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Abstract 

 
In porous sedimentary rocks, fault zones are frequently accompanied by deformation bands. 

These tabular zones of displacement indicate predominant grain rotation and in many cases grain 

fracturing. These mechanisms often result in a significant reduction of porosity and permeability. 

Deformation bands usually show displacements of only a few millimeters to centimeters, and 

similar thickness, and cannot be captured by seismic measurements.  

This study analyzed five core samples taken from a well in a hydrocarbon reservoir, the Matzen 

Field, of the Vienna Basin. The well is located near large normal faults. The samples were 

selected from depths between 1647.5m and 1656.5m, where deformation bands were identified. 

The Badenian terrigeneous Matzen sandstones contain predominantly quartz, feldspar and 

dolomite as sub-rounded, detrital grains bearing weak cementation. Normal faults with several 

tens to hundreds of meters of displacement are well documented from seismic sections, whereas 

deformation bands in this reservoir have not been studied in detail. These structures may be 

associated with a significant reduction in porosity, and may thus create barriers to the migration 

of hydrocarbons and result in a compartmentalization of the reservoir during migration, charging 

or production.  

Deformation bands occur as single bands of up to 4mm width, or as strands of several bands with 

up to 5cm thickness. Based on grain size analyses of detrital quartz, cataclastic grain size 

reduction within the bands can be documented. A reduction of porosity within the deformation 

bands can already be recognized macroscopically and is confirmed by image analysis from back-

scattered electron (BSE) images. The porosity is reduced from 20-30% in the host rock to 1-9% 

in the deformation bands.  

In contrast to most published examples of deformation bands in terrigeneous sandstones, the 

reduction of porosity is predominantly caused by precipitation of Fe-dolomite cement within the 

bands, and only subordinately by cataclasis. The chemical composition of this cement differs 

from the detrital dolomite grains of the host rock. The dolomite cement shows 10-12wt% FeO 

content, in contrast to the detrital dolomite grains with less than 2wt% FeO. This observation 

suggests that the cement is not derived from the detrital grains, but precipitated from a fluid from 

an external source.  
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In summary, the evolution of deformation bands in the Matzen reservoir can be characterized as 

follows: After an initial increase of porosity by dilation, disaggregation and fragmentation of 

detrital grains, a Fe-rich carbonate fluid crystallized within the bands, thereby reducing the 

porosity relative to the host sediment. Regarding the origin of the Fe-rich dolomite cement, it is 

postulated that fluids enriched in Fe and Mg originating from underlying shale layers were 

precipitated within the bands. 

Different degrees of oil staining on either side of the bands demonstrate that these cementation 

bands act as effective barriers to the migration of hydrocarbons and should be considered in 

reservoir models. 
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Zusammenfassung 

In porösen Sedimentgesteinen werden Störungszonen häufig von Deformation Bands begleitet. 

Diese flachen Versatzzonen zeigen vorrangig Kornrotation und in einigen Fällen 

Kornzerkleinerung. Diese Mechanismen haben oft zur Folge, dass es zu einer signifikanten 

Porositäts-und Permeabilitätsreduktion kommt. Für gewöhnlich zeigen Deformation Bands einen 

nur kleinen Versatz im Millimeter bis kleineren Zentimeterbereich, eine ähnliche Dicke und 

können durch seismische Messungen nicht erfasst werden. 

In dieser Studie wurden fünf Bohrkernproben des Kohlenwasserstoffreservoirs im Wiener 

Becken, dem Matzen Feld, analysiert. Die Bohrung findet sich nahe einer großen Abschiebung 

und die ausgewählten Gesteinsproben wurden aus einer Tiefe von 1647,5m bis 1656,5m 

entnommen, wo Deformation Bands erkannt wurden. Die aus dem Badenium stammenden 

terrigenen Matzen Sandsteine enthalten überwiegend Quarz, Feldspat und Dolomit, in Form 

angerundeter, detritärer Körner und sind kaum zementiert. Abschiebungen mit mehreren Zehnern 

bis Hunderten Metern Versatz sind anhand seismischer Untersuchungen gut dokumentiert, 

allerdings wurden Deformation Bands in diesem Reservoir nicht im Detail untersucht. Diese 

Strukturen können mit einer signifikanten Porositätsreduktion assoziiert werden und können 

demzufolge Barrieren für das Migrieren der Kohlenwasserstoffe bilden. Daraus ergeben sie eine 

Kompartmentierung des Reservoirs während der Migration, Anreicherung oder Produktion. 

Deformation Bands treten als einzelne Bänder von bis zu 4mm Breite, oder im Verbund mit einer 

Dicke von bis zu 5cm auf. Basierend auf Korngrößenanalysen detritärer Quarzkörner kann eine 

kataklastische Korngrößenreduktion innerhalb der Bänder dokumentiert werden. Eine 

Porositätsreduktion innerhalb der Deformation Bands ist makroskopisch erkennbar und wird 

durch Bildanalysen von Back-scattered electron (BSE) Bildern bestätigt. Die Porosität wird 

vermindert von 20-30% im Muttergestein auf 1-9% in den Deformation Bands. 

Im Gegensatz zu häufig publizierten Beispielen von Deformation Bands in terrigenen 

Sandsteinen wird in diesem Fall die Porositätsreduktion hauptsächlich durch Beteiligung von Fe-

Dolomitzementen innerhalb der Bands verursacht und nur untergeordnet durch Kataklase. Die 

chemische Zusammensetzung des Zements unterscheidet sich von detritären Dolomitkörnern im 

Nebengestein. Der Dolomitzement zeigt einen FeO-Gehalt von 10-12wt%, im Gegensatz zu den 

detritären Dolomitkörnern, die weniger als 2wt% FeO aufweisen. Diese Beobachtung weist 
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darauf hin, dass der Zement nicht durch die Auflösung und Rekristallisation detritärer 

Dolomitkörner gebildet wurde, sondern von einem Fluid einer externen Quelle stammt. 

Zusammenfassend kann die Bildung der Deformation Bands im Reservoir Matzen 

folgendermaßen charakterisiert werden: Nach einer anfänglichen Porositätszunahme durch 

Ausdehnung, Auflockerung und Fragmentierung der detritären Körner, kristallisierte ein Fe-

reiches Karbonatfluid innerhalb der Bands aus, wobei es zu einer Porositätsreduktion relativ zum 

Nebengestein kam. Die Fe und Mg- reichen Fluids stammen wahrscheinlich aus darunter 

liegenden Tonschichten. Unterschiedliche Ölsättigungen auf beiden Seiten der Bänder 

demonstrieren, dass diese Zementationsbänder als effektive Barrieren für die Migration von 

Kohlenwasserstoffen agieren und deshalb in Reservoirmodellen berücksichtigt werden sollten. 
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Introduction 

 
Deformation bands frequently accompany major faults in porous sedimentary rocks (Aydin, 

1978). Several characteristic features of deformation bands allow a distinction from brittle 

fractures (e.g. slip surfaces or joints; Aydin et al., 2006). Generally, they are tabular zones of 

distributed strain. Accordingly they are wider but show a smaller offset than striated slip 

surfaces. Compared to brittle fractures, where cohesion is lost or reduced, deformation bands 

retain or increase cohesion. Furthermore, a reduction in porosity and permeability is observed 

within most deformation bands. These attributes may influence fluid flow in groundwater and 

hydrocarbon reservoirs (Sternlof et al., 2006; Kolyukhin et al., 2010). Commonly, deformation 

bands occur as single bands with a width up to a few millimeters or as strands of several bands 

up to a few centimeters or decimeters in total width (Fossen et al., 2007). 

Deformation bands can be classified according to their kinematic properties (Aydin et al., 2006), 

as shear, compaction, or dilation bands; hybrids exist between these end members. Shear bands 

are frequently accompanied by compaction (i.e. pore space reduction), caused by grain rotation, 

grain sliding and/or grain fracturing (Eichhubl et al., 2010, and references therein). Early stages 

of shear bands can include a component of dilation, which has been identified in both theory and 

in the field (Du Bernard et al., 2002; Bésuelle, 2001; Borja and Aydin, 2004). 

Additionally, deformation bands are classified by their deformation mechanism (Fossen et al., 

2007), which depends on grain size, shape, sorting, cementation, mineralogy and porosity of the 

host sediment, and on the stress conditions during the formation of the bands. Disaggregation 

bands are characterized by sliding and rotation of individual grains, without significant 

fracturing. Phyllosilicate bands contain 10% to 15% platy minerals within the bands. Cataclastic 

bands are dominated by grain fracturing. If cementation or dissolution occurs preferentially 

along deformation bands, they are classified as cementation and solution bands. Cementation 

bands are not regularly documented in geological literature. Deformation bands characterized by 

cementation were described by Sample et al. (2006), Parnell et al. (2004) and Parnell (2009). 

This study examines deformation bands in Neogene sandstones of the Vienna Basin, a Miocene 

pull-apart basin in the North East of Austria. Core samples were analyzed from the Matzen field, 

one of the largest onshore hydrocarbon reservoirs in Central Europe. This area is thus one of the 



 

 9 

best studied parts of the Vienna Basin concerning stratigraphical, lithological and structural 

content. The dominant fault system with conjugated normal faults indicates (late) Miocene NW-

SE extension, and is well documented in numerous 2D and 3D seismic datasets (Hinsch et al., 

2005). However, deformation bands related to the larger faults have not been investigated so far. 

This thesis focuses on deformation bands from a depth of ca. 1650m. They originate from a unit 

underlying the main reservoir, the Matzen sands, which were deposited during a lower Badenian 

(ca. 15 Ma) marine transgression in the Vienna Basin.  

The collected microstructural and chemical data provide insight into the kinematic evolution and 

timing of the deformation bands, as well as the mineralogical and petrophysical alteration with 

respect to the surrounding rock. The findings characterize and describe the influence of the 

deformation bands on the migration of hydrocarbons and on the reservoir quality. 
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Geological Setting 

 
The Vienna Basin (Figure 1) is part of the Neogene Paratethys basin system (Steininger and 

Wessely, 2000). It is located in northeast Austria, extending into Slovakia and the Czech 

Republic, between the Eastern Alps and the Western Carpathians (Royden, 1985; Wessely, 

1988). The Miocene, 200 km long and 60 km wide, rhombohedral pull-apart basin was formed 

along NNE-SSW trending strike-slip faults during lateral extrusions of the Eastern Alps 

(Ratschbacher et al., 1991; Decker, 1996; Decker and Peresson, 1996, Linzer et al., 2002; 

Wagreich and Schmid, 2002). The evolution of the Vienna Basin can be divided into two major 

stages (see also Royden, 1985, 1988; Decker, 1996; Decker et al., 2004): 

 

Figure 1: Geographical and geological overview of the Matzen Field in the central Vienna Basin (modified after 

Brix and Schulz, 1993). 
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In the Early Miocene (ca. 23-16.4 Ma, Figure 2), the basin was formed as an E-W trending 

piggy-back basin developing on top of the active NW-directed Alpine thrustbelt (e.g. Decker, 

1996; Seifert, 1996; Hamilton et al., 2000). During the Middle and Late Miocene (ca. 16.4-7.1 

Ma), thrusting was followed by lateral extrusion of crustal blocks east of the Tauern Window, 

and the basin evolved into a pull-apart basin bordered by sinistral strike-slip faults (Royden, 

1985, 1988; Wessely, 1988). This change can be recognized in the depositional sequence of the 

Vienna Basin as a major regressive event at the Karpatian/Badenian boundary (Roegl et al., 

2002; Wagreich and Schmid, 2002). Rapid subsidence is responsible for an accumulation of ca. 

5.5km of sediments in the central part of the Vienna Basin (Hoelzel et al., 2008). 

The samples investigated in this study are from the central part of the Vienna Basin, within the 

Matzen Oil and Gas Field. In this part of the basin, the earliest deposits unconformably overlie 

the pre-Neogene basement. The sedimentation can be characterized as lacustrine to brackish-

littoral in the basal units, (Bockfliess Formation, Roegl et al., 2002), followed by a lacustrine-

terrestrial sequence (Gaenserndorf Formation, Kreutzer, 1992) to limnic-fluvial on top (Aderklaa 

Formation, Weissenbaeck, 1996). More precisely, the analyzed samples belong to the Auersthal 

beds of the informally named stratigraphic unit ‘Untere Sande’, which underlies the gas and oil 

bearing “Tortonian” horizons of Badenian age (Figure 2). The unit ‘Untere Sande’ comprised of 

the Bockfliess Beds, Gänserndorf Beds, Aderklaa Beds, followed by the Aderklaa 

Conglomerates, Auersthal Beds and the Upper Lagenid Zone (Papp et al., 1973). 

During the Early Badenian, a fluvial succession (Aderklaa Conglomerates) was deposited in the 

southern Vienna Basin during a sea-level lowstand. These sediments were transported to the 

north by a braided river system (Papp and Steininger, 1987). The fluvial development was 

followed by a marine transgression. The marine ingression came through a seaway connecting 

the basin with the Mediterranean area to the South. During the Sarmatian (ca. 13-11.5 Ma) the 

marine environment gradually changed to brackish water conditions. It is characterized by 

meandering channels and delta deposits and correlates with the final isolation of the Paratethys 

from the Mediterranean Sea. The Late Miocene (ca. 11.5-7.1 Ma) is characterized by a decrease 

in salinity, leading to lacustrine and fluvial deposits (Sauer et al., 1992; Roegl and Daxner-

Hoeck, 1996; Seifert, 1996). 
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Figure 2: Stratigraphy of the Vienna Basin, after Wagreich and Schmid, 2002. 
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Matzen Field 

 
The Matzen oil and gas field, located 30 km northeast of Vienna, is one of the largest onshore 

hydrocarbon reservoirs of Central and Western Europe and the main reservoir of the Vienna 

Basin (Fuchs and Hamilton, 2006, Figure 1). Since the discovery of the field in 1949, extensive 

exploration by the OMV was carried out.  

The oil and gas is reservoired in shallow-marine to fluvial clastic sediments of Middle and Late 

Miocene age (Badenian, Sarmatian and Pannonian).  

To date, about 1500 wells have been drilled, which produced 516 million bbl oil and 1.1 tcf gas, 

which represent about 90% of the established initial reserves of the entire Matzen field (Fuchs 

and Hamilton, 2006). The acquisition of high-resolution 3D seismic data in the 1990´s promoted 

a series of new sedimentological and structural studies (e.g., Fuchs and Hamilton, 2006; Hinsch 

et al., 2005; Strauss et al., 2006; Hoelzel et al., 2008). Detailed mapping of horizon and fault 

surfaces revealed a complex system of fault-bounded hosts and grabens (Figure 3). 

Figure 3: Seismic image of the Matzen Fault, OMV Report, 2003 

 



 

 14 

Structurally, the Matzen field can be divided into four different zones, (i) the Matzen anticline, 

an elongated, NE-SW trending anticline, which is located in the central part of the field, (ii) the 

Matzen fault system, a pull-apart graben in the north bounded by sinsitral strike-slip faults, (iii) 

the Bockfliess fault system in the west and (iv) the Markgrafneusiedl normal fault zone in the 

south (Schroeckenfuchs, 1975; Fuchs and Hamilton, 2006). 
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Samples and Methods 

 

Samples 

The samples investigated in this study derive from cores taken from a depth of 1647.5 m to 

1656.5 m (Figure 4) in well Matzen 220, which is located in the center of the Matzen field. The 

sandstone samples, with a diameter of 12 cm, are from the top of the informally named 'Untere 

Sande' unit of Badenian age. They directly underlie the most prominent reservoir unit in the 

Vienna Basin, the 16 TH horizon. The sandstones are weakly to moderate cemented-litharenites 

with a grain size of up to 0.3mm (middle sand). 

Deformation bands can be recognized in several sections of the core. The thickness of individual 

bands ranges from 2 to 4 mm; in some cores anastomosing strands of deformation band reach a 

combined thickness of up to 5 cm (Figure 5). Due to the fact that the cores are broken up into 

cm-dm long, discontinuous sections, the length of the bands cannot be determined (Figure 4). 

Some of the samples show extensive oil staining (e.g. MA220-1656.5, Figure 4), which is 

partially restricted to one side of the bands. 
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Figure 5: Core sample with deformation bands, 1651 m. 

Figure 4: The five core samples from Matzen 220 analyzed in this study. Note the oil staining in the lower right image.  



 

 17 

Methods 

To determine the mineralogical composition and microstructural features of the deformation 

bands and the host material, the following analytical devices at the Department of Geodynamics 

and Sedimentology, and the Department of Lithospheric Research at the University of Vienna 

were used. 

 

Optical Microscopy 

Sandstone samples were investigated with optical microscope Leica DM 4500P equipped with a 

digital color camera, Leica DFD295 with 3 megapixels. The images were processed with the 

Leica® Assistance Software (LAS) V3.2.0. The most commonly used objective lenses were 5.0x 

and 10.0x. The studied thin-section samples have a thickness of 30 µm. Thin-sections were 

stained with Alizarin Red S and K-ferricyanide for carbonate mineral determination. Sandstone 

modal composition was determined by counting 200 points per thin section. 

 

X-Ray Diffraction (XRD) 

X-ray diffraction provides qualitative and semi-quantitative information about the bulk 

mineralogy of the samples. The analysis was made with a Panalytical X’Pert PRO diffractometer 

(CuKα radiation, 40 kV, 40 mA, step size 0.0167, 5 s per step). Five sample pairs (deformation 

band and host rock of each core sample) were powdered to a grain size of <2 µm. 

 

Scanning Electron Microscopy (SEM) 

The scanning electron microscope, FEI INSPECT S50, was used to study the morphology and 

the surface of two split samples. The backscatter electron detector (BSE) and energy dispersive 

x-ray analysis (EDX) were used to get high-resolution images and to characterize the chemical 

composition of the samples in thin sections. A high energy electron beam, operating with up to 

30 kV supports the device. Element maps were taken with a focus on elements Si, Fe, Mg, Ca 



 

 18 

and K. The images were analyzed with the program ImageJ to determine mineralogical 

composition, porosity and grain size distribution. 

Thin-sections were coated with carbon to avoid charging and achieve conductivity of the 

electron beam. The sandstone split samples used in the SEM had a size of 0.5 cm x 1 cm x 0.5 

cm. They were coated with a thin gold layer for the same reasons as the BSE samples. 

 

Electron Microprobe Analysis 

Quantitative analysis of the chemical composition of detrital dolomite grains and dolomite 

cement was performed with a CAMECA SX100 electron microprobe. The beam current was set 

at 20 nA and the voltage at 15 kV. To avoid charging and to achieve conductivity the thin section 

samples were coated with a thin carbon layer. Quantitative spot analyses for Fe, Ca and Mg 

content were performed using the wavelength-dispersive (WDX) spectrometer. 

 

Cathodoluminescence (CL)  

A cathodoluminescence microscope, Lumic HC5-LM, was used to identify zoning or fracturing 

of cements and detrital grains. The thin-sections of 25 µm thickness were coated with carbon for 

better conductivity. The images were taken with an acceleration voltage set at 14 kV and a beam 

current of 5-7 mA.  

 

Carbon and Oxygen Stable Isotope Analyses 

Samples for carbon and oxygen stable isotope analyses were taken with a handheld micro-drill. 

Both deformation bands and host rock were analyzed three times each. Sample powders were 

reacted with 100% phosphoric acid at 70 °C with a Thermo-Finnigan Kiel II automated reaction 

system. The evolved CO2 gas was measured with a Thermo-Finnigan Delta Plus isotope-ratio 

mass spectrometer at the Institute of Earth Sciences at the University of Graz. The δ13C and δ18O 

values are corrected according to the NBS19 standard and reported in per mill (‰) relative to the 
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V-PDB (Vienna-PeeDee Belemnite) Standard. Measurements of NBS-19 and an internal 

laboratory standard indicate a standard deviation of 0.01‰ for δ13C and δ18O. 
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Figure 6: Thin-section scan of the sample 1647.5m. Deformation bands are clearly visible as dark, anastomosing 

bands of 3-10 mm thickness. 

Results 

 

In order to constrain the petrophysical properties and kinematic evolution of the deformation 

bands, we analyzed lithological, diagenetic and microstructural features of the sampled material. 

The deformation bands can already macroscopically be distinguished from the host rock as dark 

anastomosing bands of lower porosity (Figure 5). 

The polished thin-sections for analysis in the scanning electron microscope and electron 

microprobe were scanned for a better orientation and overview during analyses. Deformation 

bands are easily identified as dark gray, anastomosing bands (Figure 6). 

 

 

 

 

Under the optical microscope, the cause for this porosity reduction can be identified as micritic 

carbonate cement. The thin-section image of 1651m shows the boundary of a deformation band 

to the host rock (Figure 7). The detrital grains quartz, feldspar and dolomite are weakly cemented 

by carbonate in the host, and completely cemented inside the deformation band. 

4.5 cm 
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Lithology 

 

The investigated sandstones can be classified as litharenites (after Folk, 1968, Figure 8), 

determined by point-counting of 200 minerals in each of the five analyzed thin-sections. The 

detrital grains show a low sphericity, are angular to subrounded and are well sorted with a grain 

size between 0.05mm and 0.4mm. 

Figure 8: All samples can be classified as litharenite in diagram plotting quartz (Q), feldspar (F) and lithic grains (L) 

(after Folk, 1968). 

Figure 7: Thin section image of sample 1651m in plane polarized light (PPL), showing the boundary of a 

deformation band (upper right) to the host rock. The detrital grains of quartz (Qtz), feldspar (Fsp) and dolomite 

(Dol) are weakly cemented by carbonate in the host, and completely surrounded by cement inside the deformation 

band. 
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In all the samples analyzed in this study, the mineralogical composition is identical in the host 

rock and the deformation bands. The sandstone samples are dominated by quartz, detrital 

dolomite grains, feldspar, and pyrite; the pore space is partly cemented by dolomite in the host 

rock. In contrast, the relative content of dolomite is increased by a factor of 2-3 in the 

deformation bands, whereas the amount of pore space is decreased from 18.4-31.5% to 1.2-9.1 % 

in the deformation bands (Figure 9). 

 
 

Figure 9: Mineralogical composition of the sandstone samples from various depths (DB=deformation band, 

Host=host rock). A decrease in porosity correlates with an increase in dolomite cement in the deformation bands 

relative to the host rock. 
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Qualitative information of the mineralogical composition from X-ray diffraction patterns 

indicates no significant difference between the deformation band and host rock. The peak 

intensities of the diffraction pattern suggest that the percentages of some minerals of the 

deformation bands vary relative to the host rock, e.g. for dolomite with a higher peak (Figure 

10). Chlorite, muscovite, kaolinite, ankerite and feldspar appear with nearly the same 

concentration.  

Figure 10: X-ray diffraction pattern, mineralogical composition of deformation band and the host sediment 

(Chl=chlorite, Mu=muscovite, Kao=kaolinite, Qtz=quartz, KFsp=K-feldspar, Plag=plagioclase, Ank=ankerite, 

Dol=dolomite, 1648.1m) 
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Diagenetic processes 

 

The dolomite cement and detrital dolomite grains of sample 1649.5 m show bright red 

luminescence (Marshall,1988), in contrast to the non-luminescent quartz and weakly luminescent 

K-feldspar (blue) or plagioclase (green)(Figure 11). The boundary between host rock (left side of 

the image) and deformation band (right side) is clearly evident, due to the higher content of 

luminescent dolomite cement in the deformation band. Dolomite cement rims grow often on 

detrital dolomite and quartz grains both within deformation bands and in the host rock (Figure 

12). 

 

Figure 11: Cathodoluminescence (left) and transmitted light (right) images of the transition from deformation band 

(DB) to host rock (Host), 1649.3m; red luminescence indicates dolomite cement and detrital dolomite grains 

(Dol=dolomite, Qtz=quartz, Kfsp=K-feldspar, Plag=plagioclase). 

Figure 12: Cathodoluminescence image showing a detrital dolomite grain with dolomite cement rim of bright red 

luminescence within the deformation band, 1651m. 
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Dolomite cement and authigenic kaolinite on a quartz grain can be observed on an untreated split 

sample (Figure 13 A) in the scanning electron microscope. The dolomite cement grains have a 

characteristic euhedral orthorhombic shape and are between 2 and 5 µm in size. Kaolinite shows 

vermiform face-to-face stacks of pseudohexagonal plates, of ca. 10 µm diameter. Another split 

sample was treated with hydrochloric acid to dissolve the carbonate cements. The surface of 

quartz grains is etched by idiomorphic dolomite grains, leaving rhombic dissolution pits (Figure 

13 B). 

Figure 13: Split sample showing kaolinite (Kao) and dolomite cement (Dol) on quartz grain (Qtz), 1647.5m (A); split 

sample treated with hydrochloric acid showing quartz grains (Qtz) with imprints of dissolved dolomite grains (Dol 

imprint), 1647.5m (B). 

A B 
A B 
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 Quantitative measurements of the chemical composition of both detrital dolomite grains as well 

as the dolomite cement were performed with the electron microprobe (Figure 14 A). The 

dolomite cement shows a significant higher iron concentration (10-12 wt% FeO) compared to the 

detrital dolomite grains (0-2 wt% FeO). Some detrital dolomite grains reveal chemically zoned 

growth rims of dolomite cement, with an increasing Fe-content indicated by higher intensities in 

the BSE image (Figure 14 B). 

Figure 14: BSE image of a deformation band; white arrows showing the points, where the Fe-concentrations was 

measured, 1651m (A); BSE image showing detrital dolomite grain (Dol) with Fe-rich rims, 1651m (B). 

A B 
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The stable carbon and oxygen isotopes of the host rock and the deformation band were measured 

to determine the origin of the carbonate cement. A general trend can be observed for most of the 

measured host rock - deformation band pairs, shifting the corresponding deformation band 

isotopic composition towards more positive δ18O and more negative δ13C values than the host 

rock (Figure 15). The δ13C/δ18O values of the host rock fall between -2 and -0.5‰ for δ18O and 0 

and +3.5‰ for δ13C. The deformation bands show a distribution between -0.3 and +0.9‰ for 

δ18O and -1.5 and +0.6‰ for δ13C. Only sample 1648.1 m does not follow this general trend. 

 

 
Figure 15: Carbon and Oxygen Stable Isotope Analysis (Host= Host rock, DB= Deformation Band); a trend can be 

observed for samples 1647.5m, 1649.3m, 1651m and 1656.5m, all showing a similar shift towards positive δ18O and 

negative δ13C values. 

δ13C 

δ18O 

     1647.5m 
     1648.1m 
     1649.3m 
     1651m 
     1656.5m 
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Microstructures 

 
In contrast to typical cataclastic deformation bands described in sandstones (e.g., Aydin, 1978), 

only few fractured grains can be observed in the studied samples. Some few broken grains, 

primarily quartz grains, can be recognized within the deformation bands embedded in pyrite 

cement (Figure 16 A),at the border to the host rock (Figure 16 B), and in the split sample (Figure 

16 C). The most significant difference between the deformation band and the host rock is the 

presence of up to ca. 40% of dolomite cement within the deformation bands (see Figure 11). At 

the rim and across some deformation bands, fractures cutting across both detrital  grains and 

dolomite cement are observed (Figure 16 D), suggesting a formation of these fractures after the 

cementation. 

Figure 16: Broken quartz grain embedded in pyrite cement, BSE image, 1649.3m (A); BSE image and split sample 

showing broken quartz grains in detail (1647.5m, B, C), sandstone sample comprise fractures along host rock and 

deformation band boundary (1647.5m, white arrows, D). 

A B 

C D 
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The grain size distribution within deformation bands and the host rock was analyzed, from BSE 

images and element maps, in order to identify potential grain size reduction within the 

deformation bands prior to cementation. For a reliable statistical analysis, the dominating mineral 

phase was used, i.e. quartz, for the grain size analyses. One of the investigated areas, at the 

margin of a deformation band (Figure 17 A), shows quartz grains as the most intense phase in a 

Si-element map (Figure 17 B). From this image, the quartz grains were extracted (Figure 18) and 

the area of each grain was computed using ImageJ. As already evident in the binary image, the 

grain size is reduced within the deformation band (Figure 19), resulting both in a decrease in size 

of the quartz grains (ca. 150-250 µm in diameter), as well as in an increase in the amount of 

small grains (< 25 µm diameter). 

Additionally, the distribution of dolomite cement, detrital dolomite grains and porosity can be 

analyzed in the element maps. The high intergranular porosity in the host rock (ca. 20%) is 

reduced to ca. 2-5% in the deformation band (Figure 17 A). The magnesium (Figure 17 C) and 

calcium (Figure 17 D) element maps highlight the distribution of detrital dolomite grains and 

dolomite cement. The dolomite cement essentially covers the entire inter-granular space within 

the deformation band; but only few pores and grains within the host rock are cemented by a 

chemically identical dolomite (compare Figure 17A to C and D). Detrital dolomite grains can be 

observed both in host rock and deformation band, as more compact grains with high intensities in 

the element maps. 
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Figure 17: BSE image of sample 1647.5m showing the deformation band on top and the host rock at the bottom (A); 

element map of Si showing feldspar, mica (gray-yellow) and quartz grains (light yellow, B); the Mg and Ca images 

display the dolomite grains and cement within the deformation bands and detrital dolomite grains both host rock and 

deformation band (C, D). 

A B 

C D 
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Figure 18: B/W image of host rock and deformation band (1647.5m), which was used to measure grain sizes of quartz 

grains. 

Figure 19: Grain size distributions of quartz grains in deformation band and host rock (1647.5m_a, 1647.5m_b, 1656.5m) 

display a significant difference. Quartz grains within the deformation band show a smaller grain size compared to the 

host rock. 
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Discussion 

 

Combining the mineralogical and microstructural data collected in this study, it is possible to 

reconstruct the evolution of deformation bands in well core samples from a reservoir of the 

Matzen oil and gas field in the central Vienna Basin. 

Macroscopically it is evident that the main difference between deformation bands and host rock 

is the porosity. Deformation bands show a more compact texture than the surrounding sandstone 

(Figure 6). By point-counting and the use of image processing programs the porosity of the 

deformation bands and the host rock was calculated. The bands show a drastic decrease in 

porosity with 9% at the maximum, in contrast to the surrounding rock with up to 31.5% porosity. 

The reason for the decrease in porosity is the precipitation of Fe-rich dolomite within the 

deformation bands. In summary, the porosity and dolomite content comprise a much larger 

volume within the deformation bands (48-62%; see Figure 9) than in the host rock (42-46%). 

This in fact indicates that prior to the precipitation of the dolomite, the porosity within the 

deformation increased relative to the host rock. Thus, the observed deformation bands can be 

classified as dilation bands (Du Bernard et al., 2002). These type of bands typically occur in 

poorly consolidated sandstone at low overburden pressure. 

Measured Fe concentrations both in detrital dolomite grains as well as the dolomite cement 

suggest a different origin of the dolomite cement (10-12 wt% Fe) compared to the detrital 

dolomite grains (0-2 wt % Fe). 

Carbon and oxygen isotope analysis was made in an attempt to identify the origin of the dolomite 

cement. The measured δ13C and δ18O ratios indicate a non-meteoric source of the dolomite 

cement, since all samples display a consistent shift towards lower δ13C and higher δ18O values 

with respect to the detrital dolomite (Figure 15, Hoefs, 1973). Thus, the source of the Fe-rich 

dolomite cement may be hydrothermal fluids associated with normal faults within the Vienna 

Basin. Alternatively or additionally, the diagenesis of clay minerals in the underlying shales may 

have released Mg and Fe, contributing to the formation of the Fe-rich dolomite (Boles, 1978; 

McHargue and Price, 1982; Gawthorpe, 1987; Land et al., 1987; Macaulay et al., 1993; de Souza 

et al., 1995). 

In conclusion, several different stages of deformation band formations are captured within the 

analyzed samples. An initial dilation associated with some fracturing of grains under low burial 
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conditions resulted in an increase in porosity (Figure 20 B). Subsequently, the precipitation of 

Fe-rich dolomite fluid decreased the porosity dramatically within the deformation bands (Figure 

20 C and D). In this later stage, the bands can thus be classified as cementation bands (Fossen et 

al., 2007). Some minor fracturing, parallel and perpendicular, to the deformation bands indicates 

that the cemented bands are as a result stronger than the surrounding, weakly cemented 

sandstone. This modification of the petrophysical properties, from porosity increase to porosity 

decrease and a corresponding variation of the permeability certainly has a major influence on the 

migration of hydrocarbons in the reservoir (Micarelli et al., 2006; Shipton and Cowie, 2001). 

This assumption is supported by the observation that oil-bearing samples show a different degree 

of oil saturation on each side of the deformation bands.  

 

Figure 20: Development of the cementation band. A) initial undeformed sand. B) increase in porosity by extension, 

forming a dilation band. C) precipitation of an Fe-rich fluid and decreases the porosity, D) forming a cementation 

band. 

A B 

D C 
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Conclusions 

 

Sandstone samples were taken from a well core in the Matzen hydrocarbon reservoir, central 

Vienna Basin, Austria. The litharenites are mainly composed of quartz, feldspar and detrital 

dolomite, with angular to subrounded, well sorted grains of low sphericity, cemented by a Fe-

rich dolomite. The samples contain numerous deformation bands, which can macroscopically be 

identified as 1-4 mm broad, mostly anostomosing zones of low porosity.  

The comparison of X-ray diffraction patterns of host rock and deformation bands suggest a 

difference in concentration, especially of dolomite, but not in mineralogical composition. Single 

point analyses with the electron microprobe demonstrate further differences. The FeO content of 

the detrital dolomite grains adds up to 2 wt %, in contrast to the dolomite cement with a content 

of 10-12 wt % FeO. This suggests a clear difference in the origin of the dolomite. 

The porosity of deformation band and host rock was calculated by an image-processing program 

and point-counting. The bands show a drastic decrease in porosity with 9% at the maximum, in 

contrast to the surrounding rock with up to 31.5% porosity. The reason for the decrease in 

porosity is the preferred precipitation of Fe-rich dolomite cement within the deformation bands. 

A grain size reduction of quartz grains can be observed due to dolomite cementation and 

cataclasis.  

Carbon and oxygen stable isotope analysis indicates that the dolomite cement does not originate 

from a meteoric source, as the detrital dolomite grains of the host rock, but presumably from 

hydrothermal fluids (with more negative δ18O and δ13C values). 

As a conceptual model for the development of these deformation bands, a proposition that an 

initial phase of dilation and shear localization under low burial conditions, associated with some 

minor cataclastic fracturing of grains, resulted first in an increase of porosity can be made. 

Subsequently, the high porosity band served as a high permeability pipeline during cementation 

of the rock by a Fe-rich dolomite. Preferred precipitation of this Fe-dolomite within the band 

resulted in a reduction of porosity down to 1.2%. Accordingly, the deformation bands can 

therefore be classified as cementation bands (after Fossen, 2007). 
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Appendix 

Additional results 

X- ray diffraction measurements were made to compare the mineralogical composition of host 

rock and deformation bands (Figure 21 and Figure 22). Core samples from a well taken at a 

depth of 1651m show a difference in the mineralogical composition. This sample does not 

contain clay minerals, as muscovite, chlorite and kaolinite in the deformation band. Samples 

from depths of 1647.3m, 1649.3m and 1656.5m do not show a significant difference in 

mineralogical composition. 

In addition BSE images and element maps were analyzed in order to identify potential grain size 

reductions. The silica element maps highlight feldspar, mica (gray-yellow) and quartz grains 

(light yellow). The magnesium and calcium element maps show the distribution of detrital 

dolomite grains and dolomite cement. The iron and sulfur element maps indicate pyrite while 

potassium and aluminum highlight K-feldspar (Figure 23, Figure 24 and Figure 25). 

The chemical composition of detrital dolomite grains was measured by single point analyses 

with the electron microprobe. The quantitative measurements show a significant difference in 

FeO concentration between detrital grains and dolomite cement. The dolomite cement has a 

content of 10-12 wt% FeO, whereas the host rock has only 0-2wt% FeO (Table1).
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Figure 21: X-ray diffraction pattern, mineralogical composition of deformation band and the host sediment of 

the samples 1647.5m and 1649.3m (Chl=chlorite, Mu=muscovite, Kao=kaolinite, Qtz=quartz, KFsp=K-

feldspar, Plag=plagioclase, Dol=dolomite) 
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Figure 22: X-ray diffraction pattern, mineralogical composition of deformation band and the host sediment 

of the samples 1651m and 1656.5m (Chl=chlorite, Mu=muscovite, Kao=kaolinite, Qtz=quartz, KFsp=K-

feldspar, Plag=plagioclase, Dol=dolomite) 

 



 

 43 

 

  

 

 

Figure 23: BSE image of sample 1651m showing the deformation band on the right and the host rock on the 

left; element map of Si showing K-feldspar (gray-yellow) and quartz grains (light yellow); the Mg and Ca 

images display the dolomite cement and detrital dolomite grains in both host rock and deformation band; Fe 

image highlight pyrite and the Fe rich dolomite cement (gray blue); the K and Al images indicate K-fsp and 

muscovite.  
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Figure 24: BSE image of sample 1656.5m showing the host rock; element map of Si showing K-feldspar (gray-

yellow) and quartz grains (light yellow); the Mg and Ca images display the detrital dolomite grains and dolomite 

cement; the Fe and S images highlight pyrite; the K and Al images indicate K-fsp and muscovite.  
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Figure 25: BSE image of sample 1656.5m showing the deformation band; element map of Si showing feldspar 

(gray-yellow) and quartz grains (light yellow); the Mg and Ca images display the dolomite cement and detrital 

dolomite grains; the Fe image highlight pyrite and the Fe rich dolomite cement (gray-blue); the K and Al 

images indicate K-fsp and muscovite; the S image shows pyrite.  
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Single point analyses of detrital dolomite grains and dolomite cement

Table 1: Single point analyses display a significant difference in FeO content. Dolomite cement contain 10-12wt% FeO in contrast to detrital dolomite grains with 0-3wt%. 
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