
MASTERARBEIT

Titel der Masterarbeit:

MANAGEMENT OF AND INTERACTION WITH OLAP
CLOUD SERVICE

eingereicht von:

Sicen Ye

zur Erlangung des akademischen Grades

Diplom-Ingenieur(Dipl.-Ing.)

Wien, October 2011

Matrikelnummer: 0309037

Studienrichtung: Scientific Computing A066 940

Begutachter: Ao. Univ.-Prof. Dipl.-Ing. Dr. Peter Brezany

Ich versichere:

� dass ich die Diplomarbeit selbststndig verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient
habe.

� dass ich diese Diplomarbeit bisher weder im In- noch im Ausland (einer Beurteilung
bzw. einem Beurteiler zur Begutachtung) in irgendeiner Form als Prfungsarbeit
vorgelegt habe.

� dass diese Arbeit mit der vom Begutachter beurteilten Arbeit bereinstimmt.

Wien, October 2011 Sicen Ye

Abstract

Cloud Computing is a relatively newly emerged high performance parallel comput-
ing paradigm. A lot of algorithms from the past could now find new opportunities
and benefit from it. After several month of study on theory and implementation of
On-Line Analytical Processing (OLAP), especially, the OLAP engine from the Grid-
Miner project (http://www.gridminer.org), we decided to design and implement
an OLAP system for Cloud Computing environment. For this cloud-enabled OLAP
system we have also provided means for management and interaction with it, which
are implemented by a multi-tier client subsystem including some business logic and
Graphical User Interfaces (GUI) in an easy to use and understandable way. In this
thesis the original design and implementation of the multi-tier client subsystem is
described and discussed.
Management and interaction with OLAP cloud means on one hand loading data
from data source, transforming and transferring it to the OLAP cloud to construct
data cube, On the other hand, submitting OLAP analysis queries and handling the
results.
Practically, the implemented client subsystem was developed mainly using Google
Web Toolkit (GWT) as a web-based multi-tier application. It is able to load data
either from a single Relational Database Management System (RMDBS) via Java
Database Connectivity (JDBC), or from Open Grid Services Architecture - Data
Access and Integration (OGSA-DAI) server, which integrates data from heteroge-
neous data sources. Operations such as loading data to OLAP cloud and OLAP
query are achieved by interacting with the Representational State Transfer (REST)
APIs provided by the OLAP cloud. Data is represented in WebRowSet format, op-
erations are described in OLAP Modeling Markup Language (OMML) version 2.0,
which is proposed, described and implemented in this thesis.

http://www.gridminer.org

vi

Zusammenfassung

Cloud Computing ist ein relativ neu entstandenes High Performance Parallel Com-
puting Paradigma. Viele Algorithmen aus der Vergangenheit können nun von Cloud
Computing profitieren und neue Möglichkeiten finden. Nach einigen Monaten Unter-
suchungen zur Theorie und Umsetzung von On-Line Analytical Processing (OLAP),
vor allem, die OLAP-Engine aus dem GridMiner Projekt (http://www.gridminer.
org), haben wir beschlossen, ein OLAP System für Cloud Computing Umgebung zu
entwerfen und Implementieren. Für das Cloud-enabled OLAP System brauchen wir
auch Mittel für das Management und Interaktion mit ihm, die durch eine Multi-Tier
Client Subsystem einschließlich einiger Business-Logik und Graphical User Interfaces
(GUI) umgesetzt werden sollten . In dieser Arbeit die ursprngliche Gestaltung und
Umsetzung der Multi-Tier Client Subsystem wird beschriebt und diskutiert.
Management und Interaktion mit dem OLAP Cloud bedeutet auf der einen Seite
das Laden von Daten aus der Datenquelle, die Umwandlung und Übertragung von
Daten auf das OLAP Cloud um Data Cube zu konstruieren, Auf der anderen Seite,
Versand von OLAP Analyse Abfragen und Empfang des Ergebnis.
Unser Client-Subsystem wurde hauptsächlich mit dem Google Web Toolkit (GWT)
als web-basierte Multi-Tier Anwendung entwickelt . Es könnte Daten von ver-
schiedene Datenquelle einlesen, z.B. von Relational Database Management Systeme
(RMDBS) oder von integrierten Abfrage-Ergebnis von mehreren RMDBS durch
Open Grid Services Architecture - Data Access and Integration (OGSA-DAI) Server,
der Distributed Query Processing bietet (DQP). Operationen wie das Laden von
Daten auf OLAP Cloud und OLAP Abfrage sind durch die Interaktion mit dem
Representational State Transfer (REST) APIs des OLAP Cloud erreicht. Daten in
unserem System werden in WebRowSet Format dargestellt, und die Operationen
werden mit OLAP Modelling Markup Language (OMML) version 2.0 beschreibt,
die in dieser Masterarbeit vorgeschlagen, beschriebt und implementiert wird.

 http://www.gridminer.org
 http://www.gridminer.org

viii

Contents

Abstract v

Zusammenfassung vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Approach . 5
1.4 Thesis Organization . 6

2 Basics of On-Line Analytical Processing 8
2.1 Basic Principles . 8
2.2 Classification of OLAP . 11
2.3 MOLAP Operations . 12

2.3.1 Aggregation . 12
2.3.2 Roll-up and Drill-down . 12
2.3.3 Slice and Dice . 14
2.3.4 Pivot . 15

3 Design and Implementation 17
3.1 Multi-tier Architecture . 17

3.1.1 Design of the Service Tier . 18
3.1.2 Design of the GWT Client Tier 18
3.1.3 Design of the GWT Server Tier 18

3.2 Data Flow in the System . 19
3.2.1 Data Flow of the OLAP Query Client 19
3.2.2 Data Flow of the OLAP Administrator 20

3.3 Why Multi-tier Architecture . 21
3.4 Implementation . 23

3.4.1 Implementation of OLAP Access Servlet 23
3.4.2 Implementation of Database Access Servlet 28
3.4.3 Implementation of OGSA-DAI Access Servlet 31
3.4.4 Implementation of the WebRowSet XML Generator 40

CONTENTS x

3.4.5 Convert the WebRowSet XML Document to Ext GWT Grid . 43
3.4.6 Modules in GWT Development 45
3.4.7 Implementation of PRC Call 47

3.5 UML Diagrams Description . 50
3.5.1 UML Diagram of the OLAP Query Client Project 51
3.5.2 UML Diagram of the OLAP Administrator Project 54

4 Installation and Deployment 58
4.1 Preparation . 58
4.2 Installation . 59

4.2.1 Installation for Both OLAP Query Client and OLAP Admin-
istrator . 59

4.2.2 Installation for OLAP Query Client 62
4.2.3 Installation for OLAP Administrator 66

4.3 Deployment . 70
4.3.1 Deployment for OLAP Query Client 70
4.3.2 Deployment for OLAP Administrator 71

5 Graphical User Interface 76
5.1 Description of Testing Data Set . 76

5.1.1 Prerequisites . 77
5.2 Introduction of OLAP Administrator GUI 77
5.3 Introduction of OLAP Query Client GUI 80

6 OLAP Modelling Markup Language 82
6.1 The Components of OMML . 82
6.2 General Information . 83
6.3 Virtual Cube Server Information . 83
6.4 Metadata and Dimension Hierarchies of Virtual Cube 84
6.5 Query . 86
6.6 Result . 88

7 Conclusion and Future Work 89

A WebRowSet XML Schema Definition 91

B OLAP Modelling Markup Language 2.0 XML Schema Definition 94

C Class Diagrams of the OLAP Administrator Project 97

Bibliography 103

List of Figures

1.1 Administrator and query client of the OLAP cloud 2
1.2 Data sources for the elastic OLAP cloud 3
1.3 OGSA-DAI as middleware between OLAP administrator and hetero-

geneous databases . 3
1.4 Data integration with OGSA-DAI . 4
1.5 OMML between the client system and the elastic OLAP cloud 5
1.6 Step by step development procedure 6

2.1 Hierarchical levels of time dimension 9
2.2 An example of a sales table consisting of three dimensions. [Ona05] . 10
2.3 An example of data cube . 11
2.4 An example of aggregation query . 12
2.5 Dimensions in different hierarchical levels 13
2.6 Roll-up and drill-down on a cube . 13
2.7 Slice operation on a data cube . 14
2.8 Dice operation on a data cube . 15
2.9 Pivot operation between two dimensions 15
2.10 Pivot operation between two different hierarchical levels in dimension

Date . 16

3.1 Multi-tier Architecture of the client systems 17
3.2 Data flow of the OLAP query client 20
3.3 Data flow of the OLAP administrator 21
3.4 Most packages in the GWT library 22
3.5 Apache Wink High Level Client Architecture Overview [pro10] 25
3.6 Role of the related file: OLAPServiceImpl 25
3.7 Class diagram of OLAPServiceImpl class in the OLAP query client

project . 26
3.8 Class diagram of OLAPServiceImpl class in the OLAP administrator

project . 27
3.9 Time cost for initiating virtual cube 28
3.10 Derby network server mode . 29
3.11 Role of the DataServiceImpl class in the project 29
3.12 OGSA-DAI architecture . 32
3.13 OGSA-DAI workflow . 33
3.14 Data service, data service resources and data resources 34
3.15 Role of OgsaDaiServiceImpl class in OLAP administrator project . . 35

LIST OF FIGURES xii

3.16 Workflow visualization of a DQP query 39
3.17 Inheritance structure of JDBC WebRowSet interface 40
3.18 Convert currentRow to an object of Record2 class 44
3.19 GWT run configuration window . 46
3.20 Class diagram of the OLAP query client project 52
3.21 Class diagram of the OLAP administrator project 55

4.1 Add GWT plugin repository location 60
4.2 Plugins list from the repository . 61
4.3 Confirm the installation . 61
4.4 Accept the license agreement . 62
4.5 The new Google toolbar . 62
4.6 Environment variables . 63
4.7 Start Tomcat 6.0 . 63
4.8 Import project window . 64
4.9 Project properties window . 64
4.10 Create new user library . 65
4.11 Add the required JAR files . 65
4.12 Edit library window . 66
4.13 GWT Design view . 66
4.14 Sysinfo from Derby . 67
4.15 Deploy OGSA-DAI Axis onto Tomcat 68
4.16 OGSA-DAI: deployed services list . 69
4.17 Directory structure of the OLAP administrator project 70
4.18 Initial appearance of the OLAP query client GUI 71
4.19 Deployed resources on OGSA-DAI server 73
4.20 DQP resource on OGSA-DAI server 74
4.21 Initial appearance of the OLAP administrator GUI 75

5.1 OLAP administrator GUI . 78
5.2 Ext GWT grid . 79
5.3 OLAP query client GUI . 81

C.1 Class diagram of Administrator, Record1 and Record10 98
C.2 Class diagram: OLAPService implementation 99
C.3 Class diagram: DataService implementation 100
C.4 Class diagram: OgsaDaiService implementation 101

List of Tables

3.1 RESTful service interfaces of cloud-enabled OLAP system 24
3.2 Database query result . 41

4.1 Applied software tools and libraries 58
4.2 GWT repository locations for other version of Eclipse 60

Chapter 1

Introduction

1.1 Motivation

Cloud Computing [MA09] is a new compute paradigm based on internet. In data
center, cloud is made up by thousands of computers and workstations. Hence, Cloud
Computing enables more than 10 trillion times of computations per second, with
such powerful computing capability Cloud Computing provides a lot of new oppor-
tunities for lots of traditional algorithms. Clients can use various kinds of devices
such as personal computer, laptop computer, or even a mobile phone to access a
cloud data center and perform computing tasks.

On-Line Analytical Processing (OLAP) is an important application of data ware-
house technology. OLAP supports complicated analysis on multi-dimensional data,
it provides support for decision making with analytical query results which are in-
tuitive and easy to understand. Generally, an OLAP application can organize and
integrate the raw data, transform it into multi-dimensional analytical data model,
and provides meaningful knowledge out of it to support decision making.

Based on the successful development of the OLAP engine from the GridMiner project
[Gri] we decided to design and implement an OLAP system for the Cloud Com-
puting environment. After several months work, the first prototype of the cloud-
enabled OLAP system is already available. The prototype system could be deployed
in cloud environments with different infrastructure compositions including private
cloud, public cloud and hybrid cloud. Performance analysis of the prototype system
was done on a public cloud, the Amazon Elastic Compute Cloud (EC2) [Spe06], the
result suggests that the system fulfills the requirement of an efficient OLAP system
and also meets the characteristics, such as elasticity and virtualization, of Cloud
Computing. The prototype system was developed follow the Representational State
Transfer (REST) [Fie00] architectural style.

The prototype of cloud-enabled OLAP system brings us an elastic OLAP cloud. For
management of and interaction with this elastic OLAP cloud, web based Graphical
User Interface (GUI) should be developed. Besides, we should also further develop
the OLAP Modelling Markup Language (OMML), which is based on Extensible

1.2 Goals 2

Markup Language (XML) [W3C04] and is defined as standard communication lan-
guage between the OLAP cloud and the clients.

Two aspects are assumed for the management of and interaction with the elas-
tic OLAP cloud. As shown in Figure 1.1 the administrator can read raw data in
different format from different data sources, transform it into a uniform format and
load it to the OLAP cloud. On the other hand, the client can initiate query, send
it to the OLAP cloud and get the analytical result. In this thesis we present and
discuss the design and implementation of two multi-tier client systems, one for im-
plementing the administrator’s functionality, the other for implementing the query
client’s functionality.

Figure 1.1: Administrator and query client of the OLAP cloud

1.2 Goals

The main focus of the thesis is the development of two multi-tier client systems, one
for the administrator and one for query client.

For OLAP administrator system, the main task is to transform the raw data into
uniform format and load it to the OLAP cloud. The first thing to consider is: Where
the raw data comes from? Simply, relational databases (e.g. Derby database) can
be our data sources. Another popular way is that we can get the raw data from an
Open Grid Service Architecture - Data Access and Integration (OGSA-DAI) server.
The administrator system should be possible to read raw data from both above

1.2 Goals 3

mentioned data sources. As shown in Figure 1.2, raw data either from the derby
database or from the OGSA-DAI server is to be transformed into WebRowSet XML
format before loading to the OLAP cloud.

Figure 1.2: Data sources for the elastic OLAP cloud

OGSA-DAI is a middleware which aims to provide an efficient possibility for data
access and integration in distributed Grid Computing environment. It allows Grid
Computing user and other Grid Computing services to access various kinds of het-
erogeneous databases including Relational database, XML database and also file
system based database. It enables sharing data resources at a high level, so, co-
processing and access to the data sources becomes more efficient, transparent and
reliable.

Figure 1.3: OGSA-DAI as middleware between OLAP administrator and heteroge-
neous databases

As shown in Figure 1.3 in this thesis OGSA-DAI server is a middleware between

1.2 Goals 4

OLAP administrator and heterogeneous databases. First, OLAP administrator
sends database query to OGSA-DAI server, the OGSA-DAI then queries either a
single database or several distributed databases, integrates the results and sends it
back to the OLAP administrator.

Figure 1.4 gives an example of the query and data integration workflow of an
OGSA-DAI server, which queries multiple databases. When the OLAP adminis-
trator’s query request arrives at the OGSA-DAI server, the OGSA-DAI server sends
at the same time two SQL queries to database 1 and database 2, the two databases
execute their own queries respectively, then the results are processed with necessary
transformation and integration by the OGSA-DAI server. Finally, the integrated
result is send back to OLAP administrator.

Figure 1.4: Data integration with OGSA-DAI

Another goal of this thesis is to design and implement the OLAP query client sys-
tem. The main functionality of the OLAP query client includes initiating and send-
ing OLAP queries to the OLAP cloud, receiving results and presenting them in
well formatted tables to the user. Here, there is another important task, to further
develop and extend the standardized communication language between the elastic
OLAP cloud and the client systems, OMML. Figure 1.5 shows where the OMML is
used in the system.

The first version of OMML was formulized in [EO05], it was inspired by the Predic-
tive Model Markup Language (PMML) [Gro]. Unlike the PMML which is focus on
general predicative models and data mining, the OMML concentrates on presenting
the OLAP model and its query results. OMML is designed to provide consistent
OLAP model, which can be used by any OMML compatible application. So, besides
further develop the OMML standard, the OMML should also be implemented and
applied as standard communication language between the elastic OLAP cloud and
the client systems.

1.3 Approach 5

Figure 1.5: OMML between the client system and the elastic OLAP cloud

Google Web Toolkit (GWT) [Goo] is an open source framework based on Java used
to fast develop Asynchronous JavaScript and XML (AJAX) [Gar] web application.
GWT is distributed by Google as a web application development toolkit, which
provides perfect compliance to web 2.0 standard, and can be integrated in many
kinds of IDEs like Eclipse and so on. After we deploy our Java coded program to
GWT project, GWT compiler will translate the program into JavaScript and html
documents that is suitable for various types of browsers.

In this thesis, GWT was mainly used for constructing the two multi-tier client sys-
tems’ frameworks. Other software tools and libraries including Derby DB, OGSA-
DAI, Apache Wink client toolkit, Ext GWT and so on were also applied as third-
party library for implementing different aspects of the client systems’ functionality.

1.3 Approach

After study the theory of OLAP and comparing different implementation variants of
OLAP engines(sequential version, parallel version based on socket communication,
parallel version based Java RMI), we decided to first apply the GWT and Apache
Wink client module to develop a web based OLAP query client.

The OLAP query client aims at providing an efficient way for the users to send
different kinds of queries to the elastic OLAP cloud and receive results, which are
well presented in forms to the users. Besides, the task includes also design and
implementing OMML for standardizing the communication language between the
clients and the elastic OLAP cloud.

During the development of the OLAP query client, we started to think about the

1.4 Thesis Organization 6

second client system - OLAP administrator. OLAP administrator was also devel-
oped using the GWT, besides, libraries of Apache Wink, Apache Derby database
and OGSA-DAI, Ext GWT were applied as third-party library and plugin for im-
plementing some business logic.

OLAP administrator client is designed to be used by user with administrator priv-
ilege, it inherits some functions from the OLAP query client, moreover, it can also
query the Derby database and OGSA-DAI server to load raw data and transform it
into WebRowSet format and transfer it to the elastic OLAP cloud.

The exact scheme of the step-by-step development procedure is illustrated in Fig-
ure 1.6. Of course, this scheme does not represent our whole software engineering
approach, as it does not include all the phases and our development do not need to
have been continued during these development phases. This scheme just represents
a better step by step procedure.

Figure 1.6: Step by step development procedure

1.4 Thesis Organization

In the next chapter there is an introduction to the basics of OLAP including several
kinds of OLAP operations. Chapter 3 is detailed description for the system design

1.4 Thesis Organization 7

and implementation, there are descriptions about the multi-tier architecture, data
flow chart, details on the applied software tools and libraries and functionality of
each part of the program. Chapter 4 is the guide for installation and deployment
of the system which can be the basis for further development and extension. In
Chapter 5 we will discuss the details of the OMML version 2.0 schema. In Chapter
6, there is GUI introduction for the both client systems. Finally, conclusion and
future work are covered in Chapter 7.

Chapter 2

Basics of On-Line Analytical
Processing

Relational model was first formulated and proposed by E.F.Codd in 1969, it en-
couraged the development of On-Line Transaction Processing (OLTP). In 1993,
E.F.Codd proposed the principle of On-Line Analytical Processing (OLAP), as in
that time OLTP was already no more sufficient for the requirement of query and
analysis for databases, decision making strategy should be supported by intensive
analytical computations, but the simple SQL query for huge data warehouse could
not fulfill the analytical requirements. So, the idea of multi-dimensional database
and multi-dimensional data model was introduced. Nowadays, OLAP becomes an
important approach for knowledge discovery.

2.1 Basic Principles

OLAP aims at data access and on-line analysis for specific problem. OLAP enables
decision makers for observing information in many possible views, accessing data
in an efficient, interactive and high consistent way and perform various kinds of
analyses. Following are some basic definitions of OLAP.

Dimension:

A dimension represents a specific aspect of data. For example, enterprises would
normally like to observe changes of their product sales over time, i.e. they observe
the product sales data from the time aspect, and time is a dimension. If the product
sales are observed from the aspect of geographical distribution, then the geographi-
cal distribution is a dimension. In both cases the product sales are the measures.

Hierarchy of dimensions:

Based on different level of detail a dimension can have multiple hierarchical lev-
els. For example, a time dimension can be described in different levels like date,
month, season and year, so these are the hierarchical levels of the time dimension,

2.1 Basic Principles 9

as shown in Figure 2.1. Similarly, district, city and country are the different hierar-
chical levels of geographical location dimension.

Figure 2.1: Hierarchical levels of time dimension

Dimension members:

A possible value of a dimension is a member of the dimension. In case a dimension
has more hierarchical level, then a dimension member is made up by combination of
possible values from all its different hierarchical levels. For instance in Figure 2.1, a
dimension member of time dimension can be (28th,December, 4th quarter, 2011).

Multi-dimensional Array:

A multi-dimensional dataset can be represented using such a multi-dimensional ar-
ray: (dimension1, dimesnion2, dimension3,measure). For example, product sales
data is a three-dimensional array made up by time, location, product and measure
(product sales): (location, time, product, sales). Such a combination of dimensions
and measure is given in Figure 2.2.

Cube:

The three-dimensional array in Figure 2.2 can be represented using a data cube.
The relationship of dimensions, hierarchical levels and the measures can be repre-
sented by a cube as shown in Figure 2.3. But a cube must not be limited to have
three dimensions, normally a multi-dimensional data array can be represented by
multi-dimensional cube, so it is also called hypercube.

2.1 Basic Principles 10

Figure 2.2: An example of a sales table consisting of three dimensions. [Ona05]

A hypercube structure means that use three or more dimensions to describe a ob-
ject, each dimension is orthogonal to each other. Measured value of data is occurred
in the intersection point of the dimensions.

This structure can be applied in multi-dimensional database and OLAP system
oriented for RDBMS, its main feature is that it simplifies the operation of end-user.

The approach of OLAP cube enables efficient data access and also simplifies the
aggregation computation especially for huge amount of data. Aggregation com-
putations like counting, sum, average and so on need always to repeat again and
again, in OLAP cube, the aggregation computation results can be cached to guar-
antee rapid response to different aggregation queries.

2.2 Classification of OLAP 11

Figure 2.3: An example of data cube

2.2 Classification of OLAP

According to the data storage format, OLAP systems can be classified into three
major types.

Relational OLAP (ROLAP)

ROLAP represents the OLAP implementation based on relational database, it uses
relational data model to describe the multi-dimensional data. There two kinds of
tables in ROLAP for multi-dimensional data: The first is fact table, which is used
to store data and dimension keywords. Another is dimension table, which uses at
least one table for each dimension for storing the hierarchy information, dimension
member type and other description about the dimension. Fact tables and Dimension
tables are connected together via keywords to form a ”star schema”. Dimensions
with complicated hierarchy can be described by multiple tables, which connected
together following a more complicated ”snowflake schema”.

Muilt-dimensional OLAP (MOLAP)

MOLAP is implemented on basis of multi-dimensional data cube model. For MO-
LAP, there are many possible operations, which can be performed on cube, these

2.3 MOLAP Operations 12

includes pivot, slice, dice, roll-up and drill-down. Different views of data can be gen-
erated by applying theses operations. The OLAP engine from GridMiner project
was also implemented as MOLAP, detailed description of this OLAP engine can be
found in [FB04b] and [FB04a].

Hybrid OLAP (HOLAP)

MOLAP and ROLAP has each respective advantage and disadvantage, and their
data structures are totally different. In order to integrate their advantages in a
uniform model, HOLAP was proposed as a combination of MOLAP and ROLAP.
Data in HOLAP is organized in a hybrid way, for example relational model in low
level and multi-dimensional model in high level for better flexibility.

2.3 MOLAP Operations

As our elastic OLAP cloud was implemented based on the GridMiner’s OLAP en-
gine, which was implemented as MOLAP, in this section we introduce some OLAP
operations and describe them in context of MOLAP.

2.3.1 Aggregation

Aggregation is the most commonly applied OLAP operation, it computes the ag-
gregated result by applying different operation methods (Aggregators) like SUM ,
MIN , MAX or AV ERAGE along one or multiple dimensions of a cube. Aggrega-
tion is the basis for other operations. Figure 2.4 gives an example where dimension
Date is set to be ANY , other dimensions are set to be a specific dimension member
and sales is the measure. So, if we apply the aggregator SUM, this aggregation
operation will calculate the sum of PC sales in Wien at any time.

Figure 2.4: An example of aggregation query

2.3.2 Roll-up and Drill-down

As mentioned before, a dimension could be described in different hierarchical lev-
els. High hierarchical level means more abstract, summarized data and so relatively
fewer amount of data. Low hierarchical level means more detailed data and so rel-
atively larger amount of data. By applying drill-down operation we can observe

2.3 MOLAP Operations 13

abstract data at a detailed level, and roll-up is the operation to observe detailed
data at an abstract level. Let’s introduce an example as shown in Figure 2.5, it
presents the product sales analysis using three dimensions: Product, Data and Lo-
cation. For example, the dimension Product can be drilled-down into more detailed
level as indicated by the bold line: Procuct, Device, DVD.

Figure 2.5: Dimensions in different hierarchical levels

Based on the above example, Figure 2.6 uses MOLAP cube to represent drill-down
and roll-up operation. On the left side, the dimension Date can be drilled-down at
point Q1 into month. On the other hand, the dimension Location can be rolled-up
into a more abstract dimension level country.

Figure 2.6: Roll-up and drill-down on a cube

2.3 MOLAP Operations 14

2.3.3 Slice and Dice

Slice

Definition 1: If a specific value is fixed for a dimension, then the N -dimensional data
is down to (N − 1)-dimensional data. The combination (dimension1,dimension2,
..., dimensionmemberVi, dimensionN , measure) represents the slice on dimension
i. Definition 2 is more general.

Definition 2: Specify ANY or an interval for two dimensions, dimension i and
dimension j, assign other dimensions each a specific dimension member, then the
result is called slice on dimension i and dimension j.

For example, in Figure 2.7, the cubes describe the product sales. The shadow
part of the left cube represents the slice operation for dimension Product is equal
TV . The shadow part of the right cube represents the slice operation for dimension
Date is equal Q1.

Figure 2.7: Slice operation on a data cube

Dice

Definition 1: If we set an interval for a dimension (e.g. 2005 - 2011 for dimen-
sion date), and set all other dimensions to be ANY , this operation is called dice.
When the interval has only a single value, then the operation is also slice.

Definition 2: The operation of restricting intervals for one or multiple dimensions
(e.g. dimension i, dimension j, ...), and assigning for the rest dimensions each a spe-
cific dimension member is called dice on these dimensions (dimension i, dimension
j, ...).

In Figure 2.8, the shadow part of the left cube represents the dice operation on di-
mension location by giving the interval [NewY ork,Montreal]. The shadow part of
the right cube represents the dice operation on all dimensions of the cube by giving
interval [Montreal, V ancouver] for dimension Location, giving interval [Q1, Q2] for
dimension Date and giving interval [PC,Radio] for dimension Product.

2.3 MOLAP Operations 15

Figure 2.8: Dice operation on a data cube

Figure 2.9: Pivot operation between two dimensions

2.3.4 Pivot

The operation pivot enables generation of different data views by exchanging roles
between dimensions. Pivot can be performed either between dimensions like the
exchange of dimension Date and dimension Product as shown in Figure 2.9, or be-
tween different hierarchical levels of a dimension like the exchange of level year and
level quarter as shown in Figure 2.10.

2.3 MOLAP Operations 16

Figure 2.10: Pivot operation between two different hierarchical levels in dimension
Date

Chapter 3

Design and Implementation

3.1 Multi-tier Architecture

Figure 3.1 presents the multi-tier architecture for both OLAP query client and
OLAP administrator. Although the two client systems were implemented as indi-
vidual projects, the multi-tier architecture is given here just to show the same main
structure of the two systems, the internal implementation of respective functional
modules are not the same.

Figure 3.1: Multi-tier Architecture of the client systems

In Figure 3.1, the part left to the dashed line is the main programming part. In the
programming part there are two tiers, one is the GWT client tier which was devel-
oped mainly using GWT, another is the GWT server tier which was developed based
on GWT and also using OGSA-DAI, Apache Wink and Derby as third-party library.

3.1 Multi-tier Architecture 18

The right part of the dashed line there are three services in communication with the
client systems. For this part, installation and configuration is needed, this part is
the service tier.

3.1.1 Design of the Service Tier

The service tier contains following three parts:

1. OLAP cloud: The OLAP cloud provides OLAP services to the client sys-
tems. We just need to concentrate on the RESTful interfaces of the OLAP
cloud, but do not need to consider the internal details of it.

2. Derby Database: As the administrator system is designed to get raw
data from Apache Derby database, so here we should install and conFigurethe
Derby database server and create databases and tables for data used in exper-
iments.

3. OGSA-DAI server: The administrator system can also get raw data from
OGSA-DAI server. We should install and conFigureOGSA-DAI server and
deploy Derby database as data resources and also as DQP resources to it.

3.1.2 Design of the GWT Client Tier

The main tasks of the GWT client tier:

1. JSP views: Implement two different JavaServer Pages (JSP) [Ora] views,
one for OLAP query client and one for OLAP administrator.

2. RPC: Implement Remote Procedure Call (RPC) communication between
GWT client tier and GWT server tier.

3. OMML Parser: Implement the function for converting the query table
from user to OMML document and converting the OMML query result from
the OLAP cloud and present it to user as table.

4. WebRowSet XML Parser: First, in the GWT server tier the raw data
from the Derby database or from OGSA-DAI server will be transformed into
the uniform WebRowSet XML format. Then the data will be passed to the
GWT client tier, in the GWT client tier the WebRowSet XML format data
is parsed and presented in grid to user, the user can then decide if the data
shown in the table should be loaded to the OLAP cloud.

3.1.3 Design of the GWT Server Tier

Business logic of the GWT server:

3.2 Data Flow in the System 19

1. OLAP access servlet: This servlet communicate with the OLAP cloud
through HTTP and implemented by Apache Wink client toolkit. The servlet
handles the request to send to the OLAP cloud, transferring parameters and
getting response. For loading data to the OLAP cloud, the servlet transfers
data in WebRowSet XML format to OLAP cloud. For querying OLAP, the
servlet communicates with the OLAP cloud by exchanging OMML informa-
tion.

2. Database access servlet: This servlet implements data access to Derby
database. It uses JDBC to connect to Derby databases and get data from the
database and transform the raw data into WebRowSet XML format and sends
it to GWT client tier.

3. OGSA-DAI access servlet: This servlet implements data access to OGSA-
DAI server. OGSA-DAI server integrates data from heterogeneous data sources
and provide it to the servlet. The servlet transforms the raw data into We-
bRowSet XML format and sends it GWT client tier.

The three servlets from above implement the main business logic of the GWT server
tier. There is a WebRowSet XML generator functional module which is embedded
both in database access servlet and in OGSA-DAI access servlet, its main func-
tion is converting the WebRowSet Java object, which holds the resulted data, to
WebRowSet XML.

3.2 Data Flow in the System

Next, we introduce the system from the aspect of data flow. As the two client sys-
tems were implemented as individual projects. Their data flow will be described
respectively.

3.2.1 Data Flow of the OLAP Query Client

Figure 3.2 shows the data flow diagram of the OLAP query client project. Firstly,
the user should create query form in the GUI and fill the form with query param-
eters, the form will be then parsed by the OMML parser module and converted
to OMML message. After that, a RPC connection will be established between the
GWT client tier and GWT server tier, the OMML message will be transferred to the
GWT server tier through the RPC connection and then will be sent to the OLAP
cloud by OLAP access servlet through HTTP.

In the service tier, the OLAP cloud will handle the query sent by the OLAP query
client. After the result is available in OMML format, it will be transferred back
through the above mentioned two connections: through HTTP to the GWT server
tier and then through RPC connection to the GWT client tier. Finally, in the GWT
client tier, the query result in OMML format will be parsed again by the OMML

3.2 Data Flow in the System 20

Figure 3.2: Data flow of the OLAP query client

parser module and will be presented to the user as table in the GUI.

3.2.2 Data Flow of the OLAP Administrator

Figure 3.3 presents the data flow diagram of the OLAP administrator project in
the muli-tier architecture. Firstly, the user as administrator can initiate request for
raw data in the OLAP administrator GUI, the request will be sent to the GWT
server tier through RPC connection. After that, based on the user’s specification, if
the requested raw data is provided by a Derby database directly, the database ac-
cess servlet in the GWT server tier will establish a JDBC connection to the Derby
database and forward the request through the connection. If the requested raw data
is provided by OGSA-DAI server, the OGSA-DAI access servlet will forward the
request through HTTP to the OGSA-DAI server. After the requested raw data is
sent back to the GWT server tier, it will be transformed into WebRowSet XML
format before return to the GWT client tier.

In the GWT client tier, the returned WebRowSet XML data will be parsed by the
WebRowSet XML parser module and will be transformed into grid to present to the
administrator user in the GUI. The administrator user will then decide if the data
is to be loaded to the OLAP cloud, or if the data is not proper, the user can also
make some changes on the data request and get raw data again from database or
OGSA-DAI server.

3.3 Why Multi-tier Architecture 21

Figure 3.3: Data flow of the OLAP administrator

3.3 Why Multi-tier Architecture

Actually, there is simpler way to access the OLAP cloud, as we can directly send
HTTP request from the GWT client tier to the OLAP cloud. Why we design such
a multi-tier architecture? And why the GWT server tier is significant in the sys-
tem? To answer the two questions, we should firstly introduce the applicability of
libraries, packages and GWT plugins in the GWT application development.

GWT library

The main advantage of the GWT development framework is that we can write our
program in Java and fast develop Web 2.0 compliant web application. GWT uses
the file gwt-user.jar to encapsulate the essential packages of the GWT, the function
of the library can be categorized into following groups: user interface, server calls,
data formats, JRE and utility. (Figure 3.4)

Third-party libraries and plugins

As described in the previous section, there are only limited packages which can fa-
cilitate our development. For extending functionality of our application, we should
also apply third-party libraries and plugins, these can be classified into following
two groups.

3.3 Why Multi-tier Architecture 22

Figure 3.4: Most packages in the GWT library

1. Dedicated for GWT

There are a series of plugins which can by applied specifically for GWT devel-
opment. These plugins can be easily configured and applied in the development of
GWT client tier. Popular GWT plugins includes MYgwt, GWT Ext, Ext GWT,
hibernate4gwt and so on.

In the OLAP administrator project, Ext GWT was applied. It is a powerful software
component library, it provides data grid which can be sorted, paged and filtered, it
also provides dragable tree, tab panels, menus, toolbars, dialogs, forms and other
attractive GUI components.

2. Third-party libraries for plain Jave program

Not most popular Java libraries can be applied in GWT client tier development.
For example, XStream [XSt] is a useful library for handling XML documents, but
it cannot be simply used in GWT client tier development. Because the client tier
code and all its used libraries will be compiled to JSP web application, if we apply
some third-party library in the client tier, the library will often cause exception or
failure because of compatibility or other unexpected errors.

Luckily, we can apply third-party Java libraries in the GWT server tier develop-
ment, the applied libraries in the server tier will be compiled just like normal Java
servlet application. In the projects, libraries of Apache Wink, Derby database and
OGSA-DAI were applied in the GWT server tier, and they cannot by applied in
GWT client tier, that is the reason why we designed such a multi-tier architecture
for the client systems.

3.4 Implementation 23

3.4 Implementation

3.4.1 Implementation of OLAP Access Servlet

Main function: Implement the communication between GWT server tier and the
OLAP cloud.
Applied tool: Apache Wink client toolkit
Related class files: OLAPServiceImpl.java in the OLAP query client project and
OLAPServiceImpl.java in the OLAP administrator project.

As mentioned before, the OLAP access servlet helps us to send HTTP request and
handle the response so to interact with the OLAP cloud’s RESTful interfaces which
were implemented using the Apache Wink server module. So, it is a good choice for
us to apply the Apache Wink client module to implement the OLAP access servlet
to guarantee high compatibility.

Overview

The Apache Wink client toolkit provides us a high level Java API for writing clients
that consume HTTP-based RESTful Web Services. The Apache Wink client toolkit
follows JAX-RS standard and encapsulates REST standards and protocols, it maps
REST concepts to Java classes which facilitate the development at the client side for
HTTP-based REST Web Services. Besides, it also provides a handlers mechanism
to enable the manipulation of various kinds of HTTP request and response messages.

The RestClient class is the entry point of the Apache Wink client toolkit, it should
be instantiated as an object before we can use it. Figure 3.5 illustrates the principle
structure of the RestClient.

First, resource objects should be generated by RestClient. A resource object repre-
sents a web service resource related to a certain Unified Resource Identifier (URI).
E.g. in the OLAP cloud, a virtual cube is a resource which related to the URI:
http://{serverIp}:{port}/VCubes/{VirtualCubeID}. Next, RestClient can per-
form standard HTTP methods, including GET, PUT, POST and DELETE, on the
resource objects. Request will be sent to the resource object related URI, and the
response will be handled.

REST API of the OLAP cloud

Table 3.1 lists the RESTful service interfaces provided by the elastic OLAP cloud.

http://{serverIp}:{port}/VCubes/{VirtualCubeID}

3.4 Implementation 24

Invoke
Method

URI functionality

GET http://{serverIP}:{port}/

VCubes

Get general information about all
available virtual cubes on a server

GET http://{serverIP}:{port}/

VCubes/{VCubeID}

Get metadata of a specific virtual
cube

POST http://{serverIP}:{port}/

VCubes

Initiate a new virtual cube on the
serer

POST http://{serverIP}:{port}/

VCubes/{VCubeID}/aggregate

Perform an OLAP Query on a vir-
tual cube

DELETE http://{serverIP}:{port}/

VCubes/{VCubeID}

Delete a virtual cube

POST http://{serverIP}:{port}/

VCubes/{VCubeID}/loadData

Load data to a virtual cube

GET http://{serverIP}:{port}/

VCubes/hostpool

Get the list of registered hosts on
a virtual cube server

GET http://{serverIP}:{port}/

VCubes/hostpool/register

Register a host to the virtual cube
server

GET http://{serverIP}:{port}/

VCubes/hostpool/deregister

Deregister a host from the virtual
cube server

POST http://{serverIP}:{port}/

VCubes/{VCubeID}/loadOneRow

Load one row of data record to
the virtual cube

POST http://{serverIP}:{port}/

VCubes/hostBroker

Set the virtual cube server’s host
broker

POST http://{serverIP}:{port}/

VCubes/hostBroker

Show service URI of the virtual
cube server’s host broker

Table 3.1: RESTful service interfaces of cloud-enabled OLAP system

http://{serverIP}:{port}/VCubes
http://{serverIP}:{port}/VCubes
http://{serverIP}:{port}/VCubes/{VCubeID}
http://{serverIP}:{port}/VCubes/{VCubeID}
http://{serverIP}:{port}/VCubes
http://{serverIP}:{port}/VCubes
http://{serverIP}:{port}/VCubes/{VCubeID}/aggregate
http://{serverIP}:{port}/VCubes/{VCubeID}/aggregate
http://{serverIP}:{port}/VCubes/{VCubeID}
http://{serverIP}:{port}/VCubes/{VCubeID}
http://{serverIP}:{port}/VCubes/{VCubeID}/loadData
http://{serverIP}:{port}/VCubes/{VCubeID}/loadData
http://{serverIP}:{port}/VCubes/hostpool
http://{serverIP}:{port}/VCubes/hostpool
http://{serverIP}:{port}/VCubes/hostpool/register
http://{serverIP}:{port}/VCubes/hostpool/register
http://{serverIP}:{port}/VCubes/hostpool/deregister
http://{serverIP}:{port}/VCubes/hostpool/deregister
http://{serverIP}:{port}/VCubes/{VCubeID}/loadOneRow
http://{serverIP}:{port}/VCubes/{VCubeID}/loadOneRow
http://{serverIP}:{port}/VCubes/hostBroker
http://{serverIP}:{port}/VCubes/hostBroker
http://{serverIP}:{port}/VCubes/hostBroker
http://{serverIP}:{port}/VCubes/hostBroker

3.4 Implementation 25

Figure 3.5: Apache Wink High Level Client Architecture Overview [pro10]

Role of the related file

Figure 3.6 presents the role of the OLAPServiceImpl class, which is in the package
com.google.gwt.query.server in the GWT server tier. On one hand, the OLAPser-
viceImpl class implements the RPC interface for the RPC call from the GWT client
tier, on the other hand, it works as a client that consume RESTful web services of
the OLAP cloud.

Figure 3.6: Role of the related file: OLAPServiceImpl

Implementation detail of the OLAPServiceImpl class in the OLAP query
client project

As shown in Figure 3.7, there are three methods implemented by the OLAPServi-
ceImpl class in the OLAP query client project:

doGet(): The method is used to handle the HTTP GET request. E.g. it is used
to get the metadata of a virtual cube or get the server information of a virtual cube
server.

3.4 Implementation 26

Figure 3.7: Class diagram of OLAPServiceImpl class in the OLAP query client
project

1. The method create an object of the RestClient class.

2. By calling the RestClient.resource() method, a resource, which relates to a
certain service URI, is created.

3. Finally, the Resource.get() method is called, a HTTP GET request is sent.
Once the Http response is returned, the client invokes the relevant provider to
desterilizes the response.

doQuery(): This method is mainly used to handle the HTTP POST request. It
is used to send OLAP query to a virtual cube in the OLAP cloud.

1. Like the GET request, an object of the RestClient class is generated.

2. By calling the RestClient.resource() method, a resource, which relates to a
certain service URI, is created.

3. Finally, the Resource.post() method is called, a HTTP POST request is sent.
Here the content type and the accept type of the HTTP POST request should
be specified as XML format, as we use OMML to exchange massages.

doPut(): The method is used to load one row of data to a virtual cube in the
OLAP cloud. Except the service URI is not the same, this method is similar to the
doQuery() method, it also handles HTTP POST request. Besides, the accept type
is not XML but plain text.

Implementation detail of the OLAPServiceImpl class in the OLAP ad-
ministrator project

As shown in Figure 3.8, there are four methods implemented by the OLAPServi-
ceImpl class in the OLAP administrator project:

3.4 Implementation 27

Figure 3.8: Class diagram of OLAPServiceImpl class in the OLAP administrator
project

doGet(): The method is used to handle the HTTP GET request just like the
doGet method in the OLAP query client project.

doDelete(): This method handles HTTP DELETE request, it is used to delete
virtual cube in the OLAP cloud.

1. A RestClient object is generated.

2. By calling the RestClient.resource() method, a resource is created.

3. Finally, Resource.delete() method is called to send a HTTP delete request to
the service resource, and the accept type of the response should be plain text.

doPostMitHost(): The method handles HTTP POST request, and it is used
to initiate new virtual cube in the OLAP cloud. additionally, a ClientConfig class
should be used to conFigurethe timeout setting of the client.

1. An object of the ClientConfig class is generated.

2. The property connectTimeout and the property readTimeout of the object is
set to 500, 000, which means the timeout is 500 seconds.

3. Then the ClientConfig object is used as parameter in the constructor method
of the RestClient class to create an RestClient object.

4. In the HTTP POST request the content should be set as the metadata of the
new virtual cube in OMML format and the accept type is plain text.

3.4 Implementation 28

Figure 3.9: Time cost for initiating virtual cube

As mentioned above, the timeout of the client is set to be 500 seconds, this is because
that the method is used to initiate new virtual cube in the OLAP cloud, and this is
the most costly procedure in the system. The method interact with the service URI
http://{serverIp}:{port}/VCubes?nHosts, the parameter nHosts indicates how
many hosts are used by the new virtual cube. As a result, greater number of nHost
means more time cost for initiating the new virtual cube. Figure 3.9 shows the rela-
tionship between the number of hosts and time cost for initiating new virtual cube.
For a single host, we need to wait about 62 seconds, and for fifteen hosts about 86
seconds is needed. So, a relative long timeout should be set and we set it to be six
times of the time cost for initiating a virtual cube with fifteen hosts.

doPost(): This method handles HTTP POST request and is used to load We-
bRowSet XML format data into a virtual cube. When the amount of data is huge,
we also need to wait for a long while, so, here the default timeout setting should also
be changed to a relative larger value. Based on our experiment result, 500 seconds is
also a proper value for the timeout here. For the HTTP POST request, the content
is the WebRowSet XML format data, and the result is in plain text.

3.4.2 Implementation of Database Access Servlet

Main function: Access databases.
Applied tool: JDBC, Apache Derby.
Related class files: DataServiceImpl.java in the OLAP administrator project.

Derby database network server mode

There are two runtime modes of the Derby database: embedded mode and network
server mode. In our implementation the network server mode is applied. In the
network server mode, the database server has a dedicated Java Virtual Machine
(JVM), several applications can access the same Derby database at the same time.

As shown in Figure 3.10, a Derby network server runs as a single Java process, it

http://{serverIp}:{port}/VCubes?nHosts

3.4 Implementation 29

Figure 3.10: Derby network server mode

listens the client’s connect through the network. The network server can accept
multiple client connections and access the database storage.

role of the related file

The DataServiceImpl class file in the OLAP administrator project has two roles.
On one hand, the Derby network JDBC driver is applied, and it works as client of
the Derby network server. On the other hand, it implements the DataService RPC
interface for the GWT client tier.(Figure 3.11)

Figure 3.11: Role of the DataServiceImpl class in the project

3.4 Implementation 30

Implementation details of the DataServiceImpl class in OLAP adminis-
trator project

Simply, the DataServiceImpl class has three responsibilities: a. Connect to databases.
b. Initiate and send SQL queries. c. Handle the results.

1. Connection object

A connection object represents the connection to a specific database. the Driver-
Manager.getConnection method is called for establishing the connection, it consumes
string type parameter URL. The DriverManager class will connect to the database
associated with the URL, it has a list for registered database drivers, when the
method getConnection() is called, the DriverManager class will iterate the list to
find the proper driver:

Connection conn = null;

conn = DriverManager.getConnection(url+";create=true");

The URL from above code is given as URL using JDBC protocol, it helps the driver
to identify the desired database.
A JDBC URL (e.g. jdbc:derby//192.168.3.129:1527/forestfireDB1) has fol-
lowing three parts which are separated by ”:”.

� JDBC protocol

� Sub protocol for the specific database driver, e.g. derby

� Network data source location, e.g. //192.168.3.129:1527/forestfireDB1

2. DriverManager class

DriverManager is in the JDBC management tier between the client and database
driver. It uses the available driver and establish connection to databases.

DriverManager class has a list of Driver class which were registered by calling the
DriverManager.registerDriver() method. In our implementation Driver class is not
directly registered by this method, instead, Class.forName() is called to explicitly
register the driver by its class name to DriverManager.

String driver = "org.apache.derby.jdbc.ClientDriver";

Class.forName(driver).newInstance();

The registered drivers can be used to establish connections to databases. When the
DriverManager.getConnection() method is called, DriverManager will find the first
proper driver int the registered driver list and further call the Driver.connect() with
the user specified URL.

jdbc:derby//192.168.3.129:1527/forestfireDB1
//192.168.3.129:1527/forestfireDB1

3.4 Implementation 31

3. Use WebRowSet object to conFigureSQL Statement object

After a connection is established, SQL statement can be sent to the database.

WebRowSet webRS = new WebRowSetImpl();

webRS.setCommand(statement);

webRS.execute(conn);

Here, the WebRowSet object [Ora10] is applied, it is firstly set with a SQL state-
ment by calling the setCommand() method. Then the execute() method is called
to execute the SQL statement through the already established database connection,
the resulted data will be stored in the WebRowSet object.

4. Convert the WebRowSet object to WebRowSet XML

StringWriter sw = new StringWriter();

webRS.writeXml(sw);

response = sw.toString();

3.4.3 Implementation of OGSA-DAI Access Servlet

Main function: Interact with the OGSA-DAI server to get integrated data.
Applied tool: OGSA-DAI.
Related class files: ogsaDaiServiceImpl.java in the OLAP administrator project.

OGSA-DAI basic definitions

The Open Grid Services Architecture - Data Access and Integration (OGSA-DAI)
provides the OGSA consistent methods to access heterogeneous data sources. It al-
lows the client program to submit query document, so enables the remote access to
the data sources. The data access and integration is achieved by providing uniform
service interfaces, so multiple heterogeneous data sources could be seen as a single
data source as a whole.[oE10]

Grid Data Services (GDS): This service enables data access to a resource.

Grid Data Services Factory (GDSF): The GDS service instance can be generated
from the factory.

Service Group Registry (DAISGR): This is the discovery mechanism to find GDS
or GDSF.

Perform Document: XML format document, used to define GDS activities, e.g.
execution of an SQL statement, and used to define how to return the result.

Response Document: XML format document, represents the GDS activity execution
result.

3.4 Implementation 32

Figure 3.12: OGSA-DAI architecture

OGSA-DAI architecture

OGSA-DAI is a service-based architecture for database access over the Grid [MA05],
the architecture contains the following functional parts: application, data service,
activity, data service accessor and data resource. (Figure 3.12)

� Application: This refers to the OGSA-DAI client applications, through it
users can submit perform documents and get result from the server. There
three kinds of actions which can be described by perform document: query
(for query and update data), transform (transform data into specific format),
deliver (deliver the processed data result). The query action assembles the
query result in a result set and transfers it to the transform action. The
transform action transforms the result set and save it as XML document which
will be passed over to deliver action and finally returned to the user.

� Data service: This is the component which directly interacts with the
client application, it provides a document oriented interface, send and receive
perform documents, including client’s query and result, so to interact with the
client.

� Activity: When a perform document is submitted to the data service, the
data service will forward the document to the related data resource. Then, the
execution engine will execute the in the perform document described action

3.4 Implementation 33

and interact with the backend data source. Finally, the data service will
generate a document describing the result, and deliver it to the client.

� Data service accessor: For executing actions, the execution engine needs
to access data resources, every data resource has its own data service accessor.
E.g. JDBC for the relational databases and XMLDB for the XML database.

� Data resource: Heterogeneous data sources can distributed across the
network, different kinds of data sources are exposed uniformly as OGSA-DAI
data resources.

OGSA-DAI workflow

OGSA-DAI uses document oriented interface to support interaction with data sources.
Client does not need to directly interact with the data source, but send document to
the OGSA-DAI data service resource which associated with a backend data source
(e.g. relational database).The document sent to the OGSA-DAI data service re-
source will be parsed and the described action will be performed. Then, the data
service resource generates the result document and return the document through
the data service back to the client. (Figure 3.13)

Figure 3.13: OGSA-DAI workflow

After an OGSA-DAI server is started:

1. First the GDSF starts, the DAISGR performs the registration process for it
and according to the static configuration file provides MetaDataExtractor class
to data service. GDSF will also create objects according to data resources and
then the client decide which GDSF from DAISGR to choose.

2. After the proper GDSF is chosen, a GDS instance will be generated for a
certain data resource.

3.4 Implementation 34

3. Client submits perform document to GDS, according to the perform document
GDS forwards it with context parameters to the execution engine.

4. The perform document will be parsed and the described activities will be
arranged in a workflow pipeline.

5. Each activity in the pipeline will be assigned to a processor and executed by
the processor. Data will be transferred and processed across the pipeline.

6. Data service resource integrates the output information of the pipeline to form
a result document.

7. The result document is returned to the GDS and finally forwarded to the
client.

A data service has multiple data service resources, and a data service resource can
only associate with one data source, data service resource interacts with its data
source through the data resource accessor. As shown in Figure 3.14, a data service
has a related configuration file which specifies the supported activities, session in-
formation and the class names of the data resource accessors. The configuration file
of data resource accessor contains detailed description for the related data resource.
The data service and the related data service resources should be located on the
same server, but the residence of data resource is not restricted.

Figure 3.14: Data service, data service resources and data resources

Role of the related file

The OgsaDaiServiceImpl class in the OLAP administrator project has two roles to
play. on one hand, it works as client of OGSA-DAI server. On the other hand, it

3.4 Implementation 35

implements the OgsaDaiService interface for the GWT client tier RPC call. (Figure
3.15)

Figure 3.15: Role of OgsaDaiServiceImpl class in OLAP administrator project

Implementation details of OgsaDaiServiceImpl class

Next, let’s introduce how to establish the OGSA-DAI client by applying the OGSA-
DAI client toolkit which provides client side Java API for different OGSA-DAI
components including services, resources and activities.

a. Tasks overview of the OgsaDaiServiceImpl class is listed below:

1. Execute the SQL statement and get the result set from database.

2. Convert the result set to WebRowSet XML format.

3. Integrate the data from the step 2.

4. Add the integrated result to request status and return to the client.

b. To fulfill the above tasks, there are some prerequisites:

1. There is an available OGSA-DAI server which could be accessed through a
service URI like http://localhost:8080/dai/services/.

2. There are several deployed data resources on the OGSA-DAI server. E.g. the
data resource FFDB1, FFDB2, DQP1 as described in Chapter 3.

3. There are some available data tables in the data resources. E.g. the table
forestFireDB1 in the resource FFDB1 as described in Chapter 3.

4. OGSA-DAI client toolkit should be imported into the project.

c. Implementation steps:

http://localhost:8080/dai/services/

3.4 Implementation 36

1. Get a server proxy.
The code listed below:

ServerProxy server = new ServerProxy();

String url = "http://localhost:8080/dai/services/";

server.setDefaultBaseServicesURL(new URL(url));

With the above code, the client toolkit will create a serverproxy, which is
used for handling the communication with the OGSA-DAI server and provides
proxy to the resource on the server. Then, a Data Request Execute Resource
(DRER) is needed, which receives and executes the OGSA-DAI workflow sub-
mitted by the client:

DataRequestExecutionResource drer=null;

drer = server.getDataRequestExecutionResource(new

ResourceID("DataRequestExecutionResource"));

2. Create activities in the client.
Every activity in the OGSA-DAI server side has a related activity which can
be created using the client toolkit. Activity is the smallest unit of the OGSA-
DAI workflow, so we can use activities to assemble workflow. As the activities
are Java classes, we should instantiate them:

//create SQL query

SQLQuery query = new SQLQuery();

//result to WebRowset

TupleToWebRowSetCharArrays tupleToWebRowSet = new

TupleToWebRowSetCharArrays();

//resize the char array

CharArraysResize resize = new CharArraysResize();

//establish request status

DeliverToRequestStatus deliverToRequestStatus =

new DeliverToRequestStatus();

3. ConFigureand connect the activities.
When the needed activities were created, the input of them can be configured
to connect either to the client’s input or output of another activity. Besides,
some activities focus on some certain resources, so these resources should also
be specified. Next, for executing the SQLQuery activity, a related relational
data resource is needed:

query.setResourceID(resourceId);

resourceId is given by the user through the OLAP administrator GUI, and
transferred to the activity object as parameter. The SQLQuery activity exe-
cutes the SQL statement, the method addExpression() can be used to convert
plain text to SQL statment:

3.4 Implementation 37

query.addExpression(statement);

Statement is also given by user through the OLAP administrator GUI (e.g.
select * from forestFire1). Next, the TupleToWebSetCharArray activity will
transform the output tuples of the SQLQuery activity to XML char array. Be-
fore the transformation, the output of SQLQuery activity should be connected
to the input of TupleToWebSetCharArrays:

tupleToWebRowSet.connectDataInput(query.getDataOutput());

Next, the result of the TupleToWebCharArray activity should be integrated
and result should be resized:

resize.connectDataInput(tupleToWebRowSet.getResultOutput());

resize.addSizeInChars(5000);

From above CharArrayResize, we can see that the data was processed in three
phases: concatenation ⇒ resize the char array ⇒ execution and output. Fi-
nally, the result set will be added to request status and returned to the client:

deliverToRequestStatus.connectInput(resize.getResultOutput());

4. Create workflow.
After conFigureand create the needed activities respectively, next, the activ-
ities should be arranged in a pipeline workflow. How the data flows in the
pipeline depends on the ordering of the activities. First, a pipeline object
should instantiated and then add the required activities to it.

PipelineWorkflow pipeline = new PipelineWorkflow();

pipeline.add(query);

pipeline.add(tupleToWebRowSet);

pipeline.add(resize);

pipeline.add(deliverToRequestStatus);

5. Execute workflow.
The in step 4 established workflow can be submitted to the DRER:

RequestResource requestResource=

drer.execute(pipeline, RequestExecutionType.SYNCHRONOUS);

We specify the execution mode of the DRER using the parameter RequestExe-
cutionType.SYNCHRONOUS which indicates that the result is returned after
the completion of the execution. The status of the workflow execution will
be included in the request status, client can access it using a request resource
proxy and can print the status:

3.4 Implementation 38

RequestStatus requestStatus = requestResource.getRequestStatus();

System.out.println(requestStatus);

Another way is to print the request execution status description like ”started”,
”completed” or ”error” etc.

RequestExecutionStatus requestExecutionStatus

=requestStatus.getExecutionStatus();

System.out.println(requestExecutionStatus);

Visualization of the workflow

When some workflow is submitted by the client, on the OGSA-DAI server we can
observe the visualized execution diagram of the workflow. As an example, let’s
perform a query on the DQP resource which associated with another two relational
database resources, FFDB1 and FFDB2. In the OLAP administrator we can input
such a query, which queries the DQP resource and get a result set as an union of
the result sets from the two database resources:

select X,Y,MONTH,DAY,RAIN,WIND,TEMP,RH,AREA from

FFDB1_FORESTFIRE1 p join FFDB2_FORESTFIRE2 r

on p.RECORDID=r.RECORDID

Figure 3.16 illustrates the visaulized workflow of a DQP query, it can be described
as following:

1. The SQLQuery activity is executed on two database resources respectively.
From the resource FFDB1 the column X, Y, MONTH and DAY are selected
as result set, from the resource FFDB2 the column RAIN, WIND, TEMP, RH
and AREA are selected as result set.

2. MetadataRename is executed on the two result sets, adding the resource name
to each column, e.g. rename ForestFire1.DAY to FFDB1 ForestFire1.DAY.

3. According to the given condition FFDB1 Forestfire1.RECORDID=
FFDB2 Forestfire2.RECORDID join the two result sets as a united result set.

4. Execute TupleArithmeticProject activity which projects columns according to
a given set of arithmetic expressions, we have not specified any arithmetic
expressions, so there is no changes on the result set.

5. Execute metadataRename again on the column names of the result set, e.g.
FFDB1 Forestfire1.DAY to p.DAY, FFDB2 Forestfire2.AREA to r.AREA.

6. Execute SQLQuery again on processed result set from step 5 to generate the
DQP result set.

7. Execute TupleToWebRowSetCharArrays activity which transform the result
set into WebRowSet format.

3.4 Implementation 39

Figure 3.16: Workflow visualization of a DQP query

3.4 Implementation 40

8. Resize the char array with CharArraysResize activity.

9. Deliver the result set to request status by executing DeliverToRequestStatus
activity.

3.4.4 Implementation of the WebRowSet XML Generator

Main function: Transform the result set into WebRowSet XML format.
Applied tool: WebRowSet implementation from sun
Related file: The WebRowSet XML generator is embedded in OgsaDaiServi-
ceImpl.java and DataServiceImpl.java in OLAP administrator project.

In this section we will first introduce the inheritance structure of the WebRowSet
interface, and discuss why it is applied here. then, the implementation of the func-
tional module, WebRowSet XML generator, is described.

Inheritance structure of the WebRowSet interface

WebRowSet is an interface from the JDBC API, it helps developer efficiently inter-
act with the result data set from the database query, efficiently output data set to
or read data from a corresponding WebRowSet XML document.

The inheritance structure diagram is given in Figure 3.17. The root is the
java.sql.ResultSet interface, whose implementation stands for the result set of table
formatted data. This kind of data can be generated by executing java.sql.Statement.
The result set can only be forward iterated and can not be updated, so it also implies
low performance for precise data access control.

Figure 3.17: Inheritance structure of JDBC WebRowSet interface

Thus, which choice do we have depends on which operations should be performed on
the data set. For example, if the data set should support the JavaBeans component
model JDBC API, the sub interface javax.sql.RowSet should be applied. As access
database from a Java program is a heavyweight operation, the data cache in the

3.4 Implementation 41

X Y MONTH DAY RAIN
4 4 sep thu 0.0
4 3 aug sun 0.0
4 3 aug wed 0.0
4 3 aug wed 0.0
4 3 aug thu 0.0

Table 3.2: Database query result

main memory is a key factor, so if the data set should be saved in the data cache
container in memory, we can apply the sub interface javax.sql.rowset.CachedRowSet
whose implementation enables the ability to operate on data from the data source
without having to constantly connect to it. Moreover, CachedRowSet could be bet-
ter iterated and could be serialized. Besides the features provided by CachedRowSet,
in our application we also need to output the result data set to XML document, as a
result, javax.sql.rowset.WebRowSet becomes our best choice. The sun’s implemen-
tation com.sun.rowset.WebRowSetImpl is applied for the WebRowSet interface.

Details of the WebRowSet XML generator

The WebRowSet XML generator module is embedded both in the DB access Servlet
and OGSA-DAI access servlet to facilitate the transformation of result set into We-
bRowSet XML. Next, let’s introduce a simple example. With the query statement:
select X, Y, MONTH, DAY, RAIN from forestFireDB1 we can get the result set
from the database as shown in Table 3.2.

First, we need to use a ResultSet object to get the SQL statement execute result.
Then the ResultSet object is converted to a WebRowSet object, which can help us
output the result to XML document efficiently:

try {

...

ResultSet resultSet = stmt

.executeQuery("select X,Y,MONTH,DAY,RAIN from forestFireDB1");

WebRowSet wrs = new WebRowSetImpl();

wrs.populate(resultSet);

StringWriter sw = new StringWriter();

wrs.writeXml(sw);

s = sw.toString();

resultSet.close();

} catch (DataStreamErrorException e) {

e.printStackTrace();

...

}

The wrs.writeXML() method from above code will generate a WebRowSet XML
document in compliance with the WebRowSet XML Schema Definition (XSD). The

3.4 Implementation 42

output document includes three parts: properties, metadata and data. The structure
is given below:

<?xml version="1.0"?>

<webRowSet xmlns= "http://java.sun.com/xml/ns/jdbc"

xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation= "http://java.sun.com/xml/ns/jdbc

http://java.sun.com/xml/ns/jdbc/webrowset.xsd">

< properties>

...

</properties>

<metadata>

...

</metadata>

<data>

...

</data>

</webRowSet>

Within the <properties> tag there is the property description about the data set.
Within the <metadata> tag there is the metadata of the data set, including record
counts, column type, column name etc.
Withinthe <data> tag there is the data ”payload” - Rows of records are listed one
after another as following:

<data>

<currentRow>

<columnValue>4</columnValue>

<columnValue>4</columnValue>

<columnValue>sep</columnValue>

<columnValue>thu</columnValue>

<columnValue>0.0</columnValue>

</currentRow>

<currentRow>

<columnValue>4</columnValue>

<columnValue>3</columnValue>

<columnValue>aug</columnValue>

<columnValue>sun</columnValue>

<columnValue>0.0</columnValue>

</currentRow>

...

</data>

Within a <currentRow> tag there is one row of data which is analog to one row of
records in the database.

3.4 Implementation 43

3.4.5 Convert the WebRowSet XML Document to Ext GWT
Grid

Main function: Present the WebRowSet XML document well in a Ext GWT
grid.
Applied tool: Ext GWT.
Related method: parserXML() and createGrid() method of the Administrator
class in the OLAP administrator project.
Related class file: Record1.java, Record2.java, Record3.java, Record4.java,
Record5.java, Record6.java, Record7.java, Record8.java, Record9.java and
Record10.java in the OLAP administrator project.

There is a WebRowSet XML parser module in the GWT client tier, it is used
to parse the WebRowSet XML document from the GWT server tier and generate
related record object to facilitate the instantiation of Ext GWT grid object [Sen].
Here, Ext GWT grid refers to a GUI component from the Ext GWT framework.

Besides well presenting a data set in a grid table, the Ext GWT grid also enables
some useful operations on the data set including sorting, editing, filtering and so
on. So, these operations could be performed as preprocess on the data set by the
user through the OLAP administrator GUI before loading the data set to the OLAP
cloud.

The following part of the section will introduce the processes of how to convert
a WebRowSet XML document to a Ext GWT grid.

ColumnModel parserXML(String messageXml): Before we use the Ext
GWT grid, column information should be defined, this method is used to get the
column-name information from the WebRowSet XML document:

List<ColumnConfig> columns = new ArrayList<ColumnConfig>();

for(int i=0;i<nl.getLength();i++){

// create configuration for each colume

columns.add(new ColumnConfig("id"+(i+1),

nl.item(i).getFirstChild().getNodeValue(), 100));

}

// create model for all columes in the table

ColumnModel cm = new ColumnModel(columns);

The column definition is stored in ColumnModel. The constructor of the Column-
Model takes list<ColumnConfig> as parameter which defines column information
(id, title, width etc.) of a column. id is a property of BaseModel class.

createGrid(ColumnModel cm ,String messageXml): After conFigurecolumns,
this method is called to create grid object. ListStore and ColumnModel from above
is used to generate the needed grid:

Grid<BaseModel> grid = new Grid<BaseModel>(records,cm);

3.4 Implementation 44

There are two parameters from above, cm is object of ColumnModel which was
generated by parserXML() method. The parameter records represents an object of
class ListStore<BaseModel>. ListStore<BaseModel> is an important data storing
type in Ext GWT, apparently, we need to generate the corresponding
ListStore<BaseModel> object in order to convert the WebRowSet XML document
to Ext GWT grid.

Usage of related classes: Record1.java, Record2.java, ..., Record10.java
Based on the description of the above two methods, we can see that WebRowSet
XML parser module’s key function is to implement data storing object
ListStore<BaseModel> for storing the data set. First, we should have to introduce
how Ext GWT handles data.

The essential part of the Ext GWT data handling mechanism is the abstract class
Store. The Store class has two sub classes, ListStore and TreeStore.ListStore for
storing column-wise data, TreeStore used for storing tree structure data.

Abstract class ListStore is generic class, its generic parameter is the ModelData
interface or the sub classes. The BaseModel class is an implementation of the Ext
GWT Modeldata interface. E.g. in our application, class Record1, Record2, ...,
Record10 are sub classes of class BaseModel. A code example of class Record2 is
shown in the right part of Figure 3.18.

Figure 3.18: Convert currentRow to an object of Record2 class

Because in WebRowSet XML, <currentRow> represents one row of record in data

3.4 Implementation 45

table, in this data converting task, the main task is to implement the conversion for
each <currentRow> to a proper data storing object by using the Record1, Record2,
..., Record10 classes as shown in Figure 3.18.

Next, all the generated data storing object (e.g. all the Record2 objects) should be
added to an object of class ListStore<BaseModel> which represents all <currentRow>
in the WebRowSet XML.By storing the data in an object of ListStore<BaseModel>
and applying the above mentioned two methods, we can implement the conversion
from WebRowSet XML to Ext GWT grid.

3.4.6 Modules in GWT Development

Related file: Administrator.gwt.xml in OLAP administrator project and OLAP-
QueryClient.gwt.xml in OLAP query client project.

Introduction of modules

A configurable GWT component is called GWT module. In GWT, configuration in-
formation for compiling a project is stored in a module definition file, which includes
module entry point, module inheritance information, path of source code, resource
file path and timeout binding rules.

File name extension of a GWT module definition file is .gwt.xml. Module name
is made up by its package name plus the definition file name. E.g. in the pack-
age com.goolge.gwt.admin of OLAP administrator project, there is a Administra-
tor.gwt.xml file which is the module definition file of the project, the module name is
com.google.gwt.admin.Administrator. For compiling a GWT project, the compiler
should have to know which GWT modules should be compiled. If we open the run
configuration window in Eclipse and select the GWT tab we can see Administrator-
com.google.gwt.admin is listed in the Available Modules list. (Figure 3.19)

Following is the content of Administrator.gwt.xml file from the OLAP administrator
project:

<module>

<inherits name="com.google.gwt.user.User"/>

<inherits name="com.google.gwt.user.theme.standard.Standard"/>

<inherits name="com.google.gwt.xml.XML" />

<inherits name="com.extjs.gxt.ui.GXT"/>

<stylesheet src="../gxt/css/gxt-all.css"/>

<entry-point class="com.google.gwt.admin.client.Administrator"/>

</module>

The definition file is an XML document with the root element ”module”. After
compilation of the module, the generated files are stored in the folder (folder name
is same as module name) under the war folder of the project, in this example the
generated files are stored in com.google.gwt.admin.Administrator folder.

3.4 Implementation 46

Figure 3.19: GWT run configuration window

Module entry point

When use JavaScript to write AJAX application, window onload event is the entry
point of the application. in GWT module there is also an entry point. The class
which implements the EntryPoint interface can be the entry point of an GWT
application:

package com.google.gwt.admin.client;

public Interface EntryPoint {

void onModuleLoad();

}

In the EntryPoint interface the only method to be implemented is onModuleLoad().
This method is called right after the module is loaded. The class which implements
the EntryPoint interface should also be registered in the GWT module definition
file, whose entry-point element refers to the entry point, the class attribute indicates
the class name of the entry point class. In the method onModuleLoad() of the entry
point class, there are code for all the graphical components and events to be listened.
This code is arranged in the onModuleLoad() method but not in the constructor of
the entry point class, because it not possible to guarantee that when the constructor
is called, the whole page and all its components are already loaded.

Module inheritance

Module configuration could be simplified by using inheritance. In module definition
file use inherits element to indicate inheritance relationship to other modules, the
name attribute refers to the module name of the other module. The Administrator
module inherits four other modules:

3.4 Implementation 47

<inherits name="com.google.gwt.user.User"/>

<inherits name="com.google.gwt.user.theme.standard.Standard"/>

<inherits name="com.google.gwt.xml.XML" />

<inherits name="com.extjs.gxt.ui.GXT"/>

If a module from the GWT library is to be applied, it should be inherited and de-
fined in the module definition file. If there is a error ”No source code is available
...” appears in the GWT runtime console, then it is possible that the inheritance to
the module is not defined.

Normally, com.google.gwt.user.User should be inherited, as it contains all GWT
essential components. The appearance mode of GWT application is also imple-
mented as module, there are three available appearance modes: Chrome, Dark and
standard. The example from above uses standard appearance mode. The third
module which should be inherited is com.google.gwt.xml.XML which is responsible
for handling XML in GWT application. For example, in my implementation this
module is applied for implementing the WebRowSet XML and OMML parsers. The
fourth module which should be inherited is com.extjs.gxt.ui.GXT, this module is
needed for Ext GWT plugin.

Adding extra CSS

Sometimes, a GWT module need to refer external CSS file. If a reference CSS
locates in a HTML file, then it breaks the good practise, tight internal coupling and
loose external coupling. Besides, if the GWT module is referred by several other
applications, each of these applications should add reference to the CSS file in every
page which uses the module, and this apparently undermines the principle, don’t
repeat yourself. The solution of GWT is to define the reference to the CSS in the
module definition file. During initiation of a module, the CSS will be loaded to
related pages. For example:

<stylesheet src="../gxt/css/gxt-all.css"/>

The stylesheet element guides the GWT compiler to add the CSS file (indicated
by attribute src) to related pages. The CSS from above (gxt-all.css) is needed by
component in Ext GWT style.

3.4.7 Implementation of PRC Call

There three possibilities for the GWT client tier to communicate with the GWT
server tier: XMLHTTPRequest, JSON, GWT-RPC. In our implementation GWT-
RPC is applied. There are following advantages to apply GWT-RPC:

First, because the RequestBuilder.sendRequest() method can only send string data,
no matter XMLHTTPRequest or JSON, serialization and deserialization for the
data are always needed both at the client and the server tier. The GWT-RPC en-
capsulates the serialization and deserialization work which is not to be concerned

3.4 Implementation 48

by developer. Besides metadata will also be serialized and deserialized by XML-
HTTPRequest and JSON method, e.g. the metadata add, a and b in the following
example:

<add>

<a>3

4

</add>

The GWT-RPC only serialized and deserialized data but not metadata, so the gen-
erated string should be small and so low communication cost. Next, let’s describe
the RPC call in our implementation.

RPC remote interface

Related interfaces: OLAPService.java in the OLAP query client porject, OLAPSer-
vice.java, OgsaDaiService.java and DataService.java in the OLAP administrator
project.

First RPC interface should be defined, so that the server program can implement
the required functions according to the interface definition. For example, in the
OLAP query client project, there is a RPC interface OLAPService in the package
com.google.gwt.query.client. The interface is used to send different HTTP requests
to the OLAP cloud and handle responses:

@RemoteServiceRelativePath("OLAP")

public interface OLAPService extends RemoteService{

String doGet(String input);

String doQuery(String url,String input);

String doPut(String url,String input);

}

The interface should inherit RemoteService interface and also annotated with @Re-
moteServiceRelativePath, which indicates the URL path to the servlet implementa-
tion of the interface. The detailed description of the methods of this interface can
be found in section 4.3.1.

Implementation of RPC interfaces

Related classes: OLAPServiceImpl.java in OLAP query client project, OLAPSer-
viceImpl.java, DataServiceImpl.java and OgsaDaiServiceImpl.java in OLAP admin-
istrator project.

The implementation of GWT-RPC is based on servlet. In the GWT server tier there
should be RPC implementation class which inherits the com.google.gwt.user.server
.rpc.RemoteServiceServlet class. RemoteServiceServlet is provided by GWT and in-
herits the HttpServlet class. Once a client request the servlet, it will deserialize the
client’s request and find the corresponding method, after execution, the result will

3.4 Implementation 49

be serialized and returned to the client. In the package com.google.gwt.query.server,
the OLAPServiceImpl class implements the OLAPService interface, the DataServi-
ceImpl class implements the DataService interface, OgsaDaiServiceImpl class imple-
ments OgsaDaiService interface. Below is the example of OLAPServiceImpl class:

package com.google.gwt.admin.server;

public class OLAPServiceImpl extends RemoteServiceServlet implements

OLAPService{

...

}

The servlet should be registered so to provide GWT-RPC service for client. In
OLAP query client project, OLAPServiceImpl should be registered in war/WEB-
INF/web.xml:

<servlet>

<servlet-name>OLAPService</servlet-name>

<servlet-class>

com.google.gwt.query.server.

</servlet-class>

</servlet> OLAPServiceImpl

<servlet-mapping>

<servlet-name>OLAPService</servlet-name>

<url-pattern>

/com.google.gwt.query.OLAPQueryClient/OLAP

</url-pattern>

</servlet-mapping>

Here, the <servlet> and <servlet-mapping> element is required. Within <servlet>
element, servlet-class indicates the implementation class is OLAPServiceImpl. Within
<servlet-mapping> element, url-pattern indicates where the interface is. this servlet
should be registered at /com.google.gwt.query.OLAPQueryClient/OLAP.
com.google.gwt.query.OLAPQueryClient is the output folder of the module. The
name OLAP is annotated in the OLAPService interface.

Asynchronous interface

Related asynchronous interfaces: OLAPServiceAsync.java in OLAP query
client project, OLAPServiceAsync.java, DataServiceAsync.java and OgsaDaiSer-
viceAsync.java in OLAP administrator project.

The first letter A of AJAX means asynchronous. For example, we need to call
the OLAPService interface asynchronously, thus, we have to define a related asyn-
chronous interface, which should be in the same package as the synchronous in-
terface and the name should be [interfaceName]Async. I.e. synchronous interface
OLAPService should have a related asynchronous interface with the name OLAPSer-
viceAsync, synchronous interface DataService should have a related asynchronous
interface with the name DataServiceAsync:

3.5 UML Diagrams Description 50

package com.google.gwt.query.client;

import com.google.gwt.user.client.rpc.AsyncCallback;

public interface OLAPServiceAsync{

void doGet(String input, AsyncCallback<String> callback);

...

}

In GWT-RPC, each synchronous interface should have a related asynchronous in-
terface. The return type of the asynchronous interface is NULL, additionally with
an AsyncCallback parameter. AsyncCallback is generic class, the generic param-
eter is the return value of the RPC method. So, String doGet(String input) has
related asynchronous version Void doGet(String input, AsyncCallback¡String¿ call-
back). The generic parameter should be a reference but not a basic data type.

Make GWT-RPC call at client side

After the above work, we can make GWT-RPC call in our GWT client tier. For
example, the entry point class OLAPQueryClient in the OLAP query client project
uses the doGet() method of the OLAPService interface:

OLAPServiceAsync olapSrv = GWT.create(OLAPService.class);

public void get(String url){

...

AsyncCallback<String> callback = new AsyncCallback<String>() {

public void onFailure(Throwable caught) {

...

}

public void onSuccess(String result) {

...

}

};

olapSrv.doGet(url,callback);

}

First, GWT.create() is called to generate an instance of the Asynchronous interface.
Then, we can call the OLAPServiceAsync.doGet() method, in the asynchronous
version the doGet() method the second parameter is callback object. If the call
succeeds, the onSuccess() method will be invoked, if the call fails, the onFailure()
method will be invoked.There is a parameter for the onSuccess() method, this pa-
rameter is a generic parameter of type AsyncCallback. Indeed, it is the return value
of the remote call, the return value of doGet() method.

3.5 UML Diagrams Description

In order to better understand the structure of our implementation, in this section
we will give some UML diagrams and related descriptions.

3.5 UML Diagrams Description 51

3.5.1 UML Diagram of the OLAP Query Client Project

Figure 3.20 is the class diagram for the OLAP query client project. There are
two packages: com.google.gwt.query.client package contains all the GWT client tier
classes and interfaces including CubeInformation, OLAPQueryClient, OLAPSer-
vice and OLAPServiceAsync. com.google.gwt.query.server package contains class
OLAPServiceImpl for the GWT server tier.

OLAPQueryClient is the entry point class of the project, its onModuleLoad() is
the entry point method. Class OLAPQueryClient uses two interfaces for making
RPC call, the OLAPServiceAsync is the related asynchronous interface for interface
OLAPService. In the GWT server tier there is only one class OLAPServiceImpl,
it implements OLAPService interface and enables access to the OLAP cloud and
return the result to OLAPQueryClient in the GWT client tier. After receive the
result, the OLAPQueryClient will parse the OMML message from the server and
store the information in an object of CubeInformation class, which contains descrip-
tion for a virtual cube. Following are the detailed descriptions of the classes, their
properties and methods:

� Class CubeInformation: contains description for virtual cube.
Properties:
cubeID: The unique ID of a virtual cube in the OLAP cloud
dimName: String list, each String of the list represents a dimension name of
the virual cube.
dimNum: Number of dimension of the virtual cube.
dimValue: List of String lists, represents all dimension members for every
dimension of the virtual cube.
Mehtods:
getCubeID(): Get ID of the virtual cube.
setCubeID(): Get ID of the virtual cube.
getDimName(): Get the dimension names
setDimName(): Set the dimension names
getDimNum(): Get the number of dimensions
setDimNum(): Set the number of dimensions
getDimValue(): Get metadata of a virtual cube.
setDimValue(): Set metadata of a virtual cube.

� Class OLAPQueryClient: entry point class, uses RPC interface OLAPSer-
vice and OLAPServiceAsync.
Part of its properties:
url: Service URI of the virtual cube server in the OLAP cloud.
urlVCube: URI of the selected virtual cube.
cubesInfo: List of CubeInformation objects containing description of all
available virtual cubes on the current server.
queryValue: List of query, each element of the list is a ListBox object which
contains all dimension members of a dimension. The selected item of the List-
Box should be parameter of the query.
arrayTextBox: Used to input parameter for load one row operation.

3.5 UML Diagrams Description 52

Figure 3.20: Class diagram of the OLAP query client project

3.5 UML Diagrams Description 53

indexOfCube: Index number of the currently selected cube.
function: Indicates which method should be applied for aggregation query.
olapSrv: Instance of the OLAPServiceAsync interface.
Methods:
onModuleLoad(): Entry point method of the class and of the project. It
will be called at application initiation.
get(): Used to invoke the doGet() method of the OLAPServiceAsync inter-
face.
parseCubesInfo(): Used to parse the <ServerInfo> element from OMML
and put the cubeID of all the available virtual cubes to client’s cubeID list.
isElement(): Used to find if the new CubeInformation object is already in
the cubesInfo list.
parseOneCubeInfo(): Used to parse the <DataDictionary> element from
OMML so to get the metadata of a virtual cube, store the metadata in
cubesInfo list and create form in the GUI based on the metadata.
queryTable(): Get the selected cube’s metadata from cubesInfo list, and
create query table in the GUI which is used for initiating query to the virtual
cube.
queryToXML(): Generate <Query> OMML message based on parameters
in query table.
sendQuery(): Used to invoke doQuery() method of the OLAPServiceAsync
interface, parse and present the returned <Result> OMML message which
contains the result of the OLAP query.
putTable(): Create load one row table in the GUI.
loadToXML(): Input validation for load one row table, the input for dimen-
sion should not be empty and for measure should be double type value. The
method also converts the parameters to <LoadOneRow> XML message, write
it on the ”XML state” panel in the GUI and invoke the loadData() method.
loadData(): Used to invoke doPut() method of the OLAPServiceAsync in-
terface. The returned message will be write on ”state” panel in the GUI.

� Interface OLAPService: RPC interface for the OLAPServiceImpl class.
doGet()
doQuery()
doPut()

� OLAPServiceAsync interface: Asynchronous interface for the OLAPSer-
vice interface.
doGet(): Asynchronous method for the synchronous doGet() method of
OLAPService interface.
deQuery(): Asynchronous method for the synchronous doQuery() method of
OLAPService interface.
doPut(): Asynchronous method for the synchronous doPut() method of
OLAPService interface.

� OLAPServiceImpl class: Implements the OLAPService interface and en-
ables access to the OLAP cloud.

3.5 UML Diagrams Description 54

doGet(): Get server information and virtual cube metadata from the OLAP
cloud.
doQuery(): Send OLAP query to virtual cubes, and handle the result.
doPut(): Load one row of data to a virtual cube.

3.5.2 UML Diagram of the OLAP Administrator Project

Figure 3.21 gives the class diagram of the OLAP administrator project. The class
diagram just shows the structure overview without properties or methods, as the
project is relative complicated. Detailed properties and methods could be found in
Appendix.

There are two packages: Package com.google.gwt.admin.server contains class DataSer-
viceImpl, class OgsaDaiServiceImpl and class OLAPServiceImpl. Package com.google
.gwt.admin.client contains all the classes and interfaces for GWT client tier.

� Class Administrator: It is the entry point class of the project, it uses six
RPC interfaces to communicate with GWT server tier.
Part of the Properties:
url: Service URI of virtual cube server.
urlVCube: URI of virtual cube.
data: WebRowSet XML format data.
cubesInfo: List of CubeInformation objects containing description of all
available virtual cubes on the current server.
arrayTextBox: Used to input parameter for initiating new virtual cube.
olapSrv: Instance of the OLAPServiceAsync interface.
Methods:
onModuleLoad(): Entry point method of the class and of the project. It
will be called at application initiation.
perseXML(): Get column-name information from metadata of WebRowSet
XML to be used as column definition of Ext GWT grid.
createGrid(): It uses ListStore object and the column definition from par-
seXML() to create Ext GWT grid.
parseCubesInfo(): Used to parse the <ServerInfo> element from OMML
and put the cubeID of all the available virtual cubes to client’s cubeID list.
parseOneCubeInfo(): Used to parse the <DataDictionary> element from
OMML so to get the metadata of a virtual cube, store the metadata in
cubesInfo list and create form in the GUI based on the metadata.
isElement(): Used to find if the new CubeInformation object is already in
the cubesInfo list.
inputCheck(): Used to make sure the input of create new cube table is not
empty.
createMetadata(): Convert the parameters from the create new cube table
to <DataDictionary> message, write this to ”XML state” panel and invoke
the postMitHost() method.
createTable(): Generate create new cube table in the GUI, number of rows
is given by user input.

3.5 UML Diagrams Description 55

Figure 3.21: Class diagram of the OLAP administrator project

3.5 UML Diagrams Description 56

get(): Invoke doGet() method of the OLAPServiceAsync interface. furthers
in the onSuccess callback method, invoke parseCubesInfo() when query infor-
mation of a server, invoke parseOneCubeInfo() when query a virtual cube.
postMitHost(): Invoke doPostMitHost() method of the OLAPServiceAsync
interface. The result will be write on ”state” panel.
post(): invoke doPost() method of the OLAPServiceAsync interface. The
result will be write on ”state” panel.
delete(): invoke doDelete() method of the OLAPServiceAsync interface. The
result will be write on state panel and the related CubeID will be removed
from the CubeID list.
derbyCon(): Invoke getData() method of the DataServiceAsync interface.
The result, WebRowSet XML data, will be write on ”XML state” panel and
the createGrid() method will be invoked to present the data in Ext GWT grid.
ogsaCon(): Invoke getData() method of the OgsaDaiServiceAsync interface.
The result, WebRowSet XML data, will be write on ”XML state” panel and
the createGrid() method will be invoked to present the data in Ext GWT grid.

� Class CubeInformation: Used for storing virtual cube information like the
same class in OLAP query client project.

� Class Record1, Record2, Record3, Record4, Record5, Record6,
Record7, Record8, Record9, Record10: These classes are similar, each
of them represents one record. Let’s take Record3 as example, it represents a
record with three attributes, two attributes for two dimension and the third
attribute for measure.
Properties:
id1: Value for the first dimension.
id2: Value for the second dimension.
id3: Value for measure. Methods:
Record3(): Constructor without parameter.
Record3(String id1, String id2, String id3): Constructor with parame-
ter.
setId1(): Set value for the first dimension.
getId1(): Get value from the first dimension.
setId2(): Set value for the second dimension.
getId2(): Get value from the second dimension.
setId3(): Set value for the measure.
getId3(): Get measure value.

� Interface OLAPService: RPC interface for the OLAPServiceImpl class.
doGet()
doDelete()
doPostMitHost()
doPost()

3.5 UML Diagrams Description 57

� Interface OLAPServiceAsync: asynchronous interface for interface OLAPSer-
vice.
doGet(): Asynchronous method for the synchronous doGet() method of
OLAPService interface.
doDelete(): Asynchronous method for the synchronous doDelete() method
of OLAPService interface.
doPostMitHost(): Asynchronous method for the synchronous doPostMitHost()
method of OLAPService interface.
doPost(): Asynchronous method for the synchronous doPost() method of
OLAPService interface.

� OLAPServiceImpl class: Implements the OLAPService interface and en-
ables access to the OLAP cloud.
doGet(): Get server information and virtual cube metadata from the OLAP
cloud.
doDelete(): Delete specific virtual cube. doPostMitHost(): Based on spe-
cific metadata create new virtual cube with certain number of associated hosts.
doPost(): Load WebRowSet XML data to a virtual cube.

� Interface DataService: RPC interface for the DataServiceImpl class.
getData()

� Interface DataServiceAsync: Asynchronous interface for interface DataSer-
vice.
getData(): Asynchronous method for the synchronous getData() method of
DataService interface.

� Class DataServiceImpl: Implements the DataService interface and enables
access to Derby database.
getData(): Connect to Derby database, get raw data and transform it into
WebRowSet XML format and return it to class Administrator.

� Interface OgsaDaiService: RPC interface for the OgsaDaiServiceImpl class.
getData()

� Interface OgsaDaiServiceAsync: Asynchronous interface for interface
OgsaDaiService.
getData(): Asynchronous method for the synchronous getData() method of
OgsaDaiService interface.

� Class OgsaDaiServiceImpl: Implements the OgsaDaiService interface and
enables access to OGSA-DAI server.
getData(): Access OGSA-DAI server, get raw data and transform it into
WebRowSet XML format and return it to class Administrator.

Chapter 4

Installation and Deployment

This chapter is a step by step guide, which introduces how to install the required
software, how to compile the program and how to deploy the client systems. This
chapter is the basis both for testing the client systems and for further development,
so the development software tools are also covered.

4.1 Preparation

Following installation and deployment steps are all based on Windows XP operating
system. Table 4.1 gives a list of all the software tools and libraries we applied for
development.

Directory Structure
For the following part of the chapter let’s assume we have a directory c:\GWTOLAP
with following sub folders:

Name Version Download
Java 1.6.0 http://java.sum.com

Eclipse 3.6 http://www.eclipse.org

GWT 2.3.0 http://code.google.com/

initl/de-DE/webtoolkit

GWT UI designer for eclipse 3.6 http://code.google.com/

initl/de-DE/webtoolkit

Ext GWT 2.2.4 http://www.sencha.com

Apache Wink 1.1.2 http://incubator.apache.

org/wink

Derby 10.5.3 http://java.sun.com

Apache Ant 1.8.2 http://ant.apache.org

OGSA-DAI 4.0 http://sourceforge.net/

projects/ogsa-dai

Apache Tomcat 7.0 http://tomcat.apache.org

Table 4.1: Applied software tools and libraries

http://java.sum.com
http://www.eclipse.org
http://code.google.com/initl/de-DE/webtoolkit
http://code.google.com/initl/de-DE/webtoolkit
http://code.google.com/initl/de-DE/webtoolkit
http://code.google.com/initl/de-DE/webtoolkit
http://www.sencha.com
http://incubator.apache.org/wink
http://incubator.apache.org/wink
http://java.sun.com
http://ant.apache.org
http://sourceforge.net/projects/ogsa-dai
http://sourceforge.net/projects/ogsa-dai
http://tomcat.apache.org

4.2 Installation 59

c:\GWTOLAP\OLAPAdministrator

c:\GWTOLAP\OLAPQueryClient

c:\GWTOLAP\Database

c:\GWTOLAP\workspace

c:\GWTOLAP\apache-ant-1.8.2

c:\GWTOLAP\eclipse-java-helios-SR2-win32

c:\GWTOLAP\ogsadai-4.0-axis-1.4-bin

c:\GWTOLAP\wink

c:\GWTOLAP\apache-tomcat-6.0.33

c:\GWTOLAP\gxt-2.2.4

4.2 Installation

4.2.1 Installation for Both OLAP Query Client and OLAP
Administrator

This section describes the installation and configuration steps for both client sys-
tems.

1. Java environment

Java environment is the only prerequisite for developing GWT web applications,
at least Java Development Kit (JDK) 1.6 should be properly installed.

2. Eclipse

Eclipse is a popular Integrated Development Environment (IDE) for efficient soft-
ware development. Besides, Google provides the GWT development plugin for
Eclipse, so we decided to develop our application in Eclipse 3.6 (Helios).

3. GWT Eclipse Plugin and GWT Design

Besides the basic GWT development plugin, we also installed the GWT Design plu-
gin which simplifies the GUI development by providing a series of existing reusable
general components like buttons, tables etc. developer can utilize drag and drop
functionality to accelerate the development progress. Following are the installation
steps for the plugins.

In Eclipse mouse click: Help→ InstallNewSoftware. In the ”Install” window click
”Add” button to add GWT plugin repository, according to the version of the Eclipse,
we should enter the location: http://dl.google.com/eclipse/plugin/3.6 , as
shown in Figure 4.1.

For a different version of Eclipse, the corresponding GWT repository location should
be given as shown in Table 4.2.
Click ”OK” button, then we can get a list of available plugins as shown in Figure

http://dl.google.com/eclipse/plugin/3.6

4.2 Installation 60

Figure 4.1: Add GWT plugin repository location

Version GWT Plugin Location
Eclipse 3.7(In-
digo)

http://dl.google.com/eclipse/plugin/

3.7

Eclipse 3.6(He-
lios)

http://dl.google.com/eclipse/plugin/

3.6

Eclipse
3.5(Galileo)

http://dl.google.com/eclipse/plugin/

3.5

Eclipse
3.4(Ganymede)

http://dl.google.com/eclipse/plugin/

3.4

Table 4.2: GWT repository locations for other version of Eclipse

4.2.

Select all the available items and click next, the progress information window will
appear and show the downloading progress. Wait for download to finish, and the
window in Figure 4.3 will appear.

Confirm the software package and click ”next” button.(figure 4.4)

Start installing the software by selecting ”I accept the terms of the license agree-
ments” and clicking ”Finish” button. Once installation complete, we should restart
the Eclipse and a new Google toolbar will be available with three buttons: ”New Web
Application Project”, ”GWT Compile Project” and ”Deploy App Engine Project”,
as shown in Figure 4.5.

4. Tomcat 6.0

Unpack the Tomcat archive file to:
c:\GWTOLAP\apache-tomcat-6.0.33

Define a new environment variable with the name CATALINA HOME:
CATALINA HOME = c:\GWTOLAP\apache-tomcat-6.0.33

To set environment variables open the control panel (Systemsteuerung) and look

http://dl.google.com/eclipse/plugin/3.7
http://dl.google.com/eclipse/plugin/3.7
http://dl.google.com/eclipse/plugin/3.6
http://dl.google.com/eclipse/plugin/3.6
http://dl.google.com/eclipse/plugin/3.5
http://dl.google.com/eclipse/plugin/3.5
http://dl.google.com/eclipse/plugin/3.4
http://dl.google.com/eclipse/plugin/3.4

4.2 Installation 61

Figure 4.2: Plugins list from the repository

Figure 4.3: Confirm the installation

for system(System). Open the slider named advanced (Erweitert). Press the button
environment variables(Umgebungsvariablen) and a window with a list of all existing
variables will appear. (Figure 4.6).

4.2 Installation 62

Figure 4.4: Accept the license agreement

Figure 4.5: The new Google toolbar

Start the Tomcat for the first time by using the startup script (startup.bat) located
in:
c:\GWTOLAP\apache-tomcat-6.0.33\bin\startup.bat

If everything went fine the window as shown in Figure 4.7 will show up.

Stop the Tomcat by using another script (shutdown.bat) located in:
c:\GWTOLAP\apache-tomcat-6.0.33\bin\shutdown.bat

4.2.2 Installation for OLAP Query Client

This section focus on the installation of OLAP query client project in Eclipse as
basis for extension and further development.

1. Import the OLAP Query Client project to Eclipse

In Eclipse, click File→ import, then General→ Existing Project into Workspace→
Next.(Figure 4.8)

Click ”Browse” button behind ”Select root directory”, then select the directory
c:\GWTOLAP\OLAPQueryCLient, mark the option ”Copy projects into workspace”
and then click ”Finish” to complete the project import.

Now, in project explorer panel we can find source code under the folder ”src”.
Yet, there should be still some red crosses in the source file OLAPServiceIml.java,

4.2 Installation 63

Figure 4.6: Environment variables

Figure 4.7: Start Tomcat 6.0

as this class has dependence on the Apache Wink library.

2. Add Apache Wink library to build path

Right click on the OLAPQueryClient projecton the project explorer panel, then
click BuildPath → ConfigureBuildPath to open the ”Properties” window and
select the ”Library” tab(Figure 4.9). There should be a library ”wink”, select it and

4.2 Installation 64

Figure 4.8: Import project window

click ”Edit” button on the right side, click in ”Edit Library” window UserLibrary →
NewUserLibrary.

Figure 4.9: Project properties window

Enter ”wink” in the ”NewUserLibrary” window (Figure 4.10). Next, add the re-
quired Java ARchive (JAR) files to the new library. Then click ”Add JARS” but-
ton, in the ”JARSelection” window select jsr311-api-1.1.1.jar and wink-client-1.1.2-
incubating.jar in c:\GWTOLAP\wink. Then click ”OK” to finish (Figure 4.11).

4.2 Installation 65

Figure 4.10: Create new user library

Figure 4.11: Add the required JAR files

3. Reallocate the GWT

As we have newly imported the project to Eclipse, we should also reallocate the
path to our GWT environment. Analog to the last step, open the ”Properties” win-
dow and edit the build path to GWT SDK. In the ”Edit Library” window (Figure
4.12) mark ”use specific SDK” and select GWT-2.3.0 and then click ”finish” button,
now, all the red crosses should be removed.

4. Open the GWT Design view to see the Layout

Navigate to the source code OLAPQueryClient.java and right click on it, by clicking
Openwith → GWTDesign the GWT design view is opened(Figure 4.13). Besides,
the tab ”source” and ”design” can help us to switch between the source code view
and the design view.

4.2 Installation 66

Figure 4.12: Edit library window

Figure 4.13: GWT Design view

4.2.3 Installation for OLAP Administrator

This section focus on the installation of OLAP administrator project in Eclipse as
basis for extension and further development. Besides the ability to interact with
the OLAP cloud like the query client does, the OLAP administrator should also
interact with our data sources including Derby database and OGSA-DAI server, so
more steps are needed.

1. Derby DB

Java DB is Sun’s supported distribution of the open source Apache Derby DB
database [Der], Sun bundles it with their JDK, and this JDK is the easiest way
to install Java DB on Microsoft Windows. As we want to use Java DB to provide
databases for our applications, we should select the Java DB component from the
list of options when we install the Sun JDK.

4.2 Installation 67

To use Java DB, add the directory for the Java DB executable files to environ-
ment variable PATH: c:\ Program Files\Sun\JavaDB\bin

Java DB also requires a separate DERBY HOME environment variable that points
to the root directory for the Java DB installation: c:\Program Files\Sun\JavaDB

To test the Java DB installation, open a terminal (command line) window, and
type: Sysinfo (Figure 4.14).

Figure 4.14: Sysinfo from Derby

2. Apache Ant

Unpack the Apache Ant archive file to:
c:\GWTOLAP\apache-ant-1.8.2

Define a new environment variable named ANT HOME:
ANT HOME = C:\GWTOLAP\apache-ant-1.8.2
Extend the PATH variable with �ANT HOME�\bin

3. OGSA-DAI

Unpack the Apache Ant archive file to:
c:\GWTOLAP\ogsadai-4.0-axis-1.4-bin

Define a new environment variable named OGSADAI HOME:
OGSADAI HOME = c:\GWTOLAP\ogsadai-4.0-axis-1.4-bin

To set the CLASSPATH in an OGSA-DAI binary distribution:
cd �OGSADAI HOME �

4.2 Installation 68

setenv.bat

put the database driver JARs (derby.jar and derbyclient.jar) into the following di-
rectory:
OGSADAI HOME\thirdparty\lib

Extend the CLASSPATH variable with:
OGSADAI HOME\thirdparty\lib\derby.jar
OGSADAI HOME\thirdparty\lib\derbyclient.jar

Deploy OGSA-DAI Axis to Tomcat (Figure 4.15):
cd �OGSADAI HOME �

ant −Dtomcat.dir =�CATALINA HOME� buildAndDeployWAR

Figure 4.15: Deploy OGSA-DAI Axis onto Tomcat

Start the Tomcat by running the startup script (startup.bat) located in:
c:\GWTOLAP\apache-tomcat-6.0.33\bin\startup.bat

Visit the following page using an web page browser:
http://localhost:8080/dai/services

If the services list of the OGSA-DAI server shows up, the installation is successful.

4. Import the OLAP administrator project
From c:\GWTOLAP\OLAPAdministrator to Eclipse (see Section 4.2.2 step 1)

5.Add Apache Wink library to build path (see Section 4.2.2 step 2)

6. Reallocate the GWT (see Section 4.2.2 step 3)

http://localhost:8080/dai/services

4.2 Installation 69

Figure 4.16: OGSA-DAI: deployed services list

7. Add OGSA-DAI library to build path

Similar to adding Apache Wink’s library to the build path, we should import fol-
lowing JAR files from
c:\GWTOLAP\ogsadai-4.0-axis-1.4-bin\lib to the OLAP administrator project:

� ogsadai-4.0-axis-1.4-client.jar

� ogsadai-4.0-axis-1.4-clientserver.jar

� ogsadai-4.0-axis-1.4-extensions-client.jar

� ogsadai-4.0-axis-1.4-common.jar

8. Open the GWT Design view to see the Layout (see Section 4.2.2 step 4)

9. install and configure Ext GWT

First, the file gxt.jar from c:\GWTOLAP\gxt-2.2.4 should be added as external
JAR to the Java build path. Then, copy all files of directory c:\GWTOLAP\gxt-
2.2.4\ to the project’s war/gxt directory (Figure 4.17).

There should be a warning:
”The following classpath entry c:\ GWTOLAP\ gxt-2.2.4\ gxt.jar will not be avail-
able on the server’s classpath”,
which indicates the gxt.jar is in the Java build path for development but not in the
runtime classpath (WEB-INF/lib). As gxt.jar is needed only at compile time, we
can remove the warning simply by opening the project properties window, selecting
Google-Web Application item and adding gxt.jar to

4.3 Deployment 70

Figure 4.17: Directory structure of the OLAP administrator project

Suppress warning about these build path entries being outside of WEB/lib.

Additionally, Ext GWT should be added to the module definition file of the project.
We need to open the file Administrator.gwt.xml, add the module
com.extjs.gxt.ui.GXT to module inheritance and add the gxt-all.css to the module:

<inherits name="com.extjs.gxt.ui.GXT"/>

<stylesheet src="../gxt/css/gxt-all.css"/>

4.3 Deployment

4.3.1 Deployment for OLAP Query Client

1. If there is any changes on the source code or design layout of the project, the
project should be compiled again: click in Google toolbar, GWTCompileProject→
Compile.

2. The compile result will be in the ”war” directory of the project.

3. We can simply copy the ”war” directory to the web application deployment
folder of Apache Tomcat: c:\GWTOLAP\apache-tomcat-6.0.33\webapps

4. Change the directory’s name from ”war” to ”client”.

5. Start Apache Tomcat using the script:
c:\GWTOLAP\apache-tomcat-6.0.33\bin\startup.bat

6. Visit http://localhost:8080/client in a web browser, the GUI of the OLAP
query client appears as shown in Figure 4.18.

http://localhost:8080/client

4.3 Deployment 71

Figure 4.18: Initial appearance of the OLAP query client GUI

4.3.2 Deployment for OLAP Administrator

Besides deploy the OLAP Administrator project to Apache Tomcat application
server, in this section there is also description about deployment of the Derby
database and OGSA-DAI resources based on the data set which is described in
Chapter 5. So after the following deployment steps, the OLAP administrator is
ready for a fully functional test.

1. Create databases and tables in Derby.
Start Derby network server:
cd c : \GWTOLAP\Database
startNetwaorkServer −h 0.0.0.0 −p 1527 −noSecurityManager
Here, the option −h 0.0.0.0 means that client is not restricted by the IP address to
access to the server.

Create new databases using the ”ij” tool from Derby, start another command line
window and run:
ij
CONNECT ′jdbc : derby : //host : 1527/DatabaseName; create = true′;
Here, ”host” is the Derby network server IP

Connect to an existing Database, like in c:\GWTOLAP\Database there are two

4.3 Deployment 72

existing databases forestFireDB1 and forestFireDB2.
CONNECT ′jdbc : derby : //host : 1527/databaseName′;

Create new table in the new database:

CREATE TABLE tableName(

RecordID varchar(50) NOT NULL default ’’,

X varchar(50) NOT NULL default ’’,

Y varchar(50) NOT NULL default ’’,

Month varchar(5) NOT NULL default ’’,

Day varchar(5) NOT NULL default ’’,

FFMC double NOT NULL default 0,

DMC double NOT NULL default 0,

DC double NOT NULL default 0,

ISI double NOT NULL default 0

);

Insert record into the table:
INSERT INTO tableName VALUES (’1’,’2’,’3’,’10’,’2’,12,10,1,98);

2. Deploy database resources to OGSA-DAI.
In folder c:\GWTOLAP\ogsadai-4.0-axis-1.4-bin create OGSA-DAI configuration
file with following contents:

DeployResource deployJDBC MySQLResource jdbc:derby://

host:1527/database org.apache.derby.jdbc.ClientDriver

Login permit MySQLResource ANY myUser somePassword

For example, configuration file ”fpart1” is used to configure the database
”forestFireDB1” as resource ”FFDB1” on OGSA-DAI.

DeployResource deployJDBC FFDB1 jdbc:derby://

192.168.1.101:1527/forestFireDB1 org.apache.derby.jdbc

.ClientDriver Login permit FFDB1 ANY APP ANY

Configuration file ”fpart1” is used to configure the database
”forestFireDB2” as resource ”FFDB2” on OGSA-DAI.

DeployResource deployJDBC FFDB2 jdbc:derby://

192.168.1.101:1527/forestFireDB2 org.apache.derby.jdbc

.ClientDriver Login permit FFDB2 ANY APP ANY

Deploy the configuration files, start a new command line window:
cd �OGSADAI HOME�

ant −Dtomcat.dir =�CATALINA HOME�−Dconfig.file =
CONFIG−FILE [−Djar.dir = JAR−DIRECTORY] [−Dstart.line = LINE]
configure

4.3 Deployment 73

For example, deploy configuration file ”fpart1”:
ant −Dtomcat.dir =�CATALINA HOME�−Dconfig.file = fpart1 configure
deploy configuration file fpart2:
ant −Dtomcat.dir =�CATALINA HOME�−Dconfig.file = fpart2 configure

Restart Tomcat and the deployed resources should appear in:
http://localhost:8080/dai/dai-resources.jsp (Figure 4.19)

Figure 4.19: Deployed resources on OGSA-DAI server

3. Configure and deploy OGSA-DAI DQP resources.
Again in folder c:\GWTOLAP\ogsadai-4.0-axis-1.4-bin
Create a DQP resource configuration file: ”dqp resource.xml”

<?xml version="1.0" encoding="UTF-8"?>

<DQPResourceConfig>

<dataResources>

<resource url="http://localhost:8080/dai/services"

resourceID="FFDB1"

isLocal="true"/>

<resource url="http://localhost:8080/dai/services"

resourceID="FFDB2"

isLocal="true" />

</dataResources>

</DQPResourceConfig>

Deploy a DQP resource:
create a file conf dqp with the content:
DeployResource deployDQP RESOURCE ID FILE
For example:
DeployResource deployDQP DQP1 dqp resource.xml

Deploy the configuration file, start a new command line window:

http://localhost:8080/dai/dai-resources.jsp

4.3 Deployment 74

cd �OGSADAI HOME�

ant−Dtomcat.dir =�CATALINA HOME�−Dconfig.file = conf dqp configure

Restart Tomcat and the deployed DQP resource should appear in:
http://localhost:8080/dai/dqp-index.jsp (Figure 4.20)

Figure 4.20: DQP resource on OGSA-DAI server

4. Click ”GWT Compile Project” button in Google toolbar to open the ”GWT
Compile” window, keep all default settings and click ”Compile” to compile the
project.

5. The compile result will be in the ”war” directory of the project.

6. Copy the ”war” directory to the folder:
c:\GWTOLAP\apache-tomcat-6.0.33\webapps

7. Change the name of the directory from ”war” to ”admin”.

8. Restart Derby DB server. cd c : \GWTOLAP\Database
startNetwaorkServer −h 0.0.0.0 −p 1527 −noSecurityManager

9. Restart Apache Tomcat using the script:
c:\GWTOLAP\apache-tomcat-6.0.33\bin\startup.at

10. Visit http://localhost:8080/admin in a web browser, the GUI of the OLAP
administrator appears as shown in Figure 4.21.

http://localhost:8080/dai/dqp-index.jsp
http://localhost:8080/admin

4.3 Deployment 75

Figure 4.21: Initial appearance of the OLAP administrator GUI

Chapter 5

Graphical User Interface

There are two Graphical User Interfaces (GUI) in my implementation.The OLAP
query client GUI is designed for query user who has right to access and query the
virtual cube server in the OLAP cloud and load one row of data to a virtual cube.
The OLAP administrator GUI is designed for administrator user who has right to
query virtual cube server, create new virtual cubes, delete virtual cubes and also
load large amount of data to a virtual cube in a single submission. Besides, the
OLAP administrator GUI also enables user to load data from two differen data
sources including Derby database and OGSA-DAI server, furthers the data can be
forwarded to OLAP cloud.

In this chapter, let’s first introduce a data set which is suitable for OLAP anal-
ysis. Then, based on this data set we introduce step-by-step usage of the two GUIs.

5.1 Description of Testing Data Set

From the UCI machine learning repository [UCI] we can find various kinds of data
sets which are not only suitable for data mining [HK00] but also for other kinds of
knowledge discovery analyses. The testing data set here is the ForestFire data set
from UCI machine learning repository, which is available at:
http://archive.ics.uci.edu/ml/datasets/Forest+Fires

The data set has following features:

� The data set contains data records of forest fires in Montesinho natural park
in Portugal.

� The data records were collected between 2000 and 2003 by two observers:

– Inspectors who are responsible for the Montesinho forest fire, they con-
tribute 8 attributes to the data set.

– Braganca Polytechnic Institute, they contribute 5 attributes to the data
set.

� The data set contains 517 records with each 13 attributes.

http://archive.ics.uci.edu/ml/datasets/Forest+Fires

5.2 Introduction of OLAP Administrator GUI 77

Following is the description of the attributes.

� Attributes from the first observer’s database:

– X - x-axis location description: 1 to 9

– Y - y-axis location description: 2 to 9

– month - month in year : ’jan’ to ’dec’

– day - weekdays: ’mon’ to ’sun’

– FFMC - FFMC index from FWI system: 18.7 to 96.20

– DMC - DMC index from FWI system: 1.1 to 291.3

– DC - DC index from FWI system: 7.9 to 860.6

– ISI - ISI index from FWI system: 0.0 to 56.10

� Attributes from the second observer’s database:

– temp - Temperature in Celsius degrees: 2.2 to 33.30

– RH - relative humidity in percentage: 15.0 to 100

– wind - wind speed in km/h: 0.40 to 9.40

– rain - rain in mm/m2 : 0.0 to 6.4

– area - burned area of the forest (in ha): 0.00 to 1090.84

5.1.1 Prerequisites

For the following functional usage description of the GUIs, we prepare two Derby
databases(forestFireDB1 and forestFireDB2) which contains each the database records
from a observer of the forest fire data set. Furthers, we establish a OGSA-DAI server
and deploy the two databases as two relational data resources (FFDB1 and FFDB2)
to it and deploy a Distributed Query Processing (DQP) resource (DQP1), and as-
sociate FFDB1 and FFDB2 to the DQP resource. Details on how to deploy the
databases and OGSA-DAI server can be found in Chapter 4.

5.2 Introduction of OLAP Administrator GUI

Figure 5.1 presents the OLAP administrator GUI, in the following we walk through
a step-by-step example to show the usage.

1. Choose the virtual cube server from the dropdown menu. New virtual cube
server URI can be added by click the ”Add URL” button.

2. There are two ways to get the raw data:
first, Directly from Derby database.

5.2 Introduction of OLAP Administrator GUI 78

Figure 5.1: OLAP administrator GUI

5.2 Introduction of OLAP Administrator GUI 79

(a) Enter the database URL in textbox right to ”Database URL”:
jdbc:derby://host:port/databaseName

(b) Enter the query statement in textbox right to ”Query statement”:
select * from forestfire1

(c) click ”Data Load” button, the result will appear in ”Database/OGSA-
DAI Query Result” panel as Ext GWT grid which can be easily sorted
or edited(figure 5.2). The resulted data in WebRowSet XML format will
also be shown in ”XML state” panel.

Figure 5.2: Ext GWT grid

Second, get data from OGSA-DAI server.

(a) Enter the OGSA-DAI server URL in textbox right to ”Service Base”:

(b) Enter the Resource ID ”DQP1”

(c) In the textbox right to ”Query Statement” enter:
” select X, Y, MONTH, DAY, RAIN, AREA from FFDB1 FORESTFIRE1
p join FFDB2 FORESTFIRE2 r on p.RECORDID=r.RECORDID”.
The result set of the query should contains columns from two databases
and these columns should be integrated to form a result set.

(d) click ”OGSA-DAI Data Load” button, the result will appear in
”Database/OGSA-DAI Query Result” panel as Ext GWT grid. The re-
sulted data in WebRowSet XML format will also be shown in ”XML
state” panel.

Following, assume we have load data from OGSA-DAI server using the abvoe
statement.

3. Click ”Create Cube” button and enter the number of dimensions of the new
virtual cube and dimension names exactly the same as what we have loaded
from the OGSA-DAI server.

4. enter in the textbox right to ”Number of hosts” the number of hosts used by
the virtual cube, then click ”Submit” button. Once the new virtual cube is
created we will get a result indicating the URI of the virtual cube in ”state”
panel.

jdbc:derby://host:port/databaseName

5.3 Introduction of OLAP Query Client GUI 80

5. Click ”Server Info” button to get the list of available virtual cube on the
server, the newly created virtual cube should be in the list, assume its cubeID
is ”VCube3”.

6. Select ”VCube3” and click ”Cube Info” button, metadata of the cube should
show up as a table. The <DataDictionary> will be shown in ”XML State”
panel.

7. Click ”Data Submit to selected VCube” button to load the data from the Ext
GWT grid to the virtual cube. If succeed, result information will appear in
”state” panel as follows:”517 row loaded, cube construction time: 3813 ms,
response time: : 4264 ms”

8. By selecting an available virtual cube and click the ”Delete Cube” button, we
can remove a virtual cube on the server.

5.3 Introduction of OLAP Query Client GUI

Figure 5.3 presents the OLAP query client GUI, again, we walk through a step-by-
step example to show the usage.

1. Choose the virtual cube server from the dropdown menu. New virtual cube
server URI can be added by click the ”Add URL” button.

2. Click ”Server Info” button to get the list of available virtual cube on the server.

3. Select ”VCube3” (created in the section 5.2) and click ”Cube Info” button,
metadata of the cube should show up as a table. The <DataDictionary> will
be shown in ”XML State” panel.

4. To initiate an OLAP query, first select the function (POINT, SUM, MIN or
MAX) from the dropdown list and click ”create query table” button. A query
table according to the selected virtual cube’s metadata will be created. In the
query table select values for each dimension, e.g. X = 4, Y = 3, MONTH =
[ANY], DAY =[ANY], RAIN =0.0 and select the SUM function. As we have
the burned forest area as our measure, such a query will answer the question:
”In location (X=4, Y=3), at any time, when there is no rain, how much area
was burned in total?”

5. Click ”Query” button, the query will be submitted, if succeed, the answer
should be presented right after the query table: ”AREA= 167.18” which indi-
cates totally 167.18 ha of the forest was burned when we have above conditions.

6. We can also load one row of data from the OLAP query client GUI. Click
”create Loat Table” button, enter the values for each dimension and measure.
Here, value for dimension should not be empty, and value for measure should
be a double precision floating point number.

5.3 Introduction of OLAP Query Client GUI 81

7. Click ”load data” button, the one row of data will be loaded to the virtual
cube. This step can also be repeated when more rows of data should be loaded.

Figure 5.3: OLAP query client GUI

Chapter 6

OLAP Modelling Markup
Language

Typically, each OLAP system uses its own proprietary data cube specification lan-
guage which is understandable only by its own OLAP platform. In order to guar-
antee a sufficient level of interoperability - the ability of two or more systems to
exchange and use information, among different OLAP system, the OLAP Model
Markup Language (OMML), is designed to describe consistent OLAP models and
it is independent of any target OLAP platforms. This standard representation can
be used by other OMML compatible applications for further processing of the same
data cube, for example data mining tools or graphical representation of OLAP mod-
els.

OMML was first introduced in [EO05]. We have further develop the first version
of OMML with modifications and extensions, which resulted in OMML version 2.0.
OMML 2.0 will be described in this chapter, It is designed to be suitable for repre-
sentation of OLAP queries and results.

6.1 The Components of OMML

The root tag of the OMML XML Schema Definition (XSD) is <OMML>, which has
five components: <Header> contains general information of OMML, <ServerInfo>
contains virtual cube server information, <DataDictionary> contains metadata of
a virtual cube, <Query> describes the OLAP query and <Result> represents the
OLAP query result.

<xs:element name="OMML">

<xs:complexType>

<xs:annotation>

<xs:documentation>OLAP Model Markup Language</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element ref="Header"/>

<xs:element ref="ServerInfo"/>

6.2 General Information 83

<xs:element ref="DataDictionary"/>

<xs:element ref="Query" maxOccurs="unbounded" />

<xs:element ref="Result" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="version" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

6.2 General Information

Within the <Header> tag, there are three elements: <TimeStamp> contains the
OMML document creation time, <ServiceURI> contains service URI of the server
and <Annotation> can includes some annotation information. There are also two
attribute here: copyright and description.

<xs:element name="Header">

<xs:complexType>

<xs:sequence>

<xs:element ref="Annotation" minOccurs="0"/>

<xs:element ref="Timestamp" minOccurs="0"/>

<xs:element ref="ServiceURI" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="copyright" type="xs:string" use="required"/>

<xs:attribute name="description" type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name="Annotation" type="xs:string"/>

<xs:element name="Timestamp" type="xs:string"/>

<xs:element name="ServiceURI" type="xs:string"/>

6.3 Virtual Cube Server Information

The second tag <ServerInfo> contains the list of available virtual cubes on a virtual
cube server. The cubeIDs are listed one after another.

<xs:element name="ServerInfo">

<xs:complexType>

<xs:sequence>

<xs:element name="CubeID" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Following is example of a <ServerInfo> XML document which contains IDs of three
virtual cubes. URI of a virtual cube is the server’s URI plus the virtual cube ID,
e.g. http://{serverIP}:{port}/VCubes/VCube1.

http://{serverIP}:{port}/VCubes/VCube1

6.4 Metadata and Dimension Hierarchies of Virtual Cube 84

<ServerInfo>

<CubeID>VCube2</CubeID>

<CubeID>VCube1</CubeID>

<CubeID>VCube3</CubeID>

</ServerInfo>

6.4 Metadata and Dimension Hierarchies of Vir-

tual Cube

<DataDictionary> contains the metadata and dimension hierarchy information of
a virtual cube. The attribute ”numberOfFields” indicates how many data fields the
virtual cube has, i.e. number of dimensions plus measure.

<xs:element name="DataDictionary">

<xs:complexType>

<xs:sequence>

<xs:element ref="DataField" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="numberOfFields" type="xs:integer"

use="required"/>

</xs:complexType>

</xs:element>

Every <DataField> describes a dimension or measure. Attribute ”name” repre-
sents the name. Attribute ”optype” describes the relationship between the dimen-
sion members, it could be categorical, ordinal or continuous. Attribute ”dataType”
represents the dimension’s data type which contains eight possible types and can be
extended. Attribute ”measure” is used to indicate if the data field is measure or a
dimension. Attribute ”numberOfHierarchyLevels” indicates the number of hierar-
chical levels of a dimension. Attribute ”hierarchyLevel” represents the current level
of the dimension. The two attributes about the dimension hierarchy is unrequired,
as there could be no hierarchical levels for a dimension. The Element <value> de-
scribes all the dimension members of the dimension, if the dimension has different
hierarchical levels, it describes all dimension members of all levels.

<xs:element name="DataField">

<xs:complexType >

<xs:sequence>

<xs:element name="Value" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="optype" type="OPTYPE" use="required"/>

<xs:attribute name="dataType" type="DATATYPE" use="required"/>

<xs:attribute name="measure" type="xs:boolean" use="required"/>

<xs:attribute name="numberOfHierarchyLevels" type="xs:integer"

6.4 Metadata and Dimension Hierarchies of Virtual Cube 85

use="unrequired"/>

<xs:attribute name="hierarchyLevel" type="xs:integer"

use="unrequired"/>

</xs:complexType>

</xs:element>

<xs:simpleType name="OPTYPE">

<xs:restriction base="xs:string">

<xs:enumeration value="categorical"/>

<xs:enumeration value="ordinal"/>

<xs:enumeration value="continuous"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="DATATYPE">

<xs:restriction base="xs:string">

<xs:enumeration value="string"/>

<xs:enumeration value="integer"/>

<xs:enumeration value="float"/>

<xs:enumeration value="double"/>

<xs:enumeration value="boolean"/>

<xs:enumeration value="date"/>

<xs:enumeration value="time"/>

<xs:enumeration value="dateTime"/>

</xs:restriction>

</xs:simpleType>

The following example describes a cube whose dimensions have no different hierar-
chical levels. The cube has three dimensions, ”Location”, ”Year”, ”Product”, and
a measure, ”sale”. Each dimension member is in a <value> element.

<DataDictionary numberOfFields="4">

<DataField name="Location" optype="categorical"

dataType="string" measure="false" >

<Value>Austria</Value>

<Value>USA</Value>

<Value>UK</Value>

</DataField>

<DataField name="Year" optype="categorical"

dataType="integer" measure="false" >

<Value>2011</Value>

<Value>2010</Value>

<Value>2009</Value>

</DataField>

<DataField name="Product" optype="categorical"

dataType="string" measure="false" >

<Value>PC</Value>

<Value>TV</Value>

<Value>DVD</Value>

6.5 Query 86

</DataField>

<DataField name="Sale" optype="continuous"

dataType="double" messure="true"/>

</DataDictionary>

If the first dimension ”Location” from above example has four hierarchical levels, the
related <DataField> should be described as below. Here, each <Value> describe a
dimension member on a hierarchical level.

<DataField name="Location" optype="categorical"

dataType="string" measure="false"

numberOfHierarchyLevels="4" hierarchyLevel="3">

<Value>Europe</Value>

<Value>North America</Value>

<Value>Asia</Value>

</DataField>

<DataField name="Location" optype="categorical"

dataType="string" measure="false"

numberOfHierarchyLevels="4" hierarchyLevel="2">

<Value>Austria-Europe</Value>

<Value>Denmark-Europe</Value>

<Value>USA-North America</Value>

<Value>Turkey-Asia</Value>

</DataField>

<DataField name="Location" optype="categorical"

dataType="string" measure="false"

numberOfHierarchyLevels="4" hierarchyLevel="1">

<Value>Vienna-Austria-Europe</Value>

<Value>Copenhagen-Denmark-Europe</Value>

<Value>Pittsburgh-USA-North America</Value>

<Value>Istanbul-Turkey-Asia</Value>

</DataField>

<DataField name="Location" optype="categorical"

dataType="string" measure="false"

numberOfHierarchyLevels="4" hierarchyLevel="0">

<Value>Kettenbrueckengasse-Vienna-Austria-Europe</Value>

<Value>Winzer Strasse-Copenhagen-Denmark-Europe</Value>

<Value>Roadstar Avenue-Pittsburgh-USA-North America</Value>

<Value>Ekin Sokak-Istanbul-Turkey-Asia</Value>

<Value>Schwarzenbergplatz-Vienna-Austria-Europe</Value>

</DataField>

6.5 Query

This part describes the possible OLAP operations, attribute ”id” represents the
query’s identity, attribute ”method” indicates the operation method which could be
point, sum, min, max and so on.

6.5 Query 87

<xs:element name="Query">

<xs:complexType>

<xs:sequence>

<xs:element ref="Parameter"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="required"/>

<xs:attribute name="method">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="point"/>

<xs:enumeration value="sum"/>

<xs:enumeration value="min"/>

<xs:enumeration value="max"/>

<xs:enumeration value="avg"/>

<xs:enumeration value="rollup"/>

<xs:enumeration value="drilldwn"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

The element <Parameter> represents the query parameters, the attribute ”name”
indicates the dimension name, and <Value> is the query value for the dimension.

<xs:element name="Parameter">

<xs:complexType>

<xs:sequence>

<xs:element name="Value" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

The following example represents an aggregation query along the dimension ”Loca-
tion”.

<Query id="q1" method="sum">

<Parameter name="Product">

<Value>TV</Value>

</Parameter>

<Parameter name="Location">

<Value>[ANY]</Value>

</Parameter>

<Parameter name="Year">

<Value>2010</Value>

6.6 Result 88

</Parameter>

</Query>

6.6 Result

The last part describes the result of OLAP query. Attribute ”queryID” indicates
the result related query’s identity. <Value> contains the resulted value of the query.

<xs:element name="Result">

<xs:complexType>

<xs:choice>

<xs:element name="Value" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

</xs:choice>

<xs:attribute name="queryID"

type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

Following is an example:

<Result queryID="q1">

<Value>543</Value>

</Result>

The full of OMML 2.0 XML Schema Definition can be found in Appendix B.

Chapter 7

Conclusion and Future Work

In this thesis we have presented our development of two multi-tier client systems
- OLAP administrator and OLAP query client. Google Web Toolkit (GWT) and
Apache Wink client module were applied for development of OLAP query client,
which aims at providing an efficient way for the user to send different kinds of queries
to the elastic OLAP cloud and receive results. GWT, libraries of Apache Wink,
Apache Derby database, OGSA-DAI and Ext GWT were applied for development
of OLAP administrator, which inherits some functionality from the OLAP query
client and provides means for user with administrator privilege to manage virtual
cubes. User with administrator privilege can perform following actions:

� Initiate new virtual cubes

� Delete virtual cubes

� Query the Derby database or OGSA-DAI server to load raw data, transform
the raw data into WebRowSet format and submit it to the elastic OLAP cloud

Besides, we have further developed the OLAP Modelling Markup Language (OMML),
which was applied as standard communication language between the client systems
and the elastic OLAP cloud.

Our research results are also presented in a paper [CY11], which is to be included in
proceedings of the International Conference on Cloud and Green Computing (CGC
2011) in Sydney, Australia in December 2011.

For the OLAP administrator, there are following future work possibilities:

1. Till now, we can load raw data either from Derby database or from OGSA-
DAI server, but more data sources could be introduced, e.g. support more kinds of
relational databases like MySQL and so on, support other data sources like XML
database, stream data from a sensor network etc.

2. In the current version, we can transform raw data into WebRowSet XML format
and present it in a Ext GWT grid which enables some data preprocess operations
like sorting. Actually, possible operations of the Ext GWT grid can be extended,

90

we can further develop more operations like sum, different kinds of editing. So,
the OLAP administrator can better observe the raw data and perform some useful
preprocesses before loading the raw data into the OLAP cloud.

3. We could provide more OLAP management possibilities to the OLAP adminis-
trator, e.g. graphically manage the hosts which serve for virtual cubes. We could
provide drag-and-drop operation possibilities for administrator to graphically create
and edit the structure of a virtual cube and its hosts. Besides, In case a virtual cube
is deleted, its hosts becomes free, so the administrator could manually put these free
hosts to another virtual cube. This operation possibility will save time for initiating
new hosts in the cloud and will result in better resource utilization.

For the OLAP query client, there are following future work possibilities:

1. In the current version, the OLAP query client can send a single query at one
time to the OLAP cloud. In future, we could enables the client to send series of
queries with different parameters and functions at one time, and get series of query
results back.

2. As we could have series of query results, we could provide more graphical analysis
possibilities to analyze these results and better observe the effect of different query
parameters and functions.

Appendix A

WebRowSet XML Schema
Definition

�
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
< !−− WebRowSet XML Schema by Jonathan Bruce (Sun Microsystems Inc .) −−>
<xs:schema targetNamespace=” ht tp : // java . sun . com/xml/ns/ jdbc ” xmlns:wrs=

” ht tp : // java . sun . com/xml/ns/ jdbc ” xmlns :xs=” ht tp : //www.w3 . org /2001/
XMLSchema” elementFormDefault=” q u a l i f i e d ”>

<xs : e l ement name=”webRowSet”>
<xs:complexType>

<xs : s equence>
<xs : e l ement r e f=” wr s : p r op e r t i e s ”/>
<xs : e l ement r e f=”wrs:metadata ”/>
<xs : e l ement r e f=”wrs :data ”/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=”columnValue” type=”xs:anyType”/>
<xs : e l ement name=”updateValue” type=”xs:anyType”/>

<xs : e l ement name=” p r op e r t i e s ”>
<xs:complexType>

<xs : s equence>
<xs : e l ement name=”command” type=” x s : s t r i n g ”/>
<xs : e l ement name=” concurrency ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”datasource ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”escape−pro c e s s i ng ” type=” x s : s t r i n g ”/>
<xs : e l ement name=” fetch−d i r e c t i o n ” type=” x s : s t r i n g ”/>
<xs : e l ement name=” fetch−s i z e ” type=” x s : s t r i n g ”/>
<xs : e l ement name=” i s o l a t i o n−l e v e l ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”key−columns”>

<xs:complexType>
<xs : s equence minOccurs=”0” maxOccurs=”unbounded”>

<xs : e l ement name=”column” type=” x s : s t r i n g ”/>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
<xs : e l ement name=”map”>

<xs:complexType>

92

<xs : s equence minOccurs=”0” maxOccurs=”unbounded”>
<xs : e l ement name=” type” type=” x s : s t r i n g ”/>
<xs : e l ement name=” c l a s s ” type=” x s : s t r i n g ”/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs : e l ement name=”max−f i e l d −s i z e ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”max−rows” type=” x s : s t r i n g ”/>
<xs : e l ement name=”query−t imeout ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”read−only ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”rowset−type ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”show−de l e t ed ” type=” x s : s t r i n g ”/>
<xs : e l ement name=” table−name” type=” x s : s t r i n g ”/>
<xs : e l ement name=” ur l ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”sync−prov ide r ”>

<xs:complexType>
<xs : s equence>

<xs : e l ement name=”sync−provider−name” type=” x s : s t r i n g ”/>
<xs : e l ement name=”sync−provider−vendor” type=” x s : s t r i n g ”/

>
<xs : e l ement name=”sync−provider−ve r s i on ” type=” x s : s t r i n g ”

/>
<xs : e l ement name=”sync−provider−grade ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”data−source−l o ck ” type=” x s : s t r i n g ”/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
<xs : e l ement name=”metadata”>

<xs:complexType>
<xs : s equence>

<xs : e l ement name=”column−count” type=” x s : s t r i n g ”/>
<x s : c h o i c e>

<xs : e l ement name=”column−d e f i n i t i o n ” minOccurs=”0” maxOccurs=
”unbounded”>

<xs:complexType>
<xs : s equence>

<xs : e l ement name=”column−index ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”auto−increment ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”case−s e n s i t i v e ” type=” x s : s t r i n g ”/>
<xs : e l ement name=” currency ” type=” x s : s t r i n g ”/>
<xs : e l ement name=” nu l l a b l e ” type=” x s : s t r i n g ”/>
<xs : e l ement name=” s igned ” type=” x s : s t r i n g ”/>
<xs : e l ement name=” sea r chab l e ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”column−di sp lay−s i z e ” type=” x s : s t r i n g ”

/>
<xs : e l ement name=”column−l a b e l ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”column−name” type=” x s : s t r i n g ”/>
<xs : e l ement name=”schema−name” type=” x s : s t r i n g ”/>
<xs : e l ement name=”column−p r e c i s i o n ” type=” x s : s t r i n g ”/>
<xs : e l ement name=”column−s c a l e ” type=” x s : s t r i n g ”/>
<xs : e l ement name=” table−name” type=” x s : s t r i n g ”/>
<xs : e l ement name=” cata log−name” type=” x s : s t r i n g ”/>
<xs : e l ement name=”column−type ” type=” x s : s t r i n g ”/>

93

<xs : e l ement name=”column−type−name” type=” x s : s t r i n g ”/>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</ x s : c h o i c e>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
<xs : e l ement name=”data”>

<xs:complexType>
<xs : s equence minOccurs=”0” maxOccurs=”unbounded”>

<xs : e l ement name=”currentRow” minOccurs=”0” maxOccurs=”
unbounded”>

<xs:complexType>
<xs : s equence minOccurs=”0” maxOccurs=”unbounded”>

<xs : e l ement r e f=”wrs:columnValue”/>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>
<xs : e l ement name=” insertRow” minOccurs=”0” maxOccurs=”unbounded

”>
<xs:complexType>

<x s : c h o i c e minOccurs=”0” maxOccurs=”unbounded”>
<xs : e l ement r e f=”wrs:columnValue”/>
<xs : e l ement r e f=”wrs:updateValue ”/>

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>
<xs : e l ement name=”deleteRow” minOccurs=”0” maxOccurs=”unbounded

”>
<xs:complexType>

<xs : s equence minOccurs=”0” maxOccurs=”unbounded”>
<xs : e l ement r e f=”wrs:columnValue”/>
<xs : e l ement r e f=”wrs:updateValue ”/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs : e l ement name=”modifyRow” minOccurs=”0” maxOccurs=”unbounded

”>
<xs:complexType>

<xs : s equence minOccurs=”0” maxOccurs=”unbounded”>
<xs : e l ement r e f=”wrs:columnValue”/>
<xs : e l ement r e f=”wrs:updateValue ”/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</xs:schema>� �

Appendix B

OLAP Modelling Markup
Language 2.0 XML Schema
Definition

�
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”

elementFormDefault=” q u a l i f i e d ” attr ibuteFormDefaul t=” unqua l i f i e d ”>

<xs : e l ement name=”OMML”>
<xs:complexType>
<xs : annota t i on>

<xs :documentat ion>OLAP Model Markup Language</ xs :documentat ion>
</ xs : annota t i on>

<xs : s equence>
<xs : e l ement r e f=”Header”/>
<xs : e l ement r e f=” Se rve r In f o ”/>
<xs : e l ement r e f=”DataDict ionary ”/>
<xs : e l ement r e f=”Query” maxOccurs=”unbounded” />
<xs : e l ement r e f=”Result ” maxOccurs=”unbounded”/>

</ xs : s equence>
<x s : a t t r i b u t e name=” ve r s i on ” type=” x s : s t r i n g ” use=” requ i r ed ”/>

</xs:complexType>
</ xs : e l ement>

<xs : e l ement name=”Header”>
<xs:complexType>

<xs : s equence>
<xs : e l ement r e f=”Annotation” minOccurs=”0”/>
<xs : e l ement r e f=”Timestamp” minOccurs=”0”/>
<xs : e l ement r e f=”ServiceURI” minOccurs=”0”/>

</ xs : s equence>
<x s : a t t r i b u t e name=” copyr ight ” type=” x s : s t r i n g ” use=” requ i r ed ”/>
<x s : a t t r i b u t e name=” de s c r i p t i o n ” type=” x s : s t r i n g ”/>

</xs:complexType>
</ xs : e l ement>
<xs : e l ement name=”Annotation” type=” x s : s t r i n g ”/>
<xs : e l ement name=”Timestamp” type=” x s : s t r i n g ”/>
<xs : e l ement name=”ServiceURI” type=” x s : s t r i n g ”/>

95

<xs : e l ement name=” Se rve r In f o ”>
<xs:complexType>

<xs : s equence>
<xs : e l ement name=”CubeID” type=” x s : s t r i n g ” minOccurs=”0”

maxOccurs=”unbounded”/>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

<xs : e l ement name=”DataDict ionary ”>
<xs:complexType>

<xs : s equence>
<xs : e l ement r e f=”DataField ” maxOccurs=”unbounded” />

</ xs : s equence>
<x s : a t t r i b u t e name=”numberOfFields ” type=” x s : i n t e g e r ” use=” requ i r ed

”/>
</xs:complexType>

</ xs : e l ement>
<xs : e l ement name=”DataField ”>

<xs:complexType >
<xs : s equence>

<xs : e l ement name=”Value” type=” x s : s t r i n g ” minOccurs=”0”
maxOccurs=”unbounded”/>

</ xs : s equence>
<x s : a t t r i b u t e name=”name” type=” x s : s t r i n g ” use=” requ i r ed ”/>
<x s : a t t r i b u t e name=”optype” type=”OPTYPE” use=” requ i r ed ”/>
<x s : a t t r i b u t e name=”dataType” type=”DATATYPE” use=” requ i r ed ”/>
<x s : a t t r i b u t e name=”measure” type=” xs :boo l ean ” use=” requ i r ed ”/>
<x s : a t t r i b u t e name=”numberOfHierarchyLevels ” type=” x s : i n t e g e r ”

use=” unrequired ”/>
<x s : a t t r i b u t e name=” h i e ra r chyLeve l ” type=” x s : i n t e g e r ” use=”

unrequired ”/>
</xs:complexType>

</ xs : e l ement>
<xs :s impleType name=”OPTYPE”>

<x s : r e s t r i c t i o n base=” x s : s t r i n g ”>
<xs :enumerat ion value=” c a t e g o r i c a l ”/>
<xs :enumerat ion value=” o rd i na l ”/>
<xs :enumerat ion value=” cont inuous ”/>

</ x s : r e s t r i c t i o n>
</ xs :s impleType>
<xs :s impleType name=”DATATYPE”>

<x s : r e s t r i c t i o n base=” x s : s t r i n g ”>
<xs :enumerat ion value=” s t r i n g ”/>
<xs :enumerat ion value=” i n t e g e r ”/>
<xs :enumerat ion value=” f l o a t ”/>
<xs :enumerat ion value=”double ”/>
<xs :enumerat ion value=”boolean ”/>
<xs :enumerat ion value=”date ”/>
<xs :enumerat ion value=”time”/>
<xs :enumerat ion value=”dateTime”/>

</ x s : r e s t r i c t i o n>
</ xs :s impleType>

<xs : e l ement name=”Query”>

96

<xs:complexType>
<xs : s equence>

<xs : e l ement r e f=”Parameter” maxOccurs=”unbounded”/>
</ xs : s equence>
<x s : a t t r i b u t e name=” id ” type=” x s : s t r i n g ” use=” requ i r ed ”/>
<x s : a t t r i b u t e name=”method”>

<xs :s impleType>
<x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

<xs :enumerat ion value=” po int ”/>
<xs :enumerat ion value=”sum”/>
<xs :enumerat ion value=”min”/>
<xs :enumerat ion value=”max”/>
<xs :enumerat ion value=”avg”/>
<xs :enumerat ion value=” r o l l up ”/>
<xs :enumerat ion value=” dr i l l dwn ”/>

</ x s : r e s t r i c t i o n>
</ xs :s impleType>

</ x s : a t t r i b u t e>
</xs:complexType>

</ xs : e l ement>
<xs : e l ement name=”Parameter”>

<xs:complexType>
<xs : s equence>

<xs : e l ement name=”Value” type=” x s : s t r i n g ” minOccurs=”0” maxOccurs
=”unbounded”/>

</ xs : s equence>
<x s : a t t r i b u t e name=”name” type=” x s : s t r i n g ” use=” requ i r ed ”/>

</xs:complexType>
</ xs : e l ement>

<xs : e l ement name=”Result ”>
<xs:complexType>

<x s : c h o i c e>
<xs : e l ement name=”Value” type=” x s : s t r i n g ” minOccurs=”0” maxOccurs

=”unbounded”/>
</ x s : c h o i c e>
<x s : a t t r i b u t e name=”queryID” type=” x s : s t r i n g ” use=” requ i r ed ”/>

</xs:complexType>
</ xs : e l ement>

</xs:schema>� �

Appendix C

Class Diagrams of the OLAP
Administrator Project

98

Figure C.1: Class diagram of Administrator, Record1 and Record10

99

Figure C.2: Class diagram: OLAPService implementation

100

Figure C.3: Class diagram: DataService implementation

101

Figure C.4: Class diagram: OgsaDaiService implementation

102

LebensLauf

Name: Sicen Ye

Geburtsdatum: 29.06.1981

Geburtsort: China

Ausbildung

2003 - 2004 Ein jahr Deutschkurs und Vorstudienlehrgang

2004 - 2009 Bachelorstudium Technische Informatik, Universität Wien

Seit 2010 Masterstudium Scientific Computing, Universität Wien

Bibliography

[CY11] Peter Brezany Yan Zhang Ivan Janciak Peng Chen and Sicen Ye, An elastic
olap cloud platform, in proceedings of International Conference on Cloud
and Green Computing (CGC 2011) in Sydney, Australia, December 2011.
89

[Der] Apache Derby, Derby reference manual, http://db.apache.org/derby. 66

[EO05] I. Elsayed and U. Onan, The olap model markup language, Working Draft,
Institute of Scientific Computing, University of Vienna, January 2005. 4,
82

[FB04a] B. Fiser and P . Brezany, Olap engine development for distributed parallel
computing, Technical report, institute of Scientific Computing, University
of Vienna, February 2004. 12

[FB04b] B. Fiser and P. Brezany, Approaches to the development od olap engines,
Technical report, institute of Scientific Computing, University of Vienna,
February 2004. 12

[Fie00] Roy Thomas Fielding, Architectural styles and the design of network-
based software architectures, Doctoral dissertation, University of Califor-
nia, Irvine, 2000. 1

[Gar] Jesse James Garrett, Ajax: A new approach to web applications,
http://AdaptivePath.com. 5

[Goo] Google, Google web toolkit, http://code.google.com/intl/en/webtoolkit. 5

[Gri] GridMiner, Project knowledge grid, http://www.gridminer.org. 1

[Gro] Data Mining Group, Predictive model markup language (pmml).,
http://www.dmg.org. 4

[HK00] J. Han and M. Kamber, Data mining, concepts and techniques, Morgan
Kaufmann, 2000. 76

[MA05] Malcolm Atkinson el.at. Mario Antonioletti, The design and implementa-
tion of grid database services in ogsa-dai, Concurrency and Computation:
Practice and Experience. Volume 17, April 2005. 32

BIBLIOGRAPHY 104

[MA09] Armando Fox el.at. Michael Armbrust, Above the clouds: A berkeley view
of cloud computing, Technical Report No. UCB/EECS-2009-28, 2009. 1

[oE10] The University of Edinburgh, Ogsa-dai 4.0 documentation,
http://ogsa-dai.sourceforge.net/documentation/ogsadai4.0/ogsadai4.0-
axis/index.html, April 2010. 31

[Ona05] U. Onan, High performance on-line analytical processing on computational
grids, Master Thesis, 2005. xi, 10

[Ora] Oracle, Java enterprise edition: Javaserver pages technology,
http://www.oracle.com/technetwork/java/javaee/jsp/index.html. 18

[Ora10] Oracle, Java 2 platform: Standard edition 5.0 api,
http://download.oracle.com/javase/1,5.0/docs/api, 2010. 31

[pro10] Apache Wink project, Apache wink 1.1 user guide,
http://incubator.apache.org/wink, 2010. xi, 25

[Sen] Sencha, Ext gwt: Internet application framework for google web toolkit,
http://www.sencha.com/products/extgwt. 43

[Spe06] Keynote Speaker, Web services at amazon.com, ICWS ’06. International
Conference on Web Services, 2006. 1

[UCI] UCI, Uc irvine machine learning repository, http://archive.ics.uci.edu/ml.
76

[W3C04] W3C, Extensible markup language (xml) 1.0 (third edition),
http://www.w3.org/TR/2004/REC-xml-20040204, February 2004.
2

[XSt] XStream, Xstream library to serialize objects to xml and back again,
http://xstream.codehaus.org. 22

	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Approach
	Thesis Organization

	Basics of On-Line Analytical Processing
	Basic Principles
	Classification of OLAP
	MOLAP Operations
	Aggregation
	Roll-up and Drill-down
	Slice and Dice
	Pivot

	Design and Implementation
	Multi-tier Architecture
	Design of the Service Tier
	Design of the GWT Client Tier
	Design of the GWT Server Tier

	Data Flow in the System
	Data Flow of the OLAP Query Client
	Data Flow of the OLAP Administrator

	Why Multi-tier Architecture
	Implementation
	Implementation of OLAP Access Servlet
	Implementation of Database Access Servlet
	Implementation of OGSA-DAI Access Servlet
	Implementation of the WebRowSet XML Generator
	Convert the WebRowSet XML Document to Ext GWT Grid
	Modules in GWT Development
	Implementation of PRC Call

	UML Diagrams Description
	UML Diagram of the OLAP Query Client Project
	UML Diagram of the OLAP Administrator Project

	Installation and Deployment
	Preparation
	Installation
	Installation for Both OLAP Query Client and OLAP Administrator
	Installation for OLAP Query Client
	Installation for OLAP Administrator

	Deployment
	Deployment for OLAP Query Client
	Deployment for OLAP Administrator

	Graphical User Interface
	Description of Testing Data Set
	Prerequisites

	Introduction of OLAP Administrator GUI
	Introduction of OLAP Query Client GUI

	OLAP Modelling Markup Language
	The Components of OMML
	General Information
	Virtual Cube Server Information
	Metadata and Dimension Hierarchies of Virtual Cube
	Query
	Result

	Conclusion and Future Work
	WebRowSet XML Schema Definition
	OLAP Modelling Markup Language 2.0 XML Schema Definition
	Class Diagrams of the OLAP Administrator Project
	Bibliography

