization �D is Gorenstein. Another way to phrase this is that D is
either smooth at p or its Tjurina algebra is reduced and Cohen–Macaulay of Krull-dimension
n−2 and the normalization �OD is a Gorenstein ring or, another equivalent formulation, either D

is smooth at p or the Jacobian ideal of D at p is radical , perfect and of depth 2 in the local ring
OS,p

∼= C{x1, . . . , xn} and the normalization �OD is a Gorenstein ring. The additional condition
on the normalization is technical and we do not know if it is necessary.

Our approach to prove the above statement originates from K. Saito’s theory of free divisors, a
class of divisors, which includes normal crossing divisors. Since a normal crossing divisor is free,
one is led to impose additional conditions on free divisors in order to single out the ones with
normal crossings. It turns out that the radicality of the Jacobian ideal is the right property. Since
there is an interpretation of free divisors by their Jacobian ideals (due to Terao, Aleksandrov
and Simis), one so obtains a purely algebraic characterization of normal crossing divisors.
Moreover, two other characterizations of normal crossing divisors in terms of logarithmic diffe-
rential forms (resp. vector fields) and the logarithmic residue are shown. The second one makes
use of the dual logarithmic residue, introduced by Granger and Schulze [43]. As an application
of the second one, a question about the logarithmic residue posed by Saito in [81,92] is answered
(which was first answered in [43]). Along the way two generalizations of the concept of normal
crossings are considered: splayed divisors and mikado divisors. We introduce the former as unions
of “transversally” intersecting (possibly singular) hypersurfaces. Here two hypersurfaces intersect
“transversally” if their defining equations can be chosen in separated variables. Mikado divisors
on the other hand, are constituted by smooth hypersurfaces all whose intersections have to be
smooth. This notion was introduced by H. Hauser in [49] and appears in connection with resolu-
tion of singularities. We prove that one can read off the Jacobian ideal of a plane curve whether
the curve is mikado. We also prove that the Jacobian ideal of a divisor determines whether it is
splayed. Moreover, it is shown that the Hilbert–Samuel polynomials of splayed divisors satisfy a
certain additivity relation: the Hilbert–Samuel polynomial of a splayed divisor is the sum of the
Hilbert–Samuel polynomial of its splayed components minus the Hilbert–Samuel polynomial of
their intersection.
The contents of the thesis are:

In Chapter 1 we recall the notions of logarithmic differential forms and vector fields, free divi-
sors and the logarithmic residue. Here the important class of Euler-homogeneous free divisors is
considered. In particular, we show a characterization of an Euler–homogeneous divisor in terms
of a basis of the module of logarithmic differential forms Ω

1
S(log D) (Prop. 1.29). Moreover, we

exhibit problems when working with divisors defined by non-reduced holomorphic equations. Our
results in this chapter are: A characterization of a normal crossing divisor in terms of logarithmic
differential forms (resp. vector fields), more precisely, a divisor D has normal crossings at a point
p if and only if it is free at p and the module of logarithmic one-forms Ω

1
S,p(log D) has a basis of

closed forms (resp. the module of logarithmic vector fields DerS,p(log D) has a basis of commuting
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vector fields), see Thm. 1.52 and Prop. 1.54. Then, following Granger and Schulze, we describe a
normal crossing divisor in terms of the logarithmic residue in Thm. 1.63, namely, D has normal
crossings at a point p if and only if D is free at p, the residue of logarithmic one-forms is equal to
the ring of weakly holomorphic functions on D and the normalization �D is Gorenstein. Finally,
as an application of Thm. 1.63, the question of K. Saito is considered whether the equality of the
logarithmic residue and the ring of weakly holomorphic functions of a divisor implies that the
divisor has normal crossings in codimension one. This question was first affirmatively answered
by Granger and Schulze [43]. It also has a topological counterpart, which was proven by Saito
and Lê–Saito in [81] and [92]. We review the background and history of the problem, and also
give a positive answer to Saito’s question in Thm. 1.82.

In the second chapter, our attention is drawn to singularities and Jacobian ideals of divisors. Here
commutative algebra is used to characterize normal crossing divisors. The chapter is devoted to
prove our main theorem: a divisor has normal crossings at point if and only if it is free at the
point and its Jacobian ideal is radical and its normalization �D is Gorenstein, see Thm. 2.1.
We recall Aleksandrov’s characterization of free divisors in terms of their Jacobian ideals (Theo-
rem 2.6): a divisor D in a complex manifold S of dimension n is free at a point p if and only
if either D is smooth at p or OSing D,p (the Tjurina-Algebra of D) is Cohen–Macaulay of Krull-
dimension n−2. Together with Thm. 2.1 this yields a purely algebraic characterization of normal
crossing divisors. As an illustration of the main theorem we first deal with the problem for some
special cases: for curves in smooth surfaces it can be directly shown that the Jacobian ideal is
radical already implies the normal crossings property (Prop. 2.15). This result is used to establish
that for a divisor D in a manifold S of dimension n ≥ 2 the Tjurina-Algebra OSing D,p is reduced
of Krull-dimension n − 2 if and only if (Sing D, p) is smooth; hence D is locally the union of
two transversally intersecting hyperplanes (Prop. 2.18). Moreover, the assertion of Thm. 2.1 is
shown for hyperplane arrangements and generalizations thereof (Prop. 2.32). Note that for the
proofs of these special cases the Gorenstein assumption on the normalization of the divisors is
not needed.
To prove Thm. 2.1 in general, the problem is reduced to the analytically irreducible case: if a
divisor (D, p) = ∪m

i=1(Di, p) has a radical Jacobian ideal, then all its components Di also have
a radical Jacobian ideal, see Prop. 2.48. In order to show this we introduce splayed divisors,
which are a generalization of normal crossing divisors allowing singular components. They can
be characterized by the “Leibniz property” of their Jacobian ideals, namely, for a splayed divisor
D = D1 ∪D2 defined locally by the equation gh = 0 one has the decomposition of the Jacobian
ideal Jgh = gJh + hJg, see Thm. 2.43. Finally, the irreducible case of Theorem 2.1 is shown with
a theorem by R. Piene about ideals in a desingularization [76] 1, similar to the results on the
logarithmic residue in chapter 1.

In the last chapter further-reaching questions are considered: first it is asked which type of ra-
dical ideals occur as Jacobian ideals of divisors. For manifolds of dimensions 2 and 3 divisors
with radical ideal can be nearly completely described (Prop. 3.2). For higher dimensional am-
bient spaces it is shown that the Jacobian ideal of a divisor D is radical and defines a complete
intersection if and only if D is isomorphic to the cylinder over a lower-dimensional A1-singularity

1Here thanks to David Mond, who pointed out the use of this theorem.
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(Prop. 3.10). In the sequel, we study splayed divisors in more detail, in particular, yet another
characterization of splayed divisors in terms of their Jacobian ideals is established (Prop. 3.37)
and it is shown that their Hilbert–Samuel polynomials satisfy the following additivity property:
if D = D1∪D2 is splayed then χD,p(t)+χD1∩D2,p(t) = χD1,p(t)+χD2,p(t), where χD denotes the
Hilbert–Samuel polynomial of the divisor D (see Prop. 3.33). Ultimately, another possible gene-
ralization of normal crossing divisors, so-called mikado divisors, is considered. Using Teissier’s
generalized Milnor numbers [93] we are able to give a criterion for plane curves being mikado in
terms of their Jacobian ideals (Thm. 3.49).

We have included an appendix (Appendix A) in which the most important notions and theorems
quoted in the text can be found. This appendix is divided into a commutative algebra and a
local analytic geometry section.
Eventually, this thesis is about geometry: there is a second appendix (Appendix B), where pic-
tures of some recurring examples of divisors in two and three-dimensional manifolds are displayed.

About the notation (cf. Appendix A): unless otherwise stated, (S, D) denotes a complex ma-
nifold S of dimension n together with a divisor D in S. The complex coordinates at a point
p ∈ S are denoted by (x1, . . . , xn) and the ring of holomorphic functions at p is denoted by
OS,p

∼= C{x1, . . . , xn}. Mostly D is considered to be locally at p defined by a reduced holomor-
phic function h ∈ OS,p. The Jacobian ideal of h is the ideal generated by the partial derivatives
of h and denoted by Jh = (∂x1h, . . . , ∂xnh). We always consider the singular locus (Sing D, p) as
given by the (possibly non-reduced) Jacobian ideal, with ring OSing D,p = OS,p/((h) + Jh) (the
Tjurina algebra).
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Chapter 1

Normal crossing and free divisors

In this chapter normal crossing divisors are studied from the “geometric” point of view, namely
with logarithmic differential forms and vector fields along the divisors. We call this approach
geometric because logarithmic vector fields correspond precisely to tangent vectors at smooth
points of the divisor. After introducing the basic notions of K. Saito’s theory of logarithmic
differential forms and logarithmic derivations, we derive two criteria for a divisor to have normal
crossings: the first one is in terms of a basis of the module of logarithmic differential forms
resp. vector fields and the second one uses the logarithmic residue. As an application of the
characterization by the logarithmic residue, we answer in section 1.4 a question posed by K. Saito
in his 1980 paper [81].

1.1 Theory of logarithmic differential forms and logarithmic

vector fields

Logarithmic differential forms along normal crossing divisors were first considered by P. Deligne
[28]. He computed the cohomology of the complement of a normal crossing divisor with the help
of logarithmic differential forms. In 1980, K. Saito [81] generalized the notions of Deligne to
arbitrary (reduced) divisors in a complex manifold. He called divisors whose sheaf of logarithmic
differential forms is locally free, free divisors. He was the first able to prove that the discriminant
of a versal deformation of an isolated singularity is always a free divisor. Since then free divisors
have been an active area of research, e.g. in the theory of hyperplane arrangements, in connection
with the logarithmic comparison theorem and also in deformation theory [13, 22, 94]. There are
still many questions open, for example, one lacks a classification of free divisors.
For our study we will mainly need the basic notions of the theory; the exposition follows loosely
the seminal paper by K. Saito [81].

1.1.1 Definitions and most important theorems

In this section the notions logarithmic differential forms, logarithmic vector fields and free divisors
are introduced. The most important results are proven (duality between logarithmic differential
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forms and vector fields, Saito’s criterion) and also non-reduced divisors and Euler-homogeneous
free divisors are considered.

The notion of logarithmic differential forms was first used by K. Saito in order to study the Gauß–
Manin connection of the singularity A3 (see [80]). He introduced the analytic sheaves Ω

q
S(log D)

and DerS(log D) of a reduced divisor D in a smooth complex manifold S. The hypersurfaces D

for which the sheaves of OS-modules Ω
q
S(log D) and DerS(log D) are locally free are called free

divisors. Saito gave a criterion, see Thm. 1.19, to decide whether given logarithmic differential
forms (resp. vector fields) form a basis of Ω

1
S(log D) (resp. DerS(log D)).

Saito’s theory works in full generality only for reduced divisors, so we shall exhibit problems when
dealing with non-reduced divisors, in particular, we show that the duality between logarithmic
vector fields and differential forms breaks down in this case. We will also look at the class of
Euler-homogeneous divisors. These divisors are of special interest in various applications and
many results can be formulated more easily for them. We conclude this section with some
historical remarks and applications of free divisors.

Definition 1.1. Let U be a domain in Cn and let D ⊆ U be a divisor of Cn, defined by a
reduced equation h = 0, where h is a holomorphic function on U . A meromorphic q-form ω on
U is called a logarithmic q-form (along D) if hω and hdω are holomorphic on U . Since most of
the time the divisor D is fixed, we will simply speak of logarithmic q-forms.
Now let S be a complex manifold of dimension n and x = (x1, . . . , xn) local complex coordinates
around a point p ∈ S. Let hp = hp(x) = 0 be a local (reduced) equation for D (in the sequel we
will often only write h, if the meaning is clear). A meromorphic q-form ω is logarithmic (along
D) at a point p if ωhp and hpdω are holomorphic in an open neighbourhood around p. We denote

Ω
q
S,p(log D) = {ω : ω germ of a logarithmic q-form at p},

We set
Ω

q
S(log D) =

�

p∈S

Ω
q
S,p(log D),

that is, Ω
q
S(log D) is the sheaf whose stalks are precisely ΩS,p(log D) (for this definition of a sheaf

see Appendix A). Note that Ω
q
S(log D) is an analytic sheaf, i.e., its stalk Ω

q
S,p(log D) at a point

p is a OS,p-module.

Lemma 1.2. We denote by (S, D) the pair of a complex manifold S of complex dimension n and

a fixed divisor D in S, by p a point in S with complex coordinates (x1, . . . , xn) and by hp = h

the reduced equation of D at p. Let ω be a meromorphic differential form at p. The following

conditions are equivalent:

(i) ω is a logarithmic q-form.

(ii) hω and dh ∧ ω are holomorphic at p.

(iii) There exists a holomorphic function germ g ∈ OS,p, a holomorphic (q − 1)-form ξ in Ω
q−1
S,p

and a holomorphic q-form η ∈ Ω
q
S,p such that

dimOD,p/(g)OD,p ≤ n− 2, and

gω =
dh

h
∧ ξ + η.
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(iv) There exists an (n− 2)-dimensional analytic set A ⊆ D such that for p ∈ D\A the germ ωp

is an element of Ω
q−1
U,p ∧

dh
h + Ω

q
U,p.

Proof. Here are only shown the implications which are needed later (for a complete proof see
[81]). In particular, we will mostly be concerned with logarithmic 1-forms and therefore show
(ii) ⇒ (iii) only for 1-forms.
The equivalence of (i) and (ii) follows from the formula d(hω) = dh ∧ ω + hdω.
(ii) ⇒ (iii): Since ωh is contained in Ω

1
S,p, one can present ω as 1

h

�n
i=1 ai(x)dxi, where all

ai are holomorphic function germs. Since ω ∧ dh is holomorphic by (ii), the 2-form ωh ∧ dh

is divisible by h. We compute this expression: ωh ∧ dh =
�n

i=1 aidxi ∧
�n

j=1(∂xj h)dxj =�
i<j(ai(∂xj h) − aj(∂xih))dxi ∧ dxj =:

�
i<j bijhdxi ∧ dxj (we may set bij := −bji for i ≥ j).

The bij are in OS,p. Therefore computing (∂xj h)ω for some j ∈ {1, . . . , n} yields

(∂xj h)ω =

�n
i=1 ai(∂xj h)dxi

h
= aj

dh

h
+

n�

i=1

bjidxi.

Since one can always find a j such that dim({h = ∂xj h = 0}) ≤ n − 2 (see Lemma A.19), one
can take g := ∂xj h for such a j, ξ := aj and η :=

�n
i=1 bjidxi.

Remark 1.3. The proof above shows that the holomorphic function g from (iii) of Lemma 1.2
can always be chosen as a suitable partial derivative of h, but possibly only after a change
of coordinates. An example therefore is the normal crossing divisor h = x1x2 in C{x1, x2}.
The divisors defined by the partial derivatives ∂x1h = x2 and ∂x2h = x1 have both a common
component with D. However, after a coordinate change x1 = y1− y2, x2 = y1 + y2, one sees that
e.g. ∂y1h = ∂y1(y

2
1 − y

2
2) = 2y1 has the desired property.

Lemma 1.4. (i) Ω
q
S(log D) is a coherent sheaf of OS-modules for q = 0, . . . , n.

(ii)
�n

i=0 Ω
q
S(log D) is an exterior algebra over OS and closed under exterior differentiation.

(iii) Ω
0
S,p(log D) = Ω

0
S,p = OS,p and Ω

n
S,p(log D) =

Ωn
S,p

h . If ω1, . . . ,ωn are in Ω
1
S,p(log D), then

ω1 ∧ · · · ∧ ωn = f

�n
i=1 dxi

h
,

for some f ∈ OS,p.

Proof. (i) Since Ω
q
S(log D) is a finitely generated subsheaf of the coherent free sheaf 1

hΩ
q
S for any

q = 0, . . . , n, it follows by the Meta-Theorem for coherent sheaves, Thm. A.15, that Ω
q
S(log D)

is also coherent.
(ii) This can be easily checked by using the description (iv) of Lemma 1.2 for logarithmic differ-
ential forms.
(iii) The two equalities follow from the definitions of Ω

0
S,p resp. Ω

n
S,p(log D). Since by (ii)�n

i=0 Ω
q
S(log D) is an exterior OS,p-algebra, ω1 ∧ · · · ∧ ωn ∈ Ω

n
S,p(log D) =

1
hΩ

n
S,p, which implies

the claim.

We can also study logarithmic vector fields (= logarithmic derivations) along a divisor in a
complex manifold. These vector fields δ appear naturally as tangent vectors δ(p), p ∈ D to the
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divisor D in its smooth points. Later it is shown that the module of logarithmic vector fields at
a point is dual to the module of logarithmic differential 1-forms (Lemma 1.9).
Logarithmic vector fields can also be studied as Lie algebras, since the module of logarithmic
vector fields is equipped with the usual Lie bracket of vector fields and is trivially stable under
this Lie bracket. From considering the Lie algebra of logarithmic vector fields one can derive
many properties of the divisor corresponding to this Lie algebra, as studied by Hauser and
Müller, see [50]: in this article logarithmic vector fields are considered as “tangent vector fields”
along varieties of any codimension. The Lie algebra structure of logarithmic vector fields is also
considered by Granger and Schulze [42]. Furthermore, there is an interest in the generalization of
the modules of logarithmic vector fields to so-called tangential idealizers in an algebraic context,
see [65,89]. Here we will study logarithmic derivations in Saito’s spirit:

Definition 1.5. Let (S, D) be as in Lemma 1.2. A logarithmic vector field (or logarithmic

derivation) is a holomorphic vector field on S, that is, an element of DerS satisfying one of the
two equivalent conditions:
(i) For any smooth point p of D, the vector δ(p) of p is tangent to D,
(ii) For any point p, where (D, p) is given by h = 0, the germ δ(h) is contained in the ideal (h)

of OS,p. The module of germs of logarithmic derivations (of D) D at p is denoted by

DerS,p(log D) = {δ : δ germ of a holomorphic vector field on S at p such that δh ∈ (h)},

and the sheaf of OS-modules, whose stalk at a point p, is DerS,p(log D) is

DerS(log D) =

�

p∈S

DerS,p(log D).

Definition 1.6. Let S be an n-dimensional complex manifold and let x = (x1, . . . , xn) be the
complex coordinates around a point p ∈ S. Let ξ =

�n
i=1 ξ

i
∂xi , η =

�n
i=1 η

i
∂xi be in DerS,p.

Then the Lie bracket [ξ, η] is defined as [ξ, η] = ξ ◦ η − η ◦ ξ. In the local coordinates this looks
as follows:

[ξ, η]
k

=

n�

i=1

(ξ
i
∂xi(η

k
)− η

i
∂xi(ξ

k
)), for k = 1, . . . , n.

Lemma 1.7. Let (S, D), p and h be defined as in Lemma 1.2. Some useful properties of

DerS(log D):

(i) DerS(log D) is a coherent OS-submodule of DerS, the sheaf of holomorphic vector fields on

S.

(ii) DerS(log D) is closed under the bracket [·, ·].

(iii) For any vector fields δ1, . . . , δn ∈ DerS,p(log D) with δi =
�n

j=1 aij∂xj the determinant of

their coefficients det((aij)i,j=1,...,n) is contained in the ideal (h) ⊆ OS,p.

Proof. (i): Elements δ of DerS,p(log D) are in one-to-one correspondence to syzygies (a1, . . . , an, b)

of the coherent ideal (∂x1h, . . . , ∂xnh, h) via

δ −→ (δ(x1), . . . , δ(xn),−
δ(h)

h
)

n�

i=1

ai∂xi ←− (a1, . . . , an, b).
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Thus the sheaf DerS(log D) is locally isomorphic to the module of syzygies of the coherent ideal
(∂x1h, . . . , ∂xnh, h) and hence itself coherent.
(ii): By definition we have for any δ, η ∈ DerS,p(log D) that δ(h) = fh and η(h) = gh for some
f, g ∈ OS,p. Hence

[δ, η](h) = δ(η(h))− η(δ(h)) = δ(gh)− η(fh) = (δ(g) + g
2
− η(f)− f

2
)h ∈ (h).

(iii): The determinant of the δi is equal to δ1 ∧ · · · ∧ δn = f∂x1 ∧ · · · ∧ ∂xn . Since at any smooth
point p ∈ D the vectors δi(p) are tangent to D, they have to be linearly dependent. This means
nothing else but det((aij(p))) = 0 for all p ∈ D. Hence det((aij(x)i,j=1,...,n) ∈ (h)OS,p and thus
f ∈ (h).

Definition 1.8. Let p = (x1, . . . , xn) be a point in an n-dimensional complex manifold S. The
inner product of vector fields and differential q-forms is denoted by

DerS,p×Ω
q
S,p → Ω

q−1
S,p , (δ,ω) �→ δ · ω.

In coordinates: for δ =
�n

i=1 δ
i
∂xi and ω =

�
J ωJdxj1 ∧ · · ·∧ dxjq , where J = {j1, . . . , jq} with

1 ≤ j1 < · · · < jq, we have δ · ω =
�n

i=1(
�

J:i∈J δ
i
ωJdxj1 ∧ · · · ∧

�dxi ∧ · · · ∧ dxjq ). Especially
for the product of derivations with 1-forms this means δ · ω =

�n
i=1(

�n
j=1 δ

j
∂xj (ωidxi)) =�n

i,j=1 δ
j
ωiδij =

�n
i=1 δ

i
ωi ∈ OS,p.

The inner product can be defined for logarithmic vector fields and differential forms. A priori,
the product of some δ ∈ DerS,p(log D) and ω ∈ Ω

1
S,p(log D) may only be meromorphic. The

following lemma of Saito [81, Lemma 1.6] shows that δ · ω is actually holomorphic.

Lemma 1.9. Let D be a reduced divisor and p a point in S. The inner product

DerS,p(log D)× Ω
q
S,p(log D) → Ω

q−1
S,p (log D); (δ,ω) �→ δ · ω

is well defined. In particular, by the inner product, DerS,p(log D) and Ω
1
S,p(log D) are dual OS,p-

modules.

Proof. Suppose that h = 0 is the local equation of D at p. First we show that for δ ∈

DerS,p(log D) and ω ∈ Ω
q
S,p(log D) the inner product δ · ω is contained in Ω

q−1
S,p (log D): by

Lemma 1.2 we may represent ω as ξ
g ∧

dh
h +

η
g for some holomorphic (q− 1)-form ξ and q-form η

and a holomorphic g, which does not vanish on any irreducible component of D. By definition
we have g(δ · ω) = δ · (gω) and hence

δ · (gω) = δ · ξ ∧
dh

h
+ (−1)

q−1
ξ ∧ δ(

dh

h
) + δ · η.

Here δ(
dh
h ) =

δh
h , δ · ξ and δ · η are holomorphic. Thus δ · ω has the required representation

g(δ · ω) = ξ
�
∧

dh

h
+ η

�
,
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with ξ
�
= δ · ξ and η

�
= δ · η + (−1)

q−1 δh
h ξ. The non-singularity of the pairing DerS,p(log D) ×

Ω
1
S,p(log D) is shown as follows: for the differential forms one has

Ω
1
S,p ⊆ Ω

1
S,p(log D) ⊆

1

h
Ω

1
S,p,

by definition of Ω
1
S,p(log D). Taking duals ∗ results in

DerS,p ⊇ (Ω
1
S,p(log D))

∗
⊇ h DerS,p .

Thus an element δ ∈ (Ω
1
S,p(log D))

∗ can be seen as an element in DerS,p. The differential form
dh
h is logarithmic. By duality δ ·

dh
h must be contained in OS,p. However, δ ·

dh
h =

δh
h and thus

δh ∈ (h)OS,p. This proves that δ is also contained in DerS,p(log D). For the other inclusion,
consider

h DerS,p ⊆ DerS,p(log D) ⊆ DerS,p .

Dualizing yields
1

h
Ω

1
S,p ⊇ (DerS,p(log D))

∗
⊇ Ω

1
S,p.

Hence an element ω ∈ (DerS,p(log D))
∗ can be written as 1

h

�n
i=1 aidxi. In order to show that dh∧

ω is holomorphic we first observe that the holomorphic vector fields δij = (∂xih)∂xj − (∂xj h)∂xi

are in DerS,p(log D) for all 1 ≤ i, j ≤ n. Therefore, by duality, δij · ω =
1
h (aj(∂ih) − ai(∂jh))

must be holomorphic. A computation of

dh ∧ ω =
1

h




�

i<j

(aj(∂xih)− ai(∂xj h))dxi ∧ dxj



 ,

shows that dh ∧ ω is holomorphic and thus ω ∈ Ω
1
S,p(log D).

Corollary. Ω
1
S,p(log D) and DerS,p(log D) are reflexive OS,p-modules. If the dimension dim S

equals 2, then DerS,p(log D) and Ω
1
S,p(log D) are locally free modules.

Proof. Since OS,p is a regular local ring of Krull-dimension 2, we can apply Theorem A.3 and
are finished.

Let us see some examples of divisors and modules of logarithmic differential forms resp. deriva-
tions. In particular, Ω

1
S,p(log D) is in general not a free OS,p-module if dim S ≥ 3.

Example 1.10. (The normal crossing divisor) This is the most basic example, which was orig-
inally considered by Deligne [28] in order to study logarithmic differential forms. Let D be a
normal crossing divisor in a manifold S of dimension n and suppose that locally at a point
p = (x1, . . . , xn) the divisor is given as D = {x1 · · ·xk = 0} where 0 ≤ k ≤ n. Then clearly
Ω

1
S,p(log D) is free and has the basis dx1

x1
, . . . ,

dxk
xk

, dxk+1, . . . , dxn. The dual basis of DerS,p(log D)

is given by x1∂x1 , . . . , xk∂xk , ∂xk+1 , . . . , ∂xn . In particular, if D = {x1 = 0} is smooth, then
Ω

1
S,p(log D) is free and any ω ∈ Ω

1
S,p(log D) has a representation ω = a1

dx1
x1

+
�n

i=2 aidxi, with
ai ∈ OS,p, of Lemma 1.2.
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Example 1.11. (The cusp) The corollary above shows that any divisor in S is free if dim S = 2.
The cusp singularity (D, p) in (S, p) is given at p = (x, y) by h = x

3−y
2. A basis of DerS,p(log D)

is formed by δ1 = 2x∂x + 3y∂y and δ2 = 2y∂x + 3x
2
∂y. A basis of Ω

1
S,p(log D) is obtained by

forming the dual basis to (δ1, δ2).
Example 1.12. (Isolated surface singularity) Consider the normal surface singularity E8 in (C3

, 0),
given by h = x

2
+ y

3
+ z

5. Here it is not so easy to determine a system of generators of
DerS,p(log D). However, in Thm. 1.42 it will be shown that Ω

1
S,p(log D) is generated by dh

h =

1
h (2xdx + 3y

2
dy + 5z

4
dz), dx, dy, and dz.

Example 1.13. (The Whitney Umbrella) The Whitney Umbrella D is the surface in C3 given by
the equation x

2− y
2
z = 0. It has the z-axis as singular locus. Later it will be proven that for all

points p of C3\{0} the module of logarithmic derivations at p is free, see Example 2.9. However,
a computation (of the syzygies of the Jacobian ideal of x

2 − y
2
z) shows that DerC3,0(log D)

is minimally generated by the four vector fields δ1 = 2x∂x + y∂y + 2z∂z, δ2 = −y∂y + 2z∂z,
δ3 = −y

2
∂x + 2x∂z, δ4 = x∂y − yz∂x and hence not free.

Definition 1.14. A hypersurface D in S is called a free divisor if Ω
1
S(log D) is a locally free

OS-module. We say that D is free at p (or (D, p) is free) if Ω
1
S,p(log D) or the dual module

DerS,p(log D)) is a free OS,p-module.

One can construct free divisors in any dimension as cylinders over plane curves. However, it is
not so easy to find more interesting examples of free divisors in dimension greater than 2. Free
divisors in dimension ≥ 3 have not yet been classified and one only some classes of examples are
known but there is no general theory, see e.g. [40,67,86].
Example 1.15. (Hyperplane arrangements) Consider the divisor H that is given globally by
xyz(x + y) in C3, i.e., H is a union of four hyperplanes. With the help of Saito’s criterion
(Thm. 1.19) it can be shown that H is a free divisor, a so-called free hyperplane arrangement. In
Chapter 2 we will see more of hyperplane arrangements. Freeness of hyperplane arrangements
has been studied by Terao [94].
Example 1.16. (The 4-lines) Consider the divisor D in (C3

, 0) given by h = xy(x + y)(x + yz).
This example is originally from Whitney [100] and serves as the prototypic example of an analytic
variety that is not analytically trivial along a smooth subvariety (here: along the z-axis). It is
also a source of examples and counterexamples in the theory of free divisors and logarithmic
differential operators, see e.g. [18, 19, 71]. “The 4-lines” divisor is a mild generalization of a
hyperplane arrangement since it consists generically at points of the singular locus of four smooth
surfaces, which intersect pairwise transversally. A computation of the syzygies of the Jacobian
ideal shows that the three logarithmic vector fields δ1 = xy∂x + y

2
∂y − 4(x + yz)∂z, δ2 =

x(x + 3y)∂x − y(3x + y)∂y + 4x(z − 1)∂z and δ3 = x∂x + y∂y form a basis of DerC3,0(log D). So
D is a free divisor.
Example 1.17. (Discriminants) Another source of nontrivial examples of free divisors are dis-
criminants of deformations. A remarkable result in singularity theory is that the discriminant
of a versal deformation of any isolated hypersurface singularity is a free divisor. This was first
proven by Saito [82], for different proofs see [4, 60]. This result has been generalized in many
directions, see e.g. [13, 25, 60, 68] and more references therein. The first interesting example is
the discriminant of the versal deformation of an A3-singularity defined by w

4
= 0. A versal
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deformation of this singularity is given by X = {w4
+ xw

2
+ yw + z = 0}, cf. [27,60], which has

discriminant
h = 256z

3
− 128x

2
z
2

+ 16x
4
z + 144xy

2
z − 4x

3
y
2
− 27y

4
.

The polynomial h defines a free divisor in C3. A basis of DerC3,0(log D) is given by δ1 = 6y∂x +

(8z−2x
2
)∂y−xy∂z, δ2 = (4x

2−48z)∂x+12xy∂y +(9y
2−16xz)∂z and δ3 = 2x∂x+3y∂y +4z∂z. A

versal deformation of the A4-singularity w
5

= 0 is given by X = {w5
+xw

3
+yw

2
+zw+u = 0}.

Its discriminant is defined by a quasi-homogeneous polynomial in four variables and gives rise to
a free divisor in C4.
Remark 1.18. Although a divisor may not be free at all of its points, the set of free points is
open and dense in S and also in D. This follows from the general fact that for a coherent sheaf
F on a complex space X the set {x ∈ X : Fx is not a free OX,x-module} is a proper analytic
subset in X (cf. [27, Thm. 6.2.11.]). Note that the set of non-free points of D is contained in
Sing D, the singular locus of D.

Theorem 1.19 (Saito’s criterion). Let (S, D), p and h be defined as in Lemma 1.2. The OS,p-

module DerS,p(log D) is free if and only if there exist n vector fields δi =
�n

j=1 aij(x)∂xj in

DerS,p(log D), i = 1, . . . , n, such that det(aij(x)) is equal to h up to an invertible factor. More-

over, then the vector fields δ1, . . . , δn form a basis for DerS,p(log D).

Ω
1
S,p(log D) is a free OS,p-module if and only if

�n
Ω

1
S,p(log D) = Ω

n
S,p(log D). This means that

there exist n elements ωi ∈ Ω
1
S,p(log D) such that

ω1 ∧ . . . ∧ ωn = u
dx1 ∧ . . . ∧ dxn

h
,

where u is a unit in OS,p, i.e., u ∈ O∗S,p. Then the ω1, . . . ,ωn form an OS,p-basis for Ω
1
S,p(log D)

and one can write

Ω
q
S,p(log D) =

�

i1<···<iq

OS,p ωi1 ∧ · · · ∧ ωiq ,

for all q = 1, . . . , n.

Proof. Differential forms: First suppose that Ω
1
S,p(log D) is a free OS,p-module. By Lemma 1.4

(i), the sheaf Ω
1
S(log D) is coherent, thus there exists a neighbourhood U of p ∈ S such that

Ω
1
S(log D)|U is OS-free. For any point q ∈ U , q �∈ D, it is clear that Ω

1
S,q(log D) = Ω

1
S,q. From

this it follows that Ω
1
S(log D)|U has a basis ω1, . . . ,ωn consisting of n elements. Again by Lemma

1.4 (iii), one knows that

ω1 ∧ · · · ∧ ωn = f

�n
i=1 dxi

h
,

where f is a holomorphic function. For any point q ∈ U\D, ω1 ∧ · · · ∧ ωn has to be a unit
multiple of the n-form

�n
i=1 dxi. For a smooth point q ∈ D ∩ U with coordinates (y1, . . . , yn)

we may suppose that D looks locally like {y1 = 0}. Then by the equivalent characterizations
of logarithmic differential forms (Lemma 1.2) any ω ∈ Ω

1
S,q(log D) is of the form ω = ξ

dy1
y1

+ η,
where ξ is a holomorphic function and η is a holomorphic differential 1-form. From this it
follows that dy1

y1
, dy2, . . . , dyn form a free basis of Ω

1
S,q(log D). By the implicit function theorem

ω1 ∧ · · · ∧ ωn =
1
y1

�n
i=1 dyi = u

1
h

�n
i=1 dxi holds for some unit u ∈ O∗S,p. Thus ω1 ∧ · · · ∧ ωn
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is a unit multiple of 1
h

�n
i=1 dxi. Hence the holomorphic function f can only vanish on a set of

codimension greater than of equal to 2 in U , which implies that f(x) does not vanish at all on
U .
Conversely, suppose that there exist n logarithmic differential one-forms ω1, . . . ωn, such that

ω1 ∧ · · · ∧ ωn =
dx1 ∧ · · · ∧ dxn

h
.

Take any ω ∈ Ω
q
S,p(log D), q = 1, . . . , n and form

ω ∧ ωi1 ∧ · · · ∧ ωin−q = aI

�n
i=1 dxi

h
,

where the aI are in OS,p and I is the multi-index (i1, . . . , in−q) with 1 ≤ i1, . . . , in−q ≤ n. We
set

ω
�
= ω −

�
sgn(I)aIωj1 ∧ · · · ∧ ωjq ,

where sgn(I) denotes the sign of the permutation
� 1···n
i1···in−qj1···jq

�
. It can easily be seen that

ω
� ∧ ωi1 ∧ · · · ∧ ωin−q = 0 for 1 ≤ i1 < . . . < in−q ≤ n. Hence ω

� is OS,p-linearly dependent
on ωi1 , . . . ,ωin−q for points in S\D and hence in the span of these ωij ’s. But this means that
ω = ω

�
+

�
sgn(I)aIωj1 ∧ · · · ∧ ωjq is an OS,p-combination of the ωj1 ∧ · · · ∧ ωjq . In particular,

any ω ∈ Ω
1
S,p(log D) is a linear combination of the ωi’s.

For the logarithmic derivations we apply the duality proven above and a trick used in [74]: First
suppose that DerS,p(log D) is free and has a basis δ1, . . . , δn with δi =

�n
j=1 aij∂xj . By the

duality between logarithmic derivations and logarithmic differential 1-forms, Ω
1
S,p(log D) is also

free, which means that there exists a basis ω1, . . . ,ωn ∈ Ω
1
S,p(log D) with �ωi, δj� = δij . If we

write ωi =
�n

j=1 bijdxi then by the first part of the theorem we have det(bij) =
1
h . Since the

matrix A = (aij) is the adjoint matrix to B = (bij), it follows that det(A) = det(B
−1

) = h,
which had to be shown.
For the other implication suppose that we have δ1, . . . , δn ∈ DerS,p(log D) with δi =

�n
j=1 aij∂xj ,

such that det(aij) = h. We show that any δ =
�n

i=1 ci∂xi ∈ DerS,p(log D) can be written as an
OS,p-linear combination of the δi’s: First it follows by Cramer’s rule that the derivations h∂xj

are OS,p-linear combinations of the δi’s for all j = 1, . . . , n, hence so is hδ =
�n

i=1 fiδi. By
Lemma 1.7, δ1 ∧ · · · ∧ δi−1 ∧ δ ∧ δi+1 ∧ · · · ∧ δn = gih∂x1 ∧ · · · ∧ ∂xn for some gi ∈ OS,p and thus

h(δ1 ∧ · · · ∧ δi−1 ∧ δ ∧ δi+1 ∧ · · · ∧ δn) = δ1 ∧ · · · ∧ δi−1 ∧ hδ ∧ δi+1 ∧ · · · ∧ δn,

h
2
gi∂x1 ∧ · · · ∧ ∂xn = fiδ1 ∧ · · · ∧ δn,

which implies that h
2
gi = fih. This means that all fi/h = gi are holomorphic and hence

δ =
�n

i=1 giδi is an OS,p-linear combination of the δi, which had to be shown.

Problems with non-reduced divisors

In this section we briefly comment on why we always assume that the divisors D, we are dealing
with are defined by reduced holomorphic equations. In short, the reason is that if D is given by
a non-reduced equation, then the duality between the modules Ω

1
S,p(log D) and DerS,p(log D)
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does not hold.
If D is given by a non-reduced equation h

α
= h

α1
1 · · ·hαm

m with αi ≥ 1 and
�

αi > m at a point
p, then the module DerS,p(log D) is DerS,p(log Dred), where Dred denotes the divisor with local
equation h = h1 · · ·hm, see Prop. 1.21. However, we will see in an example that the module
Ω

1
S,p(log D) is not equal to its reduced version Ω

1
S,p(log Dred).

Lemma 1.20. Let (S, D) be a manifold with dim S = n and its divisor. Suppose that (D, p) =�m
i=1(Di, p) is the irreducible decomposition of D at a point p ∈ S and that D is given locally at

p by a reduced equation h = h1 · · ·hm, where hi corresponds to the irreducible component Di for

i = 1, . . . ,m. Then

DerS,p(log D) =

m�

i=1

DerS,p(log Di).

Proof. Suppose that δ ∈ DerS,p(log D). Then by definition of logarithmic vector fields we have

δ(h) =

m�

i=1

h1 · · ·
�hi · · ·hmδ(hi) = gh

for a g ∈ OS,p. Dividing this equation by hj it follows that h1 · · ·
�hj · · ·hm

δ(hj)
hj

is holomorphic.
Since hj is irreducible and does not divide any of the hi for i �= j, one concludes that δ(hj) ∈ (hj).
This argument applies to any j = 1, . . . ,m, so that δ is contained in

�m
i=1 DerS,p(log Di).

Conversely, suppose that δ(hi) = gihi, gi ∈ OS,p for all i = 1, . . . ,m. Then

δ(h1 · · ·hm) = h1 · · ·hm(

m�

i=1

gi),

which implies that δ(h) ∈ (h).

Proposition 1.21. Let S be a complex manifold of dimension n together with a divisor D ⊆ S.

Suppose that at a point p ∈ S the divisor (D, p) =
�m

i=1(Di, p) is given by a non-reduced equation

h
α

:= h
α1
1 · · ·hαm

m , where the hi are the equations defining the irreducible components at p and

αi ∈ N>0 are their multiplicities. Then

DerS,p(log D) = DerS,p(log Dred),

where Dred denotes the reduced divisor defined by the equation h = h1 · · ·hm.

Proof. Suppose that δ ∈ DerS,p(log Dred). By Lemma 1.20 we have δ(hi) = gihi, gi ∈ OS,p.
Applying δ to h

α yields

δ(h
α
) =

m�

i=1

αih
α1
1 · · ·h

αi−1
i · · ·h

αm
m δ(hi) = h

α
(

m�

i=1

αigi).

Conversely, let δ be an element of DerS,p(log D). Then by definition we have δ(h
α
) = gh

α.
Expanding δ yields

δ(h
α
) =

m�

i=1

αih
α1
1 · · ·h

αi−1
i · · ·h

αm
m δ(hi).
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Dividing through h
αj

j shows that αjh
α1
1 · · ·�hj · · ·h

αm
m

δ(hj)
hj

is holomorphic. Since all hi are ir-
reducible and distinct from hj , it follows that δ(hj) ∈ (hj) for any j = 1, . . . ,m. Since
DerS,p(log Dred) =

�m
i=1 DerS,p(log(Di)red), by Lemma 1.20, this proves our assertion.

For a non-reduced D it is easy to see that Ω
1
S,p(log D) � Ω

1
S,p(log Dred): if ω ∈ Ω

1
S,p(log Dred)

then h
α
ω = h

α−1
(hω) and h

α
dω = h

α−1
(hdω) are clearly holomorphic. The meromorphic dif-

ferential form ω =
dh
hα is in Ω

1
S,p(log D) since ωh

α is holomorphic and dh ∧ ω =
1

hα dh ∧ dh = 0

is also holomorphic. But ωh is not holomorphic and thus ω is not in Ω
1
S,p(log Dred)! Thus for a

non-reduced divisor D the logarithmic differentials and the logarithmic derivations are not dual
to each other, that is, Ω

1
(log D) is not reflexive.

There have been a few approaches to overcome this obstruction. In [105] Ziegler defines gener-
alized logarithmic vector fields resp. differential form modules of hyperplane arrangements with
multiplicities, so-called multiarrangements. In the theory of hyperplane arrangements this leads
to interesting insights about the combinatorics and topology of multi-arrangements as well as
simple arrangements (i.e., arrangements defined by a reduced polynomial). We refer to [85] for
more references on multi-arrangements.
However, the geometry of a divisor does not change by introducing multiplicities, in particular,
the normal crossings property only depends on the reduced equation of the divisor. For this
reason only divisors given by reduced equations are considered in this thesis.

Euler-homogeneous divisors

This section is about so-called Euler-homogeneous divisors. These divisors are of special interest,
since they are a generalization of quasi-homogeneous divisors (for a divisor with only isolated
singularities the two notions coincide). Often results about free divisors are much simpler to
prove for free Euler-homogeneous divisors and can then be generalized. Here we list some prop-
erties of Euler-homogeneous divisors, which will be used in Chapter 2. In particular, we show
a characterization of free Euler-homogeneous divisors in terms of logarithmic differential forms
(Prop. 1.29).

Definition 1.22. Let (S, D) be an n-dimensional complex manifold together with a divisor
D ⊆ S. The divisor D is called Euler-homogeneous at a point p if for some (reduced) local
defining equation h of D there exists a vector field η ∈ DerS,p(log D) such that ηh = uh with
u ∈ O∗S,p (we also say that (D, p) is a Euler-homogeneous singularity). Such a vector field
η ∈ DerS,p(log D) is called an Euler vector field. A divisor D is called Euler-homogeneous if for
any point p in D the singularity (D, p) is Euler-homogeneous.

Definition 1.23. A divisor D is said to be quasi-homogeneous at p ∈ S, where S is locally iso-
morphic to Cn, if there exist complex coordinates (x1, · · · , xn) locally at p such that D is defined
by a polynomial P ∈ C[x1, . . . , xn] and P is quasi-homogeneous with weights (w1, . . . , wn),
0 < wi ≤

1
2 . This means that P is a linear combination of monomials x

m1
1 · · ·xmn

n with�n
i=1 wimi = 1.
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By a theorem of Saito [78], an isolated hypersurface singularity (D, p), defined by h for an
h ∈ OS,p is quasi-homogeneous at p if and only if h is contained in the Jacobian ideal of h, that
is, in the ideal generated by the partial derivatives ∂xih (in Chapter 2 this ideal will be studied
in more detail). But then there exist some gi ∈ OS,p such that h =

�n
i=1 gi∂xih. Thus the vector

field η :=
�n

i=1 gi∂xi is an Euler-vector field and D is Euler-homogeneous at p. This shows that
if (D, p) is an isolated hypersurface singularity, then (D, p) is quasi-homogeneous if and only
if it is Euler-homogeneous. However, nonisolated Euler-homogeneous singularities need not be
quasi-homogeneous:
Example 1.24. (The 4-lines) The divisor D in C3 given at 0 by h = xy(x + y)(xz + y) is not
quasi-homogeneous but it has an Euler vector field, see e.g. [23].
Remark 1.25. One can show that if (D, p) defined by h ∈ OS,p is Euler-homogeneous then
there exists a formal change of coordinates such that h is transformed into a quasi-homogeneous
polynomial, see [39].
In the next lemmata we look at logarithmic vector fields along Euler-homogeneous divisors: if
(D, p) is Euler-homogeneous we have a certain splitting of the basis of DerS,p(log D).

Lemma 1.26. Let (D, p) be an Euler-homogeneous divisor with defining equation h and let η be

an Euler vector field. Denote M = {δ ∈ DerS,p(log D) : δ(h) = 0}. Then we have the direct sum

decomposition

Der(log D)S,p
∼= OS,pη ⊕M

If D is moreover free at p, then M is a free submodule of DerS,p(log D).

Proof. Let h = 0 be the defining equation of D at p. Since (D, p) is Euler-homogeneous we have
ηh = uh with u ∈ O∗S,p. Let δ ∈ DerS,p(log D). Then by definition of logarithmic derivations
we have δh = gh, g ∈ OS,p. It follows that δ(h) = gu

−1
η(h), hence δ − gu

−1
η ∈M. Thus we

can write any δ as a sum δ = gu
−1

η + (δ − gu
−1

η). If D is free, then M is a free submodule
of DerS,p(log D) since it is a direct summand of a free module over a local ring, see the section
about projective modules in Appendix A.

Lemma 1.27. Let (D, p) be a free Euler-homogeneous divisor in (S, p), given by h(x1, . . . , xn) ∈

OS,p and let M be defined as above. The submodule M of DerS,p(log D) is canonically isomorphic

to the module of 1-cycles of the Koszul complex K(∂x1h, . . . , ∂xnh). The modules of syzygies of

order ≥ 2 are trivial.

Proof. The coefficients of any vector field δ ∈ M give rise to a relation between the ∂xih.
Conversely any relation (or syzygy of first order) between the partial derivatives of h gives an
element in M. Since M is free, the higher syzygies are trivial.

Lemma 1.28. Let (D, p) be an Euler-homogeneous singularity, suppose that D is free at p and

let δ1, . . . , δn−1 be a basis of the submodule M ⊆ DerS,p(log D). Then every partial derivative

∂x1h, . . . , ∂xnh is given (up to a unit u ∈ O∗S,p) by one of the principal minors of the (n− 1)×n-

matrix formed by the coefficients of the vector fields δ1, . . . , δn−1.

Proof. From Lemma 1.26 it follows that the Euler vector field η and the vector fields δ1, . . . , δn−1

are a basis of the OS,p-module DerS,p(log D). Consider the n × n- matrix M whose rows are
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formed by the coefficients of this basis, that is, the first row corresponds to the coefficients of η

and the last row to the coefficients of δn−1. By Saito’s criterion, detM = kh for some unit k

and from the definition of η follows ηh = k
�
h, for some k

� ∈ O∗S,p. Hence M∂xh = (k
�
h, 0, . . . , 0).

Here ∂xh denotes the column vector (∂x1h, . . . , ∂xnh)
T . Thus, by Cramer’s rule, the partial

derivatives ∂xih correspond to the (n−1)×(n−1) minors of the matrix (Mi,j)i=2,...n,j=1,...n.

Now we give a characterization of free Euler-homogeneous divisors in terms of logarithmic dif-
ferential forms.

Proposition 1.29. Let D in S be a free divisor that is locally at a point p of S defined by a

reduced h ∈ OS,p. Then D is Euler-homogeneous at p if and only if there exists a basis ω1, . . . ,ωn

of Ω
1
S,p(log D) such that

dh
h can be chosen as ω1.

Proof. Let D be an Euler-homogeneous divisor and let η ∈ DerS,p(log D) be such that η(h) = h.
Then we can find a basis of DerS,p(log D) consisting of η and some δ2, . . . , δn with δi(h) = 0

(cf. Lemma 1.26). Denote by A the n × n matrix with rows the coefficients η1, . . . , ηn of η and
δi1, . . . , δin of the δi. By Saito’s criterion, det(A) = uh for some unit u ∈ OS,p. Consider the
system of equations

A(∂x1h, . . . , ∂xnh)
T

= (h, 0, . . . , 0)
T
.

By Cramer’s rule it follows that

∂xih =
(−1)

i+1
det(Ai)

u
, (1.1)

where Ai is the matrix formed by replacing the i-th column vector of A by (1, 0, . . . , 0)
T . Using

the duality between logarithmic vector fields and logarithmic differential 1-forms we get: since
η, δ2, . . . , δn are a basis of DerS,p(log D), there exists a unique basis ω1, . . . ,ωn of Ω

1
S,p(log D)

such that ωi · η = δi1 and ωi · δj = 0 for i �= j, that is, ω1, . . . ,ωn are the dual basis of η and the
δi’s. Hence we get the following system of equations for the coefficients ω11, . . . ,ω1n of ω1:

A(ω11, . . . ,ω1n)
T

= (1, 0, . . . , 0)
T
.

Using again Cramer’s rule it follows that ω1i =
1

uh (−1)
i+1

det(Ai), which is by (1.1) equal to
∂xih

h . Hence ω1 =
dh
h , which had to be shown.

Conversely, suppose that Ω
1
S,p(log D) has a basis dh

h , ω2, . . . ,ωn. Then there exists a vector field
δ ∈ DerS,p(log D) with the property δ ·

dh
h = 1. But this is equivalent to δ(h)

h = 1, which means
that δ(h) = h and that δ is an Euler-vector field for D.

Question 1.30. What can we say if in the above Proposition we drop the freeness assumption on

D? Does then “D is Euler-homogeneous” mean that
dh
h can be chosen as a member of a minimal

system of generators of Ω
1
S,p(log D)?

One has to be careful with the notion of Euler homogenity. The next example exhibits a method
how to obtain an Euler-homogeneous divisor from an arbitrary divisor.
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Example 1.31. (This example is inspired by [31]) Let (D, 0) ⊆ (Cn+1
, 0) and let

(x1, . . . , xn, y) be the complex coordinates at the origin. Suppose that D = D
� × C with D

�

defined by f(x) and that f(x) defines a non-quasihomogeneous isolated singularity in (Cn
, 0).

Then e
z
f(x) is a defining equation for D. Hence D is Euler-homogeneous and η = ∂z is an Euler

vector field. However, the divisor D
� is not Euler-homogeneous.

The above example shows that Euler-homogenity of a divisor that has a smooth factor does not
imply that all its irreducible components are Euler-homogeneous. Hence we shall assume that
the divisor D is strongly Euler-homogeneous at p, which means that D has an Euler-vector field
that vanishes at p. The notion of strong Euler–homogenity plays a role in connection with the
logarithmic comparison theorem, see [17,41].
For a strongly Euler-homogeneous singularity (D, p) =

�m
i=1(Di, p), where the Di denote the

irreducible components of D, there exists an Euler-vector field η for D and by the Leibniz rule it
follows that η has also to be an Euler-vector field for at least one of the Di. This means, at least
one irreducible component Di is also strongly Euler-homogeneous. In general not all components
have this property:

Example 1.32. Consider the divisor D ⊆ C3 that is locally at 0 defined by xf(y, z) = 0, where f is
a reduced irreducible non-quasihomogeneous polynomial. Then D is strongly Euler-homogeneous
with Euler vector field η = x∂x. The irreducible component (D1, 0) = {x = 0} is also strongly
Euler-homogeneous but the other irreducible component (D2, 0) = {f(y, z) = 0} certainly not.

The opposite implication is also not true:

Example 1.33. Let D in C2 at p = (x, y) be the union of the parabola D1 = {x−y
2

= 0} and the
cusp D2 = {x3−y

2}. Then D is locally at p given by h = (x−y
2
)(x

3−y
2
). Since in dimension 2

the singularities of divisors (= curves) are always isolated, Saito’s result on quasi-homogeneous
singularities, see [78], implies that a curve C defined by a polynomial f is quasi-homogeneous if
and only if it is Euler-homogeneous if and only if f is contained in its Jacobian ideal. Clearly D1

and D2 are quasi-homogeneous (with weights (2, 1) and (2, 3)). But D is not quasi-homogeneous,
since h �∈ (∂xh, ∂yh).

One can give more interesting examples of Euler-homogeneous divisors that appear in connection
with the logarithmic meromorphic comparison theorem, see e.g. [71] for an overview. Therefore
we need a bit of notation.

Definition 1.34. Let R be a commutative ring and I ⊆ R an ideal. One says that I is of linear

type if the canonical (surjective) map of graded algebras SymR(I) → R(I) is an isomorphism.
Here SymR(I) denotes the symmetric algebra of the R-module I and R(I) =

�∞

i=0 I
d
t
d ⊆ R[t]

is the Rees algebra of I.
Denote by (S, D) a complex manifold of dim S = n together with a divisor D ⊆ S. Denote h the
defining equation of D at a point p. We say that D is of Jacobian linear type at p ∈ D if the
stalk (h, ∂x1h, . . . , ∂xnh) of its Jacobian ideal plus the defining equation is of linear type. One
says that D is of Jacobian linear type if it is of Jacobian linear type at all p ∈ D.

Suppose that ((h) + Jh) is generated by some f1, . . . , fk. Then being of Jacobian linear type
means that the kernel of the morphism of graded algebras ϕ : O[X1, . . . ,Xk] → R((h) + Jh)

sending Xi to fit is generated by homogeneous elements of degree 1 (see [19]).
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Proposition 1.35. If D is of Jacobian linear type at p then (D, p) is an Euler-homogeneous

singularity.

Proof. See Rmk. 1.6.6. of [20].

Remarks and some applications

In [28] Deligne introduced the logarithmic de Rham complex, also see e.g. [29], [46] and [97].
The applications of the logarithmic complex mainly lie in cohomology theory. The logarithmic
comparison theorem (LCT) states that one can compute the cohomology of the complement
of a divisor just from the logarithmic complex: denote by Ω

•

S(log D) the logarithmic de Rham
complex, which is naturally contained in Ω

•
(∗D), the complex of meromorphic forms on X with

meromorphic poles (of arbitrary order) along D. The Grothendieck-comparison theorem states
that for any divisor D ⊆ S the natural morphism

Ω
•

S(∗D) −→ Rj∗CU ,

where j : U = S\D �→ S is the natural inclusion, is a quasi-isomorphism, see [63]. Then one asks
if the inclusion Ω

•

S(log D) ⊆ Ω
•

S(∗D) also yields a quasi-isomorphism. If this is the case then one
says that (LCT) holds for D. However, (LCT) is proven to hold only for special classes of free
divisors and a general characterization is still open, see [22, 71]. Using D-module theory some
results for free divisors can be obtained, see e.g. [19]. In order to study meromorphic connections
and partial differential equations one can also make use of the theory of logarithmic differential
forms, see [7, 28, 73]. Many algebraic properties of free divisors and logarithmic vector fields
were studied by A. G. Aleksandrov, see e.g. [4,5]. We have already mentioned in some examples
that free divisors appear in the theory of bifurcations and also in the theory of hyperplane ar-
rangements. Another interesting field of study is the connection between linear free divisors and
quiver representations [15].

It is noteworthy that the original definition of logarithmic differential form along a normal cross-
ing divisor of Deligne is different from Saito’s. However, we will see below that the two definitions
coincide for normal crossing divisors (also see [28, II,3]).

Definition 1.36 (Deligne, [28]). Let D be a normal crossing divisor in a complex manifold S

and denote its complement S\D by U . Let j : U �→ S be the natural inclusion. One defines
the logarithmic de Rham complex Ω

•

S(log D) as follows: Ω
•

S(log D) is the smallest subcomplex of
j∗Ω

•

U containing Ω
•

S that is stable under the exterior product and such that for any local section
f ∈ j∗OU that is meromorphic along D the differential form df

f is a local section of Ω
1
S(log D).

Proposition 1.37. Let D be a normal crossing divisor in a complex manifold S with dim S = n.

A section ω of j∗Ω
p
U has a logarithmic pole along D if and only if ω and dω have at most a simple

pole along D. Moreover, the sheaf Ω
1
S(log D) is locally free and Ω

q
S(log D) =

�q
Ω

1
S(log D).

Proof. At a point p ∈ S with coordinates (x1, . . . , xn) we may suppose that D is given by the
holomorphic function x1 · · ·xk. Then a section of (j∗OU ) meromorphic along D is locally at p of
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the form f = g
�k

i=1 x
ki
i with g ∈ O∗S,p and ki ∈ Z. Then compute

df

f
=

dg

g
+

k�

i=1

ki
dxi

xi
,

where dg
g ∈ Ω

1
S,p. It follows that any section of Ω

1
S,p(log D) can be written as an OS,p-linear

combination of the dxi
xi

, i = 1, . . . , k, and the dxi, i = k+1, . . . , n. Thus one sees that Ω
1
S,p(log D)

is locally free with the above basis and it is clear that Ω
q
S(log D) =

�q
Ω

1
S(log D). With the help

of the explicit basis it follows that a section ω ∈ Ω
q
S,p(log D) and also dω have at most a simple

pole along D. Now it remains to show that a q-form ω ∈ j∗Ω
q
U,p, with x1 · · ·xkω and x1 · · ·xkdω

holomorphic is also a section of Ω
q
S,p(log D). Since Ω

1
S(log D) is a locally free sheaf of analytic

modules, it is enough to show the assertion for a subset of S of codimension ≥ 2, that is,
it is enough to show the assertion for germs ω of Ω

q
S,p(log D), where p is a smooth point of

D. Therefore we may assume that locally at p the divisor is given by x1 = 0. Then take an
ω ∈ j∗Ω

q
U,p such that also x1ω and x1dω (and equivalently x1ω and ω ∧ dx1) are holomorphic.

The form ω can be written uniquely as ω = ω1 +ω2 ∧dx1/x1, where ω1 and ω2 are meromorphic
q- and (q − 1)-forms not containing dx1. Since ωx1 is holomorphic, this implies that ω2 and
consequently x1ω1 are holomorphic. From dx1 ∧ ω = dx1 ∧ ω1 + 0 holomorphic follows that
ω1 also has to be holomorphic. Hence ω is a OS,p-linear combination of elements of the form
1
x1

dx1 ∧ dxi2 ∧ · · · ∧ dxiq , and dxi1 ∧ · · · ∧ dxiq for ij ∈ {2, . . . , n}, j = 1, . . . , q, which are easily
seen to be generators of

�q
Ω

1
S,p(log D).

1.1.2 Residue of logarithmic forms

Historically, the study of residues of differential forms was initiated by A. Cauchy in 1825: he
considered residues of holomorphic functions in one variable. Later, in 1887, H. Poincaré in-
troduced the notion of the residue of a rational 2-form in C2. This was generalized by G. de
Rham and J. Leray to the class of d-closed meromorphic q-forms with poles of first order along
a smooth divisor. The modern algebraic treatment of residues in duality theory is due to Leray
and Grothendieck, see for example [48]. We will study the logarithmic residue as introduced by
K. Saito.

The residue of logarithmic forms is a tool to study the structure of the module of logarithmic
differential forms along D. It is tightly connected to the normalization of D. Locally, the residue
of Ω

1
S,p(log D) is contained in the ring of meromorphic functions MD,p on D. In some way it

measures how far away a logarithmic q-form is from being holomorphic.

In this section we give the definition of the logarithmic residue and list some of its properties,
which will be used in the sequel. For a complete treatment and all proofs of our assertions
see [81, §2].
Let S be an n-dimensional complex manifold and D a divisor in S given locally at a point p ∈ S

by a reduced equation h ∈ OS,p and denote by π : �D → D the normalization of D. Let OD and
MD (resp. O �D and M �D) be the sheaves of germs of holomorphic and meromorphic functions
on D (resp. �D). Further denote by Ω

q
D (resp. Ω

q
�D
) the sheaf of germs of holomorphic q-forms
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on D (resp. �D). One has OD,p = OS,p/(h)OS,p and Ω
q
D,p = Ω

q
S,p/(hΩ

q
S,p + dh ∧ Ω

q−1
S,p ) and also

MD ⊗OD Ω
q
D = π∗(M �D ⊗O�D

Ω
q
�D
). In particular for q = 0 we have π∗(M �D) = MD since π is

birational.

Definition 1.38. Let (S, D), p and h be defined as in Lemma 1.2. Let ω be any element in
Ω

q
S,p(log D). Then by Lemma 1.2 one can find a presentation

gω =
dh

h
∧ ξ + η,

with g holomorphic and dimOD,p/(g)OD,p ≤ n − 2, ξ ∈ Ω
q−1
S,p and η ∈ Ω

q
S,p. The residue

homomorphism ρ is defined as the OS,p-linear homomorphism of sheaves

ρ : Ω
q
S(log D) −→MD ⊗OD Ω

q−1
D

ω �−→ ρ(ω) =
ξ

g
.

We often call ρ(Ω
1
S,p(log D)) the logarithmic residue (of D at p).

Lemma 1.39. The residue homomorphism ρ is well defined.

For the proof of this lemma we use the following generalization of the de Rham lemma, due to
K. Saito:

Lemma 1.40 (Generalized de Rham lemma). Let h be a non-constant element in OS,p. Then

there exists an integer k such that for any ω ∈ Ω
q
S,p with ω∧ dh = 0 there exists a ζ ∈ Ω

q−1
S,p such

that for any i = 1, . . . , n:

(∂xih)
k
ω = ζ ∧ dh.

Proof. See [79].

Proof of Lemma 1.39. Since ρ is a homomorphism, it is sufficient to show the assertion for ω ≡ 0.
Suppose that there are two presentations of ω:

gω = 0 ∧
dh

h
+ 0 = ξ ∧

dh

h
+ η,

where ξ ∈ Ω
q−1
S,p and η ∈ Ω

q
S,p. Thus we have to show that ξ restricted to D is 0. The above

equation implies that ξ ∧
dh
h = −η. Wedging this equation with dh we obtain η ∧ dh = 0. By

the generalized de Rham lemma there exists an integer k such that for each i = 1, . . . , n one
has (∂xih)

k
η = ζ ∧ dh, for some ζ ∈ Ω

q−1
S,p . It follows that (ξ(∂xih)

k
+ hζ) ∧ dh = 0. Another

application of the de Rham lemma yields that (∂xih)
l
ξ ∈ hΩ

q−1
S,p + dh ∧ Ω

q−2
S,p for some natural

number l, that is, (∂xih)
l
ξ is 0 in Ω

q−1
D,p . However, dh is locally on D\{g = 0} not equal to zero,

because the singular locus is a proper analytic subset of D. Since ∂xih is a nonzerodivisor in
OD,p = OS,p/(h) for a suitable i, the equation

ξ(∂xih)
k

= −hξ

restricted to D = {h = 0} yields that ξ = 0 ∈ OD,p.
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Lemma 1.41. (i) Let ω ∈ Ω
q
S,p(log D). Then the residue ρ(ω) equals 0 if and only if ω is

holomorphic.

(ii) The sequence

0 ��Ωq
S,p

��Ωq
S,p(log D)

ρ ��π∗(M �D,p ⊗ Ω
q−1
�D,p

) (1.2)

is exact, p ∈ D. Since a sequence of sheaves is exact if and only if the corresponding sequence of

stalks is exact, also

0 ��Ωq
S

��Ωq
S(log D)

ρ ��π∗(M �D ⊗ Ω
q−1
�D

) (1.3)

is exact.

(iii) The following diagram is commutative

Ω
q
S(log D)

ρ ��

d

��

π∗(M �D ⊗ Ω
q−1
�D

)

d

��
Ω

q+1
S (log D)

ρ ��π∗(M �D ⊗ Ω
q
�D
).

(1.4)

(iv) ρ(Ω
q
S(log D)) is an O �D-coherent submodule of M �D ⊗ Ω

q−1
�D

.

(v) The logarithmic residue ρ(Ω
1
S(log D)) contains π∗O �D.

Proof. (i): The representation gω =
dh
h ∧ ξ + η yields that ρ(ω) = 0 is equivalent to gω ∈ Ω

q
S,p.

By definition hω is also holomorphic. Since ω =
η
g , this implies that hη

g ∈ Ω
q
S,p. But h and g

must not have a common prime factor because by assumption on g, the dimension of {g = 0}∩D

at p is ≤ n− 2. Thus g has to divide η. Hence ω =
η
g is holomorphic. The other implication is

trivial.
(ii): The exactness of the sequence (1.2) follows from (i).
(iii): Direct computation.
(iv): Let D be defined in an open set U ⊆ S by h(x) = 0. By the construction of the logarithmic
residue and Lemma 1.2 we have

∂xih · ρ(Ω
q
S(log D))|U ⊆ Ω

q−1
D |D∩U .

Since Ω
q
S(log D) is a coherent OS-sheaf, ρ : OS → OD is a homomorphism and OD is contained

in the coherent sheaf O �D, it follows that ρ(Ω
q
S(log D))|U is a coherent O �D-sheaf.

(v): Let α be an element of π∗O �D,p. Since each ∂xih is a universal denominator1 for π∗O �D,p

(see Appendix A), it follows that (∂xih)α is in OD,p and can be represented by some ai ∈ OS,p.
Thus

(∂xih)aj − (∂xj h)ai = bijh

1Here we tacitly assume that ∂xih �= 0 for all i. If one ∂xih were equal to 0, then h would be independent
from xi and locally (D, p) ∼= (D� ×C, (p�, 0)) for some (D�, p�) ⊆ (Cn−1, 0). Then one may consider D� instead of
D.
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for some bij ∈ OS,p. Now inspired by the proof of Lemma 1.2 we set

ω =
1

h

n�

i=1

aidxi.

It is clear that ω ∈ Ω
1
S,p(log D) and that (∂xj h)ω = aj

dh
h +

�n
i=1 bjidxi. Thus, for a suitable j,

the residue of ω is aj

∂xj (h) |D = α. Hence α is contained in ρ(Ω
1
S,p(log D)).

The next theorem of Saito, see [81, (2.9)], is of crucial importance for our characterizations of
normal crossing divisors. Here we give the original statement and in section 1.2 we show how to
modify the theorem for our purposes.

Theorem 1.42. Let (S, D) be a pair of a complex n-dimensional manifold and a divisor D ⊆ S.

Suppose that locally at a point p the divisor D decomposes into irreducible components (D, p) =

(D1, p)∪ . . .∪ (Dm, p). Let h = h1 · · ·hm be the corresponding decomposition of the local equation

of D, each irreducible factor hi corresponding to Di. Then the following conditions are equivalent:

(i) Ω
1
S,p(log D) =

�m
i=1OS,p

dhi
hi

+ Ω
1
S,p.

(ii) Ω
1
S,p(log D) is generated by closed forms.

(iii) ρ(Ω
1
S,p(log D)) =

�m
i=1ODi,p.

(iv) (a) For each i = 1, . . . ,m the component Di is normal (i.e., dim Sing Di ≤ n− 3,)

(b) Di intersects Dj transversally for i �= j and i, j = 1, . . . ,m,

(c) dim(Di ∩Dj ∩Dk) ≤ n− 3 for all i, j, k distinct and i, j, k = 1, . . . ,m.

Note that (iv) implies that Di and Dj have normal crossings outside an (n − 3)-dimensional
subset of D. The following example shows that for (S, D) and dim S ≥ 3 the module Ω

1
S,p(log D)

may be generated by closed forms as in Theorem 1.42, but does not need to be free for all p and
D does not necessarily have normal crossings everywhere.

Example 1.43. Let D be the divisor in C3 defined by h = xz(x + z − y
2
). This divisor is

called Tülle and is studied in more detail in [33]. Tülle consists of three components, which are
smooth, intersect pairwise transversally and whose triple intersection is a point. Thus it fulfills
the assumption (iv) of Theorem 1.42. One can apply Aleksandrov’s theorem (Theorem 2.6) to
show that D is not free at the origin, namely, the local ring OSing D,0 defining the singular locus
(Sing D, 0) is not Cohen–Macaulay. Hence Ω

1
C3,0(log D) can be generated by closed forms but it

is not free. Note that Tülle does not have normal crossings at the origin.

Proof. (i) ⇒ (ii): This is clear since d

�
dhi
hi

�
= 0.

(ii) ⇒ (iii): If ω is a closed logarithmic 1-form, then from the commutativity of diagram (1.4) it
follows that ρ(ω) is a constant ci ∈ C on each branch Di. By the exactness of the sequence (1.2)
it follows that ω =

�m
i=1 ci

dhi
hi

+ η for some η ∈ Ω
1
S,p. So if Ω

1
S,p(log D) is generated by closed

forms ωi =
�m

j=1 cij
dhj

hj
+ ηi with cij ∈ C, i = 1, . . . , k and k ≥ n, then each ω ∈ Ω

1
S,p(log D) is

of the form

ω =

k�

i=1

aiωi =

k�

i=1

m�

j=1

aicij
dhj

hj
+

k�

i=1

aiηi.
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Then ρ(ω) =
�m

j=1(
�k

i=1 aicij)1Dj ,p is contained in
�m

i=1ODi,p. Conversely, by Lemma 1.41
(v), ρ(Ω

1
S(log D)) contains π∗O �D =

�m
i=1 π∗O �Di

, which contains
�m

i=1ODi .
(iii) ⇒ (i) : From the sequence (1.2) we get an exact sequence

0 ��Ω1
S,p

��Ω1
S,p(log D)

ρ ��
�m

i=1ODi,p
��0 . (1.5)

Hence Ω
1
S,p(log D) =

�m
i=1ODi,p

dhi
hi

+ Ω
1
S,p.

(iii) ⇒ (iv) : From (v) of Lemma 1.41 one gets

ρ(Ω
1
S,p(log D)) =

m�

i=1

ODi,p ⊆

m�

i=1

O �Di,p
= �OD,p ⊆ ρ(Ω

1
S,p(log D)).

From this it follows that ODi,p = O �Di,p
for all i = 1, . . . ,m, that is, each Di is normal at p.

Thus the singular locus of any Di is of codimension ≥ 3 in S. Next suppose that two Di, Dj

intersect tangentially along an (n − 2)-dimensional subset of S. At a general point q of their
intersection both Di and Dj are smooth and so one can choose local coordinates (x1, . . . , xn)

such that Di = {x1 = 0} and Dj = {x1 + x
t
2 = 0} for some t ≥ 2. Then one easily computes

that
ω =

x2dx1 − tx1dx2

x1(x1 + x
t
2)

is an element of Ω
1
S,q(log D) and that ρ(ω)|Di = (−1)

i
x
−t+1
2 . Thus ρ(ω)|Di is meromorphic with

a pole along Di ∩ Dj . From the coherence of ρ(Ω
1
S(log D)) and condition (iii) it follows that

ρ(Ω
1
S(log D)) =

�m
i=1ODi in a neighbourhood of p. Since we can choose q arbitrarily close to p,

this yields a contradiction, and Di and Dj have to be transversal. Finally suppose the opposite of
(c), namely that there are three components Di, Dj , Dk, whose triple intersection has dimension
(n − 2). At a general point q of Di ∩ Dj ∩ Dk all three components are smooth and any two
of them intersect transversally. This implies that we can find local coordinates (x1, . . . , xn) at q

such that Di = {x1 = 0}, Dj = {x2 = 0} and Dk = {x1 − x2 = 0}. The form

ω =
x2dx1 − x1dx2

x1x2(x1 − x2)

is an element of Ω
1
S,q(log D) and ρ(ω)|D1 = x

−1
2 , ρ(ω)|D2 =

1
2x
−1
2 , ρ(ω)|D3 = x

−1
1 which is

meromorphic with a pole along Di ∩Dj ∩Dk. Again q can be chosen arbitrarily close to p, so
we get a contradiction. This shows that dim(Di ∩Dj ∩Dk) ≤ n− 3 for i �= j �= k.
(iv) ⇒ (iii) : Suppose that (D, p) =

�m
i=1(Di, p) is the decomposition of D into irreducible

components that are normal (condition (iv) (a)). At a smooth point p of D one can easily
compute the residue: we can assume that locally at p the equation of h is {x1 = 0}. From the
proof of Lemma 1.2 it follows that any ω ∈ Ω

1
S,p(log D) can be written as (∂xih)ω = ξ

dh
h + η

with ξ ∈ OS,p and η ∈ Ω
1
S,p and some suitable derivative ∂xih. In the case of h = x1 one can

take ∂x1h = 1 and thus any ω is of the form

ω = ξ
dh

h
+ η.
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Hence ρ(ω) = ξ|D is contained in OD,p. Suppose now that p is contained in some intersection
(D1 ∩D2)\(Sing D1 ∪ Sing D2 ∪

�m
i=3 Di). By condition (iv)(b) the two components D1 and D2

intersect transversally in p. Thus we may assume that D1 is given locally at p by the equation
h1 = x1 − x2 and D2 by h2 = x1 + x2. In particular, ∂x1(h1h2) = 2x1 and ∂x2(h1h2) = −2x2.
Then for a form ω ∈ Ω

1
S,p(log D) there are two possible representations, namely

2x1ω = ξ
d(h1h2)

h1h2
+ η, or − 2x2ω = ξ

�
d(h1h2)

h1h2
+ η

�
,

such that h neither divides ξ nor ξ
�.The residue of ω is 1

2x1
ξ =

1
−2x2

ξ
�. Since ξ, ξ

� are holomorphic,
it follows from this equation that ξ|D is a multiple of x1 and that ξ

�|D is a multiple of x2, which
implies that ρ(ω) is holomorphic. This argument and the assumption (iv) show that outside the
set Sing D ∩ (

�m
i=1 Sing Di) ∩ (

�
i,j,k(Di ∩ Dj ∩ Dk)), which is of dimension less than or equal

to (n− 3), the residue ρ(ω) is holomorphic and contained in OD,p. We apply Hartogs’ theorem
(Thm. A.21) to extend ρ(ω) holomorphically to OD,p.

The following case of Thm. 1.42 is particularly interesting, since it determines an explicit minimal
system of generators of Ω

1
S,p(log D):

Corollary. Let (S, D) be as in the theorem and suppose that D is irreducible with local equation

h = 0. Then the following conditions are equivalent:

(i) D is normal at p.

(ii) ρ(Ω
1
S,p(log D)) = OD,p

(iii) Ω
1
S,p(log D) is generated by

dh
h , dx1, . . . , dxn. In particular, if D is not smooth at p, then

this is a minimal system of generators of Ω
1
S,p(log D).

Proof. This is just Thm. 1.42 for m = 1. For second part of (iii) let us suppose that D is normal
but not smooth at p and that Ω

1
S,p(log D) has a minimal system of generators consisting of n

elements. This implies that Ω
1
S,p(log D) is free. But by Prop. 2.5 a free divisor is either smooth

or non-normal. Contradiction.

1.2 A characterization of normal crossings by logarithmic

forms and vector fields

In this section we give a characterization of a normal crossing divisor in terms of generators of
its module of logarithmic differential forms resp. vector fields (Thm. 1.52). Namely, a divisor
D ⊆ S has normal crossings at a point p if and only if Ω

1
S,p(log D) is a free OS,p-module and has

a basis of closed forms or if and only if DerS,p(log D) is a free OS,p-module and has a basis of
commuting vector fields (this means that there exist logarithmic derivations δ1, . . . , δn such that
the δi form a basis of DerS,p(log D) and [δi, δj ] = 0 for all i, j = 1, . . . , n). We remark that we
only show the existence of bases with these properties of Ω

1
S,p(log D) and DerS,p(log D) in case

D has normal crossings at p. We do not have a procedure to construct such bases.
The section is organized as follows: first we consider the two-dimensional case in Proposition
1.44. Then we state a few lemmata in order to prove the assertion for logarithmic differential
forms. We prove the equivalence of the characterizations in terms of logarithmic differential
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forms and vector fields in Prop. 1.54.

In (2.11) of [81] Saito uses Theorem 1.42 to study the case of dim S = 2. Here we give a more
elementary proof.

Proposition 1.44. Let (S, D) be as usual a manifold together with a divisor D ⊆ S and suppose

that dim S = 2. Let (D, p) =
�m

i=1(Di, p) be the decomposition of D into irreducible components

at a point p with the corresponding (reduced) equation D = {h = h1 · · ·hm = 0}, where h ∈ OS,p.

Then the following are equivalent:

(i) Ω
1
S,p(log D) has a basis of closed forms.

(ii) Either m = 2 and the components D1 and D2 of D are smooth and meet transversally at p

(i.e., D has normal crossings at p) or D is smooth at p.

In order to prove the proposition we need a lemma to connect bases of the dual modules
DerS,p(log D) and Ω

1
S,p(log D).

Lemma 1.45. Let (S, D) be defined as in Prop. 1.44 and let (x, y) be local coordinates at p.

Let δ1 = a∂x + b∂y and δ2 = c∂x + d∂y, with a, b, c, d ∈ OS,p, be a basis of DerS,p(log D) and

suppose that det

�
a b

c d

�
= h. Then the corresponding dual basis ω1 = δ

∗
1 , ω2 = δ

∗
2 of Ω

1
S,p(log D)

is closed if and only if �
a b

c d

� �
∂xh

∂yh

�
= h

�
∂xa + ∂yb

∂xc + ∂yd

�
. (1.6)

Proof. The proof is done by direct calculation: from Lemma 1.9 and its corollary follows that in
dimension 2 any reduced divisor D is free and that the modules of logarithmic derivations and
logarithmic differential forms are dual to each other. Linear algebra says that the dual basis to
(δ1, δ2) of Ω

1
S,p(log D) is

�
ω1

ω2

�
=

1

h

�
d −b

−c a

�T �
dx

dy

�
.

Plugging in the conditions for closedness of the ωi, equation (1.6) follows.

Proof of Prop. 1.44. First suppose that (ii) holds. Then locally at p, the divisor D has at most
2 irreducible components, that is, (D, p) = (D1, p) ∪ (D2, p) or (D, p) is smooth and irreducible.
We have already seen in example 1.10 that D has a basis consisting of closed forms.
Conversely, suppose (i) holds. Then the module Ω

1
S,p(log D) is free and there exists a basis of

closed forms ω1, ω2. Note that dh/h ∈ Ω
1
S,p(log D) is closed. We can express it in terms of the

basis, that is, dh/h = aω1 + bω2 with a, b ∈ OS,p. To show that either a or b ∈ OS,p is invertible
we use the logarithmic residue. By linearity of the residue homomorphism, the following identity
holds:

ρ(dh/h) = 1 = a|D · ρ(ω1) + b|D · ρ(ω2). (1.7)

Like in the proof of Thm. 1.42, one obtains that ρ(ωi)|Dj = cij ∈ C is constant on each component
Dj . From (1.7) it follows that a(p) �= 0 or b(p) �= 0. Hence we can assume b(p) �= 0 so that b is
locally invertible. Then dh/h and ω1 are a basis of Ω

1
S,p(log D). By duality of logarithmic forms

and derivations there exists a derivation δ ∈ DerS,p(log D) such that δ · (dh/h) = 1 and hence
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δh = h. Since D is a reduced curve, the singularity at p is isolated. By a Theorem of Saito [78],
h is quasi-homogeneous. This means that in suitable coordinates there exists an Euler vector
field η = αx∂x + βy∂y in DerS,p(log D) with α,β ∈ C. Then (∂yh)∂x − (∂xh)∂y and η form a
basis of DerS,p(log D). The corresponding basis of Ω

1
S,p(log D) is closed if and only if equation

(1.6) is satisfied, in particular ηh = (α + β)h. Again by a result of Saito (Satz 4.1 and Lemma
2.3. of [78]) one can find a holomorphic coordinate transformation such that α,β are positive
rational numbers ≤ 1/2 and such that ηh = h. Hence we must have α = β = 1/2. From this
and the well-known Euler relation for homogeneous polynomials follows that h is homogeneous
of degree 2. Since h is assumed to be reduced, the only possibility is h = xy, that is, D has
normal crossings at p.

Remark 1.46. In section 1.4 we comment on a question of Saito about the connection between
the logarithmic residue and the topology of a divisor. We will see that the proposition above
settles the two-dimensional case.
The following lemmata are used to prove Theorem 1.52, which generalizes Proposition 1.44 to
the higher dimensional case.
Lemma 1.47. Denote by (S, D) a complex manifold of dimension n together with a divisor

D ⊆ S, and let (D, p) =
�m

i=1(Di, p) be the decomposition of D into irreducible components at a

point p in S. Suppose that h = h1 · · ·hm is the local equation of D at p, where each hi corresponds

to Di. Then D has normal crossings at p if and only if the dhi/hi are part of a basis, whose

elements are closed, of the form ω1 = dh1/h1, . . . ,ωm = dhm/hm, ωm+1 = dfm+1, . . . ,ωn = dfn

of Ω
1
S,p(log D), that is,

dh1

h1
∧ · · · ∧

dhm

hm
∧ dfm+1 ∧ · · · ∧ dfn =

c

h
· dx1 ∧ · · · ∧ xn,

where the fi are some suitable elements in OS,p and c ∈ O∗S,p.

Proof. If D has normal crossings at p then one can find coordinates x = (x1, . . . , xn) such that
h = x1 · · ·xm is the defining equation of D at p. Then clearly dx1

x1
, . . . ,

dxm
xm

, dxm+1, . . . , dxn form
a basis of Ω

1
S,p(log D).

Conversely, suppose that dh1
h1
∧ . . .∧

dhm
hm

∧dfm+1∧ · · ·∧dfn = c/h ·dx1∧ . . .∧xn. This means that
the Jacobian matrix of the h1, . . . , hm, fm+1, . . . , fn has determinant c ∈ O∗S,p. By the implicit
function theorem the hi and the fi are complex coordinates at p. Then, by definition D has
normal crossings at p.

Lemma 1.48. Let D ⊆ S be a divisor in a complex manifold S with dim S = n. Suppose that

D is free at a point p ∈ S and Ω
1
S,p(log D) has a basis ω1, . . . ,ωn such that ω1, . . . ,ωk, k < n are

in Ω
1
S,p. Then one can find a local isomorphism (D, p) ∼= (D

�
, p
�
) × (Ck

, 0), where (D
�
, p
�
) is in

(Cn−k
, p
�
).

Proof. Since Ω
1
S,p(log D) is free with basis ω1, . . . ,ωn, there is a unique basis δ1, . . . , δn of

DerS,p(log D) satisfying ωi · δj = δij . For any ωi, i = 1, . . . , k, one thus has ωi · δi = 1. For all
coefficients of ωi =

�n
j=1 wijdxj and δi =

�n
j=1 dij∂xj are holomorphic, this yields the equation

1 =

n�

j=1

wijdij .
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Since OS,p is a local ring, at least one wijdij , w.l.o.g., for j = 1, is invertible in OS,p, which implies
di1 ∈ O

∗

S,p. Applying δi to h, the local defining equation of D gives di1∂x1h ∈ (h, ∂x2h, . . . , ∂xnh).
With the triviality lemma A.44 one can find a biholomorphic map ϕi such that h ◦ ϕi =

vh(0, x2, . . . , xn), where v ∈ O∗S,p, also defining D. Hence D is locally isomorphic to some D
�×C.

Applying this construction for the remaining ωi, one arrives at (D, p) ∼= (D
�
, p
�
)× (Ck

, 0).

Lemma 1.49. Let (D, p) =
�m

i=1(Di, p) be given by the reduced equation h = h1 · · ·hm and let

ω ∈ Ω
1
S,p(log D) be a closed form. Then:

(i) The residue of ω along each branch Di is constant, that is, ρ(ω)|Di = ci with ci ∈ C for

i = 1, . . . ,m.

(ii) ω can be represented as ω =
�m

i=1 cidhi/hi + ξ, where ci ∈ C and ξ ∈ Ω
1
S,p is closed.

(iii) If the residue of ω along at least one branch Di is non-zero, then ω can be represented as

ω =

m�

i=1

ci
dh
�
i

h
�
i

, ci ∈ C,

with h
�
i = uihi and ui ∈ O

∗

S,p. Note that h
�
i also define s Di and that h

�
= h

�
1 · · ·h

�
m also defines

D near p.

Proof. (i): Let ω be a closed logarithmic form for D =
�m

i=1 Di. Since diagram (1.4) is commu-
tative, one has d(ρ(ω)) = ρ(dω) = ρ(0) = 0. Hence ρ(ω) is locally a constant ci ∈ C on each
branch Di of D.
(ii): By (i) and the exactness of the sequence (1.2) ω can be represented as ω =

�m
i=1 cidhi/hi+ξ

with ξ ∈ Ω
1
S,p. Since dω = 0, differentiating ω yields that dξ = 0, that is, ξ is closed.

(iii): Suppose that ω =
�m

i=1 ci
dhi
hi

+ ξ, with ci ∈ C, is a closed logarithmic form. Since we con-
sider germs of differential forms, one can assume (Poincaré’s lemma) that ξ is exact and hence
that ξ = df for some f ∈ OS,p. Then a = exp(f) is an element of O∗S,p. Thus log a is defined near
p and df =

da
a , since da

a = d(log a). Now assume that the residue ρ(ω)|D1 is non-zero. Define
h
�
1 := h1 exp(log a/c1). Then h

�
1h2 · · ·hm also defines D because multiplying with a unit does

not change the zero-set locally at p. The following holds:

c1
dh
�
1

h
�
1

= c1
dh1

h1
+

da

a
= c1

dh1

h1
+ ξ.

Hence we have ω = c1dh
�
1/h

�
1 +

�m
i=2 cidhi/hi.

Lemma 1.50. Let (D, p) =
�m

i=1(Di, p) be free at p and let Ω
1
S,p(log D) have a basis ω1, . . . ,ωn

consisting of closed forms. Then m ≤ n and maximally n − m elements ωi of this basis are

holomorphic forms.

Proof. From Lemma 1.49 it follows that each closed basis element ωi can be represented as
ωi =

�m
j=1 cijdhj/hj + dfi with dfi ∈ Ω

1
S,p and cij ∈ C for j = 1, . . . ,m. First suppose that

m > n. Then by Saito’s criterion one knows that
�n

i=1 ωi =
c

h1···hm
· dx1 ∧ . . . ∧ dxn with

c ∈ O∗S,p. This means that the n-form
�n

i=1 ωi has a simple pole at h1 · · ·hm. But forming the
wedge product of the ωi we obtain (by a simple computation)

�n
i=1 ωi =

g
h1···hm

· dx1 ∧ . . .∧ dxn

with g ∈ (h1, . . . , hm) ⊆ m. Thus g is not invertible, which is a contradiction to Saito’s criterion.



1.2 A characterization of normal crossings by logarithmic forms and vector fields25

For the second assertion suppose that ωi = dfi, fi ∈ OS,p for i = m, . . . , n are holomorphic, that
is, the basis contains n − m + 1 closed holomorphic elements. An application of Lemma 1.48
yields an isomorphism (D, p) ∼= (D

�
, 0)× (Cn−m+1

, 0) with (D
�
, 0) ⊆ (Cm−1

, 0). This means that
D
� would be a free divisor with m irreducible components and with a basis of closed forms in an

m− 1 dimensional manifold. Contradiction to the first assertion of this lemma.

Proposition 1.51. Let (D, p) =
�m

i=1(Di, p) be free at p and let Ω
1
S,p(log D) have a basis consist-

ing of closed forms ω1, . . . ,ωn. Then m ≤ n and ωi can be chosen as ωi = dh
�
i/h

�
i where h

�
i = fihi

with fi ∈ O∗S,p for i = 1, . . . ,m and ωi = dfi with fi ∈ OS,p holomorphic for i = m + 1, . . . , n.

In particular, one can find defining equations h
�
i of D such that the dh

�
i/h

�
i form part of a basis

of Ω
1
S,p(log D).

Proof. From Lemma 1.50 it follows that m ≤ n and from Lemma 1.49 it follows that (ω1, . . . ,ωn)

can be represented as

(ω1, . . . ,ωn)
T

=

�
C 0

0 In−m

� �dh
h

0

�
+

�
ξ

df

�

with C an m × m-matrix with entries in C, dh
h = (

dh1
h1

, . . . ,
dhm
hm

)
T , ξ = (ξ1, . . . , ξm)

T with
ξi ∈ Ω

1
S,p and df = (dfm+1, . . . , dfn)

T with fi ∈ OS,p. With the Gauss–Algorithm one can find a

matrix
�

M 0

0 In−m

�
∈ GLn(C), with M an m×m sub-matrix, such that MC is in row echelon

form, that is, the last m− k rows of MC are zero for k = rank(C) and the first k rows form the
k × k identity matrix. Then

(ω̃1, . . . ω̃n)
T

=

�
M 0

0 In−m

�
(ω1, . . . ,ωn)

T
=

�
MC

dh
h + Mξ

df

�

is also a closed basis ω̃ of Ω
1
S,p(log D). If rank(C) = k < m, then the forms ω̃m−k, . . . , ω̃n would

be holomorphic. But this is a contradiction to Lemma 1.50, hence it follows that C ∈ GLm(C).
Thus one can assume that (ω1, . . . ,ωm) is of the form (

dh1
h1

+ ξ
�
1, . . . ,

dhm
hm

+ ξ
�
m), where ξ

�
i = Mξi.

As in Lemma 1.49 write ωi = dh
�
i/h

�
i, where for ξ

�
i = dfi/fi, fi ∈ O∗S,p one has h

�
i = fihi. The

change of one hi does not affect the others since hi is assumed to be irreducible. The functions
h
�
i also define the divisor D at p since exp(log fi) is in O∗S,p. The assertion of the proposition

follows.

Theorem 1.52. Denote by (S, D) a complex manifold with dim S = n ≥ 2 together with a

divisor D ⊆ S and let p ∈ S be a point. The following conditions are equivalent:

(i) Ω
1
S,p(log D) is free and has a basis of closed forms.

(ii) D has normal crossings at p.

Proof. (ii) ⇒ (i) is a simple computation (cf. Example 1.10).
Conversely, suppose that Ω

1
S,p(log D) has a basis of closed forms. By Proposition 1.51 we can

assume that (D, p) =
�m

i=1(Di, p) has m ≤ n irreducible components and that the closed basis of
ΩS,p(log D) is of the form dh1/h1, . . . , dhm/hm, dfm+1, . . . , dfn, where hi is the reduced function
corresponding to the component (Di, p). By Lemma 1.47 the existence of a closed basis of this
form is equivalent to (D, p) having normal crossings.
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The following lemma will be useful in a few occasions in Chapter 2:

Lemma 1.53. Let (S, D) be a manifold together with a divisor D ⊆ S and p a point in S. If

Ω
1
S,p(log D) is free and generated by closed forms, it has a basis of closed forms.

Proof. Let (ω1, . . . ,ωn) be a basis of Ω
1
S,p(log D). We first show that (ω1, . . . ,ωn) is a basis of the

O/mO-vector space Ω
1
S,p(log D)/mΩ

1
S,p(log D). Therefore suppose that k < n elements, wlog.

ω1, . . . ,ωk, were generating Ω
1
S,p(log D)/mΩ

1
S,p(log D). This means:

Ω
1
S,p(log D) =

k�

i=1

Oωi + mΩ
1
S,p(log D).

An application of Nakayama’s lemma shows that then Ω
1
S,p(log D) would be generated by ω1, . . . ωk

with k < n. But this is a contradiction to the fact that Ω
1
S,p(log D) has rank n.

Suppose now that Ω
1
S,p(log D) may even be generated by closed logarithmic forms (ξ1, . . . , ξm).

It is clear that m ≥ n. By the preceding observation ω1, . . .ωn is a basis of the C-vectorspace
Ω

1
S,p(log D)/mΩ

1
S,p(log D). Thus there exists a matrix Ā ∈ Mn,m(C) of rank n such that

Ā(ξ̄1, . . . , ξ̄m)
T

= (ω̄1, . . . , ω̄n)
T
.

By standard linear algebra wlog. ξ̄1, . . . , ξ̄n form a basis of the C-vector space Ω
1
S,p(log D)/mΩ

1
S,p(log D).

Again applying of Nakayama’s lemma yields that ξ1, . . . , ξn are a basis of Ω
1
S,p(log D).

1.2.1 Logarithmic derivations vs. differential forms

Here we state an equivalent formulation of Theorem 1.52 in terms of logarithmic vector fields.
Furthermore we will also pose some questions about the relationship between Ω

1
S,p(log D) and

DerS,p(log D).

As usual denote by (S, D) a complex manifold of complex dimension n together with a divisor
D ⊆ S. Let (x1, . . . , xn) be complex coordinates of S at a point p.It was already shown that
DerS,p(log D) is closed under the Lie bracket [·, ·].

Proposition 1.54. Suppose that δ
1
, . . . , δ

n
form a basis of DerS,p(log D). Then [δ

i
, δ

j
] = 0

for all i, j ∈ {1, . . . , n} if and only if the basis ω1, . . . ,ωn of Ω
1
S,p(log D) satisfying ωi · δ

j
= δij

consists of closed forms.

Proof. We have
dω(ξ

1
, ξ

2
) = ξ

1
(ω(ξ

2
))− ξ

2
(ω(ξ

1
))− ω([ξ

1
, ξ

2
]), (1.8)

where ω is a differential 1-form and ξ
1
, ξ

2 are vector fields (see e.g. [21, Def. 4.4.]). First, suppose
that [δ

i
, δ

j
] = 0 for all pairs (i, j). Plugging δ

i
, δ

j into a basis element ωk yields dωk(δ
i
, δ

j
) =

δ
i
(δjk)− δ

j
(δik)− ω(0) = 0. Hence any basis element ωk, is closed.

Conversely, if each ωk is closed, it follows from (1.8) that ωk([δ
i
, δ

j
]) = 0. Since DerS,p(log D) is

closed under [·, ·] and the δ’s form a basis of DerS,p(log D), the equation [δ
i
, δ

j
] =

�
k=1 gkδ

k holds
for some gk ∈ OS,p. Using the OS,p-linearity of ωk we obtain 0 = ωk([δ

i
, δ

j
]) =

�n
l=1 glωk(δ

l
) =

gk. Since this equality holds for any i, j, k it follows that [δ
i
, δ

j
] = 0 for all pairs (i, j).
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Remark 1.55. The Lie bracket is stable under coordinate changes: A basis of commuting loga-
rithmic derivations of DerS,p(log D) commutes after a coordinate transformation.

Question 1.56. 1. Construct special bases: we ask for a constructive algorithm for a closed

basis of Ω
1
S,p(log D) (resp. a basis of commuting fields of DerS,p(log D)), which in the first

place determines if there exists such a basis.

2. Construct a minimal system of generators of ΩS,p(log D), in particular in the case where

(D, p) is not free.

1.3 Normal crossings and the logarithmic residue

In this section we give a characterization of normal crossing divisors by their logarithmic residue
ρ(Ω

1
S,p(log D)). This characterization also leads to an answer to a question of K. Saito concerning

the logarithmic residue, which will be considered in section 1.4. These results are due to Granger
and Schulze [43].
It was already shown that the logarithmic residue of Ω

1
S,p(log D) always contains the ring of

weakly holomorphic functions on D. So it is quite natural to ask when the two rings are the
same. We will see that for free divisors the answer is surprisingly simple (under the mild ad-
ditional condition that the normalization of D is Gorenstein): ρ(Ω

1
S,p(log D)) = π∗O �D,p if and

only if (D, p) has normal crossings. Note that this fact yields a second characterization of normal
crossing divisors. In general the equality is equivalent to saying that (D, p) has normal crossings
in codimension 1 (see Thm. 1.82).
This section is organized as follows: first we consider examples of divisors (D, p) with weakly
holomorphic logarithmic residue which lead the way to the formulation of theorem 1.63. Then
some properties of divisors with weakly holomorphic residues are studied. Finally we introduce
the dual logarithmic residue in order to prove the theorem.

Suppose that D is a free divisor whose logarithmic residue ρ(Ω
1
S(log D)) is equal to π∗O �D. Recall

that π∗O �D is equal to the normalization �OD and also to the ring of weakly holomorphic func-
tions (see Appendix A). Since we consider free divisors, it is possible to compute ρ(Ω

1
S(log D))

and π∗O �D explicitly with a computer algebra system: from a basis of Ω
1
S,p(log D) the residue

ρ(Ω
1
S,p(log D)) can be computed, and it is also possible to compute the normalization of D.

However, computing normalizations is of high complexity, so we are confined to low dimensional
examples.

Example 1.57. Let D ⊆ S with dim S = n be smooth at a point p. Then locally at p we
can find coordinates (x1, . . . , xn) such that D = {x1 = 0}. Since Ω

1
S,p(log D) is generated by

dx1
x1

, dx2, . . . , dxn, the residue of a logarithmic form ω = a1
dx1
x1

+
�n

i=2 aidxi is just a1|D and
hence ρ(Ω

1
S,p(log D) = OD,p, also cf. Thm. 1.42.

Example 1.58. Consider the cusp D in C2, given by h = x
3 − y

2 with coordinate ring OD,0 =

C{x, y}/(x
3−y

2
). In Appendix A we will see that �OD = C{t} with t =

y
x . A basis of Ω

1
C2,0(log D)

is ω1 =
dh
h and ω2 =

1
h (3ydx + 2xdy). Thus the residue of a logarithmic form ω = aω1 + bω2,
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where a, b ∈ OC2,0, is ρ(ω) = a|D + b|Dρ(ω2). But ρ(ω2) =
x
y = t

−1 is clearly not in C{t}. Thus
it follows that Ω

1
(log D) � π∗O �D.

Example 1.59. Let (D, p) ⊆ (C3
, 0) be an E8-singularity of local equation x

2
+y

3
+z

5
= 0. Then

D is normal and by the corollary of Thm. 1.42 the logarithmic residue ρ(Ω
1
S,p(log D)) is OD,p.

Note that D is not free at the origin, since it is normal.
Example 1.60. (The 4-lines) In this example, the divisor D is free but does not have normal
crossings outside an (n − 3)-dimensional subset of D. Let D be the divisor in C3 given at
p = (x, y, z) by h = (x + y)y(x + 2y)(x + y + yz). Note that D is just the 4-lines divisor from
Example 1.16 in different coordinates, because in order to compute the residue of a logarithmic
form, at least one partial derivative ∂xih must not have a common factor with h. The divisor D

is free, thus one can compute a basis of Ω
1
C3,p(log D), namely

ω1 =
dh

h

ω2 =
1

4h
(y(zx + 9yz + 7x + 7y)dx− x(zx + 9yz + 7x + 7y)dy − (x + y))y(2y + x)dz)

ω3 =
1

4h
(y(x + y + yz)dx− x(x + y + yz)dy)

This basis is the dual to the basis of DerC3,p(log D) given in Example 1.16. The direct image of
the normalization of D π∗O �D,p is isomorphic to

�OD,p = C{x, y, z}/(x + y)⊕ C{x, y, z}/(y)⊕ C{x, y, z}/(x + 2y)⊕ C{x, y, z}/(x + y + yz).

Since dim({h = ∂yh = 0}) = 1, we have ρ(ωi) =
ai2
∂yh , where ωi =

1
h (ai1dx + ai2dy + ai3dz) for

i = 1, 2, 3. For example the computation of ρ(ω3)|D1 = −
1
4x (here we use the relation x = −y in

OD1 = C{x, y, z}/(x + y)) shows that the residue of ω3 is not holomorphic in π∗O �D1,p. Hence
the inclusion π∗O �D,p � ρ(Ω

1
S,p(log D)) is strict.

Example 1.61. This is an example of a free reducible divisor D, but whose irreducible components
are not all free. Here D does not have normal crossings outside an (n − 3)-dimensional subset
and we will see that π∗O �D is strictly contained in the logarithmic residue.
Let (D, 0) = (D1, 0) ∪ (D2, 0) be the divisor in (C3

, 0), defined by h = h1h2 = z(x
2 − y

2
z),

that is, D1 is the {z = 0}-plane and D2 is the Whitney Umbrella. In Example 1.13 we have
already seen that D2 is not free at the origin, whereas the {z = 0}-plane is smooth and hence
D1 is free everywhere. For D we can compute a basis of Ω

1
C3,0(log D) (by computing a basis of

DerC3,0(log D) with Singular [98] and taking the dual basis of this basis):

ω1 =
1

h
(2xzdx− 2yz

2
dy + (x

2
− 2y

2
z)dz)

ω2 =
1

h
(−2xzdx + 2yz

2
dy + y

2
zdz)

ω3 =
1

h
(2yzdx− 2xzdy − xydz).

In order to verify ρ(Ω
1
C3,0) � π∗O �D,0, it has to be shown that the residue of at least one ba-

sis element ωi is not holomorphic on the normalization of D. First we remark that π∗O �D,0
∼=
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C{x, y}⊕ C{y,
x
y } and that ∂zh = x

2 − 2y
2
z is a suitable universal denominator for the compu-

tation of the residues. The residues of ω1 and ω2 are holomorphic on the normalization (they are
1 ⊕ 1 resp. 0 ⊕ 1 in π∗O �D,p). However, ρ(ω3) = −

xy
x2−2y2z |D is − y

x in C{x, y}, which is clearly
not holomorphic there and xy

y2z =
y
x in C{y,

x
y } which is also not holomorphic in this ring.

Example 1.62. Consider the Whitney Umbrella D given by h = x
2−y

2
z from example 1.13. The

normalization �D is smooth at the origin and has coordinate ring π∗O �D,0 = C{x, y, z, t}/(x
2 −

y
2
z, yt−x, z− t

2
) ∼= C{y, t}. One can show that Ω

1
C3,0(log D) is generated by dh/h, ω = (yzdx−

xzdy − 1/2xydz)/h and dx, dy, dz. Since ρ(ω) = yz/2x = t/2 it follows that ρ(Ω
1
C3,0(log D)) is

holomorphic on the normalization. Note that D is not free.

These examples lead to the following

Theorem 1.63. Let (S, D) be a manifold of complex dimension n together with a divisor D ⊆ S.

Suppose that D is a free divisor, that

ρ(Ω
1
S(log D)) = π∗O �D

and that the multi-germ ( �D,π
−1

(p)) is Gorenstein for all p ∈ D. Then D has normal crossings.

Geometrically this theorem means that a free divisor with a “nice” residue of logarithmic forms
(and whose normalization satisfies a mild technical condition) is a normal crossing divisor. The
proof of this theorem uses of the dual logarithmic residue, a notion introduced by Granger and
Schulze in [43], and a theorem of R. Piene (see Theorem A.42) about the relationship of the
Jacobian ideal and the conductor ideal in the normalization.
First we consider some general properties of divisors with weakly holomorphic residue, in par-
ticular we show that if D is a free divisor in a complex manifold S of dimension n, having n

irreducible components Di at a point p and satisfying ρ(Ω
1
S,p(log D)) = π∗O �D,p, then D has nor-

mal crossings at p (Corollary to Lemma 1.67). Then we introduce the dual logarithmic residue
and prove Theorem 1.63 (following Granger and Schulze [43]).

1.3.1 Divisors with weakly holomorphic residue

Here we show first an analogue of Theorem 1.42 (i) ⇔ (iii). Then some properties of π∗O �D,p

are considered (Cohen–Macaulayness). Finally we show how to choose “good” generators for
Ω

1
S,p(log D) if ρ(Ω

1
S,p(log D)) = π∗O �D,p and that D is Euler–homogeneous in this case (Lemma

1.67).

Proposition 1.64. Let (S, D) be a divisor D in a complex manifold S of dimension n. Then

the following are equivalent:

(i) Ω
1
S,p(log D) =OS,p �ω1, . . . ωk� + Ω

1
S,p, such that ρ(ω1), . . . , ρ(ωk) ∈ π∗O �D,p generate π∗O �D,p

as OD,p-module.

(ii) ρ(Ω
1
S,p(log D)) = π∗O �D,p.
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Proof. The implication (i) ⇒ (ii) is clear, since ρ is a sheaf homomorphism and ρ(Ω
1
S,p) = 0.

Suppose now that ρ(Ω
1
S,p(log D)) = π∗O �D,p. The normalization is a finitely generated OD,p-

module, i.e., π∗O �D,p =
�k

i=1OD,pαi for some αi ∈ π∗O �D,p. By the exact sequence

0 ��Ω1
S,p

��Ω1
S,p(log D)

ρ ��π∗O �D,p
��0 (1.9)

(obtained from the sequence (1.2)) there exist some ωi ∈ Ω
1
S,p(log D) such that ρ(ωi) = αi

for each i = 1, . . . , k. Now take any ω ∈ Ω
1
S,p(log D). Then ρ(ω) =

�k
i=1 aiρ(ωi) for some

ai ∈ OD,p. Choose some representatives of the ai ∈ OS,p and define ω
�
:=

�k
i=1 aiωi. Clearly

ω
� ∈ Ω

1
S,p(log D) as well as ω− ω

�. But ρ(ω− ω
�
) = 0, so ω− ω

� is holomorphic by Lemma 1.41.
This shows that any ω ∈ Ω

1
S,p(log D) can be written as an OS,p-linear combination of the ωi and

some holomorphic form.

Lemma 1.65. Let (S, D) be a divisor D in a complex manifold S of dimension n. Suppose that

at a point p the divisor is free and and ρ(Ω
1
S,p(log D)) = π∗O �D,p.

(i) The ring π∗O �D,p is Cohen–Macaulay.

(ii) If D is additionally analytically irreducible at p, one may assume that π∗O �D,p is minimally

generated by n elements αi, where α1 = 1 and αi ∈ π∗O �D,p\OD,p.

Proof. (i): Under our assumptions, the exact sequence

0 ��Ω1
S,p

��Ω1
S,p(log D)

ρ ��π∗O �D,p
��0 (1.10)

yields a free resolution of π∗O �D,p (as OS,p-module). Since we are working over a regular local
ring, it follows that projdimOS,p

(π∗O �D,p) ≤ 1. With the Auslander–Buchsbaum formula follows
depth(mS , π∗O �D,p) ≥ n − 1 (where mS denotes the maximal ideal of OS,p). Since the depth
is stable under local homomorphisms, the depth of π∗O �D,p in OD,p is greater than or equal to
n− 1, that is, depth(mD, π∗O �D,p) ≥ n− 1. First suppose that (D, p) is irreducible, then π∗O �D,p

is a local ring. Since then OD,p ⊆ π∗O �D,p is a finite ring extension it follows e.g. by [27, 6.5.29]
that the depth of π∗O �D,p as an π∗O �D,p-module is also greater than or equal to n − 1. Clearly,
dim(π∗O �D,p) = n− 1 and so the assertion follows from the height-depth inequality.
If (D, p) =

�m
i=1(Di, p), where (Di, p) denote the irreducible components, then π∗O �D,p =�m

i=1 π∗O �Di,p
is a semi-local ring with m maximal ideals m �Di

, i = 1, . . . ,m, cf. Thm. A.12. Then
π∗O �D,p is Cohen–Macaulay if (π∗O �D,p)m�Di

∼= π∗O �Di,p
is Cohen–Macaulay for all i = 1, . . . ,m.

But this follows from the irreducible case since depth(mS , π∗O �D,p) = depth(mS , π∗O �Di,p
) for all

i = 1, . . . ,m.
(ii): follows from lemmata 1.64 and 1.48 and an application of Nakayama’s lemma (note: we can
use Nakayama here because π∗O �D,p is local, i.e., because (D, p) is irreducible!).

Lemma 1.66. Let D ⊆ S be a divisor in a complex manifold S. Let g be a universal denominator

for π∗O �D,p, that is, each element α of π∗O �D,p can be written as α =
a
g , for some a ∈ OD,p. If b

is an element in OD,p that is invertible in π∗O �D,p then b is already invertible in OD,p.
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Proof. Let b ∈ OD,p be invertible in π∗O �D,p. There exists an element α =
a
g in π∗O �D,p such

that b ·
a
g = 1. It follows that 1

b =
a
g is contained in π∗O �D,p. From Appendix A we know that

�OD,p = π∗O �D,p, so 1
b is integral over OD,p. Hence it satisfies a monic polynomial equation of

the form
(
1

b
)
k

+ ck−1(
1

b
)
k−1

+ · · ·+ c0 = 0,

with coefficients ci ∈ OD,p. Multiplying this equation with b
k yields

1 = b(−ck−1 − · · ·− c0b
k−1

),

that is, b is invertible in OD.

Lemma 1.67. Let D ⊆ S be a divisor in a complex manifold S of dimension n. Suppose that

ρ(Ω
1
S,p(log D)) = π∗O �D,p. Then

dh
h ∈ Ω

1
S,p(log D) can be chosen as an element of a minimal

system of generators of Ω
1
S,p(log D). If (D, p) =

�m
i=1(Di, p), defined by h = h1 · · ·hm in OS,p

then the
dhi
hi

form part of a minimal system of generators of Ω
1
S,p(log D).

Proof. Clearly dh
h is an element of Ω

1
S,p(log D). Since Ω

1
S(log D) is a coherent analytic sheaf, the

stalk Ω
1
S,p(log D) has a finite minimal system of generators ω1, . . . ,ωk with k ≥ n. One can write

dh

h
=

k�

i=1

aiωi,

for some ai ∈ OS,p. Taking residues one gets

1π∗O�D,p
=

n�

i=1

ai|Dρ(ωi). (1.11)

First assume that D is irreducible at p. Then π∗O �D,p is a local ring, see Appendix A, and at
least one ai|D has to be invertible in π∗O �D,p. By Lemma 1.66 this ai|D is already invertible in
OD,p. Thus ai(0) �= 0 and hence ai is contained in O∗S,p. This implies that dh

h can be chosen as
an element of a minimal system of generators of Ω

1
S,p(log D) instead of ωi.

If (D, p) =
�m

i=1(Di, p) is the decomposition into irreducible components, equation (1.11) reads
as follows:

1π∗O�D,p =

k�

i=1

ai|Dρ(ωi) =

m�

j=1

�
k�

i=1

ai|Dj ρ(ωi)|Dj

�
.

Since the sum of the π∗O �Dj ,p is direct,

1π∗O�D1
,p =

k�

i=1

ai|D1ρ(ωi)|D1 .
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Like in the irreducible case, it follows that ai|D1 , wlog. for i = 1, has to be invertible in π∗O �D1,p.
Also, it follows that a representative of a1|D1 in OS,p, namely a1, is invertible in OS,p, so we may
exchange ω1 and dh1

h1
. For dh2

h2
a similar argument is used: we can now write

dh2

h2
= b1

dh1

h1
+

k�

i=2

biωi

for some bi ∈ OS,p. Taking residues yields

1π∗O�D2,p
=

m�

j=1

�
b1|Dj δ1j +

k�

i=2

bi|Dj ρ(ωi)|Dj

�
.

The choice of dh1
h1

as an element of the minimal system of generators of Ω
1
S,p(log D) does not

affect this equation, since

1π∗O�D2
,p =

k�

i=2

bi|D2ρ(ωi)|D2 .

Again with Lemma 1.66 we find that wlog. b2 is invertible in OS,p and we may choose dh2
h2

as an
element of the minimal system of generators of Ω

1
S,p(log D) instead of ω2. We continue in this

way until all dhi
hi

are part of the minimal system of generators. Clearly, also dh
h ,

dh2
h2

, . . . ,
dhm
hm

are
also part of any minimal system of generators. Thus we have shown our claim.

Remark 1.68. Consider D with the assumptions of Lemma 1.67 and suppose further that D is
free. Then the element dh

h can be chosen as an element of a basis of Ω
1
S,p(log D). This property

is by Proposition 1.29 equivalent to saying that D is a free Euler-homogeneous divisor. Hence
we have shown that free divisors D with π∗O �D,p = ρ(Ω

1
S,p(log D)) are Euler-homogeneous at p.

Lemma 1.67 shows in particular that a minimal system of generators of Ω
1
S,p(log D) must consist

of at least m elements, where m is the number of irreducible components of D at p. Hence, if
D is free and has more than n irreducible components at p, it follows from the lemma that the
logarithmic residue is not holomorphic on the normalization of D.

Corollary. Let D be a divisor in a complex manifold S of dimension n and suppose that at a

point p, D has n irreducible components (Di, p). If D has weakly holomorphic residue and is free

at p, then D has normal crossings at p.

Proof. Suppose that the equation of D at p is h = h1 · · ·hn, where the hi correspond to the Di.
By lemma 1.67 the logarithmic forms ω1 = dh1/h1, . . . ,ωn = dhn/hn form a basis of Ω

1
S,p(log D).

By Saito’s criterion it follows that

dh1 ∧ · · · ∧ dhn = udx1 ∧ · · · ∧ dxn,

for some unit u ∈ OS,p. By lemma 1.47 the hi are coordinates at p and hence D has normal
crossings at p.

The next lemma about the relationship of the conductor ideal CD (see appendix A) and the
Jacobian ideal of the divisor will be useful in chapter 2.
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Lemma 1.69. Let D be a divisor in a complex manifold S of dimension n and let D = {h = 0}

at a point p, where h ∈ OS,p is reduced. Denote by �Jh the Jacobian ideal
2

of D at p, that is, the

ideal generated by the partial derivatives of h in the ring OD,p = OS,p/(h). Then

(i): �Jh ⊆ CD,p.

(ii): If D is free at p and ρ(Ω
1
S,p(log D)) = π∗O �D,p, then the a power of CD,p is contained in �Jh.

In particular, if �Jh =

�
�Jh, then �Jh = CD,p.

Proof. (i): Since h is reduced, by Tsikh’s theorem (Thm. A.32) all ∂xih are universal denomina-
tors for π∗O �D,p. Hence (∂xih)π∗O �D,p ⊆ OD,p. By definition of the conductor, ∂xih ∈ CD,p.
(ii): If ρ(Ω

1
S,p(log D)) = π∗O �D,p, one can find for any α ∈ π∗O �D,p a logarithmic 1-form ω such

that ρ(ω) = α. Suppose that g �= 0 ∈ CD,p. Then α has a presentation α = ξ/g = a1/∂x1h =

· · · = an/∂xnh for some ξ, ai ∈ OS,p. Thus ω = 1/h
�n

i=1 aidxi and a computation shows that ω

also has a presentation ω =
ξ
g

dh
h +

η
g for some η ∈ Ω

1
S,p.

By Lemma 1.67 one may find a basis ω1 =
dh
h , ωi =

ξi

g
dh
h +

ηi

g for i = 2, . . . , n. Saito’s criterion
yields

dh ∧ (η2 ∧ · · · ∧ ηn) = ug
n−1

n�

i=1

dxi,

where u ∈ O∗S,p. Hence g
n−1 is contained in (∂x1h, . . . , ∂xnh) for any g ∈ CD,p. If �Jh is radical,

it follows that even g ∈ Jh, that is, CD,p ⊆
�Jh.

Remark 1.70. Note that assertion (i) of Lemma 1.69 holds for any reduced divisor D with no
assumptions on the logarithmic residue.

1.3.2 The dual logarithmic residue

The dual logarithmic residue was introduced by Granger and Schulze in [43]. In some sense, it
relates the Jacobian ideal of a divisor with its conductor into the normalization. Here, it will be
introduced in order to show Thm. 1.63. The proof of this theorem will also make use of a result
by R. Piene about ideals in the normalization.
In the next section, section 1.4, we will indicate how to use Thm. 1.63 to answer a question by
K. Saito about the logarithmic residue.

Let (S, D) be a complex manifold S of dimension n together with a divisor D that is locally at
a point p ∈ S given by {h = 0}. Denote by π : �D → D the normalization of D. Here we will
abbreviate OS,p to OS etc. By applying the functor HomOS (−,OS) to the exact sequence (1.10)
one obtains

0 �� DerS(log D) �� DerS
σ ��ρ(Ω

1
S(log D))

∨ ��Ext
1
OS

(Ω
1
S(log D),OS) ��0.

(1.12)
Here −∨ denotes HomOD (−,OD). By Lemma 4.5 of [31] one has Ext

1
OS

(ρ(Ω
1
S(log D)),OS) =

HomOD (ρ(Ω
1
S(log D)),OD) = ρ(Ω

1
S(log D))

∨, which explains the third term on the right in (1.12).
2This notation is explained in Chapter 2.
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We call ρ(Ω
1
S(log D))

∨ the dual logarithmic residue and denote it shortly by R∨

D.
One can show (see [43]) that ρ(Ω

1
S(log D)) = �J∨h , where �Jh = (∂x1h, . . . , ∂xnh) ⊆ OD denotes

the Jacobian ideal of D. We will need the following

Proposition 1.71. Let D ⊆ S be free. If the logarithmic residue is weakly holomorphic, i.e.,

ρ(Ω
1
S,p(log D)) = π∗O �D,p, then �Jh ⊆ OD is equal to the conductor ideal CD (as defined in the

appendix). Conversely, if �D is Cohen–Macaulay at p and �Jh = CD, then ρ(Ω
1
S,p(log D)) =

π∗O �D,p.

Proof. See [43] Cor. 3.5.

Now we are nearly ready for the proof of Thm. 1.63, which will make use of Thm. A.42 of the
appendix. It was pointed out by D. Mond to use Piene’s theorem in order to prove the assertion.
Here we also remark that we need Thm. A.42 to prove our main result Thm. 2.1 but there the
(dual) logarithmic residue will not appear.

Lemma 1.72. Let D ⊆ S be a divisor in a complex manifold of dimension n. Suppose that

D is free at p, ρ(Ω
1
S,p(log D)) = π∗O �D,p and that (D, p) =

�m
i=1(Di, p), where each irreducible

component Di is normal. Then all (Di, p) are smooth and (D, p) has normal crossings.

Proof. Since all irreducible components are normal, one has ρ(Ω
1
S,p(log D)) =

�m
i=1ODi,p. By

Theorems 1.42 and 1.52 (D, p) is a normal crossing singularity.

Proof of Thm. 1.63. By our hypothesis, Piene’s Theorem A.42 yields the equality of ideals

CDIπO �D,p = �JhO �D,p.

Here Iπ denotes the ramification ideal of the normalization, that is, Iπ = F
0
�D(Ω

1
�D/D

). By
Prop. 1.71 this implies the equality of the ideals CD = CDIπ in π∗O �D,p. By Nakayama’s lemma,
it follows that Iπ = π∗O �D,p. Hence Ω

1
�D/D

= 0. By [6, VI, Prop. 1.18, Prop. 1.20] (localization
to an irreducible component Di and base change) it follows that Ω

1
�Di/Di

= 0 for all i = 1, . . . ,m.

Suppose that �Di is smooth at p̃i = π
−1

(p) on �Di, then O �Di,p̃i

∼= C{z1, . . . , zn−1} for some
independent variables z1, . . . , zn−1. Hence one has an inclusion of rings

ODi,p = C{f1, . . . , fr} ⊆ C{z1, . . . , zn−1},

where f1, . . . , fr ∈ O �Di,p̃i
and r ≥ n− 1. By definition one can write

0 = Ω
1
�Di/Di

=

n−1�

j=1

O �Di,p̃i
dzj/

r�

k=1

O �Di,p̃i
dfk.

By Nakayama’s lemma one finds n − 1 generators of ODi,p, w.l.o.g., f1, . . . fn−1 such that
the Jacobian determinant ∂(f1,...,fn−1)

∂(z1,...,zn−1)
�= 0. By the implicit function theorem, f1, . . . , fn−1

are independent variables and hence ODi,p
∼= O �Di,p̃i

is smooth. Since π is a finite map and
codim(Sing �Di,

�D) ≥ 2 it follows that codim(Sing Di, Di) ≥ 2. By Thm.A.24 Di is normal for
all i = 1, . . . ,m. Thus (D, p) a union of normal components. By definition (D, p) is free and by
Lemma 1.72 it has normal crossings.
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1.4 On a question by K. Saito

Theorem 1.42 suggests that the residue of logarithmic 1-forms ρ(Ω
1
S(log D)) is directly related

to the geometry of the divisor D. Kyoji Saito has considered the relationship between the
logarithmic residue and the local fundamental group of the complement of the divisor. Based on
the two-dimensional case, see Prop. 1.44, Saito asked the following, cf. [81, (2.12)]:

Question 1.73 (K. Saito). Let (S, D) be a manifold with dim S = n together with a divisor

D ⊆ S and let p be a point on D. Are the following equivalent?

(i) The local fundamental group π1,q(S\D) for q near p is abelian.

(ii) There exists an (n− 3)-dimensional analytic subset Z of D, such that D\Z has only normal

crossing singularities in a neighbourhood of p.

(iii) ρ(Ω
1
S,p(log D)) = π∗O �D,p.

The implications (i) ⇒ (ii) ⇒ (iii) were proven by Saito in [81]. In 1985 Lê and Saito gave a
topological proof of the equivalence of (i) and (ii). The implication (iii) ⇒ (ii) was only recently
proven by Granger and Schulze [43]. Hence all three conditions are equivalent. There seems to
be no obvious link between the residue and the fundamental group, and nobody seems to have
studied how to prove directly that (i) is equivalent to (iii).
We make a short excursion to fundamental groups in order to understand the equivalence (i) ⇔

(ii). Then, following Granger and Schulze [43, Thm. 4.2], we also prove the implication (iii) ⇒

(ii).

1.4.1 The local fundamental group of the complement of a hypersur-

face

In this section we discuss the first equivalence of Saito’s question, namely a topological char-
acterization of divisors with normal crossings in codimension 1. Now consider small balls B

2n
�

centered in p ∈ S and defined by

B
2n
� = {x ∈ S : �x− p� ≤ �}.

For � > 0 sufficiently small these balls make up a fundamental system of good neighbourhoods
of p ∈ S, see [92]. Then the local fundamental group of the complement of (D, p) ⊆ (S, p) is
defined as the fundamental group π1,q(B

2n
� \D), for � > 0 sufficiently small and q ∈ B

2n
� \D.

Theorem 1.74 (Lê–Saito). Let D be a divisor in a complex manifold S of dimension n. Then

D has normal crossings in codimension 1 at a point p if and only if the local fundamental group

π1,q(S\D) for q in a neighbourhood of p is abelian.

In [92] Lê and Saito first showed Thm. 1.74 for irreducible D and then for the general case. They
reduce the problem to dim S = 2 and use topological methods. We will shortly discuss the (easy)
implication (i) ⇒ (ii). Before we start, we give a few examples of divisors and the fundamental
groups of their complements.
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Example 1.75. (The line minus a point) Let S = C1 with coordinate x and the divisor D be
given by {x = 0}. We compute the local fundamental group π1,q(B

2
� \{0}) via the universal cover

of S\{0}. Therefore denote by X the universal cover of S\{0}. One can prove that π1,q(B
2
� \{0})

is isomorphic to AutB2
�\{0}

(X), that is, the group of deck transformations of X. Here X = S via
the map

S
exp �� S\{0}

and the deck transformations of X are given by z �→ z + 2πik, for some k ∈ Z. It follows that
π1,q(B

2
� \{0}) = Z. This can also be interpreted by saying that the local fundamental group is

generated by a small loop around x = 0.

Example 1.76. (The normal crossing divisor) Suppose that S = Cn and that at a point p with
complex coordinates (x1, . . . , xn) the divisor is D = {x1 · · ·xd = 0}, d ≤ n. The complement
B

2n
� \D = {0 < |xi| < �, i = 1, . . . , d} can be contracted on the d-Torus, which is given by�d
i=1{|xi| = �}. Hence π1,q(B

2n\D) ∼= Zd for q ∈ B
2n
� . The generators of this fundamental

group correspond to small loops around the components Di = {xi = 0}.

Example 1.77. (The Cusp) Let S = C2 and D = {4x
3
1 = 27x

2
2}. The local fundamental group

of the complement of D is not not abelian, which can be seen as follows (here the example is
only sketched, see [36, §22] for details): the curve D is the branch locus of the map f : C2 →

C2
, (u, v) �→ (u, v

3
+ uv). Consider K = D ∩ S

3, which is a knot in real three-space. One finds
that the restriction of f : C2\f−1

(D) −→ S\D, namely

π : f
−1

(S
3
\K) −→ S

3
\K

is a three-sheeted covering that is not regular. Taking as base point x = (1, 0) one gets that
π1(S

3\K) is not abelian, since any connected covering of a manifold with abelian fundamental
group is regular.

In 1929, Zariski considered in [102] the question of finding a covering of P2 branched along a
given projective plane curve C. This problem can be phrased in terms of fundamental groups.
In his paper Zariski states the following

Theorem 1.78. Let C be an algebraic curve in the projective plane P2
(k), where k is any

algebraically closed field. If C has only nodes as singularities, then the étale fundamental group

π1(P2
(k)\C) is abelian.

Zariski showed this theorem using a result by Enriques–Severi, namely that any curve with only
nodal singularities can be degenerated to lines in general position. However, Severi’s proof of this
result (see Vorlesungen über algebraische Geometrie, 1921, Anhang F) was found to be erroneous,
so Zariski’s proof of Thm. 1.78 was not complete at that time (Severi’s result was established by
Harris [47] only in 1986). It took some years until 1980 when Fulton [35] was able to give the first
correct proof of Zariski’s theorem: he used methods introduced by Abhyankar [1,2], who showed
some special cases of Theorem 1.78, as well as a strong version of the Bertini connectedness
theorem, see the paper by Fulton and Hansen [37]. Also in 1980, Deligne [30] gave an account
of Fulton’s work in Séminaire Bourbaki, where he strengthened Fulton’s result in the complex
case:
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Theorem 1.79. Let C be a plane projective curve in P2
(C), which only has node singularities.

Then the (topological) fundamental group π1(P2
(C)\C) is abelian.

Note here that if one replaces C by an algebraically closed field of characteristic 0 then the
same assertion is true with the algebraic (= étale) fundamental group instead of the topological
fundamental group.
Now we are ready to prove the “only if” part of Thm. 1.74, namely: Let (S, D) be a divisor and
its manifold. If the local fundamental group π1,q(S\D) for q in a suitable neighbourhood of p is
abelian, then there exists an (n− 3)-dimensional analytic set Z in S such that the complement
of Z in D has only normal crossing singularities in a neighbourhood of p.

Proof of ⇐ of Thm. 1.74. Suppose there exists an (n− 2)-dimensional subset Z of D such that
D\Z does not have normal crossings. Then Z must be the union of irreducible branches of Sing D.
We may suppose that Z is irreducible. We consider D as a family of plane curve germs along Z.
At a general point of Z, D is equisingular (see Zariski’s equisingularity theory [103]), and hence
topologically trivial along Z. Thus the local fundamental group π1,q(S\D) is isomorphic to the
fundamental group of the complement of a plane curve. But the generic member of a family of
germs of plane curves along Z does not at most have node singularities because by assumption,
D does not have normal crossings along Z. Hence π1,q(S\D) is not abelian, which follows from
Theorem 1.79 and the computations of Zariski in [102], in which he shows that curves that have
more complicated singularities than nodes, have a non-abelian fundamental group.

1.4.2 Answer to Saito’s question

Now we consider the equivalence of (ii) and (iii) of Saito’s question. As already shown in [81,
Lemma 2.13], the implication (ii) ⇒ (iii) always holds:

Lemma 1.80. Let (S, D) be as usual, dim S = n and suppose that D has normal crossings

outside a set Y with codim(Y, S) ≥ 3. Denote by π : �D → D the normalization of D. Then we

have

ρ(Ω
1
S,p(log D)) = π∗O �D,p,

that is, the residue of Ω
1
(log D) are the weakly holomorphic functions on D.

Proof. Since D\Y has normal crossings, any point p in this set satisfies the condition (iv) of
Theorem 1.42. But this implies that ρ(ω) is holomorphic on D\Y for any ω ∈ Ω

1
S,p(log D).

Hence ρ(ω) is also holomorphic on �D\Y . The codimension of Y in D is greater than or equal to
2, so the codimension of its normalization π

−1
(Y ) in �D is also greater than or equal to 2 and we

have �D\π−1
(Y ) = �D\Y . But �D is a normal variety, so we may apply the Extension theorem of

Hartogs, Thm. A.21, to conclude that ρ(ω) is holomorphic on whole �D.

The other implication follows from Theorem 1.63 and the following proposition about freeness
in codimension one. This proposition makes use of Aleksandrov’s algebraic characterization of
free divisors, which will be discussed in Chapter 2. For notation and definition of the Jacobian
ideal sheaf J and OSing D see Section 2.2.
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Proposition 1.81. Let (S, D) be a complex n-dimensional manifold together with a divisor

D ⊆ S. Then the set Z := {p ∈ S : D is not free at p} is an analytic subset of S of dimension

at most n− 3. In particular, D is free in codimension 1.

Proof. Recall that OSing D is defined as OD/ �J , where �J is the Jacobian ideal restricted to D.
By Aleksandrov’s theorem (Thm. 2.6) Z is equal to the set

{p ∈ D : OSing D,p is not Cohen–Macaulay of dimension n− 2 and OSing D,p �= 0}.

It is easy to see thatOSing D is a coherent analyticOS sheaf (OD is coherent by Cartan’s coherence
theorem and the Jacobian ideal sheaf J is coherent, since it any stalk is finitely generated at
any stalk and the syzygies between partial derivatives are also finitely generated. By the Meta-
theorem of coherent sheaves A.15, OD/ �J = OSing D is also a coherent OS-sheaf). Then consider
the singular set (as defined in Appendix A)

Sm(OSing D) = {p ∈ S : depthpOSing D ≤ m}.

Since Z = Sn−3(OSing D), it follows from Scheja’s theorem (Thm. A.16) that Z is an analytic
subset of dimension at most n− 3.

Theorem 1.82. Let (S, D) be a complex manifold together with a divisor D ⊆ S. If the loga-

rithmic residue ρ(Ω
1
S(log D)) = π∗O �D, then D has normal crossings in codimension 1.

Proof. By Prop. 1.81 D is free outside an analytic subset Z ⊆ S of codimension at least 2 in D.
Since ρ(Ω

1
S,p(log D)) = π∗O �D,p for all p ∈ S and �D is by definition smooth in codimension 1 it

follows from Thm. 1.63 that D has normal crossings outside an analytic set of codimension 2 in
D.

Theorem 1.82 proves the missing implication (iii) ⇒ (ii) of Saito’s question. Hence the answer
to Saito’s question is positive.



Chapter 2

Algebraic characterization of normal
crossing divisors

Here a characterization of a normal crossing divisor is given in terms of the Jacobian ideal defin-
ing the singular locus of the divisor. Our result is the following: a divisor D in a complex
manifold S of complex dimension n has normal crossings at a point p ∈ S if and only if the
local ring OSing D,p = OS,p/(h, Jh), where Jh denotes the Jacobian ideal of D = {h = 0}, is
Cohen–Macaulay of dimension n− 2, Jh is a radical ideal and moreover, the normalization �D of
D is Gorenstein (Thm. 2.1). This criterion makes it possible to determine whether a divisor has
normal crossings at a point without knowing its decomposition into irreducible components.
This chapter is devoted to prove the above characterization of normal crossing divisors: first
the theorem about the singularities of normal crossing divisors is stated and motivated by some
examples. Then we consider the algebraic characterization of free divisors (due to A. G. Alek-
sandrov, A. Simis and H. Terao2): a divisor D is free at a point p if and only if it is either smooth
at p or OSing D,p is Cohen–Macaulay of dimension n− 2. The rest of the chapter is used to prove
Theorem 2.1: we first pass by some special cases, for which no condition on the normalization
of D is required. Then we introduce the notion of splayed divisor, which is needed to reduce the
problem to an irreducible divisor. Finally the assertion of the theorem is shown similarly to the
results from Chapter 1 on the logarithmic residue. Most of the algebra used in this chapter is
explained in Appendix A.

2.1 The main theorem

Let D be a divisor in a complex manifold S with dim S = n and suppose that D is given at a point
p = (x1, . . . , xn) by the reduced equation h(x) = 0, h ∈ OS,p. Recall that the Jacobian ideal of h

is the ideal generated by the partial derivatives of h. It is denoted by Jh,p = (∂x1h, . . . , ∂xnh)OS,p.

2 In this text this result will always be referred to as Aleksandrov’s Theorem because the author has learned
it from [3, 4]. As pointed out by A. Simis, the same result was also independently proven by H. Terao in [94]
(algebraic case) and in general in [95] and later (in the algebraic case) by A. Simis in [89].
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We will often simply write Jh instead of Jh,p. There is a canonical epimorphism sending OS,p

to OD,p = OS,p/(h). We denote by �Jh the Jacobian ideal in OD,p (most of the time �Jh is also
simply denoted by Jh). The associated analytic coherent ideal sheaves are denoted by J ⊆ OS

and �J in OD. The singular locus of D is denoted by Sing D and is defined by the ideal sheaf
�J ⊆ OD. The local ring of Sing D at a point p is denoted by

OSing D,p = OS,p/((h) + Jh) = OD,p/
�Jh.

Sometimes OSing D,p = C{x1, . . . , xn}/(h, ∂x1h, . . . , ∂xnh) is also called the Tjurina algebra, see
e.g. [27]. Note that we always consider Sing D with the (possibly non-reduced) structure given
by the Jacobian ideal of D. Hence in general (Sing D, p) is a complex space germ and not
necessarily reduced. We often say that Sing D Cohen–Macaulay, which means that OSing D,p

is Cohen–Macaulay for all points p ∈ Sing D. The definition of Cohen–Macaulay modules and
further properties of them can be found in Appendix A. If D is an Euler–homogeneous divisor,
then the OS,p-modules OS,p/Jh and OD,p/

�Jh are equal.

In chapter 1 it was shown that a normal crossing divisor is free. Therefore our idea is to impose
additional conditions in order to single out the normal crossing divisors. By Aleksandrov’s
theorem in the next section (see Thm. 2.6) free divisors can be completely described by their
Jacobian ideal. So the right additional requirement turns out to be radicality of the Jacobian
ideal. Hence a purely algebraic criterion is obtained, which allows to determine whether a divisor
has normal crossings at a point p, even without knowing its decomposition into irreducible
components.

Theorem 2.1. Let D = {h = 0} be a divisor in a complex manifold S, dim S = n. Denote by

π : �D → D the normalization of D. Then the following are equivalent:

(1) D has normal crossings at any point p in D.

(2) D is free at any point p, Jh,p is radical and ( �D,π
−1

(p)) is Gorenstein.

Remark 2.2. Using Aleksandrov’s algebraic characterization of free divisors (Thm. 2.6), condition
(2) of the above theorem can also be phrased as:
(2’) At any point p ∈ D the Tjurina algebra OSing D,p is reduced and either 0 or Cohen–Macaulay
of dimension n− 2 and π∗O �D,p is a Gorenstein ring.
Another equivalent formulation is:
(2”) At any point p ∈ D, where D = {h = 0}, the Jacobian ideal Jh is either equal to OS,p or it
is radical, perfect and has depth 2 in OS,p and π∗O �D,p is Gorenstein.

Remark 2.3. The condition �D Gorenstein is technical and only needed to apply Piene’s theorem
in our proof of Thm. 2.1. In some special cases (see section 2.3) it can be omitted. We do not
know if this condition is necessary in general (cf. Remark 2.50).
Before commenting on the proof of Thm. 2.1, let us consider some examples:
Example 2.4. (1) Let D be the cone in C3, given by the equation z

2
= xy. It does not have

normal crossings at the origin but the Jacobian ideal Jh,0 = (z, x, y) is clearly radical and
OC3,0/(x, y, z) ∼= C is Cohen–Macaulay. However, the depth of Jh,0 is 3 and thus too high.
(2) The divisor in C3 given by the equation h = xy(x − z

2
) is free (by Aleksandrov’s theorem)
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but does not have normal crossings. Note that its singular locus is a Cohen–Macaulay curve.
The Jacobian ideal is

Jh = (y, x− z
2
) ∩ (x, y) ∩ (z

2
− 2x, xz, x

2
),

which is not radical.
(3) Let S = C3 and D be the “4-lines” defined by h = xy(x + y)(x + yz). This divisor D

is free, and a basis of DerS,p(log D) is given by δ
1

= x∂x + y∂y, δ
2

= (zy + x)∂z and δ
3

=

−x
2
∂x + y

2
∂y − (x + yz)∂z. Its Jacobian ideal is

(x + y, z − 1) ∩ (x, z) ∩ (y
4
, 2xy

2
z + y

3
z + 3x

2
y + 2xy

2
, 4x

2
yz − 3y

3
z + 2x

3
− 5x

2
y − 6xy

2
),

which is not radical (the radical
√

Jh is (x+y, z−1)∩(x, z)∩(x, y)) and D does not have normal
crossings at the origin.
(4) The divisor D in C3 defined by h = −x

4
y
2−xy

3
+x

4
z +xyz +x

3
y
3
z + y

4
z−x

3
yz

2− y
2
z
2−

xy
2
z
2
+xz

3
+x

4
z
3
+xyz

3
+ y

3
z
3− yz

4−x
3
yz

4− y
2
z
4
+xz

5− yz
6 has normal crossings at 0: its

Jacobian ideal is of depth 2, radical and C[x, y, z]/Jh is Cohen–Macaulay. A basis of Ω
1
S,p(log D)

is
ω1 =

3x
2
dx + dy + 2zdz

x3 + z2 + y
, ω2 =

dx− zdy − ydz

x− yz
and ω3 =

2ydy + (−1− 3z
2
)dz

y2 − z − z3
.

Since D is the union of three smooth surfaces, the normalization �D is smooth and hence Goren-
stein.

2.1.1 Structure of the proof of Thm. 2.1

The implication (1) ⇒ (2) is a straightforward computation. The other direction occupies the
rest of the chapter. Since the freeness of a divisor is a necessary condition in (1), we show in sec-
tion 2.2 the algebraic characterization of free divisors due to A. G. Aleksandrov. This is followed
by showing (2) ⇒ (1) of Thm. 2.1 for some special cases, namely for divisors in manifolds S of
dimension 2 (Prop. 2.15) , for Sing D smooth (Lemma 2.17), for Sing D Gorenstein (Prop. 2.18)
and for hyperplane arrangements and generalizations thereof (Prop. 2.32). For these cases, the
assumption �D Gorenstein is not needed.

However, the ideas to show the special cases do not lead to a proof in general. Therefore, our
strategy to prove the general case is the following:
(i) If (D, p) =

�m
i=1(Di, p) is free and a union of irreducible components and has radical Jacobian

ideal, then we show that each Di is also free and has radical Jacobian ideal.
(ii) If D is free, irreducible, has radical Jacobian ideal at p and the normalization �D is Gorenstein,
then D is already smooth at p.
(iii) A free divisor D, which is a union of smooth irreducible hypersurfaces and has a radical
Jacobian ideal, is already a normal crossing divisor.

In order to obtain (i) we introduce a generalization of normal crossing divisors, so-called splayed
divisors. A splayed divisor D is a union of transversally meeting hypersurfaces that are possibly
singular. First it is shown that (i) holds for splayed divisors (Lemma 2.38). Then we prove that
a divisor (D, p) =

�m
i=1(Di, p) with radical Jacobian ideal is splayed (Prop. 2.48). Therefore a
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characterization of splayed divisors via their Jacobian ideals is shown (the Leibniz property - see
Thm. 2.43). All this is explained in sections 2.4.1 and 2.4.2.
Claim (ii) then follows from Piene’s Theorem (Thm. A.42), similarly like the results on the
logarithmic residue of chapter 1. Note that here we do not need the dual residue because if Jh

is radical, one can show that it is equal to the conductor CD. Finally, claim (iii) follows from
different previous results, namely, either from the hyperplane arrangement case (Prop. 2.32) or
from the second corollary of proposition 2.48.

2.2 Algebraic characterization of free divisors

We have defined free divisors via the modules of logarithmic vector fields or logarithmic differ-
ential forms. However, there also exists a characterization of free divisors by their singularities,
which is due to A. G. Aleksandrov [4] (cf. footnote 2). Namely, a divisor D in a complex
manifold is free if and only if it is smooth or its singular locus defined by the Jacobian ideal
is Cohen–Macaulay of codimension 1 in D. The first result in this direction was obtained by
H. Terao [94], who characterized a free hyperplane arrangement in an algebraic manifold by the
corresponding property. This has also been discovered independently by Simis [89]. In 1986,
Aleksandrov proved the Cohen–Macaulayness of the singular locus for Euler–homogeneous free
divisors, see [3]. Eventually, in his 1990 paper [4] he was able to extend his result to arbitrary
free divisors in complex manifolds.
The characterization of free divisors by their Jacobian ideals can be used to obtain a simple proof
that the discriminant of a miniversal deformation of a complete intersection with an isolated sin-
gularity is a free divisor, see [4, 60, 81]. Consequently, this algebraic characterization is useful
whenever free divisors appear in the theory of discriminants and bifurcations, see [13, 25, 68].
Moreover, Aleksandrov’s freeness criterion is effective: one can check Cohen–Macaulayness with
a computer algebra system like Singular [98].
In this section a proof of Aleksandrov’s theorem is given. As a corollary we regain that all re-
duced divisors in a complex manifold S with dim S = 2 are free.

Proposition 2.5. Let D be a free divisor in S. Then either D is smooth at a point p ∈ D or

codimp(Sing D,S) = 2, which is equivalent to codimp(Sing D,D) = 1. Thus it follows that D is

not normal at its singular points. Moreover, OSing D,p is a Cohen–Macaulay ring.

Proof. Let h = 0 be the equation for D at a point p ∈ Sing D. Then there is an exact sequence

Syz(∂x1h, . . . , ∂xnh, h) �� On+1
S,p

ϕ �� OS,p �� OS,p/((h) + Jh) �� 0

of OS,p-modules. Here ϕ denotes the map sending (a1, . . . , an+1) ∈ O
n+1
S,p to

�n
i=1 ai∂xih+an+1h

and Syz(∂x1h, . . . , ∂xnh, h) denotes the first syzygy module of ((h) + Jh). As explained in the
proof of Lemma 1.7, DerS,p(log D) is canonically isomorphic to Syz(∂x1h, . . . , ∂xnh, h). Since
DerS,p(log D) is by assumption a free OS,p-module of rank n, it follows that

0 �� Syz(∂x1h, . . . , ∂xnh, h) �� On+1
S,p

ϕ �� OS,p �� OS,p/((h) + Jh) �� 0
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is a free resolution of OS,p/((h)+Jh) = OSing D,p. This means that projdimOS,p
OSing D,p = 2 and

by the Auslander–Buchsbaum formula (Thm. A.7) depth(OSing D,p) = n−2. Since D is a reduced
divisor, its singular locus must be a proper analytic subset of D, that is, codimp(Sing D,D) ≥ 1,
or equivalently codimp(Sing D,S) ≥ 2. The well-known dimension-depth inequality yields

n− 2 = depth(OSing D,p) ≤ dim(OSing D,p) ≤ n− 2.

Hence OSing D,p is Cohen–Macaulay of (Krull-)dimension n− 2.

Theorem 2.6 (Aleksandrov). Let D ⊆ S be a divisor such that codimp(Sing D,D) = 1 for any

p ∈ Sing D. Then the following conditions are equivalent:

(i) D is a free divisor,

(ii) Sing D is Cohen–Macaulay, that is, for every p ∈ D the local ring OSing D,p is Cohen–

Macaulay.

Proof. The statement is local, so we choose a point p ∈ Sing D and consider D locally at p. Let
D at p be defined by a reduced h ∈ OS,p. The singular locus Sing D is defined by the ideal
((h) + Jh) ⊆ OS,p.
The implication (i) ⇒ (ii) was already shown in Prop. 2.5. It remains to prove that if (Sing D, p)

is Cohen–Macaulay then D is free at p. First suppose that the ∂xih form a minimal basis of
Jh and that D is Euler–homogeneous at p. Hence there exists a vector field η ∈ DerS,p(log D)

such that η(h) = h and thus OSing D,p = O/Jh. The depth of Jh in OS,p is 2 and hence
dimOS,p = 2 + dim(OS,p/Jh) = 2 + depth(OS,p/Jh). By the Auslander–Buchsbaum formula
(Thm. A.7) it follows that projdimOS,p(OS,p/Jh) = n − (n − 2) = 2. Therefore the theorem of
Hilbert–Burch, see Appendix A, can be applied. Hence any generator ∂xih, i = 1, . . . n of Jh

is given as the i-th principal minor of some (n − 1) × n-matrix M in Mn−1,n(OS,p), in other
words, ∂xih = det((ei, M)), with ei the i-th standard basis column vector. The rows of M define
logarithmic vector fields, since M∂xh = 0. Taking the coefficients of the Euler–vector field η

as first row an n × n-matrix
�

η

M

�
is obtained. The determinant of this matrix is (cofactor

expansion of the first row)
n�

i=1

ηi∂xih = ηh = h,

thus by Saito’s criterion the n rows of this matrix form a basis of DerS,p(log D). If the ∂xih

do not form a minimal basis of Jh, that is, some ∂xj h ∈ (h, ∂x1h, . . . , �∂xj h, . . . , ∂xnh), then
one can apply the triviality lemma A.44. This lemma yields that (D, p) ∼= (D

� × C, (p
�
, 0))

with (D
�
, p
�
) ⊆ (Cn−1

, 0). Then the smooth factor of D can be neglected and it is enough
to consider (D

�
, p
�
) ⊆ (Cn−1

, 0). So we are back to the case already considered. If D is not
Euler–homogeneous at p, we may suppose that the ideal defining (Sing D, p), namely (h)+Jh, is
minimally generated by h and ∂x1h, . . . , ∂xnh. By an argument of Schaps [83, proof of Thm. 1],
one finds that h and its partial derivatives are the maximal minors of some n × (n + 1) matrix
M . Then the assertion follows again from Saito’s criterion.

Remark 2.7. The statement that any element of the matrix whose principal minors are the ∂xih

can be chosen in m can also be expressed with logarithmic stratifications, see [81, §3]: if some



44 Algebraic characterization of normal crossing divisors

∂x1h, . . . ∂xkh are already contained in the ideal generated by h, ∂xk+1h, . . . , ∂xnh, then this means
that the point p is contained in a k-dimensional logarithmic stratum Dα of D.
Remark 2.8. Aleksandrov also proved the following equivalence in [4]: D is free at p if and only
if Sing D is a locally determinantal variety, i.e., (Sing D, p) is given by the determinants of the
maximal minors of a matrix with entries in OS,p. In order to prove this equivalence for the ’only
if’ part one uses the Hilbert–Burch matrix M of the above proof and for the other implication
one shows that ((h) + Jh) is a perfect ideal. Then by remark A.10 the ring OS,p/((h) + Jh) is
Cohen–Macaulay.
So if D is free with basis δi =

�n
j=1 aij∂xj with δi(h) = fih, i = 1, . . . , n of DerS,p(log D), then

one can explicitly write down the (n + 1) × n matrix M : take the matrix (aij) and as last row
(f1, . . . , fn).

Corollary. Let D be a divisor in a complex manifold S with dim S = 2. Then Sing(D) is

Cohen–Macaulay. In particular, any divisor in a 2-dimensional manifold is free.

Proof. Locally at a point p ∈ S, the divisor D is given by a reduced holomorphic h ∈ OS,p. If D

is smooth at p, then OSing D,p = 0 and by definition Cohen–Macaulay. If D is singular at p, then
p must be an isolated singular point, which follows from h reduced. Hence the Krull dimension
of the ring OSing D,p is equal to 0. Since the depth of a local ring is always less or equal than its
dimension, it follows that depth(OSing D,p) = 0 and thus dim(OSing D,p) = depth(OSing D,p) = 0,
which means that the local ring OSing D,p is Cohen–Macaulay of codimension 2. By Thm. 2.6 D

is free at p.

Example 2.9. (1) (Whitney Umbrella) Let D ⊆ C3 be given at the origin by h = x
2 − y

2
z = 0.

The Jacobian ideal Jh,0 is (x, yz, y
2
). An easy computation shows that an irredundant primary

decomposition of Jh,0 is (x, y) ∩ (x, y
2
, z). Then Jh,0 has an embedded primary component and

hence OSing D,0 = C{x, y, z}/Jh,0 is not Cohen–Macaulay. However, at any point p = (0, 0, t),
t �= 0 in the z-axis different from 0 the divisor D is defined by hp = x

2−y
2
(z+t) and (hp)+Jh,p =

(x, yz + yt, y
2
) = (x, y). This yields that OSing D,p = C{z} is Cohen–Macaulay of dimension 1.

Thus D is free at all points p ∈ S, p �= 0.
(2) (This example is taken from [86], where it is denoted by FB,1) Let (D, 0) ⊆ (C3

, 0) be
the divisor defined by h = z(x

2
y
2 − 4y

3 − 4x
3
z + 18xyz − 27z

2
). The Jacobian ideal Jh is of

height 2 in C{x, y, z} and OSing D,0 is Cohen–Macaulay (use e.g. the Auslander–Buchsbaum
formula to show this). Hence D is free at 0. Note that the radical of the Jacobian ideal is
(y, z) ∩ (4y − x

2
, z) ∩ (3y − x

2
, 27z − x

3
), the union of three smooth curves.

(3) The hyperplane arrangement H in C4 given by h = xy(z +w)(x+w)(x+w + z) is free, since
OSing D,p is Cohen–Macaulay. The singular locus of H consists of 8 planes in C4.

2.3 Special cases

We start this sections with a few general remarks about radical Jacobian ideals. As explained in
2.1.1 here some special cases of the implication (2) ⇒ (1) of Theorem 2.1 are proven. Note that
we do not need any requirements on the normalization of D for these. First we consider a curve
D in a two-dimensional manifold S. Since then the singularities of D are isolated, the proof of
Thm. 2.1 is straightforward in this case. The theorem can be proved similarly if dim S = n ≥ 2
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and (Sing D, p) is smooth at p. We also show a characterization of the Gorenstein case, namely,
if the Jacobian ideal of D at p is radical then the ring OSing D,p is Gorenstein of dimension (n−2)

if and only if (Sing D, p) is smooth. For this result we have two different proofs, the first one
using Rossi’s theorem and the second one using the theory of primitive ideals of Pellikaan and
Siersma, see [75]. Then we turn to hyperplane arrangements and generalizations thereof.

The following lemma is nearly obvious: if two divisors D and D
� are locally isomorphic at a point

p, then their Tjurina algebras are locally isomorphic, that is, OSing D,p
∼= OSing D�,p.

Remark 2.10. Note here that the other implication does not hold in general, that is, if the singular
loci of two divisors are isomorphic, the divisors themselves need not be isomorphic. However,
in the case of isolated singularities this assertion is true (this is the content of the theorem of
Mather–Yau [61]). The general case has been studied by Gaffney and Hauser and we refer to [39]
for their results.

Lemma 2.11. Let f and g be in OS,p and suppose that the divisors D = {g = 0} and D
�

=

{f = 0} are locally isomorphic. Then their singular loci are also isomorphic, that is,

OS,p/((f) + Jf ) ∼= OS,p/((g) + Jg).

Proof. Let ϕ be the isomorphism of (S, p) sending D
� to D. Then ϕ

∗
: OS,p → OS,p is an algebra

isomorphism sending f to ϕ
∗
(f) = f ◦ ϕ. We can suppose that f ◦ ϕ = g (otherwise f ◦ ϕ = ug,

with u ∈ O∗S,p, but their Jacobian ideals are the same: ((g) + Jg) = ((ug) + Jug)). With the
chain rule follows

∂g

∂xi
=

n�

j=1

(
∂f

∂xj
◦ ϕ)

∂ϕj

∂xi
=

n�

j=1

ϕ
∗
(

∂f

∂xj
)
∂ϕj

∂xi
.

Thus Jg is contained in ϕ
∗
(Jf ). Since ϕ

∗ is an isomorphism we also get Jf ⊆ (ϕ
∗
)
−1

(Jg). From
this and ϕ

∗
(f) = g follows ϕ

∗
(Jf + (f)) ⊆ ((g) + Jg) and by symmetry we get ϕ

∗
(Jf + (f)) =

((g) + Jg).

In Proposition 2.13 it is shown that for radical Jacobian ideals the local ring OSing D,p is already
determined by the Jacobian ideal Jh, that is, h ∈ Jh. In particular, this implies that a divisor
with radical Jacobian ideal is Euler-homogeneous.

Lemma 2.12. Let (S, D) be a pair of an n-dimensional complex manifold S together with a

divisor D ⊆ S and let D be defined at the point p = (x1, . . . , xn) by h(x) ∈ OS,p. Let Jh ⊆ OS,p

be the Jacobian ideal of D. Then h belongs to the integral closure Jh of Jh.

Proof. We show the statement with the complex-analytic criterion for integral dependence, see
[59, (1.3)] or [11]: an element f of OS,p is in the integral closure of the ideal I = (g1, . . . , gm) if
and only if for all analytic germs γ : (C, 0) → (S, p) one has

(f ◦ γ) ∈ γ
∗
I, where γ

∗
I = (g1 ◦ γ, . . . , gm ◦ γ) ⊆ C{t}.

In our case we have to show that h(γ(t)) ∈ (∂x1h(γ(t)), . . . , ∂xnh(γ(t))). Set ord(h(γ(t)) = k(γ).
Then ord(∂t(h(γ(t)))) = k(γ)− 1. Using the chain rule it follows that

ord(∂t(h(γ(t))) = ord(

n�

i=1

∂tγi(t) · ∂xih ◦ γ(t)) = k(γ)− 1.
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Thus there exists an i such that ord(∂xih ◦ γ(t)) ≤ k(γ) − 1. This implies that h(γ(t)) ∈

(∂xih ◦ γ(t)).

Proposition 2.13. Let (S, D) be as in the previous lemma. If Jh is radical, then h ∈ Jh, which

implies OSing D,p = OS,p/Jh.

Proof. Since Jh is generated by n elements, it follows from the theorem of Briançon–Skoda that
J

n
h ⊆ Jh, see [59]. Since (Jh)

n ⊆ J
n
h (see for example [57]), the n-th power of h is contained in

Jh and since Jh is radical it already contains h.

Remark 2.14. The above proposition shows in particular that if Jh is radical then also Jh = Jh.
The blowup of D ⊆ S with center Jh is the Nash blowup of (D, p), see e.g. [72]. It is an interesting
question whether in the case of a radical Jacobian ideal this blowup is equal to the normalized

Nash blowup (for details and notation see [57, Section 3]): the normalized Nash blowup of D

is the Nash blowup followed by normalization and determined by Projan
�

n∈N J
n, where J

denotes the integral closure of the Jacobian ideal sheaf in OS . In order to obtain equalities of
the two blowups it is necessary and sufficient that J n = (J )

n for n big enough. However, it is
not known whether J

n
h = (Jh)

n if Jh =
√

Jh.

Proposition 2.15. Let dim S = 2 and the divisor D be defined at a point p by a reduced h ∈ OS,p.

Then D has normal crossings at p if and only if D is free at p, that is, its singular locus defined

by Jh is a radical ideal of depth 2 in OS,p and OSing D,p is Cohen–Macaulay.

Proof. If Jh has depth 2 in a two-dimensional regular local ring, then the singularity of D at p is
isolated. Since Jh is radical, it has an irredundant primary decomposition

�
p, with prime ideals

p that are all of height 2 (by the Cohen–Macaulay property of OS,p/Jh). If one p were not equal
to the maximal ideal m, then it would be strictly contained in m. However, then the height of
m would be greater than or equal to 3, which is a contradiction to height(m) = dimOS,p = 2.
This means that OSing D,p = OS,p/m ∼= C at p. Now one can use either a direct computation (see
Remark 2.16) or apply the theorem of Mather–Yau [61] (also see [27]) for isolated singularities:
two germs (X, p) and (Y, q) in S with isolated singularity at p resp. q are isomorphic if and only
if OSing X,p and OSing Y,q are isomorphic as local algebras. In our case let (D, p) the germ of D at
p. The theorem of Mather–Yau means that (D, p) is isomorphic to the normal crossings divisor
(N, p) (defined locally at p = (x1, x2) by the equation {x1x2 = 0}) if and only if their singular
loci are isomorphic. But OSing N,p = OS,p/(x1, x2)

∼= C is clearly isomorphic to OSing D,p. The
application of the theorem of Mather–Yau proves the proposition.

Remark 2.16. Also a direct computation can be used to prove the previous proposition: therefore
write h = a1x

2
1 + a2x1x2 + a3x

2
2 for some ai ∈ C{x1, x2}. If Jh = (x1, x2), it follows that one

of the ai is invertible in C{x1, x2}, w.l.o.g. a1 (possibly after a linear change of coordinates).
Hence we may assume that a1 = 1 and h = x

2
1 + a2x1x2 + a3x

2
2. Consider the change of

coordinates ϕ(x1, x2) = (x1 −
a2x2

2 , x2), which transforms h into h
∗

:= ϕ
∗
(h) = x

2
1 − ã3x

2
2 with

ã3 = a3 − 1/4a
2
2. By Lemma 2.11 one has Jh = Jh∗ , which implies that ã3 is also invertible and

hence
√

ã3 ∈ C{x1, x2}. Therefore h
∗

= (x1 +
√

ã3x2)(x1 −
√

ã3x2) defines a normal crossing
divisor.
In Chapter 3 we will obtain yet another proof of the preceding proposition via mikado curves.
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Lemma 2.17. Let S be a complex manifold of dimension n together with a divisor D ⊆ S,

which is defined at a point p ∈ S by h ∈ OS,p. Suppose that D is free at p and that the Jacobian

ideal Jh is radical. Further suppose that p is a non-singular point of Sing D. Then locally at p

the divisor D has normal crossings, more precisely, it is locally isomorphic to the union of two

transversally intersecting hyperplanes.

Proof. Let (x1, . . . , xn) be complex coordinates of S around p. By Proposition 2.13 the defining
ideal of (Sing D, p) is Jh. Since (Sing D, p) is smooth and of codimension 2 in (S, p), wlog.
Jh = (x1, x2) can be assumed. We use the analytic triviality criterion A.44 to show that locally
at p the divisor D is trivial along the subspace {x3 = 0, . . . , xn = 0}, such that the defining
equation h can be chosen depending only on x1, x2. Therefore it must be shown that for all
3 ≤ i ≤ n one has ∂xih ∈ m(x1, x2) and that (∂x1h, ∂x2h) = (x1, x2): since h is contained in Jh,
it can be written as h = fx1 + gx2 for some f, g ∈ OS,p. Then taking the partial derivative ∂x1h

it follows that f = ∂x1h− x1∂x1f − x2∂x1g is also contained in Jh = (x1, x2). Taking the partial
derivative ∂x2h yields that g is also contained in Jh. But then h ∈ (x1, x2)

2 and it is of the form
h = ax

2
1 + bx1x2 + cx

2
2 for some a, b, c ∈ OS,p. Then the partial derivative ∂xih for 3 ≤ i ≤ n is

∂xih = (∂xia)x
2
1 + (∂xib)x1x2 + (∂xic)x

2
2 ∈ m(x1, x2).

With Nakayama’s lemma, applied to the OS,p/m = C-vector space Jh/mJh, it follows that Jh

is minimally generated by ∂x1h, ∂x2h. The triviality lemma implies that one can find locally
at p a biholomorphic map ϕ such that h ◦ ϕ(x1, . . . , xn) = h(x1, x2, 0, . . . , 0) defines a divisor
isomorphic to D and the germ (D, p) is locally isomorphic to some (D

� × Cn−2
, (0, 0)), where

D
�
= {h ◦ ϕ(x1, . . . , xn) = 0}. Hence we can consider the problem in dimension 2 and p with

coordinates (x1, x2). Now Proposition 2.15 tells us that D
�
= {h◦ϕ = 0} has normal crossings at

p, that is, one can find coordinates (y1, . . . , yn) at p such that h = h(y1, y2, . . . , yn) = y1y2.

2.3.1 Gorenstein singularities

A particular class of Cohen–Macaulay rings are the so-called Gorenstein rings. We prove here
Thm. 2.1 for OSing D,p Gorenstein of dimension (n− 2). In general, Gorenstein rings lie between
complete intersections and Cohen–Macaulay rings. However, in our situation, where the Jacobian
ideal defining OSing D,p has depth two in OS,p, one sees that Gorenstein rings are complete
intersection rings, that is, the Jacobian ideal can be minimally generated by two elements. Then
we can generalize the methods from the preceding section to show the following:

Proposition 2.18. Let (S, D) be the pair of an n-dimensional complex manifold together with

a divisor D ⊆ S and D = {h = 0} at a point p. Suppose that Jh is radical and OSing D,p is a

Gorenstein ring of Krull-dimension n − 2. Then (Sing D, p) is smooth and D has locally at p

normal crossings.

First let us consider a possible counter-example to this proposition:
Example 2.19. (The cusp) The cusp in (C3

, 0) cannot be the Jacobian ideal of a divisor (D, 0): the
cusp is defined by I = (x

3
1−x

2
2, x3). By Serre’s theorem (Thm. 2.21) below O/I is Gorenstein but

clearly not regular. In order that I equals Jh for some h ∈ O one must have ∂xih = ai1(x
3
1−x

2
2)+

ai2x3, for i = 1, 2, 3. Now consider the C-vector space I/mI. Since O is a local ring, Nakayama’s



48 Algebraic characterization of normal crossing divisors

lemma yields that x
3
1 − x

2
2, x3 form a basis of this vector space. From the Poincaré lemma (see

Lemma 3.5) it follows that the three functions f1, f2, f3 are partial derivatives ∂x1h, ∂x2h, ∂x3h

if and only if ∂x2f1 = ∂x1f2, ∂x1f3 = ∂x3f1, ∂x3f2 = ∂x2f3. Writing out these conditions for the
three functions ai1(x

3
1−x

2
2)+ ai2x3 it follows that a11(0) = a21(0) = a12(0) = a22(0) = 0. Hence

modulo m the system of equations for the ∂xih looks as follows:



0 0

0 0

a31(0) a32(0)



 (x
3
1 − x

2
2, x3)

T
= (∂x1h, ∂x2h, ∂x3h)

T
.

But this contradicts the fact that the ∂xih generate I. Hence I cannot be the Jacobian ideal Jh

of some reduced h.
We need some terminology concerning Gorenstein rings. Good references for the use and prop-
erties of Gorenstein rings are [8, 32,56].

Definition 2.20. Let R be a zero-dimensional local ring. Then R is said to be Gorenstein if R

is injective as an R-module. A local ring (R,m) of depthR = d is Gorenstein if for some maximal
regular sequence x1, . . . , xd ∈ m the ring R/(x1, . . . , xd) is Gorenstein.

Theorem 2.21 (Serre). Let R be a regular local ring and I ⊆ R an ideal with depth(I, R) = 2.

Then R/I is Gorenstein if and only if I is generated by a regular sequence of length 2.

Proof. See [32, Cor. 21.20].

Lemma 2.22. Let (S, D) be as before, with dim S = n and D = {h = 0} at a point p =

(x1, . . . , xn). Suppose that the Jacobian ideal Jh = (∂x1h, . . . , ∂xnh) is radical and OSing D,p is

Gorenstein of dimension (n− 2). Then Jh can be generated by two derivatives ∂xih, ∂xj h.

Proof. Since OS,p/Jh is Gorenstein, Thm. 2.21 yields that Jh is generated by a regular sequence
f, g in m. Then there exists an (n× 2)-matrix A ∈ Mn,2(OS,p) such that

A(f, g)
T

= (∂x1h, . . . , ∂xnh)
T
.

Consider the OS,p/m-module Jh/mJh. The above equation reads as

A(f, g)
T

= (∂x1h, . . . , ∂xnh)
T

with A ∈ Mn,2(C), since OS,p/m = C. Then we have a solvable linear system of equations
with coefficients in C. Thus A must have rank 2, that is, it has two linearly independent rows.
Suppose that the first two rows are linearly independent. Then they can be transformed into
the identity matrix Id2 by elementary row operations and the other rows can be made equal
to zero. Thus f and g are C-linear combinations of ∂x1h and ∂x2h modulo mJh, that is, ∂x1h

and ∂x2h generate Jh/mJh. This means Jh = (∂x1h, ∂x2h) + mJh (as OS,p-modules). Applying
Nakayama’s lemma to the local ring (OS,p,m) yields Jh = (∂x1h, ∂x2h).

First proof of Prop. 2.18. From Lemma 2.22 it follows that Jh can be generated by two deriva-
tives of h, wlog. Jh = (∂x1h, ∂x2h). Hence one has ∂xih = ai∂x1(h) + bi∂x2(h), ai, bi ∈ OS,p, for
3 ≤ i ≤ n. Consider vector fields δi = ∂xi−ai∂x1−bi∂x2 for 3 ≤ i ≤ n. Since δi(h) = 0, it follows
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that δi ∈ DerS,p(log D). Evaluation of these n − 2 vector fields at 0 shows that δ3(0), . . . , δn(0)

are C-linearly independent vectors in (S, p) ∼= (Cn
, 0). Thus Rossi’s theorem can be applied

(see [77]): locally at p the germ (D, p) is isomorphic to (D
� × Cn−2

, (0, 0)), where D
� is locally

contained in C2. Hence the problem has been reduced to dimC S = 2. Then Prop. 2.15 shows that
locally at p the divisor D is isomorphic to the union of two transversally intersecting hyperplanes.
Hence the proof is complete.

Remark 2.23. Instead of using Rossi’s theorem in the above proof, we could use the argument
in Lemma 2.3 of [22] and apply induction.
For the second proof we use the notion of primitive ideal: it was introduced by Pellikaan and
Siersma (see [75] and references therein) in order to study analytic functions with given singular
locus of dimension greater than 0.

Definition 2.24. Let OS,p be the local ring at a point p in a complex manifold S of dimension
n, f ∈ OS,p define a divisor {f = 0} and I ⊆ OS,p an ideal. Denote by Jf = (∂x1f, . . . , ∂xnf)

the Jacobian ideal of f . The primitive ideal
�

I of I in OS,p is defined as
�

I = {f ∈ OS,p : (f) + Jf ⊆ I}.

The primitive ideal
�

I is again an ideal: if f, g ∈
�

I then the ideal (f +g)+Jf+g is contained in
(f+g)+Jf +Jg ⊆ I and if f is in

�
I and g ∈ OS,p then (fg)+Jfg ⊆ (fg)+fJg+gJf ⊆ f+Jf ⊆ I.

One has the inclusion of ideals I
2 ⊆

�
I ⊆ I.

In general,
�

I is hard to determine but if I is radical, then it is characterized by (cf. [75, Prop.
1.6.]): �

I = I
(2)

.

Here I
(k) denotes the k-th symbolic power of I: for a prime ideal p, the k-th symbolic power

is defined as p(k)
:= O ∩ (pkOp) and for a radical ideal I as I

(k)
= p

(k)
1 ∩ · · · ∩ p

(k)
m , where

I = p1 ∩ · · · ∩ pm is the irredundant prime decomposition of I. In the case of Gorenstein
singularities the primitive ideal can be described quite explicitly (also see [75]):

Proposition 2.25. Let I be a radical ideal in OS,p that defines a Gorenstein singularity (X, p),

that is, OX,p := OS,p/I is a Gorenstein ring, and suppose that depth(I,O) = 2. Then
�

I = I
2

holds.

Proof. By definition of
�

I, the inclusion I
2 ⊆

�
I always holds. Since I has height 2 and O/I is

Gorenstein, by Serre’s theorem, I defines a complete intersection. Thus one can assume that I

is generated by a regular sequence g1, g2 ∈ O. Let now f be an element of
�

I, then f is clearly
also contained in I. Hence f = a1g1 + a2g2 for some ai ∈ O. By definition of the primitive ideal,
Jf is also contained in I, which means that ∂xj f ∈ I for all j = 1, . . . , n. Differentiating f yields

∂xj f = (∂xj a1)g1 + (∂xj a2)g2 + a1(∂xj g1) + a2(∂xj g2),

hence a1(∂xj g1) + a2(∂xj g2) ∈ I. Denote a = (a1 mod I, a2 mod I) and consider the exact
sequence

O2
X,p

dg �� On
X,p

�� ΩX,p �� 0 ,
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where dg : (a, b) �→ (a(∂x1g1)+ b(∂x1g2), . . . , a(∂xng1)+ b(∂xng2))
T . One sees that a is contained

in ker(dg). But by [60, 6.B] dg is injective and hence a1, a2 have to be contained in I. This
implies f ∈ I

2.

Remark 2.26. The preceding proposition can be generalized in two ways: first if I is radical of
arbitrary height ≤ n and defines a complete intersection, then with the analogous proof one can
show that I

2
=

�
I. Second if I is radical of depth ≤ 3 and O/I is Gorenstein then, with an

argument in [51] one can also show that I
2

=
�

I.

Lemma 2.27. Let f ∈ OS,p be a non-unit and (x1, . . . , xn) complex coordinates around p.

(i) ∂xsxtf �∈ m if and only if in the equation of f the monomial xsxt has a non-zero coefficient.

(ii) f is of the form (possibly after a linear change of coordinates)

f =

n�

i=1

aixi +

n�

i=1

bix
2
i + f̃ ,

where ai, bi ∈ C and f̃ ∈ m3
, that is, f contains no mixed quadratic terms.

Proof. Straightforward computation.

Second Proof of Prop. 2.18. The Jacobian ideal Jh = (∂x1h, . . . , ∂xnh) ⊆ OS,p is radical, of
depth 2 in OS,p and OSing D,p is Gorenstein. We show that (D, p) is analytically trivial near p

along the subspace {x3 = · · · = xn = 0} and thus reduce the problem to dimension 2. For this
the triviality criterion A.44 is used: it must be shown that ∂xih ∈ mJh for i ≥ 3. By Lemma 2.27
we may suppose that h has no mixed quadratic terms, that is, ∂xixj h ∈ m. From Lemma 2.22
it follows that Jh can be generated by two derivatives, wlog. Jh = (∂x1h, ∂x2h). Since h ∈

�
Jh,

Prop. 2.25 implies that h is contained in J
2
h. Thus it is of the form

h = a(∂x1h)
2

+ b(∂x1h)(∂x2h) + c(∂x2h)
2
,

with a, b, c ∈ OS,p. But then for all i ≥ 3, it follows that

∂xih =∂xia(∂x1h)
2

+ 2a(∂x1h)(∂x1xih) + (∂xib)(∂x1h)(∂x2h)+

+ b(∂x1xih)(∂x2h) + b(∂x1h)(∂x2xih) + (∂xic)(∂x2h)
2

+ 2c(∂x2h)(∂x2xih).

Noting that J
2
h ⊆ mJh, it is easily seen that each summand of ∂xih is in mJh and thus ∂xih ⊆ mJh.

This shows that D is trivial along {x3 = · · · = xn = 0}, which implies that locally at p one can
find coordinates (y1, . . . , yn) such that h(y1, . . . , yn) = h(y1, y2, 0, . . . , 0). Thus the problem has
been reduced to dim S = 2. Then Prop. 2.15 shows that locally at p the divisor D is isomorphic
to the union of two transversally intersecting hyperplanes.

Unfortunately not all Cohen–Macaulay rings are Gorenstein. One could try to construct a
hypersurface, whose singular locus OSing D is reduced of dimension (n − 2) but locally not a
complete intersection Cohen–Macaulay ring. In concrete examples one sees that this will not be
the case:
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Example 2.28. (The singular cubic space curve) One of the first non-trivial examples for this
situation would be a surface in C3, whose singular locus is a singular Cohen–Macaulay curve,
whose ideal can minimally generated by more than two elements. A classical example for such
a curve is the singular cubic space curve. Recall, that the singular cubic is given by the ideal
I = (x

3 − yz, y
2 − xz, z

2 − x
2
y) in O = C{x, y, z}. Its coordinate ring O/I is Cohen–Macaulay

but ideal-theoretically I is not a complete intersection. We show that the ideal I defining the
twisted cubic space curve cannot be the Jacobian ideal of a surface D in (C3

, 0).
Direct computation, using an analogous argument as in Example 2.19, shows that f1 = x

3 −

yz, f2 = y
2 − xz, f3 = z

2 − x
2
y cannot be partial derivatives of an h ∈ O: if there exists an h

such that I = (∂xh, ∂yh, ∂zh) then

(∂xh, ∂yh, ∂zh)
T

= Af
T
,

where A is a 3×3 matrix with entries in O and f denotes the vector (f1, f2, f3). By Nakayama’s
lemma A is even contained in GL3(O), which implies that A(0) (the evaluation of the matrix
A at 0) is in GL3(C). Using the three necessary and sufficient conditions ∂xyh = ∂yxh, ∂xzh =

∂zxh, ∂yzh = ∂zyh (see Lemma 3.5) one finds that the constant terms of the entries a12, a22, a32 ∈

O of A are equal to zero. Hence A(0) cannot be invertible and there does not exist an h such
that I = Jh.

2.3.2 Hyperplane arrangements

Hyperplane arrangements are finite unions of hyperplanes in a vector space. They can be de-
scribed by combinatorial means by their so-called intersection lattice and are object of study in
many fields of mathematics. For an introduction to hyperplane arrangements see e.g. [74,91]. For
hyperplane arrangements one can often find formulas to explicitly compute singularity invariants,
like multiplier ideals, zeta-functions or b-functions, see e.g. [16] and references therein. Some of
these invariants are even combinatorial, that is, they only depend on the lattice associated to the
arrangement. An open question in this context is if the freeness of an hyperplane arrangement
is a combinatorial property, see [85]. Free arrangements were first studied by Terao [94], where
he also proved the Cohen–Macaulayness of the Jacobian ideal of a free hyperplane arrangement.
Wakefield and Yoshinaga [99] have proved that a central hyperplane arrangement can be recon-
structed from its Jacobian ideal.

Here we prove Theorem 2.1 for hyperplane arrangements and a slight generalization thereof.
First some terminology: A hyperplane arrangement D is a finite collection of affine hyperplanes
in an n-dimensional vector space V over a field k. When each hyperplane contains the origin,
one speaks of a central arrangement. One fixes affine coordinates (x1, . . . , xn) for V

∗, where V
∗

denotes the dual vector space to V . Then one considers S := Sym(V
∗
) ∼= k[x1, . . . , xn]. The

hyperplane arrangement D =
�m

i=1 Hi is defined by a (reduced) equation {
�m

i=1 li = 0} where
each li is a polynomial of degree 1 in k[x1, . . . , xn] and corresponds to the hyperplane Hi.
Logarithmic differential forms, freeness, etc. are defined according to the general case, which we
have already presented in Chapter 1.

Proposition 2.29. Let D be a central hyperplane arrangement in Cn
, defined by the reduced

equation h = h1 . . . hm where each hi is a homogeneous polynomial of degree 1 in k[x1, . . . , xn].
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Let J = (∂x1h, . . . , ∂xnh) be the Jacobian ideal of h. Then OSing D = k[x1, . . . , xn]/J is Cohen–

Macaulay, J has depth 2 in k[x1, . . . , xn] and is radical if and only if D is a normal crossings

arrangement.

Remark 2.30. Note that Aleksandrov’s theorem also holds in the affine case, see [4]. Also by
Terao’s result [94] the Jacobian ideal of a free hyperplane arrangement is Cohen–Macaulay.

Proof. Since the statement is local, we may assume that D is defined at a point p by some
h = h1 · · ·hm, each hi linear and corresponding to Di. The number m depends on the chosen
point p. By definition the components of D are smooth and any two of them meet transversally. In
order to apply Thm. 1.42 we only have to show that the dimension of an intersection Di∩Dj∩Dk

is less than or equal to n− 3 for i �= j �= k and i, j, k ∈ {1, . . . ,m}. Let Sing D =
�l

i=1 Ci be the
decomposition of Sing D into irreducible components Ci, where each Ci is defined by a prime
ideal pi of depth 2 in OS,p. Suppose that C1 were the intersection of k ≥ 3 hyperplanes. Since
dim(Ci ∩ Cj) ≤ n − 3 for all i �= j one can find a point p in C1\

�l
i=2 Ci. Since C1 is the

intersection of linear subspaces of Cn, it is again a linear subspace and hence smooth. Thus
w.l.o.g. at p, we can choose p1 = (x1, x2) to be the defining ideal of C1, where (x1, . . . , xn) are
the affine coordinates of Cn at p. We can also assume that h1 = x1, h2 = x2 and hi = aix1 +bix2

with ai, bi �= 0. The defining ideal of Sing D at p is

J =(x2h3 · · ·hm + a3x1x2h4 · · ·hm + . . . + amx1x2h3 · · ·hm−1,

x1h3 · · ·hm + . . . + bmx1x2h3 · · ·hm−1).

Clearly J ⊆ (x1, x2)
m−1 � (x1, x2), which implies that J is not radical at p. Contradiction.

Now all conditions of Thm. 1.42 (iv) are satisfied, that is, the components Di of D are smooth
(and thus normal), Di and Dj intersect transversally and dim(Di ∩Dj ∩Dk) ≤ n− 3. Thus, by
this theorem, Ω

1
Cn,p(log D) is generated by closed forms for all p. Since by assumption OSing D,p

is Cohen–Macaulay and depthJ = 2, Thm. 2.6 ensures that D is a free divisor. Note that by
Lemma 1.53 one can find a basis of Ω

1
Cn,0 consisting of closed forms. Hence by Thm. 1.52 these

conditions imply that D has normal crossings.

Remark 2.31. Splayed divisors provide an alternative proof of this result, see the second corollary
to Prop. 2.48.
As a generalization we can prove Theorem 2.1 for a divisor D that is locally the union of normal
divisors with essentially the same method as in the hyperplane arrangement case.

Proposition 2.32. Let D be a divisor in S, dim S = n, that has locally at a point p irreducible

components (D1, p)∪ . . .∪ (Dm, p) such that each Di is normal. If D is a free divisor with radical

Jacobian ideal then D has normal crossings at p.

Proof. Another application of Theorems 1.42 and 1.52 proves the assertion. For Thm. 1.42 (iv)
it only remains to show that any two components Di, Dj intersect transversally outside an
(n − 3)-dimensional closed analytic subset and that dim(Di ∩ Dj ∩ Dk) ≤ n − 3 for different
i, j, k. Denote by Di ∩ Dj = Cij the (n − 2)-dimensional intersection of Di and Dj . Since
the Jacobian ideal is radical and of depth 2, Cij is a union of irreducible (n − 2)-dimensional
irreducible components and we can find a smooth point q near p on Cij . Moreover, the smooth
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points on Cij form an open dense subset of dimension n− 2. If Di and Dj meet tangentially at
q then we may assume that Di = {x1 = 0} and Dj = {xm

2 − x1 = 0}. Then the Jacobian ideal
is Jh,q = (x

m
2 − 2x1, x1x

m−1
2 ), which is clearly not radical. Contradiction.

If dim(Di∩Dj∩Dk) = n−2 then Di∩Dj∩Dk = Cijk would be a union of irreducible components
of Sing D. Again, we can find a smooth point q ∈ Cijk near p where wlog. Jh,q = (x1, x2).
But then we are in the 2-dimensional case and Lemma 2.17 or alternatively Prop. 2.15 shows
a contradiction. Hence all conditions of Theorem 1.42 (iv) are satisfied and the rest of our
argument is the same as in the hyperplane arrangement case: one can find a basis of closed forms
of Ω

1
S,p(log D) and by Thm. 1.52 D has normal crossings at p.

2.4 The general case of Thm. 2.1

We are now approaching the proof of the general case of the implication (2) ⇒ (1) of Theorem
2.1. Therefore we reduce the problem in this section to the case of an irreducible divisor, which
will be treated similarly like the results on the logarithmic residue from Chapter 1. The goal
is to show that if a reducible divisor is free and has radical Jacobian ideal then already each
of its irreducible components has both properties. This is essentially the content of Prop. 2.48.
In order to achieve a proof of this statement, we introduce so-called splayed divisors, which are
divisors whose defining equation h can be factored into h = h1h2 such that the hi have separated
variables (probably after a coordinate change). Thus splayed divisors are a generalization of the
union of transversally intersecting smooth divisors. First it is shown that a splayed divisor is free
and has radical Jacobian ideal if and only if its splayed components have these two properties
(Lemma 2.38). Then we show that a divisor that is a union of two components and that has
radical Jacobian ideal is splayed (Lemma 2.40). Along the way we obtain a characterization of
splayed divisors in terms of their Jacobian ideals (see Thm. 2.43), namely, h1h2 defines locally a
splayed divisor if and only if its Jacobian ideal satisfies the so-called Leibniz property

Jh1h2 = h1Jh2 + h2Jh1 .

For this section we use the following notation: if a divisor D is the union of some
�m

i=1 Di, where
the Di do not have to be irreducible but have no common components, then we denote their
respective equations at a point p by h1, . . . , hm, where hi ∈ OS,p. Then D = {h = h1 · · ·hm = 0}.
The Jacobian ideal of Di is denoted by Jhi = (∂x1hi, . . . , ∂xnhi) and the Jacobian ideal of D is
denoted by Jh1···hm = Jh = (∂x1h, . . . , ∂xnh).

2.4.1 Splayed divisors

Here splayed divisors are introduced and we show the two properties we are interested in: a
splayed divisor is free if and only if its components are and a splayed divisor has radical Jacobian
ideal if and only if all its splayed components have radical Jacobian ideal. However, splayed divi-
sors are certainly interesting in their own right since they are a natural generalization of normal
crossing divisors to divisors with singular components. In Chapter 3, we will consider singularity
invariants of splayed divisors, in particular, we find that their Hilbert–Samuel polynomials satisfy
an additivity condition.
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Definition 2.33. Let D be a divisor in a complex manifold S, dim S = n. The divisor D is called
splayed at a point p ∈ S (or D is a splayed divisor at p) if one can find coordinates (x1, . . . , xn)

at p such that (D, p) = (D1, p) ∪ (D2, p) is defined by h(x) = h1(x1, . . . , xk)h2(xk+1, . . . , xn),
1 ≤ k ≤ n − 1, where hi is the defining reduced equation of Di. Note that the hi are not
necessarily irreducible. The splayed components D1 and D2 are not unique. Splayed means that
D is the union of two products: since h1 is independent of xk+1, . . . , xn, the divisor D1 is locally
at p a product (D

�
1, 0)× (Cn−k

, 0), where (D
�
1, 0) ⊆ (Ck

, 0) (and similar for D2).

Example 2.34. (1) Let (D, 0) be the divisor in (C2
, 0) defined by h1h2 = x(y− x

2
). Since D has

normal crossings at the origin, D is splayed.
(2) Let D = {(x3 − y

2
)(z

2 − w
2
) = 0} ⊆ C4. Then D is splayed with splayed components

h1 = x
3 − y

2 and h2 = z
2 − w

2.
(3) The divisor D = {(x − y

2
)zw = 0} is splayed in (C4

, 0) but its splayed components are not
unique, e.g. h1 = x− y

2 and h2 = zw or h1 = (x− y
2
)w and h2 = z.

(4) The divisor D = {(x − y
2
)yz = 0} is also splayed in (C3

, 0) with components given by
h1 = (x− y

2
)y and h2 = z.

Let S, T be complex manifolds of dimensions n, m and suppose that (S×T, 0) ∼= (Cn+m
, 0), with

complex coordinates (x, y) = (x1, . . . , xn, y1, . . . , ym) at the origin. Let (D
x
1 , 0) be a divisor in

(S, 0), which is defined by a reduced g
�
(x) ∈ OS,0

∼= C{x1, . . . , xn} and which has a logarithmic
derivation module over C{x} denoted by DerS,0(log D

x
1 ). Then we may consider the cylinder over

D
x
1 in the T -direction in (S × T, 0), namely the hypersurface D1 defined by g(x, y) = g(x, 0) :=

g
�
(x) ∈ C{x, y}. It is easy to see that

DerS×T,0(log D1) = (DerS,0(log D
x
1 )⊗C{x} C{x, y})⊕ (DerT,0⊗C{y}C{x, y}).

Similarly define D
y
2 and D2 with equations h

�
(y) = h(x, y) and also DerS×T,0(log D2). Note

that both g, h are reduced and have no common factor. Thus we define the (splayed) divisor
D = D1 ∪D2 in S × T that is given at 0 by the equation gh = 0. Since g and h have separated
variables, there is a natural splitting of DerS×T,0(log D): by definition for any element δ = δg +δh

of DerS×T,0(log D), where δg :=
�n

i=1 ai∂xi and δh :=
�m

j=1 bj∂yj for some ai, bj ∈ C{x, y}, one
has

δ(gh) = hδg(g) + gδh(h) = agh, (2.1)
for some a ∈ OS,p. Dividing (2.1) through g or h this implies that δg(g) is divisible by g, that
is, δg(g) ∈ (g) in C{x, y} and also that δh(h) ∈ (h) in C{x, y}. Therefore each element δ of
DerS×T,0(log D) can be written uniquely as δ = δg + δh. Conversely, a computation shows that
for any η1 ∈ DerS,0(log D

x
1 )⊗C{x} C{x, y} and η2 ∈ DerT,0(log D

y
2)⊗C{y} C{x, y} the vector field

η1 + η2 is contained in DerS×T,0(log D). Hence it follows that

DerS×T,0(log D) = (DerS,0(log D
x
1 )⊗C{x} C{x, y})⊕ (DerT,0(log D

y
2)⊗C{y} C{x, y}). (2.2)

Remark 2.35. The concept of splayed divisors was also studied by J. Damon under the name
product union, see [24].

Lemma 2.36. Let D1, D2 be divisors in some S × T ∼= Cn × Cm
and D = D1 ∪D2 be splayed

at a point p = (x1, . . . , xn, y1, . . . ym) defined locally by D1 = {g(x) = 0}, D2 = {h(y) = 0} resp.

D = {g(x)h(y) = 0} with g, h ∈ OS×T,p
∼= C{x, y} . If Jg and Jh are both radical ideals then

Jgh = (g, h) ∩ Jg ∩ Jh.
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Proof. First note that (g, h) is a radical ideal (see Remark 2.37). As D is splayed, it follows that
Jgh = gJh + hJg. From Jg and Jh radical follows g ∈ Jg and h ∈ Jh (see Prop. 2.13). Thus it
is clear that Jgh is contained in (g, h) ∩ Jg ∩ Jh. Conversely, suppose that α is an element in
(g, h) ∩ Jg ∩ Jh. Then α can be written as

α = ag + bh =

n�

i=1

ai∂xig =

m�

j=1

bi∂yj h

for some a, b, ai, bj ∈ C{x, y}. The element α − ag = bh is contained in Jg since g ∈ Jg. The
ideal Jg can be written as an intersection of prime ideals p1 ∩ · · · ∩ ps where all pi are in C{x}.
Because g and h have separated variables, we have h �∈ pi for any i = 1, . . . , s. However, bh must
be contained in each of the pi. Thus it follows that b has to be contained in each pi, which means
nothing else but b ∈ Jg. Interchanging the role of g and h yields a ∈ Jh. Hence α is contained
in hJg + gJh = Jgh, which had to be shown.

Remark 2.37. In most textbooks it is shown that the tensor product A ⊗k B of two reduced
finitely generated k algebras A, B is again reduced. Here, one has to assume that k is a perfect
field. A sketch of the proof is as follows: if A is reduced, then also K ⊗k A is reduced for all
extension fields K ⊇ k, see [10, ch. 5,§15]. So choose a k-basis (vi) of A (as a vector space)
and suppose that α =

�
i vi ⊕ bi is a non-zero nilpotent element in A ⊗k B. We may suppose

that there exists a maximal ideal m in B, which does not contain b1 �= 0 (this holds because
for a reduced finitely generated algebra the intersection of its maximal ideals is just 0). Then
α ∈ A⊗k (B/m) is nilpotent and not equal to 0. But B/m is a field and so this is a contradiction
to the fact that for all field extensions of k the tensor product is reduced.
A general proof that the tensor product of reduced k algebras is again reduced can be found in
Bourbaki [10, Ch. 5, §15,Thm. 3]. For reduced analytic algebras there is also a proof with the
help of Grauert’s division theorem, which can be found in [27, Thm. 7.3.5.]. For local analytic
algebras A, B a theory about the analytic tensor product was developed in [44, III, §5].

Lemma 2.38. Let D1, D2 and D be splayed divisors in S defined as in Lemma 2.36.

(a) The Jacobian ideal of D, denoted by Jgh = (∂x1gh + g∂x1h, . . . , ∂ymgh + g∂ymh) is radical if

and only if both Jh and Jg are also radical.

(b) The splayed divisor D = {g(x)h(y) = 0} is free if and only if D1 = {g(x) = 0} and

D2 = {h(y) = 0} are both free.

Proof. (a): Suppose that Jg and Jh are radical. By Lemma 2.36 the ideals Jgh and (g, h)∩Jg∩Jh

are equal. We compute its radical
�

Jgh =

�
(g, h) ∩ Jg ∩ Jh =

�
(g, h) ∩

�
Jg ∩

�
Jh = (g, h) ∩ Jg ∩ Jh = Jgh,

where the second equality holds because the radical of an intersection of ideals is equal to the
intersection of the radicals of these ideals (easy computation) and the third equality because of
our assumptions. Conversely, suppose that Jgh =

�
Jgh. Then gh is an element of Jgh and the

ideal Jgh can be generated by

Jgh = (gh, (∂x1g)h, . . . , (∂xng)h, (∂y1h)g, . . . , (∂ymh)g).
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Localization of C{x, y} in g yields (Jgh)g = ((h) + Jh)g, which is radical, since Jgh is radical.
Note that for an ideal I ⊆ C{x, y}, we denote by Ig the localization of I in g (cf. Appendix A).
The ideal ((h) + Jh) in C{x, y} can be written as a minimal irredundant primary decomposition
q1 ∩ · · ·∩ qm of primary ideals with associated prime ideals p1, . . . , pm. Since h only depends on
y, all the pi and qi are elements of C{y1, . . . , ym}. Hence no power of g is contained in any of
the pi, and it follows that

((h) + Jh)g = (q1)g ∩ · · · ∩ (qm)g = (p1)g ∩ · · · ∩ (pm)g,

where no (qi)g is the whole ring. Let now α ∈ OS,p be an element of the radical of ((h) + Jh).
This means that there exists an integer k such that α

k ∈ ((h) + Jh). Then (α/1)
k ∈ ((h) + Jh)g

and since this ideal is radical also α ∈ ((h) + Jh)g holds. Thus α is contained in any (pi)g.
Therefore (by definition of localization) the equality

α =
ai

gt

holds for some ai ∈ pi and some t ∈ N and there exists a u ∈ N such that g
u
(αg

t− ai) = 0. This
implies αg

u+t ∈ pi. But g and h have separated variables, hence α is contained in pi for any i.
This shows the radicality of ((h) + Jh). Similarly one proves ((g) + Jg) =

�
((g) + Jg).

(b): If both D1 and D2 are free then there exist bases of DerS×T,p(log D1) and DerS×T,p(log D2)

of the form

δ1 =

n�

i=1

a1i∂xi , . . . , δn =

n�

i=1

ani∂xi , δn+1 = ∂y1 , . . . , δn+m = ∂ym

and

ε1 = ∂x1 , . . . , εn = ∂xn , εn+1 =

m�

i=1

bn+1,i∂yi , . . . , εn+m =

m�

i=1

bn+m,i∂yi .

It is easy to see that any δi for 1 ≤ i ≤ n and any εj for n + 1 ≤ j ≤ n + m is also an element of
DerS×T,p(log D) (direct computation, using separated variables, see the discussion at the begin-
ning of this section). By Saito’s criterion (Thm. 1.19) it follows that δ1, . . . , δn, �n+1, . . . , �n+m

form a basis of DerS×T,p(log D). Conversely, suppose that DerS×T,p(log D) is free. From (2.2)
we know that

DerS×T,p(log D) ∼= (DerCn,0(log D
x
1 )⊗C{x} C{x, y})⊕ (DerCm,0(log D

y
2)⊗C{y} C{x, y}).

Since DerS×T,p(log D) is a free module, it follows that DerCn,0(log D
x
1 )⊗C{x} C{x, y} and

DerCm,0(log D
y
2) ⊗C{y} C{x, y} are projective OS×T,p-modules. Since the notion of projective

and free module over regular local rings coincide (see Appendix A), these two modules are even
free.

2.4.2 Killing components of divisors

In this section we show that the properties of freeness and radical Jacobian ideal of a divisor are
preserved under adding to or subtracting components from the divisor. Suppose that the divisor
D ⊆ S, with dim S = n, is given locally at a point p = (x1, . . . , xn) by

D = {g(x1, . . . , xn)h(x1, . . . , xn) = 0},
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with g, h ∈ OS,p reduced but not necessarily irreducible and with no common factors. Then
(D, p) is a union (D1, p) ∪ (D2, p) of D1 = {g = 0} and D2 = {h = 0} near p. Here we ask for
conditions and a characterization when D is splayed.

Definition 2.39. Let D1 = {g = 0}, D2 = {h = 0} and D = {gh = 0} at p be defined as above.
We say that Jgh satisfies the Leibniz property if

Jgh = gJh + hJg.

We show a characterization of splayedness by Jacobian Ideals, by the Leibniz property. This
property makes it easy to check in concrete examples whether a divisor is splayed.

The goal of this section is to show that a reducible free divisor with radical Jacobian ideal is
splayed. First an ideal-theoretic characterization of splayedness is proven (Lemma 2.40). Then
it is shown that a divisor is splayed if and only if it has the Leibniz property (Theorem 2.43).
Finally we show that if Jgh is radical then it satisfies the Leibniz property and is thus splayed
(Prop. 2.48).

Lemma 2.40. Let dim S = n and at a point p = (x1, . . . , xn) denote by OS,p = C{x1, . . . , xn}

(in short: O = C{x}) the local ring at p. Let D1 = {g(x) = 0}, D2 = {h(x) = 0} and

D = {gh(x) = 0} be divisors, where we assume that g, h ∈ OS,p are reduced and have no

common factors. Then D is locally at p splayed if and only if

(g) ∩ ((gh) + Jgh) = g((h) + Jh).

Remark 2.41. The idea to consider the equality of these two ideals comes from the case when
one component is smooth, that is, if g = x1. Then it is rather easy to see that a splayed divisor
D = {x1h = 0} satisfies (x1) ∩ ((x1h) + Jx1h) = x1((h) + Jh).

Proof. If D is splayed, we can suppose wlog. that D1 = {g(x, 0) = 0} and D2 = {h(0, x) = 0}

where (x) = (x1, . . . , xk, xk+1, . . . , xn). In this case (separated variables) it is easy to see that
Jgh = gJh + hJg. An element α ∈ g((h) + Jh) can be written as agh + g

�n
i=k+1 ai∂xih.

Clearly α is contained in the ideal (g) and g
�n

i=k+1 ai∂xih ⊆ gJh and this ideal is contained
in Jgh. Thus α is contained in (g) ∩ (gh + Jgh). If α ∈ (g) ∩ ((gh) + Jgh) we can write it as
h

�k
i=1 ai∂xig +g

�n
i=k+1 ai∂xih+agh and since α ∈ (g), it follows that g divides

�k
i=1 aih∂xig.

Therefore α = ghã + g
�n

i=k+1 ai∂xih for some ã ∈ O. Hence α is also contained in g((h) + Jh).
Conversely, suppose that

(g) ∩ ((gh) + Jgh) = g((h) + Jh). (2.3)

The assertion is shown in two steps: first one can rectify h and second is the rectification of g.
We remark that if ϕ : O → O is a local isomorphism, then ϕ((g)∩ ((gh)+Jgh)) = ϕ(g((h)+Jh))

is isomorphic to (g ◦ ϕ) ∩ ((gh ◦ ϕ) + Jgh◦ϕ) = (g ◦ ϕ) · ((h ◦ ϕ) + Jh◦ϕ). This means that (2.3)
is stable under a local algebra isomorphism of O and in particular stable under multiplication
with units.

First Step: We show that one can assume h(x1, . . . , xn) = h(0, . . . , 0, xk+1, . . . , xn) and that

∂xih �∈ (h, ∂xk+1h, . . . , �∂xih, . . . , ∂xnh) (2.4)
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for all i ∈ {k + 1, . . . , n}. If not so, suppose that e.g. ∂x1h �= 0 ∈ (∂x2h, . . . , ∂xnh). Then
by the triviality lemma A.44 there exists an algebra isomorphism ϕ : O → O such that
ϕ(x) = (x1, ϕ2(x), . . . ,ϕn(x)) and h ◦ ϕ(x) = v(x)h(0, x2, . . . , xn), with v ∈ O∗. Then set
�h := h(0, x2, . . . , xn) and �g := g ◦ ϕ. The divisor defined by �g · �h is clearly isomorphic to D, and
D1 is isomorphic to {g̃ = 0} and D2 is isomorphic to {�h = 0}. By the above remarks, equation
(2.3) also holds for �g and �h instead of g and h. If another ∂xi h̃ �= 0 were contained in the ideal

(∂x2
�h, . . . ,

�
∂xi

�h, . . . , ∂xn
�h) the triviality lemma could again be applied to �h.

Second Step: We may assume that h(x) = h(0, . . . , 0, xk+1, . . . , xn) and that (2.4) holds. Suppose
that i is an element of {k + 1, . . . , n}. Since any g∂xih ∈ g((h) + Jh), we can also write it (by
(2.3)) as

g(∂xih) = a
�

igh +

n�

j=1

aijg(∂xj h) +

n�

j=1

aijh(∂xj g).

Division through g shows that
�n

j=1 aijh(∂xj g) = ãig for some ãi ∈ O. Hence reduction of the
above equation by g yields

∂xih = aih +

n�

j=k+1

aij(∂xj h),

where ai := a
�
i + ãi. But this equation implies

(1− aii)(∂xih) = aih +

n�

j=k+1,j �=i

aij(∂xj h).

Then (1−aii) ∈ m, that is, aii ∈ O
∗, and aij ∈ m for all i, j = k+1, . . . , n, otherwise (2.4) would

be contradicted. Again from (2.3), namely,

0 = a
�

igh +

n�

j=1,j �=i

aijg(∂xj h) + (aii − 1)g(∂xj h) + h

n�

j=1

aij(∂xj g)

we get

−aiih(∂xig) = a
�

ihg + g

n�

j=1

ãij(∂xj h) + h

n�

j=1,j �=i

aij(∂xj g),

for any i = k + 1, . . . , n. Reduction of these (n− k) equations by h yields

aii(∂xig) = ãig −

n�

j=1,j �=i

aij(∂xj g), for some ãi ∈ O.

Keeping in mind that the aij for i, j ≥ k + 1 are in m we manipulate these (n − k) equations
(substituting ∂xk+1(g) the second equation, ∂xk+1(g) and ∂xk+2(g) in the third, and so on) such
that we arrive at an equation

∂xng = bng +

k�

j=1

bnj(∂xj g),
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with some coefficients bn, bnj ∈ O. Substituting back in all (n− k) equations yields

∂xig ∈ (g, ∂x1g, . . . , ∂xkg) for all i = k + 1, . . . , n.

By the triviality lemma there exists an algebra isomorphism ψ : O → O such that ψ(x) =

(ψ1(x), . . . ,ψk(x), xk+1, . . . , xn), ψ(x1, . . . , xk, 0, . . . , 0) = (x1, . . . , xk, 0, . . . , 0), v(x1, . . . , xk, 0) ≡

1 and g◦ψ = vg(x1, . . . , xk, 0). Set g̃ := v
−1

(g◦ψ) and h̃ := h◦ψ = h = h(0, . . . , 0, xk+1, . . . , xn).
By construction g̃h̃ defines a splayed divisor that is isomorphic to D such that the assertion has
been shown.

Example 2.42. Let D be the divisor in C3 given at a point p by x(x + y
2 − z

3
). Then D is the

union of two smooth components D1 = {h = x + y
2 − z

3
= 0} and H = {x = 0}. The ideal

(x) ∩ (x(x + y
2 − z

3
), Jxh) = (xy, x

2
, xz

2
) is strictly contained in (x(x + y

2 − z
3
), xJh) = (x).

Thus D is not a splayed divisor.

Theorem 2.43. Let (S, D) be a complex manifold S, dim S = n, together with a divisor D ⊆ S

that is locally at a point p = (x1, . . . , xn) ∈ S defined by {gh = 0}, where g and h are reduced

elements of OS,p that are not necessarily irreducible but have no common factor. Then D is

splayed at p if and only if Jgh satisfies the Leibniz property

Jgh = gJh + hJg.

Proof. First suppose that gJh + hJg = Jgh. By Lemma 2.40 the equality (g) ∩ ((gh) + Jgh) =

g((h) + Jh) has to be shown. So take an α ∈ g((h) + Jh), which is of the form

α = agh + g

n�

i=1

ai(∂xih),

for a, ai ∈ OS,p. One sees that gh ∈ ((gh) + Jgh) and g
�n

i=1 ai(∂xih) ∈ gJh ⊆ Jgh and hence
α ∈ ((gh) + Jgh) and also in (g). Now take a β ∈ (g)∩ ((gh) + gJh + hJg), which can be written
as

β = agh + g

n�

i=1

ai(∂xih) + h

n�

i=1

bi(∂xig).

Since β is also contained in (g) it follows that
�n

i=1 bi(∂xig) = gb̃ for some b̃ ∈ OS,p. Hence
β ∈ (gJh + (gh)) = g(Jh + h).
Conversely, let D be splayed. Then we may assume that D is given locally by

g(x1, . . . , xk, 0, . . . , 0)h(0, . . . , 0, xk+1, . . . , xn).

A direct computation shows that

∂xi(gh) = ∂xi(g)h for i = 1, . . . , k and

∂xi(gh) = g∂xi(h) for i = k + 1, . . . , n.

Thus clearly Jgh is equal to gJh + hJg.
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Remark 2.44. Note that with Theorem 2.43 we have obtained an algebraic description of splayed
divisors by their Jacobian ideals, namely that their Jacobian ideals satisfy the Leibniz property
Jgh = gJh+hJg. In Chapter 3, we will also derive an algebraic characterization of Sing D defined
by ((gh) + Jgh) of a splayed divisor, namely, D = {gh = 0} at a point p is splayed if and only if
((gh) + Jgh) = (g, h) ∩ ((g) + Jg) ∩ ((h) + Jh).

Lemma 2.45. Let D ⊆ S be a divisor given at p ∈ S by {gh = 0} with gh ∈ OS,p reduced and

suppose that Jgh is radical. Then

Jgh = gJh + hJg.

Proof. By definition Jgh = (∂x1gh+g∂x1h, . . . , ∂xngh+g∂xnh). Since Jgh is radical, it follows that
that gh ∈ Jgh (Prop. 2.13). The ideal Jgh can be written uniquely as an irredundant intersection
of prime ideals p1∩. . .∩pk∩pk+1∩. . .∩pm, where we may assume that g �⊆ pi for all i = 1, . . . , k and
that g is contained in the remaining pi. Localizing in g yields (Jgh)g = (h, ∂x1h, . . . , ∂xnh)g =

((h) + Jh)g ⊆ (OS,p)g. By Prop. A.1 one has (Jgh)g =
�m

i=1(pi)g =
�k

i=1(pi)g, since the pi

with i = k + 1, . . . ,m contain the unit of the localization. Thus ∂xj h is contained in (pi)g for
i = 1, . . . , k and for all j = 1, . . . , n. Hence

∂xj h

1
=

pi

gti

for all i = 1, . . . , k, where pi ∈ pi and ti ∈ N. This means that there exists an g
li , li ∈ N, such

that g
li(∂xj (h)g

ti−pi) = 0. Hence it follows that ∂xj (h)g
ti+li ∈ pi. Since by assumption, g is not

contained in any of the pi for i = 1, . . . , k, it follows that ∂xj h ∈ pi. Thus g∂xj (h) is contained in
all pi with i = 1, . . . , k. Further, g is contained in the remaining pi, which implies that g(∂xj h)

is contained in all associated primes of Jgh, and thus g(∂xj h) ∈ Jgh for all j = 1, . . . , n. This
yields

Jgh = (g∂x1(h), . . . , g∂xn(h), h∂x1(g), . . . , h∂xn(g)) = gJh + hJg.

Example 2.46. A splayed divisor need not have a radical Jacobian ideal, as the following example
shows. Let D be the divisor in (C3

, 0) with coordinates (x, y, z) at 0, that is defined by gh =

x(y
2
+ z

3
). Then clearly D is splayed. The Jacobian ideal is Jgh = (y

2
+ z

3
, xy, xz

2
) = (y, z

2
) ∩

(x, y
2

+ z
3
), which is not radical. Note that D is a free divisor.

Example 2.47. Let D ⊆ C3 be given at the origin by gh = x(x + y
2

+ z
3
) = 0. Then D is

not splayed at the origin. Here the intersection of the two components is given by the ideal
(g, h) = (x, y

2
+ z

3
). Also consider the divisor D

� ⊆ C3 that is given by g
�
h
�

= x(y
2

+ z
3
).

Clearly D
� is splayed at the origin and the intersection of the two components is given by the

ideal (g
�
, h
�
) = (x, y

2
+ z

3
). Here one sees that splayedness cannot be determined by just the

knowledge of the ideal of the intersection of the two components, in contrast to the case of two
smooth divisors intersecting transversally, see Chapter 3.

Proposition 2.48. Let D = D1 ∪D2 be a divisor in an n dimensional complex manifold S and

let D, D1 and D2 at a point p ∈ S be defined by the equations gh, g and h, respectively. Suppose

that Jgh is radical. Then D is splayed and Jh and Jg are also radical. If moreover D is free at

p then also D1 and D2 are free at p.
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Proof. By Theorem 2.43 and Lemma 2.45 it follows that D is locally splayed. By Lemma 2.38
also Jg and Jh are radical and from the same lemma follows that D1 and D2 are free if D is
free.

Corollary. Let D
�
= {h = 0} be a free divisor in S with Jh =

√
Jh and D the union of D

�
with

a smooth component, wlog. D = {x1h = 0}. Then D is free and Jx1h is radical if and only if D

is splayed.

Proof. Follows directly from Lemma 2.38 and Prop. 2.48.

Corollary. Let (S, D) be a complex manifold, dim S = n, together with a divisor D ⊆ S and

suppose that locally at a point p ∈ S the divisor (D, p) has the decomposition into irreducible

components
�m

i=1(Di, p) such that each (Di, p) is smooth. Let the corresponding equation of D

at p be h = h1, . . . , hm. If D is free at p and Jh =
√

Jh then D has normal crossings at p.

Proof. We use induction on n. If n = 2, then apply Prop. 2.15. Now suppose the assertion is true
for divisors in manifolds of dimension n−1. For a smooth component D1 of D, one can find local
coordinates (x1, . . . , xn) such that D1 = {h1(x1, . . . , xn) = x1 = 0}. Prop. 2.48 shows that the
divisor (D \D1) := h2 · · ·hm is also free and has a radical Jacobian ideal. Moreover, D is locally
splayed, that is, D \ D1 is locally isomorphic to some divisor depending only on the last n − 1

coordinates. Thus by induction hypothesis D \ D1 is isomorphic to a normal crossings divisor
y2 · · · ym = 0, where the yi are the result of a coordinate transformation of (x1, . . . , xn) such that
x1 = y1. Thus x1, y2, . . . , yn are also local coordinates at p. This implies that m ≤ n− 1. Hence
D is isomorphic to the normal crossings divisor x1y2 · · · ym.

In this section the problem of proving Thm. 2.1 has been reduced to the “irreducible” case:
by Prop. 2.48 a divisor D, which is a union of irreducible components, is free and has radical
Jacobian ideal if and only if all its components have these properties. Thus D can only have
smooth components and/or irreducible components with (n− 2)-dimensional singular locus. For
the irreducible case we have to show that D is free, has radical Jacobian ideal at a point and its
normalization is Gorenstein if and only if it is smooth at this point.

2.4.3 Proof of Theorem 2.1

If D has normal crossings at p, then D is free at p, that is, it is either smooth or depth(Jh,OS,p) =

2 and OSing D,p is Cohen–Macaulay (Aleksandrov’s theorem). The normalization of a normal
crossing divisor D =

�m
i=1 Di is smooth since it is the disjoint union of the smooth components

Di (cf. Example A.27). So it remains to show that for a point p ∈ Sing D the ideal Jh is radical
at p. This is done by direct computation: since D has normal crossings at p ∈ Sing D, we can
assume that D =

�m
i=1(Di, p) is given by the equation h = x1 · · ·xm, 1 < m ≤ n where each xi

corresponds to an irreducible component Di passing through p. Then

Jh =

m�

i=1

(x1 · · · x̂i · · ·xm).
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Using facts about primary decomposition of monomial ideals, see e.g. [54], it follows that

Jh =(x2, x1x3 · · ·xm) ∩ (x3 · · ·xm, x1x2x4 · · ·xm, . . . , x1 . . . xm−1)

=

m�

i=1
i �=2

(xi, x2) ∩

m�

j=1
j �=3

(xj , x3) ∩ (x4 · · ·xm, x1 · · · x̂4 · · ·xm, . . . , x1 · · ·xm−1)

=

�

1≤i<j≤m

(xi, xj).

This irredundant primary decomposition shows that Jh is the intersection of prime ideals of
height 2. Thus Jh is clearly radical.
Conversely, suppose that Jh =

√
Jh and OSing D,p is Cohen–Macaulay of dimension (n− 2) and

moreover that the normalization π∗O �D,p is Gorenstein (here π : �D → D denotes the normaliza-
tion morphism). Prop. 2.48 implies that each Di is free at p and has a radical Jacobian ideal.
So we may assume that D is irreducible. By our hypothesis, Piene’s theorem A.42 and Remark
A.43 yield the equality of ideals

CDIπO �D,p = JhO �D,p.

Since by Lemma 1.69 one has Jh = CD in OD,p, this implies CD = CDIπ in π∗O �D,p. By
Nakayama’s lemma, it follows that Iπ = O �D,p. Hence Ω

1
�D/D

= 0. If �D is smooth at π
−1

(p)

then a similar argument as in the proof of Thm. 1.63 yields that D is already smooth at p: then
O �D

∼= C{z1, . . . , zn−1} for some independent variables z1, . . . , zn−1. Hence one has an inclusion
of rings

OD,p = C{f1, . . . , fr} ⊆ C{z1, . . . , zn−1},

where f1, . . . , fr ∈ O �Di
and r ≥ n− 1. By definition one can write

0 = Ω
1
�D/D

=

n−1�

i=1

O �Ddzi/

r�

j=1

O �Ddfj .

By Nakayama’s lemma one finds n − 1 generators of OD,p, w.l.o.g., f1, . . . fn−1 such that the
Jacobian determinant ∂(f1,...,fn−1)

∂(z1,...,zn−1)
�= 0. By the implicit function theorem, f1, . . . , fn−1 are

independent variables and hence OD,p
∼= O �D is smooth. If π

−1
(p) ∈ Sing �D, then because

n−2 ≤ dim(Sing �D) and π is a finite map, one finds that dim(π(Sing �D)) = dim(Sing D) ≤ n−2.
By Theorem A.24, D is normal at p. By Aleksandrov’s theorem, D is then already smooth at
p. For (D, p) =

�m
i=1(Di, p) this means that we are in the situation of the second corollary of

Proposition 2.48 and the assertion follows.
Remark 2.49. We can also give a different proof of (2) ⇒ (1) of Thm. 2.1 using the characteri-
zation of normal crossings by the logarithmic residue of Thm. 1.63: let (D, p) =

�m
i=1(Di, p) be

the decomposition into irreducible components and suppose that Jh =
√

Jh. Then the singular
locus of the singular locus Sing(Sing D) is of dimension less than or equal to (n− 3). By Lemma
2.17, D has normal crossings at smooth points of Sing D. Hence D has normal crossings in
codimension 1. From Lemma 1.80 it follows that the logarithmic residue is holomorphic on the
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normalization, that is, ρ(Ω
1
S(log D)) = π∗O �D. Then Theorem 1.63 shows that D is a normal

crossing divisor.

Remark 2.50. We do not know whether the condition on the normalization of D in Theorem 2.1 is
necessary. If (D, p) is free and has a radical Jacobian ideal, then by Lemma 1.65 the normalization
( �D,π

−1
(p)) is Cohen–Macaulay. One can use Piene’s theorem only if �D is Gorenstein because

then the canonical sheaf ω �D is invertible. More precisely, one can prove the following: ω �D =

CDO �D if and only if �D is Gorenstein (see Prop. 3.5 of [66]). Moreover, �D is Gorenstein if and
only if it is isomorphic to the blowup of D in the conductor CD (by Thm. 2.7 of [101]).

Question 2.51. Let D ⊆ S be a divisor in a complex manifold S that is locally at a point p

given by h = 0 and denote by π : �D → D its normalization. Suppose that D is free at p and that

Jh =
√

Jh. Is then the normalization �D of D already Gorenstein at π
−1

(p)?





Chapter 3

Jacobian ideals of hypersurfaces

In this chapter we have two different aims: the first one is to classify divisors with radical
Jacobian ideals. The second one is to study two possible generalizations of normal crossing
divisors, namely splayed divisors and mikado divisors. We consider some of their properties and
also try to characterize them in terms of their singular loci given by their Jacobian ideals.
First we ask for an analogue of Theorem 2.1 for radical Jacobian ideals of higher codimension. In
low ambient dimension, that is, dim S ≤ 3 divisors with radical Jacobian ideal can be described
with the help of Thm. 2.1 (see Prop. 3.2). However, it is not clear how to classify divisors
with radical Jacobian ideal in higher dimensional ambient spaces, since then also embedded
components of the Jacobian ideal have to be taken into account. Here we have results in special
cases and conjectures for more general situations. The second topic of this chapter is splayed
divisors (also see Chapter 2), which are a natural generalization of normal crossing divisors. The
difference between the two classes of divisors is that irreducible components of splayed divisors
may have singularities. Here we present a characterization of splayed divisors in terms of their
Jacobian ideals (corresponding to the geometry) and compute their Hilbert–Samuel polynomials,
which satisfy a certain additivity property. Finally we consider another generalization of normal
crossing divisors, so-called mikado divisors. The irreducible components of a mikado divisor are
smooth and all possible intersections between them are also smooth. The difference to normal
crossing divisors is that probably more than n components can meet at a point. We give a
characterization of a mikado divisor D ⊆ S in terms of its Jacobian ideal for dim S = 2. Finally
we ask for a generalization to higher dimensions.

3.1 Radical Jacobian ideals

In Chapter 2 it was shown that if a free divisor with a Gorenstein normalization in a complex
manifold has a radical Jacobian ideal, then it is already a normal crossing divisor. Now we con-
sider a more general problem. Suppose that D is a divisor in a smooth complex n-dimensional
manifold S that is locally at a point p given by a reduced equation h ∈ OS,p = C{x1, . . . , xn}.
Denote by Jh = (∂x1h, . . . , ∂xnh) its Jacobian ideal and suppose that Jh is radical. Which ideals
I ⊆ OS,p can be such radical Jacobian ideals Jh? More precisely: given a radical ideal I ⊆ OS,p,
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when does there exist a divisor (D, p) = {h = 0} such that I = Jh?

The case of dim S = 2 was treated in Chapter 2: if D is a reduced curve in S, then its singular
locus consists of isolated points. Thus locally at such a singularity, the ideal Jh is an m-primary
ideal and if Jh =

√
Jh is radical then it has to be the maximal ideal. With the theorem of

Mather–Yau (or with the Corollary of Theorem 3.49) it follows that (D, p) is a normal crossing
singularity. For dim S = 3 we need a little preparation.

Lemma 3.1. Let (R,m) be an n-dimensional regular local ring, I ⊆ R an ideal of height (n− 1)

and suppose that R/I is reduced. Then R/I is a one-dimensional Cohen–Macaulay ring.

Proof. Since I has height (n − 1) in R and R is Cohen–Macaulay, it follows from the height-
equality that R/I is of dimension 1. Since R/I is reduced, I is radical and can be written as as a
finite intersection of minimal prime ideals p1∩· · ·∩pk, where height(pi) ≥ n−1. If height(pi) = n

holds for some i, then pi = m (any prime ideal is contained in a maximal ideal). But m cannot be
a minimal element of the primary decomposition of I since at least one pi is of height (n−1) and
hence strictly contained in m. Thus all pi have height (n− 1) and I is equidimensional. Now it
remains to show that the depth of R/I is 1. The maximal ideal of R/I is m, where m is the image
of m under the canonical projection. We show that m is not contained in Ass(R/I) = {p ∈ R

prime: p = ann(ā), for an ā ∈ R/I}. Suppose therefore that m were contained in Ass(R/I). This
means that there exists an ā �= 0 such that m · ā = 0̄. If ā �= 0̄ were also contained in m, then
ā
2

= 0̄ would hold, which is a contradiction to R/I reduced. Hence ā ∈ (R/I)
∗, that is, there

exists some b̄ ∈ R/I such that a · b = 1̄. Then ab · m = m and by Nakayama’s lemma ab = 0.
Contradiction. Thus there exists a c̄ ∈ m such that for all ā ∈ R/I we have ac �= 0̄, that is,
R/I contains a nonzerodivisor. Hence depth(R/I) ≥ 1 and since its dimension is already one, it
follows that R/I is Cohen–Macaulay.

Proposition 3.2. Let S be a 3-dimensional manifold and let D ⊆ S be a divisor such that at

a point p, D is defined by h ∈ OS,p and has radical Jacobian ideal Jh �= (1). Suppose moreover

that the normalization �D of D is Gorenstein. Then one of the two cases occurs:

(i) depth(Jh,OS,p) = 3 and (D, p) is an A1-singularity.

(ii) depth(Jh,OS,p) = 2 and D has normal crossings at p.

Proof. (i) Since Jh is of depth 3 in a three-dimensional local ring, it defines an isolated singularity.
From the radicality of Jh follows that Jh has to be the maximal ideal m ⊆ OS,p. The rest is the
content of Prop. 3.9.
(ii) If depth(Jh,OS,p) = 2, then Jh defines a reduced curve C in S. Since OS,p/Jh is a reduced
one-dimensional local ring, it is Cohen–Macaulay by Lemma 3.1. Hence it follows by Theorem
2.1 that D has normal crossings at p.

Question 3.3. Does there exist a surface (D, p) ⊆ (C3
, p) such that (D, p) is free and Jh =

√
Jh �= (1) but ( �D, p̃) is not Gorenstein?

For dim S ≥ 4 the situation is more complicated. We split this part into two subsections.
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3.1.1 Singular locus of codimension 1

This question was already considered, in case Jh =
√

Jh, depth(Jh) = 2 and OS,p/Jh is Cohen–
Macaulay: then the equation h = 0 locally defines a normal crossing divisor D, that is, there
exist complex coordinates (x1, . . . , xn) such that h = x1 · · ·xm, for some m ≤ n. Then the
Jacobian ideal has the prime decomposition Jh =

�
i<j≤m(xi, xj), which means that Sing D is

locally at p the union of
�m

2

�
smooth codimension 2 subvarieties of S. However, if we drop the

Cohen–Macaulay condition, we know less. If Jh is of depth 2 in OS,p and OS,p/Jh is not Cohen–
Macaulay, then this means either that Jh is not equidimensional or if Jh is equidimensional, then
projdim(O/Jh) �= 2. Another way to phrase this is: Jh is not perfect (see Appendix A).
For the equidimensional case we have a conjecture based on the following type of example:
Example 3.4. Consider a manifold (S, p) ∼= (C4

, 0) with coordinates p = (x, y, z, w). Then the
ideal I = (x, y) ∩ (z, w) = (xz, xw, yz, yw) ⊆ OS,p is radical and defines an equidimensional
2-dimensional analytic space germ (Z, p). In Remark A.5 it is shown that OS,p/I is not Cohen–
Macaulay, which implies that I is not a complete intersection. By computation we show that
there does not exist an h ∈ OS,p such that I = Jh: first note that I is the Jacobian ideal of a
divisor defined by some h ∈ OS,p if and only if there exists a matrix A ∈ GL4(OS,p) such that

(∂xh, ∂yh, ∂zh, ∂wh)
T

= Af
T
, (3.1)

where f is the vector (f1, . . . , f4) := (xz, yz, xw, yw). This follows from Nakayama’s lemma.
Since A ∈ GL4(OS,p), the matrix A(0) has to be in GL4(C). We will show that this cannot be
the case. Therefore Lemma 3.5 is used: the partial derivatives of h have to satisfy six equations,
namely

∂xyh = ∂yxh, ∂xzh = ∂zxh, ∂xwh = ∂wxh, ∂yzh = ∂zyh, ∂ywh = ∂wyh, ∂zwh = ∂wzh.

From (3.1) it follows that these equations are of the form (e.g., for ∂xzh = ∂zxh)

∂xa3− · f + a31z + a33w = ∂za1− · f + a11x + a12y, (3.2)

where ∂xai− ·f stands for
�4

j=1 ∂xaij ·fj , and aij ∈ OS,p are the entries of A. Denote by αij ∈ C
the constant term of aij . The order of ∂za1− · f (and similarly of ∂xa3− · f) is greater or equal 2
(since ord(fi) = 2). Thus for the order 1 term of (3.2) the equation α31z + α33w = α11x + α12y

holds. This implies α11 = α12 = α31 = α33 = 0. Similarly follows from ∂xwh = ∂wxh that
α13 = α14 = 0. Thus in the matrix A(0) the first row is zero, which means that A �∈ GL4(OS,p).
Hence there does not exist an h as asserted and the ideal I cannot be the Jacobian ideal of a
divisor D.

Lemma 3.5. Let f1, . . . , fn be in OS,p. Then there exists a g ∈ OS,p such that fi = ∂xig if and

only if for all 1 ≤ i, j ≤ n we have

∂xifj = ∂xj fi.

Proof. Let f1, . . . , fn be such that ∂xifj = ∂xj fi. Define the differential form ω =
�n

i=1 fidxi.
By Poincaré’s lemma ω = dg for some g ∈ OS,p if and only if dω = 0. A computation shows

dω =

�

i<j

(∂xifj − ∂xj fi)dxi ∧ dxj ,
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which is (using the relation between the ∂xj fi) equal to zero. The other implication follows by
reading the argument backwards.

Conjecture 3.6. Let D ⊆ S be a divisor defined at a point p by h ∈ OS,p. If Jh is radical,

of depth 2 in OS,p and equidimensional, then OS,p/Jh is already Cohen–Macaulay. In other

words: we conjecture that if a divisor that has locally at a point p ∈ S an equidimensional radical

Jacobian ideal of depth 2 is already free at p.

If Jh is not equidimensional, the only thing we can say is that it is the intersection of some prime
ideals whose minimal height is 2.
Example 3.7. (The Jacobian ideal can be of height 2 and radical but it may not be equidi-
mensional) Consider S = C5 at the origin with coordinates (x, y, z, s, t). Let the divisor D

be locally defined by h = (x
2

+ y
2

+ z
2
)(s

2 − t
2
) ∈ O = C{x, y, z, s, t}. Note that D is

splayed and the union of a normal crossing divisor and a cone. The Jacobian ideal Jh =

(xs
2 − xt

2
, ys

2 − yt
2
, zs

2 − zt
2
, x

2
s + y

2
s + z

2
s, x

2
t + y

2
t + z

2
t) is radical, its height is 2 and it

has the prime decomposition

(x, y, z) ∩ (s− t, x
2

+ y
2

+ z
2
) ∩ (s, t) ∩ (s + t, x

2
+ y

2
+ z

2
).

The ideal Jh is not unmixed and hence OSing D = O/Jh is not Cohen–Macaulay.

Question 3.8. Suppose that Jh of a divisor D is radical and of height 2 but not equidimensional.

Which Jh are possible?

3.1.2 Higher codimensional singular locus

We start to tackle this question with special cases that are easy generalizations of the free divisor
case from Chapter 2:

Proposition 3.9. Let D be a divisor in an n-dimensional complex manifold S, locally at a point

p = (x1, . . . , xn) defined by a reduced h ∈ OS,p. Let Jh =
√

Jh be the Jacobian ideal and denote

by (Sing D, p) the singular locus of D at p with associated ring OSing D,p = O/Jh. Suppose

that codimp(Sing D,S) = k and that (Sing D, p) is smooth. Then D is locally isomorphic to

{x2
1 + · · ·+x

2
k = 0}, that is, (D, p) is isomorphic to a Cartesian product (V ×Cn−k

, (0, 0)) where

(V, 0) = {x2
1 + · · ·+ x

2
k = 0} is an A1-singularity in (Ck

, 0).

Proof. This is a generalization of the smooth case, see Lemma 2.17. Since Sing D is smooth and
of codimension k at p, we may assume Jh = (x1, . . . , xk). Since Jh is radical, h is also contained
in Jh and can be written as h =

�k
i=1 fixi. For any j ≤ k the ∂xj h =

�k
i=1 ∂xj fixi + fj are in

Jh. This implies that all fj , 1 ≤ j ≤ k are also contained in Jh. Hence h lies in (x1, . . . , xk)
2

and it can be written as h =
�k

i=1 aix
2
i +

�
1≤i<j≤k bijxixj . Computing ∂xj h for j > k yields

∂xj h ∈ mJh. An application of Nakayama’s lemma yields

(∂x1h, . . . , ∂xkh) = Jh = (x1, . . . , xk).

Hence using the Triviality lemma A.44, one finds that D is locally analytically trivial along
{xk+1 = . . . = xn = 0} and we may assume that h(x1, . . . , xn) = h(x1, . . . , xk, 0). Thus D
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may be considered in (Ck
, 0) defined by h

∗
(x1, . . . , xk) := h(x1, . . . , xk, 0). But in this situation

Jh∗ = (x1, . . . , xk) defines an isolated singularity and by the theorem of Mather–Yau (or direct
computation) it follows that {h = 0} ∼= {x2

1 + · · ·+ x
2
k = 0}.

Proposition 3.10. Let Jh =
√

Jh be the Jacobian ideal of the divisor D ⊆ S and denote by

Sing D its singular locus with associated ring OSing D,p = O/Jh at p. Suppose that codimp(Sing D,S) =

k and that (Sing D, p) is a complete intersection. Then D is isomorphic to {x2
1 + · · ·+ x

2
k = 0},

that is, D has locally along Sing D an A1-singularity.

Proof. The proof is again similar to the free divisor case, see Prop. 2.18. Since (Sing D, p) is
a complete intersection, there exist f1, . . . , fk ∈ O such that Jh = (f1, . . . , fk). Since the fi

generate Jh, there is an n× k matrix A with entries in O such that

A(f1, . . . , fk)
T

= (∂x1h, . . . , ∂xnh)
T
.

Consider the O/m = C module Jh/mJh: the fi are a minimal set of generators of Jh, thus their
residues modulo mJh, denoted by f̄1, . . . , f̄k, form a basis of the C-vector space Jh/mJh and the
matrix Ā has entries in C. Hence the linear system of equations

Ā(f̄1, . . . , f̄k)
T

= (∂x1h, . . . , ∂xnh)
T

is solvable over C, that is, there exist k partial derivatives, wlog. ∂x1h, . . . , ∂xkh such that Jh =

(∂x1h, . . . , ∂xkh). But then the remaining ∂xih, i = k+1, . . . , n are contained in (∂x1h, . . . , ∂xkh)

and once more an application of the Triviality lemma shows that D is trivial along {xk+1 = . . . =

xn = 0}. Hence D may be considered in (Ck
, 0) and defined by h

∗
(x1, . . . , xk) = h(x1, . . . , xk, 0).

Then since Jh∗ is a complete intersection of codimension k in (Ck
, 0), it defines an isolated

singularity. Since Jh∗ is by assumption radical, the only possibility is Jh∗ = (x1, . . . , xk). Like
in the previous proposition we find that D is locally isomorphic to {x2

1 + · · ·x2
k = 0}.

Corollary. Let Jh =
√

Jh be the Jacobian ideal of the divisor D and denote by (Sing D, p) its

singular locus with associated ring OSing D,p = O/Jh. Suppose that codimp(Sing D,S) = k. Then

(Sing D, p) is a complete intersection if and only if Sing D is locally at p smooth and thus D is

isomorphic to {x2
1 + · · ·+ x

2
k = 0}.

Remark 3.11. Note that if Jh is radical of height n in O, then Jh is already equal to the maximal
ideal of O and hence the corresponding germ (D, p) is an A1-singularity. Moreover, in Lemma
3.1 it is shown that if Jh =

√
Jh has height n− 1 in O, then O/Jh is already Cohen–Macaulay.

However, in this case we cannot ensure a priori that Jh =
√

Jh is a complete intersection.

It is not clear how to treat non-complete intersection radical Jacobian ideals of height k, 3 ≤ k < n

in O, we do not even know if there exist divisors D = {h = 0} such that Jh =
√

Jh is not a
complete intersection.

Example 3.12. Consider S = C6 at the origin with coordinates (x1, . . . , x6). The ideal I =

(x1, x2, x3) ∩ (x4, x5, x6) ⊆ O = C{x1, . . . , x6} is of height 3, so dim(O/I) = 3. A com-
putation with Singular [98] shows that projdimO(O/I) = 5 and by Auslander–Buchsbaum
depth(O/I) = 1. Hence O/I is not Cohen–Macaulay and I is not a complete intersection ideal.
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We show that I cannot be the Jacobian ideal of some h ∈ O. If I were Jh for some (reduced)
h ∈ O, then

(∂x1h, . . . , ∂x6h)
T

= Af
T (3.3)

would hold, where f = (x1x4, x1x5, x1x6, x2x4, x2x5, x2x6, x3x4, x3x5, x3x6) and A is an 6 × 9

matrix with entries in O. Considering I as an O-module, take the equation modulo mI and
obtain the equation Af̄

T
= ∂xh

T , where the entries of A are in C. Using Nakayama’s lemma,
it follows that the rank of A is 6. Denote again by αij the constant parts of the entries of A.
Apply Lemma 3.5: from ∂x4x1h = ∂x1x4h, ∂x1x5h = ∂x5x1h and ∂x6x1h = ∂x1x6h it follows that
all α1i must be zero and hence the rank of A is strictly smaller than 6. (Using the remaining
relations, all αij are found to be zero).
The propositions and examples above motivate the following

Conjecture 3.13. Let D be a divisor in a complex manifold S, defined locally at a point p by

a reduced h ∈ OS,p. Suppose that the Jacobian ideal Jh is radical, equidimensional and of depth

≥ 3 in OS,p. Then the variety Sing D with coordinate ring O/Jh is a complete intersection, that

is, Sing D is Cohen–Macaulay and must even be smooth by Prop. 3.10.

3.2 Properties of splayed divisors

Splayed divisors were introduced in Chapter 2 to prove Thm. 2.1. But splayed divisors are
interesting in their own right, in particular for computational reasons. We start here a study
of properties of splayed divisors by considering their Hilbert–Samuel polynomials. We find that
multiplicities behave the same for splayed as for non–splayed divisors but that the Hilbert–
Samuel polynomials for splayed divisors are additive, which means the following: let (D, p) =

(D1, p) ∪ (D2, p) be a splayed divisor at a point p in a complex manifold. Then from the exact
sequence

0 → OD,p → OD1,p ⊕OD2,p → OD1∩D2,p → 0

follows
χD,p + χD1∩D2,p = χD1,p + χD2,p,

where χD,p denotes the Hilbert–Samuel polynomial of D at p. Then a “geometric” characteri-
zation of splayed divisors in terms of their Jacobian ideals is given (see Prop. 3.37). It would
be interesting to compute other singularity invariants for splayed divisors, therefore we list some
questions at the end of this section.

We mostly use notation from [62] and [27]. Often the term “additive function” is used. With this
we mean the following: let R be a noetherian ring and let

0 → M1 → M2 → M3 → 0

be an exact sequence of finitely generated R-modules. Then a function λ : Rmod→ Z is called
additive if λ(M1)− λ(M2) + λ(M3) = 0.
Recall that a divisor D in a complex manifold S with dim S = n is called splayed at a point p if
there exist complex coordinates (x1, . . . , xn) at p such that (D, p) = (D1, p) ∪ (D2, p) is defined



3.2 Properties of splayed divisors 71

by h(x) = h1(x1, . . . , xk, 0)h2(0, xk+1, . . . , xn), 1 ≤ k ≤ n − 1, where hi is the defining reduced
equation of Di. When working with splayed divisors, we will simplify the notation and write for
the coordinates (x1, . . . , xk, xk+1, . . . , xn) = (x, y) and h(x, y) = h1(x)h2(y). Moreover, we will
also abbreviate O := OS,p = C{x, y}.

3.2.1 The polynomial case

First we consider graded modules over polynomial rings. We introduce the Hilbert function, the
Hilbert–Poincaré series and the Hilbert polynomial. Then we compute these objects for divisors
D in some Pn

C defined by polynomial equations. For the results of the computations it makes no
difference whether D is splayed or not.

Hilbert function, Hilbert–Poincaré series and Hilbert polynomial

In this section the above notions are introduced and some useful results are given for the compu-
tation of Hilbert–Poincaré series and Hilbert polynomials. Let k be a field and let A =

�
n≥0 An

be a noetherian graded k-algebra and let M =
�

n∈Z Mn be a finitely generated A-module. The
Hilbert-function HM : Z → Z of M is defined by

HM (n) = dimk(Mn).

The Hilbert–Poincaré series PM of M is the formal power series defined by

PM (t) =

�

n∈Z
HM (n)t

n
∈ Z[[t]][t

−1
].

One can easily show the following properties of HM and PM :
Let 0 → M

� → M → M
�� → 0 be a short exact sequence of finitely generated graded A-modules

(where A is as above). Then
HM (n) = HM �(n) + HM ��(n)

for all n, that is, H is additive. This implies that

PM (n) = PM �(n) + PM ��(n).

For an integer d one has
HM(d)(n) = HM (n + d),

where M(d) is the d-shifted graded module M , that is, (M(d))n = Md+n. From this follows

PM(d)(t) = t
−d

PM (t).

Keeping the notation from above and assuming that A1 = (x1, . . . , xn)A0 generates A as an
A0-algebra, i.e., A = A0[x1, . . . , xn], one finds that there exists a polynomial QM (t) ∈ Z[t] such
that PM (t) =

QM (t)
(1−t)n , see e.g. [27, Prop. 4.2.10].

One can show that HM (d) behaves like a polynomial for d � 0. Then the Hilbert-Polynomial

ϕM ∈ Q[d] is defined as the polynomial such that ϕM (d) = HM (d) for all positive integers d � 0.
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One can show that deg ϕM ≤ n − 1, see e.g., [62]. The Hilbert-Poincaré series determines the
Hilbert-polynomial in the following way (see [45, Definition 5.1.4]): Write PM (t) as

PM (t) =
G(t)

(1− t)s
, 0 ≤ s ≤ n, G(t) =

d�

i=0

git
i
∈ Z[t],

such that gd �= 0 and G(1) �= 0. This means that the order of the pole of PM (t) at t = 1 is equal
to s. Then the Hilbert-polynomial of M is

ϕM (t) =

d�

i=0

gi

�
s− 1 + t− i

s− 1

�
∈ Q[t].

For the computation of the Hilbert–Poincaré series the following lemma is useful.
Lemma 3.14. (a) Let I ∈ k[x1, . . . , xn] be a homogeneous ideal and let f be a homogeneous

element of k[x1, . . . , xn] of degree deg(f) = d. Then one has

Pk[x]/I(t) = Pk[x]/(I,f)(t) + t
d
Pk[x]/(I:(f))(t).

(b) Let > be a monomial ordering on k[x]. Then

Pk[x]/I(t) = Pk[x]/L(I),

where L(I) denotes the leading ideal of I, that is, the ideal generated by the leading monomials

of elements in I (see definition 3.23).

Proof. (a) is Lemma 5.2.2 of [45] and (b) is Theorem 5.2.6. of loc. cit.

Example 3.15. (a) Let k[x] = k[x1, . . . , xn] be the polynomial ring in n variables with the standard
grading. Then the Hilbert function of k[x] is given as Hk[x](d) =

�n+d−1
n−1

�
because there are�n+d−1

n−1

�
monomials of degree ≤ d in k[x]. Hence Pk[x](t) =

1
(1−t)n .

(b) Let f be a homogeneous polynomial of degree d. Using (a) of the preceding lemma with
I = (0) one finds Pk[x](t) = Pk[x]/(f)(t) + t

d
Pk[x] and hence

Pk[x]/(f) =
1− t

d

(1− t)n
=

�d−1
i=1 t

i

(1− t)n−1
.

Using the procedure to compute the Hilbert polynomial of k[x]/(f) described above, yields
ϕk[x]/(f)(t) =

�d−1
i=0

�n−2+t−i
n−2

�
.

Remark 3.16. The Hilbert polynomial of a hypersurface D = {f = 0} depends only on the degree
of f ∈ k[x].
The following lemma will be used in the sequel to compute Hilbert–Poincaré series and Hilbert–
Samuel polynomials.
Lemma 3.17. Let R be any commutative ring and let I, J be two ideals in R. Then the sequence

0 → R/(I ∩ J) → R/I ⊕R/J → R/(I + J) → 0

with the first map: a mod (I ∩ J) �→ (a mod I, a mod J), and the second map: (a mod I, b

mod J) �→ (a− b) mod (I + J), is exact.

Proof. Computation.
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Application to divisors

Now the Hilbert–Poincaré series and the Hilbert-polynomial are computed for divisors defined by
homogeneous polynomials. Let therefore k[x] = k[x1, . . . , xn] be the polynomial ring over a field
k in n variables considered as graded algebra with the standard grading. Let D = {g(x)h(x) = 0}

be a divisor with g and h homogeneous of degree m and k. Using Lemma 3.14 with I = (gh)

and f = g and the example (b) above, the Hilbert–Poincaré series has the following form

Pk[x]/(gh)(t) = Pk[x]/(g)(t) + t
m

Pk[x]/(h)(t) =
1− t

m+k

(1− t)n

and the Hilbert-polynomial ϕk[x]/(gh)(t) =
�m+k−1

i=0

�n−2+t−i
n−2

�
. We are also able to compute the

Hilbert–Poincaré series for the intersection of {g(x) = 0} and {h(x) = 0}: from Lemma 3.14 (a)
with I = (g) and f = h follows Pk[x]/(g)(t) = Pk[x]/(g,h)(t) + t

k
Pk[x]/(h), and hence

Pk[x]/(g,h)(t) =
(1− t

k
)(1− t

m
)

(1− t)n
.

Combining the explicit formulas one sees that the Hilbert–Poincaré series is additive:

Pk[x]/(gh)(t) + Pk[x]/(g,h)(t) = Pk[x]/(g)(t) + Pk[x]/(h)(t).

The Hilbert-polynomial can easily be computed using the exact sequence from Lemma 3.17 and
the obvious exact sequence

0 → k[x]/(g) → k[x]/(g)⊕ k[x]/(h) → k[x]/(h) → 0.

Using the additivity of the Hilbert-polynomials, it follows that ϕk[x]/(g,h)(t) = ϕk[x]/(g)(t) +

ϕk[x]/(h)(t)− ϕk[x]/(gh)(t).
If g and h from above are not homogeneous, Lemma 3.14 (b) can be used to compute the Hilbert–
Poincaré series of k[x, y]/(gh) explicitly.

Up to now the splayed property has played no role!

3.2.2 Dimension, multiplicity and beyond

Our main objective is to study the local case, namely the Hilbert–Samuel polynomials of finite
modules over local rings. Therefore we introduce the local counterparts to the Hilbert-function
and the Hilbert polynomial, namely the Hilbert–Samuel function and the Hilbert–Samuel polyno-
mial. These do not only depend on the module one is considering but also on a chosen filtration.
However, the degree and leading coefficient of the Hilbert–Samuel polynomial are independent
of the filtration. So one gets characterizations of dimension and multiplicities of modules over a
local ring. Here the definitions are given (mostly without proofs, which can be found for example
in [27,45,62]).
First we compute multiplicities of divisors D = D1 ∪D2. Then we see that the Hilbert–Samuel
polynomials of splayed divisors are additive.
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Hilbert–Samuel polynomials and standard bases

Let R be a noetherian local ring with maximal ideal m. Let I ⊆ R be an ideal and let M

be a module over R. A set {Mn}n≥0 of submodules of M is called an I-filtration of M if
M = M0 ⊃ M1 ⊃ M2 ⊃ . . . and IMn ⊆ Mn+1 for all n ≥ 0. An I-filtration is called stable if
IMn = Mn+1 for n ≥ 0 sufficiently large.
Let q be an m-primary ideal of R and let {Mi} be a q-filtration. Then the Hilbert–Samuel

function of the filtration {Mi} is

HS{Mi}
: N → N, d �→ lengthR/mM/Md.

In order to see that this definition makes sense, namely that lengthR/m(M/qn
) < ∞, one con-

siders the associated graded module Grq(M) =
�∞

n=0 Mn/Mn+1 and reduces everything to the
homogeneous case, see e.g. [27, 4.2] or [62, §13]. Further one can show that there exists a poly-
nomial χ{Mi}

with rational coefficients such that HS{Mi}
(d) = χ{Mi}

(d) for d sufficiently large.
We call χ

q
M := χ{qnM}n≥0 the Hilbert–Samuel polynomial of M with respect to q. The degree of

χ
q
M (k) =

�d
i=0 aik

i only depends on M and not on q. Therefore we denote the degree d of χ
q
M by

d(M). By a result of dimension theory, the Krull-dimension dim(M) is equal to the degree of the
Hilbert–Samuel polynomial d(M). The leading coefficient ad of the Hilbert-Samuel polynomial
depends on q and the positive integer d!ad is called the multiplicity of M with respect to q and
is denoted by e(M, q). The multiplicity e(M, m) is simply called the multiplicity of M .

In general, there is no straightforward way to compute Hilbert–Samuel polynomials. However,
when considering Hilbert–Samuel polynomials of modules over a local ring O = C{x1, . . . , xn}

w.r.t. the maximal ideal m, one can use standard bases to simplify computations. In particular
one obtains an analogue to the graded case, namely that the Hilbert–Samuel function of some
O-module O/I is equal to the Hilbert–Samuel function of O/L(I). Here we will only give the
definitions and theorems that we need to state this result and to prove the additivity for Hilbert–
Samuel polynomials of splayed divisors.

Definition 3.18. Denote x
α

= x
α1
1 · · ·xαn

n a monomial in C[x] and denote S = {xα
: α ∈ Nn}

the set of all monomials in C[x]. A monomial ordering is a total ordering on S (resp. Nn)
compatible with the semigroup structure, i.e., from x

α
> x

β follows x
α+γ

> x
β+γ for all γ ∈ Nn.

(We will always assume that the considered orderings are well-orderings, i.e., every non-empty
set of monomials has a minimal element w.r.t. to the ordering.)

Definition 3.19. Let > be a monomial ordering and let f ∈ C{x} be a non-zero power series.
Then f can be written in the form

f =

�

i≥1

aix
αi ,

such that ai �= 0 ∈ C and x
αi < x

αi+1 for all i. Then L(f) = x
α1 is called the leading monomial

of f . For an ideal I ∈ C{x} we call L(I) = ({L(f) : f ∈ I, f �= 0}) the leading ideal. Note that
L(I) is the ideal generated by all leading monomials of nonzero f ∈ I.

Remark 3.20. In general the leading ideal L(I) is not equal to the ideal generated by the leading
monomials of a set of generators of I. However, if the generators f1, . . . , fk of I form a standard
basis (see next definition), then L(I) = (L(fi)).
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In the following we use the degree lexicographical ordering with a weight vector w = (w1, . . . , wn) ∈

Rn
+. For α ∈ Nn define |α|w :=

�n
i=1 αiwi. Then x

α
< x

β if and only if |α|w < |β|w or if
|α|w = |β|w, then α < β with respect to the lexicographical ordering. In order to define standard
bases an analogue of division with remainder of polynomials for power series is needed. Therefore
we recall

Theorem 3.21 (Grauert’s division theorem). Let f1, . . . , fm ∈ C{x}. Then for any g ∈ C{x}
there exist elements q1, . . . , qm ∈ C{x} and an element r ∈ C{x} such that

g =

m�

i=1

qifi + r,

satisfying the two conditions:

(1) No monomial of r is divisible by L(fi) for i = 1, . . . ,m,

(2) L(qifi) ≥ L(g) for i = 1, . . . ,m.

Proof. See [27, Theorem 7.1.9].

Remark 3.22. Denote S = {f1, . . . , fm} the ordered set formed by the fi of the theorem. In the
proof of Grauert’s division theorem one constructs the r of the theorem explicitly and this r is
uniquely determined with respect to S. Then one calls NF (f |S) := r (or just NF (f) if S is
fixed) the normal form of f .

Definition 3.23. Let I be an ideal in C{x}. A set S = {f1, . . . , fm}, with all fi ∈ I is called a
standard basis of I if

L(I) = (L(f1), . . . , L(fm)).

Remark 3.24. One can show that any ideal I of C{x} has a standard basis and if S = {f1, . . . , fm}

is such a standard basis, then I = (f1, . . . , fm). For two standard bases S = {f1, . . . , fm} and
T = {g1, . . . gk} of I, the equality NF (f |S) = NF (f |T ) holds for any f ∈ C{x}. This means that
NF (f) is independent of the chosen standard basis. Then one can construct (again in analogy to
the polynomial case of Gröbner bases) standard bases via syzygy polynomials and Buchberger’s

criterion, but this is not needed here. For details see [27].

Lemma 3.25. Let f, g ∈ C{x} and assume that L(f) and L(g) are coprime. Then L((f, g)) =

(L(f), L(g)), that is, f, g are a standard basis of the ideal (f, g).

Proof. (Notations from [27]) Choose a monomial ordering <. In order to show that f and g

form a standard basis, we have to show that NF (spoly(f, g)|{f, g}) = 0 (for the definition of
spoly(f, g), the S-polynomial of the leading coefficients of f and g, see [27]). Suppose that
f = x

α
+ P (x) and g = x

β
+ Q(x) with L(f) = x

α and L(g) = x
β are coprime. Then of course

x
α

< P and x
β

< Q. The power series Syz(f, g) = x
β
P − x

α
Q can be written in the form of

Grauert’s division theorem as x
β
f − x

α
g. Hence NF (Syz(f, g)|{f, g}) = 0.

The following Proposition 3.26 requires the weight-vector w ∈ Rn
+ the chosen monomial ordering

< to be equal to (1, . . . , 1). So from now on we assume w = (1, . . . , 1).

Proposition 3.26. Let I ⊆ C{x} be an ideal. Then HSC{x}/I,m(k) = HSC{x}/L(I),m(k). In

particular, C{x}/I and C{x}/L(I) have the same Hilbert–Samuel polynomial with respect to m.
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Proof. See [27].

In contrast to the graded case, the Hilbert–Samuel polynomial is not additive on exact sequences,
one has a certain error polynomial, whose degree can be determined with a theorem of Flenner
and Vogel, see Thm. 3.28 below.

Lemma 3.27. Let (R,m) be a noetherian local ring, 0 → M
� → M → M

�� → 0 an exact

sequence of finitely generated R-modules and q an m-primary ideal. Then

χ
q
M = χ

q
M � + χ

q
M �� − S,

where S is a polynomial, whose degree is strictly smaller than the degree of χ
q
M � .

Theorem 3.28 (Flenner–Vogel). Notation as in the lemma. Denote further

Grq(M) =

∞�

i=0

qi
M/qi+1

M

the associated graded ring of a finite R-module M . Then, for the exact sequence of the lemma,

the following holds:

(a) supp ker(Grq(M
�
) → Grq(M)) = supp ker(Grq(M)/Grq(M

�
) → Grq(M

��
)).

(b) Denote d the dimension of these supports. Then for all n ≥ 0

S(n) := χ
q
M �(n) + χ

q
M ��(n)− χ

q
M (n),

where S(n) is a polynomial of degree d− 1 for n � 0. In particular, if d = 0, then set S = 0.

Proof. See [34].

Multiplicities – Additivity of Hilbert–Samuel polynomials

First a well-known general result about multiplicities of divisors is shown. Then we see that
for splayed divisors the Hilbert–Samuel polynomial is additive (Prop. 3.33). Let now D =

D1 ∪ D2 ⊆ Cn be a not necessarily splayed divisor that is locally at a point p = (x, y) defined
by h1(x)h2(x) ∈ O = C{x}, with components (D1, p) = {h1(x) = 0} and D2 = {h2(x) = 0}.
We assume here that the hi are not necessarily irreducible but have no common irreducible
factor. The multiplicities of Di at p are denoted by mp(Di) := e(OS,p/(hi),m). The Hilbert–
Samuel polynomial of Di at p is denoted by χDi,p := χ

m
O/(hi)

, and similarly the multiplicity and
Hilbert–Samuel polynomial for D.
Remark 3.29. In order to compute the Hilbert–Samuel polynomial of O/I for any ideal I ⊆ O

we can consider O/I either as ring or as an O-module. This does not make a difference for the
Hilbert–Samuel functions, since they only depend on the graded structure of O/I and this is the
same for a q ∈ O or the corresponding q ∈ O/I.
We have the following:

Proposition 3.30. Let D, Di be defined as above. Then mp(D) = mp(D1) + mp(D2).
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Proof. Since D1 and D2 are assumed to have no common components, it is clear that dimp(D1∩

D2) ≤ n− 2. Consider the exact sequence from Lemma 3.17:

0 → O/(h1h2) → O/(h1)⊕O/(h2) → O/(h1, h2) → 0. (3.4)

By Lemma 3.27 it follows that χ
m
O/(h1)⊕O/(h2)

= χD,p + χ
m
O/(h1,h2)

−R, where R is a polynomial
in Q[t] of degree strictly smaller than that of χD,p. The exact sequence

0 → O/(h1) → O/(h1)⊕O/(h2) → O/(h2) → 0

yields that χ
m
O/(h1)⊕O/(h2)

= χD1,p + χD2,p, see Lemma 3.32. Since the Krull-dimensions of D

and the Di are all (n− 1), the degrees of χDi,p and χD,p are equal to (n− 1) and the degree of
χO/(h1,h2) is strictly less than n−1. Combining the equalities of the Hilbert–Samuel polynomials,
one finds that

χD,p = χD1,p + χD2,p − χ
m
O/(h1,h2) − T,

with deg(T ) ≤ n−2. Thus it follows that the leading coefficient of χD,p is the sum of the leading
coefficients of the χDi,p and hence mp(D) = mp(D1) + mp(D2).

Remark 3.31. This proposition can be easily generalized to m ≥ 2 components (D1, p), . . . , (Dm, p).

We now ask if in the case of splayed divisors the additivity formula from Lemma 3.27 holds
without remainder: is it true that for the germ of a splayed divisor (D, p) = (D1, p) ∪ (D2, p),
one has

χD,p = χD1,p + χD2,p − χD1∩D2,p? (3.5)

First consider the problem for arbitrary local rings (R,m). If

0 → N → M → M/N → 0

is an exact sequence of finitely generated R-modules and q an m-primary ideal, then

0 → N/(qn
M ∩N) → M/qn

M → (M/N)/qn
(M/N) → 0

is an exact sequence, which implies

χ
q
M = χ

q
M/N + χ{qnM∩N}.

But in general χ
q
N �= χ{qnM∩N}, where χ{qnM∩N} denotes the Hilbert–Samuel polynomial w.r.t.

the filtration N/(qn
M ∩N).

However, for split exact sequences the Hilbert–Samuel polynomial is always additive:

Lemma 3.32. Let (R,m) be a local ring and let M,N be finitely generated R-modules. Consider

the exact sequence

0 → M → M ⊕N → N → 0.

Then χ
q
N⊕M = χ

q
M + χ

q
N for any m-primary ideal q.
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Proof. Above we have seen that there is an exact sequence

0 → M/M ∩ qn
(M ⊕N) → (M ⊕N)/qn

(M ⊕N) → N/qn
N → 0.

So this lemma is shown if M ∩ qn
(M ⊕N) = qn

M for all n. We may consider M ∩ qn
(M ⊕N)

as (M ⊕ 0) ∩ qn
(M ⊕N) and qn

M as qn
(M ⊕ 0). Then

(M ⊕ 0) ∩ qn
(M ⊕N) ⊆ (M ⊕ 0) ∩ (qn

M ⊕ qn
N) = (qn

M ⊕ 0) = qn
(M ⊕ 0).

Conversely, take a (qα, 0) ∈ qn
(M ⊕ 0), where α ∈ M and q ∈ qn. Since (qα, 0) = q(α, 0) ∈

qn
(M ⊕N) and (qα, 0) ∈ M ⊕ 0, it is shown that M ∩ qn

(M ⊕N) = qn
M . Hence it follows that

χ
q
N⊕M = χ

q
M + χ

q
N .

Proposition 3.33. Let (D, p) = (D1, p) ∪ (D2, p) be splayed at p ∈ S, where (S, p) ∼= (Cn
, 0).

Then the Hilbert–Samuel polynomials of the components D1 and D2 are additive, that is,

χD,p(t) + χD1∩D2,p(t) = χD1,p(t) + χD2,p(t).

Proof. Assume that (Cn
, 0) has coordinate ring O := C{x, y} = C{x1, . . . , xk, yk+1, . . . , yn}.

With Prop. 3.26 the question can be reduced to leading ideals because the exact sequence (3.4)
remains exact if we just consider the leading ideals. This is not true in general because L(h, g) �=

(L(g), L(h)) is possible! The divisor D is splayed, so we can assume that it is defined by g(x)h(y).
Choosing any valid monomial ordering one finds L(g) = x

α, L(h) = y
β , L((gh)) = x

α
y

β , and by
Lemma 3.25 follows L((g, h)) = (x

α
, y

β
). From the exact sequence

0 → O/(x
α
) → O/(x

α
)⊕O/(y

β
) → O/(y

β
) → 0

and Lemma 3.32 it follows that

χ
m
O/(xα) + χ

m
O/(yβ) = χ

m
O/(xα)⊕O/(yβ).

Thus it remains to prove that the Hilbert–Samuel polynomials w.r.t. m of the exact sequence

0 → O/(x
α
· y

β
) → O/(x

α
)⊕O/(y

β
) → O/(x

α
, y

β
) → 0

are additive. In order to apply the theorem of Flenner–Vogel we show that the map

Grm(O/(x
α
y

β
))

ϕ �� Grm(O/(x
α
)⊕O/(y

β
))

is injective. The map ϕ clearly preserves the degree, so it is enough to show the assertion for a
homogeneous element of degree d, that is, to show that

md
(O/(x

α
y

β
))/md+1

(O/(x
α
y

β
)) → md

(O/(x
α
)⊕O/(y

β
))/md+1

(O/(x
α
)⊕O/(y

β
))

is an injection. Therefore take some a ∈ md
(O/(x

α
y

β
))/md+1

(O/(x
α
y

β
)). This means that

a is the representative of the element a = a + fx
α
y

β of O, where f with the right degree



3.2 Properties of splayed divisors 79

is in O. Consider a as an element in O: from Grauert’s division theorem follows that a can
be written as α + α1x

α
+ α2y

β , where α is the unique remainder from the division through
x

α and y
β and α1 ∈ O is not divisible by y

β (else α1 would be 0 in O/(x
α
y

β
)) and α2 is

not divisible by x
α (for the analogue reason). Suppose that ϕ(a) = (0, 0). Then write ϕ(a) =

ϕ(α+α1x
α
+α2y

β
) = (α+α2y

β
, α+α1x

α
) in O/(x

α
)⊕O/(y

β
). In O this reads as α+α2y

β
= cx

α

and α + α1x
α

= c
�
y

β for some c, c
� ∈ O with the right order. Taking one of these two equations

one sees that α ∈ (x
α
, y

β
). But α is the unique remainder from the division through the standard

basis (x
α
, y

β
), so α = 0 in O. Hence there are two relations between x

α
, y

β , namely

α2y
β
− cx

α
= 0 and α1x

α
− c

�
y

β
= 0.

Since x
α
, y

β are clearly a regular sequence in O, their syzygies are trivial and from the conditions
on α1, α2 it follows that α1 = α2 = 0. But this means nothing else but a = 0, that is, ker(ϕ) = (0)

and ϕ is injective. Hence by the theorem of Flenner–Vogel, the remainder polynomial S is the
zero polynomial and the assertion of the proposition follows.

Remark 3.34. If we just consider the question for the leading ideals, then we are in the case of
monomial ideals and one can argue that ϕ is injective by looking at the Newton polyhedra of
these monomial ideals.

In general the Hilbert–Samuel polynomial of a divisor (D, p) = (D1, p) ∪ (D2, p) is not additive,
as is seen in the following example.

Example 3.35. By Lemma 4.2.20 of [27] one can explicitly compute the Hilbert–Samuel polyno-
mial of O/(f), where O = {x1, . . . , xn} and ord(f) = m, namely

χ
m
O/(f)(d) =

m�

j=1

�
n + d− j − 1

n− 1

�
. (3.6)

Consider now (C2
, 0) with coordinate ring O = C{x, y} and with h1 = x

2 − y and h2 = y. Then
the germ of the divisor (D, 0) = (D1, 0) ∪ (D2, 0) that is locally given by {y(x

2 − y) = 0} with
(D1, 0) = {x2 − y = 0} and (D2, 0) = {y = 0} is not splayed. The intersection (D1 ∩ D2, 0)

is locally given by the ideal (x
2
, y) and coordinate ring O/(x

2
, y) = C{x}/(x

2
). By formula

(3.6) we can compute the Hilbert–Samuel polynomials of D,D1, D2 and D1 ∩ D2 and obtain
χD,p(t) = 2t− 1, which is clearly not equal to χD1,p(t) + χD2,p(t)− χD1∩D2,p(t) = t + t− 2.

One might ask if the additivity of the Hilbert–Samuel polynomials characterizes splayed divisors.
However, here is a counterexample to this assertion:

Example 3.36. Consider D ⊆ C3 locally defined by gh = (x
2 − y

3
)(y

2 − x
2
z). Then (D, p) is the

union of the cylinder over a cusp (D1, p) and of the Whitney Umbrella (D2, p). Clearly (D, p) is
not splayed (use for example the Leibniz–property). However, L(g) = x

2 and L(h) = y
2, so the

leading monomials of g and h are coprime and one can repeat the argument in the proof of the
preceding proposition to find that

χD,p + χD1∩D2,p = χD1,p + χD2,p.
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3.2.3 A characterization of splayed divisors by their singular locus

In the spirit of our characterization of normal crossing divisors we want to characterize a splayed
divisor D ⊆ S, locally at a point p given by a gh ∈ OS,p, by OSing D,p = OS,p/((gh) + Jgh).

Proposition 3.37. The divisor D, defined at p as above, is splayed if and only if

((gh) + Jgh) = (g, h) ∩ ((g) + Jg) ∩ ((h) + Jh). (3.7)

Remark 3.38. Here it can be seen that for splayed divisors the Jacobian ideal is the intersection
of the two ideals defining the singular loci of the splayed components D1 and D2 plus the
intersection of D1 and D2. For two smooth divisors D1 and D2 this means nothing else but that
D = D1 ∪ D2 is a splayed divisor if and only if the scheme-theoretical intersection D1 ∩ D2 is
smooth, which is in turn equivalent to saying that D1 and D2 intersect transversally.

Proof. Recall here that a divisor {gh = 0} is splayed if and only if

(g) ∩ ((gh) + Jgh) = g((h) + Jh) (3.8)

First suppose that (3.7) holds. We have to show that (3.8) holds. Let therefore α be an element
of g((h) + Jh), that is α = agh + g

�n
i=1 ai∂xih. Clearly α ∈ (g). But it is immediately seen

that α ∈ ((h) + Jh), and hence α ∈ (g, h) ∩ ((g) + Jg) ∩ ((h) + Jh)). By (3.7) this means that
α ∈ ((gh) + Jgh). Conversely, let α ∈ (g) ∩ ((gh) + Jgh). In Chapter 2 it was seen that (without
further conditions on ((gh) + Jgh) such an α is also contained in g((h) + Jh).
For the other implication we use Grauert’s division theorem: Suppose that D = {gh = 0} is
splayed. Then wlog. g(x, y) = g(x) and h(x, y) = h(y) in C{x, y} = C{x1, . . . , xn, y1, . . . , ym}.
Clearly ((gh) + Jgh) ⊆ (g, h) ∩ ((g) + Jg) ∩ ((h) + Jh). So let α be an element of the right-hand
side, that is, α = ag + bh = cg +

�n
i=1 ai∂xig = dh +

�m
j=1 bj∂yj h for some a, b, c, d, ai, bi ∈ O.

Then also α − ag = bh = (c − a)g +
�n

i=1 ai∂xig is contained in ((g) + Jg). By Grauert’s
division theorem here exist some ã, ãi, r, r̃i such that for all i = 1, . . . , n one has c− a = ãh + r

and ai = ãih + ri and the leading monomial L(h) does not divide any monomial of the unique
remainders r, ri. Then write

(b− ãg −

n�

i=1

ãi(∂xig))h = rg +

n�

i=1

ri(∂xig).

Since h only depends on y and g only on x, it follows that L(h) does also not divide any of the
monomials of the right-hand side of the equation. But this is only possible if the right-hand side
of the equation is 0 (otherwise at least one monomial of h, which is a multiple of L(h) would occur
on the right-hand side). Hence (b− ãg−

�n
i=1 ãi(∂xig))h = 0 and since h is not a zero-divisor in

O, it follows that b = ãg +
�n

i=1 ãi(∂xig) is contained in ((g) + Jg). Interchanging the roles of g

and h yields that a ∈ ((h) + Jh) and thus α = ag + bh ∈ (gh, gJh + hJg). The Leibniz property
of Jgh implies that α ∈ ((gh) + Jgh).
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3.2.4 Questions about splayed divisors

1. Can we separate the splayed components of a divisor by some algebraic procedure? (The
normalization does too much and the blowup of the intersection scheme may be singular.
We search for something like a deformation, where h1(x)h2(y) �−→ h1(x)(z − 1) + h2(y)z

but multiplicatively)

2. Does the additivity of Hilbert–Samuel polynomials (equation (3.5)) characterize a partic-
ular class of divisors? Is it enough for the additivity that the leading monomials of the
defining equations of D1 and D2 are coprime?

3. Can we compute other singularity invariants of splayed divisors in terms of their splayed
components, e.g., Milnor fibres, Zeta functions, jumping numbers?

3.3 Mikado divisors

In this section we consider another generalization of normal crossing divisors, so-called mikado
divisors. The idea behind mikado divisors is to allow more smooth components meeting at a
point than indicated by the dimension of the ambient space. However, the irreducible compo-
nents of a mikado divisor still have to be smooth and the divisor has to satisfy the additional
property that it is closed under taking scheme-theoretical intersections (see definition below).
Mikado singularities appear in the study of arrangements of subvarieties, namely, a collection of
smooth algebraic subvarieties in a smooth ambient space form an arrangement of subvarieties
in the sense of [58] if and only if their maximal members form a mikado variety. Here one is
interested e.g. in wonderful compactifications of these arrangements, see [58] for details. Mikado
divisors are also present in resolution of singularities, see [49] and [33].
First we study mikado divisors in a complex manifold of dimension 2,that is, plane mikado curves,
and give a characterization of their singular loci in terms of their Jacobian ideals. Therefore we
need some theory about generalized Milnor numbers, see [93]. Then we give some examples and
ask questions related to mikado divisors.

Let X and Y be two irreducible algebraic subvarieties of Cn defined by radical ideals IX and
IY . Then their intersection Z := X ∩ Y is scheme-theoretically smooth if Z is set-theoretically
smooth and its defining ideal IZ is equal to IX + IY . In particular this means that IX + IY

is radical. A collection of smooth algebraic subvarieties X1, . . . Xk in S is called mikado if all
possible intersections �

j∈J

Xj , with J ⊆ {1, . . . , k}

are scheme-theoretically smooth. We can also make the analogue definition locally at a point
p for analytic space germs (X1, p), . . . (Xk, p). We then say that the germ of a variety (X, p) =�k

i=1(Xi, p), where the Xi are the irreducible components at p, is a mikado singularity at p (or
is mikado at p) if and only if the X1, . . . ,Xk are mikado at p.
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Example 3.39. (1) The divisor D = D1 ∪ D2 ∪ D3 = {(x − y
3
)(y − x

2
)(y − x) = 0} in C2 is

mikado at 0: with the normal crossings criterion of Theorem 2.1 one sees that the ideals of the
pairwise intersections of the irreducible components of D are reduced and hence Di ∪ Dj has
normal crossings everywhere. The ideal of the triple intersection at the origin is easily seen to
be reduced.
(2) All hyperplane arrangements in Cn are mikado divisors: let H =

�m
i=1 Hi be a hyperplane

arrangement in Cn with defining polynomial Q(x) =
�m

i=1 li(x), where each li is a linear poly-
nomial. Clearly, any intersection

�
i∈I Hi for some I ∈ {1, . . . ,m} is again a linear space with

defining ideal (li, i ∈ I) =
�

i∈I IHi and hence smooth.
(3) The divisor Tülle D = D1 ∪D2 ∪D3 in C3 defined by h = h1h2h3 = xz(x + z − y

2
) is not

mikado at the origin. All components are smooth, their pairwise intersections are transversal
but the ideal of their triple intersection is ID1 + ID2 + ID3 = (x, y

2
, z), which is not the reduced

ideal defining the origin.

3.3.1 Plane mikado curves

In dimension two one can give a characterization of mikado divisors in terms of the Jacobian
ideal (see Thm. 3.49). For the proof we need some properties of the generalized Milnor number,
which was first investigated by Teissier. We closely follow the exposition in [93].

Note again that we always work in the analytic context. For plane curves (X, p) =
�k

i=1(Xi, p)

being mikado at p is equivalent to the fact that the irreducible components (Xi, p) are all smooth
and that Xi and Xj intersect transversally at p for i �= j. This means that the tangent cone
TK(X)p of X at p is reduced (see the next lemma). Recall here that for X = {h = 0}, with
h =

�
i≥o≥1 h

i, where h
i is the homogeneous part of h of degree i, the tangent cone TK(X)p of

(X, p) is the homogenous part of h of smallest degree, that is, h
o.

Lemma 3.40. Let (X, p) =
�k

i=1(Xi, p) be a mikado curve-singularity in (C2
, 0) defined locally

at p by h = h1 · · ·hk. Then the tangent cone TK(X)p of X at p is reduced and consists of o = k

lines meeting at the origin.

Proof. First note that TK(X)p = h
o, where h

o is a homogeneous polynomial of degree o in two
variables. Since the hi define nonsingular curves Xi, the order of each hi = 1, so o = k. By
dehomogenizing h

o we obtain a polynomial of degree k in one variable over C that has k different
zeros (since the k tangent directions of X at p are distinct). Homogenizing again it follows that
TK(X)p is the product of k linear forms and is reduced because of the mikado condition.

Remark 3.41. In 3.2 the Hilbert–Samuel polynomial χ
q
M of a finite module M over a local ring

(R,m) w.r.t. an m-primary ideal q and the multiplicity e(M, q) of M w.r.t. q was defined. Using
Koszul homology, one gets the formula e(M, q) =

�n
i=0(−1)

i
hi(M, q) where hi(M, q) denotes the

dimension of the i-th Koszul-homology group. If q is generated by an M -regular sequence, then
hi = 0 for i ≥ 1 by [88, Prop. 3, IV]. By definition the 0-th Koszul-homology group is M/qM
and hence

h0 = e(M, q) = length(M/qM).
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Theorem 3.42 (Rees). Let (R,m) be an equidimensional analytic algebra and q1 and q2 be two

m-primary ideals with q1 ⊆ q2. Then their multiplicities are equal if and only if their integral

closures agree, that is,

e(R, q1) = e(R, q2) ⇐⇒ q1 = q2.

Proof. See for example [55] or [93].

Let D be a divisor in Cn, that is, D is defined at a point p by a reduced holomorphic equation
h = 0, h ∈ O = C{x1, . . . , xn}. Recall that the germ (D, p) is an isolated singularity if D − {p}

is non-singular (in a sufficiently small neighbourhood of p). One can show that this is equivalent
to the fact that the Jacobian ideal Jh = (∂x1h, . . . , ∂xnh) is m-primary. Denote the multiplicity
of Jh in O by µp(D). Note that it does neither depend on the choice of coordinates of p nor on
the choice of the equation h. The Jacobian ideal Jh is generated by a regular sequence because
it is a complete intersection. Thus, by remark 3.41 also

µp(D) = dim C{x1, . . . , xn}/Jh.

So µp(D) is the Milnor number of the isolated singularity (D, p), see [27,64].

Teissier has shown how the notion of the Milnor number µ can be generalized by general hyper-
plane sections [93, chapitre 1]: Let D be a hypersurface in Cn and p ∈ D. For any 1 ≤ i ≤ n

there exists a neighbourhood V of x in Cn and a Zariski-open dense set U
(i)
0 of the Grassmannian

G
n−1,i−1 of i-planes of Cn passing through p such that for any i-plane H ∈ U

(i)
0 one has

V ∩ Sing(D ∩H) = V ∩H ∩ Sing(D).

If i0 is the codimension of (Sing(D), p) in Cn then for any 0 ≤ i ≤ i0 there exists a Zariski-open
dense U

(i)
1 of G

n−1,i such that for H ∈ U
(i)
1 , D ∩H has an isolated singularity in p. Thus, for

i ≤ i0 the i-planes of Cn passing through p and cutting Sing(D) in p in a neighbourhood of p

form a Zariski-open, dense subset of G
n−1,i.

If (D, p) ⊆ (Cn
, 0) is a reduced hypersurface, then for any 0 ≤ i ≤ n there exists an open

Zariski-dense subset U
(i)
2 of G

n−1,i such that the topological type of (D ∩H, p) is independent
of H ∈ U

(i)
2 . Thus one can speak of the so-called topological type of a generic plane section of

D (or general i-plane), see [93].

Definition 3.43. Let (D, p) ⊆ (Cn
, 0) be the germ of an analytic hypersurface. Let i0 be the

codimension of the singular locus Sing(D) in Cn. By the preceding considerations one can speak
of the Milnor number of a generic i-plane section, if i ≤ i0. We denote this number by µ

(i)
p . For

i0 < i ≤ n we set µ
(i)
p = +∞ and we define the vector

µ
∗

p = (µ
(n)
p , . . . , µ

(0)
p ).

Note that µ
(n)
p < +∞ if and only if (D, p) is an isolated singularity and if that is the case then

µ
(n)
p = µp(D), that is, µ

(n)
p is the usual Milnor–number of (D, p).

Furthermore, µ
(1)
p = mp(D)− 1, where mp(D) denotes the multiplicity of the hypersurface germ

(D, p). Moreover, µ
(0)
p = 1 always holds.
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Proposition 3.44. Let (D, p) ⊆ (Cn
, 0) be an isolated hypersurface singularity with local equa-

tion h = 0. The following are equivalent:

(i) µ
(n)
p = µ

(1)
p

n
,

(ii) Jh = mµ(1)
,

(iii) (D, p) is isomorphic to the general fibre of a one-parameter deformation and to µ
∗

constant,

of a cone of an isolated singularity, which is its tangent cone.

Proof. We show here only (i) ⇔ (ii). For the other equivalences see [93, ch. II, Prop. 2.7].
The multiplicity of the ideal mk in O = C{x1, . . . , xn} can be calculated by using the formula
e(O,mk

) = k
ne(O,m), which holds for m-primary ideals, see [62]. Since e(O,m) = 1, it follows

that e(O,mk
) = k

n. By definition of µ
(1)
p one has Jh ⊆ mµ(1)

p and by Remark 3.41 follows
e(O, Jh) = µ

(n)
p . By the above e(O,mµ(1)

p ) = µ
(1)
p

n
. Application of Rees’ theorem (Thm. 3.42)

shows the equivalence of (i) and (ii).

Definition 3.45. Let (C, p) ⊆ (Cn
, 0) be a reduced curve. Denote by π : ( �C, p̃) → (C, p) the

normalization of (C, p). We denote by δp(C) the C-vector space dimension of π∗O �C,p̃/OC,p. The
nonnegative integer δp(C) is called the δ-invariant of C at p. It is sometimes also called the
order of singularity of C at p. Let (C

�
, p) be another curve in Cn. Let C and C

� be given locally
at p by ideals IC and IC� , where IC , IC� ⊆ OCn,0. Then we define

(C · C
�
)p := length(OCn,0/(IC + IC�)),

the intersection multiplicity of C and C
� at p.

Lemma 3.46. Let (C, p) be a reduced curve singularity in C2
. Suppose that locally at p the curve

C has m irreducible analytic components. Then

µp(C) = 2δp(C)−m + 1.

Remark 3.47. This lemma is due to Milnor [64]. It can be generalized to complete intersection
curves. For more information and a proof see [14].
The next lemma of Hironaka, see [52], is useful to compute the δ-invariant for reducible curves:

Lemma 3.48 (Hironaka). Let (C, p) be a reduced curve in C2
that has locally m components:

(C, p) = (C1, p) ∪ · · · ∪ (Cm, p). Then we have

δp(C) =

m�

i=1

δp(Ci) +

m�

i,j=1,i<j

(Ci · Cj)p.

Now we are ready to prove the characterization of mikado singularities by Jacobian ideals in two
dimensions:

Theorem 3.49. Let (X1, p), . . . , (Xk, p) with k ≥ 2 be smooth curves in (C2
, p). Suppose, that

they are locally defined by (reduced) equations h1 = 0, . . . , hk = 0 with hi ∈ C{x1, x2}. Let

(X, p) =
�k

i=1(Xi, p) with equation h = h1 · · ·hk. Denote Jh the Jacobian ideal of h. Then

X1, . . . ,Xk are mikado at p if and only if Jh = mk−1
.
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Proof. Suppose that (X, p) is mikado. Then µ
(1)
p = k − 1 by definition. According to Prop. 3.44

it must be shown that µp(X) = µ
(2)
p = (k−1)

2. By Lemma 3.46 we have µp(X) = 2δp(X)−k+1.
Note that δp(Xi) = 0, since Xi is smooth at p and that (Xi ·Xj)p = 1, since Xi and Xj intersect
transversally at p for j �= i. Then Hironaka’s lemma says that δp(X) =

�k
2

�
and plugging this

into Milnor’s δ formula yields µp(X) = (k − 1)
2. This finishes one implication.

The other implication follows by argumenting backwards and noting that δp(C) = 0 if and only
if C is smooth at p.

With Thm. 3.49 we obtain a simpler proof than that of Chapter 2 of the fact that Jh = m if
and only if the plane curve (X, p) has normal crossings at p (and thus we avoid the theorem of
Mather–Yau):

Corollary. Let (X, p) be a curve in (C2
, p) defined by h ∈ OC2,p such that Jh = m. Then (X, p)

has normal crossings at p.

Proof. If Jh = m, then from µ
(2)
p = dimC(O/Jh) = 1 it follows that the ordinary Milnor number

of (X, p) is 1. By Prop. 3.44 we have 1 = µ
(2)
p = (µ

(1)
p )

2 if and only if Jh = m. By definition
of µ

(1)
p = mp(X) − 1 it follows that X is of multiplicity 2 at p and has k ≤ 2 irreducible

components. By the δ formula one can discard the possibility k = 1 and by Theorem 3.49 follows
the assertion.

3.3.2 Mikado divisors in higher dimensions

A satisfying characterization of mikado divisors in a complex manifold S of complex dimension
2 was found. Naturally, one asks for a similar criterion for mikado divisors in higher dimensional
manifolds. However, it is not quite clear how to generalize Theorem 3.49, since in higher di-
mension the singularities of a mikado divisor are no longer isolated. New phenomena occur and
the integral closure of the Jacobian ideal will certainly not be an m-primary ideal. One idea of
generalization would be to take generic hyperplane sections (in the spirit of [93]). But this seems
not to be the right approach:
Example 3.50. Let (D, 0) ⊆ (C3

, 0) be the divisor Tülle, that is given by D = D1 ∪D2 ∪D3 =

{xz(x + z − y
2
) =} (also cf. Example 1.43, where we have shown that D is free and mikado

everywhere but at the origin). The common intersection of D1 = {x = 0}, D2 = {z = 0} and
D3 = {x+z−y

2
= 0} is not scheme-theoretically smooth, thus (D, 0) is not mikado. The Jacobian

ideal Jh is integrally closed. However, taking the hyperplane section with H = {x = y+z} yields
D ∩H = {(y + z)z(y + 2z − y

2} ⊆ (C2
, 0), which is mikado.

Example 3.51. Let D ⊆ C3 be the divisor D = D1 ∪D2 ∪D3 defined by h = xy(x + y). Clearly
D is a mikado divisor. Taking the generic hyperplane section with H = {z = 0}, one sees that
D ∩H = {xy(x + y) = 0} ⊆ C2 is a mikado divisor.
Hence we pose the following

Question 3.52. Let D ⊆ S be a divisor in a complex manifold S of complex dimension n ≥ 3

and suppose that D is mikado at a point p. Is there a characterization of the mikado property in

terms of the singular locus (Sing D, p) given by the Jacobian ideal Jh of D? In the same vein,

another interesting question is if mikado is stable under generic hyperplane sections.





Appendix A

Algebraic and complex analytic
basics

Here we collect the most important notions and theorems that are used in the text and we also
fix our notation. So this appendix is thought to serve as a reference to previous chapters. All
results presented here are covered in textbooks. Therefore we only prove statements which we
think are interesting for this thesis and give references to the remaining proofs. Nonetheless,
we try to exhibit the beautiful description of normal varieties in the analytic context and some
important theorems connected with it.
This appendix is divided into two sections, commutative algebra and local analytic geometry.
However, commutative algebra heavily plays into local analytic geometry, therefore it is at the
beginning.

A.1 Commutative algebra

In this section we recall some results from commutative algebra that are mostly used in Chapter
2. In particular, we define depth of a module and Cohen–Macaulay modules, pass by projective
dimension and perfect modules and quote some important theorems connected with these notions.
Finally the integral closure of ideals and rings is considered, which leads the way into the analytic
geometry section.
The first result tells us how primary decomposition behaves under localization (this is used in
the section on splayed divisors in Chapter 2). Then we state Nakayama’s lemma, since it is
frequently used throughout the text.

Proposition A.1. Let R be a commutative ring and let S be a multiplicative set in R. Then

all ideals of RS, the localization of R in S, are of the form IRS where I is an ideal in R. Every

prime ideal of RS is of the form pRS with p a prime ideal in R and p ∩ S = ∅. Conversely pRS

is prime in RS for any such p. The same holds for primary ideals.

If I is an ideal of R then the set of associated primes AssR(I) is equal to AssRS (I). If R is

noetherian then we have Ass(IRS) = Ass(I) ∩ Spec(RS). In particular, if I =
�k

i=1 q is the
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primary decomposition of I in R, then IS =
�k

i=1(qi)S (we write IS for the ideal IRS) is the

primary decomposition of IS in RS.

Proof. See [62] Thm. 4.1 and Thm. 6.2.

Theorem A.2 (Nakayama’s lemma). (i) Let R be a commutative ring, M a finite (=finitely

generated) R-module and I an ideal of R. If M = IM then there exists an element x ∈ R such

that xM = 0 and x ≡ 1 mod I. If moreover I is contained in the radical of R (the intersection

of all maximal ideals of R), then M = 0.

(ii) Let M be an R module, I an ideal contained in the radical of R and N ⊆ M a submodule

such that M/N is finite over R. Then from M = N + IM follows M = N .

(iii) Let (R,m) be a regular local ring and M a finite R-module. Denote k = R/m and M =

M/mM . Then M is a finite-dimensional k-vector space of some dimension n. Then one has:

(a) If {ū1, . . . , ūn} is a basis for M over k, then choosing inverse images ui ∈ M for each ūi ∈ M

yields a minimal system of generators {u1, . . . , un} of M ,

(b) conversely, any minimal system of generators of M is obtained in this way and thus has n

elements,

(c) if {u1, . . . , un} and {v1, . . . , vn} are both minimal systems of generators of M , and vi =�n
j=1 aijuj with matrix A = (aij)1≤i,j≤n, then det(A) is a unit in R, that is, A is an invertible

matrix over R.

Proof. See [62] Thm. 2.2 and Thm. 2.3.

The next theorem is a useful characterization of free modules over 2-dimensional regular local
rings, which, in Chapter 1, provides the proof that any divisor in a 2-dimensional complex
manifold is free.

Theorem A.3. Let R be a regular local ring of Krull-dimension 2 and M be a finite R-module.

The following are equivalent:

(i) M is free.

(ii) M is reflexive, that is, the canonical map M → Hom(Hom(M,R), R) is an isomorphism.

Proof. See Corollary 6 of Theorem 9 of Chapter IV of [88].

A.1.1 Cohen–Macaulay rings and modules

Let R be a noetherian ring and M an R-module. A sequence of elements x1, . . . , xn ∈ I, where I

is an ideal in R, is called a regular M -sequence in I if (x1, . . . , xn)M �= M and if for i = 1, . . . , n

the element xi is a nonzerodivisor in M/(x1, . . . , xi−1)M . The length of a maximal M -sequence
in I is called the depth of I in M and denoted by depth(I, M). If M = R we simply speak of
the depth of I and write depth(I) or depth(I, R). For a local ring (R,m) we denote the depth of
R by depth(R) := depth(m, R).
The height of a prime ideal p ∈ R is the maximal length m of a chain of prime ideals p0 ⊆

. . . ⊆ pm = p with pi ∈ R. The (Krull-)dimension of a ring R is the maximal height of a prime
ideal in R and denoted by dim(R). A noetherian local ring (R,m) is called Cohen–Macaulay if
depth(R) = dim(R). A finite R-module M is called a Cohen–Macaulay module if M �= 0 and
depth(M) := depth(m, M) = dim(M) or if M = 0. A noetherian ring R is a Cohen–Macaulay
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ring if Rm is a Cohen–Macaulay local ring for every maximal ideal m of R. One can show that
a noetherian local ring R is Cohen–Macaulay if and only if its completion �R is Cohen–Macaulay
(see e.g. [62, Theorem 17.5]) and that a localization S

−1
R of a Cohen–Macaulay ring R is again

Cohen–Macaulay.
Cohen–Macaulay is an algebraic condition and cannot be interpreted geometrically in a satisfying
way. However, one geometric property of Cohen–Macaulayness is equidimensionality, that is, the
scheme corresponding to a Cohen–Macaulay ring is always equidimensional:

Lemma A.4. Let (R,m) be a Noetherian local ring and let M be a finitely generated R-module.

If M is a Cohen–Macaulay module then for any p ∈ Ass(M) one has

dim(R/p) = dim(M) = depth(M).

Hence M has no embedded associated primes. In particular, if M = R/I for an ideal I ⊆ R is

Cohen–Macaulay, then I is equidimensional, that is, in an irredundant primary decomposition

I =
�

qi, with pi the associated prime to qi, the pi’s are all of the same height.

Proof. If M is a Cohen–Macaulay module then by definition we have for any p ∈ Ass(M) that
dim(R/p) = dimM = depthM . Thus M has no embedded primes. The assertion for M = R/I

is clear.

Remark A.5. We remark here that it is not enough to check equidimensionality if one wants to
prove that a local ring is Cohen–Macaulay. An example therefore:
Let R = C{x1, x2, x3, x4} and I = (x1, x2)∩(x3, x4) an ideal in R. Then the dimension of R/I is 2
whereas the depth of R/I is only one. The depth can be computed by the Auslander–Buchsbaum
formula (see below):

projdimR(R/I) + depth(m, R/I) = depth(m, R).

Since depth(m, R) = 4 and projdimR(R/I) = 3 (by a Singular [98] computation), one obtains
depth(m, R/I) = 1.
In Example 3.4 we show that there does not exist a divisor in C4 that has I ∈ C{x1, x2, x3, x4}

as Jacobian ideal at the point p = (x1, . . . , x4).

A.1.2 Projective modules and some homological algebra

Let R be a ring. An R-module P is called projective if P is a direct summand of a free R-module.
There are also a few equivalent characterizations, see e.g. [32, Prop. A3.1]. A projective resolution

of an R-module M is a complex

F : · · · �� Fn
ϕn �� · · ·

ϕ1 �� F0
�� M �� 0

of projective R-modules Fi, such that F has no homology, i.e., is exact. If all Fi are free R-
modules, then F is called a free resolution. If for some n < ∞ one has Fn+1 = 0 but Fi �= 0

for any 0 ≤ i ≤ n, then F is called a finite resolution of length n. One defines the projective

dimension projdimRM (also written projdimM , if the ring is clear from the context) to be the
minimum length of a projective resolution of M . One sets projdimRM = ∞ if M has no finite
projective resolution.
Since we mostly deal with local rings, the following lemma is very important:
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Lemma A.6. Let (R,m) be a local ring. Then a projective module over R is free.

Proof. See e.g. [62, Theorem 2.5.] or [56].

The following results are used to prove Aleksandrov’s theorem in Chapter 2. We also introduce
perfect modules, which are important in the theory of Cohen–Macaulay modules.

Theorem A.7 (Auslander–Buchsbaum). Let (R,m) be a noetherian local ring and M �= 0 a

finite R-module. Suppose that projdimRM < ∞; then

projdimRM + depth(m, M) = depth(m, R) = depth(R).

Proof. See e.g. [32, Theorem 19.9] or [62, Theorem 19.1].

Definition A.8. Let R be a noetherian ring and M be a non-zero, finite R-module. Then M

is called perfect if projdimM = depth(AnnM,R). An ideal I ⊆ R is called perfect if R/I is a
perfect module.

Lemma A.9. Let R be a noetherian ring and let I ⊆ R be an ideal with proj dimR R/I =

depth(I, R), that is, I is perfect. If R is Cohen–Macaulay then R/I is also Cohen–Macaulay.

Proof. First we can reduce the problem to R local since the following holds: R is Cohen–Macaulay
if and only if Rp is Cohen–Macaulay for all maximal ideals p in R. For depth the inequality
depth(I, M) ≤ depth(Ip, Mp) holds for any ideal I ⊆ p, p prime in the support of a finite R-
module M [32, Lemma 18.1]. Further the inequality projdimRM ≥ depth(AnnM, R) holds for
finite M [32, Cor. 18.5]. The localization functor is exact, hence projdimRp

Mp ≤ projdimRM .
Plugging M = R/I into the first inequality, everything localized in the second inequality and
using that I is perfect in R follows that Ip is perfect in Rp for p maximal in R.
Now let R be local with maximal ideal m. We have to show that dim(R/I) = depth(R/I). By
the theorem of Auslander–Buchsbaum (Thm. A.7) the following equality holds: projdimRR/I =

depth(m, R)−depth(m, R/I). Since I is perfect, this equality becomes depth(I, R) = depth(m, R)−

depth(m, R/I). From R local and Cohen–Macaulay follows dim(R) = dim(R/I)+ht(I). A com-
bination of these two equalities and using Cohen–Macaulayness of R, that is, the height of any
ideal in R is equal to its depth in R, yields dim(R/I) = depth(m, R/I). Hence depth(R/I) ≥

depth(m, R/I) = dim(R/I), which completes the proof.

Remark A.10. One can show that for a local Cohen–Macaulay ring and a finite R-module M of
finite projective dimension the following holds: M is a Cohen–Macaulay module if and only if it
is perfect, see [12, Theorem 2.1.5.].
The next theorem characterizes modules of the form R/I, where R is a local ring and I ⊆ R is
an ideal such that projdimR/I = 2.

Theorem A.11 (Hilbert–Burch). Let R be a local ring.

(a) If a complex

F : 0 �� F2
ϕ2 �� F1

ϕ1 �� R �� R/I �� 0

is exact, F2 is free and F1
∼= R

p
, then F2

∼= R
p−1

and there exists a nonzerodivisor x ∈ R such

that I = xIp−1(ϕ2). Here Ip−1(ϕ2) denotes the ideal generated by the (p− 1)× (p− 1)-minors of
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the p× (p− 1)-matrix representing ϕ2. Moreover, the ideal Ip−1(ϕ2) has depth exactly 2 in R.

(b) Conversely, given any p×(p−1) matrix ϕ2 such that depth Ip−1(ϕ2) ≥ 2 and a nonzerodivisor

x, the map ϕ1, obtained as in (a) makes of F a free resolution of R/I, with I = xIp−1(ϕ2).

Proof. See e.g. [32, Theorem 20.15].

A.1.3 Integral closure of rings and ideals

We need normalization of analytic spaces as well as the integral closure of ideals. Here we
describe the commutative algebra behind the geometry. Recall that a reduced commutative ring
R is called normal if it is integrally closed in its total ring of fractions. In the following we denote
the normalization of a ring R by �R.

Theorem A.12 (Splitting of normalization). Let R be a reduced noetherian ring and (0) =

p1 ∩ · · · ∩ pk be an irredundant primary decomposition. Then there is a canonical isomorphism

between �R, the normalization of R, and the direct sum of the normalizations of R/pi, that its,

�R ∼=

� �R/pi.

Proof. See Theorem 1.5.20 of [27].

Remark A.13. The geometric content of this theorem is that normalization separates the analytic
branches of a variety (see next section).

Definition A.14. Let R be a commutative ring and let I ⊆ R be a proper ideal. One says that
an element f ∈ R is integral over I if there exists a relation

f
k

+ a1f
k−1

+ · · ·+ an = 0,

where ai are elements of I
i. Then the integral closure of the ideal I is defined to be set of all

integral elements over I and is denoted by I.

One can easily show that I is also an ideal of R and that one always has the chain of inclusions
I ⊆ I ⊆

√
I and (I)

n ⊆ In for all n ≥ 0. Integral closure of ideals was first defined in [104,
Appendix]. In [57] various characterizations and applications of integral closure, in particular in
the analytic case are discussed.

A.2 Complex analysis – local analytic geometry

In local analytic geometry one uses concepts from complex analysis as well as from commutative
algebra. First we recall the definitions of the objects we work with in the text. These definitions
and more background info and proofs can be found in many textbooks, e.g. [27, 69,70,97].
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A.2.1 Analytic spaces, sheaves and notation

The notions of sheaf and locally ringed space can be found in any textbook on algebraic or
analytic geometry. Here we remark that instead of the usual definition via open sets one can also
define a sheaf via its stalks, as e.g. in [87]: Let X be a topological space. A sheaf F of abelian
groups (modules, rings, . . . ) consists of
(a) a function x �→ Fx that corresponds to each x ∈ X an abelian group (module, ring, . . . ),
(b) a topology on F =

�
x∈X Fx, the disjoint union of the stalks Fx.

We use this characterization of sheaves when we define the sheaves of logarithmic differential
forms and vector fields in Chapter 1.
Let (X,OX) be a locally ringed Hausdorff space. Then (X,OX) is called a complex manifold if
for any p ∈ X there exists a neighbourhood U ⊆ X such that (U,OX|U ) is isomorphic to (V,OV ),
where V is a domain in Cn. The integer n is called the (complex) dimension of X and denoted
by dim X. One also has an equivalent differential-geometric definition: a complex manifold M is
a topological manifold equipped with a system of local charts ϕi : Ui → Cn, ϕi a diffeomorphism
such that the open sets Ui cover M and the change of charts morphisms

ϕj ◦ ϕ
−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

are holomorphic. The ϕi = (ϕi1, . . . ,ϕin) on Ui are called (local) complex coordinates on M and
are mostly denoted by (x1, . . . , xn). Further, a locally ringed space (X,OX) is called an analytic

space if any p ∈ X has a neighbourhood U such that (U,OX|U ) is isomorphic to (V,OV ), where
V is an analytic subset of an open set W ⊆ Cn for some n, and the ring OV = (OW /I (V ))|V .
By definition, an analytic space is always reduced. Sometimes we need a non-reduced structure
on an analytic space (e.g. when dealing with Jacobian ideals in Chapters 2 and 3): a locally
ringed Hausdorff space (X,OX) is called a complex space if any p ∈ X has a neighbourhood
U such that (U,OX|U ) is isomorphic to (V,OV ), where V is an analytic subset of an open W

in some Cn and OV = (OW /J)|V , J ⊆ OW an ideal sheaf such that for all p ∈ V ,
�

Jp = I (V )p.

Recall that a sheaf F on a locally ringed space (X,OX) is called coherent if it is finitely generated
and of relation finite type, that is, for any point x ∈ X there is an open neighborhood U ⊆ X and
a surjective morphism of sheaves Oq

X|U → F|U → 0 and for any open set U and any morphism
of sheaves α : O

q
X|U → F|U the kernel ker(α) is finitely generated. Sometimes we need

Theorem A.15 (Meta-Theorem for coherent sheaves). Let F and G be coherent sheaves of

OX-modules. Then every reasonable operation with F ,G (finitely generated subsheaves, taking

kernel or cokernel, tensor product, . . . ) results again in a coherent sheaf.

Proof. See [27, Theorem 6.2.3].

The following theorem due to G. Scheja is about the singularities of coherent sheaves is the main
ingredient to prove Saito’s question (Chapter 1) in general.
Let (X,OX) be a complex space and F be a coherent sheaf of OX -modules on X. Denote for a
point x ∈ X

depthx F =

�
∞ if Fx = 0,

depth(mx,Fx) else (here mx denotes the maximal ideal of OX,x).
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Further define the singular subvarieties of F as

Sm(F ) = {x ∈ X : depthx F ≤ m}.

Theorem A.16 (Scheja). Let (X,OX) be a complex space and F a coherent sheaf of OX-modules

on X. Then the sets Sm(F ) are subvarieties of X and dim Sm(F ) ≤ m.

Proof. See [84] and for this formulation (1.11) of [90].

A germ of an analytic space (X,x) is called normal if the local ring OX,x is a normal ring and
the analytic space X is called normal if for all x ∈ X the germ (X,x) is normal. Note that a
normal germ of an analytic space is irreducible, see [27, Thm. 1.5.7].

We always work with a divisor D in a complex manifold S with dim(S) = n. A divisor D is
by definition an analytic hypersurface in S, that is, locally at a point p = (x1, . . . , xn) ∈ S,
where (x1, . . . , xn) denote complex coordinates, D is defined by an equation h = 0 (we also say:
D is given by h or write D = {h = 0} locally), where h is a holomorphic function germ in
OS,p

∼= C{x1, . . . , xn} (sometimes only denoted by O). Note that a-priori we do not assume that
h is reduced. However, in our context we nearly always work with reduced defining equations,
that is, (D, p) is an analytic space. The next notion is crucial in the whole thesis, therefore it
gets its own definition:

Definition A.17. Let (S, D) be a complex manifold with dim(S) = n together with a divisor
D. We say that D has normal crossings at a point p ∈ S if one can find local coordinates
(x1, . . . , xn) such that D is defined by the equation x1 · · ·xr = 0, where 0 ≤ r ≤ n depends on
the considered point. In this case we also say that (D, p) has normal crossings or is a normal

crossing singularity. A divisor D is called a normal crossing divisor if D has normal crossings
at any point p ∈ S.

Example A.18. Let D ⊆ S = C2 be globally defined by h = x
3 − y

2. At the origin D does not
have normal crossings since (D, 0) is an A3-singularity. At any point p ∈ D, p not the origin,
one finds that (D, p) is smooth and hence one can find local coordinates (x

�
, y
�
) at p, such that

D = {x� = 0}. Thus (D, p) is a normal crossing singularity. At a point p �∈ D, D is clearly
defined by h ≡ 0, so in this case D has also normal crossings at p.
Two divisors D1 and D2 in a complex manifold S are said to intersect transversally at a point p

if they are both smooth at p and their union D1 ∪D2 has normal crossings at p. Otherwise we
say that D1 and D2 meet tangentially at p. The following fact about reduced divisors is used on
various occasions throughout the text.

Lemma A.19. Let S be a complex manifold of complex dimension n and D a divisor in S.

Suppose that at a point p the divisor is defined by a reduced h ∈ OS,p. Then one can choose

coordinates (x1, . . . , xn) at p such that dim{h = ∂xnh = 0} ≤ n− 2, i.e., h and ∂xnh do not have

a common factor.

Proof. We may suppose that h is a Weierstrass-polynomial in OS,p
∼= C{x1, . . . xn}, see [27].

Then
h = x

p
n + an−1(x1, . . . , xn−1)x

p−1
n + · · ·+ a0(x1, . . . , xn−1),
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with ai ∈ C{x1, . . . , xn−1}. Let h = h1h2, where the hi are not necessarily irreducible. Suppose
that h and ∂xnh had some common components, namely the ones of h1. Then one had ∂xnh = h1g

for some g �= 0 ∈ OS,p. Note that ∂xnh1 �= 0 because otherwise it would follow (using that h is
a Weierstrass-polynomial) that h1 is a unit in OS,p. Differentiating by xn yields

∂xnh = (∂xnh1)h2 + h1(∂xnh2) = h1g,

which implies
(g − ∂xnh2)h1 = (∂xnh1) · h2.

Since ∂xnh1 is not equal to zero, h1 divides (∂xnh1) · h2. But h1 does not divide any factor of
h2, thus h1 has to divide ∂xnh1, which yields a contradiction.

Next we recall some facts about vector fields and differential forms on manifolds: Let S be a
complex manifold and p ∈ S a point. A tangent vector v is an element of the tangent space
TpS. Equivalently, a tangent vector can be given as a derivation χ : OS,p → C, that is, a C-
linear map such that for all f, g ∈ OS,p we have χ(fg) = fχ(g) + gχ(f). The TpM make up
the tangent bundle TS of S, which is also denoted by DerS . A section of the tangent bundle
is called vector field. Informally speaking, a vector field δ assigns continuously to each p ∈ S

a vector δ(p) ∈ TpS. The dual bundle (TS)
∗

= Hom(TS , C) is called the cotangent bundle and
denoted by Ω

1
S . A section of Ω

k
S :=

�k
Ω

1
S is called a (holomorphic) differential k-form. In local

coordinates (x1, . . . , xn) in a neighbourhood U of a point p ∈ S a vector field δ can be expressed
by δ =

�n
i=1 ai(x)∂xi with ai ∈ OU . The elements dxI = dxi1 ∧ · · · ∧ dxik ∈ Ω

k
U , i1 < · · · < ik,

provide a basis of Ω
k
U . One can also consider meromorphic differential k-forms that are locally

in U of the form ω =
�

I wIdxI with wI ∈MU , the meromorphic functions on U .

A.2.2 Extension Theorems

In analytic geometry, one often wants to extend holomorphic functions that are only defined on
a subset of an analytic space to the whole space. Extension theorems (Hartogs, Riemann) tell
us when this is possible. In the following section we will also learn about weakly holomorphic
functions, which are connected to Riemann’s extension theorem.

Theorem A.20 (Riemann’s extension theorem). Let U ⊆ Cn
be open and connected and X ⊆ U

an analytic set. Consider a holomorphic function

f : U\X −→ C

and suppose that f is locally bounded, that is, for all p ∈ X there exists a neighbourhood V of

p such that f |V \(V ∩X) is bounded. Then there exists a holomorphic extension of f to U . This

means that there exists a holomorphic function F : U → C such that F restricted to U\X is

equal to f .

Theorem A.21 (Hartogs’ theorem). Let U ⊆ Cn
be an open set and consider an analytic set

A ⊆ U with dimp(A) ≤ n− 2 for all p ∈ A, that is, the codimension of A in U is at least 2. Let

f : U\A → C

be a holomorphic function. Then there exists a unique holomorphic extension of f to U .
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Proof. [27, Theorem 3.1.15] and [27, Theorem 4.1.24].

This theorem can be stated in more generality for analytic spaces, namely, instead of Cn it is
enough to have a normal ambient space:

Theorem A.22. Let X be a normal analytic space and A be an analytic subset of X with

dimp(A) ≤ dimp(X)− 2 for all p ∈ X. Then any holomorphic function on X\A can be extended

to X.

Proof. See [69, Proposition 4, Ch. VI].

A.2.3 Normalization, universal denominators and weakly holomorphic

functions

In this section we give a brief overview of some notions and results related to normalization of
analytic spaces, which are used in chapter 1. Briefly, normalization of an analytic space separates
its irreducible components and kills all singularities of codimension 1.

In order to define the normalization of an analytic space germ (X,x), which is in general not
again an analytic space germ, we need some more notions: a multi-germ (X,x) of analytic
spaces (X1, x1), . . . , (Xk, xk), k ≤ ∞ is the disjoint union (X,x) = (X1, x1) ∪ · · · ∪ (Xk, xk).
By definition, the ring OX,x is

�k
i=1OXi,xi . Note that OX,x is a semi-local ring. Finally, let

(Y, y) = (Y1, y1) ∪ · · · ∪ (Ym, ym) be another multi-germ. Suppose, we are given a system of
maps of ϕi : (Xi, xi) → (Yα(i), yα(i)) for i = 1, . . . , k and some α(i) ∈ {1, . . . ,m}. Then a map
ϕ : (X,x) → (Y, y) is given by this system and this map induces and is induced by a C-algebra
map ϕ

∗
: OY,y → OX,x. One can define properties of this map (e.g. finite, proper) in an obvious

way. A multi-germ (X,x) is called normal if OX,x is a normal ring. It is easy to see that the
ring OX,x is normal if and only if OXi,xi is normal for i = 1, . . . , k.

Definition A.23. Let (X,x) be an analytic space germ. A normalization of (X,x) is a multi
germ ( �X, x̃), which is normal, together with a proper map π : ( �X, x̃) → (X,x) with finite fibers
such that if (Sing X,x) denotes the singular set of (X,x) and (A, x̃) := (π

−1
(Sing X), x̃), then

( �X\A, x̃) is dense in ( �X, x̃) and via π|�X\A analytically isomorphic to (X\Sing X,x).

One can prove that a normalization always exists (see Thm. 4.4.8. of [27]) and that it is uniquely
determined. For the normalization of a germ (X,x) =

�k
i=1(Xi, x), with Xi irreducible, one

obtains that �OX,x =
�k

i=1
�OXi,x (by the splitting of normalization theorem). In particular the

normalization of an irreducible space germ (X,x) is again an irreducible space germ ( �X, x̃).

Theorem A.24. Let (X,x) be a normal analytic space germ. Denote Sing X the singular locus

of X. Then one has

dimx(Sing X) ≤ dimx(X)− 2.

If X is a hypersurface in a complex manifold, then the other implication holds.
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Proof. See Chapter VI, Theorem 2 of [69]. We prove here the second statement for hypersurfaces:
Let X be a hypersurface in a complex manifold S of dimension n. Suppose that locally at a
point x the hypersurface is defined by a reduced h ∈ OS,x. Denote (X,x) be the corresponding
analytic germ at x and suppose that dimx(Sing X) ≤ n− 2. We show that OX,x is a normal ring
with Serre’s characterization of normal rings (see [27, Thm. 4.4.11]); the ring OX,x is normal if
and only if the following two conditions hold:
(R1) For each prime ideal p ∈ OX,x the ring (OX,x)p is a regular local ring.
(S2) If f ∈ OX,x is a nonzerodivisor, then the ideal (f) ⊆ OX,x has no embedded primes.
The condition (R1) follows from the assumption on the singular locus of X (using the Jacobian
criterion for regularity [32, Cor. 16.20]). For (S2) we remark that OX,x is a Cohen–Macaulay
ring, since X is locally a complete intersection (it is a hypersurface). Hence for a nonzerodivisor
f , the ring OX,x/(f)OX,x is also Cohen–Macaulay (see e.g. [32]). But this implies that the ideal
(f) is unmixed, that is, it has no embedded primes, and hence (S2) holds for OX,x.

Remark A.25. In general the following holds: If (X,x) is locally a Cohen–Macaulay singularity,
that is, OX,x is Cohen–Macaulay, and if dimx(Sing X) ≤ dimx(X) − 2, then (X,x) is a normal
analytic space germ. The proof is the same as in the hypersurface case since for (S2) we just
need that OX,x is a Cohen–Macaulay ring.
We gave the definition of a normal space from the algebraic point of view. But one also has
an interpretation of a normal analytic space in complex analysis. Namely, an analytic space is
normal if and only if the Riemann extension theorem holds for it. Therefore we need the notion of
weakly holomorphic functions. Moreover, we will come across so-called universal denominators,
that is, holomorphic functions f such that the multiplication of a weakly holomorphic function
on an analytic space germ with f yields a holomorphic function. But first a few definitions.

Definition A.26. Let X be an analytic space and denote by Sing X its singular locus. A function
f : X\Sing X → C is said to be weakly holomorphic on X if the following two conditions hold:
(1) f is holomorphic on X\Sing X.
(2) f is locally bounded along Sing X.
Let (X,x) be an analytic space germ. For any x ∈ X we may define the germ of a weakly
holomorphic function at x. Obviously the germs of weakly analytic functions at x form a ring,
the ring of weakly holomorphic functions, which we denote by O�X,x.

Example A.27. Let (X,x) be a normal crossing divisor in Cn defined by

OX,x = C{t1, . . . , tn}/(t1 · · · td)

with 1 ≤ d ≤ n. The coordinate ring of the normalization is then �OX,x = ⊕d
i=1C{t1, . . . , tn}/(ti).

Geometrically, the normalization ( �X, x̃) of (X,x) consists of d copies of smooth hyperplanes
(Xi, xi) with coordinates (t1, . . . ,�ti, . . . , tn). The normalization map π is given by the d maps
πi : (Xi, xi) → (X,x), sending (t1, . . . ,�ti, . . . , tn) to (t1, . . . , 0, . . . , tn).
Example A.28. Let (X,x) be the cusp with local ring OX,x = C{x, y}/(y

2 − x
3
). The element

t :=
y
x is integral over OX,x since t

2
=

y2

x2 =
x3

x2 = x, and t satisfies the integral equation
T

2 − x = 0. The normalization ring is C{x, y, t}/(y
2 − x

3
, t

2 − x) = C{t}. It is easy to see that
the normalization map is given by t �→ (t

2
, t

3
).
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Example A.29. Let (X,x) be the E8-singularity in (C3
, 0) with coordinate ring

OX,x = C{x, y, z}/(x
2

+ y
3

+ z
5
). Since dimx(Sing X) = 2 − 2 = 0, it follows from Thm. A.24

that (X,x) is already normal. Hence the normalization map is the identity.

One sees that OX,x embeds into O�X,x. On the other hand, one may even find a holomorphic
f ∈ OX,x such that fO�X,x ⊆ OX,x. Such an f is called a “universal denominator”. We list some
facts about universal denominators before stating that O�X,x = �OX,x.

Definition A.30. Let X be an analytic set in an open set U in some Cn. A holomorphic function
f on U is called a universal denominator for X at a point x ∈ X if we can find a neighbourhood V

of X in U such that: if g is a holomorphic function on the analytic set X
�
= (X\Sing X)∩V and

if g is bounded on X
�, then there exists a neighbourhood W of x such that fg is the restriction

of a holomorphic function on W to X
� ∩W .

The previous definition can be used for analytic spaces in an obvious way.

Theorem A.31. Let X be an analytic set in Cn
and x ∈ X. Then there exists a neighbourhood

V of x and finitely many holomorphic functions f1, . . . , fm in V such that:

(1) The set Sing(X ∩ V ) = {p ∈ V : f1(p) = · · · = fm(p) = 0};

(2) Each fi is a universal denominator at every point of V .

Proof. See [69, III, Thm. 6].

Theorem A.32 (Tsikh). Let U ⊆ Cn
be a domain and X = {z ∈ U : f1(x) = · · · = fp(x) = 0}

for some fi ∈ OU be a complete intersection analytic subset of U , that is, dim X = n− p and X

is pure-dimensional. Define for any I = (i1, . . . , ip) ∈ {1, . . . , p} the function gI =
∂(f1,...,fp)

∂(xi1 ,...,xip ) .

If gI does not vanish on any irreducible component of X, then fI is a universal denominator

forX.

Proof. See [96, Thm. 1]

Theorem A.33. Let (X,x) be an analytic space germ. A function germ f is in the integral

closure of OX,x if and only if f is a weakly holomorphic function germ, that is, one has a

canonical isomorphism

O
�

X,x
∼= �OX,x.

Moreover, (X,x) is normal if and only if every germ of a weakly holomorphic function on (X,x)

can be extended to a holomorphic function on (X,x).

Remark A.34. This theorem means that an analytic space germ (X,x) is normal if and only if
the Riemann extension theorem holds for (X,x).

We have another isomorphism, namely the direct image sheaf of the normalization of the analytic
space X, denoted by π∗O�X , is isomorphic to the normalization sheaf �OX . To state this result
properly we need some more facts about coherent sheaves on analytic spaces, in particular Oka’s
finite mapping theorem.
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Let (X,OX) and (Y,OY ) be analytic spaces and let f : X → Y be a holomorphic map. An
analytic sheaf F on X is a sheaf of OX -modules. We define a presheaf f∗F on Y by the
following rule: for an open set U ⊆ Y set

f∗F (U) = F (f
−1

(U)).

The restriction maps are the obvious ones, and one can easily see that f∗F is a sheaf on Y . The
sheaf f∗F is called the direct image (sheaf) of F , with stalk f∗Fy at a point y ∈ Y .
Example A.35. Let X be any analytic space with an analytic sheaf F and suppose that Y = {p}

is a point and f : X → Y is the map sending the whole of X to p. Then f∗F is a sheaf on a
point and can hence be identified with a ring. But we also have f∗F (U) = F (f

−1
(U)) = F (X).

Thus the direct image sheaf is in this case just the ring of global sections of F over X.
Remark A.36. Let (X,OX) and (Y,OY ) be analytic spaces, such that for all x ∈ X the stalk
OX,x is a local ring and let f : X → Y be a holomorphic map. Then by definition of a morphism
of locally ringed spaces there is also a morphism f

∗ of sheaves of OY -modules:

f
∗

: OY → f∗OX ,

such that the induced map on the stalks f
∗
x : OY,f(x) → OX,x sends the maximal ideal of OY,f(x)

into the maximal ideal of OX,x.

Theorem A.37 (Finite mapping theorem). Let f : X → Y be a finite mapping of analytic

spaces, and let F be a coherent OX-sheaf. Then f∗F is a coherent OY -sheaf.

Proof. See [27, Thm. 6.3.5].

The finite mapping theorem is used to prove the following theorem, in whose proof one shows the
equality of the normalization sheaf �OX and the direct image sheaf of the normalization π∗OX .

Theorem A.38 (Oka). Let (X,OX) be an analytic space and denote by π : �X → X its normal-

ization. The normalization sheaf �OX is the sheaf whose stalk at a point x ∈ X is �OX,x. Then

the normalization sheaf is OX-coherent.

Proof. See [27, Thm. 6.3.7.].

From Theorems A.33 and A.38 we can conclude that the three rings O�X,x, π∗O�X,x and �OX,x are
isomorphic for any x in an analytic space X.
Remark A.39. We remark here a fact about universal denominators (in O�X,x and hence also in
π∗O�X,x). Obviously, the ring OX,x is contained in O�X,x. If g is a universal denominator at x

which does not vanish on any irreducible component of the analytic space germ (X,x), then we
obtain an exact sequence

0 �� O�X,x
·g �� OX,x.

This means that the OX,x-homomorphism O�X,x → OX,x given by the multiplication with g is
injective and maps O�X,x onto some subring of OX,x.
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Definition A.40. Let (X,x) be the germ of an equidimensional analytic space with nor-
malization π : �X → X. Then the conductor ideal CX,x at x is the largest ideal that is
an ideal in OX,x as well as in π∗O�X,x (we write CX if there is no danger of confusion re-
garding the point x). Alternatively, the conductor CX,x can be defined as the ideal quotient
(OX,x : π∗O�X,x) = {f ∈ OX,x : fπ∗O�X,x ⊆ OX,x} or as HomOX,x(π∗O�X,x,OX,x).

Remark A.41. The conductor CX is a coherent sheaf of ideals over OX .

Theorem A.42 (Piene’s Theorem). Let X be a locally complete intersection variety of dimension

s over an algebraically closed field k. Let f : Z → X be a desingularization of X and denote by

If = F
0
Z(Ω

1
Z/X) the ramification ideal of f in OZ and by JX the ideal F

s
X(Ω

1
X/k). Suppose that

f is finite. Then there is an equality of ideals

JXOZ = IfCXOZ .

Proof. See Theorem 1 and Corollary 1 of [76].

Remark A.43. (1) The above theorem also holds in the analytic case since all constructions in the
proof of Theorem 1 of [76] also work, cf. [4,43,66]. It also holds if we take as Z the normalization
�X of X and �X is Gorenstein (because in the proof of Piene’s Theorem one only needs that the
dualizing sheaf ωZ is invertible, cf. [43]).
(2) The ideal JX is sometimes also called “Jacobian ideal of X”. We need the above theorem in
the case where X is a divisor D in a complex manifold S defined locally at a point p by {h = 0}.
Then JD is simply the ideal Jh in OD,p (resp. the ideal ((h) + Jh) ⊆ OS,p) defining the singular
locus (Sing(D), p). Clearly, D is locally at p a complete intersection.

A.2.4 Cartesian products

Sometimes it is useful to know that an analytic space (X,x) is a Cartesian product, which means
that (X,x) is locally isomorphic to some (X

� × T, (x
�
, t)) where (X

�
, x
�
) is of lower dimension

than (X,x) and (T, t) is a smooth factor. Then one can read off properties of X from X
� or apply

induction on the dimension on X. Since we deal exclusively with hypersurfaces, the following
is described only for them. A stronger form of the Cartesian product structure is analytic
triviality, where one prescribes the structure of (X

�
, x
�
). More precisely: let T ∼= Cm and let

{(Xt, 0)t∈T } = {V (gt), 0)}t∈T be a family of analytic hypersurface germs with (Xt, 0) ⊆ (Cn
, 0)

where gt := g(x1, . . . , xn, t1, . . . , tm) ∈ C{x1, . . . , xn, t1, . . . , tm}. The family {(Xt, 0)}t∈T is
called locally analytically trivial at t = 0 ∈ T if for all t ∈ T there exists a biholomorphic map
ϕt : (Cn

, 0) → (Cn
, 0) sending (Xt, 0) to (X0, 0) that can additionally chosen to be analytic in

t. This means nothing else but that X = V (g(x, t)) ⊆ Cn+m is locally isomorphic to (X0, 0) ×

(T, 0) = (X0 × T, (0, 0)).
The next lemma gives an ideal-theoretic characterization of Cartesian product structure resp.
local analytic triviality. It is used frequently and can be found in various different formulations
in the literature (e.g. in [22,27,39,81]). We will give a partial proof and will refer to this lemma
as the triviality lemma.

Lemma A.44 (Triviality lemma). Let (S, p) locally be isomorphic to (Cn+m
, 0) and denote

OS,p = C{x1, . . . , xn, y1, . . . , ym} (in short: O = C{x, y}) and let h(x1, . . . , xn, y1, . . . , ym) be an
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element of O. Then the following are equivalent:

(a) The ideal (∂y1h, . . . , ∂ymh) is contained in the ideal (h, ∂x1h, . . . , ∂xnh).

(b) There exists a local biholomorphic map ϕ : (Cn+m
, 0) → (Cn+m

, 0) and a holomorphic

v(x, y) ∈ O∗ such that ϕ(x, y) = (ϕ1(x, y), . . . ,ϕn(x, y), y1, . . . , ym), ϕ(x, 0) = (x, 0), v(x, 0) ≡ 1

and h ◦ ϕ(x, y) = v(x, y)h(x, 0).

This means that D = {h(x, y) = 0} is locally at p isomorphic to some (D
�×Cm

, (0, 0)) where D
�

is locally contained in Cn
.

Analytic triviality is characterized as follows. Under the same hypotheses as above the following

are equivalent:

(a’) The ideal (∂y1h, . . . , ∂ymh) is contained in the ideal (x1, . . . , xn, y1, . . . , ym)(∂x1h, . . . , ∂xnh).

(b’) There exists a local biholomorphic map ϕ : (Cn+m
, 0) → (Cn+m

, 0) such that ϕ(x, y) =

(ϕ1(x, y), . . . ,ϕn(x, y), y1, . . . , ym), ϕ(x, 0) = (x, 0), ϕi − xi ∈ (x1, . . . , xn) and h ◦ ϕ(x, y) =

h(x, 0).

This means that (D, p) ∼= (D0×Cm
, (p

�
, 0)) where D0 = {h(x, 0) = 0} is the “fiber” at the origin.

Proof. We prove (a) ⇔ (b). First suppose (b): From h ◦ ϕ(x, y) = v(x, y)h(x, 0) follows
∂yi(

h◦ϕ
v ) = 0 for all i = 1, . . . ,m. By chain and product rule one gets

∂yi(h ◦ ϕ)v = ∂yiv · h ◦ ϕ

n�

j=1

∂xj h ◦ ϕ · ∂yiϕj + ∂yih ◦ ϕ =
∂yiv

v
h ◦ ϕ.

Since ϕ is biholomorphic one may substitute (x, y) with ϕ
−1

(x, y). This yields
∂yih ∈ (h, ∂x1h, . . . , ∂xnh), what has to be shown.
Conversely, the statement is proven by induction on the number of yi. We show the assertion
for m = 1, i.e., y = y1. Then (a) yields an equation

∂yh +

n�

i=1

ai∂xih = ah. (A.1)

We define the vector field δ = ∂y +
�n

i=1 ai∂xi , which satisfies δ(h) = ah, δ(xi) = ai and
δ(y) = 1. Then consider its integral Ψ which gives a biholomorphic map with a parameter t, that
is Ψ : (Cn+1+1

, 0) → (Cn+1
, 0), Ψ(x, y, t) = (Ψ1(x, y, t), . . . ,Ψn(x, y, t), y + t) with Ψi(x, y, t) :=�∞

k=0
tk

k! δ
k
(xi) for i = 1, . . . , n and Ψn+1 =

�∞

k=0
tk

k! δ
k
(y) = y + t. On the algebra level the

dual morphism is Ψ
∗
(f, t) =

�∞

k=0
1
k!δ

k
(f)t

k for an f ∈ O (a priori Ψ
∗ is only formal but using

Artin’s approximation theorem, one finds that it is actually analytic). From equation (A.1) one
gets

h(Ψ(x, y, t)) = e
ta(x,y)

h(x, y). (A.2)

Now define ϕi(x, y) = Ψi(x, 0, y) for i = 1, . . . , n and ϕn+1(x, y) = Ψn+1(x, 0, y) = y. One
immediately sees ϕi(x, 0) = xi for i = 1, . . . , n. Clearly ϕ is a biholomorphic map and ϕ

∗
(h) =

h(Ψ(x, 0, y)). From equation (A.2) it follows that h(ϕ1, . . . ,ϕn, ϕn+1) = e
ya(x,0)

h(x, 0). Then
putting v(x, y) := e

ya(x,0) satisfies v(x, 0) ≡ 1. Hence we have shown all conditions of (b). The
induction from k to k + 1 for k < m is done in an obvious way, see for example [81].
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Figures

In this appendix3 illustrations of some examples of divisors in 2- and 3-dimensional manifolds
appearing in the main text are shown. The divisors are visualized in R2 and R3. This realization
may cause some geometric features of the divisors (originally defined over the complex numbers)
to change. The pictures were produced by the author with the ray-tracing program POV-ray.

The main object of the thesis are divisors with normal crossings. In figure B.1 the typical normal
crossing divisor in R2 and R3 is shown.

Figure B.1: Normal crossing divisor in R2 defined by h = xy (left) and in R3 defined by h = xyz

(right)

In fig. B.2 the curves node and cusp are pictured. The node has normal crossings at the origin,
i.e., it has an A1-singularity. The cusp, on the other hand, has an A2-singularity. Note that the
cusp is even analytically irreducible.
In chapter 1 free divisors are introduced. It is not easy to grasp the concept of freeness geo-
metrically. In fig. B.3 the discriminant of a versal deformation of an A3-singularity is shown

3In order not to distract the reader’s attention from the mathematics in the main text, we have chosen to defer
the pictures to this appendix.



102 Figures

Figure B.2: the node with equation x
2

= y
2

+ x
3 and the cusp x

3
= y

2.

(see Example 1.17). The singular locus of this free surface is one-dimensional and consists of a
parabola and a cusp. Note that because of the visualization in R3 one cannot “see” the singular
parabola. Another important example of a free divisor is the 4-lines divisor (fig. B.3) of Example
1.16: it consists of four smooth components and locally at the origin its singular locus is the
z-axis. In fig. B.4 the free surface of Example 2.9 (2) is pictured. Here the singular locus consists
of three smooth curves, along which the divisor does not have normal crossings.

Figure B.3: The 4-lines: xy(x + y)(x + yz) (left) and discriminant of versal deformation of an
A3-singularity (right).

The two divisors of fig. B.5 are everywhere free but at the origin. The Whitney Umbrella was
considered in Example 1.13. It has the z-axis as singular locus but at the origin the Jacobian
ideal has an embedded primary component. Outside the origin along the z-axis the Whitney
Umbrella is analytically isomorphic to the union of two transversally intersecting hyperplanes,
that is, it has normal crossings. The surface Tülle of Example 1.43 is the union of three smooth
surfaces. In Example 3.50 it was shown that Tülle is not mikado at the origin.
In fig. B.6 the two surfaces from Example 2.47 are displayed: both have the cusp as singular
locus. One surface is the union of the cylinder over the cusp with a transversal plane and is
splayed and even free at the origin, whereas the other is neither free nor splayed at the origin.



103

Figure B.4: Sekiguchi’s FB,1-example, with h = z(x
2
y
2 − 4y

3 − 4x
3
z + 18xyz − 27z

2
).

Figure B.5: The Whitney Umbrella: x
2 − y

2
z (left) and Tülle: xz(x + z − y

2
) (right).

Figure B.6: The cusp as singular locus: h = x(y
2 − z

3 (left) and h = x(x + y
2 − z

3
) (right).
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Abstract English

The main objective of this thesis is to give an effective algebraic characterization of normal cross-
ing divisors (= hypersurfaces) in complex manifolds. In order to obtain such a characterization
we study logarithmic vector fields along a divisor, i.e., vector fields defined on the ambient space,
which are tangent to the divisor at its smooth points, as well as logarithmic differential forms.
Using the corresponding theory, which was developed by K. Saito, a characterization of a nor-
mal crossing divisor in terms of logarithmic differential forms (vector fields) is shown. Also a
characterization of a normal crossing divisor in terms of the logarithmic residue is given (which
is essentially due to Granger and Schulze). With this a question posed by K. Saito in 1980 can
be answered.
In the second chapter we study singularities of normal crossing divisors, in particular we consider
Jacobian ideals, which define the singular locus of a divisor. The main theorem is that a divisor
has normal crossings at point if and only if it is free at the point, its Jacobian ideal is radical and
its normalization is Gorenstein. Free divisors are defined via logarithmic vector fields and form a
class of divisors containing normal crossing divisors. Since there exists an algebraic characteriza-
tion of free divisors by their Jacobian ideals, our result yields a purely algebraic characterization
of the normal crossings property. During the proof of the main theorem splayed divisors are
introduced, which are a slight generalization of normal crossing divisors.
In the last part we consider further-reaching questions: first we ask, which radical ideals can be
Jacobian ideals of divisors. Then splayed divisors are studied in more detail, in particular, we
show that their Hilbert–Samuel polynomials satisfy a certain additivity property. Finally, we
consider another generalization of normal crossing divisors, so-called mikado divisors. Here the
plane curve case is studied and we characterize mikado curves by their Jacobian ideal.





Zusammenfassung Deutsch

Das Hauptziel dieser Dissertation ist eine effektive algebraische Charakterisierung von Divisoren
(= Hyperflächen) mit normalen Kreuzungen in komplexen Mannigfaltigkeiten anzugeben. Um
eine derartige Charakterisierung zu finden, studieren wir sowohl logarithmische Vektorfelder ent-
lang eines Divisors, d.h., Vektorfelder des umgebenden Raumes, die in allen glatten Punkten des
Divisors tangential an ihn sind, als auch logarithmische Differentialformen. Mit Hilfe der zugehö-
rigen Theorie, entwickelt von K. Saito, wird eine Charakterisierung von Divisoren mit normalen
Kreuzungen durch logarithmische Differentialformen (Vektorfelder) gezeigt. Des weiteren wird
eine Charakterisierung durch das logarithmische Residuum vorgestellt (diese beruht auf Ergeb-
nissen von Granger und Schulze). Damit kann eine Frage von K. Saito beantwortet werden.
Im zweiten Kapitel werden Singularitäten eines Divisors mit normalen Kreuzungen untersucht,
insbesondere betrachten wir das Jacobi Ideal, das den singulären Ort des Divisors definiert. Un-
ser Hauptsatz besagt, dass ein Divisor genau dann normale Kreuzungen in einem Punkt besitzt,
wenn er frei in diesem Punkt, sein Jacobi Ideal radikal und seine Normalisierung Gorenstein
ist. Freie Divisoren werden durch logarithmische Differentialformen definiert und bilden eine
Klasse von Divisoren, die insbesondere Divisoren mit normalen Kreuzungen enthält. Da eine
algebraische Charakterisierung von freien Divisoren durch deren Jacobi Ideale existiert (nach
A. G. Aleksandrov), ergibt sich aus unserem Resultat eine rein algebraische Charakterisierung
der normalen Kreuzungsbedingung. Im Laufe des Beweises des Hauptsatzes werden gespreizte
Divisoren eingeführt, die eine leichte Verallgemeinerung von Divisoren mit normalen Kreuzungen
darstellen.
Im letzten Teil der Arbeit werden weiterreichende Probleme betrachtet: Zuerst fragen wir, wel-
che radikalen Ideale Jacobi Ideale von Divisoren sein können. Dann werden gespreizte Divisoren
genauer untersucht, insbesondere zeigen wir, dass ihre Hilbert–Samuel Polynome eine gewisse
Additivitätsbedingung erfüllen. Schließlich wird eine weitere Verallgemeinerung von Divisoren
mit normalen Kreuzungen betrachtet, sogenannte Mikado Divisoren. Hier charakterisieren wir
ebene Mikado Kurven durch ihr Jacobi Ideal.
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